

Lecture Notes in Computer Science 5189
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Gilles Grimaud
François-Xavier Standaert (Eds.)

Smart Card
Research and
Advanced Applications

8th IFIP WG 8.8/11.2 International Conference, CARDIS 2008
London, UK, September 8-11, 2008
Proceedings

13

Volume Editors

Gilles Grimaud
IRCICA/LIFL, CNRS UMR 8022
Univ. Lille 1, INRIA Lille - Nord Europe
Université des Sciences et Technologies de Lille LIFL
Batiment M3, 59655 cité scientifique, France
E-mail: gilles.grimaud@inria.fr

François-Xavier Standaert
UCL Crypto Group
Microelectronics Laboratory
Place du Levant, 3, 1348 Louvain-la-Neuve, Belgium
E-mail: fstandae@uclouvain.be

Library of Congress Control Number: 2008933705

CR Subject Classification (1998): E.3, K.6.5, C.3, D.4.6, K.4.1, E.4, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-85892-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85892-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12513536 06/3180 5 4 3 2 1 0

Preface

Since 1994, CARDIS has been the foremost international conference dedicated to
smart card research and applications. Every two years, the scientific community
congregates to present new ideas and discuss recent developments with both an
academic and industrial focus. Following the increased capabilities of smart cards
and devices, CARDIS has become a major event for the discussion of the various
issues related to the use of small electronic tokens in the process of human-machine
interactions. The scope of the conference includes numerous subfields such as net-
working, efficient implementations, physical security, biometrics, and so on.

This year’s CARDIS was held in London, UK, on September 8–11, 2008. It
was organized by the Smart Card Centre, Information Security Group of the
Royal Holloway, University of London.

The present volume contains the 21 papers that were selected from the 51 sub-
missions to the conference. The 22 members of the program committee worked
hard in order to evaluate each submission with at least three reviews and agree
on a high quality final program. Additionally, 61 external reviewers helped the
committee with their expertise. Two invited talks completed the technical pro-
gram. The first one, given by Ram Banerjee and Anki Nelaturu, was entitled
“Getting Started with Java Card 3.0 Platform”. The second one, given by Aline
Gouget, was about “Recent Advances in Electronic Cash Design” and was com-
pleted by an abstract provided in these proceedings.

We would like to express our deepest gratitude to the various people who
helped in the organization of the conference and made it a successful event. In
the first place, we thank the authors who submitted their work and the reviewers
who volunteered to discuss the submitted papers over several months. We also
acknowledge the work of our invited speakers. The assistance of the Smart Card
Centre at Royal Holloway was greatly appreciated. We are particularly grateful
to Konstantinos Markantonakis and Keith Mayes, the organizing committee co-
chairs. A big thank-you to Damien Sauveron, who maintained the submission
webtool, and to the staff at Springer for solving the practical publication issues.
And finally, we would like to thank the CARDIS steering committee for allowing
us to serve at such a recognized conference.

September 2008 Gilles Grimaud
François-Xavier Standaert

Smart Card Research and Advanced

Applications
8th IFIP WG 8.8/11.2 International Conference

CARDIS 2008

London, UK, September 2008

Organizing Committee

Konstantinos Markantonakis Royal Holloway, University of London, UK
Keith Mayes Royal Holloway, University of London, UK

Program Committee

Mehdi-Laurent Akkar Barclays Capital, USA
Gildas Avoine Université catholique de Louvain, Belgium
Boris Balacheff Hewlett-Packard Laboratories, UK
Eduardo De Jong Sun Microsystems, USA
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Dieter Gollmann TU Hamburg-Harburg, Germany
Louis Goubin Université de Versailles, France
Gilles Grimaud University of Lille 1, France (co-chair)
Pieter Hartel University of Twente, The Netherlands
Jaap-Henk Hoepman Radbout University Nijmegen, The Netherlands
Dirk Husemann IBM Zurich Research Laboratories, Switzerland
Marc Joye Thomson Multimedia, France
Jean-Louis Lanet GemAlto, France
Javier Lopez University of Malaga, Spain
Pierre Paradinas INRIA, France
Joachim Posegga University of Hamburg, Germany
Emmanuel Prouff Oberthur Card Systems, France
Damien Sauveron University of Limoges, France
Isabelle Simplot-Ryl University of Lille, France
François-Xavier Standaert UCL Crypto Group, Belgium (co-chair)
Issa Taore University of Victoria, Canada
Mike Tunstall University College Cork, Ireland
Jean-Jacques Vandewalle GemAlto, France
Johannes Wolkerstorfer IAIK/ Universisity of Graz, Austria

VIII Organization

External Reviewers

Antoni Martinez Balleste
Claude Barral
Salvatore Bocchetti
Pierre-François Bonnefoi
Arnaud Boscher
Samia Bouzefrane
Bastian Braun
Emmanuel Bresson
Ileana Buhan
Jordi Castella-Roca
Serge Chaumette
Liqun Chen
Christophe Clavier
Julien Cordry
Mark Crosbie
Vanesa Daza
Lauren Del Giudice
Eric Deschamps
Trajce Dimkow
Roberto Di Pietro
Emmanuelle Dottax

Alain Durand
Pierre Dusart
Martin Feldhofer
Pierre Girard
Sylvain Guilley
Stuart Haber
Georg Hofferek
Michael Hutter
Samuel Hym
Luan Ibraimi
François Ingelrest
Martin Johns
Chong Hee Kim
Markus Kuhn
Cedric Lauradoux
François Mace
Mark Manulis
Nathalie Mitton
Ayse Morali
Christophe Mourtel
Christophe Muller

Robert Naciri
Gilles Piret
Henrich C. Poehls
Emanuel Popovici
Thomas Popp
Christian Rechberger
Mathieu Rivain
Tomas Sander
Daniel Schreckling
Francesc Sebe
Saeed Sedghi
Yannick Sierra
Sergei Skorobogatov
Agusti Solanas
Junko Takahashi
Jean-Marc Talbot
Ronald Toegl
Claire Whelan
Emmanuele Zambon

Table of Contents

Malicious Code on Java Card Smartcards: Attacks and
Countermeasures . 1

Wojciech Mostowski and Erik Poll

Static Program Analysis for Java Card Applets . 17
Vasilios Almaliotis, Alexandros Loizidis, Panagiotis Katsaros,
Panagiotis Louridas, and Diomidis Spinellis

On Practical Information Flow Policies for Java-Enabled
Multiapplication Smart Cards . 32

Dorina Ghindici and Isabelle Simplot-Ryl

New Differential Fault Analysis on AES Key Schedule: Two Faults Are
Enough . 48

Chong Hee Kim and Jean-Jacques Quisquater

DSA Signature Scheme Immune to the Fault Cryptanalysis 61
Maciej Nikodem

A Black Hen Lays White Eggs: Bipartite Multiplier Out of Montgomery
One for On-Line RSA Verification . 74

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Ultra-Lightweight Implementations for Smart Devices – Security for
1000 Gate Equivalents . 89

Carsten Rolfes, Axel Poschmann, Gregor Leander, and Christof Paar

Fast Hash-Based Signatures on Constrained Devices 104
Sebastian Rohde, Thomas Eisenbarth, Erik Dahmen,
Johannes Buchmann, and Christof Paar

Fraud Detection and Prevention in Smart Card Based Environments
Using Artificial Intelligence . 118

Wael William Zakhari Malek, Keith Mayes, and
Kostas Markantonakis

The Trusted Execution Module: Commodity General-Purpose Trusted
Computing . 133

Victor Costan, Luis F.G. Sarmenta, Marten van Dijk, and
Srinivas Devadas

Management of Multiple Cards in NFC-Devices . 149
Gerald Madlmayr, Oliver Dillinger, Josef Langer, and
Josef Scharinger

X Table of Contents

Coupon Recalculation for the GPS Authentication Scheme 162
Georg Hofferek and Johannes Wolkerstorfer

Provably Secure Grouping-Proofs for RFID Tags . 176
Mike Burmester, Breno de Medeiros, and Rossana Motta

Secure Implementation of the Stern Authentication and Signature
Schemes for Low-Resource Devices . 191

Pierre-Louis Cayrel, Philippe Gaborit, and Emmanuel Prouff

A Practical DPA Countermeasure with BDD Architecture 206
Toru Akishita, Masanobu Katagi, Yoshikazu Miyato,
Asami Mizuno, and Kyoji Shibutani

SCARE of an Unknown Hardware Feistel Implementation 218
Denis Réal, Vivien Dubois, Anne-Marie Guilloux,
Frédéric Valette, and Mhamed Drissi

Evaluation of Java Card Performance . 228
Samia Bouzefrane, Julien Cordry, Hervé Meunier, and
Pierre Paradinas

Application of Network Smart Cards to Citizens Identification
Systems . 241

Joaquin Torres, Mildrey Carbonell, Jesus Tellez, and Jose M. Sierra

SmartPro: A Smart Card Based Digital Content Protection for
Professional Workflow . 255

Alain Durand, Marc Éluard, Sylvain Lelievre, and
Christophe Vincent

A Practical Attack on the MIFARE Classic . 267
Gerhard de Koning Gans, Jaap-Henk Hoepman, and
Flavio D. Garcia

A Chemical Memory Snapshot . 283
Jörn-Marc Schmidt

Recent Advances in Electronic Cash Design . 290
Aline Gouget

Author Index . 295

Malicious Code on Java Card Smartcards:

Attacks and Countermeasures

Wojciech Mostowski and Erik Poll

Digital Security (DS) group, Department of Computing Science
Radboud University Nijmegen, The Netherlands

{woj,erikpoll}@cs.ru.nl

Abstract. When it comes to security, an interesting difference between
Java Card and regular Java is the absence of an on-card bytecode ver-
ifier on most Java Cards. In principle this opens up the possibility of
malicious, ill-typed code as an avenue of attack, though the Java Card
platform offers some protection against this, notably by code signing.

This paper gives an extensive overview of vulnerabilities and possible
runtime countermeasures against ill-typed code, and describes results of
experiments with attacking actual Java Cards currently on the market
with malicious code.

1 Overview

A huge security advantage of type safe language such as Java is that the low
level memory vulnerabilities, which plague C/C++ code in the form of buffer
overflows, are in principle ruled out. Also, it allows us to make guarantees about
the behaviour of one piece of code, without reviewing or even knowing all the
other pieces of code that may be running on the same machine.

However, on Java Card smartcards [9] an on-card bytecode verifier (BCV)
is only optional, and indeed most cards do not include one. This means that
malicious, ill-typed code is a possible avenue of attack.

Of course, the Java Card platform offers measures to protect against this, most
notably by restricting installation of applets by means of digital signatures –
or disabling it completely. Still, even if most Java Card smartcards that are
deployed rely on these measures to avoid malicious code, it remains an interesting
question how vulnerable Java Card applications are to malicious code. Firstly,
the question is highly relevant for security evaluations of code: can we evaluate
the code of one applet without looking at other applets that are on the card?
Secondly, the defence mechanisms of the Java Card platform are not so easy
to understand; for instance, there is the firewall as an extra line of defence,
but does that offer any additional protection against ill-typed code, and can it
compensate for the lack of BCV? And given the choice between cards with and
without BCV, are there good reasons to choose for one over the other? (As we
will show, cards with on-card BCV may still be vulnerable to ill-typed code!)

In this paper we take a serious look at the vulnerability of the Java Card
platform against malicious, ill-typed code. We consider the various ways to get

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 1–16, 2008.
c© IFIP International Federation for Information Processing 2008

2 W. Mostowski and E. Poll

ill-typed code on a smartcard, and various ways in which one applet could try
to do damage to another applet or the platform, and the countermeasures the
platform might deploy.

There is surprisingly little literature on these topics. The various defences
of the Java Card platform are only given rather superficial discussion in [6,
Chapter 8]. The only paper we know that discusses type flaw attacks on a Java
Card smartcard is [11].

We have experimented with attacks on eight different cards from four manu-
facturers, implementing Java Card versions 2.1.1, 2.2, or 2.2.1. We will refer to
these cards as A 211, A 221, B 211, B 22, B 221, C 211A, C 211B, and D 211. The
first letter indicates the manufacturer, the numbers indicate which Java Card
version the card provides. Based on the outcome of the experiments, we can
make some educated guesses on which of the countermeasures the cards actually
implement.

The outline of the rest of this paper is as follows. Sect. 2 briefly reviews
the different lines of defence on the Java Card platform, including bytecode
verification and the applet firewall. The first step in any attack involving ill-
typed code is getting ill-typed code installed on the smartcard. More precisely,
we want to somehow create type confusion, or break the type system, by having
two pieces of code treat (a reference to) the same piece of physical memory as
having different, incompatible types. Sect. 3 discusses the various ways to create
type confusion and the success we had with these methods on the various cards.
Sect. 4 then discusses experiments with concrete attacks scenarios.

Sect. 5 discusses the various runtime countermeasures the platform could im-
plement against such attacks, some of which we ran into in the course of our ex-
periments. Finally, Sect. 6 summarises our results and discusses the implications.

2 Defences

In this section we briefly describe and compare the protection provided by the
various protection mechanisms on a Java Card platform.

2.1 Bytecode Verification

Bytecode verification of Java (Card) code guarantees type correctness of code,
which in turn guarantees memory safety. For the normal Java platform, code
is subjected to bytecode verification at load time. For Java Cards, which do
not support dynamic class loading, bytecode verification can be performed at
installation time (when an applet is installed on the smartcard). However, most
Java Card smartcards do not have an on-card BCV, and check a digital signature
of a third party who is trusted to have performed bytecode verification off-card.

Note that even if bytecode is statically verified, some checks will always have to
be done dynamically, namely checks for non-nullness, array bounds, and down-
casts. For Java Card, the applet firewall will also require runtime checks. Al-
though typically bytecode verification is done statically, it is also possible to

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 3

do type checking dynamically, i.e. at runtime, by a so-called defensive virtual
machine. This requires keeping track of typing information at runtime and per-
forming type checks prior to the execution of every bytecode instruction. Clearly,
this has an overhead both in execution time and in memory usage. However, to
check downcasts the VM already has to record runtime types of objects anyway.

As we will see later, our experiments show that some Java Cards do a form
of runtime type checking, and this then offers an excellent protection against
ill-typed code.

2.2 Applet Firewall

The applet firewall is an additional defence mechanism implemented on all Java
Cards. The firewall performs checks at runtime to prevent applets from accessing
(reading or writing) data of other applets (of applets in a different security con-
text, to be precise). For every object its context is recorded, and for any field or
method access it is checked if it is allowed. In a nutshell, applets are only allowed
to access in their own context, but the Java Card Runtime Environment (JCRE)
has the right to access anything. In UNIX terminology, the JCRE executes in
root-mode, and some of the Java Card API calls, which are executed in JCRE
context, are ‘setuid root’.

Defence mechanisms can be complementary, each providing different guaran-
tees that the other cannot, or defence in depth, each providing the same guar-
antees, so that one can provide a back-up in case the other fails. As defence
mechanisms, the firewall and bytecode verification are primarily complemen-
tary. The firewall provides additional guarantees that bytecode verification does
not: a carelessly coded applet might expose some of its data fields by declaring
them public, allowing other applets to read or modify them.1 Bytecode verifi-
cation cannot protect against this, but the firewall will. The firewall provides a
strong guarantee that an applet cannot be influenced by the behaviour of other
(well-typed!) applets, unless it explicitly exposes functionality via a so-called
Shareable Interface Object.

The firewall is not guaranteed to offer protection against ill-typed applets.
Still, for certain attack scenarios, the firewall does provide a useful second line
of defence. If a malicious applet manages to get hold of a ‘foreign’ reference to
an object belonging to another applet by breaking the type system, its access
to that object reference is still subject to runtime firewall checks, which may
prevent any harm.

Breaking the Firewall. The firewall as specified in [9] is quite complicated.
This means that there is a real chance of implementation bugs, or unclarities
in the specs, which might lead to security flaws. We investigated the firewall
specification and thoroughly tested cards for any flaws. Details are described
in a separate technical report [8]. We did find some minor deviations from the
1 Indeed, security coding guidelines for Java such as [6, Chapter 7] or
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html

warn against the use of public, package, and protected (!) visibility.

http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/java.html

4 W. Mostowski and E. Poll

official specification on some cards, but most of them are ‘safe’, in the sense
that the cards were more restrictive than the specification demanded. The only
‘unsafe’ violation of the specifications we found was that card A 221 ignores the
restriction that access via a shareable interface should not be allowed when an
applet is active on another logical channel. This could lead to security problems
in particular applications that use shareable interfaces. The tests in [8] only
consider well-typed code. However, a weak firewall implementation can be broken
with ill-typed code, as we will discuss in Sect. 4.2.4.

3 Getting Ill-Typed Code on Cards

We know four ways to get ill-typed code onto a smartcard: (i) CAP file ma-
nipulation, (ii) abusing shareable interface objects, (iii) abusing the transaction
mechanism, and (iv) fault injection. Note that an on-card BCV is only guaran-
teed to protect against the first way to break type safety (assuming the BCV is
correct, of course). These methods are discussed in more detail below, and for
the first three we discuss whether they work on the cards we experimented with.

3.1 CAP File Manipulation

The simplest way to get ill-typed code running on a card is to edit a CAP
(Converted APplet) file to introduce a type flaw in the bytecode and install it
on the card. Of course, this will only work for cards without on-card BCV and for
unsigned CAP files. One can make such edits in the CAP file or – which is easier
– in the more readable JCA (Java Card Assembly) files. For example, to treat a
byte array as a short array, it is enough to change a baload (byte load) opcode
into a saload (short load). Such a misinterpreted array type can potentially lead
to accessing other applets’ memory as we explain in Sect. 4. To further simplify
things, instead of editing JCA or CAP files, one could use some tool for this; ST
Microelectronics have developed such a tool, which they kindly let us use.

CAP file editing gives endless possibilities to produce type confusion in the
code, including type confusion between references and values of primitive types,
which in turn allows C-like pointer arithmetic.

Experiments. As expected, all the cards without on-card BCV installed ill-typed
CAP files without problems. Apart from an on-card BCV, simply prohibiting
applet loading – common practice on smartcards in the field – or at least control-
ling applet loading with digital signatures are of course ways to prevent against
manipulated CAP files.

3.2 Abusing Shareable Interface Objects

The shareable interface mechanism of Java Card can be used to create type con-
fusion between applets without any direct editing of CAP files, as first suggested
in [11].

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 5

Shareable interfaces allow communication between applets (or between secu-
rity contexts, to be precise): references to instances of shareable interfaces can
be legally used across the applet firewall. To use this to create type confusion,
the trick is to let two applets communicate via a shareable interface, but to
compile and generate CAP files for the applets using different definitions of the
shareable interface. This is possible because the applets are compiled and loaded
separately.

For example, suppose we have a server applet exposing a shareable interface
MyInterface and a second client applet using this interface. If we produce the
CAP file for the server applet using the following interface definition:

public interface MyInterface extends Shareable {
void accessArray(short[] array); } // Server assumes short[]

and the CAP file for the client applet using:

public interface MyInterface extends Shareable {
void accessArray(byte[] array); } // Client assumes byte[]

then we can make the server applet treat a byte array as a short array.
One last thing to take care of in this scenario is to circumvent the applet

firewall mechanism. Since the server and client applet reside in different contexts,
the server does not have the right to access the array it gets from the client.
Hence, to make this work the server has to first send its own byte array reference
to the client and then the client has to send it back to the server through the
ill-typed interface. This way the server can run malicious code on its own (in
terms of context ownership) data. Now, the shareable interface definition for the
server will for instance include:

void accessArray(short[] array); // Server assumes short[]
byte[] giveArray(); // Server gives its array to client

whereas the one for the client includes:

void accessArray(byte[] array); // Client assumes byte[]
byte[] giveArray(); // This array from server is sent back

// to the server with accessArray(...)

Obviously, this scenario is not limited to confusing byte arrays with short ar-
rays. Virtually any two types can be confused this way.

We should point out that the client and server applet usually need to be aware
of each other and actively cooperate to cause an exploitable type unsoundness.
So they both have to be malicious. To the best of our analysis it is not really
possible to type-attack an ‘unaware’ server which exports a shareable interface,
by crafting a malicious client applet, or vice versa.

Experiments. This method to break the type system worked on all cards without
BCV, with the exception of D 211. Card D 211, without on-card BCV, refused
to load any code that uses shareable interfaces – for reasons still unclear to us.

Both cards with on-card BCV, C 211A and C 211B, also refuse to install code
that uses shareable interfaces, but that is understandable. An on-card BCV may

6 W. Mostowski and E. Poll

have a hard time spotting type flaws caused by the use of incompatible inter-
faces definition, because just performing bytecode verification of an individual
applet will not reveal that anything is wrong. So cards C 211A and C 211B re-
sort to a simpler and more extreme approach: they simply refuse to load any
code that use shareable interfaces. This clearly avoids the whole issue with type
checking such code. (Strictly speaking, one can argue that these cards do not
implement the Java Card standard correctly, as there is no mention in the Java
Card specification of shareable interfaces being an optional feature.)

3.3 Abusing the Transaction Mechanism

The Java Card transaction mechanism, defined in [9], is probably the trickiest
aspect of the Java Card platform. The mechanism has been the subject of inves-
tigation in several papers [1,5], and [4] demonstrated it as a possible source of
fault injections on one card. The transaction mechanism allows multiple byte-
code instructions to be turned into an atomic operation, offering a roll-back
mechanism in case the operation is aborted, which can happen by a card tear
or an invocation of the API method JCSystem.abortTransaction. The roll-
back mechanism should also deallocate any objects allocated during an aborted
transaction, and reset references to such objects to null [9, Sect. 7.6.3].

As pointed out to us by Marc Witteman, it is this last aspect which can
be abused to create type confusion: if such references are spread around, by
assignments to instance fields and local variables, it becomes difficult for the
transaction mechanism to keep track of which references should be nulled out.
(This problem is similar to reference tracking for garbage collection, which is
normally not supported on Java Cards.) For example, consider the following
program:

short[] array1, array2; // instance fields
...
short[] localArray = null; // local variable
JCSystem.beginTransaction();

array1 = new short[1];
array2 = localArray = array1;

JCSystem.abortTransaction();

Just before the transaction is aborted, the three variables array1, array2, and
localArraywill all refer to the same short array created within the transaction.
After the call to abortTransaction, this array will have been deallocated and
all three variables should be reset to null.

However, buggy implementations of the transaction mechanism on some cards
keep the reference in localArray and reset only array1 and array2. On top of
this, the new object allocation that happens after the abort method reuses the
reference that was just (seemingly) freed. Thus the following code:

short[] arrayS; // instance field
byte[] arrayB; // instance field
...

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 7

short[] localArray = null; // local variable
JCSystem.beginTransaction();

arrayS = new short[1]; localArray = arrayS;
JCSystem.abortTransaction();
arrayB = new byte[10]; // arrayB gets the same reference as arrayS

// used to have, this can be tested
if((Object)arrayB == (Object)localArray) ... // this is true!

produces two variables of incompatible types, arrayB of type byte[] and local-
Array of type short[], that hold the same reference, so we have ill-typed code.
Again, this trick is not limited to array types.

The root cause of this problem is the subtle ‘feature’ of the transaction mech-
anism that stack-allocated variables, such as localArray in the example above,
are not subject to roll-back in the event of a programmatically aborted trans-
action (i.e. a call to JCSystem.abortTransaction). Apparently this potential
for trouble has been noticed, as the JCRE specification [9, Sect. 7.6.3] explicitly
allows a card to mute in the event of a programmatic abort after objects have
been created during the transaction.

Experiments. Four cards (B 211, B 221, C 211A, D 211) have a buggy transaction
mechanism implementation that allows the type system to be broken in the way
described above. Note that an on-card BCV will not prevent this attack. Indeed,
one of the cards with an on-card BCV, C 211A, is vulnerable to this attack.

The obvious countermeasure against this attack is to correctly implement the
clean-up operation for aborted transactions. However, only one of our test cards
(B 22) managed to perform a full clean-up correctly.

Another countermeasure against this attack is for cards to mute when a trans-
action during which objects have been created is programmatically aborted. As
mentioned above, this is allowed by the JCRE specifications. Three cards we
tested (A 211, A 221, C 211B) implement this option.

3.4 Fault Injections

Finally, fault injections, e.g. by light manipulations, could in theory be used to
change the bytecode installed on a card and introduce type flaws.

Fault injections do not provide a very controlled way to change memory, so
the chance of getting an exploitable type flaw is likely to be small. However,
following the ideas described in [3], for specially tailored code a fault injection
can be expected to produce an exploitable type flaw with a relatively high chance.

We did not carry out any experiments with this, since we do not have the
hardware to carry out fault injections.

4 Type Attacks on Java Cards

Using the various methods discussed in the previous section, we were able to
install ill-typed code on all but one of the smartcards we had (namely card
C 211B). We then experimented with various attacks on these cards.

8 W. Mostowski and E. Poll

One idea was to exploit type confusion between primitive arrays of different
types, a byte array with a short array, to try and access arrays beyond the array
bounds. Another basic idea was to exploit type confusion between an array and a
object that was not an array, where there are several opportunities for mischief,
such as redefining an array’s length – reportedly successful on some cards [11]
– or writing object references to perform pointer arithmetic or spoof references.
Whether confusion between arrays and other objects can be exploited depends
on the exact representation of objects in memory.

4.1 Accessing a Byte Array as a Short Array [Byte as Short Array]

The first attack is to try to convince the applet to treat a byte array as a short
array. In theory this would allow one to read (or write) twice the size of the
original byte array. For instance, accessing a byte array of length 10 as a short
array size might allow us to access 10 shorts, i.e. 20 bytes, with the last 10 bytes
possibly belonging to another applet.

We considered three kinds of byte arrays: global arrays (i.e. the APDU buffer),
persistent context-owned arrays, and transient context-owned arrays. There was
no difference in behaviour between these different kinds of arrays, i.e. each card
gives the same result for all three array types. However, different cards did exhibit
different behaviour, as described below.

Cards C 211A and D 211 gave us the result we were hoping for, as attackers. It
was possible to read beyond the original array bound. In particular, we managed
to access large parts of the CAP file that was later installed on the card. This
is clearly dangerous, as it means an applet could read and modify code or data
of another applet that was installed later. NB C 211A is the card with on-card
BCV where the buggy transaction mechanism allowed us to run ill-typed code.
This highlights the danger of putting all one’s trust in an on-card BCV!

Cards from manufacturer B did not let us read a single value from an ill-
typed array. Cards B 211 and B 221 muted the current card session whenever
we tried this, and B 22 returned a response APDU with status word 6F48. This
suggests that these cards perform runtime type checking (at least enough to
detect this particular type confusion). Indeed, all attacks we tried on B 211
and B 221 were ineffective in that they always gave this same result, i.e. the
cards muted whenever an ill-typed instruction was executed. For card B 22 some
attacks did give more interesting results.

Results on cards from manufacturer A were hardest to understand. Card
A 221 allowed us to run the ill-typed code. However, it does not let us read data
outside the original array bounds. What happens is that one byte value is treated
as one short value (exactly as if bytes were in fact implemented as shorts in the
underlying hardware). For positive byte values each value is prepended with a
00, for negative values with FF:

Read as byte[] 00 01 02 03 04 ... 80 81 ...
Read as short[] 0000 0001 0002 0003 0004 ... FF80 FF81 ...

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 9

Card A 211 allowed us to run the ill-typed code and reads two subsequent
bytes as one short value:

Read as byte[] 00 01 02 03 04 05 06 07 ...
Read as short[] 0001 0203 0405 0607 ...

However, it was not possible to go outside of the range of the original byte
array: even though the presumed short array reports to be of size n, it is only
possible to access the first n/2 elements, allowing access to the original n bytes.
Attempts to access array elements beyond this yielded an ArrayIndexOutOf-
BoundsException.

What appears to be happening on A 211 is that array bounds checks are done
in terms of the physical memory size of the arrays (in bytes), not in terms of
the logical size of the arrays (in number of elements). We will call this physical
bounds checking.

4.2 Accessing an Object as an Array [Object as Array]

Instead of confusing two arrays of different type, one can more generally try
to confuse an arbitrary object with an array. This opens the following attack
possibilities.

4.2.1 Fabricating Arrays
Witteman [11] describes a type attack which exploits type confusion between an
array and an object of the following class Fake:

public class Fake { short len = (short)0x7FFF;}

The attack relies on a particular representation of arrays and objects in memory:
for the attack to succeed, the length field of an array has to be stored at the
same offset in physical memory as the len field of a Fake object. If we can then
trick the VM in treating a Fake object as an array, then the length of that array
would be 0x7FFF, giving access to 32K of memory. The fact that we can access
the len field through the object reference could allow us to set the array length
to an arbitrary value.

Although setting the length of the array was not possible as such on the cards
we tested, this attack gave us interesting results nevertheless.

As before, cards B 211 and B 221 refused to execute the ill-typed code, as in
all other attack scenarios. Card A 211 also refused to execute the code, returning
the 6F00 status word. Apparently A 211 has some runtime checks that prevent
type confusion between objects and arrays.

On the cards where running our exploit code was possible (A 221, B 22,
C 211A, D 211), the object representation in memory prevents us from manip-
ulating the array length. Still, we noticed two different behaviours. For cards
A 221 and B 22, the length of the “confused” array indicates the number of
fields in the object, i.e. an instance of the Fake class gives an array of length
1 containing the element 0x7FFF. For the two other cards, C 211A and D 211,
the length of the confused array has some apparently arbitrary value: the length

10 W. Mostowski and E. Poll

is not the number of instance fields, but it probably represents some internal
object data. For C 211A this value is large enough (actually negative when the
length is interpreted as a signed short) to freely access any forward memory
location on the card.

A slight modification of this attack allows us to read and write object refer-
ences directly as we describe next.

4.2.2 Direct Object Data Access
The results of the previous attack suggests that it would be possible to treat
object fields as array elements on cards A 221, B 22, C 211A, and D 211. Reference
fields could then be read or written as numerical values, opening the door to
pointer arithmetic.

This is indeed possible for all these cards. For example, an instance of this
class:

public class Test {
Object r1 = new Object();
short s1 = 10; }

when treated as a short array a on card A 221 gives the following array contents:

a.length: 2 # of fields, read only
a[0]: 0x09E0 field r1, read/write
a[1]: 0x000A field s1, read/write

By reading and writing the array element a[0] it was possible to directly read
and write references. Similar results were obtained on the three other cards (B 22,
C 211A, D 211), although in the case of C 211A we did not manage to effectively
write a reference.

Pursuing this attack further we tried two more things: switching references
around and spoofing references.

4.2.3 Switching References [Switch]
Once we have a direct access to a reference we can try to replace it (by direct
assignments) with another reference, even if these have incompatible types. Our
test results show that if the new value is a valid reference (i.e. existing reference)
this is perfectly possible. Assume, for example, that we have these two field
declarations in some class C:

MyClass1 c1 = new MyClass1();
MyClass2 c2 = new MyClass2();

Accessing an object of class C as an array, we should be able to swap the values
of c1 and c2. This in turn introduces further type confusion: field c1 points to
a reference of type MyClass2 and field c2 to a reference of type MyClass1.

Two cards, A 221 and B 22, allowed us to do it. It was possible to read instance
fields of such switched references, but only as long as the accessed fields stayed
within the original object bounds. This suggests that these cards perform dy-
namic bounds checks when accessing instance fields, analogous to the dynamic
bounds checks when accessing array elements. We will call this object bounds

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 11

checking. Indeed, given the similarity of memory layout for arrays and other
objects on these card, the code for accessing instance fields and array elements
might be identical. Such object bounds checking prevents reference switching
from giving access beyond original object bounds, and hence prevents access to
another applet’s data.

Another way in which reference switching might give access to another applet
would be setting a field in one applet to point to an object belonging to another
applet. However, here the firewall checks prevent illegal access via such a reference.

Also, methods can be called on the switched references, as long as calling such
methods did not cause object bounds violations or referring to stack elements
below the stack boundary.

4.2.4 AID Exploitation [AID]
The possibility to switch references could be abused to manipulate system-owned
AID objects. An AID (Applet IDentifier) object is effectively a byte sequence
that is used to identify applets on a card. An AID object has a field which points
to a byte array that stores the actual AID bytes. Changing the value of this field
would change the value of an AID, whereas AIDs are supposed to be immutable.

An obstacle to this attack might be the firewall mechanism; indeed, if we
try to change the field of a system-owned AID object from an applet this is
prevented by the firewall. However, if we access the AID object as an array, then
on cards A 221 and B 22 we could change the values of system-owned AIDs. This
has serious consequences: a hostile applet can corrupt the global AID registry,
and try to impersonate other applets. This attack is a much stronger version of
the one described in e.g. [7].

Because of the privileged nature of system-owned AID objects – they are
JCRE entry points – further exploits might be possible.

4.2.5 Spoofing References [Spoof]
Going one step further than switching references, we tried spoofing references,
i.e. creating a reference from a numerical value by assigning a short value to a
reference.

Any way we tried this, cards A 221, B 22, and C 211A refused to use such
references: the card session was muted or an exception was thrown.

Card D 211, an older generation card, did let us spoof references. It was pos-
sible to write a small applet that effectively let us “read” any reference from the
card by using the techniques we just described and a little bit of CAP file ma-
nipulation trickery. By “read” we mean that it is possible to get some value that
supposedly resides at the memory address indicated by the reference. However,
composing a sequence of such reads (going through all the possible reference
values) did not really give a valid memory image of the card. That is, it was not
possible to recognise parts of bytecode that should be on the card, or any applet
data we would expect to find.

Cards can detect spoofing of references by keeping track of additional data in
their representation of objects or references in memory and refusing to operate
on (references to) objects if this data is not present or corrupted.

12 W. Mostowski and E. Poll

For instance, analysing our failed attempts to spoof references on A 221 we
noticed that each allocated object (even the simplest one) takes up at least 8
bytes of memory. That is, the values of references to subsequently allocated
objects, when read as numerical values, differ by at least eight. An array of
length 1 would even take up 16 bytes. It is clear that two bytes are used to
store the number of fields (or array length, in case of an array). However, it is
not clear what the other six bytes (or more in case of arrays) are used for: it
will include information about the runtime type and the firewall context, but it
could also contain additional checksums to check the integrity of a reference. If
it would be possible to reconstruct the structure of this data (difficult because
of the number of combinations to try) we believe constructing a fake reference
could be considered a possibility, although an unlikely one.

We also tested references of arrays of different memory type (persistent and
transient). The values of references to different kinds of arrays seem to be ‘next to
each other’, which would indicate that the value of the reference has little to do
with the actual memory address. Apparently there is an additional mechanism
in the VM to map these reference to physical addresses.

4.3 More Type Confusion Attacks

Obviously, the attacks we have just described do not exhaust all possibilities.
Many more are possible. For example, by changing the number of parameters
in the shareable method one could try to read data off the execution stack, but
this did not succeed on any of our cards.

Another example is that it is possible to reverse the type confusion between
arrays and objects, and access an array as an object, with the aim to try accessing
an array beyond its array bounds. Such an ‘array as object’ attack produced
similar results as the object as array attack in Sect. 4.2.2, except that it was
also possible on A 211, albeit harmless in the sense that it did not allow access
beyond the original array bounds there.

5 Dynamic Countermeasures

Our experiments show that some VMs are much more defensive than others
when it comes to executing ill-typed code. The Java Card specifications leave a
lot of freedom for defensive features in the implementation of a VM. As long as
the executed code is well-typed the defensive features should go undetected; the
specifications are meant to guarantee that well-typed code executing on different
smartcards always results in the same behaviour. However, ill-typed code is
effectively out of scope as far as the Java Card specifications are concerned;
when running ill-typed code as we have done, there are no guarantees that the
same behaviour is observed on different cards, and additional defences can come
to light. Below we give on overview of possible dynamic runtime checks a VM
might implement.2

2 The fact that Java Cards take so many clock cycles for each individual bytecode
instruction [10] already suggests that Java Cards do quite a lot of runtime checks.

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 13

Runtime Type Checking. Two cards from manufacturer B, cards B 211 and
B 221, appear to do runtime type checking, making them immune to all ill-typed
code we tried. Card A 211 also performs enough runtime type checks to make it
immune to all our attacks. Still, because we were able to confuse byte and short
arrays, albeit without being able to do actual harm, card A 211 apparently does
not do complete type checking at runtime.

Object Bounds Checking. Any VM is required to do runtime checks on array
bounds when accessing array elements. A VM could do some similar runtime
checks of object bounds when accessing instance fields and invoking methods on
objects that are not arrays, if it records the ‘size’ – the number of fields – of
each object in the same way it records the length of an array. In the conversion
of bytecode into CAP file format, names are replaced by numbers – 0 denotes
the first field, 1 the second, etc. – which makes such a check easy to implement.

Two of the cards appear to do object bounds checking, namely A 221 and
B 22, as explained in Sect. 4.2.3.

Physical Bounds Checks. Bounds checks on arrays (or objects) can be done using
the ‘logical’ size of an array (i.e. its length and the array index), but can also
be done using the ‘physical’ size of the array contents in bytes and the actual
offset of an entry. For example, the contents of a short array a of length 10
takes up 20 bytes. When accessing a[i], one could do a runtime check to see
if 0 ≤ i ≤ 10, or a runtime check to see if 0 ≤ 2*i ≤ 20. If the VM uses the
physical offset 2*i to look up the entry, one may opt for the latter check.

Our experiments suggests that card A 211 performs physical bounds checks,
as explained in Sect. 4.1.

Firewall Checks. Firewall checks have to be done at runtime.3 Our successful
attacks on C 211A and D 211 by confusing byte and short arrays in Sect. 4.1
as well as two successful AID object exploits (A 221, B 22) demonstrate that
the firewall does not really provide defence-in-depth in the sense that it can
compensate for the absence of a bytecode verifier.

Still, in some attacks the firewall is clearly a formidable second line of defence.
For instance, attacks where we try to switch references are essentially harmless
if the firewall prevents us from accessing object belonging to other contexts: at
best an applet could then attack its own data, which is not an interesting attack.
However, as the AID attack show, the firewall does not prevent all such attacks,
as by accessing object as arrays we might be able to circumvent firewall checks.
This shows that firewall implementations are not defensive, in the sense they do
not make additional checks to catch type confusion, but then the specification
of the firewall does not require them to be defensive.

It is conceivable that a defensive implementation of the firewall could prevent
the attacks on C 211A and D 211 described in Sect. 4.1, namely if firewall checks
3 A system to statically check most of the firewall access rules is proposed in [2]. How-

ever, performing checks statically, at load time, is not necessarily an improvement
over doing them at runtime, as our results with bytecode verification show.

14 W. Mostowski and E. Poll

are performed on the ‘physical’ rather than the ‘logical’ level, as discussed above
for array bound checks. Checking firewall rules at the ‘physical level’ would
require that the VM can somehow tell the context for every memory cell, not
just every reference. One way to do this would be to allocate a segment of
memory for each security context, and then use old-fashioned segmentation as
in operating systems as part of enforcement of the firewall. We found no evidence
that any cards do this.

Integrity Checks in Memory. Our experiments with spoofing references suggest
that most cards provide effective integrity checks on references. To perform dy-
namic checks for array bounds, downcasting, and the firewall, the VM has to
record some meta-data in the memory representation of objects, such as array
lengths, runtime types and the context owning an object. Clearly, by recording
and checking additional meta-data in objects (and possibly references) the VM
could detect and prevent switching or spoofing of references.

6 Discussion

Table 1 summarises the result of Sect. 3, and shows which of the ways to get
ill-typed code succeeded on which of the cards.

CAP file manipulation (CAP) and Shareable Interface Objects (SIO) did not
succeed on C 211A and C 211B, because the on-card BCV does not allow ill-typed
code or any code that uses shareable interfaces. The loader on D 211 also refuses
to load code that uses shareable interfaces.

Abusing the transaction mechanism works on cards B 211, B 221, C 211A, and
D 211, which indicates that the implementation of the transaction mechanism is
faulty when it comes to clearing up after aborted transactions.

CardC 211Bwas the only one onwhichwewere unable to load any ill-typed code.
However, being able to load ill-typed code on a card does not guarantee success

(from an attacker’s point of view), as defensive features of the VM can still
prevent the loaded code from doing any harm or executing at all. Things do not
necessarily degenerate to the hopeless situation one has in C/C++, where you
can basically do anything with malicious code.

Table 2 summarises the results of Sect. 4, listing which attacks succeeded in
running and doing harm.

Table 1. Loading ill-typed code

A 211 A 221 B 211 B 22 B 221 C 211A C 211B D 211

CAP file manipulation [§3.1] + + + + + − − +
Abusing shareable interfaces [§3.2] + + + + + − − −
Abusing transactions [§3.3] − − + − + + − +
Static protection BCV BCV CL

BCV – On-card static bytecode verifier
CL – class loader disallowing use of shareable interfaces

Malicious Code on Java Card Smartcards: Attacks and Countermeasures 15

Table 2. Executing ill-typed code. No information is included for card C 211B, since
we could not load ill-typed code on it.

A 211 A 221 B 211 B 22 B 221 C 211A D 211

Dynamic protection PBC OBC RTC OBC RTC
byte as short array [§4.1] � � − − − � �
Object as array [§4.2.1] − � − � − � �
Reference switching [§4.2.3] − � − � − − NA
Reference switching in AIDs [§4.2.4] − � − � − − NA
Reference spoofing [§4.2.5] − − − − − − �
Array as object [§4.3] � � − � − � �
− impossible, � possible but harmless, � possible and harmful
PBC – Physical Bounds Checks, OBC – Object Bounds Checks,
RTC – Runtime Type Checking, NA – Not attempted

Some attacks can do real damage. For cards C 211A and D 211 two different
attacks are possible to access another applet’s data, namely accessing a byte
as a short array and accessing an array as an object. The latter attacks allows
unrestricted forward memory access on C 211A. Switching references on A 221
and B 22 is possible but mostly harmless, since the firewall prevents access to
data of another applet. The notable exception is using this attack to access the
internals of AID objects, where the attack becomes harmful as it allows a hostile
applet to alter any system-owned AIDs and redefine the entire AID registry of
the card. Spoofing references on D 211 also allowed unrestricted memory access;
even though the memory still seemed to be scrambled, and we could not exploit
access to it in a meaningful way, we do regard this as dangerous.

One interesting conclusion is that having an on-card BCV is not all that it is
cracked up to be: one of the vulnerable cards we identified has an on-card BCV. A
single bug, in this case in the transaction mechanism, can completely undermine
the security provided by the on-card BCV.4 Also, cards with an on-card BCV
rule out any use of Shareable Interfaces, which in retrospect is understandable,
but we never realised this before we tried.

As a defensive mechanism, runtime type checking is therefore probably a more
robust protection mechanisms than a static BCV. Indeed, another interesting
conclusion of our work is that runtime defensive mechanisms go a long way
to protect against ill-typed code, as results with card A 211, B 211, and B 221
show. The obvious disadvantage of runtime checks is the decreased performance
of the JVM. However, we did not notice any considerable performance differences
between our cards. More factors play a role in smartcard performance (such as
the underlying hardware), so more testing would be required to establish what
is the actual impact of runtime checks on performance.

We should repeat that the vulnerabilities found are of course only a problem
on cards allowing the installation of additional applets. On most, if not all, Java
4 One hopes that Sun’s Technology Compatibility Kit (TCK) for Java Card includes

test cases to detect this bug. Unfortunately, the TCK is not public so we cannot
check that it does.

16 W. Mostowski and E. Poll

Card smartcards in the field, post-issuance download of additional applets will be
disabled or at least restricted by digital signatures. Still, for security evaluations
it can be extremely useful (and cost-saving) to have confidence in the fact that
there are no ways for different applets to affect each other’s behaviour, except
when explicitly allowed by shareable interfaces.

Acknowledgements. Thanks for Marc Witteman of Riscure and Olivier van
Nieuwenhuyze and Joan Daemen at STMicroelectronics for their insights. We
also thank Riscure for access to their extensive Java Card test suite, and STMi-
croelectronics for access to their CAP file manipulation tool.

The work of Wojciech Mostowski is supported by Sentinels, the Dutch re-
search programme in computer security, which is financed by the Technology
Foundation STW, the Netherlands Organisation for Scientific Research (NWO),
and the Dutch Ministry of Economic Affairs.

References

1. Beckert, B., Mostowski, W.: A program logic for handling Java Card’s transaction
mechanism. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 246–260. Springer,
Heidelberg (2003)

2. Dietl, W., Müller, P., Poetzsch-Heffter, A.: A Type System for Checking Applet Iso-
lation in Java Card. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean,
T. (eds.) CASSIS 2004. LNCS, vol. 3362, pp. 129–150. Springer, Heidelberg (2005)

3. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: IEEE Symposium on Security and Privacy, pp. 154–165 (2003)

4. Hubbers, E., Mostowski, W., Poll, E.: Tearing Java Cards. In: Proceedings, e-Smart
2006, Sophia-Antipolis, France, September 20–22 (2006)

5. Marché, C., Rousset, N.: Verification of Java Card applets behavior with respect to
transactions and card tears. In: Proc. Software Engineering and Formal Methods
(SEFM), Pune, India. IEEE Computer Society Press, Los Alamitos (2006)

6. McGraw, G., Felten, E.W.: Securing Java. Wiley, Chichester (1999),
http://www.securingjava.com/

7. Montgomery, M., Krishna, K.: Secure object sharing in Java Card. In: Proceedings
of the USENIX Workshop on Smartcard Technology (Smartcard 1999), Chicago,
Illinois, USA, May 10–11 (1999)

8. Mostowski, W., Poll, E.: Testing the Java Card Applet Firewall. Technical Report
ICIS–R07029, Radboud University Nijmegen (December 2007),
https://pms.cs.ru.nl/iris-diglib/src/icis tech reports.php

9. Sun Microsystems, Inc. Java Card 2.2.2 Runtime Environment Specification
(March 2006), http://www.sun.com

10. Vermoen, D.: Reverse engineering of Java Card applets using power analysis. Tech-
nical report, TU Delft1 (2006),
http://ce.et.tudelft.nl/publicationfiles/1162 634 thesis Dennis.pdf

11. Witteman, M.: Java Card security. Information Security Bulletin 8, 291–298 (2003)

http://www.securingjava.com/
https://pms.cs.ru.nl/iris-diglib/src/icis_tech_reports.php
http://www.sun.com
http://ce.et.tudelft.nl/publicationfiles/1162_634_thesis_Dennis.pdf

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 17–31, 2008.
© IFIP International Federation for Information Processing 2008

Static Program Analysis for Java Card Applets

Vasilios Almaliotis1, Alexandros Loizidis1, Panagiotis Katsaros1,
Panagiotis Louridas2, and Diomidis Spinellis2

1 Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

{valmalio,aloizidi,katsaros}@csd.auth.gr
2 Department of Management Science and Technology,

Athens University of Economics and Business,
Patision 76, 104 34 Athens, Greece
{louridas,dds}@aueb.gr

Abstract. The Java Card API provides a framework of classes and interfaces
that hides the details of the underlying smart card interface, thus relieving de-
velopers from going through the swamps of microcontroller programming. This
allows application developers to concentrate most of their effort on the details
of application, assuming proper use of the Java Card API calls regarding (i) the
correctness of the methods’ invocation targets and their arguments and (ii)
temporal safety, i.e. the requirement that certain method calls have to be used in
certain orders. Several characteristics of the Java Card applets and their multi-
ple-entry-point program structure make it possible for a potentially unhandled
exception to reach the invoked entry point. This contingency opens a possibility
to leave the applet in an unpredictable state that is potentially dangerous for the
application’s security. Our work introduces automatic static program analysis as
a means for the early detection of misused and therefore dangerous API calls.
The shown analyses have been implemented within the FindBugs bug detector,
an open source framework that applies static analysis functions on the applet
bytecode.

Keywords: Java Card, static program analysis, temporal safety.

1 Introduction

Static analysis has the potential to become a credible means for automatic verification
of smart card applications that by definition are security critical. This work explores
the adequacy of the FindBugs open source framework for the static verification of
correctness properties concerned with the API calls used in Java Card applications.

The Java Card API provides a framework of classes and interfaces that hides the
details of the underlying smart card interface, thus allowing developers to create ap-
plications, called applets, at a higher level of abstraction. The Java Card applet life
cycle defines the different phases that an applet can be in. These phases are (i) load-
ing, (ii) installation, (iii) personalization, (iv) selectable, (v) blocked and (vi) dead. A
characteristic of Java Card applets is that many actions can be performed only when
an applet is in a certain phase. Also, contrary to ordinary Java programs that have a
single main() entry point, Java Card applets have several entry points, which are

18 V. Almaliotis et al.

called when the card receives various application (APDU) commands. These entry
points roughly match the mentioned lifetime phases.

In a Java Card, any exception can reach the top level, i.e. the applet entry point in-
voked by the Java Card Runtime Environment (JCRE). In this case, the currently
executing command is aborted and the command, which in general is not completed
yet, is terminated by an appropriate status word: if the exception is an ISOException,
the status word is assigned the value of the reason code for the raised exception,
whereas in all other cases the reason code is 0x6f00 corresponding to “no precise
diagnosis”.

An exception in an applet’s entry point can reveal information about the behavior
of the application and in principle it should be forbidden. In practice, whereas an
ISOException is usually explicitly thrown by the applet code using throw, a poten-
tially unhandled exception is implicitly raised when executing an API method call that
causes an unexpected error. This may result in leaving the applet in an unpredicted
and ill state that can possibly violate the application’s security properties.

The present article introduces a static program analysis approach for the detection
of misused Java Card method calls. We propose the use of appropriate bug detectors
designed for the FindBugs static analysis framework. These bug detectors will be
specific to the used API calls and will check (i) the correctness of the methods’ invo-
cation target and their arguments and (ii) temporal safety in their use.

We introduce the two bug detectors that we developed by applying interprocedural
control flow based and dataflow analyses on the Java Card bytecode. Then, we dis-
cuss some recent advances in related theory that open new prospects to implement
sufficiently precise property analyses.

Our proposal addresses the problem of unhandled exceptions based on bug detec-
tors that in the future may be supplied by Java Card technology providers. Applet
developers will check their products for correct use of the invoked API calls, without
having to rely on advanced formal techniques that require highly specialized analysis
skills and that are not fully automated.

Section 2 provides a more thorough view of the aims of this work and reviews the
related work and the basic differences of the presented approach. Section 3 introduces
static analysis with the FindBugs framework. Section 4 presents the work done on the
static verification of Java Card API calls and section 5 reports the latest developments
that open new prospects for implementation of efficient static analyses that do not
compromise precision. The paper ends with a discussion on our work’s potential im-
pact and comments interesting future research prospects.

2 Related Work on Static Verification of Java Card Applets

Our work belongs to a family of static verification techniques that in general do not
guarantee sound and complete analysis. This means that there is no guarantee that we
will find all property violations and also we cannot guarantee the absence of false
positives. However, our bug detectors may implement advanced static analyses that
eliminate false negatives and minimize false positives (Section 5).

In related work, this sort of analysis cannot be compared with established formal
approaches that have been used successfully in static verification of Java Card applets:

 Static Program Analysis for Java Card Applets 19

JACK [1], KeY [2], Krakatoa [3], Jive ([4], [5]) and LOOP ([6], [7]). These techniques
aim in precise program verification and they are not fully automated. Moreover, they
require highly specialized formal analysis skills for the applet developer.

The most closely related work is the proposal published in [8], where the authors
perform Java Card program verification using the ESC/Java (2) tool. This tool proves
correctness of specifications at compile time, without requiring the analyst to interact
with the back-end theorem prover (Simplify). Similarly to our approach, the provided
analysis is neither sound nor complete, but has been found effective in proving ab-
sence of runtime exceptions and in verifying relatively simple correctness properties.

In contrast with [8], our proposal for static program analysis is not based on source
code annotations. This reduces the verification cost to the applet developers, since
they do not have to make explicit all implicit assumptions needed for correctness (e.g.
the non-nullness of buf in many Java Card API calls). Instead of this, the static
analyses of FindBugs are implemented in the form of tool plugins that may be distrib-
uted together with the used Java Card Development kit or by an independent third
party. Applet developers use the bug detectors as they are, but they can also extend
their open source code in order to develop bug detectors for custom properties. Note
that in ESC/Java (2), user-specified properties assume familiarization, (i) with the
Java Modeling Language (JML), (ii) with the particular “design by contract” specifi-
cation technique and (iii) with the corresponding JML based Java Card API specifica-
tion [9]. On the other hand, the development of new FindBugs bug detectors assumes
only Java programming skills that most software engineers already have.

User defined bug detectors may be based on an initial set of basic bug detectors
concerned with (i) the correctness of the API calls’ invocation target and their argu-
ments and (ii) the temporal safety in their use. This article is inspired by the ideas
presented in [10]. However, the focus on the Java Card API is not the only one differ-
ence between these two works. The static analysis of [10] is based on stateless calls to
a library that reflects the API of interest. Violations of temporal safety for the ana-
lyzed API calls, however, can be detected only by statefull property analysis that
spans the whole applet or even multiple applets in the same or different contexts. As
we will see in next sections, FindBugs static analyses are applied by default to indi-
vidual class contexts and this is one of the restrictions we had to overcome.

3 Static Analysis with the FindBugs Framework

FindBugs [11] is a tool and framework that applies static analyses on the Java (Java
Card) bytecode in order to detect bug patterns, i.e. to detect “places where code does
not follow correct practice in the use of a language feature or library API” [12]. In
general, FindBugs bug detectors behave according to the Visitor design pattern: each
detector visits each class and each method in the application under analysis. The
framework comes with many analyses built-in and classes and interfaces that can be
extended to build new analyses. In our work, we exploit the already provided intra-
procedural control flow analysis that transforms the analyzed bytecode into control
flow graphs (CFGs) that support the property analyses and dataflow analyses pre-
sented in next sections.

20 V. Almaliotis et al.

The bug pattern detectors are implemented using the Byte Code Engineering Li-
brary (BCEL) [13], which provides infrastructure for analyzing and manipulating Java
class files. In essence, BCEL offers to the framework data types for inspection of
binary Java (Java Card) classes. One can obtain methods, fields, etc. from the main
data types, JavaClass and Method. The project source directories are used to map
the reported warnings back to the Java source code.

Bug pattern detectors are packaged into FindBugs plugins that can use any of the
built-in FindBugs analyses and in effect extend the provided FindBugs functionality
without any changes to its code. A plugin is a jar file containing detector classes and
analysis classes and the following meta-information: (i) the plugin descriptor
(findbugs.xml) declaring the bug patterns, the detector classes, the detector
ordering constraints and the analysis engine registrar, (ii) the human-readable
messages (in messages.xml), which are the localized messages generated by the
detector. Plugins are easily activated in the developer’s FindBugs installation by
copying the jar file into the proper location of the user’s file system.

FindBugs applies the loaded detectors in a series of AnalysisPasses. Each
pass executes a set of detectors selected according to declared detector ordering
constraints. In this way, FindBugs distributes the detectors into AnalysisPasses
and forms a complete ExecutionPlan, i.e., a list of AnalysisPasses
specifying how to apply the loaded detectors to the analyzed application classes.
When a project is analyzed, FindBugs runs through the following steps:

1. Reads the project
2. Finds all application classes in the project
3. Loads the available plugins containing the detectors
4. Creates an execution plan
5. Runs the FindBugs algorithm to apply detectors to all application classes

The basic FindBugs algorithm in pseudo-code is:

 for each analysis pass in the execution plan do
 for each application class do
 for each detector in the analysis pass do
 apply the detector to the class
 end for
 end for
 end for

All detectors use a global cache of analysis objects and databases. An analysis
object (accessed by using a ClassDescriptor or a MethodDescriptor)
stores facts about a class or method, for example the results of a null-pointer dataflow
analysis on a method. On the other hand, a database stores facts about the entire
program, e.g. which methods unconditionally dereference parameters. All detectors
implement the Detector interface, which includes the visitClassContext
method that is invoked on each application class. Detector classes (i) request one or
more analysis objects from the global cache for the analyzed class and its methods,
(ii) inspect the gathered analysis objects and (iii) report warnings for suspicious
situations in code. When a Detector is instantiated its constructor gets a reference
to a BugReporter. The Detector object uses the associated BugReporter, in

 Static Program Analysis for Java Card Applets 21

order to emit warnings for the potential bugs and to save the detected bug instances in
BugCollection objects for further processing.

4 Static Verification of Java Card API Calls

The test cases for the bug detectors shown here were derived from an electronic purse
applet developed for the purposes of this work. The electronic purse applet adds or
removes units of digital currency and stores the personal data of the card owner.
Moreover, there is also a bonus applet that interacts with the electronic purse for cred-
iting the bonus units corresponding to the performed transactions. The two applets lie
in separate contexts and communicate data to each other through a shareable inter-
face. Both applets are protected by their own PINs. They are accessed through the
Java Card Runtime Environment (JCRE) that invokes the process method, which
in turn invokes the methods corresponding to the inputted APDU commands.

PurseApplet
+ credit
+ debit
+ foreignDebit
+ getAccountNumber
+ getBalance
+ getUserAddress
+ getUserName
+ getUserSurname
+ setAccountNumber
+ setUserAddress
+ setUserName
+ setUserSurname
+ setUserPIN
+ validateUserPIN

BonusApplet
+ changeUserPIN
+ eraseBonus
+ getBonus
+ makePurchase
+ substractBonus
+ validateUserPIN

Fig. 1. Public members of the PurseApplet and the BonusApplet

4.1 Bug Detectors for the Temporal Safety of Java Card API Calls

Bug detectors for the temporal safety of API calls use a control flow graph (CFG)
representation of Java methods to perform static verification that either exploits the
builtin dataflow analyses or is based on more sophisticated user-defined analyses. The
following pseudo-code reflects the functionality of the visitClassContext()
method of a typical CFG-based detector.

 for each method in the class do
 request a CFG for the method from the ClassContext
 request one or more analysis objects on the method from the ClassContext
 for each location in the method do
 get the dataflow facts at the location
 inspect the dataflow facts

22 V. Almaliotis et al.

 if a dataflow fact indicates an error then
 report a warning
 end if
 end for
 end for

The basic idea is to visit each method of the analyzed class in turn, requesting
some number of analysis objects. After getting the required analyses, the detector
iterates through each location in the CFG. A location is the point in execution just
before a particular instruction is executed (or after the instruction, for backwards
analyses). At each location, the detector checks the dataflow facts to see if anything
suspicious is going on. If suspicious facts are detected at a location the detector issues
a warning.

Temporal safety of API calls concerns rules about their ordering that are possibly
associated with constraints on the data values visible at the API boundary. Temporal
safety properties for the Java Card API are captured in appropriate state machines that
recognize finite execution traces with improper use of the API calls. Figure 2 intro-
duces the state machine for a Java Card applet bug raising an APDUException for
improper use of the setOutgoing() call.

Fig. 2. Illegal use of short setOutgoing() corresponding to a Java Card APDUException

Bug detectors for temporal safety of API calls track the state of the property and at

the same time track the so-called execution state, i.e. the values of all program vari-
ables. Accurate tracking of the execution state can be very expensive, because this
implies tracking every branch in the control-flow, in which the values of the exam-
ined variables differ along the branch paths. The resulted search space may grow
exponentially or even become infinite.

For the property of Figure 2 we developed the path-insensitive bug detector, shown
in this section, to explore the suitability of the FindBugs framework for the static
verification of Java Card applets. The more precise path-sensitive analyses rely on the
fact that for a particular property to be checked, it is likely that most branches in the
code are not relevant to the property, even though they affect the execution state of
the program. Detectors of this type may be based on heuristics that identify the rele-
vant branches and in this way they reduce the number of potential false positives.
Recent advances in path-sensitive static analyses and their applicability in the Find-
Bugs framework are discussed in section 5.

 Static Program Analysis for Java Card Applets 23

In any applet, it is possible to access an APDU provided by the JCRE, but it is not
possible to create new APDUs. This implies that all calls to setOutgoing() in a
single applet are applied to the same APDU instance and this fact eliminates the need
to check the implicit argument of the setOutgoing() calls. The developed detec-
tors take into account two distinct cases of property violation:

1. Intraprocedural property violations are detected by simple bytecode
scanning that follows the states of the property state machine (Figure 2)

2. Interprocedural property violations are detected by extending the CFG based
and call graph analysis functions provided in the Findbugs framework.

More precisely, the InterCallGraph class we developed makes it possible to
construct call graphs including calls that span different class contexts. This extension
allowed the detection of nested method calls that trigger the state transitions of Figure 2
either by direct calls to setOutgoing() or by nested calls to methods causing
reachability of the final state. The following is the pseudo-code of the path-insensitive
interprocedural analysis.

request the call graph of the application classes
for each method in the call graph do //mark methods with setOutgoing() call
 if method contains setOutgoing() then
 add method to the black list
 end if
end for
for each method in the class do //mark methods with nested black method call(s)
 start a Depth First Search from the corresponding graph node:

if method of the node is in the black list then
 add method to the gray list
 if final state of Fig. 2 is reached then
 report the detected bug
 end if
end if

end for
for each method in the class do //detect property violation caused in a loop
 request a CFG for the method
 check if method has loop, enclosing call of setOutgoing() or a gray method
end for

Finally, the methods’ CFGs are inspected for loops enclosing method calls that

do not cause reachability of the final state by themselves, but they result in a property
violation when encountered in a loop. Figure 3 shows the bytecode patterns matching
the use of a loop control flow in a CFG. Unhandled exception violations are detected
by looking for an exception thrower block preceding the instruction by which
we reach the final state (Figure 4). Access to an exception handler block (if any) is
possible through a handled exception edge. In FindBugs, method isExcep-
tionThrower() detects an exception thrower block and method isExcep-
tionEdge() determines whether a CFG edge is a handled exception edge.

24 V. Almaliotis et al.

(a)

(b)

Fig. 3. CFG patterns with basic blocks corresponding to (a) for/while and (b) do . . . while loop

Fig. 4. CFG pattern to find unhandled exception edges

Figure 5 demonstrates how the detector responds in two different property
violation cases. In the first case, the client applet named PurseClientApplet calls
setOutgoing() and subsequently invokes the method getUserName() of the
PurseApplet thus causing the detected property violation. The second case concerns a
property violation caused by a call to setUserAddress() in a for loop.

4.2 Bug Detectors for the Correctness of the Called Methods’ Arguments

Dataflow analysis is the basic means to statically verify the correctness of the called
methods’ arguments. Its basic function is to estimate conservative approximations
about facts that are true in each location of a CFG. Facts are mutable, but they have
to form a lattice. The DataflowAnalysis interface shown in Figure 6 is the su-
pertype for all concrete dataflow analysis classes. It defines methods for creating,

 Static Program Analysis for Java Card Applets 25

Fig. 5. Illegal use of setOutgoing() detected (a) in interprocedural analysis and (b) within
a loop via call to another method

copying, merging and transferring dataflow facts. Transfer functions take dataflow
facts and model the effects of either a basic block or a single instruction depending on
the implemented dataflow analysis. Merge functions combine dataflow facts when
control paths merge. The Dataflow class and its subclasses implement: (i) a data-
flow analysis algorithm based on a CFG and an instance of DataflowAnalysis,
(ii) methods providing access to the analysis results.

We are particularly interested for the FrameDataflowAnalysis class that
forms the base for analyses that model values in local variables and operand stack.
Dataflow facts for derived analyses are subclasses of the class Frame, whose in-
stances represent the Java stack frame at a single CFG location. In a Java stack frame,
both stack operands and local variables are considered to be “slots” that contain a
single symbolic value.

The built-in frame dataflow analyses used in static verification of the called meth-
ods’ arguments are:

• The TypeAnalysis that performs type inference for all local variables and
stack operands.

• The ConstantAnalysis that computes constant values in CFG locations.

26 V. Almaliotis et al.

• The IsNullValueAnalysis that determines which frame slots contain
definitely-null values, definitely non-null values and various kinds of
conditionally-null or uncertain values.

• The ValueNumberAnalysis that tracks the production and flow of
values in the Java stack frame.

The class hierarchy of Figure 6 and the mentioned built-in dataflow analyses form
a generic dataflow analysis framework, since it is possible to create new kinds of
dataflow analyses that will use as dataflow facts objects of user-defined classes.

Fig. 6. FindBugs base classes for dataflow analyses

A bug detector exploits the results of a particular dataflow analysis on a method by

getting a reference to the Dataflow object that was used to execute the analysis.
There is no direct support for interprocedural analysis, but there are ways to overcome
this shortcoming. More precisely, analysis may be performed in multiple passes. A
first pass detector will compute method summaries (e.g. method parameters that are
unconditionally dereferenced, return values that are always non-null and so on), with-
out reporting any warnings and a second pass detector will use the computed method
summaries as needed. However, this approach excludes the implementation of context
sensitive interprocedural analyses like the ones explored in Section 5.

In the following paragraphs, we present a bug detector for unhandled exceptions
concerned with the correctness of arguments in method calls. Consider the following
method:

short arrayCopy(byte[] src, short srcOff,
 byte[] dest, short destOff, short length)

A NullPointerException is raised when either src or dest is null. Also, when the
copy operation accesses data outside the array bounds the ArrayIndexOutOfBound-
sException is raised. This happens either when one of the parameters srcOff,

 Static Program Analysis for Java Card Applets 27

destOff and length has a negative value or when srcOff+length is greater
than src.length or when destOff+length is greater than dest.length.
We provide the pseudo-code of the visitClassContext() method for the detec-
tor of unhandled exceptions raised by invalid arrayCopy arguments:

for each method in the class do
 request a CFG for the method
 get the method’s ConstantDataflow from ClassContext
 get the method’s ValueNumberDataflow from ClassContext
 get the method’s IsNullValueDataflow from ClassContext

 for each location in the method do
 get instruction handle from location
 get instruction from instruction handle
 if instruction is not instance of invoke static then
 continue
 end if
 get the invoked method's name from instruction
 get the invoked method’s signature from instruction
 if invoked method is arrayCopy then
 get ConstantFrame (fact) at current location
 get ValueNumberFrame (fact) at current location
 get IsNullValueFrame (fact) at current location

 get the method's number of arguments
 for each argument do
 get argument as Constant, ValueNumber, IsNullValue
 if argument is constant then
 if argument is negative then
 report a bug
 end if
 else
 if argument is not method return value nor constant then
 if argument is not definitely not null then
 report a bug
 end if
 end if

 end for
 end if
 end for

end for

Figure 7 demonstrates how the detector responds in two different property viola-
tion cases. In the first case, PurseApplet calls arrayCopy with null value for the
parameter accountNumber. It is also important to note that it is not possible
to determine by static analysis the correctness of the method call for all of the men-
tioned criteria, because buffer gets its value at run time by the JCRE. However, a
complete FindBugs bug detector could generate a warning for the absence of an ap-
propriate exception handler. In the second test case, parameter offset is assigned an
unacceptable value.

28 V. Almaliotis et al.

Fig. 7. Illegal use of arrayCopy detected with (a) null value parameter and (b) unacceptable
constant value parameter

5 Precise and Scalable Analyses for the Static Verification of API
 Calls

The static analysis case studies of Section 4 point out the merits as well as some
shortcomings of the FindBugs open source framework, for the static verification of
Java Card API calls. Although there is only limited documentation for the framework
design and architecture, the source code is easy to read and self-documented. Find-
Bugs is a live open source project and we will soon have new developments on short-
comings, like for example the lack of context-sensitive interprocedural dataflow
analysis. Appropriate bug detectors can be supplied by the Java Card technology
providers. Thus, Java Card applet providers will be able to use FindBugs in their
development process with limited cost. This possibility opens new perspectives for
automatically verifying the absence of unhandled security critical exceptions, as well
as prospects for the development of bug detectors for application-specific correctness
properties.

The static analysis techniques shown in the two case studies can be combined in
bug detectors where either

• temporal safety includes constraints on the data values that are visible at the
API boundary or

• we are interested to implement sophisticated and precise analyses that reduce
false positives and at the same time scale to real Java Card programs.

 Static Program Analysis for Java Card Applets 29

In the following paragraphs we review the latest developments in related bibliography
that address the second aim and in effect designate static program analysis as a credi-
ble approach for the static verification of security critical applications.

A notable success story in temporal safety checking is the ESP tool for the static
verification of C programs. ESP utilizes a successful heuristic called “property simu-
lation” [14] and a path feasibility analysis called “path simulation” [15], in order to
perform partial program verification based only on the control-flow branches that are
relevant to the checked property. This results in a selective path-sensitive analysis that
maintains precision only for those branches that appear to affect the property to be
checked. For one particular instantiation of the approach in which the domain of exe-
cution states is chosen to be the constant propagation lattice the analysis executes in
polynomial time and scales without problems in large C programs like the GNU C
compiler with 140000 LOC.

It is still possible to construct programs for which property simulation generates
false positives, but the authors claim that this happens only to a narrow class of pro-
grams that is described in their article. Property simulation is designed to match the
behavior of a careful programmer. In order to avoid programming errors programmers
maintain an implicit correlation between a given property state and the execution
states under which the property state machine is in that state. Property simulation
makes this correlation explicit as follows:

• For a given temporal safety property, ESP performs a first analysis pass
where it instruments the source program with the state-changing events.

• For the second analysis pass, the property simulation algorithm implements a
merge heuristic according to which if two execution states correspond to the
same property state they are merged. In any other case, ESP explores the two
paths independently as in a full path-sensitive analysis.

Interprocedural property simulation requires generation of context-sensitive function
summaries, where context sensitivity is restricted to the property states. This happens
in order to exclude the possibility of a non-terminated computation that exists if the
domain of execution states is infinite (e.g. constant propagation). Thus, execution
states are treated in a context-insensitive manner: at function entry nodes, all execu-
tion states from the different call sites are merged.

The proposed path simulation technique manages execution states and in effect
acts as a theorem prover to answer queries about path feasibility. In general, path
feasibility analysis is undecidable. To guarantee convergence and efficiency, ESP
makes conservative assumptions when necessary. While such over approximation is
sound (i.e. does not produce false negatives), it may introduce imprecision. More
recent research efforts in cutting down spurious errors that are at the same time scal-
able enough for solving real world problems focus on applying iterative refinement to
path-sensitive dataflow analysis [16].

Another notable success story in temporal safety checking is the SAFE project [17]
at the IBM Research Labs. Both ESP and SAFE build on the theoretical underpinning
of a typestate as a refinement of the concept of type [18]. Whereas the type of a data
object determines the set of operations ever permitted on the object, typestate deter-
mines the subset of these operations which are performed in a particular context.

30 V. Almaliotis et al.

Typestate tracking aims to statically detect syntactically legal but semantically unde-
fined execution sequences. The heuristics applied in SAFE are reported in [19]. In
that work the authors propose a composite verifier built out of several composable
verifiers of increasing precision and cost. In this setting, the composite verifier stages
analyses in order to improve efficiency without compromising precision. The early
stages use the faster verifiers to reduce the workload for later, more precise, stages.
Prior to any path-sensitive analysis, the first stage prunes the verification scope using
an extremely efficient path-insensitive error path feasibility check.

The most serious restriction in the current version of FindBugs regarding the per-
spectives to implement sophisticated analyses like those described is the lack of sup-
port for interprocedural context-sensitive dataflow analysis. However, we expect that
this restriction will soon be removed.

6 Conclusion

This work explored the adequacy of static program analysis for the automatic verifi-
cation of Java Card applets. We utilized the FindBugs open source framework in
developing two bug detectors that check the absence of unhandled security critical
exceptions, concerned with temporal safety and correctness of the arguments of Java
Card API calls. The developed detectors are sound, but they are not precise. We ex-
plored the latest developments that open new prospects for improving the precision of
static analysis, thus making it a credible approach for the automatic verification of
security critical applications. The results of our work and the bug detectors source
code are publicly available online http://mathind.csd.auth.gr/smart/

A future research goal is the static verification of multi-applet Java Card applica-
tions (like the one in our case studies), in terms of temporal restrictions of inter-applet
communications through shareable interfaces [20]. Also, we will continue to seek
ways to overcome the experienced shortcomings in the current FindBugs version.

Acknowledgments

This work was supported by the funds of the bilateral research programme between
Greece and Cyprus, Greek General Research Secretariat, 2006-2008.

References

1. Burdy, L., Requet, A., Lanet, J.L.: Java applet correctness: a developer-oriented approach.
In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, Springer, Hei-
delberg (2003)

2. Beckert, B., Mostowski, W.: A program logic for handling Java Card’s transaction mecha-
nism. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 246–260. Springer, Heidel-
berg (2003)

3. Marché, C., Paulin-Mohring, C., Urbain, X.: The KRAKATOA tool for certification of
JAVA/JAVACARD programs annotated in JML. Journal of Logic and Algebraic Pro-
gramming 58(1-2), 89–106 (2004)

 Static Program Analysis for Java Card Applets 31

4. Meyer, J., Poetzsch-Heffter, A.: An architecture for interactive program provers. In:
Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 63–77. Springer,
Heidelberg (2000)

5. Jacobs, B., Marche, C., Rauch, N.: Formal verification of a commercial smart card applet
with multiple tools. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004.
LNCS, vol. 3116, pp. 241–257. Springer, Heidelberg (2004)

6. Van den Berg, J., Jacobs, B.: The LOOP compiler for Java and JML. In: Margaria, T., Yi,
W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 299–312. Springer, Heidelberg (2001)

7. Breunesse, C.B., Catano, N., Huisman, M., Jacobs, B.: Formal methods for smart cards: an
experience report. Science of Computer Programming 55, 53–80 (2005)

8. The Java Verifier project,
http://www.inria.fr/actualites/inedit/inedit36_partb.en.html

9. Catano, N., Huisman, M.: Formal specification and static checking of Gemplus’s elec-
tronic purse using ESC/Java. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 272–289. Springer, Heidelberg (2002)

10. Meijer, H., Poll, E.: Towards a full formal specification of the JavaCard API. In: Attali, S.,
Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 165–178. Springer, Heidelberg
(2001)

11. Spinellis, D., Louridas, P.: A framework for the static verification of API calls. Journal of
Systems and Software 80(7), 1156–1168 (2007)

12. The FindBugs project (last access: Febuary 21, 2008),
http://findbugs.sourceforge.net/

13. Hovemeyer, D., Pugh, W.: Finding bugs is easy. SIGPLAN Notices 39(12), 92–106 (2004)
14. Dahm, M.: Byte code engineering with the BCEL API. Technical Report B-17-98, Freie

University of Berlin, Institute of Informatics (2001)
15. Das, M., Lerner, S., Seigle, M.: ESP: Path-sensitive program verification in polynomial

time. In: Proc. of the ACM SIGPLAN 2002 Conf. on Programming Language Design and
Implementation (PLDI), pp. 57–68 (2002)

16. Hampapuram, H., Yang, Y., Das, M.: Symbolic path simulation in path-sensitive dataflow
analysis. In: Proc. of 6th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE), pp. 52–58 (2005)

17. Dhurjati, D., Das, M., Yang, Y.: Path-sensitive dataflow analysis with iterative refinemet.
In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 425–442. Springer, Heidelberg (2006)

18. The SAFE (Scalable And Flexible Error detection) project (last access: 21st of Febuary
2008) ,http://www.research.ibm.com/safe/

19. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing soft-
ware reliability. IEEE Trans. on Software Engineering 12(1), 157–171 (1986)

20. Fink, S., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate verification in
the presence of aliasing. In: Proc. of the Int. Symp. on Software Testing and Analysis
(ISSTA), pp. 133–144 (2006)

21. Chugunov, G., Fredlund, L.-A., Gurov, D.: Model checking of multi-applet Java Card Ap-
plications. In: Proc. of the 5th Smart Card Research and Advanced Application Conf.
(CARDIS) (2002)

On Practical Information Flow Policies for

Java-Enabled Multiapplication Smart Cards�

Dorina Ghindici and Isabelle Simplot-Ryl

IRCICA/LIFL, CNRS UMR 8022, Univ. Lille 1, INRIA Lille - Nord Europe, France
{dorina.ghindici,isabelle.ryl}@lifl.fr

Abstract. In the multiapplicative context of smart cards, a strict con-
trol of underlying information flow between applications is highly desired.
In this paper we propose a model to improve information flow usability
in such systems by limiting the overhead for adding information flow
security to a Java Virtual Machine. We define a domain specific lan-
guage for defining security policies describing the allowed information
flow inside the card. The applications are certified at loading time with
respect to information flow security policies. We illustrate our approach
on the LoyaltyCard, a multiapplicative smart card involving four loyalty
applications sharing fidelity points.

1 Introduction

Computer systems handle a considerable amount of data carrying sensitive in-
formation that should be protected from malicious users. Programs running on
such systems may access data either to perform computations or to transmit it
over an output channel. Thus they can violate the security of sensitive data ei-
ther by releasing it to unauthorized users or by modifying it. In order to prevent
such situations, tracing data manipulation throughout programs is mandatory.

Information flow analysis [16] consists in statically analyzing the code of a
program in order to detect illicit data manipulations. Concretely, data manip-
ulated by programs (e.g. objects, parameters) are tagged with security labels
and all information flows are traced. The assignment p:=s, where p is a public,
observable variable and s contains secret, confidential data, generates an explicit
flow from secret to public data. The code if(s) p:=0 contains an implicit flow
of information as an external observer, who has knowledge about the control flow
of the program, can learn information about the secret data s. Usually, informa-
tion flow is associated with non-interference [9] which prevents all information
flows from sensitive data to non-sensitive data. The examples above generate
illegal information flows w.r.t non-interference.

Information flow analysis does not guarantee security by itself: it is a powerful
mechanism that can be exploited to implement the desired security policies. The
difficulty is to ensure that local checks (mechanisms) actually implement the
global security policy. Information flow mechanisms are too coarse to express

� Funded by ANR SESUR SFINCS (ANR-07-SESU-012) project.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 32–47, 2008.
c© IFIP International Federation for Information Processing 2008

On Practical Information Flow Policies 33

desired policy, thus one of their common pitfalls is to define and verify complex
policies, reflecting real attacking scenarios.

In this paper, we address the problems of defining security policies for infor-
mation flow, enforcing them by an information flow analyser and helping the
programmer to build safe applications in case the verification fails. The target
devices are multiapplicative smart cards, running a Java Virtual Machine (Jvm).
The security policies express allowed data flow between applications, either due
to code reuse or collaborations (e.g. commercial agreement). To support our
approach, we consider the case study of LoyaltyCard, a multiapplicative smart
card containing four fidelity applets. The main contributions of this paper are:

– to define a specific language for specifying information flow security policies,
– to present how the policies are enforced in a standard Jvm,
– to make the information flow analysis practical w.r.t. software engineering,

by adding information flow contracts and giving hints for helping program-
mers to develop safe applications.

The rest of the paper is structured as follows: Section 2 presents the LoyaltyCard
example, while Section 3 introduces some aspects of information flow analysis
in the context of open, small systems and identifies challenges. In Section 4 we
define a domain specific language for information flow policies, while Section 5
presents a deployment and development environment. Section 6 discusses related
work, while Section 7 summarizes our contributions.

2 LoyaltyCard Example

In this section we present LoyaltyCard, a multiapplicative Java-enabled smart
card composed of four loyalty applications: two air companies (FlyFrance, Fly-
Maroc), a car renting company (MHz) and a hotel (Illtone). The applications
implement loyalty services and can share information. Three of these applica-
tions form a group of partners: confidential data flow between partners is secure,
while collaborations with external applications, as depicted in Figure 1, may
lead to illegal flows of information.

FlyFrance

MHz

FlyMaroc

Illtone

FlyFrance Parteners

Fig. 1. Illegal information
flow

Let us suppose that FlyFrance has a commercial
agreement with MHz and Illtone, so part of Fly-
France points can be used to obtain MHz and Ill-
tone loyalty points. On the other hand, FlyFrance
does not want FlyMaroc to learn any information
about the fidelity status of its clients (e.g. the num-
ber of miles, or the status: gold, silver client, etc).
FlyMaroc has also an agreement with MHz and of-
fers a discount, based on the fidelity status of the
MHz client. Suppose that, when asked by FlyMaroc,
MHz returns not only its fidelity points, but also fi-
delity points of its partners (FlyFrance). FlyMaroc can infer, through MHz,
information about the FlyFrance fidelity points, as depicted in Figure 1. In such

34 D. Ghindici and I. Simplot-Ryl

class FlyFrance {
private int miles;
[..]
public void updates() {

int i=0;
for(;i<noLoyalties;i++)
update(loyalties[i]);

}

void update(Loyalty l){
l.update(miles);

}
}

class MHz extends Loyalty{
private int points;
private int ppoints;
[..]
public void update(int p){

this.ppoints += p;
}
public int getLevel_() {

if(points+ppoints>GOLD)
return LEVEL_GOLD;

return LEVEL_SILVER;
}

}

class FlyMaroc {
private int oldLevelMhz;
[..]
int makeGetLevel(MHz h) {
int newLevel = h.getLevel();
if(oldLevelMHz!=newLevel){

print("level changed!");
oldLevelMHz = newLevel;
return newLevel;

}
return ERROR;

}
}

Fig. 2. Excerpt from the Java implementation of LoyaltyCard

a way, an illegal information flow is established. Illtone also offers a discount for
MHz clients, but this time the flow of information is allowed, as Illtone is one of
the partners of FlyFrance.

We want to be able to show that the implementations of the FlyFrance, MHz,
FlyMaroc and Illtone enforce information flow policies, e.g. each program shares
data only with trusted applications.

Figure 2 shows an extract of the Java code of FlyFrance, FlyMaroc and
MHz classes. The confidential data of FlyFrance is stored in the field miles.
The method update in FlyFrance updates the points of its partners (MHz and
Illtone). MHz stores its partner points in field ppoints. Method MHz.
getLevel() returns the fidelity level of MHz, based on MHz points and on part-
ner points. This method is called by FlyMaroc in order to offer a discount,
which leads to an unexpected flow of information to an application untrusted by
FlyFrance. The MHz.getLevel() method is also called by Illtone, but in this
case, the flow of information is authorized as FlyFrance has an agreement with
Illtone.

3 Embedded Security and Information Flow

Ubiquitous computing is evolving towards post issuance and automatic execution
of untrusted code. Executing untrusted code implies many security risks. For
example, a malicious applet running on your mobile phone or smart card can
do a lot of harm: it can disclose confidential information, financial data, address
book, social security and medical files, etc. Moreover, if the system runs multiple
applications, which share data, then it must ensure data confidentiality for each
application by controlling the underlying information flow.

3.1 Information Flow Model

In [6], a compositional information flow analysis enforcing non-interference for
Java programs running on small, open embedded systems has been presented.
The analysis consists in statically interpreting Jvm bytecode and inferring types

On Practical Information Flow Policies 35

representing all possible information flows that may occur when executing the
program. The behaviour of a program, in terms of information flow, is defined
using contracts: a security contract [1] guarantees the maximal information flow
that may occur while executing the program. In this paper, we enrich this frame-
work with security policies which relax non-interference by describing allowed
flows of information between application.

We now briefly describe the information flow model, which is needed for better
understanding the identified challenges and the proposed solutions. For more
details on the model, please refer to [6].

Information Sources and Security Levels. As in classical information flow,
each field is annotated by a security level: s for secret, sensitive data and p
for public, observable data. This work is based on the idea that confidential
data in small objects (e.g. loyalty points, PIN code) typically resides in instance
fields of objects [10]. We prevent information flow from high-security to low-
security instance fields. In order to have a reasonable size of information flow
annotations for embedded systems, the analysis is field independent but security
level sensitive: all the fields of an object having the same security level are
modeled as having the same location. Thus, considering the security levels s and
p, each object o is modeled as two sub-objects (parts): a secret part (os) and a
public part (op).

In the LoyaltyCard example, the confidential data (FlyFrance fidelity points),
is stored in the field FlyFrance.miles and the field ppoints of its partners (MHz
and Illtone). Hence these fields have security level s.

The Flow Relation. We now define the flow relation. We say that there is a
flow from a to b if an observer of b can learn information about a.

Considering our split of objects and the dichotomy of Java types (elementary
types and object types), the flows between two elements a and b have the form

a℘(p,s) r/v/i−→ b℘(p,s), where v denotes a flow arising from an assignment of prim-
itive type, r a reference flow (an alias), i an implicit flow; s and p denote the
security levels, secret or public, while ℘(p, s) denotes subsets of {p, s}.

For example, if an object a has a field s, of type int, labeled with security
level s and b has field p with security level p, the code b.p = a.s generates a
value flow from the secret part of a to the public part of b, denoted by bp v−→ as.

The code if(a.s) b.p=0 generates an implicit flow bp i−→ as.

The Security Contract of a Method. A security contract[19] carries rele-
vant information for a later usage of the method: it contains flows, potentially
generated by the execution of the method, between sources of information flow
(abstract values) visible outside the method. We identify thus the following ab-
stract values:

– the parameters of a method m,
– the return value of the method, denoted by the abstract value R,
– input/output channels: all the channels are abstracted by a single value, IO ,

36 D. Ghindici and I. Simplot-Ryl

– static fields, which are modeled as fields of a single object, denoted by the
abstract value Static,

– exceptions: all thrown values flow to the abstract value Ex .

Let Σm be the set of abstract values of a method m. We define now the security
contract of a method m as

Sm = {a r/v/i−→ b | a, b ∈ Σm × ℘(p, s) and the execution
of m potentially generates a flow from a to b}.

For example, considering that FlyFrance.miles and MHz.ppoints have secu-
rity level s, the method MHz.update from the LoyaltyCard (Figure 2) generates
a flow from the parameter p to a secret field of this. Thus, the security contract
of the method is Supdate = {thiss v→ p}. The information flow analysis infers the
security contracts in Figure 3 for the rest of the methods in Figure 2.

F lyFrance : Supdate = {ls v→ thiss}
MHz : Supdate = {thiss v→ p}
MHz : SgetLevel = {R i→ thiss,p, R

v→ Static}
F lyMaroc : SmakeGetLevel = {thisp i→ hs,p,R

i→ hs,p,R
v→ Static}

Fig. 3. Security contracts for LoyaltyCard

3.2 Challenges

The real challenge in information flow analysis is applying its results in practice.
We identify some of the major problems in making the analysis usable for which
we give solutions in the next sections.

Defining Policies that Explore Security Contracts. In literature, con-
fidentiality is often seen as a non-interference [9] problem, as public outputs
cannot depend on secret inputs. Non-interference policies do not allow any flows
from secret to public values, but only flows from secret to secret. Nevertheless,
non-interference does not make any distinction between the source of secrets. It
is a transitive and symmetric relation. Policies defined with such relation are too
restrictive, and not the desired policies in most of the cases, and especially in
multiapplicative smart cards [8]. Our aim is to refine non-interference by defin-
ing more complex intransitive and asymmetric policies. In the LoyaltyCard, the
security policies of an applet running on the smart card (FlyFrance) allow secret
information to be released to some other applet (MHz) but not to FlyMaroc.

In order to escape from non-interference strictness, we define, in Section 4, a
specific language, which describes the allowed flow of information between appli-
cations. Programs are certified by verifying that the security contracts respect
the desired security policies.

On Practical Information Flow Policies 37

Integration to Existing Systems (Jvm). Another important challenge,
which prevented information flow mechanisms from being used in real systems,
is getting the certification process and information flow policies to correctly and
easily interact with existing systems. JFlow [13] and Flow Caml [18] are powerful
languages, that offer support to a reliable development by defining a new pro-
gramming language which mixes source code and security policies in a coherent
set. However, they do not address the problems raised by mobile code and open
environments, and do not fit into the Java paradigm of dynamic class loading.

Integrating information flow policies for mobile code in Java-enabled small
open embedded systems requires, at least, (i) separation of code and security
policies and (ii) certification at load time. In Section 5.1 we present how the
enforcement process of information flow policies is integrated in a Jvm.

Developing Safe Interacting Applications. The security of a system de-
pends on the security of each component. A key in computer security is not only
detecting and preventing attacks, but also helping the developer to build safe
applications, components. Contracts can be used as a support for creating secure
applications, as developers can express, by their means, the expected behaviour
of unknown or untrusted applications. In this paper, we express information flow
in a program using contracts and we introduce an approach, based on reverse
engineering, to help building applications that respect information flow policies.

4 A DSL for Information Flow Policies

A domain-specific language (DSL) is a small, usually declarative, language that
targets a particular kind of problem. The key characteristic of DSLs is their
focused expressive power. DSLs are usually concise, offering only a restricted
suite of notations and abstractions, thus adapted to express security policies.

4.1 DSL Definition

In order to express security policies describing collaborations and information
flows between applications, we thus define a domain-specific language in Figure
4. The security policies that can be expressed with the DSL are simple, but
have enough power to model collaborations schemes in a smart card. The DSL
was designed for multiapplication smart cards, but it can be extended to other
applications, if necessary.

Multiapplicative smart cards allow data sharing and service sharing in order
to optimize the use of resources (e.g. API) and to allow collaborative schemes
(e.g. agreements or contracts between applications). In a smart card, the entities
exchanging or sharing data are the applications, thus the DSL contains rules
defining trust relations between applications.

Applications are addressed either by package or class names, using elements
in the sets of terminals Class and Package ; Field denotes a set of terminals
containing field names.

38 D. Ghindici and I. Simplot-Ryl

S ::= (Class |Package)[,S]
F ::= Field [,F]
Rc ::= Class secret F ;
Rs ::= S shares with S;
Rp ::= S strict secret ;
P ::= (Rc|Rs|Rn)[,P]

Fig. 4. A DSL for information
flow policies

As we consider that confidential data resides
in class fields, rule Rc expresses the secrets of
a class, by listing the fields that should remain
confidential, and thus that have the security level
s. The main rule of the DSL is Rs which de-
scribes the allowed information flows. For exam-
ple, the signification of S1 shares with S2; is
that all elements in S1 can share their secrets
with all elements in S2.

By default, an element in S can share its se-
cret with other elements having the same type
(e.g. class A shares its secrets with all instances of class A). Rule Rp =
S strict secret ; refines the security policies by specifying that an element A
in S must not share its secrets with other objects of type A. While the rule Rs

defines type-based policies, rule Rp refers to instance-based policies, in the case
when the instances have the same type.

The sharing relation can be associated to the trust relation defined in [8]
by Girard: one application transmits its secrets only to trusted applications.
As the trust relation, the sharing relation is neither symmetric nor transitive. If
A shares with B then not necessarily B shares with A. An application would
not trust another application only because one of its trusted applications does.
Detecting data leaks due to transitivity, or propagation, is one of the main
concerns of information flow security. Allowing transitivity would make no dis-
tinction between information flow and access control.

4.2 DSL Verification

The certification process of an information flow policy has two parts:

1. verifying simple class sharing: an application gives its secrets only to trusted
applications,

2. verifying transitivity (or data propagation): an application trusted by A does
not share confidential data with applications untrusted by A.

Simple Class Sharing. The rule Pi shares with Pj , where Pi and Pj are
two packages, can be read as ”any class in package Pi trusts any class in pack-
age Pj”. Hence, the DSL in Figure 4 can be reduced to rules having the form
A shares with B, where A and B are class names in Class . We can compute a
function share : Class → ℘(Class) which associates to each class the classes it
trusts. By default, a class trusts ifself, thus A shares with A; and A ∈ share(A).
Verifying the security policy of a class A ∈ Class reduces to verifying that secrets
of A flow only to elements in share(A). Hence, we verify security policies at the
granularity level of classes.

Transitivity. Once a class A shares confidential data with a trusted class B,
A loses control over its propagation. The secret of A becomes the secret of B.

On Practical Information Flow Policies 39

The policy of A holds if the policy of B is more restrictive: B does not share its
secrets with applications untrusted by A. Formally, verifying transitivity can be
summed up to verifying that, for all B ∈ share(A), share(B) ⊆ share(A) holds.

Security Policies and Security Contracts. We now show how policies de-
fined using the DSL are enforced by the information flow analysis described
in Section 3. Confidential data resides in object fields. Let fieldss : Class →
℘(Field) be a function that associates to each class the fields having the se-
curity level s, thus fields in the rule Rc = Class secret Field ; the function
fields : Class → ℘(Field) gives all fields of a class.

Secrets can be made accessible either by direct access to fields or through
method invocations and operations performed by the method. In order to prevent
direct access, secret fields of a class A in fieldss(A) must be declared using the
Java access modifier private. This restricts the access to secret fields only in the
class where they have been declared and thus to which they belong. Based on
this, certifying a class A with respect to an information flow policy consists of
verifying every method in A and methods that use the class A. Let Method be
the set of method names and methods : Class → ℘(Method) a function that
gives the list of methods for each class.

1: for all m in methods(A) do

2: if ∃ap f→ bs ∈ Sm then
3: return false
4: end if
5: for all as f→ bs ∈ Sm do
6: t1 = T (a), t2 = T (b)
7: if t1 /∈ share(t2) then
8: return false
9: end if

10: end for
11: end for
12: return true

Fig. 5. Certifying the policy of
class A

Let us remind that the information flow
model in Section 3 computes, for each
method m ∈ Method , a security contract
Sm containing all the possible flow of in-
formation between abstract values in Σm

(parameters, IO , Ex , Static, R). A flow

is denoted by at1
r/v/i−→ bt2 with t1, t2 ∈

{s, p} denoting the security level. Flows
can be from public/secret parts of an ab-
stract value to public/secret parts of an-
other abstract value. Security is concerned
with protecting flows from the secret parts
to public/secret parts. As a general rule,
flows from secret to public are forbidden,
while flows from public to public are always
allowed. A class A shares its secrets with
classes in share(A), thus only flows from secret parts of parameters of type A
to parameters with type in share(A) and to return (R) are allowed. Let T be a
function which associates to an abstract value its definition type, in Class . The
algorithm that verifies method in a class A is depicted in Figure 5. To permit
the flows to return, we consider that R ∈ share(A).

Encapsulation. The split of objects and the definition of secret/public part
may open a door to bypassing security checks through encapsulation. For exam-
ple the code A.p.r=A.s, where s and r have security level s and T (p) /∈ share(A),
generates a flow As v→ As, allowed by our analysis, but illegal as the secret of A
flows to an untrusted type (p). In order to avoid such leaks, we define the fol-

40 D. Ghindici and I. Simplot-Ryl

lowing encapsulation property: All secret fields and sub-fields of a class A must
be trusted by A, where sub-fields refer to fields of fields and etc.

for all f in fieldss(A) do
if T (f) /∈ share(B) then

return false
end if

end for
for all f in fields(A) \ fieldss(A)
do

if scrC(T (f)) then
return encfield(T (f), B)

end if
end for
return true

Fig. 6. encfield(A, B)

The verification of this property con-
sists in unfolding the fields of each
class and verifying that, for each secret
field f , we have T (f) ∈ share(A). Let
encfield(A, B) be a function which veri-
fies, recursively, that all secret fields of
class A are trusted by B (encfield :
Class × Class → {true, false}). The al-
gorithm is depicted in Figure 6.

If we take in consideration that only
few classes contain secret fields, we can
label the classes containing only public
fields and stop the unfolding when we
meet such classes. Let scrC : Class →
{true, false} be a function which tests
if a class contains some secret fields or
not; scrC(A) refers not only to secrets defined in A but also to secrets defined
in fields of A, etc.

Thus, to verify that a class A respects the encapsulation property, a call to
encfield(A, A) is sufficient.

4.3 Example

F lyFrance secret miles;
MHz secret ppoints;
Illtone secret ppoints;
F lyFrance shares with
MHz,Loyalty,Illtone;
MHz shares with Illtone;

Fig. 7. Security policy for Loyalty-
Card

Figure 7 presents the information flow
policy for the LoyaltyCard presented in Sec-
tion 2. The first three rules define the confi-
dential data, while the last two rules define
the allowed information flow. The policy re-
spects transitivity, as the policies of appli-
cations trusted by FlyFrance (MHz, Illtone)
are smaller than the policy of FlyFrance. The
verification fails while trying to validate the
method makeGetLevel defined in FlyMaroc,

as it contains a flow thisp i→ hs, where h denotes the MHz application.

4.4 Discussion

Conflict Resolution. While rule Rc and Rs are permissive, the rule Rp is
restrictive and thus can generate conflicts. Let us consider the following policy
for a class x.A, where x is the package to which A belongs:

x.A strict secret ;x.A shares with x. ∗ ;.

On Practical Information Flow Policies 41

In the first rule, x.A does not trust itself, while in the second rule x.A trusts all
classes in package x, and thus it trusts itself. To solve such conflicts, we consider
that the rules Rp (strict secret) prevail over rules Rs (shares with). Thus,
we first construct the function share, and only after we take into consideration
the fact that a class is strict secret or not.

Support for Overloading. One of the most powerful attributes of object-
oriented programming, and thus Java, is code reuse and factorisation, by the
means of inheritance. But, apart from providing this powerful functionality, in-
heritance provides also means for leaking information. To prevent such leaks, we
define some relations between policies of subclasses and superclasses.

The first restriction regards inherited fields: their security level cannot be
changed by a subclass. Doing so, the security contracts of inherited methods
change, and the superclass must be reanalyzed. This is not convenient for our
compositional approach, and for open systems. Nevertheless, a child class can
declare new fields even with security level s.

While overloading a class, for example B extends A, the security policy of
B must not only enforce security for B, but also for A and classes already
verified using A. If the policy of B is greater than the policy of A, formally
share(B) ⊇ share(A), then the confidentiality of A is not respected anymore,
as B can trust and share its secrets (and thus those of A) with classes which
A does not trust. If the policy of B is smaller than the policy of A, formally
share(B) ⊆ share(A), in order to certify B we must reanalyse A, as A, and thus
a part of B, have been certified using a greater policy. From these examples,
we can conclude with: the security policy of a class B must be the same as the
security policy of its superclass A, share(B) = share(A).

1: if fieldss(B) \ fieldss(A) ∩
fields(A) �= ∅ then

2: return false
3: end if
4: if fieldss(A) �= ∅ ∧

share(B) �= share(A) then
5: return false
6: end if
7: return true

Fig. 8. Certifying the policy of class
B extends A

The constraint above is too strict for API
classes, which are public classes (we use this
term to denote classes which do not contain
secrets, hence classes for which scrC returns
false). In order to deal with API, we relax
the policy above in the following way: the
policy of a subclass must be the same as
the policy of the inherited class only if the
inherited class contains secret fields. Thus,
the policy of a subclass can be any policy,
if the inherited class is a public class. Prob-
lems may arise if we cast a public class to
a class which contains secrets. To deal with
such situations, we extend the flow signa-
ture with the types in which public classes are cast inside the method, and we
take into consideration all these types while verifying the method.

For example, let us consider that we have C extends B. There are 2 cases:
Security issues arise when class B does not contain any secrets (fieldssB = ∅)
and C declares secret fields (fieldss(C) 	= ∅). In this case, the leak occurs only
when a cast from B to C is made inside a method m. To solve this problem, while

42 D. Ghindici and I. Simplot-Ryl

analysing m, we store the types in which classes of type B are cast inside m; for
example, if parameter p1 of type B is cast in C or in D, then we associate a list
to p1 (p1 ⇒ (C, D)). This list must be kept only for types which do not contain
secret fields, thus for which the function scrC does not hold. Flow signatures
are extended with such lists. For simplicity, we do not consider this case in the
algorithm presented below.

We can now extend the certification algorithm presented in Figure 5 to take
into consideration overloading. The extension is presented in Figure 8. Readers
should not confuse security policies with security contracts, for which we have
different restrictions.

Extending Policies (Declassification). The DSL and the security policies
can be extended to express more detailed rules about the release of information.
The current DSL expresses policies that apply to entire program, and does not
specify where the information release is permitted. We can define rules that
delimit the methods where the information flow may occur, for example

Rm ::= S shares with (IO | S) in Method ;

where Method represents a method name or a list of methods and IO is a keyword
(terminal) standing for the abstract value IO . The declassification adds power
of expression as it allows also to send data on input/output channels.

Declassification relaxes the security policies in certain method. To support
polymorphism and dynamic class loading, all the overriding classes must agree
on the declassification contract, e.g. the declassification rule must be defined by
every class in the class hierarchy.

Information Flow Policies as Contracts. The DSL in Figure 4 allows the
declarations of information flow policies for applications sharing confidential
data. Not only this language has a declarative value, but it also has a contractual
value. For example, with the rule FlyFrance shares with MHz, FlyFrance im-
poses a contract to MHz: FlyFrance agrees to share its secrets with MHz only if
MHz does not share its secrets with applications not trusted by FlyFrance. Thus,
the policies defined using the DSL are contracts that applications must respect.
An application accepts the contract of a trusted application only if it is smaller
than its own contract. In order to deal with openness and overriding, the DSL
imposes that the contracts of classes extending classes containing confidential
data do not change, with respect to the contract of overridden class.

5 Integrating Information Flow in a Development and
Deployment Schema

Even if information flow is a well studied area, there are not enough mechanisms
guaranteeing security for existing systems. The main difficulty for practical in-
formation flow is to integrate it in a real development and deployment schema.

On Practical Information Flow Policies 43

5.1 Enforcing Security Policies for Jvm

We present here how information flow policies defined in previous section may
be enforced by any Jvm. As the compiled Jvm bytecode is downloaded through
an unsecured channel, the information flow certification must be done oncard,
preferably at loading time in order to avoid run-time overhead. Both security
contracts and policies must be enforced. As computing security contracts requires
many resources (both in memory and time), we perform a two step analysis: (i)
an external phase [6] (supposed to have access to infinite resources) which com-
putes the type inference and annotates the bytecode with some proof elements,
and (ii) an embedded phase [7], which verifies, at loading time, the security con-
tracts obtained during the external phase. The verification operation is linear
in code size and uses constant memory. This technique lies on the same simple
idea as proof-carrying code [15] that it is easier to verify a result already com-
puted. We deal here only with the verification of information flow policies. The
verification of security contracts is described in [7].

In order to make the analysis practical and integrable with any existing Jvm
system, we (i) load policies to be certified as attributes of .class files; systems not
enforcing information flow can ignore these attributes, and (ii) verify security
policies with a custom class loader, that can be installed on any system.

Extending .class Files with Information Flow Security Policies. The
policy of a class A is the list of classes with which it can share confidential
data (denoted by share(A)). The .class attribute for the policy of A contains
thus a list of class names. The class names are represented by their index in the
ConstantPool of the class A. Considering that in a smart card the number of
installed applications is not significant, thus the sharing policies are quite simple,
the newly added attribute contains usually only few entries. The small size of
the attribute is acceptable for a small system.

As classes are loaded one by one, it is possible to load A before loading all
the classes used by A. While validating a class A, we also validate the policies
of classes used in A. Thus, to be able to validate A, we also load the policies of
classes used in A. If B is a class used by A, when loading A either (i) we take
in consideration the policy of B, if B has already been loaded or (ii) use the
policy of B that A announces and we keep it oncard, in a repository, in order to
validate (and remove) it when B is loaded.

Verifying Security Policies Using a Custom Class Loader. The loading
process in a Jvm is performed by the class loaders. In order to integrate the
information flow analysis on any Jvm, the verification is performed by custom
a class loader (SafeClassLoader), which can be built in the single class loader
of KVM or installed as a user-defined class loader for a standard Jvm. The
SafeClassLoader must verify both security contracts, as described in [7], and
information flow policies.

Classes are loaded one by one. Once the security contracts of the class have
been verified, the SafeClassLoader validates the information flow policy, using
the security contracts. The difficulty may arise from the fact that the loaded

44 D. Ghindici and I. Simplot-Ryl

class A wants to share its secret with a class B not yet loaded. As the class
is not present in the system, we do not have its security policy and we cannot
verify the transitivity, formally share(B) ⊆ share(A). In order to verify this
condition when B is loaded, we keep a repository with rules having the form
share(B) ⊆ share(A). If B is used by another class C, the rule share(B) ⊆
share(C) must be added to repository. In this case, the final rule kept in the
repository is share(B) ⊆ share(A) ∩ share(C), as the policy of B should be
more restrictive than both policies of A and C. Thus, when the load B, we also
verify that share(B) ⊆ X with X denoting the intersection of security policies
of classes that trust B. Moreover, we verify that the loaded class has the same
policy as its super class: share(B) = share(B′) with B extends B′.

Verifying Encapsulation. The same problem may arise when verifying en-
capsulation: A has a field of type B, but B is not yet loaded. In order to verify
while loading B that all secret fields of B are trusted by A, we keep the following
rule to the repository: encfield(B, A). When loading B, if a rule encfield(B, A)
is found in the repository, than the function encfield(B, A) (see Figure 6) is ex-
ecuted. If the test succeeds, the rule is deleted from repository and the loading
process continues, by performing other checks.

The result of encfields(B, A) depends on scrC(B) (the function which tests
if B or fields B contain secret fields). The value returned by scrC(B) depends
also on fields of B. Hence, the final value of scrC(B) can be computed only
when all fields, fields of fields, etc. have been loaded. To ensure the correctness
of scrC computation, we extend the repository with rules of type scrC(B) =
scrC(C1) ∨ scrC(C2) ∨ . . . ∨ scrC(Cn), where C1 . . . Cn represent the type of
fields of B not yet loaded. This rule is deleted from repository when a class Ci is
loaded with scrC(Ci) = true or when all classes C1 . . . Cn are loaded. Moreover,
to avoid the computation of scrC each time when it is needed, the known values
of scrC are stored on the card, in a special repository.

The algorithm verifying encapsulation at loading time is similar to the external
one (encfield)presented in Figure 6, except that it must also verify that the class
T (f) has been loaded; if not, if should add encfield(B, A) to the repository.

5.2 Reverse Engineering Tool

The certification must be done oncard due to the fact that the applications are
loaded using an unsecured channel and must be adapted to the limited resources
of the system. In the same time, the external analysis is supposed to be done on
an system offering of unlimited resources comparing with a small system. Thus
optimization and complexity are not an issue. Moreover, the external resources
can be used for other purposes, for example for offering an easy development
environment to programmers.

Security must be insured for different attacks against computing systems, for
both deliberate or accidental attacks. Information flow insecurity may arise from
malicious, untrusted code or from our own code. In the later case, the insecurity
is due to bad conception of the application or to bad implementation. When

On Practical Information Flow Policies 45

the information leak comes from a bad implementation due to human error, it
is not always obvious for the developer to correct the application in order to
make it safe. The development environment should detect illicit flows and help
the developer to correct his mistakes by offering all the necessary information.

The point of failure in the program certification is not usually the real source
of information leak. For example, the certification of LoyaltyCard fails while
analysing the method FlyMaroc.makeGetLevel. But the illegal information flow
comes from the implementation of method getLevel in class MHz, where the com-
putation of fidelity level for MHz takes into consideration the points of partners.

To detect the failure source, we propose a backward iterative algorithm, which,
at each step, tries to detect an information flow in a method. The algorithm is
similar to tracking thrown exceptions in Java programs. Let us assume that
we have a recursive method detect(m, f, pc) which detects where the flow f
occurred in method m by performing a backward analysis starting from the
program point pc. If the flow f was created due to another flow f1, the method
detect(m, f1, pc) is called recursively. If the flow f was created in a method m1

invoked at pc, the algorithm calls detect(m1, f, pcf), where pcf is the program
counter corresponding to the return instruction in method m1.

This approach is memory consuming and thus cannot be performed oncard,
but it can explore the unlimited resources of the external analyser.

6 Related Work

Information flow [16] has been largely studied in the last decades and many
models have been proposed [2,10]. Unfortunately, these models are mostly the-
oretical and almost impossible to apply in practice. Complex programming sys-
tems [13,18] enforcing information flow security exist, but they failed in showing
how they can be successfully applied to real problems [20]. Most of the sys-
tems enforce standard non-interference and expressive, useful information flow
security policies lack. The Pacap framework [4] involves a technique based on
model checking to verify interactions for Java smart-cards, but the verification is
limited to predefined scenarios, and it cannot be trusted in an open environment.

Several works have developed policies for downgrading data [17]. JFlow [13],
a powerfull programming language, implemented as an extension of the Java
language, implements the decentralized label model (DLM) [14] which uses the
notion of ownership; data can be release only by one of the owners only if all
the owners agree. This approach is similar to our contracts on declassification:
data can be released in a method if all classes in the hierarchy agree on the re-
lease. JFlow adds reliability to software implementation, but not to deployment
and linking on a platform. Moreover, source programs must be annotated with
security labels, and hence they must be re-coded. Many other forms and sys-
tems that declassify information have been presented [5,12] but most of them are
certified by a security type system and are based on the assumption that poli-
cies are known statically at compile time. All these work have solid theoretical
foundations, but failed to be successfully applied in practice.

46 D. Ghindici and I. Simplot-Ryl

On the other hand, many domain specific languages and practical systems
expressing security policies exist [3,11], but they do not address information
flow issues and most of the time they are dynamically enforced. Domain specific
languages [11] limit themselves to specifying access control rules and do not
address data propagation.

7 Conclusion

Motivated by the LoyaltyCard example, we present an approach to detect illegal
information flows in multiapplicative smart cards. The desired security policies
are specified using a simple, but expressive domain specific language and are
enforced are loading time. On the one hand, this work bridges the gap between
information flow models and current running systems. While the foundations of
information flow models are solid, their practical side is still to be proved. Our
approach limits the overhead for adding information flow security to existing
Jvm, as security labels and policies are separated from the code, and the illegal
information flow is detected by a custom class loader, installed on any Jvm.
On the other hand, our work bridges the gap between information flow security
requirements and actual security policies, which do not take into consideration
data propagation due to information flow.

References

1. Aissa, N.B.H., Ghindici, D., Grimaud, G., Simplot-Ryl, I.: Contracts as a support
to static analysis of open systems. In: Proc. of 1st Workshop on Formal Languages
and Analysis of Contract-Oriented Software (FLACOS 2007) (2007)

2. Avvenuti, M., Bernardeschi, C., Francesco, N.D.: Java bytecode verification for
secure information flow. ACM SIGPLAN Notices 38(12), 20–27 (2003)

3. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with polymer. In:
Proc. ACM SIGPLAN Conf. PLDI 2005, pp. 305–314 (2005)

4. Bieber, P., Cazin, J., Girard, P., Lanet, J.-L., Wiels, V., Zanon, G.: Checking secure
interactions of smart card applets: extended version. J. Comput. Secur. 10(4), 369–
398 (2002)

5. Dam, M., Giambiagi, P.: Confidentiality for mobile code: The case of a simple
payment protocol. In: Proc. 13th IEEE CSFW 2000, pp. 233–244 (2000)

6. Ghindici, D., Grimaud, G., Simplot-Ryl, I.: Embedding verifiable information flow
analysis. In: Proc. Conf. Privacy, Security and Trust (PST 2006), pp. 343–352
(2006)

7. Ghindici, D., Grimaud, G., Simplot-Ryl, I.: An information flow verifier for small
embedded systems. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-
J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 189–201. Springer, Heidelberg (2007)

8. Girard, P.: Which security policy for multiapplication smart cards? In: USENIX
Workshop on Smartcard Technology, pp. 21–28 (1999)

9. Goguen, J.A., Meseguer, J.: Security policies and security models. In: IEEE Symp.
Security and Privacy, pp. 11–20 (1982)

10. Hansen, R.R., Probst, C.W.: Non-interference and erasure policies for java card
bytecode. In: 6th Intl. Workshop on Issues in the Theory of Security (WITS 2006)
(2006)

On Practical Information Flow Policies 47

11. Hashii, B., Malabarba, S., Pandey, R., Bishop, M.: Supporting reconfigurable se-
curity policies for mobile programs. Comput. Networks 33(1-6), 77–93 (2000)

12. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. ACM
SIGPLAN Notices 40(1), 158–170 (2005)

13. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proc. 26th
ACM SIGPLAN-SIGACT Symp. POPL 1999, pp. 228–241 (1999)

14. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
Proc. 16th ACM Symp. SOSP 1997, pp. 129–142 (1997)

15. Necula, G.C.: Proof-carrying code. In: Proc. 24th ACM SIGPLAN-SIGACT Symp.
POPL 1997, pp. 106–119 (1997)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

17. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. In: Proc.
18th IEEE CSFW 2005, pp. 255–269 (2005)

18. Simonet, V.: Flow Caml in a nutshell. In: Proc. APPSEM-II, pp. 152–165 (2003)
19. Win, B.D., Piessens, F., Smans, J., Joosen, W.: Towards a unifying view on security

contracts. In: Proc. SESS 2005, pp. 1–7 (2005)
20. Zdancewic, S.: Challenges for information-flow security. In: The 1st Intl. Workshop

on Programming Language Interference and Dependence (PLID 2004) (2004)

New Differential Fault Analysis on AES Key

Schedule: Two Faults Are Enough

Chong Hee Kim� and Jean-Jacques Quisquater

UCL Crypto Group, Université Catholique de Louvain, Belgium
Place du Levant, 3, Louvain-la-Neuve, 1348, Belgium

{chong-hee.kim,Jean-Jacques.Quisquater}@uclouvain.be

Abstract. In this paper we show a new differential fault analysis (DFA)
on the AES-128 key scheduling process. We can obtain 96 bits of the key
with 2 pairs of correct and faulty ciphertexts enabling an easy exhaustive
key search of 232 keys. Furthermore we can retrieve the entire 128 bits
with 4 pairs. To the authors’ best knowledge, it is the smallest number
of pairs to find the entire AES-128 key with a fault attack on the key
scheduling process. Up to now 7 pairs by Takahashi et al. were the best.
By corrupting state, not the key schedule, Piret and Quisquater showed
2 pairs are enough to break AES-128 in 2003. The advantage of DFA on
the key schedule is that it can defeat some fault-protected AES imple-
mentations where the round keys are not rescheduled prior to the check.
We implemented our algorithm on a 3.2 GHz Pentium 4 PC. With 4
pairs of correct and faulty ciphertexts, we could find 128 bits less than
2.3 seconds.

Index terms: Fault attack, Differential Fault Analysis, AES, DFA,
AES key schedule.

1 Introduction

Boneh et al. introduced the fault attack on the implementation of RSA-CRT
(Chinese Remainder Theorem) with the errors induced by the fault injection
in September 1996 [5]. After that, many papers have been published on this
subject. In October 1996, Biham and Shamir published a fault attack on secret
key cryptosystems entitled Differential Fault Analysis (DFA) [2]. On the 2nd

October 2000, the AES became the successor of the DES and since then, it has
been used more and more in many applications. Several authors mounted DFA
on AES [3,7,9,11]. They assumed that the intermediate states were corrupted
by the fault injection and tried to find out the key. Among them, the attack by
Piret and Quisquater is the most efficient [11]. Their attack only needs two pairs
of correct and faulty ciphertexts to retrieve 128 bits of AES-128.

A different form of DFA, targeting the AES key schedule, was introduced by
Giraud in [8] and improved by Chen and Yen [6]. However, Giraud’s attack does

� Supported by Walloon Region, Belgium / E.USER project.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 48–60, 2008.
c© IFIP International Federation for Information Processing 2008

New Differential Fault Analysis on AES Key Schedule 49

not target only the AES key schedule. He used the faults in the intermediate state
as well. Recently Peacham and Thomas improved DFA on AES key scheduling
[10]. They assumed that random faults are injected during the execution of the
AES key scheduling process and that the resulting faults propagate to all keys
after the injection. They reduced the number of correct and faulty ciphertexts
to 12 pairs to recover 128-bit key. Takahashi et al. generalized Peacham and
Thomas’s attack and reduced the required number of pairs more [13]. They
succeeded in recovering 128-bit key with 7 pairs.

In this paper, we propose a new DFA on AES key scheduling process. Our
attack takes advantage of faults occurring in the 9th round of the AES key
scheduling process. Thus the fault model and the hypothesis on the fault location
are exactly the same as in Peacham and Thomas’ and Takahashi et al.’s. However
the way we exploit faults is different from theirs. We retrieved the entire 128-bit
key of AES-128 with 4 pairs of correct and faulty ciphertexts. Two pairs are
enough to recover 96 bits of the key enabling an easy exhaustive key search of
the remaining 232 keys. We implemented our algorithm on a 3.2 GHz Pentium
4 PC. With 4 pairs of correct and faulty ciphertexts we found 128 bits in less
than 2.3 seconds.

The rest of this paper is organized as follows. In Section 2, we briefly describe
AES. The review on the previous DFA on AES Key schedule is presented in
Section 3. Our analysis methodology is presented in Section 4. Section 5 compares
our attack with previous attacks, with the conclusion given in Section 6.

2 AES

AES [1] can encrypt and decrypt 128 bits of block with 128, 192, or 256 bits
of key. In this paper we will only deal with the 128-bit key variant, AES-128,
as it is the most widely used. Our attack can be extended trivially to other
variants. The intermediate computation result of AES-128, called State is
usually represented by a 4 × 4 matrix, each cell of which is a byte as shown in
Fig. 1. Where, Si

j,k denotes (j +1)th row and (k +1)th column byte of ith State,
j, k ∈ {0, . . . 3}.

In the rest of the paper, we will use the following additional notations:

– Ki
j,k denotes (j + 1)th row and (k + 1)th column byte of ith AES round key,

i ∈ {0, . . . , 10} and j, k ∈ {0, . . .3},
– S0 denotes the State after 9th AddRoundKey,
– S1 denotes the State after 10th SubBytes,
– S2 denotes the State after 10th ShiftRows,
– S3 denotes the State after 10th AddRoundKey,
– Si

j denotes 32-bit (j + 1)th row of Si, j ∈ {0, . . . 3},
– (C, C∗), (D, D∗) denote the correct and faulty ciphertext pairs.

AES-128 has 10 rounds. Each round function is composed of 4 transformations
except the last round: SubBytes, ShiftRows, MixColumns, and AddRoundKey.

50 C.H. Kim and J.-J. Quisquater

Si
0,0 Si

0,1 Si
0,2 Si

0,3

Si
1,0 Si

1,1 Si
1,2 Si

1,3

Si
2,0 Si

2,1 Si
2,2 Si

2,3

Si
3,0 Si

3,1 Si
3,2 Si

3,3

Fig. 1. The State during AES encryption

Fig. 2. Last two rounds of AES encryption

The last round is lacking MixColumns. Our attack focuses on the last two rounds.
They are depicted in Fig. 2.

SubBytes. It is made up of the application of 16 identical 8 × 8 S-boxes. This
is a non-linear byte substitution. We denote the function of SubBytes SB. That
is, SB(Si) = SubBytes(Si). For the simplicity, we define that SB also can take
a byte and two bytes as an input as follows:

SB(Si
j,k) = Sbox(Si

j,k),
SB(Si

j,k, Si
j,l) = Sbox(Si

j,k), Sbox(Si
j,l).

We denote Inverse SubBytes SB−1. We define that SB−1 also can take bytes
as an input.

New Differential Fault Analysis on AES Key Schedule 51

ShiftRows. Each row of the State is cyclically shifted over different offsets.
Row 0 is not shifted, row 1 is shifted by 1 byte, row 2 is shifted by 2 bytes, and
row 3 by 3 bytes. We denote ShiftRows and its inverse, InverseShiftRows, SR
and SR−1 respectively. We also define that they can take bytes as an input.

MixColumns. This is a linear transformation to each column of the State.
Each column is considered as polynomial over F28 and multiplied modulo x4 +1
with a fixed polynomial a(x) = 03 ∗ x3 + 01 ∗ x2 + 01 ∗ x + 02.

AddRoundKey. It is a bitwise XOR with a round key.

We briefly describe the last two rounds, 9th and 10th rounds, of the key
scheduling process as shown in Fig. 3. The input 128-bit key is divided into four
32-bit columns. The first 32-bit column propagates to the next column in the
same round, which generates the second column. The second and third columns
do the same. The fourth column propagates to the next round through the func-
tion RotWord, which performs a cyclic permutation and SubWord, which applies
S-box. Each column generated in the key process is grouped to yield the 128-bit
round key.

3 7 11 15

4 8 12 16

RotWord

SubWord

Rcon9

RotWord

SubWord

Rcon10

14

15

16

13

9th round

10th round

K9
0,0

K9
1,0

K9
2,0

K9
3,0

K9
0,1

K9
1,1

K9
2,1

K9
3,1

K9
0,2

K9
1,2

K9
2,2

K9
3,2

K9
0,3

K9
1,3

K9
2,3

K9
3,3

K10
0,0

K10
1,0

K10
2,0

K10
3,0

K10
0,1

K10
1,1

K10
2,1

K10
3,1

K10
0,2

K10
1,2

K10
2,2

K10
3,2

K10
0,3

K10
1,3

K10
2,3

K10
3,3

Fig. 3. 9th and 10th AES Key scheduling process

3 Previous Works about DFA on AES Key Schedule

The first DFA on AES key schedule was done by Giraud, but still needs to attack
the intermediate state [8]. He presented two fault attacks on the AES. Both

52 C.H. Kim and J.-J. Quisquater

require the ability to obtain several faulty ciphertexts originating from the same
plaintext (contrary to our attack). The first one assumes it is possible to induce
a fault on only one bit of an intermediate state. Under this condition, 50 faulty
ciphertexts are necessary to retrieve the full key. The second attack exploits
faults on bytes. It requires the ability of inducing faults at several chosen places
both on key scheduling process and intermediate state. Therefore, the second
is the first attempt of attack on key scheduling process, but it is not complete.
Because it still needs to attack on the intermediate state. It could retrieve the
key with 250 faulty ciphertexts. If he extends his hypothesis by supposing that
the attacker can choose the byte affected by the fault, the first attack requires
35 faulty ciphertexts and the second requires 31 faulty ciphertexts.

In 2003, Chen and Yen improved Giraud’s attack [6]. They could retrieve
the key with fewer faulty ciphertexts and with less computational complexity.
Giraud’s second attack is composed of three steps, an attack on 9th round key,
an attack on 8th round key, and an attack on 8th round intermediate state. The
first two steps of Chen and Yen’s method are similar to Giraud’s. But the third
step focuses on the Inverse SubBytes and requires less samples.

Unlike the previous two attacks, Peacham and Thomas assumes that random
faults are injected during the execution of the AES key scheduling process and
the resulting faults propagate to all keys after the injection [10]. They showed
that 12 pairs of correct and faulty ciphertexts are enough to retrieve the whole
key without brute-force search. They assumed that all bytes of a 32-bit column of
the 9th round key are corrupted during the execution of the key scheduling pro-
cess. Their attack consists of four steps. They use the fact that the intermediate
state calculated by the correct ciphertext just before the AddRoundKey of the
9th round is equal to the intermediate state calculated by the faulty ciphertext
just before the AddRoundKey of the 9th round.

In 2007, Takahashi et al. generalized Peacham and Thomas’s attack and re-
duced the required number of pairs [13]. They could retrieve the whole key with
7 pairs and 80 bits of the key with 2 pairs. Recently they improved their attack
a little bit by assuming that faults are injected into 32 bits of one column [12].
They found 88 bits with 2 pairs but still they need 7 pairs to find 128 bits.

4 Our DFA on AES Key Schedule

In this section we describe our attack. After presenting our fault model, we de-
scribe our basic attack that retrieves 32 bits of the key with 2 pairs of correct and
faulty ciphertexts giving a one byte random error on 9th round key scheduling
process. Then we improve our attack by giving a random fault on three bytes of
a 32-bit column of the 9th round key scheduling process. We can retrieve 96 bits
of the key with 2 pairs, and all 128 bits with 4 pairs.

4.1 Fault Model

We assume that a random fault is induced in the 9th round of the AES key
scheduling process and some bytes of the first column of the 9th round key are

New Differential Fault Analysis on AES Key Schedule 53

corrupted. In addition, we assume that the attacker can obtain pairs of correct
and faulty outputs from the same input. However we do not need the several
faulty outputs with the same plaintext.

The fault model and hypothesis on the fault location are exactly the same
as in Peacham and Thomas’ and Takahashi et al.’s. However the way we ex-
ploit faults is different from them. We exploit the intermediate state after the
AddRoundKey of the 9th round contrary to previous attacks. They exploit the
intermediate state before the AddRoundKey of the 9th round. Secondly they try
to find the 9th round key but we find the 10th round key. Finally we try to
remove impossible candidates for 10th round key, but they try to find directly
the correct 9th round key.

It is quite interesting to refer DFA on AES state. Piret and Quisquater’s
DFA on AES state [11] requires the minimum number of the ciphertexts even
though they use the same fault model and the hypothesis on the fault location
of Dusart et al.’s attack [7]. The way Dusart et al. exploit faults is quite similar
to Peacham and Thomas’ and Takahashi et al.’s. Dusart et al. write and solve
a system of equations of which the unknown value is the one of the fault. Our
way of exploiting faults follows the way of Piret and Quisquater’s.

4.2 Basic Attack

We assume that one byte of the first column of the 9th round key is corrupted.
For simplicity, we assume K9

0,0 is corrupted into K̃9
0,0. The attack can be applied

when another byte is corrupted. We denote the difference between them as a,
i.e., a = K9

0,0

⊕
K̃9

0,0. This error propagates to some bytes of the round keys as
shown in Fig. 4. The four bytes of 9th round key, (K9

0,0, K
9
0,1, K

9
0,2, K

9
0,3), and six

bytes of 10th round key, (K10
0,0, K

10
0,2, K

10
3,0, K

10
3,1, K

10
3,2, K

10
3,3), are corrupted. This

also results in the corruption on the intermediate states as shown in Fig. 2.
We exploit the intermediate state after the AddRoundKey of the 9th round,

i.e., S0. We denote the ith faulty state S̃i. Only the first row of S0 receives the
effect of the faults. By doing XOR between S0

0 and S̃0
0 , we have (we remind that

Si
j is denoted as a 32-bit (j + 1)th row of Si):

S0
0 ⊕ S̃0

0 = SB−1[SR−1(C0 ⊕ K10
0)] ⊕ SB−1[SR−1(C∗

0 ⊕ K̃10
0)]

= (a, a, a, a), (1)

where, C0 is the 32-bit first row of the correct ciphertext, C∗
0 is the 32-bit first

row of the faulty ciphertext, K10
0 is the 32-bit first row of 10th correct round

key, and K̃10
0 is the 32-bit first row of 10th faulty round key.

An error on a byte makes 255 possible differences. That is, a ∈ {1, 2, . . . , 255}.
Therefore the number of the possible differences of S0

0 and S̃0
0 is 255. In equation

(1), we know C0 and C∗
0 . Therefore we can eliminate the wrong candidates for

K10
0 that do not meet the condition of equation (1).
We compute how many wrong candidates for the round key K10

0 can be re-
moved by a single pair (C, C∗) with the equation (1). We define the difference
of the first 32-bit row of C and C∗ as Δ, i.e., Δ = C0 ⊕ C∗

0 . The number of

54 C.H. Kim and J.-J. Quisquater

a a a a

3 7 11 15

4 8 12 16

RotWord

SubWord

Rcon9

a a

c c c c

RotWord

SubWord

Rcon10

14

15

16

13

9th round

10th round

Fig. 4. 9th and 10th AES Key scheduling process with faults

possible value for Δ is 2554. Among them 255 differences satisfy the equation
(1). Thus the fraction of the candidates for the round key K10

0 surviving the
test with equation (1) is 255/2554. Therefore we conclude that the number of
remaining wrong candidates for K10

0 after N pairs have been treated is about
2564(255−3)N . With one pair, about 259 candidates remain. If two pairs are
exploited, we are in principle left with the right candidate only.

In the above paragraph we assumed that we needed to guess K10
0 only and we

knew other parameters. However, to solve the equation (1) we need to guess both
K10

0 and K̃10
0 . Since we have 264 candidates for (K10

0 , K̃10
0), it is not practical

to guess K10
0 and K̃10

0 together. However, K10
0 and K̃10

0 satisfy the following
condition:

K10
0 ⊕ K̃10

0 = (a, 0, a, 0).

That is, K10
0,1 = K̃10

0,1 and K10
0,3 = K̃10

0,3. Therefore we can start the attack with
these two bytes that results in 216 candidates instead of 264. The number of
remaining candidates for (K10

0,1, K
10
0,3) after N pairs of the correct and wrong

ciphertexts is now 2562(255−1)N . With two pairs, we are left with almost one
candidate for (K10

0,1, K
10
0,3)

1.
This consideration leads to the following sketch of our basic attack. We need

two pairs of the correct and faulty ciphertexts (C, C∗) and (D, D∗). We do not
need to have the same faulty value in K9

0,0 for these two pairs. We define the

1 Because 2562(255−1)2 = 1.0079, we have more than one candidate left for
(K10

0,1, K
10
0,3) sometimes. However, after Step 2 we have only one candidate left since

2563(255−2)2 = 0.004 for (K10
0,1, K

10
0,2, K

10
0,3).

New Differential Fault Analysis on AES Key Schedule 55

error during the computation of C∗ as a1, i.e., a1 = K9
0,0 ⊕ K̃9

0,0 and the error
during the computation of D∗ as a2, i.e., a2 = K9

0,0 ⊕ K̃9
0,0 for (D, D∗).

We first find the candidates for (K10
0,1, K

10
0,3) with two pairs of the correct and

faulty ciphertexts. Normally after this step, we have 1 or 2 candidates. Then
we find the candidates for (K10

0,1, K
10
0,2, K

10
0,3). Finally we find the candidates for

(K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3).

Step 1. We compute the candidate for (K10
0,1, K

10
0,3, a1, a2). The inputs for this

step are two pairs of the correct and faulty ciphertexts (C, C∗) and (D, D∗).

Algorithm 1

1. Set up a list L containing all 216 candidates for (K10
0,1, K

10
0,3).

2. Choose a candidate from L and compute (α1, α2) and (β1, β2) as follows:
(α1, α2) = SB−1[SR−1(C0,1 ⊕ K10

0,1, C0,3 ⊕ K10
0,3)]⊕ SB−1[SR−1(C∗

0,1 ⊕
K10

0,1, C
∗
0,3 ⊕ K10

0,3)] and (β1, β2) = SB−1[SR−1(D0,1 ⊕ K10
0,1, D0,3 ⊕ K10

0,3)]⊕
SB−1[SR−1(D∗

0,1 ⊕ K10
0,1, D

∗
0,3 ⊕ K10

0,3)].
3. Add the candidate and (α1, β1) to a new list M if α1 = α2 and β1 = β2.
4. Repeat Step 2 and Step 3 for all candidates from L.

Finally M has the candidates for (K10
0,1, K

10
0,3, a1, a2).

Step 2. We compute the candidate for (K10
0,1, K

10
0,2, K

10
0,3, a1, a2). The inputs for

this step are (C, C∗), (D, D∗), and the list M from Step 1. We note that K̃10
0,2

can be computed as K̃10
0,2 = K10

0,2 ⊕ a.

Algorithm 2

1. Set up a list L containing all 28 candidates for K10
0,2.

2. Choose a candidate from L.
3. Choose a candidate from M and compute (α1, α2) and (β1, β2) as follows:

(α1, α2) = SB−1[SR−1(C0,2⊕K10
0,2, C0,3⊕K10

0,3)]⊕ SB−1[SR−1(C∗
0,2⊕K10

0,2⊕
a1, C

∗
0,3 ⊕ K10

0,3)] and (β1, β2) = SB−1[SR−1(D0,2 ⊕ K10
0,2, D0,3 ⊕ K10

0,3)]⊕
SB−1[SR−1(D∗

0,2 ⊕ K10
0,2 ⊕ a2, D

∗
0,3 ⊕ K10

0,3)].
4. Add (K10

0,1, K
10
0,2, K

10
0,3, a1, a2) to a new list N if α1 =α2 =a1 and β1 = β2 = a2.

5. Repeat Step 3 and Step 4 for all candidates from M.
6. Repeat from Step 2 to Step 5 for all candidates from L.

Finally N has the candidates for (K10
0,1, K

10
0,2, K

10
0,3, a1, a2).

Step 3. We compute the candidate for (K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3, a1, a2). The

inputs for this step are (C, C∗), (D, D∗), and the list N from Step 2. We note
that K̃10

0,0 can be computed as K̃10
0,0 = K10

0,0 ⊕ a.

Algorithm 3

1. Set up a list L containing all 28 candidates for K10
0,0.

2. Choose a candidate from L.

56 C.H. Kim and J.-J. Quisquater

3. Choose a candidate from N and compute (α1, α2) and (β1, β2) as follows:
(α1, α2) = SB−1[SR−1(C0,0⊕K10

0,0, C0,3⊕K10
0,3)]⊕ SB−1[SR−1(C∗

0,0⊕K10
0,0⊕

a1, C
∗
0,3 ⊕ K10

0,3)] and (β1, β2) = SB−1[SR−1(D0,0 ⊕ K10
0,0, D0,3 ⊕ K10

0,3)]⊕
SB−1[SR−1(D∗

0,0 ⊕ K10
0,0 ⊕ a2, D

∗
0,3 ⊕ K10

0,3)].
4. Output (K10

0,0, K
10
0,1, K

10
0,2, K

10
0,3, a1, a2) and stop the algorithm if α1 = α2 = a1

and β1 = β2 = a2.
5. Repeat Step 3 and Step 4 for all candidates from N .
6. Repeat from Step 2 to Step 5 for all candidates from L.

Finally we have the one correct key for (K10
0,0, K

10
0,1, K

10
0,2, K

10
0,3) and faulty values

(a1, a2).
We implemented our attack on a 3.2 GHz Pentium 4 PC and found K10

0 with
about 0.5 second. If we give faults in K9

1,0 instead of K9
0,0, then similarly we can

find K10
1 . Therefore with 8 pairs, we can find the entire 128 bits of 10th round

key. We can easily compute the initial key with 10th round key, see [7].

4.3 Improved Attack

Now let us consider the errors on more than one byte on the first column of 9th

round key. We suppose that the first two bytes, K9
0,0 and K9

1,0, are corrupted by
fault injection. Let us denote that a = K9

0,0⊕K̃9
0,0 and b = K9

1,0⊕K̃9
1,0. According

to AES key scheduling process, these differences a and b make another difference
c and d in 10th round key respectively as shown in Fig. 5.

Two-byte error makes two rows of S0 to be corrupted. We define the difference
in the second row, S0

1 , as (b, b, b, b). The corresponding difference in the second
row of the 10th round key, K10

1 , is (b, 0, b, 0). Therefore we can find K10
1 and b

with the basic attack in Sec. 4.2 with the following condition:

SB−1[SR−1(C1 ⊕ K10
1)] ⊕ SB−1[SR−1(C∗

1 ⊕ K̃10
1)] = (b, b, b, b). (2)

Then we can compute d from the value of b and K10
1 (this comes from the

structure of the AES keys scheduling process) as follows:

K9
1,3 = K10

1,2 ⊕ K10
1,3,

d = SBox(K9
1,3)⊕ SBox(K9

1,3 ⊕ b).

Because we know the value of d, we only do not know the value of a in the
first row of difference of K10 as shown in (c) of Fig. 5. Therefore we can apply
the basic attack to the first row and find K10

0 .
We summarize how to find 64 bits of K10 as follows:

Algorithm 4

1. Compute K10
1 and (b1, b2) using basic attack.

2. Compute d1, d2 with (K10
1,2, K

10
1,3) and b1, b2.

3. Compute K10
0 and (a1, a2) using basic attack.

New Differential Fault Analysis on AES Key Schedule 57

a a a a a a

c c c c

9th round key 10th round key

b b b b

d d d d

b b

a a a a

b b b b

d d

b b

c c c c

(a) Fault injection on K9
0,0

(b) Fault injection on K9
1,0

(c) Fault injection on K9
0,0 and K9

1,0

a d a d

Fig. 5. Differences between correct and wrong round keys according to fault injection
on the 9th round key

We can further improve the attack in case three bytes of the first column of
9th round key are corrupted. As shown in Fig. 6, let us denote e = K9

2,0 ⊕ K̃9
2,0.

We first start with the third row. With the basic attack, we compute K10
2 and e.

Then we compute f with the property of AES key scheduling process. We can
compute K10

1 and K10
0 with Algorithm 4. Therefore we can compute 96 bits of

AES-128 key with two pairs of correct and faulty ciphertexts. We can compute

9th round key 10th round key

a a a a

b b b b

e e e e

d d

f f

e e

c c c c

(c) Fault injection on K9
0,0, K9

1,0, and K9
2,0

a d a d

b f b f

Fig. 6. Differences between correct and wrong round keys in case of the fault injection
on the three bytes of the 9th round key

58 C.H. Kim and J.-J. Quisquater

the last 32 bits with an exhaustive search or with the basic attack of one byte
fault on K9

3,0 and another two pairs of correct and faulty ciphertexts.
We again implemented our improved attack on the same PC. To find 96 bits

of the key with 2 pairs, average 1.8 seconds are required. To compute 128 bits
with 4 pairs, it requires 2.3 seconds in average.

5 Comparison with Previous Attacks

We compared our attack with previous attacks in terms of the relation between
the retrieved bits of key and the required number of pairs as shown in Fig. 7.

0

32

64

96

128

10 20 302 4 7

88

112

Number of pairs

R
et

riv
ed

 k
ey

 in
fo

rm
at

io
n

(b
its

)

Our attack Takahashi et al.

Peacham & Thomas

Chen & Yen

Fig. 7. Comparison in terms of required number of pairs

0

32

64

96

128

421 3

88

112

Number of fault injection points

R
et

riv
ed

 k
ey

 in
fo

rm
at

io
n

(b
its

)

Our attack

Takahashi et al.

Peacham & Thomas

Chen & Yen

0

Fig. 8. Comparison in terms of required number of fault injection points

New Differential Fault Analysis on AES Key Schedule 59

We also compared in terms of the number of fault injection points in Fig. 8. In
both cases, we can see our proposed method is the best.

If we have only two pairs of the correct and wrong ciphertexts, we can compute
96 bits with our attack and need to do an exhaustive search for the other 32 bits.
We estimated the time for the exhaustive search based on the simulation result
of [13]. On a normal PC, the estimated calculation time of the 32-bit exhaustive
search is about 8 minutes. If we use Takahashi et al.’s attack, we need to do an
40-bit exhaustive search, which requires about 3 days.

6 Conclusions

We proposed a new differential fault analysis on AES key schedule. Only two
pairs of correct and faulty ciphertexts are enough to find the whole key of AES-
128 with DFA on AES state by Piret and Quisquater. In the area of DFA on
AES key schedule, still we needed many pairs. However our proposed method
reduced the gap between DFA on state and DFA on key schedule. Ours requires
two pairs for retrieving 96 bits of the key enabling an easy exhaustive key search
of 232 keys and four pairs for 128 bits without an exhaustive key search. Our
result shows the minimum number of pairs and that of fault injection points
than the previous attacks. It takes about 2 seconds to retrieve 128 bits with
four pairs on the normal PC. With two faults it takes about 8 minutes to find
128 bits.

The general countermeasure against DPA on AES state is to recompute the
last three rounds of AES and compare it with the original output. However, if
the key schedule is not re-done for the re-computation of the last three rounds
it cannot prevent DPA on AES key schedule. Therefore we can conclude that
key scheduling process as well as encryption process should be protected against
fault attacks.

References

1. National institute of standards and technology, Advanced Encryption Standards.
NIST FIPS PUB 197 (2001)

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

3. Blömer, J., Seifert, J.-P.: Fault based cryptanalysis of the advanced encryption
standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181.
Springer, Heidelberg (2003)

4. Boneh, D., DeMillo, R., Lipton, R.: On the importance of checking cryptographic
protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp.
37–51. Springer, Heidelberg (1997)

5. Boneh, D., DeMillo, R., Lipton, R.: On the importance of eliminating errors in cryp-
tographic computations. Journal of Cryptology 14(2), 101–119 (2001); An earlier
version appears in [4]

60 C.H. Kim and J.-J. Quisquater

6. Chen, C.-N., Yen, S.-M.: Differential fault analysis on AES key schedule and
some countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS,
vol. 2727, Springer, Heidelberg (2003)

7. Dusart, P., Letourneux, G., Vivolo, O.: Differential fault analysis on A.E.S
(2003)/10, http://eprint.iacr.org/

8. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

9. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differ-
ential fault attack against AES cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

10. Peacham, D., Thomas, B.: A DFA attack against the AES key schedule. SiVenture
White Paper 001 (26 October 2006),
http://www.siventure.com/pdfs/AES KeySchedule DFA whitepaper.pdf

11. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)

12. Takahashi, J., Fukunaga, T.: Differential fault analysis on the AES key schedule.
IACR Eprint archive 2007-480

13. Takahashi, J., Fukunaga, T., Yamakoshi, K.: DFA mechanism on the AES key
schedule. In: Proc. of the Fourth International Workshop, FDTC 2007, pp. 62–72
(2007)

http://eprint.iacr.org/
http://www.siventure.com/pdfs/AES_KeySchedule_DFA_whitepaper.pdf

DSA Signature Scheme Immune to the Fault

Cryptanalysis

Maciej Nikodem

The Institute of Computer Engineering, Control and Robotics
Wroc�law University of Technology

Wybrzeże Wyspiańskiego 27, 50-370 Wroc�law, Poland
maciej.nikodem@pwr.wroc.pl

Abstract. In this paper we analyse the Digital Signature Algorithm
(DSA) and its immunity to the fault cryptanalysis that takes advantage
of errors inducted into the private key a. The focus of our attention is
on the DSA scheme as it is a widely adopted by the research community,
it is known to be vulnerable to this type of attack, but neither sound
nor effective modifications to improve its immunity have been proposed.
In our paper we consider a new way of implementing the DSA that en-
hances its immunity in the presence of faults. Our proposal ensures that
inducting errors into the private key has no benefits since the attacker
cannot deduce any information about the private key given erroneous
signatures. The overhead of our proposal is similar to the overhead of
obvious countermeasure based on signature verification. However, our
modification generates fewer security issues.

1 Introduction

In recent years a variety of implementations based on tamper-proof devices (e.g.
smart cards) have been proposed in order to provide better support for data
protection. The main reason for this trend originate from the fact that such
devices are expected to be characterized by high reliability and security. This
is obtained thanks to their ability to perform complex arithmetical operations,
to control incoming and outgoing communication, and to prevent unauthorized
access. Cryptographic devices, on the other hand, are endangered by faults which
can compromise their security.

In 1997 Bao et al.[3] and Boneh et al.[6] showed that if faults occur when
the device performs cryptographic operation, then they may decrease security
and leak the key stored inside of the device. The described problem has been
presented for most of modern cryptographic algorithms such as the RSA en-
cryption and signature scheme, identification protocols, and signature schemes
based on the discreet logarithm problem (e.g. ElGamal, Schnorr, and DSA). The
same year, Biham and Shamir [4] demonstrated that secret key cryptosystems
are vulnerable to the fault cryptanalysis as well.

Since 1997, many researchers have been investigating the problem of fault
cryptanalysis, in an effort to discover methods of enhancing security of different

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 61–73, 2008.
c© IFIP International Federation for Information Processing 2008

62 M. Nikodem

cryptographic schemes. However, a handful solutions have been proposed only
for the RSA algorithm [2,12,21] and symmetric key cryptosystems [9,10,13]. Less
attention has been paid to signature schemes, of which security is based on the
Discrete Logarithm Problem (DLP).

All of existing solutions can be divided into three groups:

– fault prevention,
– error detection and error correction,
– error diffusion, also refereed to as ineffective computation [21].

The main purpose of using fault prevention techniques is to minimise the prob-
ability of fault injection. This is achieved by hardware circuits responsible for
shielding a device, and protecting it from reverse engineering, radiation, ion
beams, power spikes, and signal glitches [1,16]. Unfortunately, none of these
methods work properly – some have design bugs while others can be simply
switched off [16]. If fault prevention fails then the device is susceptible to errors,
and other types of countermeasures have to be taken.

Error detection and error correction aim to detect and report an error in
order to prevent successful cryptanalysis. Existing error detection schemes are
based on well-known error detection techniques that utilise reverse computations
(e.g. ciphertext decoding or signature verification) or parity checks and residue
codes. Such simple solutions allow to enhance immunity to the fault analysis, and
may be easily implemented in symmetric encryption algorithms [14]. Some steps
to protect the RSA algorithm have been taken too [8]. Unfortunately reverse
computations usually introduce delays and computation overhead which may be
impractical. Moreover both methods require comparing procedure, that actually
verifies whether computations were error free or not, which is may be a target
of fault injection, and therefore, may become a bottleneck of the whole solution
[15,20,21]. This threat is not present when the error correction is used, since it
is performed regardless of if errors have been inducted or not, and thus requires
no comparisons. Unfortunately, only one error correction scheme for the AES
algorithm has been proposed so far [9].

The error diffusion is another method of preventing fault cryptanalysis. In
contrast to previous solutions it attempts to modify a cryptographic algorithm
in such a way that any inducted error is spread among different cryptographic
computations and the output. The goal of the error diffusion is to produce erro-
neous output that is useless for the attacker. This is possible, since most fault
attack scenarios assume that the attacker induces particular types of errors.
Moreover, it is often required that errors are inserted into selected part of the
algorithm. Changing and dispersing the error increases the overhead of fault
cryptanalysis causing such attacks to be ineffective. For that reason this type of
countermeasure is also refereed to as ineffective computations. Although error
diffusion was proposed five years ago [21], so far it has been adopted only for the
RSA-CRT algorithm. In last year a number of different error diffusion techniques
for the RSA-CRT were proposed (e.g. [5,8,21]) but most of them have been bro-
ken [15,22]. Moreover, no countermeasures of this type have been proposed for
other cryptographic algorithms.

DSA Signature Scheme Immune to the Fault Cryptanalysis 63

2 Related Work

A feasibility for implementation of the fault cryptanalysis in case of DLP-based
signature schemes was first announced in 1997 [3]. Attack described in this pa-
per utilises bit-flip errors inducted into random bit of the private key a. Due to
such error the resulting signature is affected with error that may be effectively
guessed by the attacker at the cost of 2n modular exponentiations. This result
was put forth in 2000 by Dottax who presented how one can implement fault
cryptanalysis to ECDSA. In 2004, Giraud and Knudsen [11] extended previous
results and analysed an attack on the DSA scheme that take advantage of byte
errors instead of bit errors. Paper [11] presents detailed analysis of attack com-
plexity, and the number of faulty signatures required to restrict possible private
key values to the requested amount. On the other hand, it does not describe any
countermeasures that can be applied in order to improve security.

The security of the DSA scheme was also analysed by Rosa [19] who presented
a lattice-based fault attack. This attack can be carried out irrespectively of the
fact whether a tamper-proof device performs result checking before output or
not. It requires for the attacker to substitute g used during signing procedure
with g′ = gβ mod p for some 1 < β < p with ord (β) = d in Z∗

p and gcd(d, q) = 1.
This can be difficult to achieve with fault induction, when the DSA is imple-
mented in hardware but, as presented in [19], it can be performed if the scheme
is implemented in software. An obvious countermeasure for software implemen-
tation, as presented in [19], is to make manipulation on the parameters of the
DSA scheme impossible.

The lattice-based fault attack was also presented by Naccache et al. [17]. Their
attack is based on faults inducted into random integer k in order to force a num-
ber of the least significant bytes (LSBs) of k to flip to 0. Afterwards the attacker
applies lattice attack on the ElGamal-like signature which can recover private
key, given sufficiently many signatures such that a few bits of corresponding k are
zeroed. As presented in [17], when one LSB of each k is zeroed, then 27 signatures
are sufficient to disclose the private key. In their paper Naccache et al. presented
theory and methodology of the attack as well as possible countermeasures (e.g.
checksums, randomisation or refreshments).

Although DLP-based signature algorithms are known to be prone to fault
cryptanalysis, neither sound nor effective countermeasures have been proposed
for these so far. Precisely, there exist only one obvious solution that utilises
signature verification procedure in order to check whether generated signature
is correct or not. If verification fails then either signing or verification was af-
fected with faults and the signature has to be rejected. This countermeasure
seems to work but in fact it utilises comparison procedure which is suscepti-
ble to fault attacks and thus may become a bottleneck of the whole proposal
[15,20].

In this paper we give a practical method of how to increase immunity of
the DSA scheme in the presence of faults that affect private key a. We assume
that the pseudo random generator that chooses k operates correctly while the

64 M. Nikodem

attacker is able to induce random bit-flip or byte change errors into a. Our
proposal is based on error diffusion which ensures that any error e, inducted
into a, is spread within the signature s. This results in erroneous signature s
that is affected with error E, which depends both on e and unknown random
integer k. Relation between E, e and k ensures that E can neither be computed
nor effectively guessed by the attacker. Therefore, in order to perform the attack,
one has to verify all of 2160 possible values of k one by one which cause the whole
attack to be ineffective. Immunity to the fault cryptanalysis is attained at the
expense of the increased computational overhead which is similar to the overhead
of signature verification. Relatively small overhead enables to implement the
proposed scheme in small cryptographic devices like smart cards.

3 DSA Signature Scheme

The DSA signature scheme was proposed in 1991 by U.S. National Institute of
Standards and Technology (NIST), and became first digital signature standard
(DSS) ever recognised by any government. The DSA is a variant of the ElGamal
signature scheme which requires a hash function h : {0, 1}∗ → Zq for prime
integer q. Its security is based on the discreet logarithm problem.

Key generation in the DSA scheme is done as follows:

– select a prime number q such that q is 160 bit long (2159 < q < 2160),
– choose t so that 0 ≤ t ≤ 8, and select a prime number p where 2511+64t <

p < 2512+64t with the property that q|(p − 1),
– select a generator g of the unique cyclic group of order q in Z∗

p ,
– select a random integer a such that 1 ≤ a ≤ q − 1,
– compute y = ga mod p,

the public key is 〈p, q, g, y〉, and the private key is a.

After key generation the device stores the private key a and system parameters
p, q, g for future use. Signing for a given message m goes as follows:

– select a random integer 0 < k < q,
– compute r =

(
gk mod p

)
mod q,

– compute s = k−1 (h(m) + ar) mod q,
the signature for m is a pair 〈r, s〉.

Given the message m, signature 〈r, s〉, and the public key 〈p, q, g, y〉 one can
verify whether the signature is actually correct. This is done as follows:

– compute w = s−1 mod q,
– compute v1 = gh(m)w mod p and v2 = yrw mod p,
– verify if v1 · v2 mod p mod q

?= r.

If last equation holds, then the signature is accepted, otherwise the signature is
rejected.

DSA Signature Scheme Immune to the Fault Cryptanalysis 65

4 Fault Cryptanalysis of the DSA Signature Scheme

As presented in [3,11,17,19] hardware implementations of the DSA scheme can
be compromised with fault cryptanalysis. This can be done in a few ways: by
affecting random integer k [17], public parameter g [19] or by inducting errors
into the private key register during signing procedure [3,11]. In the remaining
part of the paper we focus on the fault cryptanalysis that attempts to affect a
private key a. Its purpose is to generate a faulty signature which is then used to
deduce the key. Let us briefly present an attack scenario described in [3].

Assume that the attacker has a possibility to induct random bit-flip errors into
the private key register. Since errors are inducted randomly and the private key
register is of the size n = log2 a so the probability that i-th bit will be affected
with error equals 1/n. Moreover, inducting exactly one bit-flip error into the
i-th bit of the register cause a change of the private key which is now equal to
a = a ± 2i where sign ± depends on the original value of this bit.

The erroneous signing procedure executes as follows:

– select a random integer 0 < k < q,
– compute r =

(
gk mod p

)
mod q,

– compute s = k−1 (h(m) + ar) mod q,
erroneous signature for m is a pair 〈r, s〉.

Because the error has changed the private key into a = a ± 2i, therefore, an
element s of the erroneous signature 〈r, s〉 is equal

s = k−1 (h(m) + ar) mod q = k−1
(
h(m) +

(
a ± 2i

)
r
)

mod q

= k−1 (h(m) + ar) ± 2irk−1 mod q

= s ± 2irk−1 mod q. (1)

Due to (1) and because the fact attacker knows r = gk mod p mod q the fault
analysis can be performed. This is done in a similar way as for the signature
verification:

– compute w = s−1 mod q,
– compute v1 = gh(m)w mod p and v2 = yrw (grw)±2i

mod p,
– look for the fault value ±2i for which following equation holds

r = v1v2 mod p mod q = gh(m)wyrw (grw)±2i

mod p mod q. (2)

According to (2), in order to perform cryptanalysis the attacker needs to find a
value of the inducted fault ±2i. Since we assume errors are inducted at random
hence the attacker does not know which bit of the private key was flipped.
Therefore, to perform cryptanalysis the attacker needs to check all possible fault
values and find the one for which (2) holds. The time required to perform this
attack is dominated by 2n exponentiations that have to be computed.

Each iteration of the above procedure allows the attacker to recover one bit of
the private key. Attacker can then repeat this procedure to get remaining bits,

66 M. Nikodem

but since errors are inducted at random it could happen that successive errors
affect bits already known. This is a difficulty that increases attack overhead but
as presented in [6] the attacker can repeat above procedure as long as demanded
amount of the private key bits is known. Afterwards he can perform exhausting
search in order to find remaining bits.

5 DSA Scheme Immune to the Fault Cryptanalysis

As mentioned in the previous section, the fault analysis countermeasure proposed
in this paper is based on the error diffusion. The purpose of this solution is to
check whether the public key a, used during signature generation, was affected
with error or not. This has to be done without any comparisons and conditional
operations since these may be a bottleneck of the whole proposal, similarly as
in case of error detection schemes. Therefore, we propose to use public key y in
order to verify the correctness of a. The outcome of this verification is called an
error diffusion term T , and it is equal zero only if all computations were error
free. Later on this term is used in signature generation in such a way that for
T = 0 the signature s is correct while for T 	= 0 erroneous value of s depends
both on error inducted e and random integer k. The relation between s, e, and k
ensures that the attacker will find it difficult to guess the error e given erroneous
signature 〈r, s〉 for message m.

Implementation of the above countermeasure requires that computation of
the signature s is split into two steps

v = k + ar mod q, (3)
s = k′ (h(m) + v) − 1 mod q. (4)

These two steps are separated by one additional and one modified computation:

– additional computation of error diffusion term T

T =
(
y−rgv mod p mod q

)
− r mod q, (5)

– modified computation of multiplicative inverse

k′ = (k ⊕ T)−1 mod q. (6)

With these modifications the whole signing procedure goes according to the
scheme 1.

According to the 4-th step of the proposed signature scheme the error diffusion
term T = 0 if and only if

y−rgv mod p mod q = r. (7)

If the attacker inducts an error e into the private key a, then the erroneous value
of v equals

v = k + ar mod q = k + (a + e)r mod q = k + ar + er mod q. (8)

DSA Signature Scheme Immune to the Fault Cryptanalysis 67

Scheme 1. Proposed modification of the DSA scheme
Require: message m, private key, and public key of the DSA scheme
Ensure: the DSA signature 〈r, s〉
1: select a random integer k with 0 < k < q,
2: compute r = gk mod p mod q,
3: compute v = k + ar mod q,
4: compute T =

�
y−rgv mod p mod q

�
− r mod q,

5: compute k′ = (k ⊕ T)−1 mod q,
6: compute s = k′ (h(m) + v) − 1 mod q

Due to faulty value of v left side of (7) equals

y−rgv mod p mod q = g−argv+er mod p mod q = g−argk+ar+er mod p mod q

= gk+er mod p mod q. (9)

This equals r if and only if

k + er mod q = k, (10)

which is equivalent to
er mod q = 0. (11)

However, r < q since it was computed modulo q, and e is not a multiplicity of
q – otherwise (i.e. q|e) a = a + e mod q = a and no error affects the private key.
Therefore, er mod q 	= 0 for any error e, and hence, T = 0 only if no errors were
inducted, and T 	= 0 otherwise. It is worth to mention that non-zero value of T
equals

T = gk+er mod p mod q − r mod q = ger mod p mod q. (12)

According to (12) and assuming that the attacker inducts particular type of er-
rors (e.g. bit-flip errors) he is able to guess possible values of T =ger mod p mod q,
given erroneous signature 〈r, s〉. This information, however, do not simplify the
attack considerably.

Error diffusion in the proposed scheme is obtained by the modified inverse
computation

k′ = (k ⊕ T)−1 mod q. (13)

Because inverse is a nonlinear transformation thus the value of k′ depends on the
term T and the random integer k in a nonlinear way. Therefore, if T 	= 0 then
k′ = k−1 + E where E is a non-linear function of T and k. Since k is unknown
to the attacker, he cannot compute the error E even if he knows the value of T .
Moreover, there are q−2 possible values of E because k is chosen randomly every
iteration of the scheme. Finally, using k′ for the computation of the signature s
yields its erroneous value s to be affected both with error e and E. Therefore, to
perform a cryptanalysis the attacker needs to guess both errors, and since there
are 2160 possible values of E such attack is infeasible.

68 M. Nikodem

On the other hand, if no errors were inducted into the private key a, then the
proposed scheme outputs correct DSA signature. This is quite obvious since in
such situation we obtain

T =
(
y−rgv mod p mod q

)
− r mod q =

(
g−argk+ar

)
mod p mod q − r mod q

= gk mod p mod q − r mod q = 0, (14)

and
k′ = (k ⊕ T)−1 mod q = k−1 mod q. (15)

This gives the signature equal

s = k′ (h(m) + v) − 1 mod q = k−1 (h(m) + k + ar) − 1 mod q

= k−1 (h(m) + ar) mod q, (16)

which is a standard DSA signature.

6 Security of the Proposed Scheme

The attack scenarios presented in [3,11] assume that the attacker inducts par-
ticular types of errors. This allows him to guess inducted error effectively, and
use this knowledge to restrict the number of possible private keys.

In our proposal erroneous signature s is affected with error e and E, where
the value of E depends on inducted error e and random integer k, chosen by the
device. Because k is unknown and cannot be computed by the attacker, thus he
can perform no better than guessing. Precisely, for each possible value of e the
attacker has to find t for which following equation holds

(
gh(m)yrger

)s−1

gt mod p mod q = r. (17)

Taking into account that s = k′ (h(m) + ar + er) mod q, k′ = (k ⊕ T)−1 =
k−1 + E and assuming that the attacker guessed the inducted error e correctly,
we can simplify the above equation

g(k−1+E)−1
gt mod p mod q = gk⊕T+t mod p mod q = r. (18)

Equation (18) shows that the attacker has to guess proper value of t such that

k ⊕ T + t mod q = k, (19)

or equivalently
k ⊕ (ger mod p mod q) + t mod q = k. (20)

Accordingly, the sought value of t is a function of e and k. Furthermore, because
k is chosen at random from the set (1, q), there are q − 2 possible values of t
for each e. Therefore, to perform an attack and to recover partial information
on the private key a, the attacker has to guess the inducted error e and find t

DSA Signature Scheme Immune to the Fault Cryptanalysis 69

that satisfies (18). This requires at least n2161 exponentiations, assuming that
the attacker inducts single bit-flip errors.

A careful reader may realise that the proposed modification may be simplified
since some surplus operations are performed. In fact, the proposed modifica-
tion can be simplified, and will still work if we substitute equations (3–5) with
following

v = ar mod q, (21)
s = k′ (h(m) + v) mod q, (22)
T = y−rgv mod p mod q, (23)

which are created by simply removing k, 1 and r from equations (3), (4), and (5)
respectively. According to these changes the simplified signing goes according to
the scheme 2.

Scheme 2. Simplified modification of the DSA scheme
Require: message m, private key, and public key of the DSA scheme
Ensure: the DSA signature 〈r, s〉
1: select a random integer k with 0 < k < q,
2: compute r = gk mod p mod q,
3: compute v = ar mod q,
4: compute T = y−rgv mod pmod q,
5: compute k′ = (k ⊕ T)−1 mod q,
6: compute s = k′ (h(m) + v) mod q

Let us now briefly analyse the security of the simplified scheme. It is a quite
simple task to verify that this simplified version has properties similar to the
previous scheme (scheme 1):

– for any error e inducted into the private key a the error diffusion term T =
y−rgar+er mod p mod q = ger mod p mod q = 0 only if er mod q = 0. Similarly
to the scheme 1 this holds only if e = 0,

– for any error e, k′ is affected with error E that depends on e and the random
integer k. Since E may not be computed thus the attacker can do no better
than guessing. However this is infeasible since there are 2160 possible values
of E.

It seems that the simplified scheme offers the same security as first proposal at
the cost of smaller computation overhead.

However, this is not true as the simplified scheme can be attacked with lattice
based fault cryptanalysis. This type of attack utilises errors in order to simplify
the attack down to the problem of solving hidden number problem (HNP). HNP
problem states that given pairs

〈
ui, t

(l)
i

〉
, where ui is a random integer, t

(l)
i

denotes l subsequent bits of ti = b+aui mod q, and a, b are constant (usually it is
assumed that t

(l)
i denotes most significant bits of ti but this is not a requirement),

one has to deduce the exact values of a and b [7]. As presented in [7], HNP

70 M. Nikodem

problem can be solved if l > ε
√

log q for any fixed ε > 0. Moreover, an algorithm
that solves HNP may be used to attack the ElGamal-like signature scheme [7,18].
In such case a partial knowledge on k enables the attacker to recover the private
key with less than 30 signatures. A similar attack can be also applied to the
simplified modification of the DSA scheme.

To achieve this the attacker needs to induct errors into v used in the last step
of the simplified signing procedure. Due to a such error the erroneous value s
equals

s = k′ (h(m) + v + e) mod q, (24)

and may be used to guess the inducted error. This can be done by searching for
e that satisfies

gs−1h(m)ys−1rgs−1e mod p mod q = r. (25)

When proper e is found then the attacker gets partial information about v. Since
v = ar mod q and r is known, thus the attacker may collect sufficiently many
data and solve the HNP problem for a.

Such an attack cannot be carried out in case of the previously proposed scheme
(scheme 1) since it computes v as

v = k + ar mod q, (26)

and k is randomly chosen every iteration of the protocol. On the other hand,
this modification requires additional additions to be performed in 4-th and 6-th
step of signing.

Proposed modification of the DSA scheme is also immune to multiple fault
attacks that can be inducted in practice [15]. Since there is no comparison proce-
dure in our proposal, hence possible attack scenario may focus on inducting two
errors: first error e into the private key a and the second error into one of the
successive computations. Purpose of the second error is to mask error e during
the inverse computation and thus force the device to output the erroneous sig-
nature that is suitable for fault cryptanalysis. Although this is possible scenario,
it will be very difficult to achieve. This is due to error diffusion term T that
depends on e and r which are unknown to the attacker during execution of the
signing procedure. Therefore, probability that inducting multiple faults enables
the attacker to break the proposed scheme is negligible.

7 Overhead of the Proposed Scheme

As presented in previous sections there is one additional (5) and three modified
computations (3), (4), and (6) in the proposed modification of the DSA signature
scheme (scheme 1). The overhead of the modified computations is similar to the
overhead of the original computations since only two additions modulo q and
one EXOR operation is added. An additional computation of the error diffusion
term T requires two exponentiations, one multiplication modulo p and q, and
one addition modulo q. Accordingly, the computation overhead of the proposed
modification is dominated by the time required to perform two exponentiations

DSA Signature Scheme Immune to the Fault Cryptanalysis 71

and a multiplication. Therefore, the overhead of our proposal is smaller than the
overhead of signature verification which requires three exponentiations and two
multiplications modulo p and q.

Storage overhead of the proposed scheme is also higher compared to the stor-
age required by the standard DSA scheme. It is so since our proposal utilises the
public key y to verify the correctness of the private key used for signature gen-
eration. Therefore, the public key has to be stored inside of the device affecting
storage requirements. However, in a real implementation this storage overhead
can be neglected since cryptographic devices usually store the public key anyway.

Implementation overhead can be further reduced if we change the way error
diffusion term T is computed. One of possible solutions is to limit the number
of modular exponentiations. This can be achieved by using private key a instead
of y, so that

T =
(
g−ar+v mod p mod q

)
− r mod q. (27)

This reduces the computational and storage overhead significantly but also af-
fects the security of the whole proposal. In fact, it is now susceptible to attackers
that can induct permanent errors or the same random error twice: first into a
during computation of v, second during computation of T . In this way conduct-
ing a multiple fault attack enables to brake the proposal. Above mentioned flaw
can be eliminated if we use a−1 mod q instead of a and compute T as follows

T =
(
ga−1(v−k)−r mod p mod q

)
− 1 mod q. (28)

Because multiplicative inverse is a nonlinear transformation thus the relation
between error e, inducted into unknown private key a, and corresponding error
affecting a−1 mod q is unknown to the attacker. Therefore, probability that the
multiple error attack succeeds is negligible. This is achieved at the cost of in-
creased storage overhead which is required to store multiplicative inverse of the
private key.

8 Conclusions

In this paper we have analysed the DSA scheme and its immunity to the fault
cryptanalysis. We have demonstrated that introducing the error diffusion we
can improve an immunity of the DSA scheme in the presence of faults affecting
private key a. Our modification (scheme 1) ensures that in order to recover
the private key a the attacker needs to guess error E that depends both on
inducted error e and randomly selected integer k (which is unknown to the
attacker). Since E cannot be computed thus the attacker needs to check all of
2160 possible values of E for each e, which render the whole attack ineffective.
Unlike simplified scheme (scheme 2) the proposed modification is also immune
to lattice-based attacks that take advantage of errors affecting v in the last step
of signature generation.

Proposed modification also eliminates the comparison procedure which is an
inherent part of signature verification and cause the obvious countermeasure to

72 M. Nikodem

be susceptible to multiple fault attacks. Since there is no such procedure in our
proposal thus such attacks do not apply.

The overhead of the proposed scheme is similar to the overhead of the obvi-
ous countermeasure based on the signature verification. However, computational
overhead can be further reduced if error diffusion term is calculated using inverse
of the private key instead of the public key.

References

1. Anderson, R.J., Kuhn, M.G.: Tamper Resistance - a Cautionary Note. In: The
Second USENIX Workshop on Electronic Commerce Proceedings, pp. 18–21 (1996)

2. Aumller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault Attacks on RSA
with CRT: Concrete Results and Practical Countermeasures. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

3. Bao, F., Deng, R., Han, Y., Jeng, A., Narasimhalu, A.D., Ngair, T.-H.: Breaking
Public Key Cryptosystems on Tamper Resistance Devices in the Presence of Tran-
sient Fault. In: Christianson, B., Lomas, M. (eds.) Security Protocols 1997. LNCS,
vol. 1361, pp. 115–124. Springer, Heidelberg (1998)

4. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Blmer, J., Otto, M., Seifert, J.-P.: A New CRT-RSA Algorithm Secure Against
Bellcore Attacks. In: Proc. ACM Computer and Communications Security 2003
(ACM CCS 2003), pp. 311–320. ACM Press, New York (2003)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

7. Boneh, D., Venkatesan, R.: Rounding in Lattices and Its Cryptographic Applica-
tions. In: SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference
on Theoretical, Experimental Analysis of Discrete Algorithms), pp. 675–681 (1997)

8. Breveglieri, L., Koren, I., Maistri, P., Ravasio, M.: Incorporating Error Detection
in an RSA Architecture. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 71–79. Springer, Heidelberg (2006)

9. Czapski, M., Nikodem, M.: Error Correction Procedures for Advanced Encryption
Standard. In: Int. Workshop on Coding and Cryptography (WCC 2007), April
16-20, 2007, pp. 89–98. INRIA (2007)

10. Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S., ArXiv
Computer Science e-prints (January 2003)

11. Giraud, C., Knudsen, E.: Fault Attacks on Signature Schemes. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 478–491.
Springer, Heidelberg (2004)

12. Joye, M., Lenstra, A., Quisquater, J.J.: Chinese Remaindering Based Cryptosys-
tems in the Presence of Faults. Journal of Cryptology 12, 241–245 (1999)

13. Karpovsky, M., Kulikowski, K.J., Taubin, A.: A Differential Fault Analysis Attack
Resistant Architecture of the Advanced Encryption Standard. In: Proceedings of
CARDIS 2004, pp. 177–192. Kluwer, Dordrecht (2004)

14. Karri, R., Wu, K., Mishra, P., Kim, Y.: Concurrent error detection schemes for
fault-based side-channel cryptanalysis of symmetric block ciphers. IEEE Trans. on
CAD of Integrated Circuits and Systems 21(12), 1509–1517 (2002)

DSA Signature Scheme Immune to the Fault Cryptanalysis 73

15. Kim, C.-H., Quisquater, J.-J.: Fault Attacks for CRT Based RSA: New Attacks,
New Results, and New Countermeasures. In: Sauveron, D., Markantonakis, K.,
Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228.
Springer, Heidelberg (2007)

16. Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard
Processors. In: USENIX Workshop on Smartcard Technology - Smartcard 1999,
USENIX Association, pp. 9–20 (1999)

17. Naccache, D., Nguyen, P.Q., Tunstall, M., Whelan, C.: Experimenting with Faults,
Lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 16–
28. Springer, Heidelberg (2005)

18. Nguyen, P.Q., Shparlinski, I.E.: The Insecurity of the Digital Signature Algorithm
with Partially Known Nonces. Journal of Cryptology 15(3), 151–176 (2002)

19. Rosa, T.: Lattice-based Fault Attacks on DSA - Another Possible Strategy. In:
Proceedings of the conference Security and Protection of Information 2005, Brno,
Czech Republic, 3-5 May 2005, pp. 91–96 (2005)

20. Yen, S.M., Joye, M.: Checking Before Output May Not Be Enough Against Fault-
Based Cryptanalysis. IEEE Transactions on Computers 49(9), 967–970 (2000)

21. Yen, S.M., Kim, S., Lim, S., Moon, S.: RSA Speedup with Chinese Remainder
Theorem Immune Against Hardware Fault Cryptanalysis. IEEE Transactions on
Computers 52(4), 461–472 (2003)

22. Yen, S.M., Kim, D., Moon, S.: Cryptanalysis of Two Protocols for RSA with CRT
Based on Fault Infection. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P.
(eds.) FDTC 2006. LNCS, vol. 4236, pp. 53–61. Springer, Heidelberg (2006)

A Black Hen Lays White Eggs

Bipartite Multiplier Out of Montgomery One for On-Line
RSA Verification

Masayuki Yoshino, Katsuyuki Okeya, and Camille Vuillaume

Hitachi, Ltd., Systems Development Laboratory, Kawasaki, Japan
{masayuki.yoshino.aa,katsuyuki.okeya.ue,camille.vuillaume.ch}@hitachi.com

Abstract. This paper proposes novel algorithms for computing double-
size modular multiplications with few modulus-dependent precomputa-
tions. Low-end devices such as smartcards are usually equipped with
hardware Montgomery multipliers. However, due to progresses of mathe-
matical attacks, security institutions such as NIST have steadily
demanded longer bit-lengths for public-key cryptography, making the
multipliers quickly obsolete. In an attempt to extend the lifespan of
such multipliers, double-size techniques compute modular multiplications
with twice the bit-length of the multipliers. Techniques are known for ex-
tending the bit-length of classical Euclidean multipliers, of Montgomery
multipliers and the combination thereof, namely bipartite multipliers.
However, unlike classical and bipartite multiplications, Montgomery mul-
tiplications involve modulus-dependent precomputations, which amount
to a large part of an RSA encryption or signature verification. The pro-
posed double-size technique simulates double-size multiplications based
on single-size Montgomery multipliers, and yet precomputations are es-
sentially free: in an 2048-bit RSA encryption or signature verification
with public exponent e = 216 + 1, the proposal with a 1024-bit Mont-
gomery multiplier is 1.4 times faster than the best previous technique.

Keywords: Montgomery multiplication, double-size technique, RSA,
efficient implementation, smartcard.

1 Introduction

The algorithm proposed by Montgomery has been extensively implemented to
perform costly modular multiplications which are time-critical for public-key
cryptosystems such as RSA [Mon85, RSA78]. In particular, and unlike naive im-
plementations of classical modular multiplications, Montgomery multiplications
are not affected by carry propagation delays for computing the quotient of a
modular reduction, and as a result, are suitable for high-performance hardware
implementations. However, such accelerators are penalized by a strict restric-
tion: their operand size is fixed. In order to deal with recent integer factoring
records and ensure long-term security [Len04], official security institutions are
updating their standards to longer key sizes than the mainstream 1024 bits for

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 74–88, 2008.
c© IFIP International Federation for Information Processing 2008

A Black Hen Lays White Eggs 75

RSA [Nis07, EMV, Ecr06]; unfortunately, such bit lengths are not supported by
many cryptographic coprocessors.

This problem has motivated many studies for double-size modular multipli-
cation techniques using single-size hardware modular multipliers. On the one
hand, thanks to the Chinese Remainder Theorem, private operations (signa-
ture generation or decryption) can work with only single-size modular mul-
tiplications for computing double-size modular exponentiations [MOV96]. On
the other hand, the Chinese Remainder Theorem is no help for public oper-
ations, and double-size techniques without using private keys are necessary.
Following Paillier’s seminal paper [Pai99], several solutions were proposed for
simulating double-size classical modular multiplications with single-size classical
modular multipliers [FS03, CJP03], and later, the techniques were adapted in
order to simulate double-size Montgomery multiplications with the commonly
used single-size Montgomery multiplier [YOV07a]. Finally, the less common but
nonetheless promising bipartite multiplier [KT05], which includes a Montgomery
and a classical multiplier working in parallel, was taking advantage of for simu-
lating double-size bipartite multiplications [YOV07b].

In the context of public operations, RSA signature verification for instance,
the verifier is unlikely to know the RSA modulus in advance; we refer to this event
as on-line verification. On the one hand, classical modular multiplications are
not affected by the fact that verification is performed off-line or on-line. With
a bipartite multiplier, some modulus-dependent precomputations are required
during on-line verification. However, when the parameters of the multiplier are
appropriately chosen, the cost of precomputations is negligible [KT05]. But on
the other hand, precomputations are far from being negligible when using Mont-
gomery multipliers, especially when the public exponent is small. Assuming the
2048-bit exponentiation Xe mod Z, the basis X must be firstly converted to
its Montgomery representation, namely X ∗ 22048 mod Z, which can be accom-
plished with 2048 successive shifts or eleven 2048-bit Montgomery multiplica-
tions; in the latter case, this amounts to 36% of the total verification time when
e = 216 + 1. This is especially unfortunate considering the fact that Mont-
gomery multipliers represent the most popular architecture for cryptographic
coprocessors [NM96].

In this paper, we solve the problem of costly on-line precomputations with
a radically new approach. Although we assume a multiplier based on the cele-
brated Montgomery multiplication technique, we simulate a bipartite double-size
multiplication, where on-line precomputations are essentially free. Although our
double-size bipartite multiplication technique is slightly slower than double-size
Montgomery multiplications, the penalty is largely counterbalanced by the ben-
efit in terms of precomputations, at least when the public exponent e is small.
When e = 216 + 1, which is by far the most common choice for RSA, our tech-
nique is 1.4 times faster than the best previous techniques, and even more when
e = 3. In addition, when the CPU and the coprocessor operate in parallel, which
is possible on some low-cost microcontrollers, our proposal can be further opti-
mized, leading to even greater speed. As a consequence, our simulated bipartite

76 M. Yoshino, K. Okeya, and C. Vuillaume

multiplier is the fastest among double-size techniques for cryptographic devices
equipped with Montgomery multipliers, and allows the current generation of such
multipliers to comply with upcoming key-length standards of official institutes.

Notation: Let � denote operand size of hardware modular multiplication units
and L equal to 2�. Small letters such as x, y and z denote �-bit integers, and
capital letters such as X , Y and Z denote L-bit integers, where Z is an odd
modulus greater than 2L−1 like in the case of L-bit RSA.

2 Previous Double-Size Techniques

Montgomery multiplication algorithm has been extensively implemented as cryp-
tographic coprocessors to help low-end devices performing heavy modular mul-
tiplications. However, the coprocessors are designed to support the main stream
1024-bit RSA, and face with the upper limit of their bit length to comply with
upcoming key-length standards, such as the NIST recommendation; 2048-bit
RSA. The problem has motivated double-size techniques to compute modular
multiplication with twice the bit length of hardware multipliers.

2.1 Yoshino et al.’s Scheme

This subsection introduces Yoshino et al.’s work[YOV07a, YOV07b]: how to
compute a double-size Montgomery multiplication with single-size Montgomery
multiplications.

The double-size techniques proposed by Yoshino et al. require not only remain-
ders but also quotients of single-size Montgomery multiplications. The equation
xy = qmz + rmc shows the relation among products of multiplier x and multipli-
cand y, quotient qm and modulus z, and remainder rm and constant c, where the
constant c is usually selected as power of 2 for efficient hardware implementations
in practice, therefore this paper also assumes such c satisfying c = 2� [MOV96].

Definition 1 shows an mu instruction for performing single-size Montgomery
multiplications, outputting only the remainder.

Definition 1. For numbers, 0 ≤ x, y < z and z is odd, the mu instruction is
defined as rm ← mu(x, y, z) where rm ≡ xyc−1 (mod z).

Their double-size techniques assumed that an mmu instruction is available, which
can be emulated with only 2 calls to single-size Montgomery multipliers, and
computes the reminder rm and the quotient qm of Montgomery multiplications
[YOV07a] satisfying the equation xy = qmz + rmc.

Definition 2. For numbers, 0 ≤ x, y< z and z is odd, the mmu instruction is de-
fined as (qm, rm) ← mmu(x, y, z)where qm =(xy−rmc)/z and rm≡xyc−1 (mod z).

Yoshino et al.’s double-size techniques need two steps other than multiplier calls.
First, every L-bit integer X , Y and Z is represented with �-bit integers which
can be handled by mmu instructions:

X = x1(c − 1) + x0c, Y = y1(c − 1) + y0c and Z = z1(c − 1) + z0c.

A Black Hen Lays White Eggs 77

Second, all quotients qm and remainders rm are sequentially gathered from mmu
instructions.

Double-size Montgomery multiplications compute a remainder Rm such that
Rm ≡ XY C−1 (mod Z) where 0 ≤ X , Y < Z, and the constant C is called
Montgomery constant, and twice bit length of the constant c: C = 2L(= c2).
Algorithm 1 shows their double-size Montgomery multiplications requiring 6
calls to mmu instructions, and 12 calls to Montgomery multipliers in total.

Algorithm 1. Double-size Montgomery multiplication [YOV07b]

Input: X, Y and Z where 0 ≤ X, Y < Z ;
Output: XY C−1 (mod Z) where C = 2L;

1. (q1, r1) ← mmu(x1, y1, z1)
2. (q2, r2) ← mmu(q1, z0, c − 1) //c = 2�

3. (q3, r3) ← mmu(x0 + x1, y0 + y1, c − 1)
4. (q4, r4) ← mmu(x0, y0, c − 1)
5. (q5, r5) ← mmu(c − 1,−q2 + q3 − q4 + r1, z1)
6. (q6, r6) ← mmu(q5, z0, c − 1)
7. return (q2 + q4 − q6 − r1 − r2 + r3 − r4 + r5)(c − 1) + (r2 + r4 − r6)c (mod Z)

Thanks to Algorithm 1, one can set a new MU instruction to compute L-bit
Montgomery multiplications such that Rm ← MU(X, Y, Z) where Rm ≡ XY C−1

(mod Z), 0 ≤ X , Y < Z and C = 2L.

2.2 L-Bit RSA Public Operations

The MU instruction (double-size Montgomery multiplications) introduced in last
subsection requires twelve single-size multiplications and other basic modular
operations; therefore the number of calls to the MU instruction should be as small
as possible to get better performance. This subsection explains the contributions
and weak points of previous double-size techniques to RSA public operations,
which is the most popular application for double-size techniques.

L-bit RSA public operations (signature verification and encryption) employ
an L-bit modular exponentiation with a small exponent, following that Xe

(mod Z), where the ciphertext or signature X , the public modulus Z, and a
small public exponent e. The binary method commonly used for RSA public
operations computes double-size Montgomery multiplications and squarings ac-
cording to the bit pattern of the public exponent e. Algorithm 2 shows a left-to-
right binary method, which scans e from the most significant bit ek to the least
significant bit e0 bit-by-bit.

From the view of efficient computation and mathematical security, the ex-
ponent used for RSA public operations is much smaller than for private op-
erations [MOV96, RSA95]. Currently, by far the most common value of the

78 M. Yoshino, K. Okeya, and C. Vuillaume

Algorithm 2. Binary method from the most significant bit

Input: X, Z and small public exponent e = (ek · · · ei · · · e0)2 where 0 ≤ X < Z ;
Output: Xe (mod Z);

1. Y ← C2 (mod Z) //C = 2L

2. T ← MU(X, Y, Z)
3. Y ← T
4. for i from k − 1 down to 0 do

(a) T ← MU(T, T, Z) //squaring
(b) if ei = 1, do

i. if i �= 0 then T ← MU(T, Y, Z) //multiplication
ii. if i = 0 then T ← MU(T, X, Z) //multiplication and reduction

5. return T

public exponent e is 216 + 1 having only two 1’s in its binary representation
(=(10000000000000001)2). In the case of public exponent e = 216 + 1, MU in-
struction is called only 18 times from Step 2 to Step 5 of Algorithm 2. In addition
to that, the Algorithm 2 Step 1 seems to be quite cheap, however, this simple
modular squaring is seriously expensive for double-size RSA public operations,
as it will be explained below.

2.3 Previous Approaches for On-Line Precomputations

There are important differences between private and public operations: off-line
precomputations are possible in the former case whereas the latter case requires
on-line precomputations.

On-line precomputations in Algorithm 2; Step 1 consists of a simple L-bit
modular squaring which might look cheap at first sight; however this is not
true for low-end devices such as smartcards. There are two known approaches
with/without help from Montgomery multipliers; unfortunately, both are se-
riously slow, and damage performances of double-size techniques on low-end
devices.

(1) Approach with MU Instruction:
In an attempt to benefit from hardware accelerators, Algorithm 3 employs MU
instructions to perform a L-bit modular squaring (C2 (mod Z)) using the binary
method. Thanks to the cryptographic coprocessor, the approach looks fast, but
in fact, the calculation costs are quite heavy: in the case of a 2048-bit modular
squaring, Algorithm 3 takes 120 calls to the multiplier, since MU instruction re-
quires 12 calls to the multiplier and is called 10 times by the binary method. As
a consequence, the approach with the MU instruction is very costly considering
that it only computes a simple modular squaring.

(2) CPU approach:
Theoretically, the CPU can compute any-bit modular multiplications without
help from hardware accelerators including the L-bit modular squaring

A Black Hen Lays White Eggs 79

Algorithm 3. L-bit modular squaring (C2 (mod Z)) with MU instructions

Input: bitlength �L = (LL−1 · · ·L� · · ·L0)2 and modulus Z ;
Output: C2 (mod Z) where C = 2L;

1. D ← 2C (mod Z) and T ← 2C (mod Z)
2. for i from �log2 L� − 2 down to 0 do

(a) D ← MU(D, D, Z)
(b) if Li = 1 then D ← MU(D, T, Z)

3. return D

(C2 (mod Z)). The approach of Algorithm 4 is taken by computers whose CPUs
are powerful enough not to need help from hardware accelerators, however, this
is not the case for the low-end devices where the performance gap between CPU
and arithmetic coprocessor is usually quite large. As a result, Algorithm 4 is
practically much slower than Algorithm 3 in these environments.

Algorithm 4. L-bit modular squaring with only CPU instructions

Input: bitlength L = (LL−1 · · ·L� · · ·L0)2 and modulus Z;
Output: C2 (mod Z) where C = 2L;

1. D ← C − Z
2. for i from � − 1 down to 0 do

(a) D ← 2D
(b) if D ≥ C, then D ← D − Z.

3. if D ≥ Z, then D ← D − Z.
4. return D

3 New Double-Size Bipartite Multiplication

L-bit RSA public operations require a simple but expensive on-line modular-
dependent precomputation for low-end devices with �-bit Montgomery multi-
pliers. This section presents new double-size techniques for such environments,
which derive their high performance from Montgomery multipliers while elimi-
nating almost all precomputations.

3.1 Overview

The proposal mixes two different modular multiplication algorithms which are
executable with the usual Montgomery multipliers. Fig. 1 shows a design of our
techniques: first, L-bit integers X , Y and Z are divided into �-bit integers, and
inputted to a hardware accelerator outputting the �-bit remainder rm of Mont-
gomery multiplications. In addition to single-size Montgomery multiplications,
the new techniques employ single-size classical multiplications. Second, their re-
mainders (rm and rc) and quotients (qm and qc) are computed based on only

80 M. Yoshino, K. Okeya, and C. Vuillaume

the remainder rm. Last, the remainders and quotients are assembled to build a
double-size remainder R satisfying

R ≡ XY c−1 (mod Z),

where 0 ≤ X , Y < Z. The new modular multiplication is accompanied by the
constant c, which is only half the bit length of the Montgomery constant C,
contributing to the fact that our new on-line precomputations can be performed
at much cheaper cost.

Single-size hardware

Montgomery multiplier

(mu instruction)

Extended Extended

Double-size

(BU instruction)

Montgomery multiplication classical multiplication

bipartite multiplication

(cmu instruction)(mmu instruction)

outputs qm and rm outputs qc and rc

split X, Y and Z, and

input x1, x0, y1, y0, z1 and z0

outputs R(= XY c−1 (mod Z))

outputs rm
outputs r′m

Fig. 1. Configuration of New Double-Size Bipartite Multiplication

3.2 How to Divide L-Bit Integers for the �-Bit Multiplier

In order to benefit from hardware accelerators which can handle only �-bit
arithmetic operations, L-bit integers can be simply divided into upper and
lower � bits such that X = x1c + x0, where x1 is upper and x0 is lower �
bits of X . However, Montgomery multiplications require odd moduli1. In or-
der to prepare odd moduli, Algorithm 5 derives from the following equation:
Z = z1c + z0 = (z1 + 1)c − (c − z0).

1 In fact, it is possible to perform Montgomery multiplications with even modulus
[Koc94]. However, the technique requires other arithmetic operations in addition to
the multiplications in hardware: this costly technique is not considered in our paper.

A Black Hen Lays White Eggs 81

Algorithm 5. L-bit modulus division with odd �-bit moduli

Input: odd Modulus Z;
Output: odd moduli z1 and z0 such that Z = z1c + z0 with c = 2� ;

1. z1 ← �Z/c� and z0 ← Z (mod c).
2. if z1 is even, z1 ← z1 + 1 and z0 ← z0 − c.
3. return (z1, z0)

3.3 New �-Bit Instructions Based on an �-Bit Multiplier

This subsection defines new instructions to output quotients and remainders of
classical multiplications and Montgomery multiplications, which can be built on
the usual Montgomery multiplier.

Similar with Definition 2 in Section 2.1, the equation; xy = qcz +rc shows the
relation between the remainder rc and the quotient qc of classical multiplications,
which can be implemented with only three calls to the mu instruction.

Definition 3. For numbers, 0 ≤ x, y < z and z is odd, the cmu instruction is
defined as (qc, rc) ← cmu(x, y, z) where qc = (xy − rc)/z and rc ≡ xy (mod z).

Algorithm 6 shows how to simulate the cmu instruction with the mu instruction;
and the correctness is proven in Appendix A.1.

Algorithm 6. The cmu Instruction based on The mu Instruction

Input: x, y, z and t with 0 ≤ x, y < z, z is odd and t = c2 (mod z) ;
Output: qc and rc, where qc = (xy − rc)/z and rc ≡ xy (mod z);

1. x′ ← mu(x, t, z) //≡ xc (mod z)
2. rc ← mu(x′, y, z) //≡ xy (mod z)
3. r′c ← mu(x′, y, z + 2) //≡ xy (mod (z + 2))
4. qc ← (rc − r′c)
5. (a) if qc is odd, then qc ← (qc + z + 2)/2

(b) else if qc is even and negative, then qc ← qc/2 + z + 2
6. return (qc, rc)

3.4 How to Build an L-Bit Remainder with �-Bit Instructions

Finally, this subsection presents how to build a remainder of new double-size
modular multiplication on the remainders and the quotients of single-size mod-
ular multiplications.

Definition 4 shows the BU instruction for computing L-bit bipartite multipli-
cation.

Definition 4. For numbers, 0 ≤ X, Y < Z, the BU instruction is defined as
R ← BU(X, Y, Z) where R ≡ XY c−1 (mod Z) and c = 2�.

82 M. Yoshino, K. Okeya, and C. Vuillaume

The BU instruction performs L-bit modular multiplication; XY c−1 (mod Z)
accompanied with only the �-bit constant c, which is only half the size of the
Montgomery constant C, contributing to the fact that our new precomputations
can be performed at much cheaper cost.

Algorithm 7 shows how to use the mmu instruction and the cmu instruction
to build the BU instruction; the correctness is proven in Appendix A.2.

Algorithm 7. The BU Instruction based on The mmu and cmu Instructions

Input: X, Y and Z, where X = x1c + x0, Y = y1c + y0 and Z = z1c + z0 ;
Output: XY c−1 (mod Z);

1. (q1, r1) ← cmu(x1, y1, z1)
2. (q2, r2) ← mmu(q1, z0, c − 1)
3. (q3, r3) ← mmu(x0, y0, c − 1)
4. (a) if z0 is positive, (q4, r4) ← mmu(q2 + q3, c − 1, z0)

(b) if z0 is not positive, (q4, r4) ← mmu(−q2 + q3, c − 1, z0)
5. (q5, r5) ← mmu(q4, z1, c − 1)
6. (q6, r6) ← mmu(x1 + x0, y1 + y0, c − 1)
7. (a) if z0 is positive,

R ← (−r1+r2+r3+r4+q2+q3+q5−q6)+(r1−r2−r3−r5+r6−q2−q3−q5+q6)c
(b) if z0 is not positive,

R ← (−r1−r2−r3+r4−q2+q3−q5−q6)+(r1+r2+r3+r5+r6+q2−q3+q5+q6)c
8. return R (mod Z)

Since the cmu instruction based on Algorithm 6 requiring three calls to the
Montgomery multiplier is costlier than the mmu instruction requiring only two
calls [YOV07a], Algorithm 7 minimizes calls to the cmu instruction, which ap-
pears only once in Step 1.

Fig. 2 shows a design of our double-size modular multiplication: the first
three lines show components of the product XY , which is computed by the

)
X =

Y =×

x1 x0

y1 y0

z1

z1 z0

z0

r1 r0

R

0 · · · 0 0 · · · 0

product XY

reduction
+jZ =

−iZ =

+x1y1 =

+(x1y0 + x0y1) =

+x0y0 =

Fig. 2. Sketch of Double-Size Bipartite Multiplications

A Black Hen Lays White Eggs 83

mmu instruction. There are two kinds of modular reductions in the other steps:
One is to subtract Z from the most significant (left) side, which is based on
the cmu instruction, and the other adds Z from the least significant (right) side
based on the mmu instruction. Finally, one can discard each �-bit integer from
the most and least significant side, and get the L-bit remainder located in the
middle.

4 Evaluation

This section shows how the proposal speeds up on-line precomputations. NIST
recommends using 2048-bit RSA instead of the mainstream 1024-bit RSA from
2010 though 2030 [Nis07]; this paper follows the NIST recommendation, and
evaluates the proposed techniques with 2048-bit RSA on smartcards which can
only handle 1024-bit Montgomery multiplications.

4.1 Few On-Line Precomputations

L-bit RSA public operations consist of an L-bit modular exponentiation: Xe

(mod Z), with the ciphertext or signature X , the public modulus Z, and the
small public exponent e. The RSA public operations can be performed by Algo-
rithm 8, which is a left-to-right binary method with the BU instruction presented
in Definition 4, and looks similar to Algorithm 2 with the MU instruction requir-
ing heavy precomputations. However, a precomputation of Algorithm 8 (Step 1)
is essentially free thanks to the following equation: c2 (mod Z) = C−Z, where
c2 = C = 2L and 2L−1 < Z < 2L.

Algorithm 8. Binary method from the most significant bit based on BU instruction

Input: X, Z and small public exponent e = (ek · · · ei · · · e0)2 where 0 ≤ X < Z ;
Output: Xe (mod Z);

1. Y ← c2 (mod Z) //= C − Z
2. T ← BU(X, Y, Z)
3. Y ← T
4. for i from k − 1 down to 0 do

(a) T ← BU(T, T, Z) //squaring
(b) if ei = 1, do

i. if i �= 0 then T ← BU(T, Y, Z) //multiplication
ii. if i = 0 then T ← BU(T, X, Z) //multiplication and reduction

5. return T

The BU instruction requires other on-line precomputation c2 (mod z) for cmu
instruction, which is called at Algorithm 7 Step 1. This precomputation can
easily be performed using Algorithm 9 with only several calls to the hardware
multiplier.

84 M. Yoshino, K. Okeya, and C. Vuillaume

Algorithm 9. �-bit modular squaring with mu instructions

Input: bitlength � = (��−1 · · · �i · · · �0)2 and modulus z ;
Output: c2 (mod z) where c = 2�;

1. d ← 2c (mod z) and t ← 2c (mod z)
2. for i from �log2 �� − 2 down to 0 do

(a) d ← mu(d, d, z)
(b) if �i = 1 then d ← mu(d, t, z)

3. return d

4.2 Performance Improvement

The proposed double-size techniques are evaluated for smartcards which can
only handle 1024-bit Montgomery multiplications in the case of 2048-bit RSA
public operations with the common exponent e = 216 + 1 to follow the NIST
recommendation [Nis07]. Table 1 includes the performance of the 2048-bit RSA
with three columns; on-line precomputations, a modular exponentiation and
the total, which are evaluated by the binary (square-and-multiply) methods
following Algorithm 2 or Algorithm 8.

The proposal eliminates almost all on-line precomputations, and contributes
to improve the total performance: One of the on-line precomputation; C (mod Z)
is replaced with a subtraction; C−Z, and the other precomputation; c2 (mod z)
requires only 9 calls to the Montgomery multipliers, therefore the proposal ad-
vantages in the on-line precomputations. As a result, the proposed method costs
only 70%(� 243/336) of the best previous method.

Figure 3 depicts how the cost, expressed in number of calls to the single-size
Montgomery multiplier, varies with the exponent e in the case of a 2048-bit RSA
encryption. For exponents of less than 32 bits, our proposal is always better than
previous techniques. The turnover when double-size Montgomery multiplications
[YOV07a] becomes more competitive than our proposal occurs for the 65-bit ex-
ponent e = (11 . . .11)2. However, we argue that in practice, small RSA exponents
of less than 32 bits represent the overwhelming majority of cases [RSA95].

4.3 Further Performance Improvement

Some micro processor can perform modular operations in parallel with help of
cryptographic coprocessors and CPU: while the coprocessors work, CPU can
compute other arithmetic modular operations. Despite gap between the speed

Table 1. Calls to the multiplier in the 2048-bit RSA public operation

Scheme
On-line Modular

Total
precomputations exponentiation

[YOV07a] 140 252 392

[YOV07b] 120 216 336

This paper 9 234 243

A Black Hen Lays White Eggs 85

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

e = 3

e = 216 + 1

largest

average

smallest

32-bit e

32-bit e

32-bit e

[YOV07a]
[YOV07b]

our proposal

Number of double-size multiplications in Algorithm 2 or 8

T
o
ta

l
co

st
in

ca
ll
s

to
th

e
m

u
lt
ip

li
er

Fig. 3. Calls to the Montgomery multiplier for several exponents e

of those processors, such environments can accelerate double-size modular mul-
tiplication assigning some step of Algorithm 8 in the arithmetic processor and
the other steps in CPU such as Step 1–5 in the coprocessor and Step 6 in CPU,
or Step 1,2,4,5 in the coprocessor and the others in CPU. Therefore, parallel
operations help to optimize our proposal, leading to even greater speed.

5 Conclusion

This paper proposed novel double-size modular multiplication algorithms with
few modulus-dependent precomputations for on-line RSA public operations,
which gave birth to double-size bipartite multiplication on the most commonly
used single-size Montgomery multipliers in order to eliminate heavy precomputa-
tions required by all previous double-size Montgomery multiplication techniques.
Although the proposed double-size bipartite multiplication technique is slightly
slower than the best technique of double-size Montgomery multiplication, the
penalty is largely counterbalanced by the benefit in terms of precomputations:
when the public exponent is e = 216 + 1, which is by far the most common
choice for RSA, our method is 1.4 times faster than the best previous tech-
niques. In addition, when the CPU and the coprocessor operate in parallel,
which is possible for some low-cost micro controllers, our proposal can be fur-
ther optimized, leading to even greater speed. As a consequence, our double-size
bipartite multiplication technique is the fastest among all double-size techniques
for the cryptographic devices equipped with hardware Montgomery multipliers.

86 M. Yoshino, K. Okeya, and C. Vuillaume

References

[Koc94] Koç., Ç.K.: Montgomery Reduction with Even Modulus. IEE Proceedings
- Computers and Digital Techniques 141(5), 314–316 (1994)

[CJP03] Chevallier-Mames, B., Joye, M., Paillier, P.: Faster Double-Size Modular
Multiplication From Euclidean Multipliers. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 214–227. Springer, Hei-
delberg (2003)

[Ecr06] European Network of Excellence in Cryptology (ECRYPT). ECRYPT
Yearly Report on Algorithms and Keysizes (2006),
http://www.ecrypt.eu.org/documents/D.SPA.21-1.1.pdf

[EMV] EMV. EMV Issuer and Application Security Guidelines, Version 2.1 (2007),
http://www.emvco.com/specifications.asp?show=4

[FS03] Fischer, W., Seifert, J.-P.: Increasing the Bitlength of Crypto-coprocessors.
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS,
vol. 2523, pp. 71–81. Springer, Heidelberg (2003)

[KT05] Kaihara, M.E., Takagi, N.: Bipartite modular multiplication. In: Rao, J.R.,
Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 201–210. Springer, Hei-
delberg (2005)

[Len04] Arjen, K.: Lenstra. Key Lengths (2004),
http://cm.bell-labs.com/who/akl/key lengths.pdf

[Mon85] Montgomery, P.L.: Modular multiplication without trial division. Mathe-
matics of Computation 44(170), 519–521 (1985)

[MOV96] Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
Cryptography. CRC Press, Boca Raton (1996)

[Nis07] National Institute of Standards ant Technology. NIST Special Publication
800-57 Recommendation for KeyManagement Part 1: General (Revised)
(2007), http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html

[NM96] Naccache, D., M’Räıhi, D.: Arithmetic co-processors for public-key cryp-
tography: The state of the art. In: CARDIS, pp. 18–20 (1996)

[Pai99] Paillier, P.: Low-Cost Double-Size Modular Exponentiation or How to
Stretch Your Cryptoprocessor. In: Imai, H., Zheng, Y. (eds.) PKC 1999.
LNCS, vol. 1560, pp. 223–234. Springer, Heidelberg (1999)

[RSA78] Rivest, R.L., Shamir, A., Adelman, L.M.: A Method for Obtaining Dig-
ital Signatures and Public-key Cryptosystems. Communications of the
ACM 21(2), 120–126 (1978)

[RSA95] RSA Laboratories. The Secure Use of RSA. CryptoBytes 1(3) (1995),
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto1n3.pdf

[YOV07a] Yoshino, M., Okeya, K., Vuillaume, C.: Unbridle the Bit-Length of
a Crypto-Coprocessor with Montgomery Multiplication. In: Biham, E.,
Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 188–202. Springer,
Heidelberg (2007)

[YOV07b] Yoshino, M., Okeya, K., Vuillaume, C.: Double-Size Bipartite Modular
Multiplication. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP
2007. LNCS, vol. 4586, pp. 230–244. Springer, Heidelberg (2007)

http://www.ecrypt.eu.org/documents/D.SPA.21-1.1.pdf
http://www.emvco.com/specifications.asp?show=4
http://cm.bell-labs.com/who/akl/key_lengths.pdf
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
ftp://ftp.rsasecurity.com/pub/cryptobytes/crypto1n3.pdf

A Black Hen Lays White Eggs 87

A Proof for Correctness

A.1 Algorithm 6: The cmu Instruction Based on a mu Instruction

Algorithm of Montgomery multiplications is different from classical multiplica-
tions; however, one can simulate classical multiplications easily using the �-bit
mu instruction implementing Montgomery multiplications thanks to the follow-
ing equation:

rc = xy (mod z) = x′yc−1 (mod z)

where 0 ≤ x, y < z and x′ = xc (mod z). Therefore, the mu instruction can
output the classical remainder rc according to the following two intuitive steps:

1. x′ ← mu(x, c2 (mod z)i)
2. rc ← mu(x′, y, z)

Thanks to these steps, one can compute rc with help from the multipliers.
There is a requirement for Montgomery multiplications: only odd moduli are

available. The following proof show how to compute classical quotient qc =
(xy − rc)/z from two different classical remainders.

Proof. For numbers, where 0 ≤ x, y < z and z is odd, classical multiplication
outputs a quotient qc and a remainder rc, which satisfy the following equation:
xy = qcz + rc where qc = (xy − rc)/z and rc ≡ xy (mod z). Equivalently,

xy = qcz + rc

= qc(z + 2) + (−2qc + rc) (1)
= q′c(z + 2) + r′c (2)

From the equation (1) and (2),

qc = (rc − r′c + δ(z + 2))/2

holds with some integer δ.
Since 0 ≤ x,y < z holds, qc, rc and r′c satisfy the following conditions: 0 ≤

qc < z, 0 ≤ rc < z and 0 ≤ r′c < z+2. From the equation −(z+2) < (rc−r′c) < z,
the following condition holds:

If value of (rc−r′c) is

⎧⎨
⎩

even and non negative, then δ = 0
odd, then δ = 1

even and negative, then δ = 2
��

A.2 Algorithm 7: The BU Instruction Based on a mmu and cmu
Instruction

Algorithm 7 builds the BU instruction on a cmu instruction and an mmu instruc-
tion, and needs to process branches in Step 4 and Step 7 whether z0 is positive
or not. This paper only introduces a proof in the case that z0 is positive, but
one can follow the other case similarly.
i Algorithm 9 can help to precompute the equation c2 (mod z).

88 M. Yoshino, K. Okeya, and C. Vuillaume

Proof. L-bit modulus Z is represented by Algorithm 5 as the followings:

Z = z1c + z0

where 0 < z1 < c and −c < z0 < c, and the other L-bit integers X and Y are
simply divided into upper and lower �-bit integers.

X = x1c + x0 and Y = y1c + y0.

where 0 ≤ x1, x0, y1, y0 < c. Then, the following equation holds.

XY = x1y1c(c − 1) + (x1 + x0)(y1 + y0)c − x0y0(c − 1) (3)

The first term of Equation (3) is transformed into the following equations with
the first call to a cmu instruction and the second call to an mmu instruction.

x1y1c(c − 1) = (q1z1 + r1)c(c − 1)
≡ (−q1z0 + r1c)(c − 1) (∵ z1c ≡ −z0 (mod Z))
= (q2 + (r1 − r2 − q2)c)(c − 1)

The third term of Equation (3) is also transformed into the following equation
with a call to the mu instruction.

x0y0(c − 1) = (−q3 + (r3 + q3)c)(c − 1)

Therefore, the first and third term of Equation (3) are combined with twice the
help from the mmu instruction.

x1y1c(c − 1) + x0y0(c − 1)
= (q2 + q3)(c − 1) + (r1 − r2 − r3 − q2 − q3)c(c − 1)
= (q4z0 + r4c) + (r1 − r2 − r3 − q2 − q3)c(c − 1)
≡ (−q4z1 + r4)c + (r1 − r2 − r3 − q2 − q3)c(c − 1) (∵ z0 ≡ −z1c (mod Z))
= ((q5 + r4) − (q5 + r5)c)c + (r1 − r2 − r3 − q2 − q3)c(c − 1)

The second term of Equation (3) is transformed into the followings with last call
to the mu instruction.

(x1 + x0)(y1 + y0)c = (−q6 + (r6 + q6)c)c

Finally, Equation (3) consisting of three terms are concluded with the following
equations.

XY ≡ (−r1 + r2 + r3 + r4 + q2 + q3 + q5 − q6)
+ (r1 − r2 − r3 − r5 + r6 − q2 − q3 − q5 + q6)c (mod Z). ��

Ultra-Lightweight Implementations for Smart

Devices – Security for 1000 Gate Equivalents

Carsten Rolfes, Axel Poschmann, Gregor Leander,
and Christof Paar

Horst Görtz Institute for IT-Security
Ruhr-University Bochum, Germany

{rolfes,poschmann,cpaar}@crypto.rub.de,
leander@itsc.rub.de

Abstract. In recent years more and more security sensitive applications
use passive smart devices such as contactless smart cards and RFID
tags. Cost constraints imply a small hardware footprint of all compo-
nents of a smart device. One particular problem of all passive smart
devices such as RFID tags and contactless smart cards are the harsh
power constraints. On the other hand, active smart devices have to min-
imize energy consumption. Recently, many lightweight block ciphers have
been published. In this paper we present three different architecture of
the ultra-lightweight algorithm present and highlight their suitability
for both active and passive smart devices. Our implementation results
of the serialized architecture require only 1000 GE. To the best of our
knowledge this is the smallest hardware implementation of a crypto-
graphic algorithm with a moderate security level.

1 Background

Smart cards are widely in use for authentication, access control, and payment
purposes. Their applications range from access control of ski ressorts and soc-
cer stadiums over parking lots to highly secured areas of both company and
goverment buildings. MasterCard, Visa, and JCB are currently defining speci-
fications for contact and contactless payments using smart cards in their EMV
standards [17,16]. In recent years there has been an increasing trend towards
contactless smart cards. In fact, contactless smart cards are a special subset of
passive RFID tags [8]. With regards to the terminology of pervasive computing
both can be summarised by the term passive smart devices. Even for very sen-
sitive data passive smart devices are used, e.g. Visa payWave card [22], hence,
security mechanism play a key role for these applications.

Many smart devices, especially commodities, are very cost sensitive. If the
volumes are large enough –and this is indicated by the term pervasive– an ap-
plication specific integrated circuit (ASIC) will nearly always be cheaper than
a programmable micro computer. In hardware the price of an ASIC is roughly
equivalent to the area in silicon it requires. The area is usually measured in
μm2, but this value depends on the fabrication technology and the standard cell

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 89–103, 2008.
c© IFIP International Federation for Information Processing 2008

90 C. Rolfes et al.

library. In order to compare the area requirements independently it is common
to state the area as gate equivalents (GE). One GE is equivalent to the area
which is required by the two-input NAND gate with the lowest driving strength
of the corresponding technology. The area in GE is derived by dividing the area
in μm2 by the area of a two-input NAND gate.

Moreover, one particular problem of all passive smart devices such as RFID
tags and contactless smart cards are the harsh power constraints. Depending on
the transmission range of the application (close, proximity, or vincinity coupling),
the power constraints can be as strict as a few μW. Therefore, the ASIC and
all of its components have to be designed with special care for the total power
consumption. Active smart devices, such as wireless sensor nodes, RFID reader
handhelds, or contact smart cards have their own power supply, i.e. a battery, or
are powered by the reading device via a physical contact. Therefore, the power
constraints are more relaxed for this device class. The main design goal here is
to minimize the total energy consumption and the overall execution time.

Block ciphers are the working horses of the cryptographic primitives. Unfortu-
nately, a vast majority of block ciphers have been developed with good software
properties in mind, which in turn means that the gate count for a hardware
implementation is rather high. In order to cope with this situation quite a few
cryptographic algorithms have been published that are especially optimized for
ultra-constrained devices. Examples for lightweight stream ciphers are Grain and
Trivium and examples for lightweight block ciphers are DESXL [13], HIGHT [5],
mCrypton [14], PRESENT [3], and SEA [15]. This research area is also referred
to as low cost or lightweight cryptography. Some designers kept the algorithm
secret in order to gain additional security by obscurity. However, the cryptanal-
yses of two widely used lightweight algorithms show that this violation of the
Kerckhoff principle [12] is prohibitive: Keeloq [1] and Mifare both were broken
shortly after their algorithm was reverse-engineered [2,18].

present is an aggressively hardware optimized ultra-lightweight block ci-
pher, first presented at CHES 2007 [3]. According to the authors present was
developed with a minimal hardware footprint (1570 GE) in mind such that it is
suitable for passive RFID tags. However, in this work we show that a serialized
implementation can be realized with as few as 1000 GE, which make it especially
interesting for all kind of low cost passive smart devices. Moreover we propose
two additional architectures which are suitable for low cost and high end active
smart devices.

In the remainder of this work, we first recall the specification of present
in Section 2. We propose three different hardware architectures of present in
Section 3 and the implementation results are evaluated in Section 4. Finally, in
Section 5 we conclude the paper.

2 The PRESENT Algorithm

present is a substitution-permutation network with 64-bits block size and 80
or 128 bits of key (from here on referred to as present for the 80 bit version

Ultra-Lightweight Implementations for Smart Devices 91

generateRoundKeys()
for i = 1 to 31 do

addRoundKey(state,Ki)
sBoxLayer(state)
pLayer(state)

end for
addRoundKey(state,K32)

plaintext

��

�
sBoxLayer

pLayer

�...
�

sBoxLayer

pLayer

��

�
ciphertext

key register

�

�addRoundKey�

...

update

�

�

update

addRoundKey
�

Fig. 1. A top-level algorithmic description of present

and present-128 for the 128 bit version). In the remainder of this article we
focus on present, because 80-bits provide a security level which is sufficient
for many RFID driven applications. present has 31 regular rounds and a final
round that only consists of the key mixing step. One regular round consists of a
key mixing step, a substitution layer, and a permutation layer.

The substitution layer consists of 16 S-Boxes in parallel that each have 4 bit
input and 4 bit output (4x4): S : F

4
2 → F

4
2. The S-Box is given in hexadecimal

notation according to the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The bit permutation used in present is given by the following table. Bit i of
state is moved to bit P (i).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

The key schedule of present consists of a 61-bit left rotation, an S-Box, and
an XOR with a round counter. Note that present uses the same S-Box for
the datapath and the key schedule, which allows to share resources. The user-
supplied key is stored in a key register and its 64 most significant (i.e. leftmost)
bits serve as the round key. The key register is rotated by 61 bit positions to
the left, the left-most four bits are passed through the present S-Box, and the
round_counter value i is exclusive-ored with bits k19k18k17k16k15 of K with the
least significant bit of round_counter on the right. Figure 1 provides a top-level

92 C. Rolfes et al.

description of the present algorithm. For further details, the interested reader
is referred to [3].

3 Three Different Architectures of PRESENT
Implementations

For different application scenarios there exists also different demands on the
implementation and the optimization goals. An implementation for a low cost
passive smart device, such as RFID tags or contactless smart cards requires small
area and power consumption, while the throughput is of secondary interest. On
the other hand, an RFID reader device that reads out many devices at the same
time, requires a higher throughput, but area and power consumption are less
important. Active smart devices, such as contact smart cards do not face strict
power constraints but timing and sometimes energy constraints. Main key figures
of the present block cipher are area, throughput, and power consumption. We
propose three implementations of present, so one can choose the architecture
that meets the given requirements most suitable. The first architecture is round
based as described in [3]. It is optimized in terms of area, speed, and energy.
The second architecture uses pipelining technique and generates a high through-
put. The third architecture is serialized and is minimized in terms of area and
power consumption. In order to decrease the area requirements even further, all
architectures can perform encryption only. This is sufficient for encryption and
decryption of data when the block cipher is operated for example in counter
mode. Besides this it allows a fairer comparison with other lightweight imple-
mentations. For example the landmark implementation of Feldhofer et al. [7].
Finally, using the round based architecture of present128, we present a crypto-
graphic co-processor with encryption and decryption capabilities. Note that the
choice of an appropriate I/O interface is highly application specific, while at the
same time can have a significant influence on the area, power, and timing figures.
In order to have a clearer estimation of the cryptographic core’s efficiency we
did therefore not implement any special input or output interfaces, but rather
chose a natural width of 64-bit input, 64-bit output and 80 or 128- bit key input,
respectively.

3.1 Round-Based Architecture

This architecture represents the direct implementation of the present top-level
algorithm description in Figure 1, i.e. one round of present is performed in one
clock cycle. The focus lies on a compact solution but at the same time with an
eye on the time-area product. To save power and area a loop based approach
is chosen. The balance between the 64-bit datapath and the used operations
per clock cycle leads to a good time-area product. Due to the reuse of several
building blocks and the round structure, the design has a high energy efficiency
as well. The architecture uses only one substitution and permutation layer. So
the datapath consists of one 64-bit XOR, 16 S-Boxes in parallel, and one P-Layer.

Ultra-Lightweight Implementations for Smart Devices 93

To store the internal state and the key, a 64-bit state register and an 80-bit key
register are introduced. Furthermore an 80-bit 2-to-1 multiplexer and a 64-bit
2-to-1 multiplexer to switch between the load phase and the round computation
phase are required. Key register, key input multiplexer, a 5-bit XOR, one S-Box
and a 61-bit shifter are merged into the component key scheduling. It computes
the round key on the fly. Figure 2 presents the signal structure of the round
based approach for present. At first the key and the plaintext are stored into
the accordant register. After each round the internal state is stored into the
state register. After 31 rounds the state is finally processed via XOR with the
last round key. The control logic is implemented as a Finite State Machine (FSM)
and a 5-bit counter to count the rounds. The FSM also controls the multiplexers
to switch between load and encryption phase.

S

P

D

Q D

Q

1 0
10

Key

Plaintext

Ciphertext

80

64

64

64

64

S

16 x

44

5

S

<< 61

Roundcounter

4

[79:76]

[19:15]

71

5

9
4

5

80 80
64

64

[79:16]

80

80

Fig. 2. Block diagram of the round-based present architecture

To reduce the used area and power we make use of clock gating. It can be
applied to synchronous load enable registers, which are groups of flip-flops that
are connected to the same clock and control signals. Normally a register is im-
plemented by use of a flip-flop, a feedback loop, and a multiplexer. When this
register bank maintains the same logic value through multiple clock cycles its
clock network, the multiplexers and the flip-flops unnecessarily consume power.
Clock gating eliminates the feedback nets and multiplexers inserting a latch and
a 2-input gate in the clock net of the registers. The latch prevents glitches on
the enable signal. By controlling the clock signal for the register bank, the need

94 C. Rolfes et al.

for reloading the same value in the register through multiple clock cycles is elim-
inated. Clock gating reduces the clock network power dissipation, relaxes the
data path timing, and reduces routing congestion by removing feedback mul-
tiplexer loops. For designs that have large multi-bit registers, clock gating can
save power and further reduce the number of gates in the design. However, for
smaller register banks, the overhead of adding logic to the clock tree might not
compare favorably to the power saved by eliminating a few feedback nets and
multiplexers.

3.2 Parallel Architecture

The main goal of the parallel design is to achieve a high throughput rate. Therefore
the 31 time loop is unrolled, so all XORs, S-Boxes, and P-Layers are cascaded.
This will lead to high area effort and power consumption, but also to high data
throughput. The required round key is generated by taking the right bits from
the 80-bit key and if necessary pass them through a S-Box or add a roundcounter
value. All subkeys are available in parallel and no register is needed to hold the key.
Figure 3 shows the signal diagram of the pipelined architecture. It consists of 32
XORs, 496 S-Boxes, and 31 P-Layeres for the datapath. The keypath consists of
31 S-Boxes and 31 XORs for key scheduling. The roundcounter input of the XOR
is hard wired. First the given 64-bit plaintext and the first round key are xored.
The result is split up into 16 4-bit blocks. Each block is processed by a 4-bit S-
Box in parallel. The 64-bit P-Layer transposes the bits at the end of each the 31
rounds. Note that, the 32th round consists only of the XOR operation.

S

P

Key

Plaintext Ciphertext

64

80

64

S

16
x

4

4

64

S

P
64

S

16
x

4

4

64

31 x

D

Q

64

D

Q

64

S<< 61

Roundcounter

[79:76]

[19:15]

71

4

5

8080

S<< 61

Roundcounter

[79:76]

[19:15]

71

4

5

8080

Fig. 3. Datapath of the pipelined parallel present architecture

This straight forward approach does not achieve a high maximum operating
frequency. This results from the long critical path. The input signal has to prop-
agate through all XOR and S-Box gates. The more gates belong to the path
the higher is the resulting capacitance to be switched. So the time period for a
switching event is stretched. To shorten the critical path, flip-flops as pipeline
stages were installed after each P-Layer (see Figure 3). On the one hand this
increases the chip area and power consumption, but on the other hand the max-
imum frequency can be raised significantly. We assume the key to be stable
for many encryption operations. Thus roundkeys do not propagate through the
pipeline and need not to be stored in additional FFs.

Ultra-Lightweight Implementations for Smart Devices 95

S

P

Key

Plaintext

Ciphertext64

1

0

1

0 1

0

Statememory

4-In

64-In

4-Out

64-Out

Shift Register Mode
Block Mode

Memory

Keymemory

4-In

80-In

4-Out

80-Out

5

<< 61

Roundcounter

4

[79:7
6]

[19:15
]

4

71

8080

4

4

80-bit

64-bit

4

4

4

4

4

5

5

9

4

4

80

64

4

Fig. 4. Datapath of the serial present architecture

Ciphertext [31 ..0]

Ready

WENB

RENB

Key [127 ..0]

Data [31 ..0]

Addr [3 ..0]

Key Scheduling

Datapath Encryption

Datapath Decryption

FSM

I/o Interface

CLK

RESET

Fig. 5. Block diagramm of present-128 coprocessor with 32-bit interface

3.3 Serialized Approach

This architecture is a further modification on the round based architecture de-
scribed in Section 3.1. To save more chip area, the data structure is reduced to
4-bit. One of the most area consuming parts of present are the 16 S-Boxes in
parallel. So only one of them is used to represent the substitution layer, which is
also shared between the data path and the key scheduling. Another power and
area consuming part are the large input multiplexers. We use a 4-bit interface

96 C. Rolfes et al.

to read in key and plaintext. This area savings come at the disadvantage of a
longer computation time. Only 4-bit are processed during one clock cycle and we
need 20 clock cycles for initialization. An additional 4-bit counter upgrades the
FSM to control the processing of the internal state. Therefore it takes additional
15 cycles to compute the substitution layer of each round. As one can see in
Figure 4 the signal diagram still shows a 64-bit wide and a 80-bit wide path.
The main problem is to serialize the permutation layer. So we choose a memory
structure with two different operation modes. In the first mode it behaves like
a shift register. During load phase and S-Box computation phase the 4-bit in-
put is shifted to the left. The 4-bit output is appended at the beginning. If the
P-Layer is computed all bits are read in parallel and the 64-bit wide or 80-bit
wide input and output is used. Each memory element consists of scan flip-flops,
i.e. a D-flip-flop with integrated multiplexer, which saves area compared to one
normal D-flip-flop and a seperated multiplexer. One further advantage is the re-
duced computation time, so we need only one clock cycle for the whole P-layer.
A 4-bit computation scheme would lead to much more multiplexers. All together
we need 17 clock cycles per round to compute the new state.

3.4 Crypto Coprocessor

To equip a smart device with cryptographic functions there are different ways
to implement them. The first is to write software code. This solution requires
RAM to store the program and inhibits the microcontroller while performing
cryptographic algorithms. Another possibility is to implement the crypto part
straight into the the microcontroller core. A more flexible way is to construct a
cryptographic co-processor that is controlled by the main core. It uses a memory-
like interface for communication. To get a compact and also fast solution we use
the round based architecture with a modified finite state machine and added
further multiplexers. Now the plaintext is loaded in 32-bit blocks. As far as we
know this is the maximum bit width of microcontrollers for smart devices. The
co-processor is controlled by write and read enable signals. The address signal
selects the different bit blocks and encryption or decryption mode. Figure 5
illustrates the interfaces and the units.

4 Evaluation of the Results

In this section we first describe the used design flow and the metrics. Subse-
quently we compare our implementation results for the three scenarios low cost
passive smart devices, low cost active smart devices, and high end smart devices.
We considered the following optimization goals for the three scenarios: low cost
and passive smart devices should be optimized for area and power constraints
and low cost and active smart devices for area, energy, and time constraints.
Note that in our methodology high end devices are always contact smart cards
and hence should be optimized for time and energy constraints. Therefore we do
not distinguish between passive and active high end smart devices.

Ultra-Lightweight Implementations for Smart Devices 97

4.1 Metrics and Used Design Flow

All architectures were developed and synthesized by using a script based design
flow. We used MentorGraphics FPGA Advantage 8.1 for HDL source code con-
struction and functional verification. Then the RTL description was synthesized
with Synopsys Design Compiler Z-2007.03-SP5, which was also used to gener-
ate the area, timing, and power estimation reports. The main effort of synthe-
sis process was area optimization. The S-Box is described as boolean equation
which leads to a combinatorial logic implementation. The P-Layer is only simple
wiring, which is not very costly in hardware. We used three different standard cell
libraries with different technology parameters: a 350 nm technology MTC45000
from AMIS, a 250 nm technology SESAME-LP2 from IHP, and a 180 nm technol-
ogy UMCL18G212D3 from UMC. Each of them consists of a different amount of
cells and not all logical functions are implemented. This fact will lead to different
area result expressed in GE. Following definitions of metrics were used:

Area: This metric represents the amount of area normalized to the area of one
NAND gate. This ratio is expressed in GE.

Cycles: Number of clock cycles to compute and read out the ciphertext.

Throughput: The rate at which new output is produced with respect to time.
The number of ciphertext bits is divided by the needed cycles and multiplied
by the operating frequency. It is expressed in bits-per-second. With increasing
frequency the throughput will increase, too.

Power: The power consumption is estimated on the gate level by PowerCom-
piler1. It consists of two major components: the static power which is propor-
tional to the area and the fabrication process. The dynamic power is proportional
to the switching activity (switching event probability and operating frequency).
Both components also depend on the supply voltage.

Current: The power consumption divided by the typical core voltage of the
process. These are for AMI 3.3V, for IHP 2.5V, and for UMC 1.8V.

Throughput to area ratio: This representation is used as a measure of design
efficiency.

Maximum frequency: There are many connections between the input and out-
put pins. The delay of each gate forms a timing path for the signals. The slowest
path will set the upper bound of clock frequency. Note that it might be possible
to increase the max. frequency, but this will also increase area and power.

The interested reader can find more detailed tables with syntheses results in
the appendix.

4.2 Low Cost Passive Smart Devices

Table 1 shows the synthesis results for 100 kHz clock frequency, which is a typical
operating frequency of RFID tags. Smart devices with integrated
1 Note that power estimations on the transistor level are more accurate. However, this

also requires further design steps in the design flow, e.g. place&route.

98 C. Rolfes et al.

contactless functionality have strict area and power constraints. For this pur-
pose we propose a serialized implementation which will consume low area and
power resources. Our serial implementation uses about 1000 GE of area. To the
best of our knowledge this is the smallest implementation of a cryptographic
algorithm with a moderate security level. Even implementations of the stream
ciphers Grain80 and Trivium require more area (1294 GE and 1857 GE, respec-
tively [9]). For comparison with block ciphers we choose two AES implemen-
tations with a reduced datapath from Feldhofer et al. [6] and Hämäläinen et
al. [10]. Furthermore there exists only a reduced datapath implementation of
the lightweight block cipher SEA without key scheduling component and con-
trol logic. Note that a similar implementation with present would only require
around 40 GE in 0.18μm UMC technology. The power consumption of our imple-
mentations show a large variation depending on the core voltage of the library,
but the 0.18μm technology consumption is still the lowest compared to the other
architectures. Note that power figures are highly technology dependent, therefore
a fair comparison is only possible if the same technology was used.

Table 1. Implementation results of minimal datapath architectures

Cipher Tech. Datapath Freq. Area Throughp. Cycles Power
[μm] [Bit] [MHz] [GE] [Kbps] [μW]

PRESENT-80 0.35 4 0.1 1,000 11.4 563 11.20
PRESENT-80 0.25 4 0.1 1,169 11.4 563 4.24
PRESENT-80 0.18 4 0.1 1,075 11.4 563 2.52

Feldhofer AES [6] 0.35 8 0.1 3400 12.4 1032 4.50
Hämäläinen AES [10] 0.13 8 80 3100 121 160 -

SEA [15] 0.13 8 0.1 449 50 3.22

better is lower higher lower lower

4.3 Low Cost Active Smart Devices

The second scenario targets standard smart cards. To reduce fabrication costs
these cards are also area constraint. But in comparison to the prior scenario the
crypto core draws his energy from a battery of a pervasive device or via the phys-
ical contact of the reading device. So the execution time is of major interest. The
round based implementation shows a good trade off between area, time, through-
put, and energy consumption. It does not consume significant more area and en-
ergy than the serial one, but needs much less clock cycles for computation. The
results are compared to other known round based implementations that means a
new internal state is computed every clock cycle. There are results for the ICE-
BERG [21] and the HIGHT [11] block cipher. Both of them use a 64-bit datap-
ath architecture. In Mace et al. [15] different ASIC implementations of SEA had
been characterized. We choose the 96-bit architecture for better comparison to
the other datapaths. The results in Table 2 illustrate the very compact design of
the present block cipher. Even the -normalized to 10 MHz.- throughput is only

Ultra-Lightweight Implementations for Smart Devices 99

Table 2. Implementation results of the round based datapath architectures

Cipher Tech. Datapath Freq. Area Tput Energy/Bit Power
[μm] [Bit] [MHz] [GE] [Mbps] [pJ/bit] [μW]

PRESENT-80 0.35 64 10 1561 20.6 170.5 3520.0
PRESENT-80 0.25 64 10 1594 20.6 21.1 436.0
PRESENT-80 0.18 64 10 1705 20.6 3.7 77.1

SEA [15] 0.13 96 250 3758 258.0 19.8 5102.0
ICEBERG [15] 0.13 64 250 7732 1000.0 9.6 9577.0

HIGHT [11] 0.25 64 80 3048 150.6 - -

better is lower higher lower lower

Table 3. Implementation results of pipelined architecture @ 10 MHz

Library Area Power Tput/Area crit. Path max Freq. max .Tput
[GE] [μW] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 24,345.87 81295.00 0.486811614 12.80 0.1 5,000.0
IHP 0.25 μm 25,193.00 11659.00 0.900080911 4.78 0.2 13,389.1

UMC 0.18 μm 27,027.69 6888.00 2.446979668 6.26 0.2 10,223.6

better is lower lower higher lower higher higher

Table 4. Implementation results of co-processor architectures

Cipher Tech. Datapath max Freq. Area Throughp. Cycles
[μm] [Bit] [MHz] [GE] [Mbps]

PRESENT-128 0.35 32 143 2,681 234 39
PRESENT-128 0.25 32 141 2,917 231 39
PRESENT-128 0.18 32 323 2,989 529 39

PRESENT-128 0.35 8 131 2,587 133 63
PRESENT-128 0.25 8 121 2,851 123 63
PRESENT-128 0.18 8 353 2,900 359 63

CAST AES [4] 0.18 32 300 124,000 872 44
Satoh AES [20] 0.11 32 131 54,000 311 54

Pramstaller AES [19] 0.6 32 50 85,000 70 92

better is higher lower higher lower

outperformed by the ICEBERG implementation., but again, we do not consider
high throughput as highly relevant for this device class.

4.4 High End Active Smart Devices

In the third scenario there are no limitations for energy consumption. The task
of the co-processor is to relieve the micro controller of the cryptographic com-
putations. The design of this assistant should deliver results fast and consume
as less area as possible to be cost-effective. One approach is to use a pipelined

100 C. Rolfes et al.

architecture. But Table 3 discloses that the pipelined implementation generates a
very high throughput at the expense of area and power. The basic message is that
scaling of operation frequency has a great impact on power consumption. The area
is barely affected by this circumstance, becausewe chose an area optimize synthesis
approach. If we get to higher frequencies the capacitances will become increasingly
important. So cells with a higher driving strength must be used to drive the load
and the area will increase conspicuously. In addition one has to be aware of the
input/output interface. Up to now there exist only smart cards with 32-bit micro
controllers. The best choice is to implement a round based architecture with an 32-
bit I/O interface. In literature can be found several AES implementations that are
up to the mark. We compare the present implementations to Pramstaller et al.
[19] and Satoh et al. [20]. Also a commercial solution by Cast Inc. [4] is listed. Table
4 shows the results for the different implementations. As there are many smart
cards equipped with 8-bit microcontrollers we list the results for an 8-bit in-
terface, too. The present co-processor is much more compact than the other
implementations and also needs less clock cycles to compute the ciphertext.

5 Conclusions

In this paper we have pointed out that there is, due to harsh cost constraints
inherent of mass deployment, a strong need for area optimized implementation
of cryptographic algorithms. Furthermore, we presented the implementation re-
sults of three different architectures of the block cipher present. The pipelined
version achieves a high throughput to area ratio but also consumes the most area
and current compared to the other architectures. Therefore this architecture may
be used in high end smart devices and the back end systems. The serial version
can be implemented with as few as 1000 GE, which is to the best of our knowl-
edge the smallest implementation of a cryptographic algorithm with a moderate
security level. However, this significant area savings come at the disadvantage of
a long processing time of 563 cycles. This architecture is best suited for low cost
passive smart devices such as passive RFID tags and contactless smart cards.

Interestingly, the round version draws for two of the three different libraries
nearly the same current consumption. It requires about 50% more area but also
achieves a relatively high throughput rate compared to the serialized architec-
ture. This in turns yields a good energy consumption per encryption, hence this
architecture is well suited for low cost active smart devices such as wireless sen-
sor nodes, RFID reader handhelds, and contact smart cards. Furthermore this
architecture can be used to construct a cryptographic coprocessor with very low
area consumption and a high throughput.

References

1. Keeloq algorithm (November 2006), http://en.wikipedia.org/wiki/KeeLoq
2. Bogdanov, A.: Attacks on the KeeLoq Block Cipher and Authentication Systems.

In: 3rd Conference on RFID Security 2007 (RFIDSec 2007) (2007)

http://en.wikipedia.org/wiki/KeeLoq

Ultra-Lightweight Implementations for Smart Devices 101

3. Bogdanov, A., Leander, G., Knudsen, L.R., Paar, C., Poschmann, A., Robshaw,
M.J., Seurin, Y., Vikkelsoe, C.: PRESENT - An Ultra-Lightweight Block Cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727 Springer,
Heidelberg (2007)

4. Cast Inc. Cast aes32-c, http://www.cast-inc.com
5. Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim,

H., Kim, J., Hong, D., Sung, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

6. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. In: Information Security, IEE Proceedings, vol. 152, pp. 13–20 (October
2005)

7. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID
Systems Using the AES Algorithm (2004)

8. Finkenzeller, K.: RFID Handbook - Fundamentals and Applications in Contactless
Smart Cards and Identification, 2nd edn. John Wiley and Sons. Ltd., Chichester
(2003)

9. Good, T., Benaissa, M.: Hardware Results for selected Stream Cipher Candidates.
In: State of the Art of Stream Ciphers 2007 (SASC 2007), Workshop Record (Febru-
ary 2007)

10. Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and imple-
mentation of low-area and low-power aes encryption hardware core. In: DSD, pp.
577–583 (2006)

11. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block Cipher Suitable
for Low-Resource Device (2006)

12. Kerckhoff, A.: La cryptographie militaire. Journal des sciences militaires IX, 5–38
(1883)

13. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New Lighweight DES Vari-
ants. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer,
Heidelberg (2007)

14. Lim, C., Korkishko, T.: mcrypton - a lightweight block cipher for security of low-
cost rfid tags and sensors. In: Kwon, T., Song, J., Yung, M. (eds.) WISA 2005.
LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

15. Mace, F., Standaert, F.-X., Quisquater, J.-J.: ASIC Implementations of the Block
Cipher SEA for Constrained Applications. In: Proceedings of the Third Interna-
tional Conference on RFID Security - RFIDSec 2007, Malaga, Spain, pp. 103–114
(2007)

16. N.A. Contactless Specifications for Payment Systems - EMV Contactless Commu-
nication Protocol Specification. Version 2.0, EMV (August 2007),
http://www.emvco.com/specifications.asp

17. N.A. Contactless Specifications for Payment Systems - Entry Point Specification.
Draft 1.0, EMV (October 2007), http://www.emvco.com/specifications.asp

18. Nohl, K., Ploetz, H.: Mifare - little security, despite obscurity. Talk at the 24th
Chaos Communication Congress (December 2007)

19. Pramstaller, N., Mangard, S., Dominikus, S., Wolkerstorfe, J.: Efficient aes imple-
mentations on asics and fpgas. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 98–112. Springer, Heidelberg (2005)

http://www.cast-inc.com
http://www.emvco.com/specifications.asp
http://www.emvco.com/specifications.asp

102 C. Rolfes et al.

20. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware
architecture with s-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

21. Standaert, F.-X., Piret, G., Gershenfeld, N., Quisquater, J.-J.: Sea: A scalable
encryption algorithm for small embedded applications. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 222–236.
Springer, Heidelberg (2006)

22. Visa. Visa payWave FAQ (accessed on 15.02.2008), www.visa.com

Appendix

Following abbreviations are used in the subsequent tables
Cur - Current
Tput/Area - Throughput/Area
mFreq - maximum Frequency
mTput - maximum Throughput

Table 5. Implementation results of round @ 100 kHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [μm2] [μW] [μA] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 1,524.77 82,338 33.40 10.12 0.0024 1.53 0.65 1,307.2
IHP 0.25 μm 1,594.25 44,996 4.84 1.94 0.0044 0.72 1.39 2,777.8

UMC 0.18 μm 1,650.30 15,970 3.86 2.14 0.0125 4.57 0.22 437.6

better is lower lower lower lower higher lower higher higher

Table 6. Implementation results of round @ 10 MHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [μm2] [μW] [μA] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 1,560.5 84,268 3520.0 1066.7 0.2450 1.23 0.81 1,678.5
IHP 0.25 μm 1,594.2 44,996 436.0 174.4 0.4588 0.61 1.64 3,384.5

UMC 0.18 μm 1,706.0 16,509 77.1 42.8 1.2506 0.51 1.96 4,048.1

better is lower lower lower lower higher lower higher higher

Table 7. Implementation results of pipeline @ 100 kHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [μm2] [μW] [μA] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 24,247 1,309,354 772.0 233.9 0.0049 13.84 0.07 4,624.3
IHP 0.25 μm 25,193 711,047 121.0 48.4 0.0090 4.98 0.20 12,851.4

UMC 0.18 μm 27,009 261,366 72.2 40.1 0.0245 6.78 0.15 9,439.5

better is lower lower lower lower higher lower higher higher

www.visa.com

Ultra-Lightweight Implementations for Smart Devices 103

Table 8. Implementation results of pipeline @ 10 MHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [μm2] [μW] [μA] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 24,346 1,314,677 81295.0 24634.8 0.4868 12.8 0.08 5,000
IHP 0.25 μm 25,193 711,047 11659.0 4663.6 0.9001 4.78 0.21 13,389

UMC 0.18 μm 27,028 261,547 6888.0 3826.7 2.4470 6.26 0.16 10,224

better is lower lower lower lower higher lower higher higher

Table 9. Implementation results of serial @ 100 kHz

Library Area Area Power Cur Tput/Area Path mFreq mTput
[GE] [μm2] [μW] [μA] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 999.5 53,974 11.20 3.39 0.0002 1.89 0.5 60.1
IHP 0.25 μm 1,168.8 32,987 4.24 1.70 0.0003 0.66 1.5 172.2

UMC 0.18 μm 1,075.0 10,403 2.52 1.40 0.0011 0.9 1.1 126.3

better is lower lower lower lower higher lower higher higher

Table 10. Implementation results of serial @ 10 MHz

Library Area Area Power Cur. Tput/Area cPath mFreq. mTput
[GE] [μm2] [μW] [μA] [kbps/μm2] [ns] [GHz] [Mbps]

AMI 0.35 μm 1,001.19 54,064 1123.00 340.30 0.0210 1.44 0.69 78.9
IHP 0.25 μm 1,168.75 32,987 421.00 168.40 0.0345 0.62 1.61 183.3

UMC 0.18 μm 1,074.98 10,403 247.00 137.22 0.1093 0.8 1.25 142.1

better is lower lower lower lower higher lower higher higher

Fast Hash-Based Signatures

on Constrained Devices

Sebastian Rohde1, Thomas Eisenbarth1, Erik Dahmen2, Johannes Buchmann2,
and Christof Paar1

1 Horst Görtz Institute for IT Security
Ruhr University Bochum
44780 Bochum, Germany

{rohde,eisenbarth,cpaar}@crypto.rub.de
2 Technische Universität Darmstadt
Department of Computer Science

Hochschulstraße 10, 64289 Darmstadt, Germany
{dahmen,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. Digital signatures are one of the most important applications
of microprocessor smart cards. The most widely used algorithms for digi-
tal signatures, RSA and ECDSA, depend on finite field engines. On 8-bit
microprocessors these engines either require costly coprocessors, or the
implementations become very large and very slow. Hence the need for
better methods is highly visible. One alternative to RSA and ECDSA is
the Merkle signature scheme which provides digital signatures using hash
functions only, without relying on any number theoretic assumptions. In
this paper, we present an implementation of the Merkle signature scheme
on an 8-bit smart card microprocessor. Our results show that the Merkle
signature scheme provides comparable timings compared to state of the
art implementations of RSA and ECDSA, while maintaining a smaller
code size.

Keywords: Embedded security, hash based cryptography, Merkle
signature scheme, digital signatures.

1 Motivation

Smart cards are used in many areas of every day life. Application areas include
payment systems, electronic health cards and SIM cards for mobile phones. With
the advent of contactless smart cards, new and important fields of application
have recently emerged, like the electronic passport, which is now deployed in
many countries, especially in Europe and the US. Other countries, like Belgium,
also issue electronic ID cards to their citizens [11].

The most important application of smart cards is secure identification and
authentication. Many of the above mentioned applications have a need for strong
security. All these requirements are met by digital signatures. Digital signatures
provide authenticity, integrity and support for non-repudiation of data and are
often used in identification and authentication protocols for smart cards.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 104–117, 2008.
c© IFIP International Federation for Information Processing 2008

Fast Hash-Based Signatures on Constrained Devices 105

Since smart cards are usually provided in high quantities, there is also a need
to keep costs as low as possible. This is one of the reasons why most of the
microprocessor cards in use are still equipped with small and cheap 8-bit CPUs.
These small 8-bit microprocessors are constrained in program memory (flash or
ROM), RAM, clock speed, register width, and arithmetic capabilities.

Common signature schemes such as RSA and ECDSA require operations in a
finite field for the signature generation and verification. For efficient implementa-
tions in smart cards, costly coprocessors that implement the field arithmetic are
required. In 1979 Merkle proposed a signature scheme that requires only hash
function evaluations for the signature generation and verification [20]. Since soft-
ware implementations of hash functions are much more efficient than software
implementations of finite field arithmetic, the Merkle signature scheme (MSS)
is a good candidate for implementations on small microprocessors without cryp-
tographic coprocessors. Another benefit of the MSS is the fact that its security
relies only on the cryptographic properties of the used hash function and not on
additional number theoretic assumptions. If the hash function used for the MSS
is found insecure, it can be replaced by a secure one to obtain a new and secure
instance of the MSS.

Our Contribution. In this paper we present an implementation of the Merkle
signature scheme for 8-bit Atmel AVR microcontrollers, e.g. smart card proces-
sors from the AT90SCxxx family. Our implementation is highly scalable and can
be configured to provide an ideal tradeoff between security, execution times, and
memory requirements for the specific use case. We will show that our implemen-
tation of the MSS performs excellently when compared to RSA and ECDSA.
Our implementation has a smaller code size and faster verification times. The
signature generation is faster than RSA and comparable to ECDSA. Further
performance improvements are reached by utilizing a symmetric crypto engine
such as an AES hardware acceleration.

For the underlying hash functions we use constructions that are based on
the AES block cipher. Such hash functions have two advantages compared to
dedicated hash functions: (1) they have a small block size which is more suitable
for the MSS and (2) they are more efficient in size and speed.

Related Work. Gura et al. showed the feasibility of public key cryptography
on constrained 8-bit microcontrollers. Their implementation of RSA-1024 and
RSA-2048 showed that digital signatures are feasible on 8-bit platforms even
without expensive crypto-coprocessors. Further research regarding digital signa-
tures on constrained 8-bit devices has been performed in the field of wireless
sensor networks. Liu and Ning published a full ECC engine called TinyECC
which also does not require a coprocessor. They implemented the 160-bit el-
liptic curve secp160r1. Winternitz one-time signatures have also been proposed
to be used in wireless sensor networks for signing short messages (¡ 80 bit)
[18]. The proposed solution, however, uses a public key management that is not

106 S. Rohde et al.

applicable to smart cards. Others [24,7] show possible use cases for MSS on con-
strained devices without making any suggestions regarding the implementation.

Organization. The paper is organized as follows: Section 2 gives an overview
of the MSS and the used hash functions. Section 3 explains the target platform
and details about the implementation. Section 4 presents performance results
and a comparison. Section 5 elaborates a possible performance gain when using
an AES hardware acceleration. Section 6 states our conclusion.

2 Preliminaries

In this section we describe the details of the variant of the Merkle signature
scheme [20] we use for our implementation. In summary we use the Winternitz
one-time signature scheme (W-OTS) [9] to sign the data, the ideas for efficient
one-time signature key generation of [4] and the algorithm from [6] for the com-
putation of the authentication paths. We use two different hash functions based
on the AES block cipher, both with 128-bit block length. We use a 256-bit hash
function for the initial hashing (digest creation) of the data to be signed and
a 128-bit hash function for the one-time signature scheme and the Merkle tree.
Details on the construction of these hash functions are described in Section 2.2.

2.1 The Merkle Signature Scheme

We now describe the three algorithms for the key generation, signature gen-
eration, and verification. In the following, let F : {0, 1}∗ → {0, 1}128 and
G : {0, 1}∗ → {0, 1}256 be cryptographic hash functions.

Key Generation. The first step of the key generation is to decide how many
signatures should be generated with this key pair. We choose the parameter
H ≥ 2 to be able to generate 2H signatures. The next step is to generate 2H

W-OTS key pairs. For the W-OTS key generation, we apply the approach of [4]
and use the following forward secure pseudo random number generator.

PRNG : {0, 1}128 → {0, 1}128 × {0, 1}128,Seedin �→ (Seedout,Rand).

As suggested in [5], we use the hash based PRNG proposed in [12], i.e.

Rand ← F (Seedin),Seedout ← (1 + Seedin + Rand) mod 2128.

The MSS private key is an 128-bit seed Seed chosen uniform at random. This
seed is fed to the PRNG to compute the initial seed SeedW-OTS that we use to
generate first W-OTS signature key:

(Seed,SeedW-OTS) = PRNG(Seed). (1)

Doing so, Seed is updated and can be used to compute the initial seeds for
upcoming W-OTS signature keys. Depending on the Winternitz parameter w,
the W-OTS signature key consists of t = t1 + t2 128-bit strings, where

t1 =
⌈

256
w

⌉
, t2 =

⌈
�log2 t1� + 1 + w

w

⌉
.

Fast Hash-Based Signatures on Constrained Devices 107

The W-OTS signature key is the sequence X = (x1, . . . , xt), that consists of t
bit strings each of length 128-bit. It is computed using the PRNG as

(SeedW-OTS, xi) = PRNG(SeedW-OTS) (2)

for i = 1, . . . , t. The W-OTS verification key is Y = F (y1 ‖ . . . ‖ yt), where
yi = F 2w−1(xi), i.e. the hash function F is applied 2w − 1 times to xi for
i = 1, . . . , t.

The 2H W-OTS verification keys are the leaves of the Merkle tree. The inner
nodes are computed using the following construction rule: a parent node is the
hash of the concatenation of its left and right children, i.e.

Nodeparent = F (Nodeleft child ‖ Noderight child).

By applying this rule iteratively the root of the Merkle tree, which is also the
MSS public key, is obtained.

Signature Generation. To sign some data, the first step is to compute its 256-
bit digest: d = G(data). The W-OTS signature keys are used sequentially. We
describe the generation of the sth signature, s ∈ {0, . . . , 2H−1}. The sth W-OTS
signature key is computed from the seed Seed as described in Equations (1) and
(2). We always update the seed in the private key and therefore one invocation
of the PRNG suffices to obtain the initial seed SeedW-OTS to compute the
sth W-OTS signature key. The Winternitz signature of d is then computed as
follows: (1) split the binary representation d into t1 blocks b1, . . . , bt1 each of
length w. (2) Consider bi as the integer encoded by this block in binary and
compute c =

∑t1
i=1(2

w − bi). (3) Split the binary representation c into t2 blocks
bt1+1, . . . , bt each of length w. If the bit-length of c or d is no multiple of w
we pad with zeros to the left. The Winternitz signature of d is then given as
σW-OTS(d) = (σ1, . . . , σt), where σi = F bi(xi), for i = 1, . . . , t. The sth MSS
signature of d is given as

σs(d) =
(
s, σW-OTS(d), (a0, . . . , aH−1)

)
.

The sequence (a0, . . . , aH−1) is the authentication path for the sth leaf, i.e. the
sth W-OTS verification key. It is defined as the siblings of all nodes on the path
from the sth leaf to the root of the Merkle tree, see Figure 1. For the computation
of authentication paths we use the BDS algorithm from [6]. This algorithm
is constructed such that the authentication path for the currently used leaf is
already available and the upcoming authentication paths are prepared after the
MSS signature is computed. The BDS algorithm uses a parameter K ≥ 2 which
decides how many nodes close to the root are stored during the initialization to
reduce the computational cost. The initialization of this algorithm, that requires
certain tree nodes to be stored, is done during the MSS key generation.

Signature Verification. The first step of the signature verification is again to
compute the digest of the data that was signed: d = G(data). Then d and its

108 S. Rohde et al.

s

a0

a1

a2

Fig. 1. Example of the Merkle signature scheme for H = 3, s = 3. Dashed nodes denote
the authentication path for the sth leaf. The arrows indicate the path from the sth leaf
to the root.

Winternitz signature are used to compute the sth leaf as follows: Repeat steps
(1)-(3) of the Winternitz signature generation to obtain b1, . . . , bt. The sth leaf
ϕ is computed as

ϕ = F
(
F 2w−1−b1(σ1) ‖ . . . ‖ F 2w−1−bt(σt)

)
Then the path from the sth leaf to the root and the root itself is recomputed
using the authentication path and the index s:

ϕ =
{

F (ϕ ‖ ah) , if s/2h ≡ 0 mod 2
F (ah ‖ ϕ) , if s/2h ≡ 1 mod 2

for h = 0, . . . , H − 1. If the computed root matches the signers public key, the
signature is valid.

Time and Memory Requirements. We now estimate the number of evalua-
tions of F required for the key generation, signature generation and verification.
We also estimate the storage requirements of the public and private key and the
signatures.

The MSS key generation requires the computation of 2H leaves or W-OTS
key pairs and 2H − 1 evaluations of F to compute the root. The computation
of one leaf costs t(2w − 1) + 1 evaluations of F and t + 1 calls to the PRNG.
Using that one call to the PRNG costs as much as one evaluation of F , the key
generation in total requires 2H(t2w + 3) − 1 evaluations of F . The public key
requires 128 bits of memory.

For each signature, the BDS algorithm requires at most (H −K)/2+1 leaves,
3(H −K − 1)/2 + 1 evaluations of F and H −K calls to the PRNG to compute
upcoming authentication paths. If s is even the BDS algorithm requires (H −
K)/2 + 1 leaves to be computed. One of these leaves is the sth leaf. Since the
Winternitz signature of the data just signed using the sth W-OTS key is an
intermediate value during the computation of the sth leaf, the generation of
this Winternitz signature needs no additional calculations in this case. If s is
odd, the BDS algorithm requires only (H − K)/2 leaves to be computed and
the Winternitz signature of the data must be computed separately. Since the
generation of a Winternitz signature requires less computations than a leaf,

Fast Hash-Based Signatures on Constrained Devices 109

the above cost for the BDS algorithm also represent the total cost for signing.
Hence, the total cost for signing in terms of evaluations of F is at most t2w(H −
K− 2)/2+(7H−7K+3)/2. The BDS algorithm needs to store 3.5H−3K+2K−2
nodes of the Merkle tree and 2(H−K) seeds which we store as part of the private
key. Together with the 128-bit seed used to generate the signature keys, the size
of the private key is given as (5.5H − 5K + 2K − 1) · 128 bits. The size of the
signature is given as (t + H) · 128 bits. t · 128 bits for the Winternitz signature
and H · 128 bits for the authentication path.

The signature verification on average requires t(2w − 1)/2 evaluations of F
to compute the sth leaf and H evaluations of F to recompute the path to the
root and the root itself. The signature generation and verification also require
one evaluation of G to compute the initial digest d of the data.

The above formulas show that the Winternitz parameter w provides a time-
memory trade-off of the signature size and the key and signature generation
times. However, the key and signature generation times of the W-OTS keys are
exponential in w, while the signature size decreases only linearly in w. Therefore
w should not be chosen too large. Also the output length of the hash functions
F and G must be chosen carefully since the size of a Winternitz signature lin-
early depends on their product. Our choice of 128 and 256 bit yields moderate
signature sizes and, as we will explain in the following, high practical security.

Security. The MSS is provably secure against adaptive chosen message attacks,
if the used hash function is collision resistant [8]. However, to forge a MSS
signature in practice the attacker is required to compute preimages and second-
preimages. Therefore the practical security of the MSS currently relies on the
preimage and second-preimage resistance of the used hash function [21]. From
a practical point of view, the 128-bit hash function F we use for the W-OTS
and the Merkle tree provides 128-bit security. Collision resistance is definitely
required for the initial hashing of the data to sign. This is why we use the 256-bit
hash function G, which provides 128-bit security against collision attacks that
exploit the birthday paradox.

2.2 Hash Functions

In this section we present the hash functions that are used in our scheme. Further-
more we show that single and double block length constructions are the better
choice when used in conjunction with digital signatures. Relatively short input
block lengths and the resulting speed make them better suited for implementa-
tions on constrained devices. Public key and private key sizes are proportionally
dependent on the hash length of F . As stated earlier, a short value of 128 bit
offers adequate security for this scenario while staying within reasonable mem-
ory limits. For our scheme, we used the AES algorithm which is specified with a
block length of 128 bit. Using AES in a double block length construction leads
to a hash length of 256 bit.

Using block ciphers as hash functions in digital signature schemes is also
appealing because one primitive can be used for three applications: encryption,

110 S. Rohde et al.

generation of hashes, and digital signatures. In addition block ciphers are much
better known and analyzed than dedicated hash functions.

Single Block Length Construction. The single block length hash in our
scheme is constructed using a Matyas-Meyer-Oseas (MMO) construction [19].
The MMO construction is recursively defined as fi+1 = Efi(Mi) ⊕ Mi with E
being the encryption function, Mi as the current message block and f0 being an
initialization vector (See Figure 2). In a hash signature scheme this variant for
constructing the hash benefits from the fact that the encryption function always
uses the same key (an initialization vector) for the first block.

fi fi+1

Mi

E

Fig. 2. Single block length compression function due to [19]. The output of the block
cipher E is xored with the message block Mi. fi, fi+1, and Mi are each of bit length
128.

Double Block Length Construction. For applications such as the initial
digest generation in a signature scheme, collision resistance is needed and the
security of single block length (SBL) constructions is not sufficient. For our imple-
mentation, we use MDC-2 double length construction specified in the ISO/IEC
10118-2 standard. The standard envisions the usage of DES, but there is a vari-
ant using AES-128 [23], as depicted in Figure 3. This construction takes a block
cipher with block length n bit and produces a hash function with 2n bit output
length. In [22] the authors show, that an adversary needs at least 23n/5 oracle
queries to find a collision. However, the best practical attacks require 2n queries.

The double block length construction is only used for initial digest generation.
It can easily be replaced by a dedicated hash function resulting in a negligible
performance loss but an increased code size.

Comparison to Dedicated Hash Functions. SBL and DBL constructions
are much better suited for hash-based signature schemes than dedicated hash
functions. A hash function with 512 bit (e.g. whirlpool) length would yield a
highly inefficient signature scheme. At the same time it is also interesting to
note that dedicated hash functions are optimized for large amounts of data as
can be seen by the comparatively large block size (512 bit). With the MSS, the
input for the hash function has mainly the same size as the output value. This is
one of the reasons why dedicated hash functions provide suboptimal performance
for appliances in hash based signature schemes.

In addition large block sizes reduce the speed of implementations on the AVR
microcontroller platform since the state cannot be held completely in the reg-
isters of the processor. In Table 1 we provide a comparison of various hash

Fast Hash-Based Signatures on Constrained Devices 111

g0
i

g1
i

Mi

(A ‖ B)

(C ‖ D)

g0
i+1 = C ‖ B

g1
i+1 = A ‖ D

E

E

Fig. 3. Double block length compression function due to [23]. The outputs of the block
cipher E are xored with the message block Mi and permuted. g0

i , g1
i , g0

i+1g
1
i+1, and Mi

are each of bit length 128.

functions and their performance. The results for the dedicated hash functions
are taken from [13] and [15].

Concerning the cycles required to hash one block, the block cipher based hash
functions provide much better performance. This is due to the large block size
of 512 bit used by dedicated hash functions to allow efficient hashing of large
amounts of data. This is clarified by the column “cycles per byte” which shows
that dedicated hash functions and block cipher based hash functions require a
similar time to hash one input byte. However, for the Merkle signature scheme
and our choice of parameters most of the time only blocks of length up to 256
bits must be hashed, which requires about 8,000 cycles when using the SBL
construction. Hence, SBL constructions are a better choice than dedicated hash
functions for the Merkle signature scheme on the target platform.

Table 1. Performance of hash function implementations on the AVR platform

bit length per msec per cycles per
Hash function output block block block byte

SHA1 [13] 160 512 3.9 63,000 984
SHA1 [15] 160 512 2.6 41,113 642
SHA256 [15] 256 512 3.4 54,196 847
MD5 [13] 128 512 1.5 23,568 368

AES-SBL 128 128 0.3 4,081 255
AES-DBL 256 128 0.5 8,104 507

3 Implementation Details and Target Platform

Target Platform. Our implementation is designed for 8-bit AVR microcon-
trollers, a popular family of 8-bit RISC microcontrollers. The Atmel AVR pro-
cessors offer clock speeds of up to 16MHz, a few KBytes of SRAM, up to tens of
KBytes of EEPROM and additional flash or mask ROM for program memory.
Besides the AVR smart card processors AT90SCxxx [2], AVRs are also available

112 S. Rohde et al.

as general purpose microcontrollers with a wide use in many embedded applica-
tions. One example is the Atmel ATmega128 microcontroller [3] often used for
wireless sensor networks.

The devices of the AVR family have 32 general purpose registers of 8-bit
word size. Most of the 130 instructions of the microcontroller are one-cycle.
AVR microcontrollers can be programmed in AVR-assembler and in C.

The implementation of this project is designed to be executable on any AVR
processor providing 4 KBytes SRAM, about 4 KBytes EEPROM and at least
8 KBytes of program memory. However, for platforms that are even more con-
strained in available SRAM, our scheme can also be altered to operate on systems
with less SRAM. For our implementation the AVR was clocked within specifi-
cation limits at 16 MHz. We chose to use assembler for performance critical
routines such as some cryptographic primitives and C to glue these routines
together.

AES Implementation. An efficient AES implementation for the AVR platform
is available at [1]. It is licensed under the GPL. We modified this implementation
to make it even smaller and faster. In this section we describe our modifications
and improvements concerning this AES algorithm.

The RijndaelFurious algorithm is pure assembly code that can be compiled
using the Atmel AVR compiler. Some modifications made it compilable using
the avr-gcc. In addition the decryption functionality has been removed as it is
not necessary for hash function constructions. If an AES decryption is needed, it
can be easily added by the cost of a small increase in code size. Furthermore, we
contributed our own implementation of the MixColumns function that is better
in respect to performance and code size.

The used hash function constructions often apply the initialization vector as
the encryption key. For a further speed-up we also implemented an alternative
method with a pre-expanded key. This allows to save many key expansions in
the process of creating one-block hashes.

Memory Management. The Merkle signature scheme is key evolving, which
means that after every signing process a modification of the private key is re-
quired. The private key needs to be stored in nonfluent memory when the power
is lost. Our implementation stores the private key in EEPROM, since the max-
imum amount of erase/write cycles allowed on the flash memory are usually
much more limited than on the EEPROM. Our target platform is specified for
at least 100.000 erase/write cycles [2,3]. Therefore the maximum value for the
height of the Merkle tree supported by our implementation is H = 16, which
allows 216 = 65.536 signatures to be generated. We store the whole signature
in the SRAM during creation. However, for platforms that are even more con-
strained concerning SRAM our scheme can easily be altered to support signature
generation and verification with much less RAM.

The memory constraints also enforce a very economical way of organizing the
data of the private key. Despite of heavy optimizations, some implementation
details force the actual size of the private key to be slightly larger than the

Fast Hash-Based Signatures on Constrained Devices 113

calculated results from Section 2.1. The main reason is that these formulas count
only the number of hash values that must be stored. For example, the stacks
used by the BDS algorithm were implemented as arrays of fixed size. In addition
to the stack, we need to store the index of the array element that denotes the
top node on the stack. Also the size of the signatures is slightly larger than
estimated, because the index of the signature must be added as well.

Key Generation. Due to the heavy computations required, the key generation
is not done on the microcontroller but on a standard PC. For the generation of
test data, we created a PC version of the project that uses mostly the same code
base. In contrast to the AVR implementation it uses a different implementation
of the AES algorithm and it supports key generation. The key generation is
computationally far too costly to run on the microcontroller which is why it has
been disabled in the AVR implementation. The speed of the PC version has also
been used to verify the correct behavior of our code by iterating through all
possible signatures.

Side Channel Resistance. For smart card implementations, resistance against
side channel attacks is of high importance. All parts of an implementation han-
dling sensitive data need to be protected against a possible leakage. The W-OTS
signature keys X and their seeds Seed are the only critical data. Since the keys
X and their seeds are used as one-time keys, the values are being processed very
few times, rendering non-template based attacks difficult. However, the analysis
of the vulnerability against side channel attacks and, if necessary, the develop-
ment of efficient countermeasures are an interesting field for future work.

4 Choice of Parameters and Timings

In this section we present the timings of our implementation and the exact mem-
ory requirements for the microcontroller. We also compare these values to im-
plementations of state of the art signature schemes on the same microcontroller
platform. For the height of the Merkle tree we chose H = 16 and H = 10 which
allows 216 and 210 signatures to be generated with one key pair, respectively.
The reason for the choice of H = 16 is, that 216 is near to the maximum number
of allowed write cycles for the EEPROM of the microcontroller [2,3]. The values
for H = 10 were included to clarify the impact of the tree height on the signa-
ture generation time. For the Winternitz parameter w and the parameter K for
the BDS algorithm, we tested three combinations (w, K) = (2, 2), (2, 4), (4, 4).
The value t, that denotes the number of 128-bit strings in the W-OTS signature
key and the one-time signature, is t = 133 for w = 2 and t = 67 for w = 4.
Table 2 summarizes the results. spub, spriv, ssig, and sROM denote the memory
requirements for the public key, the private key, and the signature as well as
the code size in bytes, respectively. tverify and tsigning denote the average time in
milliseconds required for verification and signature generation, respectively.

Table 2 shows that our implementation features smaller code size and smaller
public keys. The above figures already include the code size of the hash function

114 S. Rohde et al.

Table 2. Timings and memory requirements of our implementation and comparison
to state of the art signature schemes on the same platform

Memory in bytes Time in msec
Scheme spub spriv ssig sROM tverify tsigning

Our MSS-128 implementation using H = 16
(w, K) = (2, 2) 16 1440 2350 6600 85 1230
(w, K) = (2, 4) 16 1472 2350 6600 85 1072
(w, K) = (4, 4) 16 1472 1330 6600 127 1665

Our MSS-128 implementation using H = 10
(w, K) = (2, 2) 16 848 2290 6600 82 756
(w, K) = (2, 4) 16 876 2290 6600 82 598
(w, K) = (4, 4) 16 876 1234 6600 124 946

RSA-1024 [14] 131 128 128 7400 215 5495
RSA-2048 [14] 259 256 256 10600 970 41630
ECDSA-160 [10] 40 21 40 43200 423 423
ECDSA-160 [17] 40 21 40 17900 1218 1001

needed for digest generation and the AES engine. Also the signature verification
times are faster than those of RSA and ECDSA. The signature generation time
of our implementation is much faster than the RSA implementations and com-
parable to the ECDSA implementations. In case of H = 10 our implementation
is even faster than the memory efficient ECDSA variant from [17]. The main
drawbacks of the MSS are the large memory requirements for the signature and
the private key. However, both the private key and the signature easily fit into
the EEPROM and the SRAM of the Atmel, respectively.

We finally remark that our implementation provides a practical security of 128
bits and hence offers long term security until the year 2090 [16]. RSA with an
1024-bit modulus offers comparable symmetric security of only 72 bit, i.e. until
the year 2006. The security of 2048-bit RSA is at most 95-bit, i.e. until the year
2040. ECDSA using 160-bit elliptic curves offers only 80 bit of security, i.e. until
the year 2018. This shows that our implementation is not only very competitive
to currently used schemes, but also offers higher practical security [16].

5 Hardware Accelerated AES

The most performance critical part of our MSS implementation is the AES based
hash function. Hence, a natural approach to improve the scheme’s overall per-
formance is to accelerate the AES implementation. Many recent low-/mid- bud-
get smart card processors offer hardware acceleration for symmetric encryption
schemes like the AES. One publicly available platform offering an AES hardware
acceleration is the Atmel ATxmega 128A1 processor.

In contrast to the software implementation of the SBL construction using AES
that requires 4,081 cycles per block, the hardware accelerated version requires

Fast Hash-Based Signatures on Constrained Devices 115

only 1069 cycles per block. However, the AES engine itself needs only 375 cycles
on the target platform. Besides the overhead for the hash function construction
the remaining cycles are mainly required for the necessary memory management.
Table 3 illustrates the performance of the MSS when utilizing AES hardware
acceleration. This table shows, that speeding up the hash function by a factor
≈ 3.82 results in a speed up of the Merkle signature scheme by roughly the same
factor.

Table 3. Timings and memory requirements of our implementation with and without
AES hardware acceleration

Memory in bytes Time in msec
Scheme spub spriv ssig sROM tverify tsigning

Our MSS-128 implementation using H = 16 / Software AES
(w, K) = (2, 2) 16 1440 2350 6600 85 1230
(w, K) = (2, 4) 16 1472 2350 6600 85 1072
(w, K) = (4, 4) 16 1472 1330 6600 127 1665

Our MSS-128 implementation using H = 16 / Hardware AES
(w, K) = (2, 2) 16 1440 2350 6100 24 362
(w, K) = (2, 4) 16 1472 2350 6100 24 317
(w, K) = (4, 4) 16 1472 1330 6100 38 504

6 Conclusion

We presented an implementation of the Merkle signature scheme on a low-cost
8-bit microcontroller platform. Our implementation shows that MSS is a com-
petitive signature scheme compared to commonly used signature schemes such
as RSA and ECDSA. Our implementation has smaller code size and faster verifi-
cation times than efficient implementations of RSA and ECDSA. The signature
generation times are faster than RSA and comparable to ECDSA.

When employing an available symmetric crypto coprocessor, even further
speed up can be reached.

Our implementation gives a positive answer to the question whether highly se-
cure and efficient signature schemes can be implemented on constrained
devices.

References

1. Rijndaelfurious implementation (January 2008),
http://point-at-infinity.org/avraes/

2. Atmel. Overview of secure avr microcontrollers 8-/16-bit risc cpu (2007),
http://www.atmel.com/products/SecureAVR/

3. Atmel. Specifications of the atmega128 microcontroller (2007),
http://www.atmel.com/dyn/resources/prod documents/doc2467.pdf

http://point-at-infinity.org/avraes/
http://www.atmel.com/products/SecureAVR/
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

116 S. Rohde et al.

4. Buchmann, J., Coronado, C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS - an
improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006)

5. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer, Heidelberg (2007)

6. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited
(manuscript, 2008),
http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/dahmen.html

7. Cheng, X., Li, W., Znati, T. (eds.): WASA 2006. LNCS, vol. 4138. Springer, Hei-
delberg (2006)

8. Coronado, C.: On the security and the efficiency of the merkle signature scheme.
Cryptology ePrint Archive, Report 2005/192 (2005), http://eprint.iacr.org/

9. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005)

10. Driessen, B., Poschmann, A., Paar, C.: Comparison of Innovative Signature Al-
gorithms for WSNs. In: Proceedings of the First ACM Conference on Wireless
Network Security (to appear)

11. ePractice.eu. Belgian electronic ID card officially launched (April 2003),
http://www.epractice.eu/document/2139

12. Digital signature standard (DSS). FIPS PUB 186-2 (2007),
http://csrc.nist.gov/publications/fips/

13. Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A., Mueller, F., Sichitiu,
M.: Analyzing and modeling encryption overhead for sensor network nodes. In:
WSNA 2003: Proceedings of the 2nd ACM international conference on Wireless
sensor networks and applications, pp. 151–159. ACM Press, New York (2003)

14. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)

15. Labor, D.: Crypto-avr-lib (January 2008),
http://www.das-labor.org/wiki/Crypto-avr-lib

16. Lenstra, A.K.: Key lengths. Contribution to The Handbook of Information Security
(2004), http://cm.bell-labs.com/who/akl/key lengths.pdf

17. Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptog-
raphy in Wireless Sensor Networks. Technical Report TR-2007-36, North Carolina
State University, Department of Computer Science (November 2007)

18. Luk, M., Perrig, A., Whillock, B.: Seven cardinal properties of sensor network
broadcast authentication. In: Proceedings of the fourth ACM workshop on Security
of ad hoc and sensor networks, pp. 147–156 (2006)

19. Menezes, A.J., Vanstone, S.A., van Oorschot, P.C.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

20. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

21. Naor, D., Shenhav, A., Wool, A.: One-time signatures revisited: Have they become
practical. Cryptology ePrint Archive, Report 2005/442 (2005),
http://eprint.iacr.org/

22. Steinberger, J.P.: The collision intractability of mdc-2 in the ideal-cipher model.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 34–51. Springer,
Heidelberg (2007)

http://www.cdc.informatik.tu-darmstadt.de/mitarbeiter/dahmen.html
http://eprint.iacr.org/
http://www.epractice.eu/document/2139
http://csrc.nist.gov/publications/fips/
http://www.das-labor.org/wiki/Crypto-avr-lib
http://cm.bell-labs.com/who/akl/key_lengths.pdf
http://eprint.iacr.org/

Fast Hash-Based Signatures on Constrained Devices 117

23. Viega, J.: The AHASH Mode of Operation (manuscript, 2004),
http://www.cryptobarn.com/

24. Yu-long, S., Jian-feng, M., Qing-qi, P.: An Access Control Scheme in Wireless
Sensor Networks. In: IFIP International Conference on Network and Parallel Com-
puting Workshops, 2007, pp. 362–367 (2007)

http://www.cryptobarn.com/

Fraud Detection and Prevention in Smart Card

Based Environments Using Artificial Intelligence

Wael William Zakhari Malek1, Keith Mayes2, and Kostas Markantonakis3

Royal Holloway, University of London
Egham, Surrey, TW20 0EX, United Kingdom
{Keith.Mayes,K.Markantonakis}@rhul.ac.uk

www.malek@gmail.com

Abstract. This paper discusses the development and research for the
detection of fraud in Smart-Card environments by using artificial intelli-
gence. The current research deals with behaviour based detection engine,
which will detect abnormalities by learning the usual behaviour of the
user and detecting new unusual behaviours. The behaviour-based de-
tection engines is based on ‘Neural Networks’. This work considers the
feasibility of implementing ‘Neural Network’ fraud engine on a Smart
card platforms.

1 Introduction

There are many reasons for researching fraud detection mechanisms. Certain
types of fraud are still very hard to detect by current technical security mea-
sures. Telecommunication and other Smart card based industries, such as pay-
ment cards, are still very vulnerable to fraud. The use of sophisticated fraud
detection techniques can assist in early detection and prevention. Neural Net-
works and behaviour-based detection engines add true artificial intelligence to
the security defences of the system, rather than the more conventional signature
based security measures. With intelligent security in place, the development cycle
of industry applications could go further and faster and take bold steps towards
the future.

In researching this paper a Fraud Engine based on an Artificial Neural Net-
work (ANN) was implemented on a Smart card in order to asses the performance
and the general feasibility of this approach. The motivation was that, the intel-
ligent behaviour-based security mechanisms can provide added protection for
critical systems. Of particular interest is the real-time detection and reaction to
fraudulent behaviours [1]. Any suspicious or unusual activities are captured and
prevented instantly. With real artificial intelligence implemented using Neural
Networks, behaviour based security mechanisms promise to be at the same step
as the attacker and not a step behind. Using this kind of approach to security
brings it down to the personal level, meaning fraud should be detectable for
every single user or customer depending on his usage characteristics.

The Smart card environment is very limited, e.g. it has very limited memory
and processing power and even modern Java Cards still have a restricted Java

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 118–132, 2008.
c© IFIP International Federation for Information Processing 2008

Fraud Detection and Prevention in Smart Card Based Environments 119

Card Runtime Environment(JCRE). In this paper the possibility of using Artifi-
cial Neural Networks to detect fraud and unusual behaviour is investigated. The
fraud engine implementation is tested on a PC environment and we will discuss
the feasibility of the implementation on a Java Card. In the next section, we
will discuss Neural Networks concept and how the brain works. In section 3, we
will discuss the design and implementation challenges related to implementing
an ANN on a smart card. In section 4, we will discuss the functionality of a
fraud engine based on ANN. Finally, we will discuss the results and the benefits
of using such a tool as well as the future suggested work.

2 Neural Networks Concepts

It can be argued that a behavioural based fraud detection engine protects and
provides added security to Smart card based systems. It is considered necessary
to add such a measure to security because Smart card applications such as bank-
ing cards and SIM/USIM mobile cards have become a crucial part of everyday
life. Since, Smart Cards have become a part of our critical transactions, they can
learn our habits and behaviours as we use them. A behavioural based security
measure is an attractive method of protection but requires a sensitive but reli-
able detector. The proposed security mechanism is heavily dependent on Neural
Networks and the degrees of intelligence they provide, as they learn the usual
behaviour and are able to easily detect and stop the unusual ones. The idea
behind the Neural Networks is to provide an artificial brain that will learn the
same way that the human brain learns [2]. According to the required knowledge
it will start to make decisions when anomalies are detected.

2.1 How the Brain Works

Before considering an artificially intelligent mechanism it is necessary to first un-
derstand a little about how the human brain works. The human brain has about
100 billion cells [3]. Most of these cells are called neurons. The interaction of mul-
tiple cells is called a neural network or biological neural network. A neuron is an
on/off switch and is either in a resting state (off) or it is shooting an electrical im-
pulse down a wire (on) [4]. It has a cell body, a long wire which is called an Axon,
and at the very end it has a little part that shoots out a chemical. This chemical
goes across a gap which is called Synapse where it triggers another neuron to send
a message as shown in Figure 1 [5, 6]. There are are many neurons sending mes-
sages using Axons to communicate with the neighboring cells [7]. As the message
goes down an Axon to a neighboring cell it could pass through a lot of other cells
on the way until it stops at a certain destination as shown in Figure 1. The estab-
lishment of this route, which starts from a starting cell to a destination cell, when
activated is called learning [6]. Learning occurs by changing the effectiveness of
the synapses so that the influence of one neuron on another changes [3].

According to the concept on how learning happens in the brain, scientists were
able to create an Artificial Neural Network (ANN) based on the understanding

120 W.W.Z. Malek, K. Mayes, and K. Markantonakis

Fig. 1. Neuron Cell Connection [18]

of how the brain’s Biological Neural Network works [5]. The aim was to simulate
the human brain on an application and employ it to provide the advantages of
the human brain and make it available to maximize the performance of systems
and applications or even the actual computers.

Artificial Neural Networks are typically composed of interconnected units,
similar to the brain. There are input units which serve as the denderites in
the brain [8]. The function of the synapse is modeled by a modifiable weight,
which is associated with each connection between the dendrites (input units)
and other units (other cells). Each unit converts the pattern of incoming input
(experience) that it receives from the other units into a single outgoing activity
that it broadcasts to all other units. It multiplies each incoming input by the
weight of the connection and adds together all these weighted inputs to get a
quantity called the total input [8] Figure 2.

The behaviour of an ANN depends on both the weights and the input-output
function (transfer function) that is specified for the units. When the inputs are
received through the input units, the output is calculated and all the weights in
the middle, between the input units and the output units, are modified. Through
this process learning happens. In other words, learning take place in an ANN
by modifying the weights according to some learning mathematical calculations
and functions, which take place at every unit. The behaviour of the output units
depend heavily on the activity of the hidden units and the weights between the
hidden and output units [9].

2.2 Artificial Neural Network Advantages

The fact that the ANN can detect patterns, identify familiar ones, as well as iden-
tify anomalies and give a best guess is a remarkable advantage over any other
conventional design. In addition, the ANN will not need a constant increase in

Fraud Detection and Prevention in Smart Card Based Environments 121

Fig. 2. Artificial Neural Network

size as it gets smarter, which makes it a unique approach to designing complex
and intelligent applications. The smarter the human brain gets through educa-
tion, the more memory it holds and the more information it contains, however
the brain does not get bigger the more education we get. The same idea works
for the ANN. We might decide to implement more hidden layers or hidden units
but that does not happen as frequently as assigning new memory slots in a data
base design approach. Another advantage is that, to calculate an output for
a given input, the ANN goes through series of mathematical functions. These
functions are heavily dependent on addition and subtraction in plus some simple
multiplication or division that does not take a lot of processor time. In other
words, it is fast to calculate and efficient, which makes it suitable for hardware
implementation and restricted environments such as Smart Cards platforms.

2.3 Existing Artificial Neural Network Based Systems

There are already systems that are designed to analysis behaviour to detect
potential fraud. Such systems, known as Fraud Engines, are based on studying
a certain behaviour and reporting if a different behaviour is detected. Neural
Fraud Management Systems (NFMS) that are completely automated and state-
of-the-art integrated system of neural networks, Fraud Detection Engines and
Automatic Modeling Systems [10, 11].

A machine learning, anomaly-detection ANN based system can be used to
address the shortcomings of rule-based systems. Rather than having to wait for
a new attack to be detected and for a new rule to be written by an expert, these
systems automatically and immediately detect unusual behaviour for each user
and for groups of users. Behavioural systems are inherently future proof as they
can spot new types of attacks the first time that they are executed. An effective
anomaly detection system relies on clustering algorithms that are is based on
Artificial Neural Networks. A clustering algorithm groups similar transactions

122 W.W.Z. Malek, K. Mayes, and K. Markantonakis

into a small number of clusters. Each cluster represents a common pattern of
activity. Each time a new transaction is processed by the anomaly detection
system, the system tries to fit it into an existing cluster. If a transaction does
not fit into any cluster, it is classified as an anomaly [12].

3 Neural Networks and Smart Cards

The aim of this paper is to examine the feasibility of implementing a neural
networks based fraud engine on the Smart card it-self and not on the centralised
processing systems, such as Visa or the mobile phone authorisation systems. The
fraud engine will be installed on the Smart card in order to evaluate the current
card behaviour and analyse the card usage and authorise actions accordingly.
The usage behaviour will be stored on the card. If unusual behaviour is detected
the carrier device of the Smart card will ask the user a secret question that only
the legitimate user can answer. If the secret question is answered properly the
requested use will be permitted and the card’s ANN will learn the new behaviour
so the user will not be prompted again when performing a similar task. In the
case of the user not being able to answer the security question, the requested use
will not be allowed and the card will be temporarily locked. This implementation
guarantees that only the Smart card holder is the one in full control of the card
all the time, and if the card is to be stolen, the card cannot be used to commit
fraudulent activities. Of course before this scenario can be considered we must
first determine if it is indeed feasible to implement the ANN on a smart card.

In this section we review the limitations of the Smart card environment and
examine the possibility of implementing an ANN on Smart card. on a Smart
card and in particular a card platform supporting the Java Card Run Time
Environment (JCRE).

3.1 Design Challenges

In this section we will introduce the challenges that faces the design and the
implementation of an Artificial Neural Network on a smart card.

Data Structures. As mentioned earlier, to be able to successfully implement
an ANN we will need to store the weights in a data structure that will facilitate
access and modification of the weights. In the research we used multidimensional
arrays to store the different sets of weights, but in JCRE multidimensional arrays
are not supported, which means this data structure is no longer viable for use
by the ANN tool. JCRE supports one dimension arrays which is the only data
structure available and so a conversion from multidimensional arrays to one
dimensional arrays is a must.

To be able to implement this conversion successfully the ANN tool’s code need
to be reviewed carefully to guarantee that the tool is accessing the correct weights
at any point in time. The design of the ANN needs to be modified in order generate
results as per the original design. In the next section we show the original code and
the modified code to demonstrate how the conversion is possible as per Figure 4.

Fraud Detection and Prevention in Smart Card Based Environments 123

Fig. 3. Mapping two-dimensional array to one-dimensional array

As shown above, if the mapping process is implemented successfully, we can
have an ANN implemented based on a single dimensional array. The access to the
weights to the single dimensional array will need to be modified. For example, in
the ’for loops’ used to access and modify the weights instead of using a double index
(2,3)we will only use a multiple of the rowplus the column number (i×2 +3),where
i is the number of rows (Figure 4). By applying this formula we can overcome the
first challenge and be able to access the weights correctly and modify them safely.

Complex Math. Due to the limited processing power of the Smart card’s
CPU, complex calculations are not recommended as they will be very time con-
suming and therefore impractical. In theory, only addition and subtraction take
minimal time. Multiplication (which is simply a multiple addition) and division
are very time-consuming, and should be avoided if possible. The manipulation
of the weights is very simple; it is only a formula with simple math such as
division and multiplication. However, the activation function which is used in
clustering and mapping behaviours necessitates some demanding maths by using
complex functions such as Sigmoid [8]. The Sigmoid function needs to calculate
the exponentials of the weights.

The first attempt to solve this complex problem is to implement the exponen-
tial function by using simple math only which is possible if the concept of the
exponential function is understood correctly. The exponential function, EXP(x),
is defined as the sum of the following infinite series [13]:

One obvious way of writing this program is computing each term directly
using the formula (xi/i!). However, this is not best practice, since both xi and
i! could get very large when x or i is large. One way to overcome this problem is
rewriting the term [13] as shown in Figure 5.

Therefore, the (i+1)th term is equal to the product of the i-th term and
x/(i+1) [13]. The second design makes it feasible to implement using a simple
’for loop’ in addition to some simple math such as addition and multiplica-
tion. However, although this implementation was feasible for some computing
platforms, it is not suitable for restricted environments such as Smart Cards. The

124 W.W.Z. Malek, K. Mayes, and K. Markantonakis

Fig. 4. Implementing the Exponential Function [13]

computation time needed to calculate the right exponent is completely depen-
dent on the number fed into the function and the tolerance level. If the tolerance
level is low, the time needed to calculate EXP(x) is long, but if the tolerance
level is high, the time is less, but the accuracy is poor.

Another proposal is to replace the exponential activation function by the
identity function to simplify the procedure, but extra limits are then needed
to be added to help the weights not to converge in magnitude and cause an
error (Figure 6). As a solution, instead of using Sigmoid functions, which need
complex calculations, we use a threshold function that keeps the weights within
the required limits (Figure 6).

Fig. 5. Sigmoid Function graph [35], Threshold Step Function

By using the threshold step function we are able to comply and fall within the
limitation of the Smart card environment and be able to come a step closer to-
wards implementing a successful application that better cope with a Smart card.

3.2 Implementation Challenges

ANN with Integer Weights. The main challenge is that the Smart card envi-
ronment does not support Float or Double types. Meaning that, it only supports

Fraud Detection and Prevention in Smart Card Based Environments 125

integer and Short types; types with a minimal precision. The entire ANN imple-
mentation had to rely on integer maths only. This is a major challenge in the
design of the ANN that can affect the results dramatically. Selecting weight pre-
cision is one of the important choices when implementing ANN and may be used
to trade-off the capabilities of the realised ANN against the implementation cost
[14]. A higher weight precision means fewer quantisation errors, while a lower
precision leads to simpler designs, greater speed and reductions in area require-
ments and power consumption, which is ideal for the Smart card environment
[14]. By keeping the precision to a minimum, we will be improving efficiency and
speed as well as complying with the power restrictions [14].

There has been extensive research in this area proposing advanced algorithms
that use only neural networks with integer weights that produces similar accu-
racy with minimum error rates [15]. The majority of those algorithms use the
negative of the gradient of the error function, E(w), as their descent direction.
The gradient E(w) can be computed by the BackPropagation [16, 17] of the error
through the layers of the network. This calculation, however, is computationally
expensive and difficult to implement in hardware [16]. In this paper, a new class
of ANN that do not need the floating point weights, has to be researched. Other
algorithms, that train neural networks with threshold units, require the learning
task to be static. However, in order to train the network ’off-line’ in a software
simulation and later transfer it to the hardware [18]. Card and so many real
life applications may not be static, i.e., input data may continue to change even
after the hardware implementation, which is the situation in the case of an ANN
on a Smart card, the learning should take place as the user uses the Smart card.
In such cases an algorithm capable of continuing training ’on-chip’ is needed.
There have been some proposed strategies that are capable of continuing the
training process in hardware, when threshold activation functions have been
used [18].

By using algorithms that only uses integer math in restricted environments
such as Smart Cards, we guarantee speed and reduced space requirement. Integer
math will result in a reduction in power consumption and maximising the limited
performance. An ANN with only integer math will have integer weights only,
which is proved to be faster and more accurate compared to networks with
floating point weights [19]. However, using only integer math will require all
values in the design to be integers such as the error rates and the weight change
variables. If such variables are rounded up or down, this might increase or freeze
the error rate which will cause inaccuracy in the calculations. By using fixed
point math a number can be represented in two parts, an integer part and a
fractional part.

Solution - Integer Math and Bit Manipulation. Every unsigned integer
in the new proposed design is represented by 8 bits. The lowest order 3 bits
represent the fractional part of a number and the remaining 5 bits represent the
integer part, for example [19]:

126 W.W.Z. Malek, K. Mayes, and K. Markantonakis

0 = 00000.000 , 2 = 00010.000, 1.25 = 00001.010

So that the full range of this number is:
00000.000 to 11111.111 = 0 to 31.875
Now we can use normal integer arithmetic operations and bit
shift the operands or result to acquire the correct answer.
For example [19],
Multiplication
00001.010 * 00010.000 (1.25 * 2.0) = 10100.000
The integer maths has [effectively] performed the
multiplication with an extra factor of 23 or 1000 binary,
which we can now adjust for by shifting the answer
3 bits to the right:
10100.000 >> 3 = 00010.100 (2.5 decimal).[19]
Division
00001.010 / 00010.000 (1.25 / 2.0)
If we wish to keep the same level of precision in the
answer then we must first shift the numerator 3
bits to the left,
00001.010 << 3 = 01010.000
Now we can perform the integer division,
01010.000 / 00010.000 = 00000.101 (0.625).[19]
Addition / Subtraction
00001.010 +00010.000 (1.25 + 2) = 00011.010 (3.25)
This is the correct answer. No manipulation required.[19]

The bit shifting technique is the ideal way of implementing ANN on a Smart
card, as it will save both power and computation time. The bit shifting tech-
niques could be incorporated and calculated in the activation function so we do
not need to perform the bit shifts in the ANN actual calculations. From experi-
mental results it has been proved that this design is actually slightly faster than
any ANN using floating point weights [16], which is a great achievement that
emphasises the idea of having an ANN on a Smart card.

4 The Fraud Engine

4.1 Design

The design of the fraud engine is based on a neural network with Back Prop-
agation learning algorithm, where we modify the weights by the error rate
produced from calculating the difference between the desired and the actual
outputs. The neural network should receive some inputs and produce a decision
(Approve/Reject), Figure 3. The inputs will depend on the use of the tool e.g.
if it is used as a Telecommunication fraud engine, the inputs could be a phone
number and a time of call, or duration of call and a destination country. If the
fraud engine is used for a payment card, the inputs could be an amount of a

Fraud Detection and Prevention in Smart Card Based Environments 127

transaction and a time of transaction. The inputs to the fraud engine must de-
fine the user behaviour and be crucial to the purpose and use of the Smart card.
The decision is based mainly on the ANN weights that have been learnt and
optimised from previous. If the Smart card is used for the first time it will start
recording the first few activities which will reflect its decision on the future ones.

Fig. 6. Our proposed design of a fraud engine

4.2 How Will It Work?

The weights are originally randomly initialized and stored in a multidimensional
array. The network has 3 layers i.e. the input layer where the inputs are fed to the
network, the hidden layer where extra cells and neurons exist and the output
layer which is the decision enforcement point. The inputs to the network are
specified by the environment of the Smart card e.g. the telecommunication SIM
cards might have inputs such as call information and financial Smart Cards such
as credit cards might have transaction information as inputs. The inputs are fed
to the network and the learning process starts. After the first few transactions
the network starts to build an idea about the user and his behaviour which
defines the thresholds for the user’s actions. As the learning process progresses
the weights change and they have different magnitudes that reflect the network’s
new state. Future behaviours are reflected by new inputs which are fed to the
network, if the behaviour is recognized the output is positive and approval of the
behaviour is guaranteed otherwise the user will be asked for security questions
which he should answer correctly if he is the genuine owner of the Smart card at
the time. If the answer is correct, the action is permitted and the new behaviour
is learned, otherwise the action is prohibited.

4.3 The Fraud Engine Tool

In this example we will assume that this tool is implemented for use on a mobile
phone to provide a behavioural based fraud detection engine. The inputs could
be assigned by the manufacturer of the phone, but in this example we will use 2
inputs only; the time of the call and the call destination. Ideally the time of the
call should be easily understood and interpreted by the Fraud Engine, but we

128 W.W.Z. Malek, K. Mayes, and K. Markantonakis

might have some complications with (AM/PM) timing. For simplicity we will
divide the day into 4 hour intervals and we will refer to them as Time Zones and
they will be numbered as follows:

12:00:00 PM until 04:00:00 PM: Zone 1
04:00:01 PM until 08:00:00 PM: Zone 2
08:00:01 PM until 12:00:00 AM: Zone 3
12:00:01 AM until 04:00:00 AM: Zone 4
04:00:01 AM until 08:00:00 AM: Zone 5
08:00:01 AM until 12:00:00 AM: Zone 6

The time zone will be one of the inputs to the fraud engine, the second input
will be another number reflecting the destination of the call which will be called
the Destination Number. It could be represented by another set of numbers which
reflect the destination country or even the city. Assuming it will be ranging from
(0..9), where 0, 1 are reserved for local calls and (2..5) for continental calls and
(6..9) for international calls. When the user attempts to make a phone call, both
the number called and the local time of the call are translated by the phone into
the corresponding Destination Number and Time Zone which will be fed into
the ANN for processing.

During the setup process of the phone with the new SIM Card, the phone
should be able to store securely some information about the SIM Card holder
such as an OIN, birth date, age, address, postal code, house number, a mem-
orable word, a memorable day or any piece of information that the user could
remember later on and be able to be authenticated to the phone or the SIM
Card if requested. After the setup process, the information retrieved should be
stored locally and securely on the mobile phone, Figure.

Fig. 7. Provide setup information, which is done only once at the beginning and the
information is then kept secret

Fraud Detection and Prevention in Smart Card Based Environments 129

4.4 Scenarios

In the first scenario, we assume that the user of the mobile and the SIM Card
make only local calls between 12:00 PM and 8:00 PM, which means the ANN
is trained to accept and approve calls to local destinations on Time Zones 1
and 2 and 3. A call interpreter function translates a call action to two inputs;
the destination (0,1) and the time zones (1,2,3) which represent the user’s be-
haviour. The fraud engine was tested by first making a similar call behaviour
(Figure 3). Which means the interpreter will translate the similar call behaviour
to the inputs (1,2) as for ”‘Local Call, at 5:30 PM”’. In the second test scenario,
we assume that the same user attempts to call China at 5:00AM interpreted by
the input pair (8, 5), which is an unexpected behaviour. This anomaly will be
detected by the fraud engine and it will not be approved as it is an unexpected
behaviour that is not been learned by the ANN. In this case the user will be re-
quired to further authenticate himself and prove that he is the legitimate owner.
For example, the user may be prompted for a random question based on the
reference information stored earlier. If the user is able to give the correct answer
the action or the call will be granted and the new behaviour will be learned,
otherwise the card could be blocked or the user is transferred automatically to
the customer service line Figure 3.

Fig. 8. Approved call or expected behaviour

In these two scenarios we were able to show how a behavioural based fraud
engine can defeat fraud and recognise an unusual behaviour, which could help
limit the use of stolen Smart Cards and provide a second wall of defence against
stolen SIM Cards and mobile phones. As shown earlier it is quite effective and
user-tolerant as well. As an enhancement, the security questions could be be-
haviour based, such as asking the user about the most dialed number, or the
last dialed number, or the last call received. These questions provide greater se-
curity, but there could be greater inconvenience for the user. Extensive research

130 W.W.Z. Malek, K. Mayes, and K. Markantonakis

has to be carried out by the mobile phone manufacturers or the SIM card issuers
to find the best questions that provide both convenience and good security.

Apart from the choice of good security questions there are other challenges
that need to be addressed such as interoperability. If the SIM card is to be
removed from a handset and placed in another, would all the previous behaviours
be lost? The answer to this question would depend on the design of the fraud
engine. As mentioned earlier, the weights are the heart of the ANN and they
reflect the state of the artificial mind. If the weights are to be stored on the phone,
all the information would be lost if the SIM card moves to another handset. The
solution is for the weights to be stored on the SIM card itself so it is possible to
move the SIM card to another handset with a compatible fraud engine that will
retrieve the weights and continue to offer the same level of protection.

Another challenge is the tolerance level. Low tolerance from the fraud engine
will trigger more security questions which might effect customer satisfaction and
cause the customer to switch the tool off, but it will provide higher security.
Conversely, high tolerance will achieve better customer satisfaction, but lower
the security. The solution to this is to train the ANN offline with the worst case
scenarios of fraud as well as to first train for the expected use depending on
the purchased calling plan. This initial training will provide a basic protection
level that the user will be able to develop and customize according to his own
habits. This approach will be useful and effective both in decreasing the alerts
and increasing security.

One of the most important challenges is to be able to correctly learn the
user behaviour and be able to adapt to the user’s life style changes. In modern
phones the user can choose different profiles of use. Every profile has ring tones,
wallpaper, calling properties such as barring and forwarding, favorite numbers,
etc. Every profile may represent a different life style such as work, travel (where
roaming should be considered as typical behaviour), weekends and personal use.
For every profile there could be a different set of weights that represent and
reflect the use of the SIM card. Protection could be extended to cover all the
different sets of behaviours a user can perform. When the profile is changed the
ANN saves the current weights in the previous profile’s security domain and
loads the new set of weights for the new profile.

5 Conclusion

5.1 Benefits

Issuers have systems that protect them against fraud for which they are liable but
these measures may not adequately protect the customer and so added security
mechanisms may be desirable. Building good security and protection around
every Smart card will decrease the pressure on the Card Issuers of having to
counter all problems with centralised security mechanisms. The benefit of the
ANN Fraud Engine is to provide a customised security for every single user. It
provides mechanisms that are designed to protect every user according to his
habits and usage of the SIM Card.

Fraud Detection and Prevention in Smart Card Based Environments 131

5.2 Results

We used a Java card 2.1 compliment for testing the execution of the fraud engine.
It was tested on a simulator machine implemented on a PC. Although there have
been some technical difficulties with recording the execution time on the Smart
card, an approximation of the relative execution times has been recorded on the
simulator. By recording multiple runs and taking an average it was possible to
get an estimate of the execution time. The execution time of the Fraud engine
when making a decision is 4.24 ms, which was achieved by recording 500 runs at
2.12 seconds. The period of time needed for learning a new behaviour is longer
than the time needed to calculate the output of the ANN(make a decision). For
the ANN to learn a new behaviour it needs 37.54ms at each cycle. In other
words, to calculate the output of the network and get the error rate and then
back-propagate to modify the weights it takes 37.45ms. The learning process
will need at least 5 cycles to modify the weights efficiently so this execution time
needs to be multiplied by 5 to get the overall learning time which is 187.70. The
learning process depends on the accuracy of the implementation which means
the better the implementation the faster the execution time. One other major
accomplishment, is the size of the applet implemented. the size of the applet was
879 bytes on the EEPROM.

5.3 Suggested Future Work

After discussing the previous challenges and the obstacles that could affect hav-
ing an ANN based fraud engine on a Smart card, it was possible to find solutions
to the major problems that face such an idea. After implementing and fine-tuning
an ANN algorithm based on the previous findings, it was possible to test it on
a Smart card platform. The results were positive in terms of speed and power
consumption but with some degradation in accuracy. Therefore, More research is
needed in the areas regarding the execution time and the bit shifting algorithm.
There are some ways to improve the execution time. The first would be to test it
on a real card because the simulator environment might not have given the best
indication of the execution time. The host of the simulator machine had limited
memory and other processing tasks, which means the Fraud Engine might actu-
ally perform faster on the actual Smart Card. By tuning the Algorithm of the
ANN further, we might get a better execution time. Another important area to
be researched is the Bit shifting algorithm. There is a current bug in the design
causing the accuracy to be only 70% due to a flaw in the bit shifting algorithm
explained in section 3.2, which means, further tuning of the bit shifting algorithm
is needed in order to achieve better accurancy hence better results.

References

[1] Harris, S.: CISSP, 3rd edn. Hardcover. Osborne (2005)
[2] John, P., Jesan, D.M.L.: Human brain and neural network behavior: A comparison

1, 2–5 (2003) [accessed on 3/04/2007], http://www.acm.org

http://www.acm.org

132 W.W.Z. Malek, K. Mayes, and K. Markantonakis

[3] Dewri, R.: Evolutionary neural networks: Design methodologies 1, 1–5 (2003)
[accessed on 9/02/2007], http://aidepot.com/articles/evolutionary-neural-
networks-design-methodologies/

[4] Davalo, E., Patrick Naim, A.R.: Neural Networks. MacMillan Education Limited,
Basingstoke (1991)

[5] Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A.: From Neuron To Brain,
4th edn. Sinauer Associates Inc. (2001)

[6] Stergiou, C.: Neural networks, the human brain and learning 1, 1–3 (1996)
[accessed on 14/06/2007],
http://www-dse.doc.ic.ac.uk/nd/surprise96/journal/vol2/cs11/article2.

html

[7] Khanna, T.: Foundations of Neural Networks. Addison-Wesley, Reading (1990)
[8] Fausett, L.: Fundamentals of Neural Networks. Prentice-Hall, Englewood Cliffs

(1994)
[9] Omid Omidvar, J.D.: Neural Networks and Pattern Recognition. Academic Press,

London (1998)
[10] Dimension, N.: Fraud detection using neural networks and sentinel solutions

(smartsoft). 1, 1–3 (2006) [accessed on 17/06/2007],
http://www.nd.com/resources/smartsoft.html

[11] Khan, A.: Feedforward Neural Networks with Constrained Weights. PhD thesis,
Univ. of Warwick, Dept. of Engineering (1996)

[12] VeriSign: Verisign identity protection fraud detection service an overview.
Whitepaper, VeriSign (2006)

[13] University, M.: Exponential function 1, 1–3 (2004) (12/07/2007),
http://www.cs.mtu.edu/shene/COURSES/cs201/NOTES/chap04/exp.html

[14] Vassilis, P., Plagianakos, M.N.V.: Parallel evolutionary training algorithms for
hardware-friendly neural networks. Technical report, University of Patras, GR-
26110 Patras, Greece (2002)

[15] Pavlidis, N.G., Tasoulis, D.K., Plagianauos, V.P., Nikifuridis, G., Vrahatis, M.N.:
Spiking neural network training using evolutionary algorithms. Technical report,
3Department of Pathology, University Hospital, GR26500 Patras, Greece (2001)

[16] Vassilis, P., Plagianakos, M.N.V.: Training neural networks with threshold acti-
vation functions and constrained integer weights. Technical report, University of
Patras, GR-26500, Greece (2001)

[17] Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N.: Hybrid methods using evolu-
tionary algorithms for online training. Technical report, Department of Informa-
tion Systems and Computing, Brunel University, Uxbridge UB8 3PH (2001)

[18] Sutton, J.Z.P.: Fpga implementations of neural networks - a survey of a decade of
progress. Technical report, University of Queensland, Brisbane, Queensland 4072,
Australia (2004)

[19] SharpNeat-Developers: An integer based neural network, sharpneat.sourceforge.
net. 1, 1–5 (2004),
http://www.sharpneat.sourceforge.net/integernetwork.html

http://aidepot.com/articles/evolutionary-neural-networks-design-methodologies/
http://aidepot.com/articles/evolutionary-neural-networks-design-methodologies/
http://www-dse.doc.ic.ac.uk/nd/surprise96/journal/vol2/cs11/article2.html
http://www-dse.doc.ic.ac.uk/nd/surprise96/journal/vol2/cs11/article2.html
http://www.nd.com/resources/smartsoft.html
http://www.cs.mtu.edu/shene/COURSES/cs201/NOTES/chap04/exp.html
http://www.sharpneat.sourceforge.net/integernetwork.html

The Trusted Execution Module: Commodity

General-Purpose Trusted Computing

Victor Costan, Luis F.G. Sarmenta, Marten van Dijk,
and Srinivas Devadas

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, USA
victor@costan.us, {lfgs,marten,devadas}@mit.edu

Abstract. This paper introduces the Trusted Execution Module
(TEM); a high-level specification for a commodity chip that can exe-
cute user-supplied procedures in a trusted environment. The TEM is
capable of securely executing partially-encrypted procedures/closures ex-
pressing arbitrary computation. These closures can be generated by any
(potentially untrusted) party who knows the TEM’s public encryption
key. Compared to a conventional smartcard, which is typically used by
pre-programming a limited set of domain- or application- specific com-
mands onto the smartcard, and compared to the Trusted Platform Mod-
ule (TPM), which is limited to a fixed set of cryptographic functions
that cannot be combined to provide general-purpose trusted computing,
the TEM is significantly more flexible. Yet we present a working im-
plementation using existing inexpensive Javacard smartcards that does
not require any export-restricted technology. The TEM’s design enables
a new style of programming, which in turn enables new applications.
We show that the TEM’s guarantees of secure execution enable exciting
applications that include, but are not limited to, mobile agents, peer-to-
peer multiplayer online games, and anonymous offline payments.

1 Introduction

The Trusted Execution Module (TEM) is a Trusted Computing Base (TCB) de-
signed for the low-resource environments of inexpensive commercially-available
secure chips. The TEM can securely execute small computations expressed as
partially-encrypted compiled closures. The TEM guarantees the confidentiality
and integrity of both the computation process, and the information it consumes
and produces. The TEM’s guarantees hold even if the compiled closure author
and the TEM owner do not trust each other. That is, the TEM will protect
the closure’s integrity and confidentiality against attacks by its owner, and will
protect itself against attacks by malicious closure authors. The TEM does not
trust the authors of the programs it runs. A malicious closure cannot negatively
impact the TEM it runs on, and it cannot maliciously interfere with the result
of closures written by other authors. This implies that there is no need for a
program certification system.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 133–148, 2008.
c© IFIP International Federation for Information Processing 2008

134 V. Costan et al.

The TEM executes compiled closures in sequential order, in a tamper-resistant
environment. The execution environment offered by the TEM consists of a vir-
tual machine interpreter with a stack-based instruction set, and a single flat
memory space that contains executable instructions and temporary variables.
The environment is augmented with a cryptographic engine providing standard
primitives and secure key storage, and with a persistent store designed to guar-
antee the integrity and confidentiality of the variables whose values must persist
across closure executions. The persistent store is designed to use external un-
trusted memory, so its capacity is not limited by the small amounts of trusted
memory available on inexpensive secure hardware.

The TEM’s design focuses on offering elegance and simplicity to the software
developer (the closure author). The instruction set is small and consistent, the
memory model is easy to understand, and the persistent store has the minimal
interface of an associative memory. The breakthrough provided by the TEM is
the capability to execute user-provided procedures in a trusted environment, for
the low price of a commodity chip.

We have implemented the TEM on an inexpensive, commercially-available
JavaCard. The TEM’s prototype implementation shows that the design is prac-
tical and economical. The research code implements a full stack of TEM software:
firmware for the smart card, a Ruby extension for accessing PC/SC smart card
readers, a TEM driver, and demo software that uses the driver. The prototype
implementation leverages the advanced features of the Ruby language to provide
a state of the art assembler which makes writing compiled closures for the TEM
very convenient.

The TEM enables new applications by combining the flexibility of a virtual
machine guaranteeing trusted execution with the pervasiveness of inexpensive
secure chips. For example, the TEM can be used to provide provably secure,
simple, and general solutions to mobile agents, peer-to-peer multiplayer online
games, and anonymous offline payments.

The outline of this paper is as follows. We start with related work in section 2
which compares TEM with existing approaches towards trusted computing. The
main concepts used in TEM are introduced in section 3. Section 4 details the
architecture of TEM and section 5 discusses its implementation together with
timing results from experiments. Section 6 explains how to program closures that
can securely migrate between TEMs. This mechanism can be used in applications
such as secure mobile agents and secure peer-to-peer multiplayer online games.
For a more detailed discussion on the TEM and downloadable source code, the
reader is refered to the first author’s Master’s thesis [1].

2 Landscape

Large TCBs: Trusted Modules and Processors. Early solutions to secure
platforms were supplied, most notably by IBM, as tamper-resistant assemblies
that can operate either autonomously or as coprocessors for high-end systems.
A recent representative of these systems is the IBM 4764 co-processor [2], which
is only available for IBM servers under custom contracts.

The Trusted Execution Module 135

Secure processors represent a different approach to trusted platforms. A se-
cure processor costs less than a trusted platform because the secure envelope
only contains the logic found inside CPUs. The AEGIS [3] design provides a
cost-effective method for implementing a secure processor (that embeds an in-
tegrity checking interface to untrusted memory). Compared to the smart card
chips, secure processors deliver higher performance and readily support large
applications, but are much more expensive.

Embedded TCBs: Smart cards. Smart cards [4] are secure platforms em-
bedded in thumb-sized chips. For handling convenience, the chips are usually
embedded in plastic sheets that have the same dimensions as credit cards. The
same chip are used as Subscriber Identity Modules (SIMs) in GSM cellphones.
Smart cards have become pervasive, by offering a secure platform at a low cost.

The ISO 7816 standard regulates the low-level aspects of smart cards [5].
Platforms such as MultOS [6] and JavaCard [7] provide a common infrastruc-
ture for speeding up application development, and allow multiple applications
from different vendors to coexist securely. However, both of these platforms were
intended for monolithic applications that are contained and executed completely
on the smartcard. Applications on a card can only be installed or updated if they
are certified by a trusted entity, which is either the smart-card emitter, or the
platform vendor.

The TEM design makes large applications easier to develop, because it loads
one closure at a time into the secure environment, as opposed to smart cards
that load all the applications at once. The TEM makes update deployment easier,
because open classes are naturally implemented with closures. A TEM is also
more flexible, as it allows its owner to execute any vendor’s applications.

Fixed-Function TCBs: TPMs. The TPM is a fixed-function unit, which
means it defines a limited set of entities (such as shielded locations holding
cryptographic keys or hashes), as well as a closed set of operations that can be
performed with primitives (such as using a key to unwrap another key or to
sign a piece of data). The operations are not sufficient for performing arbitrary
computation on the TPM. Instead, the TPM was envisioned to attest that the
host it is attached to, a general-purpose computer, runs a trusted software stack.
The strength of the bond between the TEM and its host determines the security
of the entire system, since an attacker that compromises the bond can spoof
the attestation system [8], [9]. The TCB on the TPM’s host computer includes
a secure boot loader, an operating system, and drivers. Such a TCB does not
exist, because it is impractical to analyze and certify the large codebases of
modern operating systems, together with their frequent updates. In practice,
TPM applications (e.g., [10]) do not assume a TCB on the host. Thus, they are
not capable of performing trusted arbitrary computation.

The TEM does not require trusted software on its host to perform arbitrary
computation, and does not need to be securely bound to its host. This means
that a TEM can cost less than a TPM, and that existing computers can be
enhanced with TEMs via standard extension buses, like the USB.

136 V. Costan et al.

3 Concepts

3.1 Trust Chain

The method used to attest that a platform offers the security guarantees of
a TEM is a simplification of the TPM’s chain of trust for platform attestation
[11]. The root of trust is the hardware manufacturer (such as Infineon or Atmel),
which acts as a Certificate Authority in a public key infrastructure as defined
in [12]. Each TEM has a unique asymmetric key. The private part of the key
(PrivEK - Private Endorsement Key) is generated inside the TEM at manufac-
turing time, and never leaves the TEM. The public part (PubEK) is included
in an Endorsement Certificate (ECert) issued by the TEM’s manufacturer, at-
testing that PubEK corresponds to a TEM endorsement key. Since a TEM has
exactly one PubEK, the PubEK can be used to identify and track the TEM,
and thus its owner. This may be unacceptable in some circumstances, as it leaks
information about the users’ identity. By adapting the ideas of [11] to augment
the chain of trust, the TEM can be made untraceable (see [1]).

3.2 Closures

The closure is the execution primitive of the TEM. This allows the use of vir-
tually any programming paradigm with the TEM. Compiled closures (described
below) can be implemented in an execution engine that is just a bit more com-
plex than an engine designed for procedural execution. This translates into a
small1 execution engine that is suitable for implementation on embedded plat-
forms.

A closure (originally defined in [14]) is a fragment of executable code, to-
gether with the bindings of the variables that were in scope when the closure
was defined. Closures are extremely powerful, and can be used to implement
most primitive structures in modern programming languages ([15] and [16]). To
provide immediate assurance to readers, listing 1 uses the approach employed
by ECMAscript [17] (also known as JavaScript) to implement Object-Oriented
Programming [18] objects featuring encapsulation.

1 def bank account (account number)
2 balance = 0
3 account = Hash . new
4 account [: balance] = lambda { balance }
5 account [: number] = lambda { account number }
6 account [: d epos i t] = lambda { | amount | balance += amount }
7 account [: withdraw] = lambda { | amount | balance −= amount }
8 end

Listing 1. Bank Account object implemented with closures (functional Ruby)

1 As compared to the Java Virtual Machine [13].

The Trusted Execution Module 137

Fig. 1. The structure of the closures in the Bank Account object. Left: the straight-
forward result. Right: result after de-facto immutable variable optimization.

Figure 1 shows the stucture of the closures created by executing listing 1. Each
object method becomes a closure that contains a sequence of executable code,
and a binding table that associates variable names with pointers to memory cells
storing the variables’ values.

Compiled Closures. The TEM design targets embedded chips, where persis-
tent variables are expensive2. The following optimization, inspired by [19], helps
to reduce the amount of shared memory cells used by a closure. Some of the vari-
able bindings are de-facto immutable (constant). That is, their values will never
be modified throughout the lifetime of the closure. Thus, the constant value can
be stored directly in each closure’s binding table. [19] uses this mechanism to
decide whether frames will be allocated on the stack or in the heap.

For example, it is easy to see that number in listing 1 is de-facto immutable,
and balance is not. So the closures’ binding tables can be optimized to use one
shared memory location instead of two, as illustrated in Fig. 1.

The result in the right of Fig. 1 is further amenable to well-known opti-
mizations, such as removing unreferenced variables from the binding table. For
instance, the variable number is not used at all in the closures balance, deposit,
and withdraw, so it can be removed from their binding tables.

A compiled closure is a closure that has been fully optimized for the com-
puter that is intended to execute it. A compiled closure consists of the following:

– the computation to be performed, expressed as executable instructions that
can be interpreted by the target computer,

– a binding table that contains all the non-local variables,
– values for the non-local variables that are de-facto immutable, and
– pointers to the shared memory locations holding mutable non-local variables.

2 Variables’ values may change, therefore they would have to be stored in EEPROM.
EEPROM is the slowest and most expensive type of on-chip memory.

138 V. Costan et al.

SEClosures and SECpacks. A SEClosure (Security-Enhanced Closure) is a
closure where all the information has been classified as one of the following.

– shared: information whose integrity must be guaranteed by the TEM. For
example, executable code requires integrity in order to detect whether it has
been replaced by malicious code that would output private information.

– private: information that requires confidentiality guarantees from the TEM,
such as a signing key or a secret algorithm. The integrity of private infor-
mation must be protected by the TEM as well. Otherwise, the TEM owner
could learn private information by executing closures where the private in-
formation was modified, and observing the differences in results.

– open: this information is not covered by any guarantee. This has to be
information that the TEM’s owner supplies, as the owner is the only one
who does not need any proof of integrity or confidentiality.

For simplicity, it seems appealing to remove the shared class of information, and
specify that all the information not provided by the closure’s owner is private.
However, SEClosures need to have shared information to allow the TEM owner
to assert certain facts about the computation expressed in the closure.

SEClosures are compiled into a format that the TEM can easily process. A
compiled SEClosure, called a SECpack, has all the shared, private, and open
data grouped together.

Bound SECpacks. Before a SECpack is given to the TEM’s owner, its content
is partially encrypted with the TEM’s PubEK, to protect the private and shared
information. The encryption result is a bound SECpack, containing the same
information as the original SECpack, but in a form that enforces the confiden-
tiality and integrity of the enclosed information. A bound SECpack can only be
executed by a platform possessing the PrivEK corresponding to the PubEK used
for encryption.

Binding (explained below and summarized in Fig. 2) assumes that the TEM’s
PubEK is known and was validated against the TEM’s ECert. The scheme is
inspired by the TPM [11].

PrivateShared Open

Shared

h Shared Private

EncPubEK PrivateHash

Encrypted Open

Compiled Closure

deposit
balance

{ |x|
balance += x}

SECpack

Bound SECpack

Fig. 2. The SECpack binding process

The Trusted Execution Module 139

Binding is performed using the following steps:

1. Let P be the private data, S be the shared data, and O be the open data.
2. Use a cryptographic hashing function h (e.g., SHA1 [20]) to compute a digest

H = h(P||S) of the concatenation of the private and the shared information.
3. Use the TEM’s Public Endorsement Key to encrypt the private information

together with the digest; E = EncPubEK

(
P||H

)
.

4. The bound SECpack is the concatenation (S||E||O) of the encryption result
E , the shared information S, and the open information O.

3.3 Persistent Store

The values of mutable variables are stored inside a secured global persistent
store (Fig. 3), indexed by addresses that are at least as large as cryptographic
hashes. An address identifies a value, and at the same time shows proof of au-
thorization to access that value. The information in the persistent store is stored
in a way that prevents any accesses that would bypass the associative memory
abstraction. The values stored in the persistent store have the same size as the
addresses, to avoid memory waste. The associations can be stored in untrusted
memory on the TEM’s host, using the architecture in section 4.3.

Fig. 3. Closure referencing the persistent store, with external memory tree

Assigning Persistent Store Addresses. A mutable variable uses the same
persistent store address on all the TEMs it exists on. Addresses are assigned
during closure compilation, using a random number generator. This simplifies
deployment, because updates to a system can be easily implemented as new
closures that use existing variables (in OOP, this is called open classes). Closures
can also be easily migrated by re-binding the SECpacks to a different PubEK.

The probability of two different variables colliding on a TEM is at least as low
as for Universally Unique IDs [21]. The probability of an attacker compromising
a variable by guessing its address is at least as low as the probability that the
attacker will be able to forge the signature on an Endorsement Certificate and
break the chain of trust directly.

140 V. Costan et al.

Fig. 4. High-Level TEM Block Diagram

PrivEK0 97CF505A1F...

Symmetric Key3 39CF87B22A...

Empty1

Public Key2
Temporary Key

(No Auth Secret)

Fig. 5. Snapshot of a TEM’s Key Store

4 Architecture

The main components of the TEM architecture (block diagram in Fig. 4) are
the execution engine, the cryptographic engine, and the persistent store.

The TEM also contains a communication interface that is mainly a transceiver
for the communication channel between the TEM and its owner. If the commu-
nication between the TEM and its owner occurs via an untrusted channel, the
interface establishes a secure session using a mechanism similar to SSL [22], and
relying on the TEM’s ECert and PubEK to bootstrap the session.

4.1 Key Store

The key store (illustrated in Fig. 5) implements secure key storage, accessible
as an array of key slots. A slot can contain a symmetric key, or the public or
private part of an asymmetric key. This was inspired from the javacardx.crypto
API [7], and chosen because each slot has well-defined encrypt and decrypt
operations.

A key created during SEClosure execution is temporary by default, and is
released when the closure ends executing. A key becomes persistent when it is
given an authorization secret. Secrets have the same size as a cryptographic hash.
A closure gains access to a persistent key by presenting the associated secret.

PrivEK occupies the first slot in a TEM’s key store, and is associated with
an authorization value known only by the platform manufacturer. The manu-
facturer can build “privileged” SEClosures, which use a TEM’s PrivEK to offer
functionality on top of the basic model, such as TPM emulation.

The TEM owner can remove any key from the store, via driver commands.
This prevents the possibility of denial of service by filling up the key store.

The Trusted Execution Module 141

4.2 Virtual Machine Environment

The computation inside a SECpack is expressed as microinstructions for a stack-
based virtual machine (VM). The entire VM interpreter state consists of an
instruction pointer (IP) and a stack pointer (SP). Instructions are encoded as
a 1-byte operation code (opcode), optionally followed by immediate data. The
stack consists of machine word-sized entries.

Using a virtual machine makes the executable code in a SECpack universal.
The alternative of having SECpack executable code target specific hardware
would introduce complexity (multiple target platforms) for the closure compiler,
and would greatly complicate migrating SECpacks among TEMs.

The performance degradation introduced by the virtual machine has no sig-
nificant impact on most TEM applications. Assuming a reasonable VM imple-
mentation, the time cost of one asymmetric key encryption operation dwarfs the
cost of interpreting thousands of VM instructions. Asymmetric key decryption
is invoked for every bound SECpack, because a part of the SECpack must be
decrypted with the TEM’s Private Endorsement Key.

Stack-based instruction sets are easy to interpret and generate from ASTs
(Abstract Syntax Trees), and are used in recent VMs for both medium- and
high-level languages (e.g., the Java VM [13], the Ruby 1.9 VM [23]).

The TEM’s execution environment has a single, flat, RAM-backed mem-
ory space that contains executable instructions, values of local and de-facto
immutable non-local variables, and the virtual machine’s stack. Closures have
direct access to the memory space, for maximum flexibility and performance
(e.g., self-modifying code).

Closures return data by placing it in the output buffer, an append-only
memory zone. If a closure’s execution is aborted, the output buffer is discarded
and nothing is returned. This mechanism simplifies building closures that don’t
leak information.

The VM contains special-purpose instructions accessing the functions of the
cryptographic engine. A closure is automatically authorized to use all the en-
cryption keys that it creates. The SEClosure can also use keys that are already
loaded in the cryptographic engine, once it demonstrates knowledge of their au-
thorization secret. The execution engine enforces these restrictions, and aborts
closures that attempt to use a key before gaining authorization.

The contents of mutable non-local variables are stored in the persistent store
(sections 3.3 and 4.3) between executions. Addresses are stored in memory space,
and values are transferred between the memory space and the persistent store.
If a closure is aborted, all its persistent store updates are rolled back.

The execution engine design completely discards any possibility of concurrent
execution. This makes security guarantees easier to prove. A multi-core TEM
can be modeled as multiple execution engines that share a persistent store where
each SECpack execution is treated as a transaction.

SECpack Contents and Loading. A SECpack consists of a snapshot of the
initial state of the virtual machine’s memory space, together with a header con-
taining a magic value, the initial IP and SP values, and the sizes of S and P

142 V. Costan et al.

(needed to decrypt a bound SECpack). Unbound SECpacks have an empty P .
This makes virtual machine setup trivial, given an unbound SECpack.

A bound SECpack requires that the loader decrypts the private information
P and verifies the integrity of the shared information S. SECpacks that fail the
integrity check H = h(S||P) are rejected.

The loader can use any key in the store (section 4.1) to decrypt a bound
SECpack. This allows for speed optimizations and extensions to the TEM’s
chain of trust. For example, an often-used set of SECpacks can be bound using a
symmetric key instead of PubEK, if the key is somehow transmitted securely to
the TEM. This can dramatically reduce execution time by avoiding asymmetric-
key operations when SECpacks are loaded.

Considerations in the Design of the Instruction Set. The standard in-
structions are heavily inspired by the Java Virtual Machine [13]. The TEM-
specific instructions (cryptography and persistent store) have been developed
while aiming to adhere to the same principles.

The instruction set tries to strike a balance between enabling small SECpacks
and keeping the VM interpreter simple. For example, most instructions operating
on memory blocks have two variants. The fixed block variant (instructions ending
in fxb) receives the information about the blocks (address, and optionally length)
as immediate data. The variable block variants (instructions ending in vb) pop
the block information off the stack. The fixed block variant takes up less space
in a secpack, while the variable block form provides maximum efficiency when
working with variable-length memory structures.

Exceptions were made for instructions that would not occur often in a SEC-
pack (e.g., rnd), so the space savings do not warrant the extra complexity in the
interpreter. The instruction set aims for consistency with respect to mnemonics
and order of parameters.

4.3 Persistent Store Architecture

Backing the Persistent Store by Untrusted Memory. Like AEGIS [3], the
persistent store relies on building a Merkle tree [24] (Fig. 3) where the leaves
store the actual associations, and internal nodes store a cryptographic hash of
their children. The TEM stores the tree’s root in NVRAM but all the other
nodes can be stored in untrusted memory. A symmetric encryption key3 inside
the TEM4 is used to encrypt the two parts (address and value) of each association
individually, so neither part is stored “in the clear” in untrusted memory, and
the TEM can later ask for an association by its encrypted address. The internal
nodes hash the external representation of their children.

The TEM’s host maintains the tree structure. When a closure reads from the
persistent store, the TEM communicates the encrypted address to the host. The
host responds with the encrypted value at the address, and a correctness proof

3 If the law does not allow symmetric encryption, an asymmetric key can be used
instead, at a large performance cost.

4 This key never leaves the TEM, and can be generated cheaply by a PUF [25].

The Trusted Execution Module 143

consisting of all the nodes on the path to the leaf. writes work similarly, but the
correctness proof also describes the updates to be performed on the tree. Rolling
back an aborted closure is done by rolling back the tree root on the TEM.

The external memory tree exhibits amnesia if TEM’s host, who is managing
the tree, can lie by telling the TEM that no association exists for an address,
when in fact an association does exist. Undetected amnesia during a read can
lead a SEClosure to assume that a variable has never been assigned on the TEM,
and that it has its default value. During a write, undetected amnesia can lead the
persistent store to create a duplicate leaf for an association, instead of updating
the existing one. The TEM’s host can then return the (old) duplicate leaf for
reads, effectively making the persistent store “forget” updates to a variable.

Amnesia is detectable if the lies of the TEM’s host can be recognized and
stopped from propagating into incorrect SEClosure execution. For example, am-
nesia is detectable if, for every persistent store operation, it is known in advance
if the persistent store already contains an association for the requested address.

If amnesia is not detectable, the correctness proofs given by the TEM’s host
must ensure that amnesia cannot occur. In particular, the host must be able
to prove efficiently that the tree does not contain any occurence of an address.
This requires external trees that are sub-optimal for a sparse address space (e.g.,
trees with a fixed branching factor), or complex to implement (e.g., binary search
trees).

In comparison, if amnesia can be recognized, the TEM’s host does not need
to supply any proof when it states that an address does not exist in a tree. The
requirement that a proof is given when addresses are found is sufficient to ensure
correct operation under detectable amnesia. So the external tree structure can
be chosen in a way that maximizes the efficiency and simplicty of the proof
validating process that is performed by the TEM.

The Lifetime of Persistent Store Variables. In order to avoid a complex
tree structure that may require non-trivial resources, SEClosures must manage
the lifetime of their persistent store variables. The scheme must detect amnesia
in the external tree, and also be able to distinguish between the case when a
variable has never been used on a TEM, and the case when the variable has been
assigned a value, but the corresponding association has been removed from the
persistent store. The possibility of confusing the two cases can be exploited by
replay attacks. The method below achieves these requirements.

Let an object5 be a group of SEClosures that use the same mutable non-local
variables. For convenience, an object’s fields shall be all the mutable non-local
variables used by the SEClosures in the object. For the example in section 3.2,
an individual bank account is an object consisting of the SEClosures withdraw,
deposit, balance, and number. The object has one field, the variable balance.

To reduce complexity, all the fields of an object are managed as a whole,
following the same principles as constructors and destructors (also named final-
izers). Namely, an object is constructed on a TEM by creating persistent store
5 Object-Oriented Programming is used to simplify the presentation. However, the

mechanism presented here can be easily adapted to other programing paradigms.

144 V. Costan et al.

associations for all its fields. An object is destroyed by remove-ing the per-
sistent store associations. An object’s SEClosures abort execution if any of the
fields they reference do not have a value in the persistent store, so the SEClosures
are only usable between the object’s construction and destruction.

The process uses a single monotonic counter, MC , that is a mutable variable
for the privileged SEClosures involved in object construction. The TEM owner
is given a SEClosure that signs MC with PrivEK, so the read can be verified by
anyone who has the TEM’s ECert.

The object’s owner receives a MC read result, and constructs the construc-
tor data for an object, which consists of the MC value and the object’s
constructor table, a list of persistent store addresses and initial values for
the object’s fields. The constructor data is encrypted with the TEM’s PubEK
then given to the TEM’s owner, together with the bound SECpacks for the
object.

The owner runs the constructor, a privileged SEClosure that decrypts the
construction data, and creates the associations in the constructor table if the
MC value matches. If the object is constructed, MC is incremented. This way,
exactly one object is constructed for a certain value of MC , and no constructor
table is executed twice. This ensures that an object can be constructed at most
once on a TEM.

The owner removes the object’s fields from the persistent store by using
the object’s constructor data with a privileged SEClosure called the
desctructor.

5 Implementation

The TEM firmware was implemented on JavaCard [7] smart cards, because
of their widespread availability. The firmware’s overall design closely reflects
the TEM architecture illustrated in Fig. 4. Each component is materialized in
one class with static fields and methods. The implementation manages its own
memory buffers, to make optimum usage of the RAM and EEPROM memory on
the chip, and to overcome the 255-byte limitation in APDU size on the prototype
cards. The VM interpreter is implemented as one single 420-line method, and
takes heavy advantage of the consistency in the instruction set.

The TEM driver and SDK were implemented in Ruby. Domain-Specific
Languages (DSLs) [26] [27] were built for the TEM’s data types and VM in-
structions. The SECpack assembler is also a DSL supporting comments, mul-
tiple instructions per line, named parameters, named labels, human-readable
immediates, embedded Ruby code, as illustrated in listing 2.

The prototype TEM implementation contains supplemental features to help
debugging SEClosures, such as dumping the TEM state when SEClosure is
aborted. The SECpack assembler provides line-level debug information that is
combined with the TEM state to pinpoint the exact line in the SECpack source
code that is causing the execution to be aborted.

The Trusted Execution Module 145

1 def gen bank account (number , i n i t i a l b a l a n c e , bank key)
2 ba lance addre s s = (0 . . . p s addr l ength) .map { | i | rand (256)}
3 ba lance l ength = 8
4

5 ba l an c e s e c = assemble do | s |
6 s . psrd fxb : addr => : ba lance addr , : to => : ba lance
7 s . ldwc : bank key ; s . rdk
8 # w i l l output ba lance + s i gna tu r e (nonce + balance)
9 s . dup ; s . l d k l ; s . ldwc ba lance l ength ; s . add ; s . outnew

10 s . outfxb : from => : balance , : l ength => ba lance l ength
11 s . ks fxb : from => : nonce , : l ength => p s va lu e l en g th +
12 ba lance l ength , : to => 0 x f f f f
13 s . ha l t
14

15 s . l a b e l : bank key ; s . immed : ubyte , bank key . to tem key
16 s . l a b e l : balance addr ; s . immed : ubyte , ba lance addre s s
17 s . l a b e l : nonce ; s . f i l l e r : ubyte , p s v a lu e l en g th
18 s . l a b e l : ba lance va lue ; s . f i l l e r : ubyte , p s v a lu e l en g th
19 s . s t ack ; s . ex t ra 8
20 end
21 end # (code f o r o ther c l o su r e s and f o r the cons t ruc t o r)

Listing 2. Assembly code for balance in the bank account example

The TEM driver contains a full6 suite of unit tests, covering both driver
and firmware code. The unit tests automate validating both the driver and the
firmware, as well as assessing the suitability of a JavaCard model as a TEM.

5.1 Performance Considerations

The table below shows the results of various tests that were run on two JavaCard
models. The times are expressed in seconds. Each time is the average over multi-
ple consecutive repetitions of an operation. The number of repetitions was chosen
such that the results of running an experiment (all the consecutive repetitions
of the operation) 3 times were within 1% of the mean.

Operations NXP 41/72k Philips 21 18k
Process APDU 0.0061 s 0.029 s
Create and release 512-byte buffer 0.084 s 0.98 s
Decrypt with PrivEK 0.76 s 1.60 s
Execute 1-op SECpack 0.16 s 0.50 s
Execute 1020-ops SECpack 0.82 s 1.99 s
Execute 1-op bound SECpack 0.89 s 1.92 s
Execute 1020-ops bound SECpack 1.53 s 3.07 s

6 rcov indicates a line coverage of 95% or above on each Ruby source file.

146 V. Costan et al.

The prototype’s performance is not yet acceptable for interactive systems.
This is mainly because the VM interpreter is layered on top of the JavaCard
virtual machine, which introduces the overhead of interpreted versus native ex-
ecution (likely on the order of 20X). In practice, the performance hit is not as
dramatic (a full 20X), because a significant part of a SEClosure’s execution time
is spent on RSA operations on the TPM-grade 2048-bit keys. Cryptographic
operations are done in hardware and do not incur the JavaCard overhead.

6 Example Application: Migratable Tokens

This section discusses the use of the TEM’s architecture to implement migrat-
able tokens (as defined in [10]) in an anonymous offline payments system. The
technique can be reused in other applications, such as authorization tokens in
personal DRM, or active items (e.g., spells) in peer-to-peer online games.

A bank emits a sum of e-money as a TEM object (section 4.3). The object
contains the bank’s private key, and the sum of money it represets. An object’s
balance is verified by executing the balance SEClosure that produces a signature
for the current sum of money, together with a caller-supplied nonce.

Making a payment is achieved by creating a money object on the receiver’s
TEM. This is achieved in two steps:

– the SECpacks are migrated by a privileged SEClosure that verifies the re-
ceiver TEM’s ECert, then binds each SECpack to the receiver TEM using
its PubEK.

– the balance is migrated by a transfer SEClosure that also verifies the re-
ceiver TEM’s ECert, then subtracts the required amount from the balance
on the payer’s TEM, and produces constructor data that will create the re-
quired balance on the destination TEM. If the payer’s TEM balance reaches
0, the variables of the money object are removed.

Merchants use the same migration procedure to transfer the money to the bank.
The bank then uses a cancel SEClosure that destroys the money object, and
thus cancels the e-money it has emitted.

This scheme assumes that e-money never reaches the same TEM twice, and
does not support merging e-money objects on a TEM. These restrictions can be
removed by using a more complex scheme that is outside the scope of this paper.

7 Conclusion and Future Work

This paper introduces a novel approach to trusted execution. The TEM enables
a new style of programming, by being capable of executing untrusted closures
in a secure environment.

Understanding the applications of the TEM’s execution model is a fruitful
avenue for exploration. Flexible trusted execution at commodity prices should
bring new life to difficult problems, such as secure mobile agents.

The Trusted Execution Module 147

Improving the TEM’s performance is a promising prospect, as the benchmarks
in section 5.1 are close to the results needed for interactive systems. The pro-
totype JavaCard implementation can be optimized by using code generation or
bytecode generation techniques. Assuming an adequate SDK, the TEM can be
implemented directly on a secure chip, and will show the needed improvements.

The TEM’s design can also be modified to fit specific goals or target plat-
forms. There are many variations on the persistent store design. The execution
environment allows extensions such as parallel processing on the crypto engine.

The TEM can be easily extended to offer certified closure execution. SEC-
pack binding assures the closure’s author that a closure was executed in a secure
environment. Certified execution can prove to anyone that a result was pro-
duced in the secure environment of a TEM. We are currently investigating the
applications of extending the TEM with certified execution.

References

1. Costan, V.: A commodity trusted computing module. Master’s thesis, Mas-
sachusetts Institute of Technology (2008), http://tem.rubyforge.org

2. Arnold, T., Van Doorn, L.: The IBM PCIXCC: A new cryptographic coprocessor
for the IBM eServer. IBM Journal of Research and Development 48, 475–487 (2004)

3. Suh, G., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: architecture
for tamper-evident and tamper-resistant processing. In: Proceedings of the 17th
annual international conference on Supercomputing, pp. 160–171 (2003)

4. Hendry, M.: Smart Card Security and Applications. Artech House (2001)
5. Husemann, D.: Standards in the smart card world. Computer Networks 36, 473–487

(2001)
6. Maosco, L.: (MultOS), http://www.multos.com/ [cited May, 2008]
7. Sun Microsystems, I.: Java Card Platform Specification 2.2.1 (2003),

http://java.sun.com/javacard/specs.html [cited May, 2008]
8. Lawson, N.: TPM hardware attacks. root labs rdist (2007),

http://rdist.root.org/2007/07/16/tpm-hardware-attacks/ [cited May, 2008]
9. Lawson, N.: TPM hardware attacks (part 2). root labs rdist (2007),

http://rdist.root.org/2007/07/17/tpm-hardware-attacks-part-2/ [cited
May, 2008]

10. Sarmenta, L., van Dijk, M., O’Donnell, C., Rhodes, J., Devadas, S.: Virtual mono-
tonic counters and count-limited objects using a TPM without a trusted OS. In:
Proceedings of the first ACM workshop on Scalable trusted computing, pp. 27–42
(2006)

11. Group, T.C.: Trusted platform module main (2007),
https://www.trustedcomputinggroup.org/specs/TPM/ [cited May, 2008]

12. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X. 509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile (2002)

13. Lindholm, T., Yellin, F.: Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc, Boston (1999)

14. Sussman, G.J.: Guy Lewis Steele, J.: Scheme: An interpreter for extended lambda
calculus. Technical Report AI Lab Memo AIM-349, MIT AI Lab (1975)

15. Guy Lewis Steele, J.: Lambda: The ultimate declarative. Technical Report AI Lab
Memo AIM-379, MIT AI Lab (1976)

http://tem.rubyforge.org
http://www.multos.com/
http://java.sun.com/javacard/specs.html
http://rdist.root.org/2007/07/16/tpm-hardware-attacks/
http://rdist.root.org/2007/07/17/tpm-hardware-attacks-part-2/
https://www.trustedcomputinggroup.org/specs/TPM/

148 V. Costan et al.

16. Guy Lewis Steele, J., Sussman, G.J.: Lambda: The ultimate imperative. Technical
Report AI Lab Memo AIM-353, MIT AI Lab (1976)

17. For Standardizing Information, E.A., Systems, C.: 262: ECMAScript Language
Specification. ECMA, Geneva, Switzerland, third edition (1999), http://www.

ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

18. Cox, B.: Object oriented programming: an evolutionary approach. Addison-Wesley
Longman Publishing Co., Inc., Boston (1986)

19. Guy Lewis Steele, J.: Rabbit: A compiler for scheme. Master’s thesis, MIT AI Lab
(1978)

20. Eastlake, D., Jones, P.: RFC 3174: US Secure Hash Algorithm 1 (SHA1). Internet
RFCs (2001)

21. Leach, P., Mealling, M., Salz, R.: RFC 4122: A Universally Unique IDentifier
(UUID) URN Namespace (2005)

22. Freier, A., Karlton, P., Kocher, P.: Secure Socket Layer 3.0. IETF draft (1996)
23. Sasada, K.: YARV: yet another RubyVM: innovating the ruby interpreter. In: Con-

ference on OOP Systems Languages and Applications, pp. 158–159 (2005)
24. Merkle, R.: Protocols for public key cryptosystems. In: Proceedings of the IEEE

Symposium on Security and Privacy, pp. 122–133 (1980)
25. Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon physical random func-

tions. In: Proceedings of the 9th ACM conference on Computer and communica-
tions security, pp. 148–160 (2002)

26. Cuadrado, J., Molina, J.: Building Domain-Specific Languages for Model-Driven
Development. Software, IEEE 24, 48–55 (2007)

27. Cunningham, H.: Reflexive metaprogramming in Ruby: tutorial presentation. Jour-
nal of Computing Sciences in Colleges 22, 145–146 (2007)

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Management of Multiple Cards in NFC-Devices

Gerald Madlmayr1, Oliver Dillinger1, Josef Langer1, and Josef Scharinger2

1 FH OOE F&E GmbH, NFC-Research Lab
Softwarepark 11, 4232 Hagenberg, Austria

{gmadlmay,odilling,jlanger}@fh-hagenberg.at
http://www.nfc-research.at
2 Johannes Kepler Universität

Altenbergerstrasse 48, 4020 Linz, Austria
josef.scharinger@jku.at

Abstract. Near Field Communication (NFC) currently is one of the
most promising technologies in handsets for contactless applications like
ticketing or payment. These applications require a secure store for keep-
ing sensitive data. Combining NFC with integrated smartcard chips in
a mobile device allows the emulation of different cards. Representing
each secure element with different UIDs poses several problems. Thus
we propose an approach with a fixed UID dedicated to a Secure Ele-
ment Controller (SEC). This approach allows an optimized backwards
compatibility to already established reader infrastructures but also the
communication in peer-to-peer mode with other NFC devices. Addition-
ally the communication over peer-to-peer as well as the internal mode of
secure elements at the same time is possible. This is approach poses a
flexible alternative to the implementations proposed so far. In addition
when there are to multiple, removable secure elements in a device it is en-
sured that the secure elements are only used by authorized user/devices.
The SEC in this case handles the communication between the secure
elements as well as their authentication.

1 Introduction

Near Field Communication (NFC) is a wireless communication technology to
exchange data up to a distance of 10 cm. NFC uses inductive coupled devices
operating at the frequency of 13.56 MHz. NFC, standardized in ISO 18092,
ECMA 340 and ETSI TS 102 190, is compatible to the standard of contact-
less smartcards (ISO 14443). An NFC device can operate either in active mode
(generating a field and initiating the communication) or in passive mode (un-
powered, waiting for a request) [1]. An NFC device is typically made up of two
parts: the NFC part responsible for peer-to-peer communication, and a secure
element storing sensitive data. Traditionally they are treated as separate devices,
represented by different UIDs. But this approach poses several problems.

Despite of possessing multiple IDs, an NFC device has only one antenna. This
resource must be shared which by mutually routing antenna I/O to the NFC-
IC and the secure elements. As a consequence, a polling device can easily get

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 149–161, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.nfc-research.at

150 G. Madlmayr et al.

confused: Which secure element and which NFC-ID belong together? Polling
also takes longer as multiple cycles are needed to fetch all identifiers.

From a technical point of view it is possible to mix both data streams and
thus allowing simultaneous access. However, certain existing RFID infrastruc-
tures which NFC should be compatible with do not allow more than one device
in range (e.g. MasterCard’s PayPass [2]) because of security concerns. Many
applications communicate via NFC but need some of the secure element’s capa-
bilities at the same time (e.g. storage for certificates, encryption of peer-to-peer
communication). Using security features of the secure element is not possible
with current architectures [3] (Fig.: 3(b)). If one device is selected no other data
transfers are allowed. Only after the active NFC connection has been released
the secure element can get selected.

For an application it would not be acceptable to interrupt the NFC session for
every request that needs to be sent to the secure element. After every break it
would be necessary to do a new polling cycle as the target must change its ran-
dom UID for each new selection. An NFC device should support multiple secure
elements. For example, it may have a Universal Integrated Circuit Card (UICC)
but may also allow SDIO expansion cards to be inserted. Now the initiator has
several problems: Which of the listed ID’s are secure elements? Which do belong
together?

In our proposal these problems are solved by assigning every NFC device
an own UID. The unique ID is complementary to the already existing random
0x08-range ID. When acting as a target, the device will only expose its ID and
appears as a legacy contactless smartcard. But there is a difference when getting
selected: The device will set bit 6 in its SAK reply, telling its peer it is NFCIP-1
enabled. A legacy infrastructure will ignore this bit and further believe talking to
a smartcard. All requests sent will be processed by a Secure Element Controller
(SEC) which will distribute the data appropriately. This way it is possible to
use many different interfaces for secure elements: conventional T=0/1, upcoming
USB, SDIO, SWP, etc.

An NFC device wanting to set up a peer-to-peer connection will just continue
sending an ATR request after enumeration. The SEC will intercept this package
and divert it to the NFC core. From that time on the device runs in NFC peer-
to-peer mode. Another possibility would be to require the initiator to send a
special APDU which would cause the target to switch into NFC target mode
and reply with its 0x08 random address. The initiator could then immediately
select the target without a prior request.

That way, an application can also exchange data via peer-to-peer and send
internal requests to a secure element the same time, as the wireless connec-
tion is not needed. This data path will be routed through the controller, made
available to applications by Host Controller Interface (HCI) commands [4], for
example. The HCI defines the architecture of the secure elements around the
NFC controller and also specifies communication between secure elements. Thus
an internal secure element could communicate with an external tag (e. g. in a
smartposter) or establish a communication with another secure element. This

Management of Multiple Cards in NFC-Devices 151

possibility could be used to implement an authentication mechanism between
different secure elements. Authentication is a necessity to prevent fraud as a
secure element should only work in authorized handsets.

The following section provides an insight into NFC technology and necessary
background information for our idea proposed. Section three deals with the prob-
lem statement this paper is dedicated to. The concept of the single ID Secure Ele-
mentControllerwill be discussed in section four. The paper ends with a conclusion.

2 Near Field Communication

NFC is an amendment to already existing contactless smartcard technologies,
while still being compatible to them. The integration of the technology in devices
is driven by the NFC Forum, an industrial consortium founded by Nokia, Sony
and NXP. The major idea was the creation of a general proximity communication
standard to bridge the gap between Sony’s Felica and NXP’s Mifare Technology
but also other smartcard standards based on ISO 14443 (A and B). Both, Mifare
and Felica are proprietary implementations of contactless memory cards based
on ISO 14443-3. NFC itself is defined in ISO 18092 and uses ISO 14443-A’s data
encoding scheme for transfer rates of 106 kBit/s and Felica for higher speeds
(currently rates of 212 kBit/s and 424 kBit/s are defined, but may go up to
3 MBit/s in the future). NFC devices are able to interact with existing RFID
readers by emulating cards (proximity inductive coupling cards, PICC). To read
contactless smartcards or RFID tags, NFC devices can act as a reader or writer
(proximity coupling device, PCD), respectively [5]. These two operation modes,
card emulation as well as the reader/writer mode of NFC, are necessary for the
compatibility with existing proximity card infrastructures.

Additionally, two NFC devices can exchange data through the peer-to-peer
mode. Similar to PICC/PCD mode one device is the initiator (master) whereas
the other device acts as a target (slave). The communication flow is initiated
and controlled by the master device while the target only sends replies. There
are two different modes. Either only the initiator emits a field in order to send
requests while the targets answers by load modulation using the field or both
devices create a field alternately [5]. Communication links between more than
two participants at a time are currently not supported.

Although NFC technology is work in progress the major parts for device
integration are covered by standards. There is an interface standardized between
the host controller as well as the NFC controller, named Host Controller Interface
(HCI). The HCI allows to control the NFC controller as well as to communicate
with internal secure elements [6] and external targets or initiators. The HCI also
defines an interface between the NFC controller and multiple secure elements.
There can be various types of physical connections between the NFC controller
and the SE, such as sign-in/sign-out (S2C) or Single Wire Protocol (SWP) for
example [7]. The SWP is a special protocol that allows the NFC controller to
exchange data with a UICC attached (Fig.: 1).

Per default, any NFC device is in target mode and thus does not generate an RF
field and waits silently for a command from the initiator. In case an application on

152 G. Madlmayr et al.

Contactless Frontend (CLF):
FeLiCa, ISO14443 A, B

Host
Controller

NFC
Controller

H
C

I

Seperate
Secure IC

Secure
SD Card

SIM Card

Fig. 1. NFC integration architecture using the HCI

Initialization

RFCA

Field
detected

Target Mode

Yes

Initiator ModeNo Poll for Targets Target
detected

Communcation
With target

Yes

No

Fig. 2. NFC Mode Switch (simplified)

the device requires the initiator mode, the devices can switch into this mode. The
field for the initiator mode is only activated, in case no external field is detected. In
order to prevent two or more initiators to generate a field at the same time, a RF
collision avoidance (RFCA) is implemented in each device. If there is no external
field detected the device establishes a field, polls for an NFC device in range and
initializes the communication with the target [1].

Whereas in classic smartcard environments the roles of the PCD and the PICC
are clear, this is not the case for NFC devices as the conditions are different.
As every device can initiate a communication, act as a peer-to-peer target or
a transponder, a method is required to avoid chaos if several devices are close
together. The approach of implementing the so called Polling Loop or Mode
Switch is discussed in several papers as well as patents [8], [9], [10] (Fig.: 2).

While the device is in target mode, an external reader will detect two (or
more) devices represented by UIDs: an NFC target as well as emulated cards.
According to ISO 14443 and ISO 18092, targets can be represented by a 4, 7 or

Management of Multiple Cards in NFC-Devices 153

10 byte long unique ID. Whereas the smartcard chip usually uses a fixed ID, the
NFCID1 starts with 0x08 while the bytes left are random. This approach was
chosen in order to protect the privacy of the device holder.

3 Problem Statement

The issue with the existing implementation, as lined out in the previous chapter,
is that a reader will detect multiple UIDs of one NFC device. The implementation
causes the following problem:

Such an NFC device will not work with legacy readers which only allow one
transponder in the field of the reader (mono mode card readers). These kinds of
readers do not implement or do not make use of the ISO 14443 anti collision and
therefore are not able to establish a communication in case there are multiple
targets in the field. Regarding NFC devices, the reader infrastructure needs to
be replaced in order to be compatible with the new devices. For this case, the
backward compatibility is not given. For example, the Nokia 3220 shows multiple
UIDs (secure element and NFC) during the polling loop.

Even if the reader is able to process multiple cards in the field, already existing
readers are not aware of the fact that UIDs starting with 0x08 are NFCID1s.
Thus the reader will select each identifier in the field and setup a communication
channel with the target. As the HCI allows the attachment of several secure
elements to the NFC controller, this process is inefficient and time consuming.
NFC readers do not have this problem, as long as they want to establish a peer-
to-peer connection. In this case the NFCID1 is selected. With regard to selecting
the correct secure element/smartcard, also NFC readers face the same problem
as ordinary contactless smartcard readers, as they can not know which UID to
select. We will deal with this issue in the first part of the paper.

Additionally, having one or more removable secure elements other than the
UICC requires additional mechanisms against theft, abuse and management. For
example, secure SD Cards containing contactless applications could be taken
from the original device and be inserted into a new NFC device. The application
provider who has data stored in this SD Card will not be informed about this
issue. Thus locking the secure element or managing contactless applications over-
the-air (OTA) can not be granted as the application provider does not know the
new Mobile Station International Subscriber Directory Number (MSISDN) of
the new handset. This problem will be discussed in the second part of the paper.

3.1 Possible Solutions

Explicit Card Select: In this case the user has to explicitly select one of the
secure elements to be presented to the reader. From a technical perspective
the implementation is simple and will solve the problem in an efficient way.
From a usability perspective it is not satisfying. One reason is that the user
has to know which secure element to choose, as there can be multiple secure
elements in the device. Additionally it is not possible to simply browse the

154 G. Madlmayr et al.

secure element in order to figure out, which applications there are on which
smartcard chip. This is due to privacy issues, because any other party would
be able to see all the applications installed in the secure element as well.
Secondly the explicit select is a complex process for the end-user from an
interaction point of view. And this is actually not the idea behind NFC.
The Touch and Go philosophy is a clear statement for a simple interaction
between devices without browsing menus. Even if the explicit selection of the
secure element is not an issue (in case there is only one SE in the device), the
device still might operate in NFC target mode and thus send an NFCID1.
Thus the user would directly have to select the application to use (payment,
Bluetooth pairing etc.).

Time Multiplex: By using a time multiplex the secure elements are presented
consecutively to the reader. In this case the reader will only see one UID at
a time. The process is the following. The reader selects the first card and
tries to access the application required. If the application is not found, the
secure element is put into halt state. The halt state is the signal for the NFC
device that the secure element selected was not the correct one. Then the
reader sends another ISO 14443 request command. As a reaction the NFC
device will present the second secure element to the reader. This process
is repeated as long as the reader has found the secure element/NFC target
required. If the required smartcard chip is not found and all cards of the
NFC device are in halt state, no more card would be presented to the reader.
From a technical point of view this is a feasible solution. The issue with this
implementation is, that the reader has to put the card into halt state in case
it was not the transponder it was looking for. This is actually not yet the
case for reader infrastructures deployed and would require software/firmware
updates of these readers. From a usability point of view, the implementation
is user friendly, as there is no interaction required and the user does not have
to care about switching between different modes or applications. A minor
issue is the fact, that in worst case the reader has to go through all different
cards/NFC targets in a device, which is not efficient.

Aggregation with one single UID: The third option would be the use of
only one UID per device. In this case the NFC controller has to route the
commands accordingly to the secure elements. This requires additional soft-
ware running in the NFC controller inspecting if possible the data sent be-
tween NFC target/secure elements and external reader. From the technical
side this implementation is the most complicated one. However, it neither
requires any user interaction nor any modification to an already existing in-
frastructure. The major disadvantage of this approach is, that applications
using the UID for identification or cryptographic functions (e. g. Mifare [11])
will not work. But as the UID of a smartcard is public using it for critical
tasks as already mentioned is unsafe anyway. From the current perspective
using only one UID per device is a suitable solution that allows interoper-
ability with any established infrastructure. Therefore we consider this option
for our implementation.

Management of Multiple Cards in NFC-Devices 155

4 Implementation

We propose the use of only one UID per NFC device and integrate a Secure
Element Controller (SEC) to internally route the communication flows (Fig.:
3(a)). The SEC is a software implementation running in the NFC controller. For
communication with the different instances such as secure elements, external
readers or the host controller Application Protocol Data Units (APDU) are
used. The communication handling makes use of the underlying HCI. The NFC
device will be given an identifier out of the 0x08 range in order to correctly
represent an NFCID1. NFC peer-to-peer capabilities are indicated by bit six in
the SAK/SEL response of the NFC device after the selection command [12], [1].
Bit five indicates whether there is an ATS available and further ISO 14443-4
commands are accepted. Even if this bit is set, proprietary protocols could be
used on top. For example, this is also the case for JavaCards integrating a Mifare
section. With regard to the Mode Switch, complexity is reduced. There will be
only a switch between initiator mode and one target mode. The SAK in this
case is accomplished by the SEC. The explicit tasks for the SEC are:

1. Acting as a proxy between the smartcard chips and external readers to route
the data correctly.

2. Managing the communication between the secure elements to implement an
authentication mechanism.

3. Direct the OTA management connections from the UICC to other secure
elements.

4.1 External Communication

With regard to the external communication, the NFC device has to reply to the
following requests:

NFC initiator: The initiator establishes an RF field, runs the select process
and after the SAK received, the initiator sends the attribute request and will

NFC
IC

HCI -
Multi
Host

Interface

Secure
Element

Controller

SIM Card

Secure
Element

Secure
Element

CLF

(a) Integration of a Secure Ele-
ment Controller (SEC).

NFC
IC

Secure
Element

Host
Controller

External
Reader

Interal
Mode of
Secure
Element

External
Mode of
Secure
Element

Peer-to-Peer
Mode

(b) NFC Operating Modes [3]

156 G. Madlmayr et al.

continue with NFCIP-1 frames. Already out of the data encoding scheme
the SEC can assume the following: If it is ISO 14443 A (106 kBit/s), the
device polling is an NFC initiator or a ISO 14443 A reader. In case the SEC
receives a request using the Felica encoding scheme (212 or 424 kBit/s) the
initiator could also be a Felica reader. As after the selection the initiator
would send an attribute request as mandatory in NFCIP-1. In this case the
SEC forwards the data stream to the NFC core indicating that the data
stream is a peer-to-peer connection.

Smartcard Reader: To handle multiple, different smartcards, the SEC is re-
quired to keep track of the secure elements in the NFC device. When a secure
element is inserted, the SEC analyses the type (Felica, ISO 14443 A or ISO
14443 B). The internal routing of the data stream is quite simple as long
as there is only one instance of a smartcard type in the device. If there is
one smartcard chip of a type, the routing gets more complex (Felcia is not
considered at the moment, as there was too little documentation available).

With regard to Mifare, the SEC has to provide an aggregation of all
the Mifare Application Directories (MAD) ID. Although the proprietary
authentication and encryption of Mifare also uses the UID of the smartcard
chip, and thus is not feasible with our implementation, this might be different
for the upcoming Mifare+ using AES. The external Mifare reader in this case
is able read the MAD from the SEC like from an ordinary Mifare card. When
trying the access a special block containing the application data, the SEC
redirects the authenticate-, read-, and write-command to this chip.

In JavaCard OS using GlobalPlatform the functionality is a little differ-
ent. An external reader is not able to query all the applications available,
without proper access rights. Usually the reader sends a select request with
the Application Identifier (AID) to the transponder whose answer it either
positive or negative. In our case the select request is sent to the SEC, which
distributes the request to all smartcard chips. If there is a positive responses
the SEC then will redirect the communication flow accordingly. If there is
no positive response, the SEC will return a negative answer to the reader.
In case there are more than one positive response sent to the SEC, the SEC
would forward a negative response to the reader and additionally contact
the trusted service manager (TSM). In this case there is a management is-
sue with the secure elements [7]. The SEC keeps a temporary list of AIDs
and the appropriate secure elements in a registry, which is cleared in case
the phone is rebooted. This helps the SEC to save time as the multi cast has
to be performed only once.

When an external smartcard reader communicates with the NFC device,
the SEC identifies the type of the reader by analyzing the commands/APDUs
after the selection process has been completed and forwards the data stream
to the appropriate smartcard chips. In case there is more than one instance
of a smartcard type available, the SEC will consult the AID registry to
route the data correctly. Thus the external reader is not able to distinguish
between a smartcard and an NFC device.

Management of Multiple Cards in NFC-Devices 157

An explicit selection of the appropriate secure element by the reader by
indicating a communication through a logical channel is another option. This
implementation would require, that there is fixed mapping between secure
elements and logical channel IDs. Additionally, the reader has to know on
which secure element there is the application the reader is looking for. This
is the major issue with the mentioned implementation. Therefore logical
channels are not further considered for explicit selection.

4.2 Internal Authentication of Secure Elements

Besides only having a single UID for contactless communication, the SEC also
poses another advantage. The SEC can be used as a central instance in the
device to perform the management of the secure elements. As the SEC connected
thought the SWP with the UICC, the SEC is able to make use of the wireless
communication capabilities of the handset. This is an important feature with
regard to the authorization of secure elements. The issue with a removable secure
element, like the ones used in the Benq T80, is that the secure element can
be inserted into any other mobile phone. As the authenticity of the phone is
not validated by the secure element and vice versa, the vital feature of remote
management of the secure elements is lost. The HCI is designed for a direct
communication between different secure elements. This option allows a bilateral
authentication between secure elements and/or the SEC. The UICC of the mobile
phone serves as a gateway in order to retrieve certificates for the validation if
necessary. By a simple example we demonstrate how the implemented system
works on a JavaCard platform.

Each secure element, no matter if it is a UICC or a removable secure element
such as a SD Card, contains an activation applet in the issuer security domain.
This applet holds a public/private key pair and a certificate from the issuer
and the appropriate root certificate for validation. Also the SEC contains a
public/private key pair as well as a certificate from the issuer.

During the boot sequence of the mobile phone, the SEC first selects the acti-
vation applet on the UICC. Then a secure channel is establishes and a bilateral
authentication is performed. In case this is the first time for the UICC commu-
nicating with the SEC, the UICC established a data connection to the CA/TSM
in order to validate the certificate of the SEC. The public key to validate the
certificate is kept by the UICC, hence the validation of the SEC does not require
an OTA connection the next time. The validation of the UICC’s certificate for
the SEC is more difficult, as the SEC can not yet trust the UICC. However, the
SEC instructs the UICC to establish a connection to the appropriate CA/TSM
to validate the UICC’s certificate. Then the SEC encrypts the UICC’s certificate
with its public key, signs it and adds an identifier. The external party processes
the request, checks the certificate, encrypts the appropriate public key with the
SEC’s public key and also signs it. The SEC can verify the authenticity of the
data by validating the signature of the package and additionally only the SEC
is able to decrypt the data. The retrieved public key allows the SEC to validate
the certificate of the UICC and sets the activation flag in the activation applet.

158 G. Madlmayr et al.

SECUICCMNOCA/TSM

UICC inserted

Select of Activation Applet

Establish Secure Channel

Request Challenge

Challenge

Response + Certificate-SEC

Challenge

Root Certificate/public Key

Request Challenge

Certificate-SEC

Response + Certificate-UICC

Validation Request

Establish Secure Channel

Bilateral Certificate Based Authentication

Certificate-UICC

Root Certificate/public Key

Required if UICC

is not capable of

validating SEC

certificate (only

done once)

Required if SEC is

not capable of

validating UICC

certificate (only

done once)

Validation of Certificate-UICC

Activation of UICC for NFC

Validation of Certificate-SEC

Fig. 3. Activation of the UICC by the SEC for contactless communication

This flag will be set to false again, as soon as the UICC is reseted/powered off.
The activation applet on the UICC provides a shared interface that allows other
applets to read the activation flag and then decides whether to take an action
or not (Fig. 3).

After activating the UICC a second secure element can be authenticated. This
is a slightly more complex process, as the secure element can neither trust the
SEC nor the UICC. Basically the SE establishes the communication with the
UICC first, in order the have an online connection to validate the certificate
of the UICC. The secure element also receives the certificate to validate the
authenticity of the SEC.

In both cases the online connection to obtain the certificates from the
CA/TSM for validation needs to be established once. The certificates are kept
in the activation applets of the UICC, SEC and SEs for further use. As soon as
the UICC or the SEs are reseted, the activation flag is set to false and needs to

Management of Multiple Cards in NFC-Devices 159

Required if UICC

is not capable of

validating SE

certificate (only

done once)

SESECUICCMNOCA/TSM

SE inserted

Select of Activation Applet

Establish Secure Channel

Request Challenge

Challenge

Response + Certificate-SEC

Establish Pipe to UICC + Challenge Request

Request Challenge from SE

Challenge

Response + Certificate-SE

Certificate-SE

Root Certificate

Validation of Certificate-SE

Requst Challenge

Challenge

Response + Certificate-UICC

Validation Request

Establish Secure Channel

Bilateral Certificate Based Authentication

Certificate-UICC

Root Certificate

Validation of Certificate-SEC

Requst Certificate for Certificate-SEC

Required if SE is

not capable of

validating UICC

certificate (only

done once)

Root Certificate

Request Challenge

Challenge

Response+ Certificate-SE

Requst Certificate for Certificate-SE

Root Certificate

Validation of Certificate-UICC

Validation of Certificate-SE

Activation of SE for NFC

Fig. 4. Activation of an additional SE by the SEC for contactless communication

authenticate the other components again. With this implementation, the use of
stolen SEs is prevented. The SE can store more than one certificate, allowing
the user to change the SE between two handsets. Besides protecting the use of
secure elements without permission, the platform manager (TSM) is always able
to remotely access the secure elements OTA (Fig. 4).

5 Conclusion

The proposed a Secure Element Controller (SEC) enhances the compatibility
of upcoming NFC devices with existing infrastructures. The implementation
results in a single ID for NFC devices with multiple operating modes and multi-
ple secure elements. The SEC takes over the routing of the data streams to the

160 G. Madlmayr et al.

appropriate secure element chip. The next step of our conception approach is
the implementation of a SEC using the NFCBox [5].

There are several major benefits of our proposal. The most important one
is the interoperability with already existing infrastructures. Although NFC is
claimed to be compatible anyway, this is not the case when it comes to readers
supporting only one card in the field. One of the most popular services using
such a kind of reader is MasterCard’s PayPass.

Secondly the integration of a SEC allows the parallel use of the peer-to-peer
mode and the internal communication with the secure elements (internal mode;
Fig.: 3(b)). In order to secure the plain NFC peer-to-peer data stream the use of a
secure element to perform authentication or encryption is a reasonable feature,
but not supported by the current architecture. Services that only rely on the
fixed identifier of the smartcard are not feasible with this implementation, as
the ID is partly random. However, systems only using the UID of contactless
smartcards are unsecured anyway. This is due to the reason that the UID is
primarily necessary for the anti-collision and selection of the transponder. Hence,
no authentication or encryption is needed to read this ID.

Additionally the SEC can facilitate the authorization of secure elements as
well as the OTA management. Hence, Trusted Service Managers are able to
handle applications in a secure element other than the UICC and the he proposed
authentication mechanisms avoids abuse of contactless applications. To sum up,
the integration of a SEC would bring several benefits to an NFC device with
regard to interoperability, security and manageability.

References

1. International Organization for Standardization: Near Field Communication - In-
terface and Protocol (NFCIP-1). ISO/IEC 18092 (2004)

2. EMVCo LLC: EMV Contactless Specifications for Payment Systems. PayPass
ISO/IEC 14443 Implementation Specification (2006), http://www.emvco.com/

3. Kunkat, H.: NFC und seine Pluspunkte. Electronic Wireless 1, 4–8 (2005)
4. ETSI: Smart Cards: UICC-CLF interface; host Controller Interface. Draft (2007)

(Release 7), www.etsi.org
5. Dillinger, O., Langer, J., Madlmayr, G., Muehlberger, A.: Near field communication

in embedded systems. In: Proceedings of the Embedded World Conference, vol. 1,
p. 7 (2006)

6. Bishwajit, C., Juha, R.: Mobile Device Security Element. Mobey Forum, Satama-
radankatu 3 B, 3rd floor 00020 Nordea, Helsinki/Finland (2005)

7. GSMA London Office 1st Floor, Mid City Place, 71 High Holborn, London WC1V
6EA, United Kingdom: mobile NFC technical guidelines. 2.0 edn, 1st Revision
(2007)

8. Dillinger, O., Madlmayr, G., Schaffer, C., Langer, J.: An approach to nfc’s
mode switch. In: Dreiseitl, S., Hendorfer, G., Jodlbauer, H., Kastner, J., Mueller-
Wipperfuerth, T. (eds.) Proceedings of the Science Day of the University of Applied
Sciences Upper Austria, FH OOe F & E GmbH, vol. 2, p. 6. Shaker Verlag, Aachen
(2006)

9. Dawidowsky, F.: Method for operating a near field communication system. Eu-
ropena Patent Office, EP 1 653 632 A1 (2006)

http://www.emvco.com/
www.etsi.org

Management of Multiple Cards in NFC-Devices 161

10. Rowse, G., Pendleburyrel, J.: Electronic near field communication enabled mul-
tifunctional device and method of its operation. Patent, US Patent Application
Publication (2006)

11. Nohl, K.: Cryptanalysis of crypto-1 (2008),
http://www.cs.virginia.edu/∼kn5f/Mifare.Cryptanalysis.htm

12. International Organization for Standardization: Proximity cards. ISO/IEC 14443
(2003)

http://www.cs.virginia.edu/~kn5f/Mifare.Cryptanalysis.htm

Coupon Recalculation for the GPS

Authentication Scheme�

Georg Hofferek and Johannes Wolkerstorfer

Graz University of Technology,
Institute for Applied Information Processing

and Communications (IAIK),
Inffeldgasse 16a, 8010 Graz, Austria
Georg.Hofferek@iaik.tugraz.at,

Johannes.Wolkerstorfer@iaik.tugraz.at

Abstract. Equipping branded goods with RFID tags is an effective
measure to fight the growing black market of counterfeit products. Asym-
metric cryptography is the technology of choice to achieve strong authen-
tication but suffers from its ample demand of area and power resources.
The GPS authentication scheme showed that a coupon-based approach
can cope with the limited resources of passive RFID tags. This article
extends the idea of coupons by recalculating coupons during the idle time
of tags when they are powered but do not actively communicate. This
approach relaxes latency requirements and allows to implement GPS
hardware using only 800 gate equivalents plus storage for 560 bytes. In
the average case it has the same performance as the classical coupon-
based approach but does not suffer its susceptibility to denial-of-service
attacks.

1 Introduction

Radio frequency identification (RFID) is an emerging technology for optimizing
logistic processes. Goods or pallets can be equipped with small and cheap RFID
labels to give them an electronic identity. RFID labels can be read over air in-
terfaces without direct line of sight. The main components of an RFID label are
an antenna and an RFID tag. The minimalistic tag is a small chip containing an
analog front-end which is connected to the antenna and a digital part. The chip
receives its power for operation over the same antenna which is used for com-
munication. Thus, the available power budget is very small. The functionality
of tags is very often limited to basic operations like sending a unique ID upon
request. More sophisticated tags may contain sensors or memories for storing
more information about the product they are attached to.

A promising field of application for RFID tags is the authentication of goods
to prove their genuineness. Providing unique IDs is a first step but does not

� The results presented in this article origin from the European Union funded FP7
project Bridge (IST-2005-033546).

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 162–175, 2008.
c© IFIP International Federation for Information Processing 2008

Coupon Recalculation for the GPS Authentication Scheme 163

solve the problem because the wireless air interface, which operates either on
13.56 MHz (HF) or around 900 MHz (UHF), can be easily eavesdropped. Thus,
an attacker could obtain the UID of an original product and produce an infinite
number of cloned tags having the same identity. Cryptographic authentication
will inhibit such counterfeiting of goods. This is a fast growing market because
the economical damage of counterfeit products exceeds $600 billion annually [1].

During the last years many schemes have been proposed to bring strong cryp-
tographic authentication to RFID tags. These activities focused on efficient hard-
ware implementation because RFID tags have fierce constraints regarding silicon
area and power consumption. The first choice was implementing symmetric cryp-
tography, which has small footprint. A major work by Feldhofer et al. demon-
strated the feasibility of implementing AES on passively powered RFID tags [4].
They achieved an AES encryption with a circuit complexity of 3500 gate equiv-
alents taking 1000 clock cycles. On 0.35 µm CMOS technology, the encryption
draws an average power of only 5 µW, which is well below the requirements of
HF tags.

Although symmetric cryptography can be implemented efficiently, it suffers
from the key distribution problem. In order to authenticate a product, the veri-
fier must know the secret key. Thus, symmetric cryptography is only applicable
in closed systems but not in world-wide logistic processes where not all involved
parties are known in advance and in particular not all of them are trusted. Asym-
metric cryptography overcomes many shortcomings of symmetric cryptography
but requires a lot more resources. Area requirements are at least three times
higher and the computation time in terms of clock cycles is usually more than
hundred times higher. Most research on asymmetric cryptography for RFID cen-
tered on elliptic-curve cryptography, which offers reasonable security for RFID
systems with key lengths of 113 to 256 bits [16,19].

The GPS authentication scheme, named after its authors Girault, Poupard,
and Stern, offers the possibility to fill the gap between symmetric and asymmetric
cryptography [5,6]. GPS is a public-key-based zero-knowledge protocol which is
similar to Schnorr’s scheme but uses a composite RSA-like modulus n. GPS
is standardized in ISO/IEC 9798-5 [10]. There are also variants of GPS that
are based on elliptic-curve cryptography. One of the remarkable properties of
the GPS scheme is the possibility to use coupons. Coupons are lists of values
which are needed during authentication. These values do not depend on any
input from the interrogator, so they can be precomputed. That shifts the major
computational load from the time of protocol execution to e.g. production time of
the tag. §2 will go into the details of the GPS protocol. At this point it is only of
interest that resource-constrained RFID tags can compute GPS authentications
by having the ability to store a few coupons (each roughly between 200–500 bits
for reasonable parameters) and to compute (non-modular) integer operations
(addition, multiplication) with operand sizes of 160–260 bits.

The coupon approach can be efficiently implemented in hardware [12,13].
The promising results of [12,13] should not conceal profound drawbacks of the
approach. First, only a limited number of authentications is possible because

164 G. Hofferek and J. Wolkerstorfer

storage is costly. Precomputed coupons have to be stored in non-volatile memory
at the time of personalization. RFID tags usually use EEPROM memory as
non-volatile memory. Memory sizes are kept at minimum to keep the cost of the
tags low. Thus, only a few to a dozen of coupons are reasonable. This opens
the door for denial-of-service attacks. Any RFID interrogator can request a GPS
authentication from a tag, and few requests are sufficient to exhaust all coupons.
This type of attack is difficult to prevent because the tag has no notion of time
to limit the number of requests per time interval, nor does it have the possibility
to authenticate interrogators. In order to authenticate an interrogator the tag
would need the same computational resources as the reader. This would nullify
the advantages of the coupon approach.

The coupon-recalculation approach presented in this article addresses these
drawbacks. When RFID tags have the possibility to compute fresh GPS coupons
during their idle time, an unlimited number of authentications is possible. More-
over the storage requirements can be lowered to store just a few coupons. When
the comprehensive number-theoretic computations are done in the idle time,
and thus well ahead of the actual use of the result, the requirements for the
hardware change completely: Latency of the computation is no longer a key is-
sue. Furthermore the processing can take comparatively long because RFID tags
are usually long in the (electro-)magnetic field of the reader in comparison to
the actual interrogation time. This allows to rethink hardware architectures for
multi-precision modular arithmetic radically. We will show that tiny multiply-
accumulate structures are sufficient to compute strong public-key cryptography
on RFID tags.

The remainder of the article details the GPS authentication scheme and the
coupon-recalculation approach in §2. §3 sketches the proposed hardware archi-
tectures. §4 presents algorithmic details and architectural details of a digit-serial
approach optimized for small footprint and low power consumption. §5 presents
achieved results and §6 concludes the article.

2 GPS Authentication

2.1 Basic Algorithm and Parameters

GPS authentication is a zero-knowledge authentication protocol that allows
small hardware implementations of the prover wanting to assure its identity.
A thorough analysis of the GPS authentication scheme, including comparisons
with similar schemes is given in [9]. There, mathematical properties and back-
ground information are given, along with security considerations and references
to almost all other literature about GPS. This section will only present the most
important facts. The GPS protocol is depicted by Fig. 1. The prover first com-
putes a commitment x, which is sent to the verifier. After having received the
verifier’s challenge c, the prover calculates the response y, which can then be
checked by the verifier.

The parameters ρ, δ, and σ determine the bit lengths of the random value r,
the challenge c, and the secret key s, respectively. Common values are σ = 160,

Coupon Recalculation for the GPS Authentication Scheme 165

Prover Verifier
Domain

Parameters
Modulus n = p · q Modulus n = p · q

Base g Base g

Keys
Private Key s : 0 ≤ s < 2σ

Public Key v = gs mod n Public Key v = gs mod n

Protocol
Choose r at random,

0 ≤ r < 2ρ

Calc. x = hash (gr mod n) x−−−−−−−−−−−→
Choose challenge c

c←−−−−−−−−−− 0 ≤ c < 2δ

Calculate y = r − (s · c) y−−−−−−−−−−→
Check x

?
= hash ((gy · vc) mod n),

if yes, accept prover;
if no, reject prover.

Fig. 1. Sketch of the basic GPS protocol, as standardized in [10]

δ = 20, and ρ = σ + δ + 80 = 260. The composite modulus n should be at least
1024 bits long. The integer subtraction in the last step can be substituted by
addition if the public key is changed to v = g−s mod n (cf. [15]). This simplifies
the computation and allows an implementation of the prover without requiring
signed numbers. The hash function shown in Fig. 1 is optional [10]. It mainly
reduces bandwidth requirements for transmitting the commitment. In ultra-low
footprint implementations it can be omitted.

2.2 Coupon Approach

The computation of the commitment x does not depend on any input from the
verifier. This computation can already be done ahead of the actual protocol
execution. This observation was made by Girault in [7]. This paves the way for
the so-called coupon approach. A set of coupons (ri, xi) can be precomputed
(e.g. at production time of the tag) and stored in non-volatile memory. When
the protocol interaction starts, the prover selects a coupon (ri, xi) from memory
and sends xi to the verifier. After receiving the challenge c, the prover can
compute the response y = ri + s · c. McLoone et al. use this approach in their
implementations [12,13]. They managed to implement the final integer operations

166 G. Hofferek and J. Wolkerstorfer

Coupon Recalculation Authentication
Challenge-Response

po
w

er

da
ta

po
w

er

Fig. 2. Application scenario for the coupon recalculation approach

on a circuit size smaller than 1000 gate equivalents in less than 150 clock cycles
by exploiting a special variant of GPS based on challenges with a low Hamming
weight (cf. [8]).

However, these implementations are susceptible to denial-of-service attacks.
Once all coupons are used, the tag cannot authenticate itself any more. Due
to the authentication being only unilateral a tag cannot determine whether an
authentication request from a reader is warrantable or not. If a tag contained
k coupons, an attacker could disable the tag by requesting k authentications.
Giving tags the ability to (re-)calculate coupons prevents such denial-of-service
attacks.

2.3 GPS Coupon Recalculation Approach for RFID

The coupon recalculation approach is an extension of the coupon approach.
Whenever a tag is idle, but still supplied with power, it can use the time to
compute new coupons to refill its coupon storage. RFID tags are powered rather
long in comparison to the actual data transmission times. Tags are in the electro-
magnetic field of readers for seconds, while the protocol interaction completes
within milliseconds. This also applies for high volume logistic processes like the
one shown in Fig. 2.

In situations where it is very likely that all coupons have been used and thus
need to be recalculated, RFID tags can be supplied with power before interro-
gation (see Fig. 2). Power supply requires only the transmission of the carrier
frequency (e.g. 13.56 MHZ in HF systems). No sophisticated reader circuitry
is necessary to drive the powering antennas. A simple oscillator is sufficient as
interrogator circuit because neither modulation nor demodulation is needed.

The application scenario of coupon recalculation changes the requirements
for the hardware radically. In contrast to previous asymmetric cryptographic

Coupon Recalculation for the GPS Authentication Scheme 167

hardware neither latency nor throughput are of particular interest. Instead, hard-
ware implementations can focus on minimizing silicon area and power consump-
tion. The footprint of the circuit is of particular interest because the circuit size
has also an linear impact on the power consumption. Thus, the smallest possible
hardware suits the RFID requirements best. In order to keep the computation
time within limits, the metric A·t·P , which weighs area, time, and power equally,
was used to find an optimum hardware architecture.

Besides minimizing the area of the circuit it is also interesting to consider
the maximum clock frequency fmax. Although RFID tags clock their digital
circuitry at low clock frequencies to keep the power consumption low, high fmax

can be used to accelerate coupon recalculation when a higher power budget is
available. This is the case when a single good has to be authenticated. In such
a situation the reader antenna is usually held next to the RFID tag. The power
density of electro-magnetic fields are at least four times higher when halving the
distance between the tag and the antenna. The digital circuit of RFID tags is
almost ever optimized for worst-case situations at the far end of the reader field.
Detecting higher power densities and exploiting them by increasing the clock
frequency gives an RFID tag with GPS hardware the possibility to improve
the average performance. Anyhow, next we will analyze hardware approaches
assuming constant clock frequency.

3 Hardware Architecture

A hardware implementation of the recalculation approach can focus on the power
efficiency and on low footprint optimization. For computing a fresh coupon (r, x),
a modular exponentiation x = gr mod n has to be computed. The square-and-
multiply algorithm is the algorithm of choice for hardware implementations,
which computes x =

∏log2 r
i=0 giri .

3.1 Full-Precision Architecture

An approach often used for (high-speed) hardware is to use a bit-serial full-
precision multiplication to compute the modular multiplications and squarings.
Many implementations even use digit-serial approaches to improve latency [3].
Most hardware implementations use Montgomery multiplication [14] instead of
normal integer multiplication and subsequent modular reduction. Montgomery
multiplication simplifies modular reduction. Bit-serial multiplication schedules
one operand at full precision, while the other one is processed bit by bit. The
disadvantage of this approach is that at least five full-precision registers are nec-
essary. Three registers are needed for the multiplication: two for the input val-
ues, one for the (intermediate) result; one register is needed to store an auxiliary
variable which is necessary for implementing the square-and-multiply algorithm,
and one register is needed to store the modulus. Assuming a modulus of 1024
bits, this would mean that a full-precision architecture would need at least 5120

168 G. Hofferek and J. Wolkerstorfer

flip-flops, or more than 30 000 gate equivalents. After adding the necessary com-
ponents for partial-product generation and accumulation, the complete datapath
of a full-precision arithmetic unit requires approximately 50 000 gate equivalents
(not counting non-volatile memory for storing domain parameters). When stick-
ing to full-precision architectures, there are no more significant improvements
to be made concerning the circuit’s size. The size is mainly determined by the
storage requirements, which depend on the size of the modulus. It is thus rea-
sonable to concentrate on digit-level arithmetic architectures that operate on
smaller word sizes, which will be discussed in the next section.

3.2 Digit-Level Architecture

Bit-serial or digit-serial hardware architectures strive for improving performance.
In the recalculation approach, performance is of secondary interest. This al-
lows to use hardware architectures with smaller footprint and lower power con-
sumption. Multiply-accumulate structures known from signal processing and
instruction-set extensions allow to implement multiple-precision arithmetic at
minimal hardware costs.

Fig. 3 shows the architecture of a GPS-enhanced RFID tag that uses a digit-
level arithmetic unit to implement multiply-and-accumulate operations. There
are two obvious reasons why a digit-level approach decreases the circuit’s size:
First the arithmetic unit itself is much smaller because its data width is only
that of one digit (8 to 64 bits), and not of full precision. Second, the operands
and temporary results can be stored in a hard-macro RAM, which is more area
efficient than flip-flop-based storage. Most hard-macro RAM circuits are offered
either as single-port or dual-port memories. The little area expense of the second
port leads to great time savings in our application. Thus, a dual-ported RAM
is used. One port reads a digit as input for the arithmetic unit while the other
port is used to write back computed results at a different address.

Digital

Controller

Arithmetic
Unit

Non-Volatile

Memory

Dual-Ported

RAM

Control,

Status,

Data

A
d

d
re

s
s
,

D
a

ta Read Address

Write Address

R
A

M
R

e
a

d
B

u
s

R
A

M
W

ri
te

B
u

s

Analog Front-

End Clock,

Data

Fig. 3. Overview of an RFID tag, enhanced with a digit-level GPS architecture

Coupon Recalculation for the GPS Authentication Scheme 169

Non-volatile memory is also necessary, to store domain parameters (e.g. se-
cret key, modulus) and coupons. A digital controller implements the necessary
algorithms to perform the overall computation, by means of digit-level opera-
tions which are carried out by the arithmetic unit. The arithmetic unit contains
the actual datapath for performing the required operations. §4 details the arith-
metic unit. The width of the data buses shown in Fig. 3 is equal to the digit
size of the arithmetic unit. Thus one digit can be loaded from and stored to
the RAM in every cycle. The digit size is a parameter fixed at synthesis time.
Reasonable sizes are between 8 and 64 bits. Larger digit sizes seem impractical
because the corresponding d × d-digit multiplier would be too large. Digit sizes
below 8 bits also seem impractical since that would cause too long computations.
Computation time scales quadratically O(k2) with the number of digits k = n

d
to represent a multi-precision word.

4 Arithmetic Unit

The GPS arithmetic unit must be capable of performing modular exponentia-
tion (x = gr mod n) for the coupon recalculation, and (non-modular integer)
addition and multiplication (y = r + s · c) for the response calculation during
protocol execution. Our approach computes modular exponentiation in a se-
quence of square-and-multiply operations, which are broken down to digit level.
The implementation efficiency of (modular) multiplication is crucial for the GPS
hardware. It determines the circuit size and its performance.

4.1 Digit-Level Montgomery Multiplication

In our approach modular multiplication is implemented by Montgomery mul-
tiplication. There are several ways to break down Montgomery multiplication
to digit-level operations. Five different approaches have been analyzed by Koç
et al. in [11]. They differ in how much primitive operations (digit additions,
digit multiplications, memory read/write) and how much temporary memory
they require. The one which seems most suitable for our work, due to its low
memory requirements and low number of operations, is referred to by Koç et al.
as Coarsely integrated operand scanning (CIOS). [11] explains its details very
well. Basically the CIOS algorithm works as follows: The first digit of the first
operand is multiplied with all digits of the second operand to obtain a par-
tial product. After that an interleaved reduction step takes place by adding a
multiple of the modulus to the partial product to make it divisible by 2d, and
subsequently shifting the intermediate result one digit to the right (= division
by 2d). Then the next accumulation step is executed: The next partial product
(obtained by multiplying the second digit of the first operand with all digits
of the second operand) is added to the intermediate result. This is followed by
another interleaved reduction step. These accumulation and reduction steps are
repeated for all remaining digits of the first operand.

170 G. Hofferek and J. Wolkerstorfer

4.2 Analyzing Digit-Level Operations

To perform the desired operations the arithmetic unit consists of two (or more)
input registers (of size d) for the operands, and two output registers (of size d).
Two output registers are necessary because digit-level operations can produce
results which are larger than the digit size; two output registers are also suffi-
cient, since no atomic digit-level operation of the CIOS algorithm from [11] can
produce results larger than 22d − 1. No extra carry registers are needed. The
dominant operation performed during one GPS protocol execution is modular
exponentiation, which is broken down into multiplications (by means of square-
and-multiply). Single multiplications are performed using the CIOS algorithm.
The dominant operation in this algorithm lies within the accumulation step. This
operation calculates the sum of three terms: The current value of the Output
High register, one digit from RAM, and the product of two more digits from
RAM; i. e. the result is D1 + D2 · D3 + H , where Di denote digits from RAM
and H denotes the value of the Output High register at the time before the
operation starts. All other (digit-level) operations (within the CIOS algorithm
and within algorithms for multi-precision addition and multiplication) can be
reduced to this operation. E.g. calculating just the product of two digits can be
achieved by setting D1 and H to 0. Our proposed arithmetic unit is designed to
compute the operation D1 + D2 · D3 + H most efficiently.

4.3 Schematic

The operation described above has three external inputs D1, D2, D3, thus the
most obvious architecture for an arithmetic unit has three input registers. For
such a unit it would be possible to wire the arithmetic components (multiplier,
adder) in a way that the operation could be executed within one single cy-
cle. That is of course assuming that the input registers already hold the values
D1, D2, D3. Since only one digit per cycle can be loaded from a RAM hard-
macro, spending the area for three input registers does not bring real speed-up.
Thus it is reasonable to use only two input registers.

The schematic of the arithmetic unit is depicted in Fig. 4. A high-level model
written in Java proved the efficiency of the approach. An implementation in
Verilog is used for synthesis. Both the high-level model and the Verilog model
are parameterizable concerning the digit size d. The d × d-digit multiplier is
implemented as pure combinational logic; its area demand scales quadratically
with the digit size d. However, since only small digit sizes will be considered,
this approach seems possible. Other multiplier architectures (e.g. bit-serial mul-
tiplication) would require additional resources (e.g. shift registers). They would
also complicate control and prolong execution time. It should be noted that the
implementation details of the multiplier have been left to the synthesis tool. A
simple assign c = a * b statement was put into the Verilog code, so that the
synthesis tool would have the possibility to optimize the circuit while consid-
ering area and clock constraints. The input register D2 has additional logic to
be able to load either a value coming from the RAM read-bus (din), or one of

Coupon Recalculation for the GPS Authentication Scheme 171

Input 1 Input 2

x

+

2d

Output High Output Low

2d

0
0

...0
0

0
0

. ..0
1

RAM Read Bus

RAM Write Bus

d d

d

2d

d d

2d
2d

en

dd

d

d
d

d

d

d
d

d

d

Fig. 4. Schematic of the arithmetic unit with digit size d

the two constant values (000 . . .00)2 = 0 and (000 . . .01)2 = 1. The reason for
this is explained in the next section. Although Fig. 4 shows a multiplexer, the
most efficient implementation which achieves this behavior consists of d AND
gates and one OR gate. Another possibility would be to store the constants
(000 . . .00)2 = 0 and (000 . . . 01)2 = 1 in memory and load them from there.
This approach does not need additional logic in the arithmetic unit but the min-
imum size of the memory is increased by two entries. Furthermore the execution
time of the overall computation will be increased with this approach because
loading constant values into the second input register allocates the read bus of
the memory. Meanwhile, no meaningful operation of the datapath is possible.

Let us now investigate how the arithmetic unit depicted in Fig. 4 can be used
to compute the modular exponentiation x = gr mod n. As it has been explained,
exponentiation is broken down to modular multiplication by the square-and-
multiply approach. These multiplications are in turn broken down to digit-level
operations. The dominant digit-level operation is D1 +D2 ·D3 +H , as described

172 G. Hofferek and J. Wolkerstorfer

Table 1. Comparison of synthesis results of the arithmetic unit (not including RAM)
for different CMOS technologies, and two different digit sizes

Digit Size: 32 bits
(RAM for 151 digits needed, approx. 4.7

million clock cycles necessary for
computing one coupon)

Area Critical
Technology [μm2] Path [ns]

AMS 0.35 [2] 361 561.20 28.93
UMC 0.25 [18] 181 470.96 20.94
UMC 0.13 [17] 44 115.45 10.86

Digit Size: 8 bits
(RAM for 560 digits needed, approx.
66.6 million clock cycles necessary for

computing one coupon)

Area Critical
Technology [μm2] Path [ns]

AMS 0.35 43 880.47 10.16
UMC 0.25 20 599.92 5.98
UMC 0.13 4 855.68 3.41

in §4.2, where Di denote digits in RAM and H denotes the current value of
the Output High Register. The sum D1 + H can be accumulated in two steps
by means of the feedback loops shown in Fig. 4. While doing so, the Input
1 register is loaded with the constant value (000 . . .01)2 = 1. That way the
multiplier output is 1 times its left input. Then in the third step the values
D2, D3 are loaded to the input registers and the product D2 ·D3 is added to the
intermediate result D1 + H , thus resulting in the final result D1 + D2 ·D3 + H .
All other digit-level operations are performed in a similar way.

5 Results

Our implementation of an arithmetic unit for coupon recalculation of the GPS
authentication scheme is parameterizable with respect to the digit size d. Smaller
digit sizes lead to smaller arithmetic units, but the time necessary to complete
one authentication increases heavily with smaller digit sizes. The number of nec-
essary digit-level operations is roughly proportional to the square of the number
of digits per operand. Therefore in our opinion digit sizes below 8 bit are unprac-
tical, considering that the full-precision size of the operands is (at least) 1024
bits.

Table 1 shows the synthesis results for the implementation of the arithmetic
unit. For synthesis the PKS Shell from Cadence was used. Three different CMOS
technologies have been used: A 0.35 µm CMOS technology from austriamicrosys-
tems [2], and a 0.25 µm and a 0.13 µm CMOS technology from UMC [17,18].
The critical path of the circuit is very short, due to the small arithmetic com-
ponents, which are only of digit size. That means that it could be clocked very
fast; frequencies up to 290 MHz are possible with UMC 0.13 µm CMOS technol-
ogy. This opens a wide window of possibilities for operation. When operated at
very low clock frequencies (e.g. 100 kHz), the circuit consumes very little power
(6.25 µW). We have performed a power simulation of the arithmetic unit (digit
size: 8 bit), using the near-SPICE simulator Nanosim from Synopsys. The cir-
cuit was first synthesized for AMS 0.35 µm CMOS technology with PKS Shell,
then placed and routed with First Encounter. The resulting layout can be seen

Coupon Recalculation for the GPS Authentication Scheme 173

Fig. 5. Layout of the GPS arithmetic unit (digit size: 8 bits) after place-and-route

in figure 5. A netlist for Nanosim was extracted with Assura from the layout
after place-and-route. The simulation reveals that the arithmetic unit consumes
approximately 2.5 µA when clocked with 100 kHz. Thus, with 2.5 V supply
voltage, the power consumption is 6.25 µW. This is comparable to the results
of Feldhofer et al. for AES [4]. They use the same CMOS technology and their
AES implementation consumes 5 µW.

When raising the supply voltage to 3.3 V the performance of the circuit im-
proves. It can be clocked with frequencies up to 125 MHz. At 125 MHz and 3.3 V
supply voltage, the circuit draws a current of 3.2 mA. That means that if more
power is available the computation can be sped up by a factor of 1250, compared
to operation at 100 kHz.

The synthesis of the 8-bit arithmetic unit requires approximately 800 gate
equivalents. After place-and-route the circuit takes up an area of approximately
64 250 µm2. In addition, it would require a RAM hard-macro capable of storing
560 bytes. In comparison, the smallest implementation by McLoone et al. [12,13]
requires only 431 gate equivalents. However their implementation can only com-
pute the response y = r + s · c in the last step of the GPS protocol, whereas our

174 G. Hofferek and J. Wolkerstorfer

circuit is capable of calculating the modular exponentiation x = gr mod n to
compute new coupons on-tag. Of course our implementation can also be used to
calculate the response y. When using standard sizes for the parameters (cf. §2.1)
this calculation takes 627 cycles, including time to load the operands to RAM.
33 of these cycles can be saved if a fresh coupon has been computed immediately
before and thus the random value r is already present in RAM.

6 Conclusion

This paper introduced the coupon recalculation approach, which is an area- and
power-efficient way to extend the coupon approach of the GPS authentication
scheme. During the idle time of RFID tags, fresh coupons are computed for
future authentication requests. A full-precision arithmetic unit would require
approximately 50 000 gate equivalents, plus approximately 2200 bits of non-
volatile memory to store keys and domain parameters (if typical values for GPS
parameters are used). Our digit-level approach makes use of an arithmetic unit,
which requires only approximately 800 GE for a digit size of 8 bits. In addition
RAM resources for storing 560 bytes are needed. One coupon calculation takes
about 66.6 million clock cycles, and the maximum clock frequency of the circuit
on UMC 0.13 µm CMOS technology is approximately 290 MHz. The approach
is very flexible and can be used either when very little power is available (i.e.
low clock frequency, longer execution time). When more power is available, the
computation can be accelerated by increasing the clock frequency. Up to four
coupons can be computed per second under such conditions (290 MHz).

References

1. ADT Tyco Fire & Security, Alien Technology, Impinj Inc., Intel Corporation, Sym-
bol Technologies, and Xterprise. RFID and UHF – A Prescription for RFID Success
in the Pharmaceutical Industry. White paper (2006)

2. Austriamicrosystems. 0.35μm CMOS Process Standard-Cell Library,
http://asic.austriamicrosystems.com/databooks/index c35.html

3. Blum, T., Paar, C.: Montgomery modular exponentiation on reconfigurable hard-
ware. In: Koren, Kornerup (eds.) Proceedings of the 14th IEEE Symposium on
Computer Arithmetic, Adelaide, Australia, pp. 70–77. IEEE Computer Society
Press, Los Alamitos (1999)

4. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of
sand. IEEE Proceedings on Information Security 152(1), 13–20 (2005)

5. Girault, M.: An identiy-based identification scheme based on discrete logarithms
modulo a composite number. In: Daamgard, I. (ed.) EUROCRYPT 1990. LNCS,
vol. 473, pp. 481–486. Springer, Heidelberg (1991)

6. Girault, M.: Self-certified public keys. In: Davies, D. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

7. Girault, M.: Low-size coupons for low-cost ic cards. In Smart Card Research and
Advanced Applications. In: Proceedings of the Fourth Working Conference on
Smart Card Research and Advanced Applications, CARDIS 2000, Bristol, UK,
September 20-22, 2000, vol. 180, pp. 39–50. Kluwer, Dordrecht (2000)

http://asic.austriamicrosystems.com/databooks/index_c35.html

Coupon Recalculation for the GPS Authentication Scheme 175

8. Girault, M., Lefranc, D.: Public key authentication with one (online) single ad-
dition. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp.
413–427. Springer, Heidelberg (2004)

9. Girault, M., Poupard, G., Stern, J.: On the fly authentication and signature
schemes based on groups of unknown order. Journal of Cryptology 19(4), 463–
487 (2006)

10. ISO/IEC. International Standard ISO/IEC 9798 Part 5: Mechanisms using zero-
knowledge techniques (December 2004)

11. Koç, C.K., Acar, T., Kaliski, B.J.: Analyzing and comparing Montgomery multi-
plication algorithms. IEEE Micro. 16(3), 26–33 (1996)

12. McLoone, M., Robshaw, M.: Public key cryptography and RFID tags. In: Abe, M.
(ed.) CT-RSA 2007. LNCS, vol. 4377. Springer, Heidelberg (2006)

13. McLoone, M., Robshaw, M.J.B.: New architectures for low-cost public key cryptog-
raphy on RFID tags. In: IEEE International Symposium on Circuits and Systems
(ISCAS 2007), pp. 1827–1830 (May 2007)

14. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44, 519–521 (1985)

15. NESSIE. Final report of European project number IST-1999-12324, named new
european schemes for signatures, integrity, and encryption (April 2004),
https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

16. Tuyls, P., Batina, L.: RFID-Tags for Anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

17. UMC. UMC standard cell library — 130 nm CMOS process
18. UMC. UMC standard cell library — 250 nm CMOS process
19. Wolkerstorfer, J.: Is Elliptic-Curve Cryptography Suitable for Small Devices? In:

Workshop on RFID and Lightweight Crypto, Graz, Austria, July 13-15, 2005, pp.
78–91 (2005)

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf

Provably Secure Grouping-Proofs for RFID Tags�

Mike Burmester1, Breno de Medeiros2, and Rossana Motta1

1 Florida State University, Tallahassee FL 32306, USA
{burmester,motta}@cs.fsu.edu

2 Google Inc., 1600 Amphitheatre Pkwy Mountain View, CA 94043
breno@google.com

Abstract. We investigate an application of RFIDs referred to in the literature
as group scanning, in which several tags are “simultaneously” scanned by a
reader device. Our goal is to study the group scanning problem in strong ad-
versarial models. We present a security model for this application and give a for-
mal description of the attending security requirements, focusing on the privacy
(anonymity) of the grouped tags, and/ or forward-security properties. Our model
is based on the Universal Composability framework and supports re-usability
(through modularity of security guarantees). We introduce novel protocols that
realize the security models, focusing on efficient solutions based on off-the-shelf
components, such as highly optimized pseudo-random function designs that re-
quire fewer than 2000 Gate-Equivalents.

1 Introduction and Previous Work

Radio Frequency Identification (RFID) tags were initially developed as small electronic
hardware components whose main function is to broadcast a unique identifying number
upon request. The simplest type of RFID tags are passive devices—i.e., without an
internal power source of their own, relying on an antenna coil to capture RF power
broadcast by an RFID reader. In this paper, we focus on tags that additionally feature a
basic integrated circuit and memory. This IC can be used to process challenges issued
by the RFID reader and to generate an appropriate response. For details on these tags,
and more generally on the standards for RFID systems, the reader is referred to the
Electronic Protocol Code [10] and the ISO 18000 standard [11].

The low cost and high convenience value of RFID tags gives them the potential for
massive deployment. Accordingly, they have found increased adoption in manufactur-
ing (assembly-line oversight), supply chain management, inventory control, business
automation applications, and in counterfeit prevention. Initial designs of RFID identifi-
cation protocols focused on performance issues with lesser attention paid to resilience
and security. As the technology has matured and found application into high-security
and/or high-integrity settings, the need for support of stronger security features has
been recognized. Many works have looked into the issue of secure identification and
authentication, including [1, 2, 5, 6, 7, 8, 9, 13, 14, 15, 19, 20, 21, 22].

� Part of this material is based on work supported by the U.S. Army Research Laboratory, and
the U.S. Research Office under grant number DAAD 19-02-1-0235.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 176–190, 2008.
c© IFIP International Federation for Information Processing 2008

Provably Secure Grouping-Proofs for RFID Tags 177

Ari Juels introduced the security context of a new RFID application—which he
called a yoking-proof [12], that involves generating evidence of simultaneous presence
of two tags in the range of an RFID reader. As noted in [12], interesting security engi-
neering challenges arise in regards to yoking-proofs when the trusted server (or Verifier)
is not online during the scan activity. The first proposed protocol introduced in [12] was
later found to be insecure [4, 18]. Yoking-proofs have been extended to grouping-proofs
in which groups of tags prove simultaneous presence in the range of an RFID reader—
see e.g. [4, 17, 18]. In this paper, we examine the latter solutions and identify similar
weaknesses in their design.

Our main contribution in this paper is to present a comprehensive security framework
for RFID grouping-proofs, including a formal description of the attending security re-
quirements. In previous work, the group scanning application has only been described
at relatively informal levels, making it difficult to provide side-to-side comparisons be-
tween alternative proposals. We then construct practical solutions guided by the security
requirements and constraints of this novel model.

As Juels already pointed out, there are several practical scenarios where grouping-
proofs could substantially expand the capabilities of RFID-based systems. For example,
some products may need to be shipped together in groups and one may want to monitor
their progress through the supply chain—e.g., of hardware components or kits. Other
situations include environments that require a high level of security, such as airports. In
this case, it may be necessary to couple an identifier, such as an electronic passport, with
a physical person or with any of his/her belongings, such as their bags. In battlefield
contexts, weaponry or equipment may have to be linked to specific personnel, so that it
may only be used or operated by the intended users.

In some of the above scenarios, the RFID reader may not enjoy continuous con-
nectivity with the trusted Verifier, and delayed confirmation may be acceptable. For
instance, this may be the case with supply chain applications, due to the increased
fragmentation and outsourcing of manufacturing functions. A supplier of partially as-
sembled kits may perform scanning activities that will be verified later when the kits
are assembled at a different site. Therefore, efficient and optimized realizations of this
primitive that achieve strong security guarantees—such as we describe in this paper—
are practically relevant contributions in the design space of RFID protocols.

2 RFID Deployments and Threat Model

A typical deployment of an RFID system involves three types of legitimate entities:
tags, readers and a Verifier. The tags are attached to, or embedded in, objects to be
identified. In this paper we focus on passive RFID tags that have no power of their own
but have a small footprint CMOS integrated circuit, ROM, RAM and non-volatile EEP-
ROM. The RFID readers typically contain a transceiver, a control unit and a coupling
element, to interrogate tags. They implement a radio interface to the tags and a high
level interface to the Verifier that processes captured data.

The Verifier (a back-end server) is a trusted entity that maintains a database contain-
ing the information needed to identify tags, including their identification numbers. In
our protocols, since the integrity of the whole RFID system is entirely dependent on the

178 M. Burmester, B. de Medeiros, and R. Motta

proper behavior of the Verifier, we assume that the Verifier is physically secure and not
attackable.

Grouping-proofs involve several tags being scanned by an RFID reader in the same
session. The reader establishes a communication channel that links the tags of a group
and enables the tags to generate a proof of “simultaneous presence” within its broadcast
range. The proof should be verifiable by the Verifier. Throughout this paper, we assume
the following about the environment characterizing group scanning applications:

– The tags are passive, i.e., have no power of their own, and have very limited com-
putation and communication capabilities. However, we assume that they are able
to perform basic cryptographic operations such as generating pseudo-random num-
bers and evaluating pseudo-random functions.

– RFID tags do not maintain clocks or keep time. However, the activity time span of
a tag during a single session can be limited using techniques such as measuring the
discharge rate of capacitors, as described in [12].

– RFID readers establish communication channels that link the tags of a group. This
takes place at the data link layer of the RFID network: after tags that claim to
belong to a group are “identified” (tags may use pseudonyms) a common (wireless)
channel linking the tags via the reader is established.

– RFID readers are trusted to manage the interrogation of tags. They enable the tags
of a group to generate a grouping proof during an interrogation session, and keep a
record of such proofs for each session. These records cannot be manipulated by the
adversary. In the offline case readers must also store private information regarding
interrogation challenges obtained from the Verifier.

– The Verifier is a trusted entity, that may share some secret information with the
tags such as cryptographic keys. The Verifier has a secure channel (private and
authenticated) that links it to the (authenticated) RFID readers.

– Grouping proofs are only valid if they are generated according to their protocol in
the presence of an authorized RFID reader. In particular if the flows of the protocol
are ordered, the ordering cannot be violated. Also, proofs generated during different
sessions are not valid (even if correct).

The Verifier can be online or offline and different solutions are required in each case.
We further distinguish between online fully-interactive mode and online batch mode.
In fully-interactive mode the Verifier can receive and send messages to specific tags
throughout the protocol execution. In contrast, the interaction of the Verifier in batch
mode is restricted to broadcasting a challenge that is valid for a (short) time span,
collecting responses from the tags (via RFID reader intermediates), and checking for
legitimate group interactions—the Verifier in batch mode never unicasts messages to
particular groups of tags.

It is straightforward to design solutions for the fully-interactive mode of the grouping-
proof problem—indeed, it is sufficient for individual tags to authenticate themselves to
the Verifier, which will then decide on the success of the grouping-proof by using auxil-
iary data, e.g., the tag identifiers of the groups. Therefore, research on grouping-proofs
has focused on the offline case, with some results also targeted at the online batch modal-
ity. Accordingly, in this paper, we focus on offline solutions, except for the forward-
secure protocol, where we only describe a solution in the online batch mode.

Provably Secure Grouping-Proofs for RFID Tags 179

2.1 Attacks on RFID Tags

Several types of attacks against RFID systems have been described in the literatrure.
While each of these are types known in other platforms, unique aspects of the RFID
domain make it worthwhile to discuss them anew.

– Denial-of-Service (DoS) attacks: The adversary causes tags to assume a state from
which they can no longer function properly.

– Unauthorized tag cloning: The adversary captures keys or other tag data that allow
for impersonation.

– Unauthorized tracing: The adversary should not be able to trace and/or recognizes
tags.

– Replay attacks: The adversary uses a tag’s response to a reader’s challenge to im-
personate the tag.

– Interleaving and reflection attacks: These are concurrency attacks in which the
adversary combines flows from different instantiations to get a new valid tran-
script.

These attacks are exacerbated by the mobility of the tags, allowing them to be manipu-
lated at a distance by covert readers.

2.2 The Threat Model for RFID

The extremely limited computational capabilities of RFID tags imply that traditional
multi-party computation techniques for securing communication protocols are not fea-
sible, and that instead lightweight approaches must be considered. Yet the robustness
and security requirements for RFID applications can be quite significant. Ultimately,
security solutions for RFID applications must take as rigorous a view of security as
other types of applications. Accordingly, our threat model assumes a Byzantine adver-
sary. In this model all legitimate entities (tags, readers, the Verifier) and the adversary
have polynomially bounded resources. The adversary controls the delivery schedule of
the communication channels, and may eavesdrop into, or modify, their contents, and
also instantiate new channels and directly interact with honest parties.

We are mainly concerned with security issues at the protocol layer and not with
physical or link layer issues—For details on physical/link layer issues the reader is
referred to [10, 11].

2.3 Guidelines for Secure RFID Applications

Below we present effective strategies that can be used to thwart the attacks described in
Section 2.1. These strategies are incorporated in the design of our protocols.

– DoS attacks: One way to prevent the adversary from causing tags to assume an
unsafe state is by having each tag share with the Verifier a permanent secret key
ktag , which the tag uses to generate a response when challenged by an RFID
reader.

180 M. Burmester, B. de Medeiros, and R. Motta

– Cloning attacks: The Verifier should be able to check a tag’s response, but the ad-
versary should not be able to access a tag’s identifying data. This can be assured by
using cryptographic one-way functions.

– Unauthorized tracing: The adversary should not be able to link tag responses to
particular tags. This can be guaranteed by (pseudo-)randomizing the values of the
tags’ responses.

– Interleaving and Replay attacks: The adversary should not be able to construct
valid transcripts by combining flows from different sessions. This can be assured
by binding all messages in a session to the secret key and to fresh (pseudo-)random
values.

– Generic concurrency-based attacks: Protocols that are secure in isolation may be-
come vulnerable under concurrent execution (with other instances of itself or of
other protocols). To guarantee security against such attacks it is necessary to model
security in a concurrency-aware model. In this paper, we use the Universal Com-
posability model.

3 Previous Work: RFID Grouping-Proofs

In this section we describe three grouping-proofs proposed in the literature and discuss
their vulnerabilities.

3.1 The Yoking-proof

This is a proof of simultaneous presence of two tags in the range of a reader [12]. The
reader scans the tags sequentially. The tags have secret keys known to the Verifier but
not the reader, and counters, and use a keyed message authentication code and a keyed
hash function to compute a “yoking-proof ”. Saito and Sakurai observed [18] that a
minimalist version of this proof (that does not use counters) is subject to an interleaving
attack. The attack was shown [4] to extend to the full version of the proof, but it was
also shown that it can be easily be prevented.

There are two other weaknesses we shall discuss here. The first concerns the fact
that the tags do not (and cannot) check each other’s computation. This implies that in
the offline mode unrelated tags can participate in a yoking session, and that the fail-
ure will only be detected by the Verifier at some later time, not by the reader. While,
from an authentication perspective, this may not represent a security threat, in many
practical applications it is an undesirable waste of resources, and could be character-
ized as a DoS vulnerability. To appreciate how accidental pairing may create challenges
to real-world applications—e.g., where yoking is used to ensure that components are
grouped in a shipment, consider the following scenario. A reader is configured to take
temporary measures after a failed yoking attempt, e.g., notify an assembly worker of a
missing component in a shipment pallet. This capability is denied if a tag (either acci-
dentally or maliciously) engages in yoking sessions with unrelated tags, and possibly
even with itself—for the latter, we refer the reader to the modified re-play attack sce-
nario described in [18]. Accidental occurrences of this type might not be unlikely, in
particular with anonymous yoking-proofs, and they are facilitated by the fact that the

Provably Secure Grouping-Proofs for RFID Tags 181

scanning range of readers may vary according to different environmental conditions. In
order to prevent this kind of vulnerability, in our protocols we use a group secret key
kgroup, which is shared by all the tags belonging to that group.1

A more serious weakness concerns the nature of the “proof” PAB generated by the
tags: this is not a proof that tagA and tagB were scanned simultaneously while in the
presence of an authorized reader. Indeed, one cannot exclude the possibility that PAB

was generated while the tags were in the presence of a rogue reader, and that at a later
time PAB was replayed by a corrupted tag (impersonating successively tagA and tagB)
in the presence of the authorized reader. To avoid this kind of attack in our protocols
the challenge of authorized tags will include a nonce (rsys).

3.2 Proofs for Multiple RFID Tags

These extend yoking-proofs to handle arbitrary number of tags in a group [18] and
use time-stamps, to thwart re-play attacks. Piramuthu [17] replaced the time-stamps by
random numbers. This is important, because time-stamps can be predicted, allowing for
attacks that collect prior responses and combine them to forge proofs of simultaneous
interaction. As with the yoking-proofs, these fail to satisfy the security guidelines in
Section 2.3. In particular, the random numbers used and are vulnerable to a multi-proof
session attacks [16].

3.3 Clumping-proofs for Multiple RFID Tags

[16]. These combine the strengths of yoking-proofs and multiple tag proofs and address
some of their weaknesses. The tags use counters and the reader uses a keyed hash of a
time-stamp, obtained from the Verifier, to make its requests unpredictable. For details,
we refer the reader to [16].

Clumping-proofs use counters to reduce the search complexity of the Verifier. How-
ever their value is updated regardless of the received flows, so they can be incremented
arbitrarily by the adversary (via rogue readers). Therefore, they cannot be relied upon
to identify tags, and in the worst case an exhaustive search through the keys may have
to be used. A security proof is provided in the Random Oracle Model [3]. However, this
does not address concurrency threats, a substantial limitation of the analysis, consider-
ing that the original yoking-proofs [12] admit a similar security proof and are vulnerable
to concurrency-based attacks.

4 Our Protocols: Robust Grouping-Proofs

We present three RFID grouping proofs. The first one does not provide anonymity, the
second adds support to anonymity and the third improves on the second by incorporat-
ing forward-secrecy.

1 Although group keys will prevent faulty tags from participating in a grouping-proof that in-
volves non-faulty tags, they cannot prevent malicious tags from submitting an invalid proof to
a reader, since proofs can only be verified by the Verifier. Our last protocol (Section 4.3), in
which the groups are authenticated by the reader, addresses this issue.

182 M. Burmester, B. de Medeiros, and R. Motta

In the first protocol, the proof sent from the tags to the reader and from the reader to
the Verifier includes a group identifier IDgroup. For the second protocol, no identifier is
passed to the reader: the proof uses values that depend on the group’s identifier and key
and on the Verifier’s challenge but the dependency is known only to the Verifier. Thus,
only the Verifier is able to match the proof with a given group of tags: this guarantees
unlinkability and anonymity. In the third protocol the secret keys and the group keys of
the tags are updated after each execution, thus providing forward-secrecy.

There are two reasons why we present different protocols. First, prior work on group
scanning has considered both the anonymous and non-anonymous settings. Since
anonymizing protocols requires additional computational steps and correspondingly
larger tag circuitry, simpler alternatives are preferred whenever anonymity is not a con-
cern. Second, the introduction of protocols of increasing complexity follows a natural
progress that facilitates the understanding of the protocols structure.

Although for simplicity we illustrate our protocols with two tags, the extension to
any number of tags is straightforward. Irrespective of the number of tags involved, a
specific tag in the group always plays the role of “initiator,” transmitting either a counter
(in the non-anonymous protocol), a random number, or a random password (in the other
versions). This has the security benefit of curtailing reflection attacks. To implement this
feature, it is not necessary that tags engage in any sort of real-time agreement protocol,
it is sufficient to hard-code the behavior of tags.

We consider situations in which the Verifier is not online while the tags are scanned.
Each tag stores in non-volatile memory two secret keys (both shared with the Verifier):
a group key kgroup used to prove membership in a group, and an identification key ktag

used to authenticate protocol flows. Tags instances are denoted as tagA or tagB, and
the key for instance tagA is written in shorthand as kA.

Each protocol starts with a reader broadcasting a random challenge rsys, which is ob-
tained from the trusted Verifier at regular intervals. This challenge defines the scanning
period, i.e., each group should be scanned at most once between consecutive challenge
values. In other words, the Verifier cannot (without further assumptions) determine si-
multaneity of a group scan to a finer time interval than the scanning period.

4.1 A Robust Grouping-Proof

Our first non-anonymous grouping-proof is presented for two tags, tagA and tagB, where
tagA is the initiator tag—see Fig. 1. The current state of the group is determined by a
counter c stored by the initiator tag. The counter is updated with each execution of the
protocol. Each group is assigned an identifier IDgroup and the Verifier stores these values
together with the private keys of each tag in a database D = {(IDtag, ktag, kgroup)}.
The protocol has three phases. In the first phase the reader challenges the tags in its range
with rsys and the tags respond with their group identifier IDAB . In the second phase—
which takes place at the data-link layer—the tags are linked by channels through the
reader. In the third, the tags prove membership in their group.

Each phase can be executed concurrently with all the tags in the group, except that
the third phase must be initiated by the initiator tag (tagA in the diagram). The various
phases cannot be consolidated without loss of some security feature. If we remove the
first phase (rsys) the protocol would be subject to a “full-replay” attack (Section 2.3).

Provably Secure Grouping-Proofs for RFID Tags 183

tagA(IDAB , kAB , kA, c) READER(rsys) tagB(IDAB , kAB , kB)

rsys�
rsys

�

IDAB
�

IDAB�

link tagA to tagB

{tagA, tagB} is linked
�

{tagA, tagB} is linked
�

Set timer

rA||sA ← f(kAB ; rsys||c)
rA, c

�
rA, c

�

c ← c + 1 Set timer

rB ||sB ← f(kAB ; rsys||c)
if rB �= rA then timeout
else xB ← f(kB ; rsys||rB)

sB�
sB , xB�

timeout
If sA �= sB then timeout
else xA ← f(kA; rsys||rA)

xA
�

timeout

PAB = (rsys, IDAB , c, rA, sB , xA, xB)

Fig. 1. A robust grouping-proof—for two tags

If we remove the second phase (the exchange of IDAB), the reader would be unable
to match the tags. Phase three consists of three rounds of communication, and each
is crucial to provide the data for the proof. If we were to suppress the exchange of
sB and xB , or if we did not implement the timeout, then replay attacks would be
successful. Also, the implementation of the third round enables an authorized reader
to detect certain protocol failures immediately, namely those that lead the initiator tag
to timeout. The update of the counter c immediately after it is sent by tagA allows the
state to be updated even if the protocol round should be interrupted. This, along with
timers prevents replay attacks.

The extension of the protocol to more than two tags is achieved as follows. In the first
and second phases, the reader communicates with all tags concurrently. In the first round
of the third phase, the reader communicates only with the initiator tag; it communicates
with all other tags concurrently in the second round; and again with the initiator tag in
the third round, providing it with concatenated answers from the second round.

In the protocol each tagX uses its group key kAB to evaluate f(kAB; rsys||c), where
f is a pseudo-random function and “||” denotes concatenation. This is parsed to get
numbers rX , sX of equal length, used to identify the parties of the group and prove
membership in the group. Tags use their secret key to confirm correctness of the proof.
The proof of simultaneous scanning is PAB = (rsys, IDAB, c, rA, sB, xA, xB). In our
protocol, it is possible for an authorized reader to know whether grouped tags were
actually scanned or not because, in the latter case, one or more of the tags would time-
out. This represents an improvement over the past protocols, in which the success or
failure of the yoking- or grouping-proof, could only be detected by the Verifier. This

184 M. Burmester, B. de Medeiros, and R. Motta

protocol can be implemented very efficiently, with a footprint of fewer than 2000 Gate-
Equivalents. For a discussion on optimized implementations of pseudo-random func-
tions suitable for RFID applications, we refer the reader to [13].

Security Analysis. The universal composability (UC) framework defines the security
of a protocol in terms of its simulatability by an idealized functionality F (which can
be thought of as specifications of the achievable security goals for the protocol). F is a
trusted entity that can be invoked by using appropriate calls. We say that a protocol ρ
UC-realizes F , if for any adversary A, any real-world simulation of ρ in the presence
of A can be emulated by an ideal-world simulation in which the adversary invokes F ,
in such a way that no polynomial-time environment Z can distinguish between the two
simulations. In ideal-world simulations, the adversary has access to all the outputs of
F , as in the real-world it can eavesdrop into all communications.

For our first protocol the functionality Fgroup comprises the behavior expected of a
grouping-proof. It is invoked by five calls: activate, initiate, link, complete, and verify.
The first call is used by the environment Z to activate the system by instantiating the
Verifier, an authorized reader and some tags. Note that keys initially shared between
the Verifier and the tags are not under control of the adversary in this model—in the
UC model this is called a trusted setup. The second call is used by readers to initiate
an interrogation session, and corresponds to an rsys challenge, and by tags to declare
their group membership. The call link, links the tags specified in activate, and the call
initiate for tags gives their response to the reader’s challenge. The call complete is for
initiator tags and completes a proof: it corresponds to xA. The call verify can be used
to submit a putative proof transcript to the Verifier. The adversary can arbitrarily invoke
Fgroup and mediates between all parties involved in its interactions with Fgroup.

All the outputs resulting from calls to Fgroup, except for the tag calls that produce
identifiers, are random strings. The functionality keeps a record of every output string,
and uses these strings in the same way as the protocol ρ uses the corresponding outputs.
Fgroup will only accept (verify) those proofs that it has generated itself during a partic-
ular session as a result of the activation of the system, the initiation and linking by an
authorized reader, the initiation of all the tags that belong to a particular group, and the
completion by an initiator tag (in this order). In the full version of this paper we shall
show that our first protocol UC-realizes the Fgroup functionality.

4.2 A Robust Anonymous Grouping-Proof

For our second protocol, group identifiers are replaced by randomized group
pseudonyms psgroup. To protect against de-synchronization failure or attacks, one (or
more in groups of n > 2 tags) of the tags must maintain both a current and an earlier
version of the state of their pseudonyms. For this purpose all tags in a group store in
non-volatile memory one or more values of a pseudo-random number rtag .2 Initiator
tags store only the current value, while the other tags store two values, rold

tag , rcur
tag . These

2 We use rtag instead of rgroup to distinguish between the actions of individual tags in group
during the execution of the protocol. The values of these numbers are the same for all tags in
group when the adversary is passive.

Provably Secure Grouping-Proofs for RFID Tags 185

tagA(kAB , kA, rA) READER(rsys) tagB(kAB , kB , rold
B , rcur

B)

rsys�
rsys

�

Set timer Set timer

psAB ||cnf A ← f(kAB ; rsys, rA) psold
AB ||cnf old

B ← f(kAB ; rsys, rold
B)

pscur
AB ||cnf cur

A ← f(kAB ; rsys, rcur
B)

psAB �
psold

AB , pscur
AB�

if psAB ∈ {psold
AB , pscur

AB} then link tagA, tagB

group psAB is linked
�

group psAB is linked
�

if psAB �∈{psold
AB , pscur

AB} then timeout

else if psAB =psj
AB

, j∈{old, cur}
then xj

B
← f(kB ; rsys||psAB)

if j =old then rcur
B ← psAB , if j =cur

then (rold
B , rcur

B) ← (rcur
B , psAB)

cnf j
B�

cnf j
B

, xj
B�

timeout
If cnf A = cnf j

B
then

rA ← psAB

xA ← f(kA; rsys||psAB)

xA
�

timeout

PAB = (rsys, psAB , cnf j
B , xA, xj

B)

Fig. 2. A robust anonymous grouping-proof—for two tags

values are used to compute the group pseudonym. First f(kgroup; rsys||rtag) is eval-
uated, where rsys is the random challenge of the Verifier. Then, this is parsed to get
two numbers psgroup, cnf tag , of equal length, where cnf tag is a confirmation used to
authenticate the pseudonym. Initiator tags compute one pseudonym psgroup; the other
tags compute two pseudonyms psold

group and pscur
group (in a similar way).

The tags in group update the value(s) of their group pseudonym(s) with each suc-
cessful execution of their part of the grouping protocol. The protocol is presented in
Fig. 2, where tagA is the initiator and for simplicity we depict only one additional tag,
tagB. It is easy to see how this protocol can be extended to groups of n > 2 tags. In
particular, the reader will link all the tags for which at least one pseudonym is psgroup,
provided there are n such tags.

The Verifier keeps a database D = (rsys, {(ktag, kgroup, psgroup)}) that links, for
session rsys, the secret key of each tag to its group key and the group pseudonym
of the corresponding initiator tag. The pseudonyms are updated with each successful
execution of the protocol (using the next value of rsys). The database D is also used
to optimize the performance of the protocol: if the adversary has not challenged the
tags of group since their last interaction (e.g., via rogue readers), then the value of the
pseudonym in D will be the one that is actually used by the initiator tag, and therefore

186 M. Burmester, B. de Medeiros, and R. Motta

the corresponding secret keys can be found directly (one lookup) and used to verify the
correctness of the authenticator xtag of the initiator tag. The secret keys of the other
tags in group can be found in the database D from the group key kgroup, and used
to verify the correctness of their authenticators. If no value in D corresponds to the
pseudonym used by the initiator tag then the Verifier will have to find the secret key of
the initiator from its authenticator xtag = f(ktag; rsys||psgroup) by exhaustive search
over all secret keys (of initiator tags). The pseudo-random numbers rtag are initialized
with random values rA: for the initiator tagA: rtag ← rA, while for all other tagX in
its group: (rold

X , rcur
X) ← (rA, rA).

Observe that initiator tags respond with only one pseudonym and therefore can be
distinguished from other tags (which respond with two pseudonyms). There are several
ways to address this privacy issue, if it is of concern. One way is to assign to all tags
a pair of pseudonyms, and identify groups by selecting those sets of tags that have one
pseudonym ps∗ in common. There will always be at least one tag in this set for which
pscur

group = ps∗. The reader elects an initiator tag among those tags sharing the common
pseudonym deterministically, probabilistically, or in some ad hoc way: e.g., the first to
respond. The reader informs the initiator tag of its selection and indicates to the other
tags which pseudonym ps∗ is current. In this modification of the protocol all rounds are
executed concurrently.

As in the previous protocol, each step is essential. The main difference is that in
the anonymous protocol, the tags exchange pseudonyms psAB and psold

AB , pscur
AB , rather

than a group identifier. The functionality provided by this step, however, is analogous
in the two protocols and enables the Verifier to identify the group.

It is important to notice that even though the values that the reader receives for each
completed round vary, if a malicious reader interrupts the session (round), preventing
the pseudonym update, and then re-uses rsys, it can link the two scannings. However,
the power of this attack is limited because a single round with a non-faulty reader at any
point will restore unlinkability. We shall refer to this property as, session unlinkability.
More formally we have:

Definition 1. An RFID protocol has session unlinkability if, any adversary, given any
two tag interrogations int1, int2, (not necessarily complete, or by authorized readers),
where int1 takes place before3 int2, and a history of earlier interrogations, cannot
decide (with probability better than 0.5 +ε, ε negligible) whether these involve the same
tag or not, provided that either:

– The interrogation int1 completed normally (successfully), or
– An interrogation of the tag involved in int1 completed successfully after int1 and

before int2.

Security Analysis. The functionality Fsa group of our second protocol comprises the
behavior expected of an anonymous grouping-proof with session unlinkability. The
functionality Fsa group is that same as Fgroup except that:

3 A temporal relationship, as observed by the adversary. Note that if the adversary observes two
interrogations overlapping in time, it can certainly assert that they do not belong to the same
tag, since tags are currently technologically limited to single-threaded execution.

Provably Secure Grouping-Proofs for RFID Tags 187

tagA READER tagB

(ki
AB , ki

A, ri
A), i∈{old, cur} rsys, {(pst

AB , vt
AB), t∈{old, cur}} (kj

AB
, kj

B
, rj

B
), j∈{old, cur}

rsys�
rsys �

Set timer Set timer

psi
A||cnf i

A||ui
A||vi

A ← f(ki
AB ; rsys||ri

A), psj
AB

||cnf j
B
||uj

B
||vj

B
←f(kj

AB
; rsys||rj

B
),

i ∈ {old, cur} j ∈ {old, cur}
initiator, psold

A , pscur
A�

psold
B , pscur

B�

If psAB =psi
A =psj

B
=pst

AB and vAB =vi
A =vj

B
=vt

AB , i, j, t ∈ {old, cur} then link tagA, tagB

group psAB is linked, vAB�
group psAB is linked, vAB�

if (psAB , vAB) �=(psi
A, vi

A), i∈{old, cur} if (psAB , vAB) �=(psj
B

, vj
B

), j∈{old, cur}
then timeout then timeout

else if (psAB , vAB)=(psj
B

, vj
B

)

then xj
B
||yj

B
← f(kj

B
; rsys||psAB), and

if j = cur then:

(kold
AB , kold

B , rold
B) ← (kj

AB
, kj

B
, rj

B
)

(kcur
AB , kcur

B , rcur
B) ← (uj

B
, yj

B
, psj

AB
)

if j = old then:

(kcur
AB , kcur

B , rcur
B) ← (uj

B
, yj

B
, psj

AB
)

cnf j
B�

cnf j
B

, xj
B�

timeoutIf cnfj
B

= cnfi
A, i ∈ {old, cur}

then xi
A||yi

A ← f(ki
A; rsys||psAB) and

if i = cur then

(kold
AB , kold

A , rold
A) ← (ki

AB , ui
A, ri

A)

(kcur
AB , kcur

A , rcur
A) ← (ui

A, yi
A, psAB)

if i = old then
(kcur

AB , kcur
A , rcur

A) ← (ui
A, yi

A, psi
AB)

xi
A �

timeout

PAB = (rsys, psAB , cnf j
B , xi

A, xj
B)

Fig. 3. An anonymous grouping-proof with forward-secrecy—for two tags

1. The outputs of all its invocations are random numbers, including tag identifiers.
2. If a tag is initiated with the same reader challenge in a session, as in an earlier

session that it was not allowed to complete (and no sessions with this tag completed
in the interim), then Fsa group will output identical values.

This means that the adversary can link the (uncompleted) scannings throughout a given
session. However in the next session, Fsa group will use a different (random) number,
so linkability does not extend to any other sessions. In the full version of this paper we
shall show that our second protocol UC-realizes the Fsa group functionality.

Notice that our second protocol is not able to provide forward-security: secrecy is no
longer guaranteed if the secret keys are compromised.

188 M. Burmester, B. de Medeiros, and R. Motta

4.3 A Robust Grouping-Proof with Forward-Secrecy

In our last protocol—see Fig.3, the secret keys and the group keys of tags are updated
after each protocol execution for forward-secrecy. All tags, including initiator tags, store
two pairs of keys: group keys ki

group and secret keys ki
tag , i ∈ {old, cur}, as well as a

pair of random numbers ri
tag , i ∈ {old, cur}. The Verifier stores in a database D the

current values (rsys, {(kt
tag, k

t
group, pst

group), t∈{old, cur}}): this allows it to link the
values of the keys of each tag to the corresponding group pseudonym. At the end of each
rsys challenge session, the entries in D of all tags in the groups for which the reader
has returned a valid proof Pgroup are updated: (kt

tag, k
t
group, pst

group) ← (yt, ut, rt),
t ∈ {old, cur}, using the equal-length parsings f(kt

group; rsys||rt
tag) = rt||st||ut||vt

and f(kt
tag; rsys||rt) = xt||yt (the use of the other parsed values is explained below).

Since there are no non-volatile values to anchor the key and pseudonym updates to,
we shall use the update chain itself as an anchor. This means that the state of the tags
and the Verifier must be synchronized. In particular the adversary should not be able
to manipulate valid group scans so as to de-synchronize the system. There are several
ways in which this can be achieved. The solution we propose is to have the Verifier
(a trusted party) give all authorized readers a table D̂ = (rsys, {(pst

group, v
t
group), t∈

{old, cur}}) whose values can be used to authenticate authorized readers to tags. The
entries in this table are obtained by parsing f(kt

group; rsys, r
t
tag) = rt||st||ut||vt as

above, and assigning: (pst
group, v

t
group) ← (rt, vt), t∈{old, cur}. In this case however

the next value of the challenge rsys is used in the evaluation of f . The values in D̂ are
updated for all groups in the system, at the beginning of each new rsys session.

The protocol is given in Fig. 3 for two tags, tagA, tagB, with tagA the initiator. In
this protocol, adversarial readers cannot disable tags permanently by de-synchronizing
them from the Verifier, because the tags discard old key values kold

group, k
old
tag, r

old
tag only

after the Verifier has confirmed that it has updated its corresponding values. More
specifically, if the reader is not adversarial, then pscur

AB = pscur
A = pscur

B , and the
tags will update both current and old key and number values. If the reader is adversarial
and has not returned the proof PAB then pscur

AB 	= pscur
A , or pscur

B , and the updates will
not affect old values, which therefore remain the same as those stored in the database
D̂. The state of the tags will only return to stable when an authorized reader returns a
valid proof to the Verifier. Note that due to the state synchronization requirements, the
protocol in Fig. 3 can only be implemented in online batch mode, not true offline mode.
In the full paper, we discuss the batch offline case.

Forward-secrecy applies to periods during which the groups of tags are scanned by
authorized readers that are not faulty. More specifically, a group of tags that is compro-
mised can be traced back to the first interaction after the last non-faulty scanning ses-
sion, and no further. We shall refer to this property as, forward session-secrecy. More
formally we have:

Definition 2. An RFID protocol has forward session-secrecy if session unlinkability
holds for all sessions int1 and int2 as in Defn. 1, provided that either int1 successfully
completed prior to the corresponding tag(s) being compromised, or that a later session
of the tag(s) involved in int1 completed successfully prior to its (their) compromise.

Provably Secure Grouping-Proofs for RFID Tags 189

Security Analysis. The functionality Ffss group of our third protocol comprises the
behavior expected of an anonymous grouping-proof with forward session-secrecy. The
functionality Ffss group models key compromise, that is it allows for adaptive corrup-
tion. Otherwise it is similar to Fsa group. This means that the adversary can link in-
complete scannings of non-compromised tags throughout a given session, but that this
does not extend to other sessions. In the full version of this paper we shall show that
our third protocol UC-realizes the Ffss group functionality.

5 Conclusion

Our main contribution in this paper is to present a security model for the group scan-
ning problem. In previous work, this application has been described at relatively infor-
mal levels, making it difficult to provide side-to-side comparisons between alternative
proposals. We have proposed three grouping-proofs that are provably secure in a very
strong setting that guarantees security under concurrent executions and provides for
safe re-use as a building block for more complex protocols. These proofs are also prac-
tically feasible, requiring only pseudo-random functions, which can be instantiated very
efficiently in integrated circuits using a variety of primitives as a starting point, such as
pseudo-random number generators or block ciphers.

References

1. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable RFID tags via insubvertible en-
cryption. In: Atluri, V., Meadows, C., Juels, A. (eds.) Proceedings of the 12th ACM Confer-
ence on Computer and Communications Security, CCS 2005, Alexandria, VA, USA, Novem-
ber 7-11, 2005, pp. 92–101. ACM, New York (2005)

2. Avoine, G., Oechslin, P.: A Scalable and Provably Secure Hash-Based RFID Protocol. In:
3rd IEEE Conference on Pervasive Computing and Communications Workshops (PerCom
2005 Workshops), pp. 110–114. IEEE Computer Society, Los Alamitos (2005)

3. Bellare, M., Rogawa, P.: Random Oracles are Practical: A Paradigm for Designing Effi-
cient Protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73
(1993)

4. Bolotnyy, L., Rose, G.: Generalized Yoking-Proofs for a group of Radio Frequency Identi-
fication Tags. In: International Conference on Mobile and Ubiquitous Systems, MOBIQUI-
TOUS 2006, San Jose, CA (2006)

5. Bono, S.C., Green, M., Stubblefield, A., Juels, A., Rubin, A.D., Szydlo, M.: Security anal-
ysis of a cryptographically-enabled RFID device. In: Proc. USENIX Security Symposium
(USENIX Security 2005), pp. 1–16. USENIX (2005)

6. Burmester, M., van Le, T., de Medeiros, B.: Provably secure ubiquitous systems: Univer-
sally composable RFID authentication protocols. In: Proceedings of the 2nd IEEE/CreateNet
International Conference on Security and Privacy in Communication Networks (SE-
CURECOMM 2006), IEEE Press, Los Alamitos (2006)

7. Dimitriou, T.: A lightweight RFID protocol to protect against traceability and cloning at-
tacks. In: Proc. IEEE Intern. Conf. on Security and Privacy in Communication Networks
(SECURECOMM 2005). IEEE Press, Los Alamitos (2005)

8. Dimitriou, T.: A secure and efficient RFID protocol that can make big brother obsolete. In:
Proc. Intern. Conf. on Pervasive Computing and Communications (PerCom 2006). IEEE
Press, Los Alamitos (2006)

190 M. Burmester, B. de Medeiros, and R. Motta

9. Engberg, S.J., Harning, M.B., Jensen, C.D.: Zero-knowledge device authentication: Privacy
& security enhanced rfid preserving business value and consumer convenience. In: Proceed-
ings of Second Annual Conference on Privacy, Security and Trust (PST 2004), October
13-15, 2004, pp. 89–101. Wu Centre, University of New Brunswick, Fredericton (2004)

10. EPC Global. EPC tag data standards, vs. 1.3, http://www.epcglobalinc.org/
standards/EPCglobal Tag Data Standard TDS Version 1.3.pdf

11. ISO/IEC, http://www.hightechaid.com/standards/18000.htm
12. Juels, A.: Yoking-Proofs for RFID tags. In: PERCOMW 2004: Proceedings of the Second

IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp.
138–142. IEEE Computer Society, Washington (2004)

13. Van Le, T., Burmester, M., de Medeiros, B.: Universally composable and forward-secure
RFID authentication and authenticated key exchange. In: Bao, F., Miller, S. (eds.) Proceed-
ings of the 2007 ACM Symposium on Information, Computer and Communications Security
(ASIACCS 2007), Singapore, March 20-22, 2007, pp. 242–252. ACM, New York (2007)

14. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol enabling
ownership transfer of RFID tags. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS,
vol. 3897. Springer, Heidelberg (2006)

15. Oren, Y., Shamir, A.: Power analysis of RFID tags. In: RSA Conference, Cryptographer’s
Track (RSA-CT 2006) (2006),
http://www.wisdom.weizmann.ac.il/∼yossio/rfid

16. Peris-Lopez, P., Hernandez-Castro, J.C., Estevez-Tapiador, J.M., Ribagorda, A.: Solving the
simultaneous scanning problem anonymously: clumping proofs for RFID tags. In: Third
International Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Com-
puting, SecPerl 2007, Istambul, Turkey, IEEE Computer Society Press, Los Alamitos (2007)

17. Piramuthu, S.: On existence proofs for multiple RFID tags. In: IEEE International Con-
ference on Pervasive Services, Workshop on Security, Privacy and Trust in Pervasive and
Ubiquitous Computing – SecPerU 2006, Lyon, France, June 2006. IEEE Computer Society
Press, Los Alamitos (2006)

18. Saito, J., Sakurai, K.: Grouping Proof for RFID Tags. In: 19th International Conference on
Advanced Information Networking and Applications (AINA 2005), Taipei, Taiwan, 28-30
March 2005, pp. 621–624. IEEE Computer Society, Los Alamitos (2005)

19. Sarma, S.E., Weis, S.A., Engels, D.W.: RFID systems and security and privacy implications.
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) Cryptographic Hardware and Embedded Sys-
tems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15,
2002. LNCS, vol. 2523, pp. 454–469. Springer, Heidelberg (2003)

20. Tan, C.C., Sheng, B., Li, Q.: Severless Search and Authentication Protocols for RFID. In:
Fifth Annual IEEE International Conference on Pervasive Computing and Communications
(PerCom 2007), White Plains, New York, USA, 19-23 March 2007, pp. 3–12. IEEE Com-
puter Society, Los Alamitos (2007)

21. Tsudik, G.: YA-TRAP: Yet Another Trivial RFID Authentication Protocol. In: 4th IEEE
Conference on Pervasive Computing and Communications Workshops (PerCom 2006 Work-
shops), Pisa, Italy, 13-17 March 2006, pp. 640–643. IEEE Computer Society, Los Alamitos
(2006)

22. Vajda, I., Buttyan, L.: Lightweight authentication protocols for low-cost RFID tags. In: Proc.
Workshop on Security in Ubiquitous Computing (UBICOMP 2003) (2003)

http://www.epcglobalinc.org/standards/EPCglobal_Tag_Data_Standard_TDS_Version_1.3.pdf
http://www.epcglobalinc.org/standards/EPCglobal_Tag_Data_Standard_TDS_Version_1.3.pdf
http://www.hightechaid.com/standards/18000.htm
http://www.wisdom.weizmann.ac.il/~yossio/rfid

Secure Implementation of the Stern

Authentication and Signature Schemes for
Low-Resource Devices

Pierre-Louis Cayrel1, Philippe Gaborit1, and Emmanuel Prouff2

1 Université de Limoges, XLIM-DMI,
123, Av. Albert Thomas 87060 Limoges Cedex France
{pierre-louis.cayrel,philippe.gaborit}@xlim.fr

2 Oberthur Technologies
71-73, rue des hautes pâtures 92726 Nanterre Cedex France

e.prouff@oberthurcs.com

Abstract. In this paper we describe the first implementation on smart-
card of the code-based authentication protocol proposed by Stern at
Crypto’93 and we give a securization of the scheme against side channel
attacks. On the whole, this provides a secure implementation of a very
practical authentication (and possibly signature) scheme which is mostly
attractive for light-weight cryptography.

1 Introduction

While Cryptography aims at preventing persons from cheating, Coding Theory
has been originally designed to prevent accidental errors coming from the im-
perfections of the transmission systems (e.g. phone lines, microwaves, satellite
communications, CDs, etc.). Nowadays, it studies more generally how to protect
information transiting over unperfect channels from alterations. The core idea
is to send over the channel more data than the initial amount of information
to convey. The added information, usually called redundancy, is structured in
such a way that it is possible to detect and (eventually) to correct almost all the
errors that could occur during the data transmission.

After a first scheme proposed by McEliece in 1978 using error-correcting codes
for encryption, the idea of using error-correcting codes for authentication pur-
poses was due to Harari, followed by Stern (first protocol) and Girault. The
protocols of Harari and Girault were subsequently broken, while Stern’s one
was five-pass and unpractical. Eventually, the first practical and secure protocol
based on error-correcting codes was proposed by Stern at Crypto’93 [15]. This
zero-knowledge authentication protocol is based on an error-correcting codes
problem usually referred as the Syndrome Decoding (SD in short) Problem.
Stern’s protocol is a Fiat-Shamir-like protocol but with a cheating probability of
2/3 rather than 1/2 for Fiat-Shamir. It is hence considered as a good alternative
to the numerous authentication schemes whose security relies on classical number
theory problems such as the factorization or the discrete logarithm problems.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 191–205, 2008.
c© IFIP International Federation for Information Processing 2008

192 P.-L. Cayrel, P. Gaborit, and E. Prouff

Although the Stern Scheme was proposed almost 15 years ago, it has (as far as
we know) never been implemented on smart card until now. This is merely due
to the usual drawback of code-based systems: the size of the public data is large.
Indeed, since the prover and the verifier have to know a large random matrix
with at least 100-kbits, it is hard to use the scheme on devices with low resources
such as smart cards or RFID tags. This drawback has been recently solved by
Gaborit and Girault in [2] where they propose to use the parity check matrix
of a random quasi-cyclic code rather than a pure random matrix. This solution
permits to preserve the security of the scheme and decreases the description of
the random matrix to only a few hundred bits. This new advance opens the door
to the use of the Stern protocol in devices with low resources.

Contribution. In this paper we give for the first time a precise description of
the implementation of Stern’s Protocol (which is very different from the classi-
cal number-theory based protocols) and we show how to protect the main steps
of the algorithm against side channels attacks. Eventually, we obtain for our
implementation an authentication in 6 seconds and a signature in 24 seconds,
both without any crypto-processor. This is a promising result when compared
to an RSA implementation which would take more than 30 seconds in a similar
context without crypto-processor. Stern’s Protocol may have a natural applica-
tion in contexts where the time constraints are not tight such as: authentication
for pay-TV or authentication for counterfeiting of expensive goods (e.g. ink car-
tridges of copy machines or expensive clothes). Besides this, the protocol has
also the 4 following advantages:

1) it can be an alternative to the number-theory based protocols in case a puta-
tive quantum computer may exist;
2) since it essentially involves linear operations, the protocol seems easier to pro-
tect against side channel attacks than the number-theory based protocols;
3) the linear operations (scalar products or bit-permutations) are easy to imple-
ment in hardware and are very efficient in this context;
4) the secret key is smaller than the one of the other protocols (a few hundred
bits) for the same security level.

Organisation of the Paper. The paper is organized as follows. In Section 2,
we describe Stern’s Authentication and Signature schemes and we precise the
four main steps of the implementation. In Section 3, we present the side channel
attacks in the coding theory context and in Section 4 we propose a secure version
of our implementation against side channel attacks. In Section 5, we comment
the implementation and eventually we conclude.

2 Stern Authentication Scheme

2.1 Basic Scheme

Stern’s Scheme (see [15] for more details) is an interactive zero-knowledge pro-
tocol which aims at enabling any user (usually called the prover P) to identify
himself to another one (usually called the verifier V). Let n and k be two integers

Secure Implementation of the Stern Authentication and Signature Schemes 193

such that n ≥ k. Stern’s Scheme assumes the existence of a public (n − k) × n

matrix H̃ defined over the field F2 and the choice of an integer t ≤ n. The matrix
H̃ and the weight t are protocol parameters and may be used by several (even
numerous) different provers.

Each prover P receives a n-bit secret key sP (also denoted by s if there
is no ambiguity about the prover) of Hamming weight t and computes a public
identifier iV such that iV = H̃sT

P . This identifier is calculated once in the lifetime
of H̃ and can thus be used for several authentications. A user P can prove to
V that he is the person associated to the public identifier iV , by performing the
following protocol, (for h a standard hash function):

1. [Commitment Step] P randomly chooses y ∈ F
n and a permutation σ defined

over F
n
2 . Then P sends to V the commitments c1, c2 and c3 such that :

c1 = h(σ|H̃yT); c2 = h(σ(y)); c3 = h(σ(y ⊕ s)),

where h(a|b) denotes the hash of the concatenation of the sequences a and b.
2. [Challenge Step] V sends b ∈ {0, 1, 2} to P .
3. [Answer Step] Three possibilities:

– if b = 0 : P reveals y and σ.
– if b = 1 : P reveals (y ⊕ s) and σ.
– if b = 2 : P reveals σ(y) and σ(s).

4. [Verification Step] Three possibilities:
– if b = 0 : V verifies that c1, c2 have been honestly calculated.
– if b = 1 : V verifies that c1, c3 have been honestly calculated.
– if b = 2 : V verifies that c2, c3 have been honestly calculated, and that the

weight of σ(s) is t.
5. Iterate the steps 1,2,3,4 until the expected security level is reached.

Fig. 1. Stern’s Protocol

Based on the difficulty of the SD problem, it is proven that the protocol is zero-
knowledge with a probability of cheating of (2/3) for one round. An appropriate
confidence level is reached by repetition of the protocol.

Remark 1. By using the so-called Fiat-Shamir Paradigm [1], it is theoretically
possible to convert Stern’s Protocol into a signature scheme, but then the sig-
nature is very long: about 140-kbit long for 280 security.

Despite the advantages of the protocol (it can be an alternative to number theory
based protocol, it is fast and it uses simple linear operations), Stern’s Scheme
has rarely been used since its publication in 1993. Indeed, the scheme presents
the two following drawbacks, which together makes it unpracticable in many
applications: 1) many rounds are required (typically 28 if we want the cheater
success probability to be less than 2−16), 2) the public key element H̃ is very
large (typically 150-kbit long).

The first point is inherent to interactive protocols and in some situations,
it does not really constitute a drawback. For instance, if the prover and the

194 P.-L. Cayrel, P. Gaborit, and E. Prouff

verifier entities can be connected during a long period, then authentication can be
achieved gradually. In this case the entire authentication process is performed by
executing, time to time during a prescribed period (e.g. one hour), an iteration of
Algorithm 1 until the expected level of security is reached. Such kind of gradual
authentication may be of practical interest in pay TV or in systems where a
machine (e.g. a copy machine or a coffee dispenser) wants to authenticate a
physical resource (e.g. an ink or a coffee cartridge).

The second drawback has been recently considered by Gaborit and Girault in
[2]. We recall the outlines of their approach in the next section.

2.2 Alternative Scheme Based on Quasi-Cyclic Codes

The idea of [2] is to replace the random matrix H̃ by the parity matrix of a partic-
ular type of codes whose representation is very compact: the quasi-cyclic codes.
Let l be an integer value, the parity matrix H of a [2l, l, ·] quasi-cyclic code takes
the form H = (I|A), where I denotes the l× l identity matrix and A is a circulant
matrix, that is a matrix defined for every (a1, a2, a3, · · · , al) ∈ F

l
2 by:

A =

⎛
⎜⎜⎜⎝

a1 a2 a3 · · · al

al a1 a2 · · · al−1

...
...

...
...

...
a2 a3 a4 · · · a1

⎞
⎟⎟⎟⎠ .

As it can be easily checked, representing H does not require to store all the
coefficients of the matrix (as it is the case in the original Stern’s Scheme) but
requires only the l-bit vector (a1, a2, a3, · · · , al) (which is the first row of A).
Let n equal 2l, when replacing the random matrix by a random double-circulant
one, the parameter sizes of Stern’s Scheme become:
Private data: the secret s of bit-length n.
Public data: the public syndrome iV of size n

2 and the first row of A of size n
2 ,

which results in n bits.
It is explained in [2] that for this kind of matrices it is enough to take l =

347 and t = 74 (and hence n = 694). As the new version of Stern’s Scheme
involves parameters with small sizes and continues to use only elementary logical
operations, it becomes highly attractive for light-weight implementations. This
is especially true for environments where memory (RAM, PROM, etc.) is a rare
resource. The version of Stern Scheme discussed in the rest of the paper involves
a n

2 × n double circulant matrices.

2.3 Main Operators

A quick analysis of Stern’s Protocol shows that the different steps are merely
composed of the four following main operators:

Matrix-vector product: the multiplication of a vector by a random double
circulant matrix;

Secure Implementation of the Stern Authentication and Signature Schemes 195

Hash function: the action of a hash function;
Permutation: the generation and the action of a random permutation on

words;
PRNG: a pseudo-random generator used to generate random permutations and

random vectors.

By using quasi-cyclic codes, it becomes possible to implement the prover appli-
cation of Stern’s Scheme in an embedded device (as e.g. a smartcard). However,
being implemented in a low resource device, the prover application becomes vul-
nerable to side-channel attacks and appropriate countermeasures must therefore
be added. In the two following sections, we discuss about the problematic of side-
channel attacks in our context and then, we precise for each of the above operators
a way to implement it and how to protect it against side-channel attacks.

3 Side-Channel Attacks

Side-channel attacks aim at recovering information about sensitive variables ap-
pearing in the description of the algorithm under attack. We shall say that a
variable is sensitive if it is a function of both public data and of a secret (resp.
private) parameter of the algorithm.

In the protocol we described in Fig. 1, we only want to implement Steps 1
and 3 (the ones that rely on the prover) in an embedded device. The other Steps
2 and 4 (that rely on the verifier) may indeed be performed on a PC. For Steps
1 and 3, we have the following list of sensitive variables that can be potentially
targeted by SCA:

Threat A. the random vector y in the computations of c1 (when performing
H̃yT) and of c2 (when performing σ(y)): if an attacker is able to retrieve y
during one of these steps, then with a probability 1/3 he is able to recover s
when A answers y ⊕ s to the (b = 1)-challenge.

Threat B. the private vector s during the computation σ(s): in this case the
attacker recovers A’s private parameter.

Threat C. the private vector s during the computation σ(y ⊕ s): in this case
the attacker recovers A’s private parameter.

Threat D. the bit-permutation σ during the computation of σ(s) or σ(y ⊕ s):
if an attacker is able to retrieve σ during one of these steps, then with a
probability 1/3 he is able to recover s when A answers σ(s) to the (b = 2)-
challenge.

Threat E. the bit-permutation σ during the computation of the hash value
h(σ|H̃yT): if an attacker is able to retrieve σ, then with a probability 1/3 he
is able to recover s when A answers σ(s) to the (b = 2)-challenge.

Remark 2. When looking for sensitive variables in Fig. 1, we have assumed that
the analysis of the device behavior during the storage or the loading of a data
does not bring useful information about it. In other terms, we made the classical
assumption that information about a data only leaks from calculus involving it

196 P.-L. Cayrel, P. Gaborit, and E. Prouff

(and eventually other public information) and that data manipulations them-
selves do not leak enough information on current devices.

To retrieve information about the sensitive data listed above, we assume in the
rest of the paper that the SCA adversary can only perform an attack belonging
to one of the following three categories:

1. The so-called timing attacks consist in analyzing the time taken to execute
cryptographic algorithms.

2. The so-called simple analysis attacks (SPA in short) are on-line attacks
that consist in directly interpreting power consumption measurements and
in identifying the execution sequence.

3. The so-called correlation attacks (DPA in short) work as greedy algorithms:
the side-channel information is analyzed by statistical means until the secrets
are extracted.

It may be noticed that other categories of SCA attacks exist as for instance
the templates or the Higher Order SCA ones. We chose to not consider these
attacks for our implementation since they rely on a much stronger (and hence
less realistic) adversary than the ones involved in the attacks listed above. For
more details about SCA, the reader is referred to [7].

Let us now present the outlines of the defense strategy we shall apply to
protect the implementation of the algorithm described in Fig. 1.

Defense Strategy. To deal with timings attacks issue, both hardware and
software countermeasures are usually involved simultaneously. At the software
level, a classical defense strategy consists in implementing all the operations
involving sensitive data in a way that does not depend on the data value (for
instance methods based on conditional branches are precluded). We chose to
follow this strategy for all the operations that are susceptible to manipulate
sensitive data.

The most common way of thwarting SPA and DPA involves random values
(called masks) to de-correlate the leakage signal from the sensitive data which
are manipulated. This protection method is usually called first order masking.
It has been argued in several recent papers (e.g. [3,9,14]) that this method is
sound (when combined with usual hardware protections) to protect an algorithm
against SPA and all kinds of first order DPA.

In a first order masking of an algorithm, every sensitive variable y appearing in
the algorithm is never directly manipulated by the device and is represented by
2 values ỹ (the masked data) and M (the mask). To ensure the DPA-resistance,
the mask M takes random values and to ensure completeness, ỹ satisfies

ỹ = y ⊕ M . (1)

Since y is sensitive, every function S of y is also sensitive as long as S is known
by the attacker. Let z denote this new sensitive value S(y). To mask the pro-
cessing of z without revealing information on y, two new values z̃ and N must

Secure Implementation of the Stern Authentication and Signature Schemes 197

be computed from (ỹ, M) (which represents y in the implementation) in such a
way that

z̃ ⊕ N = z = S(y) . (2)

The critical point of such a method is to deduce the new pair of (masked
value)/mask (z̃, N) from the previous pair (y, M) without compromising the
security of the scheme with respect to first order DPA. This problem is usually
referred as the mask correction Problem.

When S is linear, it can be resolved very efficiently since we have:

z = S(y) = S(y ⊕ M ⊕ M) = S(ỹ) ⊕ S(M) , (3)

Hence, we simply have to define z̃ and N such that z̃ = S(ỹ) and N = S(M).
Dealing with the mask correction Problem when S is non-linear is much more

difficult. Numerous papers have been published which aim to tackle this issue
(an overview of the existing methods is proposed in [14]). As argued in [14], when
the input and output dimensions n and m of the function S are small, then the
so-called Re-computation method (REC in short) is the most appropriate one
since it only requires one memory transfer and the pre-processing of a RAM
table of 2n elements (one time per algorithm execution):

Re-computation method. Let M and N be two random variables and let
us assumed that the RAM look-up table S∗ associated to the function y �→
S(y⊕M)⊕N has be pre-processed. Then, to compute S(y)⊕N from ỹ = y⊕M ,
the REC method performs a single operation: the table look-up S∗[ỹ].

As we will see in the next sections, applying first order masking to Stern’s
Protocol induces only a very small timing overhead and an acceptable memory
overhead, since almost all the performed operations are linear (and thus Relation
(3) applies most of the time). Moreover, for the few non-linear operations that
must be protected (in particular when the bit-permutation σ is computed), we
can apply efficiently the REC method since the dimensions of the involved sub-
functions are small.

4 Algorithm Specification

In this following, we focus on the four operators defined in Section 2. For each
of them, we exhibit an efficient implementation and we discuss about how to
protect it effectively against SPA and DPA.

4.1 Matrix-Vector Product

Algorithm Description For a Quasi-cyclic Matrix. When double-circulant
matrices are involved, very efficient algorithms exist to compute the matrix-
vector product. In the following, we detail the computation of the product H̃×v
between the n

2 ×n double-circulant matrix H̃ = (I|A) and the n-bit vector v. In
our description, we shall denote by matrix the n

2−bit row vector of A and by
result an n

2 -bit temporary vector. Also, we shall denote by |reg| the number of

198 P.-L. Cayrel, P. Gaborit, and E. Prouff

bits contained in a register of the processor and by nblocs the number of blocs in
matrix: nblocs = � n

2×|reg|�. Additionally, we will denote by vL (resp. by vR) the
least significant half part of v (resp. the most significant half part of v): namely,
we have vL = (v1, · · · , vn/2) and vR = (vn/2+1, · · · , vn).

Algorithm 1. Quasi cyclic matrix vector product
Input: matrix = H̃,v,|reg|
Output: result = H̃vT

1. for i from 1 to n
2

do result[i]=vL[i]; // initialisation with the first half of the vector

2. for i from 1 to |reg| do

3. if i > 1; vR is rotated of one bit to the left;

4. for j from 1 to |nblocs| do

5. if the i-th bit of matrix[j] == 1; // add vR to the result beginning with the jth bloc

6. br = 1

7. for jj from j to |nblocs| do

8. result[br] = result[br] ⊕ vR[jj];br = br + 1;

9. for jj from 1 to j − 1

10. result[br] = result[br]⊕ vR[jj]; br = br + 1;

11. return result

SCA-Security Discussion. As argued in Section 3, information about the
sensitive data y may leak during the matrix-vector product H̃yT (Threat A)
and a first order masking must thus be applied. As this product is linear for
the bitwise addition and due to (3), masking the calculus is straightforward and
implies an acceptable timing/memory overhead.

Before computing result = H̃yt, the vector y is masked with a n-bit mask M
(randomly generated). Then Algorithm 1. is input with matrix (i.e. the first row
of A) and ỹ = y ⊕M . The corresponding output is H̃ỹt = result⊕N , where we
denoted by N the value H̃M t. As all the coordinate-bits of y are masked with
a uniformly distributed random value, the SPA or the first order DPA analysis
of the matrix-vector product does not bring information about y. To make the
future unmasking of ỹ possible, a second matrix-vector product N = H̃MT is
performed and stored in memory together with ỹ.

Complexity Discussion : Secure Version. For a quasi-cyclic matrix of size
n
2 ×n whose first row is of weight p+1, the following steps have to be undertaken:

– masking the matrix ỹ = y ⊕ M .
– computing H̃ỹt = result ⊕ N , where N = H̃M t.
– a second matrix-vector product N = H̃MT is performed and stored in mem-

ory together with ỹ.
– extract and test the n/2 bits of the matrix first row for the product H̃ỹt

– extract and test the n/2 bits of the matrix first row for the product H̃M t

– � n
2×|register| � binary-shifts of the vector ỹ

Secure Implementation of the Stern Authentication and Signature Schemes 199

– � n
2×|register| � binary-shifts of the vector M

– 2p × � n
2×|register| � registers to be added to the two results

The secure version requires two products matrix vector one for the mask and
one for the product to determine. The cost is therefore around the double of the
one of the non-secure version.

4.2 Hash Function

To counteract Threat E, the Stern Protocol Implementation must involve a hash
function implementation that is secure against first order DPA. Until now, the
securing of hash function implementations against SCA has been rarely focused,
essentially because these functions usually operate on non-sensitive (often pub-
lic) data. However, Lemke et al. [4] or McEvoy et al. [8] have shown that, in
some applications like HMAC authentication, mounting DPA attacks against
hash functions makes sense when secret (or private) data have to be hashed to-
gether with public data. In [8], the authors exhibit a way to protect an hardware
implementation of the hash function SHA-256 against first order DPA. In the
rest of this section, we will assume that the device on which is implemented the
Stern Protocol possesses such a secure hardware implementation of SHA-256. It
may be noticed that the masking method used by McEvoy et al. for hardware
implementations may also be followed to design a masked software implemen-
tation of SHA-256. However, in this case, the timing and memory overheads
become too large. Actually, if the device does not have a secure SHA-256 im-
plementation, it may be pertinent to use a hash function based on block cipher
constructions (the State of the Art of hash functions published by Preneel in
[13] give several examples of such functions). Indeed, in such a case the hash
function can inherit the DPA-security from the involved block cipher algorithm
and the nowadays embedded devices possess almost always a DES Hardware
and sometimes an AES Hardware that include anti-DPA mechanisms. In the
case where neither secure hash function nor secure block cipher algorithms are
implemented in the device, then it is always possible to use one of the numerous
DES or AES DPA-secure software implementations proposed in the Literature
(see for instance [9,14]) and to involve them in a hash function based on block
ciphers (like for instance MDC-4).

Remark 3. For a hash function to provide a satisfying security, the bit-length
of the hash values it produces must be at least 160. When using hash functions
based on block ciphers, it may be difficult to get hash values of such a bit-length.
In this case, a solution may be to concatenate several output blocks until the
bit-length 160 is achieved or exceeded and, if necessary, to truncate in order to
get a length of exactly 160 bits (for instance two AES ciphering will result in
256 bits which can be truncated to 160 bits).

Algorithm Description : Secure Hardware Implementation of SHA-
256. In [8], McEvoy et al. describe a first order masked hardware implementa-
tion of the HMAC algorithm based on SHA-256. Using an implementation on

200 P.-L. Cayrel, P. Gaborit, and E. Prouff

a commercial FPGA board, they present a masked hardware implementation of
the algorithm, which is designed to counteract first-order DPA attacks.

SCA-Security Discussion. In [8], the resistance of the SHA-256 implementa-
tion is formally analyzed and demonstrated.

Complexity Discussion. It is shown in [8] that the processor and the interface
circuitry corresponding to the masked SHA-256 utilize 1734 slices (37% of the
FPGA resources) and that the critical path in the design (i.e. the longest com-
binational path) is 18.6. As argued in [8], the area has almost doubled compared
with the unprotected implementation but the speed has not been overly affected.

4.3 Permutation Method

Defining a vectorial permutation σ over F
n
2 (like the one used in Figure 1)

amounts to define an index permutation ψ over {0, · · · , n − 1} such that for
every y = (y[0], · · · , y[n − 1]) ∈ F

n
2 we have σ(y) = (y[ψ(0)], · · · , y[ψ(n − 1)]).

In this paper, we chose to design the permutation ψ by following the approach
suggested by Luby and Rackoff in [5,6] and improved in [10,12]. The core idea of
this approach is to involve a few pseudo random functions in a Feistel Scheme.
As argued by the authors in [10,12], such a method makes it possible to design
random permutations very efficiently since only a few Feistel rounds are needed
and since the input/output dimensions of the involved functions are more or less
logarithmic in the size of the words on which the permutation operates.

Let us first recall some basic facts about the so-called Luby-Rackoff schemes.

Luby-Rackoff’s Scheme. For every function f defined from F
l
2 into F

m
2 , the

Feistel round involving f , denoted by ψ(f), is defined for every pair (L, R) ∈
F

m
2 × F

l
2 by ψ(f)[L, R] = [R, L ⊕ f(R)]. The composition of k Feistel rounds,

that is the function ψ(fk) ◦ . . . ◦ ψ(f1), is denoted by ψ(f1, . . . , fk) or by ψ in
short if there is no ambiguity about the involved functions.

If f and g are two randomly generated independent functions defined from
F

m
2 into itself, then it has been argued in [10,12] that the function ψ(g, f, g, f) is

indistinguishable from an uniform distribution by an observer, even if the latter
has access to the inverse permutation. As a consequence, to design an index-
permutation ψ over {0, · · · , 22m − 1} (and thus a vectorial bit-permutation σ
over F

n
2 with log2(n) = 2m), we simply need to generate the two independent

random functions f and g.
Once the Luby-Rackoff scheme has been designed for two functions f and g,

there are merely two strategies to compute the bit-permutations σ(y), σ(y ⊕ s)
and eventually σ(s) in Stern’s Protocol. The fist one consists in pre-computing
ψ(i) for every i ≤ n and then to store the sequence (ψ(i))i≤n as a representa-
tion of σ. In this case, each time σ must be applied to a vector, then its table
representation is accessed n times (one time for each bit-index). This strategy
requires the RAM allocation of n× �log2(n)� bits, which is quite expensive in a
low resource context. The second strategy consists in computing (ψ(i))i≤n each

Secure Implementation of the Stern Authentication and Signature Schemes 201

time one needs to determine the bit index corresponding to i in σ. This strategy,
which has been chosen for our implementation, is more time consuming than the
previous one but it does not require any RAM allocation.

By construction, Luby-Rackoff Scheme only permits to construct index per-
mutations ψ such that n is a power of 2. Since the size parameter n we consider
for Stern’s Scheme is 347 (see Section 2), we couldn’t use Luby-Rackoff Scheme
straightforwardly, but a slightly modified version of it.

Algorithm Description. In Section 2 we argued that the parameters size (of s
and y) should be at least n = 694 = 2×347. Let m denote the value �log2(n)�/2.
To implement a permutation on vectors of any bit-length n such that �log2(n)�
is even, we suggest hereafter to randomly generate two functions f and g defined
from F

m
2 into itself and to use the Luby-Rackoff Scheme in the following way:

Algorithm 2. Bit-permutation for any n such that �log2(n)� is even
Input: the vector v to permute, the bit-length n of v, the value n′ = 2�log2(n)�, a

Luby-Rackoff Scheme ψ(g, f, g, f) with f and g defined from F
�log2(n)�/2
2 into itself.

Output: the vector result = σ(v)

1. for i from 0 to n′ − 1 do T [i] ← 0

2. for i from 0 to n′ − 1 do

3. new index ← ψ(i); result[new index] ← v[i]; T [new index] ← 1;

4. j ← n;

5. for i from 0 to n − 1 do

6. if (T [i] = 0)

7. while (T [j] = 0) do j ← j + 1;

8. result[i] ← result[j]; j ← j + 1

9. return result

Remark 4. Table T needs to be computed only one time per each permutation
σ. Once computed, it can be used for all the permutation involving σ.

In Algorithm 2., each iteration of the second loop computes the bit-index
new index in result where to store the bit-value v[i]. During this processing,
Table T keeps trace of the result bit-coordinates that are updated during this
process. When the loop is ended, a third loop is iterated to fill the bit-coordinate
of index i < n that has not been initialized by the second loop (which are the
ones such that T [i] = 0), with the bit-coordinates of index n ≤ j < n′ that has
been initialized (which are such that T [j] = 1).

SCA-Security Discussion. In order to thwart Threats C and D (see Section
3), we chose to mask the computations of σ and ψ. Since σ is at most used
3 times before being re-generated, it may be targeted by SPA attack but does
not suffer from DPA. The linearity of σ makes it easy to mask its processing:
we mask the input y with a random mask M (which results in a masked input
ỹ = y ⊕ M) and we unmask the output σ(ỹ) by simply x-oring it with σ(M).

202 P.-L. Cayrel, P. Gaborit, and E. Prouff

Fig. 2. Luby Rackoff permutation - unsecure and secure versions

In Algorithm 2., the same function ψ is applied 2n′
times on known input

before being re-generated. It can thus be targeted by DPA attacks. To counter-
act them, we chose to mask the intermediate variables that appear during the
processing of ψ and to apply the REC method to deal with the mask correc-
tion problem when the functions f and g are used. Each time new functions
f and g are generated (thus defining a new function ψ), we generate two ran-
dom masks r, s ∈ F

m
2 and we define two new functions f∗ and g∗ such that

f∗(x) = f(x ⊕ r) ⊕ s and g∗(x) = g(x ⊕ s) ⊕ r. We describe the normal and
secure processing of ψ in Figure 2.

Complexity Discussion. The function ψ must be re-generated at each ex-
ecution of Algorithm 2. This requires the generation of 2 × m × 2m random
bits to define the functions f and g. The un-secure processing of ψ involves 4
look-up tables and 4 bitwise m-bit additions. Its secure processing requires the
pre-computation of the new RAM lookup-tables f∗ and g∗ (with complexity
O(2m)) and 8 additional bitwise m-bit additions (4 for the mask correction and
2×2 for the masking/unmasking of the input/output) compared to the un-secure
calculus.

Algorithm 2. involves two n′-bit local variables T and result. It processes n′

times the function ψ and executes two loops involving around respectively 2×n′

and 4 × n′ elementary operations. This results, for the σ processing, in 14n′ =
8×n′+2×n′+4×n′ elementary operations and in the generation of 2×m×2m

random bits for the processing of ψ without any SCA countermeasure. In the
SCA-secure mode, the processing of σ requires 22n′ = (8+8)×n′+2×n′+4×n′

elementary operations and the generation of 2 × m × 2m random bits for f
and g, one n-bit vectors M to mask the input y of σ and one 2m-bit vector
(mr, ml) to mask all the input of ψ. To make the final unmasking of σ(y ⊕ M)
possible, the vector σ(M) must also be computed, which adds 22n′ elementary

Secure Implementation of the Stern Authentication and Signature Schemes 203

operations (note that the mask (mr, ml) does not need to be re-generated to
protect the processing of ψ for σ(M)). Finally, we get for the secure processing
in the secure mode, around 44n′ (i.e. 44× 2
log2(n)�) elementary operations and
the generation of n+2×m×2m+2m random bits (i.e. n+�log2(n)�×2
log2(n)�/2+
�log2(n)�).

Example 1. For the choice of parameter size done in Section 2 (i.e. n = 694), we
have m = �log2(n)�/2 = �log2(694)�/2 = 5 and n′ = 2
log2(n)� = 210 = 1024. In
such a case, the processing of σ without any security requires around 14×103 ≈
14 ∗ 1024 elementary operations and the generation of 320 = 10 × 32 random
bits. In the SCA-secure mode, it requires around 45×103 ≈ 44∗1024 elementary
operations and the generation of 1024 = 694 + 10× 32 + 10 random bits.

Example 2. For n = 512 (which is the choice of parameter size done in Section
5), the processing of σ without any security requires around 7 × 103 ≈ 14 ∗ 512
elementary operations and the generation of 224 = 4 × 24 + 5 × 25 random bits
(note that in this case, since log2(512) = 9 is odd, the functions f and g cannot
have the same dimensions and we chose f being from F

4
2 into F

5
2 and g being

from F
5
2 into F

4
2). In the SCA-secure mode, it requires around 22×103 ≈ 44∗512

elementary operations and the generation of around 450 random bits.

4.4 Pseudorandom Generator

We need a pseudorandom generator to construct the seed of the code and the per-
mutation. Nowadays, most of the pseudo-random generators used in commercial
applications are either based on stream cipher or on block cipher algorithms.
Hardware implementations of stream cipher are often faster than the ones of
block ciphers. However, there are only available in some specific devices (and
are for instance not available in most of the smart cards), whereas block ciphers
algorithms such as DES or AES are almost systematically implemented in hard-
ware. We consider that the Pseudo Random Number Generator (PRNG) that
we will use to generate the seed is not biased and secure against SPA and DPA
attacks. In [11], the author present a block cipher-based PRNG secure against
side-channel key recovery.

5 Implementation

5.1 Experimental Results

We have realized the implementation of Stern Authentication with double circu-
lant matrices for l = 256 (i.e. n = 512) on a 8051-architecture without crypto-
processor nor hardware SHA-256, and with a CPU running at 12 MHz.

Remark 5. Timing performances given in Table 1 do not take the communi-
cation cost into account. This choice has been made because the transmission
rate highly depends on the application type. For instance, the today VISA norm

204 P.-L. Cayrel, P. Gaborit, and E. Prouff

Table 1. Performances of the implementation

Time for 1 round Time (ms)

PRNG (vector y, function f and g) 16.7

Matrix-vector product 22.0

Permutations (and an xor) 22.6

Hash function (SHA-256) 107.6

Total for one round 168.9

Authentication (35 rounds) 5 911.5

imposes 9600 bauds (which is quite low), whereas the nowadays technologies
make it possible to have 110000 bauds for transmission rate.

We obtain an authentication in ≈ 6 seconds and a signature in ≈ 24 seconds for a
security of 285. The communication cost is around 40-kbits in the authentication
scheme and around 140-kbits for the signature. It must be noticed that the
timing performances would be highly improved by using a hardware SHA-256
instead of a software implementation.

The implementation detailed above doesn’t include SCA countermeasures.
According to the study conducted in Section 4, the timing/memory overhead
expected after securization is around (×3). This value is really small compared
for instance to a secure software version of the AES where the overhead is
around ×10.

6 Conclusion and Future Work

We have described in this paper the first implementation of Stern protocol on
smart card (in fact it is also more generally the first code-based system im-
plemented on smart-card with usual resources). For a satisfying security level,
the size of the public key is only 694 bits using a quasi cyclic representation
of the matrix considered. The double-circulant matrices are a good trade-off
between random and strongly structured matrices. In this case the operations
are indeed really simple to perform and can be implemented easily in hard-
ware. Moreover, the fact that the protocol essentially performs linear operations
makes the algorithm easy to protect against side channel attacks. We thus think
that the protocol is a new option to carry out fast strong authentication on
smart cards. Additionally, we think that the use of a dedicated linear-algebra
co-processor should significantly improve the timing performances of our imple-
mentation.

Future work besides this one includes considering Fault injection attacks (this
was beyond the scope of this paper) and implementation of other variations
of Stern protocol which can have other small advantages (see [2]) for protocol
variations.

Secure Implementation of the Stern Authentication and Signature Schemes 205

References

1. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odyzko, A. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987)

2. Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In:
IEEE Transactions on Information Theory (ISIT), pp. 191–195 (2007)

3. Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication
Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

4. Lemke, K., Schramm, K., Paar, C.: DPA on n-bit sized boolean and arithmetic
operations and its applications to IDEA. In: Joye, M., Quisquater, J.-J. (eds.)
CHES 2004. LNCS, vol. 3156, pp. 205–219. Springer, Heidelberg (2004)

5. Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic
composition. In: Symposium on Theory of Computing, vol. 18, pp. 353–363 (1986)

6. Luby, M., Rackoff, C.: How to construct pseudorandom permutation and pseudo-
random functions. SIAM J. Comput. 17, 373–386 (1988)

7. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smartcards. Springer, Heidelberg (2007)

8. McEvoy, R., Tunstall, M., Murphy, C., Marnane, W.P.: Differential power analysis
of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M., Lee, H.-W.
(eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg (2008)

9. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Imple-
mentations. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786,
pp. 292–305. Springer, Heidelberg (2006)

10. Patarin, J.: How to construct pseudorandom and super pseudorandom permutation
from one single pseudorandom function. In: Rueppel, R. (ed.) EUROCRYPT 1992.
LNCS, vol. 658, pp. 256–266. Springer, Heidelberg (1993)

11. Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher
based PRNG Secure Against Side-Channel Key Recovery,
http://eprint.iacr.org/2007/356.pdf

12. Pieprzyk, J.: How to construct pseudorandom permutations from single pseudoran-
dom functions advances. In: Damg̊ard, I. (ed.) EUROCRYPT 1990. LNCS, vol. 473,
pp. 140–150. Springer, Heidelberg (1991)

13. Preneel, B.: Hash functions - present state of art. ECRYPT Report (2005)
14. Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In:

Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2008)

15. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

http://eprint.iacr.org/2007/356.pdf

A Practical DPA Countermeasure with BDD

Architecture

Toru Akishita, Masanobu Katagi, Yoshikazu Miyato,
Asami Mizuno, and Kyoji Shibutani

System Technologies Laboratories, Sony Corporation,
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

{Toru.Akishita,Masanobu.Katagi,Yoshikazu.Miyato}@jp.sony.com,
{Asami.Mizuno,Kyoji.Shibutani}@jp.sony.com

Abstract. We propose a logic-level DPA countermeasure called Dual-
rail Pre-charge circuit with Binary Decision Diagram architecture (DP-
BDD). The proposed countermeasure has a dual-rail pre-charge logic
style and can be implemented using CMOS standard cell libraries, which
is the similar property to Wave Dynamic Differential Logic (WDDL). By
using novel approaches, we can successfully reduce the early propagation
effect, which is one of the main factors of DPA leakage of WDDL. DP-
BDD is suited to implementation of S-boxes. In our implementations of
the AES S-box, DP-BDD can reduce the maximum difference of tran-
sition timing at outputs of S-box to about 1/6.5 compared to that of
WDDL without delay adjustment. Moreover, by applying simple delay
adjustment to the inputs of the S-box, we can reduce it to about 1/85
of that without the adjustment. We consider DP-BDD is a practical and
effective DPA countermeasure for implementation of S-boxes.

Keywords: DPA, countermeasure, dual-rail pre-charge logic, Binary
Decision Diagram.

1 Introduction

Differential Power Analysis (DPA) is a serious threat to cryptographic devices
such as smart cards [8]. Recently, various countermeasures have been proposed
to protect implementations of cryptographic algorithms against DPA at the logic
level. Since the logic-level countermeasures can be adapted to basic logical gates
such as an AND gate, we can apply them to implementations of any crypto-
graphic algorithms. These logic-level countermeasures are classified into the fol-
lowing three groups: masking logics, dual-rail pre-charge logics, and hybrid-type
logics.

Masking logics try to randomize the activity at every node in a circuit using
random values in order to remove correlation between key-related intermediate
values and power consumption of the circuit. Masked-AND, a type of masking
logics, was proposed by Trichina [20]. It has been pointed out, however, that
Masked-AND is not completely secure due to the effect of glitches [9,14]. Re-
cently, Random Switching Logic (RSL) was proposed by Suzuki et al. [16]. RSL

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 206–217, 2008.
c© IFIP International Federation for Information Processing 2008

A Practical DPA Countermeasure with BDD Architecture 207

is theoretically secure under the leakage models described in [14], but possesses
two disadvantages: one is that it cannot be implemented using CMOS standard
cell libraries and the other is that it requires careful timing adjustment of enable
signals.

A dual-rail pre-charge logic was first proposed by Tiri et al. as Sense Amplifier
Based Logic (SABL) [17], where a signal is represented by two complementary
wires and one of these two wires is charged and discharged in every cycle. Con-
sidering that SABL needs a special CMOS library, Tiri et al. also proposed
Wave Dynamic Differential Logic (WDDL) [18] that can be implemented using
CMOS standard cell libraries. WDDL is a practical countermeasure, but it can-
not suppress two factors of DPA leakage. The first one is due to unbalanced
load capacitance of complementary logic gates. In order to balance it, WDDL
requires a custom layout for a secure design [19,7]. The other is due to the early
propagation effect. This leakage is caused when input signals of a WDDL gate
have difference of delay time [14]. The input signals generally pass the different
number of logic gates, and then the difference of delay time inevitably occurs.
Careful delay adjustment can reduce the difference, but applying it all WDDL
gates in cryptographic circuits seems to be unrealistic.

Hybrid-type logics are combined with masking logics and dual-rail pre-charge
logics. At CHES 2005, Popp and Mangard proposed MDPL that combines dual-
rail pre-charge circuits with random masking to improve the first disadvantage
of WDDL [11]. They claimed that it can achieve secure design using a CMOS
standard cell library without special layout constraint, but in the next year
it was pointed out that MDPL can be still insecure when there is relatively
large difference in delay time between the input signals of MDPL gates [4,15].
In addition, the combination of masking and dual-rail was shown to be unable
to provide a routing-insensitive logic style [6,13]. At present, hybrid-type logics
seem to have no advantage over dual-rail pre-charge logics.

In this paper, we propose a novel DPA countermeasure called Dual-rail Pre-
charge circuit with Binary Decision Diagram architecture (DP-BDD). It is based
on a Binary Decision Diagram (BDD) that is a direct acyclic graph used to
represent a Boolean function. DP-BDD is composed of AND-OR gates which are
included in CMOS standard cell libraries. Due to the based BDD architecture,
the input signals of an AND-OR gate always pass the same number of AND-OR
gates, and then the early propagation effect, which is one of the main factors of
DPA leakage of WDDL, is significantly reduced.

This DPA countermeasure is suited to implementation of S-boxes. In our
implementations of the AES [10] S-box, DP-BDD can reduce the maximum dif-
ference of transition timing at the outputs of the S-box to about 1/6.5 compared
to that of WDDL without delay adjustment. Moreover, by applying simple de-
lay adjustment to the inputs of the S-box, we can reduce it to about 1/85 of
that without the adjustment. DP-BDD requires a custom layout to prevent the
leakage caused by unbalanced load capacitance of complementary logic gates the
same as WDDL, but we consider that DP-BDD is a practical and effective DPA
countermeasure for implementation of S-boxes.

208 T. Akishita et al.

The rest of the paper is organized as follows: Section 2 presents WDDL and
its security problem. Section 3 gives brief introduction of BDD that is the basic
architecture of our method. In Section 4 we present the proposed DPA coun-
termeasure called DP-BDD. In Section 5, we apply WDDL and DP-BDD to
implementations of AES S-box and compare their effectiveness. We introduce
simple delay adjustment of DP-BDD to reduce the difference of transition tim-
ing further in Section 6. Finally we draw our conclusion and discuss further work
in Section 7.

2 Wave Dynamic Differential Logic (WDDL)

Tiri et al. proposed Wave Dynamic Differential Logic (WDDL) as a logic-level
countermeasure of DPA [18]. WDDL has the following features:

– WDDL gates have complementary inputs and outputs.
– WDDL has the pre-charge phase to transmit (0, 0) and the evaluation phase

to transmit (0, 1) or (1, 0), and performs these phases mutually.
– WDDL can construct combinational logics by using only AND gates, OR

gates, and NOT operations (signal swapping).

A value a is represented (a, a) in WDDL, where a is the negation of a. An activity
factor within WDDL circuits is constant independent of the input signals due to
the above features. Since power consumption at CMOS gates generally depends
on the transition probability of the gates, WDDL is considered to be effective
as a DPA countermeasure.

However, the power consumption at CMOS gates also depends on load ca-
pacitance of the gates. If there is difference of load capacitance between comple-
mentary logic gates of WDDL, the difference of power consumption occurs. The
number of gates connected to complementary logic gates of WDDL is basically
equal, and then the difference of load capacitance is caused by the difference
of place-and-route. The leakage due to the place-and-route is called as inciden-
tal leakage [15]. It can be improved by the place-and-route in the manual or
semi-automatic operation using special constraints such as “Fat Wire” [19] and
“Backend Duplication” [7].

Another leakage is due to the early propagation effect [14,15]. This leakage is
caused when there is the difference of delay time between the input signals of
a WDDL gate. In Fig. 1, we illustrate a WDDL AND gate and its signal tran-
sitions according to the inputs (a, b). Here, we assume that the transition of a
or a reaches the gate earlier than the transition of b or b both on the evaluation
phase and on the pre-charge phase. The transition timing of the complementary
output q or q on the evaluation phase depends on the input a. On the other
hand, the transition timing of q or q on the pre-charge phase depends on the
input b. Therefore, the difference of delay time between the inputs a and b may
leak the values a and b. Since basic cryptographic components including S-boxes

A Practical DPA Countermeasure with BDD Architecture 209

(a, b)=(0, 0)

evaluation pre-charge

a

b
q

a

b
q

WDDL AND gate

a
a
b

b
q
q

(a, b)=(0, 1)

evaluation pre-charge

(a, b)=(1, 0)

evaluation pre-charge

(a, b)=(1, 1)

evaluation pre-charge

a
a
b

b
q
q

a
a
b

b
q
q

a
a
b

b
q
q

Fig. 1. The early propagation effect of a WDDL AND gate

of blockciphers require complicated logic circuits, the input signals of a WDDL
gate generally pass different number of logic gates. Therefore, the difference of
delay time between these signals inevitably occurs. This type of leakage is called
as inevitable leakage [15]. The leakage can be improved by adjusting delay time
between the input signals, but very high effort and many constraints in the circuit
design are required to adjust delay time of all WDDL gates in complicated logic
circuits including S-boxes.

3 Binary Decision Diagram

A Binary Decision Diagram (BDD) is a direct acyclic graph that is used to
represent a Boolean function [1], and one of most commonly used synthesis tools
for logic optimization of digital systems [22]. We briefly explain a BDD according
to Fig. 2. The left figure is a truth table representing the function f(A, B, C) and
the right figure shows a block diagram of a binary decision tree corresponding
to the truth table. In the right figure, an isosceles trapezoid represents a 2-to-
1 multiplexer, and we call a signal A, B, C as a non-terminal node, a signal
0, 1, 0, · · · at the lowest part as a terminal node, and a signal connecting two
multiplexers as an internal node. The outputs f in the truth table are located
in regular order from the left to the right of terminal nodes.

Generally the term BDD refers to Reduced Ordered Binary Decision Dia-
gram (ROBDD) [2]. A binary decision tree is uniquely transformed into ROBDD
by merging any isomorphic subgraphs and eliminating any redundant nodes.
In this paper, however, we call as BDD the block diagram in which we only
merge any isomorphic subgraphs on a binary decision tree. In this BDD archi-
tecture, since the same number of multiplexers must be passed from any terminal
node to the output, the difference of propagation delay dependent of inputs is
relatively small.

210 T. Akishita et al.

0 1 0 0 1 11 0

0 1

0

0

0

0 0 01 1 1

11

1

f

A

B

C

A B C f

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

1

0

input output

non-terminal node

terminal node

output

Fig. 2. A truth table and a binary decision tree

4 Dual-Rail Pre-charge Circuit with Binary Decision
Diagram Architecture

In this section, we propose a novel DPA countermeasure to reduce the inevitable
leakage at logic level, called Dual-rail Pre-charge circuit with Binary Decision
Diagram architecture (DP-BDD). It is based on BDD and constructed in the
following steps.

Pre-charged AND-OR gates. We avoid the existence of glitches to control
the transition probability of all signals in a BDD circuit. In order to prevent
glitches, we firstly replace 2-to-1 multiplexers in BDD to 2-way 2-and 4-input
AND-OR (shortly, AND-OR) gates. As shown in Fig. 3, an AND-OR gate is
equivalent to a 2-to-1 multiplexer except the negation of a select signal being
input. Fig. 4(a) shows a modified BDD circuit. In the figure an isosceles trapezoid
represents an AND-OR gate. Non-terminal nodes (A, A), (B, B), or (C, C) are
connected to each AND-OR gate as (sel, sel) in Fig. 3.

Next, we apply so-called pre-charge mechanism to the terminal nodes (0, 1) and
the non-terminal nodes (A, A), (B, B), (C, C); these signals are set to 0 on the pre-
charge phase and evaluate to the corresponding value on the evaluation phase. We
consider the output of an AND-OR gate at the lowest stage. On the evaluation

a

b

sel

c

a

b

sel

c

2-to-1 multiplexer AND-OR

sel

Fig. 3. A 2-to-1 multiplexer and an AND-OR gate

A Practical DPA Countermeasure with BDD Architecture 211

f

A, A

B, B

C, C

10

A, A

B, B

C, C

A, A

B, B

C, C

(a) BDD circuit (b) complementary BDD circuit (c) DP-BDD

0 0 1 1 1 0 1 0 1 1 0 0 10 0 0 10 1 0 1 1

ff f

Fig. 4. Constructing DP-BDD

phase, all four inputs of an AND-OR gate perform either (0 → 0) or (0 → 1),
then the output also performs either (0 → 0) or (0 → 1). On the pre-charge phase,
all four inputs perform either (0 → 0) or (1 → 0), then the output also performs
either (0 → 0) or (1 → 0). By adapting these transitions to the inputs of AND-OR
gates at the next stage, we can confirm that all internal nodes and outputs of BDD
have at most one transition both on the evaluation phase and on the pre-charge
phase. Therefore, we can prevent glitches in the BDD circuit.

Appending complementary circuit. Preventing glitches doesn’t give any
guarantee to DPA resistance because the distribution of the transition activity
depends on the inputs A, B, C. In order to make it independent of the inputs,
we construct the complementary BDD circuit to the original BDD circuit. It can
be simply created by exchanging 0 and 1 which are input to the terminal nodes
as shown in Fig. 4(b). By appending the complementary circuit to the original
circuit and merging them as shown in Fig. 4(c), one of the complementary AND-
OR gates perform a transition both on the evaluation phase and on the pre-
charge phase. Therefore, the activity factor within the merged circuit is constant
independent of the input signals. We call such a merged circuit as Dual-rail Pre-
charge circuit with Binary Decision Diagram architecture (DP-BDD).1

We consider the inevitable leakage, which is leakage caused by the difference of
delay time between the input signals of complementary AND-OR gates shown in
Fig. 5. We assume that all inputs of DP-BDD, non-terminal nodes and terminal
nodes, are directly connected to registers and have no propagation delay except
their setup time.

The difference of delay time between input signals of AND-OR gates may
lead the difference of transition timing at the output which depends on some
secret information. Since signals sel and sel are directly connected to inputs
of DP-BDD, the transition of sel and sel occurs soon after the transition from
the pre-charge phase to the evaluation phase, and the reverse transition. On the
1 By inputting a random bit m and its negation m to the terminal nodes instead

of 0 and 1, all internal nodes and output of DP-BDD are easily masked by m. The
addition of random masking, however, does not achieve secure design without special
layout constraint according to the observation in [6,13].

212 T. Akishita et al.

a

b

sel

sel
q

sel

a

b

sel
q

Fig. 5. Complementary AND-OR gates

pre-charge phase, the transition of q or q occurs at the time when the transition
of sel or sel whether sel = 0 or 1. On the evaluation phase, if sel = 0, the
transition of the output signal q or q occurs at the time when the transition of
the input a or a occurs; if sel = 1, the transition of q or q occurs at the time
when the transition of the input b or b occurs. Therefore, the difference of delay
time between a and b (or a and b) may leak the value sel on the evaluation
phase. However, since the signals a and b (or a and b) pass the same number of
AND-OR gates, the difference of delay time between these signals is relatively
small, and then detecting the inevitable leakage by DPA is more difficult.

5 Application to AES S-Box

In order to protect hardware implementations of the Advanced Encryption Stan-
dard (AES) [10], the S-box is the most critical operation because it is the only
non-linear operation in AES. In this section, we apply both WDDL and DP-BDD
to implementations of AES S-box, and compare their effectiveness.

5.1 AES S-Box Based on WDDL (WDDL S-Box)

There are various ways to implement the AES S-box. The most compact im-
plementation of AES S-box is that using composite fields [12,21,3]. We apply
WDDL to the AES S-box described in [21], whose overall amount of gates is 103
XORs + 57 ANDs, because of its relatively short critical path.

Fig. 6 shows the schematic circuit of AES S-box using composite fields. There
are several operations including an isomorphic mapping, multiplications and ad-
ditions over Galois field. We notice path 1 and path 2 which both are the paths
to the multiplication circuit over GF(24). Path 1 has relatively short propagation
delay because it passes only the isomorphic mapping circuit. On the other hand,
path 2 has long propagation delay because it passes also the squaring, constant
multiplication, addition, and inversion circuits over GF(24) except the isomor-
phic mapping circuit. Thus, since the difference of delay time between path 1
and 2 are large, we guess the inevitable leakage caused by this difference can be
detected by DPA.

5.2 AES S-Box Based on DP-BDD (DP-BDD S-Box)

Since the AES S-box has an 8-bit input and an 8-bit output, we firstly ar-
range eight binary decision trees of eight stages according to the truth tables of

A Practical DPA Countermeasure with BDD Architecture 213

is
o
m

o
rp

h
is

m

is
o
m

o
rp

h
is

m

 x

 a
ff

in
e

-1

x λx2

X

x -1

X

X

in
 [

7-
0]

ou
t [

7-
0]path 1

path 2

Fig. 6. AES S-box using composite fields

out[7]

in[0], in[0]

in[1], in[1]

in[2], in[2]

in[3], in[3]

in[4], in[4]

in[5], in[5]

in[6], in[6]

in[7], in[7]

0 0

out[1]out[0]out[7]out[0] out[1]

 4 AND-NOR

 16 OR-NAND

210 AND-NOR

 16 OR-NAND x 16

 8 AND-NOR x 16

 4 OR-NAND x 16

 2 AND-NOR x 16

 1 OR-NAND x 16

10 01 1 1

Fig. 7. AES S-box based on DP-BDD (DP-BDD S-box)

 0

 5

 10

 15

 20

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Pr
op

ag
at

io
n

D
el

ay
 [n

se
c]

Input of S-box

WDDL out[6]
DP-BDD out[3]

Fig. 8. Propagation delay of an output bit of WDDL S-box and DP-BDD S-box

214 T. Akishita et al.

AES S-box. Then, AES S-box based on DP-BDD (DP-BDD S-box) can be con-
structed in the way described in Section 4.

Fig. 7 shows the constructed DP-BDD S-box, where in[i] denotes i-th bit of
the input of the S-box and out[i] denotes i-th bit of the output. In CMOS a
positive gate is usually constructed out of a negative gate and an inverter, and
then the use of positive gates is a disadvantage in terms of gate size. In order to
reduce the gate size of DP-BDD S-box, we replace AND-OR gates to AND-NOR
gates at the odd stages and to OR-NAND gates at the even stages, and then
the input of OR-NAND gates are pre-charged to 1 on the pre-charge phase. Its
overall amount of gates is 374 AND-NORs + 352 OR-NANDs. Since any path
from the terminal node 0 and 1 to two input signals of an AND-NOR/OR-NAND
gate passes the same number of AND-NOR/OR-NAND gates, the difference of
delay time between the input signals of the gate is relatively small.

5.3 Experimental Results

We implemented both WDDL S-box and DP-BDD S-box, and performed net-
list timing simulations to evaluate their effectiveness. The environment of our
evaluation is as follows:

Language Verilog-HDL
Design Library 0.18 μm CMOS standard cell library
Simulator VCS version 2006.06
Logic Synthesis Design Compiler version 2006.06

One gate is equivalent to a 2-way NAND and the speed is evaluated under the
worst-case conditions. In the library, an AND/OR gate, an AND-OR/OR-AND
gate, and an AND-NOR/OR-NAND gate are equivalent to 5/4 gates, 9/4 gates,
and 7/4 gates, respectively. These simulations are based on pre-routing delay,
and then free from the incidental leakage caused by the automatization of the
place-and-route.

We firstly evaluate the gate counts of WDDL S-box and DP-BDD S-box. An
AND gate in the AES S-box is implemented using an AND gate and an OR gate
in WDDL S-box as shown in Fig. 1, while an XOR gate in the AES S-box can
be implemented using an AND-OR gate and an OR-AND gate. Thus the gate
count of WDDL S-box is equivalent to 103 × 9/2 + 57 × 5/2 = 606 excluding
buffers. On the other hand, the gate count of DP-BDD S-box is equivalent to
374 × 7/4 + 352 × 7/4 = 1271 excluding buffers.

Next, we evaluate the difference of transition timing at the output of logic
gates in both WDDL S-box and DP-BDD S-box. Since we guessed the largest
difference will occur at the output of the S-box, we searched the output bit of
S-box that has the largest difference of transition timing for all possible 256
S-box inputs; out[6] (or out[6]) and out[3] (or out[3]) are the corresponding bits
of WDDL S-box and DP-BDD S-box respectively. Fig. 8 shows the propagation
delay of these bits for all 256 inputs; the above line shows that of WDDL S-
box and the below line shows that of DP-BDD S-box. We confirmed that the
maximum difference of transition timing at the output of DP-BDD S-box (1.526
ns) is about 1/6.5 of that of WDDL S-box (9.855 ns).

A Practical DPA Countermeasure with BDD Architecture 215

6 Towards Less Difference of Transition Timing

DP-BDD reduces the difference of transition timing at the output of AND-OR
gates. It is, however, desirable to reduce this difference all the more since it could
be detected by DPA. We consider that the difference occurs by the accumulation
of the following factors:

– difference of propagation delay between input ports of each AND-OR gate,
– difference of load capacitance between input ports of each AND-OR gate,
– difference of the number of fan-out between output signals of AND-OR gates.

In order to reduce the influence of these factors, we apply delay adjustment to
inputs of DP-BDD shown in Fig. 9.

On the pre-charge phase, we don’t require any delay adjustment cell because the
difference of transition timing at the output of each AND-OR gate is equivalent
to the difference of propagation delay between input port of the AND-OR gate.

On the evaluation phase, we insert delay cells of delay(a), delay(b), and
delay(c) to (A, A), (B, B), and (C, C) respectively. By inserting the delay cell of
delay(c) to (C, C), a transition of the output of AND-OR gates at stage 1 occurs
at the time when a transition of C or C reaches their input ports. Next, we set
delay(b) that satisfies delay(b) − delay(c) is larger than the propagation delay
from any input ports of AND-OR gates at stage 1 to any input ports of AND-
OR gates at stage 2. That indicates that a transition of the output of AND-OR
gates at stage 2 occurs at the time when a transition of B or B reaches their
input ports. Similarly, we set delay(a) that satisfies delay(a)− delay(b) is larger
than the propagation delay from any input ports of AND-OR gates at stage 2
to any input ports of AND-OR gates at stage 3. Therefore, we can reduce the
difference of transition timing at the outputs of all AND-OR gates to the dif-
ference of propagation delay between input port of the AND-OR gate also on
the evaluation stage. It is very easy to satisfy these delay conditions because we
have only to make the difference of delay between any two adjacent bits of the
input sufficiently large.

By switching the input signals without delay and those with delay using AND
gates, we can successfully reduce the difference of transition timing at all signals

A, A

B, B

C, C

0 1

f
delay(a)

delay(b)

delay(c)
stage 1

stage 2

stage 3

f

0 0 1 0 1 1

Fig. 9. Delay adjustment for DP-BDD

216 T. Akishita et al.

in DP-BDD in both the pre-charge stage and the evaluation stage. We confirmed
that this delay adjustment reduced the maximum difference of transition timing
in DP-BDD S-box to 0.018 ns (about 1/85 of that without delay adjustment),
which is just the difference of propagation delay between the input ports sel and
sel of an OR-NAND gate.

7 Conclusion

In this paper we presented the logic-level DPA countermeasure called DP-BDD.
DP-BDD has a dual-rail logic style and can be implemented using CMOS stan-
dard cell libraries. Our experimental results showed that DP-BDD can signifi-
cantly reduce the difference of transition timing at the outputs of AES S-box
compared to WDDL. We consider that DP-BDD is a practical and effective DPA
countermeasure for implementations of S-boxes.

At CHES 2006, Homma et al. presented high-resolution waveform matching
based on a Phase-Only Correlation (POC) techniques and its application to
DPA [5]. They claimed that the POC-based techniques can evaluate the dis-
placement between signal waveforms with higher resolution than the sampling
resolution. One of further works we need to carry out is how large difference of
the delay time between the input signals leads to DPA leakage in real devices
using such techniques.

References

1. Akers, S.B.: Binary Decision Diagram. IEEE Trans. on Computers C-27(6), 509–
516 (1978)

2. Bryant, R.E.: Graph-Based Algorithm for Boolean Function Manipulation. IEEE
Trans. on Computers C-35(8), 677–691 (1986)

3. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

4. Chen, Z., Zhou, Y.: Dual-Rail Random Switching Logic: A Countermeasure to Re-
duce Side Channel Leakage. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 242–254. Springer, Heidelberg (2006)

5. Homma, N., Nagashima, S., Imai, Y., Aoki, T., Satoh, A.: High-Resolution Side-
Channel Attack Using Phase-Based Waveform Matching. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 187–200. Springer, Heidelberg (2006)

6. Gierlichs, B.: DPA-Resistance Without Routing Constraints? In: Paillier, P., Ver-
bauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 107–120. Springer, Heidelberg
(2007)

7. Guilley, S., Hoogvorst, P., Mathieu, Y., Pacalet, R.: The “Backend Duplication”
Method. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 383–397.
Springer, Heidelberg (2005)

8. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS
Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer,
Heidelberg (2005)

A Practical DPA Countermeasure with BDD Architecture 217

10. National Institute of Standard and Technology (NIST), Advanced Encryption
Standard (AES). FIPS Publication 197 (2001)

11. Popp, T., Mangard, S.: Masked Dual-Rail Pre-Charge Logic: DPA-Resistant with-
out Routing Constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

12. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hard-
ware Architecture with S-box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

13. Schaumont, P., Tiri, K.: Masking and Dual-Rail Logic Don’t Add Up. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 95–106. Springer,
Heidelberg (2007)

14. Suzuki, D., Saeki, M., Ichikawa, T.: DPA Leakage Models for CMOS Logic Circuits.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 366–382. Springer,
Heidelberg (2005)

15. Suzuki, D., Saeki, M.: Security Evaluations of DPA Countermeasures Using Dual-
Rail Pre-Charge Logic Style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 255–269. Springer, Heidelberg (2006)

16. Suzuki, D., Saeki, M., Ichikawa, T.: Random Switching Logic: A New Counter-
measure against DPA and Second-Order DPA at the Logic Level. IEICE Transac-
tions 90-A(1), 160–168 (2007)

17. Tiri, K., Akmal, M., Verbauwhede, I.: A Dynamic and Differential CMOS Logic
with Signal Independent Power Consumption to Withstand Differential Power
Analysis on Smart Cards. In: ESSCIRC 2002, pp. 403–406 (2002)

18. Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for A Secure DPA
Resistant ASIC or FPGA Implementation. In: DATE 2004, pp. 246–251 (2004)

19. Tiri, K., Verbauwhede, I.: Place and Route for Secure Standard Cell Design. In:
CARDIS 2004, pp. 143–158 (2004)

20. Trichina, E.: Combinational Logic Design for AES SubByte Transformation on
Masked Data. IACR Cryptology ePrint Archive 2003 /236 (2003),
http://eprint.iacr.org/2003/236

21. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the
AES S-boxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78.
Springer, Heidelberg (2002)

22. Yang, C., Ciesielski, M., Singhel, V.: BDS: A BDD Based Logic Optimization
System. In: Proc. of the 37th ACM/IEEE DAC 2000, pp. 92–97 (2000)

http://eprint.iacr.org/2003/236

SCARE of an Unknown Hardware Feistel

Implementation

Denis Réal1,2, Vivien Dubois1, Anne-Marie Guilloux1,
Frédéric Valette1, and Mhamed Drissi2

1 CELAR, 35 Bruz, France
{Denis.Real,Vivien.Dubois:Anne-Marie.Guilloux,

Frederic.Valette}@dga.defense.gouv.fr
2 INSA-IETR, 20 avenue des coesmes, 35043 Rennes, France

{Denis.Real,Mhamed.Drissi}@insa-rennes.fr

Abstract. Physical attacks based on Side Channel Analysis (SCA) or
on Fault Analysis (FA) target a secret usually manipulated by a pub-
lic algorithm. SCA can also be used for Reverse Engineering (SCARE)
against the software implementation of a private algorithm. In this pa-
per, we claim that an unknown Feistel scheme with an hardware design
can be recovered with a chosen plaintexts SCA attack. First, we show
that whatever is the input of the unknown Feistel function, its one-round
output can be guessed by SCA. Using this relation, two attacks for re-
covering the algorithm are proposed : an expensive interpolation attack
on a generic Feistel scheme and an improved attack on a specific but
commonly used scheme. Then, a countermeasure is proposed.

1 Introduction

Cryptographic algorithms are designed for being robust against logical analysis.
However, the activity of any given device (smart cards, FPGA, microproces-
sor...) filter through side channels such as the processing time, the power con-
sumption or the electromagnetic radiations. Secret values are then vulnerable to
statistical attacks such as Differential Power Analysis (DPA) [4] or Correlation
Power Analysis (CPA) [1], but also to one-shot attacks such as Template Attacks
(TA) [2] [8].

Side Channel Analysis For Reverse Engineering (SCARE) techniques are also
employed for recovering a private algorithm. R. Novak proposed a strategy for
identifying a substitution table of a secret implementation of the GSM A3/A8
algorithm [6]. The feasibility of a SCARE for symmetric cryptography have been
proved by recovering a software DES implementation [3]. Indeed, the intermedi-
ate results on one round are available by SCA: they are computed sequentially
due to the software design. In this article, we go further with a SCARE attack
against an hardware implementation of a generic Feistel Scheme. The SCA feasi-
bility is demonstrated on a hardware DES implemented on an ASIC . However,
the side channel leakage exploitation is done for a generic Feistel Scheme. Then,
we propose a countermeasure against this generic SCARE attack.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 218–227, 2008.
c© IFIP International Federation for Information Processing 2008

SCARE of an Unknown Hardware Feistel Implementation 219

2 The Hardware Implementation of a Generic Feistel
Scheme

2.1 Assumption on the Feistel Scheme Design

The logic function is an expensive resource on a cryptographic device, especially
on a smart card. As a consequence, the Feistel function is usually implemented
once and the input registers are updated at each round. For example, the right
part of the first round output is xored with the left part of the plaintext and
is assumed to be written on a register whose value was the right part of the
plaintext. This realistic design assumption is detailed on Fig. 1.

Fig. 1. Assumption on a Generic Feistel Scheme Design

2.2 The Power Consumption During a Bit Transition

The power consumption of a D Flip-Flop (DFF) depends on its current activity.
Due to CMOS transistor behavior, register state changes make the DFF consume
power [9]. When the logic value 1 is applied a DFF input while the previous
value was 0, a current rise occurs on the rising edge of the clock. Furthermore,
the current rise during this transition is higher than the static state holding
dissipation. Then, we approximate the circuit behavior by saying that it supplies
energy for bit transition and does not supply energy for holding a bit value.
Lines supplying energy to the circuit can be observed with electromagnetic near
field techniques. The effect of bits transitions occurring at the same instant are
also built up on the side channel electromagnetic radiations. This is the power
supplying line leakage model. Even if it is experimentally harder, an attacker can
also observe the current at the DFF level with the same kind of techniques [5].
The radiations at the DFF level do not behave the same than previously. Then
a transition from 0 to 1 induces a radiation opposite to the radiation due to
a transition from 1 to 0 due to current motions in the DFF. This is transistor
current leakage model. The choice of the leakage model depends on the part of
the circuit targeted by the probe. State of the art electromagnetic techniques
permits to target power supplying line: the DFF level is harder to get. The SCA
we propose matches with the power supplying line leakage model.

220 D. Réal et al.

3 Side Channel Analysis of a Generic Feistel Scheme

3.1 Side Channel Identification of a Feistel Scheme

SCA techniques permit to identify a Feistel scheme. Indeed, the right part of
the plaintext is used once on the 1st round as R0 round but also on the 2nd

round as L1. Then, a CPA mean computed on the right part of the plaintext
contains two peaks (one on the 1st round and the other on the 2nd round).
A CPA computed on the left part of the plaintext contains one peak one on
the 1st round. Fig. 2 illustrates the effect on a DES hardly implemented. The
electromagnetic radiations are measured using near field techniques and a probe
sensitive to the vertical magnetic field. Fig. 2.1 shows one ciphering operation.
Fig. 2.2 is a CPA on the right part of the plaintext and Fig. 2.3 is a CPA on the
left part of the plaintext.

A Feistel Scheme can then be identified with two DPA traces. This method for
characterizing a generalized Feistel Scheme can also be used with ciphertexts.

3.2 SCA for to Guess the One Round Output of the Feistel
Function

Our SCA is a chosen plaintext attack. We assume that the attacker is able to
spy N ciphering operations. Let Pi be the corresponding plaintexts with Li and
Ri their corresponding left and right hand halves, i < N . The right part of the
plaintext is chosen fixed to R: Ri = R. Let Rj

i and Lj
i be the input of the jth

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

100

200

300

400
Fig 2.1: EM radiation of a Feistel ciphering operation

E
m

 r
ad

ia
tio

n
in

 m
V

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

50

100

150

200
Fig 2.2: CPA on the right part of the plain

E
m

 r
ad

ia
tio

n
in

 m
V

800 1000 1200 1400 1600 1800 2000 2200 2400 2600

50

100

150

200
Fig 2.3: CPA on the left part of the plain

time in ns

E
m

 r
ad

ia
tio

n
in

 m
V

Fig. 2. CPAs on the plaintext

SCARE of an Unknown Hardware Feistel Implementation 221

– N : The number of plaintexts.
– Pi : The ith plaintext with i < N .

– Li : The corresponding left part.
– Ri = R : The corresponding fixed right part .

– Pi : The unknown Feistel Function.
– Lj

i : The left input of the jth round : L0
i = Li.

– Rj
i : The right input of the jth round : R0

i = R.
– Y j

i : The output of Fu at the the jth round.
– Y : The fixed output of Fu after the round 0 Y = Fu(R).
– X : The CPA object, classification according to the hamming
weight of Li ⊕ X.

Fig. 3. Notations

Fig. 4. SCA context

round of the feistel scheme : R0
i = Ri = R, L0

i = Li and L1
i = Ri. Let Fu be the

unknown Feistel function and Y j
i its corresponding output for the jth round :

Y j
i = Fu(Rj

i). Let Y be the fixed output of Fu for the round 0: Y 0
i = Fu(R) = Y

and R1
i = Li ⊕Y . The notations for this chosen plaintexts context are reminded

in Fig. 3 and Fig. 4.
We consider 4-bits words: the leakage of 4-bits can usually be properly ob-

served while an exhaustive search on 4 bits in not very expensive.This choice
corresponding to the S-box size of the DES is purely coincidental. Let Li,0, X0

and R0 be the first 4 bits of Li, R and X . Here, we propose an SCA for guessing
X0, the generalization to the other words of X being trivial. For each possible
value α of X0, we compute the side channel trace Γα being the mean trace com-
puted using the plaintexts Pi whose first word is α: we obtain then 16 traces.
Let X0 be the index of the trace Γα which is minimal at the t = T0 + Td. We
claim that X0 = Y0 ⊕ R0. Indeed, according to the assumption made on the
Feistel design scheme, we clearly see that, at the instant t = T0 + Td the value
Li ⊕ Y overwrites the value R on the register 2. The value of Li that minimizes
the number of bit transition occurring on the register 2 is Li = Y ⊕ R. The
classification done computing the traces Γα is random regarding all the 4-bits
words of L except the first one explaining we are able to isolate its leakage from

222 D. Réal et al.

the logical noise. Then we can guess the value of Y : Y = X ⊕ R. This SCA
attack permit to have the relation Y = Fu(R) with X and Y known and Fu

the unknown feistel function. Fig. 5 shows the results with R0 = 0 × 3 and
Y0 = 0 × B and N = 5000. Fig. 5.1 illustrates a ciphering operation useful for
finding the instant t = T0 + Td. Fig. 5.2 shows the mean traces Γ0×8 and Γ0×7:
Γ0×8 is the minimum at t = T0 + Td while, as expected Γ0×7 is the maximum
(7⊕8 = 0×F). Fig. 5.3 shows the 14 other mean trace Γα. The difference before
the instant t = T0 +Td cannot be used because the signal is not time-stationary.

750 800 850 900 950 1000 1050 1100 1150 1200

100

200

300

400
Fig 3.1: EM radiation of a Feistel ciphering operation

E
m

 r
ad

ia
tio

n
in

 m
V

750 800 850 900 950 1000 1050 1100 1150 1200
60
80

100
120
140
160
180

Fig 3.2: CPA with L0 = 0x07 and L0 = 0x08

E
m

 r
ad

ia
tio

n
in

 m
V L0 = 0x07

L0 = 0x08

750 800 850 900 950 1000 1050 1100 1150 1200
60
80

100
120
140
160
180

Fig 3.3: CPA with L0 != 0x07 && L0 != 0x08

time in ns

E
m

 r
ad

ia
tio

n
in

 m
V

Fig. 5. Γα mean traces

Then, a low cost SCA permits to compute the output of the unknown Feistel
function Fu of any input word R. This SCA aims at being general. In the case
of measurements with a low level of noise as is observed here, the attacker can
search Fu(R) bit by bit. Indeed, he can compare two side channel traces linked
to two plaintexts whose difference is one bit of the left halve : the correct bit
value corresponds to the lower radiation. Then the attacker can expect to get
Fu(R) with 64 chosen plaintexts for DES.

4 The Cryptographic Attack Derived from the SCA

In this section, we compute the number of (chosen) input-output pairs required
to fully recover the unknown function Fu. We first compute this number for a
general function Fu of given degree and input/output size. Secondly, we show
that this number can be made much smaller when Fu follows a specific but
commonly used design.

4.1 Simple Interpolation Attack

Fu is a vectorial function with n input/output bits. Its bitwise coordinates are
polynomials of the n input bits of degree denoted d. For each input-output pair,

SCARE of an Unknown Hardware Feistel Implementation 223

we use the input and the j-th bit of the output to reconstruct the j-th coordinate
of Fu. When the same input-output pairs can be used to reconstruct the individual
coordinates of Fu, the number of input-output pairs that we need can be computed
from the reconstruction of a single coordinate of Fu. Since each such polynomial
has about nd/d! coefficients, we need this number of input-output pairs to be able
to resolve the unknown coefficients by linear algebra. The computational cost of
recovering one coordinate of Fu is therefore n3d/(d!)3 binary operations and n
times this number to recover Fu entirely. For n = 64 and d = 8, this amounts to
roughly 232 input-output pairs and 2102 binary operations.

4.2 Improved Attack on a Class of Commonly Used Schemes

The specification of a general function Fu requires a large amount of storage for
practical choices of degree and input size. For this reason, functions admitting a
compact description are often considered in that place. A commonly encountered
class of functions is built by composition of a random function of a reduced number
of bits d � n with a linear compression from n bits to d bits. In this case, each of
the n coordinates of Fu has the shape f ◦S where f is an unknown function from
d bits to 1 bit and S is an unknown linear function from n bits to d bits. We next
show how to recover f and S from a few input-output pairs of f ◦ S.

f?f ◦ S = ◦ S?

Fig. 6. A representation of f ◦ S

First, we observe that considering a composed function f ◦ S the problem of
recovering f and S has multiple solutions. Indeed, for any linear permutation φ
of the rows of S, the transformed f ◦ φ−1 and φ ◦ S are an alternative solution.
As a consequence, when the first d columns of S are linearly independent, we
can suppose that they actually form the Identity matrix. Then, considering the
inputs of f ◦ S with their last n − d bits to 0 actually provides us with input-
output pairs of f . There are 2d inputs of f ◦ S with their last n − d bits to 0
and this is what we need to compute f by the interpolation method. Finally, the
cost of recovering f is 2d input-output pairs of f ◦ S and 23d binary operations.

We are now left at finding the coefficients of the n− d last columns of S. For
this, we sequentially resolve the coefficients of the k-th column for k = d+1, . . . , n
by using inputs of f ◦ S with their k-th bit to 1 and their last n − k bits to 0.
At each step, the coefficients of the previous columns are known and each input-
output pairs of f ◦ S with the prescribed bits to 0 defines an algebraic relation
in the d unknown coefficients of the current column. Since we want to keep to a
minimum the number of input-output pairs of f ◦ S that we use, we do not use

224 D. Réal et al.

f ◦ S = ◦
1

1
(0)

(0)

S

?
?

?
??

f

Fig. 7. Updated representation of f ◦ S

these algebraic relations to solve the coefficients of the current column. Instead,
we do exhaustive search on these coefficients and use the algebraic relations
to identify their correct values. Since each algebraic relation is satisfied with
probability about 1/2, we need on average about d input-output pairs of f ◦ S
to discriminate the correct values of all d coefficients. Applying this method to
the n − d unknown columns of S costs (n− d)d input-output pairs of f ◦ S and
(n − d)2d binary operations.

In all, our improved method allows to recover the complete description of f ◦S
from 2d + (n − d)d chosen input-output pairs and using 23d + (n − d)2d binary
operations. For n = 64 and d = 8, this amounts to roughly 29.5 input-output
pairs and 224 binary operations.

5 Proposition of Countermeasure

Hardware countermeasures are either expensive to design, either not efficient
against statistical SCA [7]. We propose then the logic countermeasures based
on the attacker capability.

5.1 Countermeasure with the Supplying Line Leakage Model

The current rise during the transitions from 0 to 1 or 1 to 0 is much higher than
the static dissipation observed for the holding of state. The proposed SCA is
based on the knowledge of the first value of a register. But, if the targeted register
is precharged with a random before the secret-dependent value be written, the
proposed SCA cannot be done. That countermeasure implementation costs one
register more but also costs a random generator and specific means to load it
in the register. However, random generator are usually implemented on smart
cards. Fig. 8 illustrated that the precharging countermeasure design. During the
initialization stage, the plaintext is written in a register while the random value
is loaded in the other one. At the first round of the algorithm, right part of the
plaintext is processed but the result is now written on the randomized register.
A random value is needed at the 1st round, the cryptographic algorithm making
this register precharged value be random for the other rounds. This design divides
the data rate by 2. As the 2 first and 2 last round of the algorithm are sensitive
to our way of attacking, the designer can improve the data rate by precharging
only these round which costs 4 clock periods.

SCARE of an Unknown Hardware Feistel Implementation 225

Fig. 8. Precharging countermeasure

Fig. 9. Unrolling implementation

Fig. 9 presents another way of designing that countermeasure. The Feistel func-
tion is unrolled on two round. The initialization consists then on loading a random
value on the rising clock edge and the plaintext on the next rising clock edge. The
data rate is not divided by 2 anymore, just 1 clock period is added. However, this
design multiplies the logic by 2. With this design, two more logic had been imple-
mented, the cost is then area and consumption not time execution anymore.

Precharging is a well-known countermeasure. However it seems to be inefficient
in the case of DFF leakage model.

5.2 Improved Countermeasure in the Case of DFF Leakage Model

If the falling or the rising transition can be distinguished, the proposed SCA
is still possible, at the difference that the attacker does not search the minimal
mean radiation but the medium mean radiation. This SCA bypasses the previ-
ous countermeasure. Indeed, the outputs on one round of the Feistel could be
divided into three groups and instead of two groups. Then, at the bit level, an
attacker who observe no transition cannot say anything. But a transition from
0 to 1 means that the observed bit of L ⊕ Fu(R) is 1 and a transition from 1
to 0 means that the observed bit of L ⊕ Fu(R) is 0. Then, the proposed attack
work with the register precharging, it just costs more experiments. The previous
countermeasure is then improved by working randomly with the plaintext or
its complementary. Due to Feistel properties, the final result can be calculated

226 D. Réal et al.

Fig. 10. Complementary Precharging

whatever be the kind of input data. Then the attacker who observes a 0 in a
register does not know if this bit is inverted or not. This countermeasure re-
sists to 1st order SCA. If Fu can be expressed as Fu(R) = F2(K ⊕ A(R)) with
A an affine function, the countermeasure implementation can be improved as
represented on Dig. 10.

6 Conclusion

State of art in SCARE attack usually target software implementation. The attack
we presented in this article is, to our knowledge, the first attack for reverse engi-
neering a general Feistel with an hardware design. All the results proposed here
can be applied to a generalized Feistel Scheme. We presented also an improved
countermeasure mixing complementary register and precharging. This counter-
measure should resist to 1st order SCA. It has not been design for to resist to
2nd order SCA. However, for that a 2nd order SCA attack be a real threat, its
feasibility should be studied in future works and its complexity clearly identified.

References

1. Brier, É., Clavier, C., Olivier, F.: Correlation power analysis with a kleakage model.
In: Joyeand, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

2. Chari, S., Rao, J.R., Riohatgi, P.: Template Attacks. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

3. Daudigny, R., Ledig, H., Muller, F., Valette, F.: SCARE of the DES (side channel
analysis for reverse engineering of the data encryptation standart). In: Ioannidis, J.,
Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 393–406. Springer,
Heidelberg (2005)

4. Kocher, T., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

5. Mangard, S., Popp, T., Gammel, B.M., Jun, B.: Side Channel Lekage of Masked
CMOS Gates. In: Rao, J.R., Sunar, B. (eds.) CT-RSA 2005. LNCS, vol. 3376, pp.
361–365. Springer, Heidelberg (2005)

SCARE of an Unknown Hardware Feistel Implementation 227

6. Novak, R.: Side-channel attack on substitution blocks. In: Zhou, J., Yung, M., Han,
Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 307–318. Springer, Heidelberg (2003)

7. Réal, D., Canovas, C., Clédière, J., Drissi, M., Valette, F.: Defeating Classical Hard-
ware Countermeasures: a New Processing for Side Channel Analysis. In: Desing
Automation Test in Europe International conference – DATE 2008 (2008)

8. Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

9. Sze, S.M.: Semiconductor Devices: Physics and Technology. John Wiley and Sons,
Inc, Chichester (2002)

Evaluation of Java Card Performance

Samia Bouzefrane1, Julien Cordry1,
Hervé Meunier2, and Pierre Paradinas3

1 CNAM 292 rue Saint-Martin 75003 Paris France
firstname.lastname@cnam.fr

2 INRIA POPS Parc Scientifique de la Haute Borne Bt. IRCICA 50,
avenue Halley - BP 70478 59658 Villeneuve d’Ascq, France

herve.meunier@lifl.fr
3 INRIA Rocquencourt 78150 Le Chesnay France

Pierre.Paradinas@inria.fr

Abstract. With the growing acceptance of the Java Card standard,
understanding the performance behaviour of these platforms is becom-
ing crucial. To meet this need, we present in this paper, a benchmark
framework that enables performance evaluation at the bytecode and API
levels. We also show, how we assign, from the measurements, a global
mark to characterise the efficiency of a given Java Card platform, and to
determine its performance according to distinct smart card profiles.

Keywords: Java Card, Benchmark, Performance, Test.

1 Introduction

The advent of the Java Card standard has been a major turning point in smart
card technology. It provides a secure, vendor-independent, ubiquitous Java plat-
form for smart cards. It shortens the time-to-market and enables programmers
to develop smart card applications for a wide variety of vendors’ products.

In this context, understanding the performance behaviour of Java Card plat-
forms is important to the Java Card community. Currently, there is no solution
on the market which makes it possible to evaluate the performance of a smart
card that implements Java Card technology. In fact, the programs which real-
ize this type of evaluations are generally proprietary and not made available
to the whole of the Java Card community. Hence, the only existing and pub-
lished benchmarks are used within research laboratories (e.g., SCCB project from
CEDRIC laboratory [3,6], or IBM Research [11]). However, benchmarks are impor-
tant in the smart card area because they contribute in discriminating companies
products, especially when the products are standardised.

Our purpose is to describe the different steps necessary to measure the per-
formance of the Java Card platforms. In this paper, the emphasis is towards
determining the optimal parameters to enable measurements that are as accu-
rate and linear as possible. We also show, how we assign, from the measurements,
a global mark to characterise the efficiency of a given Java Card platform, and
to determine its performance according to distinct smart card profiles.

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 228–240, 2008.
c© IFIP International Federation for Information Processing 2008

Evaluation of Java Card Performance 229

The remainder of this paper is organised as follows. In Section 2, we describe
the Java Card technology. Subsequently, we detail in Section 3 the different
modules that compose the framework architecture. Section 4 presents a state of
the art of the benchmarking attempts in smart card area before concluding the
paper in Section 5.

2 Java Card and Benchmarking

2.1 Java Card Technology

Java Card technology provides means of programming smart cards [2,8] with a
subset of the Java programming language. Today’s smart cards are small com-
puters, providing 8, 16 or 32 bits CPU with clock speeds ranging from 5 up
to 40MHz, ROM memory between 32 and 128KB, EEPROM memory (writable,
persistent) between 16 and 64KB and RAM memory (writable, non-persistent)
between 3 and 5KB. Smart cards communicate with the rest of the world through
application protocol data units (APDUs, ISO 7816-4 standard). The communi-
cation is done in master-slave mode. It is always the terminal application that
initialises the communication by sending the command APDU to the card and
then the card replies by sending a response APDU (possibly with empty con-
tents). In the case of Java powered smart cards, the cards ROM contains, in
addition to the operating system, a Java Card Virtual Machine (JCVM), which
implements a subset of the Java programming language, hence allowing Java
Card applets to run on the card.

A Java Card applet should implement the install method responsible for
initializing the applet (usually calle by the applet constructor) and a process
method for handling incoming command APDUs and sending the response
APDUs back to the host. More than one applet can be installed on a single
card, however only one can be active at a time (the active one is the most re-
cently selected by the Java Card Runtime Environment – JCRE). A normal Java
compiler is used to convert the source code into Java bytecodes. Then a con-
verter must be used to convert the bytecode into a more condensed form (CAP
format) that can be loaded onto a smart card. The converter also checks that no
unsupported features (like floats, strings, etc.) are used in the bytecode. This is
sometimes called off-card or off-line bytecode verification.

2.2 Addressed Issues

Our research work falls under the MESURE project [12], a project funded by the
French administration (ANR1), which aims at developing a set of open source
tools to measure the performance of Java Card platforms.

Only features related to the normal use phase of Java Card applications will be
considered here. Are excluded features like installing, personalizing or deleting

1 http://www.agence-nationale-recherche.fr/

http://www.agence-nationale-recherche.fr/

230 S. Bouzefrane et al.

an application since they are of lesser importance from user’s point of view and
performed once.

Hence, the benchmark framework enables performance evaluation at three
levels:

– The VM level: to measure the execution time of the various instructions of
the virtual machine (basic instructions), as well as subjacent mechanisms of
the virtual machine (e.g., reading and writing the memory).

– The API level: to evaluate the functioning of the services proposed by the
libraries available in the embedded system (various methods of the API,
namely those of Java Card and GlobalPlatform).

– The JCRE level: to evaluate the non-functional services, such as the trans-
action management, the method invocation in the applets, etc.

The set of tests are supplied to benchmark Java Card platforms available for
anybody and supported by any card reader. The various tests thus have to
return accurate results, even if they are not executed on precision readers. We
reach this goal by removing the potential card reader weakness (in terms of
delay, variance and predictability) and by controlling the noise generated by
measurement equipment (the card reader and the workstation). Removing the
noise added to a specific measurement can be done with the computation of an
average value extracted from multiple samples. As a consequence, it is important
on the one hand to perform each test several times and to use basic statistical
calculations to filter the trustworthy results. On the other hand, it is necessary
to execute several times in each test the operation to be measured in order to
fix a minimal duration for the tests (> 1 second) and to expect getting precise
results.

We will not take care of features like the I/Os or the power consumption
because their measurability raises some problems such as:

– For a given smart card, distinct card readers may provide different I/Os
measurements.

– Each part of an APDU is managed differently on a smart card reader. The
5 bytes header is read first, and the following data can be transmitted in
several way: 1 acknowledge for each byte or not, delay or not before noticing
the status word.

– The smart card driver used by the workstation generally induces more delay
on the measurement than the smart card reader itself.

3 General Benchmarking Framework

3.1 Introduction

We defined a set of modules as part of the benchmarking framework. The general
framework is illustrated in the figure 1.

The benchmarks have been developed under the Eclipse environment based on
JDK 1.6, with JSR268. The underlying ISO 7816 smart card architecture forces us

Evaluation of Java Card Performance 231

Fig. 1. Overall Architecture

to measure the time a Java Card platform takes to answer to a command APDU,
and to use that measure to deduce the execution time of some operations.

The benchmarking development tool covers two parts: the script part and the
applet part. The script part, entirely written in Java, defines an abstract class
that is used as a template to derive test cases characterized by relevant measuring
parameters such as, the operation type to measure, the number of loops, etc. A
method run() is executed in each script to interact with the corresponding test
case within the applet. Similarly, on the card is defined an abstract class that
defines three methods:

– a method setUp() to perform any memory allocation needed during the
lifetime test case.

– a method run() used to launch the tests corresponding to the test case of
interest, and

– a method cleanUp() used after the test is done to perform any clean-up.

The testing applet is capable of recognizing all the test cases and launching a
particular test by executing its run method.

Our Eclipse environment integrates the Converter tool from Sun MicroSys-
tems, which is used to convert a standard Java Card applet class into a JCA file
during a first step. This file is completed pseudo-automatically by integrating
the operations to be tested with the Java Card Assembly instructions, as we
explain in the following paragraph. The second step consists in capgenerating
the JCA file into a CAP file, so that the applet could be installed on any Java
Card platform.

3.2 Modules

In this section, we describe the general benchmark framework that has been de-
signed to achieve the MESURE objective. The methodology consists of different

232 S. Bouzefrane et al.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0 5000 10000 15000 20000 25000 30000

m
ic

ro
 s

ec
on

ds
 (

m
ea

n)

loop size

mean

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 5000 10000 15000 20000 25000 30000

ba
se

d
on

 n
an

o
se

co
nd

 d
at

a

loop size

std dev

Fig. 2. Raw measurement and standard deviation

steps. The objective of the first step is to find the optimal parameters used to
carry out correctly the tests. The tests cover the VM operations and the API
methods. The obtained results are filtered by eliminating non-relevant measure-
ments and values are isolated by drawing aside measurement noise. A profiler
module is used to assign a mark to each benchmark type, hence allowing us to
establish a performance index for each smart card profile used. In the following
subsections, we detail every module composing the framework.

The bulk of the benchmark consists in performing time execution measure-
ments while we send APDUs from the computer through the Card Acceptance
Device (CAD) to the card. Each test (run) is performed a certain number of
times (Y) to ensure reliability of the collected execution times , and withing
each run method, we perform on the card a certain number of loops (L). L is
coded on the byte P2 of the APDUs which are sent to the on-card applications.
The size of the loop performed on the card is L = (P2)2.

The Calibrate Module. The calibrate module computes the optimal param-
eters (such as the number of loops) needed to obtain measurements of a given
precision.

Benchmarking the various different bytecodes and API entries takes time. At
the same time, it is necessary to be precise enough when it comes to measuring
those execution times. Furthermore, the end user of such a benchmark should
be allowed to focus on a few key elements with a higher degree of precision.
It is therefore necessary to devise a tool that let us decide what are the most
appropriate parameters for the measurement.

Figure 2 depicts the evolution of the raw measurement, as well as its standard
deviation, as we take 30 measurements for each available loop size of a test
applet. As we can see, the measured execution time of an applet grows linearly
with the number of loops being performed on the card (L). On the other hand,
the perceived standard deviation on the different measurements varies randomly
as the loop size increases, though with less and less peaks. Since a bigger loop
size means a relatively more stable standard deviation, we can use both the

Evaluation of Java Card Performance 233

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 500 1000 1500 2000 2500 3000

tim
e

(n
an

o
se

co
nd

s)

loop size

calibration

Fig. 3. A sample calibration

standard deviation and the mean measured execution time as a basis to assess
the precision of the measurement as follows.

To assess the reliability of the measurements, we compare the value of the
measurement with the standard deviation. The end user will need to specify this
ratio between the average measurement and the standard deviation, as well as
an optional mininum accepted value, which is set at one second by default.

With both the ratio and the minimal accepted value, as specified by the end
user, we can test and try different values for the loop size to binary search and
approach the ideal value. In figure 3, we try to calibrate a test by first trying
out a loop size of 2500. The program decided that the set of 30 obtained values
was too precise and therefore too time demanding. It then tried to evaluate the
precision of the test for a loop size of 625. Since the measurements were below
the minimum value, the program then tried to perform the same evaluation
for a loop size of 1369, and so on, until we reached a loop size for which both
conditions were satisfied.

The Bench Module. For a number of cycles, defined by the calibrate module,
the bench module performs the measurements for:

– The VM byte codes
– The API methods
– The JCRE mechanisms (such as transactions)

The developement of some of the test applets is detailed in [18].

The Filter Module. Experimental errors lead to noise in the raw measurement
experiments. This noise leads to imprecision in the measured values, making it dif-
ficult to interpret the results. In the smart card context, the noise is due to crossing
the platform, the CAD and the terminal (measurement tools, OS, hardware).

234 S. Bouzefrane et al.

The issues become: how to interpret the varying values and how to compare
platforms when there is some noise in the results. The filter module uses a sta-
tistical design to extract meaningful information from noisy data. From multiple
measurements for a given operation, the filter module uses the mean value μ of
the set of measurements to guess the actual value, and the standard deviation σ
of the measurements to quantify the spread of the measurements around the mean.
Moreover, since the measurements respect the normal Gaussian distribution (see
figure 4), a confidence interval [μ − (n × σ), μ + (n × σ)], within which the con-
fidence level is of 1 − a, is used to help eliminate the measurements outside the
confidence interval, where n and a are respectively the number of measurements
and the temporal precision, and they are related by traditional statistical laws.

 0

 50

 100

 150

 200

 250

 300

 350

 8600 8700 8800 8900 9000 9100 9200 9300 9400

m
ea

su
re

m
en

ts

nano seconds

distribution

Fig. 4. The distribution of 10000 measured execution time

The Extractor Module. The extractor module is used to isolate the execution
time of the features of interest among the mass of raw measurements that we
gathered so far.

Benchmarking bytecodes and API methods within Java Card platforms re-
quires some subtle means in order to obtain execution results that reflect as
accurately as possible the actual isolated execution time of the feature of inter-
rest. This is because there exists a significant and non-predictable elapse of time
between the beginning of the measure, characterized by the starting of the timer
on the computer, and the actual execution of the bytecode of interest. This is
also the case the other way around. Indeed, when performing a request on the
card, the execution call has to travel several software and hardware layers down
to the card’s hardware and up to the card’s VM (vice versa upon response). This
non-predictability is mainly dependent on hardware characteristics of the bench-
mark environment (such as the card acceptance device (CAD), PC’s hardware,
etc), the OS level interferences, services and also on the PC’s VM.

Evaluation of Java Card Performance 235

To minimize the effect of these interferences, we need to isolate the execu-
tion time of the features of interest, while ensuring that their execution time is
sufficiently important to be measurable.

The maximization of the bytecodes execution time requires a test applet struc-
ture with a loop having a large upper bound, which will execute the bytecodes
for a substantial amount of time. On the other hand, to achieve execution time
isolation, we need to compute the isolated execution time of any auxiliary byte-
code upon which the bytecode of interest is dependent. For example if sadd is
the bytecode of interest, then the bytecodes that need to be executed prior to
its execution are those in charge of loading its operands onto the stack, like two
sspush. Thereafter we subtract the execution time of an empty loop and the
execution time of the auxiliary bytecodes from that of the bytecode of interest
to obtain the isolated execution time of the bytecode. As presented in figure 5,
the actual test is performed within a method (run) to ensure that the stack is
freed after each invocation, thus guaranteeing memory availability.

Applet framework Test Case

process() { run() {
i = 0 op0

While i <= L op1

DO {
...

run() opn−1

i = i+1 opn

} }
}

Fig. 5. Test framework for a bytecode op0

In figure 5:

– L represents the chosen loop upper bound;
– opn represents the operation of interest;
– opi for i ∈ [0..n− 1] represents the auxiliary bytecodes necessary to perform

the operation opn.

To compute the mean isolated execution time of opn we need to solve a system
with the following equations:

M(opn) = mL(opn) − mL(Emptyloop)
L

−
n−1∑
i=0

M(opi)

Where:

– M(opi) is the mean isolated execution time of the operation opi.
– mL(opi) is the mean global execution time of the operation opi, including

interferences coming from other operations performed during the measure-
ment, both on the card and on the computer, with respect to a loop size L.

236 S. Bouzefrane et al.

These other operations represent for example auxiliary bytecodes needed to
execute the operation of interest, or OS and JVM specific operations. The
mean is computed over a significant number of tests. It is the only value that
is experimentally measured.

– Emptyloop represents the execution of a case where the run method does
nothing.

The formula presented above implies that prior to computing M(opn) we need
to compute M(opi) for i ∈ [0..n − 1]. The system can be solved as long as the
dependency relation between the operations is well founded, and that there is a
set of operations that do not depend on any other operation.

The Profiler Module. In order to define performance references, our frame-
work provides measurements that are specifically adapted to one of the following
application domains:

– banking applications
– transport applications
– identity applications.

A Java Card VM is instrumented in order to count the different operations per-
formed during the execution of a script for a given application. More precisely,
this virtual machine is a simulated and proprietary VM executing on a work-
station. This instrumentation method is rather simple to implement compared
to a static analysis based methods, and can reach a good level of precision, but
it requires a detailed knowledge of the applications and of the most significant
scripts.

Some features related to bytecodes and API methods appeared to be necessary
and the simulator was instrumented to give useful information such as:

– for the API methods:
• the types and values of method parameters
• the length of arrays passed as parameters,

– for the bytecodes:
• the type and duration of arrays for array related bytecodes (load, astore,

arraylength),
• the transaction status when invoking the bytecode.

A simple utility tool has been developed to parse the log files generated by the
instrumented Java Card VM, which builds a human-readable tree of method
invocations and bytecode usage.

Thus, with the data obtained from the instrumented VM, we attribute for
each application domain a number that represents the performance of some
representative applets of the domain on the tested card. Each of these numbers
is then used to compute a global performance mark.

We use weighted means for each domain dependent mark. Those weights are
computed by monitoring how much each Java Card feature is used within a
regular use of standard applets for a given domain. For instance, if we want to

Evaluation of Java Card Performance 237

test the card for a use in transport applications, we will use the statistics that we
gathered with a set of representative transport applets to evaluate the impact
of each feature of the card.

We are considering the measurement of the feature f on a card c for an ap-
plication domain d. For a set of nM extracted measurements M1

c,f , ..., MnM

c,f con-
sidered as significant for the feature f , we can determine a mean Mc,f modeling
the performance of the platform for this feature.

Given nC cards for which the feature f was measured, it is necessary to
determine the reference mean execution time Rf , which will then serve as a
basis of comparison for all subsequent tests.

Hence the “mark” Nc,f of a card c for a feature f , is the relation between Rf

and Mc,f :

Nc,f =
Rf

Mc,f

However, this mark is not weighted. For each pair of a feature f and an appli-
cation domain d, we associate a coefficient αf,d , which models the importance
of f in d . The more a feature is used within typical applications of the domain,
the bigger the coefficient:

αf,d =
βf,d

nF∑
i=1

βi,d

where:

– βf,d is the total number of occurrences of the feature f in typical applications
of the domain d.

– nF is the total number of features involved in the test.

Therefore, the coefficient αf,d represents the occurrence proportion of the feature
of interest f among all the features.

Hence, given a feature f , a card c and a domain d , the “weighted mark”
Wc,f,d is computed as follows:

Wc,f,d = Nc,f × αf,d

The “global mark” Pc,d for a card c and for a domain d is then the sum of all
weighted marks for the card. A general domain independant note for a card is
computed as the mean of all the domain dependant marks.

3.3 Unused Features

The document [19] details the included and the excluded features. Only fea-
tures related to the normal use phase of Java Card applications are considered
here. Measuring the performance when installing, personalizing or deleting an
application, is of less importance from the user’s point of view. Moreover, these
management operations are only performed once. As a consequence, the con-
structors of the Java Card API, as well as methods such as Applet.register(),

238 S. Bouzefrane et al.

etc. are not measured. Besides, we focus on success paths and not on the failure
ones, on account of their relevance. Then, failure cases such as the comparison
methods of the Java Card API.equals(...) on a bad AID (OwnerPIN.check(...)
on a bad PIN ...), as well as Exception classes are not taken into account. In
the same respect, some bytecodes, that are never used in a regular application
are not measured here.

4 State of the Art

Currently, there is no standard benchmark suite which can be used to demon-
strate the use of the JCVM and to provide metrics for comparing Java Card plat-
forms. In fact, even if numerous benchmarks have been developed surrounding
the JVM (see 3), there are few works that attempt to evaluate the performances
of smart cards. The first interesting initiative has been done by Jordi et al. in
[17] where they study the performance of micro-payment for Java Card plat-
forms, i.e., without PKI. Even if they consider Java Card platforms from distinct
manufacturers, their tests are not complete as they involve mainly computing
some hash functions on a given input, including the I/O operations. A more
recent and complete work has been undertaken by Erdmann in [15]. This work
mentions different application domains, and makes the distinction between I/O,
cryptographic functions, JCRE and energy consumption. Infineon Technologies
is the only provider of the tested cards for the different application domains.
The software itself is not available. The work of Fischer in [16] compares the
performance results given by a Java Card applet with the results of the equiva-
lent native application. Another interesting work is that carried out by the IBM
BlueZ secure systems group and concretized through a Master thesis [11]. JCOP
framework has been used to perform a series of tests to cover the communication
overhead, DES performance and reading and writing operations into the card’s
memory (RAM and EEPROM). Markantonakis in [9] presents some performance
comparisons between the two most widely used terminal APIs, namely PC/SC
and OCF. Papapanagiotou et al. in [10] evaluate the performance of two on-
line certificate revocation and validation protocols on two different Java Card
platforms in order to determine which protocol is more efficient for smart card
use. Chaumette et al. in [13,14] show the performance of a Java Card grid with
respect to the scalability of the grid and with different types of cards.

5 Conclusion

In this paper, we have proposed a methodology aiming at characterizing the
performance of Java Card platforms by measuring different levels of bench-
marks using measurement techniques to analyze the platform’s performance.
This work was undertaken as part of a project funded by the French admin-
istration MESURE. The Java Card Benchmarking framework is now accessible
on-line (see [12]) since it is published as an open-source tool. Our work focuses on

Evaluation of Java Card Performance 239

measuring the excution time of the virtual machine bytecodes, the API methods
and the JCRE mechanisms.

All the measured features are based on the Java Card 2.2 platforms. With the
publication of the Java Card 3.0 specifications [20], two versions are proposed.
While the Connected Edition features a new virtual web-oriented machine, the
Classic Edition is based on an evolution of the Java Card Platform, Version 2.2.2
and targets more resource-constrained devices that support traditional applet-
based applications. Hence, the majority of the features measured in Mesure tool
will be reused in this edition. However, all the new features such as those based
on 32-bit integers are not considered.

Currently, we are working on the prediction of the execution time of the
applications, by using formal methods.

References

1. Cap, C.H., Maibaum, N., Heyden, L.: Extending the Data Storage Capabilities of
a Java-based Smart card. In: Sixth IEEE Symposium on Computers and Commu-
nications (ISCC 2001). IEEE, Los Alamitos (2001)

2. Chen, Z.: Java Card Technology for Smart Cards: Architecture and Programmer’s
Guide. Addison Wesley, Reading (2000)

3. Douin, J.-M., Paradinas, P., Pradel, C.: Open Benchmark for Java Card Technol-
ogy, e-Smart Conference (September 2004)

4. GemXpresso Reference Manual, Gemplus (1998)
5. Sm@rtCafe Reference Manual Giesecke & Devrient (1999)
6. Grimaud, G., Paradinas, P., Vétillard, E.: Measuring the performance of the Java

Card Platform, Java One (May 2006)
7. Guyot, V., Boukhatem, N., Pujolle, G.: Smart Card performances to handle Session

Mobility. ICI, IFIP/IEEE (September 2005)
8. Java Card 2.2.2 Specification (April 2006),

http://java.sun.com/products/javacard/

9. Markantonakis, C.: Is the performance of smart card cryptographic functions the
real bottleneck? In: 16th international conference on Information security: Trusted
information: the new decade challenge, vol. 193, pp. 77–91. Kluwer, Dordrecht
(2001)

10. Papapanagiotou, K., Markantonakis, C., Zhang, Q., Sirett, W.G., Mayes, K.: On
the Performance of Certificate Revocation Protocols Based on a Java Card Cer-
tificate Client Implementation. In: 20th IFIP International Information Security
Conference (Sec 2005) - Small Systems Security and Smart cards (May 2005)

11. Rehioui, K.: Java Card Performance Test Framework, Université de Nice, Sophia-
Antipolis, IBM Research internship (September 2005)

12. The MESURE project MESURE, http://mesure.gforge.inria.fr/Eng/Index
13. Chaumette, S., Grange, P., Karray, A., Sauveron, D., Vignéras, P.: Secure dis-

tributed computing on a Java Card Grid, LaBRI, Université Bordeaux 1, 1331-04,
(2004), http://www.labri.fr/publications/paradis/2004/CGKSV04

14. Atallah, E., Darrigade, F., Chaumette, S., Karray, A., Sauveron, D.: A Grid of Java
Cards to Deal with Security Demanding Application Domains. In: 6th edition e-
Smart conference & demos, Sophia Antipolis, Frensh Riviera (September 2005),
http://www.labri.fr/publications/paradis/2005/ADCKS05

http://java.sun.com/products/javacard/
http://mesure.gforge.inria.fr/Eng/Index
http://www.labri.fr/publications/paradis/2004/CGKSV04
http://www.labri.fr/publications/paradis/2005/ADCKS05

240 S. Bouzefrane et al.

15. Erdmann, M.: Benchmarking von Java Card, LudwigMaximilians-Universität
München, Institut für Informatik (May 2004)

16. Fischer, M.: Vergleich von Java und Native-Chipkarten Toolchains, Benchmarking,
Messumgebung, LudwigMaximilians-Universität München, Institut für Informatik
(2006)

17. Castellà-Roca, J., Domingo-Ferrer, J., Herrera-Joancomart́ı, J., Planes, J.: A
Performance Comparison of Java Cards for Micropayment Implementation. In:
CARDIS, pp. 19–38 (2000)

18. Paradinas, P., Cordry, J., Bouzefrane, S.: Performance Evaluation of Java Card
Bytecodes WISTP, pp. 127–137 (May 2007)

19. Functionalities of the MESURE tools : http://mesure.gforge.inria.fr/pub/

documents/F2.1Functionalities1.0.pdf

20. Java Card 3.0, http://java.sun.com/javacard/3.0/

http://mesure.gforge.inria.fr/pub/documents/F2.1Functionalities1.0.pdf
http://mesure.gforge.inria.fr/pub/documents/F2.1Functionalities1.0.pdf
http://java.sun.com/javacard/3.0/

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 241–254, 2008.
© IFIP International Federation for Information Processing 2008

Application of Network Smart Cards to Citizens
Identification Systems

Joaquin Torres1, Mildrey Carbonell1, Jesus Tellez2, and Jose M. Sierra1

1 Carlos III University of Madrid, Computer Science Department,
Avda. de la Universidad, 30, 28911, Leganés (Madrid), Spain
{jtmarque,mcarbone,sierra}@inf.uc3m.es

2 University of Carabobo, Venezuela, Computer Science Department (Facyt)
Av. Universidad, Sector Bárbula, Valencia, Venezuela

jtellez@uc.edu.ve

Abstract. This paper proposes a new authentication and authorization architec-
ture based on a network smart card with identification purposes: ID-NSCard.
Thus, a citizen who holds this kind of device might be securely authenticated by
a remote authoritative server in an identification system. This work shows how
the standardized specifications are transparently reused and integrated in the
proposed architecture. Details of the protocol and authentication mechanisms
are provided for a Case of Study: Spanish National Electronic ID Card.

1 Introduction

Multiple works have attempted to define what a person's identity is. Many of them
consider identity as the distinguishing characteristics that determine unequivocally
that a person is who that person claims to be. The authentication is the mechanism by
which the identity of a person is verified.

Identity clearly is a target of theft. By stealing another person's identity, somebody
could gain access to services or facilities to which the thief is not entitled. Stronger
ways of reinforcing security and trust are needed in order to avoid undesirable
impersonations.

Many countries are starting to issue national identity cards or electronic passports for
citizens that include a chip card (ID-card). This is an electronic way to hold a trusted
identity credential. Additionally, both logical and biometric identifiers are usually re-
quired for authenticating the citizens' credentials during the identification process.

Most of these ID-card solutions provide two main security services: authentication
and digital signature. Note that the first one allows the authoritative organisation to
determine whether the claimed identity really belongs to the service requester (in this
context, identification and authentication terms are commonly used), and the second
one guarantees the non-repudiation of an electronic transaction. With these goals, the
law [1] and standardization bodies [2, 3] envisage two different qualified digital cer-
tificates: citizen's authentication certificate and citizen's digital signature certificate,
both of them installed in a SSCD (secure signature creation device).

The present paper is just focused on the identification scheme, by means of the
authentication of identity credentials. More concretely, it is focused on a remote

242 J. Torres et al.

authentication procedure, which does not take place between a smart card (in a SSCD
role) and an access terminal, but between the first one and a remote authentication
server, where the authoritative application is running.

One of the more relevant European references for the implementation and deploy-
ment of national ID cards are issued by the European Committee for Standardization
(or CEN), which among other specifications is defining an application interface for
smart cards used as secured signature creation devices [4, 5] and the European Citizen
Card, ECC [6]. Nevertheless, the protocols and schemes derived from these standards
might be improved in terms of robustness and security. After analyzing them, we
propose a more secure Identification System based on ID-NSCards, which aim to be
more autonomous smart cards with identification purposes. With these goals, an
atomic implementation of layer 2 authentication protocols within the card and end-to-
end communications with a back-end authentication/authorization server, among
other aspects, are presented in this work.

In the reminder of this paper, the related work is reviewed and analyzed in
section 2 and, afterwards, we describe an authentication architecture based on our
network smart card concept, NSCard, which implements ID-card authentication func-
tionalities (ID-NSCard). In section 4, security and trust issues related to such an archi-
tecture are discussed. Finally, we treat a case of study for developing the proposed
architecture in a real identification system: the Spanish National electronic ID-card.

2 Related Works

One of the objectives of our work is, as far as possible, to treat the smart card as a
networked host. Several works have been done in this area.

The proposal in [8] was oriented towards establishing a simplified TCP/IP protocol
stack. The smart card supports this protocol stack and behaves like a small Web
server. The (U)SIM security modules were not absent from this approach. New per-
spective on business models favoured the creation of generic tools based on smart
cards, such as SIM Toolkit [9]. In this frame, these devices are equipped with a cer-
tain level of pro-activity and an improved connectivity, through a client-server model,
in an over-the-air (OTA) system. This technology is based on Short Message Service,
SMS, and is able to update SIM cards as well as downloading and activating new
services. Interesting research was done making use of this technology, enabling the
SIM card to be used as Web server [10]. Its implementation does not correspond en-
tirely to that established in the standard HTTP protocol, but the result is functional
and effective for certain applications.

The aim in [11] was to obtain a TCP-type protocol. This protocol did not fulfil all
of the requirements that are established in the standard [12] but it included the con-
cept of agent-based Internet card. In [13] Internet infrastructure extends to include
smart cards for the first time, and a specific middleware is defined in order to protect
communications between applications and smart cards. A proxy implementation was
noted in [14-16]. This allowed cards to be efficiently integrated in distributed envi-
ronments. The consolidation of Java Card as object-oriented programming favoured
this process. Java Card Web Servlet technology was used to transform the smart card
into a portable repository for Web objects, including HTML pages with data for a

 Application of Network Smart Cards to Citizens Identification Systems 243

specific application, in [17]. Smart cards continue being integrated into the Web envi-
ronment, even merely as an element with the capacity to store and transport user’s
personal information securely. The use of these devices to manage Web session cook-
ies was proposed in [18].

In [19] an important number of experts discussed the characteristics, steps and
planning of what could be a new generation of smart cards with or without contacts.
A clear evolution towards a networked smart card was quite evident. More recent
works specify what these cards would be like and what security advantages they
would introduce. These cards could fall under the ever-widening concept of network
smart cards. More details on the essential contributions of these works could be found
in the following paragraphs.

In [20] and [21], the card was already treated as an Internet node which imple-
mented standardised security and communication protocols, to be connected to a
network via the host. The card was able to provide services or access Internet re-
sources making use of protocol stacks in the same way as any other node on the net-
work. Its use in security solutions was soon proposed. In this way, the network smart
card was able to establish secure direct communication with remote Internet servers,
as shown in [22]. This capacity allows the cards to guarantee online transactions. An
authentication comparison with OTP devices or with regard to conventional cards can
be found in [23]. Other works were focused on lower-level security and they treated
packet filtering by the smart card in different stages. This filtering may be produced
from interruptions service routines to the actual filtering by the protocol stack [24].

More recently, the advances in networks smart cards have been studied in [25, 26]
from different approaches. Concretely in [25], we describe the rationale of our net-
work smart card concept.

Regarding the use of network smart cards in remote identification schemes based
on ID-cards there is not much work done. In this paper, we aim to securely integrate
this kind of devices in such schemes with a reduced protocol stack and guaranteeing
security and trust features.

2.1 Analysis of the Closer ID-Card Solution for User Authentication and
Authorization

Many of the current European ID-card solutions for citizen authentication are based
on the standard [5] (e.g. German Electronic ID card, Finnish eID card, Spanish Na-
tional Electronic ID card, etc.). This specification states the common scenario where
the citizen identification remotely takes place: it is named "Client/Server Authentica-
tion". This procedure is described in Figure 1 for case of the SSL protocol. Briefly,
the citizen's authentication certificate (client certificate) is used during the SSL hand-
shake and afterwards such a citizen is challenged with the value T. For completing the
tunnel establishment, she signs T and replies. Obviously, the signature is securely
computed inside the ID-card. Once the authentication server verifies the signature, the
citizen is authenticated (identified) and the secure tunnel is finally established be-
tween the user's computer and the remote server. Consequently, some on-line services
will be then available.

244 J. Torres et al.

Validates Server
Certificate

Validates Server
Certificate

T padding
RSA Sign[KuI](T)

T padding
RSA Sign[KuI](T)

Authoritative Server

Server Hello
Certificate
Certificate Request
ServerHelloDone

Authentication Challenge T

desktop PC or laptopeID-card

Cliente Hello

Certificate: Citizen’s
Authentication X.509 Certificate
ClientKeyExchange:
Certificate Verify: Sign[KuI](T)

RESPONSE:
Sign[KuI](T)

Authenticates
Citizen

Authenticates
Citizen

SSL/TLS Secure Channel

GET Citizen’s
Authentication X.509
Certificate

RESPONSE: Citizen’s
Authentication X.509 Certificate

Computes challenge T
T=(h_md5+h_sha)

Computes challenge T
T=(h_md5+h_sha)

Citizen
Verification

Citizen

...

Initiates SSL/TLSInitiates SSL/TLS

Validates Server
Certificate

Validates Server
Certificate

T padding
RSA Sign[KuI](T)

T padding
RSA Sign[KuI](T)

Authoritative Server

Server Hello
Certificate
Certificate Request
ServerHelloDone

Authentication Challenge T

desktop PC or laptopeID-card

Cliente Hello

Certificate: Citizen’s
Authentication X.509 Certificate
ClientKeyExchange:
Certificate Verify: Sign[KuI](T)

RESPONSE:
Sign[KuI](T)

Authenticates
Citizen

Authenticates
Citizen

SSL/TLS Secure Channel

GET Citizen’s
Authentication X.509
Certificate

RESPONSE: Citizen’s
Authentication X.509 Certificate

Computes challenge T
T=(h_md5+h_sha)

Computes challenge T
T=(h_md5+h_sha)

Citizen
Verification

Citizen

...

Initiates SSL/TLSInitiates SSL/TLS

Fig. 1. Client/Server Authentication derived from [5]

But the reader should note in this scheme that:

• It is not applicable to any remote identification scenario: an equipment with a
complete TCP/IP protocol stack and secure socket layer is needed. In such a
scenario, this equipment is a desktop PC or laptop.

• The secure tunnel is established between PC and remote sever. In a public
(unknown) environment, an end-to-end tunnel between the ID-card and the
remote server should be desirable.

• Any device authentication does not take place. The ID-card is not explicitly
authenticated. In [4], it is specified that a mutual device authentication shall
be used if the operating environment of the ID-card cannot be entirely trusted
(untrustworthy environment). This may be the case in public signature ter-
minals or other devices that cannot provide a trusted channel. In the case of
requiring a remote authentication process, a device authentication should be
performed. After successful mutual device authentication, session keys are
available on both sides to be used in subsequent transmissions. The appropri-
ate secure messaging should be in compliance with ISO/IEC 7816-4 [7].

Taking the previous constraints into account, our work aims to design a complete
authentication and authorization architecture for an identification system, which
represents a more robust and flexible solution in terms of security, with the following
features:

• The authentication protocol will be implemented as an integral part of the
ID-card, with the goal of isolating the protocol of the implementation in the
access terminal (e.g. laptop, desktop PC, PDA, etc.). Therefore, our approach
considers an ID-card with autonomy during the authentication process. In
other words, the ID-card participates as stand-alone supplicant or claimant,

 Application of Network Smart Cards to Citizens Identification Systems 245

and not relies on the access terminal (i.e. equipment or host providing the
card reader) for this functionality.

• Layer 2 authentication based on a network smart card, NSCard, [25]: we
propose the ID-card integration in a layer 2 authentication scheme, which is
based on EAP protocol. Therefore, a lightweight networking protocol stack
is easily supported by the smart card (TCP/IP and upper layers are not re-
quired). We define in this paper an EAP-ID method, which refers to a ge-
neric authentication method with identification purposes on our architecture.

• End-to-end mutual authentication scheme: the ID-card and the remote au-
thentication server participate as tunnel endpoints. The individual identifica-
tion is securely performed through such a tunnel.

Additionally, this work assumes an a priori untrustworthy environment, where the
access terminal is considered as a potential attacker. Therefore, a previous mutual
device authentication has been defined in our identification scheme.

In the following section of this paper, a new proposal of an authentication and au-
thorization architecture along with a network smart card, with specific identification
purposes (ID-NSCard), are defined.

3 A New Identification System Based on ID-NSCards

This paper proposes a new authentication architecture for ID-cards systems based on
our network smart card concept. Under this scope, we consider a remote authentica-
tion and authorization scheme, where the ID-card adopts the functionality of stand-
alone supplicant instead of split supplicant ("split supplicant" means that ID-card and
the access terminal (hereafter referred as Access Control Equipment, ACE) cooperate
in the authentication process as an unique device). That is why, in our work, the
authentication protocol stack is designed as an integral part of the ID-card (atomic
design). With this goal, we propose a specific protocol stack for the chip card that
participates as actual end in the authentication process with a remote AAA server.
This protocol stack is illustrated in Figure 2. The upper layer EAP-ID represents a
generic EAP authentication method [27], specifically here designed with individuals
identification purposes. Therefore, the EAP-ID method handles the credentials associ-
ated to the duplet individual-domain and the related cryptographic algorithms, during
the identification process. Usually, most of the robust identification schemes require a
password/PIN for controlling a private key, which is associated to a public key au-
thentication certificate (e.g. X.509v3 certificates) and additionally they may require a
biometric token.

ISO 7816

EAP Layer

PPP

EAP-ID

ID-NSCard

EAP Peer/Auth

Fig. 2. The protocol stack in the ID-NSCard

246 J. Torres et al.

Note that in our approach, the goal of a generic EAP-ID method is not to add a new
authentication protocol or method but adapt existing authentication protocols used in
previous standardized identification schemes. This protocol stack is here defined with
a general purpose. Hence, in this section we refer to an "individual", considering that
she could be both an user/member registered with an organization and a citizen in a
governmental domain. In section 5, the implementation of the authentication method
in Spanish National Electronic Identity Card (named DNI-e) as an example of EAP-
ID method for citizens is profusely described.

A complete end-to-end architecture is represented in Figure 3. This new architec-
ture introduces significant advantages and requires minimal changes in the network
side. Thus AAA proxies keep settings and implementation features. Regarding the
Access Control Equipment, ACE, a simple implementation of standardized protocols
allows it to behave as access point (or NAS, Network Access Server) to the network
with pass-through authenticator functionalities. Hence, this equipment must imple-
ment EAP and RADIUS client protocols according to [28]. For simplicity's sake, we
refer to RADIUS protocol in this paper, but note that a more robust protocol such as
DIAMETER [29] could be also implemented in our architecture.

ISO7816

PPP

EAP

ISO7816

PPP

EAP
RADIUS
Client

UDP/IP

L2/L1

RADIUS
Server

UDP/IP

L2/L1

EAP

EAP-ID EAP-ID

ID-NSCard

RADIUS Proxies

UDP/IP

L2/L1

ACE Network AAA
Proxies

Authentication &
Authorization

Server

ISO7816

PPP

EAP

ISO7816

PPP

EAP
RADIUS
Client

UDP/IP

L2/L1

RADIUS
Server

UDP/IP

L2/L1

EAP

EAP-ID EAP-ID

ID-NSCard

RADIUS Proxies

UDP/IP

L2/L1

ACE Network AAA
Proxies

Authentication &
Authorization

Server

Fig. 3. Authentication and Authorization protocol architecture based on our ID-NSCard

In a first step, the RADIUS server authenticates the Access Control Equipment
(ACE) by their own mechanisms. After this step, the functionality of the pass-through
authenticator is already shifted to ACE. This reinforces the stand-alone supplicant
functionality in the ID-card, since ACE cannot act as supplicant and authenticator at
the same time for the same ID-card. One should note the advantages that the ID-card
isolation brings with regard to assure the security of the entire scheme in untrust-
worthy scenarios. More security and trust issues are discussed in section 4 of this
paper.

Our architecture takes advantage of the functions of the LCP protocol provided by
PPP [30]. LCP/PPP protocol may be easily accommodated in the ID-card stack. The
functions for controlling network included in the NCP sub-protocol are beyond the
scope of this work. On the other hand, PPP offers versatility in authentication, thanks to
its extensibility. In fact, EAP (Extensible Authentication Protocol) was initially de-
signed for PPP. According to our approach, the EAP Layer must be implemented
atomically in the smart card and must allow for exchanging of packets between the EAP
methods and LCP frames, as well as, for controlling duplicates and retransmissions.

The EAP-ID method should be designed with the goal of security reinforcing.
Hence, three phases should be considered in the authentication process. The first one
is regarding the mutual authentication between RADIUS entities. The ACE and AAA
server proceed with a previous establishment of shared secret keys and mutual

 Application of Network Smart Cards to Citizens Identification Systems 247

authentication process. After this phase, the ACE is allowed to perform access control
functionalities as an authenticator (pass-through) in the EAP scheme and the commu-
nication between ACE and the remote server will be protected. Hence, the second
phase should be oriented to establish a end-to-end secure tunnel between the actual
ID-NSCard and the authentication remote server. Obviously, such a tunnel establish-
ment should take place after a mutual device authentication. That means that both
devices (ID-NSCard and server) must posse their own authentication tokens (and
independently on user credentials). Basically, two key mechanisms could be applied
in this step: shared secret keys or public key certificates. The latter requires the usage
of card verifiable certificates (according to ISO 7816). In this work, we describe a
common end-to-end tunnel establishment, which uses shared secret keys. A generic
EAP-ID must be able to perform the following protocol:

Assume that ID-NSCard (C) and authentication server(S) know the 3DES encryption
key kENC, and the MAC computation key, kMAC

C → S: SNC ||RNDC, the 8-bytes serial number SNC unequivocally associated to C
and a fresh 8-bytes random number RNDC.

S → C: authentication cryptogram ACG1, as function among others of SNC and
RNDC

C: verifies ACG1 (S is authenticated), generates the send sequence counter SSCC and
derives the session key KSK

C→ S: authentication cryptogram ACG2

S: verifies ACG2 (C is authenticated), generates the corresponding SSCS, also derives
the session key KSK

C ↔ S: further communication is protected by a secure channel (KSK encryption)

Once the mutual device authentication is successful and the secure channel is es-
tablished, the individual (cardholder) is required to be identified by means of her
associated identity credentials in the third phase. Therefore, the procedure through the
tunnel continues as follows:

Assume that a X.509v3 public key certificate (CertificateI) and the corresponding
private key KrI with authentication purposes have been issued for an individual I.

S→ C: challenge T

I: cardholder is required for entering the corresponding password to sign

C→ S: Sign[KrI](T)|| CertificateI

S: verifies the digital signature, Verify[KuI](Sign[KrI](T)), and the identity of individ-
ual I is authenticated by server S.

Derived from this protocol and our architecture (Figure 3), an authentication mes-
sage exchange has been designed in our work. An example is described in section 5 of
this paper.

248 J. Torres et al.

4 Notes about the Testbed

A testbed of our authentication and authorization architecture for a identification
system has been developed. The back-end authentication server is basically imple-
mented in a computer where freeRADIUS [31] is running, which provides API sup-
port both EAP/RADIUS and EAP methods development. Additionally, it implements
a set of state machines of EAP (Extensible Authentication Protocol), for an EAP
backend authenticator. The EAP API is extended in order to support EAP-ID as a new
authentication method including the corresponding method state machine and mes-
sage parsing. On the other hand, the OpenSSL library includes a general purpose
cryptography library, which is partially included in this testbed with the goal of pro-
viding well-known cryptographic functionalities.

Multiple network AAA proxies could intermediate between the ACE and the au-
thoritative server. Our testbed considers just one proxy, which simulates one of these
entities. The standard RADIUS protocol procedure in a relay version allows us to
complete the implementation of the adequate protocol stack in an IEEE 802.11 wire-
less access point. The Access Control Equipment, ACE, is implemented by a common
laptop with an IEEE 802.11g wireless interface. The functionality of RADIUS in this
equipment is performed by JRadius-Client [32], a Java version of a NAS Client. The
technical challenges for rolling out commercial Access Control Equipments with
these features have been easily responded. Note that many of the current PDAs and
smart phones with ISO-7816 interfaces are programmable. This protocol functionality
that is proposed in our work could be transparently implemented as a library (e.g. dll
dynamic library) for the OS. Therefore, the impact in existing terminals is minimized
and a potential large-scale deployment is clearly feasible.

The bulk LCP/EAP protocol stack -according to the standardized state machines-
has been implemented in a G&D Sm@rtCafé Expert 3.x smart card and it has been
enhanced with the corresponding EAP-ID method functionalities.

5 Security and Trust Model Discussions

Regarding security aspects of our architecture, it should be noted that we are not pro-
posing a completely new authentication protocol in the context of identification sys-
tems. Our architecture is designed by well-known protocols that are implemented
inside the ID-card with a novel approach.

Nevertheless, this new architecture determines a new way to transport authentica-
tion messages between the ID-NSCard and the authentication and authorization
server, and where the ID-NSCard takes the control in the user side. Therefore, the
security weakness and threats are derived by the actual nature of such standardized
protocols and the correctness of their implementation.

Additionally, new secure algorithms, key material or cryptographic techniques are
not required. The implementation of the algorithms and authentication mechanisms is
transparently reused [4, 5], in both sides. However, one of the more important impacts
of our proposal is related to the trust models. If we study the trust model derived from
the current scenario detailed in Figure 1, we observe that there exists an explicit trust
between the PC and the authentication server (supported by SSL protocol). In any

 Application of Network Smart Cards to Citizens Identification Systems 249

case, the trust relationship in the interface between access terminal (i.e. PC) and ID-
card is not questioned and it could be considered as "blind". As we mentioned before,
this assumption should not be applied to all scenarios and a more flexible solution is
required. With this goal, we have introduced a more robust architecture, which a new
trust model is derived from. Therefore, it could be adapted to multiple wired/wireless
scenarios, even in mobility situations.

In our trust model, the trust relationship between the access terminal (ACE) and the
authentication server is supported and protected by RADIUS protocol and such a trust
relationship should be considered as explicit. Here, the ACE is part of the network
and it behaves as an access point for the ID-NSCard. The trust relationship between
ID-NSCard and ACE should be a priori null (untrustworthy). After an end-to-end
successful authentication process (supported by an EAP-ID method) between the ID-
NSCard and the authentication server, the trust relationship between them should be
then considered explicit, since it is a mutual device authentication process. Therefore,
in this step the trust relationship between ID-NSCard and ACE is implicit, since any
direct mutual authentication process between them has not occurred. In other words,
iff ID-NSCard trusts authentication server then the former trusts access terminal. This
is a reasonable result in a priori untrustworthy scenarios.
After this step, the environment should be considered as trustworthy and just in these
conditions the individual identification should be securely performed.

6 Application of the ID-NSCard to the Spanish Electronic ID Card

The application of the ID-NSCard to Spanish National Electronic ID card has been
studied in our work. The Spanish National ID card aims to prove digitally the identity
and other personal data of the owner by means of an authentication process and vali-
dating the integrity and signature of signed documents. Both goals are addressed by a
chip card and two different public keys created inside. As result, a citizen X.509v3
authentication certificate and a citizen X.509v3 digital signature certificate are man-
ageable by the owner. The policy requirements for implementing this identification
system is based on [33, 34]. The security technical specifications are basically gath-
ered from [4, 5]. Additionally, the envisaged services and scenarios where the Spanish
National ID-card might be used are determined by the Police Authority, which depend
on the Spanish Home Office. The Spanish case could be considered one of the pioneer
experiences in EU.

Nevertheless, other potential scenarios could be considered. Suppose a police con-
trol (e.g. dangerous or critical transportation, highroads controls, border areas or gov-
ernment facilities, etc.) requires the identification of the individuals. Hence, the
authoritative person (let's say a policeman) carries a reduced-size and portable equip-
ment with a wireless interface (e.g. PDA with a chip card reader). This equipment
implements the ACE's functionalities described above in this paper. Afterwards, the
authoritative person requests to the citizen the National ID card in order to identify
her. Such a citizen shows her National ID card, which is a new version based on our
ID-NSCard. Thus, a direct and remote identification process supported by our archi-
tecture is carried out between her card and the central authoritative services (Authen-
tication and Authorization server). Once the citizen is remotely authenticated, the

250 J. Torres et al.

PPP LCP Request –EAP Auth

•Generates
challenge T
•Generates
challenge T

PPP LCP ACK –EAP Auth

4. RADIUS Access-Challenge [EAP-Req[ACG1]]

1. PPP EAP-Req[Start- ID]

2. PPP EAP-Response [M1]

3. RADIUS Access-Req[EAP_Response[M1]]

13. PPP EAP-SUCCESS

8. RADIUS Access-Challenge[EAP_Response[M2]]

10. PPP EAP-Request [M3]
11. RADIUS Access-Req[EAP_Req[M3]]

5. PPP EAP-Req[ACG1]

6. PPP EAP-Resp [ACGA2]

7. RADIUS Access-Req[EAP_Response[ACG2]]

9. PPP EAP-Resp [M2]

12. RADIUS Access-Accept[EAP_SUCCESS]

•Verifies ACG1 and
authenticates
Server

•Generates rC ,and
SSCC

•Derives KSK

•Verifies ACG1 and
authenticates
Server

•Generates rC ,and
SSCC

•Derives KSK

•Signs T with KuI
•Signs T with KuI

Shared secrets
KENC y KMAC

Shared secrets
KENC y KMAC

•Generates rS
•Computes
ACG1

•Generates rS
•Computes
ACG1

Computes ACG2Computes ACG2 •Verifies ACG2 and
Autenticates ID-
NSCard
•Derives KSK

•Generates SSCS

•Verifies ACG2 and
Autenticates ID-
NSCard
•Derives KSK

•Generates SSCS

•Authenticates
Citizen
•Authenticates
Citizen

Shared secrets
KENC y KMAC

Shared secrets
KENC y KMAC

ID-NSCard ACE Authentication and
Authorization Server

PPP LCP Request –EAP Auth

•Generates
challenge T
•Generates
challenge T

PPP LCP ACK –EAP Auth

4. RADIUS Access-Challenge [EAP-Req[ACG1]]

1. PPP EAP-Req[Start- ID]

2. PPP EAP-Response [M1]

3. RADIUS Access-Req[EAP_Response[M1]]

13. PPP EAP-SUCCESS

8. RADIUS Access-Challenge[EAP_Response[M2]]

10. PPP EAP-Request [M3]
11. RADIUS Access-Req[EAP_Req[M3]]

5. PPP EAP-Req[ACG1]

6. PPP EAP-Resp [ACGA2]

7. RADIUS Access-Req[EAP_Response[ACG2]]

9. PPP EAP-Resp [M2]

12. RADIUS Access-Accept[EAP_SUCCESS]

•Verifies ACG1 and
authenticates
Server

•Generates rC ,and
SSCC

•Derives KSK

•Verifies ACG1 and
authenticates
Server

•Generates rC ,and
SSCC

•Derives KSK

•Signs T with KuI
•Signs T with KuI

Shared secrets
KENC y KMAC

Shared secrets
KENC y KMAC

•Generates rS
•Computes
ACG1

•Generates rS
•Computes
ACG1

Computes ACG2Computes ACG2 •Verifies ACG2 and
Autenticates ID-
NSCard
•Derives KSK

•Generates SSCS

•Verifies ACG2 and
Autenticates ID-
NSCard
•Derives KSK

•Generates SSCS

•Authenticates
Citizen
•Authenticates
Citizen

Shared secrets
KENC y KMAC

Shared secrets
KENC y KMAC

ID-NSCard ACE Authentication and
Authorization Server

Fig. 4. Authentication flow with ID-NSCard as Spanish electronic ID-card

portable equipment could receive additional authorization information. This circum-
stance is out of the scope of this work. In Figure 4, the authentication flow derived
from the application of our ID-NSCard to the Spanish National identification scheme
is represented.

In the following paragraphs, consider the nomenclature used in the authentication
protocol architecture in Figure 3.

Assume that the ACE has been correctly authenticated by the RADIUS infrastruc-
ture and that ACE and authentication server share a static key with the goal to protect
their communications. Firstly, the EAP layer is activated both in the ID-NSCard and
ACE by means of PPP/LCP configuration messages. Afterwards, the Spanish citizen
authentication based on the ID-NSCard should take place as follows (for simplicity's
sake, phase 1 is skipped):

Phase 2:
1. The ACE sends a PPP-EAP Start ID message to the ID-NSCard, in order to ini-

tiate an identification procedure based on EAP-ID.
2. The ID-NSCard returns the PPP-EAP_Response [M1] packet to the ACE, such

that

 M1 := SNC ||RNDC

3. The ACE encapsulates this message into a RADIUS Access-Request packet and
afterwards sends it to the Authentication Server, in the back-end network.

4. Upon received M1, the Authentication server generates a random number rS and
she initiates the device authentication process by responding to the ACE with a RA-
DIUS Access-Challenge [EAP_Response[ACG1]], such that

 Application of Network Smart Cards to Citizens Identification Systems 251

rS := 32-bytes random number
S := RNDS || SNS || RNDC || SNC || rS
ACG1:= E[KENC](S) || MAC[KMAC](E[KENC](S))

5. The ACE processes the RADIUS headers and sends the received EAP packet to
the ID-NSCard, encapsulated into a PPP frame.

6. After a successful verification of the authentication cryptogram ACG1 (server is
authenticated), ID-NSCard generates a random number rc and SSCc, and derives ses-
sion key KSK. Afterwards, she returns the PPP-EAP _Response [ACG2] packet to-
wards the server, such that

rC := 32-bytes random number
SSCc := send sequence counter
R := RNDC || SNC || RNDS || SNS || rC
ACG2:= E[KENC](R) || MAC[KMAC](E[KENC](R))
KSK := rS ⊕ rC

7. The ACE builds the corresponding RADIUS-Access Request packet and sends it
to the authentication server.

After a successful verification of authentication cryptogram ACG2 (ID-NSCard is
authenticated), the authentication server generates SSCs and derives the session key
KSK, such that

KSK := rS ⊕ rC

In this step, both devices are mutually authenticated (without cardholder participa-
tion) and they posse the session key KSK, which allows them to encrypt the following
communication in an end-to-end secure tunnel.

Phase 3:
8. The Authentication Server continues with this phase by sending RADIUS Ac-

cess-Challenge[EAP_Response[M2]], where T is the actual protected value for chal-
lenging to the citizen. In our proposal T is a 32-bytes challenge.

T:=SNC||RNDC||RNDS
M2:=E[KSK](T)

In order to provide end-to-end EAP per-packet integrity protection, note that M2
should also include the encryption of the 4-octet EAP headers (i.e. Code, Identifier
and Length) and not only the encryption of the challenge T. All this information is
carried in the Data field of the corresponding EAP packet. Consequently, ID-NSCard
could check if the EAP headers re-transmitted by ACE correspond to the EAP headers
sent by the remote authentication server.

9. The ACE processes the RADIUS headers and transmits the received EAP packet
to the ID-NSCard, which is able to decrypt the message and to obtain the challenge T.

10. Once the ID-NSCard checks the freshness of T, the cardholder's password (and
optionally the biometric token) is required with RSA digital signing purposes. The
ID-NSCard responds to the previous challenge in a PPP-EAP Request [M3], such that

252 J. Torres et al.

M3:= E[KSK](Sign[KuI](T))|| CertificateI

As in step 8, encryption of the 4-octet EAP headers should be also included in the
EAP Data field.

11. The ACE builds the RADIUS Access Request message and forwards it towards
the Authentication server.

Authentication server validates the citizen's certificate and verifies her RSA signa-
ture. In this step, such a citizen is identified.

12. In case of a successful authentication, a information message is sent to the ACE
and afterwards (step 13) to the smart card.

Further authorization decisions and potential services (e.g. re-authentication proce-
dures) are out of scope of this work. With this case of study, we have shown how our
authentication architecture with ID-NSCards is applied in standardized identification
systems. Obviously, this architecture is easily applicable to similar national or interna-
tional identification schemes, as well as, to many organizational identification sys-
tems.

7 Conclusions

Many countries are starting to issue national identity cards or electronic passports that
include a chip card. This is an effective electronic way to hold a trusted identity creden-
tial by their citizens. Our work has proposed a new approach based on network smart
cards with specific identification purposes, ID-NSCards. This device participates in an
authentication architecture, which allows us to transport securely authentication mes-
sages between such a device and the remote authoritative server. This solution provides
flexibility and robustness versus the common scheme, since the smart card behaves as
an autonomous authentication supplicant, independently on the access terminal and on
the characteristics of the scenario. Additionally, this solution transparently reuses the
envisaged standardized authentication mechanisms for European electronic ID-Cards.
Some notes about our testbed are provided and as example of application, our architec-
ture is applied to a version of the Spanish electronic ID-Card based on our ID-NSCard.
As result, multiple wired/wireless practical scenarios of utilization (both organizational
and governmental) are foreseen for next future work.

References

1. EU Directive 1999/93/EC of the European Parliament and the Council of 13 December
1999 on a Community framework for Electronic Signatures (December 1999)

2. ETSI TS 101 862 v. 1.3.2: Qualified Certificate Profile (June 2004)
3. Santesson, S., Nystrom, M., Polk, T.: Internet X.509 Public Key Infrastructure: Qualified

Certificates Profile, IETF RFC 3739 (March 2004)
4. CEN/CWA 14890-1, Application Interface for smart cards used as Secure Signature Crea-

tion Devices - Part 1 - Basic requirements (2004)
5. CEN/CWA 14890-2:2004; Application Interface for smart cards used as Secure Signature

Creation Devices - Part 2 - Optional Features (2004)

 Application of Network Smart Cards to Citizens Identification Systems 253

6. CEN/CWA 15264:2005, Architecture for a European interoperable eID system within a
smart card; User Requirements; Best Practice Manual for Card Sheme Operators Part 1 to
3 (2005)

7. ISO/IEC 7816-4: Identification cards - Integrated circuit(s) cards with contacts, Part 4: In-
terindustry commands for interchange (2005)

8. Rees, J., Honeyman, P.: Webcard: a Java Card web server. In: Proc. of 4th IFIP Smart
Card Research and Advanced Application Conference, CARDIS 2000, Bristol, U.K (2000)

9. 3GPP TS 31.111 V7.5.0, Specification of the SIM Application Toolkit (SAT) for the Sub-
scriber Identity Module - Mobile Equipment (SIM-ME) interface (September 2006)

10. Guthery, S., Kehr, R., Posegga, J.: How to Turn a GSM SIM into a Web Server. Projecting
Mobile Trust onto World Wide Web. In: Proc. of 4th IFIP Smart Card Research and Ad-
vanced Application Conference, CARDIS 2000, Bristol, United Kingdom (2000)

11. Urien, P.: Internet card, a smart card as a true Internet node. Computer Communica-
tions 23(17), 1655–1666 (2000)

12. Postel, J.: Transmission Control Protocol, IETF RFC 079 (September 1981)
13. Itoi, N., Fukuzawa, T., Honeyman, P.: Secure Internet Smartcards. In: Attali, I., Jensen, T.

(eds.) JavaCard 2000. LNCS, vol. 2041. Springer, Heidelberg (2001)
14. Donsez, D., Jean, S., And Lecomte, S.: Turning Multi-Applications Smart Card Services

Available from Anywhere at Anytime: a SOAP/MOM approach in the context of Java
Cards. In: Proc. of Smart Card Programming and Security Conference. e-Smart 2001,
Cannes, France (2001)

15. Chan, A.T., Tse, F., Cao, J., Leong, H.V.: Distributed Object Programming Environment
for Smart Card Application Development. In: Proc. of the Third international Symposium
on Distributed Objects and Applications, September 17 - 20, 2001. IEEE Computer Soci-
ety, Los Alamitos (2001)

16. Chan, A., Tse, F., Cao, J., Leong, H.V.: Enabling Distributed Corba Access to Smart Card
Applications. IEEE Internet Computing 6(3), 27–36 (2002)

17. Chan, A.T.S., Cao, J., Chan, H., Young, G.H.: A web-enabled framework for smart card
applications in health services. Communications of the ACM 4(9), 76–82 (2001)

18. Chan, A.T.S.: Mobile cookies management on a smart card. Communications of the
ACM 48(11), 38–43 (2005)

19. IST Project RESET, Roadmap for European Research on Smartcard related Technologies,
IST-2001-39046: Final Roadmap v.5 (May 2003)

20. Montgomery, M., Ali, A., Lu, H.K.: Secure Network Card. Implementation of a Standard
Network Stack in a Smart Card. In: Proc. of 4th IFIP Smart Card Research and Advanced
Application Conference, CARDIS 2004, Toulouse, France, August 23-26, 2004. Kluwer
Academic Publishers, Dordrecht (2004)

21. Lu, H.K.: New Advances in Smart Card Communications, International Conference on
Computing, Communications And Control technologies (CCCT), Austin, TX, USA, Au-
gust 14-17 (2004)

22. Lu, H.K., Ali, A.: Prevent On-line Identity Theft - Using Network Smart Cards for Secure
On-line Transactions. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225.
Springer, Heidelberg (2004)

23. Ali, A., Lu, K., Montgomery, M.: Network Smart Card: A New Paradigm of Secure Online
Transactions. In: Proc. of Security and Privacy in the Age of Ubiquitous Computing, IFIP
TC11 20th International Conference on Information Security (SEC 2005), Chiba, Japan,
May 30 - June 1 (2005)

254 J. Torres et al.

24. Lu, H.K.: Multi-stage Packet Filtering in Network Smart Cards. In: Domingo-Ferrer, J.,
Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 192–205.
Springer, Heidelberg (2006)

25. Torres, J., Izquierdo, A., Sierra, J.M.: Advances in network smart cards authentication.
Computer Networks 51(9), 2249–2261 (2007)

26. Lu, H.K.: Network smart card review and analysis. Computer Networks 51(9), 2234–2248
(2007)

27. Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., Levkowetz, H.: Extensible Authentication
Protocol (EAP), IETF RFC 3748, Standards Track (June 2004)

28. Aboba, B., Calhoum, P.: RADIUS (Remote Authentication Dia. In: User Service) Support
For Extensible Authentication Protocol (EAP), IETF RFC 3579 (September 2003)

29. Eronen, P., Hiller, T., Zorn, G.: Diameter Extensible Authentication Protocol (EAP) Ap-
plication, IETF RFC 4072 (August 2005)

30. Simpson, W.: The Point-to-Point Protocol (PPP), IETF RFC 1661, Standard Track (July
1994)

31. FreeRADIUS, GNU General Public License, http://www.freeradius.org
32. JRadius-Client, SourceForge Project, http://jradius-client.sourceforge.net
33. ETSI TS 101 456 v.1.2.1, Policy Requirements for certification authorities issuing quali-

fied certificates (April 2002)
34. ETSI TS 102 042 v.1.1.1, Policy Requirements for certification authorities issuing public

key certificates (April 2002)

SmartPro: A Smart Card Based Digital Content

Protection for Professional Workflow

Alain Durand, Marc Éluard, Sylvain Lelievre, and Christophe Vincent

Thomson R&D France
Technology Group, Corporate Research, Security Laboratory

1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France
{alain.durand,marc.eluard,sylvain.lelievre,

christophe.vincent}@thomson.net

Abstract. This paper introduces SmartPro, a smart card based tech-
nology aiming at protecting content in professional workflows. It gives an
overview on how SmartPro works. It also explains the design constrains
that led to the use of smart cards and some of the extra difficulties im-
plied by this choice in order to get to an implementation that may be
industrially deployed.

1 Introduction

Digital Rights Management (DRM) has been for a decade a widely studied sub-
ject. Traditional goal for a DRM is to prevent an end-user to make an unautho-
rized use of a piece of content (usually music or video). Piracy of digital content
has actually been a growing issue since the entrance in the digital era and the
widespread of high-speed communications. Black Market for DVDs are now im-
portant in most countries (see e.g. [1]). The MPAA (Motion Picture Association
of America), the association of the seven major Hollywood studios, estimated to
$6.1 billion the cost of video piracy in 2005 [2].

Generally, movie distribution obeys to different diffusion windows: film is first
distributed in theaters, then in hotels or planes and DVD release occurs right af-
ter. It is then distributed to television first on Pay-Per-View or Video-on-Demand
systems, then on Pay-TV and eventually on Free-To-Air channels. Table 1 shows
average breakdown of movie revenues along the different diffusion windows.

Different solutions protect the release windows shown on Table 1. For instance,
AACS [3] or CSS [4] protect home video / rental window while Conditional Ac-
cess systems protect Pay TV or Cable TV window. DCI (Digital Cinema Ini-
tiative) specification [5] includes a protection scheme for digital theaters. Some
systems (e.g., broadcast flag [6] or CPCM (Copy Protection and Content Man-
agement [7])) protect content distributed in the syndication window.

One could thus think that content protection technologies coverage is suffi-
cient. This is however not the case. Roughly 10% of revenues loss is due to piracy
operated before the content release in theaters [8]. This happened for instance
to the recent Ridley Scott movie, American Gangster [9].

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 255–266, 2008.
c© IFIP International Federation for Information Processing 2008

256 A. Durand et al.

Table 1. Movie Revenues (Courtesy of Technicolor)

T
he

at
ri

ca
l

R
el

ea
se

A
ir

lin
e

/
H

ot
el H
om

e
V

id
eo

/R
en

ta
l

PP
V

/V
O

D
in

D
em

an
d,

D
ir

ec
tT

V

Pa
y

T
V

H
B

O
,S

ho
w

tim
e

N
et

w
or

ks
C

ab
le

T
V

Sy
nd

ic
at

io
n

Time Frame
(in month) 0 2-4

4-6
(ongoing)

6-9
(only for

30-45 days)
12-15 24-30 36-42

Typical/Approximate
Revenues

($10M + box-office movie)
25% 1% 56% 2.5% 10% 3% 2.5%

The traditional approach to overcome this threat is based on network security
technologies and on physical access control to facilities. While these techniques
may be efficient against external attackers, this is not the case for insiders. This
happened for instance for the third episode of Star Wars [10] that has been
actually stolen from post-production facilities. It then passed through several
go-betweens before being eventually made available on the Internet.

SmartPro technology is a content protection system for professional work-
flows. Its first real deployment aimed to prevent leakage from video production
and post-production facilities. SmartPro is a smart card based technology that
is for example deployed in Nexguard CP [11] product line. Smart card offers a
secure place to store system keys and guarantees the integrity of the software
using these keys. Any other transportable security token could be also used.

The main underlying idea behind this technology is to upgrade technologies
or techniques that have been successful to protect the content in the consumer
space to the professional realm. We propose to base the system on smart cards as
Conditional Access systems do and we adapted the notion of consumer domain
(see for instance [7]) to enable collaborative work.

The rest of the paper is organized as follows. In the next section, we give an
overview of SmartPro technology. Next we explain how smart cards are used
in SmartPro and give some design rationales. Finally, we present examples of
difficulties when designing the system using secure processor.

2 General Presentation

SmartPro introduces the notion of Virtual Domain (VD). A VD is a set of
devices that can share private contents. It can represent a company or part of
a company like a post production facility. A VD is not bound to a person or a
physical location. It can be used for any content format and using any network
technology or physical interface.

Inside a VD, content is scrambled, i.e. encrypted, with a cryptographic key1.
This key is protected so that only devices belonging to the VD can access to

1 In the video content industry, the term scrambling is typically used rather than
encryption for content protection. This term make references to the first mechanisms
for Pay-TV where some parts of the content where re-ordered to achieve protection.

SmartPro: A Smart Card Based Digital Content Protection 257

it, and thus to the content. SmartPro mainly brings a key management system
implementing this notion of Virtual Domain.

2.1 Actors in Virtual Domain

Figure 1 illustrates the basic elements of a VD. Acquisition devices are the entry
points of the VD. From that point on, the content is digital and protected. It can
be accessed, if allowed, by any renderer devices, or processing devices of the VD.

Renderer devices are the final points of the VD. After a renderer device,
content does not benefit anymore from SmartPro protection. Special care will
be needed within the renderer devices to avoid theft of content once it is no longer
SmartPro protected. Content may be in the clear or protected by another copy
protection scheme (for example with watermark).

Fig. 1. Devices in a Virtual Domain

Processing devices modify SmartPro content. Prior to applying the expected
process, device unprotects the content or part of it. Once processed, the device re-
protects the content. All these operations are performed in a secure environment
(i.e. content remains in the same VD). SmartPro processing devices cannot
create SmartPro protected content from clear content.

Storage devices do not act on the content at all. They are simple bit buckets.

2.2 Content Protection

SmartPro protected content is always scrambled. Scrambling mechanism is
based on robust cryptographic algorithm (AES-CTR [12]). The scrambling keys
are called Control Words (CW). Usage and access rules of the SmartPro pro-
tected content are called Usage Rights. Control Words and usage rights are

258 A. Durand et al.

embedded in licenses called Local Enforcement Copy Management (LECM). A
given license is valid only in one Virtual Domain for only one content. License
is created in the acquisition device at the same time as the content is acquired.
Licenses are analyzed and enforced by devices before they handle the content.
A processing device can modify the license if granted in the usage rights.

License is partially encrypted with a secret key called Domain Key (to ensure
confidentiality of CW) and signed (to ensure integrity of LECM). This key is
unique to a VD and is randomly generated at VD creation. All devices belonging
to a given VD share its Domain Key. A device belongs to only one VD.

2.3 Multiple Virtual Domains

A simple VD may not be sufficient for many cases. For instance, two firms A
and B may use SmartPro. Each manages its own VD. In some cases, some
protected data may be transfered from domain A to domain B but data must
remain protected during this transfer. Thus, SmartPro introduces the notion of
Multiple VDs. Content is able to flow through controlled devices, called Bridge
devices, from one VD to another VD. The owner of the source VD manages the
usage rights of the delivered content to the destination VD. Figure 2 illustrates
this architecture.

Fig. 2. Example of multiple Virtual Domains

The bridging operation between two VDs is performed with two entities: The
Sender Bridge prepares and sends a content from source domain into a transfer
domain. The Receiver Bridge receives and transfers a content from the trans-
fer domain to the destination domain. This transfer domain is temporary and
completely transparent for the user. Content remains unchanged (i.e. scrambled)
during the operation and only the licenses are processed. Usage Rights associated
to the content may be modified by the Sender Bridge.

Sender Bridge is able to send content to multiple VDs. Receiver Bridge is only
able to send back the content to the source domain.

SmartPro: A Smart Card Based Digital Content Protection 259

3 Device: A Collaboration between Host and Token

3.1 Overview

Since no software solution can be considered sufficiently secure, the management
of sensitive operations and secret data should be done by secure hardware. We
choose Smart cards (called tokens) as secure hardware to store secret data and run
applications in a tamper resistant environment. Nevertheless, their processors do
not permit to encrypt or decrypt large amount of data in a reasonable time.

Thus, it is preferable to use a host with a powerful processor associated to a
token. The content is scrambled or descrambled by the host while the license is
managed by the token.

Fig. 3. Architecture of Virtual Domain with tokens

To keep the domain key as secure as possible, it is managed by the token
and never leaves it. However the control words that protect content need to be
used by tokens and also by hosts. If an attack succeeds on a host, only control
word may leak and so only the corresponding content may be broken. The other
contents of the domain remain secure. If an attacker targets all contents of a
domain, he must extract the domain key from the token.

The host is not bound to any domain until a token is inserted. The host is
then temporary bound to the token’s domain. So, only the tokens belong to a
Virtual Domain.

3.2 Token Management Center

Token Management Center (TMC) has a major role in key management. It
performs the enrollment or activation of tokens in a Virtual Domain. A special
token, the progenitor token, is associated to each Virtual Domain. There is only
one progenitor in a Virtual Domain. The activation of a new token to a VD
requires the presence of its progenitor token in the TMC.

260 A. Durand et al.

TMC runs on standard computers. It supports simultaneously at least two
tokens. The TMC does not store any secret. The progenitor token handles all
the secrets including the domain key.

All progenitor token are delivered inactive to the user and activated using
TMC. During this activation, the progenitor generates a domain key and securely
stores it. During the activation of a token, the progenitor securely transfers the
domain key to the token.

SmartPro supports revocation of domains, tokens and hosts (see section 4.1).
The progenitor token creates and maintains a database to store the serial

numbers of the tokens that has been activated or revoked in the domain.
The TMC does not need to be online with any device of the VD, or any

back-office. Nevertheless, online connection with devices may allow remote man-
agement of tokens.

3.3 Hosts and Tokens Interactions

Once the token is linked to a domain, it can deal with SmartPro content. In an
acquisition device, the host receives clear content to be scrambled, it requests the
token to build a license. The token picks up a random control word. It inserts the
CW in the license and encrypts the license with the domain key. Then, token sends
both CW and license to the host. The host scrambles the content with the CW.

To descramble a protected content, a renderer device needs the license corre-
sponding to the content. The host sends the license to the token. If the token and
the content are in the same domain, the license can be decrypted using the domain
key. Then, the decrypted CW can be sent to the host to descramble the content.

The domain key never leaves the token, only CW is provided to the host. The
token shall first ensure that the host is trustful, and compliant. Non-Compliant
hosts could divulgate the CW. A compliant host, even purely software, protects
the CW and the content upon its descrambling. Hence, some secure coding
techniques (e.g.: code obfuscation, anti-debugger) are used to make difficult to
modify host behavior. Furthermore, before sending the CW to the host, the token
authenticates the host. To that end, the host needs to have a public/private
key pair. Finally, the CW needs to be sent encrypted since communications
between the token and the host are easy to eavesdrop. For these reasons, a
Secure Authenticated Channel (SAC) is setup prior to any communication.

3.4 Secure Authenticated Channel

The SAC is used by progenitor token during token activation or token deactiva-
tion and for CW transmission to the host (see section 3.3).

The protocol is based on Diffie-Hellman [13]. Each entity is given random
private key (Kpriv) and a certificate that embeds an identity (e.g., the certificate
serial number) and the public key (Kpub = gKpriv mod p where g and p are
Diffie-Hellmann parameters shared by all entities). For the sake of simplicity,
the notation mod p will be omitted in the rest of the document but it shall be
understood that all exponentiations of g are performed modulo p.

SmartPro: A Smart Card Based Digital Content Protection 261

Host Token
SAC establishment BEGIN

①
Picks x

Init SAC
−−−−−−−−−−−−−−−−−−−−−→

CertH , gx

②
Verifies CertH ,
computes Kperm = ght,
picks y,
computes gxy

Token Authentication
←−−−−−−−−−−−−−−−−−−−−−

CertT , Hash(gxy ‖ gy ‖ Kperm ‖
TokenSerialNumber)

③

Verifies CertT
computes gxy

computes Kperm = ght

Checks the hash
Host Authentication

−−−−−−−−−−−−−−−−−−−−−→
Hash(gxy ‖ gy ‖ Kperm ‖

HostSerialNumber)
④

Checks the hash
SAC established

⑤ ←−−−−−−−−−−−−−−−−−−−−− ⑤

Computes Ksess Computes Ksess
Ksess = Hash(gxy ‖ Kperm) Ksess = Hash(gxy ‖ Kperm)

SAC establishment END

Fig. 4. Secure Authenticated Channel Protocol

1. The host picks a random x, computes the associated public value gx and
sends the result to the token together with its certificate CertH .

2. The token extracts the public key gh from the host certificate. It verifies that
the certificate is valid. It then computes secret key Kperm = ght where t is
the token certificate secret key. The token also picks a random y, computes
the associated public value gy. It computes as well the hash value of the
concatenation of gy, gxy, Kperm and its serial number. It sends the result of
both computations together with its certificate to the host.

3. The host extracts the public key gt and verifies that the certificate is valid.
It then computes secret key Kperm = ght and gxy. It also checks whether
the received hash value is correct. It computes then the hash value of the
concatenation of gx, gxy, Kperm and its serial number and sends the result
to the token.

4. The token verifies the correctness of received hash value.
5. Both token and host compute the session key Ksess as the hash value of gxy

and Kperm. Ksess will be used to secure further communication between the
host and the token.

4 Using Secure Processor

4.1 Revocation Mechanism

The security of SmartPro is based on a removable secure processor (a token).
It guarantees that all the secret data are securely stored and processed.

262 A. Durand et al.

Nevertheless, we know that no security system is 100% secure. Hackers use
more and more sophisticated tools that will eventually defeat any security mech-
anism. Thus, it is important to have a revocation mechanism that will prevent
a compromised element from working. In case of major hack, the replacement of
all tokens should be planned.

The revocation mechanism defined in the SmartPro specification is based on
two revocation lists:

– The Internal Revocation List (IRL) contains the elements revoked in a given
domain and is managed (created and updated) by the domain manager (pro-
genitor token). The IRL only addresses token elements and contains the
Certificate Serial Number (SN) of the revoked tokens.

– The External Revocation List (ERL) contains the elements revoked in all
SmartPro system. The ERL addresses token, host and VD elements. The
ERL contains serial number of host and token, and Virtual Domain identifier
(VDID) for Virtual Domain.

Revocation List Usage. During the first messages of the SAC establishment, the
host and the token exchange their certificate. At this moment, each entity checks
that the serial number of their peers certificate is not present in the revocation
list. If so, the SAC establishment continues as specified in Section 3.4.

Host Token
SAC establishment BEGIN

Host Certificate ‖ . . .
Select the issuer CardManager −−−−−−−−−−−−−−−−−−−−−→ Check Host certificate signature

Launch RL check (Host SN)
ERL payload request

←−−−−−−−−−−−−−−−−−−−−−
ERL payload

−−−−−−−−−−−−−−−−−−−−−→ Check host SN presence in ERL
Check payload integrity
if Host SN in ERL then STOP

Error or
←−−−−−−−−−−−−−−−−−−−−−

Token Certificate ‖ . . .
if Error then STOP

Check if Token SN is in ERL or in IRL

SAC establishment CONTINUE

Fig. 5. Revocation List Usage Protocol

The difficulties to implement our revocation mechanism were:

– The token has a given limited amount of memory. It cannot store an ever
increasing list.

– The token and the host must always hold the same version of the lists.

Revocation List Format. Each list has a header and a payload. The header
contains an ever increasing index of the list, and for each element type (host,
token or VD), the number of revoked elements and a digest (SHA-1) of the list of
revoked elements. The header is signed by a root revocation key for the ERL and
the progenitor revocation key for the IRL. The payload gives for each element
type, the SN (or VDID for virtual domain) of the revoked elements.

SmartPro: A Smart Card Based Digital Content Protection 263

Host Token
RL synchronization BEGIN

ERL index
Select the issuer CardManager −−−−−−−−−−−−−−−−−−−−−→ Check ERL index

IRL index ‖ ERL status
Check IRL index and ERL status ←−−−−−−−−−−−−−−−−−−−−−

if host needs to be updated, then STOP
ERL header

−−−−−−−−−−−−−−−−−−−−−→ Check ERL header signature/consistency
Store ERL header
Launch self check (Token SN + VD ID)

ERL payload request
←−−−−−−−−−−−−−−−−−−−−−

ERL payload
−−−−−−−−−−−−−−−−−−−−−→ Check Token SN and VD ID presence in ERL

Check payload integrity
IRL header

−−−−−−−−−−−−−−−−−−−−−→ Check IRL header signature/consistency
Store IRL header
Launch self check (Token SN)

IRL payload request
←−−−−−−−−−−−−−−−−−−−−−

IRL payload
−−−−−−−−−−−−−−−−−−−−−→ Check Token SN presence in IRL

Check payload integrity

RL synchronization END

Fig. 6. Revocation List Synchronization Protocol

The lists indexes have been integrated in the messages exchanged between the
host and the token during the SAC establishment. Thus, the SAC will not be
established if the host and the token are not synchronized on the same lists.

Revocation List Storage. The token only stores the list headers. When it receives
its host certificates (during the SAC establishment), it requests the list to the
host prior to checking if the certificate is in the list. It checks the validity of the
received list using the digest value contained in the header.

Revocation List Synchronization. The host sends to the token its external RL
index and the token responds with its internal RL index and an External Status
indicating if an update is needed. If the token needs an update, the host sends
the new RL header. If the host needs an update, it must retrieve the new RL
before any further collaboration with the token.

4.2 Bridging Implementation

Another key issue in our implementation was the bridging mechanism. It trans-
fers content from a source domain to one or several other destination domains.
One solution would be to send the license of the domain source to the relay
token which would decrypt it and re-encrypt it for each destination domain.
This means that the relay token should contain secret keys of all the potential
destination domains!

Our solution uses two kinds of host/token:

– The Master Bridge (MB, host and token): It only knows source Domain Key.
It converts the license for the source domain into a license for a transfer
domain. It then generates descrambling information specific for each desti-
nation domains (CDI for Content Descrambling Information). The Master

264 A. Durand et al.

Bridge token is initialized in the source domain. It holds a certificate con-
taining its serial number (MB SN).

– The Simple Bridge (SB, host and token): It processes the license from the
transfer domain and generates a license for a destination domain. A Sim-
ple Bridge token is initialized twice. First it is activated in the destination
domain. Then it must be registered in the source domain: It receives the in-
formation needed to process the CDI generated by the Master Bridge token.
These information include an initialization index. This index is ever increas-
ing in the source domain and is used by the Master Bridge token to generate
the CDI. The Simple Bridge holds a certificate containing its serial number
(SB SN).

The source domain progenitor generates and manages the following elements:

– A master key for Master bridge (MKMB) used to calculate derived key for
Master bridge (DKMB): DKMB = E{MKMB}(MB SN).

– A master key for Simple Bridge (MKSB) used to calculate derived Key for
Simple Bridge (DKSB): DKSB = E{MKSB}(SB SN ‖ SB index).

– The Authorization Mask is a bit mask where the position of each bit corre-
sponds to a SB index. If the bit is ”1”, the corresponding SB is registered
and not revoked in the IRL of the source domain. The Authorization Mask
is generated and updated by the progenitor and signed with the progenitor
revocation private key. The Authorization Mask is transmitted to all Master
Bridge hosts. The Authorization Mask will be used by the Master Bridge to
know if it can generate CDI for a given Simple Bridge. The use of Autho-
rization Mask simplifies the operation in the Master bridge token: all checks
relative to Simple Bridge registration or revocation are performed by the
progenitor.

The Master Bridge token holds the following information received from the pro-
genitor during its activation:

– MKSB,
– DKMB calculated by the progenitor.

The Master Bridge token also stores the latest version of the Authorization Mask.
The update of the Authorization Mask is performed by the Master Bridge host
before any bridging operation in order to take into account new registered or
revoked Simple Bridge tokens.

The Simple Bridge token holds the following information received from the
progenitor during its registration:

– MKMB,
– DKSB calculated by the progenitor,
– an initialization index.

On the Master Bridge side During a bridging operation, the Master Bridge host
sends the license of the content to its token. The license is converted into a

SmartPro: A Smart Card Based Digital Content Protection 265

TRANSFER
DOMAIN

CONTENT + LECMt + {CDI}

Master Bridge
Host

Master Bridge
Token

LECMs

LECMt

{(SNSB, index, VD ID)}

{CDI}
SOURCE
DOMAIN

CONTENT + LECMs

Fig. 7. Master Bridge

license for a transfer domain, encrypted by a transfer license key (TKLECM).
Then, for each destination domain, information on the Simple Bridge is sent
to the Master Bridge token (SB SN, SB index and VD ID). The Master Bridge
token creates CDI. A CDI contains TKLECM encrypted with a bridge key (BK).
The Bridge Key is calculated from DKMB and DKSB: BK = DKMB ‖ DKSB.
The Master Bridge token calculates DKSB with MKSB and the Simple Bridge
token information. The CDI also contains the serial number of the targeted
Simple Bridge token. The scrambled content, the transfer license and the list of
CDIs are transmitted to each SB device.

On the Simple Bridge Side When receiving these data, the Simple Bridge host
sends the license and its CDI to the Simple Bridge token. The token calculates
DKMB with MKMB and the Master Bridge token information. It can then
calculate the bridge key and retrieve TKLECM . It then converts the transfer
license into a license for its domain.

The content is not processed and remains scrambled during the bridging
operation.

TRANSFER
DOMAIN

CONTENT + LECMt + {CDI}
Simple Bridge

Host
Simple Bridge

Token

LECMd

(LECMt , CDI, SNMB)

DESTINATION
DOMAIN

CONTENT + LECMd

Fig. 8. Simple Bridge

266 A. Durand et al.

5 Conclusion

SmartPro is a content protection scheme preventing content leakage in
professional workflows. A main design criteria was to achieve high security
and renewability. Hence, the choice of a smart card based implementation was
straightforward.

This choice however led to a greater system complexity due to lack of compu-
tational power and bandwidth of smart cards. We had to design original mech-
anisms to deal with flexible cards and hosts revocation.

SmartPro only cares about basic layers of content protection. Other tech-
niques may be plugged in the upper layers. For example, Nexguard Content
Protection [11] uses watermarking technology allowing to trace back the origin
of the content leakage. Adding a rights expression language or an access con-
trol technology would allow to further control the distribution of the protected
content, e.g., by setting a content license expiration time or a user-based access
granularity. Whatever the technology plugged above SmartPro is, the system
designer will face the same constraints to use adequately the protection offered
by the smart card without impeding the whole system.

References
1. Fake DVD seizures up 41% on 2004(last visited May 2008),

http://news.bbc.co.uk/1/hi/entertainment/film/4099696.stm
2. MPA 2005 US piracy fact sheet (last visited Febuary 2008),

http://www.mpaa.org/USPiracyFactSheet.pdf
3. Advanced Access Content System for Pre-recorded Book (AACS), v0.91, February

17, 2006 (last visited Febuary 2008),
http://www.aacsla.com/specifications/

4. CSS Description (last visited Febuary 2008),
http://en.wikipedia.org/wiki/Content Scramble System

5. DCI Specifications (last visited Febuary 2008),
http://www.dcimovies.com/specification/index.tt2

6. Broadcast Flag Description (last visited Febuary 2008),
http://en.wikipedia.org/wiki/Broadcast flag

7. CPCM Description (last visited Febuary 2008),
http://www.dvb.org/technology/dvb-cpcm/

8. Byers, S., Cranor, L., Cronin, E., Kormann, D., McDaniel, P.: Analysis of security
vulnerabilities in the movie production and distribution process. In: ACM workshop
on Digital rights management, October 27 (2003)

9. http://o.seattletimes.nwsource.com/html/movies/2004016889 gangster16.

html (last visited Febuary 2008)
10. http://news.bbc.co.uk/1/hi/entertainment/4650956.stm (last visited Febuary

2008)
11. NexGuard Content Protection (last visited Febuary 2008), http://www.thomson.

net/GlobalEnglish/Products/content-tracking-and-security/nexguard/

nexguard-content-protection/Pages/default.aspx
12. Daemen, J., Rijmen, V.: The design of Rijndael: AES – the Advanced Encryption

Standard. Springer, Heidelberg (2002)
13. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on

Information Theory IT-22(6), 644–654 (1976)

http://news.bbc.co.uk/1/hi/entertainment/film/4099696.stm
http://www.mpaa.org/USPiracyFactSheet.pdf
http://www.aacsla.com/specifications/
http://en.wikipedia.org/wiki/Content_Scramble_System
http://www.dcimovies.com/specification/index.tt2
http://en.wikipedia.org/wiki/Broadcast_flag
http://www.dvb.org/technology/dvb-cpcm/
http://o.seattletimes.nwsource.com/html/movies/2004016889_gangster16.html
http://o.seattletimes.nwsource.com/html/movies/2004016889_gangster16.html
http://news.bbc.co.uk/1/hi/entertainment/4650956.stm
http://www.thomson.net/GlobalEnglish/Products/content-tracking-and-security/nexguard/nexguard-content-protection/Pages/default.aspx
http://www.thomson.net/GlobalEnglish/Products/content-tracking-and-security/nexguard/nexguard-content-protection/Pages/default.aspx
http://www.thomson.net/GlobalEnglish/Products/content-tracking-and-security/nexguard/nexguard-content-protection/Pages/default.aspx

A Practical Attack on the MIFARE Classic

Gerhard de Koning Gans, Jaap-Henk Hoepman,
and Flavio D. Garcia

Institute for Computing and Information Sciences
Radboud University Nijmegen

P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
gkoningg@sci.ru.nl,

jhh@cs.ru.nl,
flaviog@cs.ru.nl

Abstract. The mifare Classic is the most widely used contactless smart
card in the market. Its design and implementation details are kept se-
cret by its manufacturer. This paper studies the architecture of the card
and the communication protocol between card and reader. Then it gives
a practical, low-cost, attack that recovers secret information from the
memory of the card. Due to a weakness in the pseudo-random genera-
tor, we are able to recover the keystream generated by the CRYPTO1
stream cipher. We exploit the malleability of the stream cipher to read
all memory blocks of the first sector of the card. Moreover, we are able
to read any sector of the memory of the card, provided that we know one
memory block within this sector. Finally, and perhaps more damaging,
the same holds for modifying memory blocks.

1 Introduction

RFID and contactless smart cards have become pervasive technologies nowadays.
Over the last few years, more and more systems adopted this technology as
replacement for barcodes, magnetic stripe cards and paper tickets for a variety
of applications. Contact-less cards consist of a small piece of memory that can
be accessed wirelessly, but unlike RFID tags, they also have some computing
capabilities. Most of these cards implement some sort of simple symmetric-key
cryptography, which makes them suitable for applications that require access
control.

A number of high profile applications make use of contactless smart cards for
access control. For example, they are used for payment in several public transport
systems like the Octopus card1 in Hong Kong, the Oyster card2 in London, and
the OV-Chipkaart3 in The Netherlands, among others. Many countries have al-
ready incorporated a contactless card in their electronic passports [3] and several
car manufacturers have it embedded in their car keys as an anti-theft method.
1 http://www.octopuscards.com/
2 http://oyster.tfl.gov.uk
3 http://www.ov-chipkaart.nl/

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 267–282, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.octopuscards.com/
http://oyster.tfl.gov.uk
http://www.ov-chipkaart.nl/

268 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Many office buildings and even secured facilities like airports and military bases,
use contactless smart cards for access control.

On the one hand, the wireless interface has practical advantages: without
mechanical components between readers and cards, the system has lower main-
tenance costs, is more reliable, and has shorter reading times, providing higher
throughput. On the other hand, it represents a potential threat to privacy [3]
and it is susceptible to relay, replay and skimming attacks that were not possible
before.

There is a huge variety of cards on the market. They differ in size, casing,
memory and computing power. They also differ in the security features they
provide. A well known and widely used system is mifare. mifare is a product
family from NXP semiconductors (formerly Philips). According to NXP there
are about 200 million mifare cards in use around the world, covering 85% of the
contactless smartcard market. The mifare family contains four different types of
cards: Ultralight, Standard, DESFire and SmartMX. The mifare Classic cards
come in three different memory sizes: 320B, 1KB and 4KB. The mifare Classic
is the most widely used contactless card in the market. Throughout this paper
we focus on this card. mifare Classic provides mutual authentication and data
secrecy by means of the so called CRYPTO1 stream cipher. This cipher is a
proprietary algorithm of NXP and its design is kept secret.

Nohl and Plötz [7] have recently reverse engineered the hardware of the chip
and exposed several weaknesses. Among them, due to a weakness on the pseudo-
random generator, is the observation that the 32-bit nonces used for authenti-
cation have only 16 bits of entropy. They also noticed that the pseudo-random
generator is stateless. They claim to have knowledge of the exact encryption al-
gorithm which would facilitate an off-line brute force attack on the 48-bit keys.
Such an attack would be feasible, in a reasonable amount of time, especially if
dedicated hardware is available.

Our Contribution. We used a Proxmark III4 to analyze mifare cards and
mount an attack. To do so, we have implemented the ISO 14443-A functionality
on the Proxmark, since only ISO 14443-B was implemented at that time. We
programmed both processing and generation of reader-to-tag and tag-to-reader
communication at physical and higher levels of the protocol. The source code of
the firmware is available in the public domain5. Concurrently, and independently
from Nohl and Plötz results, we also noticed a weakness in the pseudo-random
generator.

Our contribution is threefold: First and foremost, using the weakness of the
pseudo-random generator, and given access to a particular mifare card, we
are able to recover the keystream generated by the CRYPTO1 stream cipher,
without knowing the encryption key. Secondly, we describe in detail the com-
munication between tag and reader. Finally, we exploit the malleability of the
stream cipher to read all memory blocks of the first sector (sector zero) of the
card (without having access to the secret key). In general, we are able to read
4 http://cq.cx/proxmark3.pl
5 http://www.proxmark.org

http://cq.cx/proxmark3.pl
http://www.proxmark.org

A Practical Attack on the MIFARE Classic 269

any sector of the memory of the card, provided that we know one memory block
within this sector. After eavesdropping a transaction, we are always able to read
the first 6 bytes of every block in that sector, and in most cases also the last 6
bytes. This leaves only 4 unrevealed bytes in those blocks.

We would like to stress that we notified NXP of our findings before publishing
our results. Moreover, we gave them the opportunity to discuss with us how to
publish our results without damaging their (and their customers) immediate
interests. They did not take advantage of this offer.

Consequences of Our Attack. Any system using mifare Classic cards that
relies on the secrecy or the authenticity of the information stored on sector zero
is now insecure. Our attack recovers, in a few minutes, all secret information
in that sector. It also allows us to modify any information stored there. This is
also true for most of the data in the remaining sectors, depending on the specific
scenario. Besides, our attack complements Nohl and Plötz results providing the
necessary plaintext for a brute force attack on the keys. This is currently work
in progress.

Outline of this Paper. Section 2 describes the architecture of the mifare
cards and the communication protocol. Section 3 describes the hardware used to
mount the attack. Section 4 discusses the protocol by a sample trace. Section 5
exposes weaknesses in the design of the cards. The attack itself is described in
Section 6. Finally, Section 8 gives some concluding remarks and detailed sugges-
tions for improvement.

2 MIFARE Classic

Contactless smartcards are used in many applications nowadays. Contactless
cards are based on radio frequency identification technology (RFID) [1]. In 1995
NXP, Philips at that time, introduced mifare6. Some target applications of
mifare are public transportation, access control and event ticketing. The mifare
Classic [8] card is a member of the mifare product family and is compliant with
ISO 14443 up to part 3. ISO 14443 part 4 defines the high-level protocol and
here the implementation of NXP differs from the standard. Section 2.1 discusses
the different parts of the ISO standard.

2.1 Communication Layer

The communication layer of the mifare Classic card is based on the ISO 14443
standard [4]. This ISO standard defines the communication for identification
cards, contactless integrated circuit(s) cards and proximity cards. The standard
consists of four parts.

Part 1 describes the physical characteristics and circumstances under which
the card should be able to operate.

6 http://www.nxp.com

http://www.nxp.com

270 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Part 2 defines the communication between the reader and the card and vice
versa. The data can be encoded and modulated in two ways, type A and type B.
mifare Classic uses type A. For more detailed information about the commu-
nication on RFID we refer to the “RFID Handbook” by Klaus Finkenzeller [1].

Part 3 describes the initialization and anticollision protocol. The anticollision
is needed in order to select a particular card when more cards are present within
the reading range of the reader. After a successful initialization and anticollision
the card is in an active state and ready to receive a command.

Part 4 defines how commands are send. This is the point where mifare Classic
differs from the ISO standard, using a proprietary and undisclosed protocol. The
mifare Classic starts with an authentication, after that all communication is
encrypted. On every eight bits a parity bit is computed to detect transmission
errors. In the mifare Classic protocol this parity bit is also encrypted which
means that integrity checks are only possible in the application layer.

2.2 Logical Structure

A mifare Classic card is in principle a memory card with few extra functionali-
ties. The memory is divided into data blocks of 16 bytes. Those data blocks are
grouped into sectors. The mifare Classic 1k card has 16 sectors of 4 data blocks
each. The first 32 sectors of a mifare Classic 4k card consists of 4 data blocks
and the remaining 8 sectors consist of 16 data blocks. Every last data block of
a sector is called sector trailer. A schematic of the memory of a mifare Classic
4k card is shown in Figure 1.

Note that block 0 of sector 0 contains special data. The first 4 data bytes
contain the unique identifier of the card (UID) followed by its 1-byte bit count
check (BCC). The bit count check is calculated by successively XOR-ing all UID

Fig. 1. mifare Classic 4k Memory

A Practical Attack on the MIFARE Classic 271

bytes. The remaining bytes are used to store manufacturer data. This data block
is read-only. The reader needs to authenticate for a sector before any memory
operations are allowed. The sector trailer contains the secret keys A and B which
are used for authentication. The access conditions define which operations are
available for this sector.

The sector trailer has special access conditions. Key A is never readable and
key B can be configured as readable or not. In that case the memory is just used
for data storage and key B cannot be used as an authentication key. Besides the
access conditions (AC) and keys, there is one data byte (U) remaining which has
no defined purpose. A schematic of the sector trailer is shown in Figure 2a. A
data block is used to store arbitrary data or can be configured as a value block.
When used as a value block a signed 4-byte value is stored twice non-inverted
and once inverted. Inverted here means that every bit of the value is XOR-ed
with 1. These four bytes are stored from the least significant byte on the left
to the most significant byte on the right. The four remaining bytes are used to
store a 1-byte block address that can be used as a pointer.

(a) Sector Trailer (b) Value Block

Fig. 2. Block contents

2.3 Commands

The command set of mifare Classic is small. Most commands are related to a
data block and require the reader to be authenticated for its containing sector.
The access conditions are checked every time a command is executed to deter-
mine whether it is allowed or not. A block of data might be configured to be
read only. Another example of a restriction might be a value block which can
only be decremented.

Read and Write. The read and write commands read or write one data block.
This is either a data block or a value block. The write command can be used to
format a data block as value block or just store arbitrary data.

Decrement, Increment, Restore and Transfer. These commands are only
allowed on data blocks that are formatted as value blocks. The increment and
decrement commands will increment or decrement a value block with a given
value and place the result in a memory register. The restore command loads a
value into the memory register without any change. Finally the memory register
is transferred in the same block or transferred to another block by the transfer
command.

272 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

2.4 Security Features

The mifare Classic card has some built-in security features. The communication
is encrypted by the proprietary stream cipher CRYPTO1.

Keys. The 48-bit keys used for authentication are stored in the sector trailer of
each sector (see section 2.2). mifare Classic uses symmetric keys.

Authentication Protocol. mifare Classic makes use of a mutual three pass
authentication protocol that is based on ISO 9798-2 according to the mifare
documentation [8]. However, it turned out that this is not completely true [2].
In this paper we only use the first initial nonce that is send by the card. The
reader sends a request for sector authentication and the card will respond with
a 32-bit nonce NC . Then, the reader sends back an 8-byte answer to that nonce
which also contains a reader random NR. This answer is the first encrypted
message after the start of the authentication procedure. Finally, the card sends
a 4-byte response. As far as our attack is concerned this description captures all
the necessary information.

3 Hardware and Software

An RFID system consists of a transponder (card) and a reader [1]. The reader
contains a radio frequency module, a control unit and a coupling element to
the card. The card contains a coupling element and a microchip. The control
unit of a mifare Classic enabled reader is typically a mifare microchip with a
closed design. This microchip communicates with the application software and
executes commands from it. Note that the actual modulation of commands is
done by this microchip and not by the application software. The design of the
microchip of the card is closed and so is the communication protocol between
card and reader.

Fig. 3. The Proxmark III

We want to evaluate the security properties of
the mifare system. Therefore we need hardware to
eavesdrop a transaction. It should also be possible
to act like a mifare reader to communicate with
the card. The Proxmark III developed by Jonathan
Westhues has these possibilities7. Because of its
flexible design, it is possible to adjust the Digi-
tal Signal Processing to support a specific protocol.
This device supports both low frequency (125 kHz -
134kHz) and high frequency (13.56MHz) signal processing. The signal from the
antenna is routed through a Field Programmable Gate Array (FPGA). This
FPGA relays the signal to the microcontroller and can be used to perform
some filtering operations before relaying. The software implementation allows
the Proxmark to eavesdrop communication (Figure 4) between an RFID tag

7 Hardware design and software is publicly available at http://cq.cx/proxmark3.pl

http://cq.cx/proxmark3.pl

A Practical Attack on the MIFARE Classic 273

Fig. 4. Experimental Setup

and a reader, emulate a tag and a reader. In this case our tag will be the mi-
fare Classic card. Despite the basic hardware support for these operations the
actual processing of the digitized signal and (de)modulation needs to be pro-
grammed for each specific application. The physical layer of the mifare Classic
card is implemented according to the ISO14443-A standard [4]. We had to im-
plement the ISO14443-A functionality since it was not implemented yet. This
means we had to program both processing and generation of reader-to-tag and
tag-to-reader communication in the physical layer and higher level protocol. To
meet the requirements of a replay attack we added the functions ‘hi14asnoop’ to
make traces, ‘hi14areader’ to act like a reader and ‘hi14asim’ to simulate a card.
We added the possibility to send custom parity bits. This was needed because
parity bits are part of the encryption.

4 Communication Characteristics

To find out what the mifare Classic communication looks like we made traces
of transactions between mifare readers and cards. This way, we gathered many
traces which gave us some insights on the high-level protocol of mifare Clas-
sic. In this section we explain a trace we recorded as an example, which is
shown in Figure 5. This trace contains every part of a transaction. We refer
to the sequence number (SEQ) of the messages we discuss. The messages from
the reader are shown as PCD (Proximity Coupling Device) messages and from
the card as TAG messages. The time between messages is shown in Elementary
Time Units (ETU). One ETU is a quarter of the bit period, which equals 1.18µs.
The messages are represented in hexadecimal notation. If the parity bit of a byte
is incorrect8, this is shown by an exclamation mark. We will discuss only the
most significant messages.

Anticollision. The reader starts the SELECT procedure. The reader sends 93
20 (#3), on which the card will respond with its unique identifier (#4). The
8 Encrypted parity bits show up as parity error in the message.

274 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

ETU SEQ sender bytes

0 : 01 : PCD 26

64 : 02 : TAG 04 00

12097 : 03 : PCD 93 20

64 : 04 : TAG 2a 69 8d 43 8d

16305 : 05 : PCD 93 70 2a 69 8d 43 8d 52 55

64 : 06 : TAG 08 b6 dd

��������
�������

Anticollision

16504 : 07 : PCD 60 04 d1 3d

112 : 08 : TAG 3b ae 03 2d

6952 : 09 : PCD c4! 94 a1 d2 6e! 96 86! 42
64 : 10 : TAG 84 66! 05! 9e!

����
���

Authentication

396196 : 11 : PCD a0 61! d3! e3
208 : 12 : TAG 0d

8442 : 13 : PCD 26 42 ea 1d f1! 68!
5120 : 14 : PCD 8d! ca cd ea

2816 : 15 : TAG 06!

������
�����

Increment & Transfer

1349238 : 16 : PCD 2a 2b 17 97

72 : 17 : TAG 49! 09! 3b! 4e! 9e! 5e b0 06 d0!
07! 1a! 4a! b4! 5c b0! 4f c8! a4!

��
� Read

Fig. 5. Trace of a card with default keys, recorded by the Proxmark III

reader sends 93 70 followed by the UID and two CRC bytes (#5) to select the
card.

Authentication. The card is in the active state and ready to handle any higher
layer commands. In Section 2.4 we discussed the authentication protocol. In
Figure 5, messages #7 to #10 correspond to the authentication.

The authentication request of the reader is 60 04 d1 3d (#07). The first byte
60 stands for an authentication request with key A. For authentication with key
B, the first byte must be 61. The second byte indicates that the reader wants to
authenticate for block 4. Note that block 4 is part of sector 1 and therefore this
is an authentication request for sector 1. The last two bytes are CRC bytes.

Encrypted Communication. After this successful authentication the card is
ready to handle commands for sector 1. The structure of the commands can be
recognized clearly. Since we control the mifare Classic reader we knew which
commands were sent. Message #11 to #15 show how an increment is performed.
The increment is immediately followed by a read command (#16 and #17).

5 Weakness in MIFARE Classic

Nohl and Plötz partially recovered the CRYPTO1 algorithm that is used to
encrypt the communication between the card and the reader [7,5]. The pseudo-
random generator on the card, which initiates the algorithm by generating a
nonce, is weak. In our analysis, we use this weakness to extend the work of Nohl
and Plötz with a practical attack, which delivers the needed known plaintext for

A Practical Attack on the MIFARE Classic 275

brute-force, and a description of the mifare Classic protocol. In this attack, we
do not need knowledge about the CRYPTO1 algorithm other than that it is a
stream cipher which encrypts bitwise.

During our experiments, independently, we also noted the weakness of the
pseudo-random generator of the card by requesting many card nonces. We were
able to request about 600,000 nonces every hour. Within one hour, a nonce
reappeared at least about four times. The nonce is generated by a Linear Feed-
back Shift Register (LFSR) [5] which shifts every 9.44µs. This is exactly one
bit period in the communication. Therefore a random nonce could theoretically
reappear after 0.618s, if the card is queried at exactly the right time.

In another expirement, we tried to request a nonce at a fixed time after
powering-up9 the card. This way, we could reduce the card nonces to ten different
ones, which decreases the waiting time.

Without knowing the cryptographic algorithm, only an online brute force
attack on the key can be mounted. Because of the communication delay, this
would take 5ms for each attempt. An exhaustive key search would then take
16,289,061 days, which equals about 44,627 years.

When the cryptographic algorithm is known, an off-line brute force attack
can be mounted using a few eavesdropped traces of an authentication run. Nohl
and Plötz state that with dedicated hardware of around $17,000 this would take
about one hour. For this attack to work, some known plaintext is required. Our
analysis provides this plaintext.

6 Keystream Recovery Attack

In Section 5 we discussed a weakness in the pseudo-random generator of the
mifare Classic. In this section we deploy a method to recover the keystream
that was used in an earlier recorded transaction between a reader and a card. As
a result the keystream of the communication will be recovered. For this attack
we need to be in possession of the card. The following reasons make this attack
interesting:

1. Our attack provides the known plaintext necessary to mount a brute force
attack on the key.

2. Using our attack we recovered details about the byte commands.
3. Using the recovered keystream we can read card contents without knowing

the key.
4. Using the recovered keystream we can also modify the contents of the card

without knowing the key.

6.1 Keystream Recovery

To recover the keystream we exploit the weakness of the pseudo-random gener-
ator. As it is this random nonce in combination with only one valid response of
9 As was suggested by Nohl and Plötz [7].

276 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

the reader what determines the remaining keystream. For this attack we need
complete control over the reader (Proxmark) and access to a (genuine) card. The
attack consists of the following steps:

1. Eavesdrop the communication between a reader and a card. This can be for
example in an access control system or public transport system.

2. Make sure that the card will use the same keystream as in the recorded
communication. This is possible because the card repeats the same nonce in
reasonable time, and we completely control the reader.

3. Modify the plaintext, such that the card receives a command for which we
know plaintext in the response (e.g., by changing the block number in a read
command).

4. For each segment of known plaintext, compute the corresponding keystream
segment.

5. Use this keystream to partially decrypt the trace obtained in 1.
6. Try recovering more keystream bits by shifting commands.

The plaintext P1 in the communication is XOR-ed bitwise with a keystream K
which gives the encrypted data C1. When it is possible to use the same keystream
on a different plaintext P2 and either P1 or P2 is known, then both P1 and P2

are revealed.

P1 ⊕ K = C1

P2 ⊕ K = C2

}
C1 ⊕ C2 ⇒ P1 ⊕ P2 ⊕ K ⊕ K ⇒ P1 ⊕ P2 (1)

The weak pseudo-random generator makes it possible to replay an earlier
recorded transaction. We can flip ciphertext bits to try to modify the first com-
mand such that it gives another result. Another result gives us another plain
text. The attack is based on this principle.

6.2 Keystream Mapping

The data is encrypted bitwise. When the reader sends or receives a message, the
keystream is shifted the number of bits in this message on both the reader and
card side. This is needed to stay synchronized and use the same keystream bits to
encrypt and decrypt. The stream cipher does not use any feedback mechanism.
Despite that, when we tried to reveal the contents of a message sequence using
a known keystream of an earlier trace, something went wrong. We recorded an
increment followed by a transfer command. We used this trace to apply our
attack and changed the first command to a read command which consists of 4
command bytes and delivers 18 response bytes. Together with the parity bits this
makes it a 198 bit stream. The plaintext was known and therefore we recovered
198 keystream bits.

When we used this keystream to map it on the original trace of the increment
(Figure 6), it turned out that the keystream was not in phase after the first
command. The reason was the short 4-bit answer of the card that is not followed

A Practical Attack on the MIFARE Classic 277

by a parity bit. In our original trace we are now half way the first response byte.
This means that after 4 more bits we arive at the parity bit in the original trace.
However, in our new trace we are then half way the next command byte. To
correct this we needed to throw away the keystream bit that was originaly used
to encrypt the parity bit.

But what to do when we need to decrypt a parity bit in the new situation and
we are half way a byte with respect to the first trace? The solution is to encrypt
the parity bit with the next bit from the recovered keystream and use this same
keystream bit to decrypt the next data bit.

From this we can conclude that parity bits are encrypted with keystream bits
that are also used to encrypt databits.

INCREMENT ACK VALUE TRANSFER ACK

Plaintext c1 04 f6 8b 0a 01 00 00 00 bb 4a b0 04 ea 62 0a

Ciphertext 4c 88 31 bc! 0a! e2 79!2a!14 35!6f! 04!81 2d!1e! 0c!

Fig. 6. Recovering the Keystream and Commands

The following method successfully maps the keystream on another message
sequence as we described above.

Take the recovered keystream and strip all the keystream bits from it that
were at parity bit positions. The remaining keystream can be used to encrypt new
messages. Every time a parity bit needs to be encrypted, use the next keystream
bit without shifting the keystream, in all other cases use the next keystream bit
and shift the keystream.

6.3 Authentication Replay

To replay an authentication we first need a trace of a successful authentication
between a genuine mifare reader and card. An example of an authentication
followed by one read command is shown below.

1 PCD 60 03 6e 49
2 TAG e0 92 93 98
3 PCD ad e7 96! 48! 20! 22 df 93
4 TAG bf 06 91! 82
5 PCD b5! 05! 47 3f
6 TAG 3f 14! 4f e9! 86 38! 96! 85 3e!

f3 e3! 3d! eb! 2b! a2 d4 dd 76!

After we recorded an authentication between card and reader, we do not modify
the memory. This ensures that the memory of the card remains unaltered and
therefore it will return the same plaintext. Now we will act like a mifare reader
and try to initiate the same authentication. In short:

278 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Fig. 7. Recovering Sector Zero

1. We recorded a trace of a successful authentication between a genuine card
and reader.

2. We send authentication requests (#1) until we get a nonce that is equal to
the one (#2) in the original trace.

3. We send the recorded response (#3) to this nonce. It consists of a valid
response to the challenge nonce and a challenge from the reader.

4. We retrieve the response (#4) to the challenge from the card.
5. Now we are at the point where we could resend the same command (#5) or

attempt to modify it.

6.4 Reading Sector Zero

We will show that it is possible to read sector 0 from a card without knowing the
key. We only need one transaction between a genuine mifare reader and card.
Every mifare Classic card has some known memory contents. The product
information published by NXP [8] gives this information.

When a sector trailer is read the card will return logical ‘0’s instead of key
A because key A is not readable. If key B is not readable the card also returns
logical ‘0’s. It depends on the access conditions if key B is readable or not.
The access conditions can be recovered by using the manufacturer data. Block
0 contains the UID and BCC followed by the manufacturer data. The UID and
BCC cover 5 bytes and are known. The remaining 11 bytes are covered by the
manufacturer data. Some investigation on different cards (mifare Classic 1k and
4k) revealed that the first 5 bytes of the manufacturer data almost never change.
These bytes (MFR1) cover the positions of the access conditions (AC) and the
unkown byte U, as shown in Figure 7. This means that the keystream can be
recovered using the known MFR1 bytes by reading block 0 and block 3 (sector
trailer) subsequently. Remember that the access conditions are stored twice in 3
bytes. Once inverted and once non-inverted. This way it is easy to detect if we
indeed revealed the access conditions. The unknown byte U can be in any state
when the card leaves the manufacturer but appears to be often 00 or 69.

The access conditions tell us whether key B is readable or not. In many
cases key B is not readable, for instance as in the OV-Chipkaart10 that is used

10 mifare Classic 4k card.

A Practical Attack on the MIFARE Classic 279

in the Dutch public transport system. The first 5 bytes of the manufacturer
data (MFR1 in Figure 7) recovered the access conditions for sector 0. Because
the access conditions for the sector trailer define key B as not readable, we know
the plaintext is zeros. Hence the whole sector trailer was revealed and therefore
the contents of the whole sector 0 were revealed as well.

7 Reading Higher Sectors

In the higher sectors of the mifare Classic card we do not have the advance of
the manufacturer data. We basically have the sector trailer and some unknown
data blocks. Because of key A we can recover always the first 10 keystream bytes.
Key B is in most cases not readable and therefore will give 6 more keystream
bytes, but leaves us with a gap of 4 bytes (AC and U).

Although it is harder to achieve, there is a potential threat for these sectors
to become compromised.

7.1 Proprietary Command Codes

At the time this research was performed, we were not aware that the command
codes, which we revealed with our attack, could already be found in example
firmware of NXP11. Note that the firmware refers to the command codes sent
from PC to reader. Our research shows that (perhaps obviously) these are the
same command codes sent from reader to card.

We used a card in transport configuration with default keys and empty data
blocks to reveal the encrypted commands used in the high-level protocol. All the
commands send by the reader consist of a command byte, parameter byte and
two CRC bytes. We made several attempts to reveal the command by modifying
the ciphertext of this command. The way to do this is to assume we actually
know the command. With this ‘knowledge’ we XOR the ciphertext which gives
us the keystream. To check if this is indeed the correct keystream, we XOR
it with a new command for which we know the response. If we guessed the
initial command right the response of the card will be that known response.
This method revealed the commands shown in Figure 8.

Now, one could try to replay the same authentication again and try to execute
a command that returns an ACK or NACK in order to recover more keystream.
Because an ACK or NACK is only 4 bits in size, it leaves some spare bits for
which we know the keystream. We can use these bits to execute another com-
mand for which we now know the plaintext. This delivers more known keystream
as a result, and this method can be applied repeatedly. However, this approach
does only work if a decrement, increment or transfer is allowed. These are the
commands that return an ACK and therefore are in total shorter than the read.
We can only send valid commands because otherwise the protocol aborts. The
read command returns 16 data bytes and 2 CRC bytes. On a write command

11 http://www.nxp.com/files/markets/identification/download/MC081380.zip

http://www.nxp.com/files/markets/identification/download/MC081380.zip

280 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

Fig. 8. Command set of mifare Classic

the card returns a 4-bit ACK, this indicates that the card is ready to receive 16
data bytes followed by 2 CRC bytes.

The decrement, increment and restore commands all follow the same proce-
dure. The card indicates that it is expecting a value from the reader by sending
a 4-bit ACK response. This value is 4 bytes and is followed by 2 CRC bytes. For
the restore this value is send but not used. The value is send as YY YY YY YY
ZZ ZZ, where YY are the value bytes and ZZ the CRC bytes.

Finally, a transfer command is send to transfer the result of one of the previous
commands to a memory block. The card response is an ACK if it went well.
Otherwise it responds with a NACK.

The 4-bit ACK is 0xa. When a command is not allowed the card sends 0x4.
When a transmission error is detected the card sends 0x5. The card does not
even give a response at all if the command is of the wrong length. The protocol
aborts on every mistake or disallowed command.

8 Conclusions and Recommendations

We have implemented a successful attack to recover the keystream of an earlier
recorded transaction between a genuine mifare Classic reader and card.

We used a mifare Classic reader in combination with a ‘blank’ card with
default keys to recover the byte commands that are used in the proprietary
protocol. Knowing the byte commands and a sufficiently long keystream allowed
us to perform any operation as if we were in possession of the secret key.

We managed to read all memory blocks of the sector zero of the card, without
having access to the secret key. In general, we were able to read any sector of

A Practical Attack on the MIFARE Classic 281

the memory of the card, provided that we know one memory block within this
sector. Moreover, after recording a valid transaction on any sector, we were able
to read the first 6 bytes of any block in that sector and also the last 6 bytes if
key B is read only. Similarly, we are able to modify the information stored in a
particular sector.

Consequences. First of all, all data stored on the card (except the keys them-
selves) should no longer be considered secret. In particular, if the mifare Classic
card is used to store personal information (like name, date of birth, or travel in-
formation), this constitutes a direct privacy risk. The security risk is relatively
low because in general the security is guaranteed by the secrecy of the keys. Note
that in particular we are not able to clone cards, because the secret keys remain
secret.

Secondly, the integrity and authenticity of the data stored on the card can
no longer be relied on. This is quite a severe security risk. This is particularly
worrying in applications where the card is used to store a certain value, like
loyalty points or, even worse, some form of digital currency. The loyalty level or
the value stored in the electronic purse could easily be increased (or decreased,
in a denial-of-service type of attack).

Thirdly, knowledge of the plaintext (or the keystream) is a necessary condition
to perform brute force (or other more sophisticated) attacks to recover the secret
key. We are making good progress in developing a very efficient attack to recover
arbitrary sector keys of a mifare Classic card.

Recommendations. For short term improvements we recommend not to use
sector zero to store secret information. Configure key B as readable and store
random information in it. Do not store sensitive information in the first 6 bytes
of any sector. Use multiple sector authentications in one transaction to thwart
attackers in an attempt to recover plaintext. This is only helpful when value
block commands are not allowed. Value block commands are shorter than a
read command and will enable a shift of the keystream. Another possibility,
that might be viable for some applications, is to employ another encryption
scheme like AES in the backoffice, and store only encrypted information on the
tags. To prevent unauthorized modification of a data block, an extra authenti-
cation on this data could be added. This authentication is then verified in the
backoffice.

Proper fraud detection mechanisms and extra security features in the backof-
fice are necessary to signal or even prevent the types of attacks described above.
In general, the backoffice systems collecting and processing data that comes from
the readers are a very important second line of defence.

On the long term these countermeasures will not be sufficient. The mifare
Classic card has a closed design. Security by obscurity has shown several times
that at some point the details of the system will be revealed compromising
security [6]. Therefore we recommend to migrate to more advanced cards with
an open design architecture.

282 G. de Koning Gans, J.-H. Hoepman, and F.D. Garcia

References

1. Finkenzeller, K.: RFID Handbook, 2nd edn. John Wiley and Sons, Chichester
(2003)

2. Garcia, F.D., de Koning Gans, G., Muijrers, R., van Rossum, P., Verdult, R.,
Schreur, R.W.: Dismantling MIFARE Classic (forthcoming)

3. Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Schreur, R.W.: Crossing
Borders: Security and Privacy Issues of the European e-Passport. In: Yoshiura, H.,
Sakurai, K., Rannenberg, K., Murayama, Y., Kawamura, S. (eds.) IWSEC 2006.
LNCS, vol. 4266, pp. 152–167. Springer, Heidelberg (2006)

4. ISO/IEC 14443. Identification cards - Contactless integrated circuit(s) cards - Prox-
imity cards (2001)

5. Nohl, S.K., Evans, D., Plötz, H.: Reverse-Engineering a Cryptographic RFID Tag.
In: USENIX Security Symposium, San Jose, CA, 31 July (2008)

6. Kerckhoffs, A.: La cryptographie militaire. Journal des sciences militaires, IX, pp.
5–38, January 1983, and pp. 161–191, February 1983(1983)

7. Nohl, K., Plötz, H.: MIFARE, Little Security, Despite Obscurity. In: Presentation
on the 24th Congress of the Chaos Computer Club in Berlin (December 2007)

8. NXP Semiconductors. MIFARE Standard 4KByte Card IC functional specification
(February 2007)

A Chemical Memory Snapshot

Jörn-Marc Schmidt1,2

1 Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria

joern-marc.schmidt@iaik.at
2 Secure Business Austria (SBA),

Favoritenstraße 16, 1040 Vienna, Austria

Abstract. Smart cards and embedded systems are part of everyday life.
A lot of them contain sensitive data like keys used in secure applications.
These keys have to be transferred from non-volatile to static memory to
generate signatures or encrypt data. Hence, the possibility to read out
the static memory of a device is a crucial security threat. This paper
presents a new technique to read out secret data from the internal static
memory of a cryptographic device. A chemical reaction of the top metal
layer of a decapsulated chip is used to identify lines connected to the
positive power supply. Using this information, we are able to obtain the
content of memory cells like the secret key of a cryptographic system.

Keywords: Smart cards, physical security, electrolysis.

1 Introduction

Evaluating the security of a cryptographic device, not only the used protocol and
its underlying cryptographic algorithms are important. The device itself and the
way the algorithms are implemented on it may also reveal valuable information.
Attacks that exploit properties of the device are called implementation attacks.
Depending on whether the behavior of a device is influenced or just measured,
an attack is called active or passive. Furthermore, implementation attacks can
be non-invasive, semi-invasive, or invasive. Non-invasive attacks do not modify
the package of the device, while semi-invasive attacks apply a decapsulation
procedure to expose the chip. In addition, if direct electrical contact is established
to the surface of the chip, the attack is called invasive.

Non-invasive, passive ones are called side-channel attacks [1]. Paul Kocher
utilized differences in the execution time depending on secret data to reveal it
in 1996 [2]. In 1997, it has been shown by Eli Biham and Adi Shamir [3] and in
parallel by Dan Boneh et al. [4] that actively provoking faults in cryptographic
devices can also be exploit to uncover secret information. That passive mea-
surement of the power consumption of a device may also reveal secret data was
demonstrated by Paul Kocher et al. in 1999. Subsequently, it has been shown
by Dakshi Agrawal et al. in 2002 that measuring electromagnetic emissions of
a device allows to attack it. Side channel as well as fault attacks have become

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 283–289, 2008.
© IFIP International Federation for Information Processing 2008

284 J.-M. Schmidt

a popular topic in research. Mostly, multiple calculations of encryptions or sig-
natures, a previous characterization of the device, or a precise fault injection
are necessary for an attack. Another way to disclose a secret key is reading it
directly out of the memory of a device, which can be done without using the
reading operations of the device. This method is independent of the implemented
algorithm as long as the key is processed inside the static memory.

A common way to read out secret data directly is probing [5,6]. Thereby, a
probing needle establishes electrical contact to the surface of the chip. As the
technology size is getting smaller, this becomes more and more difficult.

Another way to reveal content of memory cells was presented by David Samyde
et al. [7]. They scanned the surface of an active chip with a laser beam. At each
position of the laser, the current injected by the beam was measured. In this way,
cells containing zeros could be distinguished from those containing ones. Their
method is semi-invasive, as a decapsulation procedure has to be applied. As several
points have to be scanned, the technique is rather slow. To read out important data
during a computation that cannot be stopped in the target state, they suggest
freezing the memory to increase the remanence of the data in the cells [8].

Our Contribution. We present a new method to produce a quick one-time snap-
shot of the state the memory cells are in. Our method makes use of a chemical
reaction called electrolysis. For this purpose, the chip has to be decapsulated
and parts of the passivation must be removed. The reaction shows the current
state of the exposed memory cells. A standard procedure for decapsulation as
described in [9] is sufficient. Exposing the top metal layer can be done with
different procedures. Wet etching for removing the whole passivation or a laser
cutter as well as a focused ion beam (FIB) for a selective removal can be used.
We will elaborate on these possibilities in Section 4. For our experiments we
decided to use a laser cutter, as it is the cheapest choice.

This paper is organized as follows. After describing the target device including
details on SRAM cells in Section 2, the chemical process called electrolysis is
explained in Section 3. Possible ways to remove the passivation of a chip are
discussed in Section 4. Section 5 shows the results of our experiments. Conclusion
is drawn in Section 6.

2 Target Device

An 8-bit microcontroller with 128 byte internal static memory was chosen for
the experiments. Its passivation consists of silicon-dioxide, the top metal layer
of aluminum with a titanium-nitride barrier. The size of a memory cell in the
device is 474µm2. In the following, its structure will be explained in more detail.

A standard static memory cell consists of six transistors. Four of them build
two inverters. Each output of the invertors is connected to the input of the
other one. Read and write functions of the cell are realized by the two remaining
transistors. Figure 1 shows a schematic of a standard cell. For programming a
cell the appropriate value is put onto the bit line, its inverse onto the inverse
bit line. Programming is enabled by the select line. As the drivers of the write

A Chemical Memory Snapshot 285

Fig. 1. Schematic of a standard SRAM cell

Fig. 2. Array of SRAM cells (metal layer)

circuit are stronger than the transistors inside the cell, the old state is replaced
by the one put onto the bit lines. Sense amplifiers are used to read a cell. They
recognize the state of the cell activated by the select line.

If the cell contains one, the value line is connected to the positive power supply
(VCC) and the inverse value line to ground (GND); vice versa if it contains zero.
Figure 2 shows the top metal layer of three times four memory cells. In the chip
considered, parts of the circuit lines containing the value and the inverse value of
the cell are realized on the top metal layer. Thus, these two lines indicate whether
a cell contains zero or one. If the metal layer is exposed, this information can be
gained by electrolysis.

3 Electrolysis

Electrolysis is a chemical process. Thereby, electrical energy is converted into
chemical energy in liquids containing ions. Such a liquid is called electrolyte.

286 J.-M. Schmidt

The electrical energy has to be supplied as direct current to it. The supplying
conductors are called electrodes. Electric charge in electrolytes is carried by its
ions. These ions move within the electrolyte and cause chemical reactions at the
electrodes.

In an electrolytic process the electrode that emits electrons is called cathode.
Its opposite is called anode. At anode and cathode different chemical reactions
take place: at the cathode positive charged ions, named cations, are reduced; at
the anode negative charged ions, named anions, are oxidized. Thus, the conduc-
tion of an electrolyte depends on the mobility of its ions. The electrolyte itself
stays electrical neutral [10]. Industrial processes commonly use electrolyze for
separating chemicals, as well as for putting a protective layer on materials.

Here, electrolysis is applied for attacking a device. As the distance between
the metal lines, which will act as anode and cathode, is very small, a liquid
that conducts only sparely is necessary. This reduces the damage caused by the
current flowing over the liquid. Pure water is only sparely conducting. Therefore,
distilled water from the local tool store was used. The conductivity of tap water is
much higher, because it contains dissolved salts and thus free ions. For electrolyze
to take place on the chip, it is necessary that the liquid has direct contact to
the surface of the top metal layer. Thus, the passivation of the chip has to be
removed, at least from the memory cells of interest.

4 Removal of the Passivation

Removing the passivation is a quite more challenging task than the package
decapsulation. The passivation of a common chip consists of silicon oxide, often
in combination with a layer of silicon nitride. Those layers can be removed from
the whole chip at once or in a selective way, which exposes only small parts of
the chip.

The whole passivation can be removed at once by wet etching [11]. This pro-
cess always acts uniform in all directions. A silicon nitride layer can be removed
by 85 % phosphoric acid at 160 ◦C. Silicon oxide can only be etched with hydro-
gen fluoride. In order to be able to stop the reaction before underlying layers
are affected, a buffered dissolution of hydrofluoric acid and ammonium fluoride
is commonly used. There are several different mixtures. It is necessary to know
the etch rate of the used mixture as well as the thickness of the silicon oxide
layer to stop the reaction at the right moment.

A selective removal of the layers can be performed by a focused ion beam
(FIB) or a laser cutter. Focused ion beams work similar to scanning electron
microscopes (SEMs). The electron beam in the electron microscope is substituted
by a beam of gallium ions. At low power this beam can be used for imaging,
at higher power for milling. Using the ion beam a milling with a precision of
submicron scale can be achieved. In contrast to a focused ion beam, a laser cutter
emits a pulsed light beam. This beam is focused by a microscope. Depending on
its intensity, the beam can expose or at higher optical output cut wires of the
top metal layer.

A Chemical Memory Snapshot 287

Fig. 3. Passivation removal using a focused ion beam (left) and a laser cutter (right)

While a focused ion beam can remove the passivation in a very careful and
well directed way, a laser cutter needs a very precise adjustment. A strong beam
can damage the circuit and weak beam may have no effect at all. In Figure 3 the
differences between removing the passivation with a focused ion beam and laser
cutter are shown. For the experiments a laser cutter was utilized, because of the
high cost of a focused ion beam. One shot of the laser cutter exposed parts of
the bit and the inverse bit lines. This was sufficient for the attack.

5 Results

With a small pipette a water drop of distillated water was put onto the surface
of the powered chip. In order to avoid unwanted inferences, the water should
not get in touch with the bonding wires. Using this setup, we were still able to
write and read the values of the cells for several minutes with the program of
the microcontroller. Afterwards, errors occurred in some memory cells.

Immediately after the water reaches the surface, the chemical reaction begins.
This is indicated by a liberated gas. Before and during the experiment, the value
one was written to a memory cell. Hence, its value was not changed. Figure 4 shows
the result of the reaction. The line containing the bit and the positive program-
ming line have been stained, even parts underneath the passivation, while the in-
verse lines did not change their color. The ground line was hit by the laser cutter
without cutting it completely. The chemical process had no influence on it.

If the value is not changed during the procedure, the staining does not change,
even if the metal lines are exposed to the water for just a few seconds or several
minutes. At cells that change their value while they are in touch with the water,
each of the two value lines act as anode and as cathode. Thus, both lines show the
same staining. Considering a computation, it is possible to distinguish between
memory cells were data is processed and unused or cells with static values. The

288 J.-M. Schmidt

Fig. 4. Memory cell before (left) and after chemical preparation (right)

change of the color is an irreversible process. Once the color of a line has been
changed, we were not able to remove the staining.

6 Conclusion

We presented a new way to read out memory without using the functions supplied
by the chip. The method makes use of a chemical reaction. It produces a one-time
snapshot of the actual state of the memory. Thus, values processed in the static
memory of a device can be read out by an attacker, including secret keys.

Acknowledgments

The author would like to thank Julian Wagner and the Institute for Electron Mi-
croscopy of the TU Graz for their support and the focused ion beam picture. I
would also like to thank Peter Söser and Christoph Marschner for their support.

References

1. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007)

2. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–
113. Springer, Heidelberg (1996)

3. Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key Cryptosystems.
In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults (Extended Abstract). In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

A Chemical Memory Snapshot 289

5. Anderson, R.J., Kuhn, M.G.: Tamper Resistance - a Cautionary Note. In: Second
Usenix Workshop on Electronic Commerce, pp. 1–11 (November 1996)

6. Kömmerling, O., Kuhn, M.G.: Design Principles for Tamper-Resistant Smartcard
Processors. In: USENIX Workshop on Smartcard Technology (Smartcard 1999), pp.
9–20 (May 1999)

7. Samyde, D., Skorobogatov, S.P., Anderson, R.J., Quisquater, J.J.: On a New Way
to Read Data from Memory. In: IEEE Security in Storage Workshop (SISW 2002),
pp. 65–69. IEEE Computer Society, Los Alamitos (2002)

8. Skorobogatov, S.: Low temperature data remanence in static RAM. Technical re-
port, University of Cambridge Computer Laboratory (June 2002)

9. Skorobogatov, S.P.: Semi-invasive attacks - A new approach to hardware secu-
rity analysis. PhD thesis, University of Cambridge - Computer Laboratory (2005),
http://www.cl.cam.ac.uk/TechReports/

10. Gärtner, H., Hoffmann, M., Schaschke, H., Schürmann, I.M.: Das große Buch der
Chemie. Compact Verlag (2004)

11. Beck, F.: Integrated Circuit Failure Analysis: A Guide to Preparation Techniques.
Wiley, Chichester (1998)

http://www.cl.cam.ac.uk/TechReports/

Recent Advances in Electronic Cash Design

Aline Gouget

Security Labs, Gemalto,
6, rue de la Verrerie, F-92190 Meudon, France

aline.gouget@gemalto.com

Abstract. Electronic cash (or e-cash) is an electronic payment solution
that is usually viewed as an attempt to emulate electronically the main
characteristics of regular cash. In particular, e-cash and other payment
solutions should protect the privacy of users during a purchase. The main
distinction of e-cash with respect to other electronic payment systems is
that electronic coins are stored on a device controlled by the user, e.g.
a smart card or a personal computer hard disk. Since the introduction
by Chaum [10,11] of unconditionally untraceable electronic money, e-
cash systems have been extensively studied. Recent work has mainly
focused on the efficiency of the protocols with respect to several notions
of anonymity. In this talk, we will review the main recent results and
also discuss the possibility to transfer a coin without involving the bank
which is considered as an important characteristic of regular cash.

1 Overview of e-Cash Schemes

E-cash systems usually assume that the same bank is responsible for giving out
electronic coins and for later accepting them for deposit. Users can download a
number of electronic coins from the bank using a withdrawal protocol, and next
pay one or more merchants with them in a spending protocol. Merchants can
later exchange electronic coins for regular cash on their bank account using a
deposit protocol.

As it is easy to duplicate electronic data, an e-cash system requires a mech-
anism that prevents a user from spending the same coin twice without being
identified, and it must also prevent a merchant from depositing the same coin
twice. E-cash systems allow merchants to check the validity of coins, whereas the
detection of double spending is performed by the bank. Indeed, double-spending
cannot be checked by the merchant during a payment protocol, as the coins
delivered by the bank can be spent at several merchants.

E-cash systems can be categorized into two groups according to whether the
bank is on-line or not in the spending protocol. In on-line e-cash, a merchant only
accepts a coin if the bank confirms that the coin has not been previously spent,
and the deposit protocol must be performed immediately after the spending
protocol. This scenario is often considered as being very restrictive in practice,
especially for low-value payments. In off-line e-cash, the merchant does not need
to interact with the bank before accepting a coin from the user. Indeed, during

G. Grimaud and F.-X. Standaert (Eds.): CARDIS 2008, LNCS 5189, pp. 290–293, 2008.
c© IFIP International Federation for Information Processing 2008

Recent Advances in Electronic Cash Design 291

the spending of a coin, the merchant only checks the validity of the coin. Nev-
ertheless, the merchant is guaranteed that the bank will accept the coin or the
bank will be able to identify and punish the cheater.

E-cash should provide user anonymity against both the bank and the merchant
during a purchase in order to emulate the perceived anonymity of regular cash
transaction. When a double-spending is detected, the identity of the cheater must
be retrieved. Off-line e-cash schemes can also be categorized into two groups
according to whether the revocation of the cheater identity is either done by a
trusted party, e.g. a judge, (in this case the revocation of the spender identity is
always “technically feasible” by the trusted party), or technically possible only
in case of a double-spending.

The main security properties usually considered in e-cash schemes are the
unforgeability of coins, the anonymity of users, the unlinkability of spends, the
identification of double-spenders and the impossibility for the bank to falsely
accuse (with a proof) honest users. Many e-cash schemes have been proposed in
the literature, which fulfill some of the security properties previously mentioned,
in the on-line or off-line setting, involving a judge or not. Only few of them
consider the possibility to transfer a coin from a user to another user without
involving the bank.

2 Towards a Practical e-Cash Scheme

Most recent work has focused on the efficiency of protocols, i.e. the efficiency
of the algorithms executed during a protocol and the compactness of the data
exchanged between all actors. A major challenge in e-cash is to provide an effi-
cient solution to spend several coins at the same time, i.e., more efficiently than
iterating the spending protocol over each coin”.

The main significant improvement has been done by Camenisch et al. [4] by in-
troducing the compact e-cash scheme that allows a user to withdraw efficiently a
wallet containing 2L coins such that the space required to store these coins and
the complexity of the withdrawal protocol are proportional to (L+k) rather than
(k · 2L), where L is a fixed parameter of the system and k is a security param-
eter. This scheme fulfills the anonymity and unlinkability properties usually re-
quired for electronic cash systems. The main drawback of the compact e-cash sys-
tem is that it does not address the possibility for spending several coins at the
same time without iterating the execution of the spending protocol. We will re-
view recent improvements and variants of the compact e-cash scheme that have
been proposed [19,7,3,1].

Divisible e-cash schemes attempt to address the problem of the divisibility of
a coin by allowing a user to withdraw a coin of monetary value 2L and then to
spend this coin in several times by dividing the value of the coin. The aim is to
allow a user to spend a coin of monetary value 2� more efficiently than repeating
2� times a spending protocol. Many off-line divisible e-cash systems have been
proposed in the literature (e.g. [17,13,14,16,9,15,5,2]). We will review the main
advantages and drawbacks of theses schemes.

292 A. Gouget

3 On the Transferability Property in e-Cash

The transferability property of a coin, meaning that received cash can be spent
later without involving the bank, is seen as a fundamental property of regular
cash. However, it has received only little attention in the electronic setting. This
lack of interest for transferable e-cash may be explained by the result given
in [12] showing that it is impossible to transfer a coin without increasing its
size. However, the main advantage of the transferability of e-cash would be the
decrease of the number of communications between the bank and all users. We
will review the main advantages and drawbacks of transferable e-cash schemes
that have been proposed in the literature [17,18,12,6,8].

References

1. Au, M.H., Susilo, W., Mu, Y.: Practical compact e-cash. In: Pieprzyk, J., Gho-
dosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 431–445. Springer,
Heidelberg (2007)

2. Au, M.H., Susilo, W., Mu, Y.: Practical anonymous divisible e-cash from bounded
accumulators. In: PACS 2000. LNCS, vol. 5143. Springer, Heidelberg (2008)

3. Au, M.H., Wu, Q., Susilo, W., Mu, Y.: Compact e-cash from bounded accumu-
lator. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 178–195. Springer,
Heidelberg (2006)

4. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

5. Canard, S., Gouget, A.: Divisible e-cash systems can be truly anonymous. In: Naor,
M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 482–497. Springer, Heidelberg
(2007)

6. Canard, S., Gouget, A.: Anonymity in Transferable E-cash. In: Bellovin, S.M.,
Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp.
207–223. Springer, Heidelberg (2008)

7. Canard, S., Gouget, A., Hufschmitt, E.: A handy multi-coupon system. In: Zhou,
J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 66–81. Springer,
Heidelberg (2006)

8. Canard, S., Gouget, A., Traoré, J.: Improvement of Efficiency in (Unconditional)
Anonymous Transferable E-Cash. In: PACS 2000. LNCS, vol. 5143. Springer, Hei-
delberg (2008)

9. Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. In:
Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer,
Heidelberg (1998)

10. Chaum, D.: Blind signatures for untraceable payments. In: Crypto 1982, pp. 199–
203. Plenum Press, Springer (1982)

11. Chaum, D.: Blind signature system. In: Crypto 1983, p. 153. Plenum Press,Springer
(1983)

12. Chaum, D., Pedersen, T.P.: Transferred Cash Grows in Size. In: Rueppel, R.A. (ed.)
EUROCRYPT 1992. LNCS, vol. 658, pp. 390–407. Springer, Heidelberg (1993)

13. D’Amiano, S., Di Crescenzo, G.: Methodology for digital money based on general
cryptographic tools. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 156–170. Springer, Heidelberg (1995)

Recent Advances in Electronic Cash Design 293

14. Eng, T., Okamoto, T.: Single-term divisible electronic coins. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 306–319. Springer, Heidelberg (1995)

15. Nakanishi, T., Sugiyama, Y.: Unlinkable divisible electronic cash. In: Okamoto,
E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp. 121–134.
Springer, Heidelberg (2000)

16. Okamoto, T.: An efficient divisible electronic cash scheme. In: Coppersmith, D.
(ed.) CRYPTO 1995. LNCS, vol. 963, pp. 438–451. Springer, Heidelberg (1995)

17. Okamoto, T., Ohta, K.: Universal electronic cash. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 324–337. Springer, Heidelberg (1992)

18. van Antwerpen, H.: Electronic Cash. Master’s thesis, CWI (1990)
19. Wei, V.K.: More compact e-cash with efficient coin tracing. Cryptology ePrint

Archive, Report 2005/411 (2005), http://eprint.iacr.org/

http://eprint.iacr.org/

Author Index

Akishita, Toru 206
Almaliotis, Vasilios 17

Bouzefrane, Samia 228
Buchmann, Johannes 104
Burmester, Mike 176

Carbonell, Mildrey 241
Cayrel, Pierre-Louis 191
Cordry, Julien 228
Costan, Victor 133

Dahmen, Erik 104
de Koning Gans, Gerhard 267
de Medeiros, Breno 176
Devadas, Srinivas 133
Dillinger, Oliver 149
Drissi, Mhamed 218
Dubois, Vivien 218
Durand, Alain 255

Eisenbarth, Thomas 104
Éluard, Marc 255

Gaborit, Philippe 191
Garcia, Flavio D. 267
Ghindici, Dorina 32
Gouget, Aline 290
Guilloux, Anne-Marie 218

Hoepman, Jaap-Henk 267
Hofferek, Georg 162

Katagi, Masanobu 206
Katsaros, Panagiotis 17
Kim, Chong Hee 48

Langer, Josef 149
Leander, Gregor 89
Lelievre, Sylvain 255
Loizidis, Alexandros 17
Louridas, Panagiotis 17

Madlmayr, Gerald 149
Malek, Wael William Zakhari 118

Markantonakis, Kostas 118
Mayes, Keith 118
Meunier, Hervé 228
Miyato, Yoshikazu 206
Mizuno, Asami 206
Mostowski, Wojciech 1
Motta, Rossana 176

Nikodem, Maciej 61

Okeya, Katsuyuki 74

Paar, Christof 89, 104
Paradinas, Pierre 228
Poll, Erik 1
Poschmann, Axel 89
Prouff, Emmanuel 191

Quisquater, Jean-Jacques 48

Réal, Denis 218
Rohde, Sebastian 104
Rolfes, Carsten 89

Sarmenta, Luis F.G. 133
Scharinger, Josef 149
Schmidt, Jörn-Marc 283
Shibutani, Kyoji 206
Sierra, Jose M. 241
Simplot-Ryl, Isabelle 32
Spinellis, Diomidis 17

Tellez, Jesus 241
Torres, Joaquin 241

Valette, Frédéric 218
van Dijk, Marten 133
Vincent, Christophe 255
Vuillaume, Camille 74

Wolkerstorfer, Johannes 162

Yoshino, Masayuki 74

	Title Page
	Preface
	Organization
	Table of Contents
	Malicious Code on Java Card Smartcards: Attacks and Countermeasures
	Overview
	Defences
	Bytecode Verification
	Applet Firewall

	Getting Ill-Typed Code on Cards
	CAP File Manipulation
	Abusing Shareable Interface Objects
	Abusing the Transaction Mechanism
	Fault Injections

	Type Attacks on Java Cards
	Accessing a Byte Array as a Short Array [Byte as Short Array]
	Accessing an Object as an Array [Object as Array]
	More Type Confusion Attacks

	Dynamic Countermeasures
	Discussion
	References

	Static Program Analysis for Java Card Applets
	Introduction
	Related Work on Static Verification of Java Card Applets
	Static Analysis with the FindBugs Framework
	Static Verification of Java Card API Calls
	Bug Detectors for the Temporal Safety of Java Card API Calls
	Bug Detectors for the Correctness of the Called Methods’ Arguments

	Precise and Scalable Analyses for the Static Verification of API Calls
	Conclusion
	References

	On Practical Information Flow Policies for Java-Enabled Multiapplication Smart Cards
	Introduction
	LoyaltyCard Example
	Embedded Security and Information Flow
	Information Flow Model
	Challenges

	A DSL for Information Flow Policies
	DSL Definition
	DSL Verification
	Example
	Discussion

	Integrating Information Flow in a Development and Deployment Schema
	Enforcing Security Policies for Jvm
	Reverse Engineering Tool

	Related Work
	Conclusion
	References

	New Differential Fault Analysis on AES Key Schedule: Two Faults Are Enough
	Introduction
	AES
	Previous Works about DFA on AES Key Schedule
	Our DFA on AES Key Schedule
	Fault Model
	Basic Attack
	Improved Attack

	Comparison with Previous Attacks
	Conclusions
	References

	DSA Signature Scheme Immune to the Fault Cryptanalysis
	Introduction
	Related Work
	DSA Signature Scheme
	Fault Cryptanalysis of the DSA Signature Scheme
	DSA Scheme Immune to the Fault Cryptanalysis
	Security of the Proposed Scheme
	Overhead of the Proposed Scheme
	Conclusions
	References

	A Black Hen Lays White Eggs Bipartite Multiplier Out of Montgomery One for On-Line RSA Verification
	Introduction
	Previous Double-Size Techniques
	Yoshino et al.’s Scheme
	L-Bit RSA Public Operations
	Previous Approaches for On-Line Precomputations

	New Double-Size Bipartite Multiplication
	Overview
	How to Divide L-Bit Integers for the {\it l}-Bit Multiplier
	New {\it l}-Bit Instructions Based on an {\it l}-Bit Multiplier
	How to Build an L-Bit Remainder with {\it l}-Bit Instructions

	Evaluation
	Few On-Line Precomputations
	Performance Improvement
	Further Performance Improvement

	Conclusion
	References

	Ultra-Lightweight Implementations for Smart Devices – Security for 1000 Gate Equivalents
	Background
	The PRESENT Algorithm
	Three Different Architectures of PRESENT Implementations
	Round-Based Architecture
	Parallel Architecture
	Serialized Approach
	Crypto Coprocessor

	Evaluation of the Results
	Metrics and Used Design Flow
	Low Cost Passive Smart Devices
	Low Cost Active Smart Devices
	High End Active Smart Devices

	Conclusions
	References

	Fast Hash-Based Signatures on Constrained Devices
	Motivation
	Preliminaries
	The Merkle Signature Scheme
	Hash Functions

	Implementation Details and Target Platform
	Choice of Parameters and Timings
	Hardware Accelerated AES
	Conclusion
	References

	Fraud Detection and Prevention in Smart Card Based Environments Using Artificial Intelligence
	Introduction
	Neural Networks Concepts
	How the Brain Works
	Artificial Neural Network Advantages
	Existing Artificial Neural Network Based Systems

	Neural Networks and Smart Cards
	Design Challenges
	Implementation Challenges

	The Fraud Engine
	Design
	How Will It Work?
	The Fraud Engine Tool
	Scenarios

	Conclusion
	Benefits
	Results
	Suggested Future Work

	References

	The Trusted Execution Module: Commodity General-Purpose Trusted Computing
	Introduction
	Landscape
	Concepts
	Trust Chain
	Closures
	Persistent Store

	Architecture
	Key Store
	Virtual Machine Environment
	Persistent Store Architecture

	Implementation
	Performance Considerations

	Example Application: Migratable Tokens
	Conclusion and Future Work
	References

	Management of Multiple Cards in NFC-Devices
	Introduction
	Near Field Communication
	Problem Statement
	Possible Solutions

	Implementation
	External Communication
	Internal Authentication of Secure Elements

	Conclusion
	References

	Coupon Recalculation for the GPS Authentication Scheme
	Introduction
	GPS Authentication
	Basic Algorithm and Parameters
	Coupon Approach
	GPS Coupon Recalculation Approach for RFID

	Hardware Architecture
	Full-Precision Architecture
	Digit-Level Architecture

	Arithmetic Unit
	Digit-Level Montgomery Multiplication
	Analyzing Digit-Level Operations
	Schematic

	Results
	Conclusion
	References

	Provably Secure Grouping-Proofs for RFID Tags
	Introduction and Previous Work
	RFID Deployments and Threat Model
	Attacks on RFID Tags
	The ThreatModel for RFID
	Guidelines for Secure RFID Applications

	Previous Work: RFID Grouping-Proofs
	The Yoking-proof
	Proofs for Multiple RFID Tags
	Clumping-proofs for Multiple RFID Tags

	Our Protocols: Robust Grouping-Proofs
	A Robust Grouping-Proof
	A Robust Anonymous Grouping-Proof
	A Robust Grouping-Proof with Forward-Secrecy

	Conclusion
	References

	Secure Implementation of the Stern Authentication and Signature Schemes for Low-Resource Devices
	Introduction
	Stern Authentication Scheme
	Basic Scheme
	Alternative Scheme Based on Quasi-Cyclic Codes
	Main Operators

	Side-Channel Attacks
	Algorithm Specification
	Matrix-Vector Product
	Hash Function
	Permutation Method
	Pseudorandom Generator

	Implementation
	Experimental Results

	Conclusion and Future Work
	References

	A Practical DPA Countermeasure with BDD Architecture
	Introduction
	Wave Dynamic Differential Logic (WDDL)
	Binary Decision Diagram
	Dual-Rail Pre-charge Circuit with Binary Decision Diagram Architecture
	Application to AES S-Box
	AES S-Box Based on WDDL (WDDL S-Box)
	AES S-Box Based on DP-BDD (DP-BDD S-Box)
	Experimental Results

	Towards Less Difference of Transition Timing
	Conclusion
	References

	SCARE of an Unknown Hardware Feistel Implementation
	Introduction
	The Hardware Implementation of a Generic Feistel Scheme
	Assumption on the Feistel Scheme Design
	The Power Consumption During a Bit Transition

	Side Channel Analysis of a Generic Feistel Scheme
	Side Channel Identification of a Feistel Scheme
	SCA for to Guess the One Round Output of the Feistel Function

	The Cryptographic Attack Derived from the SCA
	Simple Interpolation Attack
	Improved Attack on a Class of Commonly Used Schemes

	Proposition of Countermeasure
	Countermeasure with the Supplying Line Leakage Model
	Improved Countermeasure in the Case of DFF Leakage Model

	Conclusion
	References

	Evaluation of Java Card Performance
	Introduction
	Java Card and Benchmarking
	Java Card Technology
	Addressed Issues

	General Benchmarking Framework
	Introduction
	Modules
	Unused Features

	State of the Art
	Conclusion
	References

	Application of Network Smart Cards to Citizens Identification Systems
	Introduction
	Related Works
	Analysis of the Closer ID-Card Solution for User Authentication and Authorization

	A New Identification System Based on ID-NSCards
	Notes about the Testbed
	Security and Trust Model Discussions
	Application of the ID-NSCard to the Spanish Electronic ID Card
	Conclusions
	References

	SmartPro: A Smart Card Based Digital Content Protection for Professional Workflow
	Introduction
	General Presentation
	Actors in Virtual Domain
	Content Protection
	Multiple Virtual Domains

	Device: A Collaboration between Host and Token
	Overview
	Token Management Center
	Hosts and Tokens Interactions
	Secure Authenticated Channel

	Using Secure Processor
	Revocation Mechanism
	Bridging Implementation

	Conclusion
	References

	A Practical Attack on the MIFARE Classic
	Introduction
	MIFARE Classic
	Communication Layer
	Logical Structure
	Commands
	Security Features

	Hardware and Software
	Communication Characteristics
	Weakness in MIFARE Classic
	Keystream Recovery Attack
	Keystream Recovery
	Keystream Mapping
	Authentication Replay
	Reading Sector Zero

	Reading Higher Sectors
	Proprietary Command Codes

	Conclusions and Recommendations
	References

	A Chemical Memory Snapshot
	Introduction
	TargetDevice
	Electrolysis
	Removal of the Passivation
	Results
	Conclusion
	References

	Recent Advances in Electronic Cash Design
	Overview of e-Cash Schemes
	Towards a $Practical$ e-Cash Scheme
	On the Transferability Property in e-Cash
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

