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Abstract. In Shamir’s (k, n)-threshold secret sharing scheme (thresh-
old scheme), a heavy computational cost is required to make n shares
and recover the secret. As a solution to this problem, several fast
threshold schemes have been proposed. This paper proposes a new
(k, n)-threshold scheme. For the purpose to realize high performance,
the proposed scheme uses just EXCLUSIVE-OR(XOR) operations
to make shares and recover the secret. We prove that the proposed
scheme is a perfect secret sharing scheme, every combination of k
or more participants can recover the secret, but every group of less
than k participants cannot obtain any information about the secret.
Moreover, we show that the proposed scheme is an ideal secret sharing
scheme similar to Shamir’s scheme, which is a perfect scheme such that
every bit-size of shares equals that of the secret. We also evaluate the
efficiency of the scheme, and show that our scheme realizes operations
that are much faster than Shamir’s. Furthermore, from the aspect of
both computational cost and storage usage, we also introduce how to
extend the proposed scheme to a new (k, L, n)-threshold ramp scheme
similar to the existing ramp scheme based on Shamir’s scheme.

Keywords: Secret sharing scheme, threshold scheme, threshold ramp
scheme, exclusive-or, entropy, random number, ideal secret sharing
scheme.

1 Introduction

A secret sharing scheme is an important tool for distributed file systems
protected against data leakage and destruction, secure key management sys-
tems, etc. The basic idea of secret sharing introduced by Shamir and Blakley
independently[1,2] is that a dealer distributes a piece of information (called a
share) about the secret to each participant such that qualified subsets of par-
ticipants can recover the secret but unqualified subsets of participants cannot
obtain any information about the secret. Shamir’s threshold scheme is based
on polynomial interpolation (‘Lagrange interpolation’) to allow any k out of n
participants to recover the secret.
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However, Shamir’s scheme has two problems: large storage is required to retain
all the shares, and heavy computational cost is needed to make shares and recover
the secret due to processing a (k − 1)-degree polynomial.

In order to reduce each bit-size of shares in Shamir’s scheme, ramp secret
sharing schemes have been proposed [3,4,5,6,7] that involve a trade-off between
security and storage usage. In ramp schemes, we can consider intermediate sets,
which are neither qualified nor forbidden sets to recover the secret, and hence,
partially leak information on the secret. For instance, in the (k, L, n)-threshold
ramp scheme[3,4], we can recover the secret from arbitrary k or more shares,
but no information about the secret can be obtained from any k − L or less
shares. Furthermore, we can realize that every bit-size of shares is 1/L of the
bit-size of the secret. However, an arbitrary set of k− l shares is an intermediate
set which leaks information about the secret with equivocation (l/L)H(S) for
l = 1, 2, . . . , L, where S denotes the random variable induced by the secret s.

On the other hand, as a solution to the heavy computational cost problem
associated with Shamir’s scheme with no leak of information about the secret
from k− 1 or less shares, Ishizu et al. proposed a fast (2, 3)-threshold scheme[8].
By generalizing Ishizu et al.’s scheme for the number of participants, Fujii
et al. introduced a fast (2, n)-threshold scheme[9,10]. These schemes enable fast
computation to make shares and recover the secret from two or more shares by
using just EXCLUSIVE-OR(XOR) operations. In these schemes, no information
about the secret can be obtained from one share, but the secret can be recovered
from each pair of shares. Furthermore, every bit-size of shares equals the bit-size
of the secret as with Shamir’s scheme. Especially, in Fujii et al.’s scheme, shares
are constructed by concatenating XORed terms of a divided piece of the secret
and a random number with the properties of prime numbers. These XORed
terms are circulated in a specific pattern and do not overlap with each other.
Kurihara et al. proposed a fast (3, n)-threshold scheme using XOR operations[11]
as an extension of Fujii et al.’s scheme by constructing shares with the secret and
two sets of random numbers, which are concatenated XORed terms of a divided
piece of the secret and two random numbers. This (3, n)-threshold scheme is an
ideal scheme as with Shamir’s and Fujii et al.’s. Since no method has ever been
investigated to extend the circulation property of this (3, n)-threshold scheme,
an extension of this (3, n)-threshold scheme has not been proposed before.

Shiina et al. proposed another fast (k, n)-threshold scheme using XOR or
additive operations[12]. This scheme can be applied to a cipher or signature
which uses a homomorphism, and leaks no information about the secret from
less than k shares. However, every bit-size of shares is (nCk−n−1Ck) = O(nk−1)
times as large as the bit-size of the secret. To address this efficiency problem,
Kunii et al. introduced an alternative method[13] to construct shares in Shiina
et al.’s scheme. However, the bit-size of shares is log2 n or more times larger than
the bit-size of the secret.

Thus, how to construct a fast (k, n)-threshold scheme using XOR operations
such that every bit-size of shares equals the bit-size of the secret, where k ≥ 4
and arbitrary n, remained an open question.
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Our Contributions. In this paper, we present a new (k, n)-threshold scheme
which realizes fast computation to make shares and recover the secret by using
just XOR operations. Our contribution can be summarized as follows:

– We realize a new (k, n)-threshold scheme by constructing shares with the
secret and k − 1 sets of random numbers, which are concatenated XORed
terms of a divided piece of the secret and k − 1 random numbers. These
XORed terms are circulated in a specific pattern with k dimensions, and do
not overlap with each other because the properties of prime numbers are
used.

– We show that the proposed scheme is a perfect secret sharing scheme, every
combination of k or more participants can recover the secret, but every group
of less than k participants cannot obtain any information about the secret.
We also show that the proposed scheme is an ideal secret sharing scheme
similar to Shamir’s scheme, which is a perfect scheme such that every bit-
size of shares equals that of the secret.

– By an implementation on a PC, we show that the proposed scheme is able
to make n shares from the secret and recover the secret from k shares more
quickly than Shamir’s scheme if n is not extremely large. Under our imple-
mentation, our scheme performs the operations 900-fold faster than Shamir’s
for (k, n) = (3, 11).

– We introduce how to extend our (k, n)-threshold scheme to a new (k, L, n)-
threshold ramp scheme which realizes not only fast computation but also
reduction of storage usage to retain n shares.

Organization. The rest of this paper is organized as follows: In Section 2,
we give several notations and definitions, and provide a definition of the secret
sharing scheme. In Section 3.1 of Section 3, we propose a new (k, n)-threshold
scheme using just XOR operations. Moreover, in Section 3.2, we prove that our
(k, n)-threshold scheme is an ideal secret sharing scheme as with Shamir’s, and
the efficiency of the proposed scheme is discussed in Section 4. In Section 5, we
introduce how to extend our (k, n)-threshold scheme to a new (k, L, n)-threshold
ramp scheme. Finally, we present our conclusions in Section 6.

2 Preliminaries

2.1 Notations and Definitions

Throughout this paper, we use the following notations and definitions:

– ⊕ denotes a bit-wise EXCLUSIVE-OR(XOR) operation.
– ‖ denotes a concatenation of binary sequences.
– n ∈ N denotes the number of participants.
– np is a prime number such that np ≥ n.
– Arithmetic operations (±, ×) on values of indexes of random numbers,

divided pieces of the secret, pieces of shares, their XORed terms, and
their random variables, are performed modulo np. Hence, Xc(a±b) denotes
Xc(a±b) mod np

.
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– H(X) denotes Shannon’s entropy of a random variable X .
– |X | denotes the number of elements of a finite set X .
– 2X denotes the family of all subsets of X .

2.2 Secret Sharing Scheme

Let P = {Pi | 0 ≤ i ≤ n − 1, i ∈ N0} be a set of n participants. Let D(�∈ P)
denote a dealer who selects a secret s ∈ S and gives a share wi ∈ Wi to every
participant Pi ∈ P , where S denotes the set of secrets, and Wi denotes the set
of possible shares that Pi might receive.

The access structure Γ (⊂ 2P) is a family of subsets of P which contains
the sets of participants qualified to recover the secret. Especially, Γ of a (k, n)-
threshold scheme is defined by Γ = {A ∈ 2P | |A| ≥ k}.

Let S and Wi be the random variables induced by s and wi, respectively. A
secret sharing scheme is perfect if

H(S|VA) =
{

0 (A ∈ Γ )
H(S) (A �∈ Γ ) , (1)

where A ⊂ P denotes a subset, and VA = {Wi | Pi ∈ A} denotes the set of
random variables of shares that are given to every participant Pi ∈ A. For any
perfect secret sharing scheme, the inequation H(S) ≤ H(Wi) is satisfied[14,15].

Let p(s) and p(wi) be the probability mass functions of S and Wi defined
as p(s) = Pr{S = s} and p(wi) = Pr{Wi = wi}, respectively. In general, the
efficiency of a secret sharing scheme is measured by the information rate ρ [16]

defined by ρ = H(S)
max
Pi∈P

H(Wi)
. The maximum possible value of ρ equals one for

perfect secret sharing schemes. When the probability distributions on S and
Wi are uniform, i.e. p(s) = 1/|S| and p(wi) = 1/|Wi|, the information rate is

ρ = log2 |S|
max
Pi∈P

log2 |Wi| , that is, the ratio between the length (bit-size) of the secret

and the maximum length of the shares given to participants. A secret sharing
scheme is said to be ideal if it is perfect and ρ = 1 [16,17,18]. Shamir’s scheme[1]
is recognized as being a typical ideal secret sharing scheme.

3 A (k, n)-Threshold Scheme

In this section, we describe the proposed (k, n)-threshold scheme. This scheme
enables to make n shares (distribution) and recover the secret from k or more
shares (recovery) using just XOR operations, for arbitrary threshold k and the
number of participants n. We realize this scheme by extending the circulation
property of Kurihara et al.’s (3, n)-threshold scheme[11]. Moreover, we show that
our scheme is an ideal scheme as with Shamir’s.
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Table 1. Distribution Algorithm of Pro-
posed (k, n)-Threshold Scheme

INPUT : s ∈ {0, 1}d(np−1)

OUTPUT : (w0, . . . , wn−1)

1: s0 ← 0d, s1 ‖ · · · ‖ snp−1 ← s

2: for i← 0 to k − 2 do

3: for j ← 0 to np − 1 do

4: ri
j ← GEN({0, 1}d)

5: end for

6: end for (discard r0
np−1)

7: for i← 0 to n− 1 do

8: for j ← 0 to np − 2 do

9: w(i,j) ←
��k−2

h=0 rh
h·i+j

�
⊕ sj−i

10: end for

11: wi ← w(i,0) ‖ · · · ‖ w(i,np−2)

12: end for

13: return (w0, . . . , wn−1)

Table 2. Recovery Algorithm of Pro-
posed (k, n)-Threshold Scheme

INPUT : (wt0 , wt1 , . . . , wtk−1)

OUTPUT : s

1: for i← 0 to k − 1 do

2: w(ti,0) ‖ · · · ‖ w(ti,np−2) ← wti

3: end for

4: w← (w(t0,0), . . . , w(t0,np−2), . . . ,

w(tk−1,0), . . . , w(tk−1,np−2))
T

5: M←MAT (t0, . . . , tk−1)

6: (s1, . . . , snp−1)
T ←M ·w

7: s← s1 ‖ · · · ‖ snp−1

8: return s

3.1 Our Scheme

In this scheme, the secret s ∈ {0, 1}d(np−1) needs to be divided equally into np−1
blocks s1, s2, . . . snp−1 ∈ {0, 1}d, where np is a prime number such that np ≥ n,
and d > 0 denotes the bit-size of every divided piece of the secret. Also, D uses n
shares, w0, · · · , wn−1, of a (k, np)-threshold scheme to construct a (k, n)-threshold
scheme if the desired number of participants n is a composite number.

Table 1 and Table 4 denote the distribution algorithm and the structure of
shares in our (k, n)-threshold scheme, respectively. To make shares, our (k, n)-
threshold scheme requires 13 steps: First, D divides the secret s ∈ {0, 1}d(np−1)

into np − 1 pieces of d-bit sequence s1, . . . , snp−1 ∈ {0, 1}d equally at step 1,
where s0 denotes a d-bit zero sequence, i.e. s0 = 0d and s0 ⊕ a = a. We
call this d-bit zero sequence a ‘singular point’ of divided pieces of the secret.
1 Next, at step 2-6, (k − 1)np − 1 pieces of d-bit random number r0

0 , . . . , r
0
np−2,

r1
0 , . . . , r

1
np−1, . . . , r

k−2
0 , . . . , rk−2

np−1 are chosen from {0, 1}d independently from
each other with uniform probability 1/2d, where GEN(X ) denotes a function to
generate an (log2 |X |)-bit random number from a finite set X . At step 7-12, D
makes pieces of shares by means of the following equation:

w(i,j) =

{
k−2⊕
h=0

rh
h·i+j

}
⊕ sj−i, (2)

1 It is not necessary for the singular point to be s0, i.e. we can set an arbitrary singular
point sm (0 ≤ m ≤ np − 1) and the others are np − 1 divided pieces of the secret.
For the sake of simplicity, we suppose that the singular point is s0 in this paper.
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Table 3. Algorithm of the Function MAT ()

INPUT : t0, t1, . . . , tk−1

OUTPUT : M

1: for i← 0 to k − 1 do

2: for j ← 0 to np − 2 do

3: v(ti,j) ← V EC(ti, j) =
�
i
np−1
j i

np

ti+j i
np

2ti+j . . . i
np

(k−2)ti+j
i
np−1
j−ti−1

�
4: end for

5: end for

6: G← (v(t0,0), . . . ,v(tk−1,np−2))
T

7:

�
G2 G1 J1

Ø G0 J0

�
← FG

�	
G Ik(np−1)


�
=
	
Ḡ J



8: [Inp−1 M]← BG ([G0 J0])

9: return M

Table 4. Structure of Shares of Proposed (k, n)-Threshold Scheme

j = 0 j = 1 · · · j = np − 2

w(0,j)

�
k−2

h=0

rh
0

�
⊕s0

�
k−2

h=0

rh
1

�
⊕s1 · · ·

�
k−2

h=0

rh
−2

�
⊕s−2

w(1,j)

�
k−2

h=0

rh
h

�
⊕s−1

�
k−2

h=0

rh
h+1

�
⊕s0 · · ·

�
k−2

h=0

rh
h−2

�
⊕s−3

...
...

...
. . .

...

w(n−1,j)

�
k−2

h=0

rh
h·(n−1)

�
⊕s−n+1

�
k−2

h=0

rh
h·(n−1)+1

�
⊕s−n+2 · · ·

�
k−2

h=0

rh
h·(n−1)−2

�
⊕s−n−1

where 0 ≤ i ≤ n−1, 0 ≤ j ≤ np−2. Finally, D concatenates these pieces and con-
structs shares wi = w(i,0) ‖ · · · ‖ w(i,np−2), and sends shares to each participant
through a secure channel. If n < np, step 7-12 does not work for 0 ≤ i ≤ np − 1
but it does for 0 ≤ i ≤ n − 1, and hence D does not generate np − n shares
wn, · · · , wnp−1. Thus, it is possible to add new participants Pn, · · · , Pnp−1 after
distribution by generating wn, · · · , wnp−1 anew as necessary. However, to gener-
ate new shares, k existing shares should be gathered, and all random numbers
and the secret should be stored.

Eq.(2) shows that these pieces of shares are circulated in a specific pattern
with k dimensions by the indexes of a divided piece of the secret k random
numbers, and do not overlap with each other because the properties of prime
numbers are used.

Table 2 denotes the recovery algorithm in the scheme. First, each share is di-
vided into d-bit pieces at step 1-3. Next, at step 4, k(np − 1)-dimensional vector
w is generated, which is a vector of divided pieces of shares. At step 5, k(np−1)×
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k(np−1) binary matrix M is obtained by the function MAT (). All divided pieces
of the secret, s1, . . . , snp−1, are recovered by calculating M ·w at step 6. Finally,
the secret s is recovered by concatenating s1, . . . , snp−1 at step 7.

Table 3 denotes the algorithm of the function MAT () which makes the matrix
M. First, (knp − 2)-dimensional binary vector v(ti,j) is obtained from indexes ti
and j at step 1-5. V EC() denotes the function to make v(ti,j), where ixy denotes
a x-dimentional binary row vector such that the only y-th element equals one
(0 ≤ y ≤ x− 1) and the others are zero. v(ti,j) is defined as the generator vector
of w(ti,j), i.e. w(ti,j) = v(ti,j) · r, where r is defined by

r = (r0
0 ,. . ., r

0
np−2, r

1
0 ,. . ., r

1
np−1, . . . , r

k−2
0 ,. . ., rk−2

np−1, s1,. . ., snp−1)T,

where s0 is omitted for the simple reason that s0 = 0d. For instance, v(0,1) =
(0100 01000 01000 1000) if k = 4 and np = 5. At step 6, the k(np−1)×(knp−2)
binary matrix G is generated by v(t0,0), . . . ,v(tk−1,np−2) as follows:

G =
(
v(t0,0), . . . ,v(t0,np−2), . . . ,v(tk−1,0), . . . ,v(tk−1,np−2)

)T
,

which is the generator matrix such that w = G · r. At step 7, the matrix
[G Ik(np−1)] is generated by column-wise concatenation, and transformed into
a row echelon form

[
Ḡ J

]
= FG

([
G Ik(np−1)

])
by performing the forward

elimination step of Gaussian elimination with the elementary row operations
on GF(2), where FG() and Ik(np−1) denote a forward elimination function and
the k(np − 1) × k(np − 1) identity matrix, respectively. Furthermore, Ḡ and J
correspond to the transformed matrices from G and Ik(np−1), respectively. And,[
Ḡ J

]
is divided into block matrices denoted as follows:

[
Ḡ J

]
=

[
G2 G1 J1

Ø G0 J0

]
,

where G0, G1 and G2 are an (np − 1) × (np − 1) block matrix, (k − 1)(np −
1) × (np − 1) block matrix and (k − 1)(np − 1) × (knp − np − 1) block matrix,
respectively. J0 and J1 are an (np − 1) × k(np − 1) block matrix and a (k −
1)(np−1)×k(np−1) block matrix, respectively. Ø denotes a null matrix. Then,
the backward substitution part of Gaussian elimination is executed on [G0 J0],
and we obtain the matrix

[
Inp−1 M

]
= BG([G0 J0]), where BG() and M

denote the function of backward substitution and a transformed matrix from
J0, respectively. Finally, MAT () outputs M as a matrix to recover s1, . . . , snp−1

from divided pieces of shares.
Our (k, n)-threshold scheme proposed in this paper is a direct extension of

Kurihara et al.’s (3, n)-threshold scheme[11] and Fujii et al.’s (2, n)-threshold
scheme[9] in terms of the structure of shares. Accordingly, the distribution and
recovery algorithms of our (k, n)-threshold scheme for k = 3 and k = 2 can
be utilized as Kurihara et al.’s (3, n)-threshold scheme and Fujii et al.’s (2, n)-
threshold scheme, respectively.
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3.2 The Proof of the Ideal Secret Sharing Scheme

Here, we introduce the following two theorems.

Theorem 1. Let A denote an arbitrary set of participants such that |A| ≤ k−1.
Then, since A is not in Γ of our proposed scheme, we have

H(S|VA) = H(S), (3)

where VA denotes a set of random variables of shares that are given to each
participant in A.

Proof (proof sketch). Let A = {Pt0 , . . . , Ptk−2} denote a set of k−1 participants,
where t0, . . . , tk−2 are arbitrary numbers such that 0 ≤ ti, tj ≤ n−1 and ti �= tj
if i �= j. Correspondingly, let VA = {Wt0 , . . . , Wtk−2} denote a set of k−1 random
variables, where Wt0 , . . . , Wtk−2 are induced by wt0 , . . . , wtk−2 , respectively. And
also, W(ti,0), . . . , W(ti,np−2) denotes random variables induced by divided pieces
of shares w(ti,0), . . . , w(ti,np−2).

The following condition is supposed: s1, . . . , snp−1, r0
0 , . . . , r

0
np−2, . . . , rk−2

0 ,
. . . , rk−2

np−1 are pairwise independent. And, r0
0 , . . . , r

0
np−2, . . . , r

k−2
0 , . . . , rk−2

np−1 are
chosen from the finite set {0, 1}d with uniform probability 1/2d.

We define generator matrices U and V which satisfy the following equation:

W = U · R ⊕ V · S,

= (w(t0,0),. . ., w(t0,np−2),. . ., w(tk−2,0),. . ., w(tk−2,np−2))T, (4)

where R and S are denoted by R = (r0
0 ,. . ., r

0
np−2, r

1
0 ,. . ., r

1
np−1,. . ., r

k−2
0 ,. . .,

rk−2
np−1)

T and S=(s1, . . . , snp−1)T, respectively. U and V are (k − 1)(np − 1) ×
(knp − 1) and (k − 1)(np − 1) × (np − 1) matrices, respectively. Eq.(4) can be
transformed into U·R = W⊕V·S. We consider the elementary row operation on
U in this equation. Then, from Lemma 1, all rows of U are linearly independent.
Hence, the hamming weight of each row of Ū is one or more, where Ū denotes
a row-reduced echelon form of U. Thus, each element of the vector obtained by
Ū ·R is a random number or a XORed combination of r0

0 , . . . , r
k−2
np−1. Therefore,

all the elements of the vector obtained by Ū ·R are random numbers which are
pairwise independent and uniformly distributed over {0, 1}d. This means that
W obtained from any S is uniformly distributed over {0, 1}d(k−1)(np−1). Thus,
since S is independent from W, we have H(S|W) = H(S). Therefore, Eq.(3) is
satisfied. 	

Theorem 2. Let A denote an arbitrary set of participants such that |A| ≥ k.
Then, since A is in Γ of our proposed scheme, the following equation is satisfied:

H(S|VA) = 0. (5)

where VA denotes a set of random variables of shares that are given to each
participant in A.



A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 463

Proof (proof sketch). Let t0, . . . , tk−1 be arbitrary numbers such that 0 ≤ ti, tj ≤
n − 1 and ti �= tj if i �= j. Arithmetic operations (±,×) on values of indexes
of random numbers, divided pieces of the secret, pieces of shares, their XORed
terms, and their random variables are performed modulo np.

We define generator matrices U and V which satisfy the following equation:

W=U · R ⊕ V · S,

=(w(t0,0),. . ., w(t0,np−2),. . ., w(tk−1,0),. . ., w(tk−1,np−2))T,

where R and S are denoted by R = (r0
0 ,. . ., r

0
np−2, r

1
0 ,. . ., r

1
np−1,. . ., r

k−2
0 ,. . .,

rk−2
np−1)

T and S = (s1, . . . , snp−1)T, respectively. Let
[
Ū V̄

]
denote the ma-

trix transformed from
[
U V

]
by the elementary row operation. Then, from

Lemma 1, we can obtain the following vector by using XOR operations on di-
vided pieces of shares:

[
Ū V̄

] ·
[
R
S

]
= (∗, . . . , ∗ | {sα ⊕ sβ}, {sα+1 ⊕ sβ+1}, . . . , {sα−2 ⊕ sβ−2})T .

(
α= tk−1−tk−2−

k−3∑
i=0

ti, β =−tk−1+tk−2−
k−3∑
i=0

ti

)
.

Since np is a prime number, we can also obtain

sα−1⊕sβ−1 =
np−2⊕
m=0

(sα+m ⊕ sβ+m).

Hence, we can consider the set X ={xm =sα+m⊕sβ+m|0≤m≤np−1} to recover
the secret. Then, since {pC =2p(tk−2−tk−1) | 0≤p≤np−1} is an additive group
with order np,

{C, 2C,. . ., (np − 1)C}≡{1,. . ., np − 1} (mod np)

is satisfied. Therefore, since s0 = 0d was inserted as a singular point, we can
recover all the divided pieces of the secret sequentially as follows:

m = −α : sC = x−α,
m = C − α : s2C = xC−α ⊕ sC ,

...
...

m = (np − 1)C − α : s(np−1)C = x(np−1)C−α ⊕ s(np−2)C ,

Therefore, since all the divided pieces of the secret can be recovered from k
shares, Eq.(5) is satisfied. 	

From these two theorems, the access structure Γ of our scheme is denoted by
Γ = {A ∈ 2P | |A| ≥ k}, and Eq.(1) is satisfied. Therefore, our scheme is a
perfect secret sharing scheme. Furthermore, since every bit-size of shares equals
the bit-size of the secret if we can suppose that s ∈ {0, 1}d(np−1) (d > 0), i.e.
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Fig. 1. Distribution and Recovery Processing Time for n = np

the size of the secret is d(np − 1) bits,2 the information rate ρ equals one. Thus,
our scheme is ideal as with Shamir’s.

4 Evaluation of Efficiency

In this section, we evaluate the efficiency of our scheme by comparing it with
Shamir’s scheme. First, we show the result of computer simulation by imple-
menting both our scheme and Shamir’s. Next, we consider the two schemes from
the perspective of computational cost.

Computer Simulation. We compared the proposed scheme with that of
Shamir’s for (k, n) = (3, 11), (3, 59), (3, 109), (5, 11), (10, 11) and (10, 23) by
implementation on a PC, where every scheme is implemented for n = np. Fig.1
denotes the processing time required to make n(= np) shares from 4.5 MB data
(secret) and recover the 4.5 MB secret from k shares, w0, · · · , wk−1 by using our
scheme and Shamir’s scheme. The simulation environment and conditions are
summarized in Table 5. For the implementation of Shamir’s scheme, we used
SSSS Version 0.5[19], which is a free software licensed under the GNU GPL.
An 8-byte block was processed in each cycle in the distribution and recovery
operations under Shamir’s scheme. In Fig.1, the horizontal axis and vertical axis
denote pairs of threshold and the number of participants, i.e. (k, n), and the
processing time, respectively.

2 If the size of the secret s were not multiple of (np−1), it is required to apply padding
operations to the secret bit sequence to make shares and hence the bit-size of each
share is larger than that of the secret.
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Table 5. Simulation Environment and Conditions

CPU / RAM : Pentium 4 3.0GHz / 2.0GB
Operating system : Debian GNU/Linux 4.0
Compiler : GCC 4.1
Source of random numbers : /dev/urandom

Size of the secret s : 4.5MB
(k, n) : (3, 11), (3, 59), (3, 109), (5, 11), (10, 11), (10, 23)

Implementation of Shamir’s scheme : SSSS Version 0.5[19]
Operating unit in Shamir’s scheme : 8 byte/operation

This graph shows that our scheme performed processing much faster than
Shamir’s. In (3, 11)-threshold schemes, our scheme was more than 900-fold faster
than Shamir’s in terms of both distribution and recovery. Similarly, in (3, 59),
(3, 109), (5, 11), (10, 11) and (10, 23)-threshold schemes, Fig.1 shows that our
scheme achieved far more rapid processing than Shamir’s.

Consideration. In our proposed distribution algorithm, step 9 at Table 1 re-
quires (k−2)d bitwise XOR operations to make one divided piece of share w(i,j)

which is constructed with s0, or else, (k − 1)d bitwise XOR operations to make
w(i,j) constructed without s0. Thus, (np − 2)(k− 1)d+(k− 2)d XOR operations
are required to make each share of w0, . . . , wnp−2. Furthermore, (np −1)(k−1)d
XOR operations are required to make wnp−1. Hence, the average number of

XOR operations to make one share is
{

(k − 1) − 1
np

}
· log2 |S|. Therefore, our

distribution algorithm requires an average of{
(k − 1) − 1

np

}
n · log2 |S| = O(kn) · log2 |S|,

bitwise XOR operations to make n shares. If n = np, it equals {(k − 1)n −
1} · log2 |S|. Since the cost of modulo np operations on indexes can be regard
as being negligible by using the fixed generator matrix in a manner similar to
the recovery algorithm, we omit the cost of the operations here for the sake of
simplicity.

On the other hand, in the proposed recovery algorithm, we can assume that
at the most {k(np − 1)− 1}d XOR operations are required to recover one of the
divided pieces of the secret with all divided pieces of k shares, and at the most
{k(np−1)−2}d XOR operations are required to recover one of the other divided
pieces of the secret with k(np−1)−1 divided pieces of k shares. Thus, the upper
bound of the number of XOR operations required to recover the secret by using
a block matrix M is roughly denoted by{

k(np − 1) − 2np − 3
np − 1

}
· log2 |S| = O(knp) · log2 |S|.

The recovery algorithm also requires O(k3np
3) bitwise XOR operations to exe-

cute forward elimination (step 7 of Table 3) and partial backward substitution
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(step 8 of Table 3) of Gaussian elimination as a pre-computation cost to obtain
M at the function MAT ().

On the other hand, in Shamir’s scheme, O(kn) and O(k log2 k) arithmetic
operations are required to make shares and recover the secret, respectively[1].

From Fig.1, it is evident that the processing time for distribution in both
Shamir’s and our scheme is linearly increasing with each of k and n. However,
though the processing time for recovery in Shamir’s scheme is constant and in-
dependent of n if threshold k is fixed, that of our scheme increases as the number
of participants n(= np) grows in Fig.1. The computational cost of recovery in
Shamir’s scheme depends only on k, but that in our scheme depends on both k
and np. Thus, though our scheme is much more efficient than Shamir’s for not
so large np as shown in Fig.1, our scheme will not perform faster processing to
recover the secret than Shamir’s if np is extremely large. We will determine the
upper bound of np for the value of k as a future work, in which our scheme will
be shown to be faster than Shamir’s.

5 How to Extend Our Scheme to a Fast Ramp Scheme

In terms of improved efficiency for both computational cost and storage usage,
a (k, L, n)-threshold ramp scheme[4,3] based on our (k, n)-threshold scheme can
be realized. In this section, we briefly show how the new ramp scheme can be
constructed.

In the distribution phase of our (k, L, n)-threshold ramp scheme (1 ≤ L ≤
k − 1), the differences from our (k, n)-threshold scheme can be summarized as
follows:

– The secret s ∈ {0, 1}dL(np−1) is equally divided into L(np − 1) pieces
s0
0,. . . ,s

0
np−2 ,. . . ,sL−1

0 ,. . . ,sL−1
np−2 ∈ {0, 1}d. And, the singular points in di-

vided pieces of the secret are s0
np−1, . . . , s

L−1
np−1 = 0d.

– To make n shares, the dealer D generates k − L sets of random numbers
{r0

0 , . . . , r
0
np−2}, {r1

0 , . . . , r
1
np−1}, . . . , {rk−L−1

0 , . . . , rk−L−1
np−1 }, where the bit-

size of each element in every set is d.
– The dealer makes pieces of shares w(i,j) by the following equation:

w(i,j) =

(
k−L−1⊕

h=0

rh
h·i+j

)
⊕
(

L−1⊕
h=0

sh
(k−L+h)·i+j

)
.

The above differences mean that the ramp scheme can be realized by replacing
L − 1 sets of random numbers by an L − 1 set of divided pieces of the secret,
where each set of divided pieces of the secret has a singular point. On the other
hand, we can recover the secret from k shares by similar recovery algorithm
to our (k, n)-threshold scheme. The differences in the recovery phase are only
the area of the generator matrix on which the partial backward substitution is
performed and hence the size of matrix M.

Then, the bit-size of each share is 1/L of the bit-size of the secret, and the
efficiency in terms of computational cost for both distribution and recovery is
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same as our (k, n)-threshold scheme: An average of O(kn) · log2 |S| bitwise XOR
operations is required to make n shares. To generate matrix M, O(k3n3

p) bitwise
XOR operations are required. Also, the upper bound of bitwise XOR operations
to recover the secret by using M is O(knp) · log2 |S|.

In a manner similar to [4], it can be proved that the security property of this
ramp scheme is same as Yamamoto’s ramp scheme based on Shamir’s scheme.

6 Conclusion

In this paper, we proposed a new (k, n)-threshold secret sharing scheme which
uses just XOR operations to make shares and recover the secret, and we proved
that the proposed scheme is an ideal secret sharing scheme. We estimated the
computational cost in our scheme and Shamir’s scheme for values of k and n.
Also, we implemented our scheme on a PC for specific parameters, and showed
that our scheme was more efficient than Shamir’s in terms of computational cost
provided n is not extremely large. Moreover, we introduced an extension of our
scheme to a new (k, L, n)-threshold ramp scheme, which can realize both fast
computation and reduction of storage usage.
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Appendix 1: Lemma 1

In this appendix, we present Lemma 1, which shows the linear independence
and dependence of rows of generator matrix G. However, since the proof is too
long to present in a paper because of the description about the elementary row
operation on G, we omit a detailed proof.

Lemma 1. Let t0, . . . , tL−1 denote indexes of L− 1 shares, which are arbitrary
numbers such that 0 ≤ ti, tj ≤ n − 1 and ti �= tj if i �= j. Arithmetic operations
(±,×) on values of indexes of matrices, vectors, random numbers, divided pieces
of the secret, pieces of shares and their XORed terms are performed modulo np.

Let the vectors S and R be denoted by S = (s0, s1,. . ., snp−1)T, and, R =
(r0

0 ,. . ., r
0
np−2, r

1
0 ,. . ., r

1
np−1,. . ., r

k−2
0 ,. . ., rk−2

np−1)
T, respectively. Let the matrices U

and V be generator matrices of L(np − 1) pieces of L shares such that

W = U · R ⊕ V · S
=
(
w(t0,0), . . . , w(t0,np−2), . . . , w(tL−1,0), . . . , w(tL−1,np−2)

)T
,

where though s0 = 0d is a singular point, we include s0 as a variable in S to
describe V briefly.

Then, the following equation is satisfied:

rank
([

U V
])

=
{

L(np − 1) (1 ≤ L ≤ k − 1)
k(np − 1) (L ≥ k) .

Remark 1. From Lemma 1, all rows of U are linearly independent if 1 ≤ L ≤
k − 1, and all rows of U are linearly dependent if L ≥ k. Moreover,

[
U V

]
can

be transformed into
[
Ū V̄

]
by the elementary row operation if L = k, which

http://point-at-infinity.org/ssss/
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satisfies the following equation:

[
Ū V̄

] ·
[
R
S

]
=(∗,. . ., ∗ | {sα ⊕ sβ}, {sα+1 ⊕ sβ+1}, . . . , {sα−2 ⊕ sβ−2})T . (6)

(
α = −

k−3∑
i=0

ti − tk−2 + tk−1, β = −
k−3∑
i=0

ti + tk−2 − tk−1

)
.

Proof (proof sketch). U and V can be denoted by

U =

⎛
⎜⎜⎜⎝

Inp−1 E(t0) E(2t0) · · · E((k−2)t0)

Inp−1 E(t1) E(2t1) · · · E((k−2)t1)

...
...

...
. . .

...
Inp−1 E(tL−1) E(2tL−1) · · · E((k−2)tL−1)

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

E((np−1)t0)

E((np−1)t1)

...
E((np−1)tL−1)

⎞
⎟⎟⎟⎠ ,

respectively. Inp−1 denotes an (np − 1)× (np − 1) identity matrix and E(j) (0 ≤
j ≤ np − 1) denotes the following (np − 1) × np matrix:

E(j) =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0...
. . .

...
... Inp−j

0 · · · 0 0
0 0 · · · 0

Ij−1

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

. (7)

Then, by the elementary row operation on [U V], we can obtain the following
matrix M if 1 ≤ L ≤ k − 1:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

Inp−1 E(t0) ∗ · · · ∗ ∗ · · · ∗ E(−t0)

Ø E(2)
(t0,t1)

∗ · · · ∗ ∗ · · · ∗ E(2)
(−t0,−t1)

Ø Ø E(2)
(2t1,2t2)

· · · ∗ ∗ · · · ∗ E(2)
(f2(t2),g2(t2))...

...
...

. . .
...

...
. . .

...
...

Ø Ø Ø · · · E(2)
(2tL−2,2tL−1)

∗ · · · ∗ E(2)
(fL−1(tL−1),gL−1(tL−1))

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where E(2)
(i,j) denotes E(2)

(i,j) = E(i) ⊕ E(j). fm(ti) and gm(ti) are denoted by

fm(ti)=−
m−2∑
j=0

tj−tm−1+ti, gm(ti)=−
m−2∑
j=0

tj +tm−1−ti,

respectively. Since the rank of E(2)
(i,j) equals np − 1 if i �≡ j (mod np), the rank of

M equals L(np − 1) and all rows of U are linearly independent if 1 ≤ L ≤ k− 1.
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In contrast, [U V] can be transformed into the following matrix M if L ≥ k:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Inp−1 E(t0) ∗ · · · ∗ E((k−2)t0)

Ø E(2)
(t0,t1) ∗ · · · ∗ E(2)

(−t0,−t1)

Ø Ø E(2)
(2t1,2t2) · · · ∗ E(2)

(f2(t2),g2(t2))...
...

...
. . .

...
...

Ø Ø Ø · · · E(2)
(2tk−3,2tk−2) E(2)

(fk−2(tk−2),gk−2(tk−2))

Ø Ø Ø · · · Ø E(2)
(fk−1(tk−1),gk−1(tk−1))

Ø Ø Ø · · · Ø Ø...
...

...
. . .

...
...

Ø Ø Ø · · · Ø Ø

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the rank of M equals k(np − 1) and all rows of U are linearly dependent
if L > k. Moreover, we can obtain the following vector with M:

E(2)
(fk−1(tk−1),gk−1(tk−1))

· S =

⎛
⎜⎜⎝

(sfk−2(tk−2) ⊕ sgk−2(tk−2))
(sfk−2(tk−2)+1 ⊕ sgk−2(tk−2)+1)...
(sfk−2(tk−2)−2 ⊕ sgk−2(tk−2)−2)

⎞
⎟⎟⎠ .

Therefore, by the elementary row operation on
[
U V

]
, we can obtain the vector

denoted at Eq.(6) if L = k. 	


Appendix 2: A Short Example

We present a short description of the recovery procedure from w0, w1, w2 and w4

for k = 4 and n = np = 5 as an example. At step 5 of Table 2, we execute the
function MAT (0, 1, 2, 4) denoted at Table 3, and obtain 16 × 16 binary matrix
M. In the function MAT (), first, we obtain the generator matrix G from indexes
of shares, which is denoted as follows:

G =

⎛
⎜⎜⎝

I4 E(0) E(0) Ē(0)

I4 E(1) E(2) Ē(4)

I4 E(2) E(4) Ē(3)

I4 E(4) E(3) Ē(1)

⎞
⎟⎟⎠ ,E(j) =

⎛
⎜⎜⎜⎜⎜⎝

0...
0
1 Ē(j)
0...
0

⎞
⎟⎟⎟⎟⎟⎠

,

where E(j) is the same matrix as Eq.(7). Then, by the elementary row operation
on [G I16] in MAT (), [I4 M] is obtained, which is denoted as follows:

[I4 M] =

⎛
⎝1000 1111 0001 0101 1011

0100 0111 1110 1000 0001
0010 0011 0110 0001 0100
0001 0001 0010 1010 1001

⎞
⎠ .

At step 6 of Table 2, all divided pieces of the secret are recovered with M and
w by the operation (s1, s2, s3, s4)T = M ·w.
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