Tzong-Chen Wu
Chin-Laung Lei
Vincent Rijmen
Der-Tsai Lee (Eds.)

LNCS 5222

Information Security

11th International Conference, 1SC 2008
Taipei, Taiwan, September 2008
Proceedings

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5222

Tzong-Chen Wu Chin-Laung Lei
Vincent Riyjmen Der-Tsai Lee (Eds.)

Information Security

11th International Conference, ISC 2008
Taipei, Taiwan, September 15-18, 2008
Proceedings

@ Springer

Volume Editors

Tzong-Chen Wu

National Taiwan University of Science and Technology
Department of Information Management

No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan
E-mail: tcwu@cs.ntust.edu.tw

Chin-Laung Lei

National Taiwan University, Department of Electrical Engineering
No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan

E-mail: lei@cc.ee.ntu.edu.tw

Vincent Rijmen

Graz University of Technology

Institute for Applied Information Processing and Communications (Austria)
Katholieke Universiteit Leuven, Department of Electrical Engineering (Belgium)
Inffeldgasse 16a, 8010 Graz, Austria

E-mail: Vincent.Rijmen @iaik.tugraz.at

Der-Tsai Lee
Academia Sinica, Institute of Information Science

No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
E-mail: dtlee @iis.sinica.edu.tw

Library of Congress Control Number: 2008933846

CR Subject Classification (1998): E.3, E.4, D.4.6, K.6.5, C.2
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-85884-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85884-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable

to prosecution under the German Copyright Law.
Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12517565 06/3180 543210

Preface

The 11th Information Security Conference (ISC 2008) was held in Taipei, Tai-
wan, September 15-18, 2008. ISC is an annual international conference covering
research in theory and applications of information security. It was first initiated as
a workshop (ISW) in Japan in 1997. This was followed by ISW 1999 in Malaysia
and ISW 2000 in Australia. ISW became ISC when it was held in Spain in 2001
(ISC 2001). The latest conferences were held in Brazil (ISC 2002), UK (ISC 2003),
USA (ISC 2004), Singapore (ISC 2005), Greece (ISC 2006), and Chile (ISC 2007).
This year the event was sponsored by the Chinese Cryptology and Information Se-
curity Association (Taiwan), the Taiwan Information Security Center of the Re-
search Center for IT Innovation (Academia Sinica, Taiwan), the National Taiwan
University of Science and Technology (Taiwan), the NTU Center for Information
and Electronics Technologies (Taiwan), Academia Sinica (Taiwan), the National
Science Council (Taiwan), the Ministry of Education (Taiwan), the Taipei Chap-
ter of the IEEE Computer Society (Taiwan), BankPro E-service Technology Co.,
Ltd. (Taiwan), Exsior Data & Information Technology, Inc. (Taiwan), Giga-Byte
Education Foundation (Taiwan), Hewlett-Packard Taiwan, Hivocal Technologies,
Co., Ltd. (Taiwan), Microsoft Taiwan, Paysecure Technology Co., Ltd. (Taiwan),
Symlink (Taiwan), and Yahoo! Taiwan Holdings Limited (Taiwan Branch).

In order to cover the conference’s broad scope, this year’s main Program
Committee consisted of 61 experts from 22 countries. Additionally, the con-
ference also featured a special AES Subcommittee, chaired by Vincent Rijmen
(Graz University of Technology, Austria).

The conference received 134 submissions from 31 countries, 33 (including 4 in
the AES special session) of which were selected by the committee members for
presentation at the conference, based on quality, originality and relevance. Each
paper was anonymously reviewed by at least three committee members. In order to
encourage and promote student participation, the ISC 2008 Program Committee
selected three student-coauthored papers for the Best Student Paper award, one
from each region: Asia, Europe, and the Americas. The papers were, respectively,
“Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family,”
by Somitra Sanadhya and Palash Sarkar (Indian Statistical Institute, India), “Col-
lisions for RC4-Hash,” by Sebastiaan Indesteege and Bart Preneel (Katholieke
Universiteit Leuven, Belgium), and “Proxy Re-signatures in the Standard Model,”
by Sherman S.M. Chow (New York University, USA) and Raphael Phan (Lough-
borough University, UK). The program also included invited speeches by Doug
Tygar (UC Berkeley, USA) and Tatsuaki Okamoto (NTT, Japan).

Many people helped to make ISC 2008 successful. We would like to thank all
those who contributed to the technical program and to organizing the conference.
We are very grateful to the Program Committee members and the external referees
for their efforts in reviewing and selecting the papers. We would like to express our

VI Preface

special thanks to all the organizing committee members for making the conference
possible. We also give our thanks to all the authors of the submitted papers and
the invited speakers for their contributions to the conference.

July 2008 Tzong-Chen Wu
Chin-Laung Lei

ISC 2008

The 11th International Security Conference

Taipei,

General Chair

Der-Tsai Lee

Steering Committee

Ed Dawson
Der-Tsai Lee
Javier Lépez
Masahiro Mambo
Eiji Okamoto
René Peralta
Rebecca Wright
Yuliang Zheng

Program Co-chairs

Tzong-Chen Wu
Chin-Laung Lei

Finance Chairs

Jason Shih
Tim Chiou
David Fan

Publications Chairs

D.J. Guan
Wen-Guey Tzeng
Chun-I Fan

Taiwan, September 15-18, 2008

Director of the Institute of Information Science,
Academia Sinica, Taiwan

Queensland University of Technology, Australia
Academia Sinica, Taiwan

University of Malaga, Spain

University of Tsukuba, Japan

University of Tsukuba, Japan

NIST, USA

Rutgers University, USA

University of North Carolina at Charlotte, USA

National Taiwan University of Science and
Technology, Taiwan
National Taiwan University, Taiwan

Paysecure Technology Co., Ltd., Taiwan

Microsoft Corporation

Exsior Data & Information Technology, Inc.,
Taiwan

National Sun Yat-Sen University, Taiwan
National Chiao Tung University, Taiwan
National Sun Yat-Sen University, Taiwan

Local Arrangements Chairs

Hahn-Ming Lee

Ren-Junn Hwang
Ming-Hour Yang

National Taiwan University of Science and
Technology, Taiwan

Tamkang University, Taiwan

Chung Yuan Christian University, Taiwan

VIII Organization

Registration Chairs

Wei-Hua He Soochow University, Taiwan
Shiuh-Jeng Wang National Central Police University, Taiwan
Wen-Shenq Juang National Kaohsiung First University of Science

and Technology, Taiwan

Publicity Chairs

Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Hung-Min Sun National Tsing Hua University, Taiwan
Chien-Lung Hsu Chang Gung University, Taiwan

Web Masters

Bo-Yin Yang Institute of Information Science, Academia
Sinica, Taiwan

Chun-Yang Chen Institute of Information Science, Academia
Sinica, Taiwan

Chen-Mou Cheng National Taiwan University, Taiwan

Program Committee

Mikhail Atallah Purdue University, USA

Feng Bao Institute for Infocomm Research, Singapore

David Basin ETH Zurich, Switzerland

Josh Benaloh Microsoft Research, USA

Alex Biryukov University of Luxembourg, Luxembourg

Johannes Buchmann TU Darmstadt, Germany

David Chadwick University of Kent, UK

Tsuhan Chen Carnegie Mellon University, USA

Tzi-Cker Chiueh State University of New York at Stony Brook,
USA

Debbie Cook Bell Labs, USA

Robert Deng Singapore Management University, Singapore

Xiaotie Deng City University of Hong Kong, China

Claudia Diaz Katholieke Universiteit Leuven, Belgium

Jintai Ding University of Cincinnati, USA

Chun-I. Fan National Sun Yat-Sen University, Taiwan

Pierre-Alain Fouque ENS, France

Juan Garay Bell Labs, USA

Shai Halevi IBM Research, USA

Wei-Hua He Soochow University, Taiwan

Amir Herzberg Bar-Ilan University, Israel

Dennis Hofheinz
Lei Hu

Ren-Junn Hwang
Marc Joye
Wen-Shenq Juang

Hiroaki Kikuchi
Kwangjo Kim

Seungjoo Kim
Marcos Kiwi
Spyros Kokolakis
Steve Kremer
Xuejia Lai

Ruby Lee

San Ling
Subhamoy Maitra
Keith Martin
Fabio Massacci
Breno de Medeiros
Chris Mitchell
Atsuko Miyaji
Fabian Monrose
Hikaru Morita
David Naccache
Koji Nakao

Kaisa Nyberg

Carles Padro
Adrian Perrig
Andreas Pfitzmann
Raphael Phan
Josef Pieprzyk

Rei Safavi-Naini
Kouichi Sakurai

Pierangela Samarati

Angelos Stavrou
Dominique Unruh
Ariel Waissbein
Felix Wu
Huaxiong Wang
Bo-Yin Yang

Kan Yasuda
Heung Youl Youm

Organization

CWI, Netherlands

State Key Laboratory of Information Security,
China

Tamkang University, Taiwan

Thomson R&D, France

National Kaohsiung First University of Science
and Technology, Taiwan

Tokai University, Japan

Information and Communication University,
Korea

Sungkyunkwan University, Korea

University of Chile, Chile

University of the Aegean, Greece

ENS Cachan, France

Shanghai Jiao Tong University, China

Princeton University, USA

Nanyang Technological University, Singapore

Indian Statistical Institute, India

RH University of London, UK

University of Trento, Italy

Google, USA

RH University of London, UK

JAIST, Japan

Johns Hopkins University, USA

Kanagawa University, Japan

Gemplus, France

KDDI, Japan

Helsinki University of Technology and Nokia,
Finland

Polytechnic University of Catalonia, Spain

Carnegie Mellon University, USA

Dresden University of Technology , Germany

Loughborough University, UK

Macquarie University, Australia

University of Calgary, Canada

Kyushu University, Japan

University of Milan, Italy

George Mason University, USA

Saarland University, Germany

ITBA and Core Security, Argentina

UC Davis, USA

Nanyang Technological University, Singapore

Academia Sinica, Taiwan

NTT, Japan

Soonchunhyang University /IITA, Korea

X Organization

AES Subcommittee

Joan Daemen STMicroelectronics Belgium, Belgium
Xuejia Lai Shanghai Jiao Tong University, China
Chi Sung Laih National Cheng Kung University, Taiwan
Vincent Rijmen Graz University of Technology, Austria
Matt Robshaw France Telecom, France

Hung-Min Sun National Tsing Hua University, Taiwan
Ralph Wernsdorf Rohde & Schwarz, Germany

External Reviewers

Guido Bertoni Stijn Lievens
Rainer Béhme Chu-Hsing Lin
Elie Bursztein Hubert Comon-Lundh
Kostas Chatzikokolakis ~ Serdar Pehlivanoglu
Jung-Hui Chiu Duong Hieu Phan
Kim-Kwang Raymond

Choo Natalya Rassadko
Sherman S.M. Chow Ermaliza Razali
Ricardo Corin Ayda Saidane
Oriol Farras Stefan Schiffner
Hani Hassen Sandra Steinbrecher
Matt Henricksen Ruggero Susella
Alejandro Hevia Carmela Troncoso
Vladimir Kolesnikov Guilin Wang
Gabriel Kuper Shiuh-Jeng Wang
Cedric Lauradoux Artsiom Yautsiukhin
Jia-Hong Lee Sung-Ming Yen

Sponsoring Institutions

Chinese Cryptology and Information Security Association (CCISA), Taiwan

Taiwan Information Security Center (TWISC), Center for IT Innovation,
Academia Sinica, Taiwan

National Taiwan University of Science and Technology (NTUST), Taiwan

NTU Center for Information and Electronics Technologies (NTU CIET), Taiwan

Academia Sinica, Taiwan

National Science Council (NSC), Taiwan

Ministry of Education, Taiwan

IEEE Computer Society, Taipei Chapter

BankPro E-service Technology Co., Ltd. (Taiwan)

Exsior Data & Information Technology, Inc. (Taiwan)

Organization

Giga-Byte Education Foundation (Taiwan)
Hivocal Technologies, Co., Ltd. (Taiwan)
Microsoft Taiwan

Paysecure Technology Co., Ltd. (Taiwan)

Symlink (Taiwan)

Yahoo! Taiwan Holdings Limited (Taiwan Branch)

XI

Table of Contents

Trusted Computing

Property-Based TPM Virtualization...........
Ahmad-Reza Sadeghi, Christian Stible, and Marcel Winandy

A Demonstrative Ad Hoc Attestation System..............
Endre Bangerter, Maksim Djackov, and Ahmad-Reza Sadeghi

Property-Based Attestation without a Trusted Third Party............
Liqun Chen, Hans Léhr, Mark Manulis, and Ahmad-Reza Sadeghi

The Reduced Address Space (RAS) for Application Memory
Authentication
David Champagne, Reouven Elbaz, and Ruby B. Lee

Database and System Security

An Efficient PIR Construction Using Trusted Hardware...............
Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

Athos: Efficient Authentication of Outsourced File

SYSEEINS . . oot
Michael T. Goodrich, Charalampos Papamanthou,
Roberto Tamasstia, and Nikos Triandopoulos

BotTracer: Execution-Based Bot-Like Malware Detection
Lei Liu, Songqing Chen, Guanhua Yan, and Zhao Zhang

Intrusion Detection

Towards Automatically Generating Double-Free Vulnerability
Signatures Using Petri Nets o i i
Ryan Iwahashi, Daniela A.S. de Oliveira, S. Feliz Wu,
Jedidiah R. Crandall, Young-Jun Heo, Jin-Tae Oh, and
Jong-Soo Jang

Distinguishing between FE and DDoS Using Randomness Check
Hyundo Park, Peng Li, Debin Gao, Heejo Lee, and Robert H. Deng

Network Security

Antisocial Networks: Turning a Social Network into a Botnet
Elias Athanasopoulos, A. Makridakis, S. Antonatos, D. Antoniades,
Sotiris loannidis, K.G. Anagnostakis, and FEvangelos P. Markatos

17

31

47

64

80

97

XIV Table of Contents

Compromising Anonymity Using Packet Spinning
Vasilis Pappas, Elias Athanasopoulos, Sotiris loannidis, and
Evangelos P. Markatos

Behavior-Based Network Access Control: A Proof-of-Concept
Vanessa Frias-Martinez, Salvatore J. Stolfo, and
Angelos D. Keromytis

Path-Based Access Control for Enterprise Networks
Matthew Burnside and Angelos D. Keromytis

Cryptanalysis

Cryptanalysis of Rabbit
Yi Lu, Huaxiong Wang, and San Ling

Algebraic Attack on HFE Revisited
Jintai Ding, Dieter Schmidt, and Fabian Werner

Revisiting Wiener’s Attack — New Weak Keysin RSA
Subhamoy Maitra and Santanu Sarkar

Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash

Somitra Kumar Sanadhya and Palash Sarkar

Digital Signatures

Proxy Re-signatures in the Standard Model
Sherman S.M. Chow and Raphael C.-W. Phan

An RSA-Based (t,n) Threshold Proxy Signature Scheme without Any
Trusted Combiner.
Pei-yih Ting and Xiao-Wei Huang

Certificate-Based Signature Schemes without Pairings or Random
Oracles . ..o
Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

AES Special Session

Improved Impossible Differential Attacks on Large-Block Rijndael.
Lei Zhang, Wenling Wu, Je Hong Park, Bon Wook Koo, and
Yongjin Yeom

A Five-Round Algebraic Property of the Advanced Encryption
Standard
Jianyong Huang, Jennifer Seberry, and Willy Susilo

Table of Contents

Vortex: A New Family of One-Way Hash Functions Based on AES
Rounds and Carry-Less Multiplication
Shay Gueron and Michael E. Kounavis

Comparative Evaluation of Rank Correlation Based DPA on an AES
Prototype Chip oo
Lejla Batina, Benedikt Gierlichs, and Kerstin Lemke-Rust

Symmetric Cryptography and Hash Functions

Collisions for RC4-Hash
Sebastiaan Indesteege and Bart Preneel

New Applications of Differential Bounds of the SDS Structure
Jiali Choy and Khoongming Khoo

Authentication

HAPADEP: Human-Assisted Pure Audio Device Pairing
Claudio Soriente, Gene Tsudik, and Ersin Uzun

One-Time Password Access to Any Server without Changing the
SEIVET ottt ettt e e
Dinei Floréncio and Cormac Herley

Baris Coskun and Cormac Herley

Security Protocols

New Communication-Efficient Oblivious Transfer Protocols Based on
Pairingso
Helger Lipmaa

A New (k,n)-Threshold Secret Sharing Scheme and Its Extension
Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, and
Toshiakt Tanaka

Strong Accumulators from Collision-Resistant Hashing................
Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo

A Novel Audio Steganalysis Based on High-Order Statistics of a

Distortion Measure with Hausdorff Distance
Yali Liu, Ken Chiang, Cherita Corbett, Rennie Archibald,
Biswanath Mukherjee, and Dipak Ghosal

Author Index

XV

Property-Based TPM Virtualization

Ahmad-Reza Sadeghi®, Christian Stiible?, and Marcel Winandy'!

! Ruhr-University Bochum, D-44780 Bochum, Germany
{ahmad.sadeghi,marcel.winandy}@trust.rub.de
2 Sirrix AG security technologies, Lise-Meitner-Allee 4
D-44801 Bochum, Germany
stueble@sirrix.com

Abstract. Today, virtualization technologies and hypervisors celebrate
their rediscovery. Especially migration of virtual machines (VMs) be-
tween hardware platforms provides a useful and cost-effective means to
manage complex IT infrastructures. A challenge in this context is the
virtualization of hardware security modules like the Trusted Platform
Module (TPM) since the intended purpose of TPMs is to securely link
software and the underlying hardware. Existing solutions for TPM vir-
tualization, however, have various shortcomings that hinder the deploy-
ment to a wide range of useful scenarios. In this paper, we address these
shortcomings by presenting a flexible and privacy-preserving design of
a virtual TPM that in contrast to existing solutions supports different
approaches for measuring the platform’s state and for key generation,
and uses property-based attestation mechanisms to support software
updates and VM migration. Our solution improves the maintainability
and applicability of hypervisors supporting hardware security modules
like TPM.

1 Introduction

Corporate computing today is characterized by enterprises managing their own
IT infrastructure. In his article, “The end of corporate computing” [I], Nicholas
G. Carr predicts a shift from holding corporate assets to purchasing services from
third parties. Similar to electricity suppliers, there would be enterprises offering
IT functionality to other companies. Virtualization technology would be one of
the key drivers of the changing IT paradigm.

Indeed, virtualization enables the deployment of standardized operating envi-
ronments on various hardware platforms, features the execution of several virtual
machines (VMs) on a single platform, and allows to suspend a VM and resume
it at a later time. An important feature of virtualization is that one can migrate
a VM between hardware platforms, which allows an easy transfer of working
environments, e.g., in case of hardware replacements or switching to another
computer. Moreover, Virtual Machine Monitors (VMM), or hypervisors, are also
known to be an efficient way to increase the security of computer systems [2].
They provide isolation between VMs by mediating access to hardware resources

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 1 2008.
(© Springer-Verlag Berlin Heidelberg 2008

2 A.-R. Sadeghi, C. Stiible, and M. Winandy

and by controlling a rather simple interface of resources compared to a full oper-
ating system. Thus, different environments can be protected against harm from
other environments or violations of user privacy. For instance, an employee can
simply separate home and office usage in VMs.

Trusted Computing is considered to be another promising concept to im-
prove trustworthiness and security of computer systems. The Trusted Comput-
ing Group (TCG), an industrial initiative towards the realization of Trusted
Computing, has specified security extensions for commodity computing plat-
forms. The core TCG specification is the Trusted Platform Module (TPM) [314],
currently implemented as cost-effective, tamper-evident hardware security mod-
ule embedded in computer mainboards. The TPM provides a unique identity,
cryptographic functions (e.g., key generation, hash function SHA-1, asymmet-
ric encryption and signature), protected storage for small data (e.g., keys), and
monotonic counters (storing values that can never decrease). Moreover, it pro-
vides the facility to securely record and report the platform state (so-called
integrity measurements) to a remote party. The platform state typically consists
of the hardware configuration and the running software stack, which is measured
(using cryptographic hashing) and stored in the TPM. Several operating system
extensions [Bl6] already support the TPM as underlying security module.

In this context, the combination of virtualization and trusted computing pro-
vides us with new security guarantees such as assurance about the booted VMM,
but it also faces us with new challenges. On the one hand, VMs should be flex-
ible to support migration. On the other hand, security modules like the TPM
act as the root of trust attached to the hardware, and must be shared by vari-
ous VMs. Hence, different approaches for TPM virtualization have already been
proposed [7I89]. Being able to migrate a VM together with its associated virtual
TPM (vTPM) is of special importance to guarantee the availability of protected
data and cryptographic keys after migration. However, the existing solutions
have some shortcomings which strongly limit their deployment: After migrating
a VM and its vIPM to another platform with different integrity measurements
than the source platform, or after performing an authorized update of software,
the VM cannot access cryptographic keys and the data protected by those keys
anymore. This hinders the flexibility of migrating the VM to a platform pro-
viding the same security properties but different integrity measurements as the
source platform. Moreover, differentiated strategies for key generation and us-
age are missing. Some IT environments demand for cryptographic keys generated
and protected by the hardware TPM while some VMs would benefit from the
performance of software keys. In addition, some VMs can be migratable while
others must not be.

Contribution. In this paper we address these problems in the following way:

— We propose a vI'PM architecture that supports various functions to measure
the state of the platform, various usage strategies for cryptographic keys, and

both based on a user-defined policy of the hypervisor system (Sect. Bl).
— We show how the new measurement functions of our vIPM can be used to
realize property-based attestation and sealing. Our design can protect user

Property-Based TPM Virtualization 3

privacy by filtering properties to be attested in order to not disclose the
particular system configuration (Sect. [l).

— We allow a transparent migration of vI'PM instances to platforms with a
different binary implementation and show this is possible without losing the
strong association of security properties (Sect. [7]).

Moreover, our design does not require to modify the software of a VM (except for
the driver in the guest OS that interfaces to the vIPM instead of the hardware
TPM). Existing TPM-enabled applications directly profit from the flexibility of
the underlying vIPM. We expect furthermore that our vI'PM design can be
realized based on other secure coprocessors [T0ITT] because of its flexibility and
high-level abstraction of functionality.

Outline. We describe typical use cases that need flexible vIPMs in Sect. 2] and
define corresponding requirements in Sect. Bl Section [considers background of
the TPM and discusses the related work. We present our contribution in Sect. [,
[6l and [whereas we address in Sect. 8l how we achieve the requirements.

2 Use Case Scenario: Corporate Computing

We consider the use case in a corporate setting as our running example to make
various essential requirements on VMs and vIPMs more clear. Nevertheless,
these requirements also hold for many other applications such as e-government,
grid computing, and data centers.

Suppose an enterprise employee uses a laptop for both corporate and private
tasks which run in isolated VMs (Fig. [I).

Classified Corporate
Environment

Private Working
Environment
VM VM

Unclassified Corporate
Environment

VM

Hypervisor

‘ - Hardware

— Request/response path

Fig. 1. Private and corporate working environments with virtual TPMs

Private working environment: This environment may use the TPM, e.g., to
protect the key of a hard-disk encryption program or the reference values of an
integrity checker. Using existing vI'PM approaches, the protected data would
become unavailable if the user updates a software component within the VM.

Unclassified corporate environment is for processing unclassified data of
the company. Users should be able to migrate this VM to their computer at

4 A.-R. Sadeghi, C. Stiible, and M. Winandy

home to continue working. After migration, access to protected data and report-
ing integrity measurements of the VM should still be possible as long as the
underlying platform conforms to the company’s security policy.

Classified corporate environment: This environment is for processing clas-
sified data. Hence, it has stronger security requirements regarding the usage of
encryption keys. To access a corporate VPN, the company’s security policy may
require this environment to be bound to this specific hardware and that the
cryptographic keys are protected by a physical TPM.

3 Requirements on TPM Virtualization

The scenarios described above show the need for a flexible vIPM architecture
that supports all required functionalities. We consider the main requirements
of such an architecture below, where we add new requirements R5-R8 to those
(R1-R4) already identified by [7].

R1 Confidentiality and integrity of vTPM state: All internal data of a vIPM
(keys, measurement values, counters, etc.) have to be protected against unau-
thorized access.

R2 Secure link to chain of trust: There must be an unforgeable linkage between
the hardware TPM and each vIPM as well as between the VM and its
associated vIPM. This includes trust establishment by managing certificate
chains from the hardware TPM to vIPMs.

R3 Distinguishability: Remote parties should be able to distinguish between
a real TPM and a vIPM since a virtual TPM may have different security
properties than a physical one.

R4 Uncloneability and secure migration: The state of a vI'PM shall be protected
from cloning, and it can be securely (preserving integrity, confidentiality, au-
thenticity) transferred to another platform if the destination platform con-
forms to the desired security policy.

R5 Freshness: The vIPM state shall not be vulnerable to replay attacks (e.g.,
an adversary shall not be able to reset the monotonic counters of a vIPM).

R6 Data availability: Data sealed by a vI'PM should be accessible if the plat-
form provides the desired security properties. This should also hold after
migration or software updates.

R7 Privacy: Users should be able to decide which information about the plat-
form state (configuration of hardware and hypervisor) is revealed to a VM
or to a remote party.

R8 Flexible key types: Different protection levels and implementations of crypto-
graphic keys should be supported (as described in the use case
scenarios).

As we will discuss later, the existing vI'PM solutions do not fulfill all require-
ments of the typical use cases as described in Sect.

Property-Based TPM Virtualization 5

4 Background and Related Work
4.1 The Trusted Platform Module

The TPM has two main key (pairs): the Endorsement Key (EK) representing
the TPM’s identity and the Storage Root Key (SRK), used to encrypt other keys
generated by the TPM (which are stored outside the TPM). The TPM supports
trusted boot by allowing to record measurements of the hardware configura-
tion and software stack during the boot process. These measurements (typically,
SHA-1 hash of binaries) are stored in specific TPM registers called Platform
Configuration Registers (PCRs). Adding a hash m to a PCR is called extension
and requires to use the function TPM Extend(i, m), which concatenates m to
the current value of the i-th PCR by computing a cumulative hash.

Based on these PCR values, the TPM provides the sealing functionality,
i.e., binding encrypted data to the recorded configuration, and attestation, i.e.,
reporting the system state to a (remote) party. The latter uses the function
TPM Quote, which presents the recorded PCR values signed by an Attestation
Identity Key (AIK) of the TPM. The AIK plays the role of a pseudonym of the
TPM’s identity EK for privacy reasons, but to be authentic the AIK must be
certified by a trusted third party called Privacy-CA.

4.2 Integrity Measurement

AEGIS [12] performs an integrity check during the boot process of the operating
system and builds a chain of trust based on root reference values protected by
special hardware. Enforcer [I3] is a Linux kernel security module operating as
integrity checker for file systems. It uses a TPM to verify the integrity of the
boot process and to protect the secret key of an encrypted file system. IMA [6]
inserts measurement hooks in functions relevant for loading executable code in
Linux in order to extend the measurement chain to the application level.

Enforcer and IMA are examples of TPM-enabled applications which could be
used and executed in a VM that has a vIPM.

4.3 Property-Based Attestation

TCG binary attestation has some important drawbacks: (i) disclosure of plat-
form configuration information could be abused for platform tracking (privacy)
and discriminating against specific system configurations; (ii) lack of flexibil-
ity, i.e., data bound to a particular configuration is rendered inaccessible after
system migration, update or misconfiguration (data availability); (iii) less scala-
bility due to necessary management of every trusted platform configuration. To
tackle these problems, property-based approaches were proposed in the litera-
ture (see below): Instead of attesting hash values of binaries, they attest abstract
properties describing the behavior of a program or system, e.g., that the hyper-
visor is certified according to a certain Common Criteria protection profile. The
advantage is that properties can remain the same even if the binaries change.

6 A.-R. Sadeghi, C. Stiible, and M. Winandy

Haldar et al. [I4] present an approach exploiting security properties of pro-
gramming languages, e.g., type-safety. This allows to provide a mechanism for
runtime attestation. However, it requires a trusted language-specific execution
environment and is limited to applications written in that language.

Jiang et al. [T5] have shown that it is possible to have certificates stating
that the keyholder of a certain public key has a desired property, e.g., to be an
application running inside an untampered secure coprocessor.

A pragmatic approach for property-based attestation uses property certificates
[T6I7UTS]. A trusted third party (TTP) issues certificates cert(pkrrp,p, m),
signed by the TTP’s public key pkrrp, and stating that a binary with hash
m has the property p. When a PCR of the TPM is going to be extended with a
measurement value, a translation function looks for a matching certificate. If the
function can find and verify a matching certificate, it extends the PCR with the
public key pkprrp or, as proposed by [19], with a bit string representation of p. If
no certificate is found or the verification fails, the PCR is extended with zero.

While these approaches can be applied to existing TPMs or vI'PMs by adding
the translation function to a trusted component outside of the (v)TPM, we
apply the translation functions inside our vIPM (Sect. Eﬂ]ﬂ This allows us
to control the translation in each vIPM instance individually and reduces the
dependency of external software components (e.g., running in VMs).

4.4 Trusted Channel

A trusted channel is a secure channel with the additional feature that it is bound
to the configuration of the endpoint(s). An attestation (binary or property-
based) of the involved endpoint(s) is embedded in the establishment of the secure
channel [2021]. Hence, each endpoint can get an assurance whether the coun-
terpart complies with trust requirements before the channel is settled. Asokan
et al. [22] describe a protocol which creates a secret encryption key that is bound
not only to the TPM of the destination platform, but also to the configuration
of the trusted computing base (TCB). Binding a key to the configuration of the
underlying TCB has been used with TPM [13] and secure coprocessors [I5/10].

4.5 TPM Virtualization

Berger et al. [7] propose an architecture where all vTPM instances are executed
in one special VM. This VM provides a management service to create vIPM
instances and to multiplex the requests. To protect the vI'PM state when it is
stored on persistent memory, the state is encrypted using the sealing function of
the physical TPM. Optionally, the vIPM instances may be realized in a secure
coprocessor card. Compared to a real TPM, the vTPM has a different certificate
for its vEK, e.g., including a statement that it is virtual. Thus, a verifying
party will be able to distinguish between a vIPM and a TPM. The authors

1 'We use the simple version of property certificates, e.g., issued by a corporate CA,
certifying “approved by IT department”.

Property-Based TPM Virtualization 7

discuss different strategies for trust establishment, i.e., the way new certificates
are issued for a vIPM: (a) The vEK is signed by the AIK of the physical TPM
and the vIPM requests certificates for its vAIKs at a privacy CA. (b) The TPM
directly signs the vAIK with its AIK. (c¢) A local CA issues a certificate for the
vEK of the vTPMB In order to extend the chain of trust, they link the vIPM
to its underlying TCB by mapping the lower PCRs of the real TPM to the
lower PCRs of a vI'PM. This is supposed to enable the vIPM to include the
configuration of the underlying hypervisor platform during attestation.

However, this approach has the restriction that after migrating a VM and its
vTPM to a different hypervisor platform, the VM cannot access data that was
sealed by the vITPM on the source platform (R6 data availability). In our ap-
proach, we show how property-based measurement can be realized in the vIPM
while the interface to the VM remains the same as for binary attestation. This
removes the restriction that migration is only possible between binary identical
platforms. Moreover, our design allows flexible key types (R8) and protects pri-
vacy (R7) by allowing to filter the information to be revealed during attestation.

GVTPM [9] is an architectural framework that supports various TPM models
and different security profiles for each VM under the Xen hypervisor [23]. The
authors discuss two different vIPM models: software-based and hardware-based.
The former generates and uses cryptographic keys entirely in software, whereas
the latter uses the keys of the physical TPM. GVTPM is not limited to TPM
functionality and may be generalized to any security coprocessor. This is similar
to our approach since we also use a high-level abstraction of TPM functionality.
However, they realize flexible key types with different vITPM models, whereas
our vIPM design can support both. Moreover, GVTPM does not address our
requirements of data availability (R6) and privacy (R7).

Anderson et al. [24] realize the implementation of vIPM instances as isolated
domains instead of running all vIPMs in one privileged VM. Except for the
implementation, they provide no new aspects of the vITPM, but refer to [7].
Our architecture can also execute vI'PM instances in isolated domains since our
approach does not depend on a specific implementation.

Goldman and Berger [8] have specified additional commands that would be
needed to enhance a physical TPM to directly support VMs. The realization is
similar to [7], except that the vIPM-specific functions are realized within the
hardware TPM. Hence, they do not address data availability (R6) and privacy
(R7). Moreover, there is no such enhanced TPM chip model available at present.

5 Flexible vIPM Architecture

This section describes the general design of our vIPM architecture. For each
VM that needs a vIPM, there is a separate vIPM instance. We assume the
underlying hypervisor to protect the internal state and operations of each vIPM
from any unauthorized access. This can be achieved by using a secure hypervisor

2 For our example scenario, we can choose the certificate strategy (c) since the em-
ployee’s company could serve as a local CA to issue these certificates.

8 A.-R. Sadeghi, C. Stiible, and M. Winandy

as proposed in [2526], which enforces access control to resources and controls
communication between virtual machines. A VM can only access its associated
vTPM via the vTPMlInterface.

Figure 2 shows the logical design of our vIPM. The main building blocks are
the following: PropertyManagement represents the virtual PCRs and manages
different mechanisms to store and read measurement values (Sect. B1l); Key-
Management is responsible for creating and loading keys (Sect. [5.2]); vT PMPolicy
holds the user-defined policy of the vTPM instance (Sect. [1.3)); Cryptographic-
Functions provide monotonic counters, random number generation, hashing, etc.;
MigrationController is responsible for migrating the vI'PM to another platform.

VM
I TPM Driver |
TPM_CreateWrapKey() | TPM_Extend(i, m) TPM_PCRRead(i)
v
‘ VTPM Interface l ‘ Management Interface I
[= — _¢ CreateKey()__ __ LExtﬁd(i,_m) _ PCRRead(i) lcrypto... ¢migrate()
Key Property Cryptographic Migration
Management Management | Functions Controller
Ll
Software Key | PropertyProvider 11 | & |
£
- =l
i Hardware Key| PropertyProvider 2|— §_ vTPM
s s 18!
I PropertyProvider oL |
T T] e e e e = = = ==
| vTPM Policy [

TPM Key B

Fig. 2. Logical architecture of the vIPM

= | Novel components for vTPM

5.1 Property Management and Property Providers

To improve flexible migration and to preserve the availability of sealed data after
migration or software updates, an essential step is to support other measurement
strategies. Applying property-based measurement and attestation [THITIIT7IIS)]
to a vIPM allows much more flexibility in the choice of the hypervisor and for
easier updates of applications — a VM can still use sealed data or run attestation
procedures if the properties of the programs remain the same (see Sect. €3)).

We define the process of recording measurements into the TPM in a more
general way. Therefore, we redefine the extension function of the TPM:

Extend(i, m): PCR; < translate(PCR;, m).

In case of the TCG specification, translate is SHAL1(PCR;||m).
Our vTPM design is based on a plug-in-like architecture for various vPCR
extension strategies. Each extension strategy is realized by a PropertyProvider

Property-Based TPM Virtualization 9

module implementing another translate() function. To add measurement values
to the PCRs of the vIPM (vPCRs), the guest OS in a VM simply uses the stan-
dard TPM Extend() function, specifying the PCR number ¢ and the hash data
m to be stored. The PropertyManagement calls each property provider to extend
the corresponding vPCR with the measured data value. Each PropertyProvider
applies its translation function on the data and stores the resulting value in the
corresponding vPCR field. The general form of the PCR extension is as follows:

PropertyProvider;.Extend(i, m): vPCR, ; < translate;(vPCR; j, m)

Note that each PropertyProvider has its own vector of virtual PCRs. Thus there
is a matrix of vPCR values for each vI'PM, as depicted in Fig. Bl The way how
to store the vPCR values is up to the implementation of each property provider.
One could cumulatively hash all input values, as the TCG version of Extend. An
alternative is to simply concatenate the inputs on each invocation of Extend.

vTPM Instance

PropertyProvider 1 PropertyProvider j PropertyProvider N
PCRO] | | - | | - | |

R | | - | | - | |

VPCRI | | | |

Fig. 3. Matrix of vPCRs for a vI'PM instance

To give an example of different property providers, consider the virtual ma-
chine V' M}, wants to extend PCR; with a hash value m of a binary, e.g., when
the guest OS within V' M}, loads and measures a software component. The vTPM
instance vT P Mj, is associated with V M. Suppose there are two PCR extension
strategies, a HashProvider and a CertificateProvider. The HashProvider extends
PCR; with the hash m as provided by the VM. The CertificateProvider, how-
ever, looks for a property certificate (see Sect. E3).

In this example, the vIPM actually has two PCRs for PCR;, i.e., VPCR; phash
and vPCR; cert. However, when V M}, requests to read the current PCR value,
e.g., by invoking the function TPM PCRRead(i), the VM is only aware of an
abstract PCR; and the returned data must be of fixed-length for compliance
to the TCG specification. This is achieved by the PropertyFilter that defines,
based on vIPMPolicy, which property provider has to be used when reading this
particular vPCR. The responsible provider then returns the requested value.

5.2 Flexible Key Generation and Usage

To achieve a flexible key usage, the KeyManagement hides details of different
strategies to create cryptographic keys when a VM requests a new key pair. The
keys can be generated as software keys in the vIPM and as a result they are

10 A .-R. Sadeghi, C. Stiible, and M. Winandy

protected as part of the vIPM’s state. Alternatively, the vIPM can delegate
the key generation to a physical security module, e.g., a TPM or a smartcard.
In this case, the keys are protected by the hardware.

For example, in our “classified” corporate VM scenario, it is required to have
an encryption key protected by the physical TPM. When the VM requests to
create the key at the vIPM, the KeyManagement delegates the request directly
to the hardware TPM. Note that the VM cannot decide which key type to be
used; instead, this is decided by the vIPM policy.

Although the vTPMPolicy can specify which type of key is to be used, not
all combinations are possible. A vIPM cannot use a hardware AIK to sign
the vPCRs because the vIPM does not possess the private key part of the
AIK. However, the realization of KeyManagement is not limited to software and
physical TPMs. Instead, the underlying flexibility allows the realization based
on different hardware security modules while providing VMs compatibility to
the TCG specification.

5.3 User-Defined vITPM Policy

The user of the hypervisor system can specify a vTPMPolicy per vITPM instance
when the instance is created. The policy specifies what information about the
system state is actually visible to the VM and, hence, to other systems the
VM is allowed to communicate with. This is possible due to the selection of
property providers, which define possible translations of measurement values.
For all vIPM operations, the policy defines what property provider has to be
used. For example, a policy can define to always use the CertificateProvider for
sealing operations requested by the VM in order to enable flexible migration to
a certified platform.

For each vI'PM instance, the vTPMPolicy specifies the key strategy to be
used. In this way, we can source out privacy issues the VM would have to handle
otherwise. For instance, the policy decides when to use a particular vAIK and
how often it can be used until the KeyManagement has to generate a new one.

5.4 Initialization of the vI'PM

On its instantiation, the vIPM creates a new Endorsement Key (vVEK) and a
new Storage Root Key (vSRK). Certificates for the vEK and for vAIKs can be
issued, e.g., by a local CA.

Existing vTPM solutions [7] propose to directly map the lower PCRs of the
physical TPM to the lower vPCRs of the vTPM. These PCRs contain measure-
ments of the BIOS, the bootloader, and the hypervisor. While this provides a
linkage to the underlying platform, it is based on the hash values of binary code
only, which hinders migration as discussed earlier.

In our solution, we map these PCR values by applying our property providers
and build up a vPCR matrix, holding a vector of vPCRs for each property
provider. How the mapping is actually done is up to the implementation of
the property providers. After initialization of the platform by means of trusted

Property-Based TPM Virtualization 11

boot, the physical TPM contains the measurements of the platform configura-
tion. When a new vIPM instance is created by the hypervisor, the Property-
Management of this vIPM requests the physical TPM to read out all PCRs, i.e.,
from PC' Ry to PCR,,. Then each property provider is invoked with the following
function:

PropertyProvider;.initVirtualPCRs (PCRy,...,PCR,,)

For example, PropertyProvider 4 could map the values of PCRy,...,PC R7 one to
onetovPCRy_4,...,uPCR7_ 4, whereas PropertyProvider g could accumulate some-
how all physical measurements into one single vPCR. Finally, PropertyProviderc
could translate the PCR values into properties using certificates. This approach
allows to support different mapping strategies simultaneously.

By defining the vI'PM policy accordingly, we can control which mapping will
be used later. For instance, to support availability of sealed data after migration,
we can define to use the certificate-based property provider when the VM wants
to seal data to vPCRy,...,uPCR7. If flexible migration should not be allowed,
we would define to use PropertyProvider 4, resulting in sealing data to binary
measurements of the underlying platform.

6 Realizing Property-Based Functionality with vIPM

In this section we describe how we can use the feature of property providers to
realize property-based attestation and property-based sealing in the vIPM.

6.1 Property-Based Attestation

The CertificateProvider is one example of a property provider that uses property
certificates issued by a TTP. As mentioned in Sect. [51l CertificateProvider ap-
plies its translation function to extend vPCR; .t with the TTP’s public key
pkrrp. The attestation protocol works as follows: A verifier requests attestation
to (PCR;,...,PCR;) of V Mj; the VM requests its vIPM to quote the corre-
sponding vPCRs with the key identified by vAIK;p:

(perData, sig) = vT PMj,.Quote(vAIKp, nonce, [i,....j])

where pcrData denotes the quoted vPCR values, sig denotes the vIPM’s signa-
ture on pcrData and nonce. Internally, the PropertyManagement of the vIPM
decides according to the vT PMPolicy which property provider is to be used for
attestation. If the CertificateProvider is chosen, then vT P M}, will use its vAIK
as identified by vAIKp to sign the values of vPCRy; ... j.cert-

The verifier verifies the signature sig and whether pcrData represent the de-
sired properties. Hence, we can use v PMPolicy to restrict attestation to certain
property providers, depending on the use case. This allows to control which
information about the VM and the user’s system is going to be revealed to a
remote party and as a result fulfills our privacy requirement.

12 A .-R. Sadeghi, C. Stiible, and M. Winandy

6.2 Property-Based Sealing

The sealing procedure of our vIPM works as follows. A virtual machine V My,
chooses a handle vBindkeylID of a binding key that was previously created in
the virtual TPM instance vT P M}, and then issues the sealing command to seal
data under the set of virtual PCRs (PCR;,...,PCR;). The vTPM realizes the
sealing function as follows:

vT' P Mj.Seal(vBindkeyID, [i,...,j], data):
provider := vTPMPolicy.askForProvider([,...,j]);
FOR [:= ¢ TO j DO prop; := provider. PCRRead(l);
pk := KeyManagement.getPublicKey(vBindkeyID);
ed := encrypt[pk](i|[propi||...||j|[prop;||data);
return ed.

The vTPM asks its vTPMPolicy which property provider to use, which can
depend on the combination of vPCRs for the sealing operation. It requests the
KeyManagement to load the corresponding binding key, retrieves the vPCR, val-
ues of the specified PropertyProvider, and encrypts data, and the vPCR values
with corresponding vPCR number. When the VM wants to unseal the data
again, the vITPM proceeds as follows:

vT P Mj,.UnSeal(vBindkeylD, ed):

(sk, pk) := KeyManagement.getKeyPair(vBindkeylID);
(i[|propil|...||i|lprop;||data) := decrypt[sk](ed);
provider := vTPMPolicy.askForProvider([3,...,j]);
FOR [:= i TO 7 DO BEGIN

prop; := provider. PCRRead(l);

if (prop; # prop;) return ();
END
return data.

The vTPM first loads the binding key pair identified by vBindkeylD and de-
crypts the sealed data ed. The vIPMPolicy decides again which PropertyProvider
to use. The current vPCR values are compared to the values stored in the sealed
data. Only if all matching pairs are equal, the plain data is returned to V M.

Of course, a property provider like CertificateProvider is needed as one possible
way to realize property-based sealing. This is especially interesting if sealing is
related to software components in the VM. Depending on the realization of the
property provider, unsealing will be possible if the measured applications of the
VM are changed but still provide the same properties, i.e., the corresponding
property certificate is available and valid.

Moreover, property-based sealing enables the availability of sealed data after
migration of a VM and its corresponding vIPM to a platform with a different
binary implementation. This can be achieved, e.g., by using a CertificateProvider
for the vPCRyq,... 7].cert, representing the properties of the underlying hypervisor
platform. This measurement does not change after migration to a target platform
having a certificate stating the same properties.

Property-Based TPM Virtualization 13

7 Migration of vIPM

Our vTPM migration protocol is based on the vTPM migration protocol in [7].
However, in contrast to [7] we do not use a migratablg] TPM key to protect
the session key but rather we propose to embed the migration procedure in a
trusted channel. As described in Sect. 4] the trusted channel allows to create
a secret encryption key that is bound not only to the TPM of the destination
platform but also to the configuration of its TCB. In our case the TCB comprises
the vIPM and the hypervisor. The advantage of using such a trusted channel
is that, once it has been established, it can be re-used for migration of several
vTPM instances between the same physical platforms. Moreover, a transfer can
even securely occur after the target machine has rebooted.

‘ Source platform ‘ ‘ Destination platform
T 1 T 1
‘ vTPM ‘ Migration Controlling Process‘ ‘Migration Controlling Process ‘
initiateMigration()
l t
) create() VTPM
migrate()
B requestTrustedChannel() |
(PKBind‘ certﬂim:l)
verify(PK,, » cert,,)
] sk := createKey()

esk := bind[PK, I(sk)

D s := getState()

es := encrypt[sk](s)

deleteKey(sk), deleteState()
transfer(es,esk)

>

D destroy() sk := unbind[PK, l(esk)
X s := decrypt[sk](es)

setState(s)]

Fig. 4. A vTPM migration based on a trusted channel

Figure @l shows our migration procedure, based on the trusted channel pro-
tocol of [22].The process (of the hypervisor) responsible for migrating the VM
also initiates the migration of the associated vIPM. After creating a new vIPM
instance on the target system, the source vIPM requests to establish a trusted
channel to the destination vIPM. When the trusted channel is successfully es-
tablished, the source vIPM encrypts its state and transfers it to the destination.
The source vIPM destroys itself subsequently, i.e., the vIPM deletes its own
state from memory. On the target, the vI'PM decrypts and activates the state.

Additionally, there is another issue if the hypervisor supports to suspend
a vIPM, i.e., if the vIPM state was stored on persistent memory before. If

3 There are various attributes for TPM keys. Migratable keys are allowed to be mi-
grated to another TPM.

14 A .-R. Sadeghi, C. Stiible, and M. Winandy

the suspended vIPM state is sealed to the hardware TPM (see Sect. 0], a
migration of the suspended vIPM state (“offline migration”) is not possible.
However, we can resume a suspended vIPM (i.e., unseal the vTPM state) on
the source platform, migrate the vI'PM state to the target, and suspend and seal
the vTPM state on the target platform to its hardware TPM, respectively. To
ensure that the vIPM state is unique and cannot be reactivated at the source
platform, the hypervisor has also to delete the key used to seal the vITPM state.

In order to prevent data loss from transmission failures during migration, the
encrypted vI'PM state can be stored persistently before transmission so that
the state can be transmitted again to the target platform (if the migration is
still pending and the keys of the trusted channel are still valid). Based on the
ideas of [I1], the encrypted state could be deleted on the source after the source
receives an acknowledgment from the target.

8 Requirements Revisited

We briefly address the requirements of Sect. Bl Our architecture supports flexible
key types by means of KeyManagement (Sect.[5.2). We have addressed data avail-
ability with PropertyManagement (Sect.[5.]) and property-based sealing (Sect. [6]).
To protect privacy, we make use property-based attestation and PropertyFilter,
which controls the disclosure of properties according to the vIPM policy. The
inclusion in the chain of trust is realized by mapping the PCRs of the phys-
ical TPM to the vIPM (Sect. [54). The requirement of distinguishability was
already addressed by prior work (see Sect. [L]). To protect the confidentiality
and ntegrity of vTPM state and to maintain uncloneability, we can also resort
to existing approaches, which we briefly discuss below.

Runtime protection of the vIPM state is assumed to be provided by the
hypervisor through isolation. But to enable a VM and its vITPM to suspend and
resume, all data belonging to the state of vIPM instance need to be protected
against copying clones to other platforms or replaying old states on the local
platform. In case the vIPM state has to be stored on persistent memory, prior
work [7] encrypts the vIPM state using a key that is sealed to the state of PCRs
in the hardware TPM, i.e., binding it to the configuration of the TCB.

To prevent a local replay of an old vIPM state, the sealed state has to be
stored on storage providing freshness. For instance, [22] proposes a solution based
on monotonic counters of the TPM. To prevent a replay of migration, the target
platform needs to be able to detect the freshness of the transferred vIPM state.
In [22] and [7], the source encrypts the data to be transferred together with a
unique nonce that was defined by the target platform.

9 Conclusion and Future Work

We have presented a flexible and privacy-preserving design for virtual TPMs
that supports different approaches for measuring the platform’s state and for
key generation. We have demonstrated that our design allows to implement

Property-Based TPM Virtualization 15

property-based sealing and attestation in a vIPM. This enables the availabil-
ity of protected data and cryptographic keys of the vIPM after migrating to
another platform that provides the same security properties but may have a dif-
ferent binary implementation. TPM-enabled applications executed in a VM can
directly profit from this flexibility without the need for modification.

The vTPM design is part of a security architecture that we currently imple-
ment. We are going to decompose the vI'PM functionality into several services
that can be used as required. Future work also includes the evaluation of per-
formance and scalability. Moreover, flexible offline migration of vITPM states is
an open issue which we will work on.

References

1. Carr, N.G.: The end of corporate computing. MIT Sloan Management Re-
view 46(3), 67-73 (2005)

2. Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A VMM secu-
rity kernel for the VAX architecture. In: Proceedings of the IEEE Symposium on
Research in Security and Privacy, pp. 2-19. IEEE Computer Society, Los Alamitos
(1990)

3. Trusted Computing Group: TPM Main Specification Version 1.1b (February 2002),
https://www.trustedcomputinggroup.org

4. Trusted Computing Group: TPM Main Specification Version 1.2 rev. 103 (July
2007), https://www.trustedcomputinggroup.org

5. Microsoft Corporation: Bitlocker drive encryption (July 2007),
http://www.microsoft.com/technet/windowsvista/security/bitlockr.mspx

6. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: 13th Usenix Security Sympo-
sium, San Diego, California (August 2004), pp. 223-238 (2004)

7. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the Trusted Platform Module. In: Proceedings of the 15th USENIX
Security Symposium, USENIX, August 2006, pp. 305-320 (2006)

8. Goldman, K., Berger, S.: TPM Main Part 3 — IBM Commands (April 2005),
http://www.research.ibm.com/secure systems department/projects/vtpm/
mainP3IBMCommandsrev10.pdf

9. Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: TPM virtualiza-
tion: Building a general framework. In: Pohlmann, N., Reimer, H. (eds.) Trusted
Computing, Vieweg, pp. 43-56 (2007)

10. Smith, S.W., Weingart, S.: Building a high-performance, programmable secure
coprocessor. Computer Networks 31(8), 831-860 (1999)

11. Yee, B.S.: Using Secure Coprocessors. PhD thesis, School of Computer Science,
Carnegie Mellon University (May 1994) CMU-CS-94-149

12. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap ar-
chitecture. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1997, pp. 65-71. IEEE Computer Society Press, Los
Alamitos (1997)

13. Macdonald, R., Smith, S., Marchesini, J., Wild, O.: Bear: An open-source virtual
secure coprocessor based on TCPA. Technical Report TR2003-471, Department of
Computer Science, Dartmouth College (2003)

https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
http://www.microsoft.com/technet/windowsvista/security/bitlockr.mspx
http://www.research.ibm.com/secure_systems_department/projects/vtpm/mainP3IBMCommandsrev10.pdf
http://www.research.ibm.com/secure_systems_department/projects/vtpm/mainP3IBMCommandsrev10.pdf

16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A .-R. Sadeghi, C. Stiible, and M. Winandy

Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: A virtual ma-
chine directed approach to trusted computing. In: USENIX Virtual Machine Re-
search and Technology Symposium (2004)

Jiang, S., Smith, S., Minami, K.: Securing web servers against insider attack. In:
17th Annual Computer Security Applications Conference (ACSAC) (2001)

Chen, L., Landfermann, R., Loehr, H., Rohe, M., Sadeghi, A.R., Stiible, C.: A
protocol for property-based attestation. In: STC 2006: Proceedings of the First
ACM Workshop on Scalable Trusted Computing, pp. 7-16. ACM Press, New York
(2006)

Poritz, J., Schunter, M., Van Herreweghen, E., Waidner, M.: Property attestation—
scalable and privacy-friendly security assessment of peer computers. Technical Re-
port RZ 3548, IBM Research (May 2004)

Sadeghi, A.R., Stiible, C.: Property-based attestation for computing platforms:
Caring about properties, not mechanisms. In: The 2004 New Security Paradigms
Workshop. ACM Press, New York (2004)

Kiihn, U., Selhorst, M., Stiible, C.: Realizing property-based attestation and sealing
with commonly available hard- and software. In: STC 2007: Proceedings of the 2nd
ACM Workshop on Scalable Trusted Computing, pp. 50-57. ACM Press, New York
(2007)

Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. In: STC 2006: Proceedings of the First ACM Workshop on Scalable
Trusted Computing, pp. 21-24 (2006)

Stumpf, F., Tafreschi, O., Roder, P., Eckert, C.: A robust integrity reporting pro-
tocol for remote attestation. In: Proceedings of the Second Workshop on Advances
in Trusted Computing (WATC 2006 Fall), Tokyo (December 2006)

Asokan, N., Ekberg, J.E., Sadeghi, A.R., Stiible, C., Wolf, M.: Enabling fairer
digital rights management with trusted computing. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 53-70. Springer,
Heidelberg (2007)

Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, 1., Warfield, A.,
Barham, P., Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of
the ACM Symposium on Operating Systems Principles, October 2003, pp. 164-177
(2003)

Anderson, M.J., Moffie, M., Dalton, C.I.: Towards trustworthy virtualisation en-
vironments: Xen library os security service infrastructure. Technical Report HPL-
2007-69, Hewlett-Packard Laboratories (April 2007)

Sadeghi, A.R., Stiible, C., Pohlmann, N.: European multilateral secure computing
base - open trusted computing for you and me. Datenschutz und Datensicherheit
DuD, Verlag Friedrich Vieweg & Sohn, Wiesbaden 28(9), 548-554 (2004)

Sailer, R., Valdez, E., Jaeger, T., Perez, R., van Doorn, L., Griffin, J.L., Berger,
S.: sHype: Secure hypervisor approach to trusted virtualized systems. Technical
Report RC23511, IBM Research Division (February 2005)

A Demonstrative Ad Hoc Attestation System

Endre Bangerter', Maksim Djackov?, and Ahmad-Reza Sadeghi®

! Bern University of Applied Sciences, Switzerland
endre.bangerter@jdiv.org
2 Bern University of Applied Sciences, Switzerland
dkm1@bfh.ch
3 University of Bochum, Germany
ahmad.sadeghi@trust.rub.de

Abstract. Given the growing number and increasingly criminally motivated
attacks on computing platforms, the ability to assert the integrity of platform be-
comes indispensable. The trusted computing community has come up with var-
ious remote attestation protocols that allow to assert the integrity of a remote
platform over a network.

A related problem is that of ad hoc attestation, where a user walks up to a com-
puting platform and wants to find out whether that platform in front of her is in a
trustworthy state or not. ad hoc attestation is considered to be an open problem,
and some very recent publications have outlined a number of open challenges
in this field. Major challenges are (i) the security against platform in the middle
attacks (i) viable choice of the device used to perform attestation, and (iii) the
manageability of integrity measurements on that device.

In this paper we describe a concrete implementation of an ad hoc attestation
system that resolves these challenges. Most importantly, our system offers a novel
and very intuitive user experience. In fact, from a user perspective, ad hoc attes-
tation using our solution roughly consists of initiating the process on the target
platform and then holding a security token to the screen of the target platform.
The outcome of the ad hoc attestation (i.e., whether the platform is trustworthy or
not) is then shown on the token’s display. This usage paradigm, which we refer
to as demonstrative ad hoc attestation, is based on a novel security token tech-
nology, which we have used. We believe that our system has the potential to be
evolved into a system for real world usage.

Keywords: Trusted computing, attestation, Kiosk computing, platform integrity,
smart cards.

1 Introduction

Attacks on computing platforms are growing rapidly, becoming more sophisticated,
and are increasingly criminally motivated. Just one example of such recent attacks are
transaction generators, which take over correctly authenticated e-banking sessions and
perform undiscoverable fraudulent transactions [Krell. The Trusted Computing
Group (TCG) aims at providing means towards tackling these problems. One of the
mechanisms proposed by the TCG is remote attestation [Trud]. A remote

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 17530] 2008.
(© Springer-Verlag Berlin Heidelberg 2008

18 E. Bangerter, M. Djackov, and A.-R. Sadeghi

attestation protocol allows a verifier to learn the integrity state of a remote computing
platform (the target platform) over a network connection. To this end the target plat-
form is equipped with a Trusted Platform Module (TPM), which measures and reports
its integrity status. The design and implementation of such protocols has received at-
tention within the trusted computing community, and many variants of such protocols
exist IGSST07].

There is a practically relevant application scenario which is not covered by remote
attestation protocols. In that scenario, a user walks up to a computing platform and
wants to find out whether that platform in front of her, which she can identify physically
(e.g., by seeing or touching it) is in a trustworthy state or not. Technically, this scenario
boils down to finding out whether the platform in question contains a TPM and, if
so, getting an integrity measurement from the TPM residing within the platform. To
actually obtain that information the user will have to make use of some sort of portable
computing device (e.g., mobile phone, smart card etc.), which runs a protocol with the
target platform in question. We call protocols that solve the problem underlying this
scenario ad hoc attestation protocol and the portable device the user device. The term
“ad hoc” refers to the fact that the user device and the target platform have, loosely
speaking, never met before and hence do not share any kind of a priori information
(such as cryptographic keys, certificates, identifiers etc.) on each other.

While remote attestation and ad hoc attestation have the same goal - getting the in-
tegrity measurements on some target platform, they differ in how the platform is iden-
tified. It is the “ad hoc” and “physical identification by the user” aspects which are not
covered by remote attestation that make ad hoc attestation a challenging problem.

There is a large number of practically relevant application scenarios for ad hoc at-
testation. One class of examples is the verification of the platform integrity before per-
forming critical transactions, such as e-banking, accessing sensible data, issuing a dig-
ital signature, editing a confidential document etc. Another class is using an unknown
computer, e.g., at a friend’s place, in an Internet cafe, in a company branch office, etc.
Finally, there is a large field of potential future applications where ad hoc attestation
could be used to prevent fraud resulting from attacks against common infrastructure,
such as payment terminals [DMOQ7], automated teller machines, etc.

Designing practically usable and secure ad hoc attestation protocols and systems is
considered to be an open problem. The pertaining challenges are the subject of very
recent publications by McCunem et al [MPSvDO7], Garriss et al [SGQ7], as well as of
some earlier work by Ranganathan [Ran04]. The challenges described in these works
fall into three main categories:

1. Security against platform in the middle attacks. The fundamental challenge is “How
to detect whether the user is really receiving an integrity measurement of the plat-
form she has in front of her?”. In fact, in a platform in the middle attack, a corrupted
platform could relay attestation requests to a trustworthy platform and thus imper-
sonate the latter.

2. Viable choice of user device and usability. For ad hoc attestation to be viable in
practice, the user device being chosen and the ad hoc attestation protocol should
fulfill certain criteria: It should be based on affordable commodity hardware and
feature a small form factor so that it can easily be carried about. It shall offer

A Demonstrative Ad Hoc Attestation System 19

universal connectivity between the user device and the target platform, such that
essentially any platform can be ad hoc attested. The user device itself has to be
trustworthy and resilient against attacks; otherwise ad hoc attestation protocols can
be broken by attacking the user device. Last but not least, the device and the ad hoc
attestation protocol shall be intuitive and easy to use.

3. Evaluation and management of integrity measurements. Assuming that a user de-
vice gets the actual integrity measurements of the platform in question, it still needs
to evaluate the measurements to decide whether the platform is in a trustworthy
state or not. Therefore it must match the integrity measurements against a database
of known trustworthy states. The challenge here is to manage such databases on
user devices, which often have only limited storage and computing power.

Another major open challenge is to devise run-time attestation techniques, which
overcome the limitations of current file integrity based techniques [ESvDO3]|.

Our contributions. In this paper we describe a secure and easy to use ad hoc attestation
system, which - we believe - can be evolved in a system for real world usage. More
precisely, we describe protocols and a concrete implementation of an ad hoc attestation
system that solve the challenges 1 — 3 outlined above; we do not tackle the run-time
attestation issue, which remains an open research question.

Our ad hoc attestation system makes essential use of a novel security token technol-
ogy [AXS]). The token’s form factor corresponds essentially to that of a conventional
smart card. Yet, it has some distinct features, which play an important role in our system.
The token features a display, a fingerprint reader for user authentication and trackpad-
like navigation, and an optical sensor for receiving data. The optical sensor is crucial
since it allows to receive data from a PC by simply holding the token to a PC’s screen,
where an animated flickering pattern - encoding the data - is displayed (for illustrations
see Fig.Plin §3)).

These features of the token allow us to resolve the second class of challenges
mentioned above. For instance, thanks to the optical sensors, we achieve an unpar-
alleled connectivity since no cabling between the user device and target platform is
required. Moreover, the token features an isolated execution architecture with a min-
imal firmware, which is amenable to assurance techniques. This is an important pre-
condition for the security of the user device.

Most importantly, our system offers a novel and very intuitive user experience. In fact,
from a user perspective, ad hoc attestation using our solution roughly consists of initiat-
ing the process on the target platform and then holding the token to the screen of the target
platform. The outcome of the attestation protocol (i.e., whether the platform is trustwor-
thy or not) is then shown on the token’s display. From a usability perspective, “holding
the token to the screen of the platform to be verified” is compelling and a highly intuitive
usage metaphor resembling the “demonstrative identification” metaphor proposed for ad
hoc authentication [DBWO02]|. We refer to this usage metaphor by demonstrative ad hoc
attestation.

To tackle the third of the above challenges, we have chosen a server based ad hoc
attestation architecture for our implementation. Thereby, on a high level, attestation is
performed by a central server and the attestation outcome is then transmitted to the

20 E. Bangerter, M. Djackov, and A.-R. Sadeghi

user device. Thus, all integrity measurements and other attestation related information
is managed by a central server. This model integrates very well with the way IT in-
frastructure is run nowadays. As an example, in the enterprise setting the attestation
server could be operated by the IT department and integrated with existing asset and
systems management solutions. An other possible setting is where such servers are run
by security services companies, which maintain a database of trustworthy integrity mea-
surements, very much like anti-virus companies or managed security solution providers
maintain lists of virus or IDS attack signatures.

Outline. In §2 we describe more precisely what an ad hoc attestation protocol is, as
well as desirable security properties of such protocols. Then, in §3] we describe the
security token technology underlying our results. Our main results follow in §4 where
we describe our implementation of a demonstrative ad hoc attestation system. Finally,
in §3lwe review related work and then go over to conclusions and future work in §6

2 Ad Hoc Attestation — Basic Notions and Security Goals

In this section we describe what an ad hoc attestation protocol is, as well as the desired
security properties of such protocols.

By an integrity measurement (denoted by integrity(P)) we refer to a procedure that
runs on a platform P and outputs information about the integrity of P. We assume that
a measurement is either good (i.e., integrity(P) € ¢) or bad (i.e., integrity(P) € A).
Informally, integrity(P) € ¢ means that P is trustworthy, and integrity(P) € % that P
is corrupted. The current integrity measurement technique used in Trusted Comput-
ing, is roughly to compute the hash-values of the disk images of various files residing
on P. This, and other tasks, are performed using a Trusted Platform Module (TPM) chip
built into P. A novel area of research is that of run-time attestation, where an integrity
measurement additionally includes run-time information on the processes running on
P [ESvDO03].

Consider a user U equipped with a portable user device D (e.g., a PDA, smart phone,
smart card). An ad hoc attestation protocol is a protocol where U physically identifies
the rarget platform P (i.e., U can see and physically interact with P), and where D, after
interacting with P, and possibly third parties, eventually outputs good if integrity(P) €
% or bad when integrity(P) € . An important point is that since we are looking at
the “ad hoc” scenario, one cannot assume that U or D have a priori information (e.g.,
an identifier of P, pre shared keys etc.) about P.

We call an ad hoc attestation protocol secure, if in the presence of an adversary it
holds that: If integrity(P) € %, then D neverf] outputs good at the end of a protocol
execution, and if integrity(P) € ¢, then D never outputs bad at the end of a protocol
execution.

An often cited security challenge is that of platform in the middle attacks, where a
bad target platform impersonates a good platform.

I Actually, using the term “never” is too strong. An adversary has always at least a small proba-
bility of breaking a system, e.g., by guessing crypto keys etc. A formally satisfactory approach
would be to replace never with negligible probabilities - as it is common in cryptography and
complexity theory. Since this paper is practically minded we refrain from this formalism.

A Demonstrative Ad Hoc Attestation System 21

3 Overview of Token Technology

Our ad hoc attestation system described in §4] makes essential use of unique features
of the Axsionics security token system [AXS], which consists of security tokens and of
a token server. In the standard usage scenario of the system, the token allows users to
securely authenticate and confirm transactions (e.g., e-banking payments), even in the
setting where the user’s PC is controlled by an attacker (e.g., malware [Krel]).
The system can also be used for conventional user authentication.

Optical
8l — Sensors

I,axsion .

Fingerprint
reader

Fig. 1. Security token and its components

The token (see Fig.[I)) features a 128 * 96 pixel display, a fingerprint reader for local
authentication of the user to the token through biometrics. The fingerprint reader also
serves as a simple user input device for navigation and selection operations on the dis-
play. The token’s size is that of a smart card, except that it is Smm thick. It runs a custom
firmware, which is verified during the boot process. All computations and storage op-
erations are run within an EAL4+ certified ARM secure core CPU [ARM]]. Finally, the
token features optical sensors to read off data from a PC display.

Conceptually, the token server and the token constitute a secure remote procedure
call (RPC) system. That is, the token server can call remote procedures (which are
hardcoded in the firmware) on a token, the token then executes the designated proce-
dure (which often involves user interaction with the token), and then finally returns the
outcome of the computation to the server. The token server in turn makes this RPC
functionality available as a secure service to third party applications.

Let us consider a standard usage example of the token system and assume that the
user has established a session with an e-banking server using her PC. Then, in the course
of the session the need for a secure computation arises, i.e., review and confirmation of
e-banking transactions by the user. The request for performing the secure computation
is sent from the e-banking server to the token server (e.g., using a secure Web Service).
The token server then establishes a secure channel with the token specified in the re-
quest, sends the transaction details to the remote procedure on the token allowing the
user to accept or reject the transaction, and finally returns the accept or reject choice to
the initiating e-banking application.

22 E. Bangerter, M. Djackov, and A.-R. Sadeghi

-~
(a) Freeze-image of animated (b) User holding token over
flickering pattern. flickering pattern (on PC display)

to receive a message.

Fig. 2. Security token and optical flickering mechanism

The logical channel between the token server and a token features end to end security
(i.e, confidentiality, authenticity, integrity, and freshness), through a proprietary proto-
col. The security properties of the channel essentially correspond to that of Internet
security protocols, such as TLS and VPN. Physically, messages from the token server
to the token are routed via the calling e-banking server to the user’s PC to the token,
which is “connected” (details see below) to the PC. Thereby the user PC plays the role
of a network component only, which relays messages between the token and the server.

The physical transmission between the token and the user’s PC can be established in
two ways. One is using a USB cable. It features a high throughput in both directions,
but requires the user to have a USB cable at hand and to connect it to the token and PC.
The other way is unique to this token technology: it is based on an optical signal sent
from the PC to the token. More precisely, an RPC request sent from the token server is
encoded as a flickering pattern which is displayed in the PC’s web browser (e.g., using
GIF, Flash, or Java). The flickering (see is a rapidly alternating black and white
pattern shown on a small area of the display. When the flickering appears on the PC’s
display, the user simply holds her card over the pattern (see Fig. 2Z(b)); the token then
receives the request using its optical sensors. The bandwidth of the optical transmission
channel is approximately 150bits/sec. Response messages from the token back to the
server - if any - are shown on the token’s display and then entered via the PC’s keyboard
by the user. The return messages are typically short cryptographic one-time transaction
confirmation codes. The optical channel features an unparalleled connectivity (it works
with any PC or Internet access device featuring a web browser and a sufficiently large
display, without cabling) and ease of use (holding the token to the screen is an intuitive
usage metaphor).

In our ad hoc attestation system described below, we don’t use the token system to
perform user and transaction authentication. We rather use it to securely send messages
from the token server to a token (i.e., we don’t send return messages to the server). In the
following, we denote crypto processing (e.g., encrypting, MACing etc.) and encoding as
flickering of a message m on the token server by fencode(m, Tjp), where T;p denotes the
identifier of the token to which the message is sent. Conversely, m = fdecode(flickr)
denotes the operation on the token that consists of decoding the flickering pattern and
then crypto processing it (i.e, decrypting, MAC verification, etc.) to obtain the original
message m.

A Demonstrative Ad Hoc Attestation System 23

4 Demonstrative Ad Hoc Attestation System

In the following we describe the implementation of a secure ad hoc attestation system,
which realizes the usage paradigm of a demonstrative ad hoc attestation system, as
discussed in {1l Our system makes use of the token technology described in the previous
section.

In the following §4.1] we briefly review notions of trusted computing which we rely
on in the description of our ad hoc attestation system in §£21 Finally, in §4.3] we briefly
discuss a variant of our ad hoc attestation protocol, which is secure under different
assumptions from the ones given in §4.21

4.1 Trusted Computing Basics and Notation

Let us briefly recall some of the Trusted Computing Group’s (TCG) concepts used in
our implementation. For a self-contained description, we refer to the TCG specifica-
tions and textbooks [DCO7]. At the heart of the
TCG architecture is the Trusted Platform Module (TPM). This is a chip residing inside
a platform, which performs trusted integrity measurement, storage, and integrity re-
porting operations. Each TPM has an Endorsement Key, which is a signing key whose
public key is certified by a trusted third party (e.g., the TPM manufacturer). For privacy
reasons, Endorsement Keys are used to obtain certificates on so called Attestation Iden-
tity Keys (AIK), which are pseudonymous signing keys. To this end the TPM generates
an AIK key-pair (AIK,,;,AIK,:,) and a certificate authority then issues a certificate
on AIK,,;,, vouching for the fact that the AIK key-pair was generated by a valid TPM.
Binding keys are asymmetric encryption key-pairs. Binding is the operation of encrypt-
ing an object with the public key of a binding key. If the binding key is non-migratable,
only the TPM that created the key can use its private key; hence, objects encrypted with
a binding public key are effectively bound to a particular TPM. Finally, PCR registers
are secure storage locations within a TPM, holding integrity measurements.

Next, we briefly describe the TPM functionality used by our protocol. The
commands correspond to those available through the TCG Software Stack (TSS)

[Trub]:

- createKey() generates an asymmetric binding key-pair (B, Briv), where the pub-
lic key B, is returned to the caller and B,;, is a non-migratable private key stored
inside the TPM.

— certifyKey(Bu»,AIK,iv,n) creates a certificate, which consists of a signature on
the binding public key B, and a nonce n using the signing-key AIKpy.

- quote(AIK,y, PCRdigest,n) signs a digest of selected PCR registers
PCRdigest and the nonce n using AIK .

— bind(m, B .) encrypts a plaintext m under the binding public key B, and returns
the resulting ciphertext. We note that bind() is executed within software (i.e., within
TSS) and does not use TPM capabilities.

— unbind(E, B,y decrypts the cipher-text E, using the binding private key By

24 E. Bangerter, M. Djackov, and A.-R. Sadeghi

4.2 System Description

From a usage perspective our system works as follows: The user is equipped with a
security token as described in §3] In a first step the user initiates the ad hoc attestation
protocol by launching a corresponding program on the platform in question. Then, she
holds her security token to the platform’s display, to receive the outcome of the attesta-
tion using the flickering mechanism. Finally, the token displays whether the platform is
trustworthy or not. We refer to this intuitive and easy usage metaphor as demonstrative
ad hoc attestation.

The architecture of our demonstrative ad hoc attestation system consists of a token T,
a target platform P (which is to be attested), and an attestation server S. On a high level
the system works as follows: In a first step, S receives an attestation request (initiated
by the user) from P, and then performs the actual attestation of P. The attestation of P
by S is performed by running a variant of a remote attestation protocol, which we have
tailored to fit our system. Then, in a second step, S securely reports the outcome of the
attestation to the user’s token 7" using the flickering mechanism of the token system. On
a high level, “securely” means that our protocol assures that the flickering signal (and
thus the outcome of the attestation) actually appears on the platform P on which the
user has initiated the process.

Technically, we run on S an attestation engine and the token server component (de-
scribed in §3). The advantage of this server based architecture is that the attestation
engine can be managed centrally (see our discussion in §I]for details).

Here is the description of our demonstrative ad hoc attestation system:

Protocol 1 (Demonstrative ad hoc attestation system). Our demonstrative ad hoc
attestation system consists of a user U, an attestation server S, a target platform P, and
a security token T performing the following computational steps (see also Figure [3lfor
the protocol’s message flow):

1. U initiates the ad hoc attestation protocol by launching the pre-installed ad hoc
attestation component on P, and enters her token ID Tip, as well as a nonce nr
generated by the token. This results in an attestation request initiate(Tjp,nr) to S.

2. S randomly chooses a nonce n and sends n to P.

3. P computes: (Bpup,Bpriy) = createKey(), certB,,;, = certifyKey(Bpuy,AIKpiy,n),
quote = quote(AIK,,, PCRdigest, n), and sends (certAIK,,p, Bpup, certBup,
quote) to S.

4. S verifies the validity of the digital signatures on certAIK,,; certB,,, quote;
based on the integrity measurement contained in quote, S decides whether P is in a
good state (integrity (P) € ¢) or bad state (integrity(P) € %). Now S performs the
following steps: if integrity(P) € &), then let flickr = fencode(“good”||nr,Tip).
If integrity(P) € % or if any of the initial signature verifications fails, let
flickr = fencode(“bad’||n7, Tip); finally E = bind(flickr,B,.) and sends E to P.

5. P computes flickr = unbind(E, Bpiy) and shows the flickering pattern flickr on
its display.

6. Once the flickering appears on P’s display, U holds the token T to the flick-
ering. Then, T runs m = fdecode(flickr), whereas either m = “bad’||ny or
m = “good’||ny. In the former case or when the nonce ny does not match the
nonce chosen in step 1, T outputs “bad” and “good” otherwise.

A Demonstrative Ad Hoc Attestation System 25

User (U) Token (T) Target platform (P) Server (S)

1. initiate(T,p ny)

2.n

| |
J |
I 3. (certAIK ,, By I
I certB,,, quote) I
I |
[i
I I
I I

pub?

4.E

5. flickr

6. ,,good“ or ,,.bad*

Fig. 3. Message flow of Protocol [II

We have implemented a working demonstrator of the above system in Java using
the jTSS library. Currently we assume, that the attestation component on the
platform P is pre-installed. The attestation engine on the server S checks if the integrity
measurements received from P match pre-defined good values. In a nutshell, the actual
integrity reporting and evaluation done by our system is very basic.

Yet, one can easily enhance our system to use more sophisticated attestation tech-
niques such as those in [RS04], property-based attestation [SS04], or quite likely also
to future run-time attestation techniques [ESvDO03]. Such enhancements will not change
the above protocol structurally. In fact, the only changes that would result concern the
measurements being sent in step 3 of the protocol, and how these measurements are
evaluated by the attestation engine on the server in step 4.

Security analysis. In the following we discuss the security of our ad hoc attestation sys-
tem with respect to the security goals set in §21 In security arguments of systems making
use of Trusted Computing technologies, one typically needs to make some assumptions
on the behavior of platforms P that are in a good state (i.e., integrity(P) € ¢), and so
shall we. In fact, often the overly strong assumption is made that once integrity(P) € ¢
is established, P is deemed to be completely trustworthy. We refrain from this ap-
proach and prefer to more precisely describe the assumptions we make on P with
integrity(P) € 9.

First, we argue that if integrity (P) € 4, then T does not output “good” (as we require
in §2)). Our assumption in the following is that a platform that is in good state can keep
the flickering message flickr it obtains in step 5 of the protocol private (at least for a
period of time of a protocol execution). Now, we observe that, by construction of the
protocol, a bad P won’t get a valid flickr message (protocol message 5) containing a
“good” message in the first place. So P needs to steal a “good” flickr message from a
good platform P’ (i.e., integrity(P') € ¢). Yet, P cannot replay such messages, because
of the challenge ny and because flickr messages are integrity protected by the token
system. So a bad P needs to get hold of a fresh “good” flickr message that S sends
to P'. Now, we observe that the usage of the binding key in the protocol asserts that
only the good platform P’ gets a fresh “good” flickr message. The only possibility

26 E. Bangerter, M. Djackov, and A.-R. Sadeghi

for the attacker is thus to have a process running on P’ that gets a fresh “good” flickr
message after it is decrypted on P’ and then forwards it to P which then displays flickr.
This is however impossible by our assumption that a good platform can keep flickering
signals private.

Whether our assumption is realistic actually depends on the attestation mechanism
being used and on properties of the platform P’. An attestation mechanism that can as-
sert that all software running on P’ is good, will be able to implement the assumption.
On the other hand, more lightweight and thus more practical attestation techniques that
only check a sub-set of platform measurements (e.g., the kernel and some key security
sub-systems), might not be sufficient for main stream operating systems (e.g., Win-
dows, OS X, Linux etc.). The reason is that these operating systems lack secure display
functionalities (e.g., access control mechanisms to display contents). That is, any ma-
licious process running on a main-stream OS can read the display contents of P’, and
thus obtain and forward flickr to an impersonating platform. A possible remedy to this
problem is to run an operating system on P’, which provides secure display functional-
ity SVNCO4].

It remains to argue that if integrity(P) € ¢, then T does not output “bad”. In this case
an attacking bad platform P’ (i.e., integrity (P') € %) can easily get hold of a fresh “bad”
flickr message. Now, all the attacker needs to do is to have a process running on P that
will display the “bad” flickr message. One could argue that, since integrity(P) € ¥, it
is impossible for the attacker to mount this attack on P. On the other hand, only a very
thorough attestation mechanism can assure the absence of such processes. Anyway, we
consider this security property less important than the one discussed before, since it
“only” concerns a denial of service condition, where a user refrains from using a good
platform because the attacker tricks him to belief that the platform is bad.

A potential weakness of our system results from non-software attacks, where an at-
tacker films the flickering pattern shown on P’s display, and relays it to an impersonat-
ing platform. This is clearly a time-consuming and thus rather expensive attack, which
probably only becomes relevant in “high security” scenarios.

4.3 Sketch of an Alternative Protocol

In this section we sketch a variant of our ad hoc attestation protocol, whose security
relies on different assumptions than those in the previous section. The architecture un-
derlying the protocol remains the same, while we additionally require that the target
platform is equipped with a fingerprint reader. From the usage point of view the proto-
col is very similar to the one above, expect that at a certain point during the protocol, the
user additionally has to scan her fingerprint on the target platform. For space reasons
we only give a sketch of the protocol:

— Steps 1 - 3 are the same as in Protocol [Il except that P in step 3, instead of the
binding keys, generates a pair of signing keys (Upu,Upriy) and sends U, along
with a certificate certU,,,;, on Uy, to S.

— In step 4, in a analogy to Protocol[Il S first checks the various signatures. Then,
if integrity(P) € A, set flickr = fencode(‘ ‘bad’’,Tjp). On the other hand, if
integrity(P) € ¢, then S chooses a challenge ny and sends it to P.

A Demonstrative Ad Hoc Attestation System 27

— In step 5, P asks the user to scan her fingerprint r using the fingerprint reader built
into P. Then P sends r and o, = sign(r||ng,Upy) to S.

— In step 6, S checks if the signature o, on r||ng is valid and the freshness of ng.
If so it sets flickr = fencode(‘ ‘conditional good’’||r,Tjp); otherwise, it sets
Sflickr = fencode(¢ ‘bad’’,Tjp) and sends flickr to P.

— In step 7, P shows the flickering flickr on its display.

— In step 8, when the flickering appears on P’s display, the user holds her token T’
to the flickering. Then, T runs m = fdecode(flickr). If m = ‘bad’’, T outputs
“bad”. Otherwise, if m = “ ‘conditional good’’ ||r, T checks if r is the finger-
print of the token owner U. To this end, it either retrieves a pre-stored fingerprint ry
or using the token’s fingerprint reader acquires a fingerprint ry7, and then matches
ry against r. If the fingerprints match, 7 outputs “good”, and “bad” otherwise.

Let us briefly discuss the difference between Protocol [and the one here with re-
spect to their security properties. The difference is in the assumptions made on a good
platform P (i.e., integrity(P) € ¢). In the previous protocol we have assumed that such
P can keep flickr confidential, to show that if integrity(P) € 4, then T does not output
“good”. The assumption underlying this property is different for the protocol in this
section. On a high-level, the assumption we need is that P can preserve the integrity of
a fingerprint measurement it carries out. In fact, the signature in step 5 asserts that the
fingerprint measurement r actually originates from the same platform P that has been
attested. Now assume that a P with integrity(P) € ¢ in step 3 always reports a fresh
and correct fingerprint measurement. By the verifications in step 6, it thus follows that
the platform that has scanned U’s fingerprint is the one that has been attested by S. This
implies that the protocol is secure against platform in the middle attacks.

Moreover, the protocol here is not susceptible against the “flickering filming” attack
described above.

5 Related Work
There is a body of work on remote attestation [GPS086, IGSST07].

Yet, as discussed in {Il remote attestation protocols do not solve the ad hoc attesta-
tion problem. Several research works have considered the authentication of platforms
in a setting where the user is equipped with a trustworthy device
[ADSWO99], [MPRO3]. On a high level, the goal of these works is
the same as that of ad hoc attestation: the user wants to assure that the terminal she
is going to use is trustworthy. However, these works assume that the legitimate termi-
nals being authenticated are tamper-resistant and thus trustworthy. That is, they do not
address ad hoc attestation problem.

Yet, there are several ideas in previous works which appear in ours. Our usage of
an attestation server is inspired by the usage of an authentication servers common in
the works of [CYCYO00]. Another idea we have adapted is that of
demonstrative identification paradigm, where a user iden-
tifies a platform by establishing physical contact or proximity with the platform in
question. This paradigm is highly intuitive, and underlies our demonstrative ad hoc
attestation paradigm.

28 E. Bangerter, M. Djackov, and A.-R. Sadeghi

Very recent papers outline the open challenges of (what we call)
ad hoc attestation, and thus have motivated our work. As discussed in detail in Il we
solve most of the outlined challenges. While only outlines open challenges,
Garriss et al actually propose and implement a concrete ad hoc attestation pro-
tocol with the user device being a Bluetooth enabled smart phone. This is the only ad
hoc attestation protocol in the literature we are aware of. Like us, they also consider
using a central attestation server. Yet, they do not solve the problem of platform in the
middle attacks. Besides that, our demonstrative ad hoc attestation paradigm is new, and
due to its closed execution architecture of our user device, our solution can offer higher
security guarantees than those using a smart phone.

Some of the works mentioned, e.g., [CYCYO00], use techniques to assert
that the platform being authenticated is the one located in front of the user. These tech-
niques are similar to our approach of sending a flickering signal to the attested platform
(see §4.2)). On the other hand, our approach of reading a user’s fingerprint (see §4.3) to
locate a platform is, to the best of our knowledge, new.

Distance bounding techniques could be used to assert that the machine being
ad hoc attested is within a certain physical perimeter. However, we currently believe
this might only work when the attestation and distance bounding is performed by the
portable user device and will not work with our server based scenario, where the server
is located remotely.

6 Conclusion and Future Work

We have described the implementation of an intuitive and easy to use ad hoc attestation
system. The current state of our implementation is that of working research demonstra-
tor. In future work, we plan to evolve this prototype into a practically usable product
demonstrator. To this end we plan to replace the current Java component which needs
to be installed on the target platform. The envisioned approach is to use a web browser,
where the user enters the URL of the attestation server, which then sends the signed Java
applet to the target-platform. This minimizes the code to be pre-installed on the target
platform and improves ease of use by employing a browser. Second, we plan to inte-
grate our ad hoc attestation system with the Turaya secure OS [TUR], which features
suitable attestation functionality. Combining Turaya with our ad hoc attestation system
results in a system, which is interesting for environments and organizations with high
security needs.

References

[ABKL93] Abadi, M., Burrows, M., Kaufman, C., Lampson, B.: Authentication and delega-
tion with smart-cards. In: TACS 1991: Selected papers of the conference on The-
oretical aspects of computer software, Netherlands, pp. 93—113. Elsevier Science
Publishers, Amsterdam (1993)

[ADSW99] Asokan, N., Debar, H., Steiner, M., Waidner, M.: Authenticating public terminals.
Comput. Networks 31(9), 861-870 (1999)

[ARM] Arm secure core processor family, http://www.arm.com/products/cpus/
families/securcorefamily.html

http://www.arm.com/products/cpus/families/securcorefamily.html
http://www.arm.com/products/cpus/families/securcorefamily.html

[AXS]
[CIMO7]

[CYCYO00]

[DBW02]

[DCO7]
[DMO7]

[ESvDOS5]

[FSE06]

[GPS06]

[Gra06]
[GSST07]

[JTS]
[Kre]
[Mit05]

[MPROS]

[MPSvD07]

[Ope]
[Pea03]

[Ran04]

[RSO4]

[SA99]

A Demonstrative Ad Hoc Attestation System 29

Axsionics homepage, http://www.axsionics.com/

Boneh, D., Jackson, C., Mitchell, J.C.: Transaction generators: Rootkits for the
web. In: Proceedings of the Workshop on Hot Topics in Security (HotSec) (2007)
Cheng, K.S.C.Y., Yunus, J.: Authentication public terminals with smart cards. In:
TENCON 2000, 24-27 September 2000, vol. 1, pp. 527-530 (2000)

Stewart, P., Balfanz, D., Smetters, D.K., Chi, H.: Talking to strangers: Authenti-
cation in ad-hoc wireless networks. In: Symposium on Network and Distributed
Systems Security (NDSS 2002) (2002)

Catherman, R., Safford, D., van Doorn, L., Challener, D., Yoder, K.: A Practical
Guide to Trusted Computing. IBM Press (2007)

Drimer, S., Murdoch, S.J.: Keep your enemies close: Distance bounding against
smartcard relay attacks. In: USENIX Security Symposium (August 2007)

Perrig, A., Shi, E., van Doorn, L.: Bind: A time-of-use attestation service for se-
cure distributed systems. In: Proceedings of IEEE Symposium on Security and
Privacy (May 2005)

Roder, P., Stumpf, F., Tafreschi, O., Eckert, C.: A robust integrity reporting proto-
col for remote attestation. In: Proceedings of the Second Workshop on Advances
in Trusted Computing (WATC 2006 Fall) (December 2006)

Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. In: STC 2006: Proceedings of the first ACM workshop on Scalable
trusted computing, pp. 21-24. ACM, New York (2006)

Grawrock, D.: The Intel Safer Computing Initiative. Intel Press (2006)

Gasmi, Y., Sadeghi, A.-R., Stewin, P, Unger, M., Asokan, N.: Beyond secure
channels. In: STC 2007: Proceedings of the 2007 ACM workshop on Scalable
trusted computing, pp. 30—40. ACM, New York (2007)
http://trustedjava.sourceforge.net/

Krebs,B.: Banks: Losses from computer intrusions up in (2007)

Mitchell, C. (ed.): Trusted Computing. The Institution of Electrical Engineers
(2005)

McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones
for human-verifiable authentication. In: SP 2005: Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pp. 110-124. IEEE Computer Society, Wash-
ington (2005)

McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles all the way down:
Research challenges in user-based attestation. In: Proceedings of the Workshop on
Hot Topics in Security (HotSec) (2007)

Open Trusted Computing, http://www.opentc.net

Pearson, S. (ed.): Trusted Computing Platforms: TCPA Technology in Context.
Prentice Hall, Englewood Cliffs (2003)

Ranganathan, K.: Trustworthy pervasive computing: The hard security problems.
In: PERCOMW 2004: Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops, p. 117. IEEE Computer
Society, Washington (2004)

Jaeger, T., van Doorn, L., Sailer, R., Zhang, X.: Design and implementation of a
tcg-based integrity measurement architecture. In: SSYM 2004: Proceedings of the
13th conference on USENIX Security Symposium. USENIX Association, Berke-
ley (2004)

Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc
wireless networks. In: Proceedings of the 7th International Workshop on Security
Protocols, London, UK, pp. 172-194. Springer, Heidelberg (1999)

http://www.axsionics.com/
http://trustedjava.sourceforge.net/
http://www.opentc.net

30 E. Bangerter, M. Djackov, and A.-R. Sadeghi

[SGO7]

[SS04]

[SSO5]

[SVNCO04]

[Trua]
[Trub]

[Tru04]
[Tru05]

[TUR]

Berger, S., Sailer, R., van Doorn, L., Zhang, X., Garriss, S., Caceres, R.: Towards
trustworthy kiosk computing. In: Proc. of 8th IEEE Workshop on Mobile Com-
puting Systems and Applications (HotMobile) (February 2007)

Sadeghi, A.-R., Stiible, C.: Property-based attestation for computing platforms:
caring about properties, not mechanisms. In: NSPW 2004: Proceedings of the
2004 workshop on New security paradigms, pp. 67-77. ACM, New York (2004)
Sadeghi, A.R., Stiible, C.: Towards Multilaterally Secure Computing Platforms -
With Open Source and Trusted Computing. Elesevier 10, 83-95 (2005)

Shapiro, J.S., Vanderburgh, J., Northup, E., Chizmadia, D.: Design of the eros
trusted window system. In: SSYM 2004: Proceedings of the 13th conference on
USENIX Security Symposium, p. 12. USENIX Association, Berkeley (2004)
Trusted Computing Group (TCG). About the TCG,
http://www.trustedcomputinggroup.org/about/

Trusted Computing Group (TCG). TSS specifications,
https://www.trustedcomputinggroup.org/groups/software/

Trusted Computing Group. TCG Architecture Overview (April 2004)

Trusted Computing Group (TCG). TPM Main Specification 1.2, Rev. 85 (February
2005), https://www.trustedcomputinggroup.org/groups/tpm/

Turaya OS homepage, http://www.emscb.com/content/pages/turaya.htm

http://www.trustedcomputinggroup.org/about/
https://www.trustedcomputinggroup.org/groups/software/
https://www.trustedcomputinggroup.org/groups/tpm/
http://www.emscb.com/content/pages/turaya.htm

Property-Based Attestation
without a Trusted Third Party

Liqun Chen', Hans Lohr?, Mark Manulis®, and Ahmad-Reza Sadeghi®

L HP Laboratories, Bristol, UK
liqun.chen@hp.com
2 Horst Gortz Institute for IT Security, Ruhr-University of Bochum, Germany
{hans.loehr,ahmad.sadeghi}@trust.rub.de
3 UCL Crypto Group, Université Catholique de Louvain, Belgium
mark.manulis@uclouvain.be

Abstract. The Trusted Computing Group (TCG) has proposed the bi-
nary attestation mechanism that enables a computing platform with a
dedicated security chip, the Trusted Platform Module (TPM), to report
its state to remote parties. The concept of property-based attestation
(PBA) improves the binary attestation and compensates for some of its
main deficiencies. In particular, PBA enhances user privacy by allow-
ing the trusted platform to prove to a remote entity that it has certain
properties without revealing its own configuration.

The existing PBA solutions, however, require a Trusted Third Party
(T'TP) to provide a reliable link of configurations to properties, e.g., by
means of certificates. We present a new privacy-preserving PBA approach
that avoids such a TTP. We define a formal model, propose an efficient
protocol based on the ideas of ring signatures, and prove its security.
The cryptographic technique deployed in our protocol is of independent
interest, as it shows how ring signatures can be used to efficiently prove
the knowledge of an element in a list without disclosing it.

Keywords: Property-based attestation, user privacy, ring signatures,
proof of membership, configuration anonymity.

1 Introduction and Background

A fundamental issue in interaction between computing platforms is “trust”
or “trustworthiness” — whether a remote platform behaves in a reliable and
predictable manner, or will be (or already has been) subject to subversion. Cryp-
tographic mechanisms support the establishment of secure channels and autho-
rized access, but without assurance about the integrity of the communication
endpoints. Commodity computing platforms suffer from inherent vulnerabilities
due to high complexity, and lack of efficient protection against tampering or mal-
ware. Hence, an important subject of current research is to develop mechanisms
for gaining assurance about the trustworthiness of remote peers regarding their

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 31{46] 2008.
© Springer-Verlag Berlin Heidelberg 2008

32 L. Chen et al.

integrity, platform configuration, and security policies. The concept of Trusted
Computing aims at resolving such issues.

The TCG approach and binary attestation. An industrial approach to-
wards the realization of the Trusted Computing functionality within the com-
puting platforms is the initiative of the Trusted Computing Group (TCG). The
TCG has published many specifications amongst which the most important one
is that of the Trusted Platform Module (TPM) [25]. Currently, TPMs are im-
plemented as small, tamper-evident hardware modules embedded in commodity
platforms, providing (i) a set of cryptographic functionalities, (ii) the protection
of cryptographic keys, (iii) the authentication of platform configuration (attes-
tation), and (iv) cryptographic sealing of sensitive data to particular system
configurations. However, the TCG defines only a limited set of commands, and
the firmware cannot be programmed by end-users to execute arbitrary func-
tions. Millions of platforms (PCs, notebooks, and servers) being sold today are
equipped with TPMs.

One of the main features supported by the TPM is the so-called trusted in-
tegrity measurement: a hash value of the platform state is computed during the
boot process and stored in specific registers of the TPM, the Platform Config-
uration Registers (PCRs),those state is also called the platform’s configuration.
Of potential interest is the offered functionality called binary attestation, which
allows a remote party (verifier) to get an authentic report about the binary con-
figuration of another platform (prover), given by the prover’s TPM signature on
the configuration.

Deficiencies of TCG binary attestation. TCG binary attestation suffers
from several shortcomings: The slightest change in the measured software or
configuration files — whether security-relevant or not — will lead to a changed
binary configuration. In general, it is not clear, how a verifier should derive
the trustworthiness of a platform from such a binary value. System updates and
backups are highly non-trivial; the multitude of different versions of many pieces
of software cause serious manageability problems.

From the privacy point of view, binary attestation bears several risks: (1)
The TPM’s public key needed to verify an attestation could be used to identify
a TPM and trace a platform. To solve this problem, Brickell et al. [3] introduced
the Direct Anonymous Attestation (DAA) protocol. Improvements of DAA and
alternative DAA schemes (e.g., [5/4J6]) are orthogonal to our work and could be
used as a building block for our protocol. (2) Typically the information about
the configuration of a computing platform or application is revealed to a remote
party requesting the state of a platform. This information can be misused to
discriminate against certain configurations (for example, operating systems) and
even vendors, or may be exploited to mount attacks.

Property-based attestation. One general concept to overcome shortcomings
of the TCG’s binary attestation is to transform the binary attestation into the
property-based attestation (PBA), as described by Sadeghi and Stiible [21], and
by Poritz et al. [I9]. The basic idea of PBA requires a computing platform to

Property-Based Attestation without a Trusted Third Party 33

attest that it fulfills the desired (security) requirements, so-called ‘properties’,
without revealing a respective software or/and hardware configuration. The for-
mal definition of properties as well as the development of various practical solu-
tions for PBA are still active areas of ongoing research.

One concrete solution for PBA was proposed by Chen et al. in 2006 [T1].
Their protocol requires an off-line Trusted Third Party (TTP) to publish a list
of trusted configurations and respective certificates which attest that the config-
urations provide specific properties. A prover can use the signed configurations
and certificates to prove to a verifier that it has appropriate configurations asso-
ciated with the certified properties, without disclosing the specific configurations,
which the platform holds.

Another solution for PBA is proposed by Kiihn et al. [T4]. In their work, the
authors suggest a modified system boot architecture, such that not binary hash
values of files are stored by the TPM, but instead abstract values representing
properties, e.g., a public key associated with a property certificate. However,
this approach also requires a TTP to issue certificates for properties and the
bootloader must be binary-attested.

The drawback of these solutions is that such a TTP might not be available
or/and desirable in many real applications, for example if two entities/users
want to have a private communication with each other. They have their own
understanding of the relation between various configurations and security prop-
erties. They do not need (and do not want) to ask any kind of TTPs to certify a
correlation between the configurations and properties. However, they still want
to keep their platform configuration information secret from each other.

Our contribution. In this paper, we propose a protocol for PBA that does
not require the involvement of a TTP to certify properties, where a platform
(equipped with a TPM) convinces a remote party that its configuration satisfies
a given property. For this, the two parties first agree on a set of trusted configu-
ration specifications, which they both consider to be trustworthy, i.e., associated
with a well-defined security property or properties. The platform then proves
that its configuration specification is in this set. In our protocol, TPM and the
host software compute the proof jointly.

For some applications, it might be unrealistic to assume that the parties in
the attestation protocol can decide themselves which configurations are trust-
worthy and which are not, and thus they still have to rely on third parties in
practice. Our protocol has the advantage that even in this case no global trusted
party is necessary: both participants can choose independently how to agree on
trustworthy configurations or they can delegate this decision to other parties.

Further, we define a formal security model for PBA, which we also use in our
proofs, and where the main security requirements are evidence authentication
and configuration privacy. While the former guarantees an unforgeable binding
between the platform and its configuration specification, the latter provides the
non-disclosure of the configuration specification. In our PBA protocol, these re-
quirements are achieved through the use of a ring signature (cf. Section F3),

34 L. Chen et al.

i.e. configuration privacy results from the anonymity of the signer whereas evi-
dence authentication is based on the unforgeability of the signature.

Moreover, the cryptographic technique employed in our protocol may be of
independent interest: We show how ring signatures can be used for efficiently
proving the knowledge of an element in a list without disclosing it.

Outline. In Section [we introduce the system model of property-based attes-
tation. In Section Bl we sketch different solutions on a high level. In Section [4]
we set up notation and explain some building blocks which will be used in our
concrete PBA scheme. In Section [l we present and discuss a new PBA scheme,
and in Section [l we define a formal security model and state theorems about the
security of the scheme. In Section [we conclude the paper by mentioning some
unsolved problems and future work.

2 System Model for PBA

The following system model for PBA will serve as the basis for the security
model in Section

Involved parties. A PBA protocol involves two participants: a prover P and a
verifier V. The prover is a platform consisting of a host H and a trusted module
TPM M (see Figure[ll). To cover multiple executions of the protocol we consider
multiple instances and use indices to distinguish among their participants, i.e.,
Pi, V;. Each instance includes a single protocol execution with some unique ses-
ston identity (SID) and two participants P; and V; are treated as communication
partners (in the same instance) if they share the same SID.

Assumptions. It is assumed that the communication between a host H; and
its TPM M, is through a secure channel (private and authentic), and that M;
and V; communicate via H;. We omit the indices i and j of the participants in
an instance when no risk of confusion exists. Moreover, the TPM is trusted by
all parties and possesses a secret (signing) key skaq which is unknown to the
host. The corresponding public (verification) key is available to both P and V;
see also “trust relations” in Section

Properties and configurations. Each prover P has a configuration value
denoted csp, which is an authenticated record about its platform’s configuration.
The value csp is known to both the host H and TPM M, and it is computed by
M from correctly measured configuration information, stored securely in special-
purpose registers — the platform configuration registers (PCRs). As a result, H
cannot modify this value without being detected. This is guaranteed by the
properties of secure measurement and reporting based on the trusted computing
technology [25]. Tt is assumed that before running the PBA protocol, P and V
have already agreed on a set of configuration values denoted CS = {¢s1, ..., cs, }
that satisfy the same property. So, we say that a configuration value cs satisfies
a given property associated with CS, if and only if ¢s € CS.

Property-Based Attestation without a Trusted Third Party 35

Prover —
Property based Verifier

CS={cs,....cs,} attestation

Host csp € CS protocol ™ CS =fcs,,...cs,}
3
Y

T .-

PCRs:[esp] |]

Fig. 1. PBA system model

Definition of PBA. A property-based attestation (PBA) scheme consists of
the following three polynomial-time algorithms:

— Setup: Given the security parameter 1”, this probabilistic algorithm selects
a set of public parameters that are necessary to run the PBA protocol, and
produces a private/public key pair for each TPM.

— PBA-Sign: On input a configuration value csp, a list of admissible configura-
tions CS, and a nonce N, this (distributed) randomized algorithm outputs
a signature o on csp.

— PBA-Verify: On input a candidate signature ¢ and CS, this deterministic
algorithm outputs 1 (accept) if o is a valid signature on a value from CS, or
0 (reject) otherwise.

3 Solutions

In this section, we sketch two high-level solutions for PBA without relying on
trusted parties to certify the link between configurations and properties.

Basically, P has to prove that its configuration value csp belongs to the agreed
set CS = {cs1,...,csp}. More precisely, V would accept a proof if and only if:
(i) The proof is created by a wvalid TPM. If TPM anonymity is required, the
DAA scheme [3] can be used to provide this feature. (ii) The proof is a fresh
response to a specific challenge from V. (iii) The proof ensures that csp = cs;
for an index j € {1,2,...,n}, but does not reveal the value of j.

Such a proof implements PBA-Sign, whereas PBA-Verify is the verification of
the proof. In Setup, the keys for the TPM and system parameters are generated.

Solution 1: TPM as single signer. The proof can be achieved by a new TPM
command defined as follows:

1. TPM takes as input a list of configurations CS and a nonce N. The nonce
is assumed to be chosen by the verifier V.

2. TPM checks for each cs; € CS if csp = cs;, until either a match is found,
or the entire list has been checked.

3. If ¢csp is in the list, the TPM generates a signature on (1, N, CS); otherwise,
the TPM generates a signature on (0, N, CS), which is then forwarded to V.

36 L. Chen et al.

The obvious drawbacks of this approach are: TPM operations depend on the
size n of CS (O(n) in a straightforward implementation, and O(logn) if CS is
a sorted list). As the TPM’s memory is very limited, this would either impose
a severe restriction on the size of CS, or the transfer of the list would have to
be split up, causing further complexity of the TPM-command and slowing down
the communication between host and TPM, due to the overhead.

Solution 2: TPM shares signer role with host. In this solution, the TPM signs
a hidden version — a commitment — of the configuration csp, and the host
completes the proof that the hidden configuration is in the set CS. A similar
approach is used in the DAA protocol [3].

Our PBA protocol proposed in Section [l is an elegant and efficient example
of this solution. It makes use of ring signatures in that the host computes n
public keys for a ring signature scheme from the configurations in CS and the
commitment to ¢sp (which was signed by the TPM), and determines the secret
key that corresponds to csp. The signer anonymity of the ring signature scheme
ensures that the verifier does not learn which key has been used for signing, thus
csp is not disclosed. Our construction guarantees that the prover succeeds only
if the hidden configuration csp is indeed in CS.

Current TPMs support all operations (random number generation, modular
exponentiation, and signature generation) needed by our protocol. However, the
TCG currently does not specify a command to create and sign a commitment to
a configuration which is stored inside the TPM. To implement such a command,
only firmware changes would be required.

Other protocols for similar solutions could be developed, for instance based
on existing zero-knowledge proofs (e.g., [SII3I7]) or zero-knowledge sets [15].

4 Preliminaries
4.1 TPM Signatures

The existing TCG technology defines two ways for a TPM to create own digital
signature o . The first way is to use DAA [3]. With a DAA signature, a verifier
is convinced that a TPM has signed a given message, but the verifier cannot learn
the identity of the TPM. The message to be signed can be either an Attestation
Identity Key (AIK), or an arbitrary data string, The second way is to use
an ordinary signature scheme. A TPM generates a signature using an AIK as
signing key, which could either be certified by a Privacy-CA, or it could be
introduced by the TPM itself using a DAA signature. For simplicity, we do not
distinguish these two cases, and denote by o := SignM(skaq;m) the output of
TPM’s signing algorithm on input the TPM’s signing key skaq and a message
m, and by VerM(vkaq; oaq, m) the corresponding verification algorithm, which on
input the TPM’s verification key vkaq outputs 1 if o is valid and 0 otherwise.

4.2 Commitment Scheme

We apply the commitment scheme by Pedersen [I8]: Let skl., be the secret

com
. . . m
commitment key. A commitment on a message m is computed as C,, := g™ h*Fen

Property-Based Attestation without a Trusted Third Party 37

mod P. P is a large prime, h is a generator of a cyclic subgroup Gg C Z} of
prime order @ and Q|P—1. g is chosen randomly from (h); furthermore, log;, (g) is
unknown to the committing party. Both the message m and sk_,, are taken from
Zg. The Pedersen commitment scheme as described above is perfectly hiding
and computationally binding, assuming the hardness of the discrete logarithm
problem in a subgroup of Z}, of prime order (for P prime).

4.3 Ring Signatures

The notion of a ring signature was first introduced by Rivest et al. [20]. It allows
a signer to create a signature with respect to a set of public keys. Successful veri-
fication convinces a verifier that a private key corresponding to one of the public
keys was used, without disclosing which one. In contrast to group signatures, no
group manager is needed.

For various security definitions for ring signatures see [2]. Recent efficient
ring signature schemes which are provably secure in the standard model (i.e.,
without using random oracles) are proposed in [23l0], where in [J] a signature
with size only O(y/n) is proposed. Dodis et al. [I2] showed that ring signatures
with constant size in the number of public keys can be achieved in the random
oracle model.

Unfortunately, none of these schemes can be used easily for our purposes:
In our protocol, we employ a construction, where the public keys for the ring
signature are computed from commitments formed by the TPM. We show how
this can be done efficiently for Pedersen commitments (cf. Section[I2]) and public
keys of the form y = g* mod P, where x is the corresponding secret key. However,
the schemes above use keys of different types.

In Figure 2] we recall an efficient ring signature scheme from [I], which we
propose to use for our PBA solution. The scheme is a generalization of the
Schnorr signature scheme [22]: Intuitively, the product in step 2(b) corresponds
to combined commitments for individual Schnorr signatures, in step 2(c) and
2(d), the challenges for the individual Schnorr signatures are derived from a
single challenge, and in step 2(e), the secret key is used to compute s. The
verification equation, where the sum of the challenges is compared to a hash
value, ensures that a valid signature cannot be created without a secret key z;.
The scheme is provably secure in the random oracle model, under the discrete
logarithm assumption.

We denote the generation of a ring signature o, on message m with re-
spect to the public key ring {y;}1<i<» and with private signing key x by o, :=
SigRing(z; {yi}; m). Signature verification is denoted by VerRing({y;}; o, m).
For simplicity, we omit the public parameters g, P, Q and the range of the index
¢ in our notation.

5 Ring Signature-Based PBA without TTP

In this section, we propose a protocol for PBA, which is based on ring signatures.
The TPM generates a signature on a commitment to the configuration csp. Then

38 L. Chen et al.

1. Key generation. Let x be a security parameter. On input 17, create g, P and Q.
A signer S; (i = 1,...,n) chooses z; €g {0,1}*@ and compute y; = g™ mod P.
Output its public key (g, P, @, y;) and the corresponding secret key z;.

2. Signing algorithm SigRing(x;;{y:};m).

A signer who owns secret key x; generates a ring signature on a message m with
public key list (g, P, Q, y:) (z =1,..,n), where j € {1,...,n} as follows:

(a) Choose a,¢; €r {0, l}Q fori=1,...n,1%# j.

(b) Compute z = g* [, ,; y;* mod P

(c) Compute ¢ = Hash(g|| P{[Qly1 ...||yallml|2).

(d) Compute ¢; =c— (c1 + ... +¢j—1 + ¢jt1 + ... + ¢n) mod Q.

(e) Compute s =a —¢; - x; mod Q.

(f) Output the signature o, = (s, c1, ..., Cn).

3. Verification algorithm VerRing({y;};or, m).

To verify that the tuple o, = (s, c1, ..., ¢,) is a ring signature on message m, check
that 377", ¢; = Hash(g||P[|Ql|y1]l.- Jlynlmllg*y i'ynr mod P).

Fig. 2. A Ring Signature Scheme [I]

the host H creates a proof, using a ring signature, that csp is in the agreed set
CS of configurations with the given property. The verifier V verifies the TPM
signature and the ring signature.

Note that in our protocol, the TPM is trusted by all parties, but its resources
are restricted, and it can execute only a very limited set of instructions. The host
‘H is not trusted by the verifier V, hence the protocol has to protect evidence
authentication against a malicious host. H cannot be prevented from disclosing
its own configuration csp, thus for configuration privacy, we have to assume that
‘H is honest.

5.1 Security Parameters

We suggest the following security parameters (values in parentheses indicate
realistic valued] for current TPMs):

— L5 (160): the size of the value of csp.

— ¢z (160): the security parameter for the anti-replay value (nonce).
— £p (1024): the size of the modulus P

— {o (160): the size of the order @ of the subgroup of Z7.

The parameters {p and g should be chosen such that the discrete logarithm
problem in the subgroup of Z}, of order) with P and () being primes such that
2@ > @ > 2%@~! and 27 > P > 2P~ is computationally hard.

! Examples based on the use of SHA-1 [16] as a hash function (like in current TPMs),
and recommendations of the US National Institute of Standards and Technology
(NIST) for similar applications (see, for instance, [17]); changes corresponding to
stronger hash-functions, such as SHA-256, can be made straightforwardly.

Property-Based Attestation without a Trusted Third Party 39

5.2 Setup

We assume that V can verify TPM signatures (including revocation verification)
and that H and V have agreed on a set of configurations CS.

Prior to the execution of the PBA protocol, the parties have to agree on the
following parameters, which can be used for several protocol runs (potentially
with different sets CS): primes P and @, generators g and h of a subgroup of

% of order @ (i.e., the discrete logarithm problem is hard in (g) = (h)). The
discrete logarithm log (k) mod P must be unknown to H.

5.3 Signing and Verifying Protocol

The attestation procedure executed between a TPM (M), its host (H), and
a verifier (V) is described in Figure Bl As a result of the protocol, the host
creates a ring signature o, which is based on a TPM signature op; on the
message C, which is a commitment to csp. The TPM has to create and sign C,
which it then opens towards H. To create the ring signature, the host uses the
value 7 as the secret key (if csp € CS, this works, because y; = A" mod P for
some 7). From the ring signature, the verifier is convinced that the platform has
been configured with one of the set of acceptable configuration specifications,
CS = {es1,- -+, csn}, without knowing which one.

csp, sk csp, CS = vk, CS =
{cs1,...,csn} {cs1,...,csn}
| |
7]
Ny Ny N, €r {0,1}
T E€ER ZZ?

C:=g“?h" mod P

oM = C.ryom . yj:=C/g® mod P
SignM(skat; (C, Nu)) (forj=1,...n)
oy = _Ciom.0r,
SigRing(r;{y;}; Nv) VerM(vkag; o, (C, Ny))
y; = C/g“ mod P
(for j=1,...n)
VerRing({y; }; o, No)
| | |
¥ v v
OK OK OK

Fig. 3. The protocol of the PBA scheme. Common input: g, h, P, Q.

40 L. Chen et al.

5.4 Protocol Properties

Our protocol has some interesting properties:

First, no trusted third party is needed for this protocol. The only exception
is the certification of TPM keys: The verifier may rely on a DAA issuer or a
Privacy-CA to ensure that the TPM key belongs to a valid TPM, depending
on the TPM signature scheme (see Section EI]). However, this is completely
independent from the PBA protocol, and neither a DAA issuer nor a Privacy-
CA could breach the configuration privacy of our protocol.

Second, the configuration set CS is created flexibly, dependent on the agree-
ment between prover P and verifier V. One approach to negotiate the set of
acceptable configurations could be analogous to the SSL/TLS handshake: The
prover sends a proposal for CS to V, who can then select an appropriate subset.
However, our protocol allows for different ways to agree on CS; the particular
method can be chosen according to a concrete application scenario.

Third, the size n of the set CS affects the configuration privacy. If n is small,
VY might have a high probability in guessing the configuration csp. Therefore,
to keep csp private, P should execute the protocol only if CS is of acceptable
size. Moreover, P has to ensure that V cannot learn csp by running the PBA
protocol multiple times with different configuration sets, because in the case of
several successful attestations, V would know that csp is in the (possibly small)
intersection of the sets used in the protocol executions. This example shows
that P should install a privacy policy which prevents such abuses of the PBA
protocol.

Fourth, note that the overhead of the TPM compared to binary attestation
is small. Additionally, the TPM has to form the commitment C', which must be
signed instead of csp. So the overhead is just choosing a random number r and
performing a modular multi-exponentiation modulo P (with two exponents). As
with binary attestation, the TPM has to generate one digital signature (e.g.,
2048 bit RSA). The TPM’s computation does not depend on the size of CS.

6 Security of Our PBA Scheme

Here, we define a formal (game-based) security model based on the system model
from Section 2 and state theorems about the security of our PBA scheme.

6.1 Security Model

Adversary model. The adversary A is a PPT algorithm and an active adver-
sary that has full control over the communication channel between H and V.
This is modeled by the query of the form send(E, m) which allows A to address
a message m to an entity E € {H,V}. In response, A receives a message which
would be generated by E according to the protocol execution. In the definition
of entity authentication, in which malicious hosts should also be considered, A
is also given access to another query sendTPM(m) by which it can communicate
with M. We assume that m contains the identity of the sender (as chosen by A).

Property-Based Attestation without a Trusted Third Party 41

Moreover, when considering evidence authentication, the adversary may corrupt
the host via the query corrupt,,, which returns the configuration csp to A (csp
is H’s only secret).

We assume that 4 cannot corrupt the TPM. In reality, a hardware attack
would be necessary to corrupt a TPM, i.e., we limit the adversary to software-
only attacks, which is the assumption of the TCG [25]. In case a real-world
adversary succeeds in attacking the TPM, our protocol has to rely on the revo-
cation mechanisms for TPM signatures.

Evidence authentication. We formalize the intuitive security requirement
that A should not be able to pretend that P has a configuration csp satisfying
the property that has to be attested (i.e., csp € CS), when in fact the property
is not fulfilled (i.e., csp & CS).

Let Game% ™™ (1%) be the following interaction between P, V, and A. Be-
fore the interaction, A chooses a platform with a valid TPM M and with a
configuration csp ¢ CS. Then A is given access to send(E, m), sendTPM(m),
and corrupt,, queries to any P chosen by A. Uncorrupted parties behave as
specified by the protocol. A wins, if it outputs a PBA signature o, such that
PBA-Verify accepts 0. We denote the success probability of A by Succj’pr'v(l") =
Pr[GameS{ "™ (1%) = win], and its maximum over all PPT adversaries .A (running
in time x) as SuccPV(1%). _

A PBA protocol provides evidence authentication if Succ™™™™ (1) is negligi-
ble in k.

Configuration privacy. The security requirement that the configuration csp
of P should be kept private is captured by the following game. For this require-
ment, host H and TPM M of P have to be honest because P could always send
csp to A. _

Let GameS™™(1%) be the following interaction between P, V and A. A is
given access to send(FE,m) queries. Moreover, A may access sendTPM(m) and
corrupt,, queries for all but one prover P chosen adaptively by A, which has to
remain honest. At the end of the interaction, A outputs an index i. A wins if 7 is
the index of P’s configuration in the set CS = {¢s1,...,csp}, L.e., if csp = cs;.
We denote the advantage of A (over a random guess) with Advj’pri"(l’i,n) =
| Pr[Ga mei’p""
(running in time) as AdvePY (1% n). _

A PBA protocol provides configuration privacy if Adve™P™ (1% n) is negligi-
ble in k.

(1%) = win] — 1/n|, and its maximum over all PPT adversaries A

Security of PBA. A PBA scheme is secure, if and only if it provides both
evidence authentication and configuration privacy.

Trust relations. The TPM is assumed to be trusted by both host and verifier.
For evidence authentication, a PBA protocol must ensure that a malicious host
cannot cheat an honest verifier, whereas for configuration privacy, it must prevent
a verifier controlled by A from determining the configuration of an honest host.

42 L. Chen et al.

6.2 Security Analysis

The following theorems demonstrate the security of our PBA scheme. For the
proofs, see Appendix [Al

Theorem 1 (Evidence Authentication). The PBA protocol presented in
Section[A provides evidence authentication (in the random oracle model), assum-
ing the security of the ring signature scheme, the security of TPM signatures,
and the hardness of the discrete logarithm assumption. In more detail:

Succcf-priV(lm) < q2/QZ@ +erpm + Ering + Edlogs

where q is the number of protocol runs, £z is polynomial in the security parameter
K, €Tpm s the probability of an adversary to forge a TPM signature, €ing s
the probability to forge a ring signature, and eqiog is the probability to solve the
underlying discrete logarithm problem.

Remark. Our proof does not directly use the random oracle model, however, it
is required by the ring signature scheme we use.

Theorem 2 (Configuration Privacy). The PBA protocol presented in Sec-
tion [A provides configuration privacy against computationally unbounded adver-
saries, due to the unconditional signer anonymity of the ring signature scheme
and perfect hiding of the commitment scheme.

Remark. Although our definition of configuration privacy assumes a PPT adver-
sary (which would be reasonable for practical purposes), our protocol offers even
unconditional security, because we use a perfectly hiding commitment scheme
and an unconditionally signer-anonymous ring signature scheme.

7 Conclusion and Future Work

The concept of property-based attestation (PBA) has been proposed to overcome
several deficiencies of the (binary) attestation scheme proposed by the Trusted
Computing Group (TCG). Amongst others, the TCG attestation reveals the
system configuration to third parties that could misuse it for privacy violations
and product discrimination.

In this paper, we proposed the first cryptographic protocol for PBA which, in
contrast to the previous solutions, does not require a Trusted Third Party to cer-
tify properties. In our protocol, the TPM has to compute only one commitment
and one signature.

Furthermore, the cryptographic technique used here might be of independent
interest: We demonstrate how a ring signature can be employed to prove mem-
bership in a list.

Future work may include the investigation of how to determine meaningful
properties. Moreover, a generic approach based on any ring signature scheme,
an efficient scheme with a security proof in the standard model, and the design
of a PBA protocol with sub-linear communication and computation complexity
in the size of the configuration set CS are still open problems.

Property-Based Attestation without a Trusted Third Party 43

References

10.

11.

12.

13.

14.

15.

16.

. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.

In ASTIACRYPT 2002, LNCS vol. In: Zheng, Y. (ed.) ASTACRYPT 2002. LNCS,
vol. 2501, pp. 415-432. Springer, Heidelberg (2002)

. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Con-

structions without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60-79. Springer, Heidelberg (2006)

. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Pfitzmann,

B., Liu, P. (eds.) Proceedings of ACM CCS 2004, pp. 132-145. ACM Press, New
York (2004)

. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from

bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) TRUST 2008. LNCS,
vol. 4968. Springer, Heidelberg (2008)

. Brickell, E., Li, J.: Enhanced Privacy ID: A direct anonymous attestation scheme

with enhanced revocation capabilities. In: Proceedings of the 6th Workshop on
Privacy in the Electronic Society (WPES 2007), pp. 21-30. ACM Press, New York
(2007)

. Camenisch, J.: Better privacy for trusted computing platforms. In: Samarati, P.,

Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193,
pp. 73-88. Springer, Heidelberg (2004)

. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number Is the Prod-

uct of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107-122. Springer, Heidelberg (1999)

. Camenisch, J., Stadler, M.: Proof Systems for General Statements about Discrete

Logarithms. Technical Report TR 260, Dep. of Computer Science, ETH Ziirich
(March 1997)

. Chandran, N., Groth, J., Sahai, A.: Ring Signatures of Sub-linear Size Without

Random Oracles. In: Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423-434. Springer, Heidelberg (2007)

Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212-216. Springer, Heidelberg (1990)

Chen, L., Landfermann, R., Lohr, H., Rohe, M., Sadeghi, A., Stiible, C.: A Protocol
for Property-Based Attestation. In: Proceedings of ACM STC 2006, pp. 7-16. ACM
Press, New York (2006)

Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609-626. Springer, Heidelberg (2004)

Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16-30. Springer, Heidelberg (1997)

Kiihn, U., Selhorst, M., Stiible, C.: Realizing Property-Based Attestation and Seal-
ing on Commonly Available Hard- and Software. In: ACM STC 2007, pp. 50-57.
ACM Press, New York (2007)

Micali, S., Rabin, M.O., Kilian, J.: Zero-Knowledge Sets. In: Proceedings of the
44th Symposium on Foundations of Computer Science (FOCS 2003), pp. 80-91.
IEEE Computer Society, Los Alamitos (2003)

National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHS). FIPS PUB 180-2 (August 2002)

44 L. Chen et al.

17. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS PUB 186-3 (Draft) (March 2006)

18. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129-140.
Springer, Heidelberg (1992)

19. Poritz, J., Schunter, M., van Herreweghen, E., Waidner, M.: Property Attesta-
tion — Scalable and Privacy-friendly Security Assessment of Peer Computers. IBM
Research Report RZ 3548 (# 99559) (October 2004)

20. Rivest, R., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASTACRYPT 2001. LNCS, vol. 2248, pp. 552-565. Springer, Heidelberg (2001)

21. Sadeghi, A., Stiible, C.: Property-based attestation for computing platforms: Car-
ing about properties, not mechanisms. In: Proceedings of NSPW 2004, pp. 67-77.
ACM Press, New York (2004)

22. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3),
161-174 (1991)

23. Shacham, H., Waters, B.: Efficient Ring Signatures without Random Oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166-180. Springer,
Heidelberg (2007)

24. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004),
http://eprint.iacr.org/2004/332

25. Trusted Computing Group. TCG TPM Specification, Version 1.2,
https://www.trustedcomputinggroup.org/

A Security Proofs

Proof (Evidence Authentication). We structure the proof as a sequence of games

[24], where a PPT adversary A (see Section [2 for the adversary model) interacts

with a simulator S. The first game is Game®y®"™". Tn each subsequent game, a

new “event” is introduced. S aborts, whenever this event occurs. We show that

each event can only happen with negligible probability for any PPT adversary,
hence the probability for A to win game Gy, denoted by Prlwin;;1], differs

only by a negligible amount from its probability Pr[win;] to win game G;.

Go. The initial game is Game%{ """ where S plays the game with A by simu-
lating the honest parties as specified by the protocol. A chooses a platform
with a configuration csp ¢ CS of his choice (as specified in Section [G.1]), and
S simulates the honest TPM M of this platform. A wins Game% """ and
hence Gy, if it manages to output o = (C, o, 0,) such that S (acting as
an honest verifier) accepts o as a proof that csp € CS, although actually
csp ¢ CS. Because G is Game% "™ we have Prlwing] = Succ™P™(1%).

G1. In the event that S, acting as a verifier, chooses a nonce N, that already
occurred in a previous protocol run, S aborts the simulation. For this com-
parison, S records all nonces. As N, is chosen randomly by S, the probability
e1 of this is < ¢%/2% (which is negligible in the security parameter), where
¢ denotes the number of protocol runs. Hence, Succ™P™(1%) < Pr[win,] +¢;.

http://eprint.iacr.org/2004/332
https://www.trustedcomputinggroup.org/

Property-Based Attestation without a Trusted Third Party 45

G,. S simulates protocol execution as before, with the difference that all TPM
signatures are obtained from the corresponding signing oracle. In the event
that S receives an output (C,o,0,) from A, where o, was not created
previously by S, the simulation is aborted. In this case, A provided S with
a forgery of a TPM signature. The probability erpm of this event is the
probability of a forgery of a TPM signature. Thus, Succ™P™ (1) < Prlwiny]+
€1+ ETPM-

G covers replay attacks by estimating the probability that the same nonce
occurs twice, and G covers forgeries of TPM signatures. It remains to estimate
the probability Pr[wins]. We consider two cases: either A wins in G by forging
the ring signature (with probability eing), or without it. Since we are interested
in the overall probability of A winning in Go, we do not require from S to detect
which of these distinct cases occurs.

If no forgery of the ring signature occurred, but A4 wins Gg, A must know a
secret key 7’ matching one of the public keys used to compute the ring signature.
Hence, A must know 7/, such that h™ = C/g% = g®*P~ % h" mod P for some
Jj € {1,...,n}. Because csp # csj, we have r # 1/, thus A could compute the
discrete logarithm log,(h) = (csp — ¢s;)/(r" —7) mod Q. The probability of the
adversary to win the last game is Pr{wina] = €ring + (1 — Ering) - Ediog < Ering + Ediog:
where eqiog is the probability to solve the underlying discrete logarithm problem.

Thus, in total, Succh'p'i"(l"””) < £1+€TPM + Ering + Ediog, Which is negligible in &
if the TPM signature and ring signature schemes are secure and the underlying
discrete logarithm problem is hard. a

Note that although our proof is in the standard model, the ring signature scheme
in [I] requires the random oracle model.

Proof (Configuration Privacy). We demonstrate that Adve™" (1%, n), the maxi-
mum advantage over all A in Gamej’priv, is negligible in &, even if the adversary
is computationally unbounded. For this, we construct a simulator S that plays
Gamej’pr'v with some A, simulating the honest parties. The goal of A is to break
the configuration privacy of the PBA scheme, and the simulator’s goal is to break
either the perfect hiding property of the commitment scheme or the uncondi-
tional signer ambiguity property of the ring signature scheme.

We play the game twice. In the first case, we assume that the ring signature is
secure and show how S can break the commitment scheme. In the second case,
we assume that the commitment scheme is secure, and hence, we show how S

can break the ring signature scheme.

Case 1. In this case, S is given a commitment C' = ¢g*” - h” mod P with csp €
CS, and plays Gamei’p"v with A.

Once S receives a send query with a nonce N, from A, it uses C in the PBA
protocol execution as the TPM’s commitment (without knowing csp and r),
and creates a TPM signature o = SignM(ska; (C, Ny)). The computationally
unbounded simulator & can compute «, such that h = ¢g¢ mod P, and k, such
that C = ¢gF = ¢°*?T%" mod P. Although S knows neither csp nor 7, it can

46 L. Chen et al.

establish n equations k = ¢sj +a-r; (for j =1,...,n). Thus, S can compute n
pairs (csj,7;), and create the ring signature o, = SigRing(r;;{y,}; N,), where
y; = g% = h" mod P, with any of these 7; as a signing key. Because of the
signer ambiguity of the ring signature scheme, S can choose an arbitrary r; (for
j€r{l,...,n}). S sends C, o, and o, to A.

At the end of the game, A outputs an index i. S attacks the perfect hiding
property of the commitment scheme by using the pairs (cs;, ;) computed above,
and opening the commitment to (cs;,7;).

Because we assume that the ring signature is secure, the probability of S to
break the commitment scheme successfully is the probability of A to determine
i with ¢s; = ¢sp. Thus, a non-negligible advantage Adve™" implies that S can
break the perfect hiding property.

Case 2. In this case, S is given public/private key pairs (y;, ;) (j =1,...,n) for
the ring signature scheme, and access to a signature oracle for ring signatures
under this key ring. § can use the oracle to query ring signatures on arbitrary
messages. The unconditional signer ambiguity states that S should not be able
to find out which private key was used for signing (although S knows all public
and private keys). S chooses k €r Zg, and computes ¢s; = k — x; mod @ for
j=1,...,n. Then, S starts to play Gamej’priv with A.

Once S receives a send query with a nonce N, from A, it computes C' :=
g* mod P and o := SignM(ska; (C,N,)). S uses the ring signature oracle to
create a ring signature o, on the message N, and sends C, o, and o, to A.

At the end of the game, A outputs an index ¢. Since the commitment C was
chosen randomly, the only possibility of A to win Ga mei’p”v is to break the signer
ambiguity of the ring signature. S also outputs 4 to indicate that x; was used to
generate the signature, thus breaking the unconditional signer ambiguity of the

ring signature scheme. a

The Reduced Address Space (RAS) for
Application Memory Authentication

David Champagne, Reouven Elbaz, and Ruby B. Lee

Department of Electrical Engineering, Princeton University
Princeton, NJ 08544, USA
{dav, relbaz,rblee}@Princeton.edu

Abstract. Memory authentication is the ability to detect unauthorized modifica-
tion of memory. Existing solutions for memory authentication are based on tree
structures computed over either the Physical Address Space (PAS tree) or the
Virtual Address Space (VAS tree). We show that the PAS tree is vulnerable to
branch splicing attacks when providing memory authentication to an applica-
tion running on a potentially compromised operating system. We also explain
why the VAS tree generates initialization and memory overheads so large as to
make it impractical, especially on 64-bit address spaces. To enable secure and
efficient application memory authentication, we present a novel Reduced Ad-
dress Space (RAS) containing only those pages that are useful to a protected
application at any point in time. We introduce the Tree Management Unit
(TMU) to manage the RAS tree, a dynamically expanding memory integrity tree
computed over the RAS. The TMU is scalable, enabling tree schemes to scale
up to cover 64-bit address spaces. It dramatically reduces the overheads of ap-
plication memory authentication without weakening the security properties or
degrading runtime performance. For SPEC 2000 benchmarks, the TMU speeds
up tree initialization and reduces memory overheads by three orders of magni-
tude on average.

Keywords: Memory authentication, integrity tree, secure computing
architecture.

1 Introduction

As security-critical applications become mainstream, several research efforts [9, 12,
13, 16, 17] aim to design general-purpose computing platforms that can prevent
physical and software attacks. A crucial security objective shared by these platforms
is to protect the integrity of a sensitive application by providing it with memory au-
thentication—i.e. the ability to verify that a data block it reads at a given address from
main memory contains the data it last wrote at this address. To enable memory au-
thentication without having to keep on-chip a fingerprint for each data block to pro-
tect, [1, 3, 4, 6, 14, 15, 18] propose constructing integrity trees.

An integrity tree is built by recursively computing cryptographic fingerprints on the
protected memory blocks until a single fingerprint of the entire memory space, the tree
root, is obtained. It can be computed over either the physical address space (PAS tree)

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 47163]2008.
© Springer-Verlag Berlin Heidelberg 2008

48 D. Champagne, R. Elbaz, and R.B. Lee

or the virtual address space (VAS tree). In any case, the tree root is kept on-chip, in a
tamper-resistant area, while the rest of the tree can be stored off-chip. Authenticating a
block read from main memory requires fetching and verifying the integrity of all finger-
prints on the tree branch starting at the block of interest and ending with the root.

Modern operating systems typically cannot be trusted to enforce such application
memory space integrity, as exploitable software vulnerabilities are commonly found
in these large, complex and extendable software systems. Hardware-driven integrity
tree systems must thus be able to provide memory authentication to an application
despite potential OS compromise. However, the majority of past research efforts [3, 4,
9, 15, 16, 18] build PAS trees, which are not secure in this setting: we show that by
providing incorrect virtual-to-physical address translations, a compromised or mali-
cious OS can trick the on-chip authentication engine of a PAS tree into fetching the
wrong tree branch to verify a memory block. As a result, a memory block at a given
address is passed as valid for a different address; we call this a branch splicing attack.

Application memory authentication despite a potentially compromised OS was de-
scribed in [17], where a VAS tree is built. In this case, the on-chip authentication
engine selects the tree branch to fetch using the virtual address of the block to verify,
so a malicious OS cannot wage a branch splicing attack. However, tree node address-
ing requires that the VAS tree span a contiguous segment of memory. We show that
as a result, the VAS tree must cover all memory located between the lowest and high-
est virtual addresses that may be accessed by the application during its execution.
Such a large tree span leads to enormous initialization and memory overheads, mak-
ing the deployment of the VAS tree impractical.

In this paper, we introduce a novel address space, the Reduced Address Space
(RAS) containing only the application’s memory footprint. We build an integrity tree
over the RAS (a RAS tree) which remedies the security and efficiency problems of
the PAS tree and VAS tree. Our RAS tree expands dynamically as the underlying
RAS grows to fit the memory needs of the application.

The contributions of this paper are as follows:

e showing that a tree over a virtual address space (VAS tree) is impractical,
while a tree over the physical address space (PAS tree) is insecure when
the OS is untrusted;

e proposing a novel Reduced Address Space (RAS), where the pages used
by an application form a contiguous region that expands dynamically to fit
the application’s memory needs;

e introducing the concept of a dynamic integrity tree to protect the pages in
the RAS;

e detailing the design of a Tree Management Unit (TMU) which constructs as
well as maintains the RAS and the dynamic integrity tree covering the RAS;

e reducing by three orders of magnitude the VAS tree overheads in storage
and tree initialization, for a 4 GB memory space, without any significant
impact on runtime performance.

The rest of the paper is organized as follows. Section 2 presents our security
model. Section 3 presents the PAS and VAS trees, explains the branch splicing attack
on the PAS tree and the enormous VAS tree overheads. Section 4 presents our RAS
tree covering the novel Reduced Address Space and implemented by our Tree

The Reduced Address Space (RAS) for Application Memory Authentication 49

Management Unit. Sections 5 and 6 analyze the security and performance of the ap-
proach we propose. Section 7 concludes the paper.

2 Security Model

Threat Model. Our threat model encompasses that of existing integrity trees, which
aim to prevent the following attacks. Spoofing attacks: the adversary substitutes a fake
block for an existing memory block. Splicing or relocation attacks: the attacker swaps
a memory block at address A with a block at address B, where A#B. Such an attack
may be viewed as a spatial permutation of memory blocks. Replay attacks: a memory
block located at a given address is recorded and inserted at the same address at a later
point in time; by doing so, the current block’s value is replaced by an older one. Con-
temporary operating systems such as Windows and Linux consist of millions of lines
of codes [5, 7]. Since the number of exploitable software defects per thousand lines of
code has been evaluated to be between 3 and 6 [11], it is extremely difficult to assume
an infallible operating system. The attacks described above can thus be carried out
through a compromised OS (software attacks) or directly on the processor-memory
bus, via probing and injection of fake values (physical attacks).

Trust Model. The main hypothesis of our trust model is that the processor chip itself
is trusted, i.e., it is considered resistant to physical and side-channel attacks. For sim-
plicity, this paper assumes the CPU contains a mechanism—Iike those of [12, 13,
17]—protecting the integrity of a sensitive application’s on-chip state (registers and
cache lines) on context switches. Similarly, we assume the CPU contains an on-chip
engine to authenticate, upon launch, the on-disk image of a protected application.

3 Related Work

Upon reading or writing a memory block, a CPU maintaining a memory integrity tree
must locate and fetch the tree nodes along the block’s branch so tree verification or
update procedures can take place (see Appendix A for background on integrity trees).
In Section 3.1, we describe the methodology applied by computing platforms in the
literature to perform this tree traversal. Section 3.2 and

3.3 then show how tree traversal affects the security and

efficiency of the PAS tree and VAS tree proposed in gn-chip P*@“’m

past research. Off-chip RAM

3.1 Tree Traversal

[4] introduces a tree traversal methodology, adopted by Py | node | P1[node |
[3], which derives the addresses of nodes on a block’s
branch from the block’s address. The technique works as
follows: starting from the tree root and going down to- [Nnode[node [node [node |
wards the leaves, all tree nodes (including the leaves ?2 au;’i p:;mitip\?e
themselves) are assigned a numerical position (the P, in A

Figure 1). The root is assigned position -1 (P_;) and the

other tree nodes are at position 0 (Py) and higher. Fig. 1. A binary integrity tree

50 D. Champagne, R. Elbaz, and R.B. Lee

All tree nodes are of identical size and are laid out in memory according to their
positions, starting with Py at address 0, followed by P;, P,, etc at higher addresses.
With contiguous siblings, the node size and tree arity can be set to allow the on-chip
authentication engine to fetch a node and its siblings (necessary to recompute the
parent) in a single memory transaction using the node’s address. EQ, is used to map
the address (node_address) of a node N to a position (node_position). The function in
EQ, then allows mapping N’s position to the position of its parent (parent_position).
EQ, can be applied recursively to obtain the position of nodes on N’s branch. A par-
ent_position equal to -1 indicates the root node has been reached. The address of any
node other than the root can be obtained from its position using EQ;.

node _ position = node _ address + node _ size (EQ))
parent _ position = |_n0de _ position + arityj -1 (EQy)
node _ address = node _ position X node _ size (EQ5)

This technique for generating node addresses is quick and efficient since it does
not use indirection to go from one parent to another and it can be implemented in
hardware at a low cost. However, it requires that all leaf nodes be part of a contiguous
memory segment, i.e. the tree must cover a monolithic region of address space. This
memory segment may be contiguous either in the physical address space (PAS tree,
Section 3.2) or the virtual address space (VAS tree, Section 3.3).

3.2 Physical Address Space Tree (PAS Tree)

The majority of past research efforts [3, 4, 9, 15, 16, 18] considers the operating sys-
tem as trusted and builds the integrity tree over the physical address space (a PAS
tree). However, when the OS is not considered as a trusted system, as is the case in
this paper, the PAS tree is vulnerable to attacks that can violate the integrity of the
protected application’s memory space. We show below that by corrupting the applica-
tion’s page table, a compromised or malicious OS can trick the on-chip authentication
engine into using the wrong branch when verifying the integrity of a block. As a
result, the PAS tree cannot provide application memory authentication with an
untrusted OS.

a) C) Leaf Position| Root Re-computation Performed by
to Verify Authentication Engine*

hashes 1 COMPI = h{ hl h(DL||D2) | H4] H2 }
2 COMP2 = Ii{ h{ (D1 ||D2) | H4]| H2 }
3 COMP3 = h{ h{ H3 | /(D3] D4)] |[H2 }
data blocks { [DT [D2 [D3 | D4 | D5 [D6 | D7 | 8] A COMPA = h{ i 13| (D3 ||DA)] [H2 |
leafpositons { 1 2 3 4 5 6 7 8 5 COMPS = h{ H1 [A[/(D5 | D6) || H6] }
b) R = h(H1 || H2) 6 COMPG = h{ H1|[A[k(D5 | D6) || H6] |
B 7 COMP7 = h{ H1 | A[H5 | h(D7] D8)]}
= AUACHS || EL4) || A(HS | HE)] 8 | COMPS = h{ HI| A H5 | A(D7||D8)]}

=h{h[k(D1 | D2) | h(D3 || D4)]| A[A(D5 || D6) || A(D7 || D8)] } Dx = Value of leaf data block to validate

Fig. 2. Binary Merkle Tree (a) with root value derivation (b) and root re-computation
equations (c)

The Reduced Address Space (RAS) for Application Memory Authentication 51

The Branch Splicing Attack. Figure 2a shows a binary Merkle tree covering 8 data
blocks (labeled DI to D8) with a root R and intermediate hashes HI to H6. The value
of R is derived in Figure 2b, where we see that the root and intermediate tree nodes
are computed using the value of their respective descendents. Figure 2c shows how
the on-chip authentication engine recomputes the root R when verifying a given leaf
block; COMP1 to COMPS use different leaves and intermediate hashes but when the
application is not under attack, the result of all computations is the value of the root R.

In Figure 3a, we show how a malicious OS can corrupt a protected application’s page
table to control the virtual-to-physical address translations in the Translation Lookaside
Buffer (TLB) such that the wrong tree branch is fetched and the wrong equation is used
to recompute the root. For simplicity, we do not consider caching here. The upper path
with solid lines represents the verification procedure when the system is not under at-
tack, while the lower path with dotted lines shows the effect of an attack (with corrupted
data items in dark grey). In its attack, the malicious OS successfully tricks the processor
into accepting D7 rather than the correct D1 by forcing the authentication engine to
fetch D7’s branch and compute COMP7 instead of COMPI. The OS does so by cor-
rupting the application’s page table—mirrored in the processor’s TLB—so that it maps
virtual address V(D1) to physical address P(D7). This causes the authentication engine
to compute an erroneous leaf position, hence generating the wrong branch node ad-
dresses and using the wrong COMPi. We call this attack branch splicing, which suc-
cessfully substitutes D7 for D1 without detection.

3.3 Virtual Address Space Tree (VAS Tree)

To provide application memory authentication despite an untrusted OS, [17] builds
the integrity tree over the virtual address space (VAS tree). Figure 3b shows that with

Node
a) addr T Memory
r=mmmmy
| S —
! : -
CPU chip ompute node! ag 83“1’
addresses S }r E":E'
Core ' i
—PO1) /1! _/Compute i re-comp’d
Protecied | V(D1) r Colrnpfute ' COMP1 ‘;—’root ' OK
e eal S, S -
appllcat\on} i " 7 < Compute ™ re-comp'd _ .-* OK
osition / - P s
i’ | Lcomp7 /T ool S e AT
b)
Node
addr Memory
S
- Boarg |~ Memory
el I N |
i -
CPU chip 3 e Sho Root Register
! << e i
| oT o i
Core f ‘
i Compute re-comp’d +<;>_‘ﬁ>
i > OK
Proteciad V(1) Colr:gfute —-d comp1)0 oot i
application position | L | L Compute™ _ re-comp'd 7 ERROR
COMPp1/~ " root =7 detected)
— NorTal Yeriﬁcation flow soxx: Data controlled by P(X) = physical address of X 1 P(D1), P(D2), P(H4), P(H2)
777777 Verification flow under malicious OS V(X) = virtual address of X 1 P(D7), P(D8), P(H1), P(H5)

attack from malicious OS

Fig. 3. Successful branch splicing attack on PAS tree (a) and unsuccessful attack on VAS tree (b)

52 D. Champagne, R. Elbaz, and R.B. Lee

a VAS tree, the OS cannot influence the choice of the COMPi equation used to re-
compute the root. The leaf position of a block is determined by that block’s virtual
address—which comes directly from the protected application—rather than by its
translated physical address—which is under OS control. As a result, a branch splicing
attack by the OS is detected by the authentication engine.

However, the extra security afforded by the VAS tree over the PAS tree comes at
the cost of very large memory capacity and initialization overheads. Application code
and data segments are usually laid out very far apart from one another in order to
avoid having dynamically growing segments (e.g., the heap and stack) overwrite other
application segments. The VAS tree must thus span a very large fraction of the virtual
address space in order to cover both the lowest and highest virtual addresses that may
be accessed by the application during its execution. The span of the tree is then sev-
eral orders of magnitude larger than the cumulative sum of all code and data segments
that require protection—i.e. the tree must cover vast regions of unused memory. In
the case of a VAS tree protecting a 64-bit address space, the span can be so enormous
as to make the VAS tree impractical, i.e. the VAS tree is not scalable. Indeed, it not
only requires allocating physical page frames for the 2 bytes of leaf nodes that are
defined during initialization, but also requires allocating memory for the non-leaf tree
nodes, which represent 20% to 100% of the leaf space size [3, 6, 17]. The CPU time
required to initialize such a tree is clearly unacceptable in practice.

To overcome the enormous overheads of the VAS tree and defend against branch
splicing attacks, we build the integrity tree over a new Reduced Address Space (RAS)
managed by our TMU architecture.

4 The TMU Architecture

The role of the Tree Management Unit (TMU), a new processor hardware unit, is to
maintain an integrity tree over the Reduced Address Space (RAS). At any point in
time, the RAS contains only those pages needed for the application’s execution; it
grows dynamically as this application memory footprint increases. The TMU builds
an integrity tree over the application’s RAS (a RAS tree), carries out the integrity
verification and tree update procedures and expands the tree as the underlying RAS
grows. Because the RAS contains the application’s memory footprint in a contiguous
address space segment, the RAS tree does not suffer from the overheads of the VAS
tree, built over a sparse address space. Moreover, the design of the TMU architecture
ensures the RAS tree is not vulnerable to branch splicing.

4.1 Overview

Reduced Address Space (RAS). The approach presented in this paper consists in
building and maintaining a dynamic integrity tree covering only the set of data and
code pages required for the tamper-evident execution of an application. In order to do
so, we construct a new address space, the RAS depicted in Figure 4, containing only
this set of pages and descriptors for the memory regions whose pages are not in the
RAS (the Unmapped Page Ranges, UPRs, Section 4.4). We then build the integrity
tree over the RAS so the TMU can authenticate the application’s code and data as

The Reduced Address Space (RAS) for Application Memory Authentication 53

well as determine, by inspecting the tree-protected UPR list, whether a page is
mapped in the RAS. Pages may be unmapped because 1) they haven’t been used by
the application yet, or 2) they are mapped to physical pages shared with other applica-
tions, or 3) they belong to the operating system. The novelty in our approach is that
the integrity tree does cover the whole virtual address space, except that the unused
memory regions are condensed—represented by just their first and last addresses in a
UPR list item.

—Tree Root

Unmapped Page Range (UPR) — Unmapped Page Range
starting at virtual address @, and

(UPR) List
ending at virtual address @, Intermediate _ Unused segment
Tree Nodes — ~ (arbitrarily large)
s —-—|Code Data|Heap| Stack [@I@@ | Address s = shared b
Leaves @:[@s|@s @ Space B
B Virtual
Intermediate [@o|@:]@4]@s
Tree Nodes |@ |@3|@5 @ os ‘} égg(r:iss
@o @ @: @ @4 @s @s @

Fig. 4. The Reduced Address Space (RAS) and its relationship to the Virtual Address Space

The Tree Management Unit (TMU). Figure 5 depicts in dark gray the components
added to a general-purpose processor to support our scheme. The role of the main
addition, the TMU, is to initialize and expand the tree, as well as to traverse it from a
leaf to the root on verifications and updates. The Check&Update logic is a crucial
component: it retrieves the application image through the Authentication Engine to
build the initial tree (Section 4.2). It also drives the Page Initialization logic on tree
expansions (Section 4.3). The RAS owner register identifies the currently protected
application; the TMU only operates when the RAS owner is in control of the CPU.
The RAS Ctr gives new RAS indices. The TMU tags are used by the TMU to map a
virtual page into the RAS while the node TLB (N-TLB) computes the physical address
of a tree node.

v TMU tags: v
I-TLB Bus y T \ﬂlr\’l’il
ctl, | Tomem. » - ‘_'_
Instr. L1 | 7 Check & Update Logi
Core L L2 £ Auth, Auth. a e[c pdate Logic ‘
— DataLt | H piimiver |[eune] - Fage
= ’ Inifialization | [RAS Cir
Logic
DT] 00 -

Fig. 5. The Tree Management Unit (TMU) architecture

4.2 Dynamic Integrity Tree over the Reduced Address Space (RAS)

The construction of the RAS follows the execution of the protected application. Ini-
tially empty, the RAS is populated by the TMU—when the protected application is
launched—with the pages whose contents are defined in the application image.

54 D. Champagne, R. Elbaz, and R.B. Lee

During execution of the program, the TMU adds to the RAS pages that are accessed
by the application and were not previously included in the RAS, e.g. a heap or stack
page touched for the first time. The TMU adds a page to the RAS by assigning it an
identifier—called the RAS index—generated from an on-chip counter (RAS Ctr in
Figure 5), which is initially O and incremented for each new RAS page. The address
of a datum within the RAS is addr = RAS_index |l offset, where offset is the data’s
offset within its virtual page and Il indicates concatenation.

Initialization of the RAS. Initializing a protected application being launched consists
of building an integrity tree over a Reduced Address Space containing the code and
data specified in the application image on the disk (e.g. an ELF executable file). We
assume the image consists of a set of data and code segments, along with a header
describing how these segments must be laid out by the loader to construct the applica-
tion’s initial virtual address space. In the scheme we propose, one of the data seg-
ments must be a UPR list specifying the memory regions that should not be mapped
in the RAS by the TMU during initialization. Since we let the untrusted OS and its
loader take the image from disk to memory, we must first authenticate the image
before it is mapped into the RAS and included in the initial tree. We assume the CPU
has an on-chip engine—similar to that in [10] or [13]—in charge of authenticating the
application image. During initialization, the TMU reads via this engine the defined
pages of the application’s initial state and maps them into the RAS.

Upon mapping the first page into the RAS, the TMU sets RAS ownership by writ-
ing the RAS owner register with a value identifying the application. Whenever the
RAS owner gains control of the CPU, TMU protection is activated; when the owner is
pre-empted, the TMU is deactivated. The value identifying the application depends on
what application-related information the ISA (Instruction Set Architecture) makes
available to the hardware: it could be the process ID of the protected application or
the base address of its page table. The RAS owner value is bound to the contents of
the RAS: if a malicious OS assigns the RAS owner process ID to an application other
than the actual owner, the TMU detects the subterfuge when the non-owner tries to
execute an instruction that does not exist in the RAS.

4.3 Maintaining a Dynamic Integrity Tree over an Expanding RAS

The size of the RAS increases at a page granularity. As a result, our integrity tree
must span an extra page every time a new page is mapped into the RAS. Such tree
expansions trigger increases in the tree’s span (number of leaves). We first define new
concepts needed to describe runtime tree expansion.

Definitions. The term integrity tree refers to an A-ary tree structure used to provide
memory authentication on a computing platform. In this paper, we consider that integ-
rity trees are built as depicted in Figure 6, with the root node at the topmost level and
the leaf nodes—which are the application memory blocks to authenticate—at the
lowest level. We call intermediate nodes the nodes between level L=0 and the root;
these nodes are metadata involved in the integrity checking process. All integrity trees
are complete: they have A" leaves, where Lr is the level to which the root belongs.

The Reduced Address Space (RAS) for Application Memory Authentication 55

Arity: 2 C)ZC)ZCD Branch
for 17&18

—~ Height: 4
%) 1leaves: Nodes 15 Lo 30 ElatgEhE Intelelte
72 {3 Root: Node 0 %) Nil Nodes
€)E@®E@E) L—j: Tree level j (O solid Nodes

Fig. 6. A partial integrity tree covering 10 memory blocks (nodes 15 to 24). It can cover 6 extra
blocks, mapped into nodes 25 to 30, before becoming a full tree.

The branch of a node F is the set of nodes on the shortest path from F' to the root;
this branch is the authentication path for F. The nodes on F’s branch are called F’s
ancestors (F’s parent, the parent of F’s parent, etc). For example, the branch for node
17 in Figure 6 consists of nodes 8, 3, 1 and 0.

The minimum number of levels necessary to authenticate Nb memory blocks is Lb
= log4(Nb) . The number of leaves NI in the integrity tree is equal to A”’. Building the
NI branches of the integrity tree during the tree’s initialization would be inefficient
since the Nb blocks only required Nb distinct authentication paths, i.e. Nb tree
branches. This paper presents a strategy to avoid computing and storing branches for
the NI - Nb undefined leaf nodes that do not correspond to one of the Nb memory
blocks to authenticate. This strategy uses the notion of ghost nodes, the nodes which
are not on the branches of the Nb defined memory blocks. In opposition to a ghost
node, a solid node is a node on the branch of a defined memory block. The term nil
node refers to a ghost node which is the sibling of a solid node. Only solid nodes need
to be computed and stored in memory: ghost nodes are neither computed nor stored
anywhere and thus do not cause CPU time or memory overheads. A nil node is fixed
to a pre-determined value whenever used in the computation of its parent node.

A full tree is an integrity tree without ghost nodes. A partial tree has both solid and
ghost nodes. A partial tree T can protect an additional memory block by replacing a
ghost leaf node with a solid node, and then computing the solid node’s ancestors. This
can be done until 7' becomes a full tree.

For an integrity tree 7, we define a cone to be a sub-tree of 7, with a node from T
as its root and nodes from 7”s level O as its leaves. In Figure 6, nodes 4, 9, 10, 19, 20,
21 and 22 are part of a cone which has 4 as its root. A page cone is any cone whose
leaves cover the contents of exactly one page. A page node is the root of such a cone.
The tree has a level consisting exclusively of page nodes; it is called the page node
level. This allows tree expansions at a page granularity and, as we explain next, en-
sures that the integrity tree (partial or full) always covers an integer number of pages.
At any point in time, the memory blocks forming the pages in the RAS are the only
solid leaf nodes in the integrity tree. The TMU manages the tree such that these nodes
are always the leftmost nodes on level 0, i.e. the TMU expands the tree to the right.

Tree Expansion. To add a first page P, to the empty tree Ty, the TMU assigns RAS
index 0 (RAS_i=0) to P,, computes its page cone and makes its page node R; the root
of T,, the new integrity tree (Figure 7 depicts a binary tree, with 7; in 7a). When a
second page P, requires protection, 7; must be expanded so its root spans both P, and
P,. To do so, the TMU first computes P,’s page cone and then assigns it a RAS index
equal to 1. Since 7; is a full tree—i.e. it is formed only of solid nodes—the TMU
must increase T;’s height by one, creating tree T, covering both P, and P,. The TMU
computes 75’s root R,, located on the new topmost level of the tree, by applying the

56 D. Champagne, R. Elbaz, and R.B. Lee

a) Full Tree T, b) Full Tree T, c) Partial Tree T; d) Full Tree T,
(Ra)
Y D)
nil node A A
. = ‘\» AN ,‘ . \\,
R (L (J C)

Pa’s\ ,,"/ Pa's\\ ’,/ Py's \ ’,r"'Pe's\\\ ,,r"’Pb’s Pgs \ ghost ,"’Pa’s\ Pb's\\\ Pc's\\‘ ,// Pq's
Cone \ / Cone \ / Cone \ /Cone\ /Cone' /Cone" /nodes / Cone '/ Cone \ / Cone \ / Cone \
[Page P, [Page P, Page Py Page P, Page Py ‘ Page P | ghostnodes [Page P, Page Py 1 Page P, [Page Py 1
RAS_i=0 RAS_i=0 RAS i=1 RAS_i=0 RAS i=1 RAS i=2 RAS_i=0 RAS_i=1 RAS i=2 RAS i=3

Fig. 7. Tree expansion: each page added expands the tree span. When adding a page to a full
tree (a)(b), an extra tree level is added. When a page is added to a partial tree (c), it replaces a
cone of ghost nodes.

authentication primitive (f in Figure 1) to the page nodes of P,, P, and their siblings.
Generally, there are two different scenarios for tree expansion: i) a page needs to be
added to a full tree or ii) a page needs to be added to a partial tree.

Expansion of a Full Tree. Upon adding a page P, to a tree, the TMU can detect the
integrity tree is full when the RAS index RAS_1i to be assigned is a power of the arity,
i.e. whenever logs(RAS_1i) = x, such that x is an integer larger than or equal to zero
(e.g., in Figure 7b). Upon adding P,, the TMU must thus increase the height of 7, by
one. To do so, the TMU creates a new level containing a single solid node R; on top of
the existing tree, computes P.’s cone and then computes a branch starting at P.’s page
node and ending at R;. In computing this branch, the ghost nodes which are children of
an ancestor of P, are nil nodes. The value attributed to nil nodes for the computation of
their parents depends on the underlying integrity tree e.g., for a hash tree, a nil node is a
null value. The last step of the branch computation procedure uses the old tree root R, to
make R; into the new tree root. Finally, the on-chip R; is replaced by Rj;: the former
becomes a regular intermediate node and can be stored in external memory.

Expansion of a Partial Tree. When the integrity tree is partial (e.g., Figure 7c), a
page P, to be added is assigned the next available RAS index and its page cone is
computed (e.g., Figure 7d). The leftmost ghost node in the page node level of the
partial tree is then replaced with P,’s page node. The ancestors of P,’s page node are
then recomputed so the root reflects the expanded RAS. When the page node level is
filled with solid nodes, we have a full tree.

In this paper, we consider that tree expansions only occur to integrate new heap or
stack pages into the tree. Since programs do not expect any specific values to be pre-
sent in a newly allocated stack or heap page, the contents of such pages can be forced
to all zeroes without any impact on program correctness. Thus the TMU does not
need to fetch the contents of a page upon a tree expansion: it merely initializes a stack
or heap page by writing zeros directly on the memory bus and computes its page cone
concurrently.

4.4 UPR List and TMU Tags

In order to maintain the tree and address its nodes, the TMU uses the tags depicted in
Figure 5, which are composed of three fields each: the TMU_field, the mapped bit

The Reduced Address Space (RAS) for Application Memory Authentication 57

(M) and the excluded bit (E). These fields are stored in the OS memory space, in
extensions of the Page Table Entries (PTEs). They are carried on-chip into extensions
of the Translation Lookaside Buffer (TLB) entries on TLB misses, propagated to
cache lines on a cache line fill and made available to the TMU on a cache line miss or
eviction.

The mapped bit tells the TMU whether a page is currently assigned a valid RAS
index. When the mapped bit is set, the TMU_field contains the page’s RAS index;
otherwise, it contains an index pointing to the UPR list entry confirming that the page
is indeed part of an unmapped region. The application’s excluded bits are specified
in its image by the application creator and do not change during execution. The TMU
does not map into the RAS pages with an excluded bit set to 1. These pages are
thus excluded from the tree’s coverage; the application can read and write them with-
out triggering tree verification or updates. This is necessary to allow the OS and other
applications to share data with the protected application. As in [17], we store a virtual
tag with each physically-tagged cache line to be able to compute parent node ad-
dresses when the line is evicted. TMU tags thus contain a fourth field for physically-
tagged caches.

UPR List. The UPR list (UPRL) is a list of Unmapped Page Ranges (UPRs). A UPR
consists of 1) a pair of virtual page numbers defining a range of contiguous virtual
pages not currently in the RAS and 2) an excluded bit specifying whether or not the
pages in the range should be excluded from tree coverage. The UPRs in a UPRL are
mutually exclusive and the sum of all UPRs spans all virtual pages that are not cov-
ered by the tree (Figure 4). We store the UPRL in the RAS so that its integrity is pro-
tected by the tree.

Upon adding a page P to the tree, the TMU must update the UPR list to remove P
from its UPR. If P with address X is the first page within its UPR U=X Il Y Il O
(where 0 is the excluded bit), the TMU simply overwrites U with X+1 Il Y Il O.
Similarly, if Y is the last page of a UPR, then the TMU writes X Il Y-/ Il 0. If P is not
one of the bounds of its UPR U= X |l Y Il 0 (where X < P < Y) however, removing P
from the UPRL creates two ranges, U; =X Il P— 1110 and U, = P+1 Il Y Il 0. To up-
date the UPR list, the TMU changes U to U, and appends the newly created U, to the
end of the UPRL. While this UPRL maintenance strategy is quick and efficient, it
creates an unordered list in which searching can be a demanding operation.

To allow the TMU to access the UPR list in constant time without searching, we
provide, in the TMU_field of an unmapped page P, an index—the UPRLi—
pointing to the UPR containing P. When the physical address translation or the UPRL
index of an unmapped page (M = 0) is undefined in a TLB entry, a page fault is raised
and the OS page fault handler intervenes to provide the missing information. In order
to be able to provide the appropriate UPRL index on a page fault, the OS needs to be
aware of the exact contents of the UPRL. To do so, the OS can read the application’s
UPRL directly by mapping it in its own address space. The OS can also maintain, in a
data structure with a good search complexity, a copy of the UPRL which it updates
every time a page is added to the tree by the TMU. Note that the TMU detects a fake
UPRLi provided by a malicious OS upon accessing the tree-protected UPR list.

58 D. Champagne, R. Elbaz, and R.B. Lee

5 Security Analysis

In this section, we argue the RAS tree and the TMU do not degrade the security prop-
erties of the underlying tree scheme (e.g., Merkle Tree). Analysis of tree traversal
shows our RAS tree defends against branch splicing attacks. We begin our analysis
with tree expansion, a key TMU mechanism.

Tree Expansion. Let 7 be a tree covering the X-page wide RAS R. Upon mapping a
new page P into R to form R’, the tree expansion procedure must transform 7 into a
tree T’ that can be used to authenticate R’. To do so, the TMU computes P’s page
cone Cp and integrates Cp into the tree. Cp’s computation does not degrade the secu-
rity properties of the underlying tree since 1) the integrity of the data used as leaves
by the TMU in this step is verified and 2) the root of the intermediate trees formed
during the construction of Cp are kept on-chip. When P is defined in the image, prop-
erty 1) is guaranteed by the authentication engine’s validation of P’s data leaves;
when P is a dynamically allocated stack or heap page, the data is fixed to the pre-
determined zero value so property 1) holds. Property 2) is by design.

Integration of Cp into T consists of updating the branch for the cone’s root—i.e.
Cp’s branch—to make the root of 7” reflect the state of R’. The integration of Cp into
T preserves the security properties of the underlying integrity tree because 1) the ad-
dresses of the branch nodes to be updated are computed by the TMU from a trusted
RAS index and 2) the nodes on the new branch are computed over verified data.
Property 1) holds because the addresses of branch nodes are derived from the RAS
index allocated to P, which is obtained from a trusted on-chip counter. Property 2)
holds because the TMU computes the new branch by recursively applying the authen-
tication primitive on trusted nodes—i.e. Cp’s root and verified siblings (nil nodes or
preexistent solid nodes that were verified prior to the cone’s computation).

Initialization. The security of the initialization procedure follows from security of the
tree expansion procedure. Indeed, initialization consists in recursive invocations of
the tree expansion procedure, initially on the empty tree. The TMU figures out which
pages of the virtual address space to add to the initial tree by reading the image header
through the authentication engine. The procedure thus builds an integrity tree cover-
ing all the data and code defined in the image without degrading the security proper-
ties of the underlying tree.

Runtime RAS Expansion is guided by the excluded and mapped bits of pages
touched by the application. The TMU checks the integrity of these bits by looking up
the UPR list and thus avoids mapping into the RAS pages that are already in the RAS
or are excluded from tree protection. Hence, the excluded and mapped bits ensure an
attacker cannot force the RAS expansion procedure to map into the RAS a page that
should not be mapped.

Tree traversal. With regard to tree traversal, the only difference between a VAS tree
and our RAS tree lies in the indirection mechanism provided by the RAS to determine
node addresses. When computing the addresses of the nodes on a datum’s branch, we
rely on both its RAS index and the datum’s virtual address. We thus need to ensure
they are genuine. The virtual addresses used by the application are genuine since they
are generated by integrity-protected instructions operating over integrity-protected

The Reduced Address Space (RAS) for Application Memory Authentication 59

data—i.e. both instructions and data are covered by the tree. Since each node in the
tree is computed using the virtual address of its children as an input to f, and since the
verification branch taken by the TMU depends on the RAS index used, the last step of
the branch verification procedure—uverification against the root—not only checks the
integrity of a datum but also checks that the right RAS index was used to verify the
datum. An OS trying to wage a branch splicing attack by corrupting the RAS index
will thus be detected.

6 Performance Evaluation

We now evaluate the impact of the RAS tree on initialization (Section 6.1) and run-
time overheads (Section 6.2). Our evaluation was carried out using the execution-
driven, cycle-accurate SimpleScalar simulator [2] to run nine SPEC2000 benchmarks
[8] as representative applications: applu, art, gcc, gzip, mcf, swim, twolf,
vortex and vpr. These are typically used by the computer architecture community to
evaluate performance of microprocessor features and implementations. Our RAS tree
and the VAS tree we use as a base case are implemented using the cached Merkle hash
tree scheme described in [4] (see Appendix A for background on cached integrity trees).
The hardware architectural parameters used in our simulations are in Table 1. To simu-
late paging, we implemented a simple LRU page replacement algorithm and assumed
the OS could service page faults infinitely fast (i.e. the OS is only limited by the
throughput of the hard drive). Unless mentioned otherwise, the memory span of ap-
plications is 32-bit, i.e. the distance between the start address of the lowest application
segment and the end address of the highest application segment is 2** bytes. The
benefit of our RAS approach will increase exponentially as the address space grows to
64 bits.

6.1 Initialization

We first show that dynamic trees Table 1. Architectural parameters

built over the RAS and managed by

the TMU reduce the memory capac- | CI;T::;::;CY | ;g':z |
ity and CPU time by several orders L1 18D Caches 64KB each, 2-way, 328 lines
of magnitude over equivalent VAS b?‘C;'ﬂlche Unified, 1'\';5 4-\|~ay. 64B line
. atency cycles
trees. Note that the Y-axis of all T2 Tatenoy 10 oyoles
figures in this section is in loga- | Data, Instr. & Node TLBs Each 4-way, 32 sels
. . : Page size 4 KB
rithmic scale. Figure 8 compares the WSiiio N 100 oycles firsT ohunk
memory overheads caused by VAS Memory bus 500MHz, 8-B wide (4 GB/s)
and RAS trees during initialization. ';95‘52 jgg;"n?ﬁ mfﬁ jﬁ:
RAS trees have an initialization- [~Toad store queus size B4
time memory overhead which varies Reﬁistﬁr updal&; unit size 80128|
c . ash engine latency cycles
ﬁjom one appl}c?lt.lop to another Hash engine throughput 4 GB/s
since they are initialized to cover Hash algorithm SHA-1 (fruncated to 168)
: _ Tree arity / node size 4/16B
only those pages with contents de Ea dieiasiiisighpil 100 MBS

fined by the image. applu and
swim have the largest amount of

60 D. Champagne, R. Elbaz, and R.B. Lee

data defined by their image (both around 190 MB) and thus have the largest over-
heads (approximately 64 MB). The overheads caused by the TMU-managed trees are
on average three orders of magnitude lower than the ~4 GB overhead caused by VAS
trees. Figure 9 shows that the time taken for initialization closely follows the memory
overheads since every memory block covered by the tree must be processed during
initialization. Once again, the TMU dramatically reduces the overheads, by three
orders of magnitude on average.

WVAS Tree [JOur RAS Tree

1x10'? [WVAS Tree [(]Our RAS Tree

1x10%
1x10°
1x10°
:
applu at goc gzip mef swim twolf vortex wpr applu art gec gzip mecf swim twolf vortex vpr

Fig. 8. Initialization-Time Memory Overheads. Fig. 9. Initialization latencies. Average reduc-
Average reduction with RAS: 3 orders of tion with RAS: 3 orders of magnitude.
magnitude.

Figure 10 shows the TMU and its RAS can accommodate 64-bit address spaces
with insignificant increase in memory overhead, while the VAS tree overhead is un-
manageable. It compares the memory overheads of the two schemes with gcc as an
example, for different memory spans. While the overhead of dynamic trees managed
by the TMU is constant, that of VAS trees increases with the memory span, going to
several exabytes (1 exabyte = 2% bytes) for a 64-bit memory span! Such an overhead
clearly prevents the scalability of VAS trees to larger virtual address spaces—unlike
our RAS tree.

1 zettabyte [EVAS Tree [JOur RAS Tree |
1 exabyte
1 petabyte
1TB+

1GB+

TMB-

1KB+

= extrapolated data point
Fig. 10. Comparisons of tree overheads for different memory spans for gcc

6.2 Runtime

The size of VAS trees remains the same from initialization to completion of the appli-
cation’s execution. The size of RAS trees however increases with the application’s
dynamic memory needs. Figure 11 compares the memory overhead required for
the peak size RAS tree versus that of a VAS tree. It shows that even at its peak size,
the TMU-managed tree is still, on average, three orders of magnitude smaller than the
equivalent VAS tree.

We also ran numerous performance simulations to evaluate the impact of our
method on the runtime execution performance, measured in Instructions executed Per
Cycle (IPC). The IPC count with our TMU implementing RAS memory authentica-
tion is normalized to the IPC of an application without any integrity tree protection.

The Reduced Address Space (RAS) for Application Memory Authentication 61

No performance degrad- 11 B VAS Tree] Our RAS Tree
ation is indicated by an ;g

IPC of 1. The results have .o
been obtained by simulat-

. S . 1KB
ing 500 million instruc-

tions on Simple-Scalar, 1B
after having skipped 1.5
billion instruc-tions, to Fig. 11. Runtime Memory Overheads. Average reduction with
obtain steady-state perfor- RAS: 3 orders of magnitude.

mance. We studied how

varying hardware implementation, parameters, like cache size, page size, memory
bandwidth, and disk bandwidth affect the relative performance of VAS and RAS trees.

On the average, a TMU-managed tree degrades the IPC count by 5.15% with re-
spect to no integrity tree and by 2.50% with respect to a VAS tree, an acceptable
performance hit in most cases. For the latter, although the height of a RAS-tree is
always smaller than that of a VAS tree, the TMU seldom outperforms IPC perform-
ance for a VAS tree, due to the caching of tree nodes (in both VAS and RAS trees).
Because the microprocessor is considered our hardware security perimeter, data in on-
chip caches inside the microprocessor, including cached and validated tree nodes, are
considered trusted and safe from attacker manipulation. This caching of tree nodes
effectively makes lower level nodes into local sub-tree roots that allow for quick veri-
fications in tall trees.

Considering the extra work needed to add pages and grow the RAS tree during run-
time execution, our performance evaluations show that the runtime performance
overhead is negligible, while achieving huge benefits in memory overhead and ini-
tialization overhead.

applu art gee gzip mef swim twolf vortex wvpr

7 Conclusion

In this paper, we have shown that PAS trees (integrity trees over physical address
spaces) are vulnerable to branch splicing attacks. We described in detail the branch
splicing attack to which PAS trees are susceptible but VAS trees (integrity trees over
virtual address spaces) are immune to. We explained why VAS trees generate
overheads (in space and time) so large as to deter their deployment for memory au-
thentication in general-purpose computers. We then introduced the concept of a dy-
namically expandable integrity tree, spanning a novel Reduced Address Space (RAS).
One novel aspect of our RAS tree is that it keeps track of both used and unused
pages—we save space by combining unused pages as Unused Page Ranges (UPRs),
and providing full integrity tree coverage to used pages. Our RAS tree is efficiently
managed by our proposed Tree Management Unit (TMU). At runtime, our TMU
maps into the Reduced Address Space (RAS) only those pages needed by the applica-
tion and builds an integrity tree over this dynamically expanding RAS. Compared to
existing VAS trees, our solution decreases the initialization latency and the memory
overheads by two to three orders of magnitude for 32-bit virtual address spaces
(VAS), with only a 2.5% hit on the runtime IPC count, in spite of the extra work in
growing the RAS tree. As opposed to VAS trees, our RAS solution can easily scale up
to provide memory authentication for large 64-bit virtual address spaces.

62

D. Champagne, R. Elbaz, and R.B. Lee

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Blum, M., Evans, W., Gemmell, P., Kannan, S., Noar, M.: Checking the correctness of

memories. Algorithmica 12(2/3), 225-244 (1994)

Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0., Technical report, Uni-
versity of Wisconsin-Madison Computer Science Department (1997)

Elbaz, R., Champagne, D., Lee, R.B., Torres, L., Sassatelli, G., Guillemin, P.: TEC-Tree:
A Low Cost and Parallelizable Tree for Efficient Defense against Memory Replay Attacks.
In: Paillier, P., Verbauwhede, 1. (eds.) CHES 2007. LNCS, vol. 4727, pp. 289-302.
Springer, Heidelberg (2007)

Gassend, B., Clarke, D., van Dijk, M., Devadas, S., Suh, E.: Caches and Merkle Trees for
Efficient Memory Authentication. High Performance Computer Architecture (HPCA-9)
(February 2003)

Gonzalez-Barahona, J.M., Ortuiio Pérez, M.A., Quirés, P.H., Gonzalez, J.C., Olivera, V.M.:
Counting potatoes: the size of Debian 2.2 (2002), http://people.debian.org/
~jgb/debian-counting/counting-potatoes/

Hall, W.E., Jutla, C.S.: Parallelizable Authentication Trees. Selected Areas in Cryptogra-
phy, pp. 95-109 (2005)

Hatton, L.: Estimating source lines of code from object code: Windows and Embedded
Control Systems (2005), http://www.leshatton.org/LOC2005.html

Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millenniumm.
IEEE Computer (July 2000)

[.B.M.: IBM Extends Enhanced Data Security to Consumer Electronics Products. IBM (April
2006), http://www-03.1ibm.com/press/us/en/pressrelease/19527 .wss
Intel, Intel Trusted Execution Technology: Preliminary Architecture Specification (No-
vember 2006), http://www.intel.com

Kannan, K., Telang, R.: Economic analysis of market for software vulnerabilities. In:
Workshop on Economics and Information Security, Minneapolis, MN, USA (May 2004)
Lee, R.B., Kwan, P.C.S., McGregor, J.P., Dwoskin, J., Wang, Z.: In: Architecture for Pro-
tecting Critical Secrets in Microprocessors, Int’l Symposium on Computer Architecture
(ISCA-1932), pp. 2—-13 (June 2005)

Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz, M.: Ar-
chitectural Support for Copy and Tamper Resistant Software. In: Int’l Conf. on Architec-
tural Support for Programming Languages and OS (ASPLOS-IX), pp. 168-177 (2000)
Merkle, R.C.: Protocols for Public Key Cryptosystems. In: IEEE Symposium on Security
and Privacy, pp. 122-134 (1980)

Rogers, B., Rogers, B., Chhabra, S., Solihin, Y., Prvulovic, M.: Using Address Independ-
ent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Per-
formance-Friendly. In: Proc. of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 183-196 (2007)

Shi, W., Lu, C., Lee, H.S.: Memory-centric Security Architecture. In: 2005 International
Conference on High Performance Embedded Architectures and Compilers (2005)

Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: Architecture for
Tamper-Evident and Tamper-Resistant Processing. In: Proc. of the 17th Int’l Conf. on Su-
percomputing (ICS) (2003)

Yan, C., Rogers, B., Englender, D., Solihin, Y., Prvulovic, M.: Improving Cost, Perform-
ance, and Security of Memory Encryption and Authentication. In: Int’l Symposium on
Computer Architecture (ISCA-1933), pp. 179-190 (June 2006)

The Reduced Address Space (RAS) for Application Memory Authentication 63

Appendix A: Memory Integrity Trees

Existing techniques preventing the active attacks presented in our threat model are
based on tree structures [1, 3, 6, 14]. The common philosophy behind these methods
is to split the memory space to protect into N equal size blocks which are the leaf
nodes of a balanced A-ary integrity tree. The remaining tree levels are created by
recursively applying a function f—which we call the authentication primitive—over
A-sized groups of memory blocks, until the procedure yields a single node called the
root of the tree. The root reflects the current state of the memory space; making the
root tamper-resistant thus ensures tampering with the memory space can be detected.
The tree in Figure 1 is a 2-ary (binary) integrity tree.

Tree Authentication Procedure. For each memory block B, there exists a branch,
starting at B and ending at the root, composed of the tree nodes obtained by recursive
applications of f on B. When B is fetched from untrusted memory, its integrity is veri-
fied by recomputing the tree root using the fetched B and the nodes—obtained from
external memory—along the branch from B to the root. We know B has not been
tampered with when the recomputed root is identical to the on-chip root.

Tree Update Procedure. When a legitimate modification is carried out over a mem-
ory block B, the corresponding branch, including the tree root, is updated to reflect the
new value of B. This is done by first authenticating the branch B belongs to, then
computing on-chip the new values for the branch nodes, and storing the updated
branch and storing the tree root on-chip.

Merkle Tree. In a Merkle Tree [1, 14], fis a cryptographic hash function; the nodes
of the tree are thus simple hash values. The generic verification and update proce-
dures described above are applied in a straightforward manner. The root of this tree
reflects the current state of the memory space since the collision resistance property of
the cryptographic hash function ensures that in practice, the root hashes for any two
memory spaces differing by even one bit will not be the same. The integrity trees in
[3, 6], use different cryptographic primitives for f, but apply the same principles.

Cached Integrity Trees. [4] proposes to cache tree nodes in the on-chip L2 cache.
Upon fetching a tree node from main memory, it is checked, stored in L2 and trusted
for as long as it is cached on-chip. As a result, during tree authentication and tree
update procedures, the first node encountered in cache serves as a local root and ter-
minates the procedures.

An Efficient PIR Construction Using Trusted
Hardware

Yanjiang Yang!2, Xuhua Ding', Robert H. Deng!, and Feng Bao?

1'School of Information Systems, Singapore Management University,
Singapore 178902
2 Institute for Infocomm Research, Singapore 119613
{yyang,baofeng}@i2r.a-star.edu.sg,
{xhding,robertdeng}@smu.edu.sg

Abstract. For a private information retrieval (PIR) scheme to be de-
ployed in practice, low communication complexity and low computation
complexity are two fundamental requirements it must meet. Most ex-
isting PIR schemes only focus on the communication complexity. The
reduction on the computational complexity did not receive the due treat-
ment mainly because of its O(n) lower bound. By using the trusted hard-
ware based model, we design a novel scheme which breaks this barrier.
With constant storage, the computation complexity of our scheme, in-
cluding offline computation, is linear to the number of queries and is
bounded by O(y/n) after optimization.

1 Introduction

Private Information Retrieval (PIR) was first formulated by Chor et al. in [5].
It offers a strong privacy assurance since it disallows any leakage of user query
information. Although PIR should be the ideal privacy guardian of commercial
database users, this did not happen. The reason is its prohibitively high cost, as
pointed out by Sion and Carbunar [12]. Their analysis shows that a carefully de-
signed PIR scheme with sophisticated cryptographic techniques costs even more
time delay than the most trivial solution of transferring the entire database. The
culprit for this unexpected effect is the expensive computation cost, which dom-
inates the overall time delay. In the standard PIR model, the lower computation
bound is obviously O(n) where n is the database size. A new model based on
trusted hardware was introduced in [7I8], which has a logarithm communication
complexity and constant online computational complexity. Nonetheless, those
schemes are not practical either, since they have to periodically shuffle the en-
tire database. Considering the scale of modern databases, a full database shuffle
disrupts the database service.

The objective of this paper is to narrow the gap between the ideality and
the practicability of PIR. We construct a practical PIR scheme using the same
trusted hardware model as in [7I8T4]. With a constant storage cost of the trusted
hardware, our construction requires O(logn) communication cost and O(y/n)
computation cost per query including constant online computation and amor-
tized offline computation.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 64[79] 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Efficient PIR Construction Using Trusted Hardware 65

Related Work. Many PIR constructions were proposed to reduce the commu-
nication complexity, including [AITOT02]. As shown in [I3I7R8IT4], the
communication complexity can be reduced to O(logn) by using a trusted hard-
ware embedded in the database server. In this model, a trusted hardware is
able to perform encryptions/decryptions and has a secret cache of reasonable
size for storing retrieved data items. Further advantage of this type of schemes
is the O(1) online computation cost for each query. However, all of them
require a database re-encryption and re-shuffle whenever the cache is full.
Since the available space in the cache decreases linearly with the number of
queries, a full database shuffle is performed frequently which requires O(n)
operations.

The previous work focusing on computation cost reduction is [3], where Beimel
et al. proposed a new model called PIR with Preprocessing. This model uses
k servers each storing a copy of the database. Before a PIR execution, each
server computes and stores polynomially-many bits regarding the database. This
approach reduces both the communication and computation cost to O(nl/ ke
for any e > 0. However, it requires a storage of a polynomial of n bits, which
is infeasible in practice. A recent scheme [I5] improves the communication
and computation complexity to O(log?n) with a cache storing O(y/n)
records.

We notice that the trusted hardware based PIR model is similar to the model
in ORAM [6]. But we stress that the ”square root” complexity in [6] and our
result are in different context. The square root solution of ORAM requires a
sheltered storage storing y/n words, which is equivalent to using a cache storing
v/n items in the PIR model. Our scheme in this work, however, only uses a
constant size cache.

Roadmap. We define the system model and the security notion of our scheme in
Section 2l A basic construction is presented in Section [B] as a steppingstone to
the full-fledged scheme in Section Fl Performance of our scheme is discussed in
Section [l and Section [6] concludes the paper.

2 System Model and Definition

System Model. Our scheme follows the trusted hardware model used in [8I[7IT4].
The architecture consists of a group of users, a database D modeled as an array of
n data items of equal length denoted by dy, ds, - - - d,,, respectively, and a database
host H where D is stored. A trusted component denoted by T is embedded in
H. To retrieve d;, a user sends to T a query specifying the index i. T then
interacts with H which operates over the encrypted database, and at the end
of the execution, T returns d; to the user. We assume that the communication
channel between users and T is confidential.

T is a tamper-resistant hardware with a cache for storing up to k£ data items,
k < n. No other entity (except T itself) is able to tamper T’s protocol executions
or access its private space including the cache. T is capable of performing certain

66 Y. Yang et al.

cryptographic operations, such as symmetric key encryptions/decryptions and
pseudo-random number generation. In practice T can be implemented by using
a specialized trusted hardware such as IBM PCIXCC [1].

Security Definition. The adversary in our model is the database host H, which
has polynomial-bounded computational power, and attempts to derive informa-
tion from the PIR protocol execution. The adversary is able to not only observe
accesses to its space, including all read/write operations on the database, but
also query the database like a legitimate user.

We use access pattern to describe the information observed by the adversary
within a time period of protocol execution. When T accesses H’s space including
the memory and disks, H observes the data in use and the involved positions.
The access pattern of length m > 1 is defined as a sequence of m elements
(a1, ,), where each «; represents the information observed by H during
an access to H’s space. We use A p to denote the set of all possible access patterns
generated by querying the database D.

The security notion in ORAM [6] is used here to measure the information
leakage from PIR query executions. A secure PIR scheme should ensure that
the adversary does not gain additional information about the queries from the
access pattern, except the a-priori information. This notion is similar to perfect
secrecy defined for ciphers where an adversary obtains no additional information
about the plaintext from the ciphertext. More formally, let @ be the random
variable representing a user query, whose value is the index of the requested
item, denoted by ¢ € [1,n]. Pr(Q = ¢), or simply Pr(q), denotes the probability
that a query is on dg4. Then, the notion of privacy is defined as:

Definition 1. A PIR scheme is secure, iff for every database of n € N items,
given a user query, for every valid access pattern, the conditional probability for
the event that the query is on any indez q is the same as its a-priori probability,
i.e. VD ={dy, - ,d,},¥q € [1,n],YA € Ap,Pr(Q = ¢q|A) = Pr(Q = q). a

3 Basic Construction

3.1 Overview

We briefly recall the idea of the schemes in [RI7IT4] which are the predecessor of
ours. During the system initialization, the database is encrypted and permutated
by a trusted authority. All subsequent retrievals are operated upon the encrypted
database. The database service is provided in sessions. A session starts when T’s
cache is empty and ends when it is full. During a session, T retrieves the requested
item from the database if it is not in the cache; otherwise, a random item is read.
At the end of the session, the entire database is shuffled, and then a new session
commences. The objective of database shuffles is to re-mix the touched records
within the database, so that the database host has no idea whether a record in
the newly shuffled database has ever been read.

We observe that shuffling the entire database is not indispensable, as long
as user queries generate access patterns of identical distribution. Based on this

An Efficient PIR Construction Using Trusted Hardware 67

observation, we in in this work propose a new PIR scheme with partial shuffles,
where only those records that have ever been accessed are shuffled. We also
design a novel twin retrieval method, which forces user queries to generate access
patterns of the same distribution. A conceptual view of the protocol execution
is as follows. A record is labeled black if it has ever been accessed. Otherwise,
it is white. During the system initialization, T generates a secret key sk for a
semantically secure cipher, and a secret random permutation o : [1,n] — [1,n].
Every item d; in D and its index ¢ are encrypted under sk and written into the
o(i)-th position of Dy as a record. In the rest of the paper, we refer to an entry
in the original database D and its location as item and index, and refer to an
entry in the encrypted database and its location as record and position. We use
d; to denote the i-th item in D, and a; to denote the i-th record in the shuffled
database. After Dy is generated, all records in Dy are initially white.

Our PIR service also proceeds in sessions, and the encrypted database in the
s-th session is denoted by Ds. During a session, for each user query T executes
a twin retrieval: if the requested item d; is in the cache, T reads one random
black record and one random white record from Dy; otherwise, T reads the
corresponding record and reads one random record in a different color. After
the cache is full, T then generates a new random secret permutation 7wz for
all black records and updates D into Dsi1 by shuffling and re-encrypting all
black records. Those white records remain intact. After the partial shuffle, H
only knows that a black record has ever been read, but does not know in which
session and how many times it has been accessed.

The key problem in implementing this approach is how T securely decides
whether a record is black or white. While the label bits of the black records are
set, T can not directly access H to check those bits since the access implicates
that those records are sought by T. In the following, we assume that T’s cache
is big enough to accommodate the positions of all black records, so as to facil-
itate better understanding the idea of our new PIR approach. We remove this
assumption in Section @] by introducing an improved construction.

3.2 A Basic PIR Scheme

We use an array B to keep the black positions in an ascending order. If a, is a
black record and B[i] = x, we say that ¢ is the B-Index of a,. B is stored in H’s
space and maintained by H: whenever a record is read, it updates B. We use
Bs to denote B’s state in the beginning of the s-th session. T copies B into its
cache before a session starts. During a session, B is updated, whereas T’s copy
is not changed. Note that for each record read into the cache, T needs to store
the corresponding data item and its index in the cache. We denote the cache
content by C and use C.Ind to denote the set of all stored indices.

A permutation 7s, s > 1, specifies the mapping between the sets of black
positions in Dg and Dy. It is essentially a permutation of B-indexes of all black
records. Let Zjp) = {1,2,---,|B|}. Formally, the permutation 7, : Zg| — Zp|,
is defined as: 75(i) = j if and only if Ds[Bs[j]] and Dy[Bsli]] contain the same
item, which is D[o~(B,[i])]. Note that o is a mapping between all entries in

68 Y. Yang et al.

Dy and D. The relations among these notations are D == Dy = D,. With
Bs, s and o, we are able to locate a record in Dy for a given item index. The
PIR protocol proceeds in sessions shown below.

Session 0. T executes k queries using the retrieval algorithm in [T4]. Specifically,
for a query on the i-th item of D, i € [1,n], if the requested one is not in T’s cache
C, T reads the o(i)-th record from Dy into C. Otherwise, T retrieves a random
record. At the end of the session, T generates a new random secret permutation
m : [1,k] — [1, k]. Tt shuffles the k black records according to m; while leaving the
white records intact. Since all records to be shuffled are in C, T simply re-encrypts
and writes them out sequentially to generate Dy, and clears the cache.

Session s > 1. When session s starts, C is empty. T processes k/2 queries in the
session. For a user query, T executes Algorithm [I] shown below. At the end of
the session, T executes Algorithm 2] to shuffle all black records.

Algorithm 1. Basic Twin Retrieval Algorithm in Session s > 1. Input: a query on
1,1 € [1,n], Bs[l, (s + 1)k/2]. Output: the item d; € D.
1: Through the secure channel, T accepts a query from the user requesting the i-th
item in D.
2: if ¢ ¢ C.Ind then
3 j=o(i).
4: binary-search j in Bs; /*we do not elaborate the binary-search algorithm since it
is a standard one*/
if exists u, s.t. Bs[u] = j then
d; is black; Read Ds[Bs[ms(u)]] as d; and read a random white record;
else
d; is white; read a random black record and read D,[j] as d;;
9: end if
10: else
11: read a random black record and a white record from Dy into C.
12: end if
13: return d; to the user.

We now explain the retrieval algorithm (Algorithm [Il) and the shuffle algo-
rithm (Algorithm [2). In Algorithm [l T searches B to determine the color of
the requested record. For a white record, T directly uses its image under o to
read the data, since it has never been shuffled. For a black records, T computes
its B-index under 7 and then looks up Bjs to locate its position in Dg. Since By
is inside T’s cache, all accesses are not visible to the server. For a query execu-
tion, H only observes one read to a black record and one read to a white record.
After k/2 queries, the cache is full, where half are black and half are white. B
maintained by H now has (2 4 s)k/2 entries.

The partial shuffle is to mix the black records including those newly retrieved
during the session, so that they are randomly relocated in D 1. The basic idea of
the algorithm is the following: T updates the black positions in Dy sequentially.
For each black position, T figures out the location of its preimage under ms1.

An Efficient PIR Construction Using Trusted Hardware 69

Algorithm 2. Basic Partial Shuffle Algorithm executed by T at the end of s-th
session, s > 1. Input: B with (2 + s)k/2 black records, cache C with k/2 black and
k/2 white records; Output: Ds1.

1: scan B. For each item in the cache, calculate its index in B.

2: secretly generate a random permutation 7s+1 : Z|g| — Z|p|-

3: for (1 =14 =1;i < sk/2;i++) do
: Jj= 7r;r11 (i/)Q

while 0™ (B;[j]) € C.Ind and i’ < sk/2 do

i =i +1; j =n_('); /xfind one not from Cx/

end while

count § as the number of white indexes in C which are smaller than j,
9: compute v = 7s(j — §); read Ds[Bs[v]].
10: if i #4' then

11: Re-encrypt Ds[Bs[v]] into Ds41[B]i]];

12: else

13: Insert D,[Bs[v]] to cache. Retrieve the corresponding item from C and re-
encrypt it to Dsy1[BJi]].

14: end if

15: =4 +1;

16: end for

17: write the remaining k records in C to Dsy1 accordingly, securely eliminate ms_1.
18: copy B into the cache as Bsi1. End the session.

If the preimage is in C, T finds the next position whose preimage is not in C
(as shown in Step 5, 6, 7). The computation of the preimage location involves
the composition of 7r;r11 and 7. Since 7r;+11’s range is larger than 7,’s domain, a
translation from an index in Bg11 to By is needed (Step 8). As Bsy1 is actually
a combination of sorted Bs and the white positions (positions of newly retrieved
white records) in sorted C, we are ensured that Bsy1[i] = Bs[i — 0] (Step 8),
where 4 is the number of white indices in C smaller than i. The average cost of
finding § is O(logk) (The cost can be reduced to O(1) by keeping two copies
of B in the cache and using pointers to link them.). Among the variables used
in Algorithm [2 B[i] points to the black position in Dgy; for writing whereas
B;[i'] points to the black position in Dy for reading. None of them decreases.
Therefore, the overall complexity is O(sklog k).

3.3 Security Analysis

Due to the length limit, we only formalize the security of our scheme by pre-
senting the following lemmas, whose proofs are available in Appendix. Lemma /Il
shows that the basic partial shuffle (Algorithm [2) is uniform in the sense that
after the partial shuffle at the end of Session s, the previous black records in
D, and the white records retrieved during the session are randomly re-located
to Dsy1. Thus, all black records appear indistinguishable to H. Then, Lemma [2]
claims that at any time, the access patterns for any two queries of the basic
twin retrieval algorithm (Algorithm [I) have the same distribution. Finally, by

70 Y. Yang et al.

the results of Lemma [I] and Lemma [l we prove in Theorem [l that the basic
PIR scheme is secure, satisfying Definition [I

Lemma 1 (Uniform Shuffle). The basic partial shuffle algorithm performs a
uniform shuffle on all black records. Namely, Vs > 0, V3,7 € By,

Pr(Ds[g] ~ Doli] | Ao, Ro, -+, As—1, Rs—1) = 1/|Bs],

where A; and Ry, 1 € [0,s — 1] are the access pattern and the reshuffle pattern
for the l-th session, respectively. Dg|g] ~ Dqli] means D[] and Dyli] have the
same plaintext.

Lemma 2 (Uniform Access). Let Q) be the random variable for the requested
item’s index in D. Let (X,Y) be the two-dimensional random variable for the
positions of the black record and the white record accessed in the twin retrieval
algorithm corresponding to Q. ¥q1,q2 € [1,n], suppose A is the access pattern
when Q = q1 or Q = qo is executed, then Pr(X = x,Y =9) | 4,Q = q1) =
PI‘((X =uz,Y = y) | AQ = CI2)-

Theorem 1 (Security of PIR). Let Ax be the access pattern of K database
accesses. For query Q,Vq € [1,n], VK € N, VAk, Pr(Q = q | Ax) =Pr(Q = q).

4 A Construction without Storage Assumption

In this section, we propose an improved scheme without assuming T’s capability
in storing B. As we mentioned earlier, the exposure of accesses to B leads to
security breaches, since it indicates that the accessed ones are entries pertaining
to the query in execution. Informally, the access to B requires a PIR-like solution.
A trivial solution is to treat B as a database and to run a PIR query on it.
Surely, the cost of this approach seriously counteracts our effort to improve the
computational efficiency. We design a much more efficient solution due to the
fact that T has the prior knowledge of those accesses.

4.1 Auxiliary Data Structures

Management of Black Positions. Recall that Dy is a result of a partial
shuffle under the permutation 7, : Zg| — Zp|. We use |B| pairs of tuples (z, y)
to represent this mapping, where = € Z,, is a position in Dy and y € Z,, is the
corresponding position under 7, in D;. T selects a deterministic symmetric key
encryption scheme e(-) and a secret key w. Let f,(z) = H(eu(z)), where H is
a hash function. These |B| half-encrypted pairs are stored in an sorted array
L = [(ful@1),y1), (fulz2),y2) -+, (fulz|B)),yB])], where y1 < --- <y p. Note
that the sequence of y-values in L is exactly array B, which explains why we
leave y-values in plaintext. However, B is updated by H due to query executions
whereas L is not. We also build a complete binary search tree I' where the tuples
in L are the leaves in the following manner: from left to right, the leaves are

An Efficient PIR Construction Using Trusted Hardware 71

sorted in an ascending order of f,(x) values. All the |B| — 1 inner nodes are
integers randomly assigned by T according to their left and right children.

T makes use of L and I" to decide whether an item is a white or black record,
and to read a specific or random black record.

— To read an item with index x: If f,(o(x)) is smaller than the leftmost leaf
or larger than the rightmost leaf of I, T immediately knows that o(z) is a
white position. Otherwise, it runs a binary search for f, (o(z)) in I". Suppose
that the search ends at a leaf node (f,(2'),y). If f.(z) = fu(2'), y is the
position of the requested item; otherwise, y is taken as a randomly selected
black position.

— Random search: Starting from the root, T tosses a coin at each level to select
either the left child or the right child as the next node to read. In the end,
it returns a leaf.

L and I are (re)constructed at the end of each session. L is initialized when T
executes the partial shuffle under 75 whose algorithm is explained Section
During a shuffle, T sequentially writes to those positions stored in B, which
is exactly y-values in L. Therefore, for each data item d; relocated to the black
position stored at B[r], T sets L[r] = (fu(c (7)), Blr]), where u is a new encryption
key. Once L is established, construction of I is straightforward.

Management of White Positions. We need to manage white records as well.
The |B] black records virtually divide the database into white segments, i.e.
blocks of adjacent white records. We use an array W] in H’s space to sequentially
store these white segments, such that W[i] = (I, m, M) indicating that the i-th
white segment in the database starts from the record a; and contains m white
records. We set W[i|.M = z;;ll Wj].m+1 such that a; is the W[i].M-th white
record in the database. Different from L and I', W is managed by H. T makes
use of W to read white records in the following manner.

— To read the white record with index x: T runs a binary search on W for the
address o(z), such that it stops at W[i], such that Wi].l < o(z) < W[i+1].1.
Then, it reads the o(z)-th records from Dj.

— Random search: T generates € [1,n — |B|]. Then it runs a binary search
on W for the r-th white record in Dy, such that it stops at W[i], such that
Wlil.M <r < Wi+ 1].M. Finally, it returns y = W/[i|.l +r — W[i].M.

For both cases, H only observes two search paths, which H cannot differentiate
the two types of retrievals.

We need to store more information in C as well. Suppose that T retrieves a
record a; into C. A new entry is created as a tuple (Blndex, Color, Ind,Data)
where Ind and Data are the corresponding item’s index and value, respectively;
Color is set to "B’ if a; was black before retrieval; otherwise Color is set to "W’;
BIndex is set to a;’s B-Index with respect to Dy. We use C[i] to denote the i-th
entry of the cache, C.Ind to denote the set of all entries’ Ind values, C.BIndex
to denote the set of all entries’” BIndex values. Note that B is no longer used,
as B is not stored in C.

72 Y. Yang et al.

4.2 The Improved Scheme

We are now ready to present the scheme. It proceeds in a similar way as the
basic scheme in Section The difference is that since Session 1, T executes
Algorithm [B] for a query execution and Algorithm @ for the partial shuffle. Algo-
rithm [3] shows how to process a query during the s-th session, s > 1. Note that
|B| = (s + 1)k/2 when session s starts.

Algorithm 3. Improved Twin Retrieval Algorithm in Session s > 1, executed by T.
Input: a user query on i € [1,n]. Output: the data item d; € D.
1: Through the secure channel, T accepts a query from the user requesting for the
i-th item in D.
2: min = B[1]; max = B[(s+1)k/2]; /*(min, max) is the range of black positions.x/

3: i =o(i);

4: if i € C.Ind then

5. randomly search I" which returns (fu.(x),y). Then j, «— y.
6: randomly search W which returns j..

7

8

. else
if i < min or i/ > maz then

9: randomly search I" which returns (fu(z),y). Then j, < y.
10: else
11: search I" for f,(i') which returns {f.(z,y)). Then j, < y.
12: end if
13: if fu(x) = fu(i') then
14: randomly search W which returns j.
15: else
16: search W for i’, which returns (I, m, M). Then j,, < i’.
17: end if /«Note that f.() is deterministic.x/
18: end if

19: read the j,-th and the j, records from D, and creates two new entries for them
C accordingly; return d; to the user.

Access Pattern of Retrievals. We use As to denote the access pattern produced
by Algorithm [Bl There are three types of accesses to H’s space. The first type
is the database accesses. For simplicity, we use the accessed black and white
positions, denoted by («;,a}), as the access pattern in the i-th query execu-
tion. The second type is the accesses to W during the searches. The output of
a binary search on W determines the involved search path. Furthermore, the
output of a search can be derived by observing the subsequent database access.
Therefore, the second type of accesses does not reveal extra information. We do
not include it in As. The third type is the retrieval of elements in I'. Similar
to the previous reasoning, the access to I' does not divulge extra information
and is not included either. According to Algorithm [totally k/2 queries are
executed in a session. Thus, the access pattern produced during the s-th session
is As = (a1, a0, -+, ag)a, a;/2>. The access pattern in Session 0 is an exception,
since one record is retrieved per query: Ag = (g, -+, ak).

An Efficient PIR Construction Using Trusted Hardware 73

Algorithm [shows how to perform a partial shuffle at the end of the s-th
session. Note B has expanded from (s+1)k/2 elements to (s+2)k/2 elements due
to the k/2 retrievals of white records in this session. The partial shuffle process
requires (s + 2)k/2 database writes and sk/2 database reads. We remark that
the computation cost for constructing I'” is not expensive for the following two
reasons. First, those operations are memory based integer comparisons, which
are much cheaper than database accesses. Second, the sorting process can be
done by H.

Algorithm 4. Improved Partial Shuffle Algorithm executed by T at the end of s-th
session, s > 1. Input: cache C with k/2 black and k/2 newly retrieved white records;
Output: Dsy1, I and L'.
1: scan B and assign the Blndex field for each entry in C. Specifically, for every
1<b< |B|, if Ja € [1, k], s.t. 0(Cla].Ind) = B[b], then set Cla]. BIndex = b.
2: generate a secret random permutation 7s+1 : Z|g| — Z|p|, and a new encryption
key u’.
for (i =1 = 1;i < sk/2;i ++) do
Jj= 7Ts_-&1 (i/)§
while 0! (B[j]) € C.Ind and i’ < sk/2 do
i' =i +1;j=n.({); /xfind one not from Cx/
end while
count ¢ as the number of white indexes in C which are smaller than j,
9: compute v = L[ms(j — 0)].y; Read Ds[v]. Suppose that Ds[v] = Esk(x,ds).
10: if ¢/ =i then

11: Re-encrypt Ds[v] into the Dgi1[BJ]];

120 L'fi) — (fu(o(2)), BED;

13: else

14: insert a 4-tuple (0,’B’, x, d) into C.

15: find [€ [1, k] satisfying C[l]. BIndex = n_ ", (i). Insert Eq(C[l].Ind,C[l].Data)
to Dst1[Bli]].

16: L'[i] < {fu (o(C[l].Ind)), B[i]).

17: end if

18 {=i"+1

19: end for

20: write the remaining k records in the cache to D11 and assign L’ accordingly.
21: construct I based on L’ and discard =g, L, I".

Access Pattern of Shuffles. We use R, to denote the access pattern produced
by Algorithm H at the end of the s-th session. There are three types of accesses.
The first type is the accesses to B. However, since all accesses to B are in a
predetermined order, they do not leak any information (they can be generated
correctly by H without observing the execution). We exclude them from R.
The second type is the read and write accesses to the database. According to
our algorithm, a read access is always followed by a write access. The sequence
of the writes are known to H before the shuffle, since it follows the sequence
of positions in B. Furthermore, the contents of the writes are new ciphertext
under a semantic secure encryption. Therefore, the access pattern of writes does

74 Y. Yang et al.

not expose information to H. Considering the read pattern only, we use «;, the
position of the i-th read access, to represent the access pattern.

The third type of accesses is the read operations on L and the write operations
on L'. Every write to L’ is always preceded by a read access to the database.
Moreover, the sequence of writings to L’ and the contents of L, except those
encryptions, can be determined by H without observing the execution. Therefore,
the write accesses on L’ do not leak information. Every read operation on L
exposes the touched index of L and a black position y. However, the exposed
black position y can also be determined by observing the subsequent database
read. Since L is known to H, knowing the black position y naturally implies the
knowledge of its position in L. Thus, it suffices to represent the access pattern
only using the database accesses, i.e. Rs = (a1, -+, agp2), where a; € [1,n],1 <
i < sk/2.

The shuffle at the end of Session 0 is a special case, where all records to be
shuffled are in T’s cache. T simply writes them out to the corresponding positions
following the permutation 71, in which case, Rg = 0.

4.3 Security Analysis

Security analysis of the improved scheme is based on that of the basic scheme.
By Lemma [Bland Lemmal[dl, we show that the improved partial shuffle algorithm
(Algorithm M) and the improved twin retrieval algorithm (Algorithm [B]) also
perform a uniform shuffle and a uniform access, respectively. This in turn implies
that Theorem [I] also holds for the improved scheme.

Lemma 3. Lemmal[d also holds for the improved partial shuffle algorithm (Al-
gorithm 7).

Proof (sketch): We compare the access patterns of the improved scheme with
those of the basic scheme. The analysis in Section £ I has shown that the accesses
to I' and L do not leak extra information. Both shuffle patterns have the same
distribution, since they are only determined by the permutations in use. Thus
the proof for Lemma [is also valid for Algorithm [El O

Lemma 4. Lemma [also holds for the improved twin retrieval algorithm (Al-
gorithm[3).

Proof (sketch): The only difference between patterns generated by Algorithm [Tl
and Algorithm [B] is that the latter uses the search of I" to generate a random
black record. Nonetheless, under the random oracle mode, the function f,(-)
outputs a random number. (I

5 Scheme Complexity

The communication cost of our scheme remains the same as other hardware-
based PIR schemes [8[7IT4]. Namely, it requires O(logn) communication com-
plexity, as the user inputs a logn-bit long index of the desired data item, and T

An Efficient PIR Construction Using Trusted Hardware 75

returns exactly one item of constant length. The database read /write are counted
as a part of the computation cost. Note that O(logn) is the lower bound of com-
munication complexity for any PIR construction.

When considering the computational complexity, we regard an access to the
host H’s space and a decryption/encryption as one unit of operation. In the s-th
session, a query retrieval using Algorithm [B] requires O(log(sk)) operations due
to the task of a binary search in I'. A partial shuffle at the end of the s-th session
requires O(sklogk) operations. Thus, the overall computation cost in all s-th
sessions is O(s2k log k) for totally (2+s)k/2 query executions. Consequently, the
average cost per query for s sessions is O(slogk), which is independent of the
database size.

When the session number s reaches the order of n, the advantage of our scheme
diminishes. A remedy to this problem is to shuffle the entire database at the end
of the t-th session. The full shuffle resets the system to its initial state (Session
0). All records are colored white again, as the traces of all previous accesses are
removed. Since an early full shuffle might not be able to fully exploit the benefits
of partial shuffles, it is necessary to determine an optimal ¢. Recall that a full
shuffle costs O(n) operations. With a full shuffle for every ¢ sessions, the total
cost for s sessions becomes O((t?k log k + n)s/t) and the average cost per query
is O(tlog k+n/tk) which is minimal when ¢t log k = n/tk. Therefore, the optimal

value for t is , /, ", . The cost per query becomes O(\/"k,;gk).

A comparison of our scheme against other PIR schemes is given in Table [
Note that all previous hardware-based schemes [7ISI3IT4] claim O(1) compu-
tation complexity since they only count the cost of database accesses. In fact,
all of them requires O(log k) operations to determine if an item is in cache. Our
scheme also has O(1) database read/write, though we need an additional cost for
a binary search in I'. For those PIR schemes without using caches, the computa-
tion cost per query is at least O(n). From the table, it is evident that our scheme
substantially outperforms all other PIR schemes in terms of average query cost
by paying a slightly higher price of online query processes.

Table 1. Comparison of Computation Performance

Cost of online query Average overall cost

Schemes

process per query
Our scheme O(logs+logk) O(slog k)
Our scheme with full-shuffles O(logs+logk) O(\/"ICI’Cg)
Scheme in [14] O(1) O(n/k)
Scheme in [7I8] 0(1) O(™los™)
Scheme in [13] 0O(1) O(n)
Other PIR schemes without O(n) O(n)

using caches
Notations: n: the database size; s: the number of sessions; k: the size of the cache,
k<< n.

76

6

Y. Yang et al.

Conclusion

All existing PIR schemes have O(n) computational cost for each query. In this
paper, we broke this barrier using a novel approach for database retrieval and
shuffle. The average cost per query is reduced to O(s) where s is the number
of queries, or O(y/n) in maximum if an optimization is used. We proved the
security of our scheme.

Acknowledgement

This research is partly supported by the Office of Research, Singapore Manage-
ment University.

References

1.

2.

10.

11.

12.

13.

14.

15.

Arnold, T., Doorn, L.V.: The ibm pcixcc: A new cryptographic coprocessor for the
ibm eserver. Journal of Research and Development 48 (May 2004)

Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the o(n'/?*~1)
barrier for information-theoretic private information retrieval. In: Proceedings of
IEEE FOCS 2002, pp. 261-270 (2002)

. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private

information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55-73. Springer, Heidelberg (2000)

. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceed-

ings of the 29th STOC 1997, pp. 304-313 (1997)

. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.

In: Proceedings of IEEE FOCS 1995, pp. 41-51 (1995)

. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.

Journal of the ACM 43(3), 431-473 (1996)

. Iliev, A., Smith, S.: Private information storage with logarithm-space secure hard-

ware. In: Proceedings of International Information Security Workshops, pp. 199—
214 (2004)

. Iliev, A., Smith, S.: Protecting client privacy with trusted computing at the server.

IEEE Security & Privacy 3(2), 20-28 (2005)

. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, compu-

tationally private information retrieval. In: Proceeding of the 38th IEEE FOCS
1997, pp. 364-373 (1997)

Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for
non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 104-121. Springer, Heidelberg (2000)
Ostrovsky, R., Shoup, V.: Private information storage. In: Proceedings of the 29th
STOC 1997, pp. 294-303 (1997)

Sion, R., Carbunar, B.: On the computational practicality of private information
retrieval. In: Proceedings of NDSS 2007 (2007)

Smith, S., Safford, D.: Practical server privacy with secure coprocessors. IBM Sys-
tems Journal 40(3), 683-695 (2001)

Wang, S., Ding, X., Deng, R., Bao, F.: Private information retrieval using trusted
hardware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 49-64. Springer, Heidelberg (2006)

Williams, P., Sion, R.: Usable PIR. In: Proceedings of NDSS 2008 (2008)

An Efficient PIR Construction Using Trusted Hardware 7

Appendix

Proof of Lemma [I] (Sketch): This proof is nearly the same as Lemma 1 in [I4]
with the only difference being what records to be shuffled. An intuitive expla-
nation is that we can treat the black record set pointed by By as a database in
[14]. There exist two critical points of the proof. 1) For any record in the cache,
the probability of a black position in Dy being chosen as the shuffle destination
is exactly ég. In other words, its image position in By is uniformly selected.
This is obvious since its is determined by a random 7s. As it is written from
the cache, the selection of the position is independent of those access patterns.
2) For any record not in the cache, its preimage position in the previous shuffle
was uniformly chosen from black positions in Ds_; pointed by Bs_;. This is
addressed by using induction on s. O

Proof of Lemma [2 (Sketch): Assume that @ is executed at session s. We prove
the theorem by examining the cases when s =0 and s > 1.

I: s =0. The theorem clearly holds as Dy is a random permutation of D. There-
fore, for each instance of @ on D, its image Y on Dg is uniformly distributed.
X is always 0.

II: s > 1. According to the algorithm, for a query @, a black record and a white
record are read. Define I = {i|i € [1,n],i € C'} containing the indices whose
corresponding items are in the cache, and J; = o~ (Bg) \ I containing the
indices of black records, but presently not in the cache, and Jo = [1,n]\ (IU.Jy),
containing the indices whose corresponding items have never been accessed so
far. To prove the theorem, it is sufficient to demonstrate that for any ¢ € [1, n],
Pr(X =2,Y =y) | A, Q = ¢) remains the same in the following cases covering
all possibilities of ¢.

— Case (1) g € Jy. T reads the corresponding black record and a random white
record from D. Due to Lemma/[l the corresponding record could be in any
position in B with the same probability. Therefore Pr(X =z | A, q) = IBlsl'
Y is a random retrieval, which is independent of A. Therefore, Pr((X =
z,Y = y) | A7Q = Q) = (|Blg|7 n_|lBS|)'

— Case (2) ¢ € Jo. T reads a random black record and the corresponding
white record from Dg. The position of the white records is determined by o.

Therefore, Pr(Y = y| A, q) = n7|135|' X is a random retrieval independent
from A. Therefore Pr((X =2,V =y) | A,Q =q) = (Iésl’ nfllle).

— Case (3) ¢ € I. Both X and Y are randomly retrieved. So Pr((X = z,Y =
DIAQ=9= (5 nin)

This completes the proof. ([
Proof of Theorem [I (Sketch): It is equivalent to prove that VK € N, Pr(Ag |

@ = q) = Pr(Ak). Fix a session s, we prove the theorem by using induction on
the size of Ag.

78 Y. Yang et al.

I: When K = 1, our target is to prove that Pr(X = z,Y =y | Q = ¢q) =
Pr(X =x,Y =vy), Vz,y € [n].

Pr(z,y) = >, Pr(z,yli)Pr(i). Consider Pr(z,y | 7). There are two cases:

— The record corresponding to 4 is in Bs. Therefore, Pr(z) = |Bl E due to the
initial permutation; Pr(y) = | B.| due to random access.
— The record corresponding to i is in [n]\Bs. Therefore, Pr(z) = |B > due to

random access; Pr(y) = due to the initial permutation.

n— IB |
Thus, in both case Pr(z,y | i) = (IAI’ n—llAI) for both cases. Obviously, Pr(z, y |

i) = Pr(z,y | j) for all i, j € [1,n]. Consequently, Pr(z,y) =Pr(z,y | ¢ >.;_, Pr()
=Pr(z,y | q),Yq € [1,n].

II: Suppose that when K = k—1, the equation holds. We then prove that it still
holds when K =k, i.e. Pr(Ax | Q = ¢) = Pr(Ag). Without loss of generality, let
A = Ar—1 U (2,y), where (X = z,Y = y) is the k-th database read.

Pr(Ag-1,(z,y) | q) = Pr(Ax)
Pr(Ak—la z,Y, q) — PI‘(Ak_h ($7 y))

Pr(q)
Pr(z,y | Aw— 17 Pr(Ax-1,q)

Pr(q
Pr(z,y | Ak—1,q) =

- Pr(Ak;717 ($7y))
Pr(Ak_17$7y)

Pr(.Ak_l ‘ q)

Pr(x,y | Ak—laQ) = Pr(x,y ‘ Ak—l)

(*. induction assumption)

9)
)

Note that there are three exclusive cases for Q = q.

1. @ = q occurs after the k-th database access;
2. @ = q is the query for the k-th database access;
3. @ = q occurs prior to the k-th database access.

We proceed to prove that the above equation holds for all three different cases.

CASE 1: Obviously, in this scenario, A,_1 and (x,y) are independent of Q = q.
Therefore, Pr(z,y | Ak—1,¢) = Pr(z,y | Ax—1).

CASE 2: Note that

Pr(z,y | A1) =Y Pr(z,y | Ae1,0)Pr(q | Ax-1),
q=1

where @@ = ¢ is the query corresponding (z,y). Due to Lemma 2 Pr(z,y |
Ak—1,9) =Pr(x,y | Ax-1,¢"), Yq,q’ € [1,n]. Therefore,

Pr(z,y | Ar1) = Pr(z,y | Ae-1,9) Y Pr(i | Ap1).

i=1

An Efficient PIR Construction Using Trusted Hardware 79

According to the induction, Pr(i | Ax—1) = Pr(7), we have Pr(z,y | Ax_1) =
(2,9 | Ak-1,9).

CASE 3: Let @’ be the random variable for the k-th query which generates (z, y).
Considering all possible values of @', denoted by ¢’, we have

Pr(a:, y|Ak717 CI) = Z Pr(%y | Ak*hQﬂ q/)PI‘(q/ | Ak*hQ)

q'=1

Note that Pr(z,y | Ax-1,q,q') = Pr(z,y | Ar—1,¢) since (z,y) is determined
by Q" and Ak_; according to our PIR algorithm. Therefore,

Pr(z,ylAx-1,9) = > _ Pr(z,y | Ap1,¢)Pr(q | Ax-1,9)

q'=1

Since Q" = ¢’ is independent of A;_1 and Q = ¢, thus

n

Pr(z,ylAr-1,9) = > Pr(z,y | Ar-1,¢)Pr(q’ | Ax-1)

q’'=1
=Pr(z,y | Ak—1). O

Athos: Efficient Authentication of
Outsourced File Systems*

Michael T. Goodrich!, Charalampos Papamanthou?, Roberto Tamassia?,

and Nikos Triandopoulos®

! Dept. of Computer Science, U. California, Irvine, USA
goodrich@ics.uci.edu
2 Dept. of Computer Science, Brown University, USA
{cpap,rt}@cs.brown.edu
3 Dept. of Computer Science, University of Aarhus, Denmark
nikos@daimi.au.dk

Abstract. We study the problem of authenticated storage, where we
wish to construct protocols that allow to outsource any complex file sys-
tem to an untrusted server and yet ensure the file-system’s integrity. We
introduce Athos, a new, platform-independent and user-transparent ar-
chitecture for authenticated outsourced storage. Using light-weight cryp-
tographic primitives and efficient data-structuring techniques, we design
authentication schemes that allow a client to efficiently verify that the file
system is fully consistent with the exact history of updates and queries
requested by the client. In Athos, file-system operations are verified in
time that is logarithmic in the size of the file system using optimal storage
complexity—constant storage overhead at the client and asymptotically
no extra overhead at the server. We provide a prototype implementation
of Athos validating its performance and its authentication capabilities.

1 Introduction

Current trends in the design of data-storage systems are towards decentralized
and networked architectures where data resides “in the cloud”, outside any ad-
ministrative control, and is being manipulated in storage units of minimal trust
assumptions (e.g., NAS or SAN, storage providers, Internet-based computing).
Operating on remotely managed data inherently entails security risks: when the
storage provider is not trusted by the data source, verifying the integrity of the
stored data and the correctness of the computations performed on this data
is necessary to ensure the trustworthiness of the storage system; and verifying
complex operations over general file systems efficiently is rather challenging.

* Research supported in part by the U.S. National Science Foundation under grants
11S-0713403, 11S-0713046, CNS-0312760 and OCI-0724806, the I3P Institute under
a U.S. DHS award, the Center for Algorithmic Game Theory at the University of
Aarhus under an award from the Carlsberg Foundation, the Center for Geometric
Computing and the Kanellakis Fellowship at Brown University, and IAM Technology,
Inc. The views in this paper do not necessarily reflect the views of the sponsors.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 80{96] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Athos: Efficient Authentication of Outsourced File Systems 81

In this paper, we study the problem of authenticating the integrity and oper-
ational correctness of a file system that is outsourced by a client to an untrusted
server. We assume that the remote server’s host machine and its storage units
can behave maliciously. We wish to design authentication protocols that allow
the client to efficiently verify the integrity of a dynamically evolving file system,
namely to verify that its status is consistent with the exact history of file-system
operations requested by the client, and to correctly detect any malicious data-
update or data-retrieval patterns produced by the server. To conform to the
outsourced data model, we require that the authentication protocols incur con-
stant storage overhead at the client and asymptotically no extra storage costs at
the server—otherwise, the client has no reason to outsource its data, at the first
place—and also that verification is achieved efficiently, in time that is sublinear
or logarithmic in the file system’s size—or else, the client could trivially down-
load the entire signed (and timestamped) file-system data on every operation.

Goals and Assumptions. Using cryptographic hashing is the state-of-the-art
solution for verifying the integrity of simple put-get operations over a collection
of files in the outsourced data model: the client locally keeps the hash of each file
against which file retrievals or updates can be verified in constant time. The use
of Merkle’s tree [I§] can reduce the client’s space from linear to constant: the
client only stores the root hash and both file retrievals and file updates (e.g., using
existing techniques [3], 28]), can be verified in logarithmic time. Unfortunately,
applying this approach in our setting provides only a partial solution: file-system
integrity requires not only data integrity at the file or data-block level, but also
integrity of the directory hierarchy of the file system. Indeed, all file-system
operations are defined with respect to the directory path, and in many cases, the
integrity of a file depends not only on its content, but also on its location in the
file system. For example, the context of an .htaccess file depends on its location—
its contents identify access policies, but its location is critical to identify the
directories it protects. Our goal, therefore, is primarily to efficiently verify the
directory hierarchy of the file system, and through this, any file-system or meta-
data operation that depends on this hierarchy. Of course, applying hashing over
the directory tree (e.g., as in [7]), possibly augmented by the (balanced) hash
trees that correspond to large files lying in the directory tree, can provide a
space-optimal solution. However, this approach incurs linear verification and
update costs, for the directory tree is unlikely to be balanced! Our goal is to
design dynamic authentication schemes that overcome this problem.

Another solution is to have the client authenticate each file-system update it
makes in the outsourced file system (e.g., using a signature or HMAC based on
a private key), which has some major drawbacks, however. First, it allows for
replay attacks, since determining the freshness of signed statements is difficult
with such a scheme. Second, this solution requires the client to sign every possible
path in the directory hierarchy in order to be able to authenticate locations. This
can be especially inefficient, for example when the client performs a directory
operation that moves a large directory to a new location. Another possibility
is to assume that the outsourced file system is partially trustworthy (e.g., [21])

82 M.T. Goodrich et al.

or a part of its architecture uses some tamper-resistant trusted hardware (e.g.,
using trusted computing platforms [27]). This assumption postulates that the
networked file system is itself at least partially trusted, which is not that much
different than simply trusting the hosting server in the first place. As we show
in this paper, such trust is not necessary for the sake of efficiency or reliability.
In this work, we consider the outsourced data authentication problem in the
single-client setting. However, in a multi-client setting, the problem of outsourced
data authentication has drastically different characteristics. If communication
between the clients is not allowed, a malicious server can easily perform an at-
tack against data consistency: the server can effectively hide the most recent
update on the data from a client requesting to read the data, by unrolling its
state to the state the server had just before that update took place. Undetected
without communication, this attack can be used to “fork” the view that this
client has about the outsourced data, harming the consistency of the system.
In this scenario, the best one can hope for is fork-consistency [16], effectively
disallowing anything more than the forking attack, and various schemes securely
achieve this property (e.g., [16l 20, 15, 4]). However, in the single-client set-
ting the forking attack can be detected and prevented (e.g., by the hash-based
solution), therefore, the fork-consistency property is no longer relevant in this
setting. Although less general, the single-client model has its own merits. First,
it naturally captures the security problems for a wide application area, where
a single user outsources a personal file system to a storage provider. Second, in
certain applications the multi-user setting is easily reduced to the single-client
setting; for instance, in a networked file system, the client can simply abstract
the OS kernel or a designated filer machine through which all file-system oper-
ation requests coming from many users are serialized to the untrusted remote
storage devices. Third, in applications that can tolerate reasonable delays in
the response time, and under reasonable assumptions about the availability of
a constant-size shared trusted storage, the multi-client setting is also reduced
to the single-client setting, achieving a stronger property than fork-consistency:
conceptually the shared memory replaces the communication between parties.

Related Work. Previous work makes use of cryptographic hashing or signa-
tures for primarily protecting the integrity of individual files or the corresponding
data blocks that reside at storage units. Most of the systems (e.g., [l 2, [0, [19])
provide file integrity using authentication information at the client that is pro-
portional to the size n of the file system (i.e., the number of files or correspond-
ing data blocks). More efficient constructions involve the use of Merkle trees [18§]
over the data blocks of individual files (e.g., [0, 24] [T4) 21], [15]) or over the
blocks or files of the entire file system (e.g., [8, [3T]). Beyond hashing and sign-
ing, other space-efficient techniques have been proposed for file integrity, such as
an entropy-based integrity method for encrypted (only) files [22] and a scheme
based on the Galois counter mode [I7], where however updates take linear time.
Some constructions do authenticate the directory hierarchy or related meta-data
of the file system, but, by hashing over the directory tree or signing each individ-
ual object, they result in linear update costs (e.g., [13 [7, [10]), or only support

Athos: Efficient Authentication of Outsourced File Systems 83

verification of a limited set of operations (e.g., [I5} [7, 10, [I4]). Other schemes, ad-
ditionally assume the existence of a trusted component at the untrusted server
(e.g., 21, 25, [30], or some external trusted party (e.g., [3I]) to authenticate
file operations. Finally, SUNDR [I5] and [I6], 20, [4] use hashing and signatures
to provide file-system integrity and fork-consistency in the multi-client setting;
solving a harder problem, these schemes have increased performance costs.

Our Contributions. We present the design and a prototype implementation of
an authentication architecture, which we call Athos (AuTHenticated Outsourced
Storage), that supports an authenticated outsourced file system in the client-
server model. We construct protocols for authenticating a rich set of file-system
operations that are requested by the client and performed by the untrusted
server. Our protocols support verification of the file system’s full functionality
by efficiently providing not only integrity of the stored data, but also integrity of
the file-system directory structure. Security in our model corresponds to the nat-
ural notion of consistency in the single-client setting: at all times, the interaction
with the server over any series of file-system operations should give the client the
same view as the one obtained by a trusted server (as if the file system was never
outsourced), and any deviation should be immediately detected. To achieve this,
the client maintains only a hash digest of the file system, against which the valid-
ity of each operation performed by the server can be verified, using small proofs.
These proofs are generated by an authentication service module that uses an
authentication data structure stored in the server’s untrusted memory, and runs
in parallel with the file-system management module, and they consist of partial
file system meta-data and hashes stored in the authentication data structure.
This data structure defines the file-system digest, in a hash-tree fashion.

To achieve our efficiency goals, we use ideas from the domain of data authenti-
cation, employing efficient data structuring techniques for representing an entire
file system. The challenge is to efficiently authenticate the directory hierarchy,
which is typically highly unbalanced. We contribute two concrete authentication
structures: Our first construction is based on a novel mapping of the directory
hierarchy to a set of relations, and the authentication of put-get operations on
this set using a skip list as the underlying authentication data structure. This
approach achieves simplicity and low-cost authentication, and also leverages all
the benefits of the widely researched authenticated dictionaries (e.g., [11]). Our
second construction is of more theoretical interest, providing an optimal authen-
tication scheme based on dynamic trees, a classical data structuring technique
for operating on unbalanced trees in a balanced way. Overall, Athos achieves
optimal storage usage (constant for the client and linear for the server) and
efficient integrity verification (logarithmic or sublinear depending on the opera-
tion) and achieves generality by being agnostic of the specific implementation of
the networked file system and by being platform-independent. Finally, a proto-
type implementation of Athos and an experimental evaluation of its verification
capabilities for real-life file systems confirm our theoretical analysis.

Section 2] overviews our authentication model and Section [3 describes our au-
thentication schemes. Section [presents the experimental evaluation of Athos

84 M.T. Goodrich et al.

and discusses related issues. Section [l presents our concluding remarks. Details
on our construction that is based on dynamic trees and our experimental eval-
uation can be found in the Appendix. This extended abstract omits complete
proofs and other details that will appear in the full version of the paper.

2 Model and Definitions

We study storage authentication in the following model (see also Figure [I]). A
client C owns and (incrementally) outsources a file system F'S to an untrusted
server S. In additional to the file system, S hosts and controls an authentication
service module A that stores authentication information about F'S. The file
system is generated and queried through a series of update and query operations
issued by the client C. At any time, C keeps some state information s that
encodes information about the current state of F'S. If P is the set of operations
supported over the file system, then the communication protocol is as follows:

1. Client C keeps state information s and issues a query or update operation
o € P to the server S.

2. Server S runs a certification algorithm, which performs operation o and
accordingly answers the query or updates 'S to a new version F'S’, and,
by using A, also generates a verification or respectively consistency proof ©
which is returned to C, along with the result p of the operation; p is the
corresponding answer if o is a query operation or else the empty string L.
We write 7 «— certify(o, F'S, F'S’, p).

3. Client C runs a verification algorithm, which takes as input the current state
s, the operation o along with its result p, and the corresponding (consistency
or verification) proof 7 and either accepts or rejects the input. If the input is
accepted the state s is appropriately updated to state s’, where s’ = sifoisa
query operation or else s # s. We write {(yes,), (no, L)} « verify(s, p, 7).

We call the pair of algorithms (certify, verify) an authenticated storage schemell
The security property we wish such a scheme to satisfy expresses the intuitive
requirement that the verification performed at C must be a reliable test for
checking the file system’s integrity. Let operate(-,) be the algorithm that, given
the current file system F'S and an operation o € P, performs o and updates F'.S
to F'S’. We write (F'S’, p) < operate(o, F'S) (p = L for updates and F'S" = F'S
for queries). We say that state s is consistent with F'S; for a series T of operations
on F'S, if s and F'S; have been computed by running algorithms operate, certify
and verify sequentially for all operations in series 7T starting from F'S.

Definition 1 (Security of authenticated storage schemes.). We say that
an authenticated storage scheme (certify,verify) (with security parameter k) is
secure, if for any series of operations T and a state s that is consistent with file
system F'S; for T on an initially empty file system, the following conditions hold:

! Both algorithms take as input also a public key that is known by both C and S.

Athos: Efficient Authentication of Outsourced File Systems 85

Client C Server § file system F'S auth. service A
operation o
FSdigest s @ > o | authentication
answer verification | | T data structure
answer p + proof m ‘—|—‘— for F'S
answer certification

Fig.1. The authenticated data storage model. Keeping only constant-size state s,
client C remotely manages a file system F'S that resides at untrusted server S. Every
query or update operation o requested by C on F'S is certified by S, using an authen-
tication service module A (that stores authentication information related to F'S) to
produce a verification or consistency proof 7; this proof is used by C, along with the
result p of the operation, to verify that the request was handled consistently, and finally
update s.

Correctness. For any o € P, when (FS.,p) <« operate(o, F'S;), it holds that
(yes,s’) « verify(s, p, certify(o, F.S., FS., p)). Le., for any correctly per-
formed operation, certify generates a proof that is always accepted by verify,
which also computes a new, consistent with the new file system FS., state s'.

Consistency. For any series T of operations and new operation o, such that
state s is consistent with file system F'S; for T on an initially empty file
system and (FSL,p) < operate(o, F'S;), then for any polynomial-time ad-
versary, controlling S and having oracle-access to algorithm verify, that on
input the file system F'S;, series T and operation o, produces proof ™ and
result p', whenever (yes, s') — verify(s, p’, 7’), then the probability that either
p' # p or s’ is not consistent with F'S. for operation o on FS. is negligible
(in the security parameter k). Le., assuming a polynomially bounded adver-
sary that observes polynomially many protocol invocations and then produces
a pair of proof ™ and result p’, if p' and 7' for the new operation o are ac-
cepted by verify, then for all but negligible probability the operation has been
performed correctly and the new state is consistent with the new file system.

Starting from an initially empty set and using a secure authenticated storage
scheme and the appropriate series of updates, client C is able to “export” any
file system to server S, such that C has a consistent state with the current file
system. Therefore, the file system is consistent with the history of updates and
all future operations will be verified. With respect to efficiency, we say that an
authenticated storage scheme is time-efficient if the verification time at C is sub-
linear in the file-system size, and space-optimal if C stores state of constant size.
We next exhibit time-efficient, space-opti