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Abstract. This paper presents a five-round algebraic property of the
Advanced Encryption Standard (AES). In the proposed property, we
modify twenty bytes from five intermediate values at some fixed loca-
tions in five consecutive rounds, and we show that after five rounds
of operations, such modifications do not change the intermediate result
and finally still produce the same ciphertext. We introduce an algorithm
named δ, and the algorithm accepts a plaintext and a key as two inputs
and outputs twenty bytes, which are used in the five-round property.
We demonstrate that the δ algorithm has 20 variants for AES-128, 28
variants for AES-192 and 36 variants for AES-256. By employing the δ
algorithm, we define a modified version of the AES algorithm, the δAES.
The δAES calls the δ algorithm to generate twenty bytes, and uses these
twenty bytes to modify the AES round keys. The δAES employs the same
key scheduling algorithm, constants and round function as the AES. For a
plaintext and a key, the AES and the δAES produce the same ciphertext.

Keywords: AES, A Five-Round Algebraic Property of the AES, Algo-
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1 Introduction

The block cipher Rijndael [1] was selected as the Advanced Encryption Standard
(AES) by National Institute of Standards and Technology. Rijndael has a simple
and elegant structure, and it was designed carefully to withstand two well-known
cryptanalytic attacks: differential cryptanalysis [2] and linear cryptanalysis [3].
Most operations of Rijndael are based on the algebraic Galois field GF (28),
which can be implemented efficiently in dedicated hardware and in software on
a wide range of processors.

Since Rijndael was adopted as a standard [4], there have been many research
efforts aiming to evaluate the security of this cipher. A block cipher, named Big
Encryption System (BES), was defined in [5], and Rijndael can be embedded
into BES. The eXtended Linearization (XL) [6] and the eXtended Sparse Lin-
earization (XSL) [7] techniques are new methods to solve nonlinear algebraic
equations. The concept of dual ciphers was introduced in [8], and a collision at-
tack on 7 rounds of Rijndael was proposed in [9]. The most effective attacks on
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reduced-round variants of the AES are Square attack which was used to attack
the cipher Square [10,1]. The idea of the Square attack was later employed to im-
prove the cryptanalysis of Rijndael [11], and to attack seven rounds of Rijndael
under 192-bit and 256-bit keys [12]. A multiplicative masking method of AES
was proposed in [13] and further discussed in [14]. The design of an AES-based
stream cipher LEX was described in [15], and the construction of an AES-based
message authentication code can be found in [16]. So far, no short-cut attack
against the full-round AES has been found.

In this paper, we present a five round property of the AES. We modify twenty
bytes from five intermediate values at some fixed locations in five consecutive
rounds, and we demonstrate that after five rounds of operations, such modifi-
cations do not change the intermediate result and finally still produce the same
ciphertext. We introduce an algorithm named δ, and the δ algorithm takes a
plaintext and a key as two inputs and outputs twenty bytes, which are used
in the five-round property. By employing the δ algorithm, we define a modified
version of the AES algorithm, the δAES. The δAES calls the δ algorithm to gen-
erate twenty bytes, and uses these twenty bytes to modify the AES round keys.
For a plaintext and a key, the AES and the δAES produce the same ciphertext.

This paper is organized as follows: Section 2 provides a short description of
the AES. In Section 3, we present the five-round algebraic property of the AES,
and introduce the δ algorithm. In Section 4, we define a modified version the
AES algorithm, the δAES. Finally, Section 5 concludes this paper. Appendix A
and Appendix B provide the process of finding the values of the eight variables
which are used in Section 3.

2 Description of the AES

We provide a brief description of the AES, and refer the reader to [4] for a
complete description of this cipher. AES is a block cipher with a 128-bit block
length and supports key lengths of 128, 192 or 256 bits. For encryption, the
input is a plaintext block and a key, and the output is a ciphertext block. The
plaintext is first copied to 4 × 4 array of bytes, which is called the state. The
bytes of a state is organized in the following format:

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

.

where ai denote the i-th byte of the block. After an initial round key addition,
the state array is transformed by performing a round function 10, 12, or 14
times (for 128-bit, 192-bit or 256-bit keys respectively), and the final state is
the ciphertext. We denote the AES with 128-bit keys by AES-128, with 192-
bit keys by AES-192, and with 256-bit keys by AES-256. Each round of AES
consists of the following four transformations (the final round does not include
MixColumns):
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1. The SubBytes (SB) transformation. It is a non-linear byte substitution that
operates independently on each byte of the state using a substitution table.

2. The ShiftRows (SR) transformation. The bytes of the state are cyclically
shifted over different numbers of bytes. Row 0 is unchanged, and Row i is
shifted to the left i byte cyclicly, i ∈ {1, 2, 3}.

3. The MixColumns (MC) transformation. It operates on the state column-by-
column, considering each column as a four-term polynomial. The columns
are treated as polynomials over GF (28) and multiplied modulo x4 + 1 with
a fixed polynomial, written as {03}x3 + {01}x2 + {01}x + {02}.

4. The AddRoundKey (ARK) transformation. A round key is added to the
state by a simple bitwise exclusive-or (XOR) operation.

The key expansion of the AES generates a total of Nb(Nr + 1) words: the
algorithm needs an initial set of Nb words, and each of the Nr rounds requires
Nb words of key data, where Nb is 4, and Nr is set to 10, 12, or 14 for 128-bit,
192-bit, or 256-bit key sizes respectively. For a 128-bit key K, we denote the
round keys by

Ki
0 Ki

4 Ki
8 Ki

12

Ki
1 Ki

5 Ki
9 Ki

13

Ki
2 Ki

6 Ki
10 Ki

14

Ki
3 Ki

7 Ki
11 Ki

15

,

where i is the round number, i ∈ {1, 2, · · ·10}. We note that the round key used
in the initial round is the secret key K itself, and the secret key is represented
without the superscript i.

3 A Five-Round Property of AES

We present a five-round property of the AES in this section. In the proposed
property, we modify twenty bytes from five intermediate values at some fixed
locations in five consecutive rounds, and we show that after five rounds of op-
erations, such modifications do not change the intermediate result and finally
still produce the same ciphertext. The modifications are carried out by perform-
ing four extra XOR operations at the end of each round (i.e., after the ARK
transformation), and in total, we perform twenty extra XOR operations in five
rounds. We require that each of these five rounds must contain SB, SR, MC and
ARK transformations.

We use Figure 1 and Figure 2 to describe this property. The layout of the
twenty bytes in the five intermediate values is shown in Figure 2, and the twenty
bytes are G′

0, G′
2, G′

8, G′
10, M ′

0, M ′
2, M ′

8, M ′
10, R′

0, R′
2, R′

8, R′
10, V ′

0 , V ′
2 , V ′

8 , V ′
10,

Z ′
0, Z ′

2, Z ′
8, and Z ′

10. In Figure 1, all intermediate values are listed when using the
AES algorithm to encrypt a plaintext P under a 128-bit key K , and all bytes of
the intermediate values are denoted by plain variables. Correspondingly, Figure 2
enumerates all intermediate values of the AES with 20 extra XOR operations.
The twenty-byte modifications take place in Round 1, 2, 3, 4 and 5, and after



A Five-Round Algebraic Property of the Advanced Encryption Standard 319

ARK transformation in each of these five rounds, we perform XOR operations
on Bytes 0, 2, 8 and 10. We show that the twenty-byte modifications do not
change the input to Round 6, i.e., both the AES and the AES with 20 extra
XOR operations generate the same input to Round 6. In Figure 2, a variable
marked by a asterisk indicates that the value at that location has been affected
by the twenty-byte modifications, and a plain variable shows that the value at
that location is not affected by the twenty-byte modifications. For example, after
ARK in Round 1 in Figure 2, Byte Gi is XORed with Byte G′

i, and after SB,
we have four modified bytes H∗

i , i ∈ {0, 2, 8, 10}, and twelve unchanged bytes:
H1, H3, H4, H5, H6, H7, H9, H11, H12, H13, H14, and H15.

3.1 The δ Algorithm

To decide the values of the twenty bytes: G′
i, M ′

i , R′
i, V ′

i and Z ′
i, i ∈ {0, 2, 8, 10},

we introduce an algorithm named δ. For any plaintext P and any key K used in
the AES algorithm, the δ algorithm accepts P and K as two inputs, and generates
an output which contains twenty bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i}, where G′
i, M

′
i , R

′
i, V

′
i ,

and Z ′
i are bytes, i ∈ {0, 2, 8, 10}.

The δ algorithm includes a number of steps:

1. Process the first five rounds of the AES algorithm by taking the plaintext P
and the key K as the inputs, i.e., start with the initial round, and process
Round 1, 2, 3, 4 and 5 of the AES. Therefore, we know all intermediate
values in Figure 1, from initial round to Round 5.

2. Initialize G′
i, M ′

i , R′
i, V ′

i and Z ′
i to zero, i ∈ {0, 2, 8, 10}.

3. Choose G′
0, G

′
2, G

′
8 and G′

10 freely. The only requirement is that at least one
of these four bytes is not equal to zero, namely, G′

0, G
′
2, G

′
8 and G′

10 cannot be
all zeros. If G′

0, G
′
2, G

′
8 and G′

10 are all zeros, the δ algorithm outputs twenty
zero bytes. Once G′

0, G
′
2, G

′
8 and G′

10 are decided, the remaining 16 bytes
will be computed by the procedures described in Section 3.1.1, Appendix A,
Appendix B and Section 3.1.2.

4. Decide M ′
0, M

′
2, M

′
8 and M ′

10.
5. Decide R′

0, R
′
2, R

′
8 and R′

10.
6. Decide V ′

0 , V ′
2 , V ′

8 and V ′
10.

7. Decide Z ′
0, Z

′
2, Z

′
8 and Z ′

10.

Remark 1. There are 232 − 1 combinations of {G′
0, G

′
2, G

′
8, G

′
10} because each

byte can have 28 possible values.

3.1.1 Deciding M ′
0, M ′

2, M ′
8 and M ′

10

After we have decided the values of G′
0, G

′
2, G

′
8 and G′

10, we carry out a four-
round computation (of the AES with extra 12 XOR operations), called Routine
Computation One, which starts with the initial round and ends with MC in
Round 4 (see Figure 2). All intermediate values from the computation of this
time are stored in array called Buffer One (note that Routine Computation One
produces 19 intermediate values).
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Initial Round Plaintext P

P3

P2

P1

P0

P7

P6

P5

P4

P11

P10

P9

P8

P15

P14

P13

P12

ARK
−→

A3

A2

A1

A0

A7

A6

A5

A4

A11

A10

A9

A8

A15

A14

A13

A12

Round 1
SB
−→

B3

B2

B1

B0

B7

B6

B5

B4

B11

B10

B9

B8

B15

B14

B13

B12

SR
−→

D3

D2

D1

D0

D7

D6

D5

D4

D11

D10

D9

D8

D15

D14

D13

D12

MC
−→

F3

F2

F1

F0

F7

F6

F5

F4

F11

F10

F9

F8

F15

F14

F13

F12

ARK
−→

G3

G2

G1

G0

G7

G6

G5

G4

G11

G10

G9

G8

G15

G14

G13

G12

Round 2
SB
−→

H3

H2

H1

H0

H7

H6

H5

H4

H11

H10

H9

H8

H15

H14

H13

H12

SR
−→

J3

J2

J1

J0

J7

J6

J5

J4

J11

J10

J9

J8

J15

J14

J13

J12

MC
−→

L3

L2

L1

L0

L7

L6

L5

L4

L11

L10

L9

L8

L15

L14

L13

L12

ARK
−→

M3

M2

M1

M0

M7

M6

M5

M4

M11

M10

M9

M8

M15

M14

M13

M12

Round 3
SB
−→

N3

N2

N1

N0

N7

N6

N5

N4

N11

N10

N9

N8

N15

N14

N13

N12

SR
−→

O3

O2

O1

O0

O7

O6

O5

O4

O11

O10

O9

O8

O15

O14

O13

O12

MC
−→

Q3

Q2

Q1

Q0

Q7

Q6

Q5

Q4

Q11

Q10

Q9

Q8

Q15

Q14

Q13

Q12

ARK
−→

R3

R2

R1

R0

R7

R6

R5

R4

R11

R10

R9

R8

R15

R14

R13

R12

Round 4
SB
−→

S3

S2

S1

S0

S7

S6

S5

S4

S11

S10

S9

S8

S15

S14

S13

S12

SR
−→

T3

T2

T1

T0

T7

T6

T5

T4

T11

T10

T9

T8

T15

T14

T13

T12

MC
−→

U3

U2

U1

U0

U7

U6

U5

U4

U11

U10

U9

U8

U15

U14

U13

U12

ARK
−→

V3

V2

V1

V0

V7

V6

V5

V4

V11

V10

V9

V8

V15

V14

V13

V12

Round 5
SB
−→

W3

W2

W1

W0

W7

W6

W5

W4

W11

W10

W9

W8

W15

W14

W13

W12

SR
−→

X3

X2

X1

X0

X7

X6

X5

X4

X11

X10

X9

X8

X15

X14

X13

X12

MC
−→

Y3

Y2

Y1

Y0

Y7

Y6

Y5

Y4

Y11

Y10

Y9

Y8

Y15

Y14

Y13

Y12

ARK
−→

Z3

Z2

Z1

Z0

Z7

Z6

Z5

Z4

Z11

Z10

Z9

Z8

Z15

Z14

Z13

Z12

Round 6
SB
−→

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

SR
−→

d3

d2

d1

d0

d7

d6

d5

d4

d11

d10

d9

d8

d15

d14

d13

d12

MC
−→

f3

f2

f1

f0

f7

f6

f5

f4

f11

f10

f9

f8

f15

f14

f13

f12

ARK
−→

g3

g2

g1

g0

g7

g6

g5

g4

g11

g10

g9

g8

g15

g14

g13

g12

Round 7
SB
−→

h3

h2

h1

h0

h7

h6

h5

h4

h11

h10

h9

h8

h15

h14

h13

h12

SR
−→

j3

j2

j1

j0

j7

j6

j5

j4

j11

j10

j9

j8

j15

j14

j13

j12

MC
−→

l3

l2

l1

l0

l7

l6

l5

l4

l11

l10

l9

l8

l15

l14

l13

l12

ARK
−→

m3

m2

m1

m0

m7

m6

m5

m4

m11

m10

m9

m8

m15

m14

m13

m12

Round 8
SB
−→

n3

n2

n1

n0

n7

n6

n5

n4

n11

n10

n9

n8

n15

n14

n13

n12

SR
−→

o3

o2

o1

o0

o7

o6

o5

o4

o11

o10

o9

o8

o15

o14

o13

o12

MC
−→

q3

q2

q1

q0

q7

q6

q5

q4

q11

q10

q9

q8

q15

q14

q13

q12

ARK
−→

r3

r2

r1

r0

r7

r6

r5

r4

r11

r10

r9

r8

r15

r14

r13

r12

Round 9
SB
−→

s3

s2

s1

s0

s7

s6

s5

s4

s11

s10

s9

s8

s15

s14

s13

s12

SR
−→

t3

t2

t1

t0

t7

t6

t5

t4

t11

t10

t9

t8

t15

t14

t13

t12

MC
−→

u3

u2

u1

u0

u7

u6

u5

u4

u11

u10

u9

u8

u15

u14

u13

u12

ARK
−→

v3

v2

v1

v0

v7

v6

v5

v4

v11

v10

v9

v8

v15

v14

v13

v12

Round 10
SB
−→

w3

w2

w1

w0

w7

w6

w5

w4

w11

w10

w9

w8

w15

w14

w13

w12

SR
−→

x3

x2

x1

x0

x7

x6

x5

x4

x11

x10

x9

x8

x15

x14

x13

x12

ARK
−→

z3

z2

z1

z0

z7

z6

z5

z4

z11

z10

z9

z8

z15

z14

z13

z12

Fig. 1. The Intermediate Values of AES-128
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Initial Round Plaintext P

P3

P2

P1

P0

P7

P6

P5

P4

P11

P10

P9

P8

P15

P14

P13

P12

ARK−→

A3

A2

A1

A0

A7

A6

A5

A4

A11

A10

A9

A8

A15

A14

A13

A12

1 SB−→

B3

B2

B1

B0

B7

B6

B5

B4

B11

B10

B9

B8

B15

B14

B13

B12

SR−→

D3

D2

D1

D0

D7

D6

D5

D4

D11

D10

D9

D8

D15

D14

D13

D12

MC−→

F3

F2

F1

F0

F7

F6

F5

F4

F11

F10

F9

F8

F15

F14

F13

F12

ARK−→

G3

G2

G1

G0

G7

G6

G5

G4

G11

G10

G9

G8

G15

G14

G13

G12

⊕

0

G′
2

0

G′
0

0

0

0

0

0

G′
10

0

G′
8

0

0

0

0

→

2 SB−→

H3

H∗
2

H1

H∗
0

H7

H6

H5

H4

H11

H∗
10

H9

H∗
8

H15

H14

H13

H12

SR−→

J3

J∗
2

J1

J∗
0

J7

J6

J5

J4

J11

J∗
10

J9

J∗
8

J15

J14

J13

J12

MC−→

L∗
3

L∗
2

L∗
1

L∗
0

L7

L6

L5

L4

L∗
11

L∗
10

L∗
9

L∗
8

L15

L14

L13

L12

ARK−→

M∗
3

M∗
2

M∗
1

M∗
0

M7

M6

M5

M4

M∗
11

M∗
10

M∗
9

M∗
8

M15

M14

M13

M12

⊕

0

M′
2

0

M′
0

0

0

0

0

0

M′
10

0

M′
8

0

0

0

0

→

3 SB−→

N∗
3

N∗
2

N∗
1

N∗
0

N7

N6

N5

N4

N∗
11

N∗
10

N∗
9

N∗
8

N15

N14

N13

N12

SR−→

O3

O∗
2

O1

O∗
0

O∗
7

O6

O∗
5

O4

O11

O∗
10

O9

O∗
8

O∗
15

O14

O∗
13

O12

MC−→

Q∗
3

Q∗
2

Q∗
1

Q∗
0

Q∗
7

Q∗
6

Q∗
5

Q∗
4

Q∗
11

Q∗
10

Q∗
9

Q∗
8

Q∗
15

Q∗
14

Q∗
13

Q∗
12

ARK−→

R∗
3

R∗
2

R∗
1

R∗
0

R∗
7

R∗
6

R∗
5

R∗
4

R∗
11

R∗
10

R∗
9

R∗
8

R∗
15

R∗
14

R∗
13

R∗
12

⊕

0

R′
2

0

R′
0

0

0

0

0

0

R′
10

0

R′
8

0

0

0

0

→

4 SB−→

S∗
3

S∗
2

S∗
1

S∗
0

S∗
7

S∗
6

S∗
5

S∗
4

S∗
11

S∗
10

S∗
9

S∗
8

S∗
15

S∗
14

S∗
13

S∗
12

SR−→

T∗
3

T∗
2

T∗
1

T∗
0

T∗
7

T∗
6

T∗
5

T∗
4

T∗
11

T∗
10

T∗
9

T∗
8

T∗
15

T∗
14

T∗
13

T∗
12

MC−→

U3

U∗
2

U1

U∗
0

U∗
7

U6

U∗
5

U4

U11

U∗
10

U9

U∗
8

U∗
15

U14

U∗
13

U12

ARK−→

V3

V ∗
2

V1

V ∗
0

V ∗
7

V6

V ∗
5

V4

V11

V ∗
10

V9

V ∗
8

V ∗
15

V14

V ∗
13

V12

⊕

0

V ′
2

0

V ′
0

0

0

0

0

0

V ′
10

0

V ′
8

0

0

0

0

→

5 SB−→

W3

W∗
2

W1

W∗
0

W∗
7

W6

W∗
5

W4

W11

W∗
10

W9

W∗
8

W∗
15

W14

W∗
13

W12

SR−→

X∗
3

X∗
2

X∗
1

X∗
0

X7

X6

X5

X4

X∗
11

X∗
10

X∗
9

X∗
8

X15

X14

X13

X12

MC−→

Y3

Y ∗
2

Y1

Y ∗
0

Y7

Y6

Y5

Y4

Y11

Y ∗
10

Y9

Y ∗
8

Y15

Y14

Y13

Y12

ARK−→

Z3

Z∗
2

Z1

Z∗
0

Z7

Z6

Z5

Z4

Z11

Z∗
10

Z9

Z∗
8

Z15

Z14

Z13

Z12

⊕

0

Z′
2

0

Z′
0

0

0

0

0

0

Z′
10

0

Z′
8

0

0

0

0

→

6 SB−→

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

SR−→

d3

d2

d1

d0

d7

d6

d5

d4

d11

d10

d9

d8

d15

d14

d13

d12

MC−→

f3

f2

f1

f0

f7

f6

f5

f4

f11

f10

f9

f8

f15

f14

f13

f12

ARK−→

g3

g2

g1

g0

g7

g6

g5

g4

g11

g10

g9

g8

g15

g14

g13

g12

7 SB−→

h3

h2

h1

h0

h7

h6

h5

h4

h11

h10

h9

h8

h15

h14

h13

h12

SR−→

j3

j2

j1

j0

j7

j6

j5

j4

j11

j10

j9

j8

j15

j14

j13

j12

MC−→

l3

l2

l1

l0

l7

l6

l5

l4

l11

l10

l9

l8

l15

l14

l13

l12

ARK−→

m3

m2

m1

m0

m7

m6

m5

m4

m11

m10

m9

m8

m15

m14

m13

m12

8 SB−→

n3

n2

n1

n0

n7

n6

n5

n4

n11

n10

n9

n8

n15

n14

n13

n12

SR−→

o3

o2

o1

o0

o7

o6

o5

o4

o11

o10

o9

o8

o15

o14

o13

o12

MC−→

q3

q2

q1

q0

q7

q6

q5

q4

q11

q10

q9

q8

q15

q14

q13

q12

ARK−→

r3

r2

r1

r0

r7

r6

r5

r4

r11

r10

r9

r8

r15

r14

r13

r12

9 SB−→

s3

s2

s1

s0

s7

s6

s5

s4

s11

s10

s9

s8

s15

s14

s13

s12

SR−→

t3

t2

t1

t0

t7

t6

t5

t4

t11

t10

t9

t8

t15

t14

t13

t12

MC−→

u3

u2

u1

u0

u7

u6

u5

u4

u11

u10

u9

u8

u15

u14

u13

u12

ARK−→

v3

v2

v1

v0

v7

v6

v5

v4

v11

v10

v9

v8

v15

v14

v13

v12

10 SB−→

w3

w2

w1

w0

w7

w6

w5

w4

w11

w10

w9

w8

w15

w14

w13

w12

SR−→

x3

x2

x1

x0

x7

x6

x5

x4

x11

x10

x9

x8

x15

x14

x13

x12

ARK−→

z3

z2

z1

z0

z7

z6

z5

z4

z11

z10

z9

z8

z15

z14

z13

z12

Fig. 2. The Intermediate Values of AES-128 with Extra 20 XOR Operations

Routine Computation One

Initial round : ARK−→
Round 1 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 2 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 3 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 4 : SB−→ SR−→ MC−→ .
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We denote the input and output of MC in Round 4 by

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

MC−→

�
������

U∗
0 U∗

4 U∗
8 U∗

12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U∗

6 U∗
10 U∗

14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

Next, we will show that there is an algebraic relation between Bytes {M ′
0, M ′

2,
M ′

8, M ′
10} and Bytes {U∗

4 , U∗
6 , U∗

12, U∗
14}. Based on this relationship, we can

change the values of {U∗
4 , U∗

6 , U∗
12, U∗

14} to the values of {U4, U6, U12, U14} by
setting the values of {M ′

0, M ′
2, M ′

8, M ′
10}. After we have decided the values of

{M ′
0, M ′

2, M ′
8, M ′

10}, we aim to have an intermediate value after MC in Round
4 in the format of �

������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

The steps of deciding {M ′
0, M ′

2, M ′
8, M ′

10} are listed as follows:

{M ′
0, M

′
2, M

′
8, M

′
10} ← {N∗

0 , N∗
2 , N∗

8 , N∗
10} ← {O∗

0 , O∗
2 , O∗

8 , O∗
10} ← {Q∗

1, Q
∗
3, Q

∗
9, Q

∗
11}

← {R∗
1 , R∗

3 , R∗
9 , R∗

11} ← {S∗
1 , S∗

3 , S∗
9 , S∗

11} ← {T ∗
5 , T ∗

7 , T ∗
13, T

∗
15} ← {U4, U6, U12, U14}.

After we change the values of {U∗
4 , U∗

6 , U∗
12, U∗

14} to the values of {U4, U6, U12,
U14}, the input and output of MC in Round 4 become

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

MC−→

�
������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

Our next target is to modify the values of {T ∗
5 , T ∗

7 , T ∗
13, T

∗
15} according to the

values of {U4, U6, U12, U14}. From the MC transformation, we have the following
formula: �

������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

=

�
������

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

�
������

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

.

To find out the values of {T ∗
5 , T ∗

7 , T ∗
13, T

∗
15}, we need to solve the following two

groups of linear functions, which are marked by (1) and (2).
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����������������������
���������������������

�
02 03 01 01

�

�
�������	

T∗
4

T∗
5

T∗
6

T∗
7



��������

= U4

�
01 01 02 03

�

�
�������	

T∗
4

T∗
5

T∗
6

T∗
7



��������

= U6

(1)

����������������������
���������������������

�
02 03 01 01

�

�
�������	

T∗
12

T∗
13

T∗
14

T∗
15



��������

= U12

�
01 01 02 03

�

�
�������	

T∗
12

T∗
13

T∗
14

T∗
15



��������

= U14

(2)

In (1), there are two linear equations with two undecided variables T ∗
5 and T ∗

7 ,
and thus we can solve (1) to obtain the values of T ∗

5 and T ∗
7 . Similarly, there

are two linear equations in (2) with two undecided variables T ∗
13 and T ∗

15, and
therefore we can solve (2) to get the values of T ∗

13 and T ∗
15. After having T ∗

5 , T ∗
7 ,

T ∗
13 and T ∗

15, perform SR−1 (inverse ShiftRows) and SB−1 (inverse SubBytes),
and we have the values of R∗

1, R∗
3, R∗

9 and R∗
11 after ARK in Round 3. Apply

the ARK transformation to R∗
1, R∗

3, R∗
9 and R∗

11, and we have the values of Q∗
1,

Q∗
3, Q∗

9 and Q∗
11. Our next task is to modify the values of O∗

0 , O∗
2 , O∗

8 and O∗
10.

In Round 3, the input and output of MC are as follows:
�
������

Q∗
0 Q∗

4 Q∗
8 Q∗

12

Q∗
1 Q∗

5 Q∗
9 Q∗

13

Q∗
2 Q∗

6 Q∗
10 Q∗

14

Q∗
3 Q∗

7 Q∗
11 Q∗

15

�
������

=

�
������

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

�
������

�
������

O∗
0 O4 O∗

8 O12

O1 O∗
5 O9 O∗

13

O∗
2 O6 O∗

10 O14

O3 O∗
7 O11 O∗

15

�
������

.

We can form two groups of linear equations, which are named (3) and (4), and
solve them to decide O∗

0 , O∗
2 , O∗

8 and O∗
10. There are two linear equations in (3)

with two undetermined variables O∗
0 and O∗

2 , and we can solve them to determine
the values of O∗

0 and O∗
2 . Also, there are two linear equations in (4) with two

undecided variables O∗
8 and O∗

10, and we can get O∗
8 and O∗

10 by solving (4).

����������������������
���������������������

�
01 02 03 01

�

�
�������	

O∗
0

O1

O∗
2

O3



��������

= Q∗
1

�
03 01 01 02

�

�
�������	

O∗
0

O1

O∗
2

O3



��������

= Q∗
3

(3)

����������������������
���������������������

�
01 02 03 01

�

�
�������	

O∗
8

O9

O∗
10

O11



��������

= Q∗
9

�
03 01 01 02

�

�
�������	

O∗
8

O9

O∗
10

O11



��������

= Q∗
11

(4)

Once knowing the values of O∗
0 , O∗

2 , O∗
8 and O∗

10, we perform SR−1 and thus we
get Bytes N∗

0 , N∗
2 , N∗

8 and N∗
10 after SB in Round 3. Finally, Bytes M ′

0, M ′
2,

M ′
8 and M ′

10 are decided by the following computations (note that M∗
0 , M∗

2 , M∗
8

and M∗
10 are obtained from Buffer One):
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M ′
0 = M∗

0 ⊕ SB−1(N∗
0 ), M ′

2 = M∗
2 ⊕ SB−1(N∗

2 ),

M ′
8 = M∗

8 ⊕ SB−1(N∗
8 ), M ′

10 = M∗
10 ⊕ SB−1(N∗

10).

At this stage, we have decided the values of {G′
i, M

′
i}, and {R′

i, V
′
i , Z ′

i} are not
yet decided (note: they are still initialized to zero), i ∈ {0, 2, 8, 10}.

The process of deciding R′
0, R

′
2, R

′
8 and R′

10 and the routine of finding
V ′

0 , V ′
2 , V ′

8 and V ′
10 are similar to the steps of determining M ′

0, M
′
2, M

′
8 and M ′

10,
and they are described in Appendix A and Appendix B respectively.

3.1.2 Deciding Z′
0, Z′

2, Z′
8 and Z′

10
Perform Routine Computation Two second time, and the intermediate value
after MC in Round 5 is �

������

Y ∗
0 Y4 Y ∗

8 Y12

Y1 Y5 Y9 Y13

Y ∗
2 Y6 Y ∗

10 Y14

Y3 Y7 Y11 Y15

�
������

.

Apply ARK to the intermediate value above, we have
�
������

Z∗
0 Z4 Z∗

8 Z12

Z1 Z5 Z9 Z13

Z∗
2 Z6 Z∗

10 Z14

Z3 Z7 Z11 Z15

�
������

.

Bytes Z ′
0, Z ′

2, Z ′
8 and Z ′

10 are computed as follows: (note that Z0, Z2, Z8 and
Z10 are obtained from the computation in which the AES algorithm is used to
encrypt the plaintext P under the key K (see Round 5 in Figure 1)):

Z ′
0 = Z∗

0 ⊕ Z0, Z ′
2 = Z∗

2 ⊕ Z2,

Z ′
8 = Z∗

8 ⊕ Z8, Z ′
10 = Z∗

10 ⊕ Z10.

Finally, we have decided all values of {G′
i, M

′
i , R

′
i, V

′
i , Z ′

i}, i ∈ {0, 2, 8, 10}. Now,
we carry out a five-round computation of the AES with extra 20 XOR operations,
called Routine Computation Three, by using Bytes G′

0, G′
2, G′

8, G′
10, M ′

0, M ′
2,

M ′
8, M ′

10, R′
0, R′

2, R′
8, R′

10, V ′
0 , V ′

2 , V ′
8 , V ′

10, Z ′
0, Z ′

2, Z ′
8, and Z ′

10, and we will get
the same input to Round 6 as the AES algorithm.

Routine Computation Three

Initial round : ARK−→
Round 1 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 2 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 3 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 4 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 5 : SB−→ SR−→ MC−→ ARK−→ ⊕−→ .
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Remark 2. The most important part of the δ algorithm is solving those eight
groups of linear equations: (1), (2), (3), (4), (5), (6), (7) and (8). There is one
question needs to be answered. The question is: are these eight groups of linear
equations independent? The answer to this question is choosing different values
of Bytes G′

0, G′
2, G′

8, G′
10 if we face such situations. Among the twenty bytes:

G′
0, G′

2, G′
8, G′

10, M ′
0, M ′

2, M ′
8, M ′

10, R′
0, R′

2, R′
8, R′

10, V ′
0 , V ′

2 , V ′
8 , V ′

10, Z ′
0, Z ′

2, Z ′
8,

and Z ′
10, we can select the values of G′

0, G′
2, G′

8 and G′
10 freely. As we showed in

Remark 1, there are 232−1 combinations of these four bytes, and correspondingly,
we can have 232 − 1 intermediate values in Figure 2, starting with SB in Round
2 and ending with ARK in Round 10. If we meet any dependent equations, we
can overcome this problem by choosing different values of Bytes G′

0, G′
2, G′

8 and
G′

10. Therefore, this question will not cause any trouble. So far, we have not met
any dependent equations in our large-sample experiments.

Remark 3. From Remark 1, we note that there is more than one combination
of the twenty output bytes of Algorithm δ for a given pair of (P, K).

Remark 4. For distinct plaintext and cipher key pairs (P, K), Algorithm δ needs
to perform individual computations to decide the values of the twenty bytes.

3.2 Variants of Algorithm δ

We show that there are other variants of the δ algorithm. In section 3.1, the
locations of the twenty bytes are {0, 2, 8, 10}, and there are three other com-
binations, which are {4, 6, 12, 14}, {1, 3, 9, 11} and {5, 7, 13, 15}. In Figure 2,
{G′

i, M
′
i , R

′
i, V

′
i , Z ′

i} operate in Round {1, 2, 3, 4, 5}, and they can also operate in
Round {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}, or Round {5, 6, 7, 8, 9}. There-
fore, there are 4 different combinations for the byte locations, and there are 5
different combinations for the round numbers in AES-128. In total, there are 20
(= 4 × 5) variants of the δ algorithm for AES-128. The δ algorithm has 28 (=
4 × 7) variants for AES-192, and 36 (= 4 × 9) variants for AES-256.

4 The Modified Version of the AES: δAES

By employing the δ algorithm, we propose a modified version of the AES, which
is named δAES. The major difference between the AES and the δAES is that the
δAES uses modified AES round keys. In Figure 2 in Section 3, we apply 20 extra
XOR operations to the intermediate values after ARK in Round 1, 2, 3, 4 and
5 by using Bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i}, i ∈ {0, 2, 8, 10}. The construction of the
δAES comes from the fact that we can use Bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i} to XOR
with AES Round Key 1, 2, 3, 4 and 5 (instead of with the intermediate values
after ARK), and we still get the same result, i ∈ {0, 2, 8, 10}. There are twenty-
byte differences between the AES round keys and the δAES round keys. The
δAES employs the same key scheduling algorithm, constants and round function
(i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey) as the AES.

The construction of the δAES is adding two procedures, which are calling the
δ algorithm and modifying the AES round keys, to the AES algorithm.
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1. Suppose for a plaintext P and a cipher key K, the AES algorithm produces
a ciphertext C, written as C = AESK(P ).

2. By accepting P and K as two inputs, use the δ algorithm to generate twenty
output bytes:

{G′
i, M

′
i , R

′
i, V

′
i , Z ′

i}, i ∈ {0, 2, 8, 10}1.

3. Apply the AES key scheduling algorithm to K and get the round keys.
4. Use {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i} to XOR with the corresponding AES round keys
and get the round keys for the δAES, i ∈ {0, 2, 8, 10}.

5. After carrying out the transformations above, the δAES uses the same round
function (i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey) to
process the plaintext P with modified AES round keys, and finally the δAES
also generates the same ciphertext C, denoted by C = δAESK(P ).

Compared with the AES algorithm, the δAES needs to do some extra transfor-
mations, i.e., calling the δ algorithm and modifying the AES round keys. More-
over, for distinct plaintext and cipher key pairs (P, K), the δAES needs to carry
out individual computations to get Bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i}, ∈ {0, 2, 8, 10}.

5 Conclusions

We described a five-round algebraic property of the AES algorithm. In the pre-
sented property, we modify twenty bytes from five intermediate values at some
fixed locations in five consecutive rounds by carrying out twenty extra XOR
operations, and we show that after five rounds of processing, such modifications
do not change the intermediate result and finally still produce the same cipher-
text. We defined an algorithm named δ, and the δ algorithm takes a plaintext
and a cipher key as two inputs and outputs twenty bytes, which are used in
the five-round property. By employing the δ algorithm, we proposed a modified
version of the AES algorithm, the δAES. The δAES uses the δ algorithm to
generate twenty output bytes, which are used to modify the AES round keys.
For a plaintext and a key, the AES and the δAES produce the same ciphertext.
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A Deciding R′
0, R′

2, R′
8 and R′

10

Perform Routine Computation One second time, and all intermediate values
from the computation of this time are stored in an array called Buffer Two. The
intermediate value after MC in Round 4 is

�
������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

We will demonstrate that there is an algebraic relation between Bytes {R′
0, R′

2,
R′

8, R′
10} and Bytes {U∗

1 , U∗
3 , U∗

9 , U∗
11}. By employing this relationship, we are

able to change the values of {U∗
1 , U∗

3 , U∗
9 , U∗

11} to the values of {U1, U3, U9,
U11} by choosing the values of {R′

0, R′
2, R′

8, R′
10}. The moves of determining

the values of {R′
0, R′

2, R′
8, R′

10} are shown below:

{R′
0, R

′
2, R

′
8, R

′
10} ← {S∗

0 , S∗
2 , S∗

8 , S∗
10} ← {T ∗

0 , T ∗
2 , T ∗

8 , T ∗
10} ← {U1, U3, U9, U11}.

After we replace the values of {U∗
1 , U∗

3 , U∗
9 , U∗

11} with the values of {U1, U3, U9,
U11}, the input and output of MC in Round 4 are

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

MC−→

�
������

U∗
0 U4 U∗

8 U12

U1 U∗
5 U9 U∗

13

U∗
2 U6 U∗

10 U14

U3 U∗
7 U11 U∗

15

�
������

.

We need to modify the values of {T ∗
0 , T ∗

2 , T ∗
8 , T ∗

10} according to the values of {U1,
U3, U9, U11}. We can form two groups of linear equations, which are named (5)
and (6). There are two undecided variables T ∗

0 and T ∗
2 in (5), and we can solve

(5) to get the values of T ∗
0 and T ∗

2 . In (6), there are two undetermined variables
T ∗

8 and T ∗
10, and we can find out the values of T ∗

8 and T ∗
10 by solving (6).

����������������������
���������������������

�
01 02 03 01

�

�
�������	

T∗
0

T∗
1

T∗
2

T∗
3



��������

= U1

�
03 01 01 02

�

�
�������	

T∗
0

T∗
1

T∗
2

T∗
3



��������

= U3

(5)

����������������������
���������������������

�
01 02 03 01

�

�
�������	

T∗
8

T∗
9

T∗
10

T∗
11



��������

= U9

�
03 01 01 02

�

�
�������	

T∗
8

T∗
9

T∗
10

T∗
11



��������

= U11

(6)

After knowing the values of {T ∗
0 , T ∗

2 , T ∗
8 , T ∗

10}, we perform SR−1 and have four
corresponding values {S∗

0 , S∗
2 , S∗

8 , S∗
10} after SB in Round 4. Bytes R′

0, R′
2, R′

8
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and R′
10 are computed as follows: (note that R∗

0, R∗
2, R∗

8 and R∗
10 are obtained

from Buffer Two):

R′
0 = R∗

0 ⊕ SB−1(S∗
0 ), R′

2 = R∗
2 ⊕ SB−1(S∗

2 ),

R′
8 = R∗

8 ⊕ SB−1(S∗
8 ), R′

10 = R∗
10 ⊕ SB−1(S∗

10).

At this moment, we have decided the values of {G′
i, M

′
i , R

′
i}, and {V ′

i , Z ′
i} are

not determined and they are still equal to their initial values, i ∈ {0, 2, 8, 10}.

B Deciding V ′
0 , V ′

2 , V ′
8 and V ′

10

After having the values of R′
0, R′

2, R′
8 and R′

10, we carry out a five-round compu-
tation of the AES with 16 extra XOR operations, called Routine Computation
Two, which begins with the initial round and ends with MC in Round 5 (See
Figure 2). All intermediate values from the computation of this time are stored
in an array named Buffer Three (note that Routine Computation Two generates
24 intermediate values).

Routine Computation Two

Initial round : ARK−→
Round 1 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 2 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 3 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 4 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 5 : SB−→ SR−→ MC−→ .

After MC in Round 5, we will have an intermediate value in the following format:
�
������

Y ∗
0 Y4 Y ∗

8 Y12

Y ∗
1 Y5 Y ∗

9 Y13

Y ∗
2 Y6 Y ∗

10 Y14

Y ∗
3 Y7 Y ∗

11 Y15

�
������

.

There is an algebraic relation between Bytes {V ′
0 , V ′

2 , V ′
8 , V ′

10} and Bytes {Y ∗
1 ,

Y ∗
3 , Y ∗

9 , Y ∗
11}, and we can change the values of {Y ∗

1 , Y ∗
3 , Y ∗

9 , Y ∗
11} to the values

of {Y1, Y3, Y9, Y11} by setting the values of {V ′
0 , V ′

2 , V ′
8 , V ′

10}. The steps of
determining the values of {V ′

0 , V ′
2 , V ′

8 , V ′
10} are shown below:

{V ′
0 , V ′

2 , V ′
8 , V ′

10} ← {W ∗
0 , W ∗

2 , W ∗
8 , W ∗

10} ← {X∗
0 , X∗

2 , X∗
8 , X∗

10} ← {Y1, Y3, Y9, Y11}.

We replace Bytes {Y ∗
1 , Y ∗

3 , Y ∗
9 , Y ∗

11} with Bytes {Y1, Y3, Y9, Y11}, and the input
and output of MC in Round 5 are



330 J. Huang, J. Seberry, and W. Susilo

�
������

X∗
0 X4 X∗

8 X12

X∗
1 X5 X∗

9 X13

X∗
2 X6 X∗

10 X14

X∗
3 X7 X∗

11 X15

�
������

MC−→

�
������

Y ∗
0 Y4 Y ∗

8 Y12

Y1 Y5 Y9 Y13

Y ∗
2 Y6 Y ∗

10 Y14

Y3 Y7 Y11 Y15

�
������

.

We form two groups of linear functions, marked by (7) and (8). There are two
undecided variables X∗

0 and X∗
2 in (7), and we can solve (7) to get the values of

X∗
0 and X∗

2 . In (8), there are two undecided variables X∗
8 and X∗

10, and we can
obtain the values of X∗

8 and X∗
10 by solving (8).

����������������������
���������������������

�
01 02 03 01

�

�
�������	

X∗
0

X∗
1

X∗
2

X∗
3



��������

= Y1

�
03 01 01 02

�

�
�������	

X∗
0

X∗
1

X∗
2

X∗
3



��������

= Y3

(7)

����������������������
���������������������

�
01 02 03 01

�

�
�������	

X∗
8

X∗
9

X∗
10

X∗
11



��������

= Y9

�
03 01 01 02

�

�
�������	

X∗
8

X∗
9

X∗
10

X∗
11



��������

= Y11

(8)

After deciding the values of {X∗
0 , X∗

2 , X∗
8 , X∗

10}, we perform SR−1 and have four
corresponding values {W ∗

0 , W ∗
2 , W ∗

8 , W ∗
10} after SB in Round 5. Bytes V ′

0 , V ′
2 , V ′

8

and V ′
10 are computed as follows: (note that V ∗

0 , V ∗
2 , V ∗

8 and V ∗
10 are obtained

from Buffer Three):

V ′
0 = V ∗

0 ⊕ SB−1(W ∗
0 ), V ′

2 = V ∗
2 ⊕ SB−1(W ∗

2 ),

V ′
8 = V ∗

8 ⊕ SB−1(W ∗
8 ), V ′

10 = V ∗
10 ⊕ SB−1(W ∗

10).

At this stage, we have decided the values of {G′
i, M

′
i , R

′
i, V

′
i }, and Z ′

i is not
determined and it is equal to the initial value, i ∈ {0, 2, 8, 10}.
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