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Abstract. This paper presents a five-round algebraic property of the
Advanced Encryption Standard (AES). In the proposed property, we
modify twenty bytes from five intermediate values at some fixed loca-
tions in five consecutive rounds, and we show that after five rounds
of operations, such modifications do not change the intermediate result
and finally still produce the same ciphertext. We introduce an algorithm
named ¢, and the algorithm accepts a plaintext and a key as two inputs
and outputs twenty bytes, which are used in the five-round property.
We demonstrate that the ¢ algorithm has 20 variants for AES-128, 28
variants for AES-192 and 36 variants for AES-256. By employing the §
algorithm, we define a modified version of the AES algorithm, the JAES.
The JAES calls the § algorithm to generate twenty bytes, and uses these
twenty bytes to modify the AES round keys. The JAES employs the same
key scheduling algorithm, constants and round function as the AES. For a
plaintext and a key, the AES and the §AES produce the same ciphertext.
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1 Introduction

The block cipher Rijndael [I] was selected as the Advanced Encryption Standard
(AES) by National Institute of Standards and Technology. Rijndael has a simple
and elegant structure, and it was designed carefully to withstand two well-known
cryptanalytic attacks: differential cryptanalysis [2] and linear cryptanalysis [3].
Most operations of Rijndael are based on the algebraic Galois field GF(2%),
which can be implemented efficiently in dedicated hardware and in software on
a wide range of processors.

Since Rijndael was adopted as a standard [4], there have been many research
efforts aiming to evaluate the security of this cipher. A block cipher, named Big
Encryption System (BES), was defined in [5], and Rijndael can be embedded
into BES. The eXtended Linearization (XL) [6] and the eXtended Sparse Lin-
earization (XSL) [7] techniques are new methods to solve nonlinear algebraic
equations. The concept of dual ciphers was introduced in [§], and a collision at-
tack on 7 rounds of Rijndael was proposed in [9]. The most effective attacks on
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reduced-round variants of the AES are Square attack which was used to attack
the cipher Square [TO/I]. The idea of the Square attack was later employed to im-
prove the cryptanalysis of Rijndael [I1], and to attack seven rounds of Rijndael
under 192-bit and 256-bit keys [12]. A multiplicative masking method of AES
was proposed in [I3] and further discussed in [I4]. The design of an AES-based
stream cipher LEX was described in [I5], and the construction of an AES-based
message authentication code can be found in [I6]. So far, no short-cut attack
against the full-round AES has been found.

In this paper, we present a five round property of the AES. We modify twenty
bytes from five intermediate values at some fixed locations in five consecutive
rounds, and we demonstrate that after five rounds of operations, such modifi-
cations do not change the intermediate result and finally still produce the same
ciphertext. We introduce an algorithm named §, and the § algorithm takes a
plaintext and a key as two inputs and outputs twenty bytes, which are used
in the five-round property. By employing the § algorithm, we define a modified
version of the AES algorithm, the AES. The JAES calls the § algorithm to gen-
erate twenty bytes, and uses these twenty bytes to modify the AES round keys.
For a plaintext and a key, the AES and the JAES produce the same ciphertext.

This paper is organized as follows: Section 2l provides a short description of
the AES. In Section [B] we present the five-round algebraic property of the AES,
and introduce the § algorithm. In Section [ we define a modified version the
AES algorithm, the JAES. Finally, Section [ concludes this paper. Appendix [Al
and Appendix [Bl provide the process of finding the values of the eight variables
which are used in Section [Bl

2 Description of the AES

We provide a brief description of the AES, and refer the reader to [4] for a
complete description of this cipher. AES is a block cipher with a 128-bit block
length and supports key lengths of 128, 192 or 256 bits. For encryption, the
input is a plaintext block and a key, and the output is a ciphertext block. The
plaintext is first copied to 4 x 4 array of bytes, which is called the state. The
bytes of a state is organized in the following format:

ap a4 ag ai2
ay as a9 ais
az as aio a4
a3z a7 ai1 ais

where a; denote the i-th byte of the block. After an initial round key addition,
the state array is transformed by performing a round function 10, 12, or 14
times (for 128-bit, 192-bit or 256-bit keys respectively), and the final state is
the ciphertext. We denote the AES with 128-bit keys by AES-128, with 192-
bit keys by AES-192, and with 256-bit keys by AES-256. Each round of AES
consists of the following four transformations (the final round does not include
MixColumns):
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1. The SubBytes (SB) transformation. It is a non-linear byte substitution that
operates independently on each byte of the state using a substitution table.

2. The ShiftRows (SR) transformation. The bytes of the state are cyclically
shifted over different numbers of bytes. Row 0 is unchanged, and Row ¢ is
shifted to the left ¢ byte cyclicly, ¢ € {1,2,3}.

3. The MixColumns (MC) transformation. It operates on the state column-by-
column, considering each column as a four-term polynomial. The columns
are treated as polynomials over GF(2%) and multiplied modulo z# + 1 with
a fixed polynomial, written as {03}z + {01}2% + {01}z + {02}.

4. The AddRoundKey (ARK) transformation. A round key is added to the
state by a simple bitwise exclusive-or (XOR) operation.

The key expansion of the AES generates a total of No(Nr + 1) words: the
algorithm needs an initial set of Nb words, and each of the Nr rounds requires
Nb words of key data, where Nb is 4, and Nr is set to 10, 12, or 14 for 128-bit,
192-bit, or 256-bit key sizes respectively. For a 128-bit key K, we denote the
round keys by

Ky Ki Ki Kiy

Ki K K Ki

Kb K Kio Ky

K3 Ki; Ki Kis
where 4 is the round number, ¢ € {1,2,---10}. We note that the round key used
in the initial round is the secret key K itself, and the secret key is represented
without the superscript 7.

3 A Five-Round Property of AES

We present a five-round property of the AES in this section. In the proposed
property, we modify twenty bytes from five intermediate values at some fixed
locations in five consecutive rounds, and we show that after five rounds of op-
erations, such modifications do not change the intermediate result and finally
still produce the same ciphertext. The modifications are carried out by perform-
ing four extra XOR operations at the end of each round (i.e., after the ARK
transformation), and in total, we perform twenty extra XOR operations in five
rounds. We require that each of these five rounds must contain SB, SR, MC and
ARK transformations.

We use Figure [[l and Figure [ to describe this property. The layout of the
twenty bytes in the five intermediate values is shown in FigureIZL and the twenty
bytes are Gy, Gy, Gy, Gho, My, M3, Mg, Miy, Ry, Ry, Ry, Ry, Vg, Vs, Vs, Vi,
Zy, Zy, Z§, and Z1o~ In Figure[] all intermediate valueb are hsted when using the
AES algorithm to encrypt a plaintext P under a 128-bit key K , and all bytes of
the intermediate values are denoted by plain variables. Correspondingly, Figure[2]
enumerates all intermediate values of the AES with 20 extra XOR operations.
The twenty-byte modifications take place in Round 1, 2, 3, 4 and 5, and after
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ARK transformation in each of these five rounds, we perform XOR operations
on Bytes 0, 2, 8 and 10. We show that the twenty-byte modifications do not
change the input to Round 6, i.e., both the AES and the AES with 20 extra
XOR operations generate the same input to Round 6. In Figure 2 a variable
marked by a asterisk indicates that the value at that location has been affected
by the twenty-byte modifications, and a plain variable shows that the value at
that location is not affected by the twenty-byte modifications. For example, after
ARK in Round 1 in Figure [ Byte G; is XORed with Byte G, and after SB,
we have four modified bytes H}, i € {0,2,8,10}, and twelve unchanged bytes:

77

H., Hs, Hy, Hs, Hg, H7, Hy, H11, H12, H13, H14, and His.

3.1 The § Algorithm

To decide the values of the twenty bytes: G, M/, R., V! and Z!, ¢ € {0,2, 8,10},
we introduce an algorithm named §. For any plaintext P and any key K used in
the AES algorithm, the § algorithm accepts P and K as two inputs, and generates
an output which contains twenty bytes {G}, M/, R;,V/, Z!}, where G}, M/, R, V/,
and Z! are bytes, i € {0,2,8,10}.

The § algorithm includes a number of steps:

1. Process the first five rounds of the AES algorithm by taking the plaintext P
and the key K as the inputs, i.e., start with the initial round, and process
Round 1, 2, 3, 4 and 5 of the AES. Therefore, we know all intermediate
values in Figure[I] from initial round to Round 5.

2. Initialize G}, M/, R, V/ and Z] to zero, i € {0,2,8,10}.

3. Choose Gy, G5, G and G freely. The only requirement is that at least one

of these four bytes is not equal to zero, namely, Gy, G5, G§ and G, cannot be

all zeros. If G{,, G4, G§ and G, are all zeros, the § algorithm outputs twenty
zero bytes. Once Gy, G, Gg and G, are decided, the remaining 16 bytes

will be computed by the procedures described in Section BT Appendix [A],

Appendix [Bl and Section

Decide My, M}, M§ and Mj,.

Decide R{, R}, R and R),.

Decide Vj, Vg, V§ and VY.

Decide Z{, Z}, Z§ and Z,,.

oot

Remark 1. There are 232 — 1 combinations of {G}, G5, G, G} because each
byte can have 28 possible values.

3.1.1 Deciding M/, M)}, M} and Mj,

After we have decided the values of Gf), G4, Gs and G, we carry out a four-
round computation (of the AES with extra 12 XOR operations), called Routine
Computation One, which starts with the initial round and ends with MC in
Round 4 (see Figure ). All intermediate values from the computation of this
time are stored in array called Buffer One (note that Routine Computation One
produces 19 intermediate values).
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We denote the input and output of MC in Round 4 by

I Ty 1§ Tis Us Ui Ug Uty
Ty Ts T Tis | e | U Us Us Uty
—_—

Ty T T Th, Us Ug Ufp Uty
Ty T Ty T U3 U7 Uy Ufs

Next, we will show that there is an algebraic relation between Bytes {M], MJ,
M, M{,} and Bytes {UJ, U§, Ufy, Ufy}. Based on this relationship, we can
change the values of {UJ, Ug, Uy, Uy} to the values of {Uys, Us, U1z, U4} by
setting the values of {M{, M4, M{, Mj,}. After we have decided the values of
{M{, M}, M{, M{,}, we aim to have an intermediate value after MC in Round
4 in the format of

Uy Uy Ug Uis

Ui Us Ug Uts
U3 Us Uiy Ua
Us U7 Uiy Uss

The steps of deciding {M{, M5, M§, M{,} are listed as follows:
{M(1)7M57Mé7M{0} — {NS7N;7N§7NTO} — {OS7O;7O;7OTO} — {QT7Q§7QS7Q;1}

— {RingngvRil} — {ST7S;7S;7ST1} - {TgvT;7deva5} - {U47 U67U127U14}'

After we change the values of {U}, U§, Uy, Uy} to the values of {Uy, Us, Ui,
Ui4}, the input and output of MC in Round 4 become

Ty Ty Tg Tiy U Us U Unz
TY T3 T Tt | e | U Us Us Uty
—_—

Ty Ty Tio Thy Us Us Uiy Uts
T; T3 Ty Trs Us U7 Ul Uts

Our next target is to modify the values of {713, T+, 115,115} according to the
values of {Uy, Us, U2, Ur4}. From the MC transformation, we have the following
formula:

Ug Us Ui Usa 020301017 [T5 T5 T8 Th
Ut Uz Ug Ut 01020301 | | TF T¢ T5 Tty
Us Us Uiy Una | |01 010203 | |73 730 T3 T,
Ui Uz Uty Ut 03010102 |75 5 Tp T

To find out the values of {T¢, T, Tts, T}, we need to solve the following two
groups of linear functions, which are marked by () and ().
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T o
T12
T .
[02 03 01 01] = Uy 7,
T [02 03 01 01] =Uss
17y
T
L7 ] (1) s,
T o (2)
T12
T .
[01 01 02 03] = Us T
T [01 01 02 03] = U
17y
LT7 | .
_T15 p

In (), there are two linear equations with two undecided variables T3 and T+,
and thus we can solve () to obtain the values of T} and T7. Similarly, there
are two linear equations in () with two undecided variables Ty, and T75, and
therefore we can solve () to get the values of T} and T55. After having 77, T+,
Ty and 17y, perform SR™! (inverse ShiftRows) and SB~! (inverse SubBytes),
and we have the values of R}, R}, Ry and Rj; after ARK in Round 3. Apply
the ARK transformation to R}, R3, Rg and Ry, and we have the values of Q7,
R3, Q5 and Q7. Our next task is to modify the values of Og, O3, OF and O7.
In Round 3, the input and output of MC are as follows:

Q5 Qi Q5 Qs 020301017 [O; Os O Oua
Qi Qs Q5 Qis| 01020301 | |01 05 05 O
Q5 Q5 Qo Qiu| 01010203 | |05 O OFp Ous
Q3 Q7 Q11 Qis 03 01 01 02 O3 O7 O11 O75

We can form two groups of linear equations, which are named (@) and ), and
solve them to decide Of, O%, Of and O7,. There are two linear equations in (8]
with two undetermined variables Of and O3, and we can solve them to determine
the values of Of and Oj. Also, there are two linear equations in (@) with two
undecided variables Of and 07, and we can get Of and O7, by solving (@]).

o: o
0 Og
O1
[01 02 03 01] =Qr Oy i
o [01 02 03 01 ] =Q;
: 0o
O3
F oy (3) O11
O, - - 4
; o ()
O1
[03 01 01 02] =Q; Oy
or [03 01 01 02] =Qn
2 Ofo
16)
Lo | O11 |

Once knowing the values of O, O3, O} and O3,, we perform SR~! and thus we
get Bytes Ng, N3, N§ and N7, after SB in Round 3. Finally, Bytes M}, M},
MY and Mj, are decided by the following computations (note that Mg, My, Mg
and M7, are obtained from Buffer One):



324 J. Huang, J. Seberry, and W. Susilo

M}y = M; @SB YNg), My= M; oSBT (Ny),
Mg = Mg @ SB™H(Ng), Miy= My ®SB™(Ny,).

At this stage, we have decided the values of {G}, M/}, and {R},V/, Z!} are not
yet decided (note: they are still initialized to zero), i € {0,2,8, 10}.

The process of deciding Ry, R5, Ry and R}, and the routine of finding
Vg, V3, V§ and VY, are similar to the steps of determining M, M}, M{ and M7,
and they are described in Appendix [Al and Appendix [B] respectively.

3.1.2 Deciding Zj, Z}, Z} and Z;,
Perform Routine Computation Two second time, and the intermediate value
after MC in Round 5 is

YO* Y4 YS* Y12

Y1 Ys Yo Yis

YZ* YG be Y14

Y3 Y7 Y1 Yis
Apply ARK to the intermediate value above, we have
25 Za Zs Zh2
Z1 Zs Zy Zhs
Z3 Ze Zio Z1a
Z3 Z7 Z11 Zis

Bytes Z,, Z}, Z} and Z!, are computed as follows: (note that Zy, Z2, Zg and
Z1o are obtained from the computation in which the AES algorithm is used to
encrypt the plaintext P under the key K (see Round 5 in Figure[I)):

ZO — ZO @ ZO, Z2 ZQ @ 227
Zy =75 ®© Zs, Zyy=Zip® Z10.

Finally, we have decided all values of {G}, M/, R, V!, Z!}, i € {0,2,8,10}. Now,
we carry out a five-round computation of the AES w1th extra 20 XOR operations,
called Routine Computatlon Three, by using Bytes Gy, Gb, G§, Gy, M}, M),
Mg, My, Ry, Ry, Ry, R, Vi, Va, Vi, Vi, Zy, Z3, Zg, and ZlOa and we will get
the same mput to Round 6 as the AES algorithm.

Routine Computation Three
L ARK
Initial round: —

SB SR MC ARK &
Round 1: — — — — —

SB SR MC ARK &
Round 2: — — — — —

SB SR MC ARK &
Round 3: — — — — —

SB SR MC ARK &
Round 4: — — — — —

SB SR MC ARK &
Round 56: — — — — — .
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Remark 2. The most important part of the § algorithm is solving those eight

groups of linear equations: (), @), @), @), @), @), (@) and (B). There is one

question needs to be answered. The question is: are these eight groups of linear
equations independent? The answer to this question is choosing different values

of Bytes Gy, G, G§, G' if we face such situations. Among the twenty bytes:
67 /27 / 107M07M27M87M107R07R27R87 107%7‘/27‘/87‘/107Z07227287
and Z1,, we can select the values of G, G%, G§ and G} freely. As we showed in

Remark 1, there are 232—1 combinations of these four bytes, and correspondingly,
we can have 232 — 1 intermediate values in Figure ] starting with SB in Round
2 and ending with ARK in Round 10. If we meet any dependent equations, we
can overcome this problem by choosing different values of Bytes Gf,, G5, G§ and
G'o- Therefore, this question will not cause any trouble. So far, we have not met
any dependent equations in our large-sample experiments.

Remark 3. From Remark 1, we note that there is more than one combination
of the twenty output bytes of Algorithm § for a given pair of (P, K).

Remark 4. For distinct plaintext and cipher key pairs (P, K), Algorithm ¢ needs
to perform individual computations to decide the values of the twenty bytes.

3.2 Variants of Algorithm §

We show that there are other variants of the ¢ algorithm. In section Bl the
locations of the twenty bytes are {0,2,8,10}, and there are three other com-
binations, which are {4,6,12,14}, {1,3,9,11} and {5,7,13,15}. In Figure [2
{G}, M! R;, V!, Z!} operate in Round {1, 2, 3,4, 5}, and they can also operate in
Round {2 3,4,5,6}, {3,4,5,6,7}, {4,5,6,7,8}, or Round {5,6,7,8,9}. There-
fore, there are 4 different combinations for the byte locations, and there are 5
different combinations for the round numbers in AES-128. In total, there are 20
(= 4 x 5) variants of the ¢ algorithm for AES-128. The § algorithm has 28 (=

4 x 7) variants for AES-192, and 36 (= 4 x 9) variants for AES-256.

4 The Modified Version of the AES: §AES

By employing the § algorithm, we propose a modified version of the AES, which
is named §AES. The major difference between the AES and the AES is that the
0AES uses modified AES round keys. In Figure 2lin Section Bl we apply 20 extra
XOR operations to the intermediate values after ARK in Round 1, 2, 3, 4 and
5 by using Bytes {G}, M/, R,,V/, Z!},i € {0,2,8,10}. The construction of the
JAES comes from the fact that we can use Bytes {G}, M/, R,, V!, Z!} to XOR
with AES Round Key 1, 2, 3, 4 and 5 (instead of with the intermediate values
after ARK), and we still get the same result, ¢ € {0,2,8,10}. There are twenty-
byte differences between the AES round keys and the JAES round keys. The
0AES employs the same key scheduling algorithm, constants and round function
(i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey) as the AES.

The construction of the JAES is adding two procedures, which are calling the
0 algorithm and modifying the AES round keys, to the AES algorithm.
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1. Suppose for a plaintext P and a cipher key K, the AES algorithm produces
a ciphertext C, written as C = AESk(P).

2. By accepting P and K as two inputs, use the ¢ algorithm to generate twenty
output bytes:

(G, M}, R}, V), 2]}, i €{0,2,8,104]

3. Apply the AES key scheduling algorithm to K and get the round keys.

4. Use {G}, M, R, V! Z!} to XOR with the corresponding AES round keys
and get the round keys for the 6AES, i € {0,2,8,10}.

5. After carrying out the transformations above, the dAES uses the same round
function (i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey) to
process the plaintext P with modified AES round keys, and finally the JAES
also generates the same ciphertext C, denoted by C' = §AESK (P).

Compared with the AES algorithm, the JAES needs to do some extra transfor-
mations, i.e., calling the § algorithm and modifying the AES round keys. More-
over, for distinct plaintext and cipher key pairs (P, K), the JAES needs to carry
out individual computations to get Bytes {G}, M/, R;, V!, Z!}, € {0,2,8,10}.

K2

5 Conclusions

We described a five-round algebraic property of the AES algorithm. In the pre-
sented property, we modify twenty bytes from five intermediate values at some
fixed locations in five consecutive rounds by carrying out twenty extra XOR
operations, and we show that after five rounds of processing, such modifications
do not change the intermediate result and finally still produce the same cipher-
text. We defined an algorithm named ¢, and the § algorithm takes a plaintext
and a cipher key as two inputs and outputs twenty bytes, which are used in
the five-round property. By employing the § algorithm, we proposed a modified
version of the AES algorithm, the JAES. The JAES uses the ¢ algorithm to
generate twenty output bytes, which are used to modify the AES round keys.
For a plaintext and a key, the AES and the §AES produce the same ciphertext.
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s 1: ’ ’ ’ ’
A Deciding R}, R;, R; and R,

Perform Routine Computation One second time, and all intermediate values
from the computation of this time are stored in an array called Buffer Two. The
intermediate value after MC in Round 4 is

Ui Ug Ug Ur2
Ui Us Uy Urs
U; Us Ufy Uia
Us U7 Uty Uts
We will demonstrate that there is an algebraic relation between Bytes { R, Rj,

Ry, Ry} and Bytes {Uf, Us, Ug, U, }. By employing this relationship, we are
able to change the values of {Us, U, Us, Uy} to the values of {Uy, Us, Uy,

Ui1} by choosing the values of { R, RS, R§, R},}. The moves of determining

the values of {R{,, R}, R}, R},} are shown below:
{R67R127Ré7R/10} - {5575;7‘5;75;0} - {TgngngvTﬂ)} - {U17 U37U97 Ull}'

After we replace the values of {Uy, Uy, Ug, Uf,} with the values of {Uy, Us, Uy,
Ui1}, the input and output of MC in Round 4 are

Ty Ty T3 Ths Us Uy Ug Uz
T Ts Ts T1s | e | U Us Us Ut
—

Ty Tg Tio T14 Us Us Uio Ura
T; TF T3 Ths Us U7 Un Ufs

We need to modify the values of {1}, T%, Tg, Tt} according to the values of {U7,
Us, Uy, Uy1}. We can form two groups of linear equations, which are named (&)
and (B). There are two undecided variables T and T3 in (), and we can solve
) to get the values of T and 7. In (@), there are two undetermined variables
T5 and Ty, and we can find out the values of T and T5;, by solving (G]).

[Ty _
0 Tg*
r; -
[01 020301] U A
st 01 02 03 01 | = Uy
2 | T*
10
T3
=S o (5) Ty
T Lo11 - 6
; it (6)
T .
[03 01 01 02] = Us Ty
st 03 01 01 02 —Un
2 | T*
10
LT3 | .
_Tll p

After knowing the values of {T¢, Ty, Ty, Ty}, we perform SR™! and have four
corresponding values {S§, 53,55, 579} after SB in Round 4. Bytes R{, R}, Rj
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and R, are computed as follows: (note that R, RS, Ri and R, are obtained
from Buffer Two):

Ry = R; ® SB™H(S5), Ry = R; ® SB™'(S3),

Ry = Ry ® SBT'(S5), Rip = Rip ® SB™'(S)-
At this moment, we have decided the values of {G}, M/, R;}, and {V/, Z!} are

i

not determined and they are still equal to their initial values, i € {0,2,8,10}.

B Deciding V{, V;, V] and V/,

After having the values of Ry, RS, R and R, we carry out a five-round compu-
tation of the AES with 16 extra XOR operations, called Routine Computation
Two, which begins with the initial round and ends with MC in Round 5 (See
Figure 2)). All intermediate values from the computation of this time are stored
in an array named Buffer Three (note that Routine Computation Two generates
24 intermediate values).

Routine Computation Two
s ARK
Initial round: —

SB SR MC ARK &
Round 1: — — — —

SB SR MC ARK &
Round 2: — — — — —

SB SR MC ARK &
Round 3: — — — — —

SB SR MC ARK &
Round 4: — — — —

SB SR MC
Round 56: — — — .

After MC in Round 5, we will have an intermediate value in the following format:
Y Y Y Yo
Y Y5 Yy Yis
Ys" Ys Yo Yia
Ys Yz YT Yis

There is an algebraic relation between Bytes {V{, V4, V¢, V{,} and Bytes {Y7",
Yo, VS, Yy}, and we can change the values of {Y7*, Y5, Yy, Y7} to the values
of {Y1, Y3, Yy, Y11} by setting the values of {V{, Vi, V{, V{,}. The steps of
determining the values of {V{, V4, V{, V{,} are shown below:

{‘/0/7‘/2/7‘/8/7‘/1/0} — {W(;(7W2*7W§7W1*0} — {X57X;7X§7XTO} — {Y17Y37Y97Y11}'

We replace Bytes {Y7", V3", Y5, Y74 } with Bytes {Y1, Y3, Yy, Y11}, and the input
and output of MC in Round 5 are
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XE; X4 Xg X12 YO* Y4 Yg* Y12

Xf Xs X; X3 MC YiYs Yo Yis
—

X5 Xo Xio Xia Y5 Y6 Yio Yia

X3 X7 X{1 X5 Y3 Y7 Y11 Yis

We form two groups of linear functions, marked by () and (). There are two
undecided variables X and X in (), and we can solve () to get the values of
X§ and X3. In (), there are two undecided variables X§ and X7, and we can
obtain the values of X} and X7, by solving (&).

MX: L
0 Xg
Xi .
[01 020301] =V 5
X 01 02 03 01 — Y
2 | i
10
X3
= - (7) X
Xz L<11 - 8
; 3 ®)
Xy .
[03 01 01 02] -V X3
e 03 01 01 02 =Y
2 | i
10
L X3 ] .
.Xll-

After deciding the values of { X§, X3, X%, Xy}, we perform SR™! and have four
corresponding values {W;, Wy, W, Wi} after SB in Round 5. Bytes Vy, V3, V4
and VY, are computed as follows: (note that Vi, V5*, Vg and Vij, are obtained
from Buffer Three):

Vo =V5 & SB™H(Wg), Vi =V5 &SB™ (W3),
Vi = Vg @ SB™H(Wy), Vip= Vi ® SB™H (W)

At this stage, we have decided the values of {G}, M/, R;,V/}, and Z! is not
determined and it is equal to the initial value, ¢ € {0,2,8,10}.
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