
BotTracer: Execution-Based Bot-Like

Malware Detection

Lei Liu1, Songqing Chen1, Guanhua Yan2, and Zhao Zhang3

1Dept. of Computer Science, George Mason University
{lliu3,sqchen}@cs.gmu.edu

2Information Sciences, Los Alamos National Lab
ghyan@lanl.gov

3Dept. of Electrical and Computer Engineering,
Iowa State University
zzhang@iastate.edu

Abstract. Bot-like malware has posed an immense threat to computer
security. Bot detection is still a challenging task since bot developers are
continuously adopting advanced techniques to make bots more stealthy.
A typical bot exhibits three invariant features along its onset: (1) the
startup of a bot is automatic without requiring any user actions; (2) a
bot must establish a command and control channel with its botmaster;
and (3) a bot will perform local or remote attacks sooner or later. These
invariants indicate three indispensable phases (startup, preparation, and
attack) for a bot attack. In this paper, we propose BotTracer to detect
these three phases with the assistance of virtual machine techniques.
To validate BotTracer, we implement a prototype of BotTracer based
on VMware and Windows XP Professional. The results show that Bot-
Tracer has successfully detected all the bots in the experiments without
any false negatives.

Keywords: Botnet, malware detection, virtual machine.

1 Introduction

Bots and botnets have become one of the most serious threats to Internet secu-
rity in recent years [14][22]. Compared with other malware like virus and worms,
bot behavior can be very stealthy, making their detection extremely difficult. For
example, a bot can stay inactive without any dramatic activities for a long time.
Oftentimes, a bot generates only a small amount of traffic, which is hidden among
legitimate traffic. Some of botnet research has focused on the understanding of
bots and botnets. For example, Barford et al. have analyzed in-depth bot source
code [9] and provided insights from several perspectives, while in [27], through
trace collection and analysis, authors observed the real-world botnet behavior.
Dagon et al. have studied the botnet propagation using time zones [15]. Some
research [25] has studied how to identify non-human behavior characteristics in
traffic and build IRC server scanners to identify potential botnets. To counter

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 97–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 L. Liu et al.

botnets, honeypots have been used to infiltrate the command and control net-
work of botnets [17].

While researchers are improving the detection and defense schemes, bot de-
velopers are also constantly making bots more stealthy. Due to the scrutiny on
IRC channels, today’s bots are bound to other popular applications (e.g., Web
browsers [6]) or protocols (e.g., HTTP [16]). Distributed P2P-based botnets,
which are much more difficult to detect and shut down than centralized bot-
net architectures, have also been developed [19][21][28][30]. Advanced bots like
Spam-Mailbot [12] have applied encryption to defeat traffic scanning.

Recent improvements on bot techniques call for better bot detection tech-
niques. The distinguishing feature of a typical bot attack is three indispensable
phases:

– Automatic startup: Different from those virus or worms (e.g., email worms)
that rely on user intervention, a bot can be started automatically by modi-
fying the automatic startup process list or registry entries. This is essential
for the bot to actively initialize the command and control channel with the
botmaster in order to receive commands.

– Command and control channel establishment: In spite of various bot hiding
techniques, existing bots all need to build a command and control channel.
In a large network environment, it is impractical for a botmaster to actively
trace all of its bots. To evade detection, a botmaster normally does not
actively contact or scan all bots, particularly when the botnet contains a
large number of bots behind firewalls or NAT that would not freely allow
incoming traffic.

– Information dispersion/harvesting: Sooner or later, a bot will be ordered to
take some actions through the established command and control channel1. A
bot can be asked to collect sensitive information from the local machine (in-
formation harvesting), or participate in organized attacks, such as spamming
and DDoS attacks, against a third party (information dispersion)2.

automatic startup
architecture&type?(non−whitelisted)?
known bot channel

or dispersion?
information haversting

 (bot startup) (prepare to receive commands) (attack)

suspicious highly suspicious bot malware

Fig. 1. BotTracer detection logic: startup, preparation, and attack during a bot onset

In this work, we propose BotTracer to detect bots by capturing these three
invariant features during their execution. First, when a host starts, a virtual
machine with the same image is also started. A virtual machine without any hu-
man interactions provides an effective playground to identify processes that are
1 If a bot simply hibernates, it does not do any harm, although it makes bot detection

more difficult.
2 We do not consider information processing as defined in [19].

BotTracer: Execution-Based Bot-Like Malware Detection 99

automatically started, especially those with networking activities. Second, with
such a playground with little noise traffic at hand, BotTracer keeps monitoring
automatic communications and classifies these communication channels. Since
a bot must actively contact a rendezvous point to build a command and con-
trol channel with its controller, BotTracer capture these channels and compare
them with known characteristics of bot command and control channels. This
can significantly narrow down the detection space. Lastly, BotTracer constantly
monitors system-level activities and traffic patterns of those processes that have
been identified as suspicious. Hence, BotTracer is able to capture those bots that
are actively performing information harvesting or dispersion. Figure 1 illustrates
BotTracer’s detection logic. To evaluate the performance of our proposed sys-
tem, we implement a prototype of BotTracer based on VMware and Windows
XP Professional and test a variety of bots. The experimental results demonstrate
that BotTracer can detect all these bots without false negatives.

Comparisons with Existing Approaches: Most recently, BotHunter [20] is
proposed to detect bots by correlating events from inbound scan to outbound scan.
As BotHunter aims to detect bot behavior at the network level, stealthy bots can
dodge detection by evading event timing correlation, or conducting local attacks
(such as deleting files) without any networking activities. The work in [29] focuses
on remote control behavior analysis by tracking tainted data from the network.
Panorama [31] also relies on taint analysis to analyzemalware behavior, although it
is done after a suspicious sample has alreadybeen detected. Aflip side of Panorama
is that its effectiveness is contingent on the completeness of the samples that have
been collected. SpyProxy [24] also employs behavior analysis through execution to
detect malicious Web content. It is, however, based on evidence of malicious side-
effects (the attack phase). Compared against these previous schemes, BotTracer
leverages virtual machine technology to significantly reduce the detection space,
and relies on in-depth bot behavior analysis to detect bots.

BotTracer takes a host-based approach, which complements existing network-
based approaches. Efficiency of network-based approaches has already been chal-
lenged by various techniques, such as obfuscation [26] and encryption [12]. More
importantly, a network-based approach commonly results in the shutdown of the
command and control channel server or the change of the DNS entries [18]. Since
it leaves infected machines unchanged, they can be easily reclaimed later. In our
experiments, we have shown that for traditional centralized botnets, BotTracer is
able to locate the centralized server after successfully identifying a bot machine.

The remainder of the paper is organized as follows. We present the design
of BotTracer in Section 2. Based on the implemented prototype, we evaluate
BotTracer in Section 3. We discuss some limitations in Section 4 and make
concluding remarks in Section 5.

2 BotTracer Design

Although bots commonly exhibit the three fundamental features as we identi-
fied above, detecting these characteristics is challenging since bot-like malware

100 L. Liu et al.

commonly employ various techniques to conceal themselves. Therefore, in Bot-
Tracer, a virtual machine that clones the host image is constructed to provide an
ideal detection environment. That is, once the host is started, a virtual machine
(VM) that clones the host image is also started automatically. However, the user
only operates on the host. The virtual machine thus becomes an environment
without human interactions.

On such a playground with significantly reduced noise, BotTracer thus focuses
on detecting the three invariant bot behaviors through execution:

– Once the virtual machine in BotTracer starts, automatically started pro-
cesses will self-expose. After filtering the processes on the whitelist, Bot-
Tracer keeps monitoring the remaining ones. As a bot must actively build a
command and control channel to the outside before any malicious behavior
is conducted, any outgoing traffic from any remaining process on the virtual
machine indicates it is suspicious.

– By constantly monitoring its inbound and outbound traffic once a process
is flagged as suspicious, BotTracer can identify whether a special command
and control channel is established. For example, a traditional IRC-based bot
may build a persistent connection to receive commands from the botmaster,
while modern bots may periodically contact the botmaster.

– An identified command and control channel indicates a highly suspicious bot-
like process. Since a bot will perform information harvesting or dispersion
sooner or later, BotTracer, which constantly monitors the highly suspicious
processes, detects information harvesting by tracing relevant system calls
and the corresponding parameters that are intercepted through the virtual
machine monitor, and detects information dispersion by inferring the traffic
patterns.

The detection scheme described above is based on an ideal virtual machine envi-
ronment. In practice, however, there are a number of issues that must be solved
to make the detection effective.

2.1 Whitelist and Starting Point Set

In BotTracer, the absence of user interactions on the virtual machine dramatically
reduces normal user traffic. To further facilitate the bot detection, it is preferable
to eliminate the interference from some legitimate processes that are automati-
cally started on the virtual machine as well. We classify them into three categories
as [13]: system daemons, software updates, and network applications automati-
cally started by the OS. The first category covers system daemons like system.exe,
svchost.exe, and services.exe in Windows. The second refers to automatic
software updates from the well-known Web sites. For the limited number of pro-
cesses in the first and the second categories, as their networking behaviors are
mostly fixed, we can simply whitelist them to allow their network connections.

The third includes user application processes like MSN and ICQ that are
configured in advance. For example, if a MSN client is configured to sign in au-
tomatically, the MSN client will connect to the MSN server once it is started. In

BotTracer: Execution-Based Bot-Like Malware Detection 101

addition, if a bot is bound to a popular application, such as a Web browser, the
bot may not automatically start once the virtual machine starts, but starts when
a particular application is started. For detection purpose, once they are started
by a user on the host, they are started on the virtual machine as well by appli-
cation synchronizer. For instance, a Web browser typically has a default setting
that allows a user to visit a Web site once the Web browser is launched. Thus,
once the Web browser is started, it will generate outbound traffic automatically.
Since the number of such applications on a host is limited, it is also possible to
have their default destinations, which we call starting points, whitelisted.

Although being effective most of the time, this approach may unnecessarily
burden bot detection: by default a Web browser is set to connect to only one
starting point, but the Web page of this site may contain rich information that
leads to connections to other sites. If the Web page is frequently updated, this
would be more difficult for us to whitelist the traffic based on one starting
point. For other applications, the starting point might be a registry server that
needs to validate user identification or a name service that provides references to
other resources. Thus, allowing connections to the starting point may not only
complicate whitelisting, but also make it inaccurate.

More importantly, there is a running copy of the application on the host. If
the process on the virtual machine is allowed to send out traffic, it may affect
the status of the application process on the host and lead to unexpected results.
For example, the automatic sign-in to a service from the virtual machine process
may kick out its corresponding host process that signed in before.

Therefore, to guarantee correct semantics of normal applications and ease bot
detection, in addition to put them on the whitelist, we also block the connec-
tions of user applications in the third categories to their starting points once
they are going through the virtual machine monitor. Blocking these connections
can thwart a sequence of actions of the process, and can turn these processes
into semi-dormancy or dormancy in most situations according to our experi-
ments. Conservatives can even merge the whitelist into the starting point set.
Thus, legitimate traffic and process activities could be minimized, which is very
favorable for bot detection.

Generating whitelist and starting point set for system daemons and software
updates is relatively easy. We found that nearly all of their network traffic is
to well known destinations. BotTracer thus can collect traffic information on a
typically configured Windows XP machine. Generating whitelist and the starting
point set for network applications is more difficult. BotTracer needs to query
starting points of popular applications, such as the default destination of a Web
browser, with the intervention of users.

2.2 Command and Control Channel Detection

Now we present how BotTracer detects the initialization of a command and control
channel in a controlled virtual machine with minimum noisy traffic. A bot always
needs to actively build a command and control channel to communicate with its
botmaster. In practice, there are two architectures for operating such channels.

102 L. Liu et al.

1. Centralized: The first is a centralized architecture. Traditionally, IRC-
based botnets commonly leverage IRC servers to issue commands to the
army of bots. In this centralized mode, there are a number of varieties. For
example, the destination could simply be a list of static IP addresses or a
list of URLs so that flexible IP addresses could be used. Some bots, such as
Graybird [6], may use an intermediate point, in which the bot will access a
static URL, retrieve the actual centralized server address, and connect to it.

2. Decentralized: A more recently emerged architecture that has also been
foreseen by many researchers for bot communications is through distributed
networks, such as P2P. This decentralized architecture can reduce the risk
of being detected. Nugache is such a Trojan that uses P2P technology for
communication [28]. In addition, not all P2P bots need seed servers. For
example, Sinit sends special discovery packets to look for peers [28].

Regardless of the architecture, there are two types of command and control
channels:

1. Type 1 – Persistent Channel: In this approach, a bot process directly
starts a connection to the destination and the connection is persistent. The
average connection time could be as long as 3.5 hours according to [11]. This
type of connections is normally initialized upon the startup of the machine.
IRC bots commonly use this approach.

2. Type 2 – Periodic/Sporadic Channel: In this approach, the bot process
periodically starts connections to a destination. Typically, the destination
has not communicated with the host before. An easy variation of this type is
to launch aperiodic connections instead of periodic ones. HTTP-based Bobax
bot [8] falls into this category.

Given the command and control channel architectures and types, we can
leverage these known characteristics to construct a bot channel event model.
The bot channel initialization event model consists of two levels. The first level
represents the channel type, indicated by low level events, such as a new con-
nection is initialized, an incoming connection is accepted, and a connection is
reset. The channel type level generates input to the channel architecture level,
which represents whether a centralized channel is built, a decentralized channel is
built, etc.

Some IRC-based botnets use persistent channels and the average duration of
an IRC bot can be as long as 3.5 hours [11]. By contrast, a typical sporadic
channel that uses HTTP may last for only a few seconds. Hence, we use the
following heuristics to detect the channel type:

– A new connection refers to one whose destination has not been contacted
before since the process has started.

– At the beginning, if a new connection is built, the connection is said to
connect to an intermediate point.

– If an intermediate point is reconnected, the connection is updated to be a
sporadic one.

BotTracer: Execution-Based Bot-Like Malware Detection 103

– If a connection to an intermediate point or a sporadic connection lasts more
than 30 seconds, it is flagged as a persistent one.

– When a new connection is accepted, it is flagged as a sporadic one.

Based on the above setup, Figure 2 shows the state transitions in our two-level
model. Note that in the command and control channel detection, BotTracer fo-
cuses on detecting the establishment of a command and control channel without
tracking how the channel is used. Therefore, it is expected that we would get
some false positives, which BotTracer relies on the next step to further reduce.

2.3 Information Harvesting/Dispersion Behavior Analysis

Information Harvesting Detection. For information harvesting, a bot may
be instructed to collect the information such as password, game/bank accounts,
product keys, some personal information, and report to the botmaster. Some of
such information may exist under particular application’s directories. Some may
be collected from the program’s memory space when the application is running.
Windows temporary files are also a popular target. For example, malware can
search sensitive data in cookies. In addition, some system information is also
attractive, such as registry entries. Existing research shows that currently in-
formation harvesting is mainly through code injection, keystroke log, and direct
memory reading.

While designing strategies to detect and defeat each of these is possible, mal-
ware developers may invent new evading approaches. Instead, since information
harvesting must involve disk or memory accesses, we rely on the process behavior
analysis at the system level to detect information harvesting as follows.

Intuitively, if a bot is commanded to access the disk, no matter what
approach it takes, monitoring disk accesses related system calls/APIs could
identify any disk accesses. For Windows systems, BotTracer can monitor a lim-
ited number of critical system APIs, such as OpenFile, CreateFileMapping,
CreateFileMappingNuma, and OpenFileMapping. Accessing any of these trig-
gers an alarm.

start

centralized
channel

botmaster
intermediate
 point

channel

decentralized

intermediate
 point

intermediate
 point ty

pe
ch

an
ne

l

connection

new

1 2

5

sporadic

4
persistent connection

sporadic connection

3

co
nn

ec
tio

n
sp

or
ad

ic

co
nn

ec
tio

n
pe

rs
is

te
nt

ac
ce

pt
an

ce

connection

ne
w

new
connection

connection
acceptancene

w
co

nn
ec

tio
n

connection
acceptance

connection

6

7 8

connectio
n

co
nnec

tio
n

peer

ch
an

ne
l

ar
ch

ite
ct

ur
e

pe
rsi

ste
nt

Fig. 2. Command and Control Channel Event Model

104 L. Liu et al.

If a bot harvests information from a process’ memory space, no matter which
approach (code injection, keystroke log, or direct memory reading) is used, the
malware typically starts from querying the information of the process or the
window in order to locate the exact victim it wants to peek at. Thus Bot-
Tracer can monitor OpenProcess, WriteProcessMemory, ReadProcessMemory,
CreateRemoteThread, FindWindow, SetWindowsHookEx, GetWindowThread
ProcessId, CreateToolHelp32Snapshot and their family APIs for potential
information harvesting.

Monitoring all these API calls for all processes on the virtual machine is
cumbersome since there are a few whitelisted legitimate applications on the
virtual machine. Among them, we are particularly concerned about the third
category applications, because malware can inject their code into these popular
applications. For these applications, they may have disk and memory activities,
although their connections to their starting points are cut off (network accesses
are not allowed). We have performed extensive experiments and the result shows
that most of such processes do not have any further activities without network
access, while a few do have disk and memory accesses occasionally. To deal
with them, we define their profiles in advance. That is, for a limited number
of automatically started processes or popular application processes that may
be started by the application synchronizer, we generate their profiles after their
connections to their starting points are forcefully cut off without user interactions
or network accesses. We call such profiles as dormant process profile as most
process activities are turned off. The profile includes the resources they can
access, the system functions through which they access, etc. In detection, once
a process behaves out of its profile, an alarm is raised. We extend the XML
language to define the dormant process profile. Figure 3 in Appendix A shows
the profile of the Internet Explorer that is generated on a clean machine
without user interactions or network accesses.

Information Dispersion Detection. Besides information harvesting that en-
dangers the infected machine, a bot is commonly commanded to participate in
organized attacks, such as DDoS and spam. Many schemes have been proposed
to deal with these attacks by leveraging some application level characteristics
and are thus application-dependent. From the perspective of an attacking bot,
however, all these attacks will show some unique traffic patterns. Furthermore,
the traffic destination should not be in the starting point set or on the whitelist.
Lastly, it is less likely such traffic is encrypted. Thus, we design our detection
and thwarting scheme as follows.

A common feature of information dispersion attacks is that the target of the
outgoing traffic is a third party, and often is a destination that the bot has not
communicated with before. As BotTracer starts to monitor the process behavior
from the beginning, it has the record of all the destinations that the bot has
communicated with. Before the attack is launched, the communication through
the command and control channel is bi-directional. After the bot receives the
attack command from the botmaster, the outgoing traffic is likely to go to new
destinations. Thus, at a higher level without interpreting any communication

BotTracer: Execution-Based Bot-Like Malware Detection 105

Table 1. Command and Control Channel Detection

Name Alarm Time (s) Architecture Type

Agobot 6.532 seconds Centralized Persistent

Forbot 34.173 seconds Centralized Persistent

Jrbot 1.895 seconds Centralized Persistent

Reptilebot 2.719 seconds Centralized Persistent

Sdbot 0.953 seconds Centralized Persistent

Rxbot 4.409 seconds Centralized Persistent

Graybird 2.997 seconds Centralized Persistent

Nugache 1.422 seconds Suspicious Suspicious

content, the destination of the outgoing traffic is different from the previous
incoming one, and an asymmetric traffic pattern could be observed.

However, only monitoring outgoing traffic patterns is not sufficient. Recall that
on the virtual machine, there is no user interaction and most of the legitimate
applications are semi-dormant or dormant. Thus, if there is outgoing traffic from
a process on the virtual machine, we can further examine its profile. If the
destination is not a starting point specified in the profile, it is highly likely that
the process is hijacked by a malware. Moreover, as there is no human interactions
on the virtual machine, if there is outgoing email traffic, very likely it is generated
due to spam attacks. Lastly, although the bot normally does not generate a large
amount of traffic, once it participates in a DDoS attack, its traffic amount would
increase remarkably in a short period, which can be leveraged to detect DDoS
attacks.

3 BotTracer Evaluation

Based on our design, we have implemented a prototype of BotTracer. In this
section, we present the experimental results of BotTracer when a set of repre-
sentative bots are tested, including the following three classes of bots:

– IRC bots and their variants are traditional bots controlled through
IRC. We tested a variety of IRC bots including Agobot4 private, Forbot,
Jrbot, Sdbot, Reptilebot, and Rxbot.

– Graybird has a large number of variants since its first debut in 2001. It is
one of the most prolific pieces of Windows malware. We experimented on
version 2005. It does not use IRC, but its own communication protocol. To
hide itself, it injects itself to Internet Explorer (IE). Our testing version
can start an IE process and copy itself to IE space and then execute in the
context of IE.

– Nugache uses encrypted and/or obfuscated P2P traffic for communication.
It opens TCP port 8 and has a static list of 22 initial peers to which a peer
aims to connect to at TCP port 8. After successful connection, it is going
to exchange the list of successfully connected peers. It participates in DDoS

106 L. Liu et al.

attacks once commanded, and it spreads over instant messengers such as
American Online Instant Messenger [28]. In Windows, it runs as a mstc.exe
after infection.

In addition, Microsoft Outlook Express and pcAnywhere are also experimented
to study false positives.

3.1 Prototype Implementation and Experimental Setup

We have implemented the prototype based on Windows XP Professional. Partic-
ularly, we use VMware workstation version 5.5.3 for the virtual machine. We use
VMware Converter [3] to clone the physical machine. The traffic pattern moni-
tor and analyzer are implemented in a traffic module, and the process behavior
analyzer is implemented as a separate behavior module.

The traffic module monitors all ingress and egress traffic after an application
starts. As it is necessary to map ports to the owning process for further analysis,
we implement our traffic module based on Enhance Netstat [4]. It can map a
port to its owing process even if the process adopts some approaches to hide itself
from Task Manager. When the channel architecture and type cannot be detected
and there is outgoing traffic that is not going to a starting point, BotTracer
reports it as suspicious.

The behavior module is implemented based on Microsoft Detours 2.1
Express [1]. It intercepts Win32 function calls. For our experiments, the be-
havior module is designed to capture all violations of the sensitive data accesses
that are not allowed in the dormant process profile. In our current implemen-
tation, it monitors a limited number of Win32 functions that are for file and
network accesses. In addition, process management functions are monitored.

For experiments, we have set up a controlled network. BotTracer was run on
a machine with a 2.79 GHz CPU and 2 GB RAM. The guest OS of VMware is
Windows XP Professional that is identical to the host OS.

Graybird injects itself to IE at runtime and its dormant profile is shown in
Figure 3. For IRC based bots, we set up an IRC server on another machine
with similar configurations and we modified source code to direct bot samples to
our IRC server so that we can issue commands to the bot through a connected
IRC client. Graybird is configured with its GUI tool. Its botmaster runs on
another machine. For Nugache, because only binary is available, we can do few
configurations.

3.2 Channel Establishment Detection

In the controlled environment, we first test whether BotTracer can successfully
detect the channel establishment and the corresponding channel type and ar-
chitecture. Table 1 shows the detection results for the eight bots. Alarm Time
is the time between when the bot starts and when its first outgoing traffic is
captured.

BotTracer: Execution-Based Bot-Like Malware Detection 107

Table 2. APIs called when Rxbot launches attacks

Action API Arguments

Access Registry
RegOpenKeyEx Software\BioWare\NWN\Neverwinter

RegQueryValueEx Location

Access Directory
fopen C:\NeverwinterNights\NWN\nwncdkey.ini
fget file handle

We found that nearly all bots initialized the command and control channel
within 10 seconds after their startup. Furthermore, both IRC bots and Graybird
establish one and only one persistent TCP connection. The entire channel detec-
tion time is less than 60 seconds. Note for Nugache, as the bot tries to connect to
22 initial peers that are hardcoded in the binary, all these connections failed as
expected. BotTracer thus cannot report the architecture and type of the chan-
nel. However, since it tries three times for a destination and tries different new
destinations in a sequence, BotTracer still reports it as suspicious.

Furthermore, as centralized channels are detected for IRC bots and Graybird,
we check whether or not the host (not the virtual machine) has connections to
the same IP and port because on the host there are also identical bot copies. We
found both IRC bots and Graybird on the host also connect to our IRC server
and Graybird botmaster, respectively. This confirms that a running copy of the
bot process on the virtual machine does not affect its corresponding process
running on the host. Furthermore, for bots operated in the centralized mode, it
is straightforward to further trace down to the server and shut down the server,
and possibly the entire botnet.

3.3 Information Harvesting/Dispersion Detection

As BotTracer alarms for all eight bots, the behavior module is activated as well
(note the traffic module is still active in order to thwart potential attacks). Un-
like the channel detection which is completed in a short time after a process
starts, a bot usually performs information harvesting or dispersion only after it
receives commands from the botmaster. Thus, through our experimental setup,
we act as the botmaster to start attacks. Particularly, for information harvesting
attacks, Rxbot was instructed to return keys of products, via a getcdkeys com-
mand. For information dispersion, we launch an information dispersion attack
through Agobot by sending it a DDoS command. For Nugache, we failed to send
any command as we do not have the source code and its behavior is not well
understood. In any of the experiments, we keep the logs of traffic and system
activities.

Table 2 shows the intercepted APIs and the corresponding parameters for the
Rxbot process after getcdkeys is received.

Since Rxbot has already been reported to be highly suspicious, accessing reg-
istry and files under an application directory in the above actions leads BotTracer
to report it as a bot and disable its input and output.

108 L. Liu et al.

Table 3. Agobot HTTP DDoS Attack Packets

Time (s) Source Destination Type

0 192.168.88.156 192.168.88.155 IRC

0.012 192.168.88.155 192.168.93.52 HTTP

2.608 192.168.88.155 192.168.93.52 HTTP

5.226 192.168.88.155 192.168.93.52 HTTP

Table 3 shows the packet sequences once a .ddos.httpflood http://www.
aaaaa.com 100 www.aaa.com 20003 command is issued to Agobot, which re-
quests the Agobot to send 100 HTTP requests to www.aaaaa.com with a 2000
ms interval. www.aaa.com is the HTTP referer. Note that 192.168.88.156 is IP
of the IRC server. The IP of the virtual machine is 192.168.88.155. The attack
target uses 192.168.93.52.

In the experiment, Agobot sends out each HTTP attack packet for 100 times.
Table 3 gives the time BotTracer takes to capture the outgoing attack traffic. In
our implementation, both the traffic pattern monitoring and the starting point
(to compare the outgoing traffic destination) in the process profile are leveraged.
The default threshold of outgoing packet number is 3, which means it takes 5.2
seconds for BotTracer to detect the attack. Conservative protection can reduce
the threshold to 1.

3.4 False Positive Experiments

False positives occur when normal applications are flagged as bot malware. Main-
taining and timely updating the dormant profile list for the normal and popular
applications on a host can greatly reduce false positive. We first test whether
or not a normal application without a profile can be captured in BotTracer. On
the host running BotTracer, we install Microsoft Outlook Express 6. We set
it up to check a hotmail mailbox once every minute, and the account and the
password are saved before the experiment was run. BotTracer quickly reports
this is a bot using a centralized and sporadic channel!

We disable BotTracer, and run it again. We have the following first six packet
sequence log as shown in Table 4 without any user interactions. In this table, the
first packet is a DNS query for services.msn.com. 192.168.68.227 is a domain
name server. The application thus obtains the IP address 64.4.60.7. Outlook
Express does not keep a persistent TCP connection. Instead, about every one
minute it starts a new TCP connection to the Web email server 65.55.154.125
and checks for new emails. This pattern causes BotTracer to report a false pos-
itive.

To validate whether a user could add its profile to BotTracer to eliminate
false alarms, we generate the dormant process profile for Outlook Express, and
Outlook Express is started again in BotTracer. As expected, BotTracer did
3 URL and the public IP addresses are anonymized. The prefix of the public IP address

is replaced with 192.168 when necessary.

BotTracer: Execution-Based Bot-Like Malware Detection 109

Table 4. Outlook Express 6 Connecting Packets

Time (s) Source Destination Type

0 192.168.88.155 192.168.68.227 DNS

0.095 192.168.88.155 64.4.60.7 HTTP

0.478 192.168.88.155 65.55.154.125 HTTP

1.129 192.168.88.155 65.54.183.193 HTTP

63.908 192.168.88.155 65.55.154.125 HTTP

124.463 192.168.88.155 65.55.154.125 HTTP

not raise an alarm. These indicate that it is critical for the user of BotTracer to
update the profile list once new applications are installed.

In addition to Microsoft Outlook Express 6, pcAnywhere 12.0.0 is run to see
if false positives would be raised. Controlled by a pcAnywehere remote,
pcAnywhere host has similar functions as a Graybird bot. Both a pcAnywehere
remote and a Graybird botmaster can manipulate nearly all computer resources
under control. We ran both of them on BotTracer. As before, BotTracer success-
fully detects the command and control channel of Graybird, which is flagged as
centralized and consistent, while no alarm is raised for pcAnywhere. The critical
reason for this result is that a pcAnywhere remote requires the contact informa-
tion of a pcAnywhere host, while a Graybird bot requires the contact information
of the Graybird botmaster. That is, a pcAnywhere host waits to be connected
by a pcAnywhere remote while a Graybird botmaster waits to be connected by
Graybird bots.

These case studies just show that it is possible to reduce false positives through
accumulated process profiles. However, in practice, we believe false positives
and false negatives would be inevitable, particularly when new techniques are
continuously adopted by bot developers.

4 BotTracer Limitations

A fundamental assumption of BotTracer is that the virtual machine cannot be
detected by the bot. In practice, there are many techniques that can detect vir-
tual machines [7][32]. Thus, if a bot detects whether it is running on a virtual
machine based system, our BotTracer will not work properly. This issue can be
addressed from two perspectives. First, as this is a challenge for all virtual ma-
chine based solutions, anti-fingerprinting techniques are still improving [5]. For
BotTracer, the detection behavior of a bot could be detected through system level
activity monitoring, and thus provides an opportunity to cheat the bot. Second,
the adoption of virtual machines in practice is quickly increasing [2]. With the
continuous performance improvement of the virtual machines, such as VMware
and Xen, and the pervasive availability of dual core processors, running applica-
tions in virtual machines may slightly degrade the user performance. Therefore,
in BotTracer, we can run applications in virtual machines instead. Lastly, most
bots currently do not detect the virtual machine based honeypots [30].

110 L. Liu et al.

On the other hand, we prohibit user behavior on the virtual machine in order
to make automatically started process self-exposed. If a bot first detects user
activities before it launches itself, the current BotTracer would fail to detect
such bots. The countermeasure is to synchronize user actions on the host with
the corresponding applications on the virtual machine [10].

As always, developing and thwarting bot-like malware is endless arm race. It
is foreseeable that some bots with new techniques may evade the detection of
BotTracer. For example, if the bot developers use a scheme to identify all bots by
labeling each bot with a unique ID when the bot first registers, the botmaster is
able to detect the simultaneous arrivals of two bots with the same ID if BotTracer
is activated. It is also difficult for BotTracer to detect time-bomb bots. Moreover,
as BotTracer relies on known characteristics of bot malware, bots equipped with
alternative approaches [23] (e.g., the communication channel is started by user
operations when a malicious Web page is accessed) can evade its detection. We
are currently trying improve BotTracer for better detection accuracy.

5 Conclusion

Bots and botnets have attracted a lot of attention from both the industry and
research communities recently. Detecting bots, however, is still very challenging
since bots are very stealthy and bot developers continuously and quickly adopt
new techniques to evade detection. In this study, we propose BotTracer to effec-
tively detect bot-like malware on end systems through detecting the bot startup,
preparation, and attack behavior during execution. A prototype of BotTracer has
been implemented based on VMware and a set of representative bots are tested.
The experimental results show that BotTracer is effective for bot detection.

Acknowledgements

We thank the anonymous referees for providing constructive comments. The
work has been supported in part by the U. S. National Science Foundation
under grants CNS-0509061, CNS-0621631, and CNS-0746649.

References

1. http://research.microsoft.com/sn/detours/

2. http://www.technologynewsdaily.com/node/4859

3. Convert physical machines to virtual machines,
http://www.vmware.com/products/converter/

4. Enhance netstat - the code project,
http://www.codeproject.com/internet/enetstatasp.asp

5. Malware immunization through deterrence and diversion, http://www.nsf.gov/
awardsearch/showAward.do?AwardNumber=0650386

6. One of the most prolific pieces of windows malware has expired,
http://news.softpedia.com/news/One-of-the-Most-Prolific-Piece-of-

Windows-Malware-Has-Expired-51466.shtml

http://research.microsoft.com/sn/detours/
http://www.technologynewsdaily.com/node/4859
http://www.vmware.com/products/converter/
http://www.codeproject.com/internet/enetstatasp.asp
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0650386
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0650386
http://news.softpedia.com/news/One-of-the-Most-Prolific-Piece-of-Windows-Malware-Has-Expired-51466.shtml
http://news.softpedia.com/news/One-of-the-Most-Prolific-Piece-of-Windows-Malware-Has-Expired-51466.shtml

BotTracer: Execution-Based Bot-Like Malware Detection 111

7. Honeyd security advisory 2004-001: Remonte detection via simple probe packet
(2004), http://www.honeyd.org/adv.2004-01.asc

8. Taxonomy of botnet threats (November 2006), http://us.trendmicro.com/

imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhite

papernovember2006.pdf

9. Barford, P., Yagneswaran, V.: An inside look at botnets (2006)
10. Borders, K., Zhao, X., Prakash, A.: Siren: Catching evasive malware. In: Proceed-

ings of the IEEE Symposium on Security and Privacy, Berkeley, CA (November
2006)

11. Chen, Y.: High-performance network anomaly/intrusion detection and mitigation
system (hpnaidm). In: ARO-DARPA-DHS Special Workshop on Botnets, Arling-
ton, VA (June 2006)

12. Chiang, K., Lloyd, L.: A case study of the rustock rootkit and spam bot. In: Pro-
ceedings of the First Workshop on Hot Topics in Understanding Botnets, Cam-
bridge, MA (April 2007)

13. Cui, W., Katz, R.H., Tan, W.: Binder: An extrusion-based break-in detector for
personal computers. In: Proceedings of USENIX (2005)

14. Dagon, D.: The network is the infection (2005),
http://www.caida.org/projects/oarc/200507/slides/oarc0507-Dagon.pdf

15. Dagon, D., Zhou, C., Lee, W.: Modeling botnet propagation using time zones.
In: Proceedings of The 13th Annual Network and Distributed System Security
Symposium, San Diego, CA (Febuary 2006)

16. Daswani, N., Stoppelman, M.: The Google Click Quality, and Security Teams.
The anatomy of clickbot.a. In: Proceedings of the First Workshop on Hot Topics
in Understanding Botnets, Cambridge, MA (April 2007)

17. Freiling, F., Holz, T., Wicherski, G.: Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: Proceedings of
the 10th European Symposium on Research in Computer Security (ESORICS)
(September 2005)

18. Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, Cambridge, MA (April 2007)

19. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-peer botnets:
Overview and case study. In: Proceedings of the First Workshop on Hot Topics in
Understanding Botnets, Cambridge, MA (April 2007)

20. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: Detecting
malware infection through ids-driven dialog correlation. In: Proceedings of 16th
USENIX Security Symposium, Santa Clara, CA (June 2007)

21. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale botnet detection and charac-
terization. In: Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, Cambridge, MA (April 2007)

22. Kawamoto, D.: Bots slim down to get tough. CNET News.com (November 2005)
23. Lam, V.T., Antonatos, S., Akritidis, P., Anagnostakis, K.G.: Puppetnets: Misusing

web browsers as a distributed attack infrastructure. In: Proceedings of ACM CCS
(2006)

24. Moshchuk, A., Bragin, T., Deville, D., Gribble, S., Levy, H.: Spyproxy: Execution-
based detection of malicious web content. In: Proceedings of the 16th USENIX
Security Symposium, Boston, MA (August 2007)

25. The Honeynet Project. Know your enemy: Tracking botnets (March 2005),
http://www.honeynet.org/papers/bots

http://www.honeyd.org/adv.2004-01.asc
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://www.caida.org/projects/oarc/200507/slides/oarc0507-Dagon.pdf
http://www.honeynet.org/papers/bots

112 L. Liu et al.

26. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the First Work-
shop on Hot Topics in Understanding Botnets, Cambridge, MA (April 2007)

27. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to under-
standing the botnet phenomenon. In: Proceedings of Internet Measurement Con-
ference (IMC), Rio de Janeiro, Brazil (October 2006)

28. Schoof, R., Koning, R.: Detecting peer-to-peer botnets (Feburary 2007),
http://staff.science.uva.nl/∼delaat/sne-2006-2007/p17/report.pdf

29. Stinson, E., Mitchell, J.C.: Characterizing the remote control behavior of bots.
In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579. Springer,
Heidelberg (2007)

30. Wang, P., Sparks, S., Zou, C.: An advanced hybrid peer-to-peer botnet. In: Proceed-
ings of the First Workshop on Hot Topics in Understanding Botnets, Cambridge,
MA (April 2007)

31. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communication Security, Alexandria, VA
(October 2007)

32. Zou, C., Cunningham, R.: Honeybot-aware advanced botnet construction and
maintenance. In: Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN) (June 2006)

http://staff.science.uva.nl/~delaat/sne-2006-2007/p17/report.pdf

BotTracer: Execution-Based Bot-Like Malware Detection 113

Appendix A

Figure 3 depicts the profile of the Internet Explorer that is generated on a
clean machine without user interactions or network accesses.

<profile>
<name>

Internet Explorer
</name>
<description>

the profile of Microsoft Internet Explorer
</description>
<path>

C:\Program Files\Internet Explorer\iexplore.exe
</path>
<starting point>

www.google.com
</starting point>
<registry>

no
</registry>
<file access function>

getFileSize
</file access function>
<file access path>

C:\Documents and Settings\user\Local Settings
\Temporary Internet Files\Content.IE5\index.dat

</file access path>
<alarm>

yes
</alarm>

</profile>

Fig. 3. The dormant profile of Internet Explorer

	BotTracer: Execution-Based Bot-Like Malware Detection
	Introduction
	BotTracer Design
	Whitelist and Starting Point Set
	Command and Control Channel Detection
	Information Harvesting/Dispersion Behavior Analysis

	BotTracer Evaluation
	Prototype Implementation and Experimental Setup
	Channel Establishment Detection
	Information Harvesting/Dispersion Detection
	False Positive Experiments

	BotTracer Limitations
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

