

Lecture Notes in Computer Science 5222
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Tzong-Chen Wu Chin-Laung Lei
Vincent Rijmen Der-Tsai Lee (Eds.)

Information Security

11th International Conference, ISC 2008
Taipei, Taiwan, September 15-18, 2008
Proceedings

13

Volume Editors

Tzong-Chen Wu
National Taiwan University of Science and Technology
Department of Information Management
No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan
E-mail: tcwu@cs.ntust.edu.tw

Chin-Laung Lei
National Taiwan University, Department of Electrical Engineering
No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
E-mail: lei@cc.ee.ntu.edu.tw

Vincent Rijmen
Graz University of Technology
Institute for Applied Information Processing and Communications (Austria)
Katholieke Universiteit Leuven, Department of Electrical Engineering (Belgium)
Inffeldgasse 16a, 8010 Graz, Austria
E-mail: Vincent.Rijmen@iaik.tugraz.at

Der-Tsai Lee
Academia Sinica, Institute of Information Science
No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
E-mail: dtlee@iis.sinica.edu.tw

Library of Congress Control Number: 2008933846

CR Subject Classification (1998): E.3, E.4, D.4.6, K.6.5, C.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-85884-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85884-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12517565 06/3180 5 4 3 2 1 0

Preface

The 11th Information Security Conference (ISC 2008) was held in Taipei, Tai-
wan, September 15–18, 2008. ISC is an annual international conference covering
research in theory and applications of information security. It was first initiated as
a workshop (ISW) in Japan in 1997. This was followed by ISW 1999 in Malaysia
and ISW 2000 in Australia. ISW became ISC when it was held in Spain in 2001
(ISC 2001). The latest conferences were held in Brazil (ISC 2002), UK (ISC 2003),
USA (ISC 2004), Singapore (ISC 2005), Greece (ISC 2006), and Chile (ISC 2007).
This year the event was sponsored by the Chinese Cryptology and Information Se-
curity Association (Taiwan), the Taiwan Information Security Center of the Re-
search Center for IT Innovation (Academia Sinica, Taiwan), the National Taiwan
University of Science and Technology (Taiwan), the NTU Center for Information
and Electronics Technologies (Taiwan), Academia Sinica (Taiwan), the National
Science Council (Taiwan), the Ministry of Education (Taiwan), the Taipei Chap-
ter of the IEEE Computer Society (Taiwan), BankPro E-service Technology Co.,
Ltd. (Taiwan), Exsior Data & Information Technology, Inc. (Taiwan), Giga-Byte
Education Foundation (Taiwan), Hewlett-Packard Taiwan, Hivocal Technologies,
Co., Ltd. (Taiwan), Microsoft Taiwan, Paysecure Technology Co., Ltd. (Taiwan),
Symlink (Taiwan), and Yahoo! Taiwan Holdings Limited (Taiwan Branch).

In order to cover the conference’s broad scope, this year’s main Program
Committee consisted of 61 experts from 22 countries. Additionally, the con-
ference also featured a special AES Subcommittee, chaired by Vincent Rijmen
(Graz University of Technology, Austria).

The conference received 134 submissions from 31 countries, 33 (including 4 in
the AES special session) of which were selected by the committee members for
presentation at the conference, based on quality, originality and relevance. Each
paper was anonymously reviewed by at least three committee members. In order to
encourage and promote student participation, the ISC 2008 Program Committee
selected three student-coauthored papers for the Best Student Paper award, one
from each region: Asia, Europe, and the Americas. The papers were, respectively,
“Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family,”
by Somitra Sanadhya and PalashSarkar (Indian Statistical Institute, India), “Col-
lisions for RC4-Hash,” by Sebastiaan Indesteege and Bart Preneel (Katholieke
Universiteit Leuven, Belgium), and “ProxyRe-signatures in the Standard Model,”
by Sherman S.M. Chow (New York University, USA) and Raphael Phan (Lough-
borough University, UK). The program also included invited speeches by Doug
Tygar (UC Berkeley, USA) and Tatsuaki Okamoto (NTT, Japan).

Many people helped to make ISC 2008 successful. We would like to thank all
those who contributed to the technical program and to organizing the conference.
We are very grateful to the ProgramCommittee members and the external referees
for their efforts in reviewing and selecting the papers. We would like to express our

VI Preface

special thanks to all the organizing committee members for making the conference
possible. We also give our thanks to all the authors of the submitted papers and
the invited speakers for their contributions to the conference.

July 2008 Tzong-Chen Wu
Chin-Laung Lei

ISC 2008
The 11th International Security Conference

Taipei, Taiwan, September 15–18, 2008

General Chair

Der-Tsai Lee Director of the Institute of Information Science,
Academia Sinica, Taiwan

Steering Committee

Ed Dawson Queensland University of Technology, Australia
Der-Tsai Lee Academia Sinica, Taiwan
Javier López University of Málaga, Spain
Masahiro Mambo University of Tsukuba, Japan
Eiji Okamoto University of Tsukuba, Japan
René Peralta NIST, USA
Rebecca Wright Rutgers University, USA
Yuliang Zheng University of North Carolina at Charlotte, USA

Program Co-chairs

Tzong-Chen Wu National Taiwan University of Science and
Technology, Taiwan

Chin-Laung Lei National Taiwan University, Taiwan

Finance Chairs

Jason Shih Paysecure Technology Co., Ltd., Taiwan
Tim Chiou Microsoft Corporation
David Fan Exsior Data & Information Technology, Inc.,

Taiwan

Publications Chairs

D.J. Guan National Sun Yat-Sen University, Taiwan
Wen-Guey Tzeng National Chiao Tung University, Taiwan
Chun-I Fan National Sun Yat-Sen University, Taiwan

Local Arrangements Chairs

Hahn-Ming Lee National Taiwan University of Science and
Technology, Taiwan

Ren-Junn Hwang Tamkang University, Taiwan
Ming-Hour Yang Chung Yuan Christian University, Taiwan

VIII Organization

Registration Chairs

Wei-Hua He Soochow University, Taiwan
Shiuh-Jeng Wang National Central Police University, Taiwan
Wen-Shenq Juang National Kaohsiung First University of Science

and Technology, Taiwan

Publicity Chairs

Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Hung-Min Sun National Tsing Hua University, Taiwan
Chien-Lung Hsu Chang Gung University, Taiwan

Web Masters

Bo-Yin Yang Institute of Information Science, Academia
Sinica, Taiwan

Chun-Yang Chen Institute of Information Science, Academia
Sinica, Taiwan

Chen-Mou Cheng National Taiwan University, Taiwan

Program Committee

Mikhail Atallah Purdue University, USA
Feng Bao Institute for Infocomm Research, Singapore
David Basin ETH Zurich, Switzerland
Josh Benaloh Microsoft Research, USA
Alex Biryukov University of Luxembourg, Luxembourg
Johannes Buchmann TU Darmstadt, Germany
David Chadwick University of Kent, UK
Tsuhan Chen Carnegie Mellon University, USA
Tzi-Cker Chiueh State University of New York at Stony Brook,

USA
Debbie Cook Bell Labs, USA
Robert Deng Singapore Management University, Singapore
Xiaotie Deng City University of Hong Kong, China
Claudia Diaz Katholieke Universiteit Leuven, Belgium
Jintai Ding University of Cincinnati, USA
Chun-I. Fan National Sun Yat-Sen University, Taiwan
Pierre-Alain Fouque ENS, France
Juan Garay Bell Labs, USA
Shai Halevi IBM Research, USA
Wei-Hua He Soochow University, Taiwan
Amir Herzberg Bar-Ilan University, Israel

Organization IX

Dennis Hofheinz CWI, Netherlands
Lei Hu State Key Laboratory of Information Security,

China
Ren-Junn Hwang Tamkang University, Taiwan
Marc Joye Thomson R&D, France
Wen-Shenq Juang National Kaohsiung First University of Science

and Technology, Taiwan
Hiroaki Kikuchi Tokai University, Japan
Kwangjo Kim Information and Communication University,

Korea
Seungjoo Kim Sungkyunkwan University, Korea
Marcos Kiwi University of Chile, Chile
Spyros Kokolakis University of the Aegean, Greece
Steve Kremer ENS Cachan, France
Xuejia Lai Shanghai Jiao Tong University, China
Ruby Lee Princeton University, USA
San Ling Nanyang Technological University, Singapore
Subhamoy Maitra Indian Statistical Institute, India
Keith Martin RH University of London, UK
Fabio Massacci University of Trento, Italy
Breno de Medeiros Google, USA
Chris Mitchell RH University of London, UK
Atsuko Miyaji JAIST, Japan
Fabian Monrose Johns Hopkins University, USA
Hikaru Morita Kanagawa University, Japan
David Naccache Gemplus, France
Koji Nakao KDDI, Japan
Kaisa Nyberg Helsinki University of Technology and Nokia,

Finland
Carles Padró Polytechnic University of Catalonia, Spain
Adrian Perrig Carnegie Mellon University, USA
Andreas Pfitzmann Dresden University of Technology , Germany
Raphael Phan Loughborough University, UK
Josef Pieprzyk Macquarie University, Australia
Rei Safavi-Naini University of Calgary, Canada
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati University of Milan, Italy
Angelos Stavrou George Mason University, USA
Dominique Unruh Saarland University, Germany
Ariel Waissbein ITBA and Core Security, Argentina
Felix Wu UC Davis, USA
Huaxiong Wang Nanyang Technological University, Singapore
Bo-Yin Yang Academia Sinica, Taiwan
Kan Yasuda NTT, Japan
Heung Youl Youm Soonchunhyang University/IITA, Korea

X Organization

AES Subcommittee

Joan Daemen STMicroelectronics Belgium, Belgium
Xuejia Lai Shanghai Jiao Tong University, China
Chi Sung Laih National Cheng Kung University, Taiwan
Vincent Rijmen Graz University of Technology, Austria
Matt Robshaw France Telecom, France
Hung-Min Sun National Tsing Hua University, Taiwan
Ralph Wernsdorf Rohde & Schwarz, Germany

External Reviewers

Guido Bertoni Stijn Lievens
Rainer Böhme Chu-Hsing Lin
Elie Bursztein Hubert Comon-Lundh
Kostas Chatzikokolakis Serdar Pehlivanoglu
Jung-Hui Chiu Duong Hieu Phan
Kim-Kwang Raymond

Choo Natalya Rassadko
Sherman S.M. Chow Ermaliza Razali
Ricardo Corin Ayda Saidane
Oriol Farras Stefan Schiffner
Hani Hassen Sandra Steinbrecher
Matt Henricksen Ruggero Susella
Alejandro Hevia Carmela Troncoso
Vladimir Kolesnikov Guilin Wang
Gabriel Kuper Shiuh-Jeng Wang
Cedric Lauradoux Artsiom Yautsiukhin
Jia-Hong Lee Sung-Ming Yen

Sponsoring Institutions

Chinese Cryptology and Information Security Association (CCISA), Taiwan
Taiwan Information Security Center (TWISC), Center for IT Innovation,

Academia Sinica, Taiwan
National Taiwan University of Science and Technology (NTUST), Taiwan
NTU Center for Information and Electronics Technologies (NTU CIET), Taiwan
Academia Sinica, Taiwan
National Science Council (NSC), Taiwan
Ministry of Education, Taiwan
IEEE Computer Society, Taipei Chapter
BankPro E-service Technology Co., Ltd. (Taiwan)
Exsior Data & Information Technology, Inc. (Taiwan)

Organization XI

Giga-Byte Education Foundation (Taiwan)
Hivocal Technologies, Co., Ltd. (Taiwan)
Microsoft Taiwan
Paysecure Technology Co., Ltd. (Taiwan)
Symlink (Taiwan)
Yahoo! Taiwan Holdings Limited (Taiwan Branch)

Table of Contents

Trusted Computing

Property-Based TPM Virtualization . 1
Ahmad-Reza Sadeghi, Christian Stüble, and Marcel Winandy

A Demonstrative Ad Hoc Attestation System . 17
Endre Bangerter, Maksim Djackov, and Ahmad-Reza Sadeghi

Property-Based Attestation without a Trusted Third Party 31
Liqun Chen, Hans Löhr, Mark Manulis, and Ahmad-Reza Sadeghi

The Reduced Address Space (RAS) for Application Memory
Authentication . 47

David Champagne, Reouven Elbaz, and Ruby B. Lee

Database and System Security

An Efficient PIR Construction Using Trusted Hardware 64
Yanjiang Yang, Xuhua Ding, Robert H. Deng, and Feng Bao

Athos: Efficient Authentication of Outsourced File
Systems . 80

Michael T. Goodrich, Charalampos Papamanthou,
Roberto Tamassia, and Nikos Triandopoulos

BotTracer: Execution-Based Bot-Like Malware Detection 97
Lei Liu, Songqing Chen, Guanhua Yan, and Zhao Zhang

Intrusion Detection

Towards Automatically Generating Double-Free Vulnerability
Signatures Using Petri Nets . 114

Ryan Iwahashi, Daniela A.S. de Oliveira, S. Felix Wu,
Jedidiah R. Crandall, Young-Jun Heo, Jin-Tae Oh, and
Jong-Soo Jang

Distinguishing between FE and DDoS Using Randomness Check 131
Hyundo Park, Peng Li, Debin Gao, Heejo Lee, and Robert H. Deng

Network Security

Antisocial Networks: Turning a Social Network into a Botnet 146
Elias Athanasopoulos, A. Makridakis, S. Antonatos, D. Antoniades,
Sotiris Ioannidis, K.G. Anagnostakis, and Evangelos P. Markatos

XIV Table of Contents

Compromising Anonymity Using Packet Spinning . 161
Vasilis Pappas, Elias Athanasopoulos, Sotiris Ioannidis, and
Evangelos P. Markatos

Behavior-Based Network Access Control: A Proof-of-Concept 175
Vanessa Frias-Martinez, Salvatore J. Stolfo, and
Angelos D. Keromytis

Path-Based Access Control for Enterprise Networks 191
Matthew Burnside and Angelos D. Keromytis

Cryptanalysis

Cryptanalysis of Rabbit . 204
Yi Lu, Huaxiong Wang, and San Ling

Algebraic Attack on HFE Revisited . 215
Jintai Ding, Dieter Schmidt, and Fabian Werner

Revisiting Wiener’s Attack – New Weak Keys in RSA 228
Subhamoy Maitra and Santanu Sarkar

Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash
Family . 244

Somitra Kumar Sanadhya and Palash Sarkar

Digital Signatures

Proxy Re-signatures in the Standard Model . 260
Sherman S.M. Chow and Raphael C.-W. Phan

An RSA-Based (t, n) Threshold Proxy Signature Scheme without Any
Trusted Combiner . 277

Pei-yih Ting and Xiao-Wei Huang

Certificate-Based Signature Schemes without Pairings or Random
Oracles . 285

Joseph K. Liu, Joonsang Baek, Willy Susilo, and Jianying Zhou

AES Special Session

Improved Impossible Differential Attacks on Large-Block Rijndael 298
Lei Zhang, Wenling Wu, Je Hong Park, Bon Wook Koo, and
Yongjin Yeom

A Five-Round Algebraic Property of the Advanced Encryption
Standard . 316

Jianyong Huang, Jennifer Seberry, and Willy Susilo

Table of Contents XV

Vortex: A New Family of One-Way Hash Functions Based on AES
Rounds and Carry-Less Multiplication . 331

Shay Gueron and Michael E. Kounavis

Comparative Evaluation of Rank Correlation Based DPA on an AES
Prototype Chip . 341

Lejla Batina, Benedikt Gierlichs, and Kerstin Lemke-Rust

Symmetric Cryptography and Hash Functions

Collisions for RC4-Hash . 355
Sebastiaan Indesteege and Bart Preneel

New Applications of Differential Bounds of the SDS Structure 367
Jiali Choy and Khoongming Khoo

Authentication

HAPADEP: Human-Assisted Pure Audio Device Pairing 385
Claudio Soriente, Gene Tsudik, and Ersin Uzun

One-Time Password Access to Any Server without Changing the
Server . 401

Dinei Florêncio and Cormac Herley

Can “Something You Know” Be Saved? . 421
Baris Coskun and Cormac Herley

Security Protocols

New Communication-Efficient Oblivious Transfer Protocols Based on
Pairings . 441

Helger Lipmaa

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 455
Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, and
Toshiaki Tanaka

Strong Accumulators from Collision-Resistant Hashing 471
Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and
Roberto Opazo

A Novel Audio Steganalysis Based on High-Order Statistics of a
Distortion Measure with Hausdorff Distance . 487

Yali Liu, Ken Chiang, Cherita Corbett, Rennie Archibald,
Biswanath Mukherjee, and Dipak Ghosal

Author Index . 503

Property-Based TPM Virtualization

Ahmad-Reza Sadeghi1, Christian Stüble2, and Marcel Winandy1

1 Ruhr-University Bochum, D-44780 Bochum, Germany
{ahmad.sadeghi,marcel.winandy}@trust.rub.de

2 Sirrix AG security technologies, Lise-Meitner-Allee 4
D-44801 Bochum, Germany

stueble@sirrix.com

Abstract. Today, virtualization technologies and hypervisors celebrate
their rediscovery. Especially migration of virtual machines (VMs) be-
tween hardware platforms provides a useful and cost-effective means to
manage complex IT infrastructures. A challenge in this context is the
virtualization of hardware security modules like the Trusted Platform
Module (TPM) since the intended purpose of TPMs is to securely link
software and the underlying hardware. Existing solutions for TPM vir-
tualization, however, have various shortcomings that hinder the deploy-
ment to a wide range of useful scenarios. In this paper, we address these
shortcomings by presenting a flexible and privacy-preserving design of
a virtual TPM that in contrast to existing solutions supports different
approaches for measuring the platform’s state and for key generation,
and uses property-based attestation mechanisms to support software
updates and VM migration. Our solution improves the maintainability
and applicability of hypervisors supporting hardware security modules
like TPM.

1 Introduction

Corporate computing today is characterized by enterprises managing their own
IT infrastructure. In his article, “The end of corporate computing” [1], Nicholas
G. Carr predicts a shift from holding corporate assets to purchasing services from
third parties. Similar to electricity suppliers, there would be enterprises offering
IT functionality to other companies. Virtualization technology would be one of
the key drivers of the changing IT paradigm.

Indeed, virtualization enables the deployment of standardized operating envi-
ronments on various hardware platforms, features the execution of several virtual
machines (VMs) on a single platform, and allows to suspend a VM and resume
it at a later time. An important feature of virtualization is that one can migrate
a VM between hardware platforms, which allows an easy transfer of working
environments, e.g., in case of hardware replacements or switching to another
computer. Moreover, Virtual Machine Monitors (VMM), or hypervisors, are also
known to be an efficient way to increase the security of computer systems [2].
They provide isolation between VMs by mediating access to hardware resources

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 1–16, 2008.
© Springer-Verlag Berlin Heidelberg 2008

2 A.-R. Sadeghi, C. Stüble, and M. Winandy

and by controlling a rather simple interface of resources compared to a full oper-
ating system. Thus, different environments can be protected against harm from
other environments or violations of user privacy. For instance, an employee can
simply separate home and office usage in VMs.

Trusted Computing is considered to be another promising concept to im-
prove trustworthiness and security of computer systems. The Trusted Comput-
ing Group (TCG), an industrial initiative towards the realization of Trusted
Computing, has specified security extensions for commodity computing plat-
forms. The core TCG specification is the Trusted Platform Module (TPM) [3,4],
currently implemented as cost-effective, tamper-evident hardware security mod-
ule embedded in computer mainboards. The TPM provides a unique identity,
cryptographic functions (e.g., key generation, hash function SHA-1, asymmet-
ric encryption and signature), protected storage for small data (e.g., keys), and
monotonic counters (storing values that can never decrease). Moreover, it pro-
vides the facility to securely record and report the platform state (so-called
integrity measurements) to a remote party. The platform state typically consists
of the hardware configuration and the running software stack, which is measured
(using cryptographic hashing) and stored in the TPM. Several operating system
extensions [5,6] already support the TPM as underlying security module.

In this context, the combination of virtualization and trusted computing pro-
vides us with new security guarantees such as assurance about the booted VMM,
but it also faces us with new challenges. On the one hand, VMs should be flex-
ible to support migration. On the other hand, security modules like the TPM
act as the root of trust attached to the hardware, and must be shared by vari-
ous VMs. Hence, different approaches for TPM virtualization have already been
proposed [7,8,9]. Being able to migrate a VM together with its associated virtual
TPM (vTPM) is of special importance to guarantee the availability of protected
data and cryptographic keys after migration. However, the existing solutions
have some shortcomings which strongly limit their deployment: After migrating
a VM and its vTPM to another platform with different integrity measurements
than the source platform, or after performing an authorized update of software,
the VM cannot access cryptographic keys and the data protected by those keys
anymore. This hinders the flexibility of migrating the VM to a platform pro-
viding the same security properties but different integrity measurements as the
source platform. Moreover, differentiated strategies for key generation and us-
age are missing. Some IT environments demand for cryptographic keys generated
and protected by the hardware TPM while some VMs would benefit from the
performance of software keys. In addition, some VMs can be migratable while
others must not be.

Contribution. In this paper we address these problems in the following way:

– We propose a vTPM architecture that supports various functions to measure
the state of the platform, various usage strategies for cryptographic keys, and
both based on a user-defined policy of the hypervisor system (Sect. 5).

– We show how the new measurement functions of our vTPM can be used to
realize property-based attestation and sealing. Our design can protect user

Property-Based TPM Virtualization 3

privacy by filtering properties to be attested in order to not disclose the
particular system configuration (Sect. 6).

– We allow a transparent migration of vTPM instances to platforms with a
different binary implementation and show this is possible without losing the
strong association of security properties (Sect. 7).

Moreover, our design does not require to modify the software of a VM (except for
the driver in the guest OS that interfaces to the vTPM instead of the hardware
TPM). Existing TPM-enabled applications directly profit from the flexibility of
the underlying vTPM. We expect furthermore that our vTPM design can be
realized based on other secure coprocessors [10,11] because of its flexibility and
high-level abstraction of functionality.

Outline. We describe typical use cases that need flexible vTPMs in Sect. 2 and
define corresponding requirements in Sect. 3. Section 4 considers background of
the TPM and discusses the related work. We present our contribution in Sect. 5,
6, and 7, whereas we address in Sect. 8 how we achieve the requirements.

2 Use Case Scenario: Corporate Computing

We consider the use case in a corporate setting as our running example to make
various essential requirements on VMs and vTPMs more clear. Nevertheless,
these requirements also hold for many other applications such as e-government,
grid computing, and data centers.

Suppose an enterprise employee uses a laptop for both corporate and private
tasks which run in isolated VMs (Fig. 1).

Fig. 1. Private and corporate working environments with virtual TPMs

Private working environment: This environment may use the TPM, e.g., to
protect the key of a hard-disk encryption program or the reference values of an
integrity checker. Using existing vTPM approaches, the protected data would
become unavailable if the user updates a software component within the VM.
Unclassified corporate environment is for processing unclassified data of
the company. Users should be able to migrate this VM to their computer at

4 A.-R. Sadeghi, C. Stüble, and M. Winandy

home to continue working. After migration, access to protected data and report-
ing integrity measurements of the VM should still be possible as long as the
underlying platform conforms to the company’s security policy.

Classified corporate environment: This environment is for processing clas-
sified data. Hence, it has stronger security requirements regarding the usage of
encryption keys. To access a corporate VPN, the company’s security policy may
require this environment to be bound to this specific hardware and that the
cryptographic keys are protected by a physical TPM.

3 Requirements on TPM Virtualization

The scenarios described above show the need for a flexible vTPM architecture
that supports all required functionalities. We consider the main requirements
of such an architecture below, where we add new requirements R5-R8 to those
(R1-R4) already identified by [7].

R1 Confidentiality and integrity of vTPM state: All internal data of a vTPM
(keys, measurement values, counters, etc.) have to be protected against unau-
thorized access.

R2 Secure link to chain of trust : There must be an unforgeable linkage between
the hardware TPM and each vTPM as well as between the VM and its
associated vTPM. This includes trust establishment by managing certificate
chains from the hardware TPM to vTPMs.

R3 Distinguishability: Remote parties should be able to distinguish between
a real TPM and a vTPM since a virtual TPM may have different security
properties than a physical one.

R4 Uncloneability and secure migration: The state of a vTPM shall be protected
from cloning, and it can be securely (preserving integrity, confidentiality, au-
thenticity) transferred to another platform if the destination platform con-
forms to the desired security policy.

R5 Freshness: The vTPM state shall not be vulnerable to replay attacks (e.g.,
an adversary shall not be able to reset the monotonic counters of a vTPM).

R6 Data availability: Data sealed by a vTPM should be accessible if the plat-
form provides the desired security properties. This should also hold after
migration or software updates.

R7 Privacy: Users should be able to decide which information about the plat-
form state (configuration of hardware and hypervisor) is revealed to a VM
or to a remote party.

R8 Flexible key types: Different protection levels and implementations of crypto-
graphic keys should be supported (as described in the use case
scenarios).

As we will discuss later, the existing vTPM solutions do not fulfill all require-
ments of the typical use cases as described in Sect. 2.

Property-Based TPM Virtualization 5

4 Background and Related Work

4.1 The Trusted Platform Module

The TPM has two main key (pairs): the Endorsement Key (EK) representing
the TPM’s identity and the Storage Root Key (SRK), used to encrypt other keys
generated by the TPM (which are stored outside the TPM). The TPM supports
trusted boot by allowing to record measurements of the hardware configura-
tion and software stack during the boot process. These measurements (typically,
SHA-1 hash of binaries) are stored in specific TPM registers called Platform
Configuration Registers (PCRs). Adding a hash m to a PCR is called extension
and requires to use the function TPM Extend(i, m), which concatenates m to
the current value of the i-th PCR by computing a cumulative hash.

Based on these PCR values, the TPM provides the sealing functionality,
i.e., binding encrypted data to the recorded configuration, and attestation, i.e.,
reporting the system state to a (remote) party. The latter uses the function
TPM Quote, which presents the recorded PCR values signed by an Attestation
Identity Key (AIK) of the TPM. The AIK plays the role of a pseudonym of the
TPM’s identity EK for privacy reasons, but to be authentic the AIK must be
certified by a trusted third party called Privacy-CA.

4.2 Integrity Measurement

AEGIS [12] performs an integrity check during the boot process of the operating
system and builds a chain of trust based on root reference values protected by
special hardware. Enforcer [13] is a Linux kernel security module operating as
integrity checker for file systems. It uses a TPM to verify the integrity of the
boot process and to protect the secret key of an encrypted file system. IMA [6]
inserts measurement hooks in functions relevant for loading executable code in
Linux in order to extend the measurement chain to the application level.

Enforcer and IMA are examples of TPM-enabled applications which could be
used and executed in a VM that has a vTPM.

4.3 Property-Based Attestation

TCG binary attestation has some important drawbacks: (i) disclosure of plat-
form configuration information could be abused for platform tracking (privacy)
and discriminating against specific system configurations; (ii) lack of flexibil-
ity, i.e., data bound to a particular configuration is rendered inaccessible after
system migration, update or misconfiguration (data availability); (iii) less scala-
bility due to necessary management of every trusted platform configuration. To
tackle these problems, property-based approaches were proposed in the litera-
ture (see below): Instead of attesting hash values of binaries, they attest abstract
properties describing the behavior of a program or system, e.g., that the hyper-
visor is certified according to a certain Common Criteria protection profile. The
advantage is that properties can remain the same even if the binaries change.

6 A.-R. Sadeghi, C. Stüble, and M. Winandy

Haldar et al. [14] present an approach exploiting security properties of pro-
gramming languages, e.g., type-safety. This allows to provide a mechanism for
runtime attestation. However, it requires a trusted language-specific execution
environment and is limited to applications written in that language.

Jiang et al. [15] have shown that it is possible to have certificates stating
that the keyholder of a certain public key has a desired property, e.g., to be an
application running inside an untampered secure coprocessor.

A pragmatic approach for property-based attestation uses property certificates
[16,17,18]. A trusted third party (TTP) issues certificates cert(pkTTP , p,m),
signed by the TTP’s public key pkTTP , and stating that a binary with hash
m has the property p. When a PCR of the TPM is going to be extended with a
measurement value, a translation function looks for a matching certificate. If the
function can find and verify a matching certificate, it extends the PCR with the
public key pkTTP or, as proposed by [19], with a bit string representation of p. If
no certificate is found or the verification fails, the PCR is extended with zero.

While these approaches can be applied to existing TPMs or vTPMs by adding
the translation function to a trusted component outside of the (v)TPM, we
apply the translation functions inside our vTPM (Sect. 5.1)1. This allows us
to control the translation in each vTPM instance individually and reduces the
dependency of external software components (e.g., running in VMs).

4.4 Trusted Channel

A trusted channel is a secure channel with the additional feature that it is bound
to the configuration of the endpoint(s). An attestation (binary or property-
based) of the involved endpoint(s) is embedded in the establishment of the secure
channel [20,21]. Hence, each endpoint can get an assurance whether the coun-
terpart complies with trust requirements before the channel is settled. Asokan
et al. [22] describe a protocol which creates a secret encryption key that is bound
not only to the TPM of the destination platform, but also to the configuration
of the trusted computing base (TCB). Binding a key to the configuration of the
underlying TCB has been used with TPM [13] and secure coprocessors [15,10].

4.5 TPM Virtualization

Berger et al. [7] propose an architecture where all vTPM instances are executed
in one special VM. This VM provides a management service to create vTPM
instances and to multiplex the requests. To protect the vTPM state when it is
stored on persistent memory, the state is encrypted using the sealing function of
the physical TPM. Optionally, the vTPM instances may be realized in a secure
coprocessor card. Compared to a real TPM, the vTPM has a different certificate
for its vEK, e.g., including a statement that it is virtual. Thus, a verifying
party will be able to distinguish between a vTPM and a TPM. The authors

1 We use the simple version of property certificates, e.g., issued by a corporate CA,
certifying “approved by IT department”.

Property-Based TPM Virtualization 7

discuss different strategies for trust establishment, i.e., the way new certificates
are issued for a vTPM: (a) The vEK is signed by the AIK of the physical TPM
and the vTPM requests certificates for its vAIKs at a privacy CA. (b) The TPM
directly signs the vAIK with its AIK. (c) A local CA issues a certificate for the
vEK of the vTPM.2 In order to extend the chain of trust, they link the vTPM
to its underlying TCB by mapping the lower PCRs of the real TPM to the
lower PCRs of a vTPM. This is supposed to enable the vTPM to include the
configuration of the underlying hypervisor platform during attestation.

However, this approach has the restriction that after migrating a VM and its
vTPM to a different hypervisor platform, the VM cannot access data that was
sealed by the vTPM on the source platform (R6 data availability). In our ap-
proach, we show how property-based measurement can be realized in the vTPM
while the interface to the VM remains the same as for binary attestation. This
removes the restriction that migration is only possible between binary identical
platforms. Moreover, our design allows flexible key types (R8) and protects pri-
vacy (R7) by allowing to filter the information to be revealed during attestation.

GVTPM [9] is an architectural framework that supports various TPM models
and different security profiles for each VM under the Xen hypervisor [23]. The
authors discuss two different vTPM models: software-based and hardware-based.
The former generates and uses cryptographic keys entirely in software, whereas
the latter uses the keys of the physical TPM. GVTPM is not limited to TPM
functionality and may be generalized to any security coprocessor. This is similar
to our approach since we also use a high-level abstraction of TPM functionality.
However, they realize flexible key types with different vTPM models, whereas
our vTPM design can support both. Moreover, GVTPM does not address our
requirements of data availability (R6) and privacy (R7).

Anderson et al. [24] realize the implementation of vTPM instances as isolated
domains instead of running all vTPMs in one privileged VM. Except for the
implementation, they provide no new aspects of the vTPM, but refer to [7].
Our architecture can also execute vTPM instances in isolated domains since our
approach does not depend on a specific implementation.

Goldman and Berger [8] have specified additional commands that would be
needed to enhance a physical TPM to directly support VMs. The realization is
similar to [7], except that the vTPM-specific functions are realized within the
hardware TPM. Hence, they do not address data availability (R6) and privacy
(R7). Moreover, there is no such enhanced TPM chip model available at present.

5 Flexible vTPM Architecture

This section describes the general design of our vTPM architecture. For each
VM that needs a vTPM, there is a separate vTPM instance. We assume the
underlying hypervisor to protect the internal state and operations of each vTPM
from any unauthorized access. This can be achieved by using a secure hypervisor
2 For our example scenario, we can choose the certificate strategy (c) since the em-

ployee’s company could serve as a local CA to issue these certificates.

8 A.-R. Sadeghi, C. Stüble, and M. Winandy

as proposed in [25,26], which enforces access control to resources and controls
communication between virtual machines. A VM can only access its associated
vTPM via the vTPMInterface.

Figure 2 shows the logical design of our vTPM. The main building blocks are
the following: PropertyManagement represents the virtual PCRs and manages
different mechanisms to store and read measurement values (Sect. 5.1); Key-
Management is responsible for creating and loading keys (Sect. 5.2); vTPMPolicy
holds the user-defined policy of the vTPM instance (Sect. 5.3); Cryptographic-
Functions provide monotonic counters, random number generation, hashing, etc.;
MigrationController is responsible for migrating the vTPM to another platform.

Fig. 2. Logical architecture of the vTPM

5.1 Property Management and Property Providers

To improve flexible migration and to preserve the availability of sealed data after
migration or software updates, an essential step is to support other measurement
strategies. Applying property-based measurement and attestation [15,19,17,18]
to a vTPM allows much more flexibility in the choice of the hypervisor and for
easier updates of applications — a VM can still use sealed data or run attestation
procedures if the properties of the programs remain the same (see Sect. 4.3).

We define the process of recording measurements into the TPM in a more
general way. Therefore, we redefine the extension function of the TPM:

Extend(i, m): PCRi ← translate(PCRi,m).

In case of the TCG specification, translate is SHA1(PCRi||m).
Our vTPM design is based on a plug-in-like architecture for various vPCR

extension strategies. Each extension strategy is realized by a PropertyProvider

Property-Based TPM Virtualization 9

module implementing another translate() function. To add measurement values
to the PCRs of the vTPM (vPCRs), the guest OS in a VM simply uses the stan-
dard TPM Extend() function, specifying the PCR number i and the hash data
m to be stored. The PropertyManagement calls each property provider to extend
the corresponding vPCR with the measured data value. Each PropertyProvider
applies its translation function on the data and stores the resulting value in the
corresponding vPCR field. The general form of the PCR extension is as follows:

PropertyProviderj .Extend(i, m): vPCRi,j ← translatej(vPCRi,j , m)

Note that each PropertyProvider has its own vector of virtual PCRs. Thus there
is a matrix of vPCR values for each vTPM, as depicted in Fig. 3. The way how
to store the vPCR values is up to the implementation of each property provider.
One could cumulatively hash all input values, as the TCG version of Extend. An
alternative is to simply concatenate the inputs on each invocation of Extend.

Fig. 3. Matrix of vPCRs for a vTPM instance

To give an example of different property providers, consider the virtual ma-
chine V Mk wants to extend PCRi with a hash value m of a binary, e.g., when
the guest OS within V Mk loads and measures a software component. The vTPM
instance vTPMk is associated with V Mk. Suppose there are two PCR extension
strategies, a HashProvider and a CertificateProvider. The HashProvider extends
PCRi with the hash m as provided by the VM. The CertificateProvider, how-
ever, looks for a property certificate (see Sect. 4.3).

In this example, the vTPM actually has two PCRs for PCRi, i.e., vPCRi.hash

and vPCRi.cert. However, when V Mk requests to read the current PCR value,
e.g., by invoking the function TPM PCRRead(i), the VM is only aware of an
abstract PCRi and the returned data must be of fixed-length for compliance
to the TCG specification. This is achieved by the PropertyFilter that defines,
based on vTPMPolicy, which property provider has to be used when reading this
particular vPCR. The responsible provider then returns the requested value.

5.2 Flexible Key Generation and Usage

To achieve a flexible key usage, the KeyManagement hides details of different
strategies to create cryptographic keys when a VM requests a new key pair. The
keys can be generated as software keys in the vTPM and as a result they are

10 A.-R. Sadeghi, C. Stüble, and M. Winandy

protected as part of the vTPM’s state. Alternatively, the vTPM can delegate
the key generation to a physical security module, e.g., a TPM or a smartcard.
In this case, the keys are protected by the hardware.

For example, in our “classified” corporate VM scenario, it is required to have
an encryption key protected by the physical TPM. When the VM requests to
create the key at the vTPM, the KeyManagement delegates the request directly
to the hardware TPM. Note that the VM cannot decide which key type to be
used; instead, this is decided by the vTPM policy.

Although the vTPMPolicy can specify which type of key is to be used, not
all combinations are possible. A vTPM cannot use a hardware AIK to sign
the vPCRs because the vTPM does not possess the private key part of the
AIK. However, the realization of KeyManagement is not limited to software and
physical TPMs. Instead, the underlying flexibility allows the realization based
on different hardware security modules while providing VMs compatibility to
the TCG specification.

5.3 User-Defined vTPM Policy

The user of the hypervisor system can specify a vTPMPolicy per vTPM instance
when the instance is created. The policy specifies what information about the
system state is actually visible to the VM and, hence, to other systems the
VM is allowed to communicate with. This is possible due to the selection of
property providers, which define possible translations of measurement values.
For all vTPM operations, the policy defines what property provider has to be
used. For example, a policy can define to always use the CertificateProvider for
sealing operations requested by the VM in order to enable flexible migration to
a certified platform.

For each vTPM instance, the vTPMPolicy specifies the key strategy to be
used. In this way, we can source out privacy issues the VM would have to handle
otherwise. For instance, the policy decides when to use a particular vAIK and
how often it can be used until the KeyManagement has to generate a new one.

5.4 Initialization of the vTPM

On its instantiation, the vTPM creates a new Endorsement Key (vEK) and a
new Storage Root Key (vSRK). Certificates for the vEK and for vAIKs can be
issued, e.g., by a local CA.

Existing vTPM solutions [7] propose to directly map the lower PCRs of the
physical TPM to the lower vPCRs of the vTPM. These PCRs contain measure-
ments of the BIOS, the bootloader, and the hypervisor. While this provides a
linkage to the underlying platform, it is based on the hash values of binary code
only, which hinders migration as discussed earlier.

In our solution, we map these PCR values by applying our property providers
and build up a vPCR matrix, holding a vector of vPCRs for each property
provider. How the mapping is actually done is up to the implementation of
the property providers. After initialization of the platform by means of trusted

Property-Based TPM Virtualization 11

boot, the physical TPM contains the measurements of the platform configura-
tion. When a new vTPM instance is created by the hypervisor, the Property-
Management of this vTPM requests the physical TPM to read out all PCRs, i.e.,
from PCR0 to PCRn. Then each property provider is invoked with the following
function:

PropertyProviderj .initVirtualPCRs (PCR0,...,PCRn)

For example, PropertyProviderA could map the values of PCR0,...,PCR7 one to
one to vPCR0.A,...,vPCR7.A, whereas PropertyProviderB could accumulate some-
how all physical measurements into one single vPCR. Finally, PropertyProviderC
could translate the PCR values into properties using certificates. This approach
allows to support different mapping strategies simultaneously.

By defining the vTPM policy accordingly, we can control which mapping will
be used later. For instance, to support availability of sealed data after migration,
we can define to use the certificate-based property provider when the VM wants
to seal data to vPCR0,...,vPCR7. If flexible migration should not be allowed,
we would define to use PropertyProviderA, resulting in sealing data to binary
measurements of the underlying platform.

6 Realizing Property-Based Functionality with vTPM

In this section we describe how we can use the feature of property providers to
realize property-based attestation and property-based sealing in the vTPM.

6.1 Property-Based Attestation

The CertificateProvider is one example of a property provider that uses property
certificates issued by a TTP. As mentioned in Sect. 5.1, CertificateProvider ap-
plies its translation function to extend vPCRi.cert with the TTP’s public key
pkTTP . The attestation protocol works as follows: A verifier requests attestation
to (PCRi,...,PCRj) of V Mk; the VM requests its vTPM to quote the corre-
sponding vPCRs with the key identified by vAIKID :

(pcrData , sig) = vTPMk.Quote(vAIKID , nonce, [i,...,j])

where pcrData denotes the quoted vPCR values, sig denotes the vTPM’s signa-
ture on pcrData and nonce. Internally, the PropertyManagement of the vTPM
decides according to the vTPMPolicy which property provider is to be used for
attestation. If the CertificateProvider is chosen, then vTPMk will use its vAIK
as identified by vAIKID to sign the values of vPCR[i,...,j].cert.

The verifier verifies the signature sig and whether pcrData represent the de-
sired properties. Hence, we can use vTPMPolicy to restrict attestation to certain
property providers, depending on the use case. This allows to control which
information about the VM and the user’s system is going to be revealed to a
remote party and as a result fulfills our privacy requirement.

12 A.-R. Sadeghi, C. Stüble, and M. Winandy

6.2 Property-Based Sealing

The sealing procedure of our vTPM works as follows. A virtual machine V Mk

chooses a handle vBindkeyID of a binding key that was previously created in
the virtual TPM instance vTPMk, and then issues the sealing command to seal
data under the set of virtual PCRs (PCRi,...,PCRj). The vTPM realizes the
sealing function as follows:

vTPMk.Seal(vBindkeyID , [i,...,j], data):
provider := vTPMPolicy.askForProvider([i,...,j]);

FOR l := i TO j DO propl := provider.PCRRead(l);

pk := KeyManagement.getPublicKey(vBindkeyID);

ed := encrypt[pk](i||propi||...||j||propj ||data);

return ed.

The vTPM asks its vTPMPolicy which property provider to use, which can
depend on the combination of vPCRs for the sealing operation. It requests the
KeyManagement to load the corresponding binding key, retrieves the vPCR val-
ues of the specified PropertyProvider, and encrypts data, and the vPCR values
with corresponding vPCR number. When the VM wants to unseal the data
again, the vTPM proceeds as follows:

vTPMk.UnSeal(vBindkeyID , ed):
(sk, pk) := KeyManagement.getKeyPair(vBindkeyID);

(i||propi||...||j||propj ||data) := decrypt[sk](ed);

provider := vTPMPolicy.askForProvider([i,...,j]);
FOR l := i TO j DO BEGIN

prop′
l := provider.PCRRead(l);

if (prop′
l �= propl) return ∅;

END

return data.

The vTPM first loads the binding key pair identified by vBindkeyID and de-
crypts the sealed data ed. The vTPMPolicy decides again which PropertyProvider
to use. The current vPCR values are compared to the values stored in the sealed
data. Only if all matching pairs are equal, the plain data is returned to V Mk.

Of course, a property provider like CertificateProvider is needed as one possible
way to realize property-based sealing. This is especially interesting if sealing is
related to software components in the VM. Depending on the realization of the
property provider, unsealing will be possible if the measured applications of the
VM are changed but still provide the same properties, i.e., the corresponding
property certificate is available and valid.

Moreover, property-based sealing enables the availability of sealed data after
migration of a VM and its corresponding vTPM to a platform with a different
binary implementation. This can be achieved, e.g., by using a CertificateProvider
for the vPCR[0,...,7].cert, representing the properties of the underlying hypervisor
platform. This measurement does not change after migration to a target platform
having a certificate stating the same properties.

Property-Based TPM Virtualization 13

7 Migration of vTPM

Our vTPM migration protocol is based on the vTPM migration protocol in [7].
However, in contrast to [7] we do not use a migratable3 TPM key to protect
the session key but rather we propose to embed the migration procedure in a
trusted channel. As described in Sect. 4.4, the trusted channel allows to create
a secret encryption key that is bound not only to the TPM of the destination
platform but also to the configuration of its TCB. In our case the TCB comprises
the vTPM and the hypervisor. The advantage of using such a trusted channel
is that, once it has been established, it can be re-used for migration of several
vTPM instances between the same physical platforms. Moreover, a transfer can
even securely occur after the target machine has rebooted.

Fig. 4. A vTPM migration based on a trusted channel

Figure 4 shows our migration procedure, based on the trusted channel pro-
tocol of [22].The process (of the hypervisor) responsible for migrating the VM
also initiates the migration of the associated vTPM. After creating a new vTPM
instance on the target system, the source vTPM requests to establish a trusted
channel to the destination vTPM. When the trusted channel is successfully es-
tablished, the source vTPM encrypts its state and transfers it to the destination.
The source vTPM destroys itself subsequently, i.e., the vTPM deletes its own
state from memory. On the target, the vTPM decrypts and activates the state.

Additionally, there is another issue if the hypervisor supports to suspend
a vTPM, i.e., if the vTPM state was stored on persistent memory before. If
3 There are various attributes for TPM keys. Migratable keys are allowed to be mi-

grated to another TPM.

14 A.-R. Sadeghi, C. Stüble, and M. Winandy

the suspended vTPM state is sealed to the hardware TPM (see Sect. 4.5), a
migration of the suspended vTPM state (“offline migration”) is not possible.
However, we can resume a suspended vTPM (i.e., unseal the vTPM state) on
the source platform, migrate the vTPM state to the target, and suspend and seal
the vTPM state on the target platform to its hardware TPM, respectively. To
ensure that the vTPM state is unique and cannot be reactivated at the source
platform, the hypervisor has also to delete the key used to seal the vTPM state.

In order to prevent data loss from transmission failures during migration, the
encrypted vTPM state can be stored persistently before transmission so that
the state can be transmitted again to the target platform (if the migration is
still pending and the keys of the trusted channel are still valid). Based on the
ideas of [11], the encrypted state could be deleted on the source after the source
receives an acknowledgment from the target.

8 Requirements Revisited

We briefly address the requirements of Sect. 3. Our architecture supports flexible
key types by means of KeyManagement (Sect. 5.2). We have addressed data avail-
ability with PropertyManagement (Sect. 5.1) and property-based sealing (Sect. 6).
To protect privacy, we make use property-based attestation and PropertyFilter,
which controls the disclosure of properties according to the vTPM policy. The
inclusion in the chain of trust is realized by mapping the PCRs of the phys-
ical TPM to the vTPM (Sect. 5.4). The requirement of distinguishability was
already addressed by prior work (see Sect. 4.5). To protect the confidentiality
and integrity of vTPM state and to maintain uncloneability, we can also resort
to existing approaches, which we briefly discuss below.

Runtime protection of the vTPM state is assumed to be provided by the
hypervisor through isolation. But to enable a VM and its vTPM to suspend and
resume, all data belonging to the state of vTPM instance need to be protected
against copying clones to other platforms or replaying old states on the local
platform. In case the vTPM state has to be stored on persistent memory, prior
work [7] encrypts the vTPM state using a key that is sealed to the state of PCRs
in the hardware TPM, i.e., binding it to the configuration of the TCB.

To prevent a local replay of an old vTPM state, the sealed state has to be
stored on storage providing freshness. For instance, [22] proposes a solution based
on monotonic counters of the TPM. To prevent a replay of migration, the target
platform needs to be able to detect the freshness of the transferred vTPM state.
In [22] and [7], the source encrypts the data to be transferred together with a
unique nonce that was defined by the target platform.

9 Conclusion and Future Work

We have presented a flexible and privacy-preserving design for virtual TPMs
that supports different approaches for measuring the platform’s state and for
key generation. We have demonstrated that our design allows to implement

Property-Based TPM Virtualization 15

property-based sealing and attestation in a vTPM. This enables the availabil-
ity of protected data and cryptographic keys of the vTPM after migrating to
another platform that provides the same security properties but may have a dif-
ferent binary implementation. TPM-enabled applications executed in a VM can
directly profit from this flexibility without the need for modification.

The vTPM design is part of a security architecture that we currently imple-
ment. We are going to decompose the vTPM functionality into several services
that can be used as required. Future work also includes the evaluation of per-
formance and scalability. Moreover, flexible offline migration of vTPM states is
an open issue which we will work on.

References

1. Carr, N.G.: The end of corporate computing. MIT Sloan Management Re-
view 46(3), 67–73 (2005)

2. Karger, P.A., Zurko, M.E., Bonin, D.W., Mason, A.H., Kahn, C.E.: A VMM secu-
rity kernel for the VAX architecture. In: Proceedings of the IEEE Symposium on
Research in Security and Privacy, pp. 2–19. IEEE Computer Society, Los Alamitos
(1990)

3. Trusted Computing Group: TPM Main Specification Version 1.1b (February 2002),
https://www.trustedcomputinggroup.org

4. Trusted Computing Group: TPM Main Specification Version 1.2 rev. 103 (July
2007), https://www.trustedcomputinggroup.org

5. Microsoft Corporation: Bitlocker drive encryption (July 2007),
http://www.microsoft.com/technet/windowsvista/security/bitlockr.mspx

6. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: 13th Usenix Security Sympo-
sium, San Diego, California (August 2004), pp. 223–238 (2004)

7. Berger, S., Caceres, R., Goldman, K.A., Perez, R., Sailer, R., van Doorn, L.: vTPM:
Virtualizing the Trusted Platform Module. In: Proceedings of the 15th USENIX
Security Symposium, USENIX, August 2006, pp. 305–320 (2006)

8. Goldman, K., Berger, S.: TPM Main Part 3 – IBM Commands (April 2005),
http://www.research.ibm.com/secure systems department/projects/vtpm/

mainP3IBMCommandsrev10.pdf

9. Scarlata, V., Rozas, C., Wiseman, M., Grawrock, D., Vishik, C.: TPM virtualiza-
tion: Building a general framework. In: Pohlmann, N., Reimer, H. (eds.) Trusted
Computing, Vieweg, pp. 43–56 (2007)

10. Smith, S.W., Weingart, S.: Building a high-performance, programmable secure
coprocessor. Computer Networks 31(8), 831–860 (1999)

11. Yee, B.S.: Using Secure Coprocessors. PhD thesis, School of Computer Science,
Carnegie Mellon University (May 1994) CMU-CS-94-149

12. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap ar-
chitecture. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy, Oakland, CA, May 1997, pp. 65–71. IEEE Computer Society Press, Los
Alamitos (1997)

13. Macdonald, R., Smith, S., Marchesini, J., Wild, O.: Bear: An open-source virtual
secure coprocessor based on TCPA. Technical Report TR2003-471, Department of
Computer Science, Dartmouth College (2003)

https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
http://www.microsoft.com/technet/windowsvista/security/bitlockr.mspx
http://www.research.ibm.com/secure_systems_department/projects/vtpm/mainP3IBMCommandsrev10.pdf
http://www.research.ibm.com/secure_systems_department/projects/vtpm/mainP3IBMCommandsrev10.pdf

16 A.-R. Sadeghi, C. Stüble, and M. Winandy

14. Haldar, V., Chandra, D., Franz, M.: Semantic remote attestation: A virtual ma-
chine directed approach to trusted computing. In: USENIX Virtual Machine Re-
search and Technology Symposium (2004)

15. Jiang, S., Smith, S., Minami, K.: Securing web servers against insider attack. In:
17th Annual Computer Security Applications Conference (ACSAC) (2001)

16. Chen, L., Landfermann, R., Loehr, H., Rohe, M., Sadeghi, A.R., Stüble, C.: A
protocol for property-based attestation. In: STC 2006: Proceedings of the First
ACM Workshop on Scalable Trusted Computing, pp. 7–16. ACM Press, New York
(2006)

17. Poritz, J., Schunter, M., Van Herreweghen, E., Waidner, M.: Property attestation—
scalable and privacy-friendly security assessment of peer computers. Technical Re-
port RZ 3548, IBM Research (May 2004)

18. Sadeghi, A.R., Stüble, C.: Property-based attestation for computing platforms:
Caring about properties, not mechanisms. In: The 2004 New Security Paradigms
Workshop. ACM Press, New York (2004)

19. Kühn, U., Selhorst, M., Stüble, C.: Realizing property-based attestation and sealing
with commonly available hard- and software. In: STC 2007: Proceedings of the 2nd
ACM Workshop on Scalable Trusted Computing, pp. 50–57. ACM Press, New York
(2007)

20. Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. In: STC 2006: Proceedings of the First ACM Workshop on Scalable
Trusted Computing, pp. 21–24 (2006)

21. Stumpf, F., Tafreschi, O., Röder, P., Eckert, C.: A robust integrity reporting pro-
tocol for remote attestation. In: Proceedings of the Second Workshop on Advances
in Trusted Computing (WATC 2006 Fall), Tokyo (December 2006)

22. Asokan, N., Ekberg, J.E., Sadeghi, A.R., Stüble, C., Wolf, M.: Enabling fairer
digital rights management with trusted computing. In: Garay, J.A., Lenstra, A.K.,
Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 53–70. Springer,
Heidelberg (2007)

23. Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A.,
Barham, P., Neugebauer, R.: Xen and the art of virtualization. In: Proceedings of
the ACM Symposium on Operating Systems Principles, October 2003, pp. 164–177
(2003)

24. Anderson, M.J., Moffie, M., Dalton, C.I.: Towards trustworthy virtualisation en-
vironments: Xen library os security service infrastructure. Technical Report HPL-
2007-69, Hewlett-Packard Laboratories (April 2007)

25. Sadeghi, A.R., Stüble, C., Pohlmann, N.: European multilateral secure computing
base - open trusted computing for you and me. Datenschutz und Datensicherheit
DuD, Verlag Friedrich Vieweg & Sohn, Wiesbaden 28(9), 548–554 (2004)

26. Sailer, R., Valdez, E., Jaeger, T., Perez, R., van Doorn, L., Griffin, J.L., Berger,
S.: sHype: Secure hypervisor approach to trusted virtualized systems. Technical
Report RC23511, IBM Research Division (February 2005)

A Demonstrative Ad Hoc Attestation System

Endre Bangerter1, Maksim Djackov2, and Ahmad-Reza Sadeghi3

1 Bern University of Applied Sciences, Switzerland
endre.bangerter@jdiv.org

2 Bern University of Applied Sciences, Switzerland
dkm1@bfh.ch

3 University of Bochum, Germany
ahmad.sadeghi@trust.rub.de

Abstract. Given the growing number and increasingly criminally motivated
attacks on computing platforms, the ability to assert the integrity of platform be-
comes indispensable. The trusted computing community has come up with var-
ious remote attestation protocols that allow to assert the integrity of a remote
platform over a network.

A related problem is that of ad hoc attestation, where a user walks up to a com-
puting platform and wants to find out whether that platform in front of her is in a
trustworthy state or not. ad hoc attestation is considered to be an open problem,
and some very recent publications have outlined a number of open challenges
in this field. Major challenges are (i) the security against platform in the middle
attacks (ii) viable choice of the device used to perform attestation, and (iii) the
manageability of integrity measurements on that device.

In this paper we describe a concrete implementation of an ad hoc attestation
system that resolves these challenges. Most importantly, our system offers a novel
and very intuitive user experience. In fact, from a user perspective, ad hoc attes-
tation using our solution roughly consists of initiating the process on the target
platform and then holding a security token to the screen of the target platform.
The outcome of the ad hoc attestation (i.e., whether the platform is trustworthy or
not) is then shown on the token’s display. This usage paradigm, which we refer
to as demonstrative ad hoc attestation, is based on a novel security token tech-
nology, which we have used. We believe that our system has the potential to be
evolved into a system for real world usage.

Keywords: Trusted computing, attestation, Kiosk computing, platform integrity,
smart cards.

1 Introduction

Attacks on computing platforms are growing rapidly, becoming more sophisticated,
and are increasingly criminally motivated. Just one example of such recent attacks are
transaction generators, which take over correctly authenticated e-banking sessions and
perform undiscoverable fraudulent transactions [CJM07, Kre]. The Trusted Computing
Group (TCG) aims at providing means towards tackling these problems. One of the
mechanisms proposed by the TCG is remote attestation [Tru05, Tru04, Trua]. A remote

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 17–30, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

18 E. Bangerter, M. Djackov, and A.-R. Sadeghi

attestation protocol allows a verifier to learn the integrity state of a remote computing
platform (the target platform) over a network connection. To this end the target plat-
form is equipped with a Trusted Platform Module (TPM), which measures and reports
its integrity status. The design and implementation of such protocols has received at-
tention within the trusted computing community, and many variants of such protocols
exist [FSE06, GPS06, RS04, GSS+07].

There is a practically relevant application scenario which is not covered by remote
attestation protocols. In that scenario, a user walks up to a computing platform and
wants to find out whether that platform in front of her, which she can identify physically
(e.g., by seeing or touching it) is in a trustworthy state or not. Technically, this scenario
boils down to finding out whether the platform in question contains a TPM and, if
so, getting an integrity measurement from the TPM residing within the platform. To
actually obtain that information the user will have to make use of some sort of portable
computing device (e.g., mobile phone, smart card etc.), which runs a protocol with the
target platform in question. We call protocols that solve the problem underlying this
scenario ad hoc attestation protocol and the portable device the user device. The term
“ad hoc” refers to the fact that the user device and the target platform have, loosely
speaking, never met before and hence do not share any kind of a priori information
(such as cryptographic keys, certificates, identifiers etc.) on each other.

While remote attestation and ad hoc attestation have the same goal - getting the in-
tegrity measurements on some target platform, they differ in how the platform is iden-
tified. It is the “ad hoc” and “physical identification by the user” aspects which are not
covered by remote attestation that make ad hoc attestation a challenging problem.

There is a large number of practically relevant application scenarios for ad hoc at-
testation. One class of examples is the verification of the platform integrity before per-
forming critical transactions, such as e-banking, accessing sensible data, issuing a dig-
ital signature, editing a confidential document etc. Another class is using an unknown
computer, e.g., at a friend’s place, in an Internet cafe, in a company branch office, etc.
Finally, there is a large field of potential future applications where ad hoc attestation
could be used to prevent fraud resulting from attacks against common infrastructure,
such as payment terminals [DM07], automated teller machines, etc.

Designing practically usable and secure ad hoc attestation protocols and systems is
considered to be an open problem. The pertaining challenges are the subject of very
recent publications by McCunem et al [MPSvD07], Garriss et al [SG07], as well as of
some earlier work by Ranganathan [Ran04]. The challenges described in these works
fall into three main categories:

1. Security against platform in the middle attacks. The fundamental challenge is “How
to detect whether the user is really receiving an integrity measurement of the plat-
form she has in front of her?”. In fact, in a platform in the middle attack, a corrupted
platform could relay attestation requests to a trustworthy platform and thus imper-
sonate the latter.

2. Viable choice of user device and usability. For ad hoc attestation to be viable in
practice, the user device being chosen and the ad hoc attestation protocol should
fulfill certain criteria: It should be based on affordable commodity hardware and
feature a small form factor so that it can easily be carried about. It shall offer

A Demonstrative Ad Hoc Attestation System 19

universal connectivity between the user device and the target platform, such that
essentially any platform can be ad hoc attested. The user device itself has to be
trustworthy and resilient against attacks; otherwise ad hoc attestation protocols can
be broken by attacking the user device. Last but not least, the device and the ad hoc
attestation protocol shall be intuitive and easy to use.

3. Evaluation and management of integrity measurements. Assuming that a user de-
vice gets the actual integrity measurements of the platform in question, it still needs
to evaluate the measurements to decide whether the platform is in a trustworthy
state or not. Therefore it must match the integrity measurements against a database
of known trustworthy states. The challenge here is to manage such databases on
user devices, which often have only limited storage and computing power.

Another major open challenge is to devise run-time attestation techniques, which
overcome the limitations of current file integrity based techniques [ESvD05].

Our contributions. In this paper we describe a secure and easy to use ad hoc attestation
system, which - we believe - can be evolved in a system for real world usage. More
precisely, we describe protocols and a concrete implementation of an ad hoc attestation
system that solve the challenges 1− 3 outlined above; we do not tackle the run-time
attestation issue, which remains an open research question.

Our ad hoc attestation system makes essential use of a novel security token technol-
ogy [AXS]. The token’s form factor corresponds essentially to that of a conventional
smart card. Yet, it has some distinct features, which play an important role in our system.
The token features a display, a fingerprint reader for user authentication and trackpad-
like navigation, and an optical sensor for receiving data. The optical sensor is crucial
since it allows to receive data from a PC by simply holding the token to a PC’s screen,
where an animated flickering pattern - encoding the data - is displayed (for illustrations
see Fig. 2 in §3).

These features of the token allow us to resolve the second class of challenges
mentioned above. For instance, thanks to the optical sensors, we achieve an unpar-
alleled connectivity since no cabling between the user device and target platform is
required. Moreover, the token features an isolated execution architecture with a min-
imal firmware, which is amenable to assurance techniques. This is an important pre-
condition for the security of the user device.

Most importantly, our system offers a novel and very intuitive user experience. In fact,
from a user perspective, ad hoc attestation using our solution roughly consists of initiat-
ing the process on the target platform and then holding the token to the screen of the target
platform. The outcome of the attestation protocol (i.e., whether the platform is trustwor-
thy or not) is then shown on the token’s display. From a usability perspective, “holding
the token to the screen of the platform to be verified” is compelling and a highly intuitive
usage metaphor resembling the “demonstrative identification” metaphor proposed for ad
hoc authentication [DBW02]. We refer to this usage metaphor by demonstrative ad hoc
attestation.

To tackle the third of the above challenges, we have chosen a server based ad hoc
attestation architecture for our implementation. Thereby, on a high level, attestation is
performed by a central server and the attestation outcome is then transmitted to the

20 E. Bangerter, M. Djackov, and A.-R. Sadeghi

user device. Thus, all integrity measurements and other attestation related information
is managed by a central server. This model integrates very well with the way IT in-
frastructure is run nowadays. As an example, in the enterprise setting the attestation
server could be operated by the IT department and integrated with existing asset and
systems management solutions. An other possible setting is where such servers are run
by security services companies, which maintain a database of trustworthy integrity mea-
surements, very much like anti-virus companies or managed security solution providers
maintain lists of virus or IDS attack signatures.

Outline. In §2 we describe more precisely what an ad hoc attestation protocol is, as
well as desirable security properties of such protocols. Then, in §3 we describe the
security token technology underlying our results. Our main results follow in §4, where
we describe our implementation of a demonstrative ad hoc attestation system. Finally,
in §5 we review related work and then go over to conclusions and future work in §6.

2 Ad Hoc Attestation – Basic Notions and Security Goals

In this section we describe what an ad hoc attestation protocol is, as well as the desired
security properties of such protocols.

By an integrity measurement (denoted by integrity(P)) we refer to a procedure that
runs on a platform P and outputs information about the integrity of P. We assume that
a measurement is either good (i.e., integrity(P) ∈ G) or bad (i.e., integrity(P) ∈ B).
Informally, integrity(P) ∈ G means that P is trustworthy, and integrity(P) ∈ B that P
is corrupted. The current integrity measurement technique used in Trusted Comput-
ing, is roughly to compute the hash-values of the disk images of various files residing
on P. This, and other tasks, are performed using a Trusted Platform Module (TPM) chip
built into P. A novel area of research is that of run-time attestation, where an integrity
measurement additionally includes run-time information on the processes running on
P [ESvD05].

Consider a user U equipped with a portable user device D (e.g., a PDA, smart phone,
smart card). An ad hoc attestation protocol is a protocol where U physically identifies
the target platform P (i.e., U can see and physically interact with P), and where D, after
interacting with P, and possibly third parties, eventually outputs good if integrity(P) ∈
G or bad when integrity(P) ∈ B. An important point is that since we are looking at
the “ad hoc” scenario, one cannot assume that U or D have a priori information (e.g.,
an identifier of P, pre shared keys etc.) about P.

We call an ad hoc attestation protocol secure, if in the presence of an adversary it
holds that: If integrity(P) ∈ B, then D never1 outputs good at the end of a protocol
execution, and if integrity(P) ∈ G , then D never outputs bad at the end of a protocol
execution.

An often cited security challenge is that of platform in the middle attacks, where a
bad target platform impersonates a good platform.

1 Actually, using the term “never” is too strong. An adversary has always at least a small proba-
bility of breaking a system, e.g., by guessing crypto keys etc. A formally satisfactory approach
would be to replace never with negligible probabilities - as it is common in cryptography and
complexity theory. Since this paper is practically minded we refrain from this formalism.

A Demonstrative Ad Hoc Attestation System 21

3 Overview of Token Technology

Our ad hoc attestation system described in §4 makes essential use of unique features
of the Axsionics security token system [AXS], which consists of security tokens and of
a token server. In the standard usage scenario of the system, the token allows users to
securely authenticate and confirm transactions (e.g., e-banking payments), even in the
setting where the user’s PC is controlled by an attacker (e.g., malware [CJM07, Kre]).
The system can also be used for conventional user authentication.

Fig. 1. Security token and its components

The token (see Fig. 1) features a 128∗ 96 pixel display, a fingerprint reader for local
authentication of the user to the token through biometrics. The fingerprint reader also
serves as a simple user input device for navigation and selection operations on the dis-
play. The token’s size is that of a smart card, except that it is 5mm thick. It runs a custom
firmware, which is verified during the boot process. All computations and storage op-
erations are run within an EAL4+ certified ARM secure core CPU [ARM]. Finally, the
token features optical sensors to read off data from a PC display.

Conceptually, the token server and the token constitute a secure remote procedure
call (RPC) system. That is, the token server can call remote procedures (which are
hardcoded in the firmware) on a token, the token then executes the designated proce-
dure (which often involves user interaction with the token), and then finally returns the
outcome of the computation to the server. The token server in turn makes this RPC
functionality available as a secure service to third party applications.

Let us consider a standard usage example of the token system and assume that the
user has established a session with an e-banking server using her PC. Then, in the course
of the session the need for a secure computation arises, i.e., review and confirmation of
e-banking transactions by the user. The request for performing the secure computation
is sent from the e-banking server to the token server (e.g., using a secure Web Service).
The token server then establishes a secure channel with the token specified in the re-
quest, sends the transaction details to the remote procedure on the token allowing the
user to accept or reject the transaction, and finally returns the accept or reject choice to
the initiating e-banking application.

22 E. Bangerter, M. Djackov, and A.-R. Sadeghi

(a) Freeze-image of animated
flickering pattern.

(b) User holding token over
flickering pattern (on PC display)
to receive a message.

Fig. 2. Security token and optical flickering mechanism

The logical channel between the token server and a token features end to end security
(i.e, confidentiality, authenticity, integrity, and freshness), through a proprietary proto-
col. The security properties of the channel essentially correspond to that of Internet
security protocols, such as TLS and VPN. Physically, messages from the token server
to the token are routed via the calling e-banking server to the user’s PC to the token,
which is “connected” (details see below) to the PC. Thereby the user PC plays the role
of a network component only, which relays messages between the token and the server.

The physical transmission between the token and the user’s PC can be established in
two ways. One is using a USB cable. It features a high throughput in both directions,
but requires the user to have a USB cable at hand and to connect it to the token and PC.
The other way is unique to this token technology: it is based on an optical signal sent
from the PC to the token. More precisely, an RPC request sent from the token server is
encoded as a flickering pattern which is displayed in the PC’s web browser (e.g., using
GIF, Flash, or Java). The flickering (see 2(a)) is a rapidly alternating black and white
pattern shown on a small area of the display. When the flickering appears on the PC’s
display, the user simply holds her card over the pattern (see Fig. 2(b)); the token then
receives the request using its optical sensors. The bandwidth of the optical transmission
channel is approximately 150bits/sec. Response messages from the token back to the
server - if any - are shown on the token’s display and then entered via the PC’s keyboard
by the user. The return messages are typically short cryptographic one-time transaction
confirmation codes. The optical channel features an unparalleled connectivity (it works
with any PC or Internet access device featuring a web browser and a sufficiently large
display, without cabling) and ease of use (holding the token to the screen is an intuitive
usage metaphor).

In our ad hoc attestation system described below, we don’t use the token system to
perform user and transaction authentication. We rather use it to securely send messages
from the token server to a token (i.e., we don’t send return messages to the server). In the
following, we denote crypto processing (e.g., encrypting, MACing etc.) and encoding as
flickering of a message m on the token server by fencode(m,TID), where TID denotes the
identifier of the token to which the message is sent. Conversely, m = fdecode(f lickr)
denotes the operation on the token that consists of decoding the flickering pattern and
then crypto processing it (i.e, decrypting, MAC verification, etc.) to obtain the original
message m.

A Demonstrative Ad Hoc Attestation System 23

4 Demonstrative Ad Hoc Attestation System

In the following we describe the implementation of a secure ad hoc attestation system,
which realizes the usage paradigm of a demonstrative ad hoc attestation system, as
discussed in §1. Our system makes use of the token technology described in the previous
section.

In the following §4.1 we briefly review notions of trusted computing which we rely
on in the description of our ad hoc attestation system in §4.2. Finally, in §4.3, we briefly
discuss a variant of our ad hoc attestation protocol, which is secure under different
assumptions from the ones given in §4.2.

4.1 Trusted Computing Basics and Notation

Let us briefly recall some of the Trusted Computing Group’s (TCG) concepts used in
our implementation. For a self-contained description, we refer to the TCG specifica-
tions and textbooks [Tru04, Tru05, Pea03, Mit05, Gra06, DC07]. At the heart of the
TCG architecture is the Trusted Platform Module (TPM). This is a chip residing inside
a platform, which performs trusted integrity measurement, storage, and integrity re-
porting operations. Each TPM has an Endorsement Key, which is a signing key whose
public key is certified by a trusted third party (e.g., the TPM manufacturer). For privacy
reasons, Endorsement Keys are used to obtain certificates on so called Attestation Iden-
tity Keys (AIK), which are pseudonymous signing keys. To this end the TPM generates
an AIK key-pair (AIKpub,AIKpriv) and a certificate authority then issues a certificate
on AIKpub, vouching for the fact that the AIK key-pair was generated by a valid TPM.
Binding keys are asymmetric encryption key-pairs. Binding is the operation of encrypt-
ing an object with the public key of a binding key. If the binding key is non-migratable,
only the TPM that created the key can use its private key; hence, objects encrypted with
a binding public key are effectively bound to a particular TPM. Finally, PCR registers
are secure storage locations within a TPM, holding integrity measurements.

Next, we briefly describe the TPM functionality used by our protocol. The
commands correspond to those available through the TCG Software Stack (TSS)
[Trub]:

– createKey() generates an asymmetric binding key-pair (Bpub,Bpriv), where the pub-
lic key Bpub is returned to the caller and Bpriv is a non-migratable private key stored
inside the TPM.

– certifyKey(Bpub,AIKpriv,n) creates a certificate, which consists of a signature on
the binding public key Bpub and a nonce n using the signing-key AIKpriv.

– quote(AIKpriv,PCRdigest,n) signs a digest of selected PCR registers
PCRdigest and the nonce n using AIKpriv.

– bind(m,Bpub) encrypts a plaintext m under the binding public key Bpub and returns
the resulting ciphertext. We note that bind() is executed within software (i.e., within
TSS) and does not use TPM capabilities.

– unbind(E,Bpriv) decrypts the cipher-text E , using the binding private key Bpriv.

24 E. Bangerter, M. Djackov, and A.-R. Sadeghi

4.2 System Description

From a usage perspective our system works as follows: The user is equipped with a
security token as described in §3. In a first step the user initiates the ad hoc attestation
protocol by launching a corresponding program on the platform in question. Then, she
holds her security token to the platform’s display, to receive the outcome of the attesta-
tion using the flickering mechanism. Finally, the token displays whether the platform is
trustworthy or not. We refer to this intuitive and easy usage metaphor as demonstrative
ad hoc attestation.

The architecture of our demonstrative ad hoc attestation system consists of a token T ,
a target platform P (which is to be attested), and an attestation server S. On a high level
the system works as follows: In a first step, S receives an attestation request (initiated
by the user) from P, and then performs the actual attestation of P. The attestation of P
by S is performed by running a variant of a remote attestation protocol, which we have
tailored to fit our system. Then, in a second step, S securely reports the outcome of the
attestation to the user’s token T using the flickering mechanism of the token system. On
a high level, “securely” means that our protocol assures that the flickering signal (and
thus the outcome of the attestation) actually appears on the platform P on which the
user has initiated the process.

Technically, we run on S an attestation engine and the token server component (de-
scribed in §3). The advantage of this server based architecture is that the attestation
engine can be managed centrally (see our discussion in §1 for details).

Here is the description of our demonstrative ad hoc attestation system:

Protocol 1 (Demonstrative ad hoc attestation system) . Our demonstrative ad hoc
attestation system consists of a user U, an attestation server S, a target platform P, and
a security token T performing the following computational steps (see also Figure 3 for
the protocol’s message flow):

1. U initiates the ad hoc attestation protocol by launching the pre-installed ad hoc
attestation component on P, and enters her token ID TID, as well as a nonce nT

generated by the token. This results in an attestation request initiate(TID,nT) to S.
2. S randomly chooses a nonce n and sends n to P.
3. P computes: (Bpub,Bpriv) = createKey(), certBpub = certifyKey(Bpub,AIKpriv,n),

quote = quote(AIKpriv, PCRdigest, n), and sends (certAIKpub, Bpub, certBpub,
quote) to S.

4. S verifies the validity of the digital signatures on certAIKpub, certBpub, quote;
based on the integrity measurement contained in quote, S decides whether P is in a
good state (integrity(P) ∈ G) or bad state (integrity(P) ∈ B). Now S performs the
following steps: if integrity(P) ∈ G), then let f lickr = fencode(“good′′||nT ,TID).
If integrity(P) ∈ B or if any of the initial signature verifications fails, let
f lickr = fencode(“bad′′||nT ,TID); finally E = bind(f lickr,Bpub) and sends E to P.

5. P computes f lickr = unbind(E,Bpriv) and shows the flickering pattern f lickr on
its display.

6. Once the flickering appears on P’s display, U holds the token T to the flick-
ering. Then, T runs m = fdecode(f lickr), whereas either m = “bad′′||nT or
m = “good′′||nT . In the former case or when the nonce nT does not match the
nonce chosen in step 1, T outputs “bad” and “good” otherwise.

A Demonstrative Ad Hoc Attestation System 25

User (U) Token (T) Target platform (P) Server (S)

1. initiate(TID, nT)

2. n

3. (certAIKpub, Bpub,

certBpub, quote)

4. E

5. flickr
6. „good“ or „bad“

Fig. 3. Message flow of Protocol 1

We have implemented a working demonstrator of the above system in Java using
the jTSS [JTS] library. Currently we assume, that the attestation component on the
platform P is pre-installed. The attestation engine on the server S checks if the integrity
measurements received from P match pre-defined good values. In a nutshell, the actual
integrity reporting and evaluation done by our system is very basic.

Yet, one can easily enhance our system to use more sophisticated attestation tech-
niques such as those in [RS04], property-based attestation [SS04], or quite likely also
to future run-time attestation techniques [ESvD05]. Such enhancements will not change
the above protocol structurally. In fact, the only changes that would result concern the
measurements being sent in step 3 of the protocol, and how these measurements are
evaluated by the attestation engine on the server in step 4.

Security analysis. In the following we discuss the security of our ad hoc attestation sys-
tem with respect to the security goals set in §2. In security arguments of systems making
use of Trusted Computing technologies, one typically needs to make some assumptions
on the behavior of platforms P that are in a good state (i.e., integrity(P) ∈ G), and so
shall we. In fact, often the overly strong assumption is made that once integrity(P) ∈ G
is established, P is deemed to be completely trustworthy. We refrain from this ap-
proach and prefer to more precisely describe the assumptions we make on P with
integrity(P) ∈ G .

First, we argue that if integrity(P)∈B, then T does not output “good” (as we require
in §2). Our assumption in the following is that a platform that is in good state can keep
the flickering message f lickr it obtains in step 5 of the protocol private (at least for a
period of time of a protocol execution). Now, we observe that, by construction of the
protocol, a bad P won’t get a valid f lickr message (protocol message 5) containing a
“good” message in the first place. So P needs to steal a “good” f lickr message from a
good platform P′ (i.e., integrity(P′) ∈ G). Yet, P cannot replay such messages, because
of the challenge nT and because f lickr messages are integrity protected by the token
system. So a bad P needs to get hold of a fresh “good” f lickr message that S sends
to P′. Now, we observe that the usage of the binding key in the protocol asserts that
only the good platform P′ gets a fresh “good” f lickr message. The only possibility

26 E. Bangerter, M. Djackov, and A.-R. Sadeghi

for the attacker is thus to have a process running on P′ that gets a fresh “good” f lickr
message after it is decrypted on P′ and then forwards it to P which then displays f lickr.
This is however impossible by our assumption that a good platform can keep flickering
signals private.

Whether our assumption is realistic actually depends on the attestation mechanism
being used and on properties of the platform P′. An attestation mechanism that can as-
sert that all software running on P′ is good, will be able to implement the assumption.
On the other hand, more lightweight and thus more practical attestation techniques that
only check a sub-set of platform measurements (e.g., the kernel and some key security
sub-systems), might not be sufficient for main stream operating systems (e.g., Win-
dows, OS X, Linux etc.). The reason is that these operating systems lack secure display
functionalities (e.g., access control mechanisms to display contents). That is, any ma-
licious process running on a main-stream OS can read the display contents of P′, and
thus obtain and forward f lickr to an impersonating platform. A possible remedy to this
problem is to run an operating system on P′, which provides secure display functional-
ity [Ope, SS05, SVNC04].

It remains to argue that if integrity(P)∈G , then T does not output “bad”. In this case
an attacking bad platform P′ (i.e., integrity(P′)∈B) can easily get hold of a fresh “bad”
f lickr message. Now, all the attacker needs to do is to have a process running on P that
will display the “bad” f lickr message. One could argue that, since integrity(P) ∈ G , it
is impossible for the attacker to mount this attack on P. On the other hand, only a very
thorough attestation mechanism can assure the absence of such processes. Anyway, we
consider this security property less important than the one discussed before, since it
“only” concerns a denial of service condition, where a user refrains from using a good
platform because the attacker tricks him to belief that the platform is bad.

A potential weakness of our system results from non-software attacks, where an at-
tacker films the flickering pattern shown on P’s display, and relays it to an impersonat-
ing platform. This is clearly a time-consuming and thus rather expensive attack, which
probably only becomes relevant in “high security” scenarios.

4.3 Sketch of an Alternative Protocol

In this section we sketch a variant of our ad hoc attestation protocol, whose security
relies on different assumptions than those in the previous section. The architecture un-
derlying the protocol remains the same, while we additionally require that the target
platform is equipped with a fingerprint reader. From the usage point of view the proto-
col is very similar to the one above, expect that at a certain point during the protocol, the
user additionally has to scan her fingerprint on the target platform. For space reasons
we only give a sketch of the protocol:

– Steps 1 - 3 are the same as in Protocol 1, except that P in step 3, instead of the
binding keys, generates a pair of signing keys (Upub,Upriv) and sends Upub along
with a certificate certUpub on Upub to S.

– In step 4, in a analogy to Protocol 1, S first checks the various signatures. Then,
if integrity(P) ∈ B, set f lickr = fencode(‘‘bad’’,TID). On the other hand, if
integrity(P) ∈ G , then S chooses a challenge nF and sends it to P.

A Demonstrative Ad Hoc Attestation System 27

– In step 5, P asks the user to scan her fingerprint r using the fingerprint reader built
into P. Then P sends r and σr = sign(r||nR,Upriv) to S.

– In step 6, S checks if the signature σr on r||nR is valid and the freshness of nR.
If so it sets f lickr = fencode(‘‘conditional good’’||r,TID); otherwise, it sets
f lickr = fencode(‘‘bad’’,TID) and sends f lickr to P.

– In step 7, P shows the flickering f lickr on its display.
– In step 8, when the flickering appears on P’s display, the user holds her token T

to the flickering. Then, T runs m = fdecode(f lickr). If m = ‘‘bad’’, T outputs
“bad”. Otherwise, if m = ‘‘conditional good’’ ||r, T checks if r is the finger-
print of the token owner U . To this end, it either retrieves a pre-stored fingerprint rU

or using the token’s fingerprint reader acquires a fingerprint rU , and then matches
rU against r. If the fingerprints match, T outputs “good”, and “bad” otherwise.

Let us briefly discuss the difference between Protocol 1 and the one here with re-
spect to their security properties. The difference is in the assumptions made on a good
platform P (i.e., integrity(P) ∈ G). In the previous protocol we have assumed that such
P can keep f lickr confidential, to show that if integrity(P) ∈B, then T does not output
“good”. The assumption underlying this property is different for the protocol in this
section. On a high-level, the assumption we need is that P can preserve the integrity of
a fingerprint measurement it carries out. In fact, the signature in step 5 asserts that the
fingerprint measurement r actually originates from the same platform P that has been
attested. Now assume that a P with integrity(P) ∈ G in step 3 always reports a fresh
and correct fingerprint measurement. By the verifications in step 6, it thus follows that
the platform that has scanned U’s fingerprint is the one that has been attested by S. This
implies that the protocol is secure against platform in the middle attacks.

Moreover, the protocol here is not susceptible against the “flickering filming” attack
described above.

5 Related Work

There is a body of work on remote attestation [RS04, SS04, GPS06, FSE06, GSS+07].
Yet, as discussed in §1, remote attestation protocols do not solve the ad hoc attesta-
tion problem. Several research works have considered the authentication of platforms
in a setting where the user is equipped with a trustworthy device [ABKL93, SA99,
ADSW99], [CYCY00, DBW02, MPR05]. On a high level, the goal of these works is
the same as that of ad hoc attestation: the user wants to assure that the terminal she
is going to use is trustworthy. However, these works assume that the legitimate termi-
nals being authenticated are tamper-resistant and thus trustworthy. That is, they do not
address ad hoc attestation problem.

Yet, there are several ideas in previous works which appear in ours. Our usage of
an attestation server is inspired by the usage of an authentication servers common in
the works of [ABKL93, ADSW99, CYCY00]. Another idea we have adapted is that of
demonstrative identification [SA99, DBW02, MPR05] paradigm, where a user iden-
tifies a platform by establishing physical contact or proximity with the platform in
question. This paradigm is highly intuitive, and underlies our demonstrative ad hoc
attestation paradigm.

28 E. Bangerter, M. Djackov, and A.-R. Sadeghi

Very recent papers [MPSvD07, SG07] outline the open challenges of (what we call)
ad hoc attestation, and thus have motivated our work. As discussed in detail in §1, we
solve most of the outlined challenges. While [MPSvD07] only outlines open challenges,
Garriss et al [SG07] actually propose and implement a concrete ad hoc attestation pro-
tocol with the user device being a Bluetooth enabled smart phone. This is the only ad
hoc attestation protocol in the literature we are aware of. Like us, they also consider
using a central attestation server. Yet, they do not solve the problem of platform in the
middle attacks. Besides that, our demonstrative ad hoc attestation paradigm is new, and
due to its closed execution architecture of our user device, our solution can offer higher
security guarantees than those using a smart phone.

Some of the works mentioned, e.g., [ADSW99, CYCY00], use techniques to assert
that the platform being authenticated is the one located in front of the user. These tech-
niques are similar to our approach of sending a flickering signal to the attested platform
(see §4.2). On the other hand, our approach of reading a user’s fingerprint (see §4.3) to
locate a platform is, to the best of our knowledge, new.

Distance bounding techniques [DM07] could be used to assert that the machine being
ad hoc attested is within a certain physical perimeter. However, we currently believe
this might only work when the attestation and distance bounding is performed by the
portable user device and will not work with our server based scenario, where the server
is located remotely.

6 Conclusion and Future Work

We have described the implementation of an intuitive and easy to use ad hoc attestation
system. The current state of our implementation is that of working research demonstra-
tor. In future work, we plan to evolve this prototype into a practically usable product
demonstrator. To this end we plan to replace the current Java component which needs
to be installed on the target platform. The envisioned approach is to use a web browser,
where the user enters the URL of the attestation server, which then sends the signed Java
applet to the target-platform. This minimizes the code to be pre-installed on the target
platform and improves ease of use by employing a browser. Second, we plan to inte-
grate our ad hoc attestation system with the Turaya secure OS [TUR], which features
suitable attestation functionality. Combining Turaya with our ad hoc attestation system
results in a system, which is interesting for environments and organizations with high
security needs.

References

[ABKL93] Abadi, M., Burrows, M., Kaufman, C., Lampson, B.: Authentication and delega-
tion with smart-cards. In: TACS 1991: Selected papers of the conference on The-
oretical aspects of computer software, Netherlands, pp. 93–113. Elsevier Science
Publishers, Amsterdam (1993)

[ADSW99] Asokan, N., Debar, H., Steiner, M., Waidner, M.: Authenticating public terminals.
Comput. Networks 31(9), 861–870 (1999)

[ARM] Arm secure core processor family, http://www.arm.com/products/cpus/

families/securcorefamily.html

http://www.arm.com/products/cpus/families/securcorefamily.html
http://www.arm.com/products/cpus/families/securcorefamily.html

A Demonstrative Ad Hoc Attestation System 29

[AXS] Axsionics homepage, http://www.axsionics.com/
[CJM07] Boneh, D., Jackson, C., Mitchell, J.C.: Transaction generators: Rootkits for the

web. In: Proceedings of the Workshop on Hot Topics in Security (HotSec) (2007)
[CYCY00] Cheng, K.S.C.Y., Yunus, J.: Authentication public terminals with smart cards. In:

TENCON 2000, 24-27 September 2000, vol. 1, pp. 527–530 (2000)
[DBW02] Stewart, P., Balfanz, D., Smetters, D.K., Chi, H.: Talking to strangers: Authenti-

cation in ad-hoc wireless networks. In: Symposium on Network and Distributed
Systems Security (NDSS 2002) (2002)

[DC07] Catherman, R., Safford, D., van Doorn, L., Challener, D., Yoder, K.: A Practical
Guide to Trusted Computing. IBM Press (2007)

[DM07] Drimer, S., Murdoch, S.J.: Keep your enemies close: Distance bounding against
smartcard relay attacks. In: USENIX Security Symposium (August 2007)

[ESvD05] Perrig, A., Shi, E., van Doorn, L.: Bind: A time-of-use attestation service for se-
cure distributed systems. In: Proceedings of IEEE Symposium on Security and
Privacy (May 2005)

[FSE06] Röder, P., Stumpf, F., Tafreschi, O., Eckert, C.: A robust integrity reporting proto-
col for remote attestation. In: Proceedings of the Second Workshop on Advances
in Trusted Computing (WATC 2006 Fall) (December 2006)

[GPS06] Goldman, K., Perez, R., Sailer, R.: Linking remote attestation to secure tunnel
endpoints. In: STC 2006: Proceedings of the first ACM workshop on Scalable
trusted computing, pp. 21–24. ACM, New York (2006)

[Gra06] Grawrock, D.: The Intel Safer Computing Initiative. Intel Press (2006)
[GSS+07] Gasmi, Y., Sadeghi, A.-R., Stewin, P., Unger, M., Asokan, N.: Beyond secure

channels. In: STC 2007: Proceedings of the 2007 ACM workshop on Scalable
trusted computing, pp. 30–40. ACM, New York (2007)

[JTS] http://trustedjava.sourceforge.net/

[Kre] Krebs,B.: Banks: Losses from computer intrusions up in (2007)
[Mit05] Mitchell, C. (ed.): Trusted Computing. The Institution of Electrical Engineers

(2005)
[MPR05] McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-is-believing: Using camera phones

for human-verifiable authentication. In: SP 2005: Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pp. 110–124. IEEE Computer Society, Wash-
ington (2005)

[MPSvD07] McCune, J.M., Perrig, A., Seshadri, A., van Doorn, L.: Turtles all the way down:
Research challenges in user-based attestation. In: Proceedings of the Workshop on
Hot Topics in Security (HotSec) (2007)

[Ope] Open Trusted Computing, http://www.opentc.net
[Pea03] Pearson, S. (ed.): Trusted Computing Platforms: TCPA Technology in Context.

Prentice Hall, Englewood Cliffs (2003)
[Ran04] Ranganathan, K.: Trustworthy pervasive computing: The hard security problems.

In: PERCOMW 2004: Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops, p. 117. IEEE Computer
Society, Washington (2004)

[RS04] Jaeger, T., van Doorn, L., Sailer, R., Zhang, X.: Design and implementation of a
tcg-based integrity measurement architecture. In: SSYM 2004: Proceedings of the
13th conference on USENIX Security Symposium. USENIX Association, Berke-
ley (2004)

[SA99] Stajano, F., Anderson, R.J.: The resurrecting duckling: Security issues for ad-hoc
wireless networks. In: Proceedings of the 7th International Workshop on Security
Protocols, London, UK, pp. 172–194. Springer, Heidelberg (1999)

http://www.axsionics.com/
http://trustedjava.sourceforge.net/
http://www.opentc.net

30 E. Bangerter, M. Djackov, and A.-R. Sadeghi

[SG07] Berger, S., Sailer, R., van Doorn, L., Zhang, X., Garriss, S., Caceres, R.: Towards
trustworthy kiosk computing. In: Proc. of 8th IEEE Workshop on Mobile Com-
puting Systems and Applications (HotMobile) (February 2007)

[SS04] Sadeghi, A.-R., Stüble, C.: Property-based attestation for computing platforms:
caring about properties, not mechanisms. In: NSPW 2004: Proceedings of the
2004 workshop on New security paradigms, pp. 67–77. ACM, New York (2004)

[SS05] Sadeghi, A.R., Stüble, C.: Towards Multilaterally Secure Computing Platforms -
With Open Source and Trusted Computing. Elesevier 10, 83–95 (2005)

[SVNC04] Shapiro, J.S., Vanderburgh, J., Northup, E., Chizmadia, D.: Design of the eros
trusted window system. In: SSYM 2004: Proceedings of the 13th conference on
USENIX Security Symposium, p. 12. USENIX Association, Berkeley (2004)

[Trua] Trusted Computing Group (TCG). About the TCG,
http://www.trustedcomputinggroup.org/about/

[Trub] Trusted Computing Group (TCG). TSS specifications,
https://www.trustedcomputinggroup.org/groups/software/

[Tru04] Trusted Computing Group. TCG Architecture Overview (April 2004)
[Tru05] Trusted Computing Group (TCG). TPM Main Specification 1.2, Rev. 85 (February

2005), https://www.trustedcomputinggroup.org/groups/tpm/
[TUR] Turaya OS homepage, http://www.emscb.com/content/pages/turaya.htm

http://www.trustedcomputinggroup.org/about/
https://www.trustedcomputinggroup.org/groups/software/
https://www.trustedcomputinggroup.org/groups/tpm/
http://www.emscb.com/content/pages/turaya.htm

Property-Based Attestation

without a Trusted Third Party

Liqun Chen1, Hans Löhr2, Mark Manulis3, and Ahmad-Reza Sadeghi2

1 HP Laboratories, Bristol, UK
liqun.chen@hp.com

2 Horst Görtz Institute for IT Security, Ruhr-University of Bochum, Germany
{hans.loehr,ahmad.sadeghi}@trust.rub.de

3 UCL Crypto Group, Université Catholique de Louvain, Belgium
mark.manulis@uclouvain.be

Abstract. The Trusted Computing Group (TCG) has proposed the bi-
nary attestation mechanism that enables a computing platform with a
dedicated security chip, the Trusted Platform Module (TPM), to report
its state to remote parties. The concept of property-based attestation
(PBA) improves the binary attestation and compensates for some of its
main deficiencies. In particular, PBA enhances user privacy by allow-
ing the trusted platform to prove to a remote entity that it has certain
properties without revealing its own configuration.

The existing PBA solutions, however, require a Trusted Third Party
(TTP) to provide a reliable link of configurations to properties, e.g., by
means of certificates. We present a new privacy-preserving PBA approach
that avoids such a TTP. We define a formal model, propose an efficient
protocol based on the ideas of ring signatures, and prove its security.
The cryptographic technique deployed in our protocol is of independent
interest, as it shows how ring signatures can be used to efficiently prove
the knowledge of an element in a list without disclosing it.

Keywords: Property-based attestation, user privacy, ring signatures,
proof of membership, configuration anonymity.

1 Introduction and Background

A fundamental issue in interaction between computing platforms is “trust”
or “trustworthiness” — whether a remote platform behaves in a reliable and
predictable manner, or will be (or already has been) subject to subversion. Cryp-
tographic mechanisms support the establishment of secure channels and autho-
rized access, but without assurance about the integrity of the communication
endpoints. Commodity computing platforms suffer from inherent vulnerabilities
due to high complexity, and lack of efficient protection against tampering or mal-
ware. Hence, an important subject of current research is to develop mechanisms
for gaining assurance about the trustworthiness of remote peers regarding their

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 31–46, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

32 L. Chen et al.

integrity, platform configuration, and security policies. The concept of Trusted
Computing aims at resolving such issues.

The TCG approach and binary attestation. An industrial approach to-
wards the realization of the Trusted Computing functionality within the com-
puting platforms is the initiative of the Trusted Computing Group (TCG). The
TCG has published many specifications amongst which the most important one
is that of the Trusted Platform Module (TPM) [25]. Currently, TPMs are im-
plemented as small, tamper-evident hardware modules embedded in commodity
platforms, providing (i) a set of cryptographic functionalities, (ii) the protection
of cryptographic keys, (iii) the authentication of platform configuration (attes-
tation), and (iv) cryptographic sealing of sensitive data to particular system
configurations. However, the TCG defines only a limited set of commands, and
the firmware cannot be programmed by end-users to execute arbitrary func-
tions. Millions of platforms (PCs, notebooks, and servers) being sold today are
equipped with TPMs.

One of the main features supported by the TPM is the so-called trusted in-
tegrity measurement: a hash value of the platform state is computed during the
boot process and stored in specific registers of the TPM, the Platform Config-
uration Registers (PCRs),those state is also called the platform’s configuration.
Of potential interest is the offered functionality called binary attestation, which
allows a remote party (verifier) to get an authentic report about the binary con-
figuration of another platform (prover), given by the prover’s TPM signature on
the configuration.

Deficiencies of TCG binary attestation. TCG binary attestation suffers
from several shortcomings: The slightest change in the measured software or
configuration files — whether security-relevant or not — will lead to a changed
binary configuration. In general, it is not clear, how a verifier should derive
the trustworthiness of a platform from such a binary value. System updates and
backups are highly non-trivial; the multitude of different versions of many pieces
of software cause serious manageability problems.

From the privacy point of view, binary attestation bears several risks: (1)
The TPM’s public key needed to verify an attestation could be used to identify
a TPM and trace a platform. To solve this problem, Brickell et al. [3] introduced
the Direct Anonymous Attestation (DAA) protocol. Improvements of DAA and
alternative DAA schemes (e.g., [5,4,6]) are orthogonal to our work and could be
used as a building block for our protocol. (2) Typically the information about
the configuration of a computing platform or application is revealed to a remote
party requesting the state of a platform. This information can be misused to
discriminate against certain configurations (for example, operating systems) and
even vendors, or may be exploited to mount attacks.

Property-based attestation. One general concept to overcome shortcomings
of the TCG’s binary attestation is to transform the binary attestation into the
property-based attestation (PBA), as described by Sadeghi and Stüble [21], and
by Poritz et al. [19]. The basic idea of PBA requires a computing platform to

Property-Based Attestation without a Trusted Third Party 33

attest that it fulfills the desired (security) requirements, so-called ‘properties’,
without revealing a respective software or/and hardware configuration. The for-
mal definition of properties as well as the development of various practical solu-
tions for PBA are still active areas of ongoing research.

One concrete solution for PBA was proposed by Chen et al. in 2006 [11].
Their protocol requires an off-line Trusted Third Party (TTP) to publish a list
of trusted configurations and respective certificates which attest that the config-
urations provide specific properties. A prover can use the signed configurations
and certificates to prove to a verifier that it has appropriate configurations asso-
ciated with the certified properties, without disclosing the specific configurations,
which the platform holds.

Another solution for PBA is proposed by Kühn et al. [14]. In their work, the
authors suggest a modified system boot architecture, such that not binary hash
values of files are stored by the TPM, but instead abstract values representing
properties, e.g., a public key associated with a property certificate. However,
this approach also requires a TTP to issue certificates for properties and the
bootloader must be binary-attested.

The drawback of these solutions is that such a TTP might not be available
or/and desirable in many real applications, for example if two entities/users
want to have a private communication with each other. They have their own
understanding of the relation between various configurations and security prop-
erties. They do not need (and do not want) to ask any kind of TTPs to certify a
correlation between the configurations and properties. However, they still want
to keep their platform configuration information secret from each other.

Our contribution. In this paper, we propose a protocol for PBA that does
not require the involvement of a TTP to certify properties, where a platform
(equipped with a TPM) convinces a remote party that its configuration satisfies
a given property. For this, the two parties first agree on a set of trusted configu-
ration specifications, which they both consider to be trustworthy, i.e., associated
with a well-defined security property or properties. The platform then proves
that its configuration specification is in this set. In our protocol, TPM and the
host software compute the proof jointly.

For some applications, it might be unrealistic to assume that the parties in
the attestation protocol can decide themselves which configurations are trust-
worthy and which are not, and thus they still have to rely on third parties in
practice. Our protocol has the advantage that even in this case no global trusted
party is necessary: both participants can choose independently how to agree on
trustworthy configurations or they can delegate this decision to other parties.

Further, we define a formal security model for PBA, which we also use in our
proofs, and where the main security requirements are evidence authentication
and configuration privacy. While the former guarantees an unforgeable binding
between the platform and its configuration specification, the latter provides the
non-disclosure of the configuration specification. In our PBA protocol, these re-
quirements are achieved through the use of a ring signature (cf. Section 4.3),

34 L. Chen et al.

i.e. configuration privacy results from the anonymity of the signer whereas evi-
dence authentication is based on the unforgeability of the signature.

Moreover, the cryptographic technique employed in our protocol may be of
independent interest: We show how ring signatures can be used for efficiently
proving the knowledge of an element in a list without disclosing it.

Outline. In Section 2, we introduce the system model of property-based attes-
tation. In Section 3, we sketch different solutions on a high level. In Section 4,
we set up notation and explain some building blocks which will be used in our
concrete PBA scheme. In Section 5, we present and discuss a new PBA scheme,
and in Section 6 we define a formal security model and state theorems about the
security of the scheme. In Section 7, we conclude the paper by mentioning some
unsolved problems and future work.

2 System Model for PBA

The following system model for PBA will serve as the basis for the security
model in Section 6.

Involved parties. A PBA protocol involves two participants: a prover P and a
verifier V . The prover is a platform consisting of a host H and a trusted module
TPM M (see Figure 1). To cover multiple executions of the protocol we consider
multiple instances and use indices to distinguish among their participants, i.e.,
Pi, Vi. Each instance includes a single protocol execution with some unique ses-
sion identity (SID) and two participants Pi and Vj are treated as communication
partners (in the same instance) if they share the same SID.

Assumptions. It is assumed that the communication between a host Hi and
its TPM Mi is through a secure channel (private and authentic), and that Mi

and Vi communicate via Hi. We omit the indices i and j of the participants in
an instance when no risk of confusion exists. Moreover, the TPM is trusted by
all parties and possesses a secret (signing) key skM which is unknown to the
host. The corresponding public (verification) key is available to both P and V ;
see also “trust relations” in Section 6.1.

Properties and configurations. Each prover P has a configuration value
denoted csP , which is an authenticated record about its platform’s configuration.
The value csP is known to both the host H and TPM M, and it is computed by
M from correctly measured configuration information, stored securely in special-
purpose registers — the platform configuration registers (PCRs). As a result, H
cannot modify this value without being detected. This is guaranteed by the
properties of secure measurement and reporting based on the trusted computing
technology [25]. It is assumed that before running the PBA protocol, P and V
have already agreed on a set of configuration values denoted CS = {cs1, ..., csn}
that satisfy the same property. So, we say that a configuration value cs satisfies
a given property associated with CS , if and only if cs ∈ CS .

Property-Based Attestation without a Trusted Third Party 35

CS
CS CS

Fig. 1. PBA system model

Definition of PBA. A property-based attestation (PBA) scheme consists of
the following three polynomial-time algorithms:

– Setup: Given the security parameter 1κ, this probabilistic algorithm selects
a set of public parameters that are necessary to run the PBA protocol, and
produces a private/public key pair for each TPM.

– PBA-Sign: On input a configuration value csP , a list of admissible configura-
tions CS , and a nonce Nv, this (distributed) randomized algorithm outputs
a signature σ on csP .

– PBA-Verify: On input a candidate signature σ and CS , this deterministic
algorithm outputs 1 (accept) if σ is a valid signature on a value from CS , or
0 (reject) otherwise.

3 Solutions

In this section, we sketch two high-level solutions for PBA without relying on
trusted parties to certify the link between configurations and properties.

Basically, P has to prove that its configuration value csP belongs to the agreed
set CS = {cs1, . . . , csn}. More precisely, V would accept a proof if and only if:
(i) The proof is created by a valid TPM. If TPM anonymity is required, the
DAA scheme [3] can be used to provide this feature. (ii) The proof is a fresh
response to a specific challenge from V . (iii) The proof ensures that csP = csj

for an index j ∈ {1, 2, . . . , n}, but does not reveal the value of j.
Such a proof implements PBA-Sign, whereas PBA-Verify is the verification of

the proof. In Setup, the keys for the TPM and system parameters are generated.

Solution 1: TPM as single signer. The proof can be achieved by a new TPM
command defined as follows:

1. TPM takes as input a list of configurations CS and a nonce N . The nonce
is assumed to be chosen by the verifier V .

2. TPM checks for each csj ∈ CS if csP = csj , until either a match is found,
or the entire list has been checked.

3. If csP is in the list, the TPM generates a signature on (1, N,CS); otherwise,
the TPM generates a signature on (0, N,CS), which is then forwarded to V .

36 L. Chen et al.

The obvious drawbacks of this approach are: TPM operations depend on the
size n of CS (O(n) in a straightforward implementation, and O(log n) if CS is
a sorted list). As the TPM’s memory is very limited, this would either impose
a severe restriction on the size of CS , or the transfer of the list would have to
be split up, causing further complexity of the TPM-command and slowing down
the communication between host and TPM, due to the overhead.

Solution 2: TPM shares signer role with host. In this solution, the TPM signs
a hidden version — a commitment — of the configuration csP , and the host
completes the proof that the hidden configuration is in the set CS . A similar
approach is used in the DAA protocol [3].

Our PBA protocol proposed in Section 5 is an elegant and efficient example
of this solution. It makes use of ring signatures in that the host computes n
public keys for a ring signature scheme from the configurations in CS and the
commitment to csP (which was signed by the TPM), and determines the secret
key that corresponds to csP . The signer anonymity of the ring signature scheme
ensures that the verifier does not learn which key has been used for signing, thus
csP is not disclosed. Our construction guarantees that the prover succeeds only
if the hidden configuration csP is indeed in CS .

Current TPMs support all operations (random number generation, modular
exponentiation, and signature generation) needed by our protocol. However, the
TCG currently does not specify a command to create and sign a commitment to
a configuration which is stored inside the TPM. To implement such a command,
only firmware changes would be required.

Other protocols for similar solutions could be developed, for instance based
on existing zero-knowledge proofs (e.g., [8,13,7]) or zero-knowledge sets [15].

4 Preliminaries

4.1 TPM Signatures

The existing TCG technology defines two ways for a TPM to create own digital
signature σM. The first way is to use DAA [3]. With a DAA signature, a verifier
is convinced that a TPM has signed a given message, but the verifier cannot learn
the identity of the TPM. The message to be signed can be either an Attestation
Identity Key (AIK), or an arbitrary data string, The second way is to use
an ordinary signature scheme. A TPM generates a signature using an AIK as
signing key, which could either be certified by a Privacy-CA, or it could be
introduced by the TPM itself using a DAA signature. For simplicity, we do not
distinguish these two cases, and denote by σM := SignM(skM; m) the output of
TPM’s signing algorithm on input the TPM’s signing key skM and a message
m, and by VerM(vkM; σM, m) the corresponding verification algorithm, which on
input the TPM’s verification key vkM outputs 1 if σM is valid and 0 otherwise.

4.2 Commitment Scheme

We apply the commitment scheme by Pedersen [18]: Let skm
com be the secret

commitment key. A commitment on a message m is computed as Cm := gmhskm
com

Property-Based Attestation without a Trusted Third Party 37

mod P . P is a large prime, h is a generator of a cyclic subgroup GQ ⊆ Z∗
P of

prime order Q and Q|P−1. g is chosen randomly from 〈h〉; furthermore, logh(g) is
unknown to the committing party. Both the message m and skm

com are taken from
ZQ. The Pedersen commitment scheme as described above is perfectly hiding
and computationally binding, assuming the hardness of the discrete logarithm
problem in a subgroup of Z

∗
P of prime order (for P prime).

4.3 Ring Signatures

The notion of a ring signature was first introduced by Rivest et al. [20]. It allows
a signer to create a signature with respect to a set of public keys. Successful veri-
fication convinces a verifier that a private key corresponding to one of the public
keys was used, without disclosing which one. In contrast to group signatures, no
group manager is needed.

For various security definitions for ring signatures see [2]. Recent efficient
ring signature schemes which are provably secure in the standard model (i.e.,
without using random oracles) are proposed in [23,9], where in [9] a signature
with size only O(

√
n) is proposed. Dodis et al. [12] showed that ring signatures

with constant size in the number of public keys can be achieved in the random
oracle model.

Unfortunately, none of these schemes can be used easily for our purposes:
In our protocol, we employ a construction, where the public keys for the ring
signature are computed from commitments formed by the TPM. We show how
this can be done efficiently for Pedersen commitments (cf. Section 4.2) and public
keys of the form y = gx mod P , where x is the corresponding secret key. However,
the schemes above use keys of different types.

In Figure 2, we recall an efficient ring signature scheme from [1], which we
propose to use for our PBA solution. The scheme is a generalization of the
Schnorr signature scheme [22]: Intuitively, the product in step 2(b) corresponds
to combined commitments for individual Schnorr signatures, in step 2(c) and
2(d), the challenges for the individual Schnorr signatures are derived from a
single challenge, and in step 2(e), the secret key is used to compute s. The
verification equation, where the sum of the challenges is compared to a hash
value, ensures that a valid signature cannot be created without a secret key xj .
The scheme is provably secure in the random oracle model, under the discrete
logarithm assumption.

We denote the generation of a ring signature σr on message m with re-
spect to the public key ring {yi}1≤i≤n and with private signing key x by σr :=
SigRing(x; {yi}; m). Signature verification is denoted by VerRing({yi}; σr, m).
For simplicity, we omit the public parameters g, P, Q and the range of the index
i in our notation.

5 Ring Signature-Based PBA without TTP

In this section, we propose a protocol for PBA, which is based on ring signatures.
The TPM generates a signature on a commitment to the configuration csP . Then

38 L. Chen et al.

1. Key generation. Let κ be a security parameter. On input 1κ, create g, P and Q.
A signer Si (i = 1, ..., n) chooses xi ∈R {0, 1}�Q and compute yi = gxi mod P .
Output its public key (g, P, Q, yi) and the corresponding secret key xi.

2. Signing algorithm SigRing(xj ; {yi}; m).
A signer who owns secret key xj generates a ring signature on a message m with
public key list (g, P, Q, yi) (i = 1, ..., n), where j ∈ {1, ..., n} as follows:
(a) Choose α, ci ∈R {0, 1}�Q for i = 1, ..., n, i �= j.
(b) Compute z = gα Qn

i=1,i�=j yci
i mod P .

(c) Compute c = Hash(g‖P‖Q‖y1‖...‖yn‖m‖z).
(d) Compute cj = c − (c1 + ... + cj−1 + cj+1 + ... + cn) mod Q.
(e) Compute s = α − cj · xj mod Q.
(f) Output the signature σr = (s, c1, ..., cn).

3. Verification algorithm VerRing({yi}; σr, m).
To verify that the tuple σr = (s, c1, ..., cn) is a ring signature on message m, check
that

Pn
i=1 ci ≡ Hash(g‖P‖Q‖y1‖...‖yn‖m‖gsyc1

1 ...ycn
n mod P).

Fig. 2. A Ring Signature Scheme [1]

the host H creates a proof, using a ring signature, that csP is in the agreed set
CS of configurations with the given property. The verifier V verifies the TPM
signature and the ring signature.

Note that in our protocol, the TPM is trusted by all parties, but its resources
are restricted, and it can execute only a very limited set of instructions. The host
H is not trusted by the verifier V , hence the protocol has to protect evidence
authentication against a malicious host. H cannot be prevented from disclosing
its own configuration csP , thus for configuration privacy, we have to assume that
H is honest.

5.1 Security Parameters

We suggest the following security parameters (values in parentheses indicate
realistic values1 for current TPMs):

– �cs (160): the size of the value of csP .
– �∅ (160): the security parameter for the anti-replay value (nonce).
– �P (1024): the size of the modulus P .
– �Q (160): the size of the order Q of the subgroup of Z∗

P .

The parameters �P and �Q should be chosen such that the discrete logarithm
problem in the subgroup of Z∗

P of order Q with P and Q being primes such that
2�Q > Q > 2�Q−1 and 2�P > P > 2�P−1, is computationally hard.

1 Examples based on the use of SHA-1 [16] as a hash function (like in current TPMs),
and recommendations of the US National Institute of Standards and Technology
(NIST) for similar applications (see, for instance, [17]); changes corresponding to
stronger hash-functions, such as SHA-256, can be made straightforwardly.

Property-Based Attestation without a Trusted Third Party 39

5.2 Setup

We assume that V can verify TPM signatures (including revocation verification)
and that H and V have agreed on a set of configurations CS .

Prior to the execution of the PBA protocol, the parties have to agree on the
following parameters, which can be used for several protocol runs (potentially
with different sets CS): primes P and Q, generators g and h of a subgroup of
Z
∗
P of order Q (i.e., the discrete logarithm problem is hard in 〈g〉 = 〈h〉). The

discrete logarithm logg(h) mod P must be unknown to H.

5.3 Signing and Verifying Protocol

The attestation procedure executed between a TPM (M), its host (H), and
a verifier (V) is described in Figure 3. As a result of the protocol, the host
creates a ring signature σr, which is based on a TPM signature σM on the
message C, which is a commitment to csP . The TPM has to create and sign C,
which it then opens towards H. To create the ring signature, the host uses the
value r as the secret key (if csP ∈ CS , this works, because yj = hr mod P for
some j). From the ring signature, the verifier is convinced that the platform has
been configured with one of the set of acceptable configuration specifications,
CS = {cs1, · · · , csn}, without knowing which one.

TPM

csP , skM

H

csP ,CS =
{cs1, . . . , csn}

V

vkM,CS =
{cs1, . . . , csn}

� �

� Nv � Nv Nv ∈R {0, 1}�∅

r ∈R Z
∗
Q

C := gcsP hr mod P

σM :=
SignM(skM; (C, Nv))

�C, r, σM yj := C/gcsj mod P
(for j = 1, . . . n)

σr :=
SigRing(r; {yj}; Nv)

�C, σM, σr

VerM(vkM; σM, (C, Nv))

yj := C/gcsj mod P
(for j = 1, . . . n)

VerRing({yj}; σr, Nv)

� � �

OK OK OK

Fig. 3. The protocol of the PBA scheme. Common input: g, h, P, Q.

40 L. Chen et al.

5.4 Protocol Properties

Our protocol has some interesting properties:
First, no trusted third party is needed for this protocol. The only exception

is the certification of TPM keys: The verifier may rely on a DAA issuer or a
Privacy-CA to ensure that the TPM key belongs to a valid TPM, depending
on the TPM signature scheme (see Section 4.1). However, this is completely
independent from the PBA protocol, and neither a DAA issuer nor a Privacy-
CA could breach the configuration privacy of our protocol.

Second, the configuration set CS is created flexibly, dependent on the agree-
ment between prover P and verifier V . One approach to negotiate the set of
acceptable configurations could be analogous to the SSL/TLS handshake: The
prover sends a proposal for CS to V , who can then select an appropriate subset.
However, our protocol allows for different ways to agree on CS ; the particular
method can be chosen according to a concrete application scenario.

Third, the size n of the set CS affects the configuration privacy. If n is small,
V might have a high probability in guessing the configuration csP . Therefore,
to keep csP private, P should execute the protocol only if CS is of acceptable
size. Moreover, P has to ensure that V cannot learn csP by running the PBA
protocol multiple times with different configuration sets, because in the case of
several successful attestations, V would know that csP is in the (possibly small)
intersection of the sets used in the protocol executions. This example shows
that P should install a privacy policy which prevents such abuses of the PBA
protocol.

Fourth, note that the overhead of the TPM compared to binary attestation
is small. Additionally, the TPM has to form the commitment C, which must be
signed instead of csP . So the overhead is just choosing a random number r and
performing a modular multi-exponentiation modulo P (with two exponents). As
with binary attestation, the TPM has to generate one digital signature (e.g.,
2048 bit RSA). The TPM’s computation does not depend on the size of CS .

6 Security of Our PBA Scheme

Here, we define a formal (game-based) security model based on the system model
from Section 2, and state theorems about the security of our PBA scheme.

6.1 Security Model

Adversary model. The adversary A is a PPT algorithm and an active adver-
sary that has full control over the communication channel between H and V .
This is modeled by the query of the form send(E, m) which allows A to address
a message m to an entity E ∈ {H,V}. In response, A receives a message which
would be generated by E according to the protocol execution. In the definition
of entity authentication, in which malicious hosts should also be considered, A
is also given access to another query sendTPM(m) by which it can communicate
with M. We assume that m contains the identity of the sender (as chosen by A).

Property-Based Attestation without a Trusted Third Party 41

Moreover, when considering evidence authentication, the adversary may corrupt
the host via the query corruptH, which returns the configuration csP to A (csP
is H’s only secret).

We assume that A cannot corrupt the TPM. In reality, a hardware attack
would be necessary to corrupt a TPM, i.e., we limit the adversary to software-
only attacks, which is the assumption of the TCG [25]. In case a real-world
adversary succeeds in attacking the TPM, our protocol has to rely on the revo-
cation mechanisms for TPM signatures.

Evidence authentication. We formalize the intuitive security requirement
that A should not be able to pretend that P has a configuration csP satisfying
the property that has to be attested (i.e., csP ∈ CS), when in fact the property
is not fulfilled (i.e., csP
∈ CS).

Let Gameev-auth
A (1κ) be the following interaction between P , V , and A. Be-

fore the interaction, A chooses a platform with a valid TPM M and with a
configuration csP
∈ CS . Then A is given access to send(E, m), sendTPM(m),
and corruptH queries to any P chosen by A. Uncorrupted parties behave as
specified by the protocol. A wins, if it outputs a PBA signature σ, such that
PBA-Verify accepts σ. We denote the success probability of A by Succcf-priv

A (1κ) :=
Pr[Gameev-auth

A (1κ) = win], and its maximum over all PPT adversariesA (running
in time κ) as Succcf-priv(1κ).

A PBA protocol provides evidence authentication if Succcf-priv(1κ) is negligi-
ble in κ.

Configuration privacy. The security requirement that the configuration csP
of P should be kept private is captured by the following game. For this require-
ment, host H and TPM M of P have to be honest because P could always send
csP to A.

Let Gamecf-priv
A (1κ) be the following interaction between P , V and A. A is

given access to send(E, m) queries. Moreover, A may access sendTPM(m) and
corruptH queries for all but one prover P chosen adaptively by A, which has to
remain honest. At the end of the interaction, A outputs an index i. A wins if i is
the index of P ’s configuration in the set CS = {cs1, . . . , csn}, i.e., if csP = csi.
We denote the advantage of A (over a random guess) with Advcf-priv

A (1κ, n) :=
|Pr[Gamecf-priv

A (1κ) = win] − 1/n|, and its maximum over all PPT adversaries A
(running in time κ) as Advcf-priv(1κ, n).

A PBA protocol provides configuration privacy if Advcf-priv(1κ, n) is negligi-
ble in κ.

Security of PBA. A PBA scheme is secure, if and only if it provides both
evidence authentication and configuration privacy.

Trust relations. The TPM is assumed to be trusted by both host and verifier.
For evidence authentication, a PBA protocol must ensure that a malicious host
cannot cheat an honest verifier, whereas for configuration privacy, it must prevent
a verifier controlled by A from determining the configuration of an honest host.

42 L. Chen et al.

6.2 Security Analysis

The following theorems demonstrate the security of our PBA scheme. For the
proofs, see Appendix A.

Theorem 1 (Evidence Authentication). The PBA protocol presented in
Section 5 provides evidence authentication (in the random oracle model), assum-
ing the security of the ring signature scheme, the security of TPM signatures,
and the hardness of the discrete logarithm assumption. In more detail:

Succcf-priv(1κ) ≤ q2/2�∅ + εTPM + εring + εdlog,

where q is the number of protocol runs, �∅ is polynomial in the security parameter
κ, εTPM is the probability of an adversary to forge a TPM signature, εring is
the probability to forge a ring signature, and εdlog is the probability to solve the
underlying discrete logarithm problem.

Remark. Our proof does not directly use the random oracle model, however, it
is required by the ring signature scheme we use.

Theorem 2 (Configuration Privacy). The PBA protocol presented in Sec-
tion 5 provides configuration privacy against computationally unbounded adver-
saries, due to the unconditional signer anonymity of the ring signature scheme
and perfect hiding of the commitment scheme.

Remark. Although our definition of configuration privacy assumes a PPT adver-
sary (which would be reasonable for practical purposes), our protocol offers even
unconditional security, because we use a perfectly hiding commitment scheme
and an unconditionally signer-anonymous ring signature scheme.

7 Conclusion and Future Work

The concept of property-based attestation (PBA) has been proposed to overcome
several deficiencies of the (binary) attestation scheme proposed by the Trusted
Computing Group (TCG). Amongst others, the TCG attestation reveals the
system configuration to third parties that could misuse it for privacy violations
and product discrimination.

In this paper, we proposed the first cryptographic protocol for PBA which, in
contrast to the previous solutions, does not require a Trusted Third Party to cer-
tify properties. In our protocol, the TPM has to compute only one commitment
and one signature.

Furthermore, the cryptographic technique used here might be of independent
interest: We demonstrate how a ring signature can be employed to prove mem-
bership in a list.

Future work may include the investigation of how to determine meaningful
properties. Moreover, a generic approach based on any ring signature scheme,
an efficient scheme with a security proof in the standard model, and the design
of a PBA protocol with sub-linear communication and computation complexity
in the size of the configuration set CS are still open problems.

Property-Based Attestation without a Trusted Third Party 43

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In ASIACRYPT 2002, LNCS vol. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 415–432. Springer, Heidelberg (2002)

2. Bender, A., Katz, J., Morselli, R.: Ring Signatures: Stronger Definitions, and Con-
structions without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

3. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Pfitzmann,
B., Liu, P. (eds.) Proceedings of ACM CCS 2004, pp. 132–145. ACM Press, New
York (2004)

4. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from
bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) TRUST 2008. LNCS,
vol. 4968. Springer, Heidelberg (2008)

5. Brickell, E., Li, J.: Enhanced Privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. In: Proceedings of the 6th Workshop on
Privacy in the Electronic Society (WPES 2007), pp. 21–30. ACM Press, New York
(2007)

6. Camenisch, J.: Better privacy for trusted computing platforms. In: Samarati, P.,
Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193,
pp. 73–88. Springer, Heidelberg (2004)

7. Camenisch, J., Michels, M.: Proving in Zero-Knowledge that a Number Is the Prod-
uct of Two Safe Primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 107–122. Springer, Heidelberg (1999)

8. Camenisch, J., Stadler, M.: Proof Systems for General Statements about Discrete
Logarithms. Technical Report TR 260, Dep. of Computer Science, ETH Zürich
(March 1997)

9. Chandran, N., Groth, J., Sahai, A.: Ring Signatures of Sub-linear Size Without
Random Oracles. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP
2007. LNCS, vol. 4596, pp. 423–434. Springer, Heidelberg (2007)

10. Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)

11. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A., Stüble, C.: A Protocol
for Property-Based Attestation. In: Proceedings of ACM STC 2006, pp. 7–16. ACM
Press, New York (2006)

12. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad
hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 609–626. Springer, Heidelberg (2004)

13. Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular
Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 16–30. Springer, Heidelberg (1997)

14. Kühn, U., Selhorst, M., Stüble, C.: Realizing Property-Based Attestation and Seal-
ing on Commonly Available Hard- and Software. In: ACM STC 2007, pp. 50–57.
ACM Press, New York (2007)

15. Micali, S., Rabin, M.O., Kilian, J.: Zero-Knowledge Sets. In: Proceedings of the
44th Symposium on Foundations of Computer Science (FOCS 2003), pp. 80–91.
IEEE Computer Society, Los Alamitos (2003)

16. National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHS). FIPS PUB 180-2 (August 2002)

44 L. Chen et al.

17. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS PUB 186-3 (Draft) (March 2006)

18. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

19. Poritz, J., Schunter, M., van Herreweghen, E., Waidner, M.: Property Attesta-
tion – Scalable and Privacy-friendly Security Assessment of Peer Computers. IBM
Research Report RZ 3548 (# 99559) (October 2004)

20. Rivest, R., Shamir, A., Tauman, Y.: How to Leak a Secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

21. Sadeghi, A., Stüble, C.: Property-based attestation for computing platforms: Car-
ing about properties, not mechanisms. In: Proceedings of NSPW 2004, pp. 67–77.
ACM Press, New York (2004)

22. Schnorr, C.P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3),
161–174 (1991)

23. Shacham, H., Waters, B.: Efficient Ring Signatures without Random Oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

24. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332 (2004),
http://eprint.iacr.org/2004/332

25. Trusted Computing Group. TCG TPM Specification, Version 1.2,
https://www.trustedcomputinggroup.org/

A Security Proofs

Proof (Evidence Authentication). We structure the proof as a sequence of games
[24], where a PPT adversary A (see Section 2 for the adversary model) interacts
with a simulator S. The first game is Gameev-auth

A . In each subsequent game, a
new “event” is introduced. S aborts, whenever this event occurs. We show that
each event can only happen with negligible probability for any PPT adversary,
hence the probability for A to win game Gi+1, denoted by Pr[wini+1], differs
only by a negligible amount from its probability Pr[wini] to win game Gi.

G0. The initial game is Gameev-auth
A , where S plays the game with A by simu-

lating the honest parties as specified by the protocol. A chooses a platform
with a configuration csP
∈ CS of his choice (as specified in Section 6.1), and
S simulates the honest TPM M of this platform. A wins Gameev-auth

A , and
hence G0, if it manages to output σ = (C, σM, σr) such that S (acting as
an honest verifier) accepts σ as a proof that csP ∈ CS , although actually
csP
∈ CS . Because G0 is Gameev-auth

A , we have Pr[win0] = Succcf-priv(1κ).
G1. In the event that S, acting as a verifier, chooses a nonce Nv that already

occurred in a previous protocol run, S aborts the simulation. For this com-
parison, S records all nonces. As Nv is chosen randomly by S, the probability
ε1 of this is ≤ q2/2�∅ (which is negligible in the security parameter), where
q denotes the number of protocol runs. Hence, Succcf-priv(1κ) ≤ Pr[win1]+ε1.

http://eprint.iacr.org/2004/332
https://www.trustedcomputinggroup.org/

Property-Based Attestation without a Trusted Third Party 45

G2. S simulates protocol execution as before, with the difference that all TPM
signatures are obtained from the corresponding signing oracle. In the event
that S receives an output (C, σM, σr) from A, where σM was not created
previously by S, the simulation is aborted. In this case, A provided S with
a forgery of a TPM signature. The probability εTPM of this event is the
probability of a forgery of a TPM signature. Thus, Succcf-priv(1κ) ≤ Pr[win2]+
ε1 + εTPM.

G1 covers replay attacks by estimating the probability that the same nonce
occurs twice, and G2 covers forgeries of TPM signatures. It remains to estimate
the probability Pr[win2]. We consider two cases: either A wins in G2 by forging
the ring signature (with probability εring), or without it. Since we are interested
in the overall probability of A winning in G2, we do not require from S to detect
which of these distinct cases occurs.

If no forgery of the ring signature occurred, but A wins G2, A must know a
secret key r′ matching one of the public keys used to compute the ring signature.
Hence, A must know r′, such that hr′

= C/gcsj = gcsP−csj hr mod P for some
j ∈ {1, . . . , n}. Because csP
= csj , we have r
= r′, thus A could compute the
discrete logarithm logg(h) = (csP − csj)/(r′ − r) mod Q. The probability of the
adversary to win the last game is Pr[win2] = εring +(1−εring) ·εdlog ≤ εring +εdlog,
where εdlog is the probability to solve the underlying discrete logarithm problem.

Thus, in total, Succcf-priv(1κ) ≤ ε1 +εTPM +εring +εdlog, which is negligible in κ
if the TPM signature and ring signature schemes are secure and the underlying
discrete logarithm problem is hard. �

Note that although our proof is in the standard model, the ring signature scheme
in [1] requires the random oracle model.

Proof (Configuration Privacy). We demonstrate that Advcf-priv(1κ, n), the maxi-
mum advantage over all A in Gamecf-priv

A , is negligible in κ, even if the adversary
is computationally unbounded. For this, we construct a simulator S that plays
Gamecf-priv

A with some A, simulating the honest parties. The goal of A is to break
the configuration privacy of the PBA scheme, and the simulator’s goal is to break
either the perfect hiding property of the commitment scheme or the uncondi-
tional signer ambiguity property of the ring signature scheme.

We play the game twice. In the first case, we assume that the ring signature is
secure and show how S can break the commitment scheme. In the second case,
we assume that the commitment scheme is secure, and hence, we show how S
can break the ring signature scheme.

Case 1. In this case, S is given a commitment C = gcsP · hr mod P with csP ∈
CS , and plays Gamecf-priv

A with A.
Once S receives a send query with a nonce Nv from A, it uses C in the PBA

protocol execution as the TPM’s commitment (without knowing csP and r),
and creates a TPM signature σM = SignM(skM; (C, Nv)). The computationally
unbounded simulator S can compute α, such that h = gα mod P , and k, such
that C = gk = gcsP+αr mod P . Although S knows neither csP nor r, it can

46 L. Chen et al.

establish n equations k = csj + α · rj (for j = 1, . . . , n). Thus, S can compute n
pairs (csj , rj), and create the ring signature σr = SigRing(rj ; {yj}; Nv), where
yj = gαrj = hrj mod P , with any of these rj as a signing key. Because of the
signer ambiguity of the ring signature scheme, S can choose an arbitrary rj (for
j ∈R {1, . . . , n}). S sends C, σM, and σr to A.

At the end of the game, A outputs an index i. S attacks the perfect hiding
property of the commitment scheme by using the pairs (csj , rj) computed above,
and opening the commitment to (csi, ri).

Because we assume that the ring signature is secure, the probability of S to
break the commitment scheme successfully is the probability of A to determine
i with csi = csP . Thus, a non-negligible advantage Advcf-priv implies that S can
break the perfect hiding property.

Case 2. In this case, S is given public/private key pairs (yj , xj) (j = 1, . . . , n) for
the ring signature scheme, and access to a signature oracle for ring signatures
under this key ring. S can use the oracle to query ring signatures on arbitrary
messages. The unconditional signer ambiguity states that S should not be able
to find out which private key was used for signing (although S knows all public
and private keys). S chooses k ∈R ZQ, and computes csj = k − xj mod Q for
j = 1, . . . , n. Then, S starts to play Gamecf-priv

A with A.
Once S receives a send query with a nonce Nv from A, it computes C :=

gk mod P and σM := SignM(skM; (C, Nv)). S uses the ring signature oracle to
create a ring signature σr on the message Nv, and sends C, σM, and σr to A.

At the end of the game, A outputs an index i. Since the commitment C was
chosen randomly, the only possibility of A to win Gamecf-priv

A is to break the signer
ambiguity of the ring signature. S also outputs i to indicate that xi was used to
generate the signature, thus breaking the unconditional signer ambiguity of the
ring signature scheme. �

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 47–63, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Reduced Address Space (RAS) for
Application Memory Authentication

David Champagne, Reouven Elbaz, and Ruby B. Lee

Department of Electrical Engineering, Princeton University
Princeton, NJ 08544, USA

{dav,relbaz,rblee}@Princeton.edu

Abstract. Memory authentication is the ability to detect unauthorized modifica-
tion of memory. Existing solutions for memory authentication are based on tree
structures computed over either the Physical Address Space (PAS tree) or the
Virtual Address Space (VAS tree). We show that the PAS tree is vulnerable to
branch splicing attacks when providing memory authentication to an applica-
tion running on a potentially compromised operating system. We also explain
why the VAS tree generates initialization and memory overheads so large as to
make it impractical, especially on 64-bit address spaces. To enable secure and
efficient application memory authentication, we present a novel Reduced Ad-
dress Space (RAS) containing only those pages that are useful to a protected
application at any point in time. We introduce the Tree Management Unit
(TMU) to manage the RAS tree, a dynamically expanding memory integrity tree
computed over the RAS. The TMU is scalable, enabling tree schemes to scale
up to cover 64-bit address spaces. It dramatically reduces the overheads of ap-
plication memory authentication without weakening the security properties or
degrading runtime performance. For SPEC 2000 benchmarks, the TMU speeds
up tree initialization and reduces memory overheads by three orders of magni-
tude on average.

Keywords: Memory authentication, integrity tree, secure computing
architecture.

1 Introduction

As security-critical applications become mainstream, several research efforts [9, 12,
13, 16, 17] aim to design general-purpose computing platforms that can prevent
physical and software attacks. A crucial security objective shared by these platforms
is to protect the integrity of a sensitive application by providing it with memory au-
thentication—i.e. the ability to verify that a data block it reads at a given address from
main memory contains the data it last wrote at this address. To enable memory au-
thentication without having to keep on-chip a fingerprint for each data block to pro-
tect, [1, 3, 4, 6, 14, 15, 18] propose constructing integrity trees.

An integrity tree is built by recursively computing cryptographic fingerprints on the
protected memory blocks until a single fingerprint of the entire memory space, the tree
root, is obtained. It can be computed over either the physical address space (PAS tree)

48 D. Champagne, R. Elbaz, and R.B. Lee

or the virtual address space (VAS tree). In any case, the tree root is kept on-chip, in a
tamper-resistant area, while the rest of the tree can be stored off-chip. Authenticating a
block read from main memory requires fetching and verifying the integrity of all finger-
prints on the tree branch starting at the block of interest and ending with the root.

Modern operating systems typically cannot be trusted to enforce such application
memory space integrity, as exploitable software vulnerabilities are commonly found
in these large, complex and extendable software systems. Hardware-driven integrity
tree systems must thus be able to provide memory authentication to an application
despite potential OS compromise. However, the majority of past research efforts [3, 4,
9, 15, 16, 18] build PAS trees, which are not secure in this setting: we show that by
providing incorrect virtual-to-physical address translations, a compromised or mali-
cious OS can trick the on-chip authentication engine of a PAS tree into fetching the
wrong tree branch to verify a memory block. As a result, a memory block at a given
address is passed as valid for a different address; we call this a branch splicing attack.

Application memory authentication despite a potentially compromised OS was de-
scribed in [17], where a VAS tree is built. In this case, the on-chip authentication
engine selects the tree branch to fetch using the virtual address of the block to verify,
so a malicious OS cannot wage a branch splicing attack. However, tree node address-
ing requires that the VAS tree span a contiguous segment of memory. We show that
as a result, the VAS tree must cover all memory located between the lowest and high-
est virtual addresses that may be accessed by the application during its execution.
Such a large tree span leads to enormous initialization and memory overheads, mak-
ing the deployment of the VAS tree impractical.

In this paper, we introduce a novel address space, the Reduced Address Space
(RAS) containing only the application’s memory footprint. We build an integrity tree
over the RAS (a RAS tree) which remedies the security and efficiency problems of
the PAS tree and VAS tree. Our RAS tree expands dynamically as the underlying
RAS grows to fit the memory needs of the application.

The contributions of this paper are as follows:

• showing that a tree over a virtual address space (VAS tree) is impractical,
while a tree over the physical address space (PAS tree) is insecure when
the OS is untrusted;

• proposing a novel Reduced Address Space (RAS), where the pages used
by an application form a contiguous region that expands dynamically to fit
the application’s memory needs;

• introducing the concept of a dynamic integrity tree to protect the pages in
the RAS;

• detailing the design of a Tree Management Unit (TMU) which constructs as
well as maintains the RAS and the dynamic integrity tree covering the RAS;

• reducing by three orders of magnitude the VAS tree overheads in storage
and tree initialization, for a 4 GB memory space, without any significant
impact on runtime performance.

The rest of the paper is organized as follows. Section 2 presents our security
model. Section 3 presents the PAS and VAS trees, explains the branch splicing attack
on the PAS tree and the enormous VAS tree overheads. Section 4 presents our RAS
tree covering the novel Reduced Address Space and implemented by our Tree

 The Reduced Address Space (RAS) for Application Memory Authentication 49

 Fig. 1. A binary integrity tree

Management Unit. Sections 5 and 6 analyze the security and performance of the ap-
proach we propose. Section 7 concludes the paper.

2 Security Model

Threat Model. Our threat model encompasses that of existing integrity trees, which
aim to prevent the following attacks. Spoofing attacks: the adversary substitutes a fake
block for an existing memory block. Splicing or relocation attacks: the attacker swaps
a memory block at address A with a block at address B, where A≠B. Such an attack
may be viewed as a spatial permutation of memory blocks. Replay attacks: a memory
block located at a given address is recorded and inserted at the same address at a later
point in time; by doing so, the current block’s value is replaced by an older one. Con-
temporary operating systems such as Windows and Linux consist of millions of lines
of codes [5, 7]. Since the number of exploitable software defects per thousand lines of
code has been evaluated to be between 3 and 6 [11], it is extremely difficult to assume
an infallible operating system. The attacks described above can thus be carried out
through a compromised OS (software attacks) or directly on the processor-memory
bus, via probing and injection of fake values (physical attacks).

Trust Model. The main hypothesis of our trust model is that the processor chip itself
is trusted, i.e., it is considered resistant to physical and side-channel attacks. For sim-
plicity, this paper assumes the CPU contains a mechanism—like those of [12, 13,
17]—protecting the integrity of a sensitive application’s on-chip state (registers and
cache lines) on context switches. Similarly, we assume the CPU contains an on-chip
engine to authenticate, upon launch, the on-disk image of a protected application.

3 Related Work

Upon reading or writing a memory block, a CPU maintaining a memory integrity tree
must locate and fetch the tree nodes along the block’s branch so tree verification or
update procedures can take place (see Appendix A for background on integrity trees).
In Section 3.1, we describe the methodology applied by computing platforms in the
literature to perform this tree traversal. Section 3.2 and
3.3 then show how tree traversal affects the security and
efficiency of the PAS tree and VAS tree proposed in
past research.

3.1 Tree Traversal

[4] introduces a tree traversal methodology, adopted by
[3], which derives the addresses of nodes on a block’s
branch from the block’s address. The technique works as
follows: starting from the tree root and going down to-
wards the leaves, all tree nodes (including the leaves
themselves) are assigned a numerical position (the Px in
Figure 1). The root is assigned position -1 (P-1) and the
other tree nodes are at position 0 (P0) and higher.

50 D. Champagne, R. Elbaz, and R.B. Lee

All tree nodes are of identical size and are laid out in memory according to their
positions, starting with P0 at address 0, followed by P1, P2, etc at higher addresses.
With contiguous siblings, the node size and tree arity can be set to allow the on-chip
authentication engine to fetch a node and its siblings (necessary to recompute the
parent) in a single memory transaction using the node’s address. EQ1 is used to map
the address (node_address) of a node N to a position (node_position). The function in
EQ2 then allows mapping N’s position to the position of its parent (parent_position).
EQ2 can be applied recursively to obtain the position of nodes on N’s branch. A par-
ent_position equal to -1 indicates the root node has been reached. The address of any
node other than the root can be obtained from its position using EQ3.

sizenodeaddressnodepositionnode ___ ÷= (EQ1)

⎣ ⎦ 1__ −÷= aritypositionnodepositionparent (EQ2)

sizenodepositionnodeaddressnode ___ ×= (EQ3)

This technique for generating node addresses is quick and efficient since it does
not use indirection to go from one parent to another and it can be implemented in
hardware at a low cost. However, it requires that all leaf nodes be part of a contiguous
memory segment, i.e. the tree must cover a monolithic region of address space. This
memory segment may be contiguous either in the physical address space (PAS tree,
Section 3.2) or the virtual address space (VAS tree, Section 3.3).

3.2 Physical Address Space Tree (PAS Tree)

The majority of past research efforts [3, 4, 9, 15, 16, 18] considers the operating sys-
tem as trusted and builds the integrity tree over the physical address space (a PAS
tree). However, when the OS is not considered as a trusted system, as is the case in
this paper, the PAS tree is vulnerable to attacks that can violate the integrity of the
protected application’s memory space. We show below that by corrupting the applica-
tion’s page table, a compromised or malicious OS can trick the on-chip authentication
engine into using the wrong branch when verifying the integrity of a block. As a
result, the PAS tree cannot provide application memory authentication with an
untrusted OS.

Fig. 2. Binary Merkle Tree (a) with root value derivation (b) and root re-computation
equations (c)

 The Reduced Address Space (RAS) for Application Memory Authentication 51

The Branch Splicing Attack. Figure 2a shows a binary Merkle tree covering 8 data
blocks (labeled D1 to D8) with a root R and intermediate hashes H1 to H6. The value
of R is derived in Figure 2b, where we see that the root and intermediate tree nodes
are computed using the value of their respective descendents. Figure 2c shows how
the on-chip authentication engine recomputes the root R when verifying a given leaf
block; COMP1 to COMP8 use different leaves and intermediate hashes but when the
application is not under attack, the result of all computations is the value of the root R.

In Figure 3a, we show how a malicious OS can corrupt a protected application’s page
table to control the virtual-to-physical address translations in the Translation Lookaside
Buffer (TLB) such that the wrong tree branch is fetched and the wrong equation is used
to recompute the root. For simplicity, we do not consider caching here. The upper path
with solid lines represents the verification procedure when the system is not under at-
tack, while the lower path with dotted lines shows the effect of an attack (with corrupted
data items in dark grey). In its attack, the malicious OS successfully tricks the processor
into accepting D7 rather than the correct D1 by forcing the authentication engine to
fetch D7’s branch and compute COMP7 instead of COMP1. The OS does so by cor-
rupting the application’s page table—mirrored in the processor’s TLB—so that it maps
virtual address V(D1) to physical address P(D7). This causes the authentication engine
to compute an erroneous leaf position, hence generating the wrong branch node ad-
dresses and using the wrong COMPi. We call this attack branch splicing, which suc-
cessfully substitutes D7 for D1 without detection.

3.3 Virtual Address Space Tree (VAS Tree)

To provide application memory authentication despite an untrusted OS, [17] builds
the integrity tree over the virtual address space (VAS tree). Figure 3b shows that with

Fig. 3. Successful branch splicing attack on PAS tree (a) and unsuccessful attack on VAS tree (b)

52 D. Champagne, R. Elbaz, and R.B. Lee

a VAS tree, the OS cannot influence the choice of the COMPi equation used to re-
compute the root. The leaf position of a block is determined by that block’s virtual
address—which comes directly from the protected application—rather than by its
translated physical address—which is under OS control. As a result, a branch splicing
attack by the OS is detected by the authentication engine.

However, the extra security afforded by the VAS tree over the PAS tree comes at
the cost of very large memory capacity and initialization overheads. Application code
and data segments are usually laid out very far apart from one another in order to
avoid having dynamically growing segments (e.g., the heap and stack) overwrite other
application segments. The VAS tree must thus span a very large fraction of the virtual
address space in order to cover both the lowest and highest virtual addresses that may
be accessed by the application during its execution. The span of the tree is then sev-
eral orders of magnitude larger than the cumulative sum of all code and data segments
that require protection—i.e. the tree must cover vast regions of unused memory. In
the case of a VAS tree protecting a 64-bit address space, the span can be so enormous
as to make the VAS tree impractical, i.e. the VAS tree is not scalable. Indeed, it not
only requires allocating physical page frames for the 264 bytes of leaf nodes that are
defined during initialization, but also requires allocating memory for the non-leaf tree
nodes, which represent 20% to 100% of the leaf space size [3, 6, 17]. The CPU time
required to initialize such a tree is clearly unacceptable in practice.

To overcome the enormous overheads of the VAS tree and defend against branch
splicing attacks, we build the integrity tree over a new Reduced Address Space (RAS)
managed by our TMU architecture.

4 The TMU Architecture

The role of the Tree Management Unit (TMU), a new processor hardware unit, is to
maintain an integrity tree over the Reduced Address Space (RAS). At any point in
time, the RAS contains only those pages needed for the application’s execution; it
grows dynamically as this application memory footprint increases. The TMU builds
an integrity tree over the application’s RAS (a RAS tree), carries out the integrity
verification and tree update procedures and expands the tree as the underlying RAS
grows. Because the RAS contains the application’s memory footprint in a contiguous
address space segment, the RAS tree does not suffer from the overheads of the VAS
tree, built over a sparse address space. Moreover, the design of the TMU architecture
ensures the RAS tree is not vulnerable to branch splicing.

4.1 Overview

Reduced Address Space (RAS). The approach presented in this paper consists in
building and maintaining a dynamic integrity tree covering only the set of data and
code pages required for the tamper-evident execution of an application. In order to do
so, we construct a new address space, the RAS depicted in Figure 4, containing only
this set of pages and descriptors for the memory regions whose pages are not in the
RAS (the Unmapped Page Ranges, UPRs, Section 4.4). We then build the integrity
tree over the RAS so the TMU can authenticate the application’s code and data as

 The Reduced Address Space (RAS) for Application Memory Authentication 53

well as determine, by inspecting the tree-protected UPR list, whether a page is
mapped in the RAS. Pages may be unmapped because 1) they haven’t been used by
the application yet, or 2) they are mapped to physical pages shared with other applica-
tions, or 3) they belong to the operating system. The novelty in our approach is that
the integrity tree does cover the whole virtual address space, except that the unused
memory regions are condensed—represented by just their first and last addresses in a
UPR list item.

Fig. 4. The Reduced Address Space (RAS) and its relationship to the Virtual Address Space

The Tree Management Unit (TMU). Figure 5 depicts in dark gray the components
added to a general-purpose processor to support our scheme. The role of the main
addition, the TMU, is to initialize and expand the tree, as well as to traverse it from a
leaf to the root on verifications and updates. The Check&Update logic is a crucial
component: it retrieves the application image through the Authentication Engine to
build the initial tree (Section 4.2). It also drives the Page Initialization logic on tree
expansions (Section 4.3). The RAS owner register identifies the currently protected
application; the TMU only operates when the RAS owner is in control of the CPU.
The RAS Ctr gives new RAS indices. The TMU tags are used by the TMU to map a
virtual page into the RAS while the node TLB (N-TLB) computes the physical address
of a tree node.

Fig. 5. The Tree Management Unit (TMU) architecture

4.2 Dynamic Integrity Tree over the Reduced Address Space (RAS)

The construction of the RAS follows the execution of the protected application. Ini-
tially empty, the RAS is populated by the TMU—when the protected application is
launched—with the pages whose contents are defined in the application image.

54 D. Champagne, R. Elbaz, and R.B. Lee

During execution of the program, the TMU adds to the RAS pages that are accessed
by the application and were not previously included in the RAS, e.g. a heap or stack
page touched for the first time. The TMU adds a page to the RAS by assigning it an
identifier—called the RAS index—generated from an on-chip counter (RAS Ctr in
Figure 5), which is initially 0 and incremented for each new RAS page. The address
of a datum within the RAS is addr = RAS_index || offset, where offset is the data’s
offset within its virtual page and || indicates concatenation.

Initialization of the RAS. Initializing a protected application being launched consists
of building an integrity tree over a Reduced Address Space containing the code and
data specified in the application image on the disk (e.g. an ELF executable file). We
assume the image consists of a set of data and code segments, along with a header
describing how these segments must be laid out by the loader to construct the applica-
tion’s initial virtual address space. In the scheme we propose, one of the data seg-
ments must be a UPR list specifying the memory regions that should not be mapped
in the RAS by the TMU during initialization. Since we let the untrusted OS and its
loader take the image from disk to memory, we must first authenticate the image
before it is mapped into the RAS and included in the initial tree. We assume the CPU
has an on-chip engine—similar to that in [10] or [13]—in charge of authenticating the
application image. During initialization, the TMU reads via this engine the defined
pages of the application’s initial state and maps them into the RAS.

Upon mapping the first page into the RAS, the TMU sets RAS ownership by writ-
ing the RAS owner register with a value identifying the application. Whenever the
RAS owner gains control of the CPU, TMU protection is activated; when the owner is
pre-empted, the TMU is deactivated. The value identifying the application depends on
what application-related information the ISA (Instruction Set Architecture) makes
available to the hardware: it could be the process ID of the protected application or
the base address of its page table. The RAS owner value is bound to the contents of
the RAS: if a malicious OS assigns the RAS owner process ID to an application other
than the actual owner, the TMU detects the subterfuge when the non-owner tries to
execute an instruction that does not exist in the RAS.

4.3 Maintaining a Dynamic Integrity Tree over an Expanding RAS

The size of the RAS increases at a page granularity. As a result, our integrity tree
must span an extra page every time a new page is mapped into the RAS. Such tree
expansions trigger increases in the tree’s span (number of leaves). We first define new
concepts needed to describe runtime tree expansion.

Definitions. The term integrity tree refers to an A-ary tree structure used to provide
memory authentication on a computing platform. In this paper, we consider that integ-
rity trees are built as depicted in Figure 6, with the root node at the topmost level and
the leaf nodes—which are the application memory blocks to authenticate—at the
lowest level. We call intermediate nodes the nodes between level L=0 and the root;
these nodes are metadata involved in the integrity checking process. All integrity trees
are complete: they have ALr leaves, where Lr is the level to which the root belongs.

 The Reduced Address Space (RAS) for Application Memory Authentication 55

Fig. 6. A partial integrity tree covering 10 memory blocks (nodes 15 to 24). It can cover 6 extra
blocks, mapped into nodes 25 to 30, before becoming a full tree.

The branch of a node F is the set of nodes on the shortest path from F to the root;
this branch is the authentication path for F. The nodes on F’s branch are called F’s
ancestors (F’s parent, the parent of F’s parent, etc). For example, the branch for node
17 in Figure 6 consists of nodes 8, 3, 1 and 0.

The minimum number of levels necessary to authenticate Nb memory blocks is Lb
= logA(Nb) . The number of leaves Nl in the integrity tree is equal to ALb. Building the
Nl branches of the integrity tree during the tree’s initialization would be inefficient
since the Nb blocks only required Nb distinct authentication paths, i.e. Nb tree
branches. This paper presents a strategy to avoid computing and storing branches for
the Nl - Nb undefined leaf nodes that do not correspond to one of the Nb memory
blocks to authenticate. This strategy uses the notion of ghost nodes, the nodes which
are not on the branches of the Nb defined memory blocks. In opposition to a ghost
node, a solid node is a node on the branch of a defined memory block. The term nil
node refers to a ghost node which is the sibling of a solid node. Only solid nodes need
to be computed and stored in memory: ghost nodes are neither computed nor stored
anywhere and thus do not cause CPU time or memory overheads. A nil node is fixed
to a pre-determined value whenever used in the computation of its parent node.

A full tree is an integrity tree without ghost nodes. A partial tree has both solid and
ghost nodes. A partial tree T can protect an additional memory block by replacing a
ghost leaf node with a solid node, and then computing the solid node’s ancestors. This
can be done until T becomes a full tree.

For an integrity tree T, we define a cone to be a sub-tree of T, with a node from T
as its root and nodes from T’s level 0 as its leaves. In Figure 6, nodes 4, 9, 10, 19, 20,
21 and 22 are part of a cone which has 4 as its root. A page cone is any cone whose
leaves cover the contents of exactly one page. A page node is the root of such a cone.
The tree has a level consisting exclusively of page nodes; it is called the page node
level. This allows tree expansions at a page granularity and, as we explain next, en-
sures that the integrity tree (partial or full) always covers an integer number of pages.
At any point in time, the memory blocks forming the pages in the RAS are the only
solid leaf nodes in the integrity tree. The TMU manages the tree such that these nodes
are always the leftmost nodes on level 0, i.e. the TMU expands the tree to the right.

Tree Expansion. To add a first page Pa to the empty tree T0, the TMU assigns RAS
index 0 (RAS_i=0) to Pa, computes its page cone and makes its page node R1 the root
of T1, the new integrity tree (Figure 7 depicts a binary tree, with T1 in 7a). When a
second page Pb requires protection, T1 must be expanded so its root spans both Pa and
Pb. To do so, the TMU first computes Pb’s page cone and then assigns it a RAS index
equal to 1. Since T1 is a full tree—i.e. it is formed only of solid nodes—the TMU
must increase T1’s height by one, creating tree T2 covering both Pa and Pb. The TMU
computes T2’s root R2, located on the new topmost level of the tree, by applying the

56 D. Champagne, R. Elbaz, and R.B. Lee

Fig. 7. Tree expansion: each page added expands the tree span. When adding a page to a full
tree (a)(b), an extra tree level is added. When a page is added to a partial tree (c), it replaces a
cone of ghost nodes.

authentication primitive (f in Figure 1) to the page nodes of Pa, Pb and their siblings.
Generally, there are two different scenarios for tree expansion: i) a page needs to be
added to a full tree or ii) a page needs to be added to a partial tree.

Expansion of a Full Tree. Upon adding a page Pn to a tree, the TMU can detect the
integrity tree is full when the RAS index RAS_i to be assigned is a power of the arity,
i.e. whenever logA(RAS_i) = x, such that x is an integer larger than or equal to zero
(e.g., in Figure 7b). Upon adding Pc, the TMU must thus increase the height of T2 by
one. To do so, the TMU creates a new level containing a single solid node R3 on top of
the existing tree, computes Pc’s cone and then computes a branch starting at Pc’s page
node and ending at R3. In computing this branch, the ghost nodes which are children of
an ancestor of Pc are nil nodes. The value attributed to nil nodes for the computation of
their parents depends on the underlying integrity tree e.g., for a hash tree, a nil node is a
null value. The last step of the branch computation procedure uses the old tree root R2 to
make R3 into the new tree root. Finally, the on-chip R2 is replaced by R3: the former
becomes a regular intermediate node and can be stored in external memory.

Expansion of a Partial Tree. When the integrity tree is partial (e.g., Figure 7c), a
page Pn to be added is assigned the next available RAS index and its page cone is
computed (e.g., Figure 7d). The leftmost ghost node in the page node level of the
partial tree is then replaced with Pn’s page node. The ancestors of Pn’s page node are
then recomputed so the root reflects the expanded RAS. When the page node level is
filled with solid nodes, we have a full tree.

In this paper, we consider that tree expansions only occur to integrate new heap or
stack pages into the tree. Since programs do not expect any specific values to be pre-
sent in a newly allocated stack or heap page, the contents of such pages can be forced
to all zeroes without any impact on program correctness. Thus the TMU does not
need to fetch the contents of a page upon a tree expansion: it merely initializes a stack
or heap page by writing zeros directly on the memory bus and computes its page cone
concurrently.

4.4 UPR List and TMU Tags

In order to maintain the tree and address its nodes, the TMU uses the tags depicted in
Figure 5, which are composed of three fields each: the TMU_field, the mapped bit

 The Reduced Address Space (RAS) for Application Memory Authentication 57

(M) and the excluded bit (E). These fields are stored in the OS memory space, in
extensions of the Page Table Entries (PTEs). They are carried on-chip into extensions
of the Translation Lookaside Buffer (TLB) entries on TLB misses, propagated to
cache lines on a cache line fill and made available to the TMU on a cache line miss or
eviction.

The mapped bit tells the TMU whether a page is currently assigned a valid RAS
index. When the mapped bit is set, the TMU_field contains the page’s RAS index;
otherwise, it contains an index pointing to the UPR list entry confirming that the page
is indeed part of an unmapped region. The application’s excluded bits are specified
in its image by the application creator and do not change during execution. The TMU
does not map into the RAS pages with an excluded bit set to 1. These pages are
thus excluded from the tree’s coverage; the application can read and write them with-
out triggering tree verification or updates. This is necessary to allow the OS and other
applications to share data with the protected application. As in [17], we store a virtual
tag with each physically-tagged cache line to be able to compute parent node ad-
dresses when the line is evicted. TMU tags thus contain a fourth field for physically-
tagged caches.

UPR List. The UPR list (UPRL) is a list of Unmapped Page Ranges (UPRs). A UPR
consists of 1) a pair of virtual page numbers defining a range of contiguous virtual
pages not currently in the RAS and 2) an excluded bit specifying whether or not the
pages in the range should be excluded from tree coverage. The UPRs in a UPRL are
mutually exclusive and the sum of all UPRs spans all virtual pages that are not cov-
ered by the tree (Figure 4). We store the UPRL in the RAS so that its integrity is pro-
tected by the tree.

Upon adding a page P to the tree, the TMU must update the UPR list to remove P
from its UPR. If P with address X is the first page within its UPR U = X || Y || 0
(where 0 is the excluded bit), the TMU simply overwrites U with X+1 || Y || 0.
Similarly, if Y is the last page of a UPR, then the TMU writes X || Y-1 || 0. If P is not
one of the bounds of its UPR U = X || Y || 0 (where X < P < Y) however, removing P
from the UPRL creates two ranges, U1 = X || P – 1 || 0 and U2 = P+1 || Y || 0. To up-
date the UPR list, the TMU changes U to U1 and appends the newly created U2 to the
end of the UPRL. While this UPRL maintenance strategy is quick and efficient, it
creates an unordered list in which searching can be a demanding operation.

To allow the TMU to access the UPR list in constant time without searching, we
provide, in the TMU_field of an unmapped page P, an index—the UPRLi—
pointing to the UPR containing P. When the physical address translation or the UPRL
index of an unmapped page (M = 0) is undefined in a TLB entry, a page fault is raised
and the OS page fault handler intervenes to provide the missing information. In order
to be able to provide the appropriate UPRL index on a page fault, the OS needs to be
aware of the exact contents of the UPRL. To do so, the OS can read the application’s
UPRL directly by mapping it in its own address space. The OS can also maintain, in a
data structure with a good search complexity, a copy of the UPRL which it updates
every time a page is added to the tree by the TMU. Note that the TMU detects a fake
UPRLi provided by a malicious OS upon accessing the tree-protected UPR list.

58 D. Champagne, R. Elbaz, and R.B. Lee

5 Security Analysis

In this section, we argue the RAS tree and the TMU do not degrade the security prop-
erties of the underlying tree scheme (e.g., Merkle Tree). Analysis of tree traversal
shows our RAS tree defends against branch splicing attacks. We begin our analysis
with tree expansion, a key TMU mechanism.

Tree Expansion. Let T be a tree covering the X-page wide RAS R. Upon mapping a
new page P into R to form R’, the tree expansion procedure must transform T into a
tree T’ that can be used to authenticate R’. To do so, the TMU computes P’s page
cone CP and integrates CP into the tree. CP’s computation does not degrade the secu-
rity properties of the underlying tree since 1) the integrity of the data used as leaves
by the TMU in this step is verified and 2) the root of the intermediate trees formed
during the construction of CP are kept on-chip. When P is defined in the image, prop-
erty 1) is guaranteed by the authentication engine’s validation of P’s data leaves;
when P is a dynamically allocated stack or heap page, the data is fixed to the pre-
determined zero value so property 1) holds. Property 2) is by design.

Integration of CP into T consists of updating the branch for the cone’s root—i.e.
CP’s branch—to make the root of T’ reflect the state of R’. The integration of CP into
T preserves the security properties of the underlying integrity tree because 1) the ad-
dresses of the branch nodes to be updated are computed by the TMU from a trusted
RAS index and 2) the nodes on the new branch are computed over verified data.
Property 1) holds because the addresses of branch nodes are derived from the RAS
index allocated to P, which is obtained from a trusted on-chip counter. Property 2)
holds because the TMU computes the new branch by recursively applying the authen-
tication primitive on trusted nodes—i.e. CP’s root and verified siblings (nil nodes or
preexistent solid nodes that were verified prior to the cone’s computation).

Initialization. The security of the initialization procedure follows from security of the
tree expansion procedure. Indeed, initialization consists in recursive invocations of
the tree expansion procedure, initially on the empty tree. The TMU figures out which
pages of the virtual address space to add to the initial tree by reading the image header
through the authentication engine. The procedure thus builds an integrity tree cover-
ing all the data and code defined in the image without degrading the security proper-
ties of the underlying tree.

Runtime RAS Expansion is guided by the excluded and mapped bits of pages
touched by the application. The TMU checks the integrity of these bits by looking up
the UPR list and thus avoids mapping into the RAS pages that are already in the RAS
or are excluded from tree protection. Hence, the excluded and mapped bits ensure an
attacker cannot force the RAS expansion procedure to map into the RAS a page that
should not be mapped.

Tree traversal. With regard to tree traversal, the only difference between a VAS tree
and our RAS tree lies in the indirection mechanism provided by the RAS to determine
node addresses. When computing the addresses of the nodes on a datum’s branch, we
rely on both its RAS index and the datum’s virtual address. We thus need to ensure
they are genuine. The virtual addresses used by the application are genuine since they
are generated by integrity-protected instructions operating over integrity-protected

 The Reduced Address Space (RAS) for Application Memory Authentication 59

Table 1. Architectural parameters

data—i.e. both instructions and data are covered by the tree. Since each node in the
tree is computed using the virtual address of its children as an input to f, and since the
verification branch taken by the TMU depends on the RAS index used, the last step of
the branch verification procedure—verification against the root—not only checks the
integrity of a datum but also checks that the right RAS index was used to verify the
datum. An OS trying to wage a branch splicing attack by corrupting the RAS index
will thus be detected.

6 Performance Evaluation

We now evaluate the impact of the RAS tree on initialization (Section 6.1) and run-
time overheads (Section 6.2). Our evaluation was carried out using the execution-
driven, cycle-accurate SimpleScalar simulator [2] to run nine SPEC2000 benchmarks
[8] as representative applications: applu, art, gcc, gzip, mcf, swim, twolf,
vortex and vpr. These are typically used by the computer architecture community to
evaluate performance of microprocessor features and implementations. Our RAS tree
and the VAS tree we use as a base case are implemented using the cached Merkle hash
tree scheme described in [4] (see Appendix A for background on cached integrity trees).
The hardware architectural parameters used in our simulations are in Table 1. To simu-
late paging, we implemented a simple LRU page replacement algorithm and assumed
the OS could service page faults infinitely fast (i.e. the OS is only limited by the
throughput of the hard drive). Unless mentioned otherwise, the memory span of ap-
plications is 32-bit, i.e. the distance between the start address of the lowest application
segment and the end address of the highest application segment is 232 bytes. The
benefit of our RAS approach will increase exponentially as the address space grows to
64 bits.

6.1 Initialization

We first show that dynamic trees
built over the RAS and managed by
the TMU reduce the memory capac-
ity and CPU time by several orders
of magnitude over equivalent VAS
trees. Note that the Y-axis of all
figures in this section is in loga-
rithmic scale. Figure 8 compares the
memory overheads caused by VAS
and RAS trees during initialization.
RAS trees have an initialization-
time memory overhead which varies
from one application to another
since they are initialized to cover
only those pages with contents de-
fined by the image. applu and
swim have the largest amount of

60 D. Champagne, R. Elbaz, and R.B. Lee

data defined by their image (both around 190 MB) and thus have the largest over-
heads (approximately 64 MB). The overheads caused by the TMU-managed trees are
on average three orders of magnitude lower than the ~4 GB overhead caused by VAS
trees. Figure 9 shows that the time taken for initialization closely follows the memory
overheads since every memory block covered by the tree must be processed during
initialization. Once again, the TMU dramatically reduces the overheads, by three
orders of magnitude on average.

Figure 10 shows the TMU and its RAS can accommodate 64-bit address spaces

with insignificant increase in memory overhead, while the VAS tree overhead is un-
manageable. It compares the memory overheads of the two schemes with gcc as an
example, for different memory spans. While the overhead of dynamic trees managed
by the TMU is constant, that of VAS trees increases with the memory span, going to
several exabytes (1 exabyte = 260 bytes) for a 64-bit memory span! Such an overhead
clearly prevents the scalability of VAS trees to larger virtual address spaces—unlike
our RAS tree.

6.2 Runtime

The size of VAS trees remains the same from initialization to completion of the appli-
cation’s execution. The size of RAS trees however increases with the application’s
dynamic memory needs. Figure 11 compares the memory overhead required for
the peak size RAS tree versus that of a VAS tree. It shows that even at its peak size,
the TMU-managed tree is still, on average, three orders of magnitude smaller than the
equivalent VAS tree.

We also ran numerous performance simulations to evaluate the impact of our
method on the runtime execution performance, measured in Instructions executed Per
Cycle (IPC). The IPC count with our TMU implementing RAS memory authentica-
tion is normalized to the IPC of an application without any integrity tree protection.

Fig. 10. Comparisons of tree overheads for different memory spans for gcc

Fig. 9. Initialization latencies. Average reduc-
tion with RAS: 3 orders of magnitude.

Fig. 8. Initialization-Time Memory Overheads.
Average reduction with RAS: 3 orders of
magnitude.

 The Reduced Address Space (RAS) for Application Memory Authentication 61

No performance degrad-
ation is indicated by an
IPC of 1. The results have
been obtained by simulat-
ing 500 million instruc-
tions on Simple-Scalar,
after having skipped 1.5
billion instruc-tions, to
obtain steady-state perfor-
mance. We studied how
varying hardware implementation, parameters, like cache size, page size, memory
bandwidth, and disk bandwidth affect the relative performance of VAS and RAS trees.

On the average, a TMU-managed tree degrades the IPC count by 5.15% with re-
spect to no integrity tree and by 2.50% with respect to a VAS tree, an acceptable
performance hit in most cases. For the latter, although the height of a RAS-tree is
always smaller than that of a VAS tree, the TMU seldom outperforms IPC perform-
ance for a VAS tree, due to the caching of tree nodes (in both VAS and RAS trees).
Because the microprocessor is considered our hardware security perimeter, data in on-
chip caches inside the microprocessor, including cached and validated tree nodes, are
considered trusted and safe from attacker manipulation. This caching of tree nodes
effectively makes lower level nodes into local sub-tree roots that allow for quick veri-
fications in tall trees.

Considering the extra work needed to add pages and grow the RAS tree during run-
time execution, our performance evaluations show that the runtime performance
overhead is negligible, while achieving huge benefits in memory overhead and ini-
tialization overhead.

7 Conclusion

In this paper, we have shown that PAS trees (integrity trees over physical address
spaces) are vulnerable to branch splicing attacks. We described in detail the branch
splicing attack to which PAS trees are susceptible but VAS trees (integrity trees over
virtual address spaces) are immune to. We explained why VAS trees generate
overheads (in space and time) so large as to deter their deployment for memory au-
thentication in general-purpose computers. We then introduced the concept of a dy-
namically expandable integrity tree, spanning a novel Reduced Address Space (RAS).
One novel aspect of our RAS tree is that it keeps track of both used and unused
pages—we save space by combining unused pages as Unused Page Ranges (UPRs),
and providing full integrity tree coverage to used pages. Our RAS tree is efficiently
managed by our proposed Tree Management Unit (TMU). At runtime, our TMU
maps into the Reduced Address Space (RAS) only those pages needed by the applica-
tion and builds an integrity tree over this dynamically expanding RAS. Compared to
existing VAS trees, our solution decreases the initialization latency and the memory
overheads by two to three orders of magnitude for 32-bit virtual address spaces
(VAS), with only a 2.5% hit on the runtime IPC count, in spite of the extra work in
growing the RAS tree. As opposed to VAS trees, our RAS solution can easily scale up
to provide memory authentication for large 64-bit virtual address spaces.

Fig. 11. Runtime Memory Overheads. Average reduction with
RAS: 3 orders of magnitude.

62 D. Champagne, R. Elbaz, and R.B. Lee

References

1. Blum, M., Evans, W., Gemmell, P., Kannan, S., Noar, M.: Checking the correctness of
memories. Algorithmica 12(2/3), 225–244 (1994)

2. Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0., Technical report, Uni-
versity of Wisconsin-Madison Computer Science Department (1997)

3. Elbaz, R., Champagne, D., Lee, R.B., Torres, L., Sassatelli, G., Guillemin, P.: TEC-Tree:
A Low Cost and Parallelizable Tree for Efficient Defense against Memory Replay Attacks.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 289–302.
Springer, Heidelberg (2007)

4. Gassend, B., Clarke, D., van Dijk, M., Devadas, S., Suh, E.: Caches and Merkle Trees for
Efficient Memory Authentication. High Performance Computer Architecture (HPCA-9)
(February 2003)

5. González-Barahona, J.M., Ortuño Pérez, M.A., Quirós, P.H., González, J.C., Olivera, V.M.:
Counting potatoes: the size of Debian 2.2 (2002), http://people.debian.org/
~jgb/debian-counting/counting-potatoes/

6. Hall, W.E., Jutla, C.S.: Parallelizable Authentication Trees. Selected Areas in Cryptogra-
phy, pp. 95–109 (2005)

7. Hatton, L.: Estimating source lines of code from object code: Windows and Embedded
Control Systems (2005), http://www.leshatton.org/LOC2005.html

8. Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millenniumm.
IEEE Computer (July 2000)

9. I.B.M.: IBM Extends Enhanced Data Security to Consumer Electronics Products. IBM (April
2006), http://www-03.ibm.com/press/us/en/pressrelease/19527.wss

10. Intel, Intel Trusted Execution Technology: Preliminary Architecture Specification (No-
vember 2006), http://www.intel.com

11. Kannan, K., Telang, R.: Economic analysis of market for software vulnerabilities. In:
Workshop on Economics and Information Security, Minneapolis, MN, USA (May 2004)

12. Lee, R.B., Kwan, P.C.S., McGregor, J.P., Dwoskin, J., Wang, Z.: In: Architecture for Pro-
tecting Critical Secrets in Microprocessors, Int’l Symposium on Computer Architecture
(ISCA-1932), pp. 2–13 (June 2005)

13. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz, M.: Ar-
chitectural Support for Copy and Tamper Resistant Software. In: Int’l Conf. on Architec-
tural Support for Programming Languages and OS (ASPLOS-IX), pp. 168–177 (2000)

14. Merkle, R.C.: Protocols for Public Key Cryptosystems. In: IEEE Symposium on Security
and Privacy, pp. 122–134 (1980)

15. Rogers, B., Rogers, B., Chhabra, S., Solihin, Y., Prvulovic, M.: Using Address Independ-
ent Seed Encryption and Bonsai Merkle Trees to Make Secure Processors OS- and Per-
formance-Friendly. In: Proc. of the 40th Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 183–196 (2007)

16. Shi, W., Lu, C., Lee, H.S.: Memory-centric Security Architecture. In: 2005 International
Conference on High Performance Embedded Architectures and Compilers (2005)

17. Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: Architecture for
Tamper-Evident and Tamper-Resistant Processing. In: Proc. of the 17th Int’l Conf. on Su-
percomputing (ICS) (2003)

18. Yan, C., Rogers, B., Englender, D., Solihin, Y., Prvulovic, M.: Improving Cost, Perform-
ance, and Security of Memory Encryption and Authentication. In: Int’l Symposium on
Computer Architecture (ISCA-1933), pp. 179–190 (June 2006)

 The Reduced Address Space (RAS) for Application Memory Authentication 63

Appendix A: Memory Integrity Trees

Existing techniques preventing the active attacks presented in our threat model are
based on tree structures [1, 3, 6, 14]. The common philosophy behind these methods
is to split the memory space to protect into N equal size blocks which are the leaf
nodes of a balanced A-ary integrity tree. The remaining tree levels are created by
recursively applying a function f—which we call the authentication primitive—over
A-sized groups of memory blocks, until the procedure yields a single node called the
root of the tree. The root reflects the current state of the memory space; making the
root tamper-resistant thus ensures tampering with the memory space can be detected.
The tree in Figure 1 is a 2-ary (binary) integrity tree.

Tree Authentication Procedure. For each memory block B, there exists a branch,
starting at B and ending at the root, composed of the tree nodes obtained by recursive
applications of f on B. When B is fetched from untrusted memory, its integrity is veri-
fied by recomputing the tree root using the fetched B and the nodes—obtained from
external memory—along the branch from B to the root. We know B has not been
tampered with when the recomputed root is identical to the on-chip root.

Tree Update Procedure. When a legitimate modification is carried out over a mem-
ory block B, the corresponding branch, including the tree root, is updated to reflect the
new value of B. This is done by first authenticating the branch B belongs to, then
computing on-chip the new values for the branch nodes, and storing the updated
branch and storing the tree root on-chip.

Merkle Tree. In a Merkle Tree [1, 14], f is a cryptographic hash function; the nodes
of the tree are thus simple hash values. The generic verification and update proce-
dures described above are applied in a straightforward manner. The root of this tree
reflects the current state of the memory space since the collision resistance property of
the cryptographic hash function ensures that in practice, the root hashes for any two
memory spaces differing by even one bit will not be the same. The integrity trees in
[3, 6], use different cryptographic primitives for f, but apply the same principles.

Cached Integrity Trees. [4] proposes to cache tree nodes in the on-chip L2 cache.
Upon fetching a tree node from main memory, it is checked, stored in L2 and trusted
for as long as it is cached on-chip. As a result, during tree authentication and tree
update procedures, the first node encountered in cache serves as a local root and ter-
minates the procedures.

An Efficient PIR Construction Using Trusted

Hardware

Yanjiang Yang1,2, Xuhua Ding1, Robert H. Deng1, and Feng Bao2

1 School of Information Systems, Singapore Management University,
Singapore 178902

2 Institute for Infocomm Research, Singapore 119613
{yyang,baofeng}@i2r.a-star.edu.sg,

{xhding,robertdeng}@smu.edu.sg

Abstract. For a private information retrieval (PIR) scheme to be de-
ployed in practice, low communication complexity and low computation
complexity are two fundamental requirements it must meet. Most ex-
isting PIR schemes only focus on the communication complexity. The
reduction on the computational complexity did not receive the due treat-
ment mainly because of its O(n) lower bound. By using the trusted hard-
ware based model, we design a novel scheme which breaks this barrier.
With constant storage, the computation complexity of our scheme, in-
cluding offline computation, is linear to the number of queries and is
bounded by O(

√
n) after optimization.

1 Introduction

Private Information Retrieval (PIR) was first formulated by Chor et al. in [5].
It offers a strong privacy assurance since it disallows any leakage of user query
information. Although PIR should be the ideal privacy guardian of commercial
database users, this did not happen. The reason is its prohibitively high cost, as
pointed out by Sion and Carbunar [12]. Their analysis shows that a carefully de-
signed PIR scheme with sophisticated cryptographic techniques costs even more
time delay than the most trivial solution of transferring the entire database. The
culprit for this unexpected effect is the expensive computation cost, which dom-
inates the overall time delay. In the standard PIR model, the lower computation
bound is obviously O(n) where n is the database size. A new model based on
trusted hardware was introduced in [7,8], which has a logarithm communication
complexity and constant online computational complexity. Nonetheless, those
schemes are not practical either, since they have to periodically shuffle the en-
tire database. Considering the scale of modern databases, a full database shuffle
disrupts the database service.

The objective of this paper is to narrow the gap between the ideality and
the practicability of PIR. We construct a practical PIR scheme using the same
trusted hardware model as in [7,8,14]. With a constant storage cost of the trusted
hardware, our construction requires O(log n) communication cost and O(

√
n)

computation cost per query including constant online computation and amor-
tized offline computation.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 64–79, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Efficient PIR Construction Using Trusted Hardware 65

Related Work. Many PIR constructions were proposed to reduce the commu-
nication complexity, including [4,11,9,10,2]. As shown in [13,7,8,14], the
communication complexity can be reduced to O(log n) by using a trusted hard-
ware embedded in the database server. In this model, a trusted hardware is
able to perform encryptions/decryptions and has a secret cache of reasonable
size for storing retrieved data items. Further advantage of this type of schemes
is the O(1) online computation cost for each query. However, all of them
require a database re-encryption and re-shuffle whenever the cache is full.
Since the available space in the cache decreases linearly with the number of
queries, a full database shuffle is performed frequently which requires O(n)
operations.

The previous work focusing on computation cost reduction is [3], where Beimel
et al. proposed a new model called PIR with Preprocessing. This model uses
k servers each storing a copy of the database. Before a PIR execution, each
server computes and stores polynomially-many bits regarding the database. This
approach reduces both the communication and computation cost to O(n1/k+ε)
for any ε > 0. However, it requires a storage of a polynomial of n bits, which
is infeasible in practice. A recent scheme [15] improves the communication
and computation complexity to O(log2 n) with a cache storing O(

√
n)

records.
We notice that the trusted hardware based PIR model is similar to the model

in ORAM [6]. But we stress that the ”square root” complexity in [6] and our
result are in different context. The square root solution of ORAM requires a
sheltered storage storing

√
n words, which is equivalent to using a cache storing√

n items in the PIR model. Our scheme in this work, however, only uses a
constant size cache.

Roadmap. We define the system model and the security notion of our scheme in
Section 2. A basic construction is presented in Section 3 as a steppingstone to
the full-fledged scheme in Section 4. Performance of our scheme is discussed in
Section 5, and Section 6 concludes the paper.

2 System Model and Definition

System Model. Our scheme follows the trusted hardware model used in [8,7,14].
The architecture consists of a group of users, a database D modeled as an array of
n data items of equal length denoted by d1, d2, · · · dn, respectively, and a database
host H where D is stored. A trusted component denoted by T is embedded in
H. To retrieve di, a user sends to T a query specifying the index i. T then
interacts with H which operates over the encrypted database, and at the end
of the execution, T returns di to the user. We assume that the communication
channel between users and T is confidential.

T is a tamper-resistant hardware with a cache for storing up to k data items,
k � n. No other entity (except T itself) is able to tamper T’s protocol executions
or access its private space including the cache. T is capable of performing certain

66 Y. Yang et al.

cryptographic operations, such as symmetric key encryptions/decryptions and
pseudo-random number generation. In practice T can be implemented by using
a specialized trusted hardware such as IBM PCIXCC [1].

Security Definition. The adversary in our model is the database host H, which
has polynomial-bounded computational power, and attempts to derive informa-
tion from the PIR protocol execution. The adversary is able to not only observe
accesses to its space, including all read/write operations on the database, but
also query the database like a legitimate user.

We use access pattern to describe the information observed by the adversary
within a time period of protocol execution. When T accesses H’s space including
the memory and disks, H observes the data in use and the involved positions.
The access pattern of length m ≥ 1 is defined as a sequence of m elements
〈α1, · · · , αm〉, where each αi represents the information observed by H during
an access to H’s space. We use AD to denote the set of all possible access patterns
generated by querying the database D.

The security notion in ORAM [6] is used here to measure the information
leakage from PIR query executions. A secure PIR scheme should ensure that
the adversary does not gain additional information about the queries from the
access pattern, except the a-priori information. This notion is similar to perfect
secrecy defined for ciphers where an adversary obtains no additional information
about the plaintext from the ciphertext. More formally, let Q be the random
variable representing a user query, whose value is the index of the requested
item, denoted by q ∈ [1, n]. Pr(Q = q), or simply Pr(q), denotes the probability
that a query is on dq. Then, the notion of privacy is defined as:

Definition 1. A PIR scheme is secure, iff for every database of n ∈ N items,
given a user query, for every valid access pattern, the conditional probability for
the event that the query is on any index q is the same as its a-priori probability,
i.e. ∀D = {d1, · · · , dn}, ∀q ∈ [1, n], ∀A ∈ AD, Pr(Q = q|A) = Pr(Q = q). �

3 Basic Construction

3.1 Overview

We briefly recall the idea of the schemes in [8,7,14] which are the predecessor of
ours. During the system initialization, the database is encrypted and permutated
by a trusted authority. All subsequent retrievals are operated upon the encrypted
database. The database service is provided in sessions. A session starts when T’s
cache is empty and ends when it is full. During a session, T retrieves the requested
item from the database if it is not in the cache; otherwise, a random item is read.
At the end of the session, the entire database is shuffled, and then a new session
commences. The objective of database shuffles is to re-mix the touched records
within the database, so that the database host has no idea whether a record in
the newly shuffled database has ever been read.

We observe that shuffling the entire database is not indispensable, as long
as user queries generate access patterns of identical distribution. Based on this

An Efficient PIR Construction Using Trusted Hardware 67

observation, we in in this work propose a new PIR scheme with partial shuffles,
where only those records that have ever been accessed are shuffled. We also
design a novel twin retrieval method, which forces user queries to generate access
patterns of the same distribution. A conceptual view of the protocol execution
is as follows. A record is labeled black if it has ever been accessed. Otherwise,
it is white. During the system initialization, T generates a secret key sk for a
semantically secure cipher, and a secret random permutation σ : [1, n] → [1, n].
Every item di in D and its index i are encrypted under sk and written into the
σ(i)-th position of D0 as a record. In the rest of the paper, we refer to an entry
in the original database D and its location as item and index, and refer to an
entry in the encrypted database and its location as record and position. We use
di to denote the i-th item in D, and ai to denote the i-th record in the shuffled
database. After D0 is generated, all records in D0 are initially white.

Our PIR service also proceeds in sessions, and the encrypted database in the
s-th session is denoted by Ds. During a session, for each user query T executes
a twin retrieval : if the requested item di is in the cache, T reads one random
black record and one random white record from Ds; otherwise, T reads the
corresponding record and reads one random record in a different color. After
the cache is full, T then generates a new random secret permutation πs+1 for
all black records and updates Ds into Ds+1 by shuffling and re-encrypting all
black records. Those white records remain intact. After the partial shuffle, H
only knows that a black record has ever been read, but does not know in which
session and how many times it has been accessed.

The key problem in implementing this approach is how T securely decides
whether a record is black or white. While the label bits of the black records are
set, T can not directly access H to check those bits since the access implicates
that those records are sought by T. In the following, we assume that T’s cache
is big enough to accommodate the positions of all black records, so as to facil-
itate better understanding the idea of our new PIR approach. We remove this
assumption in Section 4 by introducing an improved construction.

3.2 A Basic PIR Scheme

We use an array B to keep the black positions in an ascending order. If ax is a
black record and B[i] = x, we say that i is the B-Index of ax. B is stored in H’s
space and maintained by H: whenever a record is read, it updates B. We use
Bs to denote B’s state in the beginning of the s-th session. T copies B into its
cache before a session starts. During a session, B is updated, whereas T’s copy
is not changed. Note that for each record read into the cache, T needs to store
the corresponding data item and its index in the cache. We denote the cache
content by C and use C.Ind to denote the set of all stored indices.

A permutation πs, s ≥ 1, specifies the mapping between the sets of black
positions in Ds and D0. It is essentially a permutation of B-indexes of all black
records. Let Z|B| = {1, 2, · · · , |B|}. Formally, the permutation πs : Z|B| → Z|B|,
is defined as: πs(i) = j if and only if Ds[Bs[j]] and D0[Bs[i]] contain the same
item, which is D[σ−1(Bs[i])]. Note that σ is a mapping between all entries in

68 Y. Yang et al.

D0 and D. The relations among these notations are D
σ=⇒ D0

πs−→ Ds. With
Bs, πs and σ, we are able to locate a record in Ds for a given item index. The
PIR protocol proceeds in sessions shown below.

Session 0. T executes k queries using the retrieval algorithm in [14]. Specifically,
for a query on the i-th item of D, i ∈ [1, n], if the requested one is not in T’s cache
C, T reads the σ(i)-th record from D0 into C. Otherwise, T retrieves a random
record. At the end of the session, T generates a new random secret permutation
π1 : [1, k] → [1, k]. It shuffles the k black records according to π1 while leaving the
white records intact. Since all records to be shuffled are in C, T simply re-encrypts
and writes them out sequentially to generate D1, and clears the cache.

Session s ≥ 1. When session s starts, C is empty. T processes k/2 queries in the
session. For a user query, T executes Algorithm 1 shown below. At the end of
the session, T executes Algorithm 2 to shuffle all black records.

Algorithm 1. Basic Twin Retrieval Algorithm in Session s ≥ 1. Input: a query on
i, i ∈ [1, n], Bs[1, (s + 1)k/2]. Output: the item di ∈ D.

1: Through the secure channel, T accepts a query from the user requesting the i-th
item in D.

2: if i �∈ C.Ind then
3: j = σ(i).
4: binary-search j in Bs; /*we do not elaborate the binary-search algorithm since it

is a standard one*/
5: if exists u, s.t. Bs[u] = j then
6: di is black; Read Ds[Bs[πs(u)]] as di and read a random white record;
7: else
8: di is white; read a random black record and read Ds[j] as di;
9: end if

10: else
11: read a random black record and a white record from Ds into C.
12: end if
13: return di to the user.

We now explain the retrieval algorithm (Algorithm 1) and the shuffle algo-
rithm (Algorithm 2). In Algorithm 1, T searches Bs to determine the color of
the requested record. For a white record, T directly uses its image under σ to
read the data, since it has never been shuffled. For a black records, T computes
its B-index under πs and then looks up Bs to locate its position in Ds. Since Bs

is inside T’s cache, all accesses are not visible to the server. For a query execu-
tion, H only observes one read to a black record and one read to a white record.
After k/2 queries, the cache is full, where half are black and half are white. B
maintained by H now has (2 + s)k/2 entries.

The partial shuffle is to mix the black records including those newly retrieved
during the session, so that they are randomly relocated in Ds+1. The basic idea of
the algorithm is the following: T updates the black positions in Ds sequentially.
For each black position, T figures out the location of its preimage under πs+1.

An Efficient PIR Construction Using Trusted Hardware 69

Algorithm 2. Basic Partial Shuffle Algorithm executed by T at the end of s-th
session, s ≥ 1. Input: B with (2 + s)k/2 black records, cache C with k/2 black and
k/2 white records; Output: Ds+1.

1: scan B. For each item in the cache, calculate its index in B.
2: secretly generate a random permutation πs+1 : Z|B| → Z|B|.
3: for (i = i′ = 1; i ≤ sk/2; i ++) do
4: j = π−1

s+1(i
′);

5: while σ−1(Bs[j]) ∈ C.Ind and i′ ≤ sk/2 do
6: i′ = i′ + 1; j = π−1

s+1(i
′); /∗find one not from C∗/

7: end while
8: count δ as the number of white indexes in C which are smaller than j,
9: compute v = πs(j − δ); read Ds[Bs[v]].

10: if i �= i′ then
11: Re-encrypt Ds[Bs[v]] into Ds+1[B[i]];
12: else
13: Insert Ds[Bs[v]] to cache. Retrieve the corresponding item from C and re-

encrypt it to Ds+1[B[i]].
14: end if
15: i′ = i′ + 1;
16: end for
17: write the remaining k records in C to Ds+1 accordingly, securely eliminate πs−1.
18: copy B into the cache as Bs+1. End the session.

If the preimage is in C, T finds the next position whose preimage is not in C
(as shown in Step 5, 6, 7). The computation of the preimage location involves
the composition of π−1

s+1 and πs. Since π−1
s+1’s range is larger than πs’s domain, a

translation from an index in Bs+1 to Bs is needed (Step 8). As Bs+1 is actually
a combination of sorted Bs and the white positions (positions of newly retrieved
white records) in sorted C, we are ensured that Bs+1[i] = Bs[i − δ] (Step 8),
where δ is the number of white indices in C smaller than i. The average cost of
finding δ is O(log k) (The cost can be reduced to O(1) by keeping two copies
of B in the cache and using pointers to link them.). Among the variables used
in Algorithm 2, B[i] points to the black position in Ds+1 for writing whereas
Bs[i′] points to the black position in Ds for reading. None of them decreases.
Therefore, the overall complexity is O(sk log k).

3.3 Security Analysis

Due to the length limit, we only formalize the security of our scheme by pre-
senting the following lemmas, whose proofs are available in Appendix. Lemma 1
shows that the basic partial shuffle (Algorithm 2) is uniform in the sense that
after the partial shuffle at the end of Session s, the previous black records in
Ds and the white records retrieved during the session are randomly re-located
to Ds+1. Thus, all black records appear indistinguishable to H. Then, Lemma 2
claims that at any time, the access patterns for any two queries of the basic
twin retrieval algorithm (Algorithm 1) have the same distribution. Finally, by

70 Y. Yang et al.

the results of Lemma 1 and Lemma 2, we prove in Theorem 1 that the basic
PIR scheme is secure, satisfying Definition 1.

Lemma 1 (Uniform Shuffle). The basic partial shuffle algorithm performs a
uniform shuffle on all black records. Namely, ∀s > 0, ∀j, i ∈ Bs,

Pr(Ds[j] � D0[i] |A0,R0, · · · ,As−1,Rs−1) = 1/|Bs|,

where Al and Rl, l ∈ [0, s − 1] are the access pattern and the reshuffle pattern
for the l-th session, respectively. Ds[j] � D0[i] means Ds[j] and D0[i] have the
same plaintext.

Lemma 2 (Uniform Access). Let Q be the random variable for the requested
item’s index in D. Let (X, Y) be the two-dimensional random variable for the
positions of the black record and the white record accessed in the twin retrieval
algorithm corresponding to Q. ∀q1, q2 ∈ [1, n], suppose A is the access pattern
when Q = q1 or Q = q2 is executed, then Pr((X = x, Y = y) | A, Q = q1) =
Pr((X = x, Y = y) | A, Q = q2).

Theorem 1 (Security of PIR). Let AK be the access pattern of K database
accesses. For query Q, ∀q ∈ [1, n], ∀K ∈ N, ∀AK , Pr(Q = q | AK) = Pr(Q = q).

4 A Construction without Storage Assumption

In this section, we propose an improved scheme without assuming T’s capability
in storing B. As we mentioned earlier, the exposure of accesses to B leads to
security breaches, since it indicates that the accessed ones are entries pertaining
to the query in execution. Informally, the access to B requires a PIR-like solution.
A trivial solution is to treat B as a database and to run a PIR query on it.
Surely, the cost of this approach seriously counteracts our effort to improve the
computational efficiency. We design a much more efficient solution due to the
fact that T has the prior knowledge of those accesses.

4.1 Auxiliary Data Structures

Management of Black Positions. Recall that Ds is a result of a partial
shuffle under the permutation πs : Z|B| → Z|B|. We use |B| pairs of tuples 〈x, y〉
to represent this mapping, where x ∈ Zn is a position in D0 and y ∈ Zn is the
corresponding position under πs in Ds. T selects a deterministic symmetric key
encryption scheme e(·) and a secret key u. Let fu(x) = H(eu(x)), where H is
a hash function. These |B| half-encrypted pairs are stored in an sorted array
L = [(fu(x1), y1), (fu(x2), y2) · · · , (fu(x|B|), y|B|)], where y1 < · · · < y|B|. Note
that the sequence of y-values in L is exactly array B, which explains why we
leave y-values in plaintext. However, B is updated by H due to query executions
whereas L is not. We also build a complete binary search tree Γ where the tuples
in L are the leaves in the following manner: from left to right, the leaves are

An Efficient PIR Construction Using Trusted Hardware 71

sorted in an ascending order of fu(x) values. All the |B| − 1 inner nodes are
integers randomly assigned by T according to their left and right children.

T makes use of L and Γ to decide whether an item is a white or black record,
and to read a specific or random black record.

– To read an item with index x: If fu(σ(x)) is smaller than the leftmost leaf
or larger than the rightmost leaf of Γ , T immediately knows that σ(x) is a
white position. Otherwise, it runs a binary search for fu(σ(x)) in Γ . Suppose
that the search ends at a leaf node 〈fu(x′), y〉. If fu(x) = fu(x′), y is the
position of the requested item; otherwise, y is taken as a randomly selected
black position.

– Random search: Starting from the root, T tosses a coin at each level to select
either the left child or the right child as the next node to read. In the end,
it returns a leaf.

L and Γ are (re)constructed at the end of each session. L is initialized when T
executes the partial shuffle under πs whose algorithm is explained Section 4.2.
During a shuffle, T sequentially writes to those positions stored in B, which
is exactly y-values in L. Therefore, for each data item di relocated to the black
position stored at B[r], T sets L[r] = 〈fu(σ(i)), B[r]〉, where u is a new encryption
key. Once L is established, construction of Γ is straightforward.

Management of White Positions. We need to manage white records as well.
The |B| black records virtually divide the database into white segments, i.e.
blocks of adjacent white records. We use an array W [] in H’s space to sequentially
store these white segments, such that W [i] = 〈l, m, M〉 indicating that the i-th
white segment in the database starts from the record al and contains m white
records. We set W [i].M =

∑i−1
j=1 W [j].m+1 such that al is the W [i].M -th white

record in the database. Different from L and Γ , W is managed by H. T makes
use of W to read white records in the following manner.

– To read the white record with index x: T runs a binary search on W for the
address σ(x), such that it stops at W [i], such that W [i].l ≤ σ(x) < W [i+1].l.
Then, it reads the σ(x)-th records from Ds.

– Random search: T generates r ∈R [1, n − |B|]. Then it runs a binary search
on W for the r-th white record in Ds, such that it stops at W [i], such that
W [i].M ≤ r < W [i + 1].M . Finally, it returns y = W [i].l + r − W [i].M .

For both cases, H only observes two search paths, which H cannot differentiate
the two types of retrievals.

We need to store more information in C as well. Suppose that T retrieves a
record aj into C. A new entry is created as a tuple (BIndex, Color, Ind,Data)
where Ind and Data are the corresponding item’s index and value, respectively;
Color is set to ’B’ if aj was black before retrieval; otherwise Color is set to ’W’;
BIndex is set to aj ’s B-Index with respect to D0. We use C[i] to denote the i-th
entry of the cache, C.Ind to denote the set of all entries’ Ind values, C.BIndex
to denote the set of all entries’ BIndex values. Note that Bs is no longer used,
as B is not stored in C.

72 Y. Yang et al.

4.2 The Improved Scheme

We are now ready to present the scheme. It proceeds in a similar way as the
basic scheme in Section 3.2. The difference is that since Session 1, T executes
Algorithm 3 for a query execution and Algorithm 4 for the partial shuffle. Algo-
rithm 3 shows how to process a query during the s-th session, s ≥ 1. Note that
|B| = (s + 1)k/2 when session s starts.

Algorithm 3. Improved Twin Retrieval Algorithm in Session s ≥ 1, executed by T.
Input: a user query on i ∈ [1, n]. Output: the data item di ∈ D.

1: Through the secure channel, T accepts a query from the user requesting for the
i-th item in D.

2: min = B[1]; max = B[(s+1)k/2]; /∗(min, max) is the range of black positions.∗/

3: i′ = σ(i);
4: if i ∈ C.Ind then
5: randomly search Γ which returns 〈fu(x), y〉. Then jb ← y.
6: randomly search W which returns jw.
7: else
8: if i′ < min or i′ > max then
9: randomly search Γ which returns 〈fu(x), y〉. Then jb ← y.

10: else
11: search Γ for fu(i′) which returns 〈fu(x, y)〉. Then jb ← y.
12: end if
13: if fu(x) = fu(i′) then
14: randomly search W which returns jw.
15: else
16: search W for i′, which returns 〈l, m,M〉. Then jw ← i′.
17: end if /∗Note that fu() is deterministic.∗/
18: end if
19: read the jb-th and the jw records from Ds, and creates two new entries for them

C accordingly; return di to the user.

Access Pattern of Retrievals. We use As to denote the access pattern produced
by Algorithm 3. There are three types of accesses to H’s space. The first type
is the database accesses. For simplicity, we use the accessed black and white
positions, denoted by (αi, α

′
i), as the access pattern in the i-th query execu-

tion. The second type is the accesses to W during the searches. The output of
a binary search on W determines the involved search path. Furthermore, the
output of a search can be derived by observing the subsequent database access.
Therefore, the second type of accesses does not reveal extra information. We do
not include it in As. The third type is the retrieval of elements in Γ . Similar
to the previous reasoning, the access to Γ does not divulge extra information
and is not included either. According to Algorithm 3, totally k/2 queries are
executed in a session. Thus, the access pattern produced during the s-th session
is As = 〈α1, α

′
1, · · · , αk/2, α

′
k/2〉. The access pattern in Session 0 is an exception,

since one record is retrieved per query: A0 = 〈α1, · · · , αk〉.

An Efficient PIR Construction Using Trusted Hardware 73

Algorithm 4 shows how to perform a partial shuffle at the end of the s-th
session. Note B has expanded from (s+1)k/2 elements to (s+2)k/2 elements due
to the k/2 retrievals of white records in this session. The partial shuffle process
requires (s + 2)k/2 database writes and sk/2 database reads. We remark that
the computation cost for constructing Γ ′ is not expensive for the following two
reasons. First, those operations are memory based integer comparisons, which
are much cheaper than database accesses. Second, the sorting process can be
done by H.

Algorithm 4. Improved Partial Shuffle Algorithm executed by T at the end of s-th
session, s ≥ 1. Input: cache C with k/2 black and k/2 newly retrieved white records;
Output: Ds+1, Γ ′ and L′.
1: scan B and assign the BIndex field for each entry in C. Specifically, for every

1 ≤ b ≤ |B|, if ∃a ∈ [1, k], s.t. σ(C[a].Ind) = B[b], then set C[a].BIndex = b.
2: generate a secret random permutation πs+1 : Z|B| → Z|B|, and a new encryption

key u′.
3: for (i = i′ = 1; i ≤ sk/2; i ++) do
4: j = π−1

s+1(i
′);

5: while σ−1(B[j]) ∈ C.Ind and i′ ≤ sk/2 do
6: i′ = i′ + 1; j = π−1

s+1(i
′); /∗find one not from C∗/

7: end while
8: count δ as the number of white indexes in C which are smaller than j,
9: compute v = L[πs(j − δ)].y; Read Ds[v]. Suppose that Ds[v] = Esk(x, dx).

10: if i′ = i then
11: Re-encrypt Ds[v] into the Ds+1[B[i]];
12: L′[i] ← 〈fu′(σ(x)),B[i]〉;
13: else
14: insert a 4-tuple 〈0, ’B’, x, dx〉 into C.
15: find l ∈ [1, k] satisfying C[l].BIndex = π−1

s+1(i). Insert Esk(C[l].Ind, C[l].Data)
to Ds+1[B[i]].

16: L′[i] ← 〈fu′(σ(C[l].Ind)), B[i]〉.
17: end if
18: i’=i’+1
19: end for
20: write the remaining k records in the cache to Ds+1 and assign L′ accordingly.
21: construct Γ ′ based on L′ and discard πs, L, Γ .

Access Pattern of Shuffles. We use Rs to denote the access pattern produced
by Algorithm 4 at the end of the s-th session. There are three types of accesses.
The first type is the accesses to B. However, since all accesses to B are in a
predetermined order, they do not leak any information (they can be generated
correctly by H without observing the execution). We exclude them from Rs.

The second type is the read and write accesses to the database. According to
our algorithm, a read access is always followed by a write access. The sequence
of the writes are known to H before the shuffle, since it follows the sequence
of positions in B. Furthermore, the contents of the writes are new ciphertext
under a semantic secure encryption. Therefore, the access pattern of writes does

74 Y. Yang et al.

not expose information to H. Considering the read pattern only, we use αi, the
position of the i-th read access, to represent the access pattern.

The third type of accesses is the read operations on L and the write operations
on L′. Every write to L′ is always preceded by a read access to the database.
Moreover, the sequence of writings to L′ and the contents of L′, except those
encryptions, can be determined by H without observing the execution. Therefore,
the write accesses on L′ do not leak information. Every read operation on L
exposes the touched index of L and a black position y. However, the exposed
black position y can also be determined by observing the subsequent database
read. Since L is known to H, knowing the black position y naturally implies the
knowledge of its position in L. Thus, it suffices to represent the access pattern
only using the database accesses, i.e. Rs = 〈α1, · · · , αsk/2〉, where αi ∈ [1, n], 1 ≤
i ≤ sk/2.

The shuffle at the end of Session 0 is a special case, where all records to be
shuffled are in T’s cache. T simply writes them out to the corresponding positions
following the permutation π1, in which case, R0 = ∅.

4.3 Security Analysis

Security analysis of the improved scheme is based on that of the basic scheme.
By Lemma 3 and Lemma 4, we show that the improved partial shuffle algorithm
(Algorithm 4) and the improved twin retrieval algorithm (Algorithm 3) also
perform a uniform shuffle and a uniform access, respectively. This in turn implies
that Theorem 1 also holds for the improved scheme.

Lemma 3. Lemma 1 also holds for the improved partial shuffle algorithm (Al-
gorithm 4).

Proof (sketch): We compare the access patterns of the improved scheme with
those of the basic scheme. The analysis in Section 4.1 has shown that the accesses
to Γ and L do not leak extra information. Both shuffle patterns have the same
distribution, since they are only determined by the permutations in use. Thus
the proof for Lemma 1 is also valid for Algorithm 4. �

Lemma 4. Lemma 2 also holds for the improved twin retrieval algorithm (Al-
gorithm 3).

Proof (sketch): The only difference between patterns generated by Algorithm 1
and Algorithm 3 is that the latter uses the search of Γ to generate a random
black record. Nonetheless, under the random oracle mode, the function fu(·)
outputs a random number. �

5 Scheme Complexity

The communication cost of our scheme remains the same as other hardware-
based PIR schemes [8,7,14]. Namely, it requires O(log n) communication com-
plexity, as the user inputs a logn-bit long index of the desired data item, and T

An Efficient PIR Construction Using Trusted Hardware 75

returns exactly one item of constant length. The database read/write are counted
as a part of the computation cost. Note that O(log n) is the lower bound of com-
munication complexity for any PIR construction.

When considering the computational complexity, we regard an access to the
host H’s space and a decryption/encryption as one unit of operation. In the s-th
session, a query retrieval using Algorithm 3 requires O(log(sk)) operations due
to the task of a binary search in Γ . A partial shuffle at the end of the s-th session
requires O(sk log k) operations. Thus, the overall computation cost in all s-th
sessions is O(s2k log k) for totally (2+s)k/2 query executions. Consequently, the
average cost per query for s sessions is O(s log k), which is independent of the
database size.

When the session number s reaches the order of n, the advantage of our scheme
diminishes. A remedy to this problem is to shuffle the entire database at the end
of the t-th session. The full shuffle resets the system to its initial state (Session
0). All records are colored white again, as the traces of all previous accesses are
removed. Since an early full shuffle might not be able to fully exploit the benefits
of partial shuffles, it is necessary to determine an optimal t. Recall that a full
shuffle costs O(n) operations. With a full shuffle for every t sessions, the total
cost for s sessions becomes O((t2k log k + n)s/t) and the average cost per query
is O(t log k+n/tk) which is minimal when t log k = n/tk. Therefore, the optimal

value for t is
√

n
k log k . The cost per query becomes O(

√
n log k

k).

A comparison of our scheme against other PIR schemes is given in Table 1.
Note that all previous hardware-based schemes [7,8,13,14] claim O(1) compu-
tation complexity since they only count the cost of database accesses. In fact,
all of them requires O(log k) operations to determine if an item is in cache. Our
scheme also has O(1) database read/write, though we need an additional cost for
a binary search in Γ . For those PIR schemes without using caches, the computa-
tion cost per query is at least O(n). From the table, it is evident that our scheme
substantially outperforms all other PIR schemes in terms of average query cost
by paying a slightly higher price of online query processes.

Table 1. Comparison of Computation Performance

Schemes
Cost of online query
process

Average overall cost
per query

Our scheme O(logs+logk) O(s log k)

Our scheme with full-shuffles O(logs+logk) O(
�

n log k
k

)

Scheme in [14] O(1) O(n/k)

Scheme in [7,8] O(1) O(n log n
k

)

Scheme in [13] O(1) O(n)

Other PIR schemes without
using caches

O(n) O(n)

Notations: n: the database size; s: the number of sessions; k: the size of the cache,
k << n.

76 Y. Yang et al.

6 Conclusion

All existing PIR schemes have O(n) computational cost for each query. In this
paper, we broke this barrier using a novel approach for database retrieval and
shuffle. The average cost per query is reduced to O(s) where s is the number
of queries, or O(

√
n) in maximum if an optimization is used. We proved the

security of our scheme.

Acknowledgement

This research is partly supported by the Office of Research, Singapore Manage-
ment University.

References

1. Arnold, T., Doorn, L.V.: The ibm pcixcc: A new cryptographic coprocessor for the
ibm eserver. Journal of Research and Development 48 (May 2004)

2. Beimel, A., Ishai, Y., Kushilevitz, E., Raymond, J.-F.: Breaking the o(n1/(2k−1))
barrier for information-theoretic private information retrieval. In: Proceedings of
IEEE FOCS 2002, pp. 261–270 (2002)

3. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000)

4. Chor, B., Gilboa, N.: Computationally private information retrieval. In: Proceed-
ings of the 29th STOC 1997, pp. 304–313 (1997)

5. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
In: Proceedings of IEEE FOCS 1995, pp. 41–51 (1995)

6. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM 43(3), 431–473 (1996)

7. Iliev, A., Smith, S.: Private information storage with logarithm-space secure hard-
ware. In: Proceedings of International Information Security Workshops, pp. 199–
214 (2004)

8. Iliev, A., Smith, S.: Protecting client privacy with trusted computing at the server.
IEEE Security & Privacy 3(2), 20–28 (2005)

9. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, compu-
tationally private information retrieval. In: Proceeding of the 38th IEEE FOCS
1997, pp. 364–373 (1997)

10. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for
non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer, Heidelberg (2000)

11. Ostrovsky, R., Shoup, V.: Private information storage. In: Proceedings of the 29th
STOC 1997, pp. 294–303 (1997)

12. Sion, R., Carbunar, B.: On the computational practicality of private information
retrieval. In: Proceedings of NDSS 2007 (2007)

13. Smith, S., Safford, D.: Practical server privacy with secure coprocessors. IBM Sys-
tems Journal 40(3), 683–695 (2001)

14. Wang, S., Ding, X., Deng, R., Bao, F.: Private information retrieval using trusted
hardware. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS,
vol. 4189, pp. 49–64. Springer, Heidelberg (2006)

15. Williams, P., Sion, R.: Usable PIR. In: Proceedings of NDSS 2008 (2008)

An Efficient PIR Construction Using Trusted Hardware 77

Appendix

Proof of Lemma 1 (Sketch): This proof is nearly the same as Lemma 1 in [14]
with the only difference being what records to be shuffled. An intuitive expla-
nation is that we can treat the black record set pointed by Bs as a database in
[14]. There exist two critical points of the proof. 1) For any record in the cache,
the probability of a black position in Ds being chosen as the shuffle destination
is exactly 1

Bs
. In other words, its image position in Bs is uniformly selected.

This is obvious since its is determined by a random πs. As it is written from
the cache, the selection of the position is independent of those access patterns.
2) For any record not in the cache, its preimage position in the previous shuffle
was uniformly chosen from black positions in Ds−1 pointed by Bs−1. This is
addressed by using induction on s. �

Proof of Lemma 2 (Sketch): Assume that Q is executed at session s. We prove
the theorem by examining the cases when s = 0 and s ≥ 1.

I: s = 0. The theorem clearly holds as D0 is a random permutation of D. There-
fore, for each instance of Q on D, its image Y on D0 is uniformly distributed.
X is always 0.

II: s ≥ 1. According to the algorithm, for a query Q, a black record and a white
record are read. Define I = {i|i ∈ [1, n], i ∈ C} containing the indices whose
corresponding items are in the cache, and J1 = σ−1(Bs) \ I containing the
indices of black records, but presently not in the cache, and J2 = [1, n]\ (I ∪J1),
containing the indices whose corresponding items have never been accessed so
far. To prove the theorem, it is sufficient to demonstrate that for any q ∈ [1, n],
Pr((X = x, Y = y) | A, Q = q) remains the same in the following cases covering
all possibilities of q.

– Case (1) q ∈ J1. T reads the corresponding black record and a random white
record from Ds. Due to Lemma 1, the corresponding record could be in any
position in Bs with the same probability. Therefore Pr(X = x | A, q) = 1

|Bs| .
Y is a random retrieval, which is independent of A. Therefore, Pr((X =
x, Y = y) | A, Q = q) = (1

|Bs| ,
1

n−|Bs|).
– Case (2) q ∈ J2. T reads a random black record and the corresponding

white record from Ds. The position of the white records is determined by σ.
Therefore, Pr(Y = y | A, q) = 1

n−|Bs| . X is a random retrieval independent
from A. Therefore Pr((X = x, Y = y) | A, Q = q) = (1

|Bs| ,
1

n−|Bs|).
– Case (3) q ∈ I. Both X and Y are randomly retrieved. So Pr((X = x, Y =

y) | A, Q = q) = (1
|Bs| ,

1
n−|Bs|)

This completes the proof. �

Proof of Theorem 1 (Sketch): It is equivalent to prove that ∀K ∈ N, Pr(AK |
Q = q) = Pr(AK). Fix a session s, we prove the theorem by using induction on
the size of AK .

78 Y. Yang et al.

I: When K = 1, our target is to prove that Pr(X = x, Y = y | Q = q) =
Pr(X = x, Y = y), ∀x, y ∈ [n].

Pr(x, y) =
∑n

i=1 Pr(x, y |i)Pr(i). Consider Pr(x, y | i). There are two cases:

– The record corresponding to i is in Bs. Therefore, Pr(x) = 1
|Bs| , due to the

initial permutation; Pr(y) = 1
n−|Bs| due to random access.

– The record corresponding to i is in [n]\Bs. Therefore, Pr(x) = 1
|Bs| , due to

random access; Pr(y) = 1
n−|Bs| due to the initial permutation.

Thus, in both case Pr(x, y | i) = (1
|Δ| ,

1
n−|Δ|) for both cases. Obviously, Pr(x, y |

i) = Pr(x, y | j) for all i, j ∈ [1, n]. Consequently, Pr(x, y)=Pr(x, y | q)
∑n

i=1 Pr(i)
= Pr(x, y | q), ∀q ∈ [1, n].

II: Suppose that when K = k−1, the equation holds. We then prove that it still
holds when K = k, i.e. Pr(Ak | Q = q) = Pr(Ak). Without loss of generality, let
Ak = Ak−1 ∪ (x, y), where (X = x, Y = y) is the k-th database read.

Pr(Ak−1, (x, y) | q) = Pr(Ak)
Pr(Ak−1, x, y, q)

Pr(q)
= Pr(Ak−1, (x, y))

Pr(x, y | Ak−1, q)Pr(Ak−1, q)
Pr(q)

= Pr(Ak−1, (x, y))

Pr(x, y | Ak−1, q) =
Pr(Ak−1, x, y)
Pr(Ak−1 | q)

Pr(x, y | Ak−1, q) = Pr(x, y | Ak−1)
(∵ induction assumption)

Note that there are three exclusive cases for Q = q.

1. Q = q occurs after the k-th database access;
2. Q = q is the query for the k-th database access;
3. Q = q occurs prior to the k-th database access.

We proceed to prove that the above equation holds for all three different cases.

Case 1: Obviously, in this scenario, Ak−1 and (x, y) are independent of Q = q.
Therefore, Pr(x, y | Ak−1, q) = Pr(x, y | Ak−1).

Case 2: Note that

Pr(x, y | Ak−1) =
n∑

q=1

Pr(x, y | Ak−1, q)Pr(q | Ak−1),

where Q = q is the query corresponding (x, y). Due to Lemma 2, Pr(x, y |
Ak−1, q) = Pr(x, y | Ak−1, q

′), ∀q, q′ ∈ [1, n]. Therefore,

Pr(x, y | Ak−1) = Pr(x, y | Ak−1, q)
n∑

i=1

Pr(i | Ak−1).

An Efficient PIR Construction Using Trusted Hardware 79

According to the induction, Pr(i | Ak−1) = Pr(i), we have Pr(x, y | Ak−1) =
(x, y | Ak−1, q).

Case 3: Let Q′ be the random variable for the k-th query which generates (x, y).
Considering all possible values of Q′, denoted by q′, we have

Pr(x, y|Ak−1, q) =
n∑

q′=1

Pr(x, y | Ak−1, q, q
′)Pr(q′ | Ak−1, q)

Note that Pr(x, y | Ak−1, q, q
′) = Pr(x, y | Ak−1, q

′) since (x, y) is determined
by Q′ and Ak−1 according to our PIR algorithm. Therefore,

Pr(x, y|Ak−1, q) =
n∑

q′=1

Pr(x, y | Ak−1, q
′)Pr(q′ | Ak−1, q)

Since Q′ = q′ is independent of Ak−1 and Q = q, thus

Pr(x, y|Ak−1, q) =
n∑

q′=1

Pr(x, y | Ak−1, q
′)Pr(q′ | Ak−1)

= Pr(x, y | Ak−1). �

Athos: Efficient Authentication of

Outsourced File Systems�

Michael T. Goodrich1, Charalampos Papamanthou2, Roberto Tamassia2,
and Nikos Triandopoulos3

1 Dept. of Computer Science, U. California, Irvine, USA
goodrich@ics.uci.edu

2 Dept. of Computer Science, Brown University, USA
{cpap,rt}@cs.brown.edu

3 Dept. of Computer Science, University of Aarhus, Denmark
nikos@daimi.au.dk

Abstract. We study the problem of authenticated storage, where we
wish to construct protocols that allow to outsource any complex file sys-
tem to an untrusted server and yet ensure the file-system’s integrity. We
introduce Athos, a new, platform-independent and user-transparent ar-
chitecture for authenticated outsourced storage. Using light-weight cryp-
tographic primitives and efficient data-structuring techniques, we design
authentication schemes that allow a client to efficiently verify that the file
system is fully consistent with the exact history of updates and queries
requested by the client. In Athos, file-system operations are verified in
time that is logarithmic in the size of the file system using optimal storage
complexity—constant storage overhead at the client and asymptotically
no extra overhead at the server. We provide a prototype implementation
of Athos validating its performance and its authentication capabilities.

1 Introduction

Current trends in the design of data-storage systems are towards decentralized
and networked architectures where data resides “in the cloud”, outside any ad-
ministrative control, and is being manipulated in storage units of minimal trust
assumptions (e.g., NAS or SAN, storage providers, Internet-based computing).
Operating on remotely managed data inherently entails security risks: when the
storage provider is not trusted by the data source, verifying the integrity of the
stored data and the correctness of the computations performed on this data
is necessary to ensure the trustworthiness of the storage system; and verifying
complex operations over general file systems efficiently is rather challenging.
� Research supported in part by the U.S. National Science Foundation under grants

IIS–0713403, IIS-0713046, CNS-0312760 and OCI–0724806, the I3P Institute under
a U.S. DHS award, the Center for Algorithmic Game Theory at the University of
Aarhus under an award from the Carlsberg Foundation, the Center for Geometric
Computing and the Kanellakis Fellowship at Brown University, and IAM Technology,
Inc. The views in this paper do not necessarily reflect the views of the sponsors.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 80–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Athos: Efficient Authentication of Outsourced File Systems 81

In this paper, we study the problem of authenticating the integrity and oper-
ational correctness of a file system that is outsourced by a client to an untrusted
server. We assume that the remote server’s host machine and its storage units
can behave maliciously. We wish to design authentication protocols that allow
the client to efficiently verify the integrity of a dynamically evolving file system,
namely to verify that its status is consistent with the exact history of file-system
operations requested by the client, and to correctly detect any malicious data-
update or data-retrieval patterns produced by the server. To conform to the
outsourced data model, we require that the authentication protocols incur con-
stant storage overhead at the client and asymptotically no extra storage costs at
the server—otherwise, the client has no reason to outsource its data, at the first
place—and also that verification is achieved efficiently, in time that is sublinear
or logarithmic in the file system’s size—or else, the client could trivially down-
load the entire signed (and timestamped) file-system data on every operation.

Goals and Assumptions. Using cryptographic hashing is the state-of-the-art
solution for verifying the integrity of simple put-get operations over a collection
of files in the outsourced data model: the client locally keeps the hash of each file
against which file retrievals or updates can be verified in constant time. The use
of Merkle’s tree [18] can reduce the client’s space from linear to constant: the
client only stores the root hash and both file retrievals and file updates (e.g., using
existing techniques [3, 28]), can be verified in logarithmic time. Unfortunately,
applying this approach in our setting provides only a partial solution: file-system
integrity requires not only data integrity at the file or data-block level, but also
integrity of the directory hierarchy of the file system. Indeed, all file-system
operations are defined with respect to the directory path, and in many cases, the
integrity of a file depends not only on its content, but also on its location in the
file system. For example, the context of an .htaccess file depends on its location—
its contents identify access policies, but its location is critical to identify the
directories it protects. Our goal, therefore, is primarily to efficiently verify the
directory hierarchy of the file system, and through this, any file-system or meta-
data operation that depends on this hierarchy. Of course, applying hashing over
the directory tree (e.g., as in [7]), possibly augmented by the (balanced) hash
trees that correspond to large files lying in the directory tree, can provide a
space-optimal solution. However, this approach incurs linear verification and
update costs, for the directory tree is unlikely to be balanced! Our goal is to
design dynamic authentication schemes that overcome this problem.

Another solution is to have the client authenticate each file-system update it
makes in the outsourced file system (e.g., using a signature or HMAC based on
a private key), which has some major drawbacks, however. First, it allows for
replay attacks, since determining the freshness of signed statements is difficult
with such a scheme. Second, this solution requires the client to sign every possible
path in the directory hierarchy in order to be able to authenticate locations. This
can be especially inefficient, for example when the client performs a directory
operation that moves a large directory to a new location. Another possibility
is to assume that the outsourced file system is partially trustworthy (e.g., [21])

82 M.T. Goodrich et al.

or a part of its architecture uses some tamper-resistant trusted hardware (e.g.,
using trusted computing platforms [27]). This assumption postulates that the
networked file system is itself at least partially trusted, which is not that much
different than simply trusting the hosting server in the first place. As we show
in this paper, such trust is not necessary for the sake of efficiency or reliability.

In this work, we consider the outsourced data authentication problem in the
single-client setting. However, in a multi-client setting, the problem of outsourced
data authentication has drastically different characteristics. If communication
between the clients is not allowed, a malicious server can easily perform an at-
tack against data consistency: the server can effectively hide the most recent
update on the data from a client requesting to read the data, by unrolling its
state to the state the server had just before that update took place. Undetected
without communication, this attack can be used to “fork” the view that this
client has about the outsourced data, harming the consistency of the system.
In this scenario, the best one can hope for is fork-consistency [16], effectively
disallowing anything more than the forking attack, and various schemes securely
achieve this property (e.g., [16, 20, 15, 4]). However, in the single-client set-
ting the forking attack can be detected and prevented (e.g., by the hash-based
solution), therefore, the fork-consistency property is no longer relevant in this
setting. Although less general, the single-client model has its own merits. First,
it naturally captures the security problems for a wide application area, where
a single user outsources a personal file system to a storage provider. Second, in
certain applications the multi-user setting is easily reduced to the single-client
setting; for instance, in a networked file system, the client can simply abstract
the OS kernel or a designated filer machine through which all file-system oper-
ation requests coming from many users are serialized to the untrusted remote
storage devices. Third, in applications that can tolerate reasonable delays in
the response time, and under reasonable assumptions about the availability of
a constant-size shared trusted storage, the multi-client setting is also reduced
to the single-client setting, achieving a stronger property than fork-consistency:
conceptually the shared memory replaces the communication between parties.

Related Work. Previous work makes use of cryptographic hashing or signa-
tures for primarily protecting the integrity of individual files or the corresponding
data blocks that reside at storage units. Most of the systems (e.g., [5, 2, 9, 19])
provide file integrity using authentication information at the client that is pro-
portional to the size n of the file system (i.e., the number of files or correspond-
ing data blocks). More efficient constructions involve the use of Merkle trees [18]
over the data blocks of individual files (e.g., [6, 24, 14, 21, 15]) or over the
blocks or files of the entire file system (e.g., [8, 31]). Beyond hashing and sign-
ing, other space-efficient techniques have been proposed for file integrity, such as
an entropy-based integrity method for encrypted (only) files [22] and a scheme
based on the Galois counter mode [17], where however updates take linear time.
Some constructions do authenticate the directory hierarchy or related meta-data
of the file system, but, by hashing over the directory tree or signing each individ-
ual object, they result in linear update costs (e.g., [13, 7, 10]), or only support

Athos: Efficient Authentication of Outsourced File Systems 83

verification of a limited set of operations (e.g., [15, 7, 10, 14]). Other schemes, ad-
ditionally assume the existence of a trusted component at the untrusted server
(e.g., [21, 25, 30], or some external trusted party (e.g., [31]) to authenticate
file operations. Finally, SUNDR [15] and [16, 20, 4] use hashing and signatures
to provide file-system integrity and fork-consistency in the multi-client setting;
solving a harder problem, these schemes have increased performance costs.

Our Contributions. We present the design and a prototype implementation of
an authentication architecture, which we call Athos (AuTHenticated Outsourced
Storage), that supports an authenticated outsourced file system in the client-
server model. We construct protocols for authenticating a rich set of file-system
operations that are requested by the client and performed by the untrusted
server. Our protocols support verification of the file system’s full functionality
by efficiently providing not only integrity of the stored data, but also integrity of
the file-system directory structure. Security in our model corresponds to the nat-
ural notion of consistency in the single-client setting: at all times, the interaction
with the server over any series of file-system operations should give the client the
same view as the one obtained by a trusted server (as if the file system was never
outsourced), and any deviation should be immediately detected. To achieve this,
the client maintains only a hash digest of the file system, against which the valid-
ity of each operation performed by the server can be verified, using small proofs.
These proofs are generated by an authentication service module that uses an
authentication data structure stored in the server’s untrusted memory, and runs
in parallel with the file-system management module, and they consist of partial
file system meta-data and hashes stored in the authentication data structure.
This data structure defines the file-system digest, in a hash-tree fashion.

To achieve our efficiency goals, we use ideas from the domain of data authenti-
cation, employing efficient data structuring techniques for representing an entire
file system. The challenge is to efficiently authenticate the directory hierarchy,
which is typically highly unbalanced. We contribute two concrete authentication
structures: Our first construction is based on a novel mapping of the directory
hierarchy to a set of relations, and the authentication of put-get operations on
this set using a skip list as the underlying authentication data structure. This
approach achieves simplicity and low-cost authentication, and also leverages all
the benefits of the widely researched authenticated dictionaries (e.g., [11]). Our
second construction is of more theoretical interest, providing an optimal authen-
tication scheme based on dynamic trees, a classical data structuring technique
for operating on unbalanced trees in a balanced way. Overall, Athos achieves
optimal storage usage (constant for the client and linear for the server) and
efficient integrity verification (logarithmic or sublinear depending on the opera-
tion) and achieves generality by being agnostic of the specific implementation of
the networked file system and by being platform-independent. Finally, a proto-
type implementation of Athos and an experimental evaluation of its verification
capabilities for real-life file systems confirm our theoretical analysis.

Section 2 overviews our authentication model and Section 3 describes our au-
thentication schemes. Section 4 presents the experimental evaluation of Athos

84 M.T. Goodrich et al.

and discusses related issues. Section 5 presents our concluding remarks. Details
on our construction that is based on dynamic trees and our experimental eval-
uation can be found in the Appendix. This extended abstract omits complete
proofs and other details that will appear in the full version of the paper.

2 Model and Definitions

We study storage authentication in the following model (see also Figure 1). A
client C owns and (incrementally) outsources a file system FS to an untrusted
server S. In additional to the file system, S hosts and controls an authentication
service module A that stores authentication information about FS. The file
system is generated and queried through a series of update and query operations
issued by the client C. At any time, C keeps some state information s that
encodes information about the current state of FS. If P is the set of operations
supported over the file system, then the communication protocol is as follows:

1. Client C keeps state information s and issues a query or update operation
o ∈ P to the server S.

2. Server S runs a certification algorithm, which performs operation o and
accordingly answers the query or updates FS to a new version FS′, and,
by using A, also generates a verification or respectively consistency proof π
which is returned to C, along with the result ρ of the operation; ρ is the
corresponding answer if o is a query operation or else the empty string ⊥.
We write π ← certify(o, FS, FS′, ρ).

3. Client C runs a verification algorithm, which takes as input the current state
s, the operation o along with its result ρ, and the corresponding (consistency
or verification) proof π and either accepts or rejects the input. If the input is
accepted the state s is appropriately updated to state s′, where s′ = s if o is a
query operation or else s′
= s. We write {(yes, s′), (no,⊥)} ← verify(s, ρ, π).

We call the pair of algorithms (certify, verify) an authenticated storage scheme.1

The security property we wish such a scheme to satisfy expresses the intuitive
requirement that the verification performed at C must be a reliable test for
checking the file system’s integrity. Let operate(·, ·) be the algorithm that, given
the current file system FS and an operation o ∈ P , performs o and updates FS
to FS′. We write (FS′, ρ) ← operate(o, FS) (ρ = ⊥ for updates and FS′ = FS
for queries). We say that state s is consistent with FSτ for a series τ of operations
on FS, if s and FSτ have been computed by running algorithms operate, certify
and verify sequentially for all operations in series τ starting from FS.

Definition 1 (Security of authenticated storage schemes.). We say that
an authenticated storage scheme (certify, verify) (with security parameter κ) is
secure, if for any series of operations τ and a state s that is consistent with file
system FSτ for τ on an initially empty file system, the following conditions hold:

1 Both algorithms take as input also a public key that is known by both C and S .

Athos: Efficient Authentication of Outsourced File Systems 85

answer verification

Client C
authentication

data structure

for FS

file system FSServer S auth. service A
operation o

o

π
ρ

answer ρ + proof π

FS digest s

answer certification

Fig. 1. The authenticated data storage model. Keeping only constant-size state s,
client C remotely manages a file system FS that resides at untrusted server S . Every
query or update operation o requested by C on FS is certified by S , using an authen-
tication service module A (that stores authentication information related to FS) to
produce a verification or consistency proof π; this proof is used by C, along with the
result ρ of the operation, to verify that the request was handled consistently, and finally
update s.

Correctness. For any o ∈ P, when (FS′
τ , ρ) ← operate(o, FSτ), it holds that

(yes, s′) ← verify(s, ρ, certify(o, FSτ , FS′
τ , ρ)). I.e., for any correctly per-

formed operation, certify generates a proof that is always accepted by verify,
which also computes a new, consistent with the new file system FS′

τ , state s′.
Consistency. For any series τ of operations and new operation o, such that

state s is consistent with file system FSτ for τ on an initially empty file
system and (FS′

τ , ρ) ← operate(o, FSτ), then for any polynomial-time ad-
versary, controlling S and having oracle-access to algorithm verify, that on
input the file system FSτ , series τ and operation o, produces proof π′ and
result ρ′, whenever (yes, s′) ← verify(s, ρ′, π′), then the probability that either
ρ′
= ρ or s′ is not consistent with FS′

τ for operation o on FSτ is negligible
(in the security parameter κ). I.e., assuming a polynomially bounded adver-
sary that observes polynomially many protocol invocations and then produces
a pair of proof π′ and result ρ′, if ρ′ and π′ for the new operation o are ac-
cepted by verify, then for all but negligible probability the operation has been
performed correctly and the new state is consistent with the new file system.

Starting from an initially empty set and using a secure authenticated storage
scheme and the appropriate series of updates, client C is able to “export” any
file system to server S, such that C has a consistent state with the current file
system. Therefore, the file system is consistent with the history of updates and
all future operations will be verified. With respect to efficiency, we say that an
authenticated storage scheme is time-efficient if the verification time at C is sub-
linear in the file-system size, and space-optimal if C stores state of constant size.
We next exhibit time-efficient, space-optimal and secure authenticated storage
schemes for a rich set of operations on an outsourced file system.

3 Efficient Authenticated Storage

To give some intuition of our general approach, let us consider the special case
where we want to implement an authenticated map in the client-server outsourced

86 M.T. Goodrich et al.

storage model; actually, this authentication functionality on the map data struc-
ture will also be our core authentication tool for verifying file system operations.
Each entry of the map is a tuple (k, v), where v is a value corresponding to a key
k (v can be a collection of objects). The entries of the map are sorted according
to their keys (using some comparator). The authenticated map data structure
resides at the server. Using a hashing scheme for skip lists, i.e., a hierarchical
way to produce a hash digest by recursively applying a cryptographic hash func-
tion h over some data (see, e.g., [11]), we can define a digest of the authenticated
map, computed according to the skip-list tree structure (Figure 2(a)).

v5

+∞−∞

−∞

−∞

−∞ +∞
d1 d2 x v2 y

v3

v1

y′′

y′

v4

5

5

12 13

13

13 14

14 15

15

v7

v6

v2

5

−∞

−∞

−∞

v7

v6

v5

f(d1) f(d2)

v4

f(r2)

f(r1)

v3

13

13 15

v1

Fig. 2. (a) The skip list hashing scheme for verifying operations on a map data struc-
ture and insertion of key 14. (b) The consistency proof P returned by S , containing all
the hashing and structural information needed to verify the consistency of P subject
to the current digest and to locally perform the update.

Let d0 be the initial digest stored at the client C which is consistent with the
current state of the skip list. Suppose now that C wants to insert a new key x.
The server S returns to C a consistency proof that consists of the search path
P in the unsuccessful search for x before the update (Figure 2(b)). Path P is
related with the key insertion, satisfying the following properties, which in turn
imply the security of the scheme. First, P contains the two keys, say succ(x)
and pred(x), that are the successor and predecessor of x in the ordering of the
keys, and also contains all the necessary hashing information (hash values) that
allows C to recompute the current digest d0 starting from succ(x) and pred(x)
and hashing according to the hashing scheme that is used. Due to the collision-
resistance property of the hash function, C can check if the received path is the
correct one, and if P is verified, C verifies that key x is not in the directory. Also,
C knows the position at which this file should be added. Second, P contains all
the necessary structural information that allows C to locally perform the update
in the hashing scheme that corresponds after the file insertion, by placing x
between succ(x) and pred(x) and computing the new hash values for only those
nodes of the skip list that need a new hash. Knowing the new hash values, C can
compute the new digest d′0, which is consistent with the update. Thus, the key
insertion (performed by S) can be verified in two steps: first, path P is verified
and then it is used to locally perform the update and compute the new digest.
Using results on authenticated skip lists (e.g., [23, 11]) we have the following:

Lemma 1. There exists an authenticated storage scheme for operations on n
key-value pairs in a map that is based on an authenticated skip list, with the

Athos: Efficient Authentication of Outsourced File Systems 87

following expected complexity bounds: (i) The expected update (insertion and
removal), query and verification time is O(log n) w.h.p.; (ii) The expected size
of the consistency and verification proof (communication cost) is O(log n) w.h.p.

Here, update time is the time required by S to do the actual update, query time is
the time S needs to compute the (consistency or verification) proof, verification
time is the time that C needs in order to process the proof and validate or
reject the query or the update. Note that for set-membership queries and updates
(through which we are going to implement all file system operations) the size
of a proof is always asymptotically equal to the verification time; therefore, the
verification time bounds will indirectly imply the size of the proof.

We next use the authenticated-map functionality to verify more complex oper-
ations on general file systems. Let T be the tree that corresponds to the hierarchy
induced by the structure of the directories and files of a file system, where the
left-right ordering of sibling nodes coincides with the chronological order of the
node creations. The idea is to carefully map T ’s structural information to a set
of special entries and store this set in an authenticated map, in a way that allows
to authenticate the integrity of the entire file system. Node v in T (a directory
or file) defines an authenticated-map entry that stores, under key key(v) that is
the corresponding i-node in the file-system, the following fields:

– name: the actual name of the node of the file system;
– file: a hash (e.g., SHA-1) of the file represented by v (null for a directory);
– key(parent): the key of the entry corresponding to the parent node of v;
– key(sibling): the key of the entry corresponding to the successor sibling of v

in T (null if v is the last created node of the children list);
– key(backsibling): the key of the entry corresponding to the predecessor sibling

of v in T (null if v is the first created node of the children list);
– key(child): the key of the entry corresponding to the first created child of v.

We next map each file-system query or update to a small set of (regular) query
or update operations in the authenticated map, effectively reducing file-system
operations to set-membership operations. We have the following:

Theorem 1. Assuming the existence of collision-resistant hash functions, there
exists a secure and space-optimal authenticated storage scheme that is imple-
mented with skip lists, achieving the following performance, where n is the size
of the file-system tree T , Tv is the subtree rooted on node v, �v is the number of
children of node v and Π = π1π2 . . . πk is a path in T : (1) The authentication
of any path Π takes t(Π) = O (k log n) query and verification time; (2) Query
operations cd(Π), read(Π) and update operations, write(Π), rm(Π), mkdir(Π),
touch(Π) take t(Π) query, verification and update, query, verification time re-
spectively; (3) Query operation ls(Π) takes t(Π) + O(�πk

log n) query and verifi-
cation time; (4) Update operation rmdir(Π) takes t(Π) + O (|Tπk

| log n) update,
query and verification time; (5) Update operation mv(Π, Π ′) takes t(Π) + t(Π ′)
update, query and verification time.

We now discuss another possible method of representing the file system using a
skip list. Instead of setting the i-node number as node’s v key, we can set as key(v)

88 M.T. Goodrich et al.

Table 1. Efficiency comparison of our authenticated storage schemes w.r.t. the query,
update and verification times, using skip lists (local and global approaches) and dy-
namic trees. Here, n is the size of the file system, Π = π1π2 . . . πk is the directory
argument,
 is the size of the children list and T is the subtree rooted on πk.

operation skip list (local) skip list (global) dynamic tree

cd(Π), touch(Π), read(Π)
write(Π), rm(Π), mkdir(Π)

O(k log n) O(log n + k) O(log n + k)

ls(Π) O((k +
) log n) O(
(log n + k)) O(k +
 + log n)
rmdir(Π) O((k + |T |) log n) O(|T | log n + k) O(k + log n)
mv(Π,Π ′) O((k + k′) log n) O(|T | log n + k + k′) O(k + k′ + log n)

the name of the path from the file-system root to node v (e.g., the key for file
pub.txt lying in path /users/user/ is now the string “/users/user/pub.txt”). Thus,
in the previous representation we stored “local” information, whereas now we
rather store “global” information. This solution yields better complexity bounds
for the path authentication (which is now t(Π) = O(log n + |Π |)). However, up-
date operation mv(Π, Π ′) takes O (t(Π) + t(Π ′) + |T | logn) update, query, and
verification time, where T is the subtree rooted at π|Π|. This representation is
suitable for cases where the majority of the operations are file system naviga-
tions and move operations are less frequent. Finally, by using authenticated path
operations [12] implemented with dynamic trees [26], we get the following:

Theorem 2. Assuming the existence of collision-resistant hash functions, there
exists a secure, time-efficient and space-optimal authenticated storage scheme
that is implemented with dynamic trees, achieving the following performance,
where n is the size of the file system tree and �v is the number of children of
v: (1) The authentication of any path Π takes t(Π) = O(k + log n) query and
verification time; (2) Query operations cd(Π), read(Π) and update operations
write(Π), rm(Π), mkdir(Π), touch(Π) take t(Π) query, verification and update,
query, verification time respectively; (3) Query operation ls(Π) takes t(Π) +
O(�πk

+ log n) query and verification time; (4) Update operation rmdir(Π) takes
t(Π) update, query and verification time; (5) Update operation mv(Π, Π ′) takes
t(Π) + t(Π ′) + O(log n) update, query and verification time.

A more detailed description of this scheme appears in the Appendix. Table 1
presents a comparison between the efficiency levels achieved by our schemes.
Security. Our authenticated storage schemes are based on the following general
approach. Given a secure hashing scheme H for a specific query type Q, that is, a
directed acyclic graph that defines how a hash digest is computed from a data set
and a corresponding authentication structure,2 we augment H to a new hashing
scheme H′ that additionally encodes (in its produced digest) the entire struc-
tural and balancing information that is defined in the underlying authentication

2 Against this (authentic) digest answers to queries in Q can be efficiently verified;
this is the general verification technique used by authenticated data structures.

Athos: Efficient Authentication of Outsourced File Systems 89

structure. In particular, if the hash value hv of node v in the data structure is
computed as hv = h(hu1 , . . . , huk

) in H, we define hv = h(hu1 , . . . , huk
, h(bv, sv))

in H′, where bv, sv describe the balancing and respectively structural informa-
tion about node v. In our constructions, we make use of the hashing schemes
corresponding to the skip list and the dynamic-tree data structure for efficiently
verifying set-membership [11] and respectively path property [12] queries.

Given the augmented hashing trees, security is proved as follows. Starting
from the state corresponding to the empty file system, we inductively show
that after any update on the file system the client C updates its state s con-
sistently for the new update on the currently existing file system FS. For both
data structures used in our schemes, the consistency proof by the definition of
the corresponding augmented hashing scheme H′ contains all the balancing and
structural information that completely characterizes the changes in FS due to
the update. Assuming that the state is consistent, the consistency proof coming
from an honest server S will be verified, thus also the balancing and structural
information related to the update. Thus, C is able to locally perform the cor-
rect update as if C had direct access to the entire file system FS, thus is able
to correctly and consistently update his state s to s′, which is simply the new
digest according to H′. Given this invariant, any query is securely verified since
the underlying hashing scheme is secure: assuming that finding hash collisions is
computationally hard, any malicious behavior by S will be rejected by the verifi-
cation algorithm, since any undetected inconsistency corresponds to a collision.

4 Analysis, Experiments and Discussion

We have developed a prototype implementation of Athos using skip lists. Our
implementation uses a flat representation of the file system tree since this rep-
resentation outperforms dynamic trees when the depth of the tree is less than
200 [29], which typically occurs in file systems. We have implemented the au-
thentication service (both the server and the client) in Java. The experiments
were conducted on a 64-bit, 2.8GHz Intel based, dual-core, dual processor ma-
chine with 2GB main memory and 2MB cache, running Debian Linux 3.1 with
Linux kernel 2.6.15 and using the Sun Java JDK 1.5. The time consumed by the
garbage collector is excluded from the presented times. We have implemented
authenticated versions of all the major commands of a file system (all the com-
mands described in Theorem 1) and the basic functionality of a skip list. We
executed the experiments on a remote file system (that lies however in close
proximity to the terminal machine), the tree of which consists of roughly 77,779
nodes, of which 61,241 are files and the rest are directories. The average size of
the files is 1.22 MB. The total size of the file system is 6.92 GB. However, the
distribution of the files is not uniform (certain subtrees are very “heavy“).

In Figures 3(a)/3(b) we plot the time taken to write/read our test file system
as a function of the size of the portion of the file system processed. Note that
our authentication service does not add much overhead to the non-authenticated
write/read. Also note that the overhead of the authentication service is more

90 M.T. Goodrich et al.

0 1 2 3 4 5 6 7
10

100

1,000

10,000

file system size (GB)

tim
e

(s
ec

on
ds

)

create operation

authenticated
non−authenticated

(a) Writing the file system

0 1 2 3 4 5 6 7
1

100

1,000

10,000

file system size (GB)

tim
e

(s
ec

on
ds

)

read operation

authenticated
non−authenticated

(b) Reading the file system

Fig. 3. Times to write and to read our test file system, using standard and authen-
ticated operations. The cumulative time elapsed is plotted as a function of the size of
the portion of file system processed. Each point corresponds to a new batch of 1,000
files processed. Since files have different sizes, the points on the plot are not uniformly
spaced in the horizontal direction.

noticeable in the read experiment, with an average overhead per node (directory
or file) of 17.61 ms. This is due to the fact that, when we read a file x, that
lies in a path Π , we have to authenticate both the contents of the file and the
existence of the path (by Theorem 1, this task takes O(|Π | log n) time). Also,
for a directory d, we have to issue |children(d)| queries to the skip list in order to
authenticate completeness. Due to space limitations, more experimental results
can be found in the Appendix.

Discussion. Our protocols are designed in the client-server model. However,
certain applications that require file-system integrity may involve a large num-
ber of users, and therefore, to achieve full consistency user interaction is neces-
sary,3 which results in impractical protocols (since, without other assumptions,
n users need to exchange Ω(n) messages after any update). Unless one resorts
to fork-consistency [16, 4], some communication assumptions must be made. For
instance, when different users access a remote file system through the same net-
work infrastructure, our protocols are applicable if we assume a single designated
trusted client that serializes all users’ operations and verifies them locally.4

An additional issue is related to failure recovery and persistent in a real-life
usage of our authentication protocols. In the case of an unsuccessful verification

3 To see why, assume any secure protocol for verifying the integrity of outsourced
storage, and consider an update on the data performed and verified by user A.
Consider the next operation on the data issued by user B. Without interaction,
even if users locally keep unbounded state, replay attacks are impossible to defeat,
since a malicious server can ignore A’s updates on the data without being noticed
by B.

4 That is, Athos’ verification client can serve as an add-on module of the hosting
operating-system kernel that runs in parallel with the system’s filer.

Athos: Efficient Authentication of Outsourced File Systems 91

of a file system operation, Athos can provide to the higher (or hosting) appli-
cation complete information about the problematic operation and the current
state of the file system in terms of its integrity. In particular, Athos function-
ality can characterize the exact location in the file system where integrity was
not verified and thus pinpoint which file or directory was maliciously (or acci-
dentally) modified by the untrusted server or by the remote storage devices. By
keeping appropriate additional information, the higher application is thus able
to infer useful information for failure recovery and a complete view of the prob-
lem. For instance, one can find which concrete user and with which concrete
operation most recently, correctly accessed the (currently problematic) file or
directory. Additionally, by using our skip list based authentication approach in
combination with existing techniques [1] for authenticating membership queries
in the past (i.e., queries that span through previous states of a data set), Athos
can offer persistent authentication capabilities, where file-system operations or
queries about past views of the file system can be issued and authenticated. In
this way, we can support secure audit of the entire outsourced file system.

Finally, Athos can also support authentication of files at the block level. To
do that, we introduce one more level of authentication using a skip list on
top of a file. The digest of this skip list is now what is stored in the original
skip list. The client can update individual blocks of the file and also query for
certain blocks of the file. The length of the proof depends on the granularity
we use to partition the file into blocks. Obviously there is a trade-off between
the size of the verification proof and the data someone needs to download for
authentication.

5 Conclusions

In this paper we present efficient protocols for verifying the integrity of a file
system that is outsourced to an untrusted storage facility. We use cryptographic
hashing and efficient data structures to produce and incrementally update, af-
ter file system operations, a short and secure digest of the entire file system.
This digest is used by a client to efficiently verify that the file system is fully
consistent with the history of query and update operations requested by the
client to the host server. Our protocols authenticate both the contents of the
files and the directory hierarchy of the file system, thus verifying a rich set of file
system operations. The authentication of operations uses a short verification or
consistency proof that is computed by the server and involves communication
and computation overheads that are sublinear in file system size. This makes
our authentication schemes applicable in settings where low-computing power
and/or low-storage devices need to access a remote file system in a secure way.
We authenticate common and important file system operations such as cd, ls in
logarithmic time and, through a prototype implementation, we experimentally
confirm the efficiency and practicality of our authentication methods.

92 M.T. Goodrich et al.

References

[1] Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: Proc. Information Security Conference, pp.
379–393 (2001)

[2] Blaze, M.: A cryptographic file system for Unix. In: Proc. Conference on Computer
and Communications Security, pp. 9–16 (1993)

[3] Blum, M., Evans, W., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: Proc. Foundations of Comp. Science, pp. 90–99 (1991)

[4] Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted
shared memory. In: Proc. Principles of Distr. Computing, pp. 129–138 (2007)

[5] Cattaneo, G., Catuogno, L., Sorbo, A.D., Persiano, P.: The design and imple-
mentation of a transparent cryptographic file system for Unix. In: Proc. USENIX
Annual Technical Conference, pp. 199–212 (2001)

[6] Fu, K.: Group sharing and random access in cryptographic storage file systems.
Master’s thesis, Massachusetts Institute of Technology (May 1999)

[7] Fu, K., Kaashoek, M.F., Mazières, D.: Fast and secure distributed read-only file
system. ACM Trans. Comput. Syst. 20(1), 1–24 (2002)

[8] Fujita, T., Ogawara, M.: Arbre: A file system for untrusted remote block-level
storage. IPSJ Digital Courier 1, 381–393 (2005)

[9] Gobioff, H., Nagle, D., Gibson, G.A.: Integrity and performance in network at-
tached storage. In: Proc. International Symposium on High Performance Com-
puting, pp. 244–256 (1999)

[10] Goh, E.-J., Shacham, H., Modadugu, N., Boneh, D.: SiRiUS: Securing Remote
Untrusted Storage. In: Proc. Network and Distr. Sys. Security, pp. 131–145 (2003)

[11] Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: Proc. DARPA Information
Survivability Conference and Exposition, pp. 68–82 (2001)

[12] Goodrich, M.T., Tamassia, R., Triandopoulos, N., Cohen, R.: Authenticated
data structures for graph and geometric searching. In: Proc. RSA Conference—
Cryptographers’ Track, pp. 295–313 (2003)

[13] Jammalamadaka, R.C., Gamboni, R., Mehrotra, S., Seamons, K.E., Venkatasub-
ramanian, N.: gVault: A gmail based cryptographic network file system. In: Proc.
Conf. on Data and Applications Security, pp. 161–176 (2007)

[14] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., Fu, K.: Plutus: Scalable
secure file sharing on untrusted storage. In: Proc. USENIX Conference on File
and Storage Technologies, pp. 29–42 (2003)

[15] Li, J., Krohn, M.N., Mazières, D., Shasha, D.: Secure untrusted data repository
(SUNDR. In: Proc. Operating Systems Design and Impl., pp. 121–136 (2004)

[16] Mazières, D., Shasha, D.: Building secure file systems out of byantine storage. In:
Proc. Principles of Distributed Computing, pp. 108–117 (2002)

[17] McGrew, D.: Efficient authentication of large, dynamic data sets using ga-
lois/counter mode. In: Proc. Security in Storage Workshop, pp. 89–94 (2005)

[18] Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

[19] Miller, E.L., Long, D.D.E., Freeman, W.E., Reed, B.: Strong security for network-
attached storage. In: Proc. File and Storage Tech., pp. 1–13 (2002)

[20] Oprea, A., Reiter, M.K.: On consistency of encrypted files. In: Dolev, S. (ed.)
Proc. International Symposium on Distributed Computing, pp. 254–268 (2006)

Athos: Efficient Authentication of Outsourced File Systems 93

[21] Oprea, A., Reiter, M.K.: Integrity checking in cryprographic file systems with
constant trusted storage. In: Proc. USENIX Security, pp. 183–198 (2007)

[22] Oprea, A., Reiter, M.K., Yang, K.: Space-efficient block storage integrity. In: Proc.
Network and Distributed System Security Symposium, pp. 17–28 (2005)

[23] Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-
party authenticated data structures. In: Proc. Information and Communications
Security, pp. 1–15 (2007)

[24] Pletka, R., Cachin, C.: Cryptographic security for a high-performance distributed
file system. In: Proc. Mass Storage Systems Tech., pp. 227–232 (2007)

[25] Sarmenta, L.F.G., van Dijk, M., O’Donnell, C.W., Rhodes, J., Devadas, S.: Virtual
monotonic counters and count-limited objects using a TPM without a trusted OS.
In: Proc. Workshop on Scalable Trusted Computing, pp. 27–41 (2006)

[26] Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–381 (1983)

[27] Smith, S.W.: Trusted Computing Platforms: Design and Applications. Springer,
Heidelberg (2005)

[28] Tamassia, R., Triandopoulos, N.: Efficient content authentication in P2P net-
works. In: Proc. Applied Cryptography and Network Security, pp. 354–372 (2007)

[29] Tarjan, R., Werneck, R.: Dynamic trees in practice. In: Proc. Workshop on Ex-
perimental Algorithms, pp. 80–93 (2007)

[30] van Dijk, M., Rhodes, J., Sarmenta, L.F.G., Devadas, S.: Offline untrusted storage
with immediate detection of forking and replay attacks. In: Proc. Workshop on
Scalable Trusted Computing, pp. 41–48 (2007)

[31] Yumerefendi, A.Y., Chase, J.S.: Strong accountability for network storage. In:
Proc. Conference on File and Storage Tech., pp. 77–92 (2007)

Appendix

Dynamic Trees Implementation. Let T be the tree that represents our file
system. The leaves of T are either files or empty directories. We transform T
to a new data structure which is essentially a tree T of paths (Figure 4(b)).
Our data structure is based on dynamic trees [26]. On the tree T , we make use
of the hashing scheme for authentication of path properties in trees from [12].
This hashing scheme is defined over trees of the form of our final tree T and
allows authentication of path properties that satisfy the concatenation criterion:
Let p = p′‖p′′ be a path in T that is the concatenation of paths p′ and p′′. A

1

2 3 12 16

4

6

7

15

1413

5

11

10

9

(a) (b)

8

1 3 4 6

2 12 16

1514 16

13

122

5 11

5 1011 9

7 8

7 8

Fig. 4. (a) File system tree. (b) The tree of paths T .

94 M.T. Goodrich et al.

path property P satisfies the concatenation criterion if P(p) = F(P(p′),P(p′′)),
where F is a function that can be computed in O(1) time; e.g., a path property
that satisfies this property is the length of the path, where F is “addition”.

We extend this hashing scheme to authenticate path properties not only for
paths in the original tree T but also for dashed paths in the intermediate tree
T (i.e., properties of paths related to siblings). This extension is performed
by including in the hashing scheme information associated with the files and
subdirectories of any directory. Also, we include in the dashed path d(v) related
to v, the node in T (file or subdirectory) that corresponds to the solid child of
v in T (so that no file is missed). Finally, we augment the hashing scheme to
include structural and balancing information related to T : now the hash value
of any node in T includes its sibling rank and weight.

We now relate operations of the file system with certain path properties in T or
dashed-path properties. In order to do this, we define the appropriate path prop-
erties of interest: every node v of the tree is related with a constant-size set of node
attributes {N1(v), . . . , Nk(v)}. These for example can be the weight of v or other
variables that we want to relate with this node. We call the set of these node at-
tributes the node property N (v) of this node. For the case of the file system, we
define the node property N (v) of a node v to contain two attributes: S(v) and
C(v). S(v) is the name of the file or directory and C(v) is the hash of the certain
file or directory. If node v represents a directory, we define C(v) = {Ø}, other-
wise C(v) is a hash of the corresponding to v file. Similarly, every path p is related
with a set of path attributes {P1(p), . . . , Pk(p)}. These can be the length of a path
or other variables that we want to relate with this path. We call the set of these
path attributes the path property P(p) of this path. The path attributes can be
defined as a function of the corresponding node attributes. In our case, we de-
fine the first path attribute S(p) of a path p = u1, . . . , u� as S(p) =

⊗�
i=1 S(ui).

This is actually the name of the path (⊗ denotes “string concatenation”). The sec-
ond path attribute is similarly defined to be the content of the path C(p). Hence,
C(p) =

⊕�
i=1 C(ui), where ⊕ is simply the union operator. Note that the con-

tent of a path that consists only of directories is empty. Also the path property
P(p) = (S(p), C(p)) for any path p = p′|p′′ of the file system satisfies the concate-
nation criterion since S(p) = S(p′)⊗ S(p′′) and C(p) = C(p′)⊕C(p′′). Hence, in
the file system context, we can authenticate the major file system operations (see
Theorem 2), by reducing them to an appropriately path property query, where we
also use complexity analysis in [12]. We finally note that the consistency proof used
by the client to do the updates has logarithmic size: since all the update operations
described above take logarithmic time, they cannot visit more than O(log n+ |Π |)
nodes of the tree. Hence, the server can send structural and hashing information
of size O(log n + |Π |) that allows the client to update the digest.

Additional Experimental Results. In Figure 5, we further analyze the
time to read and write the test file system with authentication by account-
ing separately for the time taken to perform hashing (these experiments are a
more fine-grained analysis of the experiments we presented before). We can see
that for both the read and write experiments, the hashing time dominates the

Athos: Efficient Authentication of Outsourced File Systems 95

0 1 2 3 4 5 6 7
1

10

100

1,000

10,000
authenticated create operation

tim
e
 (

se
co

n
d
s)

file system size (GB)

total time
hashing time
(total time) − (hashing time)

(a) Authenticated create operation

0 1 2 3 4 5 6 7
1

10

100

1,000

10,000

file system size (GB)

tim
e

(s
ec

on
ds

)

authenticated read operation

total time
hashing time
(total time) − (hashing time)

(b) Authenticated read operation

Fig. 5. Cumulative times for separate parts of the authenticated operations cre-
ate/read. The most expensive part of either an authenticated create or an authen-
ticated read is the hashing time, as indicated in the above figures. The remaining time
is the time needed to send over data to the skip list.

computation. When writing the file system, we need to hash each file and then
store the hash in the skip list, whereas to read the file system, we need to hash
what we are reading in order to compare it with the authenticated hash that is
returned by the skip list and was stored there during creation. We also note that
the interaction with the authentication service ((total time) − (hashing time)) in-
creases when our program parses a “light” region of the file system (e.g., the
region around 2GB in Figure 5(b)). This is due to the fact that more files are
being processed in less amount of time (the “light” region does not contain large
files) and therefore the communication with the authenticated skip list increases.
Finally, we observe that on average, hashing accounts for 73% of the write time
and for 53% of the read time. This overhead is necessary in any authentication
method based on cryptographic hashing.

0 20,000 40,000 60,000 80,000

10

100

number of files

tim
e

(m
s)

authenticated read operation (100KB)

total time
hashing time
(total time) − (hashing time)

(a) Authenticated read (100KB file)

0 20,000 40,000 60,000 80,000

10

100

number of files

tim
e

(m
s)

authenticated read operation (10MB)

total time
hashing time
(total time) − (hashing time)

(b) Authenticated read (10MB file)

Fig. 6. Average time of an authenticated read operation. Every point is the average
time (over 100 executions) for reading a file of certain size in a file system of varying
size. The larger the file, the smaller is the difference (total time) − (hashing time).

96 M.T. Goodrich et al.

In Figures 6(a) and 6(b), we plot the average time for reading a file with
authentication, as a function of the number of nodes in the file system. Each
point p(x) is the average of 100 authenticated reads on a file system that contains
x files. Note that these plots are not cumulative. For a 100KB file, the hashing
time is about half the total time, whereas for a 10MB file, the hashing time is
almost equal to the total time.

BotTracer: Execution-Based Bot-Like

Malware Detection

Lei Liu1, Songqing Chen1, Guanhua Yan2, and Zhao Zhang3

1Dept. of Computer Science, George Mason University
{lliu3,sqchen}@cs.gmu.edu

2Information Sciences, Los Alamos National Lab
ghyan@lanl.gov

3Dept. of Electrical and Computer Engineering,
Iowa State University
zzhang@iastate.edu

Abstract. Bot-like malware has posed an immense threat to computer
security. Bot detection is still a challenging task since bot developers are
continuously adopting advanced techniques to make bots more stealthy.
A typical bot exhibits three invariant features along its onset: (1) the
startup of a bot is automatic without requiring any user actions; (2) a
bot must establish a command and control channel with its botmaster;
and (3) a bot will perform local or remote attacks sooner or later. These
invariants indicate three indispensable phases (startup, preparation, and
attack) for a bot attack. In this paper, we propose BotTracer to detect
these three phases with the assistance of virtual machine techniques.
To validate BotTracer, we implement a prototype of BotTracer based
on VMware and Windows XP Professional. The results show that Bot-
Tracer has successfully detected all the bots in the experiments without
any false negatives.

Keywords: Botnet, malware detection, virtual machine.

1 Introduction

Bots and botnets have become one of the most serious threats to Internet secu-
rity in recent years [14][22]. Compared with other malware like virus and worms,
bot behavior can be very stealthy, making their detection extremely difficult. For
example, a bot can stay inactive without any dramatic activities for a long time.
Oftentimes, a bot generates only a small amount of traffic, which is hidden among
legitimate traffic. Some of botnet research has focused on the understanding of
bots and botnets. For example, Barford et al. have analyzed in-depth bot source
code [9] and provided insights from several perspectives, while in [27], through
trace collection and analysis, authors observed the real-world botnet behavior.
Dagon et al. have studied the botnet propagation using time zones [15]. Some
research [25] has studied how to identify non-human behavior characteristics in
traffic and build IRC server scanners to identify potential botnets. To counter

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 97–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

98 L. Liu et al.

botnets, honeypots have been used to infiltrate the command and control net-
work of botnets [17].

While researchers are improving the detection and defense schemes, bot de-
velopers are also constantly making bots more stealthy. Due to the scrutiny on
IRC channels, today’s bots are bound to other popular applications (e.g., Web
browsers [6]) or protocols (e.g., HTTP [16]). Distributed P2P-based botnets,
which are much more difficult to detect and shut down than centralized bot-
net architectures, have also been developed [19][21][28][30]. Advanced bots like
Spam-Mailbot [12] have applied encryption to defeat traffic scanning.

Recent improvements on bot techniques call for better bot detection tech-
niques. The distinguishing feature of a typical bot attack is three indispensable
phases:

– Automatic startup: Different from those virus or worms (e.g., email worms)
that rely on user intervention, a bot can be started automatically by modi-
fying the automatic startup process list or registry entries. This is essential
for the bot to actively initialize the command and control channel with the
botmaster in order to receive commands.

– Command and control channel establishment: In spite of various bot hiding
techniques, existing bots all need to build a command and control channel.
In a large network environment, it is impractical for a botmaster to actively
trace all of its bots. To evade detection, a botmaster normally does not
actively contact or scan all bots, particularly when the botnet contains a
large number of bots behind firewalls or NAT that would not freely allow
incoming traffic.

– Information dispersion/harvesting: Sooner or later, a bot will be ordered to
take some actions through the established command and control channel1. A
bot can be asked to collect sensitive information from the local machine (in-
formation harvesting), or participate in organized attacks, such as spamming
and DDoS attacks, against a third party (information dispersion)2.

automatic startup
architecture&type?(non−whitelisted)?
known bot channel

or dispersion?
information haversting

 (bot startup) (prepare to receive commands) (attack)

suspicious highly suspicious bot malware

Fig. 1. BotTracer detection logic: startup, preparation, and attack during a bot onset

In this work, we propose BotTracer to detect bots by capturing these three
invariant features during their execution. First, when a host starts, a virtual
machine with the same image is also started. A virtual machine without any hu-
man interactions provides an effective playground to identify processes that are
1 If a bot simply hibernates, it does not do any harm, although it makes bot detection

more difficult.
2 We do not consider information processing as defined in [19].

BotTracer: Execution-Based Bot-Like Malware Detection 99

automatically started, especially those with networking activities. Second, with
such a playground with little noise traffic at hand, BotTracer keeps monitoring
automatic communications and classifies these communication channels. Since
a bot must actively contact a rendezvous point to build a command and con-
trol channel with its controller, BotTracer capture these channels and compare
them with known characteristics of bot command and control channels. This
can significantly narrow down the detection space. Lastly, BotTracer constantly
monitors system-level activities and traffic patterns of those processes that have
been identified as suspicious. Hence, BotTracer is able to capture those bots that
are actively performing information harvesting or dispersion. Figure 1 illustrates
BotTracer’s detection logic. To evaluate the performance of our proposed sys-
tem, we implement a prototype of BotTracer based on VMware and Windows
XP Professional and test a variety of bots. The experimental results demonstrate
that BotTracer can detect all these bots without false negatives.

Comparisons with Existing Approaches: Most recently, BotHunter [20] is
proposed to detect bots by correlating events from inbound scan to outbound scan.
As BotHunter aims to detect bot behavior at the network level, stealthy bots can
dodge detection by evading event timing correlation, or conducting local attacks
(such as deleting files) without any networking activities. The work in [29] focuses
on remote control behavior analysis by tracking tainted data from the network.
Panorama [31] also relies on taint analysis to analyzemalware behavior, although it
is done after a suspicious sample has alreadybeen detected. Aflip side of Panorama
is that its effectiveness is contingent on the completeness of the samples that have
been collected. SpyProxy [24] also employs behavior analysis through execution to
detect malicious Web content. It is, however, based on evidence of malicious side-
effects (the attack phase). Compared against these previous schemes, BotTracer
leverages virtual machine technology to significantly reduce the detection space,
and relies on in-depth bot behavior analysis to detect bots.

BotTracer takes a host-based approach, which complements existing network-
based approaches. Efficiency of network-based approaches has already been chal-
lenged by various techniques, such as obfuscation [26] and encryption [12]. More
importantly, a network-based approach commonly results in the shutdown of the
command and control channel server or the change of the DNS entries [18]. Since
it leaves infected machines unchanged, they can be easily reclaimed later. In our
experiments, we have shown that for traditional centralized botnets, BotTracer is
able to locate the centralized server after successfully identifying a bot machine.

The remainder of the paper is organized as follows. We present the design
of BotTracer in Section 2. Based on the implemented prototype, we evaluate
BotTracer in Section 3. We discuss some limitations in Section 4 and make
concluding remarks in Section 5.

2 BotTracer Design

Although bots commonly exhibit the three fundamental features as we identi-
fied above, detecting these characteristics is challenging since bot-like malware

100 L. Liu et al.

commonly employ various techniques to conceal themselves. Therefore, in Bot-
Tracer, a virtual machine that clones the host image is constructed to provide an
ideal detection environment. That is, once the host is started, a virtual machine
(VM) that clones the host image is also started automatically. However, the user
only operates on the host. The virtual machine thus becomes an environment
without human interactions.

On such a playground with significantly reduced noise, BotTracer thus focuses
on detecting the three invariant bot behaviors through execution:

– Once the virtual machine in BotTracer starts, automatically started pro-
cesses will self-expose. After filtering the processes on the whitelist, Bot-
Tracer keeps monitoring the remaining ones. As a bot must actively build a
command and control channel to the outside before any malicious behavior
is conducted, any outgoing traffic from any remaining process on the virtual
machine indicates it is suspicious.

– By constantly monitoring its inbound and outbound traffic once a process
is flagged as suspicious, BotTracer can identify whether a special command
and control channel is established. For example, a traditional IRC-based bot
may build a persistent connection to receive commands from the botmaster,
while modern bots may periodically contact the botmaster.

– An identified command and control channel indicates a highly suspicious bot-
like process. Since a bot will perform information harvesting or dispersion
sooner or later, BotTracer, which constantly monitors the highly suspicious
processes, detects information harvesting by tracing relevant system calls
and the corresponding parameters that are intercepted through the virtual
machine monitor, and detects information dispersion by inferring the traffic
patterns.

The detection scheme described above is based on an ideal virtual machine envi-
ronment. In practice, however, there are a number of issues that must be solved
to make the detection effective.

2.1 Whitelist and Starting Point Set

In BotTracer, the absence of user interactions on the virtual machine dramatically
reduces normal user traffic. To further facilitate the bot detection, it is preferable
to eliminate the interference from some legitimate processes that are automati-
cally started on the virtual machine as well. We classify them into three categories
as [13]: system daemons, software updates, and network applications automati-
cally started by the OS. The first category covers system daemons like system.exe,
svchost.exe, and services.exe in Windows. The second refers to automatic
software updates from the well-known Web sites. For the limited number of pro-
cesses in the first and the second categories, as their networking behaviors are
mostly fixed, we can simply whitelist them to allow their network connections.

The third includes user application processes like MSN and ICQ that are
configured in advance. For example, if a MSN client is configured to sign in au-
tomatically, the MSN client will connect to the MSN server once it is started. In

BotTracer: Execution-Based Bot-Like Malware Detection 101

addition, if a bot is bound to a popular application, such as a Web browser, the
bot may not automatically start once the virtual machine starts, but starts when
a particular application is started. For detection purpose, once they are started
by a user on the host, they are started on the virtual machine as well by appli-
cation synchronizer. For instance, a Web browser typically has a default setting
that allows a user to visit a Web site once the Web browser is launched. Thus,
once the Web browser is started, it will generate outbound traffic automatically.
Since the number of such applications on a host is limited, it is also possible to
have their default destinations, which we call starting points, whitelisted.

Although being effective most of the time, this approach may unnecessarily
burden bot detection: by default a Web browser is set to connect to only one
starting point, but the Web page of this site may contain rich information that
leads to connections to other sites. If the Web page is frequently updated, this
would be more difficult for us to whitelist the traffic based on one starting
point. For other applications, the starting point might be a registry server that
needs to validate user identification or a name service that provides references to
other resources. Thus, allowing connections to the starting point may not only
complicate whitelisting, but also make it inaccurate.

More importantly, there is a running copy of the application on the host. If
the process on the virtual machine is allowed to send out traffic, it may affect
the status of the application process on the host and lead to unexpected results.
For example, the automatic sign-in to a service from the virtual machine process
may kick out its corresponding host process that signed in before.

Therefore, to guarantee correct semantics of normal applications and ease bot
detection, in addition to put them on the whitelist, we also block the connec-
tions of user applications in the third categories to their starting points once
they are going through the virtual machine monitor. Blocking these connections
can thwart a sequence of actions of the process, and can turn these processes
into semi-dormancy or dormancy in most situations according to our experi-
ments. Conservatives can even merge the whitelist into the starting point set.
Thus, legitimate traffic and process activities could be minimized, which is very
favorable for bot detection.

Generating whitelist and starting point set for system daemons and software
updates is relatively easy. We found that nearly all of their network traffic is
to well known destinations. BotTracer thus can collect traffic information on a
typically configured Windows XP machine. Generating whitelist and the starting
point set for network applications is more difficult. BotTracer needs to query
starting points of popular applications, such as the default destination of a Web
browser, with the intervention of users.

2.2 Command and Control Channel Detection

Now we present how BotTracer detects the initialization of a command and control
channel in a controlled virtual machine with minimum noisy traffic. A bot always
needs to actively build a command and control channel to communicate with its
botmaster. In practice, there are two architectures for operating such channels.

102 L. Liu et al.

1. Centralized: The first is a centralized architecture. Traditionally, IRC-
based botnets commonly leverage IRC servers to issue commands to the
army of bots. In this centralized mode, there are a number of varieties. For
example, the destination could simply be a list of static IP addresses or a
list of URLs so that flexible IP addresses could be used. Some bots, such as
Graybird [6], may use an intermediate point, in which the bot will access a
static URL, retrieve the actual centralized server address, and connect to it.

2. Decentralized: A more recently emerged architecture that has also been
foreseen by many researchers for bot communications is through distributed
networks, such as P2P. This decentralized architecture can reduce the risk
of being detected. Nugache is such a Trojan that uses P2P technology for
communication [28]. In addition, not all P2P bots need seed servers. For
example, Sinit sends special discovery packets to look for peers [28].

Regardless of the architecture, there are two types of command and control
channels:

1. Type 1 – Persistent Channel: In this approach, a bot process directly
starts a connection to the destination and the connection is persistent. The
average connection time could be as long as 3.5 hours according to [11]. This
type of connections is normally initialized upon the startup of the machine.
IRC bots commonly use this approach.

2. Type 2 – Periodic/Sporadic Channel: In this approach, the bot process
periodically starts connections to a destination. Typically, the destination
has not communicated with the host before. An easy variation of this type is
to launch aperiodic connections instead of periodic ones. HTTP-based Bobax
bot [8] falls into this category.

Given the command and control channel architectures and types, we can
leverage these known characteristics to construct a bot channel event model.
The bot channel initialization event model consists of two levels. The first level
represents the channel type, indicated by low level events, such as a new con-
nection is initialized, an incoming connection is accepted, and a connection is
reset. The channel type level generates input to the channel architecture level,
which represents whether a centralized channel is built, a decentralized channel is
built, etc.

Some IRC-based botnets use persistent channels and the average duration of
an IRC bot can be as long as 3.5 hours [11]. By contrast, a typical sporadic
channel that uses HTTP may last for only a few seconds. Hence, we use the
following heuristics to detect the channel type:

– A new connection refers to one whose destination has not been contacted
before since the process has started.

– At the beginning, if a new connection is built, the connection is said to
connect to an intermediate point.

– If an intermediate point is reconnected, the connection is updated to be a
sporadic one.

BotTracer: Execution-Based Bot-Like Malware Detection 103

– If a connection to an intermediate point or a sporadic connection lasts more
than 30 seconds, it is flagged as a persistent one.

– When a new connection is accepted, it is flagged as a sporadic one.

Based on the above setup, Figure 2 shows the state transitions in our two-level
model. Note that in the command and control channel detection, BotTracer fo-
cuses on detecting the establishment of a command and control channel without
tracking how the channel is used. Therefore, it is expected that we would get
some false positives, which BotTracer relies on the next step to further reduce.

2.3 Information Harvesting/Dispersion Behavior Analysis

Information Harvesting Detection. For information harvesting, a bot may
be instructed to collect the information such as password, game/bank accounts,
product keys, some personal information, and report to the botmaster. Some of
such information may exist under particular application’s directories. Some may
be collected from the program’s memory space when the application is running.
Windows temporary files are also a popular target. For example, malware can
search sensitive data in cookies. In addition, some system information is also
attractive, such as registry entries. Existing research shows that currently in-
formation harvesting is mainly through code injection, keystroke log, and direct
memory reading.

While designing strategies to detect and defeat each of these is possible, mal-
ware developers may invent new evading approaches. Instead, since information
harvesting must involve disk or memory accesses, we rely on the process behavior
analysis at the system level to detect information harvesting as follows.

Intuitively, if a bot is commanded to access the disk, no matter what
approach it takes, monitoring disk accesses related system calls/APIs could
identify any disk accesses. For Windows systems, BotTracer can monitor a lim-
ited number of critical system APIs, such as OpenFile, CreateFileMapping,
CreateFileMappingNuma, and OpenFileMapping. Accessing any of these trig-
gers an alarm.

start

centralized
channel

botmaster
intermediate
 point

channel

decentralized

intermediate
 point

intermediate
 point ty

pe
ch

an
ne

l

connection

new

1 2

5

sporadic

4
persistent connection

sporadic connection

3

co
nn

ec
tio

n
sp

or
ad

ic

co
nn

ec
tio

n
pe

rs
is

te
nt

ac
ce

pt
an

ce

connection

ne
w

new
connection

connection
acceptancene

w
co

nn
ec

tio
n

connection
acceptance

connection

6

7 8

connectio
n

co
nnec

tio
n

peer

ch
an

ne
l

ar
ch

ite
ct

ur
e

pe
rsi

ste
nt

Fig. 2. Command and Control Channel Event Model

104 L. Liu et al.

If a bot harvests information from a process’ memory space, no matter which
approach (code injection, keystroke log, or direct memory reading) is used, the
malware typically starts from querying the information of the process or the
window in order to locate the exact victim it wants to peek at. Thus Bot-
Tracer can monitor OpenProcess, WriteProcessMemory, ReadProcessMemory,
CreateRemoteThread, FindWindow, SetWindowsHookEx, GetWindowThread
ProcessId, CreateToolHelp32Snapshot and their family APIs for potential
information harvesting.

Monitoring all these API calls for all processes on the virtual machine is
cumbersome since there are a few whitelisted legitimate applications on the
virtual machine. Among them, we are particularly concerned about the third
category applications, because malware can inject their code into these popular
applications. For these applications, they may have disk and memory activities,
although their connections to their starting points are cut off (network accesses
are not allowed). We have performed extensive experiments and the result shows
that most of such processes do not have any further activities without network
access, while a few do have disk and memory accesses occasionally. To deal
with them, we define their profiles in advance. That is, for a limited number
of automatically started processes or popular application processes that may
be started by the application synchronizer, we generate their profiles after their
connections to their starting points are forcefully cut off without user interactions
or network accesses. We call such profiles as dormant process profile as most
process activities are turned off. The profile includes the resources they can
access, the system functions through which they access, etc. In detection, once
a process behaves out of its profile, an alarm is raised. We extend the XML
language to define the dormant process profile. Figure 3 in Appendix A shows
the profile of the Internet Explorer that is generated on a clean machine
without user interactions or network accesses.

Information Dispersion Detection. Besides information harvesting that en-
dangers the infected machine, a bot is commonly commanded to participate in
organized attacks, such as DDoS and spam. Many schemes have been proposed
to deal with these attacks by leveraging some application level characteristics
and are thus application-dependent. From the perspective of an attacking bot,
however, all these attacks will show some unique traffic patterns. Furthermore,
the traffic destination should not be in the starting point set or on the whitelist.
Lastly, it is less likely such traffic is encrypted. Thus, we design our detection
and thwarting scheme as follows.

A common feature of information dispersion attacks is that the target of the
outgoing traffic is a third party, and often is a destination that the bot has not
communicated with before. As BotTracer starts to monitor the process behavior
from the beginning, it has the record of all the destinations that the bot has
communicated with. Before the attack is launched, the communication through
the command and control channel is bi-directional. After the bot receives the
attack command from the botmaster, the outgoing traffic is likely to go to new
destinations. Thus, at a higher level without interpreting any communication

BotTracer: Execution-Based Bot-Like Malware Detection 105

Table 1. Command and Control Channel Detection

Name Alarm Time (s) Architecture Type

Agobot 6.532 seconds Centralized Persistent

Forbot 34.173 seconds Centralized Persistent

Jrbot 1.895 seconds Centralized Persistent

Reptilebot 2.719 seconds Centralized Persistent

Sdbot 0.953 seconds Centralized Persistent

Rxbot 4.409 seconds Centralized Persistent

Graybird 2.997 seconds Centralized Persistent

Nugache 1.422 seconds Suspicious Suspicious

content, the destination of the outgoing traffic is different from the previous
incoming one, and an asymmetric traffic pattern could be observed.

However, only monitoring outgoing traffic patterns is not sufficient. Recall that
on the virtual machine, there is no user interaction and most of the legitimate
applications are semi-dormant or dormant. Thus, if there is outgoing traffic from
a process on the virtual machine, we can further examine its profile. If the
destination is not a starting point specified in the profile, it is highly likely that
the process is hijacked by a malware. Moreover, as there is no human interactions
on the virtual machine, if there is outgoing email traffic, very likely it is generated
due to spam attacks. Lastly, although the bot normally does not generate a large
amount of traffic, once it participates in a DDoS attack, its traffic amount would
increase remarkably in a short period, which can be leveraged to detect DDoS
attacks.

3 BotTracer Evaluation

Based on our design, we have implemented a prototype of BotTracer. In this
section, we present the experimental results of BotTracer when a set of repre-
sentative bots are tested, including the following three classes of bots:

– IRC bots and their variants are traditional bots controlled through
IRC. We tested a variety of IRC bots including Agobot4 private, Forbot,
Jrbot, Sdbot, Reptilebot, and Rxbot.

– Graybird has a large number of variants since its first debut in 2001. It is
one of the most prolific pieces of Windows malware. We experimented on
version 2005. It does not use IRC, but its own communication protocol. To
hide itself, it injects itself to Internet Explorer (IE). Our testing version
can start an IE process and copy itself to IE space and then execute in the
context of IE.

– Nugache uses encrypted and/or obfuscated P2P traffic for communication.
It opens TCP port 8 and has a static list of 22 initial peers to which a peer
aims to connect to at TCP port 8. After successful connection, it is going
to exchange the list of successfully connected peers. It participates in DDoS

106 L. Liu et al.

attacks once commanded, and it spreads over instant messengers such as
American Online Instant Messenger [28]. In Windows, it runs as a mstc.exe
after infection.

In addition, Microsoft Outlook Express and pcAnywhere are also experimented
to study false positives.

3.1 Prototype Implementation and Experimental Setup

We have implemented the prototype based on Windows XP Professional. Partic-
ularly, we use VMware workstation version 5.5.3 for the virtual machine. We use
VMware Converter [3] to clone the physical machine. The traffic pattern moni-
tor and analyzer are implemented in a traffic module, and the process behavior
analyzer is implemented as a separate behavior module.

The traffic module monitors all ingress and egress traffic after an application
starts. As it is necessary to map ports to the owning process for further analysis,
we implement our traffic module based on Enhance Netstat [4]. It can map a
port to its owing process even if the process adopts some approaches to hide itself
from Task Manager. When the channel architecture and type cannot be detected
and there is outgoing traffic that is not going to a starting point, BotTracer
reports it as suspicious.

The behavior module is implemented based on Microsoft Detours 2.1
Express [1]. It intercepts Win32 function calls. For our experiments, the be-
havior module is designed to capture all violations of the sensitive data accesses
that are not allowed in the dormant process profile. In our current implemen-
tation, it monitors a limited number of Win32 functions that are for file and
network accesses. In addition, process management functions are monitored.

For experiments, we have set up a controlled network. BotTracer was run on
a machine with a 2.79 GHz CPU and 2 GB RAM. The guest OS of VMware is
Windows XP Professional that is identical to the host OS.

Graybird injects itself to IE at runtime and its dormant profile is shown in
Figure 3. For IRC based bots, we set up an IRC server on another machine
with similar configurations and we modified source code to direct bot samples to
our IRC server so that we can issue commands to the bot through a connected
IRC client. Graybird is configured with its GUI tool. Its botmaster runs on
another machine. For Nugache, because only binary is available, we can do few
configurations.

3.2 Channel Establishment Detection

In the controlled environment, we first test whether BotTracer can successfully
detect the channel establishment and the corresponding channel type and ar-
chitecture. Table 1 shows the detection results for the eight bots. Alarm Time
is the time between when the bot starts and when its first outgoing traffic is
captured.

BotTracer: Execution-Based Bot-Like Malware Detection 107

Table 2. APIs called when Rxbot launches attacks

Action API Arguments

Access Registry
RegOpenKeyEx Software\BioWare\NWN\Neverwinter

RegQueryValueEx Location

Access Directory
fopen C:\NeverwinterNights\NWN\nwncdkey.ini
fget file handle

We found that nearly all bots initialized the command and control channel
within 10 seconds after their startup. Furthermore, both IRC bots and Graybird
establish one and only one persistent TCP connection. The entire channel detec-
tion time is less than 60 seconds. Note for Nugache, as the bot tries to connect to
22 initial peers that are hardcoded in the binary, all these connections failed as
expected. BotTracer thus cannot report the architecture and type of the chan-
nel. However, since it tries three times for a destination and tries different new
destinations in a sequence, BotTracer still reports it as suspicious.

Furthermore, as centralized channels are detected for IRC bots and Graybird,
we check whether or not the host (not the virtual machine) has connections to
the same IP and port because on the host there are also identical bot copies. We
found both IRC bots and Graybird on the host also connect to our IRC server
and Graybird botmaster, respectively. This confirms that a running copy of the
bot process on the virtual machine does not affect its corresponding process
running on the host. Furthermore, for bots operated in the centralized mode, it
is straightforward to further trace down to the server and shut down the server,
and possibly the entire botnet.

3.3 Information Harvesting/Dispersion Detection

As BotTracer alarms for all eight bots, the behavior module is activated as well
(note the traffic module is still active in order to thwart potential attacks). Un-
like the channel detection which is completed in a short time after a process
starts, a bot usually performs information harvesting or dispersion only after it
receives commands from the botmaster. Thus, through our experimental setup,
we act as the botmaster to start attacks. Particularly, for information harvesting
attacks, Rxbot was instructed to return keys of products, via a getcdkeys com-
mand. For information dispersion, we launch an information dispersion attack
through Agobot by sending it a DDoS command. For Nugache, we failed to send
any command as we do not have the source code and its behavior is not well
understood. In any of the experiments, we keep the logs of traffic and system
activities.

Table 2 shows the intercepted APIs and the corresponding parameters for the
Rxbot process after getcdkeys is received.

Since Rxbot has already been reported to be highly suspicious, accessing reg-
istry and files under an application directory in the above actions leads BotTracer
to report it as a bot and disable its input and output.

108 L. Liu et al.

Table 3. Agobot HTTP DDoS Attack Packets

Time (s) Source Destination Type

0 192.168.88.156 192.168.88.155 IRC

0.012 192.168.88.155 192.168.93.52 HTTP

2.608 192.168.88.155 192.168.93.52 HTTP

5.226 192.168.88.155 192.168.93.52 HTTP

Table 3 shows the packet sequences once a .ddos.httpflood http://www.
aaaaa.com 100 www.aaa.com 20003 command is issued to Agobot, which re-
quests the Agobot to send 100 HTTP requests to www.aaaaa.com with a 2000
ms interval. www.aaa.com is the HTTP referer. Note that 192.168.88.156 is IP
of the IRC server. The IP of the virtual machine is 192.168.88.155. The attack
target uses 192.168.93.52.

In the experiment, Agobot sends out each HTTP attack packet for 100 times.
Table 3 gives the time BotTracer takes to capture the outgoing attack traffic. In
our implementation, both the traffic pattern monitoring and the starting point
(to compare the outgoing traffic destination) in the process profile are leveraged.
The default threshold of outgoing packet number is 3, which means it takes 5.2
seconds for BotTracer to detect the attack. Conservative protection can reduce
the threshold to 1.

3.4 False Positive Experiments

False positives occur when normal applications are flagged as bot malware. Main-
taining and timely updating the dormant profile list for the normal and popular
applications on a host can greatly reduce false positive. We first test whether
or not a normal application without a profile can be captured in BotTracer. On
the host running BotTracer, we install Microsoft Outlook Express 6. We set
it up to check a hotmail mailbox once every minute, and the account and the
password are saved before the experiment was run. BotTracer quickly reports
this is a bot using a centralized and sporadic channel!

We disable BotTracer, and run it again. We have the following first six packet
sequence log as shown in Table 4 without any user interactions. In this table, the
first packet is a DNS query for services.msn.com. 192.168.68.227 is a domain
name server. The application thus obtains the IP address 64.4.60.7. Outlook
Express does not keep a persistent TCP connection. Instead, about every one
minute it starts a new TCP connection to the Web email server 65.55.154.125
and checks for new emails. This pattern causes BotTracer to report a false pos-
itive.

To validate whether a user could add its profile to BotTracer to eliminate
false alarms, we generate the dormant process profile for Outlook Express, and
Outlook Express is started again in BotTracer. As expected, BotTracer did
3 URL and the public IP addresses are anonymized. The prefix of the public IP address

is replaced with 192.168 when necessary.

BotTracer: Execution-Based Bot-Like Malware Detection 109

Table 4. Outlook Express 6 Connecting Packets

Time (s) Source Destination Type

0 192.168.88.155 192.168.68.227 DNS

0.095 192.168.88.155 64.4.60.7 HTTP

0.478 192.168.88.155 65.55.154.125 HTTP

1.129 192.168.88.155 65.54.183.193 HTTP

63.908 192.168.88.155 65.55.154.125 HTTP

124.463 192.168.88.155 65.55.154.125 HTTP

not raise an alarm. These indicate that it is critical for the user of BotTracer to
update the profile list once new applications are installed.

In addition to Microsoft Outlook Express 6, pcAnywhere 12.0.0 is run to see
if false positives would be raised. Controlled by a pcAnywehere remote,
pcAnywhere host has similar functions as a Graybird bot. Both a pcAnywehere
remote and a Graybird botmaster can manipulate nearly all computer resources
under control. We ran both of them on BotTracer. As before, BotTracer success-
fully detects the command and control channel of Graybird, which is flagged as
centralized and consistent, while no alarm is raised for pcAnywhere. The critical
reason for this result is that a pcAnywhere remote requires the contact informa-
tion of a pcAnywhere host, while a Graybird bot requires the contact information
of the Graybird botmaster. That is, a pcAnywhere host waits to be connected
by a pcAnywhere remote while a Graybird botmaster waits to be connected by
Graybird bots.

These case studies just show that it is possible to reduce false positives through
accumulated process profiles. However, in practice, we believe false positives
and false negatives would be inevitable, particularly when new techniques are
continuously adopted by bot developers.

4 BotTracer Limitations

A fundamental assumption of BotTracer is that the virtual machine cannot be
detected by the bot. In practice, there are many techniques that can detect vir-
tual machines [7][32]. Thus, if a bot detects whether it is running on a virtual
machine based system, our BotTracer will not work properly. This issue can be
addressed from two perspectives. First, as this is a challenge for all virtual ma-
chine based solutions, anti-fingerprinting techniques are still improving [5]. For
BotTracer, the detection behavior of a bot could be detected through system level
activity monitoring, and thus provides an opportunity to cheat the bot. Second,
the adoption of virtual machines in practice is quickly increasing [2]. With the
continuous performance improvement of the virtual machines, such as VMware
and Xen, and the pervasive availability of dual core processors, running applica-
tions in virtual machines may slightly degrade the user performance. Therefore,
in BotTracer, we can run applications in virtual machines instead. Lastly, most
bots currently do not detect the virtual machine based honeypots [30].

110 L. Liu et al.

On the other hand, we prohibit user behavior on the virtual machine in order
to make automatically started process self-exposed. If a bot first detects user
activities before it launches itself, the current BotTracer would fail to detect
such bots. The countermeasure is to synchronize user actions on the host with
the corresponding applications on the virtual machine [10].

As always, developing and thwarting bot-like malware is endless arm race. It
is foreseeable that some bots with new techniques may evade the detection of
BotTracer. For example, if the bot developers use a scheme to identify all bots by
labeling each bot with a unique ID when the bot first registers, the botmaster is
able to detect the simultaneous arrivals of two bots with the same ID if BotTracer
is activated. It is also difficult for BotTracer to detect time-bomb bots. Moreover,
as BotTracer relies on known characteristics of bot malware, bots equipped with
alternative approaches [23] (e.g., the communication channel is started by user
operations when a malicious Web page is accessed) can evade its detection. We
are currently trying improve BotTracer for better detection accuracy.

5 Conclusion

Bots and botnets have attracted a lot of attention from both the industry and
research communities recently. Detecting bots, however, is still very challenging
since bots are very stealthy and bot developers continuously and quickly adopt
new techniques to evade detection. In this study, we propose BotTracer to effec-
tively detect bot-like malware on end systems through detecting the bot startup,
preparation, and attack behavior during execution. A prototype of BotTracer has
been implemented based on VMware and a set of representative bots are tested.
The experimental results show that BotTracer is effective for bot detection.

Acknowledgements

We thank the anonymous referees for providing constructive comments. The
work has been supported in part by the U. S. National Science Foundation
under grants CNS-0509061, CNS-0621631, and CNS-0746649.

References

1. http://research.microsoft.com/sn/detours/

2. http://www.technologynewsdaily.com/node/4859

3. Convert physical machines to virtual machines,
http://www.vmware.com/products/converter/

4. Enhance netstat - the code project,
http://www.codeproject.com/internet/enetstatasp.asp

5. Malware immunization through deterrence and diversion, http://www.nsf.gov/
awardsearch/showAward.do?AwardNumber=0650386

6. One of the most prolific pieces of windows malware has expired,
http://news.softpedia.com/news/One-of-the-Most-Prolific-Piece-of-

Windows-Malware-Has-Expired-51466.shtml

http://research.microsoft.com/sn/detours/
http://www.technologynewsdaily.com/node/4859
http://www.vmware.com/products/converter/
http://www.codeproject.com/internet/enetstatasp.asp
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0650386
http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0650386
http://news.softpedia.com/news/One-of-the-Most-Prolific-Piece-of-Windows-Malware-Has-Expired-51466.shtml
http://news.softpedia.com/news/One-of-the-Most-Prolific-Piece-of-Windows-Malware-Has-Expired-51466.shtml

BotTracer: Execution-Based Bot-Like Malware Detection 111

7. Honeyd security advisory 2004-001: Remonte detection via simple probe packet
(2004), http://www.honeyd.org/adv.2004-01.asc

8. Taxonomy of botnet threats (November 2006), http://us.trendmicro.com/

imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhite

papernovember2006.pdf

9. Barford, P., Yagneswaran, V.: An inside look at botnets (2006)
10. Borders, K., Zhao, X., Prakash, A.: Siren: Catching evasive malware. In: Proceed-

ings of the IEEE Symposium on Security and Privacy, Berkeley, CA (November
2006)

11. Chen, Y.: High-performance network anomaly/intrusion detection and mitigation
system (hpnaidm). In: ARO-DARPA-DHS Special Workshop on Botnets, Arling-
ton, VA (June 2006)

12. Chiang, K., Lloyd, L.: A case study of the rustock rootkit and spam bot. In: Pro-
ceedings of the First Workshop on Hot Topics in Understanding Botnets, Cam-
bridge, MA (April 2007)

13. Cui, W., Katz, R.H., Tan, W.: Binder: An extrusion-based break-in detector for
personal computers. In: Proceedings of USENIX (2005)

14. Dagon, D.: The network is the infection (2005),
http://www.caida.org/projects/oarc/200507/slides/oarc0507-Dagon.pdf

15. Dagon, D., Zhou, C., Lee, W.: Modeling botnet propagation using time zones.
In: Proceedings of The 13th Annual Network and Distributed System Security
Symposium, San Diego, CA (Febuary 2006)

16. Daswani, N., Stoppelman, M.: The Google Click Quality, and Security Teams.
The anatomy of clickbot.a. In: Proceedings of the First Workshop on Hot Topics
in Understanding Botnets, Cambridge, MA (April 2007)

17. Freiling, F., Holz, T., Wicherski, G.: Botnet tracking: Exploring a root-cause
methodology to prevent distributed denial-of-service attacks. In: Proceedings of
the 10th European Symposium on Research in Computer Security (ESORICS)
(September 2005)

18. Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, Cambridge, MA (April 2007)

19. Grizzard, J., Sharma, V., Nunnery, C., Kang, B., Dagon, D.: Peer-to-peer botnets:
Overview and case study. In: Proceedings of the First Workshop on Hot Topics in
Understanding Botnets, Cambridge, MA (April 2007)

20. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: Bothunter: Detecting
malware infection through ids-driven dialog correlation. In: Proceedings of 16th
USENIX Security Symposium, Santa Clara, CA (June 2007)

21. Karasaridis, A., Rexroad, B., Hoeflin, D.: Wide-scale botnet detection and charac-
terization. In: Proceedings of the First Workshop on Hot Topics in Understanding
Botnets, Cambridge, MA (April 2007)

22. Kawamoto, D.: Bots slim down to get tough. CNET News.com (November 2005)
23. Lam, V.T., Antonatos, S., Akritidis, P., Anagnostakis, K.G.: Puppetnets: Misusing

web browsers as a distributed attack infrastructure. In: Proceedings of ACM CCS
(2006)

24. Moshchuk, A., Bragin, T., Deville, D., Gribble, S., Levy, H.: Spyproxy: Execution-
based detection of malicious web content. In: Proceedings of the 16th USENIX
Security Symposium, Boston, MA (August 2007)

25. The Honeynet Project. Know your enemy: Tracking botnets (March 2005),
http://www.honeynet.org/papers/bots

http://www.honeyd.org/adv.2004-01.asc
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/botnettaxonomywhitepapernovember2006.pdf
http://www.caida.org/projects/oarc/200507/slides/oarc0507-Dagon.pdf
http://www.honeynet.org/papers/bots

112 L. Liu et al.

26. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N.: The ghost
in the browser analysis of web-based malware. In: Proceedings of the First Work-
shop on Hot Topics in Understanding Botnets, Cambridge, MA (April 2007)

27. Rajab, M., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to under-
standing the botnet phenomenon. In: Proceedings of Internet Measurement Con-
ference (IMC), Rio de Janeiro, Brazil (October 2006)

28. Schoof, R., Koning, R.: Detecting peer-to-peer botnets (Feburary 2007),
http://staff.science.uva.nl/∼delaat/sne-2006-2007/p17/report.pdf

29. Stinson, E., Mitchell, J.C.: Characterizing the remote control behavior of bots.
In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579. Springer,
Heidelberg (2007)

30. Wang, P., Sparks, S., Zou, C.: An advanced hybrid peer-to-peer botnet. In: Proceed-
ings of the First Workshop on Hot Topics in Understanding Botnets, Cambridge,
MA (April 2007)

31. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: Capturing system-
wide information flow for malware detection and analysis. In: Proceedings of the
14th ACM Conference on Computer and Communication Security, Alexandria, VA
(October 2007)

32. Zou, C., Cunningham, R.: Honeybot-aware advanced botnet construction and
maintenance. In: Proceedings of the International Conference on Dependable Sys-
tems and Networks (DSN) (June 2006)

http://staff.science.uva.nl/~delaat/sne-2006-2007/p17/report.pdf

BotTracer: Execution-Based Bot-Like Malware Detection 113

Appendix A

Figure 3 depicts the profile of the Internet Explorer that is generated on a
clean machine without user interactions or network accesses.

<profile>
<name>

Internet Explorer
</name>
<description>

the profile of Microsoft Internet Explorer
</description>
<path>

C:\Program Files\Internet Explorer\iexplore.exe
</path>
<starting point>

www.google.com
</starting point>
<registry>

no
</registry>
<file access function>

getFileSize
</file access function>
<file access path>

C:\Documents and Settings\user\Local Settings
\Temporary Internet Files\Content.IE5\index.dat

</file access path>
<alarm>

yes
</alarm>

</profile>

Fig. 3. The dormant profile of Internet Explorer

Towards Automatically Generating Double-Free

Vulnerability Signatures Using Petri Nets

Ryan Iwahashi1, Daniela A.S. de Oliveira1, S. Felix Wu1,
Jedidiah R. Crandall2, Young-Jun Heo3, Jin-Tae Oh3, and Jong-Soo Jang3

1 University of California at Davis
2 University of New Mexico

3 ETRI

Abstract. With the increased popularity of polymorphic and register
spring attacks, exploit signatures intrusion detection systems (IDS) can
no longer rely only on exploit signatures. Vulnerability signatures that
pattern match based on properties of the vulnerability instead of the
exploit should be employed. Recent research has proposed three classes
of vulnerability signatures but its approach cannot address complex vul-
nerabilities such as the ASN.1 Double-Free. Here we introduce Petri nets
as a new class of vulnerability signature that could potentially be used
to detect other types of vulnerabilities. Petri nets can be automatically
generated and are represented as a graph making it easier to understand
and debug. We analyzed it along side the three other classes of vulner-
ability signatures in relation to the Windows ASN.1 vulnerability. The
results were very promising due to the very low false positive rate and 0%
false negative rate. We have shown that Petri nets are a very efficient,
concise, and effective way of describing signatures (both vulnerability
and exploit). They are more powerful than regular expressions and still
efficient enough to be practical. Comparing with the other classes, only
Turing machines provided a better identification rate but they incur sig-
nificant performance overhead.

1 Introduction

With the increased popularity of polymorphic and register spring attacks, in-
trusion detection systems (IDS) can no longer rely only on exploit signatures.
Vulnerability signatures that pattern match based on properties of the vulnera-
bility instead of the exploit should be employed. Third generation vulnerabilities
[17], such as double free, still are unpatched, for the most part. Although there
a great number of works in the literature focusing on traditional classes of vul-
nerabilities, such as buffer overflows and format strings, double-frees have not
received much attention.

Host-based intrusion detection systems (HIDS) have been shown successful
in stopping many worm attacks [4, 5, 9, 13, 15, 19] but there is still a desire to
detect potential attacks at the network level. Network-based intrusion detection
systems (NIDS) have the potential of reducing network traffic and increasing
host efficiency and rely heavily on signatures.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 114–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Automatically Generating Double-Free Vulnerability Signatures 115

Exploit-based signatures based on pattern-matching have been show of lim-
ited effectiveness in detecting worm attacks. The problem is that many different
attacks can exploit the same vulnerability. In addition, polymorphism and meta-
morphism exponentially expand the required number of signatures for a single
exploit [6]. Consequently, recent research has started to focus on signatures based
on the vulnerability [3, 6]. However, recent approach [3] cannot be applied to
complex vulnerabilities such as ASN.1 Double-Free.

In this paper we propose a new class of signature using Petri nets that ad-
dresses double-free vulnerabilities such as the ASN.1 vulnerability. It can poten-
tially be applied to other types of vulnerabilities such as buffer overflows and
format strings and can be automatically generated using an intrusion detection
system and a symbolic execution tool.

The rest of the paper is organized as follows. Section 2 discusses vulnerability
and exploits signatures. Section 3 describes the ASN.1 Double-Free vulnerability.
Section 4 discusses in detail our Petri net approach. In Section 5 we present the
tests we have performed to evaluate the effectiveness of our approach using the
ASN.1 vulnerability. We have also compared our approach, in relation to ASN.1,
with other three classes of vulnerability signatures presented in the literature.
Section 6 discusses related work. Our conclusions and future work are presented
in Section 7.

2 Vulnerability Signatures Versus Exploit Signatures

This paper deals with vulnerability signatures as opposed to exploit signatures,
and here, we explain the difference between a vulnerability and an exploit; these
terms are often used interchangeably although they are completely different.

Vulnerabilities are errors, flaws, weaknesses and lapses of security introduced
to computer systems during the software engineering process (requirements,
analysis, design, implementation, tests, operation and maintenance) that allow
unauthorized access and actions into the system (vulnerability exploitation) [2].
Some of the worst vulnerabilities allow attackers (those who explore vulnera-
bilities) to run their code on the compromised system. A vulnerability signa-
ture must not be based on malicious code or return addresses because these
aspects can be different for every exploit or altered using polymorphism or reg-
ister springs (use of known, static jumps in the source code to jump to malicious
code), for instance [6, 12]. This means that a vulnerability signature must be
based on properties of the vulnerability instead of the properties of the exploit.
For example, a buffer overflow will always need to send too many bytes into a
limited buffer to overwrite data on the stack. While exploit signatures will look
for data that is in the buffer, a vulnerability signature will look for any string of
bytes that is long enough to overrun the buffer.

An exploit is an instance of code or bytes conforming to a certain application
protocol that explores a vulnerability in a networked application so that manage-
ment information (stack pointers, heap management pointers, user identity data,
configuration data and so on) is corrupted with malicious data. When this data

116 R. Iwahashi et al.

is used by the architecture, the OS or the vulnerable program the malware is ac-
tivated and allows an attacker to take control of the system. Exploit packets are
those that triggered the execution of the exploit and, in practice, they are used
as exploit signatures. Signatures for exploits have become the most common way
of blocking malicious attacks primarily due to the fact that they are the easiest
to derive out of the exploit traces. They can be created by searching for pat-
terns within the exploit packets based on the attack. The problem is that many
different attacks can exploit the same vulnerability. In addition, polymorphism
and metamorphism exponentially expand the required number of signatures for
a single exploit [6]. A polymorphic exploit usually alters unimportant bytes or
use encryption, whereas a metamorphic exploit uses equivalent instructions to
achieve the same result. Despite the great number of possible exploits, the num-
ber of vulnerabilities is always finite. Therefore, creating signatures based on
vulnerabilities instead of exploits is far more effective.

In spite of that, there is still some ambiguity left based on the fact that
the exact vulnerability may be unknown without knowing the intention of the
code programmers. For example, the ASN.1 double free vulnerability is caused
because a freed chunk is returned from realloc when it is expected to be allocated.
The vulnerability could either be the problem with realloc, because it should
never return a freed chunk, or a problem with the ASN.1 function because realloc
was used incorrectly. As a result, a vulnerability signature will not necessarily
detect all exploits for a certain vulnerability, but all exploits for a vulnerable
piece of code. Here we define vulnerability signature as a signature based on the
properties of a vulnerable piece of code that allow any exploit targeting that
piece of code to be successful.

Vulnerability signatures should have three key properties in order to be consid-
ered a good signature. First, the signature should not allow any false negatives.
This is crucial because if a single attack is not detected by the signature then the
entire network could be compromised. Second, the signature should match very
few false positives because false positives will interfere with typical operations of
the network. Too many false positives can act like a denial of service attack. Third,
the signature matching time should not create any significant overhead. In this pa-
per, these three properties will be used to evaluate our new vulnerability class and
also to compare our approach with three vulnerability classes proposed in the lit-
erature [3]. Additionally, the signature should be automatically generated. The
primary reason for this is that it may be infeasible to manually create a signature
in a reasonable amount of time. Automatic generation of the signatures will en-
sure that networks are protected as quickly as possible. Also, the signature should
be easy to manually understand in case analysis or modification is required.

3 The ASN.1 Double-Free Vulnerability

The ASN.1 Windows Vulnerability (MS04-007) is a double-free vulnerability an-
nounced in February 2004 and is known to affect almost all unpatched Windows
operating systems including: Microsoft Windows 98, 2000, ME, XP, and 2003

Towards Automatically Generating Double-Free Vulnerability Signatures 117

[22]. The bug has the potential to allow a malicious hacker to obtain admin-
istrative access to the machine. In addition the vulnerability properties of the
attack are completely data and control flow sensitive and can easily be made
polymorphic.

Abstract Syntax Notation 1 (ASN.1) [10] is used to ensure that a message
is interpreted by the receiver in the exact way the sender intended it to be.
The syntax is a well defined set of rules and is utilized by many widely used
Windows services including Microsoft’s Internet Information Services (IIS), Ex-
change SMTP server, and Server Message Block (SMB). The basic encoding
rules (BER) of ASN.1 build the message using various well defined types. The
basic format is type(1 byte) [Parameters of type] Data. For example, a bit
string type has the tag 0x03 and takes in two parameters of one byte each. The
first parameter is the length (in bytes) and the second parameter is the number
of unused bytes in the string.

3.1 Vulnerability Description

TheASN.1vulnerability occurswhile decoding certainASN.1messages thatutilize
the constructed bitstrings type. A constructed bitstring has the tag 0x23 and takes
in a single one byte length parameter. The size of a constructed bitstring can be
expanded the same way the size of a bitstring is expanded. Within the constructed
bitstring there can be two subtypes: a bitstring or another constructed bitstring.

Whenever Windows receives an ASN.1 message it will use functions in
MSASN1.dll to decode the message. The function that decodes constructed bit-
strings contains a double free vulnerability [22]. A double free attack occurs when
a chunk that is already freed gets freed again. For example, a programmer first
allocates 8 bytes of memory for the variable temp which gets stored in chunk C.
After using the space, the programmer later frees temp. After it is freed, temp
will be inserted into the free list (a doubly linked data structure of freed chunks of
memory). The forward and backward pointers of the free list are stored in the first
8 data bytes of the freed chunk (Figure 1). After it has been freed, the programmer

Fig. 1. Chunk Headers in a Windows Heap

118 R. Iwahashi et al.

mistakenly uses temp and writes X in the first 4 bytes and Y in the second 4 bytes
of temp. Then the programmer frees temp again. The system will then try to insert
temp into the free list for a second time right before where it is already inserted.
The resulting link and unlink commands that are typical for a doubly linked data
structure will then execute. However, since the forward and backward pointers
have been overwritten it will produce different results. If you are trying to insert
chunk A before B the link and unlink will take 4 operations. First, A->fw gets set
to B. Second, A->bk gets set to B->bk. Third, B->bk->fw gets set to A. Last, B-
>bk gets set to A. In the corrupted case where chunk C is inserted before chunk
C, first C->fw gets set to C. This will just make C->fw point to itself. The sec-
ond step will cause C->bk to be set to C->bk. Third, C->bk->fw will be set to
C. But C->bk has been set to Y. So Y->fw, or the first 4 bytes in Y will be set
to the address of C. This is the key step because if Y is the address of a function
pointer it will now call C instead of whatever function it is supposed to call. Then
lastly, C->bk will be set to C. This means that C->fw and C->bk will both end up
pointing to itself (Figure 2). If the data stored in memory location Y is a function
pointer, the control flow will be altered when the function pointer is called.

Since double free vulnerabilities are well known, most commercial programs
do not permit arbitrary write to freed chunks on the heap. However, due to a
property of the realloc function the ASN.1 decoder in Windows allows a write to
a pointer that is incorrectly assumed to point to allocated space. When decoding
constructed bitstrings in the Windows ASN.1 decoder, it will be necessary to
allocate space for any bitstrings present based on the given length. The problem
will occur in only certain circumstances when the ASN.1 bitstring decoder is
called; it will be called whether the bitstring is constructed or not. If it is con-
structed it will be called recursively to process embedded bitstrings. The bug
is present within a constructed bitstring after at least one bitstring has been
processed. Then if that bitstring is followed by a constructed bitstring and a bit-
string inside the error will occur. This is because after any bitstring is processed
then the bitstring buffer will not be freed. However, after a constructed bitstring
is detected the bitstring buffer will be freed. This will cause realloc to return the
freed pointer and allow overwriting of the free list pointers.

Fig. 2. Write to Arbitrary Memory Location Using a Double Free Attack

Towards Automatically Generating Double-Free Vulnerability Signatures 119

There are many aspects that make Windows ASN.1 attack particularly inter-
esting. First, it is an example of a double-free vulnerability which was discovered
much later than buffer overflows and format string vulnerabilities and are still
present in many programs. They are much harder to detect statically and to per-
form signature generation than buffer overflow and format string vulnerabilities.
Further, this vulnerability is control flow sensitive, data flow sensitive, and easily
made polymorphic or metamorphic, which makes creating a strong signature for
it particularly difficult. We explain these aspects below.

The control flow of the program refers to the order in which the individual
instructions are executed. Control statements such as branches and conditional
jumps can alter the control flow of a program. An attack is control flow sensitive
if the success of the attack is affected by which branches are taken or not taken.
In this case, altering a single bit can be the difference between a valid packet
and an attack packet because the control flow will be altered. A control flow
sensitive attack means that without a very strong signature that takes into
account strict ordering then a large number of false positives will be obtained.
Other vulnerabilities such as buffer overflows and format strings may not have
this property. For example, most buffer overflows will not be affected by changing
the control flow. If the same number of bytes is in the packet then the buffer will
still be overrun. The same can be said about format string attacks. The data
flow of a program refers to how the data of the packet is interpreted. The ASN.1
vulnerability is data flow sensitive because the value of one byte of data effects
how other bytes of the data are interpreted.

Recent work [6, 12] has already shown that exploits can be very easily made
polymorphic through the use of encryption and register springs. The ASN.1 vul-
nerability can also be made polymorphic as well. For example, the constructed
bitstring that is used in the Kill-Bill exploit [7] can be made polymorphic by
randomizing the bits and encrypting the exploit code. Also the invalid address
and the overwritten function pointers can be varied. Although the vulnerability
requires the use of constructed bitstring and bitstring tags, there are three prop-
erties that can be easily changed to make the vulnerability more complicated.
First, the bitstrings can be of any size. Additionally, the use of the unused bytes
tag can make it even easier to vary the sizes without ever changing the size of
the exploit string. Second, there can be one or more constructed bitstring tags
in between the two bitstrings. Third, the bitstrings that cause realloc to return a
freed pointer can be put anywhere into the constructed bitstring. So the exploit
bitstrings can be placed at the very beginning or embedded within multiple
constructed bitstrings. These properties of the vulnerability create additional
complications in creating a powerful signature.

4 A Petri Net Approach

A Petri net is a graphical and mathematical modeling tool and language used to
represent discrete distributed systems[11]. As a modeling language, it graphically
depicts the structure of a distributed system as a directed bipartite graph with

120 R. Iwahashi et al.

annotations and has place nodes, transition nodes, and directed arcs connecting
places with transitions [21]. In this instance they will be used to generate a
signature for the ASN.1 vulnerability. The key advantage here will be the ability
of Petri nets to keep state and thus the important sizes and loops can be tracked.
Although Petri nets are complex, even complicated vulnerability signatures, like
the ASN.1 signature, can be represented in a reasonable size graph.

A petri net graph is basically comprised of five things: places, transitions,
arcs, weights, and tokens. Tokens are used to help keep state, and there can be
0 or more tokens at any place. The places, represented by circles, are basically
the different states of the graph. Transitions, represented by rectangles, are the
processes that occur in order for tokens to change places. The arcs are the arrows
that represent which places are the inputs for a transition and which are the
outputs. The weights indicate how many tokens from each place are required
to allow the transition to trigger. Figure 3 has a small example of matching
strings that are of the form aN bN . Graphs are a very convenient way to express
Petri nets, but more precision is required to accurately create good signatures.
Formally a Petri net can be represented by a 5-tuple, PN = P, T, F, W, M0

where: P = { p1, p2, ..., pm} is a finite set of places, T = { t1, t2, ..., pm} is a
finite set of transitions, F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation),
W: F → { 1, 2, 3, ...} is a weight function and M0: P → { 0, 1, 2, 3, ...} is the
initial marking.

λM λ

M=&M[1]

M[0]==b

M=&M[1]

M=&M[1]

M[0]==a

Fig. 3. Petri Net Example: Matches Strings of the form aN bN

4.1 Symbolic Execution

We have extended the DACODA symbolic execution tool [6] to automatically
generate the Petri net signature for the ASN.1 vulnerability. DACODA is an
extension of the Bochs virtual machine and can track down network bytes by
performing full-system symbolic execution [8] on every machine instruction. It
runs integrated with the Minos intrusion detection system [5] and can analyze
an attack at the moment it is detected. Minos is a microarchitecture that im-
plements Biba’s low-water-mark integrity policy [1] on individual words of data
and can catch zero-day control-flow hijacking attacks. In this microarchitecture,
every 32-bit word of memory and general-purpose register is augmented with an
integrity bit, which is set by the kernel when it writes data into them. This bit is
set to low or high, depending on the trust the kernel has for it. Data coming from

Towards Automatically Generating Double-Free Vulnerability Signatures 121

the network are usually regarded as low integrity. Any control transfer involving
untrusted data is considered a vulnerability, and a hardware exception traps to
the VM whenever this occurs. DACODA makes use of a symbolic memory space
(including the memory of the Ethernet device) and a symbolic register bank to
store information about the propagation of network bytes in our system. Each
component of this symbolic storage area has a 1:1 correspondence with the real
component in the system architecture. The network bytes propagation informa-
tion is stored in objects called Expressions, which can be of several types, for
instance, Label, Operation, Predicate, DoubleExpression and QuadExpression.

A Label has a unique integer that identifies it. An Operation is characterized
by the operation that is performed in its two operands, which can be any type of
Expression. A Predicate is formed by a specific relation comparing an Expression
on the left-hand side and another on the right-hand side. A DoubleExpression
represents the two Expressions associated with each byte of a 16-bit word, and a
QuadExpression is formed by the four Expressions associated with the four bytes
of a 32-bit word. DACODA discovers equality predicates every time labeled data
or a symbolic expression is explicitly used in a conditional control flow transfer.

We describe how DACODA works with the example given in Figure 4. First,
when a network packet is read from the Ethernet device, we create a Label object
identified by a unique integer for every byte of the packet. Suppose a byte from a
network packet is labeled with “Label 1832” when it is read from the Ethernet
card. As the byte is stored in the Ethernet device memory, its corresponding
label object is stored in the Ethernet device symbolic memory. DACODA then
follows the byte through the device into the processor where the kernel reads it
into a buffer. In this case wherever the byte is stored, DACODA tracks it down
through its Label in the symbolic storage space. Suppose the kernel copies this
byte into user space and a user process moves it into the AL register, adds the
integer 4 to it, and makes a control flow transfer predicated on the result being
equal to 10.

For the first instruction DACODA stores an Expression of type Label (num-
ber 1832) into our symbolic AL register. For the second instruction, DACODA
creates an Operation object with operation ADD, operand1 Label 1832 and
operand2 Constant 4 and stores this object into our symbolic AL register.
The Zero Flag (ZF) is used by the Pentium for indicating equality or inequal-
ity. DACODA associates two expressions with ZF, left and right, to store the
expressions for the last two data that were compared. ZF can also be set by
various arithmetic instructions but only explicit comparison instructions set the
left and right pointers in DACODA. Thus, in the third instruction DACODA
sets the left expression of ZF to be the expression stored at the AL symbolic
register and the right expression to Constant 10. If any subsequent instruction
checks ZF and finds it to be set, DACODA creates an equality predicate. This
is exactly what happens for the last instruction in our example, with DACODA
discovering the predicate (in prefix notation),“(EQUAL (ADD (Label 1832) 4)
10)”. DACODA defines a strong, explicit equality predicate to be an equality
predicate that is exposed because of an explicit check for equality.

122 R. Iwahashi et al.

; AL.expr <− (Label 1832)

2. add al,4
; AL.expr <− (ADD AL.expr 4)
; AL.expr == (ADD (LABEL 1832) 4)

3. cmp al,10
; ZF.left <− AL.expr
; ZF.left == (ADD (Label 1832) 4)
; ZF.right <− 10

4. je JumpTargetIfEqualToTen
; P = Predicate(EQUAL ZF.left ZF.right)
; P == (EQUAL (ADD (Label 1832) 4) 10)
; if (ZF == 1)
; AddToSetOfKnownPredicates(P);
; Discover predicate if branch taken

1. mov al,[AddressWithLabel1832]

Fig. 4. DACODA Example

Whenever Minos catches an attack, DACODA provides information about it,
such as processes involved, if the attack involved kernel or user processes, tokens
that compose the attack trace and the predicates found.

4.2 The Signature Generation Process

We have modified DACODA to detect if the attack contains a constructed bit-
string that will exploit the ASN.1 vulnerability. In general there are two pieces
of information that need to be placed into the ASN.1 Petri net signature: the
headers and the sizes. The headers can be easily generated because they are
automatically detected when DACODA finds an equality predicate. The sizes
are always in the bytes immediately following the headers so those can be found
based on where the equality predicates are. The start place is automatically
inserted into the Petri net by searching for the first predicate relative in the
ASN.1 attack (0x23). After that when DACODA detects an equality predicate
it will be used to generate a new transition. If an equality predicate has already
been seen, then the output of the transition will lead back to the original place
already generated.

In addition to looking at the equality predicate, DACODA will also keep
track of the next four bytes. The justification of this is based on the fact that
equality predicates often represent tags or headers of a packet. Then the size (if
applicable) will be one or more of the next four bytes. Based on this assumption,
the next step is to determine how far the next byte used in an equality predicate
is away from this one in terms of a constant and the size bytes that were recorded.
The current implementation chooses from a list of possible formulas. Currently
there are eight formulas that DACODA can choose from. If A B C and D are
the four bytes following the tag they are: A, B, C, D, A+B, A-B, (A<<4)+B
-C, other (constant number). The last two formulas are relevant for the ASN.1

Towards Automatically Generating Double-Free Vulnerability Signatures 123

Petri net signature. The correct formula can be determined based on how far
away the next equality predicate is. In order to track the size, DACODA will add
places and transitions to keep track of the length by creating tokens. The places
and transitions will be generated based on the formula that was detected. This
stored length can be used for comparison and to figure out where other headers
would be. The size can be calculated in tracked by Petri nets by adding an extra
transition that will produce tokens until a certain result is reached. This concept
can be seen in Figure 3 where the number of a’s seen gets calculated and then is
used to see if the correct number of b’s are present. DACODA generates Petri
net places and transitions to track the sizes after the size is detected from the list
of formulas. Closely tracking the sizes and headers accounts for the control flow
and data flow sensitivity and will eliminate many false positives. The execution
point at which Minos stops the attack represents the attack place. If a token
reaches the final place than an attack occurred.

The Petri net outputted is consistent with its formal definition [11]. Figure 5
represents the formal definition of the Petri net signature for the ASN.1 double
free vulnerability. The main progression of a token from the initial place to the
attack place will basically proceed down the main horizontal string of places
and transitions. Place 1 is the unlabeled Place where the token starts off and
Place 7 is when an attack is detected. The transitions from Place 1 to Place 2
and Place 2 to Place 3 are straight forward. The token simply transitions after
a constructed bitstring tag and a nested bitstring tag are found. After we have
found the first bit string we need to take into account both the number of bytes
and the number of unused bytes. Places 3 and 4 both create new tokens into
Places 8 and 9 respectively. In order to keep track of the fact that there may be
unused bytes in a bitstring, the Petri net will subtract the tokens from Place 8
for every unused byte counted in Place 9. However, these tokens are transitioned
to Place 11. Place 5 will transition to the next header in the ASN.1 message
format using the tokens that are still remaining in Place 8. These tokens from

Fig. 5. Petri Net Graph for the ASN.1 Vulnerability Signature Format

124 R. Iwahashi et al.

the used bytes in the bitstring will rejoin the tokens from the unused bytes in
Place 11. We will then transition into Place 6 when we find the next bitstring
and the sizes can be compared using the tokens from Place 11. If the sizes are
equal than we transition into Place 7 and an attack is detected. This formal
definition can be transformed into a signature checker using a program that will
interpret the Petri net.

5 Evaluation

In this section we evaluate our proposed Petri Net class of double-free vulner-
ability signature. First, we show that previous approaches [3] are not effective
for vulnerabilities such as the ASN.1 Double-Free addressed in this paper. The
three classes of vulnerability signatures proposed in a recent work [3] are regular
expressions, symbolic constraint notation, and Turing machines. Since the sig-
nature generation techniques used in [3] are not available to us, the vulnerability
signature for each class had to be manually created. It is important to point out
that since manual creation was utilized, the vulnerability signatures are more
specific and efficient (yield better results in false positives, false negatives, and
time overhead) than if the signatures had been automatically created.

Looking at the properties of the ASN.1 vulnerability implies that the vul-
nerability signature must be based on the constructed bitstring headers. The
only difference between an exploit message and a regular message will be the
order of bitstrings and constructed bitstrings. But more information about the
headers, such as the length of bitstrings, can be added to reduce false posi-
tives. A list of properties that must be true to produce an attack is seen below
where 0xXX indicates that the byte value can be anything and 0xNN, 0xPP,
0xQQ, etc. indicates that the value of the byte should be N, P, Q, etc. re-
spectively: (i) The pattern must begin with one or more constructed bitstring
headers: 0x23(tag) 0xXX(size) or 0x23(tag) 0x80(tag) 0xXX(size) 0xXX(size),
(ii) Afterwards there can be one or more bitstring headers followed by the
bitstring: 0x03(tag) 0xLL(size) 0xMM(unused bits) 0xXXL−M (bitstring data)
or 0x03(tag) 0x80(tag) 0xLL(size) 0xMM(size) 0xKK(unused bits)
0xXX(L<<4)+M−K where the last bitstring’s size is not zero, L-M refers to the
mathematical result of L - M and (L<<4) +M - K refers to the binary represen-
tation of L shifted 4 bits to the left then that result added to M-K, (iii) There
must be one or more constructed bitstring headers: 0x23(tag) 0xXX(size)or
0x23(tag) 0x80(tag) 0xXX(size) 0xXX(size) and (iv) The second of the two
consecutive bitstrings should appear: 0x03(tag) 0xLL(size) 0xMM(unused bits)
0xXXL−M (bitstring data) or 0x03(tag) 0x80(tag) 0xLL(size) 0xMM(size)
0xKK(unused bits) 0xXX(L<<4)+M−K where the last bitstring’s size is not zero.

Regular expressions are perhaps the most widely used pattern recognition
scheme for its power and efficiency. However, in the case of describing the ASN.1
vulnerability signature it cannot distinguish between some valid traces and ma-
licious traces. The reason is that regular expressions do not take into account
bitstring length and may misinterpret bytes. The content of the bitstrings can

Towards Automatically Generating Double-Free Vulnerability Signatures 125

Fig. 6. Single Regular Expression for the ASN.1 Vulnerability

Fig. 7. Symbolic Constraint Signature for the ASN.1 Vulnerability

always have sequences that look like headers, but regular expressions will not
be able to determine if it is a header or if it is data. As a result, signatures
created for the ASN.1 vulnerability that do not produce false negatives using
regular expressions will produce false positives and those that do not produce
false positives have false negatives. For the purposes of this experiment, in order
to show that the ASN.1 attack could be detected by vulnerability signatures it
is important to eliminate false negatives and we did so by manually creating the
ASN.1 regular expression (Figure 6).

The Symbolic Constraint signature class is represented by a set of Boolean
formulas. The power of these signatures over regular expressions is that it has
the power to specify a range of input bytes or any specific input byte for compar-
ison with a value. However, they do not have the capability to handle loops. Due
to the recursive nature of the ASN.1 constructed bitstring structure, loops are
necessary in the signature. Although approximations can be made in the sym-
bolic constraint notation, any reasonable signature would be extremely long.
The symbolic constraint signature seen in Figure 7 is very drawn out, but it is
still not enough to deal with the complexity of the ASN.1 vulnerability. This
symbolic constraint signature will look for a constructed bitstring. Then within
that constructed bitstring it will look for a bitstring of length n and then look
for another constructed bitstring and a bitstring of length k afterwards. Then
numbers n and k are varied from 1 to 128 to keep the length down but still there
are 16,384 combinations. Of course if the bitstrings have a longer length they
will still not be detected by this symbolic constraint signature.

Turing machines will of course be able to represent the ASN.1 vulnerability
signature because the full ASN.1 constructed bitstring decoder function can
simply be emulated. However, Turing machines are complex, inefficient, and will
not always terminate.

Second,we analyze the effectiveness of our PetriNet approach alongwith regular
expressions, symbolic constraint, Turing machines with regard to false positives,
false negatives, and complexity. The results are presented in Tables 1 and 2.

126 R. Iwahashi et al.

Table 1. Four Vulnerability Signatures Classifying Randomly Generated ASN.1 Attack
Packets

Signature Class Attacks False Negatives Valid Traces Seconds

ASN.1 Daemon 887965 0 112035 305

Regular Expressions 1000000 0 0 17

Symbolic Constraints 71691 928309 0 144

Turing Machines 887965 0 112035 72

Petri Nets 1000000 0 0 71

In order to test for false negatives for each signature class a random ASN.1
constructed bitstring generator was developed to create a large number of bit-
strings that will generate an attack. Each length in the constructed bitstring uses
a random number generator to construct one million attack traces. Each attack
trace was specifically generated to contain bitstrings and constructed bitstrings
in an order that would constitute an attack. However, zero length bitstrings were
allowed so not all of the traces would constitute an attack. Using a specially de-
signed ASN.1 daemon modeled after the Windows ASN1BERDecBitstring func-
tion [7], each of the 1,000,000 attack traces was tested to see if it would cause
a double free attack. About 88% of the bitstrings were determined to cause an
attack. The other 12% would not result in an attack.

The Turing machine signature returned the best results because it has no
false negatives. Regular expressions and Petri nets are both able to detect all
the attack packets, but the valid packets due to zero length strings are also
detected creating false positives. Fortunately, Petri net signatures can eliminate
this type of error by adding an extra place and a lambda transition. However,
our generated Petri net signature is not yet capable of producing this result. The
regular expression used in this paper was specifically constructed to achieve zero
false negatives. Due to the limitations of regular expressions this construction
will produce many more false positives (Table 2). However, symbolic constraint
signature is limited in detecting attack packets. Only 7% of the packets were
found, so about 93% of potential attacks were missed. The recursive nature of the
ASN.1 Windows vulnerability is the reason that symbolic constraint signatures
yield worse results than regular expressions. For simpler vulnerabilities symbolic
constraints will perform better. In order to rectify this problem, an even longer
symbolic constraint signature would need to be developed. However, this will
also increase the time overhead.

Table 2 contains the results when running the signatures against real traffic
data. Each signature was used to check one gigabyte of trace data to search
for any matching patterns. The TCP dump that was used represents real traffic
from a research institute in Taiwan and contains about 4.8 million traces of which
about 1.4 million had the ASN.1 tag present. The traffic data does not contain
any attacks so any matching trace is considered a false positive. As expected the
regular expression signature is much too general and returns a very large number
of false positives. The high number of false positives for regular expressions is
due to the lack of knowledge of size. It will match traces that have the 0x23

Towards Automatically Generating Double-Free Vulnerability Signatures 127

Table 2. Four Vulnerability Signatures Classifying Real Traffic Data

Signature Class False Positives Seconds

Regular Expressions 167432 934

Symbolic Constraints 7 967

Turing Machines 0 1083

Petri Nets 3 917

tag at the beginning and the rest of the pattern at the end regardless of the
size bits. The results for symbolic constraint signatures and Petri nets yielded
a small number of false positives with an execution time that was about 11-
15% faster than the Turing machine signature scheme. The three false positives
detected by Petri nets are all contained within the seven false positives detected
by symbolic constraint notation. Those seven false positives were also part of the
167,432 false positives detected by the regular expression signature. Although
Turing machine signature matching was clearly slower, it did have the advantage
of zero false positives.

One of the traces that was matched as an attack by Petri net, symbolic con-
straint, and regular expressions is displayed in Figure 8. The bolded part is the
sequence in the trace that is causing the false positive. This particular trace is a
TCP packet found in the trace file. Although this sequence does closely resem-
ble an attack, it is correctly identified by Turing machines because the initial
constructed bitstring has a length of only two bits. Therefore none of the fol-
lowing sequences would actually be analyzed by the vulnerable Windows ASN.1
decoding function. This extra size constraint was not automatically generated
by a Petri net signature and is too complex for symbolic constraint and regular
expression signatures. It is unclear whether the automatically generated Petri
net signature can be expanded to also track the size of each constructed bitstring
to eliminate this type of false positive. As a result, a valid trace will be classified
as an attack. However, this pattern did not occur often in the large number of
test cases where the false positive rate has been shown to be much less than 1%
for Petri nets.

The results in these tests show the inadequacy of regular expression and sym-
bolic constraint signatures due to false positives and false negatives respectively.
Turing machines have been used in this example to produce the best results, but
they still have the problem of becoming undecidable. According to [3], Turing
machines will not terminate for certain signatures. In addition, the automatic
generation of Turing machine signatures will be produced using low level in-
struction code generated from the binary which would be very hard to verify or
debug. Conversely, Petri nets are naturally represented as a graph which is very
easy to interpret meaning from. Test results showed that Petri nets are capable
of accurately represent the complex ASN.1 vulnerability signature producing no
false negatives and a very small number of false positives (less than 1%). The
time overhead of the Petri net signature was also significantly less than Turing
machines. In addition, Petri net signatures can be automatically generated with
a symbolic execution tool like DACODA. Generation and verification is a very

128 R. Iwahashi et al.

Fig. 8. Example of False Positive

important aspect of vulnerability signatures because it is necessary that they
are implemented quickly. One other comparison factor for the four signatures
is the signature size. The longer the signature the more space overhead it will
require. Also more time overhead will be needed to process it. Regular expres-
sions produced the smallest signature, 80 bytes, whereas, symbolic constraint
notation produced the largest signature, 123 kilobytes. The sizes of the Petri net
signature, 1.8 kilobytes, and the Turing machine signature, 3.2 kilobytes, were
pretty similar. Consequently, Petri net vulnerability signatures performed best
overall for the four properties of an ideal signature.

Other double free vulnerabilities can also be detected by tracking the equality
predicates in DACODA. The simpler attacks will not need to take into account
the size of bitstrings like the ASN.1 double free vulnerability signature did. In
the cases where the vulnerability is not data flow sensitive the length in between
predicates can just be set to a constant instead of an expression. Conversely, for
other complex attacks, the formulas used for the size may need to be expanded to
detect other kinds of attacks. Buffer overflow vulnerabilities can also be detected
by taking the distance in between predicates into account. Other vulnerabilities,
like format string vulnerabilities, should be able to be detected simply using
the equality predicates and rules already set in DACODA because the critical
properties, like the format inconsistency, will be detected.

6 Related Work

Current defense against malicious activity can be split up into two types of
intrusion detection systems: host based and network based.

Host based systems [4, 5, 9, 13, 15, 19] have the distinct advantage over
network based systems of being able to utilize all of the information that exists on
the host, making detection much more feasible because of this extra information.
However, preventing attacks at the network level would cause less congestion on
the network and save valuable host resources for useful work. In addition, due
to the many hosts that may be on a network, deploying intrusion detection is
more feasible if it only needs to be done once to protect the entire network.

Towards Automatically Generating Double-Free Vulnerability Signatures 129

Network intrusion detection systems traditionally rely on exploit-based sig-
natures [12, 16, 18, 20, 23]. The exploit based signatures for attacks like buffer
overflows, are most commonly the no-op sleds or malicious shell codes of the
exploit. However, due to register springs and polymorphism, exploit signatures
may not be the best alternative because of the great number of different signa-
tures required [6]. One other variation of a NIDS utilizes network emulation to
execute the possible paths for every trace [14]. However, running the program at
the network level produces a considerable delay and is limited by only detecting
single packet attacks.

7 Conclusions and Future Work

Although security in software programs has improved, current attacks have be-
come more complicated and harder to detect using traditional exploit-based
signatures. The ASN.1 vulnerability is a great example of an advanced double
free vulnerability that is very hard to detect due to its control flow and data
flow sensitive nature. Vulnerability signatures are a new method of detecting
intrusions that uses properties of the vulnerability that must be prevalent in all
possible exploits of that vulnerability. Petri nets were introduced as a new class
of vulnerability signature that can be used to detect not only double-free but
also other types of vulnerabilities that can be expressed or caught using regular
expressions. They are a very efficient, concise, and effective way of describing
signatures (both vulnerability and exploit). They are more powerful than regu-
lar expressions and still efficient enough to be practical. In order to test this new
class, it was analyzed along side three other classes of vulnerability signatures
presented in the literature [3] in relation to the Windows ASN.1 vulnerability.
The results of the Petri net class were very promising (even though they have
only been shown to work against a single vulnerability) due to the very low false
positive rate and 0% false negative rate. Only Turing machines provided a bet-
ter identification rate. However, Petri nets can be automatically generated using
a symbolic execution tool like DACODA [6] and are very easily represented as
a graph making it easier to understand and debug. Turing Machines also have
a distinct disadvantage of time overhead. Testing the effectiveness of Petri net
signatures on other vulnerabilities is left for future research although the same
methodology should be applicable for other vulnerabilities.

References

1. Biba, K.J.: Integrity Considerations for Secure Computer Systems. In: MITRE
Technical Report TR-3153 (April 1977)

2. Bishop, M.: Computer Security: Art and Science (2003)

3. Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards Automatic Gen-
eration of Vulnerability-Based Signatures. In: IEEE Symposium on Security and
Privacy (May 2006)

130 R. Iwahashi et al.

4. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,
P.: Vigilante: End-to-end containment of Internet worms. In: SOSP 2005: Pro-
ceedings of the twentieth ACM Symposium on Operating Systems Principles, pp.
133–147. ACM Press, New York (2005)

5. Crandall, J.R., Chong, F.T.: Minos: Control Data Attack Prevention Orthogonal
to Memory Model. MICRO, 221–232 (December 2004)

6. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On Deriving Unknown Vulnerabil-
ities from Zero-Day Polymorphic and Metamorphic Worm Exploits. ACM CCS,
235–248 (November 2005)

7. Eclipse, S.: kill-bill windows exploit, http://www.phreedom.org/solar/exploits/
msasn1-bitstring/kill-bill.tar.gz

8. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

9. Kiriansky, V., Bruening, D., Amarasinghe, S.: Secure Execution Via Program
Shepherding. In: USENIX, pp. 191–206 (2002)

10. Larmouth, J.: Asn.1 complete. open system solutions (1999)
11. Murata, T.: Petri Nets: Properties, Analysis, and Applications. Proceedings of the

IEEE 77(4) (April 1989)
12. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures

for polymorphic worms. In: Proceedings of the IEEE Symposium on Security and
Privacy, pp. 226–241 (2005)

13. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
12th Annual Network and Distributed System Security Symposium (NDSS 2005)
(Febuary 2005)

14. Polychronakis, M., Anagnostakis, K., Markatos, E.: Network-level polymorphic
shellcode detection using emulation. Institute for infocomm research, singapore
(2005)

15. Qin, F., Wang, C., Li, Z., Kim, H.-S., Zhou, Y., Wu, Y.: LIFT: A Low-Overhead
Practical Information Flow Tracking System for Detecting Security Attacks.
MICRO-39, 135–148 (December 2006)

16. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:
OSDI (2004)

17. Szor, P.: The Art of Computer Virus Research and Defense (2005)
18. Tang, Y., Chen, S.: Defending Against Internet Worms: A Signature-based Ap-

proach. In: INFOCOM (2005)
19. Vachharajani, N., Bridges, M.J., Chang, J., Rangan, R., Ottoni, G., Blome, J.A.,

Reis, G.A., Vachharajani, M., August, D.I.: Rifle: An architectural framework for
user-centric information-flow security. In: Proceedings of the 37th International
Symposium on Microarchitecture (MICRO), December 2004, pp. 39–58 (2004)

20. Wang, K., Stolfo, S.: Anomalous Payload-Based Network Intrusion Detection. In:
Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp.
201–222. Springer, Heidelberg (2004)

21. Wikipedia. Wikipedia. Petri net, http://en.wikipedia.org/wiki/Main Page

22. eEye advisory for AD20040210-2, http://www.eeye.com

23. SNORT: The open source network intrusion detection system (2002),

http://www.snort.org

http://www.phreedom.org/solar/exploits/msasn1-bitstring/kill-bill.tar.gz
http://www.phreedom.org/solar/exploits/msasn1-bitstring/kill-bill.tar.gz
http://en.wikipedia.org/wiki/Main_Page
http://www.eeye.com
http://www.snort.org

Distinguishing between FE and DDoS Using

Randomness Check�

Hyundo Park1, Peng Li2, Debin Gao2, Heejo Lee1,
and Robert H. Deng2

1 Korea University, Seoul, Korea
{hyundo95,heejo}@korea.ac.kr
2 School of Information Systems,

Singapore Management University, Singapore
{pengli,dbgao,robertdeng}@smu.edu.sg

Abstract. Threads posed by Distributed Denial of Service (DDoS) at-
tacks are becoming more serious day by day. Accurately detecting DDoS
becomes an important and necessary step in securing a computer net-
work. However, Flash Event (FE), which is created by legitimate re-
quests, shares very similar characteristics with DDoS in many aspects
and makes it hard to be distinguished from DDoS attacks. In this pa-
per, we propose a simple yet effective mechanism called FDD (FE and
DDoS Distinguisher) to distinguish FE and DDoS. To the best of our
knowledge, this is the first effective and practical mechanism that distin-
guishes FE and DDoS attacks. Our trace-driven evaluation shows that
FDD distinguishes between FE and DDoS attacks accurately and effi-
ciently by utilizing only memory of a very small size, making it possible
to be implemented on high-speed networking devices.

Keywords:Network Security,Distributed Denial of Service, Flash Event,
Randomness Check.

1 Introduction

Flash crowd was used to refer to the situation when thousands of people went
back in time to see historical events anew [16,11]. We use the term Flash Event
(FE) to refer to a similar situation in which a large number of users simultane-
ously access a computer server. The computer server that experiences very high
load during the event could be a popular web server, e.g., the official Olympic
web site during the Olympic games, a course registration server at the begin-
ning of a school semester, and etc. The most important characteristics of Flash

� This research was supported by the MIC, Korea, under the ITRC support pro-
gram supervised by the IITA(IITA-2008-(C1090-0801-0016)), the IT R&D program
of MKE/IITA(2008-S-026-01) and partially supported by Defense Acquisition Pro-
gram Administration and Agency for Defense Development under the contract(2008-
SW-51-IM-02).

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 131–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 H. Park et al.

Event (FE) include that it is created by legitimate users, and that the server
experiences abnormal high demand.

Denial of Service (DoS) attacks attempt to make a computer resource un-
available to its intended users. A very common method of the attack involves
saturating the victim machine with external communication requests such that
it cannot respond to legitimate traffic. Moreover, Distributed Denial of Service
(DDoS) attacks attempt to do so by sending these external requests from many
compromised machines (a.k.a. zombies, daemons, agents, slaves, etc.) distributed
around the world. DoS attacks have become a major threat to network security
in the past few years. Over 12,000 worldwide DoS attacks had been observed
over three weeks in 2001 [5]. DDoS attack was listed as the most financially
expensive security accident on the 2004 CSI/FBI Computer Crime and Security
Survey [14]. Many DDoS attacks bring down the victim server by consuming a
lot of resources on the victim machine, e.g., CPU resources, memory resources,
and bandwidth. Some attacks spoof the source IP addresses, e.g., SYN flood,
while others do not. The former is relatively easy to detect because an ACK
never comes back from the client; while zombies that send requests to the victim
server like what legitimate users would do can be much harder to detect. Despite
a lot of research done in the past few years, accurately detecting DDoS remains
a hard problem.

To make the problem even more difficult, FE and DDoS attacks share many
similar characteristics, and are very difficult to distinguish from one another [11].
Both FE and DDoS are caused by a large number of client requests. The con-
sequences of both FE and DDoS include slow responses and connection drops.
In the case of FE and DDoS where source IP addresses are not spoofed, what
makes FE and DDoS attacks different is user intention, which is hard to detect
by the victim server. Although FE and DDoS share similar characteristics and
are hard to tell from one another, it is of great interest to be able to distinguish
them, because very different actions need to be done in rectifying these two
events. In the case of a FE, the server administrator may want to quickly enable
or increase the number of CDNs (Content Distribution Networks), load sharing
mechanisms, and etc. so that more users can be accommodated. In the case of a
DDoS attack, the server administrator may want to quickly deploy/enable filters
at the border gateway to filter out attack traffic so that legitimate requests are
not dropped.

In this paper, we propose a mechanism called FDD to distinguish between
FE and DDoS attacks using randomness check. To the best of our knowledge,
this is the first effective and practical approach that distinguishes FE and DDoS
attacks. Studies have found that a noticeable difference between FE and DDoS
is in the distribution of clients and of their requests. During FE, a large number
of clusters active during an FE had also visited the sites before the event [11].
A cluster is a group of clients that are close together topologically and are likely
to be under a common administrative control [4]. Since clusters sending a large
number of requests to the server can be frequently observed during FE, the
source addresses of requests received by the server during a FE is not random.

Distinguishing between FE and DDoS Using Randomness Check 133

In other words, these source addresses are predictable and follow some proba-
bility distribution which can be approximated by observing previous requests
and analyzing their source addresses. However, DDoS does not share this unique
feature. DDoS is usually due to an increase in the number of clients or a par-
ticular client sending requests at a high rate. Client distribution across ISPs
(clusters) does not follow population distribution [11]. Intuitively, this means
that the source addresses of an DDoS attack are much less predictable, and look
more like random addresses to the victim server.

FDD distinguishes between FE and DDoS using randomness check of the
distribution of clients among clusters. In order to do this, we construct a ma-
trix to capture the cluster distribution, and apply two operations, XOR and
AND, to our matrices to remove or keep, respectively, the overlapping clusters.
Simply put, the matrix is able to capture the randomness feature in the client
distribution, which is a key feature to distinguish FE and DDoS. The XOR and
AND operations further enables us to capture the dependency between current
requests and requests received previously, which not only further improves the
accuracy of the randomness check, but enable us to distinguish source-spoofed
DDoS and non-source-spoofed DDoS. With trace-driven evaluations, we show
that the proposed matrix operations and randomness check are able to accu-
rately distinguish between FE and DDoS attacks.

In the rest of the paper, Section 2 describes characteristics of FE and DDoS,
as well as related work. Our approach of distinguishing between FE and DDoS
is presented in Section 3. In Section 4, we present evaluation results. Finally,
Section 5 concludes our paper.

2 Characteristics of FE and DDoS and Related Work

2.1 FE and DDoS

In this subsection, we explain some characteristics of FE and DDoS as found by
Jung et al. [11]. FE and DDoS attacks are similar to each other in many aspects.
For example, when the server is in a Flash Event or under a DDoS attack, the
traffic volume would be considerably high, resulting in slow responses and drop-
ping of connections. On the other hand, FE and DDoS attack are different in
many ways. One aspect in which they differ most is the distribution of distinct
clients among clusters, which are constructed by the network-aware client clus-
tering technique [4]. During FE, the number of distinct clusters is much smaller
than that of distinct clients. However, during DDoS attacks, these two num-
bers become very close [11]. In other words, the distribution of requests among
clusters in FE is very different from that in DDoS attacks. One of the most
important reasons is because DDoS attacks usually make use of vulnerable ma-
chines on the Internet, and these vulnerable machines are distributed randomly.
Below we summarize some of the important characteristics of FE and DDoS [11]
which we explore to design FDD.

First, the number of requests sent to the server would increase dramati-
cally during both FE and DDoS attacks. We focus on the most common DDoS

134 H. Park et al.

attacks — flooding attacks with a big traffic volume that consume various re-
sources at the victim.

Second, the number of distinct clusters during the FE is much smaller than
the number of distinct clients. However, DDoS requests come from clients widely
distributed across clusters in the Internet.

Third, a large number of clusters active during an FE had also visited the
sites before the event. A possible explanation is that many clusters would have
at least one client that accessed the site already when the overall request rate
is high. However, in the case of DDoS, an overwhelming majority of the client
clusters that generate requests are new clusters not seen by the site before the
attack.

2.2 Related Work

Varieties of DDoS detecting mechanisms have been proposed in the literature.
He et al. proposed a mechanism to detect SYN flooding attack using Bloom
filter [19]. They update the client list with a Bloom filter; if a SYN request
shows up on the network, they increase the corresponding counter for this client
in the list; but if a SYN/ACK request comes from the same client, they decrease
the number of the same counter by one. Using this method, they can detect
SYN flooding attacks by checking the counters on the list. Another mechanism,
proposed by Wang et al. [10], make use of the ratio of the numbers of SYN and
FIN/RST. During a SYN flooding attack, there would be a significant amount
of SYN packets, but the number of FIN/RST packets would not be as large
as that of SYN packets. However, these two mechanisms only react on TCP
protocol and will recognize FE and DDoS attacks as the same type of event.
The mechanism proposed by Peng et al. detects DDoS attacks by monitoring
the distribution of source IP addresses [18]. The number of new IP addresses
that have not been observed before is very large during DDoS attacks. With a
hash function, they check the distribution of those new IP addresses to detect
DDoS. However, this approach would fail if the attackers were not to spoof
the IP addresses. Feinstein et al. develop a statistical approach to detect DDoS
attack [15]. They exploit the characteristic that the distribution of source IP
addresses during DDoS attacks is uniform, and detect DDoS attacks with the
help of Chi-square statistics and entropy. Their experiment shows that the Chi-
square value would increase dramatically during DDoS attacks. However, the
threshold of their detecting system depends on the statistical results and need
to be changed in different network environments.

In other category to counter with DDoS attacks, several protection mech-
anisms have been proposed recently. Stavrou et al. proposed a mechanism to
counter DoS attacks, routing to send each packet through a randomly selected
overlay node, with stateless protocol for authenticating users to the infrastruc-
ture and an efficient per-packet authentication scheme [3]. A new network-based
flood protection scheme is proposed by Casado et al. which is called CAT(Cookies
Along Trush-boundaries) [17]. The scheme uses flow cookies and IP black-list
lookup which is deployed between a cookie box and a web server. AITF(Active

Distinguishing between FE and DDoS Using Randomness Check 135

Internet Traffic Filtering) proposed by Argyraki et al. leverages the recorded
route information to block attack traffic [12]. If an attacker spoofs his/her source
IP address, attack packets with multiple source IP addresses will have one rout-
ing path and AITF can block the attack packets close to the attack source.

The majority approaches focus on deal with DDoS attacks or abnormal situa-
tion of traffics without considering a FE. Even though some approaches take ac-
count of a FE, they set a FE as one of abnormal activities without distinguishing
from DDoS attacks. Since a FE is caused by legitimate users, the countermea-
sure of server administrator during a FE is very different from it during DDoS
attacks. In this paper, we propose a new mechanism to distinguish between FE
and DDoS attacks.

3 FDD (FE and DDoS Distinguisher) Using Randomness
Check

In this section, we first provide an overview of FDD, and then explain the matrix
construction and operations, and the randomness check in details.

3.1 Overview of FDD

Our approach, FDD (FE and DDoS Distinguisher), is designed to distinguish
between FE and DDoS attacks using a matrix construction, two newly defined
matrix operations, and the randomness check on the matrices. We first motivate
the idea of grouping incoming requests into clusters. The most important reason
why we group requests into clusters is that it enables us to draw a line between
FE and DDoS. As briefly mentioned in Section 1, a cluster is a group of clients
that are close together topologically and are likely to be under a common ad-
ministrative control [4]. It has been found that the number of distinct clusters
during the FE is much smaller than the number of distinct clients, whereas DDoS
requests come from clients widely distributed across clusters in the Internet [11].
Since clustering incoming requests can help distinguishing FE and DDoS, we
take it as the first step in FDD.

To motivate the idea of performing randomness check, we analyze another nice
distinction between FE and DDoS that a large number of clusters active during
an FE had also visited the sites before the event, whereas an overwhelming
majority of the client clusters that generate DDoS requests are new clusters
not seen by the site before the attack [11]. This serves as a clue to distinguish
between FE and DDoS attacks, if we can measure the extent to which clusters
overlap in the incoming requests. Comparing this cluster overlapping along the
time axis with the property of randomness [2], in which all elements in a sequence
should be generated independently from one another, and the value of the next
element in the sequence cannot be predicted, we can see some similarity in the
two — if cluster overlap happens frequently in incoming requests, we would be
able to predict the cluster from which the next request comes with certain (non-
negligible) probability. This is why randomness check can help distinguishing

136 H. Park et al.

FE and DDoS attacks. In order to do the randomness check on the cluster
distribution of incoming requests, we first capture the cluster distribution using
a matrix for each time unit (could be 1 second, 1 minute, etc. depending on the
actual working environment), and then check whether the clients are randomly
distributed or not by checking randomness of the matrix.

What we describe in the previous paragraph motivates the idea of doing ran-
domness check, but does not solve the problem of representing cluster overlaps.
FDD introduces two matrix operations in order to represent cluster overlapping:
the XOR operation between the cluster matrix for the current time unit and the
one for the previous time unit to remove the overlapping clusters, and the AND
operation between two matrices to remove all but the overlapping clusters.

Having motivated the idea of using matrices, checking randomness and the
two matrix operations to capture cluster overlap, we now describe the steps
involved for FDD to distinguish FE and DDoS.

1. Construct the matrix to represent cluster distribution;
2. Apply XOR and AND operations between matrices of the current and the

previous time units;
3. Check the randomness.

3.2 Matrix Construction and Operations

Matrix construction is to capture the cluster distribution of incoming requests
in a matrix. We try to make this construction as simple as possible, so that
it can possibly be implemented on, e.g., high-speed routers. Note that many
other clustering methods could be used, e.g., the approach by Krishnamurthy
and Wang [4]. Here, we present a very simple technique. We first divide each IP
address into four octets as presented in the following notation, where the length
of each octet is one byte.

IP1.IP2.IP3.IP4 (1)

In this simple technique, we simply map an incoming request to a specific
location in the matrix determined by IP2 (used as the column index of the
matrix) and IP3 (used as the row index of the matrix) of the IP address.
That is,

i = IP3 and j = IP2 (2)

where i is the row index and j is the column index of the matrix. A very nice
property of this simple approach is that it results in a matrix of fixed size, which
is a property that many other clustering mechanisms do not have. Note that we
use this very simple method of constructing the matrix to demonstrate the idea
of using randomness check. Other more sophisticated techniques for constructing
a matrix, e.g., by making use of a clustering mechanism [4], could be used as
well for better representation of the incoming traffic. We address this in our
future work.

Distinguishing between FE and DDoS Using Randomness Check 137

Fig. 1. Place of an incoming request in matrix construction

Fig. 1 illustrates how an entry of the matrix is located based on the IP address
of the incoming request. The matrix is initialized with zeros in all entries. For
each incoming request and the corresponding entry located based on the IP
address, we overwrite the content of the entry with the value 1. As a result, we
have a matrix of the size 256× 256 and each cell in the matrix contains a binary
number. This makes our system very memory space efficient (65,536 bits).

Let Mt denote the matrix constructed by processing incoming requests during
the tth time unit. We introduce two operations between matrices constructed at
consecutive time units. We define (Mt XOR Mt−1) to be a matrix in which each
entry is calculated as the XOR (exclusive-or) of the corresponding entries in Mt

and Mt−1, and (Mt AND Mt−1) to be a matrix in which each entry is calculated
as the AND of the corresponding entries in Mt and Mt−1. Intuitively, the XOR
operation between Mt and Mt−1 is to remove the overlapping clusters, since
1 ⊕ 1 = 0; while the AND operation between Mt and Mt−1 is to remove all but
the overlapping clusters, since 1 · 1 = 1.

3.3 Matrix Rank as the Randomness Check

Many approaches have been suggested for testing randomness, out of which
checking the linear-dependency among fixed-length substrings of its original se-
quence is a very efficient one. In order to check the linear-dependency among
rows and columns of a matrix, the rank of matrix can be used [6]. Diehard [7] is
a good example which is widely used for testing the quality of a random num-
ber generator. Another application of randomness check using matrix rank is
a worm detection algorithm [9] that detects unknown worms by measuring the
randomness of the distribution of destination addresses.

We use R(Mt) to denote the rank value of Mt, and define

RXOR(Mt) = R(Mt XOR Mt−1) (3)
RAND(Mt) = R(Mt AND Mt−1) (4)

To obtain the rank of the matrix, we calculate the number of non-zero rows
after applying Gaussian elimination. In other words, the rank of the matrix is
the number of leading 1’s in the matrix.

We can show mathematically why the rank value of a matrix provides a re-
liable indication of randomness. Given the rank value of r, a m × n matrix has
the following probability of being random

138 H. Park et al.

Table 1. Distinguishing FE and DDoS

R(Mt) RXOR(Mt) RAND(Mt)

Normal small small small

FE Medium+ Medium Medium−

DDoS with spoofed source IP Large (> T) Large (> T) Small

DDoS without spoofed source IP Large (> T) Small Large (> T)

2r(n+m−r)−nm
r−1∏
i=0

(
1 − 2i−n

) (
1 − 2i−m

)
(1 − 2i−r)

(5)

where r = 1, 2, . . . , min(m, n) [6]. (Eq. 5 is also used for calculating the threshold
T of the rank values; see the next subsection and Table 1). For example, a
256× 256 matrix has a probability of over 99.999% being random if the rank of
it is 252 according to Eq. 5.

3.4 Distinguishing FE and DDoS

In this subsection, we describe how we use the matrix operations and rank
measurement to distinguish FE and DDoS (refer to Table 1).

In an FE, the three rank values differ from each other by some noticeable
amount, but none of them is very large although the incoming traffic volume
could be very big. This is mainly due to the fact that the large amount of
requests come from a small number of clusters, which makes R(Mt) not very
large, and that there is a certain cluster overlap, which makes both RXOR(Mt)
and RAND(Mt) slight less than R(Mt) (The superscript + and − indicate slightly
larger and less than Medium).

When the server is under DDoS attacks, R(Mt) will be large (and greater
than a threshold T ; refer to Appendix B for details in calculating T) as the
large amount of incoming requests belong to a large number of clusters. In the
case of source-spoofed DDoS, cluster overlap is relatively small as the source
IPs are chosen randomly. Therefore RXOR(Mt) will be large (and greater than
a threshold T) and RAND(Mt) will be small. In the case of non-source-spoofed
DDoS, cluster overlap is relatively big, and therefore RXOR(Mt) will be small and
RAND(Mt) will be large (and greater than a threshold T). In this way, the rank
of a matrix can be used to determine the randomness of the element distribution
on the matrix. Appendix B shows the details in calculating these thresholds.

4 Evaluation and Discussion

In this Section, we apply FDD to distinguish between FE and DDoS with traces
we obtain from production servers and routers. We first briefly explain the source
and the nature of the traces we use, and then present the results when we apply
FDD on these traces.

Distinguishing between FE and DDoS Using Randomness Check 139

4.1 FE and DDoS Traces

We use two traces that contain FEs. One of them is from the web server of the
biggest private broadcast company in Korea, MBC. It contains the web logs for
two days, Sep 11th 2004 and Sep 12th 2004, when a resounding political issue
happened in Korea1. It is a typical FE during which a very large amount of
clients try to access the server.

The other trace we have is obtained from two trans-pacific T-3 links con-
necting the United States and a Korean Internet gateway between 9:36am and
9:55am on Dec 14th 2001 (denoted KRUS trace). We extract two FE web logs,
20 minutes each, from this trace. The first one, denoted FE01, contains an FE
in which people tried to download newly issued versions of decorating pictures
and java scripts for their personal websites and blogs. This is an FE as the newly
released pictures and scripts received a lot of attractions and the server received
a very large amount of requests during the first few minutes2. The second one,
denoted FE02, contains requests to a Microsoft Windows update website which
attracted a huge number of requests when an accumulated patch to Windows
Internet Explorer was released. We analyze the KRUS traces with a 10-second
time interval (because the events are relatively short) and examine the MBC
trace with a 1-minute time interval (because this event is relatively long).

(a) FE01 (b) FE02 (c) MBC

Fig. 2. Randomness check on FE traces

We get the DDoS traces in two ways. One is by applying a well-known DDoS
detection technique [8] to process the KRUS trace we have. By applying this
DDoS detection technique, we managed to find two traces, namely DDoS01 and
DDoS02, in which the source IP addresses are spoofed. We also generated a
non-source-spoofed DDoS attack traces with the normal web requests as back-
ground traffic using NS-2. We use the CAPBELL/SINGLEBELL topology [1]
to simulate a client/server environment in which there are more than 1000 at-
tackers attacking the web server using UDP flooding and 2500 legitimate clients
accessing the web server. Note that the CAPBELL/SINGLEBELL topology [1]

1 During these two days, it was reported that the President of the United States
and his top advisers have received intelligence reports describing a confusing se-
ries of actions by North Korea that some experts believe could indicate the
country is preparing to conduct its first test explosion of a nuclear weapon.
(http://www.nytimes.com/2004/09/12/international/asia/12nuke.html).

2 http://files.cometsystems.com

http://www.nytimes.com/2004/09/12/international/asia/12nuke.html
http://files.cometsystems.com

140 H. Park et al.

(a) DDoS01 (b) DDoS02 (c) Non source-spoofed
DDoS

Fig. 3. Randomness check on DDoS traces

and the corresponding simulation scenarios are constructed by processing many
real ISP traces, which serve as a very good approximation as a real client/server
network. The bandwidth between each client and the server varies from 40Mb
to 100Mb and the latency between varies from 20ms to 80ms in a uniform distri-
bution. Using the Pareto-law, the 2500 legitimate clients are distributed in 175
clusters.

4.2 Results and Discussion

In this subsection, we show the results of applying our technique FDD to the
three FE traces and three DDoS traces described in the previous sections. Fig. 2
and Fig. 3 show the results of three rank values of the matrices: the origi-
nal rank value, the one after the XOR operation, and the one after the AND
operation.

Fig. 2 shows the results for the three FE traces discussed in Section 4.1. We
see that although original rank values (R(Mt)) are always the larger than the
rank values of the matrices after the XOR operation (RXOR(Mt)) and the AND
operation (RAND(Mt)), R(Mt) is never above 252 for an extended period of time3.
This suggests that 252 could be the threshold T in order to accurately classify
these events as FEs. (Please refer to Appendix B for details in calculating this
threshold.) Also note that the results for both FE01 and FE02 are way below the
threshold 252 in our evaluations. As indicated in Section 3.4, the main reason for
having medium rank values of R(Mt) is that the distribution of clients among
clusters is not random — a large amount of requests come from a small number
of clusters. RXOR(Mt) is smaller because the XOR operation removes cluster
overlapping (cluster overlapping is common in FEs [11]), while RAND(Mt) is small
but not negligible because the AND operation removes all but the overlapping
clusters, which still consists of a non-negligible amount of requests (during FE,
there are some new requests coming every now and then).

Fig. 3 shows the results for the three DDoS traces discussed in Section 4.1.
In these cases, we notice that two of the three rand values are way above the
threshold 252, which indicates that we will be able to distinguish FE from DDoS

3 The original rank value R(Mt) for MBC may not be very clear in the graph. It is
right above the line for RXOR(Mt).

Distinguishing between FE and DDoS Using Randomness Check 141

by setting the threshold 252. In the case of source-spoofed DDoS (DDoS01
and DDoS02), RXOR(Mt) exceeds the threshold because source spoofing re-
sults in relatively small cluster overlapping, whereas in the case of non-source-
spoofed DDoS, cluster overlapping is very big, which makes RAND(Mt) exceed the
threshold.

5 Conclusion

In this paper, we propose a simple yet effective mechanism FDD to distinguish
flash event and distributed denial of service attacks using randomness check.
With the help of our matrix construction using the incoming IP address, as well
as the XOR and AND operations on the matrices, we manage to apply matrix
randomness check to distinguish FE and DDoS. Our trace-driven evaluation
results show that FDD distinguishes between FE and DDoS attacks with high
accuracy and low memory usage.

References

1. Feldman, A., Gilbert, A.D., Huang, P., Willinger, W.: Dynamics of IP traffic: A
study of the role variability and the impact of control. In: ACM SIGCOMM (1999)

2. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S.: A statistical test suite
for random and pseudorandom number generators for cryptographic applications,
May 2001, vol. 800(22). NIST Special Publication (2001)

3. Stavrou, A., Keromytis, A.D.: Countering DoS attacks with stateless multipath
overlays. In: ACM Computer and Communication Security (November 2005)

4. Krishnamurthy, B., Wang, J.: On network-aware clustering of web clients. In: ACM
SIGCOMM (August 2000)

5. Moore, D., Voelker, G.M., Savage, S.: Inferring internet Denial-of-Service activity.
In: USENIX Security Symposium (2001)

6. Marsaglia, G., Tsay, L.H.: Matrices and the structure of random number sequences.
Linear Algebra Appl. Elsevier Science 67, 147–156 (1985)

7. Marsaglia, G.: Diehard: A battery of tests of randomness (1996),
http://stat.fsu.edu/∼geo/diehard.html

8. Kim, H., Bahk, S., Kang, I.: Real-time visualization of network attacks on high-
speed links. IEEE Network Magazine 18, 30–39

9. Park, H., Lee, H., Kim, H.: Detecting unknown worms using randomness check.
IEICE Trans. Communication E90-B(4), 894–903 (2007)

10. Wang, H., Zhang, D., Shin, K.G.: Detecting SYN flooding attacks. IEEE INFO-
COM2002 3, 1530–1539 (2002)

11. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: Characterization and implications for CDNs and web sites. In: World Wide
Web (May 2002)

12. Argyraki, K.: Active internet traffic filtering: real-time response to Denial-of-
Service attacks. In: USENIX Annual Technical Conference (April 2005)

13. Adamic, L.A.: Zipf, power-laws, and pareto - a ranking tutorial (1999),
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

http://stat.fsu.edu/~geo/diehard.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

142 H. Park et al.

14. Gordon, L.A., Loeb, M.P., Lucyshn, W., Richardson, R.: CSI/FBI computer crime
and security survey. In: Computer Security Inst. (2004)

15. Feinstein, L., Schackenberg, D., Balupari, R., Kindred, D.: Statistical approaches
to DDoS attack detection and response. In: the DARPA Information Survivability
Conference and Exposition(DISCEX 2003) (2003)

16. Niven, L.: Flash crowd, The Flight of the Horse. Ballantine Books (1971)
17. Casado, M., Akella, A., Cao, P., Provos, N., Shenker, S.: Cookies Along trust-

boundaries(CAT): accurate and deployable flood protection. In: USENIX Work-
shop on Steps to Reducing Unwanted Traffic on the Internet(SRUTI) (July 2006)

18. Peng, T., Leckie, C., Rnmamohanarao, K.: Proactively detecting Distributed De-
nial of Service attacks using source IP address monitoring. In: Networking 2004,
pp. 771–782 (2004)

19. He, Y., Chen, W., Xiao, B.: Detecting SYN flooding attacks near innocent side.
In: Mobile Ad-hoc and Sensor Network(MSN 2005). LNCS, vol. 3794, pp. 443–452.
Springer, Heidelberg (2005)

Distinguishing between FE and DDoS Using Randomness Check 143

A Used Traffic Data in Evaluation

In this Appendix, we show that the traffics we used satisfy the characteristics of
FE or DDoS [11] in three aspects.

A.1 Traffic During FE

Fig. 4 shows the number of requests connecting to those three web sites within
our three traffics(Section 4). Fig. 4 (a) and Fig. 4 (b) show that a large number
of requests are coming from clients during 20 minutes. Fig. 4 (c) shows the the
number of requests grows dramatically during FE, but the duration of FE in
this traffic is relatively short. Fig. 5 shows the numbers of clients and of clusters
accessing the web sites. In order to cluster the clients, we employ a network-
aware clustering technique [4] Fig. 6 shows that the distribution of requests
among clusters is indeed highly skewed [4] such as Zipf-like distribution. In other
words, the distribution of requests among clusters follows Pareto-law, because
Zipf, power-law and Pareto can refer to the same thing [13].

(a) FE01 web site (b) FE02 web site (c) MBC web site

Fig. 4. Traffic volumes

(a) FE01 web site (b) FE02 web site (c) MBC web site

Fig. 5. Distribution of clients and clusters

(a) FE01 web site (b) FE02 web site (c) MBC web site

Fig. 6. Cluster contribution to requests

144 H. Park et al.

(a) DoS01 (b) DoS02 (c) Non source-spoofed
DDoS

Fig. 7. Traffic volumes

(a) DoS01 (b) DoS02 (c) Non source-spoofed
DDoS

Fig. 8. Distribution of clients and clusters

(a) DoS01 (b) DoS02 (c) Non source-spoofed
DDoS

Fig. 9. Cluster contribution to requests

A.2 Traffics During DDoS Attacks

In Fig. 7(a) and Fig. 7(b), we present the number of requests attacking two
servers from KRUS traffic, while Fig. 7(c) shows the number of requests attacking
the simulated server in NS-2 with UDP flooding attack. Fig. 8 shows that the
number of clients is similar to that of clusters in three traffics. Fig. 8(a) and
Fig. 8(b) show the case in source-spoofed DoS and Fig. 8(c) is for non-source-
spoofed DDoS. Besides, in these attacks, as we can see in Fig. 9, the distribution
of clients among clusters fails to follow Pareto-law.

B Calculation of the Threshold

From Eq. 5, we start calculating the threshold of the rank value of the matrix
by letting the equation equal to a value P .

Distinguishing between FE and DDoS Using Randomness Check 145

2r(n+m−r)−nm
r−1∏
i=0

(
1 − 2i−n

) (
1 − 2i−m

)
(1 − 2i−r)

= P (6)

where P is the probability of which the matrix will not be random.

log2

(
2r(n+m−r)−nm

r−1∏
i=0

(
1 − 2i−n

) (
1 − 2i−m

)
(1 − 2i−r)

)
= log2 P (7)

Let m = n for our square matrix so that we can get the following equation.

2mr − r2 − m2 + log2

r−1∏
i=0

(
1 − 2i−m

)2
(1 − 2i−r)

= log2 P (8)

Through mathematical induction, log2

∏r−1
i=0

(1−2i−m)2

(1−2i−r) would have the biggest
value when r is 1 and the value of m is fixed, and since this biggest value is
smaller than 1, we can have the following equation.

(m − r)2 > log2

1
P

(9)

Following the above procedure, if we assume P is 0.01% (a value near to zero),
we will get 252 as the biggest value of r to be the threshold, when the value of
m is 256.

Antisocial Networks: Turning a Social

Network into a Botnet

E. Athanasopoulos1, A. Makridakis1, S. Antonatos1, D. Antoniades1,
S. Ioannidis1, K.G. Anagnostakis2, and E.P. Markatos1

1 Institute of Computer Science (ICS)
Foundation for Research & Technology Hellas (FORTH)

{elathan,amakrid,antonat,danton,sotiris,markatos}@ics.forth.gr
2 Institute for Infocomm Research, Singapore

kostas@i2r.a-star.edu.sg

Abstract. Antisocial Networks are distributed systems based on social
networking Web sites that can be exploited by attackers, and directed to
carry out network attacks. Malicious users are able to take control of the
visitors of social sites by remotely manipulating their browsers through
legitimate Web control functionality such as image-loading HTML tags,
JavaScript instructions, etc. In this paper we experimentally show that
Social Network web sites have the ideal properties to become attack
platforms.

We start by identifying all the properties of Facebook, a real-world
Social Network, and then study how we can utilize these properties and
transform it into an attack platform against any host connected to the
Internet. Towards this end, we developed a real-world Facebook appli-
cation that can perform malicious actions covertly. We experimentally
measured it’s impact by studying how innocent Facebook users can be
manipulated into carrying out a Denial-of-Service attack. Finally, we ex-
plored other possible misuses of Facebook and how they can be applied
to other online Social Network web sites.

1 Introduction

The massive adoption of social networks by Internet users provides us with a
unique opportunity to study possible exploits that will turn them into platforms
for antisocial and illegal activities, like DDoS attacks, malware propagation,
spamming, privacy violations, etc. We define antisocial networks as a social net-
work, deviously manipulated for launching activities connected with fraud and
cyber-crime.

Social networks have by nature some intrinsic properties that make them ideal
to be exploited by an adversary. The most important of these properties are: (i)
a very large and highly distributed user-base, (ii) clusters of users sharing the
same social interests, developing trust with each other, and seeking access to
the same resources, and (iii) platform openness for deploying fraud resources
and applications that lure users to install them. All these characteristics give

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 146–160, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Antisocial Networks: Turning a Social Network into a Botnet 147

adversaries the opportunity to manipulate massive crowds of Internet users and
force them to commit antisocial acts against the rest of the Internet, without
their knowledge. In this paper we explore these properties, develop a real exploit,
and analyze its impact.

The main contributions of this paper is a first investigation into the potential
misuse of a social network for launching DDoS attacks on third parties. We have
built an actual Facebook application, that can turn its users into a FaceBot. We
used our FaceBot to carry out a complete evaluation of our proof-of-concept at-
tack via real-world experiments. Extrapolating from these measurements along
with popularity metrics of current Facebook applications, we show that own-
ers of popular Facebook applications have a highly distributed platform with
significant attack firepower under their control.

2 Related Work

The structure and evolution of social networks has been extensively
studied [18,9,11], but little work has been done on measuring real attacks on
these sites. The most closely related work to our paper was done by Lam et al.
in [17]. Our work here extends the idea of Puppetnets by taking into account
the characteristics of a special kind of Internet systems which rely heavily on
the social factor: social network web sites. The authors of [17] omit explaining
how they will make their Web site popular, in order to carry out the attack.
We on the other hand are taking advantage of already popular Web sites like
facebook.com. Such sites prove to be ideal for carrying Puppetnet type attacks.

Jagatic et al. in [16] study how phishing attacks [13] can be made more pow-
erful by extracting information from social networks. Identifying groups of peo-
ple leads to more successful phishing attacks than by simply massively sending
e-mails to random people unrelated to each other. However, apart from scat-
tered blog entries that report isolated attacks (such as malware hosting in Mys-
pace [4]), there have been no large-scale attacks to social networks, or using
social networking sites, reported or studied so far.

In the space of peer-to-peer systems, there have been a few attacks that have
appeared and have been analyzed by researchers. One may consider a peer-
to-peer system to be similar to a social network in the sense that there are
millions of users that connect to each other forming a network. Gnutella, an
unstructured peer-to-peer file sharing system, has been used in the past as an
attack platform [10]. In a similar fashion, the work in [19,21] presented how
Overnet and KAD can be misused for launching Denial of Service attacks to
third parties. Finally, in [12], the authors have managed to transform BitTorrent
to a platform for similar attacks.

3 Background

Social Networks. Social networking sites are becoming more popular by the
day. Millions of people daily use social networking sites such as facebook.com,

148 E. Athanasopoulos et al.

LinkedIn.com, Myspace.com and Orkut.com. Some of them are used for profes-
sional contacts, e.g. LinkedIn, while others are primarily used for communication
and entertainment. The structure of a social networking site is quite simple. Users
register to the site, create their profile describing their interests and putting some
personal information, and finally add friends/contacts to their profile. Adding a
friend involves a confirmation step from the other party most of the times. The
view of a user’s profile is usually limited to the friends of that user, unless the user
wants the profile to be public. In that case, all users of the site can view it. Social
networking sites also support the creation of groups and networks.

Facebook is considered to be one of the most popular social networking sites.
It started as a project of a student to keep track of schoolmates but has now
grown up to serve more than 64 million people from around the world, with an
average of 250,000 new registrations per day [2]. Facebook has a very interesting
feature, the Facebook applications. Facebook builders have implemented a plat-
form on top of which developers can build complete applications. In the Facebook
Platform any developer with a good idea and basic programming skills can cre-
ate one. Over 200,000 developers have done so, as reported by Adonomics [1].
Users can add these applications to their profile and invite their friends to add
them too. A constraint put by Facebook is that invitations are limited to up
to 20 friends per day. Typical applications involve solving a quiz, filling ques-
tionnaires, playing games and many more. Up to date, the number of Facebook
applications has surpassed fifteen thousand. Facebook applications can be con-
sidered as XHTML snippets that inherit all properties of web applications.

Puppetnets. Puppetnets [17] exploit the design principles of World Wide Web.
Web pages can include links to elements located at different domains, other than
the one they are hosted at. A malicious user can craft special pages that contain
thousands of links pointing at a victim site. When an unsuspecting user visits
that page, her browser starts downloading elements from the victim site and
thus consuming its bandwidth. The firepower of this attack increases with the
popularity of the malicious page, similar to the slashdot effect [15].

Puppetnets use a number of techniques to make the attacks more effective.
The use of JavaScript permits more flexible and powerful attacks as unsuspect-
ing users can repeatedly download elements from victim sites or perform other
kinds of attacks, such as port scanning and computational attacks. The fire-
power of Puppetnets depends on three main factors. First, the popularity of the
malicious page. Second, the duration of visits to the malicious page. The more
the unsuspecting user stays on the malicious page, the longer the attack takes
place in the background. Third, the bandwidth of unsuspecting users and their
latency to the victim site. These factors determine the number of downloads per
second an attacker can achieve.

4 Experimental Evaluation

In this section we experimentally evaluate the firepower of a FaceBot. Specifi-
cally, we explore the effect of placing a malicious Facebook application, which
exports HTTP requests to a victim host. We have conducted experiments, using

Antisocial Networks: Turning a Social Network into a Botnet 149

a least effort approach. By using the term of least effort we mean that during
the whole study we did the least we could do in terms of spending resources,
adding complexity and enhancing our developments with obscure and hackish
features, which could lead in overestimated results. For example, during the de-
ployment of a Facebook application we did not add special obligatory massive in-
vitation features for boosting the application’s propagation in the social network.
In section 5, based on our experimental results, we extrapolate the firepower of
FaceBot, by examining the popularity of existing Facebook applications.

4.1 Experimental Setup

Our initial vision is to create a first proof-of-concept FaceBot for demonstra-
tion purposes, while at the same time not causing any harm to real Facebook
users. Furthermore, our experiment was conducted using the real social network
website, namely facebook.com.

We created a real-world Facebook application, which we call Photo of the
Day [8], that presents a different photo from National Geographic to facebook
users every day. In order to keep the experiment in a least effort approach,
we didn’t employ any obligatory invitations during its installation in a user’s
profile.1 However, we did announce the application to members of our research
group and we encouraged them to propagate the application to their colleagues.
To our surprise, the application was installed by a significant Facebook popu-
lation, which was completely unaware to us (see our popularity results, later in
this section).

Every time a user clicks on the Photo of the Day application, an image from
the respective service of National Geographic2 appears [7]. However, we have
placed special code in the application’s source code, so that every time a user
views the photo, HTTP requests are generated towards a victim host. More
precisely, the application embeds four hidden frames with inline images hosted
at the victim. Each time the user clicks inside the application, the inline images
are fetched from the victim, causing the victim to serve a request of 600 KBytes,
but the user is not aware of that fact (the images are never displayed). We list
a portion of our sample source code which is responsible for fetching an inline
image from a victim host and placing it to a hidden frame inside the Photo of
the Day application, in Figure 1.

For our experiments, the victim Web server which hosts the inline images is
located in our lab, isolated from any other network activity. In the following
subsection we present the results associated with the traffic experienced by our
Web server.
1 It is very common that Facebook applications require a user to invite a subset of

her friends, and thus advertize the application to the Facebook community, prior
the installation. This practice helps in the further propagation of the application in
Facebook. Typically, a user must announce the application to about 20 of her friends
in order to proceed with the installation.

2 National Geographic has specific terms for content distribution, which are not vio-
lated by this work[6].

150 E. Athanasopoulos et al.

<iframe name="1" style="border: 0px none #ffffff;
width: 0px; height: 0px;"
src="http://victim-host/image1.jpg?
fb_sig_in_iframe=1&
fb_sig_time=1202207816.5644&
fb_sig_added=1&
fb_sig_user=724370938&
fb_sig_profile_update_time=1199641675&
fb_sig_session_key=520dabc760f374248b&
fb_sig_expires=0&
fb_sig_api_key=488b6da516f28bab8a5ecc558b484cd1&
fb_sig=a45628e9ad73c1212aab31eed9db500a">
</iframe>

Fig. 1. Sample code of a hidden frame, inside a Facebook application, which causes an
image, namely image1.jpg to be fetched from victim-host

4.2 Attack Magnitude

In Figure 2 we present the number of requests per hour recorded by our Web
server from the time the Photo of the Day application was uploaded to
facebook.com and for a period of a few days. Notice, that the request rate
reached a peak of more than 300 requests/hour after a few days from the publi-
cation time. During the peak day of January 29th, our Web server recorded an
excess of 6 Mbit per second of traffic (see Figure 3). The request rate shown in
Figure 2, as well as the outgoing traffic shown in Figure 3, is purely Facebook re-
lated. We can isolate the packets originating from users accessing facebook.com
by inspecting the referer field3. We further discuss the importance of the referer
field in Section 6.

It is important to note that the request rate per hour never fell below a few tens
of request and during peak times it reached a few hundred of requests. Notice,
that depending on the nature of the malicious Facebook application, the request
rate may differ substantially. In our experiment, each user was generating only
four requests towards our Web server per application visit. We further explore
the nature of a malicious Facebook application in Section 5.

It is also interesting to notice that the traffic pattern is quite bursty (see
Figure 3). This is related to the social nature of the attack platform. Users seem
to visit Facebook also in bursty fashion (approximately at the same time). This
is more clearly presented in Figure 4, where we plot the distribution of user inter-
arrival times (the times at which users visit the Photo of the Day application)
for the 29th of January. We calculated this distribution using the entry points
to the Photo of the Day application as they were recorded by our victim Web
server. The users’ inter-arrival distribution indicates that a typical inter-arrival
time has a period from a few tens of seconds to a few minutes. Note, that during
the 29th of January, according to Figure 8, our proof of concept application
recorded 480 Facebook daily active users.

To further verify our feelings about the bursty nature of the traffic we were
experiencing in the victim host, we installed two sensors and captured traffic
emitted by Facebook users. The first sensor was installed in an academic institute
3 http://www.w3.org/Protocols/HTTP/HTRQ Headers.html#z14

http://www.w3.org/Protocols/HTTP/HTRQ_Headers.html#z14

Antisocial Networks: Turning a Social Network into a Botnet 151

 0

 50

 100

 150

 200

 250

 300

 350

23/Jan 25/Jan 27/Jan 29/Jan 31/Jan 02/Feb 04/Feb 06/Feb

H
T

T
P

R
eq

ue
st

s

Time

HTTP Requests Recorded per Hour

Fig. 2. The HTTP requests as were
recorded by the victim Web server

 0

 1

 2

 3

 4

 5

 6

 7

17:00 18:00 19:00 20:00 21:00

M
bi

t/s
ec

Time

Outgoing Traffic recorded in the 29th of January

Fig. 3. Bandwidth use at the victim Web
server during the attack on 29/01/2008

and was able to monitor approximately 120,000 IP addresses. We recorded 100
unique Facebook users in a monitoring period of 1 day. The second sensor was
installed in a /16 enterprise network. We recorded 75 unique Facebook users in
a monitoring period of 5 days. We used the collected traces from these sensors
in order to calculate the user requests’ inter-arrival distribution at Facebook.
We present the results in Figure 5. It is evident that small inter-arrival periods
characterize the requests made by Facebook users. Note, that users arrive in
bursts to their home pages in facebook.com, but this does not immediately imply
that they will use the Photo of the Day application.

To summarize, based on the spontaneous peaks in Figures 2 and 3, and
considering the fact that Facebook users are arriving nearly at the same time
(see Figure 4), we conclude that a malicious Facebook application can absorb
Facebook users and force them to generate HTTP requests to a victim host in
burst mode fashion.

Notice, that our malicious application was absorbing a fixed amount of traffic
from the victim host. An adversary could employ more sophisticated techniques
and create a JavaScript snippet, which continuously requests documents from a
victim host over time. In this way the attack may be significantly amplified. In
Figure 6 we plot typical session times of Facebook users, as were recorded by
our two sensors. Observe that a typical user session of a Facebook user ranges
from a few to tens of minutes.

4.3 Attack Distribution

Using the IP addresses recorded in the logs of our victim Web server, we tried
to identify the geographical origin of each Facebook user. Our main interest was
to investigate how distributed can an attack based on a social web site, like
facebook.com, be. We used the geoip tool[3], in order to map our collected
IPs to actual countries. We ignored the fact that some Facebook users might be
using some sort of an anonymizing system like TOR [14], because our goal was
not to capture the origin of the users, but the origin of the requests, which were
recorded by our victim host.

152 E. Athanasopoulos et al.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200

N
um

be
r

of
 I

nt
er

-a
rr

iv
al

s

Inter-arrival Period (secs)

User Inter-arrival Distribution for the 29th of January

Fig. 4. The distribution of user inter-
arrival times at the victim site on
29/01/2008, with over 480 users recorded
as active

 1

 10

 100

 1000

 10000

 100000

-10 0 10 20 30 40 50 60

N
um

be
r

of
 I

nt
er

-a
rr

iv
al

s

Inter-arrival Period (secs)

User Inter-arrival at Facebook.com Distribution

Sensor 1
Sensor 2

Fig. 5. The distribution of user inter-
arrival periods at facebook.com for one
day. Our two sensors recorded 100 and 75
unique users respectively.

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250 300 350 400 450 500

T
im

e
(s

ec
s)

Session ID

Session Times of Facebook Users

Sensor 1
Sensor 2

Fig. 6. Session times of Facebook users as were recorded by our two sensors. The first
sensor recorded 495 user sessions and the other one recorded 275 user sessions.

In Figure 7 we are marking in black every country from which we recorded at
least one request. It is evident that the nature of a FaceBot, even one that is a
proof of concept, is highly distributed.

4.4 Tracking Popularity

In Figure 8 we explore the popularity of our proof of concept Facebook appli-
cation, as it is measured by Adonomics [1]. Recall that, as we stated multiple
times in this section, we followed a least effort approach, which means that
we did not employed sophisticated methods for advertizing our application to
facebook.com. However, as it is evident from Figure 8, our application was
installed by nearly 1,000 different users in the first few days. This is rather im-
pressive correlating it with statistics related to commodity software downloads.
For example, it took months for the most successful project in SourceForge.com
to reach thousands of downloads4.
4 eMule Statistics: http://sourceforge.net/project/stats/?group id=53489&ugn=

emule&type=&mode=alltime

http://sourceforge.net/project/stats/?group_id=53489&ugn=
emule&type=&mode=alltime

Antisocial Networks: Turning a Social Network into a Botnet 153

Fig. 7. Location of FaceBot hosts. Coun-
tries coloured in black hosted at least one
FaceBot participant.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

26/01 27/01 28/01 29/01 30/01 31/01 01/02 02/02 03/02 04/02

U
se

r
In

st
al

la
tio

ns

Date

Application Popularity

Installations
Daily Active Users

Fig. 8. The popularity of the Photo of the
Day application, as it is tracked by Ado-
nomics.com

5 Attack Firepower

Based on the experimental results from the previous section we proceed to esti-
mate the firepower of a large FaceBot. For this we are going to assume that an
adversary has developed a highly popular Facebook application, which employs
the tricks we presented in the previous sections.

We denote with F (t) the distribution of outgoing traffic a victim Web server
exports, due to Facebook requests, over time. This is essentially the firepower of
a FaceBot. In section 4 we experimentally measured this distribution for a proof
of concept FaceBot and we presented our results in Figure 3. Our aim, in this
section, is to find an analytical expression for F (t).

We denote with aout the outgoing traffic a Facebook application can pull from
a victim host, once the user on that host is tricked into using the malicious appli-
cation. Even though sophisticated use of client side technologies (like JavaScript)
can make aout a function over time (e.g., a malicious JavaScript snippet can gen-
erate requests towards a victim host in an infinite loop), for simplicity we assume
that aout is a fixed quantity.

We denote with U(t) the number of users accessing this application over time.
It follows that:

F (t) = aoutU(t) (1)

To estimate U(t), we need the following: (a) the number of active users over a
period P , and (b) an estimation of the users’ inter-arrival times. If we denote
the active users with u(t) and the inter-arrival distribution with ur(t), then:

U(t) =

∫ P

0
u(t)dt

ur(t)
(2)

Assuming that there is a FaceBot based on a highly popular Facebook application
and that we want to estimate its firepower at time T , FT , we can use the average
of the inter-arrival distribution, and thus:

154 E. Athanasopoulos et al.

FT = aout

∫ P

0 u(t)dt

< ur >
(3)

For example, if we have a FaceBot with aout = 10Kbit/sec, which is installed
by 1,000 users, from whom 100 were active in the period of 10 seconds and their
average inter-arrival time was 2 secs, then F(10) = 10Kbit/sec 100

2 = 0.5Mbit/sec.
In Table 1 we list the Top-5 Facebook applications as of early February 2008,

according to Adonomics.com[1]. These applications have from 1 million to more
than 2 millions of daily active users. The user-base of these applications is so
large, that we can assume that the user inter-arrival time follows a uniform
distribution.5 We further assume that an adversary has deployed one of these
applications, which has 2 million of daily active users. That is, assuming uniform
user inter-arrival time, approximately 23 users/sec are using the application. If
the adversary has deployed the malicious application with aout = 1Mbit/sec6,
then the victim will have to cope with unsolicited traffic of 23 Mbit/sec and
during the period of one day will have received nearly 248 GB of unwanted data.

Table 1. The Top-5 of Facebook applications as of the beginning of February 2008, in
terms of active users. Source: Adonomics.com[1].

Application Installations Daily Active Users

FunWall 23,797,800 2,379,780

Top Friends 24,955,200 2,245,970

Super Wall 23,274,800 1,861,980

Movies 15,934,700 1,274,780

Bumper Sticker 7,989,700 1,118,560

6 Discussion and Countermeasures

From our analysis in Section 5 we can see that an adversary can take full advan-
tage of popular social utilities, to emit a high amounts of traffic towards a victim
host. However, apart from launching a DDoS attack to third parties, there are
other possible misuses in the fashion of Puppetnets [17]:

– Host Scanning: Using JavaScript, an attacker can make an application that
identifies whether a host has arbitrary ports open. As browsers impose only
few restriction on destination ports (some browsers like Safari even allow
connection to sensitive ports like 25), an attacker can randomly select a host
and a port, and request an object through normal HTTP requests. Based on
the response time, which can be measured through Javascript, the attacker
can figure if the port is alive or not.

5 Having a non-uniform inter-arrival time distribution would further amplify the at-
tack, because the victim host would have to cope with large flash crowd events [15]
in very short periods.

6 The adversary needs to download a file of size of 125 KBytes from the victim, in
order to achieve such an aout value.

Antisocial Networks: Turning a Social Network into a Botnet 155

– Malware Propagation: An unsuspecting user can participate in malware and
attack propagation. If a server can be exploited by a URL-embedded attack
vector, then malicious facebook applications can contain this exploit. Every
user that interacts with the application will propagate the attack vector.

– Attacking Cookie-based Mechanisms: Similarly to XSS worms, a malicious
application can override authentication mechanisms that are based on cook-
ies. Badly-designed sites that support automated login using cookies suffer
from such attacks.

Finally, there are other possible misuses of facebook.com itself. For example,
an adversary can collect sensitive information of facebook.com users, without
their permission. Facebook.com gives users the opportunity to have their profile
locked and visible only by their contacts. However, a facebook.com application
has full access in all user’s details. An adversary could deploy an application,
which simply posts all user details to an external colluding Web server. In this
way, the adversary can gain access to the personal information of users, who
have installed the malicious application.7

In the rest of this section we propose countermeasures for defending and
preventing a FaceBot based attack.

6.1 Defending Against a FaceBot

To defend against a FaceBot, a victim host must filter out all incoming traffic
introduced by Facebook users. Using the referer field of the HTTP requests the
victim can determine whether a request originates from facebook.com or not,
and stop the attack traffic (e.g. by using a NIDS or Firewall system). However,
it is possible for a Facebook application developer to overcome this situation.
With respect to our proof of concept application, which embeds hidden frames
with inline images, the strategy would be to create a separate page to load them
from. For example the source of the inline frame can be:

src="http://attack-host/dummy-page?ref=victim-host/image1.jpg"

In this example the attack host is the Web server where the source code of the
Photo of the Day lives. The dummy-page PHP file contains the following code:

<?php
if ($_GET["ref"]) { $ref=$_GET["ref"]; }
print("<meta http-equiv=’refresh’
content=’0; url=$ref’>");
?>

By employing this technique, HTTP requests received by the victim host
have an empty referer field, giving the attacker a way to hide her identity. This
is a typical usage of a reflector [20] by the adversary. Notice however, that the
adversary must tunnel the requests to the victim. This means, that the adversary
will also receive all the requests targeting the victim, but she will not have to

7 Indeed, this proved to be possible, while this paper was under the review process[5].

156 E. Athanasopoulos et al.

actually serve the requests. Practically, the adversary will receive plain HTTP
requests (a few bytes of size each), will have to process them in order to trim
the referer related data and then pass it to the victim. On the other hand, the
victim will have to serve the requests, which, depending on the files the victim
serves, might reach the size of MBytes of information for each server request.

6.2 Preventing a FaceBot

Providers of social networks should be careful when designing their platform and
APIs in order to have low interactions between the social utilities they operate
and the rest of the Internet. More precisely, social network providers should be
careful with the use of client side technologies, like JavaScript, etc. A social
network operator should provide developers with a strict API, which is capable
of giving access to resources only related to the system. Also, every application
should run in an isolated environment imposing constraints to prevent the appli-
cation from interacting with other Internet hosts, which are not participants of
the social network. Finally, operators of social networks should invest resources
in verifying the applications they host. Regarding our application, the Facebook
Platform can cancel the use of fb:iframe tag, as this tag is used to load images
hosted at the victim host. Currently, developers can not use fb:iframe tag on
the profile page of a user. 8 Otherwise, the fb:iframe tag can be handled in a
special manner, as in the case of the img tag. When publishing a page, Face-
book servers request any image URL and then serve these images, rewriting the
src attribute of all img tags using a *.facebook.com domain. This protects the
privacy of Facebook’s users and not allow malicious applications to extract in-
formation from image requests made directly from a the view of a user’s browser.
Thus, if the src attribute of an iframe is an image file (e.g. .jpg, .png, etc.),
the Facebook Platform can handle these frames in a way similar to img tags.

7 Conclusion

In this paper we presented Antisocial Networks or how it is possible to turn a
social network into a botnet that can be used to carry out a number of attacks.
We developed FaceBot, an application that can run on facebook.com, and carry
out DDoS attacks against any host on the internet. Our analysis involved build-
ing a real-world facebook.com application, conducting an actual attack on our
lab servers, and doing an estimation of the firepower of a FaceBot.

We have shown that applications that live inside a social network can easily
and very quickly attract a large user-base (in the order of millions of users) that
can be redirected to attack a victim host. We experimentally determined the
user-base to be highly distributed, and of a world-wide scale. Finally, we have
shown that the victim of a FaceBot attack may be subject to an attack that will
cause it to serve data of the magnitude of GigaBytes per day.

8 http://wiki.developers.facebook.com/index.php/Fb:iframe

http://wiki.developers.facebook.com/index.php/Fb:iframe

Antisocial Networks: Turning a Social Network into a Botnet 157

Acknowledgments

This work was supported in part by the project CyberScope, funded by the
Greek Secretariat for Research and Technology under contract number PENED
03ED440. The work was, also, supported by the Marie Curie Actions - Rein-
tegration Grants project PASS. We thank the anonymous reviewers for their
valuable comments. Elias Athanasopoulos, Andreas Makridakis, Sotiris Ioanni-
dis, Spiros Antonatos, Demetres Antoniades and Evangelos P. Markatos are also
with the University of Crete. Elias Athanasopoulos is also funded from the PhD
Scholarship Program of Microsoft Research Cambridge.

References

1. Facebook Analytics and Advertising, http://adonomics.com
2. Facebook Statistics, http://www.facebook.com/press/info.php?statistics
3. Geo IP Tool, http://www.geoiptool.com
4. Hackers crash the Social Networking Party, http://www.pcworld.com/article/

id,127347-page,1-c,internettips/article.html

5. Identity ’at risk’ on Facebook,
http://news.bbc.co.uk/2/hi/programmes/click online/7375772.stm

6. National Geographic Content Usage, http://www.nationalgeographic.com/

community/terms.html#content

7. National Geographic Photo of the Day Utility, http://photography.

nationalgeographic.com/photography/photo-of-the-day

8. Photo of the Day,
http://www.facebook.com/apps/application.php?id=8752912084

9. Ahn, Y.-Y., Han, S., Kwak, H., Moon, S., Jeong, H.: Analysis of Topological Char-
acteristics of Huge Online Social Networking Sites. In: Proceedings of the 16th
International Conference on World Wide Web, (May 2007)

10. Athanasopoulos, E., Anagnostakis, K.G., Markatos, E.P.: Misusing Unstructured
P2P Systems to Perform DoS Attacks: The Network That Never Forgets. In: Zhou,
J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989, pp. 130–145. Springer,
Heidelberg (2006)

11. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group Formation in Large
Social Networks: Membership, Growth, and Evolution. In: Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2006), (August 2006)

12. Defrawy, K.E., Gjoka, M., Markopoulou, A.: Bottorrent: Misusing bittorrent to
launch ddos attacks. In: Proceedings of the USENIX 3rd Workshop on Steps To-
wards Reducing Unwanted Traffic on the Internet (SRUTI) (2007)

13. Dhamija, R., Tygar, J.D., Hearst, M.: Why phishing works. In: CHI 2006: Pro-
ceedings of the SIGCHI conference on Human Factors in com puting systems, pp.
581–590. ACM Press, New York (2006)

14. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion
Router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

15. Halavais, A.: The Slashdot Effect: Analysis of a Large-Scale Public Conversation
on the World Wide Web (2001)

16. Jagatic, T.N., Johnson, N.A., Jakobsson, M., Menczer, F.: Social phishing. Com-
mun. ACM 50(10), 94–100 (2007)

http://adonomics.com
http://www.facebook.com/press/info.php?statistics
http://www.geoiptool.com
http://www.pcworld.com/article/id,127347-page,1-c,internettips/article.html
http://www.pcworld.com/article/id,127347-page,1-c,internettips/article.html
http://news.bbc.co.uk/2/hi/programmes/click_online/7375772.stm
http://www.nationalgeographic.com/community/terms.html#content
http://www.nationalgeographic.com/community/terms.html#content
http://photography.nationalgeographic.com/photography/photo-of-the-day
http://photography.nationalgeographic.com/photography/photo-of-the-day
http://www.facebook.com/apps/application.php?id=8752912084

158 E. Athanasopoulos et al.

17. Lam, V.T., Antonatos, S., Akritidis, P., Anagnostakis, K.G.: Puppetnets: misusing
web browsers as a distributed attack infrastructure. In: CCS 2006: Proceedings of
the 13th ACM conference on Computer and communications security, pp. 221–234.
ACM, New York (2006)

18. Mislove, A., Marcon, M., Gummadi, K.P., Drushcel, P., Bhattacharjee, B.: Mea-
surement and Analysis of Online Social Networks. In: Proceedings of the Internet
Measurements Conference (IMC 2007) (2007)

19. Naoumov, N., Ross, K.: Exploiting P2P systems for DDoS attacks. In: InfoScale
2006: Proceedings of the 1st international conference on Scalable information sys-
tems, p. 47. ACM Press, New York (2006)

20. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
SIGCOMM Comput. Commun. Rev. 31(3), 38–47 (2001)

21. Steiner, M., Biersack, E.W., En-Najjary, T.: Exploiting kad: Possible uses and
misuses. Computer Communication Review 37(5) (2007)

Antisocial Networks: Turning a Social Network into a Botnet 159

Appendix

Facebook Architecture

Facebook provides all the essentials needed for easy deployment of applications
that live inside the social network itself. A user who wants to build a Facebook
application must simply add the Developer Application9 to her account. The
server side part of the application can be developed in PHP or Java. One major
requirement is the presence of a Web server for hosting the new application.
Using the Developer Application the developer fills out a form and submits the
application. The form has fields, such as the application’s name, the IP address of
the Web server, etc. Typically, after a few days the Facebook Platform Team no-
tifies the developer either that the application was successfully accepted or that
it was rejected. Facebook Platform provides the Facebook Markup Language10

(FBML), which is a subset of HTML along with some additional tags specific
to Facebook. Also, the Facebook Query Language11 (FQL) allows the developer
to use an SQL-style interface to easily query some Facebook social data, such
as the name or profile picture of a user. Finally, Facebook JavaScript12 (FBJS)
permits developers to use it in their applications. All the above tools give an
open API to the developer for easy creation of Web applications that live inside
Facebook and which are freely available to every Facebook user.

From Facebook to FaceBot. To exploit a social site, like Facebook, for launching
DoS attacks, the adversary needs to create a malicious application, which embeds
URIs to a victim Web server. These URIs must point to documents hosted by the
victim, like images, text files, HTML pages, etc. When a user interacts with the
application, the victim host will receive unsolicited requests. These requests are
triggered through Facebook, since the application lives inside the social network,
but they are actually generated by the Web browsers used by the users that
access the malicious application. We define as FaceBot the collection of the users’
Web browsers that are forced to generate requests upon viewing a malicious
Facebook application. Schematically, a FaceBot is presented in Figure 9. The
cloud groups a collection of Facebook users who browse a malicious application
in Facebook. This causes a series of requests to be generated and directed towards
the victim.

One crucial thing to note is that the application is hosted by the developer.
That means that if an adversary wants to develop a malicious application, they
must also host it. In other words, the adversary has to be able to cope with
requests from users that are accessing the application. However, this can be
overcomed using a free hosting service, specifically designed for Facebook appli-
cations.13 But even if such a service were not available, the adversary has to cope

9 http://www.facebook.com/developers/
10 http://wiki.developers.facebook.com/index.php/FBML
11 http://wiki.developers.facebook.com/index.php/FQL
12 http://wiki.developers.facebook.com/index.php/FBJS
13 Joyent Free Accelerator: http://joyent.com/developers/facebook/

http://www.facebook.com/developers/
http://wiki.developers.facebook.com/index.php/FBML
http://wiki.developers.facebook.com/index.php/FQL
http://wiki.developers.facebook.com/index.php/FBJS
http://joyent.com/developers/facebook/

160 E. Athanasopoulos et al.

with much less traffic than the one that targets the victim. We further discuss
this issue in Section 5.

FaceBot

Facebook.com

Victim
Host

Facebook
User

Facebook
User

Facebook
User

HTTP
Requests

Fig. 9. The architecture of a FaceBot. Users access a malicious application in the social
site (facebook.com) and subsequently a series of HTTP requests are created, which
target the victim host.

Compromising Anonymity Using

Packet Spinning

Vasilis Pappas, Elias Athanasopoulos, Sotiris Ioannidis,
and Evangelos P. Markatos

Institute of Computer Science (ICS)
Foundation for Research & Technology Hellas (FORTH)
{vpappas,elathan,sotiris,markatos}@ics.forth.gr

Abstract. We present a novel attack targeting anonymizing systems.
The attack involves placing a malicious relay node inside an anonymizing
system and keeping legitimate nodes “busy.” We achieve this by creating
circular circuits and injecting fraudulent packets, crafted in a way that
will make them spin an arbitrary number of times inside our artificial
loops. At the same time we inject a small number of malicious nodes that
we control into the anonymizing system. By keeping a significant part
of the anonymizing system busy spinning useless packets, we increase
the probability of having our nodes selected in the creation of legitimate
circuits, since we have more free capacity to route requests than the
legitimate nodes. This technique may lead to the compromise of the
anonymity of people using the system.

To evaluate our novel attack, we used a real-world anonymizing sys-
tem, TOR. We show that an anonymizing system that is composed of a
series of relay nodes which perform cryptographic operations is vulner-
able to our packet spinning attack. Our evaluation focuses on determin-
ing the cost we can introduce to the legitimate nodes by injecting the
fraudulent packets, and the time required for a malicious client to cre-
ate n-length TOR circuits. Furthermore we prove that routers that are
involved in packet spinning do not have the capacity to process requests
for the creation of new circuits and thus users are forced to select our
malicious nodes for routing their data streams.

1 Introduction

Anonymizing systems have been steadily becoming popular as network users
that want to hide their identity are using them when accessing Internet services,
like Web browsing and Instant Messaging. Anonymity in networks dates back to
more than twenty years, when Chaum [7] introduced the concept of anonymous
communications. Over the last ten years there have been a series of proposals
for anonymizing systems for numerous services. We refer the reader to [8, 10, 12,
16, 18, 19, 20, 22] for some of the most popular anonymizing system proposals.

Following user needs, anonymizing systems have moved from being purely
academic proposals and have been deployed as real-world infrastructures. One
of the most popular existing solutions for using the Internet in an anonymous

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 161–174, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

162 V. Pappas et al.

fashion is the TOR system [11]. TOR has been specifically designed for providing
anonymity for low-latency services such as the World Wide Web.

TOR is composed of a collection of routing nodes that are available for circuit
creations between entities that want to communication in an anonymous fashion.
For example, if Alice wants to surf on Bob’s web site using TOR, she will have
to pick three or more available TOR routers, create a circuit that end’s at Bob’s
web site, and proceed to tunnel her requests over that circuit. Bob on his end
will never come in direct contact with Alice but only with a TOR router. This
way Alice’s anonymity is preserved.

Theoretically, it is possible for an attacker to place malicious nodes inside an
anonymity network that is circuit-based (like TOR) and manage to compromise
Alice’s anonymity, should those malicious nodes are selected in Alice’s circuits.
However, when such systems contain thousands of routers, the probability of
being selected is relatively low, unless the attacker injects large numbers of ma-
licious nodes. In this paper we present a novel attack in which a malicious user
injects just a few nodes in system like the above in order to keep legitimate
routers busy. At a later stage, the attacker can add malicious nodes that will be
relatively idle, and in this way increasing the probability of having them selected.

The rest of this paper is organized as follows. We discuss and compare to prior
work in Section 2. In Section 3 we give a detailed presentation of the basic concept
of the packet spinning attack. The evaluations of the attack and its magnitude
is presents in Section 4. Based on our experimental findings we show how an
attacker can actually compromise anonymity in TOR in Section 5. In Section 6
we propose Tree Based Circuits, a countermeasure aimed at defeating packet
spinning attacks. Finally we conclude and discuss future work in Section 7.

2 Related Work

There are numerous research papers identifying possible attacks against modern
anonymizing systems. One fundamental attack against anonymizing systems is
based on traffic analysis (see, e.g., [3, 17]). Traffic analysis, in the context of
anonymizing, is the process of passively monitoring streams of an anonymizing
system and trying to correlate them by identifying specific patterns, aiming
to reveal the sender or the recipient of an anonymous communication. Traffic
analysis has evolved [9, 14] to a practical way of breaking the anonymity provided
by an anonymizing system. For example, Danezis et al. have shown how traffic
analysis can successfully break the anonymity provided by TOR [15].

Apart from traffic analysis, there are other possible attacks against anonymiz-
ing systems, and our work here is more closely related to those, since we don’t
use any traffic analysis to carry out our attack. More precisely, previous work has
presented a study on attacks against anonymizing systems which are based in
open MIX routers [5]. With respect to TOR, and not considering traffic analysis,
there are two major attacks on its anonymizing scheme. The first one suggests to
inject malicious nodes in a TOR overlay that lie about their available bandwidth
and consequently are selected for TOR circuits with higher probability [4]. In the

Compromising Anonymity Using Packet Spinning 163

second one, Danezis et al. are taking advantage of the circuit creation process
to compromise TOR [6]. Specifically, when a malicious node realizes that it is
unable to compromise a TOR circuit, meaning it is not an entry or an exit node
in a TOR circuit, it breaks the circuit and it forces the user to initiate a new
one. It uses this technique repeatedly with the hope that the new circuit will
contain the malicious node as an entry or exit node.

Borisov et al. recentlyll proposed an opportunistic bandwidth measurement
algorithm for TOR to replace self reported values [21]. This technique addresses
attacks like the one described above [4] and also has a good impact on TOR’s
overall performance because it achieves better load balancing. Surprisingly, this
technique is beneficial for our attack. In the current implementation of TOR the
ORs advertise the same bandwidth both under normal conditions and under the
LOOP phase (where our spinning cells consume most of their bandwidth). Using
the Borisov’s technique though, after the LOOP phase our idle malicious ORs
will be more likely to be chosen, because the legitimate ones will advertise less
available bandwidth.

3 Packet Spinning Attack

In this section we describe in details the packet spinning attack. First, we present
the basic idea and then we focus on the parameters which are critical and can
make the attack stronger. Even though the attack is feasible in any anonymizing
system which uses intermediate relay nodes for hiding the identity of a packet
sender, and each relay node is involved in some cryptographic operations, in this
analysis we will focus on the TOR anonymizing system.

Overview. The TOR anonymizing system is composed of a collection of nodes1

that relay traffic from a user’s computer to a target service. These relay nodes,
which act as packet forwarders are called Onion Routers (ORs), since Onion
Routing[13] is used during the routing process. A user, who wants to utilize
TOR, runs a TOR client on their computer, called TOR Proxy (TP). The TP
contacts the TOR Directory Servers, which list all the available ORs, and then
builds TOR circuits. Typically, a TOR circuit comprises of three ORs, the entry,
the middle and the exit OR, but the system does not impose any constraints in
the length of a TOR circuit. As long as the user transmits data, the TOR circuit
remains functional. The information transmitted by the TP is encapsulated in
TOR cells. A TOR cell is considered as the base information unit of transmission
via TOR and it is 512 bytes long in size.

To provide stronger anonymity guarantees, the TOR system is designed so
that any OR except the last one, is unable to identify its position in the TOR
circuit2. On the other hand, to avoid eavesdropping, each TOR cell is routed
1 At the time of writing this paper the number had reached about 2500 nodes

(http://torstatus.kgprog.com/).
2 Although the first one is also able to know its position by checking whether the IP

address of the node before it is in the set of the Tor nodes. This set is available
through the Directory servers [4].

http://torstatus.kgprog.com/

164 V. Pappas et al.

using Onion Routing. That is, each TOR cell is multiply encrypted using sym-
metric cryptography. Each OR can decrypt only a single layer of the cell using
its shared session key. Thus, the TP must encrypt each cell with all the shared
session keys of the ORs that compose the TOR circuit.

The Packet Spinning Attack relies in two fundamental principles:

– Since the complete circuit is not known by every OR, circular circuits are
not detectable.

– A legitimate OR will always spend some time in cryptographic operations.

The attack consists of two two phases, (i) the LOOP phase and (ii) the COM-
PROMISE phase. We continue by describing each phase in detail.

LOOP Phase. During the LOOP phase, an adversary attempts to keep a sig-
nificant amount of legitimate ORs busy in spinning fraudulent packets. For an
adversary to launch the attack in its simplest form, they need a malicious TP
and a malicious OR. The malicious TP colludes with the malicious OR. The
TP creates a TOR circuit which starts and ends at the malicious OR. The TP
creates a packet, which it encrypts layer by layer using the shared symmetric
session keys of the legitimate ORs composing the initiated TOR circuit, and
then forwards it to the malicious OR. The malicious OR does not decrypt the
packet but instead it immediately forwards it to the next legitimate OR of the
circuit. The OR decrypts a layer of the packet and forwards to the next one,
and so on. Finally, the packet completes a cycle and reaches the malicious OR
completely decrypted. Upon receipt, the malicious OR drops the packet and
re-injects the initial, fully encrypted packet, back into the circuit. This marks
an artificial spin of a packet inside a TOR circuit. The same operation can be
repeated indefinitely.

A schematic representation of the LOOP phase can be seen in Figure 1. To
further amplify the attack, the malicious TP can build a series of loops, in
various combinations, always using a single malicious OR, who is responsible for
maintaining the loop.

It is vital to observe, that one malicious OR can keep multiple legitimate ORs
busy. This is achievable for two reasons. First, the malicious OR spends much less
time in packet routing, since it is not involved in any cryptographic operation.
We evaluate this further in Section 4. Second, the malicious OR can be part of a
circular circuit of arbitrary length. The default length of a TOR circuit is three
ORs, but the protocol specification does not impose any constraints in building
larger circuits. The ability of building TOR circuits of arbitrary length is also
further explored in Section 4.

In addition, as we experimentally observe in Section 4 the difference in routing
effort between the malicious OR and the legitimate ones increases as the packet
size (the number of cells composing the initial packet) grows.

COMPROMISE Phase. When the attacker completes the LOOP phase, they
are able to launch the COMPROMISE phase, in order to reveal anonymous
communications. The adversary injects malicious ORs, which are not selected as

Compromising Anonymity Using Packet Spinning 165

Fig. 1. Schematic representation of the
packet spinning attack (LOOP phase).
In the top part of the figure we depict
the normal operation of a TOR circuit.
Each OR decrypts a layer of the incom-
ing packet and forwards it to the next
one, until the packet reaches the final
destination. In the lower part of the fig-
ure we depict the spinning packet at-
tack. A malicious OR (solid cell), part
of the circuit, injects again the initial
packet in the circuit. The legitimate
ORs continue to decrypt the packet in
each spin, but the malicious one is not
involved in any cryptographic opera-
tion.

Fig. 2. Schematic representation of
how an adversary can compromise the
anonymity of a user by employing
the packet spinning attack (COMPRO-
MISE phase). In this figure, the adver-
sary has injected three malicious ORs
(solid cells) in the anonymizing system.
One of them has built circular circuits
with legitimate ORs in order to keep
them busy, and two of them are free of
resources in order to serve as routers
for new TOR connections.

part of any “spinning circuit.” That is, the injected ORs are idle and therefore
they can be selected for legitimate TOR circuits with greater probability. As
we investigate further in Section 4, even if legitimate ORs, which are part of a
spinning circuit, are selected in the creation of a new TOR circuit, most likely
they will not be able to join it. That is, if a legitimate TP selects ORs, which are
occupied in spinning circuits, there is a great probability for the TP to receive a
timeout from the selected ORs and continue building the circuits with new ORs.
Sooner, or later the legitimate TP will select idle ORs like the ones injected
in the system by the adversary. We schematically present the COMPROMISE
phase in Figure 2.

4 Attack Evaluation

In this section we estimate the firepower of the packet spinning attack. We
experimentally evaluate the attack magnitude by placing a malicious OR in a
TOR overlay on two fronts:

166 V. Pappas et al.

– The overhead for a malicious OR to forward spinning packets versus the
overhead of a legitimate OR to perform the same operation.

– The time required for a malicious TOR client to build arbitrary length TOR
circuits.

Routing Overhead. The spinning packet attack is based primarily on the fact
that a malicious OR may route packets faster than a legitimate one, because it
is not involved in any cryptographic operation. The malicious OR is positioned
in a circular TOR circuit and it is continuously injecting TOR cells inside the
circuit, without decrypting the cells it receives (see Figure 1).

To measure the effort spent by a malicious OR to conduct the attack, in con-
trast to a legitimate OR, we conducted the following experiment. We placed
three ORs on three hosts. Each host was running a single OR and all the three
hosts were isolated from any external network traffic. One of the ORs was modi-
fied to be malicious. The same host that runs the malicious OR is also running a
modified TP to create the circular circuit, as well as another 20 TOR processes
and the directory servers needed for each OR to resolve the other available ORs.
That is, the host running the malicious OR was significantly more loaded than
the ones running the legitimate ORs. We used the default configurations of all
ORs and we used the latest version of TOR (0.1.2.18) at the time we conducted
the experiments.

We conducted several experiments for various numbers of spinning cells. In
each run we measured the time needed for an OR - legitimate or malicious -
to route the incoming cell. The time measured was from the point that the OR
received a packet, up to the point the OR had sent the packet to the next hop of
the circuit. For each experiment, the TP sends to the artificially made circuit a
packet of specific size in terms of number of cells. Recall from Section 3 that the
base information unit in TOR is the cell, which is equal to 512 bytes. That is,
the TP sends packets that are multiple of one cell in length. From the moment
the TP sends spinning packet to the circuit, the packet starts spinning with the
assistance of the malicious OR and the TP is never again involved in the process.
In Figure 3 we present the cost of routing the spinning cells for the legitimate
and the malicious ORs. Observe, that for each OR, malicious or legitimate, the
effort grows linearly to the packet size. In addition, the effort of the malicious
OR is significantly lower to the legitimate ORs, and the difference increases as
the cell number increases. More precisely, the difference in the effort can grow
from approximately 60% to nearly 85%. In Table 1 the relative percentage of
the difference during the routing effort is listed for each experiment.

As far as the spins achieved by each spinning packet are concerned, we show
the time required for a series of cell relays in Figure 4. Each OR can spin a cell
at a maximum rate of 25 relays per second.

Circuit Building. One fundamental property of the packet spinning attack is that
a malicious OR can occupy several legitimate ORs, by making circular circuits
of arbitrary length. Recall that the default length of a TOR circuit length is
three, but the protocol does not impose any constraints for larger circuits.

Compromising Anonymity Using Packet Spinning 167

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30

T
im

e
(μ

s)

Spinning Cells

Routing Effort (Cells)

OR1

OR2

Legitimate OR (OR1)
Legitimate OR (OR2)
Malicious OR (ORm)

Fig. 3. The cost in terms of time for legit-
imate ORs to forward spinning packets in
contrast with the effort of a malicious OR.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800

T
im

e
(μ

s)

Relays

Routing Effort (Relays)

OR1

OR2

Legitimate OR (OR1)
Legitimate OR (OR2)
Malicious OR (ORm)

Fig. 4. The cost in terms of time for legit-
imate ORs to forward spinning packets in
contrast with the effort of a malicious OR.

Table 1. The percentage difference of the routing effort spend by the malicious OR
(ORm) relatively compared with the routing effort spend by the legitimate ORs, (OR1,
OR2). Routing effort is recorded in μs, which is the period of time required for an OR
to send the packet to the next hop in the circuit after it has successfully received it.

OR1 OR2 ORm
OR1−ORm

OR1

OR2−ORm
OR2

336.199 361.403 133.136 60% 63%

598.276 584.898 176.997 70% 70%

926.444 901.521 232.435 75% 74%

1629.16 1635.22 294.156 82% 82%

3140.73 3167.97 513.536 84% 84%

5798.09 5777.1 850.997 85% 85%

In Figure 5 we present real world experiments for the creation of long TOR
circuits over time. Notice that, even though the time needed for the circuit
creation increases exponentially in terms of the circuit length, we were able to
create TOR circuits of more than 30 hops. This means that using one malicious
OR we would be able to keep busy more than 30 legitimate ORs.3

5 Compromising Anonymity

Based on the results we highlighted in Section 4, we proceed to explore how
an actual packet spinning attack can compromise the anonymity of users that
utilize a real anonymizing system, namely TOR.

Experimental Setup. To conduct the experiments we used the TorFlow [2] pack-
age which is a complementary package of the TOR project [1]. TorFlow is written
in Python, and it is composed of a series of scripts, which utilize the TOR con-
trol channel to communicate with active ORs. The TOR software supports a
3 In reality, we can do even better. We can use one malicious OR to issue circular

circuits with several other ORs, as it is depicted in Figure 2.

168 V. Pappas et al.

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35

T
im

e
(s

ec
s)

Circuit Length

Circuit Creation

TP1
TP2
TP3
TP4

Fig. 5. The time needed for a malicious
OR to issue TOR circuits of arbitrary
length

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100 120 140

T
im

e
(s

ec
s)

Spinning Circuits

Circuit Latency

Fig. 6. Time latency for building addi-
tional circuits over an existing set of Tor
nodes

protocol for OR instrumenting. A client can connect to a specific port, bound to
the control channel of an OR and give commands in a request-response fashion.
Some operations that are allowed are: building circuits, attaching streams to
circuits and querying an OR for various statistics.

All experiments were held in a private and isolated from the rest of the Internet
TOR overlay. Using TorFlow we developed scripts that were creating a malicious
OR which was part of the overlay. The rest of the ORs were kept intact in
terms of software modifications. The only modification we did was the bandwidth
constraints of the legitimate ORs. We set all legitimate ORs to be bounded to
1 Mbit per second. We did this to shorten the times it took to conduct our
experiments. As we will discuss later, an adversary could launch a similar attack
in a TOR overlay that is composed of ORs that experience greater bandwidth,
by injecting more spinning cells in the artificial made loops.

Our strategy was the following. We were starting a TOR overlay of a variable
number of ORs and we had a TorFlow-based Python script that was acting as a
malicious TP, by instrumenting a malicious OR, and a legitimate TP that was
trying to access the Internet using our isolated TOR. When our scripts weren’t
running, the legitimate TP could access the Internet using our TOR in a normal
fashion. On the other hand, as we explore in detail in the rest of this section,
when our scripts were running, the legitimate TP was experiencing side effects
that could potentially lead to anonymity compromising.

Packet Spinning Effects. The first evident behavior experienced by the legitimate
TP was the inability of circuit building in time. When a TP tries to access the
Internet using TOR, it first selects three ORs and then tries to build the circuit
telescopically. That is, it first contacts and establishes connection with the entry
router, it then expands the circuit by tunneling the requests through the entry
router until the circuit is created. However, there is a timeout for the creation
of circuits, which is set by default at 60 secs. In addition, ORs that were part of
spinning circuits were unable to process the circuit creation requests fast enough
and thus most of the circuit creation operations issued by the TP were failing.

Compromising Anonymity Using Packet Spinning 169

In order to demonstrate this side effect more clearly, we contacted an exper-
iment with a TOR overlay that was running on a single host. We eliminated
out all network latencies since all communications between the TOR processes
were local. Using our scripts we created an artificial loop of length five (the ma-
licious OR was the first and last router and the legitimate ones were the three in
the middle) and we started spinning cells inside. We then forced another script
to create the same circuit. We proceeded in adding more spinning circuits and
trying to build a new circuit over them. In Figure 6 we present our results.

Notice, that when there are no spinning circuits the circuit creation is almost
spontaneous. However, as the spinning circuits increase, the circuit creation be-
comes a long process (recall that we have eliminated all network latencies, since
the overlay runs in a single host) exceeding a period of 10 seconds.

6 Countermeasures

An anonymizing system that is based on a series of in-between relay nodes, and
on TOR like circuits, is vulnerable to a packet spinning attack since it permits
the creation of circular circuits. An adversary could utilize these circuits, having
a malicious relay node that is not taking part in cryptographic operations and
thus it has time to flood the circular circuit with fraudulent packets. We carried
out all this analysis, using a real anonymizing system, TOR.

An obvious countermeasure would be to embed information of a circuit in all
participating relayers. This would prevent the creation of circular circuits, but
subsequently would decrease the anonymity level provided by the system. We
are against any countermeasure that degrades the anonymity level of existing
systems.

Instead of preventing circular circuits, our solution aims at reducing the effects
of artificial loops in an anonymizing overlay. We propose existing anonymizing
systems to employ Tree Based Circuits (TBCs). More precisely, instead of having
serial circuits, like the ones used in TOR, we propose that circuits will expand
from the entry node in a tree fashion targeting the final destination. In Figure 7
we depict a TBC. The entry node issues two connections with two middle nodes
and each of the middle nodes issues two connections with two exit nodes. In
this example, one exit node is shared between the two middle nodes, but this is
not obligatory. The dashed lines present OR connections that are ready to be
utilized and the solid lines present an active TOR stream.

Introducing TBCs in an anonymizing system like TOR raises some important
questions. How fast a TBC can be constructed? Recall, that TOR is used for
low-latency communications. Does it degrades the level of anonymity? Notice,
that by employing TBCs will be impossible to make circuits with many levels
in terms of hops, since trees grow exponentially. Is a TBC vulnerable to packet
spinning?. In the rest of this section, we address each of this question in detail.

How fast a TBC can be constructed? Currently, TOR builds four circuits on
startup. This is done for redundancy. Each OR maintains these four circuits and
it is able to use any of them upon a circuit failure. Our proposal, follows the same

170 V. Pappas et al.

Fig. 7. Proposed solution. Tree based TOR circuits that are not vulnerable to circular
circuits.

logic, but instead of creating four distinct circuits, we create a TBC. A TBC has
many circuits that can be used as alternatives upon a circuit failure. Moreover,
the TBC can be created asynchronously; the client does not need to wait for the
whole TBC creation in order to start transmitting information. The TP remains
responsible for the circuit creation, but for each expand operation, the circuit is
expanded towards multiple directions giving, schematically, the impression of a
tree structure.

Does it degrades the level of anonymity? The ability of building large circuits
in terms of hops gives the impression of higher anonymity, since the packet is
relayed more times, although the latency, for the same reason, is increased. By
employing TBCs the relay node number increases, but the latency does not,
since the hops from the entry node to the exit one are kept at a low level (again
there is no constraint for the depth of the TBC, but it is evident that large
TBCs are an expensive operation, since trees grow exponentially). Essentially,
the relay nodes involved in a transaction are of the same magnitude as of the
relay nodes involved in current TOR circuit, but the relay nodes involved in
the whole protocol negotiation are many more. The additive cost of a TBC in
contrast with a plain TOR circuit is that each OR has to maintain some state
in order to correctly route requests back to the TP.

Is a TBC vulnerable to packet spinning? A TBC can not contain loops, but again
an adversary can place some malicious nodes in order to create TBCs that send
requests back to the entry node and in this way create artificial loops. However,
the adversary has to own more than one node in order to compromise a circuit,
but, more of importantly, the users can escape more easily from loops by routing
their requests using TBCs instead of plain circuits. A TBC gives the user more al-
ternative circuits to the final destination, which in turn decrease the probability of
encountering nodes that are overwhelmed by spinning packets in a circular circuit.

Compromising Anonymity Using Packet Spinning 171

7 Conclusion and Future Work

In this paper we presented a novel attack against modern anonymizing systems,
in which a series of relay nodes route cryptographically wrapped packets. The
attack is based on inserting a malicious node in an anonymizing overlay, that is
able to construct circular circuits and forces packets to spin indefinitely inside
those loops. In this fashion an adversary can keep legitimate routers busy while
at the same time they can inject their own, unloaded, malicious nodes. Since
these nodes are not kept busy, they have a higher probability of being selected
by users wanting to utilize the anonymizing system. This way, new circuits are
more likely to contain malicious nodes, and the anonymity of the user can be
compromised.

We evaluated our attack using a real-world TOR system and our evaluation
showed that such an attack is feasible. Finally, we came up with a method to
counter packet spinning attacks and proposed Tree-Based Circuits. We showed
that TBCs can be constructed relatively fast, they do not degrade the anonymity
properties of the system and they are not vulnerable to packet spinning. Part
of our future work is to implement TBCs in the TOR system and evaluate their
performance, as well as further examining if a TBC is vulnerable to similar
attacks like the one presented in this paper.

Acknowledgments

We thank the anonymous reviewers for their valuable comments. Vasilis Pappas,
Elias Athanasopoulos, Sotiris Ioannidis, and Evangelos P. Markatos are also with
the University of Crete. This work was supported by the Marie Curie Actions
- Reintegration Grants project PASS. Elias Athanasopoulos is also funded from
the PhD Scholarship Program of Microsoft Research Cambridge.

References

1. The TOR Project, http://www.torproject.org/

2. TorFlow, https://www.torproject.org/svn/torflow/README

3. Back, A., Möller, U., Stiglic, A.: Traffic analysis attacks and trade-offs in anonymity
providing systems. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 245–257.
Springer, Heidelberg (2001)

4. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against tor. In: Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2007), Washington, DC, USA (October 2007)

5. Berthold, O., Pfitzmann, A., Standtke, R.: The disadvantages of free MIX routes
and how to overcome them. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 30–45. Springer, Heidelberg (2001)

6. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of
security? How attacks on reliability can compromise anonymity. In: Proceedings
of CCS 2007 (October 2007)

http://www.torproject.org/
https://www.torproject.org/svn/torflow/README

172 V. Pappas et al.

7. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 4(2) (Febuary 1981)

8. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In: Proceedings of Designing
Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and
Unobservability, July 2000, pp. 46–66 (2000)

9. Danezis, G.: The traffic analysis of continuous-time mixes. In: Martin, D., Serjan-
tov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 35–50. Springer, Heidelberg (2005)

10. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a Type III
Anonymous Remailer Protocol. In: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, May 2003, pp. 2–15 (2003)

11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (August 2004)

12. Freedman, M.J., Morris, R.: Tarzan: A Peer-to-Peer Anonymizing Network Layer.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security (CCS 2002), Washington, DC (November 2002)

13. Goldschlag, D.M., Reed, M.G., Syverson, P.F.: Hiding routing information. In:
Information Hiding, pp. 137–150 (1996)

14. Mathewson, N., Dingledine, R.: Practical traffic analysis: Extending and resist-
ing statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS,
vol. 3424, pp. 17–34. Springer, Heidelberg (2005)

15. Murdoch, S.J., Danezis, G.: Low-cost traffic analysis of Tor. In: Proceedings of
the 2005 IEEE Symposium on Security and Privacy, May 2005. IEEE Computer
Society Press, Los Alamitos (2005)

16. Nambiar, A., Wright, M.: Salsa: A Structured Approach to Large-Scale Anonymity.
In: Proceedings of CCS 2006 (October 2006)

17. Raymond, J.-F.: Traffic Analysis: Protocols, Attacks, Design Issues, and Open
Problems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies.
LNCS, vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

18. Reiter, M., Rubin, A.: Crowds: Anonymity for web transactions. ACM Transac-
tions on Information and System Security 1(1) (June 1998)

19. Rennhard, M., Plattner, B.: Introducing MorphMix: Peer-to-Peer based Anony-
mous Internet Usage with Collusion Detection. In: Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2002), Washington, DC, USA (November
2002)

20. Sherwood, R., Bhattacharjee, B., Srinivasan, A.: P5: A protocol for scalable anony-
mous communication. In: Proceedings of the 2002 IEEE Symposium on Security
and Privacy (May 2002)

21. Snader, R., Borisov, N.: A tune-up for Tor: Improving security and performance
in the Tor network. In: Proceedings of the Network and Distributed Security Sym-
posium - NDSS 2008, February 2008, Internet Society (2008)

22. Zhuang, L., Zhou, F., Zhao, B.Y., Rowstron, A.: Cashmere: Resilient Anonymous

Routing. In: Proc. of NSDI, Boston, MA, May 2005, ACM/USENIX (2005)

Compromising Anonymity Using Packet Spinning 173

Appendix: Technical Discussion

Routing in Tor
Each Tor node has a routing table that contains entries in the form: (source
connection, source circuit id) - (destination connection, destination circuit id)4.
Upon a circuit establishment, each node adds an entry in its routing table to
forward cells for that circuit. In order for the last node (exit node) to know its
position, the routing entry for the specified circuit does not have a destination
connection (is has a NULL value of destination connection). After the circuit
establishment, Tor nodes are able to route cells in a circuit. The pseudo-code of
the function executed upon receiving a new cell is shown in Figure 8.

A simple way to make a cell spin in a circular circuit is to change the last
node’s routing entry’s destination connection from NULL to the connection with
the second node in the circuit. That way whenever the last node receives a packet
it will forward it again to the second node in the circuit.

function receive_cell(cell c)

decrypt_one_layer(c)

if (is_recognized(c)

//do exit node stuff

//...

else

next_conn, next_circ_id = get_route_info(c)

if (next_conn)

c.circ_id = next_circ_id

send_cell(c, next_conn)

else

//circuit stops here bu the cell wasn’t recognized

drop_cell(c)

Fig. 8. The receive cell Tor’s function pseudocode

Spin in Tor Implementation
Keeping the previous in mind, we altered the source code of Tor in order to
implement the cell spin. The procedure to make a cell spin in in a Tor circuit
using a colluding TP and an colluding OR is comprised by the following steps:

1. Establish a circular circuit. Although Tor’s node selection algorithm
never selects a node twice (as an entry and as en exit) we used the control
component of Tor (through TorFlow [2]) to explicitly select the nodes for a
circuit. That way, we create a circular circuit with out colluding OR placed
at entry and exit positions.

4 Connection denotes a TLS connections with other Tor nodes. Many Tor circuits can
be multiplexed in a single connection.

174 V. Pappas et al.

2. Inform the colluding OR. In order to get the cell spin we have to inform
the colluding OR to change its routing table. So, the first thing to do is to
get the destination connection and destination circuit id pair that forwards
cells to the second OR. This is done by sending a cell (containing a special
message) encrypted only with the entry node’s key to the circuit. That way
our colluding OR (as an entry node) recognizes it, keeps the destination
connection and circuit id and forwards it down the circuit.

3. Change OR’s routing table. The previous cell that our colluding OR for-
warded will end up again to it but this time it wont be recognizable. So,
our colluding node will get an unrecognizable cell that stops there. That
time it will suppose that this cell is the one it forwarded before and will set
the destination connection and circuit id of the current routing entry to the
values kept at step 2.

Behavior-Based Network Access Control:
A Proof-of-Concept

Vanessa Frias-Martinez, Salvatore J. Stolfo, and Angelos D. Keromytis

Computer Science Department, Columbia University
{vf2001,sal,angelos}@cs.columbia.edu

Abstract. Current NAC technologies implement a pre-connect phase where the
status of a device is checked against a set of policies before being granted ac-
cess to a network, and a post-connect phase that examines whether the device
complies with the policies that correspond to its role in the network. In order to
enhance current NAC technologies, we propose a new architecture based on be-
haviors rather than roles or identity, where the policies are automatically learned
and updated over time by the members of the network in order to adapt to be-
havioral changes of the devices. Behavior profiles may be presented as identity
cards that can change over time. By incorporating an Anomaly Detector (AD)
to the NAC server or to each of the hosts, their behavior profile is modeled and
used to determine the type of behaviors that should be accepted within the net-
work. These models constitute behavior-based policies. In our enhanced NAC
architecture, global decisions are made using a group voting process. Each host’s
behavior profile is used to compute a partial decision for or against the accep-
tance of a new profile or traffic. The aggregation of these partial votes amounts
to the model-group decision. This voting process makes the architecture more re-
silient to attacks. Even after accepting a certain percentage of malicious devices,
the enhanced NAC is able to compute an adequate decision. We provide proof-
of-concept experiments of our architecture using web traffic from our department
network. Our results show that the model-group decision approach based on be-
havior profiles has a 99% detection rate of anomalous traffic with a false positive
rate of only 0.005%. Furthermore, the architecture achieves short latencies for
both the pre- and post-connect phases.

Keywords: Network Access Control Technologies, Intrusion Detection Systems.

1 Introduction

Network Access Control (NAC) technologies manage the access of devices to a net-
work and mitigate against inside threats within a network. This is accomplished by
implementing a two-tier strategy: the pre-connection and the post-connection phases.
The pre-connection phase checks whether a device attempting to connect to a network
complies with a set of policies. These policies typically include checking the status of
the antivirus (AV) software in the device and whether or not the required patches for the
OS are installed. If the device is not up-to-date, it is either quarantined or rejected from
connecting to the network. The post-connection phase controls whether the policies
(AV software, patches) are still being complied with by the network hosts. It may also

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 175–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

176 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

include traffic monitoring meant to detect any anomalous traffic using Signature-based
or Anomaly-based Detection Systems (AD).

The current generation of NAC technologies rely on the use of fixed roles in the
network. A list of roles is initially declared manually using a pre-determined set of
characteristics. Devices are then provided with roles in the network that can only be
changed manually. These roles are not only used to decide what devices are granted
access to the network, but also to monitor what type of actions are allowed for each
device. In reality, networks are very dynamic environments where devices may change
roles or new roles may have to be created. Unfortunately, updating and defining new
roles manually becomes very demanding and highly inefficient as time elapses. Ideally,
we seek a solution that can define and update roles automatically without the inception
of a human in the loop.

In this paper we introduce a new Behavior-Based Network Access Control archi-
tecture, BB-NAC, in which the behavior profiles of network hosts modeled by an AD
are used to automatically compute and update behavior-based policies to enhance se-
curity. This new strategy enhances current NAC technologies by accounting for host
behavior and its changes. The use of behavior profiles allows us to automatically con-
form to changes in behavior and update security policies without human intervention.
In our proposed architecture, AD sensors are used to model the profile of the hosts in
the network. Profiles are communicated by devices as a representation of their typical
behavior. As behaviors change, updated models computed by the AD are captured as
new behavior profiles. These behavior profiles can be used as a declaration of intent of
behavior. In this manner, devices that drift from their profile are either under attack or
have lied about their typical behavior.

In terms of deployment, BB-NAC can be implemented either as an agent NAC ar-
chitecture where the AD is installed directly on each of the hosts in the network, or
alternatively as an agentless NAC architecture using a unique AD installed on the NAC
server. Here a NAC server denotes a server that sits on the edge of the network and
listens to incoming and outgoing traffic. In an agent NAC architecture, each host com-
putes its behavior profile and communicates it to the NAC server. In an agentless NAC
architecture, the NAC server itself models the individual behavior of each host in the
network and stores its profile locally. By modeling each profile individually, rather than
as a group, profiles of similar behavior can be clustered together and differentiated from
other types of behavior. As an aside, we note that our architecture can be applied to net-
works without a central control like Mobile Ad-hoc Networks (MANETs) by eliminat-
ing the NAC server from the architecture. The latter is beyond the scope of this paper. In
the following sections, we present a generalized description of the architecture that can
be implemented either as an agent or as an agentless version with minor modifications.

In terms of execution, the BB-NAC architecture performs pre-connection and post-
connection checks based upon a group decision made by the NAC server using the
profiles of the devices already in the network. During pre-connection, a device attempt-
ing to access the network presents its profile to the NAC server that conducts a voting
process among the stored profiles of the hosts already in the network to reach an ac-
cess control decision. During post-connection, the validity of the traffic exchanged is
similarly voted by the profiles in the network. If the group decision is positive, the

Behavior-Based Network Access Control: A Proof-of-Concept 177

device is granted access to services. Otherwise, the device is either quarantined or re-
jected from accessing a service. Individual hosts do not participate actively in the voting
process, but rather it is the NAC server that conducts the voting among the group of in-
dividual models (profiles) stored on the NAC server. Throughout the paper, we refer
to decisions made in this manner as model-group decision. Such model-group decision
process increases the survivability of the network by minimizing the influence of mali-
cious profiles. As mentioned previously, profile clustering is introduced to attain a more
fine-grained definition of network behavior. In this manner, only hosts in clusters with
sufficient knowledge participate in the voting process. Below we summarize the main
contributions of this paper:

• A new technique to automatically learn and update access control policies using
behavior. This approach enhances existing NAC technologies by providing, to the
best of our knowledge, the first behavior-based network access control.

• A novel access control model based on a model-group decision process. Individual
host’s behavior profiles stored on the NAC server are used to compute partial deci-
sions. The aggregation of these partial votes amounts to the model-group decision.

• An architecture resilient to attacks. The access control model continues to work
even after allowing a certain number of malicious devices into the network.

• An implementation for agent or agentless NAC technologies. By installing an AD
on the NAC server or on the hosts, the model-group decision process is conducted
by the NAC server in similar fashion.

• An architecture that is independent of the type of AD sensor used: content ADs,
volumetric ADs, or others.

In Section 2 we describe related work. Section 3 introduces the BB-NAC architecture.
Section 4 shows experimental results and latency analysis of our architecture. Finally,
Section 5 covers conclusions and future work.

2 Related Work

To the best of our knowledge, we are the first to introduce behavior model exchange as a
security feature. Possibly the closest concept to our approach was developed by Necula
and Lee [5], [4] and [6] in their Proof-Carrying Code (PCC). However, our approach
differs in the fact that behavior can be automatically learned from observation, whereas
proofs are specified by hand. Furthermore, our architecture proposes the exchange of
behavior models instead of safety proofs. Cooperative Anomaly Detection Sensors have
been explored in WORMINATOR [8], COSSACK [7] and CATS [3] where a distributed
environment shares alerts to strengthen each individual local security capabilities. We
implement the concept of cooperation in the model-group decision process by allowing
each host to participate in the access control decision rather than just sharing alerts.

A number of NAC technologies are currently available in the market. The Trusted
Network Connect (TNC) is an initiative of the Trusted Computing Group that proposes
a non-proprietary standard to enable the enforcement of security policies on endpoints.
Cisco Network Module for Integrated Services Routers offers an agentless solution au-
thenticating, authorizing and remediating devices connected wired or wirelessly to the

178 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

network. The Cisco Profiler executes an in-depth control of the endpoint devices of the
network by passively monitoring their traffic. The Network Access Protection (NAP)
platform from Windows, provides a client and server-side platform (Longhorn) to im-
plement policy validation, network access limitation, automatic remediation and on-
going compliance. Compared to all other previous NAC technologies, our architecture
uses behavior computed by an AD instead of roles (host posture) as a security feature.

3 The BB-NAC Architecture

We start with the conjecture that behavior modeled by an AD can be used as a means
to enhance and automate security enforcement in a NAC architecture. We assume that
profiles or behavior models represent the typical behavior of a device. As opposed to
roles, profiles can be automatically computed and updated by an AD as a device changes
behavior over time. In our architecture, devices initially present their profiles to the NAC
server prior to entering a network. Devices are also required to present a bad model that
represents a collection of all previously seen bad attacks modeled using the same AD.
The bad model measures the amount of knowledge the device has about known bad
behaviors and might be considered a generalization of the set of rules or signatures
used in a standard AV.

BB-NAC then follows the two-tier strategy commonly used in NAC architectures
except that the pre-connect and post-connect phases are both based on a model-group
decision process conducted on the NAC server i.e., an alert is raised whenever a set of
profiles agree on the access control decision being made. Furthermore, the access con-
trol policies in the NAC are computed and updated automatically as the ADs compute
new models. The pre-connect phase checks whether a device entering the network has
up-to-date malware knowledge. Devices that do not have sufficient malware knowledge
are quarantined or rejected from entering the network altogether. On the other hand, the
post-connect phase is responsible for a continuous check of the traffic exchanged by the
hosts in the network. The two-tier strategy is applied on a per-port basis. In the case of
multiple ports, the two-tier strategy is executed separately for each individual port. The
device is accepted only when it is deemed normal for all ports. Next, we describe the
pre- and post-connect phases in more detail.

3.1 Pre-connect Phase

The pre-connect phase is responsible for checking whether a device attempting to enter
the network has sufficient malware knowledge. During this phase, a device presents its
behavior profile as well as its bad model to the NAC server. If the device is coming
from a different network, the profiles presented are the ones modeled by the AD during
its previous interactions. Otherwise, if the device is brand new, we assume that it is
equipped with a vanilla profile or that it is given one by the network administrator prior
to starting its interaction. Next, the NAC checks whether the device’s bad profile con-
tains sufficient malware information to be accepted to the network. This step is similar
to conventional NAC approaches where the status of the AV is checked to determine
whether it is up-to-date. However, in our solution the access control decision is based

Behavior-Based Network Access Control: A Proof-of-Concept 179

1

5
3

2 4

M

MM

M M

MM

Servers

Clients

NAC Server

1 2 4

53

Port ‘x’

Network

NAC Status

Fig. 1. Basic setup of the BB-NAC architecture. The NAC server stores the behavior profiles
and bad models of each host in the network. It also stores the cluster information. Here, Mi =
{Pi, Bi}.

on the group knowledge of malware among the hosts already in the network. This is
unlike current NAC architectures where the amount of malware knowledge required is
manually set up as a policy.

In order to attain a more accurate access control, only hosts with similar profiles to
the one attempting to enter the network will be involved in the access control decision.
The NAC server divides the devices into clusters representing different behaviors. These
individual clusters are then responsible for the access control decision. If the device is
accepted, the NAC server will add its profile to the corresponding cluster. For simplicity,
in this paper we assume that the clusters of behavior are formed based on the declaration
of nature provided by the device itself i.e., a device declares itself to be a client or
a server. As a rule, it is required that a device of the same type already exists in the
network. Obviously, it may be the case that a device lies about its true nature. However,
if a device starts behaving anomalously, it will be detected in the post-connect phase.

Figure 1 shows the basic setup of our architecture. As can be seen, for any given Port
’x’ there are two differentiated clusters: one for clients and one for servers. For each
cluster, the NAC server stores both the profile and the bad model of its host members.
We use Mi to denote the set of behavior profile (Pi) and bad model (Bi) for each host i
i.e., Mi = {Pi, Bi}. The behavior-based access control policy is determined by whether
or not the device’s knowledge of malware is considered sufficient by the members of
the cluster of identical nature. In short, each of the bad profiles in the cluster participates
in a voting process to make an access control decision defined as:

V = (
n∑

k=1

vi)/n (1)

180 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

vi = 1, if Bi ⊂ Bdevice

vi = 0, if Bi ⊃ Bdevice (2)

where n denotes the number of hosts that vote, where each vote vi equals 1 when the
new device knows at least as many bad attacks as host i, and vi = 0 when the new
device knows fewer attacks that host i. V represents the fraction of hosts in the cluster
that consider the device’s bad model has sufficient malware knowledge. The driving
principle behind this calculation is a quantitative measurement that can grant or deny
entrance to the network based on the agreement of a certain percentage of network host
profiles. It may be the case that a group of malicious profiles collude to manipulate the
vote. However, our architecture can withstand such attacks as long as the number of
malicious profiles in the network does not dilute the percentage of agreement required
among host profiles. In Section 4, we describe the impact of possible attacks on our
architecture.

Figure 2 depicts the voting process. At Step 1, the NAC server listens to a new server
attempting to connect to the network. This new server presents its profile and bad model
to the NAC server. During Step 2, the NAC server conducts the voting process among
bad models in the cluster to determine whether the malware knowledge is sufficient.
Finally at Step 3, the accepted server is added to the cluster of servers and its profile
and bad model are in the NAC server. In terms of deployment, the voting process is
always conducted by the NAC server using the stored host profiles for both the agent
and agentless versions of the architecture.

3.2 Post-connect Phase

The post-connect phase performs a continuous check on the traffic being exchanged by
the hosts in the network. The goal is to guarantee normalcy of behavior in the network.
In our architecture, this is achieved by using the profiles of each individual host in the
network that are stored in the NAC server. Armed with these profiles, BB-NAC deter-
mines whether or not the traffic is considered anomalous using a model-group decision
process. The post-connect phase makes use of the clusters computed in the pre-connect
phase. Profiles of similar behavior are clustered together so that only profiles akin to
the source or destination of the traffic participate in the decision of traffic normalcy.
Our architecture conducts a voting process where each profile votes for or against the
normalcy of the observed traffic. The voting process is defined as:

V = (
n∑

k=1

Pk,d(t))/n (3)

where Pk,d represents the behavior profile of host k for direction d (ingress or egress) in
a cluster with n hosts. Because the traffic can be analyzed either at a packet or flow level,
t denotes the granularity (packet or flow) at which the traffic is tested against the AD
profiles. The output of Pk,d(t) equals 1 if the traffic unit is considered normal by Pk,d

and otherwise 0 if it is considered anomalous. V represents the fraction of hosts in the
network that consider the traffic unit to be normal. In Section 4, we discuss the impact

Behavior-Based Network Access Control: A Proof-of-Concept 181

1

5

3

2

4

Model (new server)

Servers

Clients

NAC Server

Network

(a) Step 1: New server presents its model to
NAC server.

Bad models vote for new server profile

Accept/RejectAccept/R

B

B

B 4

1

2

(b) Step 2: NAC server conducts the voting
process.

1

5
3

2
4

M

MM

M M

MM

Servers

Clients

6

M

NAC Server

3 5

1 2 4 6

Port ‘x’

Network

NAC Status

(c) Step 3: New server is accepted and NAC
status is updated.

Fig. 2. Schematics of the Pre-connect Phase

of malicious devices trying to manipulate the voting process. Another key ingredient
of the post-connect phase is that the observed traffic is used to compute new behavior
profiles for each of the hosts as time elapses. If the observed traffic is considered normal
by the cluster, it is used to compute a new profile for the members involved in the
exchange. On the other hand, if the traffic is deemed anomalous, it is used to update the
bad models of the hosts in the cluster. These new computations automatically update
the pre-connect and post-connect security policies. Issues concerning concept drift are
addressed in Section 4.3. In terms of deployment of the agent version of the architecture,
new profiles are computed by the hosts and communicated to the NAC server which
stores them locally. In an agentless version, on the other hand, the NAC server itself
computes the new profiles and stores them locally. In both versions, the voting process
is always conducted by the NAC server among the profiles stored locally.

Figure 3 depicts a possible scenario during the post-connect phase. In this setting,
traffic is exchanged from host 1 to host 5 (Step 1). During Step 2, the NAC server
implements two checks. First, it checks whether the output traffic of host 1 is considered
normal by host 1 and all the other profiles in its cluster. Second, it checks whether the
input to host 5 is considered normal by host 5 and all the other profiles in its cluster.
In this instance, the second check reveals an attack. As presented, this two-layer check
makes the architecture more resilient to insider threats. Next, in Step 3, the source is

182 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

1

2

4

53

traffic to 5

traffic to 5

Clients

Servers

NAC Server

Network

(a) Step 1: Traffic is exchanged
from host 1 to host 5.

Profiles vote for traffic_unit

Normal/AttackNormal/A

P

Normal/Attack/Attack

P

P

P

P

1

2

4

3

5

(b) Step 2: NAC server conducts
two voting processes. The cluster
of servers votes on the output traf-
fic of host 1 and the cluster of
clients votes on the input traffic to
host 5.

1

2

4

53

Clients

Servers

NAC Server

Network

(c) Step 3: Traffic is deemed
anomalous and the sender is placed
in quarantine.

+B B +

+ +B B

Bad Model Update

+B + B +

+ +B B+

M QUARANTINED

2 4

3 5

1

BAD

BAD

BAD

BAD

NAC Status

(d) Step 4: The NAC status is
updated with the detected attack.
Sender is placed in the quarantine
queue.

Fig. 3. Schematics of the Post-connect phase

placed into quarantine to determine whether or not it is infected. Lastly in Step 4, the
NAC server updates the malware knowledge of the bad models and updates the queue
with the hosts in quarantine.

4 Experiments and Evaluation of the Architecture

For initial evaluation of our architecture, we collected web traffic from the Computer
Science department network at Columbia University for a period of three weeks. We
only considered IPs within the local network and divided them into two clusters: servers
and clients. The nature of the machines is known from the collection of local IPs kept
by the department. Since the pre- and post-connect phases are executed separately for
each individual port, we chose port 80 to validate our architecture. Experiments for
other ports would be executed in a similar fashion.

For our proof-of-concept experiments, we modeled the profiles of all the webservers
(a total of four) in the department using the anomaly detection sensor Anagram [11].
Anagram is a content anomaly sensor that models a mixture of n-grams to detect sus-
picious network packet payloads. The profile content models are saved as Bloom filters

Behavior-Based Network Access Control: A Proof-of-Concept 183

[1] which are space and privacy preserving data structures consisting of a vector of 0s
and 1s. In general, Bloom filters suffer from false positives but not from false negatives.
Furthermore, Bloom filters can be exchanged among devices and NAC servers mini-
mizing the risk of privacy violation. Although we only used Anagram, it is important to
note that our architecture is flexible enough to allow any AD to be used.

In order to compute the profiles, we used between 370K and 700K clean training
packets obtained from the first two weeks of the collected traffic. These profiles were
trained until stability was reached i.e., the point in time when the ratio of observed n-
grams divided by the total number of n-grams was below a threshold. In addition, the
bad models for each webserver were computed following the technique described by
Wang et al. [11]. Each profile was trained with signature content from Snort rules [9]
and with 600 virus samples collected from vxheavens [10]. In terms of actual deploy-
ment in a network, the BB-NAC architecture would have to be installed in a NAC server
at the edge of the network. In addition, the NAC server would have to store the profiles
and bad models of each of the webservers in the server cluster.

4.1 Evaluation of the Pre-connect Phase

In order to add artificial diversity to our network and create a more meaningful proof-of-
concept experiment, we compute a bad model for each of the four webservers in such
a way that each bad model contains 10% less malware knowledge than its previous
model. Such computation is meant to simulate the behavior of users that have forgotten
to update their AVs one or multiple times. Therein, server1’s bad model contains all the
collection of Snort rules and virus samples, server2’s bad model contains 10% less than
server1 randomly excluded from the collection, server3’s bad model contains 10% less
than server2 randomly excluded from the collection, and server4’s bad model contains
10% less than server3 randomly excluded from the collection. While in a real network
percentages may vary from server to server, a value of 10% was arbitrarily chosen for
this proof-of-concept experiment to validate that the access control policy functions
properly.

In our setup, we assume that three out of the four webservers are members of the net-
work and that the fourth device (self declared as a server) attempts to enter the network.
This configuration allows us to evaluate three different scenarios: (i) Only one server
agrees on the acceptance of the new server (one out of three, 33%), (ii) Two servers
(66%) agree on the acceptance of the new server, and (iii) All three (100%) servers
agree to accept the new server to the network. Given the fact that the bad models are
represented as Bloom filters, each vote in the voting process is calculated as follows:

vi = 1, if |Bi ∧ Bdevice| / |Bi| = 1
vi = 0, if |Bi ∧ Bdevice| / |Bi| < 1 (4)

where vi is the vote of server i, Bi is the bad model of server i, and Bdevice is the bad
model of the device attempting to enter to the network. Here, ∧ represents the bitwise
AND between two Bloom filters and || denotes the number of 1s of the resulting AND.
Equation 4 calculates the fraction of 1s in common between a network host bad model
and a new device bad model with respect to the number of ones in the network host’s

184 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

bad model. In other words, the cardinality of the AND measures how different or similar
two models are to each other. If the device’s bad model is equal to or it is a superset of
server i bad model, its final vote is vi = 1. Otherwise, if the new device’s bad model
is a subset of the server i bad model its final vote is vi = 0. The final group vote is
represented by the percentage of devices that agree on the decision, as expressed in
equation 1.

In order to avoid attacks in which the new device presents a Bloom filter filled with
all 1s as its bad model, or one computed with good and bad traffic meant to trick the
vote in equation 4, the presented bad model is also checked against all normal profiles
already in the network. If normal traffic is detected as part of the bad model, the device
is rejected. This process is accomplished by calculating the AND cardinality of the
presented bad model with each of the host profiles. Any cardinality above the false
positive rate of the Bloom filter (which means that common n-grams exist) will reject
the device.

Table 1. Voting process results for the Pre-connect phase. ACC denotes a device accepted to the
network and REJ denotes a device rejected from entering to the network.

Scenario server4 in server3 in server2 in server1 in

(i) 33% REJ ACC ACC ACC
(ii)66% REJ REJ ACC ACC

(iii) 100% REJ REJ REJ ACC

Table 1 shows the pre-connect results after conducting the voting process for the
three different scenarios previously described. The top entry in each column represents
the server attempting to get connected to the network. The remaining three servers rep-
resent the devices making the decision. For instance, in Column 2 we assume that the
hosts already in the network are server1, server2 and server3 while server4 is attempt-
ing to enter the network. In Column 3, server1, server2 and server4 are considered to
be the network hosts and server3 is the one attempting to access the network. Similar
reasonings apply to the remaining columns.

As can be seen in Column 2, server4 is rejected in all cases since its bad model is
the one with the least malware knowledge of all. When server3 attempts to enter the
network, its malware knowledge is a superset of server4. Therefore, it is only accepted
when one device needs to agree on the pre-connect decision. However, because server3
is only a subset of the bad models of server2 and server1, it is not accepted for higher
rates of required agreement. Similar reasonings apply for server2 and server1. Note that
different specific percentages in the voting process result in a more or less strict access
control. More importantly, the results show that as long as the specific percentage of
clean profiles is kept in the network, the voting process will be resilient to attacks by
malicious devices that lied about its bad profile in order to manipulate access control.
Future work will focus on applying control-theoretic concepts in a feed-back loop to
provide an automated means of calibrating the sensitivity of the decision process. In
case of failure, a network manager may fine tune the decision process to impose a
predefined policy.

Behavior-Based Network Access Control: A Proof-of-Concept 185

Devices rejected during this phase are placed in quarantine where the device’s bad
model is tested against a group of known attacks, so that a new reinforced bad model
(Bloom filter) can be computed. The main advantage of having the malware knowledge
in a model (Bloom filter), as opposed to having a list of signatures, is the fast processing
time. AND-ing Bloom filters and calculating cardinalities is a much faster process that
comparing signatures. Finally, we emphasize the importance of balancing the strictness
of the access control with the latency of the system. Obviously, very demanding access
control policies typically result in longer latencies due to quarantines. However, less
demanding access control policies risk further attacks to the network.

4.2 Evaluation of the Post-connect Phase

We used the third week of collected traffic to test the post-connect phase in the BB-NAC
architecture. For every incoming packet to any of the webservers, each server votes on
the normalcy of the packet using its model or behavior profile. The evaluation of the
post-connect phase is achieved by computing the false positive (FP) and detection rates
(DR) of the voting process. In this context, FP represents the percentage of normal
traffic falsely identified as anomalous by the group of network hosts, while DR denotes
the percentage of bad traffic deemed as anomalous by the group of hosts. In order to
measure the FP and DR of the voting process, we poisoned the collected traffic with
the following known worms and viruses captured from real traffic: three versions of
CodeRed, CodeRed II, WebDAV, a php forum attack, Mirela and the nsiislog.dll buffer
overflow vulnerability (MS03-022) which exploits the IIS Windows media service.

We explore four different scenarios for the voting process: (i) A 25% of agreement
among webservers is required. Since we are only considering four webservers this trans-
lates to a voting process in which only one vote is needed for an anomalous designation.
(ii) A 50% of agreement among webservers is required, which means that at least two
webservers have to agree on the anomalous nature of the observed traffic. (iii) 75% of
the webserver’s profiles have to agree on the decision (3 webservers in our network)
and (iv) A 100% agreement, in which all profiles have to agree on the decision. These
percentages represent quite a large spread designed to reveal the trend of the FP and
DR in the voting process. Because we are using the content-based sensor Anagram as
the AD, each profile votes based on whether the content of the packet (n-grams) being
tested was seen during the training of the AD.

Table 2 summarizes the group FP and DR rates for the four scenarios described.
As can be seen, when only one server vote is sufficient to decide whether the traffic
is anomalous (25% row), the DR is 100% and the FP is 0.032%. As the percentage of
servers that need to agree increases, the DR decreases since it becomes more difficult

Table 2. DR and FP: Group rates

Percentage DR FP

(i) 25% 100% 0.032%
(ii) 50% 99% 0.02%
(iii) 75% 99% 0.005%
(iv) 100% 83% 0.001%

Table 3. DR and FP: Individual rates

Server DR FP

server1 100% 0.02%
server2 83% 0.009%
server3 99% 0.015%
server4 99% 0.01%

186 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

for the four profiles to agree on the identification of anomalous traffic. On the other
hand, the FP rate decreases considerably as the percentage of servers that have to agree
increases. Obviously, with more servers involved in the vote there is a greater amount of
information about normal traffic and hence it is less probable for normal packets to be
mistakenly classified as anomalous. Given that high DR and low FP are the objectives of
a good sensor, it appears that choosing an agreement of the 75% of the servers provides
the best collaborative solution for the architecture. Such policy guarantees a very low
FP of 0.005% and a DR of 99%. Other percentages translate into either smaller DR
or larger FP rates. As in the pre-connect phase, the results also show that as long as
the specific percentage of clean profiles is met (e.g., 75% in our example), the voting
process will be robust to attacks by groups of malicious profiles trying to manipulate
the vote. For example, in a network with 100 initial clean profiles, a group attack would
need to introduce at least 35 malicious profiles in order to dilute the 75% agreement
(75% of 135 profiles is 101 and the network would only have 100 clean profiles).

To test our theory that collaborating ADs are more powerful than individual ADs,
we ran an experiment where only the server-specific AD’s tests a packet without taking
into account the decision of other devices with similar behavior. In this setting, only the
server that is the destination of the traffic votes on the normalcy of the packets. As in
the previous experiment, the third week of collected traffic was used together with real
worms to poison the traffic. Table 3 shows the FP and DR for each of the servers when
they run their own individual AD. The main conclusion drawn from comparing the best
collaborative solution in Table 2 with Table 3 is that groups of ADs collaborating on
the decision of normalcy or anomalous nature of the traffic, typically enhance the FP,
the DR or both global rates when compared to individual ADs. For instance, in the case
of server2, its individual DR is 83% and its individual FP rate is 0.009%. In contrast,
the best collaborative solution results in an improved DR of 99% and a lower FP rate
of 0.005%. While one may argue that in some instances the individual DR improves
and the FP rate worsens (e.g., server1), the sum of all the individual ADs will always
be worse off than the best collaborative solution. We conclude that the collaborative
voting process improves the security enforcement of our architecture.

4.3 NAC Security Enforcement over Time: Concept Drift

We present a preliminary analysis on how our architecture conforms to concept drift
i.e., the automatic update of security enforcement policies over time. The motivation is
to account for and distinguish changes in the normal behavior of users from changes
in behavior generated by an attack. Previous works such as FLORA [12] and STAND
[2] considered algorithms in which the sensor only trusted the latest observed samples.
In both, new samples were added to a set as they arrived, subsequently deleting the
old samples. Furthermore, STAND detected anomalous behavior by comparing contin-
uous models over time. We borrow these ideas in order to show how the voting process
implemented in BB-NAC conforms to concept drift. As it is structured, Anagram con-
siders a model stable whenever the amount of new, unseen n-grams is below a certain
threshold [11]. If we assume a first approach where new models are computed keeping
the information from previous models, the DR rate will eventually start to decrease.
This corresponds to the expectation that the longer the training period goes, the more

Behavior-Based Network Access Control: A Proof-of-Concept 187

0 1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

90

100

ANDModels

AllModels

Training epoch

G
ro

up
 D

et
ec

tio
n

R
at

e

Fig. 4. Group Detection Rate for two alternative concept drift algorithms: ANDModels and
AllModels

likely that bad data will be used in the modeling. To show this directly, we collected
traffic in the Computer Science department at Columbia University for a period of two
weeks. Using Anagram, new models were computed until they reached stability while
keeping all the information in the Bloom filter from the previous models. We refer to
this technique as AllModels. In Figure 4 we plot the DR for a group of four webservers
with the best collaborative solution i.e., a packet is considered anomalous if 75% of
the servers agree. Units in the x axis represent each moment in time (epoch) when one
or more servers in the network computed a new behavior profile. Initially, the group
DR for the four webservers starts at 99%. Next, server1 computes a new model (epoch
1) and the group DR remains constant. We then proceed to poison the training traffic
for server1 and server2 and have both compute new models (epoch 2). As a result, at
epoch 2 the group detection rate decreases to 84% due to the fact that two profiles are
poisoned and thus fail to correctly classify the traffic. Subsequent epochs involve the
computation of new models by all the servers. However, the group anomaly detection
is permanently damaged and does not vary from DR of 84%. The explanation behind
this damage is that the training process just adds n-grams to the previous old models but
still keeps the content of the attacks. Therefore, we conclude that a different approach
is needed.

An alternative approach is one where we start new clean models every time a model
is trained. In such a case, the profiles erase previously seen information that may be
repeated in the future. A direct consequence of this approach is an expensive increase of
the FP rate. Thus, the elimination of previously seen information does not appear to be
a viable alternative. Instead, we opt for a solution where every time a new Bloom filter
profile is computed, the new profile is AND-ed with all its previous q profiles keeping
only common data seen in continuous training sets such that: Pi = Pi ∧ Pi−1 ... ∧
Pi−q . We refer to this technique as ANDModels. This process allows us to detect and
eliminate anomalous content that may have poisoned the models while they were being
trained as shown by [2]. By keeping only the common data observed in q consecutive
models, we guarantee that as long as we have one initial clean model, future models will
also be clean. Obviously, the moment a device acquires a new different behavior, the

188 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

resulting ANDModel may be almost empty since old and new profiles might not have
much content in common. This situation would generate a very high FP rate because
the Bloom filter contains very few normal n-grams. As a solution, we repeat the AND
process s times and OR the results as shown in Equation 5. Each ANDModel represents
a clean model in the past, and by OR-ing them we stitch together the last s old and new
behaviors [12].

Pi = OR(t=0,s−1) (Pi−t ∧ Pi−1−t ... ∧ Pi−q−t) (5)

The higher the value of q in Equation 5, the more difficult it will be for the enemy
to attack the architecture since all q models would have to be poisoned. Similarly, the
higher the value of s, the more old behaviors are kept in the model. Going back to our
previous example in Figure4 where server1 and server2 had permanently damaged the
DR of the architecture, we applied ANDModels with values q=2, s=1 and repeated the
simulation (Figure 4). With the new algorithm, the DR retains its initial value along
the various epochs. In our experiments, we also note an increase in the FP rate of the
sensor, probably due to the fact that ANDModels is eliminating content seen only in the
last training period. The approach introduced here demonstrates that our architecture
conforms to concept drift.

4.4 BB-NAC Latency Analysis

We estimate the latency of the pre-connect phase as follows:

l = la + (1 − ρ) × lq (6)

where la represents the latency of the AND-ing between Bloom filters, variable ρ rep-
resents the probability that a device has an up-to-date bad model, and lq represents the
latency of the quarantine. For every AND operation, we estimated la ≈ 18ms 1. In case
the AND operations cannot be run in parallel, la should be multiplied by the number
of hosts in the cluster. For devices with up-to-date bad models, ρ = 1 and Equation 6
becomes l = la. On the other hand, if a device does not have an up-to-date bad model,
it is quarantined and provided with a new bad model that represents the bad knowledge
from all the other hosts. This new bad model is computed by OR-ing the host’s bad
models, where each OR operation is completed in approximately 18ms. As an example,
l ranges from 180ms to 342ms for a cluster of 10 devices and ρ = 0.

The latency per packet during the post-connect phase is calculated as presented by
Wang et al. in [11]:

l = ((1 − FP) × lBF) + (FP × lq) (7)

where lBF is the latency to check whether a certain n-gram is found in the profile’s
Bloom filter, and FP stands for false positive rate. A typical value for lBF corresponds
to about 5ms. If the checks cannot be performed in parallel for all profiles, lBF would
translate to n × lBF where n stands for the number of hosts in the cluster responsible
for the access control decision. For a cluster of 10 devices and a FP = 0.005, l ≈
5.785ms–50.56ms.

1 The numerical values discussed in this subsection were obtained using a 1.73GHz Intel Pen-
tium M Processor and a set of Bloom filters of size 16MB.

Behavior-Based Network Access Control: A Proof-of-Concept 189

5 Conclusions and Future Work

In this paper, we have introduced a novel NAC architecture, BB-NAC, which enforces
security based on the exchange of behavior profiles. Each host in the network is rep-
resented with a profile and a bad model which are then used during pre-connect and
post-connect phases to detect up-to-date malware knowledge and zero-day attacks.
Our architecture enhances previous NAC technologies by automatically updating the
behavior-based security policies according to the hosts’ behavior evolution on a per-
port basis. The experiments serve as a proof-of-concept for the novel behavior-based
network access control presented here. We have shown that ADs collaborating through
a voting process offer a more powerful approach to enforce security over individual
ADs. Furthermore, our experiments confirm that BB-NAC is resilient to attacks even
after accepting a percentage of malicious hosts into the network.

Future work will include evaluating the two-tier strategy for additional ports. We
are also investigating the clustering of devices based on their profiles instead of a self
declaration of nature. Lastly, we plan to evaluate the performance of BB-NAC when
using non-content anomaly sensors. For this purpose, we are currently designing a non-
content AD that we plan to use in order to reproduce similar pre-connect and post-
connect tests for the architecture.

Acknowledgements

This work was partially supported by NSF Grant CNS-06-27473 and by DARPA Grant
HR0011-06-1-0034. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views
of the NSF or the U.S. Government.

References

[1] Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Communications
of the ACM 13(7) (July 1970)

[2] Cretu, G., Stavrou, A., Stolfo, S., Keromytis, A.: Data sanitization: Improving the forensic
utility of anomaly detection systems. In: Proceedings of the Third Workshop on Hot Topics
in System Dependability (2007)

[3] Dressler, F., Munz, G., Carle, G.: Attack detection using cooperating autonomous detec-
tions systems (cats). In: Wilhelm-Schickard Institute of Computer Science, Computer Net-
works and Internet (2004)

[4] Necula, G.C.: Proof-carrying code. In: The 24th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 1997 (1997)

[5] Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: 2nd Sympo-
sium on Operating Systems Design and Implementation, OSDI 1996 (October 1996)

[6] Necula, G.C., Lee, P.: Efficient representation and validation of proofs. In: IEEE Sym-
posiym on Logic in Computer Science, LICS 1998 (1998)

[7] Papadopoulos, C., Lindell, R., Mehringer, J., Hussain, A., Govindan, R.: Cossack: Coordi-
nated suppression of simulatenous attacks. In: Proceedings of DISCEX III (2003)

[8] Parekh, J., Wang, K., Stolfo, S.: Privacy-preserving payload-based correlation for accurate
malicious traffic detection. In: Large Scale Attack Defense, LSAD (2006)

190 V. Frias-Martinez, S.J. Stolfo, and A.D. Keromytis

[9] Snort rulesets, http://www.snort.org/pub-in/downloads.cgi
[10] VXHeavens, vx.netlux.org
[11] Wang, K., Parekh, J., Stolfo, S.: Anagram: A content anomaly detector resistant to mimicry

attack. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219. Springer, Heidel-
berg (2006)

[12] Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts.
Machine Learning 23(1), 69–101 (1996)

http://www.snort.org/pub-in/downloads.cgi
vx.netlux.org

Path-Based Access Control for

Enterprise Networks�

Matthew Burnside and Angelos D. Keromytis

Computer Science Department
Columbia University

{mb,angelos}@cs.columbia.edu

Abstract. Enterprise networks are ubiquitious and increasingly com-
plex. The mechanisms for defining security policies in these networks
have not kept up with the advancements in networking technology. In
most cases, system administrators define policies on a per-application ba-
sis, and subsequently, these policies do not interact. For example, there is
no mechanism that allows a web server to communicate decisions based
on its ruleset to a firewall in front of it, even though decisions being
made at the web server may be relevant to decisions at the firewall. In
this paper, we describe a path-based access control system for service-
oriented architecture (SOA)-style networks which allows services to pass
access-control-related information to neighboring services, as the services
process requests from outsiders and from each other. Path-based access
control defends networks against a class of attacks wherein individual
services make correct access control decisions but the resulting global
network behavior is incorrect. We demonstrate the system in two forms,
using graph-based policies and by leveraging the KeyNote trust manage-
ment system.

Keywords: Path-based, access control, Keynote, SOA, enterprise.

1 Introduction

Most enterprise networks are distributed structures with multiple administrative
domains and heterogeneous components. Defining and enforcing security policies
in these networks is challenging – it is difficult for a system administrator or
group of system administrators to conceptualize the security policy for such a
network, let alone correctly express that policy in the myriad of languages and
formats required by such an environment.

Consider a system where an oracle responds to all policy requests from the net-
work. The complete, high-level policy for the network, as defined by the system

� This work was partially supported by NSF Grant CNS-07-14647 and by ONR MURI
Grant N00014-07-1-0907. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the NSF or the U.S. Government.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 191–203, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 M. Burnside and A.D. Keromytis

administrator, is stored in and evaluated at the oracle. For every policy deci-
sion, a service queries the oracle and acts based on its response. Such a system
provides a globally coherent policy, but clearly does not scale well. Therefore, it
is common practice to derive from the system administrators’ high-level concep-
tual policy a set of policy components where each component is deployed at a
single service or node. Each policy component is translated into the appropriate
language for the target service and deployed directly at that service. In most
cases, this task is performed by hand by the system administrator, though there
have been some attempts at automating it, as in [1][2].

1.1 Example

Fundamentally, there is a violation of assumptions that comes from taking a high-
level conceptual policy and componentizing it, either manually or mechanically.
Consider the simple e-commerce network in Fig. 1. A firewall protects several
hosts. On the first host are a web server and some business logic in the form of,
e.g., PHP or ColdFusion; on the second host is a database.

We propose a high-level conceptual policy for this network: all connections
should arrive at port 80 on the firewall, authenticate at web server with a user-
name and password, and the business logic must authenticate to the database
using a public-key pair.

Web

Internet

server
Firewall Database

Fig. 1. A simple network. A web server and database are connected to the Internet
through a firewall.

The system administrator derive from that high-level conceptual policy a set
of policy components. One policy component is the firewall ruleset which blocks
traffic to all ports except TCP port 80. Another component is the .htaccess file
on the web server indicating that only a set of username/passwords may access
the files containing the business logic. A final component is the grant table at the
database which indicates that only the key pair used by the business logic may
access the tables for that application. It is our contention that, in the process of
generating these policy components, path information has been lost.

Consider an unknowing or malicious employee who plugs in a wireless access
point, as in Fig. 2. An adversary can connect to this wireless access point and,
through it, probe the web server and database. Such a connection violates the
conceptual policy determined by the system administrator, but none of the in-
dividual policy mechanisms in place will detect it. That is, none of the policy
mechanisms (the firewall ruleset, the .htaccess file, etc.)allows for governing
how a request arrived at the service, but only what it requests after arrival.

Path-Based Access Control for Enterprise Networks 193

server

access point
Wireless

Database

Internet

Firewall Web

Fig. 2. A vulnerable network

Similar flaws may occur if, for example, the firewall accidentally fails open
due to misconfiguration or routing changes, or if an adversary attempts to access
the business logic through some routing path that was unintentionally enabled.
A compromised internal machine may be used to probe the remainder of the
network. A misconfigured router may allow connections to bypass a firewall.

1.2 Contributions

In this work, we dynamically model the paths that requests take as they traverse
an enterprise network and use those models as the basis for informing policy
decisions. Requests traversing invalid paths are barred from penetrating deeper
into the network. In a service-oriented architecture (SOA), the type of network
we focus on in this paper, the path of interaction followed by a request is a
tree. The root of the tree is the first point of interaction with the network
(the firewall in the example above) and the branches of the tree represent the
various actions taken by the various services in the network in response to that
request. Enforcing policy consists of examining each pathway to determine that
it followed a proscribed route.

We use a binary view in the policy-enforcement mechanism. Either a policy-
proscribed service is in a pathway, or it is not. However, we also collect additional
fine-grain details about events in each pathway in order to perform aggregate
analysis. By exposing more information to downstream services, it is possible for
the policy engine at each service to make decisions based on historical data or
statistical trends. Note that the statistical analysis is not the focus of this paper
and we do not address it further.

Accumulating path-traversal information benefits an enterprise by providing
a simple, low cost, mechanism for preventing attacks that violate system admin-
istrators’ assumptions about allowed or valid pathways. For example, a rogue
wireless point is no longer the danger it once was. A misconfigured firewall will
be more easily detected and many attacks during the window of vulnerability
will be prevented.

In this paper, we present two solutions. The first is a low-cost, high-
performance system that models incoming requests as graphs, where events are

194 M. Burnside and A.D. Keromytis

vertices and dependencies are edges. The second extends this concept and pro-
vides protection in some situations where internal nodes are untrusted; it lever-
ages the KeyNote trust management system[3][4]. We show that in both cases,
the performance overhead on the SOA is low.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related work in the field. In Sect. 3, we describe the architecture of our two
solutions. In Sect. 4, we give details on their implementation. We evaluate the
work in Sect. 5 and conclude in Sect. 6.

2 Related Work

Most prior work in the policy field can be divided into three major categories:
policy specification [3,5], resolving policy conflicts [6,7], and distributed enforce-
ment [8,9].

In their work in the field of trust management, Blaze, et al., [10,11,12] built
PolicyMaker, a tool that takes a unified approach to describing policies and
trust relationships in enterprise-scale networks by defining policies based on cre-
dentials. It is based on a policy engine that identifies whether some request r
with credentials c complies with policy p. In PolicyMaker, policies are defined
by programs evaluated at runtime. SPKI [13,14,15] is a similar mechanism that
uses a formal language for expressing policies. However, in both cases, the focus
is on trust management rather than policy correctness. Both systems can be
used as components in facilitating path-based access control, but alone, they are
insufficient.

When there are multiple policies or multiple users defining policy there is al-
ways the possibility of conflict. Cholvy, et al. [7] describe a method for resolving
that inconsistency and show that the problem is exacerbated in large-scale net-
works. As with PolicyMaker and SPKI, this method may facilitate path-based
access control but it does not provide the information transfer necessary for
resolving violated system administrator assumptions.

The STRONGMAN trust management system [2] focuses on the problem of
scaling the enforcement of security policies and resolving policy conflicts. In
STRONGMAN, high-level, abstract security policies are automatically trans-
lated into smaller components for each service in the network. STRONGMAN
features no provision for future interaction between components, a key feature
of path-based access control.

Bonatti, et al., [16] propose an algebra for composing heterogeneous security
policies. This is useful in networks with multiple policies defined in multiple
languages (i.e., most networks today). However, this system requires that all
policies and supporting information and credentials be available at a single de-
cision point, e.g. an oracle as discussed previously.

Firewalls [17,18] are one of the most common and most well-known mecha-
nisms for policy enforcement. The Firmato system [19] is a firewall management
toolkit for large-scale networks. It provides a portable, unified policy language,
independent of the firewall specifics. Firewall configuration files are generated

Path-Based Access Control for Enterprise Networks 195

automatically from the unified global policy. Firmato is limited to packet filter-
ing, and it does not provide for future interactions between components.

The Oasis architecture [20] takes a wider view and uses a role-based system
where principals are issued names by services. A principal can only use a new
service on the condition that it has already been issued a name from a specific
other service. Oasis recognizes the need to coordinate the dependencies between
services, but since credentials are limited to verifying membership in a group or
role, it is necessary to tie policies closely to the groups to which they apply.

In [21], the authors use KeyNote to distribute firewall rulesets, allowing end-
point nodes to perform enforcement independently. The path-based access con-
trol mechanism can be viewed as an extension of the distributed firewall system,
allowing each endpoint node to incorporate the path of the request into its policy
evaluation. The path-based system can further be viewed as an instantiation of
the virtual private services described in [22]. Each request is presented a view
of the network (a “private service”) that is customized, based on the path the
request has taken up to that point.

3 Architecture

In this section, we describe two methods for implementing path-based access
control. The systems differ primarily in the mechanism by which the policy
is evaluated. In the first system, we model policies and incoming requests as
graphs, and we evaluate the policies by comparing the graphs representing actual
requests with the policy graphs. The second system extends the first by modeling
incoming requests and policies as KeyNote assertion chains.

Both systems are designed for use in SOA-style networks, so policy definition
consists of defining trees representing valid requests. The policy distributed to
each service is a list representing the path from the root to that service in the
policy graph. This technique is simple and can be performed quickly, making it
a good fit for dynamic networks where request patterns change quickly.

In both systems, the threat we consider is one where an adversary is attempt-
ing to access the network through unauthorized pathways. That is, pathways
which have not been explicitly allowed by the system administrator.

3.1 Graph-Based Access Control

The goal of this system is to forward information about access control-related
events at each service to subsequent services. The accumulated information is
used by a policy engine co-located with each service to detect pathway-violation
attacks.

At each service, a small program called a sensor observes information re-
garding access-control events and forwards that data to downstream nodes. We
packetize this data and call each packet an event. Each sensor is situated such
that it can observe its target service and report on the access-control decisions
made therein. Typically, sensors are quite simple. For example, the sensor for

196 M. Burnside and A.D. Keromytis

the Apache web server parses the Apache log and error files for reports on au-
thorization attempts. Each entry for an authorization attempt in the log files
is an event. The details of the event are associated with it as a set of attribute
key-value pairs and reported to downstream services.

Second-order sensors, called correlation sensors, use additional information
reported by the sensors to correlate events on a hop-by-hop basis. For example
the events generated by the Apache sensor are correlated with packets departing
the firewall based on the time, the source port, the IP address, and the TCP
sequence number. The complete data set received by a downstream node is a
chain, linking the incoming request with the source principal and all intermediate
hops in the network. Thus, the policy decision made at a given service can
incorporate the additional information obtained from upstream nodes.

As a request propagates through a network, the associated events are for-
warded along with it. The events are represented as vertices in a graph, and
the correlation information generated by the correlation sensors is used to form
edges between them. When a request arrives at a service, it is accompanied by
a graph representing the history of its interaction with the network.

Reactive systems like this, as with most intrusion detection systems, depend
on the inviolability of the sensor network. This requires particular attention be
spent securing the sensors. In this paper, we do not address attacks wherein the
sensor network itself is compromised, though we do note that the KeyNote-based
system will alleviate some of those attacks. Sensors may be further protected by
lifting them into a hypervisory role, or by isolating sensors and applications
through virtual machines, as in [23].

Firewall

Web server Business logic

Database

File server

Fig. 3. The tree of applications handling a request

Note that the overall path taken by a request as it traverses a network is a
tree, as in Fig. 3. However, the path taken by a request from its arrival in the
network to a given node is a tree-traversal from the root to a leaf or internal
node. This path is necessarily linear. As a request passes through a network,
the events generated by the sensors associated with it represent the linear path
of that request. By situating correlation sensors between hosts and between
services, the graph is propagated across the network. Each node in the graph
receives the access control decisions made by all its upstream nodes, and this is
used to inform future access control decisions.

To enact the access control mechanism, we define the policy at each node as
a graph, as shown in Fig. 4. The graph representing an incoming connection
must match a policy graph in order for the connection to be accepted. However,
since the graph is always linear, the policy takes the form of a list of services
over which the request must traverse, and valid values for the key-value pairs

Path-Based Access Control for Enterprise Networks 197

Firewall Web server

Firewall Web server Business logic

Firewall

Web server Business logic

Database

(a)

(b)

(c)

Fig. 4. A graphical representation of the policy at (a) the web server (b) the business
logic and (c) the database

associated with each event. Any request taking an unexpected pathway or with
non-matching attributes will necessarily be detected and rejected.

For example, the policy evaluation at the business logic consists of a traversal
of the graph delivered from the upstream node to verify that each node from
Fig. 4b appears, and is in the correct order.

3.2 KeyNote-Based Access Control

This method can be viewed as an extension of the graph-based access-control
system. In the graph-based system, we build a path representing the route a
request took from its entry in the network to a given host. In this system,
we leverage the cryptographic tools and trust-management capabilities of the
KeyNote system to instead build a certificate chain representing the path taken
by a request from its entry in the network to a given host.

Like all reactive, sensor-based systems, the previously-described graph-based
system is vulnerable to malicious internal nodes. That is, a compromised or
otherwise malicious intermediate node on the path between an application and
the entry point for a request can modify the graph dataset before forwarding it.
The addition of the KeyNote system protects from some classes of such attacks.

In the KeyNote system, events are reported in the form of KeyNote creden-
tials, and policy is evaluated at each service by a KeyNote compliance checker.
Traditional KeyNote credentials allow principals to delegate authorization to
other principals, while in the path-based access control scheme, KeyNote cre-
dentials delegate authorization for handling a request from a given application
to the next downstream application.

When a request generates an event e1 at host H1 and the request is then
forwarded then to host H2 where it generates event e2, a correlation sensor
correlates the events as in the graph-based architecture. However, in this case
the correlation notification takes the form of a KeyNote credential. That is, it is
a signed assertion, with authorizer H1 and licensee H2, indicating that e1 and
e2 are linked. For example, the following credential might be issued by a firewall
when it redirects an incoming request to a web server.

198 M. Burnside and A.D. Keromytis

KeyNote-Version: 2

Comment: Forward request to web server

Local-Constants: FW_key = "RSA:acdfa1df1011bbac"

WEB_key = "RSA:deadbeefcafe001a"

Authorizer: FW_key

Licensees: WEB_key

Signature: "RSA-SHA1:f00f2244"

Conditions: ...

KeyNote provides an additional field Conditionswhich is used to encapsulate
references to events e1 and e2. Credentials are chained such that the licensee for
each event is designated as the next hop in the graph. In a simple e-commerce
example, an event generated at a web server and passed to the database would
include the previous credential along with the following.

KeyNote-Version: 2

Comment: Send SQL SELECT statement to the DB

Local-Constants: WEB_key = "RSA:deadbeefcafe001a"

DB_key = "RSA:101abbcc22330001"

Authorizer: WEB_key

Licensees: DB_key

Signature: "RSA-SHA1:baba3232"

The first link of the credential chain is created by the firewall. This credential
binds the principal (the TCP/IP address of the incoming connection) to the
first hop in the chain. The key for the principal is randomly generated, and then
cached, at the firewall. Such a credential takes the following form:

KeyNote-Version: 2

Comment: New principal at the firewall

Local-Constants: P_key = "RSA:ffeedd22eecc5555"

FW_key = "RSA:acdfa1df1011bbac"

Authorizer: P_key

Licensees: FW_key

Conditions: hop0 == "PRINCIPAL"

Signature: "RSA-SHA1:ceecd00d"

As a request progresses through the network, the result is a chain of credentials
that link the incoming request at a given node back through each intermediate
node to the principal.

The policy at each node is a list of keys, in order, that must be found in the
credential chain. It is similar in concept to the policy definitions shown in Fig. 4,
but with each node is also associated a key. As the set of credentials arrives at
each node, the local KeyNote compliance checker verifies that the set comprises
a chain. If successful, the policy engine then traverses the chain to verify that
the keys occur in the order expressed in Fig. 4. If either step fails, the request is
blocked.

Path-Based Access Control for Enterprise Networks 199

4 Implementation

Each of these systems were implemented in the Python programming language.
Sensors were written and deployed for the OpenBSD PF firewall, Apache, PHP,
and MySQL, among other applications. These sensors parse the log files and
observe authentication-related behavior of each application in order to generate
events describing the access control behavior of each. The correlation sensor en-
gine, an instance of which is deployed between each pair of neighboring sensors,
maintains a cache of recently-observed events and generates correlation events
based on runtime-configurable fields from the event descriptions. Each time a
correlation between two events is made, the two events are linked and forwarded
to the next-hop service, along with all previously accumulated events and cor-
relations associated with the request.

At each service, requests are intercepted by a local firewall and redirected
to the local policy engine. This engine delays the request until the associated
graph arrives from the upstream node. The policy engine traverses the graph
and verifies that it conforms to the administrator-defined policy. If the graph
validates, the request is allowed to continue to the application, and the graph
information is passed to the application sensor.

The KeyNote implementation is similar, but where the graph-based system
generated events with arbitrary fields, this implementation generates KeyNote
credentials using the KeyNote credential format. The policy for the credential
chain is evaluated using the KeyNote compliance checker, through the pykeynote
module.

5 Evaluation

We evaluated these two systems on a testbed network consisting of an OpenBSD
PF firewall, an Apache web server running PHP 5.2.3, and a MySQL 5.0.45
server. The network is deployed as shown in Fig. 5. The only unblocked incom-
ing port on the firewall is port 80. The firewall also performs network address
translation (NAT) so the internal machines have IP addresses in the 10.0.0.0/24
netblock. The testbed application consists of a PHP application which loads and
displays a 1MB image from the MySQL database.

PF

Internet

10.0.0.3

10.0.0.2

10.0.0.1 MySQL

Apache

Fig. 5. Testbed network. The OpenBSD PF firewall protects an Apache web server
and MySQL database.

200 M. Burnside and A.D. Keromytis

The high-level conceptual policy for this network – that is, the policy as it
might be expressed informally by the system administrator – is that all connec-
tions into this network must be vetted by the firewall to guarantee that they are
arriving on the correct port, then processed by the web server and PHP engine,
and finally passed to the database. In the attack scenario, a rogue wireless access
point is attached to the network as shown in Fig. 6. This opens the potential for
incoming connections to access the web server or database without first being
processed by the upstream nodes – an assumption-violation attack. No events
or path information will be generated by requests passing through the wireless
access point, since, in this example, the system administrator is unaware of its
existence and has not installed any sensors on it.

Apache

Internet

PF

MySQL

Wireless AP
10.0.0.3

10.0.0.2

10.0.0.1

Fig. 6. Vulnerable testbed network. A wireless access point has been connected to the
network, allowing traffic to the web server that has not traversed the firewall.

We evaluate the system on two fronts: performance and effectiveness. Perfor-
mance is measured by timing batch requests made on the system. Effectiveness is
analyzedby attempting to detect previously-unseen assumption-violating attacks.

The graph-based access control system is deployed on the testbed network as
follows. Sensors are deployed on the network interfaces of all machines, including
both network interfaces of the firewall, and at the firewall, web server, PHP
engine, and database themselves. Correlation sensors are placed between each
neighboring pair of nodes. When a request arrives from an external host, it
is processed by the firewall and the sensor on the external network interface.
As the request is subsequently processed by the firewall engine itself, and then
forwarded out through the internal network interface, the sensors generate events
which are linked by correlation sensors. The graph thus generated is collected
and forwarded from node to node as the request progresses through the network.

The high-level policy for this network is that all requests must pass, in order,
from the firewall to the web server to the database. We derive the actual policy
for each node from the high-level policy by determining the path that a request
must travel in order to reach that node. Thus, the policy at the database is that
it will only handle requests which have traversed the firewall and web server. The
policy at the web server is that it will only handle requests that have traversed
the firewall. The policy definition for each service consists of an ordered list of
nodes. Policy evaluation is a matter of traversing the linear graph built by the

Path-Based Access Control for Enterprise Networks 201

sensors and correlation sensors to verify that the nodes occur and are in the
correct order.

We test the effectiveness of this system by attempting to connect to the web
server and database, through the wireless access point. Since the requests do not
pass through the firewall, the graphs associated with the requests, do not have
the firewall as the root node. The requests are therefore denied by the policy
engine at the web server and database policy engines.

The KeyNote-based system is deployed on the same network. In KeyNote, the
policy, rather than being a list of nodes, is a list of keys. The credential chain
have have signed credentials, in the correct order, from each of those nodes. E.g.,
the policy at the database is that the credential chain must have credentials
signed by the web server and firewall, in that order. Policy evaluation consists
of verification that the credential chain is, in fact a chain, and then a search of
that chain for the policy key list.

One test of the effectiveness of the KeyNote system is similar to the tests for
the graph-based system. Requests on the firewall are handled as expected, and
requests through the wireless access point are blocked as the credential chains
thus generated are incorrect.

We analyzing the performance of these systems by determining the overhead
incurred by the additional network traffic and processing over the vanilla net-
work. The test application deployed in this network loads files stored in a table
in the MySQL database. The test file was 1 megabyte of binary data, and the
time for the vanilla system to return that file, from request arrival to completion
of the file transfer 162ms, averaged over 25 trials. The average handling time
for the graph-based system was 317ms, averaged over 25 trials. The average
handling time for the KeyNote-based system was 1.12s, averaged over 25 trials.

The majority of the overhead in the graph-based implementation is due to
the delay in waiting for graph information to catch up to each request. The cost
increase in the KeyNote-based system is due to the cryptographic costs inherent
in the KeyNote system.

We find that in the graph-based system the overhead for a three-node net-
work is 155ms, or approximately 50ms per node. In the KeyNote system, the
overhead is 958ms, or approximately 320ms per node. As before, the additional
overhead in the KeyNote-based system comes from the substantial cryptographic
requirements of the KeyNote architecture.

6 Conclusion

In this work, we have described a mechanism for enhancing the current paradigm
of access control to protect against a new class of attacks. These attacks take
advantage of the fact that, in the process of converting a security policy from
its conceptual, high-level, format to its distributed, low-level, form, information
is lost. We describe two systems for defending against this new class of attacks,
by passing path information from service to service as the request traverses the
network. We show that the overhead incurred in these systems is relatively low.

202 M. Burnside and A.D. Keromytis

References

1. Ioannidis, S.: Security policy consistency and distributed evaluation in heteroge-
neous environments. PhD thesis (2007)

2. Keromytis, A.D., Ioannidis, S., Greenwald, M.B., Smith, J.M.: The STRONGMAN
Architecture. In: Proceedings of the 3rd DARPA Information Survivability Con-
ference and Exposition (DISCEX III), pp. 178–188 (April 2003)

3. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The KeyNote Trust
Management System Version 2. Internet RFC 2704 (September 1999)

4. Blaze, M., Feigenbaum, J., Keromytis, A.: KeyNote: Trust Management for Public-
Key Infrastructures. In: Christianson, B., Crispo, B., Harbison, W.S., Roe, M.
(eds.) Security Protocols 1998. LNCS, vol. 1550, pp. 59–63. Springer, Heidelberg
(1999)

5. Damianou, M.: A Policy Framework for Management of Distributed Systems. PhD
thesis (2002)

6. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing
authorizations. In: Proceedings of the 1997 IEEE Symposium on Security and
Privacy, pp. 31–42 (May 1997)

7. Cholvy, L., Cuppens, F.: Analyzing consistency of security policies. In: RSP: 18th
IEEE Computer Society Symposium on Research in Security and Privacy (1997)

8. Thompson, M., Johnston, W., Mudumbai, S., Hoo, G., Jackson, K., Essiari, A.:
Certificate-based access control for widely distributed resources. In: Proceedings
of the USENIX Security Symposium, pp. 215–228 (August 1999)

9. Keromytis, A.D., Ioannidis, S., Greenwald, M.B., Smith, J.M.: Managing ac-
cess control in large scale heterogeneous networks. In: Proceedings of the NATO
NC3A Symposium on Interoperable Networks for Secure Communications (INSC)
(November 2003)

10. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized Trust Management. In: Proc.
of the 17th Symposium on Security and Privacy, pp. 164–173. IEEE Computer
Society Press, Los Alamitos (1996)

11. Blaze, M., Feigenbaum, J., Strauss, M.: Compliance Checking in the PolicyMaker
Trust-Management System. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp.
254–274. Springer, Heidelberg (1998)

12. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: The role of trust man-
agement in distributed systems security. In: Secure Internet Programming, pp.
185–210.

13. Ellison, C.: SPKI requirements. Request for Comments 2692, Internet Engineering
Task Force (September 1999)

14. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI
certificate theory. Request for Comments 2693, Internet Engineering Task Force
(September 1999)

15. Ellison, C.M.: SDSI/SPKI BNF. Private Email (July 1997)
16. Bonatti, P., di Vimercati, S.D.C., Samarati, P.: A Modular Approach to Composing

Access Policies. In: Proceedings of Computer and Communications Security (CCS
2000), pp. 164–173 (November 2000)

17. Cheswick, W.R., Bellovin, S.M.: Firewalls and Internet Security: Repelling the
Wily Hacker. Addison-Wesley, Reading (1994)

18. Mogul, J., Rashid, R., Accetta, M.: The Packet Filter: An Efficient Mechanism for
User-level Network Code. In: Proceedings of the Eleventh ACM Symposium on
Operating Systems Principles, pp. 39–51 (November 1987)

Path-Based Access Control for Enterprise Networks 203

19. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: a novel firewall management
toolkit. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, pp.
17–31 (May 1999)

20. Hayton, R., Bacon, J., Moody, K.: Access Control in an Open Distributed Envi-
ronment. In: IEEE Symposium on Security and Privacy (May 1998)

21. Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a dis-
tributed firewall. In: 7th ACM International Conference on Computer and Com-
munications Security (CCS), pp. 190–199 (November 2000)

22. Ioannidis, S., Bellovin, S.M., Ioannidis, J., Keromytis, A.D., Anagnostakis, K.G.,
Smith, J.M.: Virtual private services: Coordinated policy enforcement for dis-
tributed applications. International Journal of Network Security (IJNS) 4(1), 69–80
(2007)

23. Dunlap, G.W., King, S.T., Cinar, S., Basrai, M.A., Chen, P.M.: Revirt: enabling
intrusion analysis through virtual-machine logging and replay. In: OSDI 2002: Pro-
ceedings of the 5th Symposium on Operating Systems Design and Implementation,
pp. 211–224. ACM, New York (2002)

Cryptanalysis of Rabbit

Yi Lu1, Huaxiong Wang1,2, and San Ling1

1 Division of Mathematical Sciences
School of Physical & Mathematical Sciences
Nanyang Technological University, Singapore

2 Centre for Advanced Computing - Algorithms and Cryptography
Department of Computing

Macquarie University, Australia
luyi666@gmail.com, hxwang@ntu.edu.sg, lingsan@ntu.edu.sg

Abstract. The stream cipher Rabbit is one candidate to the ECRYPT
Stream Cipher Project (eSTREAM) on the third evaluation phase. It
has a 128-bit key, 64-bit IV and 513-bit internal state. Currently, only
one paper [1] studied it besides a series of white papers by the authors
of Rabbit. In [1], the bias of the keystream sub-blocks was studied and a
distinguishing attack with the estimated complexity 2247 was proposed
based on the largest bias computed.

In this paper, we first computed the exact bias of the keystream sub-
blocks by Fast Fourier Transform (FFT). Our result leads to the best
distinguishing attack with the complexity 2158 so far, in comparison to
2247 in [1]. Meanwhile, our result also indicates that the approximation
assumption used in [1] is critical for estimation of the bias and cannot be
ignored. Secondly, our distinguishing attack is extended to a multi-frame
key-recovery attack, assuming that the relation between part of the
internal states of all frames is known. Our attack uses 251.5 frames and
the first three keystream blocks of each frame. It takes memory O(232),
precomputation O(232) and time O(297.5) to recover the keys for all
frames. This is the first known key-recovery attack on Rabbit, though
the attack assumption is unusually strong. Lastly, as an independent
result, we introduced the property of Almost-Right-Distributivity of the
bit-wise rotation over the modular addition for our algebraic analysis.
This allows to solve the nonlinear yet symmetric equation system more
efficiently for our problem.

Keywords: Rabbit, ECRYPT, stream cipher, keystream, bias, distin-
guishing attack.

1 Introduction

Rabbit is a stream cipher, which was first presented at [4]. It is one candidate [5]
to the ECRYPT Stream Cipher Project (eSTREAM), which is a multi-year
effort to identify new stream ciphers that might become suitable for widespread
adoption. Since ECRYPT launched its call for primitives in the late 2004, it

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 204–214, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Cryptanalysis of Rabbit 205

received 34 primitives in total. Now, eSTREAM is on the third evaluation phase.
It currently has 16 remaining candidates, including Rabbit.

Rabbit was designed for both hardware and software implementations. It
has a 128-bit key (also supports the 80-bit key), 64-bit IV and 513-bit inter-
nal state. Besides the reference paper [5], the authors publish a series of white
papers [7, 8, 9, 10, 11, 12] in support of its resistance to the well-known attacks
(e.g. algebraic attack, correlation attack, guess-and-determine attack, differen-
tial attack). In academia, Rabbit is still considered to be a strong cipher. So
far, only one paper [1] studied it and the work was on the bias. In [1], the core
function g was shown to be unbalanced. The largest bias in the keystream was
estimated to be 2−123.5 in [1]. It leads to a distinguishing attack, which requires
2247 keystream sub-blocks generated from random keys and IV’s. This is the
only known distinguishing attack on Rabbit, though the complexity is higher
than the exhaustive search 2128.

The main contribution in this paper is the following. First, we computed
the exact bias of the keystream sub-blocks produced by Rabbit by Fast Fourier
Transform (FFT). Our computation is based on the fact (cf. [14]) that the distri-
bution of the sum of three addends can be computed from FFT of the individual
distribution of each addend. Our result leads to the best distinguishing attack
with the complexity 2158 so far, compared with the estimated complexity 2247

in [1]. It’s much closer to yet still higher than the exhaustive search complexity
2128. Our result also indicates that the approximation assumption used in [1]
is critical for estimation of the bias and cannot be ignored. Secondly, assuming
that we know the relation between part of the internal states of all frames, we
extend our distinguishing attack to a multi-frame key-recovery attack. Our at-
tack uses 251.5 frames and the first three keystream blocks of each frame. It takes
memory O(232), precomputation O(232) and time O(297.5) to recover the keys
for all frames. This is the first known key-recovery attack on Rabbit, though
the attack assumption is unusually strong. Lastly, as an independent result, we
introduced the property of Almost-Right-Distributivity of the bit-wise rotation
over the modular addition for our algebraic analysis. This allows us to solve the
nonlinear yet symmetric equation system for our problem in time 246, which is
more efficient than the naive guess-and-determine method taking time 264.

The rest of the paper is organized as follows. In Section 2, we describe the
stream cipher Rabbit. We then analyze the bias of Rabbit and study the dis-
tinguishing attack in Section 3. We explore the possibility of extending our dis-
tinguishing attack to a multi-frame key-recovery attack in Section 4. Finally, we
conclude in Section 5.

2 Description of Rabbit

Rabbit has a key size of 128 bits and an internal state of 513 bits. The internal
state of Rabbit at time t (t ≥ 1) includes 16 words of 32 bits x0,t, . . . , x7,t,
c0,t, . . . , c7,t and one-bit φ7,t. In total the internal state has 16 × 32 + 1 = 513
bits. They are updated at each clock as follows.

206 Y. Lu, H. Wang, and S. Ling

cj,t =
{

c0,t−1 + a0 + φ7,t−1 mod 232, if j = 0
cj,t−1 + aj + φj−1,t mod 232, if j > 0

where

φj,t+1 =

⎧⎨
⎩

1, if j = 0 and c0,t + a0 + φ7,t ≥ 232

1, if j > 0 and cj,t + aj + φj−1,t+1 ≥ 232

0, otherwise.

The ai’s are constants in hexadecimal representation: a0 = a3 = a6 =
0x4D34D34D, a1 = a4 = a7 = 0xD34D34D3, a2 = a5 = 0x34D34D34.

x0,t+1 = g0,t + (g7,t ≪ 16) + (g6,t ≪ 16) (1)
x1,t+1 = g1,t + (g0,t ≪ 8) + g7,t (2)
x2,t+1 = g2,t + (g1,t ≪ 16) + (g0,t ≪ 16) (3)
x3,t+1 = g3,t + (g2,t ≪ 8) + g1,t (4)
x4,t+1 = g4,t + (g3,t ≪ 16) + (g2,t ≪ 16) (5)
x5,t+1 = g5,t + (g4,t ≪ 8) + g3,t (6)
x6,t+1 = g6,t + (g5,t ≪ 16) + (g4,t ≪ 16) (7)
x7,t+1 = g7,t + (g6,t ≪ 8) + g5,t (8)

where ≪ denotes left bit-wise rotation, all additions (denoted by +) are com-
puted modulo 232 and gj,t for j = 0, . . . , 7 is computed from xj,t and cj,t+1. It’s
defined by

gj,t = (xj,t + cj,t+1)2 ⊕
(
(xj,t + cj,t+1)2 � 32

)
. (9)

Here, the additions are computed modulo 232 and the squares are computed
over integers and represented by 64 bits. In other words, gj,t just computes the
bit-wise XOR of the higher 32-bit half of the square with the lower 32-bit half
of the square.

2.1 Initialization

For simplicity, in this paper we concentrate on initialization by the key only
according to the paper [4]. Let the 128-bit key K = k7k6 · · · k0, where each ki

has 16 bits. We set the internal state at time t = −4 as follows:

xj,−4 =
{

k(j+1 mod 8)‖kj, for even j
k(j+5 mod 8)‖k(j+4 mod 8), for odd j

and

cj,−4 =
{

k(j+4 mod 8)‖k(j+5 mod 8), for even j
kj‖k(j+1 mod 8), for odd j

(10)

Let φ7,−4 = 0. Then the internal state is updated as usual for four clocks. After
that, we modify each cj,0 by cj,0 = cj,0 ⊕ x(j+4 mod 8),0. From the next clock
t = 1, the internal state is updated regularly and produces the keystream output
as follows.

Cryptanalysis of Rabbit 207

2.2 Keystream Generation

At each clock t ≥ 1, Rabbit produces a 128-bit keystream block st by

s
[15..0]
t = x

[15..0]
0,t ⊕ x

[31..16]
5,t s

[31..16]
t = x

[31..16]
0,t ⊕ x

[15..0]
3,t

s
[47..32]
t = x

[15..0]
2,t ⊕ x

[31..16]
7,t s

[63..48]
t = x

[31..16]
2,t ⊕ x

[15..0]
5,t

s
[79..64]
t = x

[15..0]
4,t ⊕ x

[31..16]
1,t s

[95..80]
t = x

[31..16]
4,t ⊕ x

[15..0]
7,t

s
[111..96]
t = x

[15..0]
6,t ⊕ x

[31..16]
3,t s

[127..112]
t = x

[31..16]
6,t ⊕ x

[15..0]
1,t

Here, s
[a..b]
t denotes (a − b + 1)-bit sub-block starting from the a-th bit (i.e. the

most significant bit) to the b-th bit (i.e. the least significant bit), for a ≥ b.

3 Bias of Rabbit

3.1 Related Work

Prior to our work, the bias of Rabbit was studied in [1] for a distinguishing
attack. Recall that the bias of a binary random variable X is defined by ε(X) =
Pr(X = 0) − Pr(X = 1). It was shown in [1] that ε(s[16k]

t) > ε(s[16k+j]
t) for

k = 0, . . . , 7 and j = 1, . . . , 15. Furthermore, the bias for s
[0]
t , s

[32]
t , s

[64]
t and

s
[96]
t was estimated to be 2−123.5. Since a bias ε leads to a distinguishing attack

with minimum data complexity O(1/ε2), this gave a distinguishing attack which
requires about 2247 keystream sub-blocks.

To ease the computation, the above approximation result of [1] was based
on the assumption that for the modular addition, the probability to return a
carry bit at a given position is independent from the distribution in lower bit
positions, which is not true. It was conjectured in [1] that this assumption would
not weaken the results significantly. By comparison, as we will show immediately
below, this assumption is critical for the computation, which cannot be ignored.

3.2 Our Results

We note that xj,t (j = 0, . . . , 8) is the modular addition of three independent
g’s. Thus, following [14], the distribution of xj,t can be computed efficiently by
Fast Fourier Transform1 (FFT) from the distributions of the three relevant g’s.

More formally, we define 32-bit yj,t = xj,t + cj,t+1 mod 232 for j = 0, . . . , 7.
We have

gj,t = y2
j,t ⊕ (y2

j,t � 32). (11)

Assuming that xj,t’s and cj,t+1’s are uniformly and independently distributed, we
know that so are yj,t’s. This means the distributions of gj,t’s for all j’s are iden-
tical assuming that all the inputs are uniformly and independently distributed.

1 See book [6] for introduction on FFT.

208 Y. Lu, H. Wang, and S. Ling

So we let D(g) be the distribution of gj,t assuming the input yj,t is uniformly
distributed for any j. Note that D(g) can be easily computed by enumerating
all possibilities in time O(232). From Eq.(1-8), it is clear that the distributions
of xj,t+1 with even j’s are identical and we represent it by D(x0); similarly, the
distributions of xj,t+1 with odd j’s are identical and we represent it by D(x1).

Following Eq.(1-8), D(xj) can be computed by FFT according to [14]. Let
D(g ≪ 16) be the distribution of gj,t ≪ 16 (which is identical for all j’s and
thus omitted from our notation), and we have

D(x0) = D(g) ⊗ D(g ≪ 16)⊗ D(g ≪ 16),

where ⊗ denotes convolution and it is well known that it can be computed
efficiently by FFT as follows

D(x0) = FFT−1(FFT(D(g)) · FFT(D(g ≪ 16)) ·
FFT(D(g ≪ 16))).

The multiplication of two arrays above denotes the element-wise multiplication.
Similarly we can compute D(x1) by

D(x1) = FFT−1(FFT(D(g)) · FFT(D(g)) ·
FFT(D(g ≪ 8))).

We computed D(x1). Our results show that ε(x[16]
5) ≈ 2−49.56 (Note that the

precision is kept until the second last digit in the exponent). In comparison, it
was estimated in [1] that ε(x[16]

5) ≈ 2−75.73, which is reduced by a dramatic factor
of 226.17 in our work. On the other hand, as pointed out in [1], ε(x[0]

0) ≈ 2−46.85.
Assuming the independence of x0 and x5, we have

ε(s[0]
t) = ε(x[0]

0) · ε(x[16]
5) ≈ 2−96.41,

by Piling-up lemma [13]. This leads to a simple distinguishing attack with data
complexity 1/ε2(s[0]

t), i.e. O(2192.82), which is reduced by a factor of 252.34 com-
pared with [1].

Furthermore, for a sample distribution D with the sample size of r ≥ 1 bits, it’s
shown in [2] that we can optimize the distinguisher by considering all the biases
of D simultaneously with the minimum data complexity O(1/Δ(D)), where the
Squared Euclidean Imbalance (SEI) is defined as Δ(D) = 2r

∑
a(D(a) − 2−r)2.

We have computed SEI for the relevant distributions. The results are summarized
in Table 1 and Table 2 respectively.

Table 1. Our results on D(g),D(x
[31..16]
1), D(x

[15..0]
1), D(x

[31..0]
1), D(x

[15..0]
0), D(s[15..0])

Distribution D D(g) D(x
[31..16]
1) D(x

[15..0]
1) D(x

[31..0]
1) D(x

[15..0]
0) D(s[15..0])

SEI Δ(D) 1.01 2−76 2−100 2−45 2−100 2−158

Cryptanalysis of Rabbit 209

Table 2. Our results on D(x
[31..16]
0), D(x

[15..0]
0), D(x

[31..0]
0), D(x

[15..0]
1), D(s[31..16])

Distribution D D(x
[31..16]
0) D(x

[15..0]
0) D(x

[31..0]
0) D(x

[15..0]
1) D(s[31..16])

SEI Δ(D) 2−76 2−100 2−45 2−100 2−160

From Table 1, we know

Δ(D(s[15..0])) = Δ(D(s[47..32])) = Δ(D(s[79..64])) =
Δ(D(s[111..96])) ≈ 2−158.

Similarly, from Table 2, we know

Δ(D(s[31..16])) = Δ(D(s[63..48])) = Δ(D(s[95..80])) =
Δ(D(s[127..112])) ≈ 2−160.

Thus, we have a distinguishing attack with data complexity O(2158) (resp.
O(2160)), which considers samples of 16 bits from each keystream block st’s.
Compared with the previous case when only 1-bit samples of each keystream
block is considered, we gain an improvement with a reduced factor 235. To sum-
marize, our current best distinguishing attack so far has a complexity O(2158),
which is much closer to yet higher than the exhaustive search 2128. In the next
section, we will extend our distinguishing attack to a multi-frame key-recovery
attack.

4 An Extended Multi-frame Attack on Rabbit

In this section, we assume that we know many frames of keystreams, and we also
know the relations between their internal states x’s. More formally, we consider
m frames of keystreams s1, s2, . . . , sm (where si = si

1, s
i
2, . . . , s

i
n for i = 1, . . . , m

and si
t is one keystream block of 128 bits generated at time t and n is a parameter

to be discussed later) generated by Rabbit. Let xi
0,1, . . . , x

i
7,1, ci

0,1, . . . , c
i
7,1 and

φi
7,1 be the initial state of Rabbit to generate si for i = 1, . . . , m. We further

assume that we know

x1
j,1 ⊕ xi

j,1 = di
j,1 (12)

x1
j,2 ⊕ xi

j,2 = di
j,2 (13)

for j = 1, 3, 5, 7 and i = 2, . . . , m. We are interested in recovering the keys for all
frames from the known di

j,1, d
i
j,2’s and keystreams si’s as short as possible. Our

attack consists of the following steps:

Step 1: solve xi
j,1’s (resp. xi

j,2’s) from di
j,1’s (resp. di

j,2’s).
Step 2: solve gi

j,0’s (resp. gi
j,1’s) from xi

j,1’s (resp. xi
j,2’s).

Step 3: recover ci
j,2’s and φi

7,2’s.
Step 4: recover the keys.

We will detail our attack step by step and discuss the attack complexities.

210 Y. Lu, H. Wang, and S. Ling

4.1 Step One: Recover xi
j,1, xi

j,2’s

Our aim is to recover xi
j,1’s (resp. xi

j,2s’) from di
j,1’s (resp. di

j,2’s). As it’s exactly
the same to recover xi

j,2’s, we will only focus on recovering xi
j,1’s. Let us illustrate

how to recover xi
1,1’s from di

1,1’s using our analysis results in last section. Ac-
cording to Eq.(12), our problem becomes how to recover the L-bit x1

1,1 (L = 32).
The idea is to try exhaustively on x1

1,1, deduce the other xi
1,1’s (for i = 2, . . . , m)

from di
1,1’s. Then feed the m sequences of xi

1,1’s to the distinguisher. Recall that
we know the distribution of xi

1,1 following the last section. From [2] and Table 1,
we know that we need the minimum

m =
4L log 2
2−45

≈ 251.5

to distinguish m sequences generated by the correct x1
1,1.

Due to symmetry of the problem, we can similarly recover xi
j,1’s independently

from the di
j,1’s for j = 1, 3, 5, 7. We solve the remaining xi

j,1’s for j = 0, 2, 4, 6
from the keystreams si

1. The total time complexity of this step is 2×4×2L×2m,
i.e. O(286.5).

4.2 Step Two: Recover gi
j,0’s, gi

j,1’s

We focus on how to get gi
j,1’s from xi

j,2’s.

Guess-and-Determine Approach. An easy way to recover gi
j,1’s from xi

j,2’s
is the following Guess-and-Determine method. For each frame i, we guess 64-bit
gi
1,1, g

i
7,1, and solve the remaining gi

0,1, gi
2,1, gi

3,1, gi
4,1, gi

5,1, gi
6,1 from xi

1,2, xi
2,2,

xi
3,2, xi

4,2, xi
5,2, xi

6,2 respectively. We expect the 8 equations of xi
j,2’s result in

a unique solution on the gi
j,1’s. Thus, this takes time O(264) for each frame. In

total, we need time m × 264, i.e. O(2115.5).

Algebraic Approach. Now, we propose the following algebraic approach to
solve Eq.(1-8) in order to determine gj,1’s. Notice that those equations are highly
symmetric. Adding Eq.(2,4,6,8) together, we have

x1,2 + x3,2 + x5,2 + x7,2 = 2(g1,1 + g3,1 + g5,1 + g7,1) +
((g0,1 ≪ 8) + (g2,1 ≪ 8) + (g4,1 ≪ 8) + (g6,1 ≪ 8)) . (14)

Adding Eq.(1,3,5,7) together, we have

x0,2 + x2,2 + x4,2 + x6,2 = (g0,1 + g2,1 + g4,1 + g6,1) +
((g0,1 ≪ 16) + (g2,1 ≪ 16) + (g4,1 ≪ 16) + (g6,1 ≪ 16)) +
((g1,1 ≪ 16) + (g3,1 ≪ 16) + (g5,1 ≪ 16) + (g7,1 ≪ 16)) . (15)

In order to get β0 = g0,1 + g2,1 + g4,1 + g6,1 and β1 = g1,1 + g3,1 + g5,1 +
g7,1 from Eq.(14,15), we first introduce the following property of Almost-Right-
Distributivity of the bit-wise rotation over the modular addition.

Cryptanalysis of Rabbit 211

Proposition 1 (Almost-Right-Distributivity). Given L and any L-bit
A, B, for any 1 ≤ � ≤ L we have

(A ≪ �) + (B ≪ �) = ((A + B) ≪ �) + δ,

where the additions are additions modular 2L and δ = u × 2� − v mod 2L and
u, v ∈ {0, 1}.
The proof is trivial. As shown below, we note that this proposition allows to
compute all the possible (A ≪ �) + (B ≪ �) from (A + B) ≪ � or vice versa
by guessing only a few choices of δ’s. Now,from Proposition 1, we deduce the
following

(g0,1 ≪ 8) + (g2,1 ≪ 8) + (g4,1 ≪ 8) + (g6,1 ≪ 8)
= ((g0,1 + g2,1 + g4,1 + g6,1) ≪ 8) + δ0, (16)

and δ0 = u0 × 28 − v0 mod 232 where u0, v0 ∈ {0, 1, 2}. Similarly, we have

(g0,1 ≪ 16) + (g2,1 ≪ 16) + (g4,1 ≪ 16) + (g6,1 ≪ 16)
= ((g0,1 + g2,1 + g4,1 + g6,1) ≪ 16) + δ′0, (17)

(g1,1 ≪ 16) + (g3,1 ≪ 16) + (g5,1 ≪ 16) + (g7,1 ≪ 16)
= ((g1,1 + g3,1 + g5,1 + g7,1) ≪ 16) + δ1, (18)

where δ′0 = u′
0×216−v′0 mod 232, δ1 = u1×216−v1 mod 232 and u′

0, u1, v
′
0, v1 ∈

{0, 1, 2}. Rewrite Eq.(14,15), we have

x1,2 + x3,2 + x5,2 + x7,2 = 2β1 + (β0 ≪ 8) + δ0 (19)
x0,2 + x2,2 + x4,2 + x6,2 = β0 + (β0 ≪ 16) + (β1 ≪ 16) +

δ′0 + δ1 (20)

We have 32×52 = 225 possibilities2 for the pair (δ0, δ
′
0 + δ1). Since the left-hand

sides of Eq.(19,20) are known, we can guess the pair (δ0, δ
′
0+δ1) and thus express

Eq.(19,20) in terms of only β0, β1 now. We can try for all possible β0, determine
β1 in Eq.(19) and check the validity of Eq.(20). We expect to obtain one unique
β0, β1 for each possible (δ0, δ

′
0 + δ1).

Adding Eq.(2,6) (resp. Eq.(4,8)) and subtracting β1, we can deduce (g0,1 ≪
8) + (g4,1 ≪ 8) (resp. (g2,1 ≪ 8) + (g6,1 ≪ 8)). Now, we guess g0,1 and
determine g4,1. Then, we get γ1 = g1,1 + g7,1 and γ2 = g3,1 + g5,1 by Eq.(2,6),
and we get γ3 = (g6,1 ≪ 16)+(g7,1 ≪ 16) and γ4 = (g2,1 ≪ 16)+(g3,1 ≪ 16)
from Eq.(1,5). Meanwhile, we know the following equality

x0,2 + x2,2 − x4,2 − x6,2

= g0,1 − g4,1 + (g0,1 ≪ 16)− (g4,1 ≪ 16) +
((g1,1 ≪ 16) + (g7,1 ≪ 16)) − ((g3,1 ≪ 16) + (g5,1 ≪ 16)) +
(g2,1 − g6,1) − ((g2,1 ≪ 16)− (g6,1 ≪ 16)) (21)

2 Note that it’s not necessary to know δ′0, δ1 individually, which has 34 = 81 possibil-
ities. From Eq.(20) it suffices to know the sum δ′0 + δ1 for our purpose, which has
52 = 25 possibilities instead.

212 Y. Lu, H. Wang, and S. Ling

holds. Again, we apply Proposition 1 to express

(g1,1 ≪ 16) + (g7,1 ≪ 16) = (γ1 ≪ 16) + δ2,

(g3,1 ≪ 16) + (g5,1 ≪ 16) = (γ2 ≪ 16) + δ3,

where δ2 = u2×216−v2 mod 232, δ3 = u3×216−v3 mod 232 and u2, u3, v2, v3 ∈
{0, 1}. Therefore, for each of the 24 possible pairs (δ2, δ3), we determine (g2,1 −
g6,1) − ((g2,1 ≪ 16) − (g6,1 ≪ 16)) in Eq.(21) as the remaining terms are all
known. Similarly, from each of the 22 possible values ((g2,1 ≪ 16) − (g6,1 ≪
16))−((g2,1−g6,1) ≪ 16), we deduce the value of λ−(λ ≪ 16), where λ = g2,1−
g6,1. With a precomputation table, which needs O(232) for precomputation time
and memory, we get λ in time O(1). From the known (g2,1 ≪ 8) + (g6,1 ≪ 8),
we apply Proposition 1 again to deduce λ′ = g2,1 + g6,1 by guessing 22 possible
(g2,1 ≪ 8) + (g6,1 ≪ 8) − (λ′ ≪ 8). We solve two linear equations to get
g2,1, g6,1 from λ, λ′.

After we determine g0,1, g2,1, g4,1, g6,1, we solve g7,1 (resp. g3,1) from the known
γ3 (resp. γ4); and we get g1,1 (resp. g5,1) from the known γ1 (resp. γ2).

We compute the total complexity of this step as follows. For one frame, it
takes time 225× (232 + 232 × 24 × 22) , i.e. O(246). Note that we gain a reduced
factor of 218 compared with the previous guess-and-determine method. For m
frames, we need time m · 246, i.e. O(297.5).

4.3 Step Three: Recover ci
j,2’s, φi

7,2’s from si
3’s

Recall that we already know the gi
j,1’s in our last step. In this step, we try to

determine yi
j,1 = xi

j,1 + ci
j,2 mod 232 for each i by Eq.(9). We computed gi

j,1 in
Eq.(11) for all possible 32-bit input yi

j,1. We found out that for each possible
output3 gi

j,1, in average there are 1.59 inputs yi
j,1 mapping to the same output

gi
j,1. Since xi

j,1’s are known, this means that we have a total of 1.59 possible
ci
j,2’s for each i and j. Thus, for a fixed i, we have 1.598 ≈ 40 possibilities for

gi
0,1, . . . , g

i
7,1. Then, we guess for the remaining one-bit φi

7,2. So, we only need
to exhaustively try the 40 × 2 = 80 candidates to recover the 513-bit internal
state at time t = 2 for each i. We expect to get a unique solution with one more
keystream block si

3. Obviously, the time complexity of this step is m × 80, i.e.
O(258), which is dominated by m.

4.4 Step Four: Recover the Key

We already recover the full internal state at t = 2. We first guess 16-bit φ7,0,
φ0,1, . . . , φ7,1 and φ0,2, . . . , φ6,2 and we compute cj,0’s, cj,1’s, cj,2’s (j = 0, . . . , 7)
and φ7,2 according to the update function of Rabbit’s internal state. We check
our guesses by verifying cj,2’s and φ7,2. Thus we obtain the correct cj,0’s, cj,1’s.

3 Note that the cardinality of the codomain of g is 0xA1681D78 ≈ 231.33 instead of
0x100000000, i.e. about 36.95% of all possible 32 bits have no preimage.

Cryptanalysis of Rabbit 213

Secondly, we recover the unique xj,0’s from known cj,1’s and gj,0’s with the same
method in Section 4.3 in negligible time O(40). Now that we have both xj,0

and cj,0, we can compute the original cj,0’s before mixing with xj,0’s by cj,0 =
cj,0 ⊕ x(j+4 mod 8),0. Finally, by guessing the related 32-bit φ’s, we can compute
cj,−1, . . . , cj,−4 backwards from cj,0’s. According to Eq.(10) in Section 2.1, the
256-bit cj,−4’s are highly redundant, which are obtained from 128-bit key K
only. We expect to verify our guesses and obtain the correct key. Clearly, the
complexity of this step is m(216 + 40 + 232) = 232m, i.e. O(283.5).

4.5 Overall Complexity

We give in Table 3 the complexity of each step in our attack in this section.
From Table 3, it’s clear that the overall complexity is dominated by Step Two. To
summarize, we needs precomputation and memory O(232) and run-time O(297.5)
to recover the keys for 251.5 frames, given the first three keystream blocks of each
frame and 251.5 di

j,1’s, di
j,2’s for j = 1, 3, 5, 7.

Table 3. Detailed complexities of our extended attack

step precomputation memory time

1 - - 286.5

2 232 232 297.5

3 - - 258

4 - - 283.5

Total 232 232 297.5

5 Conclusion

In this paper, based on the work [1], we continued the analysis of the keystream
bias produced by Rabbit. We first computed the exact bias of the keystream
sub-blocks by FFT. Our result leads to the best distinguishing attack with the
complexity 2158, compared with the complexity 2247 in [1]. This is much closer
to yet still higher than the exhaustive search complexity 2128, considering the
key size of 128 bits. Meanwhile, our result indicates that the approximation as-
sumption used in [1] for estimation of the bias is critical and cannot be ignored.
Secondly, we extend our distinguishing attack to a multi-frame key-recovery at-
tack, assuming that we know the relation between part of the internal states of all
frames. Our attack uses 251.5 frames and the first three keystream blocks of each
frame. It takes memory O(232), precomputation O(232) and time O(297.5) to re-
cover the keys for all frames. It is the first known key-recovery attack on Rabbit,
though our attack assumption of knowing 251.5 di

j,1, d
i
j,2 is unusually strong. As

an independent result, we introduced an interesting property of Almost-Right-
Distributivity of the bit-wise rotation over the modular addition for our algebraic
analysis. This allows to solve the nonlinear yet symmetric equation system more
efficiently for our problem.

214 Y. Lu, H. Wang, and S. Ling

Finally, it remains an open challenge to further extend our key-recovery attack
to the general setting where only keystream outputs are available (i.e. without
the knowledge of d’s). We believe it would be possible to try the approach of
differential fault analysis, or the differential cryptanalysis in stream ciphers in
the recent work of [3] to get those d’s.

Acknowledgment

This work was supported in part by the Ministry of Education of Singapore
under grant T206B2204.

References

1. Aumasson, J.-P.: On a bias of Rabbit (January 2007),
http://eprint.iacr.org/2007/033

2. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear crypt-
analysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450.
Springer, Heidelberg (2004)

3. Biham, E., Dunkelman, O.: Differential cryptanalysis in stream ciphers(2007),
http://eprint.iacr.org/2007/218

4. Boesgaard, M., Vesterager, M., Pedersen, T., Christiansen, J., Scavenius, O.: Rab-
bit: A new high-performance stream cipher. In: Johansson, T. (ed.) FSE 2003.
LNCS, vol. 2887, pp. 307–329. Springer, Heidelberg (2003)

5. Boesgaard, M., Vesterager, M., Christensen, T., Zenner, E.: The stream cipher
Rabbit, the ECRYPT stream cipher project - eSTREAM Report 2005/024 (2005),
http://www.ecrypt.eu.org/stream/

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT Press, Cambridge (2001)

7. Cryptico A/S, Algebraic analysis of rabbit, 2003. White paper.
8. Cryptico A/S, Analysis of the key setup function in rabbit, White paper (2003)
9. Cryptico A/S, Hamming weights of the g-function, White paper (2003)

10. Cryptico A/S, Periodic properties of rabbit, White paper (2003)
11. Cryptico A/S, Second degree approximations of the g-function, White paper (2003)
12. Cryptico A/S, Security analysis of the IV-setup for rabbit, White paper (2003)
13. Matsui, M.: Linear cryptanalysis method for DES cipher, EUROCRYPT 1993. In:

Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer,
Heidelberg (1994)

14. Maximov, A., Johansson, T.: Fast computation of large distributions and its cryp-
tographic applications. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp.
313–332. Springer, Heidelberg (2005)

http://eprint.iacr.org/2007/033
http://eprint.iacr.org/2007/218
http://www.ecrypt.eu.org/stream/

Algebraic Attack on HFE Revisited

Jintai Ding1, Dieter Schmidt1, and Fabian Werner2

1 University of Cincinnati
ding@math.uc.edu, dieter.schmidt@uc.edu

2 Technical University of Darmstadt
fw@cccmz.de

Abstract. In this paper, we study how the algebraic attack on the HFE
multivariate public key cryptosystem works if we build an HFE cryp-
tosystem on a finite field whose characteristic is not two. Using some
very basic algebraic geometry we argue that when the characteristic is
not two the algebraic attack should not be polynomial in the range of the
parameters which are used in practical applications. We further support
our claims with extensive experiments using the Magma implementation
of F4, which is currently the best publicly available implementation of
the Gröbner basis algorithm. We present a new variant of the HFE cryp-
tosystems, where we project the public key of HFE to a space of one
dimension lower. This protects the system from the Kipnis-Shamir at-
tack and makes the decryption process avoid multiple candidates for the
plaintext. We propose an example for a practical application on GF(11)
and suggest a test challenge on GF(7).

Keywords: HFE, Gröbner basis, multivariate public key cryptosystem.

1 Introduction

The family of multivariate public key cryptosystems [16,4] is considered as one
of the main candidates that have the potential to resist the future quantum
computer attacks. MPKC’s security relies on the fact that the direct attack,
which we call the algebraic attack, needs to solve a set of multivariate quadratic
equations, which is in general NP-hard [8].

A major research topic in this area is the family of HFE cryptosystems. The
HFE encryption systems were presented by Jacques Patarin at Eurocrypt’96 [15].
The fundamental idea is very similar to that of Matsumoto and Imai [13]. One
selects a polynomial in a large field and then transforms it into a polynomial
system over a vector space of a much smaller field. The first attack on HFE
was presented by Kipnis and Shamir [11]. They lifted the public key back into
the large field and attacked the system via a so-called MinRank [3] method.
This attack was further improved by Courtois [2] using different ideas to solve
the associated MinRank problem. The theoretical conclusion of these attacks is
that, if one fixes the key parameter D of HFE (or more precisely log(D)) then the
secret key can be found not in exponential but in polynomial time as the number

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 215–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

216 J. Ding, D. Schmidt, and F. Werner

n of variables increase. However these attacks were not fully substantiated by
computer experiments.

Later on a direct attack on HFE with the new Gröbner basis methods like F4

or F5 did not show an exponential but a polynomial behavior [7,9]. Additionally,
Faugère broke one of the challenges set by Patarin. This was later confirmed by
Allen Steel with his Magma implementation of F4 [12], whose performance is
even better than the one used by Faugère. The overall conclusion seems to be
that the HFE family of cryptosystems is not secure.

However, if we look more carefully at all current algebraic attacks, we see that
all of them only deal with the case, where the finite field is exactly GF(2). A key
point of these attacks is that the so called field equations

x2
i − xi = 0, i = 1, . . . , n

are used in the attack of the systems. If these field equations are not utilized,
or more precisely could not be utilized efficiently, then the complexity of the
algebraic attacks could be totally different. We first use some basic tools of
algebraic geometry, including the idea of the so called solution at infinity [14],
to argue that indeed the algebraic attacks should not work if the field equations
are not fully utilized. We then support our claim by doing extensive experiments
using the F4 implementation in Magma, which is the best implementation that
is publicly available.

The paper is arranged as follows. First we will briefly describe the HFE cryp-
tosystem and the algebraic attacks. We then present a theoretical argument
why the algebraic attack complexity will change if we do not utilize the field
equations. In the next section we will show via computer experiments using the
Magma implementation of the new Gröbner basis F4 that the timing of the al-
gebraic attack on simple cases of HFE should not be polynomial but should be
exponential if we work on a field whose characteristic is not two. We will then
present our challenge and give our conclusions.

2 The HFE Scheme

The HFE encryption scheme utilizes two finite fields. We denote the small field
with q elements as F, and K as the extension field of degree n over F. Patarin
recommended that the choice for HFE should be q = 2 and n = 128. Given a
basis of K over F, we can identify K with an n-dimensional vector space over F
by ϕ : K → Fn and its inverse ϕ−1. The design of HFE is based on a univariate
polynomial P (X) over K of the form

P (X) =
r−1∑
i=0

r−1∑
j=i

pijX
qi+qj

+
r1∑

i=0

piX
qi

+ p, (1)

where the coefficients pij , pi, p are randomly chosen from K and r, r1 are small
such that the degree of P (X) is less than some fixed parameter D. The limitation

Algebraic Attack on HFE Revisited 217

on the degree D of P (X) is required so that it is possible to find the roots of P (X)
efficiently during the decryption, for example by using Berlekamp’s algorithm.

Let

P̄ (x1, . . . , xn) = T ◦ ϕ ◦ P ◦ ϕ−1 ◦ S(x1, . . . , xn) (2)
= (P̄1(x1, . . . , xn), . . . , P̄n(x1, . . . , xn)), (3)

where T and S are two randomly chosen invertible affine transformations on Fn.
The private key of the HFE scheme is formed by P (X), S and T . The public
key P̄ (x1, . . . , xn) consists of

{P̄1(x1, . . . , xn), . . . , P̄n(x1, . . . , xn)},

which are n quadratic polynomials in the n variables in F.

3 The Algebraic Attack

Let us assume that someone uses the HFE cryptosystem for encryption of a
message or plaintext (x′

1, . . . , x
′
n). What he or she does is to compute

(y′
1, . . . , y

′
n) = P̄ (x′

1, . . . , x
′
n),

the ciphertext, and sends it to the owner of the public key.
In order to attack HFE or any multivariate public key cryptosystem, an at-

tacker has already the public key P̄ and he or she also has access to the ciphertext
(y′

1, . . . , y
′
n). This means that if the attacker can solve the equation

P̄ (x1, . . . , xn) = (y′
1, . . . , y

′
n),

the solution will give the attacker the plaintext (x′
1, . . . , x

′
n) and he or she breaks

the cryptosystem. Solving the set of equations above directly is called the alge-
braic attack.

The Gröbner basis method [1] is the classical method of solving multivariate
polynomial equations. However, it is very slow in general. Recently major im-
provements have been made by Faugère [5,6] with his F4 and F5 algorithms. We
will not give the details of the algorithms and refer the reader to the references
instead.

Let us assume that we need to solve the set of equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0,

over any field. When the solutions of this set of equations has dimension 0, or
more precisely, when the system has only finitely many solutions (including the
solutions over the extension field of the field we work on), the Gröbner basis
algorithm finds a set of polynomials of the form

{g1(x1, . . . , xn), g2(x2, . . . , xn), g3(x3, . . . , xn), . . . , gn(xn)}

218 J. Ding, D. Schmidt, and F. Werner

such that the set of polynomials gi and the set of polynomials fi generate exactly
the same ideal in the polynomial ring. Then one can find the solution by solving
first the equation

gn(xn) = 0,

to find the value of xn. One can now plug the value of xn into

gn−1(xn−1, xn) = 0

to find the value of xn−1, and so on until all xi are found.
In order for this process to work correctly, the Gröbner basis must be com-

puted with respect to a special ordering, mostly called lex-order. Henceforth we
mean ”Gröbner basis in lex order” when we speak of Gröbner basis, because we
want it to have the elimination property for actually solving the system.

Faugère and Joux showed that in the process of finding the Gröbner basis
the degree of the polynomials that the Gröbner basis algorithm will generate
should not be higher than log(D). This makes the algorithm complexity to be
polynomial once one fixes D, since log(D) is very small due to the considerations
for decryption.

4 The Algebraic Attack Revisited

Now we would like to do a careful analysis what role the field equations play in
the algebraic attacks of HFE. In the case of q = 2, the field equations, which are
also quadratic, are easily used in the computations of the Gröbner basis. But if
we work in a bigger field, say GF(11), then the field equations

x11
i − xi = 0, i = 1, . . . , n

are of degree 11. The field equations can only be utilized in the computation of
the Gröbner basis if the degree of a polynomial is at least 11. This means that
even dealing with a relatively small number of variables, like 32, the number
of monomials of a degree 11 polynomial is already (32+11)!

11!32! , which is roughly
232. With our current memory capacity, if n is more than 64, the Gröbner basis
algorithm can not really use the field equations, even if we try to add them to
the set of equations we want to solve.

Before we go on further, we would like to make the following remark to clear
the concepts that often cause confusions. Given a polynomial f(x1, . . . , xn) over
F, we have two different ways to look at it: One way is to look at it as an element
in the polynomial ring F[x1, . . . , xn], or we can look at it as an element in the
function ring

F[x1, . . . , xn]/ < xq
1 − x1, . . . , x

q
n − xn > .

In the second case we identify xq
i with xi.

Let f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0 be a set of n multivariate
polynomial equations in n variables over F. If we only want the solutions in F,
we actually need to solve the set of equations

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0, xq
1 − x1 = 0, . . . , xq

n − xn = 0.

Algebraic Attack on HFE Revisited 219

In this case, we need to find the Gröbner basis for the ideal generated by the set
of polynomials

f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), xq
1 − x1, . . . , x

q
n − xn

in the ring F[x1, . . . , xn]. So we generally work on the ring F[x1, . . . , xn], and if
we want to work in the function ring we include the field equations.

Let us consider the case in which we do not take the field equations into
account. Our key observation is that for any system of multivariate polynomial
equations, if there are d different values for each variable (including the values
in the extension field, or its algebraic closure), we should not be able to solve
this system directly via the Gröbner basis algorithm with a maximum degree of
this variable lower than d.

Proposition 1. Let f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0 be a set of n
multivariate polynomial equations in n variables over F; for each xi, 1 ≤ i ≤ n, if
xi has d different solutions β1, . . . , βd (including the ones in the algebraic closure
of F), the maximum degree of the corresponding Gröbner basis – in particular
gn(xn) – must have a degree higher or equal to d.

Proof. We can prove it easily by contradiction. Suppose we get exactly d values
for xn by the equations generated by the fi. If the degree of gn(xn) is d′ with
d′ < d, then we will have only d′ values for xn. This is impossible.

Similarly we have

Proposition 2. Let f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0, xq
1 − x1 =

0, . . . , xq
n − xn = 0 be the set of 2n multivariate polynomial equations in n

variables over F; for each xi, 1 ≤ i ≤ n, if xi has d different solutions β1, . . . , βd

in F, the maximum degree of the corresponding Gröbner basis – in particular
gn(xn) – must have a degree higher or equal to d.

Proof. We can prove it as in the proposition above.

So if we include the field equations, then we are indeed looking for solutions in
the original field. If we do not include the field equations, we are actually looking
for the solutions in the algebraic closure of the original field.

From the analysis above, we can also see that the minimum degrees a Gröbner
basis (in lex order) needs to deal with in these two cases are very different, one
is determined by the number of solutions in the original field and another one is
determined by the extension field or algebraic closure.

Now let us move back to our case, the HFE cryptosystems. First, we know
that T has no impact on the number of solutions, and it is also clear that S also
has no impact on the number of solutions, because it is just a change of basis.
Therefore the number of solutions of the public equations is determined by the
number of solutions of the equations in the form of

P (X) − P ′ = 0

220 J. Ding, D. Schmidt, and F. Werner

over the big field K. Also because S is a random transformation, we have, in
general, a high probability that for each variable all solutions will not have the
same value.

In the case that we include the field equations, then we are looking for solutions
of the following equations

P (X) − P ′ = 0,

Xqn − X = 0.

From the argument of Faugère and Joux that the degree of the algebraic
attack using the new Gröbner basis is less or equal to log(D), we can actually
make the following conjecture:

Conjecture. The number of solutions to the public equation in the case of q = 2
for HFE in the field F is less or equal to log(D).

This easily follows from the argument above with the assumption of Faugère
and Joux’s claims. We also note here that in their argument about the complex-
ity, they implicitly used the field equations, namely the equation:

Xqn

− X = 0.

We also have that

Theorem 1. If we do not include the field equation, the overall Gröbner basis
algorithm (including algorithms like FGLM for switching the term ordering) has
to deal with polynomials whose degree is at least equal to the number of solutions
of the equation

P (X) − P ′ = 0

in the algebraic closure of K.

From the theory of the functions over a finite field, we know that given any
polynomial, we have a high probability that it is irreducible and therefore has
the number of solutions, which is the same as its degree. But our case clearly
is different in the sense that we know already it has at least one solution in the
field K. From the general theory we estimate that the number of solutions of
the equation

P (X) − P ′ = 0

in the algebraic closure of K should not be less than half of D statistically
speaking. We will confirm this from experiments in section 5.1.

This implies that the minimum degree that a Gröbner basis needs to handle is
at least D/2, and if D is 112+11 = 132, we simply can not calculate the Gröbner
basis because we can not store a polynomials with 32 variables of degree 66.

This also implies that the field equations in the case of q = 2 play a critical role
in determining the algebraic attack complexity on HFE. However, as the char-
acteristic increases it becomes much more difficult to utilize the field equations.
Therefore, from the theoretical arguments given above, we expect (or more pre-
cisely we speculate) that for an HFE cryptosystem over GF(11) and with degree

Algebraic Attack on HFE Revisited 221

D = 132, the algebraic attack should not be polynomial but rather exponential
in the parameters we consider practical, that is for the range n ≤ 128. We do
not have precise theoretical arguments to prove such a statement, but we will
try to confirm this speculation with our computer experiments.

We also would like to note here that Faugère and Joux’s argument, stating that
the degree of the polynomials which the Gröbner basis algorithm will generate
should not be higher than log(D), relies very much on using the field equations
of characteristic two. Their argument will definitely fail if it is not the case
of characteristic two. This can be shown by a very complicated combinatorial
argument. Giving a detailed analysis is beyond the scope of this paper and we
will present it in a separate paper.

5 Computer Experiments

Our experiments are split up in two parts. The first one is on the number of
solutions in the algebraic closure and the second one is on the amount of time
and memory it takes F4 to calculate a Gröbner basis for different HFE systems.
All experiments have been done on a computer at the Technical University of
Darmstadt, Germany. The computer is a SunFire-280R which has an UltraSparc
1.2 GHz processor with 5120 MB of memory installed. The operating system is
SunOS 5.8 (also called Solaris 8).

5.1 Experiment on the Number of Solutions

In order to verify the claim that the number of solutions of P (X) − P ′ = 0
in terms of X is generically at least D/2 we ran an experiment: First, we set
up an HFE system and its hidden field polynomial P (X). We then encrypted a
random plaintext X ′ by finding P ′ = P (X ′). Afterwards the program calculated
P (X)−P ′ and factored this polynomial. We did 800 test cases, 400 using n = 17
and 400 using n = 19. Not a single factorization contained a factor with a
multiplicity higher than one, which means that the number of solutions in all
800 tests was exactly D which is trivially bigger than D/2.

5.2 Experiment of Solving Equations by F4

Currently it is commonly accepted that the new Gröbner basis algorithm F4 [5]
and F5 [6] are the most powerful tools to solve polynomial equations. Because F4

is the only one which is publicly available, we used the Magma implementation of
F4 in order to see what the complexity of the algebraic attacks are indeed like.

We first generated the public key equations and then used Magma to try
to find the Gröbner basis of this system. The experiments, as expected, pro-
duced the full triangular Gröbner basis in lex order. Our program then found
all solutions and verified that indeed they included the correct solution. All ex-
periments were done without using the field equations as this slows things down
(see Fig. 6).

222 J. Ding, D. Schmidt, and F. Werner

Fig. 1. Timings and memory usage for HFE systems over GF(3)

Fig. 2. Timings and memory usage for HFE systems over GF(5)

Fig. 3. Timings and memory usage for HFE systems over GF(7)

Tables below show the running time and the required memory of each n. In
both figures we take n as the X-coordinate and show the running time (on the
left, in seconds) and the required memory (on the right, in MB) as the logarithmic
Y-coordinate. It clearly shows the exponential growing tendency with increasing
n. The timing, we conclude, should be exponential and not polynomial. A more
detailed overview over timings and memory usage can be found in the appendix.
Much more theoretical and experimental work is still needed to fully understand
the whole behavior.

Algebraic Attack on HFE Revisited 223

Fig. 4. Timings and memory usage for HFE systems over GF(11)

Fig. 5. Timings and memory usage for HFE systems over GF(13)

Fig. 6. Timings for HFE over GF(11) with and without field equations “x11
i − xi”

Currently it is not completely clear to us what the Magma F4 implementation
does when it comes to bigger characteristics. For GF(11), the implementation
produced Gröbner bases, whose degree is higher than expected.

In order to see that the field equations do not help but even slow down the
calculations, if they are not used properly, we re-ran the tests for GF(11) after
putting in the field equations. The result also looks like expected, see Fig. 6.

224 J. Ding, D. Schmidt, and F. Werner

6 New HFE Cryptosystems for Encryption

From the analysis above, we conclude that with a proper choice of parameters on
the right field, we can build an HFE cryptosystem that could resist the algebraic
attacks. But we also know that for any HFE cryptosystem, one must consider
the Kipnis-Shamir attack. The recent work [10] actually shows that this attack
does not work as efficiently as claimed. With this, we conclude one can build a
reasonably secure HFE cryptosystem.

However, here we would like to propose a new type of HFE variant, which we
call the projected HFE cryptosystem or PHFE.

Let P̄ (x1, . . . , xn) be the public key of HFE, then we randomly choose a linear
equation

a1x1 + · · · + anxn + a = 0. (4)

We will pick a nonzero element among the ai’s, which we assume here to be an.
Then we substitute xn (or xi) in P̄ by the function

− a1

an
x1 − · · · − an−1

an
xn−1 −

a

an
,

which results in a new function:

P̂ (x1, . . . , xn−1) = P̄ (x1, . . . , xn−1,−
a1

an
x1 − · · · − an−1

an
xn−1 −

a

an
).

This will be the public key of PHFE. In this case, we have n polynomials and
n− 1 variables. The linear equation above also becomes part of the private key.
The encryption process will be just as before. Decryption only varies in one
point: once we have derived a few possible candidates for the plaintext, we will
choose only the specific one, which satisfies the equation (4).

The new public key P̂ can be seen as a projection of the old public key function
P̄ . This projection map will serve two purposes:

1. It will destroy the hidden field structure of the old public key P̄ , such that
the Kipnis-Shamir attack becomes useless, which is self-evident.

2. It will make the map more likely to be bijective so that the problem of
multiple decryption choices becomes very unlikely.

This idea of projection was mentioned previously in several places, but it was
never considered to be of any use because it does not help in terms of resisting
the algebraic attacks.

Now we will take a look at the choices of a proper field F. From our argu-
mentation it seems, as if the system’s security grows with the size of the ground
field F, but this does not work in all cases. By choosing F to have characteris-
tic 2 and therefore cardinality 2m, one can easily transform the public key into
polynomials over GF(2). The only difference is an increment in the number of
equations and the number of variables m. Then the algebraic attack still works
as before when the degree of the polynomial P (X) is not big enough. Therefore,
we propose not to use a field of characteristic two.

Algebraic Attack on HFE Revisited 225

For practical applications, we suggest that we should use GF(11) to build a
PHFE system. We suggest D to be 112+11 = 132 and n = 89, which should have
the security level of at least 280 triple DES from our estimation by computational
experiments. In comparison with the HFE challenge broken by Faugère, in terms
of memory, the public key of this new cryptosystem is about 5 times the size. In
terms of the most costly part of the computation, namely the decryption process,
the new system takes about twice the time to decrypt. All in all, the new system
is comparable to the HFE challenge broken by Faugère.

To make the subject more interesting, we propose a test challenge, which,
we speculate, might be within the reach of a practical attack with the most
powerful computers of today. For the challenge we choose the field to be GF(7)
with D = 72 + 7 = 56 and n = 67. The point is that if the claims about the
algebraic attack on HFE with characteristic 2 is also valid here then one should
be able to break our challenge.

7 Conclusion

We revisited the algebraic attack on the HFE cryptosystems. We showed that
the algebraic attack on the HFE cryptosystems using the new Gröbner basis
algorithm behaves differently, if it can not utilize the field equation to the full
extent and the algebraic attack then can not work as efficiently as in the case
of GF(2). Furthermore, we have shown via the new Gröbner basis algorithm
F4, that the complexity of the attack should be exponential and not polynomial
when the characteristic of the field is not two. The key point of our theoretical
argument is based on the simple idea that when solving a polynomial equation
system, the degree parameter of the Gröbner basis algorithm is bounded from
below by the number of solutions.

We also proposed a new variant of the HFE cryptosystems. The public key
of HFE is projected to a space of one dimension lower. It serves the purpose to
protect it form the Kipnis-Shamir attack and to avoid multiple candidates for
the correct plaintext in the decryption process. We suggested an example for a
practical application on GF(11), which we expect to be at the security level of
280 triple DES, and a test challenge on GF(7) for practical attacks.

References

1. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal, Mathematical Institute,
University of Innsbruck, Austria. Dissertation (1965)

2. Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, C.
(ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 266–281. Springer, Heidelberg (2001)

3. Courtois, N.T.: The Minrank Problem. MinRank, a new zero-knowledge scheme
based on the NP-complete problem. Presented at the rump session of Crypto 2000,
http://www.minrank.org

4. Ding, J., Gower, J., Schmidt, D.: Multivariate Public Key Cryptosystems. In: Ad-
vances in Information Security, Springer, Heidelberg (2006) (ISBN 0-387-32229-9)

http://www.minrank.org

226 J. Ding, D. Schmidt, and F. Werner

5. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra 139, 61–88 (1999)

6. Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without
Reduction to Zero(F5). In: Mora, T. (ed.) Proceeding of ISSAC, pp. 75–83. ACM
Press, New York (2002)

7. Faugère, J.-C., Joux, A.: Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979) (ISBN 0-7167-1044-7 or
0-7167-1045-5)

9. Granboulan, L., Joux, A., Stern, J.: Inverting HFE Is Quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

10. Jiang, X., Ding, J., Hu, L.: Kipnis-Shamir’s attack on HFE revisited Cryptology
ePrint Archive (2007)

11. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999)

12. MAGMA Computational Algebra System,
http://magma.maths.usyd.edu.au/magma/

13. Matsumoto, T., Imai, H.: Tsutomu Matsumoto and Hideki Imai. In: Günther,
C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg
(1988)

14. Moh, T.-T.: On the method of “XL” and its inefficiency to TTM Cryptology ePrint
Archive, Report 2001/047, http://eprint.iacr.org/

15. Patarin, J.: Hidden field equations (HFE) and isomorphism of polynomials (IP):
Two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT
1996. LNCS, vol. 1070. Springer, Heidelberg (1996)

16. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem
of multivariate quadratic equations. Cryptology ePrint Archive, Report,2005/077,
12th of May 2005. 64 pages (2005), http://eprint.iacr.org/2005/077/

http://magma.maths.usyd.edu.au/magma/
http://eprint.iacr.org/
http://eprint.iacr.org/2005/077/

Algebraic Attack on HFE Revisited 227

A Tables for GF(11) and GF(2)

timings GF(11) GF(2)

n = 5 0,01 0,01
n = 6 0,02 0,01
n = 7 0,07 0,01
n = 8 0,25 0,01
n = 9 1,13 0,01
n = 10 4,74 0,01
n = 11 25,87 0,02
n = 12 147,03 0,03
n = 13 799,96 0,04
n = 14 2722,40 0,13
n = 15 13744,27 0,17
n = 16 >84600 0,25
n = 17 0,32
n = 18 0,44
n = 19 0,61
n = 20 0,81
n = 21 1,05
n = 22 1,35
n = 23 1,94
n = 24 2,41
n = 25 3,03
n = 30 9,41
n = 40 70,98
n = 50 376,39
n = 60 1519,22
n = 60 1519,22
n = 70 4962,35

memory usage GF(11) GF(2)

n = 5 0,76 0,67
n = 6 0,76 0,67
n = 7 0,95 0,67
n = 8 1,03 0,65
n = 9 1,06 0,72
n = 10 1,47 0,71
n = 11 2,88 0,74
n = 12 5,89 0,86
n = 13 14,23 0,93
n = 14 34,15 1,18
n = 15 105,76 1,35
n = 16 1,24
n = 17 2,55
n = 18 2,98
n = 19 1,72
n = 20 1,98
n = 21 2,21
n = 22 2,38
n = 23 2,52
n = 24 3,07
n = 25 3,45
n = 30 5,98
n = 40 16,20
n = 50 30,74
n = 60 59,57
n = 70 140,20

Revisiting Wiener’s Attack

– New Weak Keys in RSA

Subhamoy Maitra and Santanu Sarkar

Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India
{subho,santanu r}@isical.ac.in

Abstract. In this paper we revisit Wiener’s method (IEEE-IT, 1990)
of continued fraction (CF) to find new weaknesses in RSA. We consider
RSA with N = pq, q < p < 2q, public encryption exponent e and pri-
vate decryption exponent d. Our motivation is to find out when RSA is
insecure given d is O(nδ), where we are mostly interested in the range
0.3 ≤ δ ≤ 0.5. We use both the upper and lower bounds on φ(N) and
then try to find out what are the cases when t

d
is a convergent in the CF

expression of e

N− 3√
2

√
N+1

. First we show that the RSA keys are weak

when d = Nδ and δ < 3
4
− γ − τ , where 2q − p = Nγ and τ is a small

value based on certain parameters. This presents additional results over
the work of de Weger (AAECC 2002). Further we show that, the RSA

keys are weak when d < 1
2
Nδ and e is O(N

3
2−2δ) for δ ≤ 1

2
. Using similar

idea we also present new results over the work of Blömer and May (PKC
2004).

Keywords: Cryptanalysis, RSA, Factorization, Weak Keys.

1 Introduction

RSA [12] is one of the most popular cryptosystems in the history of cryptology.
Here, we use the standard notations in RSA as follows: (i) primes p, q, with
q < p < 2q; (ii) N = pq, φ(N) = (p − 1)(q − 1); (iii) p − q = Nβ where

N
1
4 < Nβ < N

1
2√
2
; (iv) e, d are such that ed = 1 + tφ(N), t ≥ 1; (v) N, e are

available in public and the message M is encrypted as C = Me mod N ; (vi) the
secret key d is required to decrypt the message as M = Cd mod N .

In this paper we exploit the Wiener’s method [18] of continued fraction (CF)
to find new weaknesses in RSA (see [13] for Legendre’s theorem related to CF
expression). Wiener [18] showed that if d < 1

3N0.25, then | e
N − t

d | < 1
2d2 and t

d
(which in turn reveals p, q) could be estimated in poly(logN) time from the CF
expression of the publicly available quantity e

N .
From ed = 1+ tφ(N), it is easy to see that e

φ(N) −
t
d = 1

dφ(N) , i.e., e
φ(N) −

t
d <

1
2d2 whenever 2d < φ(N). Thus a good estimation of φ(N) can be of use while
exploiting CF expression. It is known that for q < p < 2q, N − 3√

2

√
N + 1 <

φ(N) < N −2
√

N +1. In [20, Section 4], Wiener’s attack [18] has been extended

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 228–243, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Revisiting Wiener’s Attack – New Weak Keys in RSA 229

estimating φ(N) as N − 2
√

N + 1. In our approach, both sides of the bound of
φ(N) are exploited to get the results.

Lots of weaknesses of RSA have been identified in past three decades, but still
RSA can be securely used with proper precautions as a public key cryptosystem.
The security of RSA depends on the hardness of factorization. Let us now briefly
discuss some weaknesses of RSA. RSA is found to be weak when the prime factors
of either p−1 or q−1 are small [11]. Similarly, RSA is weak too when the prime
factors of either p + 1 or q + 1 are small [19]. In [8], it has been pointed out that
short public exponents may cause weakness if same message is broadcast to many
parties. An outstanding survey on the attacks on RSA is available in [2]. For very
recent results on RSA one may refer to [5,10,7] and the references therein.

In this paper we study the weaknesses of RSA when the secret decryption
exponent d is upper bounded. The work of [18] initiates the application of Con-
tinued Fraction (CF) expression for the attack. In the work of [4], important
results have been shown regarding small solutions to polynomial equations that
in turn show vulnerabilities of low exponent RSA. In [3], the method of [4] has
been exploited to show that RSA is insecure if d < N0.292. The results from [4]
have been used along with the results of [18] in many papers [3,20,1,9] to get the
weaknesses when d is less than N δ.

In this paper, we like to find out how the idea of CF expression from [18]
can be exploited to find weaknesses of RSA when d is small. In [20, Section 4],
some extension of the work [18] has been mentioned and it has also been noted
that similar extension will work on the results of [17]. The result of [17] works
for d with a few more bits longer than N

1
4 . In [6], an extension of Legendre’s

result has been studied to get more weak keys in the direction of [17]. However,
we find that new weak keys of RSA can be identified using the CF technique.
These weak keys have not been explored in the literature before to the best of
our knowledge.

In [18], it has been shown that RSA is not secure when d < 1
3N0.25 as under

this condition, | e
N − t

d | < 1
2d2 and t

d can be found in the CF expression of e
N .

The knowledge of d helps in getting p, q immediately. In [16], a negative result
has been identified that Wiener’s attack will work with negligible success for
d > N

1
4 . Thus there is a deep interest to find out cases where the Wiener’s

strategy [18] can be extended to get more weak keys.
One may easily check that e

φ(N) > t
d and e

N < t
d . In [18], φ(N) has been

approximated by N to get the results. A better result has been obtained in [20,
Section 4] where φ(N) is approximated by N −2

√
N +1. It has been shown that

| e
N−2

√
N+1

− t
d | < 1

2d2 when δ < 3
4 − β, where p − q = Nβ and d = N δ. Note

that, for β = 1
2 , the result of [20] gives similar bound on d as in [18], which is of

the order N
1
4 . The improvement is obtained when β decreases. Only at β = 1

4 ,
d becomes of the order of N

1
2 . In [20, Section 5, 6], the attack of [3] has been

extended considering the value of β, where p − q = Nβ. Instead of considering
p−q = Nβ, we here consider 2q−p = Nγ to get additional results. These results
are presented in Section 2.

230 S. Maitra and S. Sarkar

Further, instead of relating Nβ, 1
4 ≤ β ≤ 1

2 , with d = N δ, we put the con-
straint on e. We find that RSA is insecure when d is of the order of N δ for δ ≤ 0.5.
The constraint in our case is on the public exponent e, which is related to the dif-

ference of the primes. We show that our attack works when e ≤ 2N1−2δ− N
N−A+1

N
N−B − N

N−A+1
,

which can be estimated as O(N1.5−2δ) in general. Here A =
√

N2β + 4N and
B = 3√

2

√
N . The conservative upper bound on e, i.e., O(N1.5−2δ), ignores the

term N2β in A and thus the difference between the two primes does not come
into the picture for the attack in general. These results are presented in Section 2.

In [1], it has been shown that p, q can be found in polynomial time for every
N, e satisfying ex + y = 0 mod φ(N), with x ≤ 1

3N
1
4 and |y| = O(N− 3

4 ex);
further some extensions considering the difference p−q have also been considered.
The work of [1] also uses the result of [4] as well as the idea of CF expression [18]
in their proof. We also provide additional result over [1] using the lower bound
of φ(N). This is presented in Section 3.

We here highlight the contribution of this paper with enumeration of the
cases where we find new weak keys of RSA considering the CF expression of

e
N− 3√

2

√
N+1

.

1. d = N δ and δ < 3
4 − γ − τ , where 2q − p = Nγ and τ is a small value based

on certain parameters.
2. d < 1

2N δ and e is O(N
3
2−2δ) for δ ≤ 1

2 .
3. ex+y = mφ(N) for m > 0, x ≤ 7

4N
1
4 , |y| ≤ cN− 3

4 ex, c ≤ 1 and p−q ≥ cN
1
2 .

4. ex + y = mφ(N), for m > 0, 0 < x ≤
√

3
4l

√
φ(N)

e
N

3
4

2q−p for some positive

integer l based on certain parameters and |y| ≤ 2q−p

φ(N)N
1
4
ex.

Before proceeding further, let us explain the Continued Fraction (CF) expres-
sion. We follow the material from [15, Chapter 5] for this. Given a positive ratio-
nal number a

b , a finite CF expression of a
b can be written as q1 + 1

q2+ 1
q3+...+ 1

qm

or

in short [q1, q2, q3, . . . qm]. As an example, take the rational number 34
99 . One can

write this as follows in the CF expression: 34
99 = 0+ 1

99
34

= 0+ 1
2+ 31

34
= 0+ 1

2+ 1
34
31

=

0+ 1
2+ 1

1+ 3
31

= 0+ 1
2+ 1

1+ 1
31
3

= 0+ 1
2+ 1

1+ 1
10+ 1

3

, and in short [0, 2, 1, 10, 3]. Consider a

subsequence of [0, 2, 1, 10, 3] as [0, 2, 1]. Note that 0+ 1
2+ 1

1
= 1

3 = 33
99 , which is very

close to 34
99 , i.e., a subsequence of CF will give an approximation of the rational

number. Given that a, b are t bit integers, the CF expression [q1, q2, q3, . . . , qm]
of a

b can be found in O(poly(t)) time and can be stored in O(poly(t)) space. Any
initial subsequence of [q1, q2, q3, . . . , qm], i.e, [q1, q2, q3, . . . , qr], where 1 ≤ r ≤ m
is called the convergent of [q1, q2, q3, . . . , qm]. As example, [0, 2, 1] is a convergent
of [0, 2, 1, 10, 3], i.e., 1

3 = 33
99 is a convergent of 34

99 . Also note that if the subse-
quence has a 1 at the end then that may also written by adding the 1 to the
previous integer and removing the 1. That is, both [0, 2, 1] and [0, 3] provides
the same rational number.

Revisiting Wiener’s Attack – New Weak Keys in RSA 231

2 New Weak Keys I

It is known that if p − q < N
1
4 [14] (see also [20, Section 3]), then RSA is

weak by Fermat’s factorization technique. Thus we are interested in the range
N

1
4 < p − q <

√
N√
2

only.

Proposition 1. Let p, q be of same bit size, i.e., q < p < 2q. Then φ(N) >

N − B + 1, where B = 3√
2

√
N . Further, if p − q = Nβ where N

1
4 < Nβ < N

1
2√
2
,

then φ(N) = N − A + 1, where A =
√

N2β + 4N .

Proof. Since (p − 2q)(2p − q) < 0, we have N − 3√
2

√
N + 1 < φ(N). Also, as

p−q = Nβ , we have p2−Nβp−N = 0, putting q = N
p . Thus p = Nβ+

√
N2β+4N

2 .

So we get p + q = p + N
p = Nβ+

√
N2β+4N

2 + 2N

Nβ+
√

N2β+4N
=

√
N2β + 4N . Then

φ(N) = N − (p + q) + 1 = N − A + 1. �

In [20], it has been identified that if p − q = Nβ, then RSA is weak for d = N δ

when δ < 3
4 − β. In such a case t

d could be found as a convergent in the CF
expression of e

N−2
√

N+1
. Thus the result works better when p, q are close. As

example, if p− q = N
1
4+ε, then δ is bounded by 1

2 − ε. As example, for ε = 0.05,
RSA becomes insecure if d = N0.44 < N0.45. However, this improvement is not
significant when p− q is O(N0.5). We present the following approach when p− q
is large, which gives 2q − p is small.

Proposition 2. Let l be a positive integer. For q > 2l+2
4l+1p,

| 3√
2

√
N − (p + q)| < l(2q−p)2

(3√
2
+2)

√
N

.

Proof. We have 1
l (

3√
2

√
N − (p+ q))(3√

2

√
N +(p+ q)) < (2q−p)2 iff ((4l+1)q−

(2l + 2)p)(2q − p) > 0. As (2q − p) > 0, we need (4l + 1)q − (2l + 2)p > 0. Thus,
q > 2l+2

4l+1p. Hence, | 3√
2

√
N − (p + q)| < l(2q−p)2

3√
2

√
N+(p+q)

.

As 2
√

N < p + q < 3√
2

√
N , we have, | 3√

2

√
N − (p + q)| < l(2q−p)2

3√
2

√
N+2

√
N

, which

gives | 3√
2

√
N − (p + q)| < l(2q−p)2

(3√
2
+2)

√
N

. �

As example, for l = 15, we get q > 32
61p. If l becomes larger then the constraint

on q will almost reach the constraint that q > 1
2p.

Theorem 1. Let l be a positive integer, q > 2l+2
4l+1p, 2q − p = Nγ and d = N δ.

Then N can be factored in O(poly(log(N))) time when δ < 3
4 − γ − τ , where

2τ > (log 4l
3√
2
+2

) 1
log N .

Proof. Let 2q − p = Nγ . Then | 3√
2

√
N − (p + q)| < lN2γ

(3√
2
+2)

√
N

,

232 S. Maitra and S. Sarkar

i.e., |φ(N) − N − 1 + 3√
2

√
N | < lN2γ

(3√
2
+2)

√
N

. Now,

| e
N− 3√

2

√
N+1

− t
d | ≤ | e

N− 3√
2

√
N+1

− e
φ(N) | + | e

φ(N) −
t
d |

=
e|φ(N)−(N− 3√

2

√
N+1)|

φ(N)(N− 3√
2

√
N+1)

+ 1
dφ(N) <

e lN2γ

(3√
2
+2)

√
N

φ(N)(N− 3√
2
+1)

+ 1
dφ(N)

< lN2γ

(3√
2
+2)

√
N(N− 3√

2
+1)

+ 1
dφ(N) .

Assume, N − 3√
2

√
N + 1 > 3

4N and N > 8d. Putting d = nδ, we get

| e
N− 3√

2

√
N+1

− t
d | < lN2γ

(3√
2
+2)

√
N 3

4 N
+ 4

3Nd

=
4l
3 N2γ− 3

2

(3√
2
+2)

+ 4
3Nd <

4l
3 N2γ− 3

2

(3√
2
+2)

+ 1
6N2δ .

Note that
4l
3 N2γ− 3

2

(2+ 3√
2
)

< 1
3N2γ− 3

2+2τ , for 2τ > (log 4l
3√
2
+2

) 1
log N .

So, we get | e
N− 3√

2

√
N+1

− t
d | < 1

3N2γ− 3
2+2τ + 1

6N2δ .

Thus, | e
N− 3√

2

√
N+1

− t
d | < 1

2d2 , when 2γ − 3
2 + 2τ < −2δ, i.e., k < 3

4 − γ − τ .

In such a case, t
d is a convergent of the CF expression of e

N− 3√
2+1

√
N

, and we

can find it in O(poly(log(N))) time. �

In the above case, we consider the bound on 2q − p to extend the limit of d
beyond N0.3. The result of [20, Section 4] concentrated on the case when p − q
is bounded. On the other hand, our result does not consider the bound on p− q
and it works when 2q − p is bounded.

For practical implication, we work with primes p, q ≥ 10160, i.e., N ≥ 10320.
It is clear that our attack will work better compared to existing works when
p, q are away (i.e., p is close to 2q) with the bound q < p < 2q. However,
the experiments when 2q − p < n

1
4 may not be of interest as in that case the

factorization can be done in polynomial time similar to the argument of Fermat’s
factorization strategy [14] (see also [20, Section 3]). Thus we consider the scenario
when 2q − p > N

1
3 . Below we present a practical example. All the examples in

this paper involving large integers are implemented in LINUX environment using
C with GMP.

Example 1. We choose a random prime q ∈ [10160, 10161]. Then we choose a
random prime p, such that 2q−p > N

1
3 . In this example, n0.346 < 2q−p < n0.347.

We then choose the first d greater than or equal to N δ for δ ≥ 1
3 such that d is

coprime to φ(N). In such a case if e is in our prescribed limit then our attack
succeeds.

We consider p, q respectively as
21324001236937503289167797884050805700247663179258767913123369490683298611013542

482710293984079429269505393966895473715804331857655334272013326966301014512312663 and
10662000618468751644583898942025402850123831589629883956561684745341649305506771

241355146992039714634752696983447736857902165928827667136006663483150507256156183, which gives N as
22735651437645608514540764369949778526757596419266441470601561865911392077051606

87637281365780266996051653514381053312820085562581879941697100892461092791463814

Revisiting Wiener’s Attack – New Weak Keys in RSA 233

72361264666736466411449942059568093916061632275622633234439324940363916123064654

025553033995485190281219787597633737574334427577414563344330427377471759256645329.

Note that 2q − p > N
1
3 . One can check that φ(N) is

22735651437645608514540764369949778526757596419266441470601561865911392077051606

87637281365780266996051653514381053312820085562581879941697100892461092791463814

40375262811330211477698245233491885365690137506733981364754270704338968206544340

301487593019366046376961696647290527000627929790931561936310436928020237488176484.

In Theorem 1, we require q > 2l+2
4l+1p. Here this is satisfied for l = 1050. Also

we have 2τ > (log 4l
3√
2
+2

) 1
log N , and it is enough to take τ = 5

64 = 0.078125 in

this case. Taking γ = 0.347 and τ = 0.078125, we get δ < 3
4 − γ − τ = 0.324875.

Thus, in this case for any d < n0.324875, RSA will be insecure.
Now take N0.32 < d < N0.324875. We consider d =

44138452180807132553854898960195837050529634687636859759755568727353610483058810149497334438480706535427

(a 104 digit number). The corresponding e is
85356738187677927267094758044990579754357485762742350715347494115752841684037367

61958050516985955514963349897936619515552408960795697318670660889152163280842447

75560973766638533120643123534024611720642739938697649334533161511773864127534483

56073872108358709307048969215446586611896268736369229047317637983628682308907311. The value of t is
16570953848141161450099797936855484729106684488828631895806571167212612482288825100679308747791603915419.

Here t
d could be found in the CF expression of e

N−� 3√
2

√
N�+1

(see Appendix

A). The | mark in the CF expression of e
N−� 3√

2

√
N�+1

points the termination of

the subsequence for the CF expression of t
d).

In fact, Theorem 1 presents a sufficient condition on d when RSA will be
weak. In Example 2, it is shown that even for some d, greater than the bound in
Theorem 1, RSA can be insecure based on some condition on e. Example 2 shows
that there exists some d even greater than N

1
3 when RSA is insecure. That is

presented in the following discussion, where we try to remove the constraint on
the difference between the primes; instead an upper bound on e is considered.

Lemma 1. Let 2d < nδ, where 0 < δ ≤ 1
2 . Let A, B be as in Proposition 1.

Then for e ≤ 2N1−2δ− N
N−A+1

N
N−B − N

N−A+1
, it is possible to get z1

z2
such that

1. e
N

z1
z2

− t
d < 1

2d2 when N
N−B+1 ≤ z1

z2
< 2

eN1−2δ + N
e

e−1
N−A+1 and

2. t
d − e

N
z1
z2

< 1
2d2 when N

N−B+1 − 2
eN1−2k < z1

z2
≤ N

e
e−1

N−A+1 .

Proof. As we have e
N < t

d , there are two cases with the condition z1
z2

> 1.

1. t
d − e

N ≥ 1
2d2 but 0 ≤ e

N
z1
z2

− t
d < 1

2d2 .
2. t

d − e
N ≥ 1

2d2 but 0 ≤ t
d − e

N
z1
z2

< 1
2d2 .

Case 1. The condition here is: t
d − e

N ≥ 1
2d2 but 0 ≤ e

N
z1
z2

− t
d < 1

2d2 .

Thus, we have to satisfy 0 ≤ edz1−tNz2
Ndz2

< 1
2d2 , i.e., 0 ≤ z1+z1tφ(N)−tNz2

Nz2
< 1

2d .

234 S. Maitra and S. Sarkar

Let 2d < N δ, for δ > 0. Then 0 ≤ z1+z1tφ(N)−tNz2
Nz2

< 1
Nδ implies 0 ≤

z1+z1tφ(N)−tNz2
Nz2

< 1
2d .

So we need to estimate z1
z2

considering 0 ≤ z1+z1tφ(N)−tNz2
Nz2

< 1
Nδ .

Now 0 ≤ z1+z1tφ(N)−tNz2
Nz2

< 1
Nδ iff 0 ≤ z1

z2
(1 + tφ(N)) − tN < N1−δ iff

tN ≤ z1
z2

(1 + tφ(N)) < N1−k + tN iff tN
1+tφ(N) ≤ z1

z2
< N1−δ+tN

1+tφ(N) if
N

φ(N) ≤ z1
z2

< N1−δ+tN
ed if N

N−B+1 ≤ z1
z2

< 2
eN1−2δ + N

e
e−1

N−A+1 , following

(i) Proposition 1, (ii) 1
d > 2

Nδ ⇒ N1−δ

ed > 2
eN1−2δ, and (iii) ed = 1+ tφ(N) ⇒

t
d = e− 1

d

φ(N) ⇒ t
d > e−1

N−A+1 .
To have an z1

z2
, we need N

N−B+1 < 2
eN1−2δ + N

e
e−1

N−A+1 .
For the guarantee of getting a rational z1

z2
in the interval

[N
N−B+1 , 2

eN1−2k + N
e

e−1
N−A+1), one may choose N

N−�B�+1 . Clearly, N
N−B+1 <

N
N−�B�+1 < N

N−(B+1)+1 = N
N−B . Thus, N

N−B ≤ 2
eN1−2k + N

e
e−1

N−A+1 need to be

satisfied. This gives, e ≤ 2N1−2δ− N
N−A+1

N
N−B − N

N−A+1
.

Case 2. The condition here is: t
d − e

N ≥ 1
2d2 but 0 ≤ t

d − e
N

z1
z2

< 1
2d2 . With

similar analysis, we get N
N−B+1 − 2

eN1−2δ < z1
z2

≤ N
e

e−1
N−A+1 , which again gives

the same upper bound for e. �
Theorem 2. Consider the interval I such that

I = (N
N−B+1 −

2
eN1−2δ, 2

eN1−2δ + N
e

e−1
N−A+1). Let 2d < N δ, where 0 < δ ≤ 1

2 .

Then for e ≤ 2N1−2δ− N
N−A+1

N
N−B − N

N−A+1
, and z1

z2
∈ I, | e

N
z1
z2

− t
d | < 1

2d2 .

Proof. From Lemma 1 we get that | e
N

z1
z2

− t
d | < 1

2d2 for the intervals N
N−B+1 ≤

z1
z2

< 2
eN1−2k + N

e
e−1

N−A+1 and N
N−B+1 − 2

eN1−2k < z1
z2

≤ N
e

e−1
N−A+1 .

Since, N
N−B+1−

2
eN1−2δ < N

e
e−1

N−A+1 < N
N−B+1 ≤ z1

z2
< 2

eN1−2δ+ N
e

e−1
N−A+1 , it

is enough to have z1
z2

in the interval I = (N
N−B+1 −

2
eN1−2δ, 2

eN1−2δ + N
e

e−1
N−A+1)

to get | e
N

z1
z2

− t
d | < 1

2d2 for 2N1−δ ≤ e <
2N1−2δ− N

N−A+1
N

N−B − N
N−A+1

. �

Corollary 1. Let 2d < N δ, where 0 < δ ≤ 1
2 and e ≤ 2N1−2δ− N

N−A+1
N

N−B − N
N−A+1

. Then N

can be factored in poly(log N) time.

Proof. The proof follows from Lemma 1 as N
N−B+1 < e

N−�B�+1 < 2
eN1−2δ +

N
e

e−1
N−A+1 . Then t

d will be found in the CF expression of e
N

z1
z2

when z1
z2

=
N

N−�B�+1 . Thus t
d will be found in the CF expression of e

N−�B�+1 . �

Below we present the summarized result which is a conservative one as the upper
bound of e is underestimated. This result is general as it does not require the
parameter β for the proof, where p − q = Nβ .

Theorem 3. Let N = pq, where p, q are primes such that q < p < 2q. Then N
can be factored in poly(log N) time from the knowledge of N, e when d < 1

2N δ

and e is O(N
3
2−2δ) for δ ≤ 1

2 .

Revisiting Wiener’s Attack – New Weak Keys in RSA 235

Proof. We have, e ≤ 2N1−2δ− N
N−A+1

N
N−B − N

N−A+1
=

(
2N−2δ(N−A+1)−1

)
(N−B)

B−A+1 , and this in-

creases as A increases. Also the lower bound of A is 2
√

N , when N2β is neglected.

Thus, e ≤
2N1−2δ− N

N−2
√

N+1
N

N− 3√
2

√
N

− N

N−2
√

N+1

and this is O(N
3
2−2δ). �

The results given in Theorems 2, 3 do not put any constraint on the difference
of the primes to get a better bound on d, but the constraint is imposed on e.
When d < 1

2N δ, then with increase in the value of δ, the value of e becomes

upper bounded by
2N1−2δ− N

N−A+1
N

N−B − N
N−A+1

.

Theorem 3 shows that n can be factorized from the knowledge of e (d not
known) when ed2 is O(n

3
2) and d is O(n

1
2). We like to point out an impor-

tant result [5, Theorem 2] that should be stated in this context, where it has
been shown that for ed ≤ n

3
2 , with the knowledge of e, d, the integer n can be

factorized in O(log2 n) time.
In [20, Section 4], CF expression of only a specific value e

N−2
√

N+1
has been

exploited to get t
d . Thus compared to our case, z1

z2
is approximated by N

N−2
√

N+1

in [20, Section 4]. Considering Lemma 1, if N
N−2

√
N+1

< N
N−B+1 − 2

eN1−2δ, then
the approach of [20] may not be used to get the primes, but our method will work.

The exact algorithm for our proposed attack is as follows.

Input: N, e, δ.
1. Compute the CF expression of e

N− 3√
2

√
N+1

.

2. For every convergent t1
d1

of the expression above
if the roots of x2 − (N + 1 − ed1−1

t1
)x + N = 0

are positive integers less than N
then return the roots as p, q;

3. Return (“failure”);

Our conservative estimate shows that the RSA keys are weak when d < 1
2N δ

and e is O(N
3
2−2δ). For example, considering δ = 0.3, 0.4, 0.45, 0.5, e is bounded

by O(N0.9), O(N0.7), O(N0.6), O(N0.5) respectively.
However, we like to point out that this is a conservative estimate and actually

the upper bound of e is much better. We have e ≤ 2N1−2δ− N
N−A+1

N
N−B − N

N−A+1
and the attack

works for 2d < nδ. Thus the attack will work when e ≤
2N

(2d+1)2
− N

N−A+1
N

N−B − N
N−A+1

, taking

N δ = 2d + 1.

Example 2. Refer to p, q of Example 1. We consider d > N
1
3 , which is

61033620665104690038995387156383867652322226123296685389723133974030185448442674868648018282242385291158493

(a 107 digit number). The corresponding e is

236 S. Maitra and S. Sarkar

25607033747060878831948100960748852360251160751444254452928522143254801167421362

25513157990007523683535328276512015218416342340790451266270568113742588904059135

27886609642186978739480642254815290198948110261414415071190855304065173317461587

21915217732030040350902165668813353187518059414604660250990538671831828340253.

Note that, we need to check e ≤
2N

(2d+1)2
− N

N−A+1
N

N−B − N
N−A+1

, taking N δ = 2d + 1 and the

value of
2N

(2d+1)2
− N

N−A+1
N

N−B − N
N−A+1

is

27752782508386083340303355961072715172277767233940251957583970436546175777700818

56675682093198406639915452074782714666722078006681946847644066862508400946540480

95827016310551668690003344650119766151234642917503628367993036711112155600249171

85825054382213277788613476097469191917984761625407135710311167590281574778653,

which is greater than e indeed. The value of t is

6874181671737017035420210275222012363784411840109884330984502170326678378077779701089832928385613474642.

Here t
d could be found in the CF expression of e

N−� 3√
2

√
N�+1

(see Appendix

A). The | mark in the CF expression of e
N−� 3√

2

√
N�+1

points the termination of

the subsequence for the CF expression of t
d).

One may check that t
d will not be found in the continued fraction expres-

sion of e
N (Weiner’s result [18]) or e

N−2
√

N+1
(Weger’s result [20, Section 4]) in

Example 2.
In [20, Sections 5, 6], the approach of [3] has been used to slightly improve

the bounds of [20, Sections 4]. The improvement in that case is not evident
when p − q approaches

√
N and it does not cover our results. In Example 2,

N0.4995 < p − q < N0.4996. Thus, for p − q = Nβ, β > 0.4995. For β = 0.4995,

we get δ < 1−
√

2β − 1
2 = 0.2936. Thus the method of [20, Section 6] will work

for d < N0.2936. Our example considers d > N
1
3 and hence not contained in the

weak keys presented in [20, Section 6].

Remark 1. We also present Example 3 in Appendix A to show the effects of the
upper bound on d in Theorem 1 as well as the upper bounds on d, e in Theorem 2.
Note that

“d of Example 1” < “d of Example 3” < “d of Example 2”.
For the “d of Example 3”, t

d cannot be found in the CF expression of
e

N−� 3√
2

√
N�+1

. The “d of Example 3” does not satisfy the condition given in

Theorem 1. On the other hand, though “d of Example 3” < “d of Example 2”,
the bound on e is not satisfied in Example 3.

One may note that in Example 3, the CF expression of t
d does not match only

in only three places at the end with the initial subsequence of the CF expression
of e

N−� 3√
2

√
N�+1

. Thus, the idea of search in the line of [17] will actually provide

the exact result with some extra effort.

Revisiting Wiener’s Attack – New Weak Keys in RSA 237

3 New Weak Keys II

Let us restate the result of [1, Theorem 2], where it was proved that p, q can be
found in polynomial time for every N, e satisfying ex + y = 0 mod φ(N), with
x ≤ 1

3N
1
4 and |y| = O(N− 3

4 ex).
Consider that ex+y ≡ 0 mod φ(N) and the interest is on the nontrivial cases.

Thus ex+y = m(N −p−q+1). This gives e
N − m

x = −m(p+q−1)+y
Nx . If | e

N − m
x | =

|m(p+q−1)+y
Nx | < 1

2x2 , then the fraction m
x appears among the convergents of e

N .
Thus one needs to find out the conditions such that |m(p + q − 1) + y| < N

2x is
satisfied. Calculation shows that for |y| = O(N− 3

4 ex), one gets x ≤ 1
3N

1
4 .

Note that instead of trying to find m
x among the convergents of e

N , a better
attempt will be to find m

x among the convergents of e
φ′(N) , where φ′(N) is a

better estimate than N for φ(N). Following the idea of [20], φ′(N) has been
taken as N − "2

√
N# (i.e., the upper bound of φ(n)) and the CF expression of

e
N−	2√N
 has been considered to estimate m

x in [1, Section 4]. It has been proved
in [1, Theorem 4, Section 4] that p, q can be found in polynomial time for every

N, e satisfying ex+y = 0 mod φ(N), with x ≤ 1
3

√
φ(N)

e
N

3
4

p−q and |y| ≤ p−q

φ(N)N
1
4
ex.

As we have done in the previous section, instead of considering the CF ex-
pression of e

N−	2√N
 , we consider the CF expression of e
N−� 3√

2

√
N�+1

to get

additional results.

Lemma 2. Let ex + y = mφ(N) for m > 0. Then | e
N− 3√

2

√
N+1

− m
x | < 1

2x2 for

x ≤ 7
4N

1
4 when |y| ≤ cN− 3

4 ex, where c ≤ 1 and p − q ≥ cN
1
2 .

Proof. Let us list the following observations.

1. From Proposition 1, we have N − 3√
2

√
N + 1 < φ(N) < N − 2

√
N + 1,

which gives, (2 − 3√
2
)
√

N < p + q − 3√
2

√
N < 0. Thus, |(2 − 3√

2
)
√

N | >

|p + q − 3√
2

√
N |, i.e., (3√

2
− 2)

√
N > |p + q − 3√

2

√
N |.

2. Also note that |y| ≤ cN− 3
4 ex, which gives |y| < xN

1
4 as e < N and c ≤ 1.

3. From [1, Proof of Theorem 2], 3
4

ex
φ(N) ≤ m ≤ 5

4
ex

φ(N) .

Now, e
N− 3√

2

√
N+1

− m
x =

m(−p−q+ 3√
2

√
N)−y

x(N− 3√
2

√
N+1)

.

This gives, | e
N− 3√

2

√
N+1

− m
x | <

m((3√
2
−2)

√
N)+|y|

x(N− 3√
2

√
N+1)

using item 1.

Now,
m((3√

2
−2)

√
N)+|y|

x(N− 3√
2

√
N+1)

< 1
2x2 if

5
4

ex
φ(N) ((

3√
2
−2)

√
N)+xN

1
4

x(N− 3√
2

√
N+1)

< 1
2x2 (using items 2, 3)

if
5
4 x((3√

2
−2)

√
N)+xN

1
4

x(N− 3√
2

√
N+1)

< 1
2x2 (as e

φ(N) < 1) iff
5
4 ((3√

2
−2)

√
N)+N

1
4

(N− 3√
2

√
N+1)

< 1
2x2

if
5
4×0.13

√
N

(N− 3√
2

√
N+1)

< 1
2x2 (as 3√

2
−2 < 0.13 and 5

4 (3√
2
−2)

√
N)+N

1
4 < 5

4×0.13
√

N

for large N)

238 S. Maitra and S. Sarkar

iff 5
2 × 0.13x2 <

√
N + 1√

N
− 3√

2

if x2 < 3.076
√

N (for large N) if x ≤ 1.75N
1
4 . �

This shows that the class of weak keys identified in [1, Theorem 2] can be ex-
tended by 21

4 , i.e., by more than 5 times.
In the improved result of [1, Theorem 4, Section 4], it has been shown that p, q

can be found in polynomial time for every N, e satisfying ex + y = 0 mod φ(N),

with 0 < x ≤ 1
3

√
φ(N)

e
N

3
4

p−q and |y| ≤ p−q

φ(N)n
1
4
ex. Our result in Lemma 2 provides

new weak keys which are not covered by the result of [1, Theorem 4, Section 4]
in certain cases as follows.

Let p− q = c
√

N . As, q < p < 2q, we have p− q <
√

N
2 . Thus, c < 1√

2
. In [1,

Theorem 4, Section 4], it is given that x ≤ 1
3

√
φ(N)

e
N

3
4

p−q . Putting p − q = c
√

N ,

we find x ≤ 1
3c

√
φ(N)

e N
1
4 . Thus our result in Lemma 2 provides extra weak keys

than [1, Theorem 4, Section 4] when 1
3c

√
φ(N)

e N
1
4 < 7

4N
1
4 , which is true for

e
φ(N) >

(
4

21c

)2. As e < φ(N), 4
21c < 1, which gives c > 4

21 . Thus the result our
Lemma 2 presents new weak keys over In [1, Theorem 4, Section 4] when

e
φ(N) >

(
4

21c

)2 for 4
21 < c < 1√

2
.

Next we use our idea of considering 2q − p (as presented in Proposition 2)
instead of p − q.

Theorem 4. Let l be a positive integer such that l >
2(3√

2
+2)

3√
2
−2ε

, where ε >

2q−p

φ(N)N
1
4
. Let q > 2l+2

4l+1p. Suppose e satisfies the equation ex + y = mφ(N),

for m > 0. Then N can be factored in O(poly(log(N))) time when 0 < x ≤√
3
4l

√
φ(N)

e
N

3
4

2q−p and |y| ≤ 2q−p

φ(N)N
1
4
ex.

Proof. We have m = ex+y
φ(N) . Using the bound on |y|, we get m ≤ ex

φ(N)

(
1 +

2q−p

φ(N)N
1
4

)
. Now, | e

N− 3√
2

√
N+1

− m
x | =

|ex−m(N− 3√
2

√
N+1)|

x(N− 3√
2

√
N+1)

=
|m(3√

2

√
N−p−q)−y|

x(N− 3√
2

√
N+1)

(putting ex = −y + mφ(N))

≤ |m(3√
2

√
N−p−q)|+|y|

x(N− 3√
2

√
N+1)

<
(ex

φ(N)

(
1+ 2q−p

φ(N)N
1
4

)
)(l(2q−p)2

(3√
2
+2)

√
N

)+ 2q−p

φ(N)N
1
4

ex

x(N− 3√
2

√
N+1)

(putting the

upper bound on m, using | 3√
2

√
N − (p+ q)| < l(2q−p)2

(3√
2
+2)

√
N

from Proposition 2 and

the upper bound of y)

=
(e

φ(N)

(
1+ 2q−p

φ(N)N
1
4

)
)(l(2q−p)2

(3√
2
+2)

√
N

)+ 2q−p

φ(N)N
1
4

e

(N− 3√
2

√
N+1)

=
e

φ(N)

(
(1+ 2q−p

φ(N)N
1
4

)(l(2q−p)2

(3√
2
+2)

√
N

)+ 2q−p

N
1
4

)
(N− 3√

2

√
N+1)

Revisiting Wiener’s Attack – New Weak Keys in RSA 239

≤
e

φ(N)

(
l(2q−p)2

2
√

N

)
(N− 3√

2

√
N+1)

, because of the following.

Let X = 2q−p

N
1
4

. Thus, (1 + 2q−p

φ(N)N
1
4
)(l(2q−p)2

(3√
2
+2)

√
N

) + 2q−p

N
1
4

= (1 + X
φ(N))(

lX2

3√
2
+2

+

X) < (1 + ε)(lX2

3√
2
+2

+ X) < l
2X2 if l >

2(3√
2
+2)

3√
2
−2ε

, when ε > X
φ(N) , a very small

quantity of O(N− 3
4). This is because, the numerator 2q − p is O(N

1
2) and the

denominator contains N
1
4 φ(N), where φ(N) is O(N).

Assuming N − 3√
2

√
N > 3

4N , we get | e
N− 3√

2

√
N+1

− m
x | <

e
φ(N)

(
l(2q−p)2

2
√

N

)
3
4N

.

Thus, | e
N− 3√

2

√
N+1

− m
x | < 1

2x2 if
e

φ(N)

(
l(2q−p)2

2
√

N

)
3
4 N

≤ 1
2x2

iff 0 < 2x2 ≤ φ(N)
e

3
2N

3
2

l(2q−p)2 iff 0 < x ≤
√

3
4l

√
φ(N)

e
N

3
4

2q−p .

Given, | e
N− 3√

2

√
N+1

− m
x | < 1

2x2 , N can be factorized using [1, Algorithm

Generalized Wiener Attack II]. �

We have l >
2(3√

2
+2)

3√
2
−2ε

. Now,
2(3√

2
+2)

3√
2

= 3.88561808316412673173. Since 2ε is very

small, one may assume l = 4 as a specific value. In such a case,
√

3
4l > 2

5 > 1
3 ,

when q > 10
17p.

The result of [1, Theorem 4, Section 4] states that p, q can be found in poly-
nomial time for every N, e satisfying ex + y = 0 mod φ(N), with 0 < x ≤
1
3

√
φ(N)

e
N

3
4

p−q and |y| ≤ p−q

φ(N)n
1
4
ex. In our result p− q is replaced by 2q − p. Thus

the results of this section present new weak keys other than those presented
in [1]. The result of [1, Theorem 4, Section 4] works efficiently when p − q is
upper bounded and our work gives better results when 2q− p is upper bounded.

4 Conclusion

In this paper we study the well known method of Continued Fraction (CF)
expression to demonstrate new weak keys of RSA. The idea is to factorize n
using the knowledge of e and some estimate of φ(N). One may note that in
most of the cases t

d can be found in the CF expression of e
φ(N) . This idea was

first proposed in [18], where the CF expression e
N has been used to estimate t

d ,
i.e., N has been used as an estimate of φ(N). Later to that, N − 2

√
N + 1 (an

upper bound of φ(N)) has been used as an estimate of φ(N) in many works,
e.g., [20,1]. In this paper we have studied both the upper and lower bounds of
φ(N) carefully and used N− 3√

2

√
N+1 (a lower bound of φ(N)) as an estimate of

φ(N). We extensively study the cases when t
d can be found in the CF expression

of e
N− 3√

2

√
N+1

. Our results provide new weak keys over the work of [20,1] and to

the best of our knowledge the weak keys identified in our paper have not been
presented earlier.

240 S. Maitra and S. Sarkar

References

1. Blömer, J., May, A.: A generalized Wiener attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

2. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS 46(2), 203–213 (1999)

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292.
IEEE Trans. on Information Theory 46(4), 1339–1349 (2000)

4. Copppersmith, D.: Small solutions to polynomial equations and low exponent vul-
nerabilities. Journal of Cryptology 10(4), 223–260 (1997)

5. Coron, J.-S., May, A.: Deterministic Polynomial-Time Equivalence of Computing
the RSA Secret Key and Factoring. J. Cryptology 20(1), 39–50 (2007)

6. Duejella, A.: Continued fractions and RSA with small secret exponent. Tatra Mt.
Math. Publ. 29, 101–112 (2004)

7. Jochemsz, E.: Cryptanalysis of RSA variants using small roots of polynomials. Ph.
D. thesis, Technische Universiteit Eindhoven (2007)

8. Hastad, J.: On using RSA with low exponent in public key network. In: Williams,
H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 403–408. Springer, Heidelberg
(1986)

9. Ibrahim, D., Bahig, H.M., Bhery, A., Daoud, S.S.: A new RSA vulnerability us-
ing continued fractions. In: 6th ACS/IEEE International Conference on Computer
Systems and Applications (AICCSA 2008), Doha, Qatar, March 31–April 4 (2008)

10. Jochemsz, E., May, A.: A Polynomial Time Attack on RSA with Private CRT-
Exponents Smaller Than N0.073 . In: Menezes, A. (ed.) CRYPTO 2007. LNCS,
vol. 4622, pp. 395–411. Springer, Heidelberg (2007)

11. Pollard, J.M.: Theorems on factorization and primality testing. Proc. of Combridge
Philos. Soc. 76, 521–528 (1974)

12. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of ACM 21(2), 158–164 (1978)

13. Rosen, K.H.: Elementary Number Theory. Addison-Wesley, Reading (1984)
14. Silverman, R.D.: Fast generation of random, strong RSA primes. Cryptobytes 3(1),

9–13 (1997)
15. Stinson, D.R.: Cryptography – Theory and Practice, 2nd edn. Chapman &

Hall/CRC, Boca Raton (2002)
16. Steinfeld, R., Contini, S., Pieprzyk, J., Wang, H.: Converse results to the Wiener

attack on RSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 184–198.
Springer, Heidelberg (2005)

17. Verheul, E.R., van Tilborg, H.C.A.: Cryptanalysis of ‘less short’ RSA secret ex-
ponents. Applicable Algebra in Engineering, Communication and Computing 8,
425–435 (1997)

18. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36(3), 553–558 (1990)

19. Williams, H.C.: A p+1 method of factoring. Mathematics of Computation 39(159),
225–234 (1982)

20. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13(1), 17–28 (2002)

Revisiting Wiener’s Attack – New Weak Keys in RSA 241

Appendix A

Example 1. The CF expression of e
N−� 3√

2

√
N�+1

is as follows.
0, 2, 1, 1, 1, 35, 1, 1, 1, 1, 4, 1, 1, 2, 11, 1, 3, 1, 1, 3, 2, 8, 30, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 5, 1, 2, 1, 1, 1, 2,

1, 3, 1, 1, 1, 1, 2, 4, 2, 5, 1, 6, 1, 1, 1, 5, 4, 31, 7, 4, 1, 5, 5, 3, 1, 145, 1, 54, 5, 1, 4, 3, 2, 18, 1, 1, 1, 2, 1, 3,

3, 11, 6, 1, 1, 1, 1, 27, 4, 2, 1, 5, 1, 1, 3, 1, 11, 4, 3, 10, 1, 2, 1, 2, 3, 8, 1, 1, 1, 2, 1, 7, 1, 2, 3, 4, 1, 6, 3, 1,

4, 1, 8, 621, 1, 4, 2, 11, 1, 1, 35, 1, 113, 7, 1, 13, 1, 2, 1, 20, 1, 2, 6, 2, 1, 5, 3, 4, 1, 2, 17, 3, 2, 3, 3, 1, 1, 1, 2, 4,

1, 22, 1, 1, 4, 1, 1, 4, 1, 1, 3, 3, 1, 150, 4, 1, 1, 4, 2, 1, 1, 1, 9, 6, 1, 1, 1, 8, 1, 1, 30, 26, 1, 1, 1, 1, 9, 1, 6, 3,

3, 12, 1, 1, 1, 2, 2, 1, 14, 1, 3, 7, 1, 2, 1 |, 1242, 1, 1, 1, 2, 1, 4, 5, 12, 1, 1, 4, 13, 5, 4, 10, 1, 1, 1, 12, 1, 30, 2, 65, 10,

1, 2, 3, 1, 6, 1, 1, 15, 14, 6, 2, 9, 3, 2, 13, 2, 10, 1, 7, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 17, 1,4, 1, 33, 1, 2, 5, 5,

26, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 48, 1, 1, 136, 1, 17, 1, 3, 1, 9, 6, 14, 1, 24, 2, 4, 31, 2, 2, 1, 1, 2, 2,

1, 3, 1, 2, 2, 1, 1, 1, 10, 1, 20, 7, 12, 3, 6, 1, 2, 5, 5, 1, 2, 5, 1, 1, 1, 3, 3, 1, 11, 8, 3, 2, 1, 75, 1, 1, 34, 1, 1, 3,

7, 2, 1, 2, 7, 1, 5, 1, 5, 1, 1, 16, 1, 1, 4, 2, 14, 1, 2, 8, 6, 6, 1, 1, 5, 1, 1, 2, 1, 1, 2, 523, 4, 1, 6, 1, 1, 2, 1, 4,

2, 1, 1, 1, 1, 2, 2, 11, 7, 1, 2, 28, 21, 1, 8, 11, 3, 1, 18, 1, 2, 1, 47, 1, 5, 1, 10, 2, 9, 1, 2, 3, 18, 1, 2, 1, 2, 7, 1, 6,

5, 3, 3, 14, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 2, 2, 3, 3, 4, 1, 1, 2, 1, 4, 2, 1, 1, 3, 3, 1, 2, 1, 1, 1, 11, 1, 3, 1, 257, 2,

3, 5, 2, 1, 10, 1, 2, 2, 1, 1, 7, 1, 1, 2, 1, 4, 1, 10, 8, 3, 5, 1, 3, 1, 5, 1, 1, 1, 2, 4, 4, 2, 45, 1, 2, 60, 3, 1, 1, 1,

1, 5, 4, 3, 1, 2, 1, 1, 1, 15, 4, 2, 1, 1, 1, 1, 1, 1, 20, 3, 1, 4, 1, 1, 7, 3, 1, 4, 1, 1, 2, 5, 1, 3, 1, 2, 1, 1, 1, 1,

1, 28, 3, 49, 9, 9, 13, 7, 4, 3, 5, 2, 17, 1, 8, 1, 2, 2, 4, 5, 1, 1, 5, 1, 94, 1, 6, 1, 3, 1, 2, 1, 1, 12, 6, 1, 2, 1, 114, 2,

2, 24, 2, 3, 155, 1, 7, 1, 2, 1, 2, 19, 1, 9, 1, 6, 1, 3, 1, 1, 1, 1, 2, 2, 6, 1, 4, 1, 1, 5, 1, 2, 6, 1, 4, 1, 8, 1, 1, 1,

2, 84, 3.
The CF expression of t

d is as follows.
0, 2, 1, 1, 1, 35, 1, 1, 1, 1, 4, 1, 1, 2, 11, 1, 3, 1, 1, 3, 2, 8, 30, 1, 1, 1, 16, 1, 1, 1, 1, 7, 1, 5, 1, 2, 1, 1, 1, 2,

1, 3, 1, 1, 1, 1, 2, 4, 2, 5, 1, 6, 1, 1, 1, 5, 4, 31, 7, 4, 1, 5, 5, 3, 1, 145, 1, 54, 5, 1, 4, 3, 2, 18, 1, 1, 1, 2, 1, 3,

3, 11, 6, 1, 1, 1, 1, 27, 4, 2, 1, 5, 1, 1, 3, 1, 11, 4, 3, 10, 1, 2, 1, 2, 3, 8, 1, 1, 1, 2, 1, 7, 1, 2, 3, 4, 1, 6, 3, 1,

4, 1, 8, 621, 1, 4, 2, 11, 1, 1, 35, 1, 113, 7, 1, 13, 1, 2, 1, 20, 1, 2, 6, 2, 1, 5, 3, 4, 1, 2, 17, 3, 2, 3, 3, 1, 1, 1, 2, 4,

1, 22, 1, 1, 4, 1, 1, 4, 1, 1, 3, 3, 1, 150, 4, 1, 1, 4, 2, 1, 1, 1, 9, 6, 1, 1, 1, 8, 1, 1, 30, 26, 1, 1, 1, 1, 9, 1, 6, 3,

3, 12, 1, 1, 1, 2, 2, 1, 14, 1, 3, 7, 1, 3.

Example 2. The CF expression of e
N−� 3√

2

√
N�+1

is as follows.
0, 8878, 1, 2, 14, 12, 1, 1, 1, 3, 18, 1, 54, 2, 7, 10, 1, 2, 4124, 1, 1, 1, 168, 22, 9, 3, 1, 1, 8, 1, 2, 1, 1, 4, 2, 2, 1, 1, 4, 3,

1, 1, 1, 9, 2, 1, 1, 1, 206, 1, 11, 1, 9, 4, 39, 3, 1, 86, 1, 2, 1, 6, 1, 1, 2, 5, 4, 3, 1, 6, 1, 4, 1, 6, 1, 2, 2, 4, 8, 7,

1, 24, 1, 1, 2, 17, 1, 165, 1, 1, 16, 1, 2, 17, 9, 1, 3, 5, 2, 1, 3, 1, 2, 5, 1, 2, 3, 2, 4, 2, 22, 2, 4, 1, 1, 2, 4, 1, 3, 1,

2, 1, 131, 1, 2, 22, 5, 11, 1, 4, 14, 2, 2, 2, 10, 1, 2, 2, 1, 3, 1, 3, 1, 17, 1, 1, 2, 1, 3, 10, 1, 1, 1, 4, 1, 11, 1, 1, 1, 2,

69, 2, 1, 1, 1, 168, 3, 1, 1, 2, 4, 4, 1, 1, 53, 1, 15, 18, 6, 2, 3, 2, 1, 2, 4, 1, 23, 1, 4 |, 1, 1, 28, 2, 1, 1, 1, 1, 1, 1, 1,

2, 2, 3, 1, 2, 1, 3, 5, 3, 28, 1, 2, 2, 2, 2, 7, 4, 1, 1, 1, 1, 1, 6, 2, 3, 3, 47, 1, 1, 4, 2, 1, 1, 2, 1, 30, 4, 1, 1, 315,

1, 3, 30, 2, 1, 4, 1, 21, 1, 10, 1, 2, 1, 5, 9, 1, 26, 1, 1, 1, 4, 1, 5, 2, 457, 1, 1, 13, 9, 25, 2, 3, 1, 92, 1, 1, 3, 1, 2, 4,

158, 3, 4, 6, 2, 22, 1, 5, 1, 1, 1, 2, 4, 1, 1, 2, 6, 4, 2, 5, 2, 1, 1, 16, 47, 4, 1, 1, 2, 1, 2, 1, 1, 2, 3, 2, 3, 12, 7, 2,

2, 1, 5, 2, 1, 1, 1, 3, 1, 15, 1, 1, 1, 1, 1, 1, 7, 1, 101, 2, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 3, 4, 1, 9, 2, 1, 228, 1, 1,

3, 1, 2, 3, 7, 1, 1, 1, 12, 1, 2, 2, 10, 3, 2, 1, 14, 5, 2, 2, 1, 32, 1, 59, 2, 110, 1, 9, 1, 7, 9, 1, 7, 2, 1, 2, 1, 3, 5, 1,

1, 1, 1, 3, 8, 2, 2, 1, 2, 6, 1, 3, 7, 1, 7, 1, 1, 1, 10, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 3, 3, 18, 3, 3, 1, 1, 1, 1, 8,

1, 3, 1, 1, 6, 4, 9, 1, 3, 5, 1, 1, 3, 26, 38, 3, 6, 2, 2, 1, 1, 14, 1, 4, 1, 1, 3, 4, 1, 4, 1, 2, 2, 2, 1, 3, 15, 4, 1, 2,

1, 1, 6, 2, 1, 1, 1, 6, 11, 15, 1, 7, 3, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 1, 5, 1, 5, 1, 1, 1, 9, 1, 1, 6, 25, 2, 2, 6, 2, 7,

4, 3, 1, 1, 1, 3, 2, 1, 6, 14, 2, 1, 1, 1, 2, 1, 6, 1, 17, 1, 1, 1, 18, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 34, 2, 3, 30, 1, 3,

2, 4, 1, 2, 1, 2, 1, 3, 1, 5, 1, 2, 1, 1, 1, 7, 1, 4, 6, 3, 5, 2, 2, 4, 2, 1, 10, 2, 1, 6, 1, 5, 1, 1, 11, 1, 6, 28, 1, 2,

9, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 17, 1, 1, 4, 2, 7, 6, 6, 3, 4, 2, 14, 1, 6, 1, 2.

242 S. Maitra and S. Sarkar

The CF expression of t
d is as follows.

0, 8878, 1, 2, 14, 12, 1, 1, 1, 3, 18, 1, 54, 2, 7, 10, 1, 2, 4124, 1, 1, 1, 168, 22, 9, 3, 1, 1, 8, 1, 2, 1, 1, 4, 2, 2, 1, 1, 4, 3,

1, 1, 1, 9, 2, 1, 1, 1, 206, 1, 11, 1, 9, 4, 39, 3, 1, 86, 1, 2, 1, 6, 1, 1, 2, 5, 4, 3, 1, 6, 1, 4, 1, 6, 1, 2, 2, 4, 8, 7,

1, 24, 1, 1, 2, 17, 1, 165, 1, 1, 16, 1, 2, 17, 9, 1, 3, 5, 2, 1, 3, 1, 2, 5, 1, 2, 3, 2, 4, 2, 22, 2, 4, 1, 1, 2, 4, 1, 3, 1,

2, 1, 131, 1, 2, 22, 5, 11, 1, 4, 14, 2, 2, 2, 10, 1, 2, 2, 1, 3, 1, 3, 1, 17, 1, 1, 2, 1, 3, 10, 1, 1, 1, 4, 1, 11, 1, 1, 1, 2,

69, 2, 1, 1, 1, 168, 3, 1, 1, 2, 4, 4, 1, 1, 53, 1, 15, 18, 6, 2, 3, 2, 1, 2, 4, 1, 23, 1, 4.

Example 3. Refer to p, q of Example 1.
We consider d > N

1
3 . Let d =

61033620665104690038995387156383867652322226123296685389723133974030185448442674

868648018282242385291149523 (a 107 digit number). The corresponding e is
50540840993586746176600277435717647268345032073616659706674487447082243977918413

69230468320247447700980725776203252713926251719762610251531355631225052032958925

15721185756124886461821221336089046395014548367690311088585379161620308946520609

52054971519354961768941803469478934733847712332990457645725177388815967595164763 .
Now the value of

2N
(2d+1)2

− N
N−A+1

N
N−B − N

N−A+1
is

27752782508386083340303355961072715172277767233940251957583970436546175777700818

56675682093198406639916267829956297391155579729307540645697606925067924255151889

80660932268183968356467852982743493427983896661042498000474961761359348086394693

97989358459219665226578434492825190314230927017627756077533311413417373451513,
which is smaller than e. The value of t is

13567636387098752787725975030066552194109294975540802943145816240544873199851054

057524379767989315810471872.

The CF expression of e
N−� 3√

2

√
N�+1

is as follows.

0, 4, 2, 163, 49, 1, 6, 10, 74, 1, 3, 2, 12, 1, 3, 1, 4, 1, 1, 1, 1, 2, 1, 1 ,4, 1, 2, 42, 21, 1, 1, 9, 2, 3, 1, 3, 1, 6, 1, 1,

2, 3, 19, 1, 2, 1, 2, 1, 7, 1, 35, 1, 11, 3, 14, 1, 2, 1, 3, 188, 1, 3, 5, 3, 1, 3, 1, 26, 2, 2, 1, 1, 1, 9, 1, 1, 3, 1, 4, 1,

1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 11, 5, 2, 1, 7, 2, 1, 6, 3, 1, 3, 7, 1, 1, 1, 3, 1, 8, 9, 3, 5, 1, 4, 2, 1, 16,

1, 1, 1, 5, 2, 4, 1, 2, 1, 5, 1, 12, 2, 3, 2, 21, 2, 1, 6, 2, 3, 2, 1, 11, 1, 2, 1, 8, 1, 1, 2, 5, 1, 4, 4, 20, 2, 2, 22, 3,

2, 1, 2, 9, 6, 1, 1, 2, 3, 1, 1, 2, 1, 1, 15, 15, 1, 4, 1, 7, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 7, 7, 1, 2, 2, 7, 2, 11, 6,

1, 2, 223, 2, 4, 5, 1, 1, 9, 3, 3, 2, 1, 1, 5, 1, 3, 5, 1, 1, 1, 2, 26, 1, 1, 7, 10, 2, 1, 7, 4, 7, 1, 1, 5, 1, 4, 2, 2, 2,

3, 1, 5, 2, 1, 1, 2, 1, 1, 6, 6, 1, 10, 1, 33, 1, 6, 1, 3, 1, 2, 1, 2, 1, 1, 11, 3, 2, 8, 1, 29, 3, 2, 2, 36, 1, 5, 1, 2, 10,

9, 1, 4, 1, 9, 3, 1, 22, 4, 6, 10, 1, 1, 5, 10, 234, 1, 3, 13, 4, 9, 2, 1, 1, 2, 2, 1, 14, 1, 1, 2, 1, 1, 2, 5, 4, 1, 5, 1, 1,

4, 1, 62, 4, 8, 1, 8, 47, 10, 3, 2, 3, 7, 2, 2, 1, 2, 1, 1, 20, 1, 1, 1, 19, 440, 3, 3, 1, 6, 1, 2, 3, 2, 1, 3, 1, 1, 3, 1, 1,

48, 6, 2, 15, 21, 1, 4, 2, 3, 4, 234, 19, 50, 2, 18, 1, 3, 2, 2, 3, 3, 4, 1, 1, 5, 9, 7, 1, 3, 1, 1, 3, 1, 8, 1, 6, 2, 1, 24, 2,

14, 1, 6, 2, 2, 4, 6, 2, 1, 6, 7, 16, 3, 4, 8, 1, 1, 1, 3, 1, 2, 2, 1, 8, 1, 2, 2, 2, 1, 2, 1, 1, 4, 5, 1, 5, 1, 1, 14, 1,

1, 78, 2, 1, 2, 3, 3, 1, 1, 2, 4, 16, 1, 1, 1, 1, 1, 1, 1, 6, 2, 76, 2, 1, 2, 2, 2, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 6, 1, 1,

1, 1, 5, 1, 29, 1, 40, 2, 1, 1, 7, 1, 3, 1, 4, 1, 5, 1, 4, 2, 1, 3, 1, 1, 2, 1, 15, 2, 9, 2, 1, 15, 1, 3, 2, 1, 1, 2, 9, 1,

2, 27, 2, 2, 1, 2, 3, 5, 3, 1, 4, 4, 1, 1, 1, 1, 7, 2, 5, 1, 1, 8, 2, 3, 1, 2, 1, 2, 1, 1, 1, 1, 1, 36, 1, 1, 3, 16, 1, 1,

1, 1, 1, 6, 1, 1, 3, 1, 6, 2, 1, 1, 3, 5, 53, 3, 2, 2, 3, 4, 1, 3, 1, 1, 1, 1, 9, 1, 2, 9, 3, 1, 5, 1, 1, 1, 39, 3, 1, 1,

1, 2, 1, 18, 1, 1, 2, 1, 2, 4, 1, 1, 1, 1, 6, 1, 2, 1, 1, 4, 1, 1, 1, 4, 2, 30, 1, 3, 1, 18, 9, 1, 1, 1, 1, 31, 2, 44, 3117868, 11,

1, 3.

The CF expression of t
d is as follows.

0, 4, 2, 163, 49, 1, 6, 10, 74, 1, 3, 2, 12, 1, 3, 1, 4, 1, 1, 1, 1, 2, 1, 1, 4, 1, 2, 42, 21, 1, 1, 9, 2, 3, 1, 3, 1, 6, 1, 1,

2, 3, 19, 1, 2, 1, 2, 1, 7, 1, 35, 1, 11, 3, 14, 1, 2, 1, 3, 188, 1, 3, 5, 3, 1, 3, 1, 26, 2, 2, 1, 1, 1, 9, 1, 1, 3, 1, 4, 1,

1, 1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 11, 5, 2, 1, 7, 2, 1, 6, 3, 1, 3, 7, 1, 1, 1, 3, 1, 8, 9, 3, 5, 1, 4, 2, 1, 16,

Revisiting Wiener’s Attack – New Weak Keys in RSA 243

1, 1, 1, 5, 2, 4, 1, 2, 1, 5, 1, 12, 2, 3, 2, 21, 2, 1, 6, 2, 3, 2, 1, 11, 1, 2, 1, 8, 1, 1, 2, 5, 1, 4, 4, 20, 2, 2, 22, 3,

2, 1, 2, 9, 6, 1, 1, 2, 3, 1, 1, 2, 1, 1, 15, 15, 1, 4, 1, 7, 1, 1, 1, 1, 1, 1, 5, 1, 2, 1, 1, 7, 7, 1, 2, 2, 7, 2, 11, 6,

1, 2, 223, 2, 4, 5, 1, 1, 9, 3, 3, 2, 1, 1, 5, 2, 2, 10.

Note that the CF expression of t
d could not be found (last three places do not

match) in the CF expression of e
N−� 3√

2

√
N�+1

.

Deterministic Constructions of 21-Step

Collisions for the SHA-2 Hash Family

Somitra Kumar Sanadhya� and Palash Sarkar

Applied Statistics Unit,
Indian Statistical Institute,
203, B.T. Road, Kolkata,

India 700108
somitra r@isical.ac.in, palash@isical.ac.in

Abstract. Recently, at FSE ’08, Nikolić and Biryukov introduced a new
technique for analyzing SHA-2 round function. Building on their work,
but using other differential paths, we construct two different determin-
istic attacks against 21-step SHA-2 hash family. Since the attacks are
deterministic, they are actually combinatorial constructions of collisions.
There are six free words in our first construction. This gives exactly 2192

different collisions for 21-step SHA-256 and exactly 2384 different colli-
sions for 21-step SHA-512. The second construction has five free words.
The best previous result, due to Nikolić and Biryukov, for finding col-
lisions for 21-step SHA-256 holds with probability 2−19. No results on
21-step SHA-512 are previously known. Further, we provide evidence
that the Nikolić-Biryukov differential path is unlikely to yield 21-step
collisions for SHA-512.

Keywords: SHA-2 family, cryptanalysis, reduced round attacks.

1 Introduction

At FSE ’08, Nikolić and Biryukov [5] presented a 9-step local collision for the
SHA-2 family. Using this local collision they presented an attack against step
reduced SHA-256. All the prior research on SHA-2 family had considered local
collisions which are valid for the linearized version of the round function of
SHA-2 family. The first such linearized local collision was presented by Gilbert
and Handschuh [2]. Later sixteen more linearized local collisions were shown
by Sanadhya and Sarkar [6]. Linearized local collisions have been used in [3,4]
and [7] to attack 18-step SHA-256.

The novelty of the Nikolić-Biryukov local collision lies in the fact that it is the
first local collision which is valid for the actual round function of SHA-2 family.
In contrast to the linearized local collisions which hold with probabilities around
2−39 or less, the Nikolić-Biryukov local collision holds with probability 1/3.

For the first time in the literature, the authors in [5] worked directly with
modular differences for SHA-256 and obtained 20-step and 21-step collisions
� This author is supported by the Ministry of Information Technology, Govt. of India.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 244–259, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Deterministic Constructions of 21-Step Collisions 245

for SHA-256 with probabilities 1/3 and 2−19 respectively. This was a marked
improvement on the previous result of 19-step near collision differential path for
SHA-256 presented by Mendel et al. [3].

Building on the work of Nikolić and Biryukov [5], but using a different
9-step non-linear local collision given by Sanadhya and Sarkar [8], we show two
new 21-step attacks against SHA-2 family. Both these attacks are deterministic.
For both these attacks, we provide algorithms to construct message pairs which
collide after 21-steps of SHA-2 evaluations. Our two constructions have free-
dom of six and five message words respectively. This gives exactly 2192 different
21-step SHA-256 collisions and 2384 different 21-step SHA-512 collisions for the
first construction. The corresponding values for the second construction are 2160

collisions for 21-step SHA-256 and 2320 collisions for 21-step SHA-512.
Nikolić and Biryukov had suggested that their 21-step attack against SHA-

256 will also be valid for SHA-512 with the same probability, i.e. 2−19. We show
this to be not true. We provide evidence which points to the infeasibility of
their attack against 21-step SHA-512. In showing this, we carefully analyze the
differential behaviour of the linear function σ1 used in the message expansion of
SHA-512.

2 Notation

In this paper we use the following notation:

– Message words: Wi ∈ {0, 1}n, W ′
i ∈ {0, 1}n for any i. The word size n is 32

for SHA-256 and 64 for SHA-512.
– The colliding message pair: {W0, W1, W2, . . . W15} and {W ′

0, W ′
1, W ′

2,
. . . W ′

15}.
– The expanded message pair: {W0, W1, W2, . . . Wr−1} and {W ′

0, W ′
1, W ′

2,
. . . W ′

r−1}. The number of steps r is 64 for SHA-256 and 80 for SHA-512.
– The internal registers for the two message pairs in step i: {ai, . . . , hi} and

{a′
i, . . . , h

′
i}.

– ROTRk(x): Right rotation of an n-bit quantity x by k bits.
– SHRk(x): Right shift of an n-bit quantity x by k bits.
– ⊕: bitwise XOR.
– +: addition modulo 2n.
– −: subtraction modulo 2n.
– δX = X ′ − X where X is an n-bit quantity.
– δΣ1(ei) = Σ1(e′i) − Σ1(ei).
– δΣ0(ai) = Σ0(a′

i) − Σ0(ai).
– δf i

MAJ (x, y, z): Output difference of the fMAJ function in step i when its
inputs differ by x, y and z. That is, δf i

MAJ(x, y, z) = fMAJ(ai +x, bi +y, ci +
z) − fMAJ (ai, bi, ci).

– δf i
IF (x, y, z): Output difference of the fIF function in step i when its inputs

differ by x, y and z. That is, δf i
IF (x, y, z) = fIF (ei + x, fi + y, gi + z) −

fIF (ei, fi, gi).

246 S.K. Sanadhya and P. Sarkar

3 The SHA-2 Hash Family and Collisions Attacks

3.1 The SHA-2 Hash Family

The SHA-2 hash function was standardized by NIST in 2002 [9]. There are 2
differently designed functions in this standard: the SHA-256 and SHA-512. In
addition, the standard also specifies their truncated versions: the SHA-224 and
SHA-384 respectively. The number in the name of the hash function refers to the
length of message digest produced by that function. Next we describe SHA-256
and SHA-512 in detail.

Eight registers are used in the evaluation of SHA-2. The initial value in the
registers is specified by an 8×n bit IV, n=32 for SHA-256 and 64 for SHA-512.
In Step i, the 8 registers are updated from (ai−1, bi−1, ci−1, di−1, ei−1, fi−1,
gi−1, hi−1) to (ai, bi, ci, di, ei, fi, gi, hi) according to the following equations:

ai = Σ0(ai−1) + fMAJ (ai−1, bi−1, ci−1) + Σ1(ei−1)
+fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

bi = ai−1

ci = bi−1

di = ci−1

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1)
+hi−1 + Ki + Wi

fi = ei−1

gi = fi−1

hi = gi−1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

The initial register values {a−1, b−1, . . . h−1} are specified by the IV. The fIF

and the fMAJ are three variable boolean functions If and Majority respectively.

For SHA-256, the functions Σ0 and Σ1 are defined as:

Σ0(x) = ROTR2(x) ⊕ ROTR13(x) ⊕ ROTR22(x),
Σ1(x) = ROTR6(x) ⊕ ROTR11(x) ⊕ ROTR25(x).

For SHA-512, the corresponding functions are:

Σ0(x) = ROTR28(x) ⊕ ROTR34(x) ⊕ ROTR39(x),
Σ1(x) = ROTR14(x) ⊕ ROTR18(x) ⊕ ROTR41(x).

Round i uses an n-bit word Wi which is derived from the message and a
constant word Ki. There are r = 64 steps in SHA-256 and 80 in SHA-512. The
hash function operates on a 512-bit (resp. 1024-bit) block specified as 16 words
of 32 (resp. 64) bits for SHA-256 (resp. SHA-512). Given the message words m0,
m1, . . .m15, the Wi ’s are computed using the equation:

Wi =
{

mi for 0 ≤ i ≤ 15;
σ1(Wi−2) + Wi−7 + σ0(Wi−15) + Wi−16 for 16 ≤ i ≤ r.

(2)

For SHA-256, the functions σ0 and σ1 are defined as:

σ0(x) = ROTR7(x) ⊕ ROTR18(x) ⊕ SHR3(x),
σ1(x) = ROTR17(x) ⊕ ROTR19(x) ⊕ SHR10(x).

Deterministic Constructions of 21-Step Collisions 247

And for SHA-512, they are defined as:

σ0(x) = ROTR1(x) ⊕ ROTR8(x) ⊕ SHR7(x),
σ1(x) = ROTR19(x) ⊕ ROTR61(x) ⊕ SHR6(x).

The output hash value of a one block (512-bit for SHA-256 and 1024-bit for
SHA-512) message is obtained by chaining the IV with the register values at the
end of the final round as per the Merkle-Damg̊ard construction. A similar strategy
is used for multi-block messages, where the IV for next block is taken as the hash
output of the previous block. For complete details of the SHA-2 family, see [9].

3.2 Collision Attacks Against the SHA-2 Hash Family

The aim of collision attacks against hash functions is to obtain two different
messages which produce the same digest under that hash function. The hash
functions use one word of the message in each step and process the message
for multiple steps. Typically, an attacker introduces a small difference in one
word of the message. This initial difference is called the “perturbation message
difference” [1]. Next few message words are chosen to differ in such a manner
that all the introduced differences cancel themselves with high probability. These
later message word differences are called “correction differences”.

Not all the message words used in different steps of the hash function are freely
available to the attacker. Most of the hash designs have 16 words of freedom
which is available in the first 16 steps of hash evaluation. Rest of the message
words are computed on the basis of the first 16 words using “message expansion”.

We present the nonlinear local collisions for the SHA-2 family next.

4 Nonlinear Local Collisions for SHA-2

Tables 1 and 2 show two 9-step local collision for the SHA-2 family. The first one
is due to Nikolić and Biryukov [5] whereas the second one is due to Sanadhya
and Sarkar [8]. In both the local collisions, the perturbation message difference is
taken to be 1. Other message differences are later computed so that the desired
differential path is obtained. In these tables, the registers (ai−1, . . . , hi−1) and
Wi are inputs to Step i of the hash evaluation and this step outputs the registers
(ai, . . . , hi).

4.1 Conditions on the Differential Paths of Tables 1 and 2

For the Nikolić-Biryukov Local Collision [5]: For this local collision,
δWi+1, δWi+2 and δWi+3 are computed from the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0)− δΣ1(ei), (3)

δWi+2 = −δf i+1
IF (−1, 1, 0)− δΣ1(ei+1), (4)

248 S.K. Sanadhya and P. Sarkar

Table 1. The Nikolić-Biryukov local collision [5]

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i 1 1 0 0 0 1 0 0 0

i + 1 δWi+1 0 1 0 0 −1 1 0 0

i + 2 δWi+2 0 0 1 0 0 −1 1 0

i + 3 δWi+3 0 0 0 1 0 0 −1 1

i + 4 0 0 0 0 0 1 0 0 −1

i + 5 0 0 0 0 0 0 1 0 0

i + 6 0 0 0 0 0 0 0 1 0

i + 7 0 0 0 0 0 0 0 0 1

i + 8 −1 0 0 0 0 0 0 0 0

Table 2. The Sanadhya-Sarkar local collision [8]. We use this local collision in the
present work.

Step i δWi δai δbi δci δdi δei δfi δgi δhi

i − 1 0 0 0 0 0 0 0 0 0

i 1 1 0 0 0 1 0 0 0

i + 1 δWi+1 0 1 0 0 −1 1 0 0

i + 2 δWi+2 0 0 1 0 −1 −1 1 0

i + 3 δWi+3 0 0 0 1 0 −1 −1 1

i + 4 0 0 0 0 0 1 0 −1 −1

i + 5 0 0 0 0 0 0 1 0 −1

i + 6 0 0 0 0 0 0 0 1 0

i + 7 δWi+7 0 0 0 0 0 0 0 1

i + 8 −1 0 0 0 0 0 0 0 0

δWi+3 = −δf i+2
IF (0,−1, 1). (5)

Intermediate registers need to satisfy the following conditions:

ai−2 = ai−1 = ai+1 = ai+2, ai = −1,

ei+2 = ei+3, ei+4 = −1, ei+5 = 0, ei+6 = −1. (6)

In addition, an extra condition needs to be satisfied:

δf i+3
IF (0, 0,−1) = −1. (7)

All the conditions in (6) can be deterministically satisfied by choosing mes-
sage words carefully, but the condition in (7) needs to be satisfied probabilis-
tically. This causes the success probability of 1/3 for this local collision. For
details refer to [5]. Note that our notation and indexing of the steps is different
from [5].

Deterministic Constructions of 21-Step Collisions 249

For the Sanadhya-Sarkar Local Collision [8]: For this local collision,
δWi+1, δWi+2 and δWi+3 are computed from the following equations:

δWi+1 = −1 − δf i
IF (1, 0, 0) − δΣ1(ei), (8)

δWi+2 = −1 − δf i+1
IF (−1, 1, 0)− δΣ1(ei+1), (9)

δWi+3 = −δf i+2
IF (−1,−1, 1)− δΣ1(ei+2), (10)

δWi+7 = −δf i+6
IF (0, 0, 1). (11)

Intermediate registers need to satisfy the following conditions:

ai−2 = ai−1 = ai = −1, ai+1 = ai+2 = 0,

ei+2 = 0, ei+3 = ei+4 = ei+5 = −1. (12)

We present two determintistic attacks in this work. We require δWi+7 = 0 in
the first attack but not in the second. For having δWi+7 = 0, an extra condition
ei+6 = −1 is required to be added to (12).

All the conditions in (12), with or without the condition ei+6 = −1, can be
deterministically satisfied by choosing message words carefully. This ensures the
success probability of 1 for this local collision. These conditions can be derived
in the same way as in [5]. Refer to [8] for details on the derivation of these
conditions and the method to satisfy them.

5 Deterministically Constructing 21-Step Collisions for
the SHA-2 Family

In [5], a single local collision spanning from Step 6 to Step 14 is used and a 21-
step collision for SHA-256 is obtained probabilistically. We use similar method
for our attack but this time we choose a special case of the Sanadhya-Sarkar
local collision in which δWi+7 = 0. As in [5], this local collision is also started
from Step 6.

First 5 steps of message expansion for SHA-2 are:

W16 = σ1(W14) + W9 + σ0(W1) + W0,

W17 = σ1(W15) + W10 + σ0(W2) + W1,
W18 = σ1(W16) + W11 + σ0(W3) + W2,

W19 = σ1(W17) + W12 + σ0(W4) + W3,
W20 = σ1(W18) + W13 + σ0(W5) + W4.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

Since the chosen local collision has 4 consecutive zero message differentials
within its span, we have δWi = 0 for i ∈ {10, 11, 12, 13}. Further, this being the
only local collision, messages outside the span of the local collision do not have

250 S.K. Sanadhya and P. Sarkar

any difference. Thus, we also have δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 15}. Terms
which may have non-zero differentials in the above equations are underlined.

All these zero differentials imply that if δσ1(W14) + δW9 = 0 then the first
5 steps of the message expansion will not produce any difference, and we will
have a 21-step collision. Since both W14 and W9 are random, it can be expected
that they will cancel the differences in this manner. Note that W14 is random
but δW14 = −1 is fixed, whereas δW9 is expected to be random.

Essentially, we need some δW9 and W14 satisfying the following equation:

σ1(W14) − σ1(W14 − 1) = δW9. (14)

Satisfying (14) will be easy if we can choose δW9 to be an arbitrary value of our
choice. In that case, we can first choose a random W14 and fix the value of δW9

which satisfies (14). We now show that our attack indeed enables us to choose
δW9 and hence this condition can be satisfied deterministically.

Before describing our attack, we first discuss an important relationship be-
tween register values computed at each step of SHA-2.

5.1 Cross Dependence Equation

In the calculation of new register values at each step of the SHA-2 hash family, reg-
isters b, c and d are just copies of register a values of previous steps. Registers e and
a are also related since most of the terms in their computation are common. Thus,
we note that ei can be computed solely from the register a values as shown below.

ei = di−1 + Σ1(ei−1) + fIF (ei−1, fi−1, gi−1) + hi−1 + Ki + Wi

= di−1 + ai − Σ0(ai−1) − fMAJ (ai−1, bi−1, ci−1)
= ai−4 + ai − Σ0(ai−1) − fMAJ(ai−1, ai−2, ai−3). (15)

This relationship between these two register values was not reported earlier.
Equation 15 plays a crucial role in our attack. We call this equation the “Cross
Dependence Equation”.

The surprising thing to note in the Cross Dependence Equation is that we can
control the value of ei from ai−4, a register value which was computed 4 steps
earlier. We use this fact in constructing our attack.

5.2 Values of δW9 for the Sanadhya-Sarkar Local Collision

Some register values are fixed for this local collision as given in (12). Recall that
the local collision is started from step i = 6. Hence, the message difference δW9

corresponds to δWi+3 from (5). This equation gives:

δWi+3 = −δf i+2
IF (−1,−1, 1)− δΣ1(ei+2)

= −fIF (ei+2 − 1, fi+2 − 1, gi+2 + 1) + fIF (ei+2, fi+2, gi+2)
−Σ1(ei+2 − 1) + Σ1(ei+2)

= −fIF (ei+2 − 1, ei+1 − 1, ei + 1) + fIF (ei+2, ei+1, ei)
−Σ1(ei+2 − 1) + Σ1(ei+2)

Deterministic Constructions of 21-Step Collisions 251

= −fIF (0 − 1, ei+1 − 1, ei + 1) + fIF (0, ei+1, ei)
−Σ1(0 − 1) + Σ1(0)

= −(ei+1 − 1) + ei − (−1) + 0
= −ei+1 + ei + 2 = − e7 + e6 + 2.

We also know from the “Cross Dependence Equation” (15) that:

e6 = a2 + a6 − Σ0(a5) − fMAJ(a5, a4, a3),
e7 = a3 + a7 − Σ0(a6) − fMAJ(a6, a5, a4).

Substituting the values of registers from (12) with i = 6, we get:

e6 = a2 + a6 − Σ0(a5) − fMAJ (a5, a4, a3)
= a2 + (−1) − Σ0(−1) − fMAJ(−1,−1, a3)
= a2 + (−1) − (−1) − (−1) = a2 + 1,

e7 = a3 + a7 − Σ0(a6) − fMAJ (a6, a5, a4)
= a3 + 0 − Σ0(−1) − fMAJ (−1,−1,−1)
= a3 + 0 − (−1) − (−1) = a3 + 2.

This gives,

δW9 = −(a3 + 2) + (a2 + 1) + 2 = − a3 + a2 + 1. (16)

This value of δW9 for the local collision of Table 2 depends on the registers a3

and a2 only. Register value a2 will be available in Step 3 of hash evaluation
and register value a3 will be produced in this step using W3. We can therefore
choose W3 suitably to fix the difference δW9 to any arbitrary desired value. It is
startling to note that δW9 can be fixed to any desired value by choosing a message
word 6 steps earlier. This is a consequence of the Cross Dependence Equation.

5.3 Obtaining 21-Step Collisions

Recall that (1) is used at Step i of the hash evaluation. Registers (ai−1, bi−1, . . .
, hi−1) are available at this step and the output register ai or ei can be controlled
by selecting Wi suitably. For instance, if we wish to make ai to be zero, then we
can calculate the suitable value of Wi from (1) which will make this happen.

The algorithm to obtain message pairs leading to deterministic 21-step colli-
sions for SHA-2 family in described in Section B. Messages colliding for 21-step
SHA-512 and 21-step SHA-256 obtaied using this algorithm are shown in Table 3.

6 Another Construction for Deterministic 21-Step
Collisions in SHA-2

This time we choose to span a single instance of the Sanadhya-Sarkar local
collision from Step 7 to Step 15. We have that δW7 = 1 and δW15 = −1.

252 S.K. Sanadhya and P. Sarkar

Further, δW8, δW9, δW10 and δW14 are determined from (8), (9), (10) and (11)
respectively.

If we can ensure that the first two steps of message expansion do not produce
any message difference then (13) implies that there will be no message difference
in the next three steps as well. This will give another 21-step collision for SHA-
2 family. The conditions needed to be satisfied for handling first two steps of
message expansion as desired are:

σ1(W14) + W9 = σ1(W ′
14) + W ′

9, (17)

σ1(W15) + W10 = σ1(W ′
15) + W ′

10. (18)

We know that δW15 = W ′
15 − W15 = −1. Further, δW10 = W ′

10 − W10 for this
case is similar to the δW9 of Section 5.2 and can be set to any arbitrarily chosen
value. Therefore (18) can be deterministically satisfied using a method similar to
that described in Section 5.2. We now carefully examine (17) which is the only
condition left to be satisfied.

Equation 17 can be written as:

σ1(W14) − σ1(W14 + δW14) = δW9. (19)

The use of the local collision of Table 2 causes some register values to be set as
per (12). In particular, we have that e12 = e11 = −1. From (11), we get:

δW14 = −δf13
IF (0, 0, 1)

= −fIF (e13, f13, g13 + 1) + fIF (e13, f13, g13)
= −fIF (e13, e12, e11 + 1) + fIF (e13, e12, e11)
= −fIF (e13,−1, 0) + fIF (e13,−1,−1)
= −e13 − 1.

The above expression for δW14 depends only on e13. Register e13 can be set to
any desired value by proper choice of the free message word W13. Hence we can
have any desired value of δW14 for our collision. Coming back to (19), we observe
that we have no control over δW9. However, for any choice of δW9, we can always
find a solution to (19). For example, if we write W14 = A and δW14 = B−A, then
we need to solve the equation σ1(A) − σ1(B) = δW9. There are many solutions
to this equation. A particular solution is obtained by choosing A = σ−1

1 (δW9)
and B = 0. This solution corresponds to W14 = σ−1

1 (δW9) and δW14 = −W14.
The particular solution suggested above will work only if we can invert the

32 × 32 bit map σ1 for SHA-256 and the 64 × 64 bit map σ1 for SHA-512. We
note that the map σ1 is a linear function. Therefore σ1(x) can be expressed
as multiplication of a matrix with x. For both these hash functions, the corre-
sponding matrix is of full rank. Therefore σ1 is invertible and our attack succeeds
with probability one. The algorithm to obtain message pairs colliding for 21-step
SHA-2 family using this construction is similar to our first construction given in
Table 5. Messages colliding for 21-step SHA-512 and 21-step SHA-256 obtaied
using our second algorithm are shown in Table 4.

Deterministic Constructions of 21-Step Collisions 253

7 Infeasibility of 21-Step SHA-512 Collision Using
Nikolić-Biryukov Local Collision

For this local collision, we first show the difficulty of finding values of δW9 and
δσ1(W14) which are of the same order of magnitude. We note that δW9 is biased
towards values of small magnitude in this case. In contrast, σ1(W14)−σ1(W14−1)
for SHA-512 is biased towards large magnitudes for random values of W14. This
makes it unlikely to achieve equality of the two terms as required in (14). Now
we provide concrete proofs for these facts.

7.1 Magnitude of δW9 Values for the Nikolić-Biryukov Local
Collision

We first state and prove some propositions which help us understand the bias of
δW9 in this case. Later we prove a lemma regarding the magnitude of δW9. In
the discussion that follows, we use Xi to denote the ith bit of a 64-bit quantity
X . We also use the convention that the index of the least significant bit is 0.

Proposition 1. Pr[Pj
= (P + 1)j] = 1/2j, where the probability is taken over
random P .

Proof. The necessary and sufficient condition for the jth bit of P and P + 1
to differ is that all the bits from 0 to (j − 1) in P are 1. This happens with
probability 1/2j, hence proved. �

Proposition 2. If two numbers X and Y are such that Xi
= Yi and Xi−1 =
Yi−1, then |X − Y | ≥ 2i−1 + 1.

Proof. Without loss of generality, suppose Xi = 1 and Yi = 0. Let Z = X − Y .
If Zi = 1, then clearly |Z| ≥ 2i and we are done.

So, suppose Zi = 0 and consider the process of binary subtraction of Y from
X to obtain Z. Since Xi = 1 and Yi = 0, the result Zi = 0 can happen only if
the subtraction of Yi−1Yi−2 . . . Y0 from Xi−1Xi−2 . . . X0 produces a carry. But
since Xi−1 = Yi−1, this implies the following two things.

1. Zi−1 = 1.
2. The subtraction of Yi−2Yi−3 . . . Y0 from Xi−2Xi−3 . . . X0 produces a carry.

The second point implies that at least one bit of Zi−2Zi−3 . . . Z0 must be 1.
This together with the first point Zi−1 = 1 implies that |Z| ≥ 2i−1 + 1. Hence
proved. �

Next we prove that the probability that the absolute value of δW9, when using
Nikolić-Biryukov local collision, is larger than 2j is bounded above by 1/2j−1.

Lemma 1. If the Nikolić-Biryukov local collision is started at Step 6, then

Pr[|δW9| ≥ 2j] < 1/2j−1.

254 S.K. Sanadhya and P. Sarkar

Proof. Since the local collision is started from step i = 6, the message difference
δW9 corresponds to δWi+3 from (5). This equation gives:

δW9 = −δf8
IF (0,−1, 1)− δΣ1(e8)

= −fIF (e8, f8 − 1, g8 + 1) + fIF (e8, f8, g8) − 0
= −fIF (e8, e7 − 1, e6 + 1) + fIF (e8, e7, e6). (20)

The two fIF terms in the computation above have the same first argument
e8. The second and the third arguments have a modular difference of ±1. If the
jth bit of e8 is 1 then the two fIF functions will select the corresponding bit
from the middle argument, else from the third argument.

Let A = fIF (e8, e7 − 1, e6 + 1) and B = fIF (e8, e7, e6). Further, let Pi be the
event that Ai
= Bi. The event δW9 ≥ 2j can happen if and only if at least one
of the bits j, j + 1, . . . 63 of δW9 is 1, i.e., if and only if at least one of the events
Pj , Pj+1, . . . P63 holds.

Now we are ready to bound the probability of the required event. In the
fourth step below, we use (20) and the fact that fIF (a, b, c) = b if a = 1 and
fIF (a, b, c) = c if a = 0.

Pr[δW9 ≥ 2j] = Pr

⎡
⎣⋃

i≥j

Pi

⎤
⎦

≤
∑
i≥j

Pr[Pi]

=
∑
i≥j

(Pr[(e8)i = 0] ×

Pr[Pi|((e8)i = 0)] + Pr[(e8)i = 1] · Pr[Pi|((e8)i = 1)])

=
∑
i≥j

(
1
2
· Pr[(e6 + 1)i
= e6] +

1
2
· Pr[(e7 − 1)i
= e7]

)

=
1
2
·
∑
i≥j

(
1
2i

+
1
2i

)
(Using Proposition 1)

<
1

2j−1
.

This proves the Lemma. �

7.2 Magnitude of σ1(W) − σ1(W − 1) Values for SHA-512

We now look at the distribution of values of σ1(W)−σ1(W−1) for random choices
of W . By using the combinatorial structure of the function σ1 and partial search
using a computer program, it is possible to prove the following lemma.

Lemma 2. For the function σ1 used in SHA-512,

|σ1(W) − σ1(W − 1)| ≥ (242 + 239 + 238 + 236 − 23).

For proof of this lemma, refer to Section A.

Deterministic Constructions of 21-Step Collisions 255

7.3 Infeasibility of the 21-Step Collision Using NB Differential Path

From Lemma 1, we get that the probability that a value of δW9 produced when
using this local collision is larger than 242 is less than 1/241. That is, on average
one will require 241 or more attempts with the differential path to get a single
value of δW9 which is larger than 242. On the other hand, Lemma 2 shows that
all the values of σ1(W14) − σ1(W14 − 1) will be larger than 242.

In addition, the proof of Lemma 2 makes it clear that the term σ1(W14) −
σ1(W14 − 1) has a strong structure which is far from random. Our experiments
support this view further. For instance, we experimentally observed that this
difference of σ1 terms has a large trail of zero bits or a large trail of one bits
in the middle. The number of ones or zeros in the continuous sequence are
almost always between 20 to 35. Further, there are many 64-bit words which
occur repeatedly as the value of this term for different choices of W14. Also,
some values are never achieved. It is not clear whether it is possible to achieve
such a strongly structured pattern in δW9 and satisfy (14) with the use of the
Nikolić-Biryukov local collision for SHA-512.

Note that this local collision succeeds for the SHA-256 case because the choice
of the two rotation values used in the σ1 function for SHA-256 are not far apart.
This causes most of the bits to overlap over nearby bits and the bias of the term
σ1(W14) − σ1(W14 − 1) is not as skewed as in the case of SHA-512.

8 Some Concluding Remarks

In this work we have presented two deterministic constructions for 21-step colli-
sions for SHA-2 hash family. This improves on the recent attack by Nikolić and
Biryukov at FSE ’08. We have also analyzed the linear function σ1 for SHA-512
and shown that its differential behaviour is quite peculiar. We then analyzed the
21-step collision of Nikolić and Biryukov and have shown that it is not likely to
succeed for SHA-512. We hope this work will help understand the behaviour of
SHA-2 better and will help in developing future attacks on the SHA-2 family.

References

1. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

2. Gilbert, H., Handschuh, H.: Security Analysis of SHA-256 and Sisters. In: Matsui,
M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 175–193. Springer,
Heidelberg (2003)

3. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 126–143. Springer,
Heidelberg (2006)

4. Mendel, F., Pramstaller, N., Rechberger, C., Rijmen, V.: Analysis of Step-Reduced
SHA-256. Cryptology eprint Archive, (March 2008),
http://eprint.iacr.org/2008/130

http://eprint.iacr.org/2008/130

256 S.K. Sanadhya and P. Sarkar

5. Nikolić, I., Biryukov, A.: Collisions for Step-Reduced SHA-256. In: Nyberg, K. (ed.)
FSE 2008. LNCS, vol. 5086, pp. 1–16. Springer, Heidelberg (2008)

6. Sanadhya, S.K., Sarkar, P.: New Local Collisions for the SHA-2 Hash Family. In:
Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 193–205. Springer,
Heidelberg (2007)

7. Sanadhya, S.K., Sarkar, P.: Attacking Reduced Round SHA-256. In: Bellovin, S.,
Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037,
Springer, Heidelberg (2008)

8. Sanadhya, S.K., Sarkar, P.: Non-Linear Reduced Round Attacks Against SHA-2
Hash family. In: Mu, Y., Susilo, W. (eds.) ACISP 2008. LNCS, vol. 5107. Springer,
Heidelberg (2008)

9. Secure Hash Standard. Federal Information Processing Standard Publication
180-2. U.S. Department of Commerce, National Institute of Standards and Tech-
nology(NIST) (2002), http://csrc.nist.gov/publications/fips/fips180-2/

fips180-2withchangenotice.pdf

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

Deterministic Constructions of 21-Step Collisions 257

A Proof of Lemma 2

Proof. The function σ1 is defined for SHA-512 as:

σ1(W) = ROTR19(W) ⊕ ROTR61(W) ⊕ SHR6(W). (21)

Let the 64-bit word W be specified as (w63, w62, . . . , w1, w0) where w0 is the
least significant bit of W . Then σ1(W) can be expressed as bit-wise XOR of
three quantities having bit pattern shown below.

Bit Index 63 62 . . . 58 57 . . . 45 44 . . . 0
ROTR19 w18 w17 . . . w13 w12 . . . w0 w63 . . . w19

ROTR61 w60 w59 . . . w55 w54 . . . w42 w41 . . . w61

SHR6 0 0 . . . 0 w63 . . . w51 w50 . . . w6

Let W ′ = W − 1. Then similar structure for σ1(W ′) can also be visualized.
We are interested in the magnitude of σ1(W) − σ1(W ′).

Let j be the least index such jth bit of W is 1. That is, wj = 1 and wi = 0
for all i ≤ j − 1. Then we have, wi
= w′

i for i ≤ j and wi = w′
i for i > j. Now

we consider two cases for j.

Case 1: 0 ≤ j ≤ 40.
In this case, we have that wi = w′

i for i = 63, 51, 50, 42, 41 and w0
= w′
0.

From the structure of σ1(W) and σ1(W ′), we note that their 45th bits will
be unequal but their 44th bits will be equal. Using Proposition 2 we get,
|σ1(W) − σ1(W ′)| ≥ 244 + 1.

Case 2: j ≥ 41.
We need to consider the individual cases j = 41, 42, . . . 63 here. Consider
the case j = 41 first. In this case, we know the exact bit pattern in W and
W ′ up to 41 bits. Only the high order bits from 42 to 63 are unknown in
these two quantities. We also know that these high order bits are the same
in W and W ′. Since these are only 22 bits, we can exhaustively search this
space and compute the value |σ1(W) − σ1(W ′)| for the case j = 41. As j is
increased, the same idea can be used with even smaller search space. The
size of the complete search space is 1 + 2 + 22 + . . . + 222 = 223 − 1. A C
program running on an ordinary PC takes a fraction of a second to traverse
this space.

Using exhaustive search, we found the minimum vale of |σ1(W)−σ1(W −
1)| to be 000004cffffffff8 which occurred for j = 42. This value is equal
to (242 + 239 + 238 + 236 − 23).

We have left one particular case of W undiscussed. This is the special case
when all the bits in W are zero. In this case, we can compute the difference
directly since σ1(0) = 0 and σ1(−1) = 1 + 2 + . . . + 257. Thus, we have the
difference = 258 − 1.

Combining all the cases, the Lemma is proved. �

258 S.K. Sanadhya and P. Sarkar

B Algorithm for Obtaining 21-Step SHA-2 Collisions

The step by step construction for the first attack described in Section 5 is now
presented. We define two functions which return the required message word Wi

to set the register value ai or ei to desired values, say desired a and desired e,
at Step i. Equation 1 provides the definitions of these two functions.

1. W to set register A(Step i, desired a, Current State {ai−1, bi−1,
. . . , hi−1}) : = (desired a −Σ0(ai−1)−fMAJ (ai−1, bi−1, ci−1)−Σ1(ei−1)−
fIF (ei−1, fi−1, gi−1) − hi−1 − Ki)

2. W to set register E(Step i, desired e, Current State {ai−1, bi−1,
. . . , hi−1}):=(desired e−di−1−Σ1(ei−1)−fIF (ei−1, fi−1, gi−1)−hi−1−Ki)

The actual construction for our first attack is described in Table 5. Note that
all the conditions for the differential path of Table 2 are satisfied deterministi-
cally. The extra condition of (14) required for ensuring that first five steps of the
message expansion do not produce any difference is also satisfied deterministi-
cally. Therefore, this procedure gives deterministic 21-step collisions for all hash
functions of the SHA-2 family.

C Colliding Message Pairs

Table 3. Colliding message pair for 21-step SHA-512 and 21-step SHA-256 with stan-
dard IV. These messages have been generated using our first construction. The six free
words are taken to be all zero in the first message.

W1 0-3 0 0 0 f31b03afd93b0f6d

4-7 8308c99162dbe6fe 739cde771413fca7 49404e11d70bcb89 b913ae32c4c3736f

8-11 e284a20a666a735b 573c19c84c7c8968 a28b08dc36fe38d0 6db010d6afe33679

12-15 8d41a28b0d847692 0 0 0

W2 0-3 0 0 0 f31b03afd93b0f6d

4-7 8308c99162dbe6fe 739cde771413fca7 49404e11d70bcb8a b907ee32c543736f

8-11 e290620a65ea735b 533c19c84c7c8969 a28b08dc36fe38d0 6db010d6afe33679

12-15 8d41a28b0d847692 0 ffffffffffffffff 0

W1 0-7 0 0 0 e9f8ba95 534d9ceb c6ceba8e 3b9d659d e5eb4a91

8-15 93bc685a 76a3426e e7f10e03 b6d615fd 8d41a28d 0 0 0

W2 0-7 0 0 0 e9f8ba95 534d9ceb c6ceba8e 3b9d659e ea0b4a10

8-15 8f9c68d8 7663426f e7f10e03 b6d615fd 8d41a28d 0 ffffffff 0

Table 4. Colliding message pair for 21-step SHA-512 and 21-step SHA-256 with stan-
dard IV. These messages have been generated using our second construction. The five
free words are taken to be all zero in the first message.

W1 0-3 0 0 0 0

4-7 33288419c029d472 bba39f8b68732f94 bb74290355d1ceb0 f335474a1b64b2c1

8-11 d1fdacca89083b02 700713c821d7108c a68b08dc36fe38cf 60cb1486891e45e7

12-15 3f1934d56ca27159 734a1a4b3d4c54bb f428cc497862eb6b 0

W2 0-3 0 0 0 0

4-7 33288419c029d472 bba39f8b68732f94 bb74290355d1ceb0 f335474a1b64b2c2

8-11 d201ecca89883b01 7002d3c82157108a a28b08dc36fe38d0 60cb1486891e45e7

12-15 3f1934d56ca27159 734a1a4b3d4c54bb 0 ffffffffffffffff

W1 0-7 0 0 0 0 c1c4ef2c c6276387 780cfcca 43a08b03

8-15 d51654ea 76eb0773 e8310e02 a0ced093 82dcf0e1 38812f86 b95fe183 0

W2 0-7 0 0 0 0 c1c4ef2c c6276387 780cfcca 43a08b04

8-15 c8365867 83cb03ef e7f10e03 a0ced093 82dcf0e1 38812f86 0 ffffffff

Deterministic Constructions of 21-Step Collisions 259

Table 5. Algorithm to obtain message pairs leading to deterministic collisions for
21-step SHA-2. This corresponds to our first attack described in Section 5.

external W to set register A(Step i, desired a, Current State {ai−1, bi−1,
. . . , hi−1}): Returns the required message Wi to be used in step i so that ai is set to
the given value.
external W to set register E(Step i, desired e, Current State {ai−1, bi−1,
. . . , hi−1}): Returns the required message Wi to be used in step i so that ei is set to
the given value.

First Message words:
1. Select W0, W1, W2, W13, W14 and W15 randomly.
2. Compute the required value of δW9 = σ1(W14) − σ1(W14 − 1). (Refer (14))
3. Run Steps 0, 1 and 2 of hash evaluation to define {a2, b2, . . . h2}.
4. Choose W3 = W to set register A(3, a2 + 1 − δW9, {a2, b2, . . . h2}).
5. Run Step 3 of hash evaluation to define {a3, b3, . . . h3}.
6. Choose W4 = W to set register A(4, −1, {a3, b3, . . . h3}).
7. Run Step 4 of hash evaluation to define {a4, b4, . . . h4}.
8. Choose W5 = W to set register A(5, −1, {a4, b4, . . . h4}).
9. Run Step 5 of hash evaluation to define {a5, b5, . . . h5}.
10. Choose W6 = W to set register A(6, −1, {a5, b5, . . . h5}).
11. Run Step 6 of hash evaluation to define {a6, b6, . . . h6}.
12. Choose W7 = W to set register A(7, 0, {a6, b6, . . . h6}).
13. Run Step 7 of hash evaluation to define {a7, b7, . . . h7}.
14. Choose W8 = W to set register A(8, 0, {a7, b7, . . . h7}).
15. Run Step 8 of hash evaluation to define {a8, b8, . . . h8}.
16. Choose W9 = W to set register E(9, −1, {a8, b8, . . . h8}).
17. Run Step 9 of hash evaluation to define {a9, b9, . . . h9}.
18. Choose W10 = W to set register E(10, −1, {a9, b9, . . . h9}).
19. Run Step 10 of hash evaluation to define {a10, b10, . . . h10}.
20. Choose W11 = W to set register E(11, −1, {a10, b10, . . . h10}).
21. Run Step 11 of hash evaluation to define {a11, b11, . . . h11}.
22. Choose W12 = W to set register E(12, −1, {a11, b11, . . . h11}).
Second message words:
23. Define δWi = 0 for i ∈ {0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 15}, δW6 = 1

and δW14 = −1.
24. Define δW7 = −1 − fIF (e6 + 1, f6, g6) + fIF (e6, f6, g6) − Σ1(e6 + 1)

+Σ1(e6). (Refer (8))
25. Define δW8 = −1 − fIF (e7 − 1, f7 + 1, g7) + fIF (e7, f7, g7)

−Σ1(e7 − 1) + Σ1(e7). (Refer (9))
26. Define δW9 = −fIF (e8 − 1, f8 − 1, g8 + 1) + fIF (e8, f8, g8)

−Σ1(e8 − 1) + Σ1(e8). (Refer (10))
27. Compute W ′

i = Wi + δWi for 0 ≤ i ≤ 15.
Similar algorithm for the attack described in Section 6 can be constructed.

We do not provide the second algorithm due to space restrictions.

Proxy Re-signatures in the Standard Model

Sherman S.M. Chow1 and Raphael C.-W. Phan2,�

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

2 Electronic & Electrical Engineering
Loughborough University

LE11 3TU, United Kingdom
r.phan@lboro.ac.uk

Abstract. This paper studies proxy re-signature schemes. We first clas-
sify the expected security notions for proxy re-signature schemes with
different properties. We then show how to attack on a recently proposed
bidirectional scheme that is purported to be secure without random or-
acles, and discuss the flaw in their proof. Next, we show how to design a
generic unidirectional proxy re-signature scheme using a new primitive
called homomorphic compartment signature as the building block. We
give a concrete instantiation which yields the first known unidirectional
proxy re-signature scheme which is proven secure under standard as-
sumption in the standard model. We also discuss how to incorporate the
concept of forward-security into the proxy re-signature paradigm, such
that the signing and the transformation are both time-limited.

Keywords: Proxy re-signature, compartment signature, standard
model.

1 Introduction

Proxy re-cryptography is about delegating transformation rights of cryptographic
objects to a semi-trusted proxy, such that a cryptographic task which can only
be completed by a delegator now becomes a task that can only be completed by
a delegatee. This idea was introduced by Blaze, Bleumer, and Strauss [2]. For
proxy re-signature, signatures signed by a delegator can be transformed into ones
signed by a delegatee, without allowing the proxy to sign on any other messages.

1.1 Applications

Proxy re-signatures have many interesting applications [1,2]. One of which is
about public-key certificates management. Public-key certificates issued by cer-
tification authorities are often deployed in e-commerce infrastructure to allow
� Work done while the author was with the Laboratoire de sécurité et de cryptographie

(LASEC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 260–276, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Proxy Re-signatures in the Standard Model 261

validating online transactions. Proxy re-signatures ease the certificates deploy-
ment by transforming signatures of a certification authority’s new public keys
into signatures that can be verified with public keys already certified in existing
certificates. Generalizing, this leads to transparent cross-certification between
different certification authorities, i.e. certificates from one authority can be con-
verted into certificates from the others.

Proxy re-signatures aid in the usage of machine readable travel documents
like e-passports. From one point to another the signature within the passport
can be transformed, beginning with the issuer’s certification on the passport
holder’s identity, through the different check points, each time requiring only
one transformable signature to be kept within the passport. Generalizing, it can
also trace the path taken by a travelling salesperson on business trips.

Yet another use of proxy re-signatures is in the generation of anonymous
group signatures, for instance by transforming any signature by an employee to
one verifiable under the corporate’s public key. This conceals the unique identity
of the employee to prevent information leakage says on the company’s corporate
structure or employment profile, while still allowing for internal auditing.

1.2 Our Contributions

1. We build on the security notions for proxy re-signatures of Ateniese and
Hohenberger [1], and discuss what to expect for schemes with different prop-
erties including private proxy, non-interactivity, transparency, transitivity
and bidirectional properties. While their definition is general enough, not
much discussion is made on which notion should be considered for different
combination of properties and why a certain property is ensured.

2. We show how to attack on a bidirectional proxy re-signature scheme recently
proposed by Shao et al. [10], that came with a security proof without random
oracles. We pinpoint the reason accounting for the insecurity and suggest how
the attacks could be prevented.

3. We generalize the concept of hierarchical signatures to the notion of (homo-
morphic) compartment signatures. Using this new primitive as a building
block, we show how to design a generic proxy re-signature scheme.

Table 1. Comparison of Properties with Existing Proxy Re-Signature Schemes

Property / Scheme BBS [2] Sbi [1] Suni [1] S∗
uni [1] Smb [10] Proposed

Private proxy ✘ ✓ ✘ ✓ ✓ ✓

Unidirectional ✘ ✘ ✓ ✓ ✘ ✓

Non-interactive ✘ ✘ ✓ ✓ ✘ ✘

Multi-use ✓ ✓ ✘ ✘ ✓ ✘

Transparent ✘ ✓ ✘1 ✘ ✓ ✘

Non-transitive ✘ ✘ ✓ ✓ ✘ ✓

Temporary ✘ ✘ ✘ ✓2 ✘ ✓

Standard model proof ✘ ✘ ✘ ✘ ✓3 ✓

262 S.S.M. Chow and R.C.-W. Phan

(a) Our design is different from the previous random-oracle based scheme
in [1] which maps signatures from Zp to G equipped with bilinear maps
and inherently requires non-interactive proof-of-knowledge.

(b) Our notion of compartment signatures may find applications other than
proxy re-signatures.

4. We instantiate our generic construction and prove its security in the stan-
dard model. This is the first known unidirectional proxy re-signature scheme
secure in the standard model. The only other scheme without random oracles
was proposed by Shao et al. [10] but it is insecure (see Section 4) and is fur-
thermore not unidirectional: it is understood [1] that unidirectional schemes
are more challenging to design than bidirectional ones.

5. We discuss a new approach for revoking delegations without changing the
global parameter.

Table 1 compares our proxy re-signature scheme with previous work.

2 Definitions

2.1 Bilinear Pairings and Existentially Unforgeable Signatures

Let G and GT be two (multiplicative) cyclic groups of prime order p. Let g be a
generator of G. A bilinear map ê(·, ·) : G×G → GT has the following properties:

1. Bilinearity: For all u, v ∈ G and for all a, b ∈ Zp, ê(ua, vb) = ê(u, v)ab.
2. Non-degeneracy: ê(g, g)
= 1.
3. Computability: It is efficient to compute ê(u, v) for all u, v ∈ G.

A standard signature scheme is a triplet of polynomial time algorithms:

• KeyGen: On input the security parameter 1k, it outputs a key pair pk/sk.
• Sign: On input a private key sk, and a message m, it outputs a signature σ.
• Verify: On input a public key pk, a message m and a signature σ, it outputs

1 if and only if σ is a valid signature on m under public key pk, 0 otherwise.

Definition 1 (Existential Unforgeability for Signatures [8]). A signature
scheme is existentially unforgeable under adaptive chosen-message attacks if no
probabilistic polynomial time (PPT) adversary with access to a signing oracle
OSign can output with non-negligible probability a pair (m, σ) where m is not
among the queries to the signing oracle, and for which Verify(pk, m, σ) = 1.

1 Although both transformable and transformed signature are elements in G × Zp, it
is easy to distinguish them given the public key and the message.

2 To revoke the delegated keys, a trusted party is required to broadcast a new global
parameter such that all systems user will get an authenticated copy of it.

3 Smb should be fixed according to what is suggested in this paper.

Proxy Re-signatures in the Standard Model 263

2.2 Proxy Re-signatures

A proxy re-signature scheme is a quintuple of polynomial time algorithms:

• KeyGen, Sign, and Verify form the key generation, signing and verification
algorithms of a standard signature scheme.

• ReKey: On input of (an optional) delegatee’s private key skA, a delegator’s
private key skB, and the corresponding public keys (pkA, pkB), it outputs a
transformation key rkA→B for the proxy to transform A’s signature into B’s
signatures. ReKey may be either deterministic or probabilistic. If the input
skA is mandatory, the scheme is interactive.

• ReSign: On input of a transformation key rkA→B , a transformable signature
σ, a public key pkA and a message m, it outputs a signature signed by B if
σ is a valid signature signed by A. It may be deterministic or probabilistic.

Some properties of the proxy re-signature schemes [1], that may or may not
captured by the above defined framework, are elaborated as follows.

1. Private Proxy: The transformation key may be inherently public (for ex-
ample, seeing an original signature signed by B and a transformed signature
signed by A give the knowledge of rkB→A), We remark that for the case of
private transformation key, the key may have public term as well, which can
be viewed as a re-signature public/private key pair.

2. Non-interactive: If the transformation key can be created without A’s help,
i.e. ReKey does not require the input of skA, the scheme is non-interactive.

3. Unidirectional: The transformation key may be unidirectional or bidirec-
tional. In the later case, the knowledge of rkA→B alone allows the efficient
computation of rkB→A. A bidirectional scheme must be interactive since
both parties’ private key are necessary for the two-way delegation.

4. Multi-use: For ReSign algorithm, if the scheme only supports single-use, the
input signature is required to be an untransformed one outputted by Sign
but not by ReSign. For multi-use scheme, a signature outputted by ReSign
can be further transformed by applying ReSign again.

5. Transparent: Transparency means the signatures generated by Sign and
the signatures generated by ReSign are computationally indistinguishable.

6. Non-transitive: The proxy alone cannot re-delegate signing rights. For ex-
ample, knowing both rkC→B and rkB→A cannot help producing rkC→A.

7. Temporary: If one do not want to place trust on the proxy that it will
perform the transformation according to the instruction, a temporary trans-
formation key can be made expired without changing the public key.

2.3 Review of the Security Model for Proxy Re-signatures

We consider a normal sense of existential unforgeability [8], such that a new
signature for a previously signed message is not considered as a valid forgery.

The security model formalized by Ateniese and Hohenberger [1] considers
both external and internal security. External security models attack launched

264 S.S.M. Chow and R.C.-W. Phan

from parties outside the system (i.e. neither the delegation partners nor the
proxy), while internal security models those from parties inside the system, such
as the proxy, another delegation partner, or a collusion between them.

Suppose there are n + 1 users with key pairs (pki, ski) for i ∈ {0, 1, · · · , n},
without loss of generality we assume the adversary aims to compromise the
security of user 0; we first define the oracles that an adversary has access to:

• OSign (j, m): takes as input an index 0 ≤ j ≤ n and a message m ∈ M , and
returns the output of Sign (skj , m).

• OReSign (i, j, m, σ): takes as input two distinct indices 1 ≤ i, j ≤ n, a message
m and a signature σ, returns ReSign (ReKey(ski, skj , pki, pkj), σ, pki, m).

• OReKey (i, j): takes as input two distinct indices 1 ≤ i, j ≤ n, and returns the
output of ReKey (pki, ski, pkj , skj).

External attacks assume accesses to OSign() and OReSign().

Definition 2 (External Security). A proxy re-signature scheme is secure
against external adversaries Aext(k) if the probability of getting 1 in the fol-
lowing experiment is a negligible function of k.

Experiment ExpAext
(k)

{(pki, ski)
$← KeyGen(1k)}i∈{0,··· ,n}

(m, σ) $← AOSign(·,·),OReSign(·,·,·,·)
ext ({pki}i∈{0,··· ,n})

If m ∈ Qext then return 0
Return Verify(pk0, m, σ).

where Qext is defined as the set including any message m corresponding to which
Aext has queried OSign(0, m) or OReSign(·, 0, m, ·).

Internal attacks allow accesses to OSign() and OReKey(). Within the model of
internal security, Ateniese and Hohenberger [1] gave three categorizations:

Definition 3 (Limited-Proxy Security). A proxy re-signature scheme is se-
cure against limited-proxy adversaries Apxy(k) if the probability of getting 1 in
the following experiment is a negligible function of k.

Experiment ExpApxy
(k)

{(pki, ski)
$← KeyGen(1k)}i∈{0,··· ,n}

(m, σ) $← AOSign(·,·),OReKey(·,·)
pxy ({pki}i∈{0,··· ,n})

If m ∈ Qpxy then return 0
Return Verify(pk0, m, σ).

where Qpxy is the set including any message m corresponding to which Apxy has
queried OSign(�, m), for � = 0 or any � where OReKey(�, 0) has been queried.

Definition 4 (Delegatee Security). A proxy re-signature scheme is delegatee-
secure against collusion of delegator and proxy adversaries Adte(k) if the proba-
bility of getting 1 in the following experiment is a negligible function of k.

Proxy Re-signatures in the Standard Model 265

Experiment ExpAdte
(k)

{(pki, ski)
$← KeyGen(1k)}i∈{0,··· ,n}

(m, σ) $← AOSign(0,·),OReKey(·,t)
dte (pk0, {pki, ski}i∈{1,··· ,n})

If m ∈ Qdte then return 0
Return Verify(pk0, m, σ).

where t
= 0 and Qdte is defined as the set including any message m corresponding
to which Adte has queried OSign(0, m).

Definition 5 (Delegator Security). A proxy re-signature scheme is delegator-
secure against collusion of delegatee and proxy adversaries Adtr(k) if the proba-
bility of getting 1 in the following experiment is a negligible function of k.

Experiment ExpAdtr
(k)

{(pki, ski)
$← KeyGen(1k)}i∈{0,··· ,n}

(m, σ) $← AOSign(0,·),OReKey(·,·)
dtr (pk0, {pki, ski}i∈{1,··· ,n})

If m ∈ Qdtr then return 0
Return Verify(pk0, m, σ).

where σ is a “untransformed” signature and Qdtr is defined as the set including
any message m corresponding to which Adtr has queried OSign(0, m).

An untransformed signature is one which is outputted by the Sign algorithm but
not ReSign. Delegator security will be described in details in the next section.

3 Models for Different Proxy Re-signature Schemes

3.1 Public Versus Private Proxy for External Security

One may think the notion of external security is weaker than the internal security,
since the oracle OReKey() is more powerful than OReSign(). Nevertheless, these two
notions are actually for two different kinds of proxy re-signature schemes.

The former notion suggests a justification whether a proxy re-signature scheme
is a private or a public one, i.e. whether the transformation key is inherently
public knowledge. Suppose there is a scheme which is easy to recover the trans-
formation key rkB→A from σ and σ′ where σ is a signature on m under the public
key pkB and σ′ is a re-signature transformed from pkB to pkA, (e.g. the BBS
scheme [2], and Suni in [1] possess this property). Consider the below attack:

1. Query OSign(B, m) to get σ, where B ∈ {0, n};
2. Query OReSign(B, A, m, σ) to get σ′, where B ∈ {0, n}\{A};
3. Recover rkB→A from σ and σ′;
4. Query OSign(B, m∗) to get σ∗;
5. Return σ∗ = ReSign(rkB→A, σ∗, pkB, m∗) as a forged signature of A on m∗.

266 S.S.M. Chow and R.C.-W. Phan

Since the adversary made no query of OSign(A, m∗) and OReSign(�, A, m∗, σ∗)
for signature σ∗, it is a valid forgery under the external security definition.
Note that for a public-proxy scheme, OSign(�, m) and OReSign(�, 0, m, σ) together
return essentially the answer of OReKey(�, 0). In the limited-proxy definition, the
adversary is not allowed to issue OSign(�, m) query if OReKey(�, 0) is made. It is
exactly the difference between the notions of internal security and limited-proxy.

To conclude, for a public-proxy scheme, one should consider only internal
security but not external security. This point is also mentioned in [1]. On the
other hand, one must take both external security and internal security into
account for a private-proxy scheme. In other words, the property of private-
proxy is modeled by the notion of external security.

3.2 Limited-Proxy Security Versus Delegatee Security

One may treat the adversary Adte in the delegatee security model is more pow-
erful than the adversary Apxy in the limited-proxy security model, due to the
fact that the former is equipped with n private signing keys but the latter is only
provided with signing oracle accesses. We stress that it is not the case since the
allowed queries for a valid forgery are different. In the limited-proxy model, if
Apxy has not queried OSign(�, m), it is entitled to query OReKey(�, 0). However, in
the delegatee model, Adte cannot ask for OReKey(�, 0) at all. The limited-proxy
model and the delegatee security model are actually orthogonal to each other.

3.3 Delegatee Security for Non-interactive Schemes

Recall that a scheme’s non-interactivity is determined by whether the delegatee’s
private key is required in constructing the transformation key, thus a scheme’s
non-interactivity affects the delegatee security notion of Definition 4. In more
detail, in a non-interactive scheme, the transformation-key can be computed
without the help of the delegatee, hence transformation-key extraction queries
OReKey() give the adversary nothing more about the delegatee than what the
adversary can compute by himself, so this oracle can be safely removed.

3.4 Security for Transparent and Non-transparent Schemes

The unforgeability of a proxy re-signatures scheme also depends on whether the
scheme is transparent, i.e. whether the signature generated by the usual signing
algorithm (termed as the “untransformed” signature) and that by the re-signing
algorithm (termed as the “transformed” signature) are indistinguishable.

In the definition of delegator security [1], only a forgery of the “first-level” (i.e.
untransformed) signature is considered as a valid forgery. From a first glance, it
seems that the notion is tightly coupled with a non-transparent scheme.

Another point is about the possible kind of forgery. For transparent schemes,
the untransformed signature and the transformed signature are computationally
indistinguishable, and hence there is essentially only a single kind of forgery.

Proxy Re-signatures in the Standard Model 267

However, for non-transparent scheme, we should make a fine distinction between
forgery for these two types of distinguishable signatures; and it seems that this
aspect was ignored in the Ateniese-Hohenberger definition of delegator security.
In the following, we will show exactly what security properties one should expect
for different scheme and different type of forgery.

Transparent Scheme. The case for a transparent scheme is simpler since
there is no distinction between the forgery of an untransformed signature or
a transformed signature. Suppose the private keys of all other systems users
are known to the adversary (i.e., {ski : i ∈ {1, · · ·n}} are given), allowing the
adversary to query for OReKey(�, 0) corresponds to a trivial forgery. Hence such
queries should not be allowed, and it is exactly the definition of delegatee security.

If the untransformed signature and the transformed signature are indistin-
guishable (i.e. “forgery of an untransformed signature” in the definition just
means “forgery of a signature”), the only difference between the definitions of
delegatee and delegator security is that no OReKey(�, 0) is allowed in the former.
With all other users’ private keys, asking OReKey(�, 0) means a trivial forgery.

For an attack launched by a proxy who are not colluding with any users, a
signature σ on the message m under the public key of pk0, should considered be
a non-trivial forgery if the adversary never ask for OSign(0, m), and not both
of OReKey(�, 0) and OSign(�, m) queries. Disallowing the OReKey(�, 0) query is
covered in the definition of the delegatee security (where the adversary is given
the signers’ private keys to realize the signing oracles), while the definition of
limited-proxy security models exactly the scenario that no OSign(�, m) queries are
allowed. The below definitions conclude our discussion on transparent scheme.

Definition 6 (Transparent Public). A transparent public-proxy re-signature
scheme is secure if it is limited-proxy-secure and delegatee-secure.

Definition 7 (Transparent Private). A transparent private-proxy re-
signature scheme is secure if it is external-secure, limited-proxy-secure and
delegatee-secure.

Non-Transparent Scheme. In order to distinguish between an untransformed
signature and a transformed one, we suppose a description of an algorithm
isTransformed() is (implicitly) included in the system parameter, which answers
the predicate if a signature is generated from the ReSign algorithm.

Firstly, for a specific proxy re-signature scheme, an untransformed signature
under a public key on a message may be publicly transformable to a transformed
signature under the same public key on the same message, so we consider a
signature on message m is a trivial forgery if OSign(0, m) has been asked.

For the forgery of a transformed signature, trivial forgery includes issuing
OReKey(�, 0) queries when all other users’ private keys are known; or in the case
that no private keys are leaked, not both of OReKey(�, 0) and OSign(�, m) queries
are made. These just correspond to delegatee security and limited-proxy security.

For an untransformed signature forgery, since the OReKey are supposed to
be related to transformed signatures only, answering any such queries should

268 S.S.M. Chow and R.C.-W. Phan

be “safe”, and this is exactly the definition of delegator security proposed in
[1]. In other words, even though the definition is coupled with a non-transparent
scheme, Ateniese and Hohenberger indeed provide a “right” definition of security.

Definition 8 (Non-Transparent Public-Proxy). A non-transparent public-
proxy re-signature scheme is secure if it is limited-proxy-secure, delegatee-secure
and delegator-secure.

Definition 9 (Non-Transparent Private-Proxy). A non-transparent
private-proxy re-signature scheme is secure if it is external-secure, limited-proxy-
secure, delegatee-secure and delegator-secure.

3.5 Security for Bidirectional Schemes

The notion of limited-proxy security is refined for bidirectional schemes [1].

Definition 10 (Bidirectional Limited-Proxy Security). A bidirectional
proxy re-signature scheme is secure against bidirectional limited-proxy adver-
saries if the probability of getting 1 in the below experiment is negligible in k.

Experiment ExpAbi
pxy

(k)

{(pki, ski)
$← KeyGen(1k)}i∈{0,··· ,n}

(m, σ) $← AOSign(·,·),OReKey(·,·)
pxy ({pki}i∈{0,··· ,n})

If m ∈ Qbi
pxy then return 0

Return Verify(pk0, m, σ).

where Qbi
pxy is defined as the set including any message m which Apxy has queried

OSign(�, m), for any � ∈ {0, · · · , n}.

The reason for prohibiting all signing queries on the forgery message m is that
the adversary is free to ask for any transformation key, which gives the power
to transform any signature of one to a signature of another.

In a bidirectional scheme, once a delegation is made, both involved parties
mutually delegate to each other, so the notion of delegatee security does not
apply since one cannot play only the role “delegatee” without being a delegator.

For delegator security, it is suggested in [1] that “this property is not required”
and “it does not seem likely to be achievable”. The reason behind such claims
may be based on the fact that the all bidirectional schemes considered in [1]
(specifically, the BBS scheme [2], and Sbi in [1]) are transparent.

We argue that the above claims only make sense for transparent schemes. For a
non-transparent scheme, even though the transformation keys are bidirectional,
it is reasonable to expect these keys should not enable an adversary to come up
with a forgery of a transformable (i.e. untransformed) signature. In view of this,
we give the following definitions.

Definition 11. A bidirecitonal transparent public-proxy re-signature scheme is
secure if it is bidirecitonal limited-proxy-secure.

Proxy Re-signatures in the Standard Model 269

Definition 12. A bidirecitonal transparent private-proxy re-signature scheme is
secure if it is external-secure and bidirecitonal limited-proxy-secure.

Definition 13. A bidirectional non-transparent public-proxy re-signature
scheme is secure if it is bidirectional limited-proxy-secure, and delegator-secure.

Definition 14. A bidirectional non-transparent private-proxy re-signature
scheme is secure if it is external-secure, bidirectional limited-proxy-secure, and
delegator-secure.

3.6 Transitivity

Consider the below attack on limited-proxy security for a transitive scheme:

1. Query OSign(C, m) to get σ, where C ∈ {0, n};
2. Query OReKey(C, B) to get rkC→B , where B ∈ {0, n}\{C};
3. Query OReKey(B, A) to get rkB→A, where A ∈ {0, n}\{B, C};
4. Compute rkC→A from rkC→B and rkB→A by the transitivity;
5. Return σ∗ = ReSign(rkC→A, σ, pkC , m) as a forged signature of A on m.

Since the adversarymade no query ofOSign(A, m) and noOReKey(C, A) query when
OSign(C, m) has been made. It is a valid forgery under the limited-proxy security
definition. To conclude, limited-proxy security implies non-transitivity. The defi-
nition of limited-proxy security should be extended for transitive schemes. Infor-
mally, it adds more restrictions in OReKey queries to avoid trivial forgery.

4 Analysis of a Bidirectional Proxy Re-signature Scheme

4.1 Review

We review the public-key-based bidirectional proxy re-signature scheme Smb

proposed by Shao et al. [10], which security was shown in the standard model.
The global parameters are 〈G, GT , ê(·, ·), p, η, g, u′,U, Hu(·)〉 where G, GT ,

ê(·, ·), p are defined as in Section 2, g, u′ are two generators of G, U =
(u1, · · · , uη) is a vector with η random elements from G, Hu : GT → {0, 1}η

is a collision-resistant hash function. Let bit(i, s) be the i-th bit of a bit-string s.

• KeyGen(1k): Pick a x ∈ Zp, the public/private key pair is given by
(ê(g, gx), gx).

• ReKey(skA, skB): On input of two private keys, output rkA→B = skB/skA.
• Sign(sk, m): On input a secret key sk = gα and a message m, pick a random

rm ∈ Zp and output 〈A = gα(u′∏ ui
bit(i,Hu(m)))rm and B = grm〉.

• ReSign(rkA→B, σ, pkA, m): On input of a transformation key rkA→B = β/α,
a signature σ = 〈A, B〉, the original signer’s public key pkA and a message m,
first verify if σ is valid by Verify(pkA, m, σ). If it does not verify, return ⊥, oth-
erwise output 〈ArkA→B , BrkA→B 〉 = 〈gβ(u′∏ui

bit(i,Hu(m)))rmβ/α, grmβ/α〉.
• Verify(pk, m, σ): On input of a public key pk, a message m, and a signature

σ, parse σ as 〈A, B〉 ∈ G2, output 1 if ê(A, g) = pk · ê(u′∏ui
bit(i,Hu(m)), B).

270 S.S.M. Chow and R.C.-W. Phan

4.2 Attacks

A formal description of the oraclesOUKeyGen, OCKeyGen and OReSign considered
by the Shao et al. model can be found in [10]. However, their meaning should be
clear enough from the context. Our first attack requires finding four hash values
h1, h2, h3, h4 such that h4 = h1 + h2 − h3 but h1
= h4. For η-bit message, it can
be shown that the probability of finding these messages is η(2/16)(6/16)η−1. To
see, we have 0+0−0, 0+1−0, 0+1−1, 1+0−0, 1+0−1, 1+1−1∈ {0, 1} (as a
counter example, 0+0−1 /∈ {0, 1}); and two possibilities give a different bit after
addition and subtraction, specifically, 0+1−0 = 1
= 0 and 1+0−1 = 0
= 1. We
suppose m1, m2, m3, m4 are the messages such that Hu(mi) = hi, i ∈ {1, · · · 4}.

1. Get the public keys.
– Call OUKeyGen to get an uncorrupted key pk0, this is our target of attack.
– Call OCKeyGen to get a corrupted public/private key pair (pk1, sk1).

2. Sign the first message and ask the oracle to re-sign it.
– Define U1 = u′∏ui

bit(i,m1), which is to be signed by sk.
– Pick r ∈R Zp, issue (pk1, pk0, m1, (gsk1 ·U r

1 , gr)) to OReSign to get ReSign

(ReKey(sk1, sk0), σ, pk1, m1) = (A, B) = (gsk0 · U r(sk0/sk1)
1 , gr(sk0/sk1)).

3. Sign the second message and ask the oracle to re-sign it.
– Let U2 = u′∏ui

bit(i,m2), submit (pk1, pk0, m2, (gsk1 ·U r
2 , gr)) to OReSign

to get (A′, B′) = (gsk0 · U r(sk0/sk1)
2 , gr(sk0/sk1)).

4. Sign the third message and ask the oracle to re-sign it.
– Let U3 = u′∏ui

bit(i,m3), submit (pk1, pk0, m3, (gsk1 ·U r
3 , gr)) to OReSign

to get (A′′, B′′) = (gsk0 · U r(sk0/sk1)
3 , gr(sk0/sk1)).

5. Output the forgery σ∗ = (A · A′/A′′, B) = (gsk0 · (U∗)r(sk0/sk1), gr(sk0/sk1))
where U∗ = U1 · U2/U3 = u′∏ ui

bi , bi = bit(i, m1) + bit(i, m2) − bit(i, m3).

By our choices of messages, we have ∀i ∈ {1, · · · , η}, bi ∈ {0, 1} and ∃j ∈
{1, · · · , η}, bj
= bit(j, m1). It is easy to see that σ∗ is a valid signature on m4

under an uncompromised key where the message being signed did not appear in
any OReSign query (and any OSign query, which does not appear at all).

The above attack manipulates the bit strings such that an addition and then
a subtraction gives a valid bit string different from the original one. Taking a
step further, we can cancel the whole message part and get back the private key!

1. Get an uncorrupted key pk0, and a corrupted public/private key pair
(pk1, sk1).

2. Sign an arbitrary message m and ask the oracle to re-sign it.
– Pick r ∈R Zp, issue (pk1, pk0, m, (gsk1 ·U r, gr)) to OReSign to get (A, B),

where A = gsk0 · U r(sk0/sk1), U = u′∏ ui
bit(i,m) (B is irrelevant here).

3. Re-randomize the same signature and ask the oracle to re-sign it.
– Issue (pk1, pk0, m, (gsk1 ·U r ·U r, gr ·gr)) to OReSign to get (A′, B′), where

A′ = gsk0 · U2r(sk0/sk1).
4. Recover the secret key by A · A/A′ = gsk0 .

Proxy Re-signatures in the Standard Model 271

One can prevent this attack by requiring the proxy to keep track of all the
messages being processed and does not re-sign if the same message appears, but
it is not practical and not the best we can hope for.

The previous proposals of bidirectional proxy re-signature (which include BBS
[2] and Sbi [1]) all use a deterministic ReSign algorithm. The scheme we attack
(Smb in [10]) also has a deterministic ReSign, possibly because recovering the
transformation key from the transformed signature needs computing discrete
logarithm, since ReSign exponentiates the signature with the transformation key.

The source of the insecurity of Smb is due to the fact that the “random” factor
in the signature outputted by the transformation is uniquely determined by the
keys involved in the transformation, while the security of the scheme requires the
random factors in any signature to be uniformly distributed. Specifically, their
simulation of OReSign just returns the answer of (probabilistic) OSign if only
one of the concerned keys are corrupted (the scenario for our attacks), which
is different from what their (deterministic) ReSign algorithm is doing. Thus, a
possible fix is to re-randomize the signature outputted by the ReSign algorithm.

5 Homomorphic Compartment Signatures

Before delving into details of our constructions of proxy re-signature schemes,
we review two existing concepts – homomorphic signatures and hierarchical sig-
natures, and generalize these to the notion of homomorphic compartment sig-
natures, which may be of independent interest.

5.1 Hierarchical Signatures and Homomorphic Signatures

Hierarchical Signatures. In an �-level hierarchical signature [7], the message
being signed is actually an � blocks message. The crucial property is that a
signature on (m1, m2, · · · , mi) can act as a restricted private key that enables
the signing of any extension, (m1, m2, · · · , mi, mj), of which the original one is a
prefix. Of course we require 1 ≤ i ≤ j ≤ �. As noted in [5], an �-level hierarchical
signature is actually equivalent to an (�−1)-hierarchical identity-based signature
(HIBS) [7], in which the first � − 1 levels are viewed as the components of a
hierarchical identity, and the last level is for the message being signed. Our
construction of proxy re-signature in Section 6 uses a two-level hierarchy.

Homomorphic Signatures. In our definition of homomorphic property for
probabilistic signature schemes, the homomorphism only holds for the random-
ness and the secret key being used, but not the messages (in contrast to [9]).

Definition 15 (Homomorphic Signature). A signature scheme is homomor-
phic if ∀SK, SK ′ ∈ K; ∀ m ∈ M; ∀ r, r′ ∈ R, such that we have HSignSK(m; r) ·
HSignSK′(m; r′) = HSignSK+SK′(m; r + r′) where the signature space S is a
group represented multiplicatively, and the rest of them (the key space K, the
message space M, and the random coin space R) are additive groups.

272 S.S.M. Chow and R.C.-W. Phan

Note that the random factor r is not the input of HSign, but is chosen by HSign
itself. Homomorphic property over the private keys has also been exploited in
other settings, such as untrusted update in forward-secure signature [4].

5.2 Generalizing Hierarchical Signatures

In our approach of constructing proxy re-signature schemes, we need something
more general than a hierarchical signature, which we term as a compartment
signature. In an �-block compartment signature, similar to an �-level hierarchi-
cal signature, � message blocks can be signed. The difference from hierarchical
signature is that we can add message blocks in an order independent of their po-
sitions, instead of following the sequential order of their corresponding positions.
Specifically, a signature on mi1 , mi2 , · · · , min where 1 ≤ i1 < i2 < · · · < in ≤ �
can act as a restricted private key that enables the signing of any insertion of
mj to the original one, i.e. j ∈ ({1, · · · , �}\{i1, · · · , in}). Consider � = 2, and let
� be a symbol denoting a “null” message, that means the secret key can sign on
either (m1, �), (�, m2) or (m1, m2), while both the signature on (m1, �) and the
signature on (�, m2) can act as a restricted private key to sign on (m1, m2). We
remark that the messages can be completely arbitrary, e.g. m1
= m2.

Now we discuss from a high level point of view the idea of using signature
as a signing key. Specifically, the function HSign can be viewed as a proce-
dure to sign on an �-block message m in one shot. The compartment-signing
property means there exists a polynomial-time algorithm that takes a signa-
ture of i message blocks to give a signature on j message blocks where i < j
and the former set of message blocks is a subset of the latter. Suppose the fac-
tor ri is the randomness involved in signing mi (∀i ∈ {1, · · · , �}). One can get
σ = HSignSK(m1, · · · , m�; r1, · · · , r�) in various ways. For example, one can first
compute σ′ = HSignSK(�, m2, �, · · · ; 0, r2, 0, · · ·), and use σ′ (without the help
of SK) to compute HSignSK(�, m2, �, · · · , m�; 0, r2, 0, · · · , r�) and eventually ob-
tain a “full” signature σ = HSignSK(m1, m2, m3, · · · , m�; r1, r2, r3, · · · , r�).

This notion can be further enriched by the homomorphic property.

Definition 16 (Homomorphic Compartment Signature). An �-block com-
partment signature scheme is homomorphic if ∀SK, SK ′ ∈ K; ∀mi ∈ M, i ∈
{1, · · · , �}; and ∀ri, r

′
i ∈ R, i ∈ {1, · · · , �}, such that

HSignSK(m1, · · · , m�; r1, r2, · · · , r�) · HSignSK′(m1, · · · , m�; r′1, r
′
2, · · · , r′�)

= HSignSK+SK′(m1, · · · , m�; r1 + r′1, r2 + r′2, · · · , r� + r′�)

where the signature space S is a multiplicative group, and the rest (the key space
K, the message space M, and the random coin space R) are additive groups.

5.3 Security for Compartment Signatures

To extend from the unforgeability of a standard signature scheme, we need to
first define what is meant by a message matches with a pattern.

Proxy Re-signatures in the Standard Model 273

Definition 17. A message (m1, m2, · · · , mj) is defined to match with a pattern
(m′

1, m
′
2, · · · , m′

k) if j = k and either mi = m′
i or m′

i = �, ∀i ∈ {1, · · · , j}.

Definition 18 (Existential Unforgeability for Compartment Sign-
atures). A compartment signature scheme is existentially unforgeable under
adaptive chosen-pattern attacks if no PPT adversary with access to a signing
oracle OSign can output with non-negligible probability a pair (m, σ) where m
does not match with any of the chosen patterns queried to OSign, and for which
Verify(pk, m, σ) = 1.

5.4 Examples

While compartment signature is more general than hierarchical signature, many
hierarchical schemes, such as [3,4,5,7], can be used to give compartment signa-
tures. To see this, these schemes use different parameters for different levels, and
uses only commutative multiplications to “glue” up different components. In
particular, it is easy to obtain an �-block homomorphic compartment signature
scheme from Boyen-Waters �-level hierarchical signature scheme [5]. Our proxy
re-signature construction uses 2-block homomorphic compartment signatures.
The compartment signature scheme for the 2-block case and its security analysis
are deferred to the full version of this paper due to page limitation.

6 Generic Proxy Re-signature Scheme and Instantiation

In this paper, we propose a unidirectional proxy re-signature scheme since it
is more challenging [1] to design when compared with a bidirectional one and
more applicable. As with the previous unidirectional scheme in [1], our scheme
supports private proxy and non-transitivity, but our scheme is interactive.

Let CS be a 2-block compartment signature scheme. Let Hr(·) be a collision-
resistant hash function that maps the keyspace K of CS to the message space
M of CS. The system parameter also includes all those of CS, in particular, a
random coin space R. Let 1K and 0R denote the identity element in K and R
respectively. Our generic proxy re-signature scheme is defined as follows.

Definition 19 (Generic Proxy Re-Signature Scheme)

• KeyGen(1k): This is the same as the one in CS.
• ReKey(skA, skB, pkA, pkB): With the key pairs of a delegatee (pkA, skA) and

a delegator (pkB , skB), the transformation key is given by:
1. Compute mA→B = Hr(pkB);
2. Randomly select rA from R, compute σA ← HSignskA

(mA→B , �; rA, 0R);
3. Randomly select rB from R, compute σB ← HSignskB

(mA→B , �; rB, 0R);
4. Output transformation key as rkA→B = σB/σA.

From the homomorphism, rkA→B = HSignskB−skA
(mA→B , �; rB − rA, 0R).

• Sign(sk, m): On input a secret key sk and a message m, randomly pick r
from R, the (transformable) signature is HSignsk(�, m; 0R, r).

274 S.S.M. Chow and R.C.-W. Phan

• ReSign(rkA→B, σ, pkA, m): On input of a transformation key rkA→B , an un-
transformed signature σ, a public key pkA and a message m, first verify if the
signature is valid by Verify(pkA, m, σ). If it does not verify, return ⊥, other-
wise randomly select r′ from R and output σ ·rkA→B ·HSign1Gs

(�, m; 0R, r′).1

• Verify(pk, m, σ): On input of a public key pk, a message m, and a signature
σ, use the verification algorithm of CS to verify if σ is valid under pk on the
message (�, m) for transformable signature, or (Hr(pk), m) otherwise.

6.1 Security

Theorem 1. The (unidirectional, non-transparent and interactive) private-proxy
re-signature scheme of Definition 19 is secure, if the underlying 2-block compart-
ment signature CS is existentially unforgeable and Hr(·) is collision-resistant.

The proof can be found in the full version of this paper.

6.2 A Concrete Scheme in the Standard Model

We instantiate our construction with Boyen-Waters hierarchical signature [5].
Most part of the global parameter is the same as reviewed in Section 4.1. We

also let v′ ∈ G, V = (v1, · · · , vη) be a vector with η random elements from G,
and Hv : {0, 1}∗ → {0, 1}η be a collision-resistant hash function.

• KeyGen(1k): Pick a x ∈ Zp, the public/private key pair is given by
(ê(g, gx), gx).

• ReKey(skA, skB, pkA, pkB): With the key pairs of a delegatee (pkA, skA =
gα) and a delegator (pkB , skB = gβ), the transformation key is given by:
1. Pick a random rA ∈ Zp;
2. Compute KA = gα(u′∏ui

bit(i,Hu(pkB)))rA and RA = grA ;
3. Pick a random rB ∈ Zp;
4. Compute KB = gβ(u′∏ui

bit(i,Hu(pkB)))rB and RB = grB ;
5. Output rkA→B as 〈rskA→B , rpkA→B〉 = 〈KB/KA, RB/RA〉.

• Sign(sk, m): On input a secret key sk = gα and a message m, let m be the
bit string outputted by Hv(m), the signature is generated as follows.
1. Pick a random rm ∈ Zp;
2. Compute σ0 = gα(v′

∏
vi

bit(i,m))rm and σ2 = grm ;
3. Output the signature σ = 〈σ0, σ2〉.

• ReSign(rkA→B, σ, pkA, m): On input of a key rkA→B = 〈rskA→B , rpkA→B〉,
an untransformed signature σ = 〈σ0, σ2〉, the original signer’s public key pkA

and a message m, first verify if σ is valid by Verify(pkA, m, σ). If it does not
verify, return ⊥, otherwise compute m = Hv(m), pick a random r′ ∈ Zp and
output 〈σ0 · rskA→B · (v′

∏
vi

bit(i,m))r′
, rpkA→B , σ2 · gr′〉.

1 The introduction of the term HSign1Gs
(�, m; 0R, r′) is for making a public-proxy

scheme private. If public-proxy is desired, ReSign just multiplies σ with rkA→B,
which should be more efficient than the Sign algorithm of a typical signature scheme.

Proxy Re-signatures in the Standard Model 275

• Verify(pk, m, σ): On input of a public key pk, a message m, and a purported
signature σ, compute m = Hv(m), if σ is parsed as 〈σ0, σ2〉 ∈ G2, output
1 if and only if ê(σ0, g) = pk · ê(v′

∏
vi

bit(i,m), σ2); else if σ is parsed as
〈σ0, σ1, σ2〉 ∈ G3, compute u = Hu(pk), output 1 if and only if ê(σ0, g) =
pk · ê(u′∏ui

bit(i,u), σ1) · ê(v′
∏

vi
bit(i,m), σ2).

We have the following security result, which follows from Theorem 1.

Corollary 1. The above concrete (unidirectional, non-transparent and interac-
tive) proxy re-signature scheme is secure in the standard model, assuming the
intractability of the computational Diffie-Hellman problem and Hu(·), Hv(·) are
collision-resistant.

7 Forward-Security and Temporary Delegation

Forward-secure signature (FSS) schemes modify a secret key over time (while the
public key remains the same) such that the exposure of the secret key at a certain
time period does not allow forgery of signatures of previous time periods. Using
the tree-based construction in [6], it is easy to show that HIBS implies FSS. More
precisely, a forward-secure scheme for 2d time steps can be constructed from a
HIBS scheme of depth d. That being said, it is easy to construct a forward-secure
proxy re-signature. By using �-block compartment signatures (� > 3), we can get
a FSS scheme with 2�−3 periods, using the first �−2 level, while the last 2 levels
are used to certify the transformation and the message being signed.

Our construction certifies the delegation relationship by signature, the del-
egation thus can be made time-limited, i.e. the transformation key created at
time t can only enable the transformation of signatures for time t, but not any
signature issued at any other time. We believe that the time-limited feature is a
natural requirement in delegation. This is similar to the temporary delegations
in [1]. However, our solution just requires a global clock and delegating a trans-
formation key for the new time period to the proxy, instead of assuming all users
can access an authenticated copy of the new global parameter. Utilizing a recent
forward-secure signature scheme [4], which can be seen as a homomorphic com-
partment signature, we can get constant size forward-secure proxy re-signatures.

References

1. Ateniese, G., Hohenberger, S.: Proxy Re-signatures: New Definitions, Algorithms,
and Applications. In: ACM Conference on Computer and Communications Secu-
rity, pp. 310–319 (2005)

2. Blaze, M., Bleumer, G., Strauss, M.: Divertible Protocols and Atomic Proxy Cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998)

3. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

276 S.S.M. Chow and R.C.-W. Phan

4. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-Secure Signatures with Un-
trusted Update. In: ACM Conference on Computer and Communications Security,
pp. 191–200. ACM, New York (2006)

5. Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

6. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
Journal of Cryptology 20(3) (2007)

7. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

8. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure against
Adaptive Chosen-Message Attacks. SIAM Journal of Computing 17(2), 281–308
(1988)

9. Johnson, R., Molnar, D., Song, D.X., Wagner, D.: Homomorphic Signature
Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262.
Springer, Heidelberg (2002)

10. Shao, J., Cao, Z., Wang, L., Liang, X.: Proxy Re-signature Schemes Without Ran-
dom Oracles. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007.
LNCS, vol. 4859, pp. 197–209. Springer, Heidelberg (2007)

An RSA-Based (t, n) Threshold Proxy Signature

Scheme without Any Trusted Combiner

Pei-yih Ting1 and Xiao-Wei Huang1,2

1 Department of Computer Science and Engineering,
National Taiwan Ocean University, Taiwan, R.O.C.

{pyting,m94570010}@mail.ntou.edu.tw
2 Institute of Information Science, Academia Sinica, Taiwan, R.O.C.

xwhuang@iis.sinica.edu.tw

Abstract. In this paper we propose and analyze a new RSA-based
proxy signature scheme and its corresponding (t, n) threshold scheme.
Unlike numerous previous research works, the threshold proxy scheme
does not require any trusted combiner and is thus a truly practical ap-
proach. The security of both schemes is based on a weaker version of
the RSA assumption. Both schemes are unforgeable and especially the
threshold proxy scheme inherits the merit of its predecessor - Shoup’s
RSA threshold scheme - and thus is secure under a multi-party compu-
tation setup with active adversaries.

Keywords: Cryptography, Proxy signature, Threshold proxy signature.

1 Introduction

In 2003, Hwang et al. [7] introduced a practical (t, n) threshold proxy signature
scheme based on the RSA cryptosystem. Wang et al. [14] found the security flaws
of Hwang’s scheme the next year. Recently, Kuo et al. [8] proposed a modified
(t, n) threshold proxy signature scheme based on the RSA cryptosystem and
Chang et al. [2] proposed an RSA-based (t, n) threshold proxy signature scheme
with free-will identities. Basically, Hwang’s approach leaks φ(N) through the
proxy key and the proxy signature cannot be issued without the knowledge of
φ(N). Thus the follow-up approaches tried to avoid the pitfall by sacrificing some
features. For example, both Kuo’s and Chang’s schemes assumed that there is a
trusted combiner in the joint signing process. Now the question is that if there
were a trusted combiner in the scheme, why bother using a threshold scheme
to distribute the trust? Thus, in this paper we design a new delegation method,
which leads to an RSA-based proxy signature scheme without leaking φ(N).
Furthermore, the requirement of trusted parties is eliminated by following the
methodology of Shoup’s RSA threshold signature [13].

The rest of this paper is organized as follows: we first present the new RSA-
based proxy signature scheme in Section 2 and extend it to a threshold proxy
scheme in Section 3. The underlying assumption and various security issues of
the proposed schemes are analyzed in Section 4. Section 5 gives a brief summary.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 277–284, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

278 P. Ting and X.-W. Huang

2 An RSA-Based Proxy Signature Scheme

We first sketch the RSA-based proxy signature scheme over a variant of RSA
signature scheme.

2.1 Setup

In this scheme, there are an original signer P0 with the RSA private key d0 and
public key (e0, n0), such that gcd(e0, φ(n0)) = 1 and e0 · d0 = 1 (mod n0), a
proxy signer P1 with RSA private key d1 and public key (e1, n1), and a verifier.
Let w be the warrant for the proxy signer P1 and h(·) be a collision-resistant
hash function.

2.2 The Proxy Generation Protocol

1. P0 picks a ∈R Zφ(φ(n0)) and computes

Proxy signature signing key: D = d0
a (mod φ(n0)),

Proxy signature verification key:
{

E = e0
h(w) (mod φ(n0))

C = h(w)G (mod n0)

where ∈R denotes “select randomly in” and G = (DE)−1 (mod φ(n0)) is a
secret of P0.

2. P0 publishes {E, C, w, σw = h(E||C||w)d0 (mod n0)} and sends D to P1 in
a secure manner (e.g. let it be encrypted by P1’s public key with suitable
reblocking mechanism).

3. P1 receives the proxy key D and verifies its validity by CED = h(w)(mod n0).

2.3 The Proxy Signature Signing Protocol

The proxy signer P1 signs message m for the original signer P0 as follows:

P1 computes
S = CD·h(m) (mod n0),

and signs S with his private key, i.e., σ1 = h(S)d1 (mod n1) with suitable
reblocking mechanism (e.g. if h(S) > n1, P1 can divide h(S) into several
small parts) to ensure that the original signer can not forge this proxy
signature. Then P1 sends S and σ1 to the verifier.

2.4 The Proxy Signature Verification Protocol

A verifier verifies the signature S and σ1 as follows:

1. He checks that
(σw)e0 = h(E||C||w) (mod n0).

2. He checks that
SE = h(w)h(m) (mod n0).

3. He checks that
σe1

1 = h(S) (mod n1)
to ensure that the original signer cannot forge the proxy signature.

An RSA-Based (t, n) Threshold Proxy Signature Scheme 279

The security of this proxy scheme will be analyzed in Section 4. In the next
section, we extend the above scheme to a threshold proxy signature scheme
by following Shoup’s [13] threshold RSA signature scheme, which is based on
Shamir’s polynomial secret sharing [12].

3 RSA Threshold (t,n) Proxy Signature Scheme

3.1 Setup

We consider an original signer P0, n proxy signers P1, · · · , Pn, and a verifier in
this scheme. Let di be the RSA private key of Pi, i = 1, . . . , n and (ei, ni) be the
corresponding public key such that gcd(ei, φ(ni)) = 1 and ei·di = 1 (mod φ(ni)).
Let w be the warrant for the proxy signers {P1, · · · , Pn}, t be the threshold, and
h(·) be a collision-resistant hash function. Let (e0, n0) be the RSA public key
of P0, where n0 = p0q0, p0 and q0 are large primes, p0 = 2p′0 + 1, q0 = 2q′0 + 1,
and p′0 and q′0 are large primes also. Let m0 denote p′0q

′
0. e0 is chosen such that

gcd(e0, φ(n0)) = 1, E = e
h(w)
0 (mod φ(n0)) is a prime and E > n. Let d0 be the

RSA private key of P0 such that d0 · e0 = 1 (mod φ(n0)).

3.2 The Proxy Sharing Protocol

1. P0 picks a ∈R Zφ(m0) and computes
Proxy key: D = d0

a (mod m0),

Proxy signature verification key:

{
E = e0h(w) (mod φ(n0))

(= e0h(w) (mod m0)
)

C = h(w)G (mod n0)

where G = (DE)−1 (mod m0) is a secret of P0. Note that D is not the proxy
signature signing key but the modulo m0 part of the proxy signature signing
key such that we can perform correctly the sharing and signing protocol
in the cyclic subgroup Qn0 of quadratic residues in Z∗

n0
, i.e. ∃x ∈ Z∗

n0
s.t.

v0 = x2 (mod n0).
2. P0 secretly picks a polynomial f(x) = D + r1x

1 + · · ·+ rt−1x
t−1 (mod m0),

where {ri}i=1,··· ,t−1 are random numbers randomly selected from
{0, · · · , m0 − 1}.

3. P0 publishes {E, C, w, σw = h(E||C||w)d0 (mod n0)} and sends Di = f(i)
(mod m0) to Pi in a secure manner for i = 1, · · · , n. The number Di is the
share of the proxy key D for Pi.

4. Each Pi receives his share Di and verifies its validity jointly by the execution
of the proxy signature signing protocol (Section 3.3) and the proxy signature
verification protocol (3.4) with an arbitrary message m.

5. P0 picks a random v0 in Qn0 , computes and publishes share verification keys
vi = v0

ΔDi (mod n0) for i = 1, · · · , n, where Δ = n!. The share verification
keys {vi}i=0,··· ,n are used to guarantee the robustness of the entire threshold
proxy protocol.

280 P. Ting and X.-W. Huang

3.3 The Proxy Signature Signing Protocol

t or more proxy signers jointly sign a message m according to the following:

1. Each participating Pi computes and broadcasts the partial proxy signature

Si =
(
Ch(m)

)2ΔDi

(mod n0)

and signs Si with his private key, i.e., σi = h(Si)
di (mod ni) with suitable

reblocking mechanism to ensure that the original signer can not forge this
partial proxy signature.

2. Each Pi provides an “equal discrete log” NIZKP [3,13] of dlogC4h(m)Δ (Si)
2 =

dlogvΔ
0

(vi) (= Di) to ensure the correctness of the partial proxy signature Si.
3. Everyone can verify the validity of Si by checking the NIZKP provided by

Pi. If there are less than t honest Pis remaining, the signing protocol aborts.
Let T denote the index set of valid partial proxy signatures, then, we can
move a step toward reconstructing the proxy signature S by calculation S̄
as follows:

S̄ =
∏
i∈T

S2ΔLi

i(
=

∏
i∈T

Ch(m)4ΔDiΔLi = Ch(m)4
�

i∈T DiΔ
2Li = Ch(m)4DΔ2

)
(mod n0),

where Li is the Lagrange coefficient 1. ΔLi is guaranteed to be an integer and
can be calculated without knowing φ(n0). This removes the trusted combiner
in Kuo’s [8] approach.

4. Since e0 is chosen such that E is a prime number larger than n, we have
gcd(4Δ2, E) = 1. Using the extended Euclidean algorithm we can find two
integers ã, b̃ such that ã4Δ2 + b̃E = 1. Then the proxy signature can be
calculated as

S = S̄ãh(w)h(m)b̃
(
= S4Δ2ã · SEb̃

)
(mod n0).

3.4 The Proxy Signature Verification Protocol

Anyone can verify the proxy signature (S, {σi}i∈T) of the message m with respect
to the public values (n0, e0), {(ni, ei)}i∈T , and (E, C, w, σw) as follows:

1. He checks that
(σw)e0 = h(E||C||w) (mod n0).

2. He checks that
SE = h(w)h(m) (mod n0).

3. In case that the original signer denies his responsibility by blaming the proxy
signers, the proxy signers need to check that

σei

i = h(Si) (mod ni) for all i ∈ T
to ensure that the original signer cannot forge the partial proxy signature.

1 The Lagrange coefficient is defined as Li =
�

j∈T,j �=i

−j

i − j
.

An RSA-Based (t, n) Threshold Proxy Signature Scheme 281

4 Security Analysis

In this section, we review the RSA assumption and show that the proposed
proxy signature is unforgeable with the standard RSA assumption and satisfies
the properties mentioned in [7].

The RSA assumption [11]: Given an RSA public key (n0, e0) and a ciphertext
c = me0 (mod n0), it is hard to compute the plaintext m without the RSA private
key.

We now show that the “RSA assumption” implies the “composite-exponent
RSA assumption”, which the security of the proposed scheme is based on.

The composite-exponent RSA assumption: Given an RSA public key
(n0, e0), two integer factors E, D, i.e. e0 = ED, and a ciphertext c = me0

(mod n0), it is hard to compute the plaintext m without the RSA private key.

Theorem 1. The “RSA assumption” implies the “composite-exponent RSA as-
sumption”.

Proof. Assume that there exists a PPT algorithm A(n0, E, D, c) that breaks the
“composite-exponent RSA assumption” with non-negligible probability, we can
easily construct a PPT algorithm A∗(n0, e0, c) which uses A(n0, E, D, c) as a
blackbox tool to break the “RSA assumption” with non-negligible probability
as follows:

A∗(n0, e0, c) :

1. A∗ randomly picks an integer D and computes

c′ = cD = me0D (mod n0)

Note that the probability of gcd(e0D, φ(n0)) = 1 is non-negligible al-
though φ(n0) is unknown to A∗.

2. A∗ invokes A(n0, e0, D, c′) to get the plaintext m such that c′ = me0D

(mod n0).
3. A∗ checks that

if c = me0 (mod n0), then ouput m.
if c
= me0 (mod n0), then goto 1.

�
Thus the security properties of the proposed scheme can be set up under the
“composite-exponent RSA assumption”, which is weaker than a standard “RSA
assumption”.

4.1 Secrecy: The Original Signer’s Private Key Must Be Kept
Secret

As shown in Section 3.2, P0’s secrets φ(n0) and d0 are protected by G. Even if
the proxy D is retrieved (by controlling all proxy signers), the adversary knows

282 P. Ting and X.-W. Huang

only DE
(
= G−1

)
(mod m0) and cannot get the multiple of m0 or φ(n0) with-

out knowing G. Moreover, given n0, E, D, w, and C, the adversary cannot
derive G due to the “composite-exponent RSA assumption”, where (n0, ED)
is the RSA public key. Let y be the RSA signature satisfying yED = h(w)
(mod n0). Note that since C = h(w)G (mod n0) and GED = 1 (mod m0), we
have

(
yED

)2G = y2 = (h(w))2G = C2 (mod n0). Therefore, we can solve the
signature of h(w) by finding integers a and b satisfying aED + b2 = 1 and
calculating y =

(
yED

)a (
y2
)

= h(w)aC2b (mod n0). However, in general the
“composite-exponent RSA assumption” guarantees that it would be hard to
find the signature for arbitrary message without the knowledge of G. Further-
more, we know that to recover the private information G is even harder than
breaking any RSA problem. Therefore, we conclude that even all proxy signers
collaborate there is no way to derive the original signer P0’s private key d0.

4.2 Proxy Protected: Only the Delegated Proxy Signer Can
Generate the Partial Proxy Signature

In the proxy signature signing protocol, the signature σi of Si by Pi, i.e. h(Si)
di

(mod ni) ensures that the partial proxy signature (Si, σi) can only be generated
by the proxy signer Pi. Although the original signer P0 can compute Si, he
cannot generate the signature σi for Si without knowing Pi’s private key di.
Hence, the proxy signer is protected in the proposed scheme.

4.3 Unforgeability: Only t or More Proxy Signers Can Jointly
Generate a Valid Proxy Signature

Since each proxy signer has only a secret share Di = f(i) of the polynomial f ,
only t or more proxy signers can cooperatively reconstruct the proxy key D by
the Shamir’s polynomial sharing secret sharing scheme. The confidentiality of
each secret share Di in taking the proxy sharing protocol and the proxy signa-
ture signing protocol can be proved in a secure multi-party computation scenario
similar to the one shown by Shoup [13]. Furthermore, the existential unforgeabil-
ity under no message attack in the random oracle model of the proposed scheme
can be proven in a similar way just like the appendix B in [1] under the RSA
assumption.

If an adversary is given the signing oracle, the adversary can get two signatures
σ = (S||{σi}i∈T) satisfying SE = h(w)h(m) (mod n0) and σei

i = h(Si) (mod ni)
for all i ∈ T and σ′ = (S′||{σi

′}i∈T ′) satisfying S′E = h(w)h(m′) (mod n0) and
σi

′ei = h(Si
′) (mod ni) for all i ∈ T ′. The adversary can forge S′′ such that

S′′E = h(w)h(m′′) (mod n0) for arbitrary message m′′ if gcd(h(m), h(m′)) = 1.
Since gcd(h(m), h(m′)) = 1, there exist a, b such that ah(m) + bh(m′) = 1
and the adversary can calculate S′′ = (SaS′b)h(m′′) (mod n0) satisfying S′′E =
h(w)h(m′′) (mod n0). It appears that only the proxy-protected signature scheme
is secure under chosen message attacks provided that {σi}i∈T are secure under
chosen message attacks. To further limit the potential dangers of chosen message
attacks, we can invoke the constructions introduced in chapter 6 of [6].

An RSA-Based (t, n) Threshold Proxy Signature Scheme 283

4.4 Non-repudiation: Any Valid Proxy Signature Must Be
Generated by t or More Proxy Signers and the Original Signer
Cannot Deny Having Delegated the Power to the Proxy Signers

First, any valid proxy signature must be generated by someone who knows the
full proxy key D due to the unforgeability. Second, it requires t or more proxy
signers to reconstruct the proxy key D and the proxy signer Pi must also provide
σi for Si. Hence, the group of proxy signers in T cannot deny having signed the
message m for the original signer P0. Then we focus on the non-repudiation
of the delegation of the original signer. Since the verifier checks that σw

e0 =
h(E||C||w) (mod n0) with the original signer P0’s public key e0 in the proxy
signature verification phase and the warrant w describes all the information
about delegation, the original signer cannot deny having delegated the power to
the proxy signers.

4.5 Time Constraint: The Proxy Signature Signing Keys Can Be
Used Only During the Delegation Period

In the proposed scheme, the validity period of the delegation should be recorded
in the warrant w and the verifier can check whether the delegation is still ef-
fective or not in the proxy signature verification protocol. If the delegation has
expired, the verifier declares that the proxy signature is invalid. In general, a
proxy signature should be appended by a formal time stamp so that any one can
verify the effectiveness of the proxy signature signing key even after the validity
period of delegation.

4.6 Known Signers: The System can Identify the Actual Signers in
the Proxy Group for Internal Auditing

In the proposed scheme, everyone can verify the partial proxy signature (Si,
σi) broadcasted by a proxy signer Pi with Pi’s public key (ei, ni) for auditing
purposes. Hence, everyone knows the identities of the actual proxy signers who
generate a particular proxy signature and each proxy signer is forced to hold
responsibility by this mechanism.

5 Conclusions

We propose an RSA-based (t, n) threshold proxy signature scheme in this paper.
The proposed scheme is based on the RSA assumption and the trusted combiner
of previous researches is completely eliminated. The resulting scheme is secure
and is more flexible and practical than the previous schemes. Although we do
not include the security proof for the overall scheme in this paper, the proof is
largely a repetition of the works by Bellare [1] and by Shoup [13] with suitable
modifications for the proxy signature scenario.

284 P. Ting and X.-W. Huang

References

1. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: Proceedings of the First ACM Conference on Computer and
Communications Security (1993)

2. Chang, Y.F., Chang, C.C.: An RSA-based (t, n) Threshold Proxy Signature Scheme
with Free-will Identities. International Journal of Information and Computer Se-
curity 1(1/2), 201–209 (2007)

3. Chaum, D., Pedersen, T.: Wallet Databases with Observers. In: Brickell, E.F. (ed.)
CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

4. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Proceedings of The International
Workshop on Practice and Theory in Public Key Cryptography (PKC). LNCS,
vol. 1992, pp. 119–136 (2001)

5. Damg̊ard, I., Koprowski, M.: Practical Threshold RSA Signatures Without a
Trusted Dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045,
pp. 152–165. Springer, Heidelberg (2001)

6. Goldreich, O.: Foundations of cryptography - a primer. Foundations and Trends in
Theoretical Computer Science 1(1), 1–116 (2005)

7. Hwang, M.S., Lu, J.L., Lin, I.C.: A practical (t, n) threshold proxy signature scheme
based on the RSA cryptosystem. IEEE Transactions on Knowledge and Data En-
gineering 15(6) (2003)

8. Kuo, W.C., Chen, M.Y.: A Modified (t, n) Threshold Proxy Signature Scheme
based on the RSA cryptosystem. In: Proceedings of the Third International Con-
ference on Information Technology and Applications (ICITA) (2005)

9. Mambo, M., Usuda, K., Okmamoto, E.: Proxy Signatures for Delegating Signing
Operation. In: Proceedings of 3rd ACM Conference Computer and Communication
Security, pp. 48–57 (1996)

10. Mambo, M., Usuda, K., Okmamoto, E.: Proxy Signatures: Delegation of the Power
to Sign Messages. IEICE Transactions on Fundamentals E79-A(9), 1338–1353
(1996)

11. Rivest, R.L., Kaliski, B.: RSA Problem (2003),
theory.lcs.mit.edu/∼rivest/RivestKaliski-RSAProblem.pdf

12. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
13. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT

2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)
14. Wang, G., Bao, F., Zhou, J., Deng, R.H., Lin, I.C.: Comments on ”A practical

(t, n) Threshold Proxy Signature Scheme based on the RSA cryptosystem. IEEE
Transactions on Knowledge and Data Engineering, 16(10) (2004)

theory.lcs.mit.edu/~rivest/RivestKaliski-RSAProblem.pdf

Certificate-Based Signature Schemes

without Pairings or Random Oracles

Joseph K. Liu1, Joonsang Baek1, Willy Susilo2, and Jianying Zhou1

1 Cryptography and Security Department
Institute for Infocomm Research, Singapore
{ksliu,jsbaek,jyzhou}@i2r.a-star.edu.sg

2 Centre for Computer and Information Security (CCISR)
School of Computer Science and Software Engineering

University of Wollongong, Australia
wsusilo@uow.edu.au

Abstract. In this paper, we propose two new certificate-based signa-
ture (CBS) schemes with new features and advantages. The first one
is very efficient as it does not require any pairing computation and its
security can be proven using Discrete Logarithm assumption in the ran-
dom oracle model. We also propose another scheme whose security can
be proven in the standard model without random oracles. To the best
of our knowledge, these are the first CBS schemes in the literature that
have such kind of features.

1 Introduction

Public Key Infrastructure (PKI). In a traditional public key cryptography
(PKC), a user Alice signs a message using her private key. A verifier Bob verifies
the signature using Alice’s public key. However, the public key is just merely a
random string and it does not provide authentication of the signer by itself. This
problem can be solved by incorporating a certificate generated by a trusted party
called the Certificate Authority (CA) that provides an unforgeable signature
and trusted link between the public key and the identity of the signer. The
hierarchical framework is called the public key infrastructure (PKI), which is
responsible to issue and manage the certificates (chain). In this case, prior to the
verification of a signature, Bob needs to obtain Alice’s certificate in advance and
verify the validity of her certificate. If it is valid, Bob extracts the corresponding
public key which is then used to verify the signature. In the point of view of a
verifier, it takes two verification steps for independent signatures. This approach
seems inefficient, in particular when the number of users is very large.

Identity-Based cryptography (IBC). Identity-based cryptography (IBC),
invented by Shamir [1] in 1984, solves the aforementioned problem by using
Alice’s identity (or email address) which is an arbitrary string as her public key
while the corresponding private key is a result of some mathematical operation
that takes as input the user’s identity and the master secret key of a trusted

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 285–297, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

286 J.K. Liu et al.

authority, referred to as “Private Key Generator (PKG)”. This way, the cer-
tificate is implicitly provided and the explicit authentication of public keys is
no longer required. The main disadvantage of identity-based cryptography is an
unconditional trust to the PKG. Hence, the PKG can impersonate any user, or
decrypt any ciphertexts. Hence, IBC is only suitable for a closed organization
where the PKG is completely trusted by everyone in the group.

Certificate-Based cryptography (CBC). To integrate the merits of IBC
into PKI, Gentry [2] introduced the concept of certificate-based encryption
(CBE). A CBE scheme combines a public key encryption scheme and an iden-
tity based encryption scheme between a certifier and a user. Each user generates
his/her own private and public keys and requests a certificate from the CA while
the CA uses the key generation algorithm of an identity based encryption (IBE)
[3] scheme to generate the certificate. The certificate is implicitly used as part
of the user decryption key, which is composed of the user-generated private key
and the certificate. Although the CA knows the certificate, it does not have the
user private key. Thus it cannot decrypt any ciphertexts. In addition to CBE,
the notion of certificate-based signature (CBS) was first suggested by Kang et al.
[4]. However, one of their proposed schemes was found insecure against key re-
placement attack, as pointed out by Li et al. [5]. They also proposed a concrete
scheme. In parallel to their construction, Au et al. [6] proposed a certificate-
based ring signature scheme. Nevertheless, all the above schemes require pairing
operations and can be only proven in the random oracle model. To date, it is
unknown whether the existence of pairing based cryptography is essential for
the construction of CBS schemes.

We remark that certificateless cryptography [7] is another stream of research,
which is to solve the key escrow problem inherited by IBC. Although at the first
glance certificateless cryptography shares several similarities with certificate-
based cryptography, each notion has its own merit and distinct features.

Our Contributions. In this paper, we propose two CBS schemes. The first
scheme does not require any pairing operations, which is regarded as costly op-
erations compared to other operations such as exponentiation. According to the
current MIRACL implementation [8], a 512-bit Tate pairing takes 20 ms whereas
a 1024-bit prime modular exponentiation takes 8.8 ms. Without pairing, our
scheme is more efficient than all of the previous schemes proposed so far [4,5,6].
This distinct and interesting property enables our scheme to be implemented in
some power-constrained devices, such as wireless sensor networks.

In addition, our second scheme can be proven in the standard model without
random oracles. All previous schemes mentioned above rely on the random oracle
model to prove their security. It is generally believed that cryptographic schemes
relaying on the random oracles may not be secure if the underlying random
oracles are realized as hash functions in the real world. For some applications
that require very high security, it is believed that only those schemes that can be
proven in the standard model without random oracles must be employed. Hence
our second scheme can be suitable for those particular applications.

Certificate-Based Signature Schemes without Pairings or Random Oracles 287

2 Preliminaries

2.1 Notations

Pairing. Let e be a bilinear map such that e : G × G → GT such that it has
the following properties:

– G and GT are cyclic multiplicative groups of prime order p.
– each element of G and GT has unique binary representation.
– g is a generator of G.
– (Bilinear) ∀x, y ∈ G and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
– (Non-degenerate) e(g, g)
= 1.

2.2 Mathematical Assumptions

Definition 1 (Discrete Logarithm (DL) Assumption). Given a group G
of prime order q with generator g and elements A ∈ G, the DL problem in G is
to output α ∈ Zq such that A = gα.

An adversary B has at least an ε advantage if

Pr[B(g, A) = α | A = gα] ≥ ε

We say that the (ε, t)-DL assumption holds in a group G if no algorithm running
in time at most t can solve that DL problem in G with advantage at least ε.

Definition 2 (Generalized Computational Diffie-Hellman (GCDH)
Assumption). Given a group G of prime order p with generator g and el-
ements ga, gb ∈ G where a, b are selected uniformly at random from Z∗

p, the
GCDH problem in G is to output (gabc, gc), where gc ∈ G.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb) = (gabc, gc)] ≥ ε

We say that the (ε, t)-GCDH assumption holds in a group G if no algorithm
running in time at most t can solve the GCDH problem in G with advantage at
least ε.

It is a strictly weaker assumption than the Generalized Bilinear Diffie-Hellman
(GBDH) assumption [7], which is defined as follow:

Definition 3 (Generalized Bilinear Diffie-Hellman (GBDH) Assump-
tion). Given a group G of prime order p with generator g and elements ga, gb,
gb′ ∈ G where a, b, b′ are selected uniformly at random from Z∗

p, the GBDH
problem in G is to output (e(gc, g)abb′ , gc), where gc ∈ G.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb, gb′) = (e(gc, g)abb′ , gc)] ≥ ε

We say that the (ε, t)-GBDH assumption holds in a group G if no algorithm
running in time at most t can solve the GBDH problem in G with advantage at
least ε.

288 J.K. Liu et al.

Lemma 1. The GCDH assumption is strictly weaker than the GBDH assump-
tion.

Proof. Assume there is a GCDH adversary A. We construct another adver-
sary B to solve the GBDH problem. Given (g, ga, gb, gb′) as the GBDH problem
instance, B gives (g, ga, gb) to A. A outputs (gabc, gc) with probability ε and
time t. B outputs (e(gb′ , gabc), gc) as the solution to the GBDH problem. Since
e(gb′ , gabc) = e(gc, g)abb′ , it is a valid solution. Thus B can solve GBDH problem
with time t and probability ε.

Definition 4 (Many-DH Assumption [9] (Simplified Version) 1). Given
a group G of prime order p with generator g and elements ga, gb, gc, gab, gac, gbc ∈
G where a, b, c are selected uniformly at random from Z∗

p, the Many-DH problem
in G is to output gabc.

An adversary B has at least an ε advantage if

Pr[B(g, ga, gb, gc, gab, gac, gbc) = gabc] ≥ ε

We say that the (ε, t)-Many-DH assumption holds in a group G if no algorithm
running in time at most t can solve the Many-DH problem in G with advantage
at least ε.

3 Security Model

Definition 5. A certificate-based signature (CBS) scheme is defined by six al-
gorithms:

– Setup is a probabilistic algorithm taking as input a security parameter. It
returns the certifier’s master key msk and public parameters param. Usually
this algorithm is run by the CA.

– UserKeyGen is a probabilistic algorithm that takes param as input. When
run by a client, it returns a public key PK and a secret key usk.

– Certify is a probabilistic algorithm that takes as input (msk, τ, param,
PK, ID) where ID is a binary string representing the user information.
It returns Cert′τ which is sent to the client. Here τ is a string identifying a
time period.

– Consolidate is a deterministic certificate consolidation algorithm taking as
input (param, τ, Cert′τ) and optionally Certτ−1. It returns Certτ , the cer-
tificate used by a client in time period τ .

– Sign is a probabilistic algorithm taking as input (τ, param, m, Certτ , usk)
where m is a message. It outputs a ciphertext σ.

– Verify is a deterministic algorithm taking (param, PK, ID, σ) as input in
time period τ . It returns either valid indicating a valid signature, or the
special symbol ⊥ indicating invalid.

1 In the original version presented in [9], the number of input tuples can be as much
as O(log k) for some security parameter k. Here we simplify it for just enough to our
scheme.

Certificate-Based Signature Schemes without Pairings or Random Oracles 289

We require that if σ is the result of applying algorithm Sign with intput (τ, param,
m, Certτ , usk) and (usk, PK) is a valid key-pair, then valid is the result of ap-
plying algorithm Verify on input (param, PK, ID, σ), where Certτ is the output
of Certify and Consolidate algorithms on input (msk, param, τ, PK). That is, we
have

VerifyPK,ID(Signτ,Certτ ,usk(m)) = valid

We also note that a concrete CBS scheme may not involve certificate consolida-
tion. In this situation, algorithm Consolidate will simply output Certτ = Cert′τ .

In the rest of this paper, for simplicity, we will omit Consolidate and the time
identifying string τ in all notations.

The security of CBS is defined by two different games and the adversary
chooses which game to play. In Game 1, the adversary models an uncertified
entity while in Game 2, the adversary models the certifier in possession of the
master key msk attacking a fixed entity’s public key. We use the enhanced
model by Li et al. [5] which captures key replacement attack in the security of
Game 1.

Definition 6 (CBS Game 1 Existential Unforgeability). The challenger
runs Setup, gives param to the adversary A and keeps msk to itself. The adver-
sary then interleaves certification and signing queries as follows:

– On user-key-gen query (ID), if ID has been already created, nothing is to
be carried out. Otherwise, the challenger runs the algorithm UserKeyGen to
obtains a secret/public key pair (uskID, PKID) and adds to the list L. In
this case, ID is said to be ‘created’. In both cases, PKID is returned.

– On corruption query (ID), the challenger checks the list L. If ID is there, it
returns the corresponding secret key uskID. Otherwise nothing is returned.

– On certification query (ID), the challenger runs Certify on input (msk,
param, PK, ID), where PK is the public key returned from the user-key-gen
query, and returns Cert.

– On signing query (ID, PK, m), the challenger generates σ by using algorithm
Sign.

A can replace any user ID public key with his own choice, but once it has replaced
the public key, it cannot obtain the certificate of the false public key from the
challenger. Finally A outputs a signature σ∗, a message m∗ and a public key
PK∗ with user information ID∗. The adversary wins the game if

– σ∗ is a valid signature on the message m∗ under the public key PK∗ with
user information ID∗, where PK∗ might not be the one returned from user-
key-gen query.

– ID∗ has never been submitted to the certification query.
– (ID∗, PK∗, m∗) has never been submitted to the signing query.

We define A’s advantage in this game to be Adv(A) = Pr[A wins].

290 J.K. Liu et al.

Definition 7 (CBS Game 2 Existential Unforgeability). The challenger
runs Setup, gives param and msk to the adversary A. The adversary interleaves
user-key-gen queries, corruption queries and signing queries as in Game 1. But
different from Game 1, the adversary is not allowed to replace any public key.

Finally A outputs a signature σ∗, a message m∗ and a public key PK∗ with
user information ID∗. The adversary wins the game if

– σ∗ is a valid signature on the message m∗ under the public key PK∗ with
user information ID∗.

– PK∗ is an output from user-key-gen query.
– ID∗ has never been submitted to corruption query.
– (ID∗, PK∗, m∗) has never been submitted to the signing query.

We define A’s advantage in this game to be Adv(A) = Pr[A wins].

We note that our model does not support security against Malicious Certifier.
That is, we assume that the certifier generates all public parameters honest,
according to the algorithm specified. The adversarial certifier is only given the
master secret key, instead of allowing to generate all public parameters. Although
malicious certifier has not been discussed in the literature, similar concept of
Malicious Key Generation Centre (KGC) [10] has been formalized in the area
of certificateless cryptography.

4 A CBS without Pairing

Our scheme is motivated from Beth’s identification scheme [11].
Setup. Let G be a multiplicative group with order q. The PKG selects a random
generator g ∈ G and randomly chooses x ∈R Z∗

q . It sets X = gx. Let H :
{0, 1}∗ → Z∗

q be a cryptographic hash function. The public parameters param
and master secret key msk are given by

param = (G, q, g, X, H) msk = x

UserKeyGen. User selects a secret value u ∈ Z∗
q as his secret key usk, and com-

putes his public key PK as (gu, Xu, πu) where πu is the following non-interactive
proof-of-knowledge (PoK) 2:

PK{(u) : U1 = gu ∧ U2 = Xu}

Certify. Let h̃ = H(PK, ID) for user with public key PK and binary string ID
which is used to identify the user. To generate a certificate for this user, the CA
randomly selects r ∈R Z

∗
q , computes

R = gr s = r−1(h̃ − xR) mod q

2 For the details of notation and implementation of PoK, please refer to [12].

Certificate-Based Signature Schemes without Pairings or Random Oracles 291

The certificate is (R, s). Note that a correctly generated certificate should fulfill
the following equality:

RsXR = gh̃ (1)

Sign. To sign a message m ∈ {0, 1}∗, the signer with public key PK (and user
info ID), certificate (R, s) and secret key u, randomly selects y ∈R Z∗

q , computes

Y = R−y h = H(Y, R, m) z = y + h s u mod q

and outputs (Y, R, z) as the signature σ.

Verify. Given a signature σ = (Y, R, z) for a public key PK on a message m,
a verifier first checks whether πu is a valid PoK. If not, output ⊥. Otherwise
computes h = H(Y, R, m), h̃ = H(PK, ID), and checks whether

(gu)hh̃ ?= RzY (Xu)hR (2)

Output valid if it is equal. Otherwise, output ⊥.

4.1 Security Analysis

Correctness. It is easy to see that the signature scheme is correct, as shown
in following:

RzY (Xu)hR = Ry+hsuR−yXuhR = grhsuguxhR

= grhu
(
r−1(h̃−xR)

)
+uxhR = ghuh̃−huxR+uxhR = (gu)hh̃

Theorem 1 (Unforgeability against Game 1 Adversary). The CBS
scheme without pairing is (ε, t)-existential unforgeable against Game 1 adver-
sary (defined in Section 3) with advantage at most ε and runs in time at most
t, assuming that the (ε′, t′)-DL assumption holds in G, where

ε′ =
(
1 − qh(qe + qs)

q

)(
1 − 1

q

)(1
qh

)
ε, t′ = t + O(qe + qs)E

and qe, qs, qh are the numbers of certification queries, signing queries and hashing
queries the adversary is allowed to make and E is the time for an exponentiation
operation.

Proof. Here we follow the idea from [13,14]. Assume there exists a forger A.
We construct an algorithm B that makes use of A to solve discrete logarithm
problem. B is given a multiplicative group G with generator g and order q, and
a group element A ∈ G. B is asked to find α ∈ Zq such that gα = A.

Setup: B chooses a hash function H : {0, 1}∗ → Zq which behaves like a random
oracle. B is responsible for the simulation of this random oracle. B assigns X = A
and outputs the public parameter param = (G, q, g, X, H) to A.

292 J.K. Liu et al.

User-Key-Gen / Corruption Query: B generates the secret and public key pair ac-
cording to the algorithm and stores in the table and outputs the public key. On
the corruption query, B returns the corresponding secret key.

Certification Query: A is allowed to make certification query for a public key
PK with identification string ID. B simulates the oracle as follow. It randomly
chooses a, b ∈R Zq and sets

R = Xagb s = −a−1R mod q H(PK, ID) = bs mod q

Note that (R, s) generated in this way satisfies the equation (1) in the Certify
algorithm. It is a valid certificate.B outputs (R, s) as the certificate of PK, ID and
store the value of (R, s, H(PK, ID), PK, ID) in the table for consistency. Later if
A queries the H random oracle for PK, ID, B outputs the same value. If PK, ID
is not found in the table, B executes the certification oracle simulation, stores the
value (R, s, H(PK, ID), PK, ID) in the table and outputs H(PK, ID) only.

Signing Query: A queries the signing oracle for a message m and a public key
PK = (gu, Xu, πu) with identification string ID. B first checks that whether πu

is a valid PoK for (gu, Xu). If not , output ⊥. Else further checks whether PK, ID
has been queries for the H random oracle or extraction oracle before. If yes, it
just retrieves (R, s, H(PK, ID), PK, ID) from the table. Let h̃ = H(PK, ID). It

also randomly generates h, z ∈R Zq, and sets Y = (gu)hh̃

Rz(Xu)hR and assigns the value
h to the random oracle query of H(Y, R, m). It outputs the signature (Y, R, z)
for the message m and stores the value h, corresponding to H(Y, R, m) in the
hash table for consistency. If PK, ID has not been queried to the random oracle
or certification oracle, B executes the simulation of the certification oracle and
uses the corresponding certificate to sign the message by the above algorithm.

Output Calculation: Finally the adversary A outputs a forged signature σ∗
(1) =

(Y ∗, R∗, z∗(1)) on message m∗ and public key PK∗ with identification string ID∗.
B rewinds A to the point it just queries H(Y ∗, R∗, m∗) and supplies with a
different value (corresponding to the same input value to the hash query). A
outputs another pair of signature σ∗

(2) = (Y ∗, R∗, z∗(2)). B repeats twice and
obtains σ∗

(3) = (Y ∗, R∗, z∗(3)) and σ∗
(4) = (Y ∗, R∗, z∗(4)). Note that Y ∗ and R∗

should be the same every time. We let c1, c2, c3, c4 be the output of the random
oracle queries H(Y ∗, R∗, m∗) for the first, second, third and forth time.

We also denote u, r, x, y ∈ Zq such that gr = R∗ , gx = X , gy = Y ∗ and
PK∗ = (gu, Xu). From equation (2), we have

ciuH(PK∗, ID∗) = rz∗(i) + y + xuciR
∗ mod q for i = 1, 2, 3, 4

In these equations, only r, y, x, u are unknown to B. B solves for these values
from the above 4 linear independent equations, and outputs x as the solution of
the discrete logarithm problem.

Probability Analysis: The simulation of the random oracle fails if the oracle as-
signment H(PK, ID) causes inconsistency. It happens with probability at most

Certificate-Based Signature Schemes without Pairings or Random Oracles 293

qh/q. Hence the simulation is successful qe + qs times (since H(PK, ID) may
also be queried in the signing oracle if PK, ID has not been queried in the
certification oracle) with probability at least(

1 − qh

q

)qe+qs

≥ 1 − qh(qe + qs)
q

Due to the ideal randomness of the random oracle, there exists a query
H(Y ∗, R∗, m∗) with probability at least 1−1/q.B guesses it correctly as the point
of rewind, with probability at least 1/qh. Thus the overall successful probability is(

1 − qh(qe + qs)
q

)(
1 − 1

q

)(1
qh

)
ε

The time complexity of the algorithm B is dominated by the exponentiations
performed in the certification and signing queries, which is equal to t + O(qe +
qs)E �
Theorem 2 (Unforgeability against Game 2 Adversary). The CBS
scheme without pairing is (ε, t)-existential unforgeable against Game 2 adver-
sary (defined in Section 3) with advantage at most ε and runs in time at most
t, assuming that the (ε′, t′)-DL assumption holds in G, where

ε′ =
(
1 − qhqs

q

)(
1 − 1

q

)(1
qh

)(1
qu

)
ε, t′ = t + O(qs)E

and qs, qh, qu are the numbers of signing queries, hashing queries and user-key-
gen queries the adversary is allowed to make and E is the time for an exponen-
tiation operation.

Proof. Assume there exists a forger A. We construct an algorithm B that makes
use of A to solve discrete logarithm problem. B is given a multiplicative group
G with generator g and order q, and a group element A ∈ G. B is asked to find
α ∈ Zq such that gα = A.

Setup: B chooses a hash function H : {0, 1}∗ → Zq which behaves like a random
oracle. B is responsible for the simulation of this random oracle. B randomly
chooses x ∈R Zq and sets X = gx. It outputs the public parameter param =
(G, q, g, X, H) to A.

User-Key-Gen Query: B chooses a particular query ID′ and assign the public key
PK ′ = (A, Ax, π′) where π′ can be simulated by the control of the random oracle.
For the other queries, B generates the secret and public key pair according to
the algorithm and stores the value in the table.

Corruption Query: If the query is not ID′, B outputs the corresponding secret
key from the table. Otherwise B aborts.

Signing Query: It can be simulated in the same way as in Game 1, which also
does not require the knowledge of the secret key.

Output Calculation: Finally the adversary A outputs a forged signature σ∗
(1) =

(Y ∗, R∗, z∗(1)) on message m∗ and public key PK∗ with identification string ID∗.

294 J.K. Liu et al.

If PK∗
= PK ′, B aborts. Otherwise B rewinds A to the point it just queries
H(Y ∗, R∗, m∗) and supplies with a different value (corresponding to the same
input value to the hash query). A outputs another pair of signature σ∗

(2) =
(Y ∗, R∗, z∗(2)). B repeats and obtains σ∗

(3) = (Y ∗, R∗, z∗(3)). Note that Y ∗ and R∗

should be the same every time. We let c1, c2, c3 be the output of the random
oracle queries H(Y ∗, R∗, m∗) for the first, second and third.

We also denote u, r, y ∈ Zq such that gr = R∗ , gy = Y ∗ and PK∗ = (gu, Xu).
From equation (2), we have

ciuH(PK∗, ID∗) = rz∗(i) + y + xuciR
∗ mod q for i = 1, 2, 3

In these equations, only r, y, u are unknown to B. B solves for these values from
the above 3 linear independent equations, and outputs u as the solution of the
discrete logarithm problem.

Probability Analysis: The simulation of the random oracle fails if the oracle assign-
ment H(PK, ID) causes inconsistency. It happens with probability at most qh/q.

Hence the simulation is successful qs times with probability at least
(
1− qh

q

)qs

≥
1− qhqs

q Due to the ideal randomness of the random oracle, there exists a query
H(Y ∗, R∗, m∗) with probability at least 1 − 1/q. B guesses it correctly as the
point of rewind, with probability at least 1/qh. In addition, B needs to guess cor-
rectly that PK ′ = PK∗, which happens with probability 1/qu. Thus the overall
successful probability is

(
1 − qhqs

q

)(
1 − 1

q

)(
1
qh

)(
1
qu

)
ε The time complexity of

the algorithm B is dominated by the exponentiations performed in the signing
queries, which is equal to t + O(qs)E �

5 A CBS without Random Oracles

Our scheme is motivated from the identity-based encryption scheme from Waters
[16]. Let Hu : {0, 1}∗ → {0, 1}nu and Hm : {0, 1}∗ → {0, 1}nm be two collision-
resistant cryptographic hash functions for some nu, nm ∈ Z.

Setup. Select a pairing e : G × G → GT where the order of G is p. Let g be a
generator of G. Randomly select α ∈R Zp, g2 ∈R G and compute g1 = gα. Also
select randomly the following elements:

u′, m′ ∈R G ûi ∈R G for i = 1, . . . , nu m̂i ∈R G for i = 1, . . . , nm

Let Û = {ûi}, M̂ = {m̂i}. The public parameters param are (e, G, GT , p, g, g1, g2,
u′, Û , m′, M̂) and the master secret key msk is gα

2 .

UserKeyGen. User selects a secret value x ∈ Zp as his secret key usk, and com-
putes his public key PK as (pk(1), pk(2)) = (gx, gx

1).

Certify. Let u = Hu(PK, ID) for user with public key PK and binary string
ID which is used to identify the user. Let u[i] be the i-th bit of u. Define U ⊂
{1, . . . , nu} to be the set of indicies such that u[i] = 1.

Certificate-Based Signature Schemes without Pairings or Random Oracles 295

To construct the certificate, the CA randomly selects ru ∈R Zp and computes(
gα
2

(
U
)ru

, gru

)
= (cert(1), cert(2)) where U = u′ ∏

i∈U
ûi

Sign. To sign a message m ∈ {0, 1}∗, the signer with identity PK (and user
information ID) , certificate (cert(1), cert(2)) and secret key usk, compute m =
Hm(m). Let m[i] be the i-th bit of m and M ⊂ {1, . . . , nm} be the set of
indicies i such that m[i] = 1. Randomly select rπ, rm ∈R Zp, compute u =
Hu(PK, userinfo), U = u′∏

i∈U ûi and

σ =

((
cert(1)

)usk(
U
)rπ

(
m′ ∏

i∈M
m̂i

)rm

,
(
cert(2)

)usk

grπ , grm

)
= (V, Rπ , Rm)

Verify. Given a signature σ = (V, Rπ, Rm) for a public key PK and user informa-
tion ID on a message m, a verifier first checks whether e(gx, g1) = e(gx

1 , g). If not,
outputs ⊥. Otherwise computes m = Hm(m), u = Hu(PK, ID), U = u′∏

i∈U ûi

and checks whether

e(V, g) ?= e(g2, g
x
1) e(U, Rπ) e(m′ ∏

i∈M
m̂i, Rm)

Output valid if it is equal. Otherwise output ⊥.

5.1 Security Analysis

Correctness. The correctness of the scheme is as follows.

e(V, g) = e

(
gαx
2 U rux U rπ

(
m′ ∏

i∈M
m̂i

)rm

, g

)

= e(gx
2 , gα) e(U rux+rπ , g) e

((
m′ ∏

i∈M
m̂i

)rm
, g
)

= e(g2, g
x
1) e(U, grux+rπ) e(m′ ∏

i∈M
m̂i, g

rm)

= e(g2, g
x
1) e(U, Rπ) e(m′ ∏

i∈M
m̂i, Rm)

Theorem 3 (Unforgeability against Game 1 Adversary). The CBS
scheme without random oracles is (ε, t)-existential unforgeable against Game 1
adversary (defined in Section 3) with advantage at most ε and runs in time at
most t, assuming that the (ε′, t′)-GCDH assumption holds in G, where

ε′ ≥ ε

16(qe + qs)(nu + 1)qs(nm + 1)
, t′= t+O

((
qenu+qs(nu+nm)

)
ρ+(qe+qs)τ

)
where qe is the number of queries made to the Certification Query, qs is the
number of queries made to the Signing Query, and ρ and τ are the time for a
multiplication and an exponentiation in G respectively.

The proof is given in the full version of this paper [15].

296 J.K. Liu et al.

Theorem 4 (Unforgeability against Game 2 Adversary). The CBS
scheme without random oracles is (ε, t)-existential unforgeable against Game 2
adversary (defined in Section 3) with advantage at most ε and runs in time at
most t, assuming that the (ε′, t′)-Many-DH assumption holds in G, where

ε′ ≥ ε

16qs(nu + 1)qs(nm + 1)qk
, t′ = t + O

((
qs(nu + nm)

)
ρ + (qk + qs)τ

)
where qs is the number of queries made to the Signing Queries, qk is the number
of queries made to the User-key-gen Queries and ρ and τ are the time for a
multiplication and an exponentiation in G respectively.

The proof is given in the full version of this paper [15].

6 Concluding Remarks

In this paper, we proposed two certificate-based signature schemes. The first one
does not require any pairing operations. Thus, it is very efficient and particularly
suitable to be implemented in some power-constrained devices, such as wireless
sensor networks. The second one does not require random oracles for proving its
security. It may be suitable for applications that require a high level of security
with regard to the fact that cryptographic schemes using the random oracles may
not be secure if the random oracles are replaced by conventional hash functions
in reality.

References

1. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

2. Gentry, C.: Certificate-based encryption and the certificate revocation problem. In:
EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer, Heidelberg (2003)

3. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

4. Kang, B.G., Park, J.H., Hahn, S.G.: A certificate-based signature scheme. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 99–111. Springer, Hei-
delberg (2004)

5. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q.: Certificate-based signature: Security
model and efficient construction. In: López, J., Samarati, P., Ferrer, J.L. (eds.)
EuroPKI 2007. LNCS, vol. 4582, pp. 110–125. Springer, Heidelberg (2007)

6. Au, M., Liu, J., Susilo, W., Yuen, T.: Certificate based (linkable) ring signature. In:
Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92. Springer,
Heidelberg (2007)

7. Al-Riyami, S.S., Paterson, K.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

Certificate-Based Signature Schemes without Pairings or Random Oracles 297

8. MIRACL, http://www.shamus.ie/
9. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-

DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612.
Springer, Heidelberg (2002)

10. Au, M., Chen, J., Liu, J., Mu, Y., Wong, D., Yang, G.: Malicious KGC attacks
in certificateless cryptography. In: ASIACCS 2007, pp. 302–311. ACM Press, New
York (2007)

11. Beth, T.: Efficient Zero-Knowledged Identification Scheme for Smart Cards. In:
Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–86. Springer,
Heidelberg (1988)

12. Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups
(Extended Abstract). CRYPTO 1997. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)

13. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Iden-
tification and Signature Schemes. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

14. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Iden-
tification and Signature Schemes (Full version). Cryptology ePrint Archive, Report
2004/252 (2004), http://eprint.iacr.org/

15. Liu, J., Baek J., Susilo, W., Zhou, J.: Certificate-Based Signature Schemes without
Pairings or Random Oracles (Full version). Cryptology ePrint Archive, Report
2008/275 (2008), http://eprint.iacr.org/

16. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005)

17. Paterson, K., Schuldt, J.: Efficient identity-based signatures secure in the standard
model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp.
195–206. Springer, Heidelberg (2006)

http://www.shamus.ie/
http://eprint.iacr.org/
http://eprint.iacr.org/

Improved Impossible Differential Attacks on

Large-Block Rijndael

Lei Zhang1,2, Wenling Wu1, Je Hong Park3,
Bon Wook Koo3, and Yongjin Yeom3

1 State Key Laboratory of Information Security,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China

{zhanglei1015,wwl}@is.iscas.ac.cn
2 State Key Laboratory of Information Security,

Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
3 Electronics and Telecommunications Research Institute, Daejeon, Korea

{bwkoo,jhpark,yjyeom}@ensec.re.kr

Abstract. In this paper, we present some improved impossible differ-
ential attacks on large-block Rijndael whose block sizes are larger than
128 bits. First of all, we present some important observations which
help us to significantly improve the impossible differential attacks on
large-block Rijndael proposed by Nakahara-Pavão (ISC 2007). Then we
introduce some new impossible differentials for large-block Rijndael. Uti-
lizing these longer impossible differential distinguishers, together with
the technique of changing the order of MixColumns and AddRoundKey

operations proposed by Zhang-Wu-Feng (ICISC 2007), we can apply
impossible differential attacks up to 7-round Rijndael-160, 8-round
Rijndael-192, and 9-round Rijndael-224/256. As far as we know, except
the attack on Rijndael-256, all the other results are the best cryptana-
lytic results on large-block Rijndael.

Keywords: Rijndael, Block cipher, Impossible differential distinguisher,
Impossible differential attack.

1 Introduction

The block cipher Rijndael [6,7] was submitted to the NIST Advanced Encryption
Standard (AES) competition, and the 128-bit block version of Rijndael was later
selected as the winner and then published as FIPS-197: AES [1]. In the original
design of Rijndael, both block and key size can independently range from 128
bits to 256 bits in steps of 32 bits. Therefore, there are five block size variants of
Rijndael, which can be denoted as Rijndael-128/160/192/224/256, respectively.
Rijndael-128 is usually known as AES, and the other variants with block size
larger than 128 bits are usually called large-block Rijndael. Although the key
size can also range from 128 bits to 256 bits, in this paper we only consider the
case that the key size is equal to the block size for simplicity.

Although there are lots of cryptanalytic results on AES [2, 3, 4, 8, 9, 11, 18, 23,
24, 25], the large-block Rijndael have not received enough attention, and there

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 298–315, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Improved Impossible Differential Attacks on Large-Block Rijndael 299

are few cryptanalytic results on them. Except the multiset and integral attacks
on Rijndael in [19, 10], the only known results on large-block Rijndael are the
impossible differential attacks described in [20]. Furthermore, recent construc-
tions of hash functions [16] and MACs [13] sometimes adopt the design strategy
of Rijndael and use modified round structures with large block size as build-
ing blocks. Since the inherent properties of building blocks can endanger the
security of full construction [21], it is necessary to examine the security of these
large-block variants precisely.

In this paper, we first describe some important observations for analyzing
Rijndael. Then combining these observations with the early abort technique
[17,23], we can improve the impossible differential attacks on large-block Rijndael
described in [20] by reducing both data and time complexity significantly. Then
we present some new impossible differentials for large-block Rijndael. Based on
these longer ID (impossible differential) distinguishers, together with the trick
of changing the order of MixColumns and AddRoundKey operations used in [23],
we can apply impossible differential attacks to more rounds of Rijndael.

This paper is organized as follows. Section 2 gives a brief description of Rijn-
dael and then introduces the notations used throughout the paper. Section 3 first
describes some important observations which are used to improve the impossible
differential attack on Rijndael-160, and then presents a new impossible differ-
ential attack on Rijndael-160 which is based on a new longer ID distinguisher.
Similarly, Section 4, Section 5 and Section 6 describe both our improved and new
impossible differential attacks on Rijndael-192, Rijndael-224 and Rijndael-256,
respectively. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Description of Rijndael

Here, we give a brief description of Rijndael. For a more detailed specification
of the algorithm, you can refer to [6, 7].

Rijndael is a Substitute Permutation Network (SPN) block cipher. The plain-
text, ciphertext and all the intermediate data are represented by a 4×Nb rectan-
gular array of bytes, which is called the state. Nb is the number of 32-bit words
in a block, namely Nb = b/32, where b is the block size. The byte indexing of
the state is shown in Fig. 1.

The round function of Rijndael is composed of four operations: SubBytes(SB),
ShiftRows(SR), MixColumns(MC) and AddRoundKey(ARK). In SubBytes, a single
8×8 S-box is applied to each byte of the state. ShiftRows is a byte transposition
which cyclically shifts the rows of the state over different offsets to the left. For
each block size of Rijndael, the shift offsets are listed in Fig. 2. Specifically, Row
i is cyclically shifted over Ci bytes to the left, where 0 ≤ i ≤ 3. The MixColumns
operation is an MDS matrix multiplication over GF(28) which confuses the four
bytes of each state column. Note that the branch number of MixColumns is 5.

300 L. Zhang et al.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

160-bit:

192-bit:

224-bit:

256-bit:

Fig. 1. Byte indexing of the state

ShiftRows

Nb C0 C1 C2 C3

5 0 1 2 3

6 0 1 2 3

7 0 1 2 4

8 0 1 3 4

Fig. 2. ShiftRows operation and the shift offsets for each block length Nb

The AddRoundKey is a byte XORed operation where each byte of the round
subkey is XORed to the corresponding byte of the state.

In the encryption procedure of Rijndael, an additional AddRoundKey operation
is performed before the first round, and the MixColumns operation is omitted in
the last round. We also assume this is the case in the reduced round variants
of Rijndael. Furthermore, since we have not exploited any relations between the
round subkeys, we will omit the key scheduling algorithm here and interested
readers can refer to [6, 7].

2.2 Notations

In the following, we introduce some notations used throughout this paper. The
plaintext and ciphertext are denoted as P and C respectively. We denote the
XOR (bit-wise exclusive OR) operation by ⊕. Then the state of i-th round and
its difference are denoted as Xi and ΔXi, respectively. Let Xi,j denote the j-th
byte of Xi, and Xi, col(l) denote the l-th column of Xi. Let RKi denote the subkey
of the i-th round. Moreover, the input of the i-th round is denoted as XI

i , and the
intermediate values after the application of SubBytes, ShiftRows, MixColumns
and AddRoundKey are denoted as XS

i , XR
i , XM

i and XO
i , respectively.

In some cases, the order of the MixColumns and AddRoundKey operations in
the same round can be interchanged, which is done by replacing the subkey
RKi by an equivalent subkey RK∗

i , where RK∗
i = MC−1(RKi). We use XW

i

to denote the intermediate value after the application of AddRoundKey operation
with RK∗

i in the i-th round.

Improved Impossible Differential Attacks on Large-Block Rijndael 301

3 Impossible Differential Attacks on Rijndael-160

In this section we give two kinds of impossible differential attack on Rijndael-160.
Firstly, we improve the impossible differential attack on 6-round Rijndael-160

described in [20]. Although we use the same 4-round ID distinguisher, we can
significantly reduce both data and time complexity by utilizing some important
observations. Furthermore, instead of guessing all the required subkey bits si-
multaneously as in [20], we use the early abort technique [17, 23] which guesses
only a small fraction of the subkey bits to decrypt and check one column of the
state each time. Then some wrong pairs can be discarded before the next guess
and this can reduce lots of computation workloads.

Secondly, we present a new 5-round impossible differential for Rijndael-160.
By setting this 5-round ID distinguisher in the middle rounds and analyzing
one additional round both before and after the distinguisher, we can extend the
impossible differential attack on Rijndael-160 up to 7-round.

3.1 Improved Impossible Differential Attack on Rijndael-160

The attack procedure of our improved impossible differential attack on 6-round
Rijndael-160 is illustrated in Fig. 3. Here, the gray cell means that we have a
non-zero difference for this byte, the light cell stands for zero difference, and the
cell filled by the mark ‘?’ stands for an arbitrary value.

Similar to the attack in [20], we also set the same 4-round impossible differ-
ential in the middle rounds, and recover subkey bits of RK0 and RK6. However,
based on the following observations, we can reduce both the number of plaintext
pairs needed and subkey bits guessed.

?
?
?
?

?

?

?

?
?

?

?

?

SB−1 SR−1 ARK
6 R

?
?
?
?

?
?
?
?

SB−1 SR−1 ARKMC−1

Pr2
5 R

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 3. Improved impossible differential attack on 6-round Rijndael-160

302 L. Zhang et al.

Observations. According to the 4-round impossible differential, if the four
bytes (0,11,14,17) of ΔXR

5 are zero, then contradiction can be caused before
and after the MixColumns operation in Round 4. Therefore, in order to check
if a ciphertext pair satisfies the impossible differential, we only need to decrypt
four columns of ΔXO

5 , and the second column of ΔXO
5 can take arbitrary values.

Thus we can filter out the ciphertext pairs using the following 64-bit condition,
namely zero ciphertext differences at bytes (2,3,6,7,10,11,14,19), instead of the
80-bit condition used in [20]. Furthermore, instead of guessing the topmost two
rows (80-bit) of RK6 as in [20], we only need to guess 64-bit subkey (RK6,0,
RK6,5, RK6,8, RK6,9, RK6,12, RK6,13, RK6,16, RK6,17), since only four columns
need to be decrypted.

In the following, we describe the attack procedure in details.

1. A structure is a set of 232 plaintexts, in which the plaintexts take all the
possible 32-bit values at the 4 bytes (0, 5, 10, 15), and at the remaining bytes
they take certain fixed values. Choose 261.2 such structures, which can gen-
erate about 261.2 · (232)2/2 = 2124.2 plaintext pairs. Choose the pairs whose
ciphertext differences at the 8 bytes (2, 3, 6, 7, 10, 11, 14, 19) are zero, and the
expected number of remaining pairs is 2124.2 · 2−64 = 260.2.

2. For all the remaining pairs, guess the 16-bit subkey (RK6,0, RK6,17) and
partially decrypt Round 6 to compute the first column of ΔXR

5 , namely
ΔXR

5, col(0) = MC−1(ARK(ΔXO
5, col(0))). Check if the first byte of this col-

umn equals to 0, and if this is not the case, discard the pair. After this test,
there remains about 260.2 · 2−8 = 252.2 pairs.

3. For every guess of the 16-bit subkey (RK6,5, RK6,8), partially decrypt Round
6 to compute the third column of ΔXR

5 . Check if the fourth byte of this
column equals to 0. If not, then discard the pair. After this test, there remains
about 252.2 · 2−8 = 244.2 pairs.

4. For every guess of the 16-bit subkey (RK6,9, RK6,12), partially decrypt
Round 6 to compute the fourth column of ΔXR

5 . Check if the third byte
of this column equals to 0 and discard unsatisfied pairs. After this test,
there remains about 244.2 · 2−8 = 236.2 pairs.

5. For every guess of the 16-bit subkey (RK6,13, RK6,16), partially decrypt
Round 6 to compute the fifth column of ΔXR

5 . Check if the second byte
of this column equals to 0. Discard the unsatisfied pairs and there remains
about 236.2 · 2−8 = 228.2 pairs.

6. For all the remaining pairs, guess 32-bit subkey (RK0,0, RK0,5, RK0,10,
RK0,15) to partially encrypt the first round to get the first column of ΔXO

1 .
Check if there is only one nonzero byte in this column. Since such a difference
is impossible, every subkey guess that leads to such a difference is wrong and
thus can be deleted. After analyzing all the 228.2 remaining pairs, if there
remains value of RK0 which is not deleted, output the 96-bit subkey guess
of (RK0, RK6) as the correct key.

Analysis. The probability that a pair passes all the tests from Step 2 to Step 5
is about Pr2 = (2−8)4 = 2−32. The probability that a pair satisfies the condition

Improved Impossible Differential Attacks on Large-Block Rijndael 303

in Step 6 is about Pr1 = 4 · (28 −1)/232 ≈ 2−22, since the MixColumns operation
is linear and there is only one nonzero byte in one column. Therefore, after
analyzing the 228.2 remaining pairs, only about 232 · (1−2−22)2

28.2 ≈ 2−74 wrong
guess for the four bytes of RK0 remains. Furthermore, unless the initial guess
on the 64-bit subkey of RK6 is correct, it is expected that we can get rid of
all the possible 32-bit guesses for RK0, since the wrong 96-bit subkey guess of
(RK0, RK6) only remains with the probability of 264 · 2−74 ≈ 2−10.

The data complexity of the attack is 261.2 ·232 = 293.2 CP(Chosen Plaintexts),
and the time complexity can be estimated as follows. Step 2 requires about
216 · 260.2 · 2/5 ≈ 275 one round encryption, since in this step for each ciphertext
we only decrypt one column of the state. Similarly, Step 3 requires about 232 ·
252.2 · 2/5 ≈ 283 one round encryption; Step 4 and Step 5 require about 291 and
299 one round encryption, respectively. Step 6 requires about 264 · 232 · 2 · (1 +
(1− 2−22)+ (1− 2−22)2 + . . . +(1− 2−22)2

28.2
)/5 ≈ 2116.7 one round encryption.

Thus the total time complexity of the attack is about 2116.7/6 ≈ 2114.1 6-round
encryptions. The memory space required is 296 bits to store the key guess table.

3.2 New Impossible Differential Attack on Rijndael-160

Here, we introduce a new impossible differential attack on 7-round Rijndael-160.
You can easily check that a similar impossible differential pattern and attack
techniques used in [23] for AES can be adopted to 7-round Rijndael-160 whose
time and data complexities are 2119 and 2149.5, respectively. However, we can
mount a better attack on 7-round Rijndael-160 by using a new 5-round impos-
sible differential which is longer than the one used in Sect. 3.1.

The 5-round impossible differential is illustrated in Fig. 4. In the encryption
and decryption direction, the differentials both start with only one nonzero byte
difference. Then in Round 4, the first column of the state before and after MC−1

operation contradicts with each other, since the sum of nonzero byte differences
is only 3 which is less than the branch number of MixColumns.

Based on this 5-round ID distinguisher, we can mount an impossible differ-
ential attack on 7-round Rijndael-160, which recovers subkey bits of RK0 and
RK7. The attack procedure is as follows and it is also illustrated in Fig. 4.

1. Choose 2115 structures, and in each structure the plaintexts take all the pos-
sible 32-bit values at bytes (0, 5, 10, 15), and at the remaining bytes they take
certain fixed values. These structures can generate about 2115 · (232)2/2 =
2178 plaintext pairs. Choose the pairs whose corresponding ciphertext pairs
have zero differences except 4 bytes (1, 4, 15, 18), and the expected number
of remaining pairs is 2178 · 2−128 = 250.

2. For every guess of the 32-bit subkey (RK7,1, RK7,4, RK7,15, RK7,18), par-
tially decrypt Round 7 to compute the second column of ΔXW

6 . Check if
there is only one nonzero byte difference in this column. If this is not the
case, discard the pair.

3. For all the remaining pairs, guess 32-bit subkey (RK0,0, RK0,5, RK0,10,
RK0,15) to partially encrypt the first round to get the first column of ΔXO

1 .

304 L. Zhang et al.

SB−1 SR−1 ARK
7 R

SB−1 SR−1 ARK∗ MC−1

Pr2
6 R

SB−1 SR−1 MC−1 ARK
5 R

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 4. New impossible differential attack on 7-round Rijndael-160

If there is only one nonzero byte in this column, the guessed subkey is wrong
and should be deleted since such a difference is impossible. After analyzing
all the remaining pairs, if there still remains value of RK0 which is not
deleted, output the 64-bit subkey guess of (RK0, RK7) as the correct key.

Analysis. The probability that a pair passes the test in Step 2 is Pr2 = 4 · (28−
1)/232 ≈ 2−22, since the nonzero byte has 4 possible positions. Thus the expected
number of remaining pairs after Step 2 is about 250 · 2−22 = 228. Similarly,
the probability which a pair satisfies the condition in Step 3 is Pr1 ≈ 2−22.
Therefore, after testing all the 228 remaining pairs, the probability that a wrong
64-bit subkey guess of (RK0, RK7) remains is about 264 · (1 − 2−22)2

28 ≈ 2−28.
So we can expect that only the right subkey remains.

The data complexity of the attack is 2115 · 232 = 2147 CP, and the time
complexity can be estimated as follows. Step 2 requires about 232 ·250 ·2/5 ≈ 280.7

one round encryption. Step 3 requires about 264 · 2 · (1 + (1 − 2−22) + (1 −
2−22)2 + · · · + (1 − 2−22)2

28
)/5 ≈ 284.7 one round encryption. Thus the total

time complexity of the attack is about 284.7/7 ≈ 281.9 7-round encryptions. The
memory space required is about 264 bits to store the key table.

4 Impossible Differential Attacks on Rijndael-192

In this section, we give three kinds of impossible differential attack on Rijndael-
192. The first attack is an improved version of the impossible differential attack

Improved Impossible Differential Attacks on Large-Block Rijndael 305

on 6-round Rijndael-192 described in [20], which is based on the similar ob-
servations as the one used in Sect. 3.1. The second attack is a new impossible
differential attack on 8-round Rijndael-192 which is based on the 6-round im-
possible differential introduced in [20, Appendix]. This 6-round impossible dif-
ferential was not used in [20], because they thought it might be ineffective for a
key-recovery attack due to too many zero byte differences. However, by utilizing
some tricks in the filtering process, we can use this 6-round ID distinguisher
to extend the impossible differential attack on Rijndael-192 up to 8-round. The
third attack uses a new 6-round impossible differential which is designed by the
idea that the sum of nonzero bytes of a column before and after MixColumns in a
middle round can not be less than 5, which is the branch number of MixColumns.
This attack can also reach up to 8-round Rijndael-192.

4.1 Improved Impossible Differential Attack on Rijndael-192

The attack procedure of our improved impossible differential attack on 6-round
Rijndael-192 is illustrated in Fig. 5. Similar to the observations in Sect. 3.1,
to check if a pair satisfies the impossible differential, we only need to decrypt
four columns of ΔXO

5 , and the other two columns can take arbitrary values.
Therefore, we only need to choose pairs whose ciphertext differences at the 8
bytes (3, 6, 7, 10, 11, 14, 15, 18) are zero, which means a 64-bit condition. Then
to partially decrypt four columns of ΔXO

5 , we only need to guess 64-bit subkey
(RK6,0, RK6,9, RK6,12, RK6,13, RK6,16, RK6,17, RK6,20, RK6,21).

Since the filtering condition and the number of subkey bits guessed in this
attack are the same as the one in Sect. 3.1, the data and time complexity of these
two attacks should be the same. Thus the data complexity of the attack is 293.2

CP and the time complexity is about 2114.1 · 5/6 ≈ 2113.8 6-round encryptions.

? ?
? ?
? ?
? ?

?

?

?

??
?

?

?

?

?

?

??
?

?

?

SB−1 SR−1 ARK
6 R

? ?
? ?
? ?
? ?

? ?
? ?
? ?
? ?

SB−1 SR−1 MC−1

Pr2

ARK
5 R

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 5. Improved impossible differential attack on 6-round Rijndael-192

306 L. Zhang et al.

SB−1 SR−1 ARK
8 R

SB−1 SR−1 ARK∗ MC−1

Pr2
7 R

?
?

?
? ?

?
?
?

SB−1 SR−1 MC−1 ARK
6 R

? ? ?
? ? ?

? ? ?
? ? ?

?
?

?

? ?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
? ?

?
?

?

?
?

?
?

SB−1 SR−1 MC−1 ARK
5 R

? ? ?
? ? ?

? ? ?
? ? ?

?
?

?

? ? ? ?
? ? ?

? ? ?
? ? ?

?
?

?

?

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 6. First impossible differential attack on 8-round Rijndael-192

Note that in the attack on Rijndael-192, the computation of one column equals
to about 1/6 one-round encryption.

4.2 New Impossible Differential Attacks on Rijndael-192

In this section, we introduce two new impossible differential attacks on 8-round
Rijndael-192. Each attack uses a different 6-round impossible differential.

In the following, we describe our first impossible differential attack on 8-round
Rijndael-192 which is based on the 6-round impossible differential presented
in [20, Appendix]. The main idea of this ID distinguisher which is illustrated
in Fig. 6 is the sum of nonzero bytes of the first column before and after the
MixColumns operation in Round 4 is at most 4, which contradicts the branch
number of MixColumns.

As depicted in Fig. 6, we set the above ID distinguisher in the middle rounds,
and try to recover subkey bits of (RK0, RK8). In this attack we exploit the trick
of changing the order of MixColumns and AddRoundKey operations in Round
7 to reduce the number of subkey bits guessed. This is done by replacing the
subkey RK7 with the equivalent subkey RK∗

7 . Details of our attack procedure
and complexity analysis are described as follows.

1. Choose 2126 structures which contains 232 plaintexts each. The plaintexts in
a structure take all the possible 32-bit values at the four bytes (0, 5, 10, 15),

Improved Impossible Differential Attacks on Large-Block Rijndael 307

and at the remaining bytes they take certain fixed values. These structures
can generate about 2126 · (232)2/2 = 2189 plaintext pairs. Choose the pairs
whose ciphertext differences at the 8 bytes (1, 2, 4, 5, 8, 19, 22, 23) are zero,
and the expected number of remaining pairs is 2189 · 2−64 = 2125.

2. For all the remaining pairs, guess 32-bit subkey (RK8,0, RK8,15, RK8,18,
RK8,21) and partially decrypt Round 8 to compute the first column of ΔXW

7 .
Check if the differences at the 3 bytes (1, 2, 3) are zero. If this is not the case,
discard the pair. After this test, there remains about 2125 ·2−24 = 2101 pairs.

3. For every guess of the 32-bit subkey (RK8,3, RK8,6, RK8,9, RK8,12), par-
tially decrypt Round 8 to compute the fourth column of ΔXW

7 . Check if the
differences at the 3 bytes (12, 13, 14) are zero. If not, then discard the pair.
The expected number of remaining pairs is about 2101 · 2−24 = 277.

4. For every guess of the 32-bit subkey (RK8,7, RK8,10, RK8,13, RK8,16), par-
tially decrypt Round 8 to compute the fifth column of ΔXW

7 . Check if the
differences at the 3 bytes (16, 17, 19) are zero. If not, then discard the pair.
The expected number of remaining pairs is about 277 · 2−24 = 253.

5. For every guess of the 32-bit subkey (RK8,11, RK8,14, RK8,17, RK8,20),
partially decrypt Round 8 to compute the sixth column of ΔXW

7 . Check if
the differences at the 3 bytes (20, 22, 23) are zero, and discard unsatisfied
pairs. The expected number of remaining pairs is about 253 · 2−24 = 229.

6. For all the remaining pairs, guess 32-bit subkey (RK0,0, RK0,5, RK0,10,
RK0,15) to partially encrypt the first round to get the first column of ΔXO

1 .
Check if there is only one nonzero byte in this column. Delete all the 32-bit
subkey guesses of RK0 which lead to such an impossible difference. After
analyzing all the 229 remaining pairs, if there still remains value of RK0,
output the 160-bit subkey guess of (RK0, RK8) as the correct key.

Analysis. The probability that a pair passes all the tests from Step 2 to Step 5
is Pr2 ≈ (2−24)4 = 2−96, and the probability that a pair satisfies the condition in
Step 6 is Pr1 ≈ 2−22. Therefore, after analyzing the 229 remaining pairs, for all
the wrong subkey guesses we can get rid of all the possible 32-bit values of RK0,
since the wrong guess of 160-bit (RK0, RK8) only remains with the probability
2128 · 232 · (1 − 2−22)2

29 ≈ 2−24.
The data complexity of the attack is 2126 · 232 = 2158 CP, and the time

complexity can be estimated as follows. Step 2 requires about 232 · 2125 · 2/6 ≈
2155.4 one round encryption. Similarly, Step 3 requires about 264 · 2101 · 2/6 ≈
2163.4 one round encryption; Step 4 and Step 5 require about 2171.4 and 2179.4

one round encryption, respectively. Step 6 requires about 2128 · 232 · 2 · (1 +
(1 − 2−22) + (1− 2−22)2 + · · ·+ (1− 2−22)2

29
)/6 ≈ 2180.4 one round encryption.

Thus the total time complexity of the attack is about 2180.4/8 = 2177.4 8-round
encryptions. The memory space required is about 2160 bits to store the key table.

Next, we introduce our second impossible differential attack on 8-round
Rijndael-192 which is based on a new 6-round impossible differential. The 6-
round ID distinguisher and brief attack procedure are illustrated in Fig. 7. In
this attack, we also change the order of MixColumns and AddRoundKey operations

308 L. Zhang et al.

SB−1 SR−1 ARK
8 R

SB−1 SR−1 ARK∗ MC−1

Pr2
7 R

SB−1 SR−1 MC−1 ARK
6 R

SB−1 SR−1 MC−1 ARK
5 R

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 7. Second impossible differential attack on 8-round Rijndael-192

in Round 7. Details of our attack procedure and complexity analysis are de-
scribed as follows.

1. Choose 2147 structures, and in each structure the plaintexts take all the pos-
sible 32-bit values at bytes (0, 5, 10, 15), and at the remaining bytes they take
certain fixed values. These structures can generate about 2147 · (232)2/2 =
2210 plaintext pairs. Choose only the pairs whose corresponding ciphertext
pairs have zero differences except 4 bytes (0, 15, 18, 21), and the expected
number of remaining pairs is 2210 · 2−160 = 250.

2. For every guess of the 32-bit subkey (RK8,0, RK8,15, RK8,18, RK8,21), par-
tially decrypt Round 8 to compute the first column of ΔXW

7 . Check if there is
only one nonzero byte difference in this column. If not, then discard the pair.
After this test, the expected number of remaining pairs is 250 · 2−22 = 228.

3. For all the remaining pairs, guess 32-bit subkey (RK0,0, RK0,5, RK0,10,
RK0,15) to partially encrypt the first round to get the first column of ΔXO

1 .
Check if there is only one nonzero byte difference in this column. Delete all
the wrong subkey guesses of RK0 which lead to such an impossible difference.
After analyzing all the remaining pairs, if there still remains value of RK0,
output the 64-bit subkey guess of (RK0, RK8) as the correct key.

Analysis. The probabilities that a pair passes the test in Step 2 and Step 3 are
Pr1 = Pr2 = 4 · (28 − 1)/232 ≈ 2−22. Therefore, after testing the 228 remaining

Improved Impossible Differential Attacks on Large-Block Rijndael 309

pairs, the probability that a wrong 64-bit subkey guess of (RK0, RK8) remains
is 264 · (1 − 2−22)2

28 ≈ 2−28. So we can expect that only the right subkey will
remain. Hence he data complexity of the attack is 2147 · 232 = 2179 CP, and
the time complexity is dominated by Step 3 which requires about 264 · 2 · (1 +
(1 − 2−22) + (1 − 2−22)2 + · · · + (1 − 2−22)2

28
)/6 ≈ 284.4 one round encryption.

Thus the total time complexity of the attack is about 284.4/8 = 281.4 8-round
encryptions. The memory space required is about 264 bits to store the key table.

5 Impossible Differential Attacks on Rijndael-224

In this section, we also first improve the impossible differential attack on 7-round
Rijndael-224 described in [20]. Then we present a new 6-round impossible dif-
ferential for Rijndael-224. Based on this longer ID distinguisher, we can analyze
one round before and two rounds after the distinguisher to get a new impossible
differential attack on 9-round Rijndael-224.

5.1 Improved Impossible Differential Attack on Rijndael-224

Based on the similar observations, we know that only four columns of the cipher-
text are sufficient to be decrypted to check if a pair satisfies the distinguisher,
and the other three columns can take arbitrary values. Thus instead of the 112-
bit condition and 112-bit guess of RK7 used in [20], we only need to guess 64-bit
of RK7 and filter the ciphertext pairs using a 64-bit condition. Therefore, the
data complexity of our improved attack is also 293.2 CP, and the time complexity
is about 2113.4 7-round encryptions.

5.2 New Impossible Differential Attack on Rijndael-224

The new 6-round impossible differential used in our attack on 9-round Rijndael-
224 is illustrated in Fig. 8. It is constructed by exploiting the contradiction
that the sum of nonzero byte differences in the first column before and after
MixColumns operation in Round 4 is 2, which is less than the branch number.
Then, as depicted in Fig. 8, we can add one round before and two rounds after the
distinguisher, and mount an impossible differential attack on 9-round Rijndael-
224 which recovers subkey bits of RK0, RK8 and RK9. Note in this attack,
we also change the order of MixColumns and AddRoundKey operations in Round
7 and Round 8. Details of our attack procedure and complexity analysis are
described as follows.

1. Choose 2180.3 structures, and the plaintexts in a structure take all the pos-
sible 32-bit values at the four bytes (0, 5, 10, 19), and at the remaining
bytes they take certain fixed values. These structures can generate about
2180.3 · (232)2/2 = 2243.3 pairs. Choose only the pairs which have zero cipher-
text differences at the 12 bytes (1, 2, 3, 4, 5, 8, 10, 13, 16, 19, 23, 26), and
the expected number of remaining pairs is 2243.3 · 2−96 = 2147.3.

310 L. Zhang et al.

SB−1 SR−1 ARK
9 R

SB−1 SR−1 ARK∗ MC−1

Pr3
8 R

SB−1 SR−1 ARK∗ MC−1

Pr2
7 R

SB−1 SR−1 MC−1 ARK
6 R

SB−1 SR−1 MC−1 ARK
5 R

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 8. New impossible differential attack on 9-round Rijndael-224

2. For all the remaining pairs, guess 32-bit subkey (RK9,0, RK9,15, RK9,22,
RK9,25) and partially decrypt Round 9 to get the first column of XW

8 . Check
if the difference at 3 bytes (1, 2, 3) are zero. If this is not the case, discard the
pair. The expected number of remaining pairs is about 2147.3 · 2−24 = 2123.3.

3. For every guess of the 32-bit subkey (RK9,6, RK9,9, RK9,12, RK9,27), par-
tially decrypt Round 9 to get the fourth column of XW

8 . Check if the dif-
ference at 3 bytes (12, 13, 14) are zero. If not, then discard the pair. The
expected number of remaining pairs is about 2123.3 · 2−24 = 299.3.

4. For every guess of the 32-bit subkey (RK9,7, RK9,14, RK9,17, RK9,20), par-
tially decrypt Round 9 to get the sixth column of XW

8 . Check if the difference
at 3 bytes (20, 21, 23) are zero. If not, discard the pair. The expected number
of remaining pairs is about 299.3 · 2−24 = 275.3.

5. For every guess of the 32-bit subkey (RK9,11, RK9,18, RK9,21, RK9,24), par-
tially decrypt Round 9 to get the seventh column of XW

8 . Check if the dif-
ference at 3 bytes (24, 26, 27) are zero. If not, discard the pair. The expected
number of remaining pairs is about 275.3 · 2−24 = 251.3.

6. For all the remaining pairs, guess 32-bit equivalent subkey (RK∗
8,0, RK∗

8,15,
RK∗

8,22, RK∗
8,25), and partially decrypt Round 8 to get the first column of

ΔXW
7 . Check if there is only one nonzero byte difference. If not, discard the

pair. It is expected that there remains about 251.3 · 4 · 2−24 = 229.3 pairs.

Improved Impossible Differential Attacks on Large-Block Rijndael 311

7. For the remaining pairs, guess 32-bit subkey (RK0,0, RK0,5, RK0,10, RK0,19)
to partially encrypt the first round to get the first column of ΔXO

1 . Check if
there is only one nonzero byte difference in this column. Delete all the wrong
32-bit subkey guess of RK0 which leads to such an impossible difference.
After analyzing all the 229.3 remaining pairs, if there still remains a value of
RK0, output the 192-bit subkey guess of (RK0, RK8, RK9) as correct key.

Analysis. The probability that a pair passes the tests from Step 2 to Step 5
is about Pr3 = (2−24)4 = 2−96. The probabilities that a pair passes the tests
in Step 6 and Step 7 are Pr1 = Pr2 = 2−22. Therefore, after analyzing the
229.3 remaining pairs, the wrong guess of 192-bit subkey (RK0, RK∗

8 , RK9) only
remains with the probability of 2192 · (1 − 2−22)2

29.3 ≈ 2−35.
The data complexity of the attack is 2180.3 · 232 = 2212.3 CP, and the time

complexity can be estimated as follows. Step 2 requires about 232 · 2147.3 · 2/7 ≈
2177.5 one round encryption. Similarly, Step 3, Step 4, Step 5 and Step 6 require
about 2185.5, 2193.5, 2201.5 and 2209.5 one round encryption, respectively. Step 7
requires about 2160 ·232 ·2 ·(1+(1−2−22)+(1−2−22)2 + · · ·+(1−2−22)2

29.3
)/7 ≈

2212.2 one round encryption. Thus the total time complexity of the attack is about
2212.2/9 ≈ 2209 9-round encryptions. The memory space required is about 2192

bits to store the key table.

6 Impossible Differential Attack on Rijndael-256

In this section, an improved impossible differential attack on 7-round Rijndael-
256 and a new impossible differential attack on 9-round Rijndael-256 using a
6-round ID distinguisher are introduced.

6.1 Improved Impossible Differential Attack on Rijndael-256

Similar to the analysis in Sect. 3.1, in order to check if a pair satisfies the ID
distinguisher, we only need to decrypt four columns of the ciphertext pairs, and
the other four columns can take arbitrary values. Thus instead of the 128-bit
condition and 128-bit subkey guess in [20], we only need to guess 64-bit subkey
guess of RK7 and filter out the pairs with a 64-bit condition in our improved
attack on 7-round Rijndael-256. Therefore, the data complexity is also 293.2 CP,
and the time complexity is about 2113.2 7-round encryptions.

6.2 New Impossible Differential Attack on Rijndael-256

We depict the 6-round impossible differential for Rijndael-256 in Fig. 9. Then by
analyzing one round before and two rounds after the 6-round ID distinguisher, we
can apply the impossible differential attack to 9-round Rijndael-256 as depicted
in Fig. 9.

Considering that this attack is similar to the attack on 9-round Rijndael-192
in Sect. 5.2, we only give a brief description of the attack procedure as follows. In

312 L. Zhang et al.

SB−1 SR−1 ARK
9 R

SB−1 SR−1 ARK∗ MC−1

Pr3
8 R

SB−1 SR−1 ARK∗ MC−1

Pr2
7 R

SB−1 SR−1 MC−1 ARK
6 R

SB−1 SR−1 MC−1 ARK
5 R

SB SR ARK
4 R

SB SR MC ARK
3 R

SB SR MC ARK
2 R

ARK · SB · SR MC

Pr1

ARK
1 R

Fig. 9. New impossible differential attack on 9-round Rijndael-256

the attack, we choose 2212.3 structures which can generate about 2275.3 plaintext
pairs. After filtering out the pairs based on the 128-bit condition on ciphertext
differences, there remains 2147.3 pairs. Then we need to guess 128-bit of RK9,
32-bit of RK∗

8 and 32-bit of RK0 to check if the pair satisfies the 6-round ID
distinguisher. Finally, we can get rid of all the wrong 192-bit subkey guesses by
analyzing the 229.3 remaining pairs. Therefore, the data complexity of the attack
is 2212.3 · 232 = 2244.3 CP, and the total time complexity of the attack is about
2192 ·2 · (1+(1−2−22)+ (1−2−22)2 + · · ·+(1−2−22)2

29.3
)/8/9 ≈ 2208.8 9-round

encryptions. The memory space required is 2192 bits to store the key table.

7 Conclusion

In this paper, we give two kinds of impossible differential attacks on large-block
Rijndael. Firstly, we present some important observations for impossible differen-
tials of large-block Rijndael used in [20] which induces significant improvements
to the impossible differential attacks described in [20]. Next, we present some
new impossible differentials for large-block Rijndael, and by using these long

Improved Impossible Differential Attacks on Large-Block Rijndael 313

ID distinguishers we extend the impossible differential attacks on large-block
Rijndael to more rounds.

Table 1 summarizes our impossible differential attacks together with the previ-
ously known attacks on large-block Rijndael. According to Table 1, our improved
impossible differential attack on each variant of Rijndael all makes significant im-
provements on both data and time complexities. Furthermore, except the attack
on Rijndael-256, our new impossible differential attacks on 7-round Rijndael-160,
8-round Rijndael-192 and 9-round Rijndael-224 are all the best cryptanalytic re-
sults on large-block Rijndael so far.

Table 1. Summary of our attacks and the previously known attacks on Rijndael

Cipher
of

rounds
Complexity Attack

type
Source

Time Data(CP)

Rijndael-160 6 2135 2105.5 Imp. Diff. [20]
6 2114.1 293.2 Imp. Diff. Sect. 3.1

7 2133.5 2129 Multiset [19]
7 281.9 2147 Imp. Diff. Sect. 3.2

Rijndael-192 6 2151 2121.5 Imp. Diff. [20]
6 2113.8 293.2 Imp. Diff. Sect. 4.1

7 2128 − 2119 2128 − 2119 Part. Sum [9]
7 2141 2130.5 Multiset [19]

8 2188 2128 − 2119 Part. Sum [9]
8 2177.4 2158 Imp. Diff. Sect. 4.2
8 281.4 2179 Imp. Diff. Sect. 4.2

Rijndael-224 7 2141 2130.5 Multiset [19]
7 2167 2138 Imp. Diff. [20]
7 2113.4 293.2 Imp. Diff. Sect. 5.1

9 2209 2212.3 Imp. Diff. Sect. 5.2

Rijndael-256 7 2128 − 2119 2128 − 2119 Part. Sum [9]
7 2141 2130.5 Multiset [19]
7 244 6 × 232 Integral [10]
7 2182 2153 Imp. Diff. [20]
7 2113.2 293.2 Imp. Diff. Sect. 6.1

8 2128 − 2119 2128 − 2119 Integral [10]

9 2204 2128 − 2119 Integral [10]
9 2208.8 2244.3 Imp. Diff. Sect. 6.2

Acknowledgement

We would like to thank Prof. Vincent Rijmen and anonymous reviewers for
helpful comments. This work is supported in part by the National High-Tech
Research and Development 863 Plan of China (No.2007AA01Z470), the National

314 L. Zhang et al.

Natural Science Foundation of China (No.90604036), and the National Grand
Fundamental Research 973 Program of China (No.2004CB318004).

References

1. National Institute of Standards and Technology. FIPS-197: Advanced Encryption
Standard (AES) (November 2001)

2. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006)

3. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijadeal. Official public
comment for Round 2 of the AES development effort (2000)

4. Biryukov, A.: The boomerang attack on 5 and 6 round reduced AES. In: Dobbertin,
H., Rijmen, V., Sowa, A. (eds.) AES 2005. LNCS, vol. 3373, pp. 11–15. Springer,
Heidelberg (2005)

5. Cheon, J.H., Kim, M.J., Kim, K., Lee, J.-Y., Kang, S.W.: Improved impossible
differential cryptanlaysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

6. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. In: 1st AES Conference, Califor-
nia, USA (1998)

7. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2001)
8. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In: Ny-

berg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)
9. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wager, D., Whiting,

D.: Improved cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

10. Galice, S., Minier, M.: Improving integral attacks against Rijndael-256 up to 9
rounds. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 1–15.
Springer, Heidelberg (2008)

11. Gilbert, H., Minier, M.: A collision attack on 7 rounds of Rijndael. In: Proc. of 3rd
AES Candidate Conference (2000)

12. Jakimoski, G., Desmedt, Y.: Related-key differential cryptanalysis of 192-bit key
AES variants. In: Matsui, M., Zuccherato, R. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

13. Jakimoski, G., Subbalakshmi, K.P.: On efficient message authentication via block
cipher design techniques. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS,
vol. 4833, pp. 232–248. Springer, Heidelberg (2007)

14. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192
and AES-256. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 225–241.
Springer, Heidelberg (2007)

15. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible differential cryptanalysis
for block cipher structures. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003.
LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

16. Knudsen, L.R., Rechberger, C., Thomsen, S.S.: The Grindahl hash functions. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 39–57. Springer, Heidelberg
(2007)

17. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible
differential cryptanalysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008)

Improved Impossible Differential Attacks on Large-Block Rijndael 315

18. Lucks, S.: Attacking seven rounds of Rijndael under 192-bit and 256-bit keys. In:
Proc. of 3rd AES Candidate Conference (2000)

19. Nakahara Jr., J., de Freitas, D.S., Phan, R.C.-W.: New multiset attacks on Rijn-
dael with large blocks. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS,
vol. 3715, pp. 277–295. Springer, Heidelberg (2005)

20. Nakahara Jr., J., Pavão, I.C.: Impossible-differential attacks on large-block Rijn-
dael. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007.
LNCS, vol. 4779, pp. 104–117. Springer, Heidelberg (2007)

21. Peyrin, T.: Cryptanalysis of Grindahl. In: Kurosawa, K. (ed.) ASIACRYPT 2007.
LNCS, vol. 4833, pp. 551–567. Springer, Heidelberg (2007)

22. Phan, R.C.-W.: Impossible differential cryptanalysis of 7 round Advanced Encryp-
tion Standard (AES). Information Processing Letters 91, 33–38 (2004)

23. Zhang, W., Wu, W., Feng, D.: New result on impossible differential cryptanalysis
of reduced AES. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817,
pp. 239–250. Springer, Heidelberg (2007)

24. Zhang, W., Wu, W., Zhang, L., Feng, D.: Improved related-key impossible differ-
ential attacks on reduced-round AES-192. In: Biham, E., Youssef, A.M. (eds.) SAC
2006. LNCS, vol. 4356, pp. 15–27. Springer, Heidelberg (2007)

25. Zhang, W., Zhang, L., Wu, W., Feng, D.: Related-key differential-linear attacks
on reduced AES-192. In: Srinathan, K., Pandu Rangan, C., Yung, M. (eds.) IN-
DOCRYPT 2007. LNCS, vol. 4859, pp. 73–85. Springer, Heidelberg (2007)

A Five-Round Algebraic Property of the

Advanced Encryption Standard

Jianyong Huang, Jennifer Seberry, and Willy Susilo

Centre for Computer and Information Security Research (CCISR)
School of Computer Science and Software Engineering

University of Wollongong, Australia
{jyh33,jennie,wsusilo}@uow.edu.au

Abstract. This paper presents a five-round algebraic property of the
Advanced Encryption Standard (AES). In the proposed property, we
modify twenty bytes from five intermediate values at some fixed loca-
tions in five consecutive rounds, and we show that after five rounds
of operations, such modifications do not change the intermediate result
and finally still produce the same ciphertext. We introduce an algorithm
named δ, and the algorithm accepts a plaintext and a key as two inputs
and outputs twenty bytes, which are used in the five-round property.
We demonstrate that the δ algorithm has 20 variants for AES-128, 28
variants for AES-192 and 36 variants for AES-256. By employing the δ
algorithm, we define a modified version of the AES algorithm, the δAES.
The δAES calls the δ algorithm to generate twenty bytes, and uses these
twenty bytes to modify the AES round keys. The δAES employs the same
key scheduling algorithm, constants and round function as the AES. For a
plaintext and a key, the AES and the δAES produce the same ciphertext.

Keywords: AES, A Five-Round Algebraic Property of the AES, Algo-
rithm δ, Variants of Algorithm δ, Linear Equations, δAES.

1 Introduction

The block cipher Rijndael [1] was selected as the Advanced Encryption Standard
(AES) by National Institute of Standards and Technology. Rijndael has a simple
and elegant structure, and it was designed carefully to withstand two well-known
cryptanalytic attacks: differential cryptanalysis [2] and linear cryptanalysis [3].
Most operations of Rijndael are based on the algebraic Galois field GF (28),
which can be implemented efficiently in dedicated hardware and in software on
a wide range of processors.

Since Rijndael was adopted as a standard [4], there have been many research
efforts aiming to evaluate the security of this cipher. A block cipher, named Big
Encryption System (BES), was defined in [5], and Rijndael can be embedded
into BES. The eXtended Linearization (XL) [6] and the eXtended Sparse Lin-
earization (XSL) [7] techniques are new methods to solve nonlinear algebraic
equations. The concept of dual ciphers was introduced in [8], and a collision at-
tack on 7 rounds of Rijndael was proposed in [9]. The most effective attacks on

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 316–330, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Five-Round Algebraic Property of the Advanced Encryption Standard 317

reduced-round variants of the AES are Square attack which was used to attack
the cipher Square [10,1]. The idea of the Square attack was later employed to im-
prove the cryptanalysis of Rijndael [11], and to attack seven rounds of Rijndael
under 192-bit and 256-bit keys [12]. A multiplicative masking method of AES
was proposed in [13] and further discussed in [14]. The design of an AES-based
stream cipher LEX was described in [15], and the construction of an AES-based
message authentication code can be found in [16]. So far, no short-cut attack
against the full-round AES has been found.

In this paper, we present a five round property of the AES. We modify twenty
bytes from five intermediate values at some fixed locations in five consecutive
rounds, and we demonstrate that after five rounds of operations, such modifi-
cations do not change the intermediate result and finally still produce the same
ciphertext. We introduce an algorithm named δ, and the δ algorithm takes a
plaintext and a key as two inputs and outputs twenty bytes, which are used
in the five-round property. By employing the δ algorithm, we define a modified
version of the AES algorithm, the δAES. The δAES calls the δ algorithm to gen-
erate twenty bytes, and uses these twenty bytes to modify the AES round keys.
For a plaintext and a key, the AES and the δAES produce the same ciphertext.

This paper is organized as follows: Section 2 provides a short description of
the AES. In Section 3, we present the five-round algebraic property of the AES,
and introduce the δ algorithm. In Section 4, we define a modified version the
AES algorithm, the δAES. Finally, Section 5 concludes this paper. Appendix A
and Appendix B provide the process of finding the values of the eight variables
which are used in Section 3.

2 Description of the AES

We provide a brief description of the AES, and refer the reader to [4] for a
complete description of this cipher. AES is a block cipher with a 128-bit block
length and supports key lengths of 128, 192 or 256 bits. For encryption, the
input is a plaintext block and a key, and the output is a ciphertext block. The
plaintext is first copied to 4 × 4 array of bytes, which is called the state. The
bytes of a state is organized in the following format:

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

.

where ai denote the i-th byte of the block. After an initial round key addition,
the state array is transformed by performing a round function 10, 12, or 14
times (for 128-bit, 192-bit or 256-bit keys respectively), and the final state is
the ciphertext. We denote the AES with 128-bit keys by AES-128, with 192-
bit keys by AES-192, and with 256-bit keys by AES-256. Each round of AES
consists of the following four transformations (the final round does not include
MixColumns):

318 J. Huang, J. Seberry, and W. Susilo

1. The SubBytes (SB) transformation. It is a non-linear byte substitution that
operates independently on each byte of the state using a substitution table.

2. The ShiftRows (SR) transformation. The bytes of the state are cyclically
shifted over different numbers of bytes. Row 0 is unchanged, and Row i is
shifted to the left i byte cyclicly, i ∈ {1, 2, 3}.

3. The MixColumns (MC) transformation. It operates on the state column-by-
column, considering each column as a four-term polynomial. The columns
are treated as polynomials over GF (28) and multiplied modulo x4 + 1 with
a fixed polynomial, written as {03}x3 + {01}x2 + {01}x + {02}.

4. The AddRoundKey (ARK) transformation. A round key is added to the
state by a simple bitwise exclusive-or (XOR) operation.

The key expansion of the AES generates a total of Nb(Nr + 1) words: the
algorithm needs an initial set of Nb words, and each of the Nr rounds requires
Nb words of key data, where Nb is 4, and Nr is set to 10, 12, or 14 for 128-bit,
192-bit, or 256-bit key sizes respectively. For a 128-bit key K, we denote the
round keys by

Ki
0 Ki

4 Ki
8 Ki

12

Ki
1 Ki

5 Ki
9 Ki

13

Ki
2 Ki

6 Ki
10 Ki

14

Ki
3 Ki

7 Ki
11 Ki

15

,

where i is the round number, i ∈ {1, 2, · · ·10}. We note that the round key used
in the initial round is the secret key K itself, and the secret key is represented
without the superscript i.

3 A Five-Round Property of AES

We present a five-round property of the AES in this section. In the proposed
property, we modify twenty bytes from five intermediate values at some fixed
locations in five consecutive rounds, and we show that after five rounds of op-
erations, such modifications do not change the intermediate result and finally
still produce the same ciphertext. The modifications are carried out by perform-
ing four extra XOR operations at the end of each round (i.e., after the ARK
transformation), and in total, we perform twenty extra XOR operations in five
rounds. We require that each of these five rounds must contain SB, SR, MC and
ARK transformations.

We use Figure 1 and Figure 2 to describe this property. The layout of the
twenty bytes in the five intermediate values is shown in Figure 2, and the twenty
bytes are G′

0, G′
2, G′

8, G′
10, M ′

0, M ′
2, M ′

8, M ′
10, R′

0, R′
2, R′

8, R′
10, V ′

0 , V ′
2 , V ′

8 , V ′
10,

Z ′
0, Z ′

2, Z ′
8, and Z ′

10. In Figure 1, all intermediate values are listed when using the
AES algorithm to encrypt a plaintext P under a 128-bit key K , and all bytes of
the intermediate values are denoted by plain variables. Correspondingly, Figure 2
enumerates all intermediate values of the AES with 20 extra XOR operations.
The twenty-byte modifications take place in Round 1, 2, 3, 4 and 5, and after

A Five-Round Algebraic Property of the Advanced Encryption Standard 319

ARK transformation in each of these five rounds, we perform XOR operations
on Bytes 0, 2, 8 and 10. We show that the twenty-byte modifications do not
change the input to Round 6, i.e., both the AES and the AES with 20 extra
XOR operations generate the same input to Round 6. In Figure 2, a variable
marked by a asterisk indicates that the value at that location has been affected
by the twenty-byte modifications, and a plain variable shows that the value at
that location is not affected by the twenty-byte modifications. For example, after
ARK in Round 1 in Figure 2, Byte Gi is XORed with Byte G′

i, and after SB,
we have four modified bytes H∗

i , i ∈ {0, 2, 8, 10}, and twelve unchanged bytes:
H1, H3, H4, H5, H6, H7, H9, H11, H12, H13, H14, and H15.

3.1 The δ Algorithm

To decide the values of the twenty bytes: G′
i, M ′

i , R′
i, V ′

i and Z ′
i, i ∈ {0, 2, 8, 10},

we introduce an algorithm named δ. For any plaintext P and any key K used in
the AES algorithm, the δ algorithm accepts P and K as two inputs, and generates
an output which contains twenty bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i}, where G′
i, M

′
i , R

′
i, V

′
i ,

and Z ′
i are bytes, i ∈ {0, 2, 8, 10}.

The δ algorithm includes a number of steps:

1. Process the first five rounds of the AES algorithm by taking the plaintext P
and the key K as the inputs, i.e., start with the initial round, and process
Round 1, 2, 3, 4 and 5 of the AES. Therefore, we know all intermediate
values in Figure 1, from initial round to Round 5.

2. Initialize G′
i, M ′

i , R′
i, V ′

i and Z ′
i to zero, i ∈ {0, 2, 8, 10}.

3. Choose G′
0, G

′
2, G

′
8 and G′

10 freely. The only requirement is that at least one
of these four bytes is not equal to zero, namely, G′

0, G
′
2, G

′
8 and G′

10 cannot be
all zeros. If G′

0, G
′
2, G

′
8 and G′

10 are all zeros, the δ algorithm outputs twenty
zero bytes. Once G′

0, G
′
2, G

′
8 and G′

10 are decided, the remaining 16 bytes
will be computed by the procedures described in Section 3.1.1, Appendix A,
Appendix B and Section 3.1.2.

4. Decide M ′
0, M

′
2, M

′
8 and M ′

10.
5. Decide R′

0, R
′
2, R

′
8 and R′

10.
6. Decide V ′

0 , V ′
2 , V ′

8 and V ′
10.

7. Decide Z ′
0, Z

′
2, Z

′
8 and Z ′

10.

Remark 1. There are 232 − 1 combinations of {G′
0, G

′
2, G

′
8, G

′
10} because each

byte can have 28 possible values.

3.1.1 Deciding M ′
0, M ′

2, M ′
8 and M ′

10

After we have decided the values of G′
0, G

′
2, G

′
8 and G′

10, we carry out a four-
round computation (of the AES with extra 12 XOR operations), called Routine
Computation One, which starts with the initial round and ends with MC in
Round 4 (see Figure 2). All intermediate values from the computation of this
time are stored in array called Buffer One (note that Routine Computation One
produces 19 intermediate values).

320 J. Huang, J. Seberry, and W. Susilo

Initial Round Plaintext P

P3

P2

P1

P0

P7

P6

P5

P4

P11

P10

P9

P8

P15

P14

P13

P12

ARK
−→

A3

A2

A1

A0

A7

A6

A5

A4

A11

A10

A9

A8

A15

A14

A13

A12

Round 1
SB
−→

B3

B2

B1

B0

B7

B6

B5

B4

B11

B10

B9

B8

B15

B14

B13

B12

SR
−→

D3

D2

D1

D0

D7

D6

D5

D4

D11

D10

D9

D8

D15

D14

D13

D12

MC
−→

F3

F2

F1

F0

F7

F6

F5

F4

F11

F10

F9

F8

F15

F14

F13

F12

ARK
−→

G3

G2

G1

G0

G7

G6

G5

G4

G11

G10

G9

G8

G15

G14

G13

G12

Round 2
SB
−→

H3

H2

H1

H0

H7

H6

H5

H4

H11

H10

H9

H8

H15

H14

H13

H12

SR
−→

J3

J2

J1

J0

J7

J6

J5

J4

J11

J10

J9

J8

J15

J14

J13

J12

MC
−→

L3

L2

L1

L0

L7

L6

L5

L4

L11

L10

L9

L8

L15

L14

L13

L12

ARK
−→

M3

M2

M1

M0

M7

M6

M5

M4

M11

M10

M9

M8

M15

M14

M13

M12

Round 3
SB
−→

N3

N2

N1

N0

N7

N6

N5

N4

N11

N10

N9

N8

N15

N14

N13

N12

SR
−→

O3

O2

O1

O0

O7

O6

O5

O4

O11

O10

O9

O8

O15

O14

O13

O12

MC
−→

Q3

Q2

Q1

Q0

Q7

Q6

Q5

Q4

Q11

Q10

Q9

Q8

Q15

Q14

Q13

Q12

ARK
−→

R3

R2

R1

R0

R7

R6

R5

R4

R11

R10

R9

R8

R15

R14

R13

R12

Round 4
SB
−→

S3

S2

S1

S0

S7

S6

S5

S4

S11

S10

S9

S8

S15

S14

S13

S12

SR
−→

T3

T2

T1

T0

T7

T6

T5

T4

T11

T10

T9

T8

T15

T14

T13

T12

MC
−→

U3

U2

U1

U0

U7

U6

U5

U4

U11

U10

U9

U8

U15

U14

U13

U12

ARK
−→

V3

V2

V1

V0

V7

V6

V5

V4

V11

V10

V9

V8

V15

V14

V13

V12

Round 5
SB
−→

W3

W2

W1

W0

W7

W6

W5

W4

W11

W10

W9

W8

W15

W14

W13

W12

SR
−→

X3

X2

X1

X0

X7

X6

X5

X4

X11

X10

X9

X8

X15

X14

X13

X12

MC
−→

Y3

Y2

Y1

Y0

Y7

Y6

Y5

Y4

Y11

Y10

Y9

Y8

Y15

Y14

Y13

Y12

ARK
−→

Z3

Z2

Z1

Z0

Z7

Z6

Z5

Z4

Z11

Z10

Z9

Z8

Z15

Z14

Z13

Z12

Round 6
SB
−→

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

SR
−→

d3

d2

d1

d0

d7

d6

d5

d4

d11

d10

d9

d8

d15

d14

d13

d12

MC
−→

f3

f2

f1

f0

f7

f6

f5

f4

f11

f10

f9

f8

f15

f14

f13

f12

ARK
−→

g3

g2

g1

g0

g7

g6

g5

g4

g11

g10

g9

g8

g15

g14

g13

g12

Round 7
SB
−→

h3

h2

h1

h0

h7

h6

h5

h4

h11

h10

h9

h8

h15

h14

h13

h12

SR
−→

j3

j2

j1

j0

j7

j6

j5

j4

j11

j10

j9

j8

j15

j14

j13

j12

MC
−→

l3

l2

l1

l0

l7

l6

l5

l4

l11

l10

l9

l8

l15

l14

l13

l12

ARK
−→

m3

m2

m1

m0

m7

m6

m5

m4

m11

m10

m9

m8

m15

m14

m13

m12

Round 8
SB
−→

n3

n2

n1

n0

n7

n6

n5

n4

n11

n10

n9

n8

n15

n14

n13

n12

SR
−→

o3

o2

o1

o0

o7

o6

o5

o4

o11

o10

o9

o8

o15

o14

o13

o12

MC
−→

q3

q2

q1

q0

q7

q6

q5

q4

q11

q10

q9

q8

q15

q14

q13

q12

ARK
−→

r3

r2

r1

r0

r7

r6

r5

r4

r11

r10

r9

r8

r15

r14

r13

r12

Round 9
SB
−→

s3

s2

s1

s0

s7

s6

s5

s4

s11

s10

s9

s8

s15

s14

s13

s12

SR
−→

t3

t2

t1

t0

t7

t6

t5

t4

t11

t10

t9

t8

t15

t14

t13

t12

MC
−→

u3

u2

u1

u0

u7

u6

u5

u4

u11

u10

u9

u8

u15

u14

u13

u12

ARK
−→

v3

v2

v1

v0

v7

v6

v5

v4

v11

v10

v9

v8

v15

v14

v13

v12

Round 10
SB
−→

w3

w2

w1

w0

w7

w6

w5

w4

w11

w10

w9

w8

w15

w14

w13

w12

SR
−→

x3

x2

x1

x0

x7

x6

x5

x4

x11

x10

x9

x8

x15

x14

x13

x12

ARK
−→

z3

z2

z1

z0

z7

z6

z5

z4

z11

z10

z9

z8

z15

z14

z13

z12

Fig. 1. The Intermediate Values of AES-128

A Five-Round Algebraic Property of the Advanced Encryption Standard 321

Initial Round Plaintext P

P3

P2

P1

P0

P7

P6

P5

P4

P11

P10

P9

P8

P15

P14

P13

P12

ARK
−→

A3

A2

A1

A0

A7

A6

A5

A4

A11

A10

A9

A8

A15

A14

A13

A12

1 SB
−→

B3

B2

B1

B0

B7

B6

B5

B4

B11

B10

B9

B8

B15

B14

B13

B12

SR
−→

D3

D2

D1

D0

D7

D6

D5

D4

D11

D10

D9

D8

D15

D14

D13

D12

MC
−→

F3

F2

F1

F0

F7

F6

F5

F4

F11

F10

F9

F8

F15

F14

F13

F12

ARK
−→

G3

G2

G1

G0

G7

G6

G5

G4

G11

G10

G9

G8

G15

G14

G13

G12

⊕

0

G′
2

0

G′
0

0

0

0

0

0

G′
10

0

G′
8

0

0

0

0

→

2 SB
−→

H3

H∗
2

H1

H∗
0

H7

H6

H5

H4

H11

H∗
10

H9

H∗
8

H15

H14

H13

H12

SR
−→

J3

J∗
2

J1

J∗
0

J7

J6

J5

J4

J11

J∗
10

J9

J∗
8

J15

J14

J13

J12

MC
−→

L∗
3

L∗
2

L∗
1

L∗
0

L7

L6

L5

L4

L∗
11

L∗
10

L∗
9

L∗
8

L15

L14

L13

L12

ARK
−→

M∗
3

M∗
2

M∗
1

M∗
0

M7

M6

M5

M4

M∗
11

M∗
10

M∗
9

M∗
8

M15

M14

M13

M12

⊕

0

M′
2

0

M′
0

0

0

0

0

0

M′
10

0

M′
8

0

0

0

0

→

3 SB
−→

N∗
3

N∗
2

N∗
1

N∗
0

N7

N6

N5

N4

N∗
11

N∗
10

N∗
9

N∗
8

N15

N14

N13

N12

SR
−→

O3

O∗
2

O1

O∗
0

O∗
7

O6

O∗
5

O4

O11

O∗
10

O9

O∗
8

O∗
15

O14

O∗
13

O12

MC
−→

Q∗
3

Q∗
2

Q∗
1

Q∗
0

Q∗
7

Q∗
6

Q∗
5

Q∗
4

Q∗
11

Q∗
10

Q∗
9

Q∗
8

Q∗
15

Q∗
14

Q∗
13

Q∗
12

ARK
−→

R∗
3

R∗
2

R∗
1

R∗
0

R∗
7

R∗
6

R∗
5

R∗
4

R∗
11

R∗
10

R∗
9

R∗
8

R∗
15

R∗
14

R∗
13

R∗
12

⊕

0

R′
2

0

R′
0

0

0

0

0

0

R′
10

0

R′
8

0

0

0

0

→

4 SB
−→

S∗
3

S∗
2

S∗
1

S∗
0

S∗
7

S∗
6

S∗
5

S∗
4

S∗
11

S∗
10

S∗
9

S∗
8

S∗
15

S∗
14

S∗
13

S∗
12

SR
−→

T∗
3

T∗
2

T∗
1

T∗
0

T∗
7

T∗
6

T∗
5

T∗
4

T∗
11

T∗
10

T∗
9

T∗
8

T∗
15

T∗
14

T∗
13

T∗
12

MC
−→

U3

U∗
2

U1

U∗
0

U∗
7

U6

U∗
5

U4

U11

U∗
10

U9

U∗
8

U∗
15

U14

U∗
13

U12

ARK
−→

V3

V ∗
2

V1

V ∗
0

V ∗
7

V6

V ∗
5

V4

V11

V ∗
10

V9

V ∗
8

V ∗
15

V14

V ∗
13

V12

⊕

0

V ′
2

0

V ′
0

0

0

0

0

0

V ′
10

0

V ′
8

0

0

0

0

→

5 SB
−→

W3

W∗
2

W1

W∗
0

W∗
7

W6

W∗
5

W4

W11

W∗
10

W9

W∗
8

W∗
15

W14

W∗
13

W12

SR
−→

X∗
3

X∗
2

X∗
1

X∗
0

X7

X6

X5

X4

X∗
11

X∗
10

X∗
9

X∗
8

X15

X14

X13

X12

MC
−→

Y3

Y ∗
2

Y1

Y ∗
0

Y7

Y6

Y5

Y4

Y11

Y ∗
10

Y9

Y ∗
8

Y15

Y14

Y13

Y12

ARK
−→

Z3

Z∗
2

Z1

Z∗
0

Z7

Z6

Z5

Z4

Z11

Z∗
10

Z9

Z∗
8

Z15

Z14

Z13

Z12

⊕

0

Z′
2

0

Z′
0

0

0

0

0

0

Z′
10

0

Z′
8

0

0

0

0

→

6 SB
−→

b3

b2

b1

b0

b7

b6

b5

b4

b11

b10

b9

b8

b15

b14

b13

b12

SR
−→

d3

d2

d1

d0

d7

d6

d5

d4

d11

d10

d9

d8

d15

d14

d13

d12

MC
−→

f3

f2

f1

f0

f7

f6

f5

f4

f11

f10

f9

f8

f15

f14

f13

f12

ARK
−→

g3

g2

g1

g0

g7

g6

g5

g4

g11

g10

g9

g8

g15

g14

g13

g12

7 SB
−→

h3

h2

h1

h0

h7

h6

h5

h4

h11

h10

h9

h8

h15

h14

h13

h12

SR
−→

j3

j2

j1

j0

j7

j6

j5

j4

j11

j10

j9

j8

j15

j14

j13

j12

MC
−→

l3

l2

l1

l0

l7

l6

l5

l4

l11

l10

l9

l8

l15

l14

l13

l12

ARK
−→

m3

m2

m1

m0

m7

m6

m5

m4

m11

m10

m9

m8

m15

m14

m13

m12

8 SB
−→

n3

n2

n1

n0

n7

n6

n5

n4

n11

n10

n9

n8

n15

n14

n13

n12

SR
−→

o3

o2

o1

o0

o7

o6

o5

o4

o11

o10

o9

o8

o15

o14

o13

o12

MC
−→

q3

q2

q1

q0

q7

q6

q5

q4

q11

q10

q9

q8

q15

q14

q13

q12

ARK
−→

r3

r2

r1

r0

r7

r6

r5

r4

r11

r10

r9

r8

r15

r14

r13

r12

9 SB
−→

s3

s2

s1

s0

s7

s6

s5

s4

s11

s10

s9

s8

s15

s14

s13

s12

SR
−→

t3

t2

t1

t0

t7

t6

t5

t4

t11

t10

t9

t8

t15

t14

t13

t12

MC
−→

u3

u2

u1

u0

u7

u6

u5

u4

u11

u10

u9

u8

u15

u14

u13

u12

ARK
−→

v3

v2

v1

v0

v7

v6

v5

v4

v11

v10

v9

v8

v15

v14

v13

v12

10 SB
−→

w3

w2

w1

w0

w7

w6

w5

w4

w11

w10

w9

w8

w15

w14

w13

w12

SR
−→

x3

x2

x1

x0

x7

x6

x5

x4

x11

x10

x9

x8

x15

x14

x13

x12

ARK
−→

z3

z2

z1

z0

z7

z6

z5

z4

z11

z10

z9

z8

z15

z14

z13

z12

Fig. 2. The Intermediate Values of AES-128 with Extra 20 XOR Operations

Routine Computation One

Initial round : ARK−→
Round 1 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 2 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 3 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 4 : SB−→ SR−→ MC−→ .

322 J. Huang, J. Seberry, and W. Susilo

We denote the input and output of MC in Round 4 by

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

MC−→

�
������

U∗
0 U∗

4 U∗
8 U∗

12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U∗

6 U∗
10 U∗

14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

Next, we will show that there is an algebraic relation between Bytes {M ′
0, M ′

2,
M ′

8, M ′
10} and Bytes {U∗

4 , U∗
6 , U∗

12, U∗
14}. Based on this relationship, we can

change the values of {U∗
4 , U∗

6 , U∗
12, U∗

14} to the values of {U4, U6, U12, U14} by
setting the values of {M ′

0, M ′
2, M ′

8, M ′
10}. After we have decided the values of

{M ′
0, M ′

2, M ′
8, M ′

10}, we aim to have an intermediate value after MC in Round
4 in the format of �

������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

The steps of deciding {M ′
0, M ′

2, M ′
8, M ′

10} are listed as follows:

{M ′
0, M

′
2, M

′
8, M

′
10} ← {N∗

0 , N∗
2 , N∗

8 , N∗
10} ← {O∗

0 , O∗
2 , O∗

8 , O∗
10} ← {Q∗

1, Q
∗
3, Q

∗
9, Q

∗
11}

← {R∗
1 , R∗

3 , R∗
9 , R∗

11} ← {S∗
1 , S∗

3 , S∗
9 , S∗

11} ← {T ∗
5 , T ∗

7 , T ∗
13, T

∗
15} ← {U4, U6, U12, U14}.

After we change the values of {U∗
4 , U∗

6 , U∗
12, U∗

14} to the values of {U4, U6, U12,
U14}, the input and output of MC in Round 4 become

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

MC−→

�
������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

Our next target is to modify the values of {T ∗
5 , T ∗

7 , T ∗
13, T

∗
15} according to the

values of {U4, U6, U12, U14}. From the MC transformation, we have the following
formula: �

������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

=

�
������

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

�
������

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

.

To find out the values of {T ∗
5 , T ∗

7 , T ∗
13, T

∗
15}, we need to solve the following two

groups of linear functions, which are marked by (1) and (2).

A Five-Round Algebraic Property of the Advanced Encryption Standard 323

����������������������
���������������������

�
02 03 01 01

�

�
�������	

T∗
4

T∗
5

T∗
6

T∗
7

��������

= U4

�
01 01 02 03

�

�
�������	

T∗
4

T∗
5

T∗
6

T∗
7

��������

= U6

(1)

����������������������
���������������������

�
02 03 01 01

�

�
�������	

T∗
12

T∗
13

T∗
14

T∗
15

��������

= U12

�
01 01 02 03

�

�
�������	

T∗
12

T∗
13

T∗
14

T∗
15

��������

= U14

(2)

In (1), there are two linear equations with two undecided variables T ∗
5 and T ∗

7 ,
and thus we can solve (1) to obtain the values of T ∗

5 and T ∗
7 . Similarly, there

are two linear equations in (2) with two undecided variables T ∗
13 and T ∗

15, and
therefore we can solve (2) to get the values of T ∗

13 and T ∗
15. After having T ∗

5 , T ∗
7 ,

T ∗
13 and T ∗

15, perform SR−1 (inverse ShiftRows) and SB−1 (inverse SubBytes),
and we have the values of R∗

1, R∗
3, R∗

9 and R∗
11 after ARK in Round 3. Apply

the ARK transformation to R∗
1, R∗

3, R∗
9 and R∗

11, and we have the values of Q∗
1,

Q∗
3, Q∗

9 and Q∗
11. Our next task is to modify the values of O∗

0 , O∗
2 , O∗

8 and O∗
10.

In Round 3, the input and output of MC are as follows:
�
������

Q∗
0 Q∗

4 Q∗
8 Q∗

12

Q∗
1 Q∗

5 Q∗
9 Q∗

13

Q∗
2 Q∗

6 Q∗
10 Q∗

14

Q∗
3 Q∗

7 Q∗
11 Q∗

15

�
������

=

�
������

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

�
������

�
������

O∗
0 O4 O∗

8 O12

O1 O∗
5 O9 O∗

13

O∗
2 O6 O∗

10 O14

O3 O∗
7 O11 O∗

15

�
������

.

We can form two groups of linear equations, which are named (3) and (4), and
solve them to decide O∗

0 , O∗
2 , O∗

8 and O∗
10. There are two linear equations in (3)

with two undetermined variables O∗
0 and O∗

2 , and we can solve them to determine
the values of O∗

0 and O∗
2 . Also, there are two linear equations in (4) with two

undecided variables O∗
8 and O∗

10, and we can get O∗
8 and O∗

10 by solving (4).

����������������������
���������������������

�
01 02 03 01

�

�
�������	

O∗
0

O1

O∗
2

O3

��������

= Q∗
1

�
03 01 01 02

�

�
�������	

O∗
0

O1

O∗
2

O3

��������

= Q∗
3

(3)

����������������������
���������������������

�
01 02 03 01

�

�
�������	

O∗
8

O9

O∗
10

O11

��������

= Q∗
9

�
03 01 01 02

�

�
�������	

O∗
8

O9

O∗
10

O11

��������

= Q∗
11

(4)

Once knowing the values of O∗
0 , O∗

2 , O∗
8 and O∗

10, we perform SR−1 and thus we
get Bytes N∗

0 , N∗
2 , N∗

8 and N∗
10 after SB in Round 3. Finally, Bytes M ′

0, M ′
2,

M ′
8 and M ′

10 are decided by the following computations (note that M∗
0 , M∗

2 , M∗
8

and M∗
10 are obtained from Buffer One):

324 J. Huang, J. Seberry, and W. Susilo

M ′
0 = M∗

0 ⊕ SB−1(N∗
0), M ′

2 = M∗
2 ⊕ SB−1(N∗

2),

M ′
8 = M∗

8 ⊕ SB−1(N∗
8), M ′

10 = M∗
10 ⊕ SB−1(N∗

10).

At this stage, we have decided the values of {G′
i, M

′
i}, and {R′

i, V
′
i , Z ′

i} are not
yet decided (note: they are still initialized to zero), i ∈ {0, 2, 8, 10}.

The process of deciding R′
0, R

′
2, R

′
8 and R′

10 and the routine of finding
V ′

0 , V ′
2 , V ′

8 and V ′
10 are similar to the steps of determining M ′

0, M
′
2, M

′
8 and M ′

10,
and they are described in Appendix A and Appendix B respectively.

3.1.2 Deciding Z′
0, Z′

2, Z′
8 and Z′

10
Perform Routine Computation Two second time, and the intermediate value
after MC in Round 5 is �

������

Y ∗
0 Y4 Y ∗

8 Y12

Y1 Y5 Y9 Y13

Y ∗
2 Y6 Y ∗

10 Y14

Y3 Y7 Y11 Y15

�
������

.

Apply ARK to the intermediate value above, we have
�
������

Z∗
0 Z4 Z∗

8 Z12

Z1 Z5 Z9 Z13

Z∗
2 Z6 Z∗

10 Z14

Z3 Z7 Z11 Z15

�
������

.

Bytes Z ′
0, Z ′

2, Z ′
8 and Z ′

10 are computed as follows: (note that Z0, Z2, Z8 and
Z10 are obtained from the computation in which the AES algorithm is used to
encrypt the plaintext P under the key K (see Round 5 in Figure 1)):

Z ′
0 = Z∗

0 ⊕ Z0, Z ′
2 = Z∗

2 ⊕ Z2,

Z ′
8 = Z∗

8 ⊕ Z8, Z ′
10 = Z∗

10 ⊕ Z10.

Finally, we have decided all values of {G′
i, M

′
i , R

′
i, V

′
i , Z ′

i}, i ∈ {0, 2, 8, 10}. Now,
we carry out a five-round computation of the AES with extra 20 XOR operations,
called Routine Computation Three, by using Bytes G′

0, G′
2, G′

8, G′
10, M ′

0, M ′
2,

M ′
8, M ′

10, R′
0, R′

2, R′
8, R′

10, V ′
0 , V ′

2 , V ′
8 , V ′

10, Z ′
0, Z ′

2, Z ′
8, and Z ′

10, and we will get
the same input to Round 6 as the AES algorithm.

Routine Computation Three

Initial round : ARK−→
Round 1 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 2 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 3 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 4 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 5 : SB−→ SR−→ MC−→ ARK−→ ⊕−→ .

A Five-Round Algebraic Property of the Advanced Encryption Standard 325

Remark 2. The most important part of the δ algorithm is solving those eight
groups of linear equations: (1), (2), (3), (4), (5), (6), (7) and (8). There is one
question needs to be answered. The question is: are these eight groups of linear
equations independent? The answer to this question is choosing different values
of Bytes G′

0, G′
2, G′

8, G′
10 if we face such situations. Among the twenty bytes:

G′
0, G′

2, G′
8, G′

10, M ′
0, M ′

2, M ′
8, M ′

10, R′
0, R′

2, R′
8, R′

10, V ′
0 , V ′

2 , V ′
8 , V ′

10, Z ′
0, Z ′

2, Z ′
8,

and Z ′
10, we can select the values of G′

0, G′
2, G′

8 and G′
10 freely. As we showed in

Remark 1, there are 232−1 combinations of these four bytes, and correspondingly,
we can have 232 − 1 intermediate values in Figure 2, starting with SB in Round
2 and ending with ARK in Round 10. If we meet any dependent equations, we
can overcome this problem by choosing different values of Bytes G′

0, G′
2, G′

8 and
G′

10. Therefore, this question will not cause any trouble. So far, we have not met
any dependent equations in our large-sample experiments.

Remark 3. From Remark 1, we note that there is more than one combination
of the twenty output bytes of Algorithm δ for a given pair of (P, K).

Remark 4. For distinct plaintext and cipher key pairs (P, K), Algorithm δ needs
to perform individual computations to decide the values of the twenty bytes.

3.2 Variants of Algorithm δ

We show that there are other variants of the δ algorithm. In section 3.1, the
locations of the twenty bytes are {0, 2, 8, 10}, and there are three other com-
binations, which are {4, 6, 12, 14}, {1, 3, 9, 11} and {5, 7, 13, 15}. In Figure 2,
{G′

i, M
′
i , R

′
i, V

′
i , Z ′

i} operate in Round {1, 2, 3, 4, 5}, and they can also operate in
Round {2, 3, 4, 5, 6}, {3, 4, 5, 6, 7}, {4, 5, 6, 7, 8}, or Round {5, 6, 7, 8, 9}. There-
fore, there are 4 different combinations for the byte locations, and there are 5
different combinations for the round numbers in AES-128. In total, there are 20
(= 4 × 5) variants of the δ algorithm for AES-128. The δ algorithm has 28 (=
4 × 7) variants for AES-192, and 36 (= 4 × 9) variants for AES-256.

4 The Modified Version of the AES: δAES

By employing the δ algorithm, we propose a modified version of the AES, which
is named δAES. The major difference between the AES and the δAES is that the
δAES uses modified AES round keys. In Figure 2 in Section 3, we apply 20 extra
XOR operations to the intermediate values after ARK in Round 1, 2, 3, 4 and
5 by using Bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i}, i ∈ {0, 2, 8, 10}. The construction of the
δAES comes from the fact that we can use Bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i} to XOR
with AES Round Key 1, 2, 3, 4 and 5 (instead of with the intermediate values
after ARK), and we still get the same result, i ∈ {0, 2, 8, 10}. There are twenty-
byte differences between the AES round keys and the δAES round keys. The
δAES employs the same key scheduling algorithm, constants and round function
(i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey) as the AES.

The construction of the δAES is adding two procedures, which are calling the
δ algorithm and modifying the AES round keys, to the AES algorithm.

326 J. Huang, J. Seberry, and W. Susilo

1. Suppose for a plaintext P and a cipher key K, the AES algorithm produces
a ciphertext C, written as C = AESK(P).

2. By accepting P and K as two inputs, use the δ algorithm to generate twenty
output bytes:

{G′
i, M

′
i , R

′
i, V

′
i , Z ′

i}, i ∈ {0, 2, 8, 10}1.

3. Apply the AES key scheduling algorithm to K and get the round keys.
4. Use {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i} to XOR with the corresponding AES round keys
and get the round keys for the δAES, i ∈ {0, 2, 8, 10}.

5. After carrying out the transformations above, the δAES uses the same round
function (i.e., SubBytes, ShiftRows, MixColumns and AddRoundKey) to
process the plaintext P with modified AES round keys, and finally the δAES
also generates the same ciphertext C, denoted by C = δAESK(P).

Compared with the AES algorithm, the δAES needs to do some extra transfor-
mations, i.e., calling the δ algorithm and modifying the AES round keys. More-
over, for distinct plaintext and cipher key pairs (P, K), the δAES needs to carry
out individual computations to get Bytes {G′

i, M
′
i , R

′
i, V

′
i , Z ′

i}, ∈ {0, 2, 8, 10}.

5 Conclusions

We described a five-round algebraic property of the AES algorithm. In the pre-
sented property, we modify twenty bytes from five intermediate values at some
fixed locations in five consecutive rounds by carrying out twenty extra XOR
operations, and we show that after five rounds of processing, such modifications
do not change the intermediate result and finally still produce the same cipher-
text. We defined an algorithm named δ, and the δ algorithm takes a plaintext
and a cipher key as two inputs and outputs twenty bytes, which are used in
the five-round property. By employing the δ algorithm, we proposed a modified
version of the AES algorithm, the δAES. The δAES uses the δ algorithm to
generate twenty output bytes, which are used to modify the AES round keys.
For a plaintext and a key, the AES and the δAES produce the same ciphertext.

References

1. Daemen, J., Rijmen, V.: AES Proposal: Rijndael, AES Round 1 Technical Evalua-
tion CD-1: Documentation, National Institute of Standards and Technology (1998)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

3. Matsui, M.: Linear Cryptoanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

1 For simplicity, we use only one variant of the δ algorithm here. Other variants of the
δ algorithm also work.

A Five-Round Algebraic Property of the Advanced Encryption Standard 327

4. NIST: Federal Information Processing Standards (FIPS) 197: Advanced Encryp-
tion Standard (AES). National Institute of Standards and Technology (November
26, 2001)

5. Murphy, S., Robshaw, M.: Essential Algebraic Structure within the AES. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

6. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

7. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

8. Barkan, E., Biham, E.: In How Many Ways Can You Write Rijndael? In: Zheng,
Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 160–175. Springer, Heidelberg
(2002)

9. Gilbert, H., Minier, M.: A Collision Attack on 7 Rounds of Rijndael. In: The Third
Advanced Encryption Standard Candidate Conference, pp. 230–241 (2000)

10. Daemen, J., Knudsen, L., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. Ferguson, N., Kelsey, J., Lucks, S., Schneier, B., Stay, M., Wagner, D., Whiting,
D.: Improved Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 213–230. Springer, Heidelberg (2001)

12. Lucks, S.: Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys.
In: The Third Advanced Encryption Standard Candidate Conference, pp. 215–229
(2000)

13. Akkar, M.L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001)

14. Golic, J., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
198–212. Springer, Heidelberg (2003)

15. Biryukov, A.: The Design of a Stream Cipher LEX. In: Biham, E., Youssef, A.M.
(eds.) SAC 2006. LNCS, vol. 4356, pp. 67–75. Springer, Heidelberg (2007)

16. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific Instance
ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,
pp. 1–17. Springer, Heidelberg (2005)

328 J. Huang, J. Seberry, and W. Susilo

A Deciding R′
0, R′

2, R′
8 and R′

10

Perform Routine Computation One second time, and all intermediate values
from the computation of this time are stored in an array called Buffer Two. The
intermediate value after MC in Round 4 is

�
������

U∗
0 U4 U∗

8 U12

U∗
1 U∗

5 U∗
9 U∗

13

U∗
2 U6 U∗

10 U14

U∗
3 U∗

7 U∗
11 U∗

15

�
������

.

We will demonstrate that there is an algebraic relation between Bytes {R′
0, R′

2,
R′

8, R′
10} and Bytes {U∗

1 , U∗
3 , U∗

9 , U∗
11}. By employing this relationship, we are

able to change the values of {U∗
1 , U∗

3 , U∗
9 , U∗

11} to the values of {U1, U3, U9,
U11} by choosing the values of {R′

0, R′
2, R′

8, R′
10}. The moves of determining

the values of {R′
0, R′

2, R′
8, R′

10} are shown below:

{R′
0, R

′
2, R

′
8, R

′
10} ← {S∗

0 , S∗
2 , S∗

8 , S∗
10} ← {T ∗

0 , T ∗
2 , T ∗

8 , T ∗
10} ← {U1, U3, U9, U11}.

After we replace the values of {U∗
1 , U∗

3 , U∗
9 , U∗

11} with the values of {U1, U3, U9,
U11}, the input and output of MC in Round 4 are

�
������

T ∗
0 T ∗

4 T ∗
8 T ∗

12

T ∗
1 T ∗

5 T ∗
9 T ∗

13

T ∗
2 T ∗

6 T ∗
10 T ∗

14

T ∗
3 T ∗

7 T ∗
11 T ∗

15

�
������

MC−→

�
������

U∗
0 U4 U∗

8 U12

U1 U∗
5 U9 U∗

13

U∗
2 U6 U∗

10 U14

U3 U∗
7 U11 U∗

15

�
������

.

We need to modify the values of {T ∗
0 , T ∗

2 , T ∗
8 , T ∗

10} according to the values of {U1,
U3, U9, U11}. We can form two groups of linear equations, which are named (5)
and (6). There are two undecided variables T ∗

0 and T ∗
2 in (5), and we can solve

(5) to get the values of T ∗
0 and T ∗

2 . In (6), there are two undetermined variables
T ∗

8 and T ∗
10, and we can find out the values of T ∗

8 and T ∗
10 by solving (6).

����������������������
���������������������

�
01 02 03 01

�

�
�������	

T∗
0

T∗
1

T∗
2

T∗
3

��������

= U1

�
03 01 01 02

�

�
�������	

T∗
0

T∗
1

T∗
2

T∗
3

��������

= U3

(5)

����������������������
���������������������

�
01 02 03 01

�

�
�������	

T∗
8

T∗
9

T∗
10

T∗
11

��������

= U9

�
03 01 01 02

�

�
�������	

T∗
8

T∗
9

T∗
10

T∗
11

��������

= U11

(6)

After knowing the values of {T ∗
0 , T ∗

2 , T ∗
8 , T ∗

10}, we perform SR−1 and have four
corresponding values {S∗

0 , S∗
2 , S∗

8 , S∗
10} after SB in Round 4. Bytes R′

0, R′
2, R′

8

A Five-Round Algebraic Property of the Advanced Encryption Standard 329

and R′
10 are computed as follows: (note that R∗

0, R∗
2, R∗

8 and R∗
10 are obtained

from Buffer Two):

R′
0 = R∗

0 ⊕ SB−1(S∗
0), R′

2 = R∗
2 ⊕ SB−1(S∗

2),

R′
8 = R∗

8 ⊕ SB−1(S∗
8), R′

10 = R∗
10 ⊕ SB−1(S∗

10).

At this moment, we have decided the values of {G′
i, M

′
i , R

′
i}, and {V ′

i , Z ′
i} are

not determined and they are still equal to their initial values, i ∈ {0, 2, 8, 10}.

B Deciding V ′
0 , V ′

2 , V ′
8 and V ′

10

After having the values of R′
0, R′

2, R′
8 and R′

10, we carry out a five-round compu-
tation of the AES with 16 extra XOR operations, called Routine Computation
Two, which begins with the initial round and ends with MC in Round 5 (See
Figure 2). All intermediate values from the computation of this time are stored
in an array named Buffer Three (note that Routine Computation Two generates
24 intermediate values).

Routine Computation Two

Initial round : ARK−→
Round 1 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 2 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 3 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 4 : SB−→ SR−→ MC−→ ARK−→ ⊕−→
Round 5 : SB−→ SR−→ MC−→ .

After MC in Round 5, we will have an intermediate value in the following format:
�
������

Y ∗
0 Y4 Y ∗

8 Y12

Y ∗
1 Y5 Y ∗

9 Y13

Y ∗
2 Y6 Y ∗

10 Y14

Y ∗
3 Y7 Y ∗

11 Y15

�
������

.

There is an algebraic relation between Bytes {V ′
0 , V ′

2 , V ′
8 , V ′

10} and Bytes {Y ∗
1 ,

Y ∗
3 , Y ∗

9 , Y ∗
11}, and we can change the values of {Y ∗

1 , Y ∗
3 , Y ∗

9 , Y ∗
11} to the values

of {Y1, Y3, Y9, Y11} by setting the values of {V ′
0 , V ′

2 , V ′
8 , V ′

10}. The steps of
determining the values of {V ′

0 , V ′
2 , V ′

8 , V ′
10} are shown below:

{V ′
0 , V ′

2 , V ′
8 , V ′

10} ← {W ∗
0 , W ∗

2 , W ∗
8 , W ∗

10} ← {X∗
0 , X∗

2 , X∗
8 , X∗

10} ← {Y1, Y3, Y9, Y11}.

We replace Bytes {Y ∗
1 , Y ∗

3 , Y ∗
9 , Y ∗

11} with Bytes {Y1, Y3, Y9, Y11}, and the input
and output of MC in Round 5 are

330 J. Huang, J. Seberry, and W. Susilo

�
������

X∗
0 X4 X∗

8 X12

X∗
1 X5 X∗

9 X13

X∗
2 X6 X∗

10 X14

X∗
3 X7 X∗

11 X15

�
������

MC−→

�
������

Y ∗
0 Y4 Y ∗

8 Y12

Y1 Y5 Y9 Y13

Y ∗
2 Y6 Y ∗

10 Y14

Y3 Y7 Y11 Y15

�
������

.

We form two groups of linear functions, marked by (7) and (8). There are two
undecided variables X∗

0 and X∗
2 in (7), and we can solve (7) to get the values of

X∗
0 and X∗

2 . In (8), there are two undecided variables X∗
8 and X∗

10, and we can
obtain the values of X∗

8 and X∗
10 by solving (8).

����������������������
���������������������

�
01 02 03 01

�

�
�������	

X∗
0

X∗
1

X∗
2

X∗
3

��������

= Y1

�
03 01 01 02

�

�
�������	

X∗
0

X∗
1

X∗
2

X∗
3

��������

= Y3

(7)

����������������������
���������������������

�
01 02 03 01

�

�
�������	

X∗
8

X∗
9

X∗
10

X∗
11

��������

= Y9

�
03 01 01 02

�

�
�������	

X∗
8

X∗
9

X∗
10

X∗
11

��������

= Y11

(8)

After deciding the values of {X∗
0 , X∗

2 , X∗
8 , X∗

10}, we perform SR−1 and have four
corresponding values {W ∗

0 , W ∗
2 , W ∗

8 , W ∗
10} after SB in Round 5. Bytes V ′

0 , V ′
2 , V ′

8

and V ′
10 are computed as follows: (note that V ∗

0 , V ∗
2 , V ∗

8 and V ∗
10 are obtained

from Buffer Three):

V ′
0 = V ∗

0 ⊕ SB−1(W ∗
0), V ′

2 = V ∗
2 ⊕ SB−1(W ∗

2),

V ′
8 = V ∗

8 ⊕ SB−1(W ∗
8), V ′

10 = V ∗
10 ⊕ SB−1(W ∗

10).

At this stage, we have decided the values of {G′
i, M

′
i , R

′
i, V

′
i }, and Z ′

i is not
determined and it is equal to the initial value, i ∈ {0, 2, 8, 10}.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 331–340, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Vortex: A New Family of One-Way Hash Functions
Based on AES Rounds and Carry-Less Multiplication

Shay Gueron1,2 and Michael E. Kounavis3,*

1 Department of Mathematics, Faculty of Science and Science Education,
University of Haifa, Haifa, Israel

2 Mobility Group, Intel Corporation, Intel Design Center, Haifa, Israel
shay@math.haifa.ac.il, michael.e.kounavis@i

3 Corporate Technology Group, Intel Corporation,
 Hillsboro, OR, USA

ntel.com

Abstract. We present Vortex a new family of one way hash functions that can
produce message digests of 256 bits. The main idea behind the design of these
hash functions is that we use well known algorithms that can support very fast
diffusion in a small number of steps. We also balance the cryptographic
strength that comes from iterating block cipher rounds with SBox substitution
and diffusion (like Whirlpool) against the need to have a lightweight implemen-
tation with as small number of rounds as possible. We use only 3 AES rounds
but with a stronger key schedule. Our goal is not to protect a secret symmetric
key but to support perfect mixing of the bits of the input into the hash value.
Three AES rounds are followed by our variant of Galois Field multiplication.
This achieves cross-mixing between 128-bit sets. We present a set of qualitative
arguments why we believe Vortex is secure.

1 Introduction

Guaranteeing message and code integrity is very important for the security of applica-
tions, operating systems and the network infrastructure of the future Internet. Protection
against intentional alteration of data is typically supported using one way hash functions
[3, 4, 5, 6, 9, 10]. A one way hash function is a mathematical construct that accepts as
input a message of some length and returns a digest of much smaller length. One way
hash functions are designed in such a way that it is computationally infeasible to find
the input message by knowing only the digest. One way hash functions which have been
in use today include algorithms like MD-5 and SHA1 [11]. One way hash functions
which are likely to be used in the future include SHA256, SHA384 and SHA512 [10].
The problem with using these algorithms is that they are time consuming when imple-
mented in software. One way hash functions typically involve multiple shifts, XOR and
ADD operations which they combine in multiple rounds in order to produce message
digests. Because of this reason, one way hash functions consume a substantial number
of processor clocks when executing, which limits their applicability to high speed secure

* Corresponding author.

332 S. Gueron and M.E. Kounavis

network applications (e.g., 10 Gbps e-commerce transactions), or protection against
malware (e.g., virus detection or hashed code execution).

In this document we describe an alternative approach where a family of one way
hash functions is built from other security algorithms used as building blocks, which
help with achieving fast mixing across a large number of input bits. Using the Merkle-
Damgård construction [6, 7] as a framework we construct a compression function
from AES rounds [1] and a novel merging technique based on Galois Field (GF(2))
multiplication. Using three successive AES rounds we provide mixing across 128 bits.
Using a merging function based on Galois Field (GF(2)) multiplication we provide
mixing across sets of 128 bits. Perfect mixing is accomplished through combinations
of AES rounds and our merging function.

We have conducted 220 experiments computing the collision resistance and the ran-
domness of the output differentials of our family. Whereas our work is in progress our
initial results indicate that there is no experimental evidence that Vortex is inferior
when compared to SHA256. Performance-wise, however, the difference can be sub-
stantial. SHA256 operates at 21 cycles per byte on an Intel® Core 2 Duo processor.
Vortex operates at a speed of 1.5 cycles per byte in a hypothetical CPU with the same
micro-architecture but also with instruction set support for AES round computation
and Galois Field (GF(2)) multiplication, which is the current trend in the processor
industry. We believe that the design of the Vortex family is important because it
represents a scalable on-the-CPU solution for message and code integrity and can be
used for supporting both high speed secure networking and protection against mal-
ware in next generation computing systems.

The document is structured as follows: In Section 2 we describe the design method-
ology of the Vortex family. In Section 3 we describe the algorithm. In Section 4 we
describe our experiments and present qualitative arguments why we believe the Vor-
tex family is secure. Finally in Section 5 we provide some concluding remarks.

2 Design Methodology of the Vortex Family

Vortex represents a new family of one way hash functions that can produce message
digests of 256 bits. The main idea behind the design of these hash functions is to use
known algorithms that can support very fast diffusion in a small number of steps. Our
intent is to allow each bit of an input block to affect all bits of a hash after a small
number of computations.

The algorithms we use in our design are:

• The AES round due to its capability to perform very fast mixing across 32-
bits as a stand-alone operation and 128-bits if combined with at least one
more round; and:

• A variant of Galois Field (GF(2)) multiplication due to its capability to cross
mix bits of different sets (i.e., the input operands) in a manner that is cryp-
tographically stronger than other simpler schemes (e.g., Feistel reordering
proposed in modes like MDC-2 [3]).

We also balance the cryptographic strength that comes from iterating block cipher
rounds with SBox substitution and diffusion (like Whirlpool) against the need to have
a lightweight implementation with as small number of rounds as possible. We use
only 3 AES rounds with stronger key schedule. The design choice of 3 comes from

 Vortex: A New Family of One-Way Hash Functions 333

the fact that 2 rounds is the bare minimum number needed for 128-bit wide mixing.
The authors are aware that 3 round AES transformations can be distinguished from
random permutations in several ways. So there may exist properties that can be ex-
ploited for collision attacks. Our design, however, introduces a new key schedule
algorithm that potentially compensates for the security lost from reducing the number
of AES rounds. In any case our design is open for introducing more rounds if this is
proven necessary in the future. AES rounds are followed by our variant of Galois Field
multiplication. This achieves cross-mixing between 128-bit sets. Our transformation is
not simple carry-less multiplication but combines bit reordering operations, XORs and
additions with carries. In this way our variant of Galois Field multiplication:

• achieves better diffusion than the straightforward carry-less multiplication
between the 128-bit inputs

• is a non-commutative operation protecting against attacks based on swapping
the order of the chaining variables in the processing of a message.

Our family of one way hash functions uses the AES round as specified in the standard
FIPS-197.

Fig. 1. Vortex as a Merkle-Damgård construction

3 Algorithm Description

Vortex processes an input stream as a sequence of 512-bit blocks. The stream is pad-
ded with a ‘1’. If the length of the stream is not a multiple of 512 minus 96, then the
stream is further padded with zeros following the bit equal to ‘1’. The last 96 bits
indicate the configuration of the hash (32 bits) and the length of the stream (64 bits).
Each block is divided into two sub-blocks of 256 bits each and each sub-block is
divided into two words of 128 bits each. Vortex operates on two 128-bit variables A
and B initialized to some constant values. It processes each block using AES rounds
that modify the values of A and B. In the end it returns the concatenation of A and B

BA .The algorithm for processing a sub-block is the following:

Vortex sub-block(A, B, W0, W1)
{

 ; W0, W1 be the words of the current sub-block to be processed

),(

)(
~

)(
~

)(

1

0

BAVBA

BAB

AAA

A
M

W

W

←

←

←

 return(A, B)
}

…
A||B A||B A||B

W0, W1 ,
W2, W3

W4m, W4m+1,
W4m+2, W4m+3,

W4, W5 ,
W6, W7

334 S. Gueron and M.E. Kounavis

The algorithm for processing a block is the following:

Vortex block(A, B, W0, W1, W2, W3)
{
 ⊕←),(),(BABA Vortex sub-block(A, B, W0, W1) ; uses W0 and W1

 ⊕←),(),(BABA Vortex sub-block(A, B, W2, W3) ; uses W2 and W3

}

As one can see the Vortex block is essentially a Merkle-Damgård construction. It
accepts a chaining variable BA and four input words W0, W1, W2, W3 and returns an

updated value of the chaining variable BA . Such construction in shown in Figure 1.

The other aspect that can be observed is that Vortex block incorporates a Davies-
Meyer structure around the Vortex sub-block in order to make the transformation
non-reversible. Such structure is repeated twice as shown in Figure 2:

Fig. 2. Davies-Meyer structure of the Vortex block

Fig. 3. Vortex sub-block

vortex-1
sub-block

vortex-1
sub-block

W0, W1

W2, W3

A||B
A||B

W0 W1AW0(A)
~

AW1(B)
~

A B

VM
(A)(A, B)

A||B

 Vortex: A New Family of One-Way Hash Functions 335

The Vortex sub-block is built upon two mathematical functions: The transformation

)(
~

xAK
 which is a lightweight block cipher and the merging function),()(BAV A

M
.

There are two instances of the transformation)(
~

xAK
 in the Vortex sub-block. Each

instance processes a different chaining variable among A, B. Each instance of the
transformation)(

~
xAK

 treats its input chaining variable as a plaintext and its input

word, which is one from W0, W1, W2, W3, as a key as it is the norm in the Davies-
Meyer structure. The merging function),()(BAV A

M
 combines the outputs of the two

instances of)(
~

xAK
 into the new value of A||B. The structure of the Vortex sub-block

is shown in Figure 3.
The transformation)(

~
xAK

 is a lightweight block cipher based on an AES round that

encrypts x, which is 128 bits long, using the key K.)(
~

xAK
 uses three AES rounds as

specified in the standard FIPS-197 [1]. Each AES round consists of a round key addi-
tion in GF(2), followed by an SBox substitution phase, the ShiftRows transformation
and the MixColumns transformation. The key schedule algorithm used by)(

~
xAK

 is

different from that of AES.)(
~

xAK
 uses three 128-bit wide Rcon values RC1, RC2 and

RC3 to derive three round keys RK1, RK2 and RK3 as follows:

RK1 ← Perm(SBox(K ⊞ RC1))

RK2 ← Perm(SBox(RK1 ⊞ RC2))

RK3 ← Perm(SBox(RK2 ⊞ RC3))

where Perm() is a bit permutation and by ‘⊞’ we mean addition modulo 2128. The
SBox transformation in the key schedule is applied on 16 bytes, i.e., 128 bits. As
explained before, a single AES round performs diffusion across 32 bits. This is ac-
complished through the combination of the SBox and MixColumns transformations.

Fig. 4. The Merging Function of Vortex

B1 B0 A1 A0

I1 I0

O1 O0

new B1 new B0 new A1 new A0

336 S. Gueron and M.E. Kounavis

Two AES rounds diffuse across 128 bits. This is accomplished through the combina-
tion of the subsequent ShiftRows and MixColumns transformations. Three rounds
further strengthen the diffusion performed. The Rcon values can be set to some con-
stant values (see Appendix) or derived from A and B.

The merging function, shown in Figure 4,),()(BAV A
M

operates as follows:

),()(BAV A
M

{
 let A = [A1, A0]
 let B = [B1, B0]

01

10

BAI

BAO

⊗←
⊗←

 let I = [I1, I0]
 let O = [O1, O0]

 return [B1 ⊞ I1, B0 ⊞ O0, A1 ⊕ O1, A0 ⊕ I0]
}

where by ‘⊞’ we mean addition modulo 264, and ‘⊗’ we mean carry-less multiplica-
tion.

The merging function is based on carry-less multiplication. Our merging function
makes sure that the bits of A impact the bits of B and vice versa. In fact, each bit of
one variable affects a significant number of the bits of the other variable in a non-
linear manner. This makes our design better than a straightforward XOR or other
simple mathematical operation. One can also observe that even though our merging
function is strong cryptographically, it does not accomplish perfect mixing by itself.
This is because each bit of A or B affects a large number of bits of the other variable
but not all of them. Perfect mixing is accomplished by the 3 AES rounds that follow
our merging function. So, for a pair of input words W0, W1 perfect mixing is accom-
plished after a sequence of 3 AES rounds (mix across 128 bits), merging using Galois
Field multiplication (cross-mix across 128 bit sets but not perfect mixing) and another
set of 3 AES rounds as part of the sub-block processing to follow. For this reason
whereas a regular Vortex sub-block is processed using 3 AES rounds and a merging
function, the last Vortex sub-block is processed using 3 AES rounds, merging, yet
another 3 AES rounds and subsequent merging again.

4 Security and Performance of Vortex

The security of the Vortex family was investigated experimentally by conducting a
large number of experiments (220) hashing the Vortex specification document with
random perturbations, which were superimposed on it. For these experiments we
computed the probability of collision and the distribution of the output differentials.
Subsequently we compared the numbers we got from Vortex with numbers we got
from SHA256. No collision occurred in our experiments. Our initial results indicated
that there is no experimental evidence that Vortex is inferior in terms of its collision
resistance and randomness of output differentials when compared to SHA256.

 Vortex: A New Family of One-Way Hash Functions 337

In fact our results can be interpreted as a strong indication that the Vortex family is
at least as secure as SHA256 even though it uses smaller number of block cipher
rounds. There are several reasons for this. First AES round is a good mixing function.
The key used is completely data dependent and hence our scheme does not suffer
from known attacks on compression functions that use a small set of keys [8]. The
key schedule transformation of Vortex is stronger than AES due to the fact that the
SBox transformation is applied across each 128 bit round key as opposed to 32 bits
only and that round constants are added using integer addition modulo 2128 as opposed
to XOR. It is the combination of two independent sources of non-linearities in the
key schedule, i.e., addition with carries and inversion in GF(256) that potentially
makes the key schedule transformation secure against differential attacks - even
though the number of AES rounds is reduced for achieving better performance.

The merging function of Vortex combines linear (XORs) and non-linear (adds with
carries) transformations with 64-bit carry-less multiplication building blocks. This
operation is non-commutative and when combined with previous and subsequent AES
rounds and Galois Field multiplication achieves perfect mixing across 256 bits. By
designing the merging function to be non-commutative we destroy any symmetry in
the computation of the Vortex sub-block that could be a potential source of collision.
If Vortex was designed such that its merging function is commutative, then an at-
tacker could create a collision by generating a message that swaps the position of
chaining variables A and B as compared to another given message.

A more thorough analytical study on the security of the Vortex family is planned. A
part of our future work we plan to develop a methodology for computing the collision
resistance and the first pre-image resistance of our construction based on the divide-
and-conquer approach that was first developed in the study of the MDC-2 mode by
Steinberger [3]. Such approach helps with reasoning about the collision and pre-
image resistance of specific components of hash functions. Components of hash func-
tions include adders, shifters, XORs, S-Boxes, linear diffusers, bit permutations etc.
Whereas our merging function is more complex than the MDC-2 mode of operation
we believe that it can be potentially analyzed due to the fact that it combines rela-
tively simple building blocks (i.e., multipliers adders and XORs). In addition multi-
pliers are carry-less accepting small size input operands (i.e., 64 bits). These facts
make the collision and pre-image resistance of our construction potentially easier to
compute than MDC-2.

 As another part of future work we would like to investigate the how close our
lightweight block cipher is to ideal. We also need to determine the optimal relation-
ship between the Rcon constants of the Vortex key schedule and the chaining vari-
ables A, B. Another question that needs answering is whether the presence of simple
carry-less multiplication is sufficient in the merging function or not. Any non-zero
operand multiplied with zero results in zero. Such fact can increase the collision prob-
ability associated with our merging function. If this is proven to be a design defi-
ciency, it can be potentially corrected with simple modifications to the algorithm. For
example, a single carry-less multiplication can be replaced by two multiplications. In
one of the two multiplications, operands are XOR-ed with a correcting constant and
the results of the multiplications are XOR-ed with each other.

We estimate that the Vortex family of algorithms can have substantial performance
gain when implemented in software in future processors with support for AES round

338 S. Gueron and M.E. Kounavis

computation and Galois Field multiplication. There are several advances in processor
architecture technology as well as compact SBox implementations [12-14] that make
us believe this is a trend. Expected performance is at 1.5 cycles per byte which is
approximately 14X gain as compared to SHA256.

5 Concluding Remarks

We presented Vortex a new family of one way hash functions that can produce mes-
sage digests of 256 bits. The main idea behind the design of these hash functions is
that we use well known algorithms supporting very fast diffusion in a small number
of steps. We presented a set of qualitative arguments why we believe Vortex is secure
and described a set of experiments that gave us confidence that the Vortex design is
not inferior to SHA256 in terms of its collision resistance and randomness of output
differentials. Performance-wise the expected difference between Vortex and earlier
work is substantial. SHA256 operates at 21 cycles per byte on a Core 2 Duo proces-
sor. Vortex is expected to operate at a speed of 1.5 cycles per byte in future CPUs
with instruction set support for AES round computation and Galois Field (GF(2))
multiplication. We believe that the design of the Vortex family is important because
it represents a scalable on-the-CPU solution for message and code integrity and can
be used for supporting both high speed secure networking and protection against
malware in next generation computing systems.

References

1. Advanced Encryption Standard, Federal Information Processing Standards Publication
(1997) http://csrc.nist.gov/publication/fips

2. Daemen, J., Rijman, V.: The Wide Trail Design Strategy. In: Honary, B. (ed.) Cryptogra-
phy and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)

3. Steinberger, J.P.: The Collision Intractability of MDC-2 in the Ideal Cipher Model. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 35–41. Springer, Heidelberg
(2007)

4. Knudsen, L., Lai, X., Preneel, B.: Attacks on Fast Double Block Length Hash Functions.
Journal of Cryptology, No. 11, pp. 59-72, International Association for Cryptologic Re-
search (1998)

5. Lucks, S.: Design Principles for Iterated Hash Functions, Cryptology ePrint Ar-
chive,Report 2004/253 (2004), http://eprint.iacr.org

6. Damgård, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

7. Merkle, R.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

8. Black, J., Cochran, M., Shrimpton, T.: On the Impossibility of Highly Efficient Block Ci-
pher-based Hash Functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 526–541. Springer, Heidelberg (2005)

9. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension and the
EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp.
299–314. Springer, Heidelberg (2006)

 Vortex: A New Family of One-Way Hash Functions 339

10. Secure Hash Standard, Federal Information Processing Standards Publication 180-2,
http://csrc.nist.gov/publication/fips

11. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press,
Boca Raton (1999)

12. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient Rijndael
Encryption with Composite Field Arithmetic. In: Cryptographic Hardware and Embedded
Systems - CHESS 2001, pp. 175–188 (2001)

13. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware Architec-
ture with SBox Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248.
Springer, Heidelberg (2001)

14. Moriokah, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES
Design. In: Cryptographic Hardware and Embedded Systems - CHESS 2001, pp. 172–186
(2002)

15. Gueron, S., Parzanchevsky, O., Zuk, O.: Masked Inversion in GF(2n) Using Mixed Field
Representations and its Efficient Implementation for AES. In: Nedjah, N., de Macedo
Mourelle, L. (eds.) Embedded Cryptographic Hardwdare: Methodologies & Architectures,
Nova Science Publishers, Inc (2004); (ISBN: 1-59454-012-8)

340 S. Gueron and M.E. Kounavis

Appendix

The initial values for the chaining variables and the 3 Rcon constants used in our
experiments are shown below. The presentation is in little endian. This means that
each 32-bit word indexed by ‘0’ is the least significant word of each 128-bit quantity.
The 32-bit hash configuration value was set to zero. The bit permutation Perm() func-
tion was set to the identity function.

A[0] = 0xfa32b5c2;
A[1] = 0x235f2ad7;
A[2] = 0x5943fa81;
A[3] = 0x63465bcd;

B[0] = 0x57f42acb;
B[1] = 0x34904bde;
B[2] = 0xe4f6a123;
B[3] = 0xde834ba4;

RC1[0] = 0xa7523893;
RC1[1] = 0xfdea5432;
RC1[2] = 0xe45a8926;
RC1[3] = 0x37689dac;

RC2[0] = 0xf43d67b1;
RC2[1] = 0xa2d67239;
RC2[2] = 0xd90451ab;
RC2[3] = 0xe5317c26;

RC3[0] = 0xb43a7c34;
RC3[1] = 0x7c58d653;
RC3[2] = 0x6b7486f7;
RC3[3] = 0x16e875a1;

Comparative Evaluation of Rank Correlation

Based DPA on an AES Prototype Chip�

Lejla Batina1, Benedikt Gierlichs1, and Kerstin Lemke-Rust2

1 K.U. Leuven, ESAT/SCD-COSIC and IBBT
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

firstname.lastname@esat.kuleuven.be
2 T-Systems GEI GmbH

Rabinstr. 8, 53111 Bonn, Germany
kerstin.lemke-rust@gmx.de

Abstract. We propose a new class of distinguishers for differential side-
channel analysis based on nonparametric statistics. As an example we use
Spearman’s rank correlation coefficient. We present a comparative study
of several statistical methods applied to real power measurements from
an AES prototype chip to demonstrate the effectiveness of the proposed
method. Our study shows that Spearman’s rank coefficient outperforms
all other univariate tests under consideration. In particular we note that
Pearson’s correlation coefficient requires about three times more samples
for reliable key recovery than the method we propose. Further, multivari-
ate methods with a profiling step which are commonly assumed to be the
most powerful attacks are not significantly more efficient at key extrac-
tion than the attack we propose. Our results indicate that power models
which are linear in the transition count are not optimal for the attacked
prototype chip.

Keywords: Differential side-channel analysis, AES hardware, DPA,
Rank correlation, Template attacks, Stochastic model.

1 Introduction

Side-channel attacks are a very active research area ever since the fundamental
publications of Kocher et al. [9,10]. Especially with the evolving low-cost applica-
tions, i.e. pervasive security applications such as RFIDs and sensor nodes, side-
channel attack resistance has become a matter of paramount importance. There
are many practical attacks published and, at the same time, a firm line of work on
theoretical aspects considering models for attackers, countermeasures etc.

It is widely believed that a correlation coefficient is the best statistical test
for most power models to expose the right key among all the candidates. For
� This work was supported in part by the IAP Programme P6/26 BCRYPT of the

Belgian State (Belgian Science Policy), by FWO projects G.0475.05, and G.0300.07,
by the European Comission through the IST Programme under Contract IST-2002-
507932 ECRYPT NoE, and by the K.U. Leuven-BOF.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 341–354, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

342 L. Batina, B. Gierlichs, and K. Lemke-Rust

this purpose the common choice is Pearson’s correlation coefficient [5] in con-
junction with the Hamming weight or distance model [3]. On platforms like
microcontrollers, where the relationship between the transitions on a data bus
and the observable power dissipation is strikingly linear, this choice is theo-
retically founded. However, other parts of a microcontroller, e.g. registers, and
different platforms such as ASICs and FPGAs do not necessarily follow this
simple and linear relationship. We found that there are better matches for the
function. Relaxing the assumption to simply a monotonic function led us to a
new set of distinguishers based on nonparametric statistics. The results of our
study show improvements with respect to efficiency, measured in the number of
samples required, when we compare to the methods under consideration.

The contribution of our work is fourfold: i) We introduce a new class of side-
channel distinguishers based on nonparametric statistics. We demonstrate the
effectiveness of our approach by applying Spearman’s rank correlation coefficient
in a comparative study. ii) We show that rank correlation reaches the highest
success rate amongst all univariate methods and in particular outperforms Pear-
son’s correlation coefficient on this platform. Therefore it must be considered as
an important distinguisher. iii) We give a detailed comparison of well known and
adopted attacks on an AES hardware module. To the best of our knowledge the
only related work was published by Mangard et al. in [13] and applied DPA to
unprotected and to masked CMOS, but they varied the attacked intermediate
results of AES and not the statistical distinguisher. iv) We present the first com-
parative study of templates and stochastic models on an AES hardware module.
The work in [2] also discusses template attacks but the test platform is a DES
hardware module.

This paper is organized as follows. Section 2 summarizes previous and related
work. Section 3 describes the architecture of the targeted AES hardware mod-
ule. In Section 4 we introduce a new class of side-channel distinguishers based
on nonparametric statistics and in particular Spearman’s rank correlation coeffi-
cient. Section 5 briefly explains the attacks and distinguishers used in our study.
Experimental results from an unprotected prototype chip in standard CMOS
(sCMOS) technology are provided in Section 6. Section 7 concludes the paper
and outlines future work.

2 Previous Work

A decade ago Kocher et al. introduced successful attacks by measuring the power
consumption during the execution of cryptographic algorithms [10]. It was demon-
strated that one can use the physical leakage to easily recover secret keys if no
countermeasures were deployed in the implementation. The demonstrated attack
known as Differential Power Analysis (DPA) was applied against implementations
of cryptographic algorithms running on smart cards. The surprising results gave
rise to a new research area and there have been many contributions on both theo-
retical and practical aspects of power analysis. Other side-channels were also intro-
duced such as as electromagnetic emanation [6,17], timing [9], acoustics [21] etc.

Comparative Evaluation of Rank Correlation 343

DPA attacks as introduced in [10] use a so-called selection function to sort
a set of power consumption samples into subsets. The authors proposed simple
boolean partitioning to divide the power samples in two subsets. However, the
selection function can be extended to more bits and accordingly the power sam-
ples are sorted into multiple subsets. In this case we speak about a multi-bit
DPA [14]. Selection functions are defined on an intermediate value of the cryp-
tographic algorithm under attack that can be predicted using a key hypothesis
and known data. It is afterwards a statistical question to find a key hypothesis
that results in the highest correlation between the predicted values of a selection
function and the sampled power consumption. Kocher et al. suggested to apply
the difference of means test to find the right key. To such tests one usually refers
as side-channel distinguishers. Other distinguishers referred to in the literature
are Pearson’s correlation coefficient [5], Mutual Information [7], Bayesian classi-
fication, e.g. template attacks introduced by Chari et al. [4] and the stochastic
model by Schindler et al. [20]. Distinguishers are also sometimes used to assist
other side-channel attacks. For example, Rechberger and Oswald proposed to
use a DPA attack to find interesting points in time for templates in [18].

In this paper we introduce a new class of distinguishers based on nonpara-
metric statistics, and compare them with other widely adopted techniques. We
show that Spearman’s rank correlation coefficient outperforms all other univari-
ate methods under consideration on an AES ASIC implementation in sCMOS.

A similar comparative study of templates and stochastic models was per-
formed by Gierlichs et al. [8], but they attacked an AES software implementa-
tion. To our best knowledge the only practical side-channel attacks on real AES
chips were published by Örs et al. [15] and by Mangard et al. [13]. In [15] Pear-
son’s correlation coefficient was used to perform a DPA attack on an unprotected
implementation. The authors of [13] performed extended DPA by focusing on
different choices for the selection function and not on statistical tests. However,
DPA attacks on both unprotected and protected CMOS were performed. The
important result was that the use of algorithmic masking in hardware does not
increase the side channel resistance substantially in the presence of glitches. An-
other example where an ASIC platform was attacked can be found in [2]. The
authors applied a template attack on a DES implementation focusing on the key
schedule and they used a special power model.

3 Architecture of the AES Hardware Module

Our experimental platform is an AES hardware module from the SCARD chip.
The chip is an outcome of the “Side-Channel Analysis Resistant Design Flow -
SCARD” project led by the European Commission [22]. It contains an 8051 mi-
crocontroller with AES-128 co-processor in 0.13 μm sCMOS and several secured
logic styles.

In the sequel we focus on the AES module which is implemented in standard
CMOS logic and includes no countermeasures against side-channel attacks. The
AES module supports AES-128 [1] encryption and decryption in ECB mode.

344 L. Batina, B. Gierlichs, and K. Lemke-Rust

The implementation uses four parallel one-stage pipelined implementations of
the AES S-Box. A similar implementation is described in [12]. The module in-
cludes the following parts: data unit, key unit, and interface. The most important
part is the data unit (see Fig. 1), which includes the AES operation. It is com-
posed of 16 data cells (Ci,j , where i, j ∈ {0, 1, 2, 3}) and four S-Boxes. A data
cell consists of flip-flops (able to store 1 byte of data) and some combinational
logic in order to perform AddRoundKey operations. Load data is done by shift-
ing the input data column by column into the registers of the data cells. The
initial AddRoundKey transformation is performed in the fourth clock cycle to-
gether with the load of the last column. To calculate one round, the bytes are
rotated vertically to perform the S-box and the ShiftRows transformation row by
row. In the first clock cycle, the S-Box transformation starts only for the fourth
row. Because of pipelining the result is stored two clock cycles later in the first
row. S-boxes and the ShiftRows transformations can be applied to all 16 bytes of
the state within five clock cycles due to pipelining. The architecture is very com-
pact and suitable for smartcards and other wireless applications, which makes
the attacks extremely relevant.

in

S−Box out

Key

S−Box

Key

Key

Key

C3,3C3,2C3,1C3,0

C2,3C2,2C2,1C2,0

C1,3C1,2C1,1C1,0

C0,3C0,2C0,1C0,0

MixCol

MixCol

MixCol

S−Box S−Box S−Box S−Box

Sh.Row

MixCol

MixCol

Sh.Row Sh.Row Sh.Row
out

Fig. 1. The architecture of the AES module

The S-Boxes in the AES module are implemented by using composite field
arithmetic, i.e. GF (28) is considered as an extension field of GF (24) as proposed
by Wolkerstorfer et al. [23]. The original idea comes from Rijmen [19] as he
suggested using subfield arithmetic in the crucial step of computing an inverse
in the Galois Field.

We note here that the specifics of architecture do not cause the effectiveness
of the attack proposed. The only fact about the platform that our distinguisher

Comparative Evaluation of Rank Correlation 345

takes advantage of is that the power model is not strictly linear in the transition
count. This results in the attack performing better than other known methods.

4 Rank Correlation

Here we discuss some techniques which are usually referred to as nonparametric
statistics [11] in the literature. Nonparametric equivalents to the standard cor-
relation coefficient (i.e. Pearson’s ρ) are Spearman’s ρ, Kendal’s τ , and Γ coeffi-
cient. These are also sometimes called nonparametric correlation coefficients. We
demonstrate that in our experiments Spearman’s correlation coefficient performs
much better than the one of Pearson. This result suggests that one should con-
sider alternative statistical tests in order to improve an attack’s efficiency with
respect to the number of required samples. This issue is also heavily platform-
related so the influence of a power model is the most relevant one.

Figure 2 (left) shows the mean and the standard deviation of the power con-
sumption as a function of the Hamming weight derived from a microcontroller
moving data over its internal bus. The graph indicates that the relationship be-
tween power and the data’s Hamming weight is very close to linear and that
the empirical standard deviation is low. The plot on the right side of Fig. 2 on
the other hand shows that the dependency between power consumed by a regis-
ter update in the AES module and the Hamming distance of two subsequently
stored data words, i.e. transition count, is not so close to linear. It is linear
over small intervals but overall we can only say that it is a monotonic function.
The large standard deviation can be caused either by algorithmic noise, i.e. it
could reflect the power dissipation of the processing of other bits in parallel,
or it can indicate that register updates with identical transition count do not
lead to similar power consumption. The graph suggests that there might be a
more suitable model than the strictly linear one. In general, one speaks also
about the level of measurement, which can be interval, ordinal etc. In that case,
one should look into nonparametric statistics, i.e. rank correlation, instead of
Pearson’s correlation coefficient.

0 1 2 3 4 5 6 7 8
40

50

60

70

80

90

100

110

120

Hamming weight

P
ow

er

0 1 2 3 4 5 6 7 8
118

119

120

121

122

123

124

125

Hamming distance

P
ow

er

Fig. 2. Power dissipation of a micro-controller when accessing the data bus over Ham-
ming weight (left); Power dissipation of the AES module when updating an 8bit register
over Hamming distance (right)

346 L. Batina, B. Gierlichs, and K. Lemke-Rust

The Pearson correlation coefficient is also known as the product-moment co-
efficient and it shows linear fits to (sometimes) noisy data. Pearson’s ρ requires
more information in the data than Spearman’s coefficient, because it assumes the
data is interval or ratio scaled, while Spearman’s coefficient only expects it to be
ordinal scaled. Data measured at the interval level are called interval scaled data,
and data given with rank orders are called ordinal variables or rank variables.

Unlike Pearson’s ρ, rank correlation does not assume a linear relationship be-
tween variables. A nonparametric (distribution-free) rank statistic is proposed
by Spearman in 1904 and it can be also used as test of independence between
two variables. More precisely, it is a measure of the strength of the associa-
tion between two variables [11]. The Spearman rank correlation coefficient is a
measure of monotonic relationship, which means that it can be used also if the
relationship is non-linear. It was mainly meant to be used when the distribution
of the data make Pearson’s correlation coefficient unsuitable or misleading.

Let n be the number of pairs of values for variables X and Y defined on
the (discrete) spaces X and Y and let di be the difference between each rank
of corresponding values of X and Y . The formula to compute Spearman’s rank
correlation is:

ρ = 1 − 6
∑

i di
2

n(n2 − 1)
or ρ =

∑
i(Ri − R)(Si − S)√∑
i(Ri − R)2(Si − S)2

, (1)

where Ri and Si are the ranks of variables X and Y . The latter formula is
preferable if tied ranks exist, i.e. if the data to be ranked contains more than
one value. In this case, Spearman’s coefficient is actually computed as Pearson’s
correlation between ranks. The limited computational overhead is therefore given
by the ranking process.

In Sect. 6 we show that this new side-channel distinguisher performs much
better than Pearson’s coefficient on our CMOS AES module. This is likely due
to the specifics in the power consumption properties of the device.

Spearman’s coefficient is, however, still insensitive to some types of depen-
dence. Kendall’s rank correlation gives a better measure of correlation and is
also a better two sided test for independence. The Gamma statistic is preferable
to both, Spearman or Kendall when the data contains many tied observations,
but comes with the cost of increased computational complexity.

5 Established Side-Channel Attacks and Distinguishers

In this section we briefly recall known attacks which we apply to the AES hard-
ware module.

5.1 Single-bit and Multi-bit DPA

(Single-Bit) DPA as proposed in [10] computes the DPA bias signal

Δt =
∑

i pi,tli∑
i li

−
∑

i pi,t(1 − li)∑
i(1 − li)

(2)

Comparative Evaluation of Rank Correlation 347

as the difference between the average of all measurements for which the so called
selection function li evaluates to 1 and the average of all measurements for
which the selection function evaluates to 0. The summations are taken over the
q samples and the bias signal has to be computed for each time slice t within
the power measurements p.

In [14] Messerges proposes to use selection functions based on several bits of the
targeted intermediate value. He suggests to compute the DPA bias signal from the
two subsets of power samples for which the selection function evaluates to maximal
distance. For a selection function considering three bits for example, one would
compute the difference of means of the subset “000” and the subset “111”.

5.2 Pearson Correlation

In [3] Brier et al. suggest to estimate the Pearson correlation coefficient between
a vector of power consumption samples p and a vector of power consumption
predictions l

ρt =
q
∑

i pi,tli −
∑

i pi,t

∑
i li√

q
∑

i p2
i,t − (

∑
i pi,t)2

√
q
∑

i l2i − (
∑

i li)2
. (3)

The summations are taken over the q measurements and the correlation coeffi-
cient has to be estimated for each time slice t within the power curves p.

5.3 Multivariate Analysis

For multivariate analysis, it is assumed that the measurement vector z ∈ Rm is
distributed according to an m-variate Gaussian density

N (z, μ,Σ) =
1√

(2π)m|Σ|
exp

[
−1

2
(z − μ)TΣ−1(z − μ)

]
(4)

where μ is the mean vector, Σ the covariance matrix of the normally distributed
random variable Z with Σ = (σuv)1≤u,v≤m and σuv := E(ZuZv)−E(Zu)E(Zv),
|Σ| denotes the determinant of Σ and Σ−1 its inverse. A Gaussian distribution
is completely determined by its parameters (μ,Σ). Both parameters can depend
on the data processed, therefore enabling side channel leakage.

Both template attacks as well as stochastic methods consist of two-stages with
different assumptions. The first stage is a profiling phase at which both key and
plaintext or ciphertext are assumed to be known to the adversary. As result of
profiling, the adversary obtains an m-variate Gaussian characterization of the
key dependent physical leakage. The second stage is the key recovery stage (or
classification) at which the adversary knows the plaintext or ciphertext, but not
the key. At the second stage, the adversary’s objective is key recovery.

Template Attacks. Roughly summarizing, there are three steps for building
templates in the profiling stage. Firstly, the adversary computes the mean vector

348 L. Batina, B. Gierlichs, and K. Lemke-Rust

μk for each key dependency k. Secondly, m points in time are selected where
significant differences are recognized among the mean vectors for different key
dependencies. Finally, for each key dependency k the m-variate estimation of
the noise is carried out resulting in the Gaussian distribution N (z, μk,Σk). For
a more detailed description of the algorithms we refer to [4,18,8].

Template classification computes the maximum likelihood, i.e., given n′ mea-
surements the adversary decides for the key hypothesis k∗ that maximizes

αk :=
n′∏

i=1

N (zi, μk,Σk) (5)

among all k. Note that for practical purposes the log-likelihood is more adequate.

Stochastic Methods. Stochastic methods are an alternative approach for m-
variate side channel analysis and have been introduced in [20] from which we
only consider the so called ‘maximum likelihood principle’ in this paper.

In contrast to templates, stochastic methods estimate only one covariance
matrix Σ that is used for all key dependent Gaussian densities N (z, μk,Σ).
Furthermore, stochastic methods estimate the mean vector μk by using general
linear least squares targeting one key dependent and predictable intermediate
result of the cryptographic implementation based on a power model. The power
model used determines the vector subspace for the linear regression. Besides the
Hamming weight model, a common power model is the bit-wise coefficient model
saying that each bit of an intermediate result contributes to the overall power
consumption. For example, for an 8-bit data item one uses a nine-dimensional
vector subspace, spanned by the constant function 1 and eight single bits of the
data item in the bit-coefficient model and a two-dimensional vector subspace
spanned by the constant function 1 and the Hamming weight of the data item
in the Hamming weight model. For a more detailed explanation of the applied
algorithms at profiling we refer to [20,8].

Classification computes the maximum likelihood, i.e., given n′ measurements
the adversary decides for the key hypothesis k∗ that maximizes

αk :=
n′∏

i=1

N (zi, μk,Σ) (6)

among all k. As the covariance matrix Σ is identical, this is equivalent to mini-
mizing the term

∑n′

i=1(zi − μk)TΣ−1(zi − μk).

6 Experimental Results

Our experimental platform is the sCMOS AES hardware module from the
SCARD chip. The architecture of the AES co-processor is discussed in detail
in Sect. 3. We obtained 50 000 power measurements pi (i = 1, . . . , 50 000) by
sampling the voltage drop over a 50Ω resistor inserted in the chip’s Vdd line at

Comparative Evaluation of Rank Correlation 349

a rate of 2 GS/s while the coprocessor was encrypting randomly chosen plaintext
messages.

Let xi ∈ {0, 1}8 (i ∈ {0, 1, . . . , 15}) denote the plaintext byte. Accordingly,
let ki ∈ {0, 1}8 be the corresponding AES key byte. By S(·) we denote the AES
S-box. The intermediate result chosen is

Δii′ = S(xi ⊕ ki) ⊕ S(xi′ ⊕ ki′) (7)

with i
= i′. This intermediate result Δii′ is for example given by the differential
of two adjacent data cells in the studied AES hardware architecture. Δii′ depends
on two 8-bit inputs to the AES S-box (xi ⊕ ki, xi′ ⊕ ki′). For the comparison
of statistical tests, the targeted data cells are C0,0 and C0,1 of Fig. 1 in the
remainder.

6.1 Difference of Means

The difference of means distinguisher failed at our scenario. We tested single-bit
and multi-bit (two, three, and four bits) selection functions and considered up
to q = 25 000 power samples. No parameter combination led to key discovery.

6.2 Correlation Coefficients

Figure 3 shows the results we obtain for Pearson’s and Spearman’s correlation
coefficient when using q = 50 000 measurements and the correct key hypoth-
esis. An attack with all 216 key hypotheses still indicates the two correct key
bytes when we reduce the number of measurements to q = 5000. Therefore we
use at most 5000 measurements for the following comparison of Pearson’s and
Spearman’s coefficient. To reduce computational complexity we assume in the
remainder that the key byte ki is known and test, whether the correct value of
key byte ki′ can be recovered. The number of key hypotheses is reduced to 28.

Figure 4 shows the efficiency of Pearson’s correlation coefficient in detecting
the correct key value from a given number q of power samples. We plot the
maximum positive and minimum negative correlation (y-axis) over the number
q of samples (x-axis) that we obtained for each key hypothesis on the overall
time section. The correlation trace for the correct key hypothesis is plotted in

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

0.05

0.1

Time

C
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 3. Correlation coefficients for 8-bit Hamming distance as a function of time. Pear-
son (solid) and Spearman (dotted).

350 L. Batina, B. Gierlichs, and K. Lemke-Rust

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of samples

P
ea

rs
on

 c
or

re
la

tio
n

co
ef

fic
ie

nt

Fig. 4. Min and max Pearson correlation coefficient over number of samples; the black
traces correspond to the correct key hypothesis

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Number of samples

S
pe

ar
m

an
 c

or
re

la
tio

n
co

ef
fic

ie
nt

Fig. 5. Min and max Spearman Rank correlation coefficient over number of samples;
the black traces correspond to the correct key hypothesis

black. One can observe that approximately q = 4000 power samples are required
for key recovery.

Figure 5 depicts the performance of the Spearman rank correlation coefficient
in the same manner as for Fig. 4. Obviously, significantly less samples (about
q = 1300 or roughly 30% of the measurements needed by Pearson’s correlation
coefficient) are required for key recovery. Note that all numbers in this compari-
son have been confirmed by an experiment with a second data set and targeting
a different cell in the hardware architecture. We report on the attacks’ success
rates as a function of the number of measurements in Sect. 6.5.

6.3 Stochastic Methods

Stochastic methods are applied in the bit-wise coefficient model, i.e. a nine-
dimensional vector subspace is used for the estimation of the intermediate result

Comparative Evaluation of Rank Correlation 351

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 1000 2000 3000 4000 5000sq
ua

re
d

su
m

 o
f t

-d
iff

er
en

ce
s

(s
os

t)

Time

 0

 20

 40

 60

 80

 100

 120

 140

 0 1000 2000 3000 4000 5000

V
ar

ia
nc

e

Time

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0 1000 2000 3000 4000 5000

M
ea

n

Time

Fig. 6. Average curve (top), variance curve (middle) and sost curve (bottom) for the
relevant time section derived from 40 000 measurements

in (7). For the profiling phase and classification phase we use complementary
sets of measurements. In total, 40 000 measurements are used for profiling and
10 000 measurements for classification purposes.

Fig. 6 shows the mean and variance vector in the time frame for which we
observed correlation peaks in the previous experiments. We chose the squared
sum of t-differences (sost) trace (cf. [8]) for the identification of contributing
points in time that is also shown in Fig. 6. For the computation of the sost trace
the data dependent coefficients for the intermediate result (7) were estimated
with 40 000 measurements. As result of this estimation one can compute the
mean vector for each possible value of (7).

After identification of points of interest, the estimation of the mean vectors is
repeated with 20 000 measurements and the estimation of the covariance matrix
at the selected points in time is done with the other disjunctive set of 20 000
measurements.

Classification success rates are about 73% for n′ = 1000 measurements, 97%
for n′ = 2000 measurements, and 100% for n′ = 3000 measurements using ten
selected points of interest (m = 10).

6.4 Template Attack

As for the stochastic method, we use a set of n = 40 000 measurements for the
profiling phase and a complementary set of n′ = 10 000 measurements for the
classification phase. After the estimation of the mean vectors μk we compute
the sost trace (cf. [8]) which indicates interesting points in time. As one can
see in Fig. 7 (left) the sost trace points toward a very narrow time window.
The sost trace within this time window, see Fig. 7 (right), looks very similar to

352 L. Batina, B. Gierlichs, and K. Lemke-Rust

0 5.000 10.000 15.000 20.000 25.000 30.000
2

3

4

5

6

7

8
x 10

4

Time

S
O

S
T

0 1.000 2.000 3.000 4.000 5.000
2

3

4

5

6

7

8
x 10

4

Time

S
O

S
T

Fig. 7. sost trace template attack for the overall (left) and the relevant time frame
(index 20 000 to 25 000, right)

the sost trace shown in Fig. 6. Again we experiment with the number and the
distribution of points of interest. For the sake of comparison we report about
the best results we could achieve using m = 10 points.

Once the points of interest are chosen, we estimate the covariance matrices
Σk from the same set of 40 000 measurements. It turns out that classification of
samples from the remaining set of measurements leads only to negligible success
rates. We assume that the failure is caused by the number of measurements
we use. If the number of measurements is too small, the estimations of the
μk and in particular of the Σk are bad. Since the stochastic method achieves
reasonable success rates, we decide to estimate only a single, key-independent
covariance matrix Σ. But again, the template attack achieves only minor success
rates. For a final test, we follow the suggestion of [16] and do not estimate the
covariance matrix Σ at all, but simply set it to the unity matrix. This choice
reflects the assumption that the side-channel leakage at the selected points in
time is independent. This setting leads to classification success rates of about
32% for n′ = 1000 samples, 63% for n′ = 2000 samples, and 82% for n′ = 3000
samples.

6.5 Overall Comparison

The complete results for the comparison are given in Table 1. The success rates
refer to various numbers of measurements, ranging from 500 to 3000 curves,
that were used for an attack and are derived from 500 experiments each using a
set of randomly chosen measurements. It is obvious that Spearman’s coefficient
outperforms all other univariate distinguishers in all cases.

When comparing the performance of the template attack and the stochastic
method, we conclude that in our scenario the stochastic method leads to better
success rates and is the method of choice. The authors of [8] observed that the
stochastic method can lead to better results than the template attack if the
number of measurements for the profiling step is not sufficiently large. To enable
the template attack on this AES hardware module, key-dependent covariance
matrices Σk need to be replaced with a single matrix Σ and furthermore this
matrix has to be set to the identity map. This fact might deserve further research

Comparative Evaluation of Rank Correlation 353

Table 1. Success rates for the distinguishers for the given number of measurements:
distance of means, Pearson correlation, Spearman rank correlation, template attack
with a single covariance matrix set to the unity matrix, stochastic model

No. DoM Pearson Corr. Sp. Rank. Corr. Template Attack Stochastic Model

500 - 13.6% 39.6% 15.6% 41.4%
1000 - 29.8% 77.8% 31.8% 73.4%
2000 - 64.2% 99.0% 63.2% 96.8%
3000 - 84.0% 100.0% 82.4% 100%

on the application of template attacks if the target of evaluation is a hardware
module. A more detailed investigation of this matter is beyond the scope of this
paper but will be part of our future work.

7 Conclusions

We propose a new class of side-channel distinguishers based on nonparametric
statistics. We compare the efficiency of Spearman’s rank correlation coefficient to
that of other known attack methods when extracting the key from an AES-128
prototype chip. The results allow two conclusions. Spearman’s rank correlation
coefficient performs best amongst the univariate methods we apply. In particu-
lar, it outperforms Pearson’s correlation coefficient by far, requiring only about
30% of the number of samples. This observation indicates that a power model
which is linear in the transition count is suboptimal. The observation is naturally
bound to the targeted device and different platforms can lead to different results.
Moreover, multivariate methods with a profiling step which are commonly con-
sidered the most powerful attacks require much more measurements and do not
perform significantly better than the proposed distinguisher in this experiment.
A detailed investigation of this matter is beyond the scope of this paper, but
part of our future research.

References

1. FIPS 197: Announcing the Advanced Encryption Standard (AES) (November
2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2. El Aabid, M.A., Guilley, S., Hoogvorst, P.: Template Attacks with a Power Model.
Cryptology ePrint Archive, Report, 2007/443 (2007), http://eprint.iacr.org/

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Chari, S., Rao, J.R., Rohatgi, P.: Template Attacks. In: Kaliski, B.S., Koç, Ç., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

5. Coron, J.-S., Kocher, P.C., Naccache, D.: Statistics and secret leakage. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001)

6. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001)

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://eprint.iacr.org/

354 L. Batina, B. Gierlichs, and K. Lemke-Rust

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

8. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. Stochastic Methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

9. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996)

10. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

11. Lehman, E.L., D’Abrera, H.J.M.: Nonparametrics: Statistical Methods Based on
Ranks. Prentice-Hall, Englewood Cliffs (1998)

12. Mangard, S., Aigner, M., Dominikus, S.: A Highly Regular and Scalable AES
Hardware Architecture. IEEE Trans. Computers 52(4), 483–491 (2003)

13. Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS,
vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

14. Messerges, T.S.: Power Analysis Attacks and Countermeasures on Cryptographic
Algorithms. PhD thesis (2000)

15. Örs, S.B., Gürkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an
ASIC AES implementation. In: Proceedings of the International Conference on
Information Technology (ITCC), Las Vegas, NV, USA, April 5-7 (2004)

16. Oswald, E., Mangard, S.: Template Attacks on Masking – Resistance is Futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

17. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): Measures and
Couter-Measures for Smard Cards. In: Attali, I., Jensen, T.P. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

18. Rechberger, C., Oswald, E.: Practical Template Attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

19. V. Rijmen.: Efficient Implementation of the Rijndael SBox, http://www.iaik.

tugraz.at/RESEARCH/krypto/AES/old rijmen/rijndael/sbox.pdf

20. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Chan-
nel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

21. A. Shamir, E. Tromer.: Acoustic cryptanalysis,
http://theory.csail.mit.edu/∼tromer/acoustic/

22. The SCARD project, http://www.scard-project.eu/
23. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the AES

SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer,
Heidelberg (2002)

http://www.iaik.tugraz.at/RESEARCH/krypto/AES/old~rijmen/rijndael/sbox.pdf
http://www.iaik.tugraz.at/RESEARCH/krypto/AES/old~rijmen/rijndael/sbox.pdf
http://theory.csail.mit.edu/~tromer/acoustic/
http://www.scard-project.eu/

Collisions for RC4-Hash�

Sebastiaan Indesteege1,2,�� and Bart Preneel1,2

1 Department of Electrical Engineering ESAT/SCD-COSIC,
Katholieke Universiteit Leuven. Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

{sebastiaan.indesteege,bart.preneel}@esat.kuleuven.be
2 Interdisciplinary Institute for BroadBand Technology (IBBT), Belgium

Abstract. RC4-Hash is a variable digest length cryptographic hash
function based on the design of the RC4 stream cipher. In this paper, we
show that RC4-Hash is not collision resistant. Collisions for any digest
length can be found with an expected effort of less than 29 compression
function evaluations. This is extended to multicollisions for RC4-Hash.
Finding a set of 2k colliding messages has an expected cost of 27 + k · 28

compression function evaluations.

Keywords: RC4-Hash, hash functions, collisions, multicollisions.

1 Introduction

Cryptographic hash functions have been receiving much attention from the cryp-
tologic community recently, as several of the widely used hash functions like
MD5, SHA-0 and SHA-1, have been broken, or at least shown to be weaker than
expected [3,9,10,11]. This is a motivation for the design of new hash functions,
based on different design principles. One such proposal is RC4-Hash, which was
introduced by Chang, Gupta and Nandi [1] in 2006. The design is inspired by
the RC4 stream cipher. The latter was designed by Ron Rivest in 1987, but
remained a trade secret until it leaked out in 1994 [8]. The motivation for bas-
ing a hash function design on RC4, which is well studied, is to be able to use
existing results on RC4 in the security analysis of RC4-Hash [1]. Concerning the
performance of RC4-Hash, the designers claim that SHA-1 is roughly 1.5 times
faster than RC4-Hash [1].

We focus on the collision resistance of RC4-Hash. Informally, collision resis-
tance means that it should be hard to find two distinct messages m
= m′ that
hash to the same value, i.e., h(m) = h(m′). We show that RC4-Hash is not
collision resistant, and give a method to find colliding message pairs with an
expected time complexity of less than 29 compression function evaluations. We
also extend this to multicollisions.
� This work was supported in part by the IAP Programme P6/26 BCRYPT of the

Belgian State (Belgian Science Policy), and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

�� F.W.O. Research Assistant, Fund for Scientific Research — Flanders (Belgium).

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 355–366, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

356 S. Indesteege and B. Preneel

This paper is organised as follows. In Sect. 2, a short description of the RC4-
Hash family of cryptographic hash functions is given. Section 3 introduces two
distinct methods to construct fixed points of the internal state of RC4-Hash.
This is then used in Sect. 4 to construct colliding message pairs for RC4-Hash.
In Sect. 5, extensions of the attack, as well as ways to mitigate it, are discussed.
Section 6 concludes.

2 Description of RC4-Hash

RC4-Hash follows the “wide pipe” hash function design principle proposed by
Lucks [7], which implies that the intermediate state size is (much) larger than
the digest size. More specifically, RC4-Hash consists of a compression function
C : {0, 1}w × {0, 1}m %→ {0, 1}w, and an output transformation gn : {0, 1}w %→
{0, 1}n. The intermediate state size w is (much) larger than the digest length
n. The compression function C is applied iteratively for every (padded) message
block of length m, starting from an initial value. Then, the output transformation
g compresses the large internal state down to the required digest length n.

In RC4-Hash, the intermediate state consists of an array S of 256 bytes
and a pointer into this array, denoted by j. The array S always represents a
permutation of the numbers 0 to 255. The size of the internal state is thus
log2(28!)+8 ≈ 1692 bits. The digest length is variable from 16 bytes to 64 bytes,
which is much shorter than the internal state size. The length of the message
blocks is fixed to 64 bytes.

Padding Rule. A message M is padded in the following way. The 8-bit binary
representation of the digest length n (in bytes), bin8(n), is prepended to the
message. A single “1” bit, v “0” bits and the 64-bit binary representation of the
original message length (in bits), bin64(|M |), are appended to the message. The
number v is the least non-negative integer such that |M |+ 73 + v ≡ 0 mod 512.
This ensures that the padded message length is an integer multiple of 512 bits,
the message block length. Hence, the padded message can be split into t blocks
of 512 bits each, denoted by M1 through Mt.

pad(M) = bin8(n) ||M || 1 || 0v || bin64(|M |) = M1||M2|| · · · ||Mt . (1)

Compression Function. The compression function of RC4-Hash, which is de-
noted by C

(
〈S, j〉 , X

)
, is described in Fig. 1. It updates the internal state 〈S, j〉

in 256 steps. In every step, the pointer j is updated using one byte of the message
block X . Then, two elements of the array S are swapped. Each of the 64 bytes
of the message block is used in four steps. The order in which they are used is
given by the message reordering r(·), see Table 5. This compression function is
applied iteratively for every message block M1 through Mt, starting from the
initial state

〈
SIV, 0

〉
. The initial value permutation SIV is given in Table 6.

Output Transformation. After every block of the padded message has been pro-
cessed, an output transformation gn

(
〈S, j〉

)
is applied. This transformation gen-

erates the message digest of the required length n from the internal state. First, the

Collisions for RC4-Hash 357

Input: Internal state 〈S, j〉, 64-byte message block X.
Output: The updated internal state 〈S, j〉.
1: for i = 0 to 255 do
2: j ← j + S[i] + X[r(i)]
3: swap(S[i], S[j])
4: end for
5: return 〈S, j〉

Fig. 1. The compression function of RC4-Hash, C
�
〈S, j〉 , X

�
. All arithmetic is done

modulo 256.

Input: Internal state 〈S, j〉 after processing the entire padded message.
Output: The message digest H .
1: S ← SIV ◦ S
2: // OWT (one way transformation)
3: T1 ← S
4: for i = 0 to 511 do
5: j ← j + S[i]
6: swap(S[i], S[j])
7: end for
8: T2 ← S
9: S ← T1 ◦ T2 ◦ T1

10: // HBG (hash byte generation)
11: for i = 0 to n do
12: j ← j + S[i]
13: swap(S[i], S[j])
14: H [i] ← S[S[i] + S[j]]
15: end for
16: return H

Fig. 2. The output transformation of RC4-Hash, gn

�
〈S, j〉

�
. All arithmetic is done

modulo 256.

permutation S is composed with the initial value permutation SIV. The resulting
permutation is saved as T1. Then, two blank iterations of the compression function
C, i.e., using a zeromessage block, are applied, resulting in T2. Finally,S is replaced
by a composition of the two saved permutations, T1◦T2◦T1, and the message digest
is generated using an algorithm similar to RC4’s pseudo-random byte generation.

Figure 2 shows the definition of the entire output transformation. In the orig-
inal description of RC4-Hash [1], the output transformation was further parti-
tioned into the algorithms OWT (“one way transformation”) and HBG (“hash
byte generation”). These correspond to lines 2–9 and 10–15 of the algorithm in
Fig. 2, respectively.

3 Fixed Points of the Compression Function C
In this section, we describe how to construct two distinct types of fixed points
for a certain number of iterations of the RC4-Hash compression function C. Each

358 S. Indesteege and B. Preneel

of these constructions is based on one of two types of “partial state rotations”,
which are introduced in two lemmata, Lemma 1 and Lemma 3.

3.1 Fixed Points of Type I

Lemma 1 (Partial state rotations of type I). Consider an internal state
〈S, 0〉 of RC4-Hash with S = {s0, s1, . . . , s255}. Denote by 〈S′, j′〉 the internal
state reached after applying the compression function C using the message block
X = {x, x, . . . , x} with x = 1 − s0 mod 256:

〈S′, j′〉 = C
(
〈S, j〉 , X

)
. (2)

Now, it holds that

j′ = 0 and S′[i] =

⎧⎪⎨
⎪⎩

s0 i = 0
si+1 1 ≤ i < 255
s1 i = 255

. (3)

Proof. Denote by
〈
S(i), j(i)

〉
the internal state of RC4-Hash after the i-th step of

the compression function C. First, we prove by induction that for every i < 256
it holds that {

j(i) = i + 1 mod 256 , and
S(i)[i + 1 mod 256] = s0 .

(4)

It is clear that this holds before the first step, i.e., for i = −1, since j(−1) = 0
and S(−1)[0] = S[0] = s0. Assume that the condition holds after step i (i < 255).
Then, the update of the pointer j in the (i + 1)-th step is

j(i+1) = j(i) + S(i)[i + 1] + X [r(i + 1)] mod 256
= (i + 1) + s0 + (1 − s0) mod 256
= i + 2 mod 256 .

(5)

Thus, S(i+1) is found by swapping the (i + 1)-th and (i + 2)-th element of S(i).
Hence, S(i+1)[i + 2 mod 256] = S(i)[i + 1 mod 256] = s0, i.e., the condition also
holds after step i + 1.

After 255 steps, all the elements of S have been circularly shifted over one
position, i.e., S(254) = {s1, s2, . . . , s255, s0}. In the final step, the first and the
last element of S(254) are swapped since j(255) = 0, resulting in

S(255) = S′ = {s0, s2, s3, . . . , s254, s255, s1} . (6)

From this, the lemma follows. �
Table 1 gives a detailed illustration of Lemma 1. The first column of this table
gives the step number i, the second column gives the new value of the pointer
j, computed in this step. The last column contains the array S after the step,
where the elements that were just swapped are encircled.

Based on this first type of partial state rotations, it is straightforward to
construct fixed points for 255 iterations of the compression function C as is
shown in the next theorem.

Collisions for RC4-Hash 359

Table 1. Partial state rotations of type I

step i j(i) S(i)

0 s0 s1 s2 s3 s4 · · · s253 s254 s255

0 1 s1 s0 s2 s3 s4 · · · s253 s254 s255

1 2 s1 s2 s0 s3 s4 · · · s253 s254 s255

2 3 s1 s2 s3 s0 s4 · · · s253 s254 s255

3 4 s1 s2 s3 s4 s0 · · · s253 s254 s255

...
...

...
...

...
...

...
...

...
...

254 255 s1 s2 s3 s4 s5 · · · s254 s255 s0

255 0 s0 s2 s3 s4 s5 · · · s254 s255 s1

Theorem 1 (Fixed points of type I). Consider an internal state 〈S, 0〉 of
RC4-Hash with S = {s0, s1, . . . , s255}. After 255 iterations of the compression
function C, each using the same message block X = {x, x, . . . , x} with x =
1 − s0 mod 256, the same state is reached:

〈S, 0〉 = C255
(
〈S, 0〉 , X

)
. (7)

Proof. The repeated application of Lemma 1 proves the theorem. �

Note that the only requirement for the construction of a fixed point of type I
is that the pointer j has to be zero in the starting state. There are no condi-
tions on the contents of the array S. Also, when given a suitable starting state,
constructing a fixed point requires only a negligible amount of work, i.e., one
subtraction modulo 256 to compute the message byte x = 1 − s0 mod 256.

3.2 Fixed Points of Type II

The message reordering r(·) has an interesting property which allows for another
type of partial state rotations.

Lemma 2. The message reordering r(·) does not reorder message bytes with an
even index to odd-numbered positions, or vice versa. In other words,

∀i, 0 ≤ i < 256 : r(i) ≡ i (mod 2) . (8)

Proof. The lemma follows in a straightforward way from the definition of r(·) in
Table 5. �

Lemma 3 (Partial state rotations of type II). Consider an internal state
〈S, 1〉 of RC4-Hash with S = {s0, s1, . . . , s255}. Denote by 〈S′, j′〉 the internal
state reached after applying the compression function C using the message block
X = {x0, x1, x0, x1, . . . , x0, x1} with x0 = 1 − s0 mod 256 and x1 = 1 − s1 mod
256:

〈S′, j′〉 = C
(
〈S, j〉 , X

)
. (9)

360 S. Indesteege and B. Preneel

Now, it holds that

j′ = 1 and S′[i] =

⎧⎪⎨
⎪⎩

si 0 ≤ i < 2
si+2 2 ≤ i < 254
si−252 254 ≤ i < 256

. (10)

Proof. Denote by
〈
S(i), j(i)

〉
the internal state of RC4-Hash after the i-th step of

the compression function C. Note that, because of Lemma 2 and the definition
of X , X [r(i)] = xi mod 2 = 1 − si mod 2. First, we prove by induction that for
every i < 256 it holds that⎧⎨

⎩
j(i) = i + 2 mod 256 , and
S(i)[i + 1 mod 256] = si+1 mod 2 , and
S(i)[i + 2 mod 256] = si mod 2 .

(11)

It is clear that this holds before the first step, i.e., for i = −1, since j(−1) = 1,
S(−1)[0] = S[0] = s0 and S(−1)[1] = S[1] = s1. Assume that the condition holds
after step i (i < 255). Then, the update of the pointer j in the (i + 1)-th step is

j(i+1) = j(i) + S(i)[i + 1] + X [r(i + 1)] mod 256
= (i + 2) + si+1 mod 2 + (1 − si+1 mod 2) mod 256
= i + 3 mod 256 .

(12)

Thus, S(i+1) is found by swapping the (i + 1)-th and (i + 3)-th element of
S(i). Hence, S(i+1)[i + 3 mod 256] = S(i)[i + 1 mod 256] = si+1 mod 2. Of course,
S(i+1)[i + 2 mod 256] = S(i)[i + 2 mod 256] = si mod 2. This implies that the
condition also holds for step i + 1.

After 254 steps, all the elements of S have been circularly shifted over two
position, i.e., S(253) = {s2, s3, s4, . . . , s255, s0, s1}. Since j(254) = 0 and j(255) =
1, the swaps made in the last two steps result in the following state

S(255) = S′ = {s0, s1, s4, . . . , s255, s2, s3} . (13)

From this, the lemma follows. �

Table 2 gives a detailed illustration of Lemma 3. The notations are the same
as in Table 1. Based on this type of partial state rotations, fixed points for 127
iterations of the compression function C can be constructed, as is shown in the
next theorem.

Theorem 2 (Fixed points of type II). Consider an internal state 〈S, 1〉 of
RC4-Hash with S = {s0, s1, . . . , s255}. After 127 iterations of the compression
function C, each using the same message block X = {x0, x1, x0, x1, . . . , x0, x1}
with x0 = 1 − s0 mod 256 and x1 = 1 − s1 mod 256, the same state is reached:

〈S, 1〉 = C127
(
〈S, 1〉 , X

)
. (14)

Proof. The repeated application of Lemma 3 proves the theorem. �

Collisions for RC4-Hash 361

Table 2. Partial state rotations of type II

step i j(i) S(i)

1 s0 s1 s2 s3 s4 · · · s253 s254 s255

0 2 s2 s1 s0 s3 s4 · · · s253 s254 s255

1 3 s2 s3 s0 s1 s4 · · · s253 s254 s255

2 4 s2 s3 s4 s1 s0 · · · s253 s254 s255

...
...

...
...

...
...

...
...

...
...

253 255 s2 s3 s4 s5 s6 · · · s255 s0 s1

254 0 s0 s3 s4 s5 s6 · · · s255 s2 s1

255 1 s0 s1 s4 s5 s6 · · · s255 s2 s3

Note that, as for fixed points of type I, the only requirement for the construction
of a fixed point of type II is that the j pointer has a certain value in the starting
state. There are no conditions on the contents of the array S. Constructing a
fixed point of type II, when given a suitable starting state, also requires only
a negligible amount of work, i.e., two subtractions modulo 256 to compute the
message bytes x0 = 1 − s0 mod 256 and x1 = 1 − s1 mod 256.

One could try to further generalise this to longer cyclic patterns. However,
the message byte reordering r(·) prevents this as there is no p > 2 for which it
holds that

∀i, 0 ≤ i < 256 : r(i) ≡ i (mod p) . (15)

3.3 Relation to Finney States

A Finney state [4] is an RC4-state where j = i + 1 and S[i] = 1. From the
definition of the RC4 stream cipher, see Fig. 5, it follows that if the current
state is a Finney state, the next state must also be a Finney state. Similarly, a
Finney state can only arise from a Finney state. In a Finney state, the element
“1” is simply moved to the next position in the array S and j is incremented.
The initialisation of the RC4 pseudo-random byte generator, see Fig. 5, ensures
that the initial state is not a Finney state. Hence, Finney states can never occur
in RC4.

In RC4-Hash, however, we can achieve a similar pattern. This is exactly what
is done in the case of partial state rotations of type I. The extra freedom coming
from the message input is exploited to ensure that the element S[i] is always
moved to the next position, such that it is again used to update j in the next
iteration. Partial state rotations of type II are a generalisation of this, using two
elements in an alternating way.

4 Collisions for RC4-Hash

This section describes how to use fixed points for a number of iterations of the
compression function C to construct colliding message pairs for RC4-Hash. In

362 S. Indesteege and B. Preneel

order to be able to construct fixed points, the value of the pointer j in the
internal state of RC4-Hash has to be equal to zero (for fixed points of type I)
or one (for fixed points of type II), as described in Sect. 3. Although the initial
value of j is zero, we cannot make use of the first block because we do not have
control over its first byte, which contains the digest length.

Consider fixed points of type I, i.e., we want j = 0. Since j can only take
28 possible values, we can simply search for a prefix block P which leads to a
suitable internal state:

〈S0, 0〉 = C
(〈

SIV, 0
〉
, bin8(n)||P

)
. (16)

We expect to find a suitable prefix block after about 28 random trials. At this
point, we can easily construct a fixed point for this state 〈S0, 0〉 by applying
Theorem 1. Denote by M0,0 the message block that is used 255 times in this
fixed point.

Then, we search for an additional message block M0,1 which transforms the
state 〈S0, 0〉 into 〈S1, 0〉:

〈S1, 0〉 = C
(
〈S0, 0〉 , M0,1

)
. (17)

Again, the only condition on M0,1 is that the value of the j pointer is not changed
by the compression function C. The expected number of random trials required
to find a suitable message block is again about 28. For the state 〈S1, 0〉, it is
also possible to construct a fixed point of type I, using Theorem 1. Denote the
message block used in this fixed point by M1,1. Now, consider the following two
messages:

M = P ||M0,1||
255︷ ︸︸ ︷

M1,1|| · · · ||M1,1 ,
M� = P ||M0,0|| · · · ||M0,0︸ ︷︷ ︸

255

||M0,1 .
(18)

As shown in Fig. 3, these messages form a collision. Indeed, after processing
the 257-th block, the internal state of RC4-Hash is 〈S1, 0〉 for both messages,

�
SIV, 0

�

bin8(n)||P

C 〈S0, 0〉

C

M0,1

〈S1, 0〉 C C · · · C

FP type I; 255×M1,1

� �� �

C C · · · C

� �� �
FP type I; 255×M0,0

〈S0, 0〉

M0,1

C

〈S1, 0〉

padding

C g H

Fig. 3. A collision pair for RC4-Hash using fixed points of type I

Collisions for RC4-Hash 363

�
SIV, 0

�

bin8(n)||P

C 〈S0, 1〉

C

M0,1

〈S1, 1〉 C C · · · C

FP type II; 127×M1,1

� �� �

C C · · · C

� �� �
FP type II; 127×M0,0

〈S0, 1〉

M0,1

C

〈S1, 1〉

padding

C g H

Fig. 4. A collision pair for RC4-Hash using fixed points of type II

i.e., an internal state collision is reached. The extra padding block containing
the message length and the output transformation maintain the collision. The
expected total time complexity is only 29 evaluations of the compression function
C. Note that verifying the collision requires about the same effort, since hashing
M and M� requires two times 258 calls to the compression function C.

Using fixed points of type II, collisions can be found in a completely similar
way, as Fig. 4 illustrates. The only differences are that we now require j = 1,
and that the fixed points only contain 127 iterations of the compression function
C. The expected time complexity is also 29. If we do not fix in advance which
type of fixed points to use, but let this depend on which kind of prefix block
is found first, the expected time complexity can be lowered slightly to 27 + 28

compression function evaluations.
There is no need to restrict the prefix block P or the message block M0,1 to

be only a single block. Using multiple blocks does not (significantly) increase the

Table 3. Example collision pair for RC4-Hash64, using fixed points of type I

M M�

block 1 s.�IndestEEGE�AnD�B.�pReNeEl�-�

(63 bytes) cosIc�-�cOlLisIoNS�FoR�rC4-Hash.

block 2 thiS�MEssAgE�Is�pArT�oF�a�colLis AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(64 bytes) ion�EXaMpLe�for�RC4-HASH.�COSIC. AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

blocks 3–256 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

(254 × 64 bytes) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

...
...

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

block 257 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa thiS�MEssAgE�Is�pArT�oF�a�colLis

(64 bytes) aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ion�EXaMpLe�for�RC4-HASH.�COSIC.

RC4-Hash64(M) = 0093b4baefdc64f93d7081978808c49d1286523696e6d4a35ab64f1e42695aff

RC4-Hash64(M
�) 79ce81eae91cb47673c4989238fab010f47466906fa65bed88753802c71ae82bx

364 S. Indesteege and B. Preneel

Table 4. Example collision pair for RC4-Hash64, using fixed points of type II

M M�

block 1 s.�IndesTeEGE�ANd�b.�pREneEl�-�

(63 bytes) cosIc�-�colLISioNS�For�Rc4-hAsH.

block 2 thiS�MesSagE�IS�pArT�of�a�collis aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

(64 bytes) ioN�EXAmPle�FOr�rc4-HASH.�COSIC. aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

blocks 3–128 abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

(126 × 64 bytes) abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

...
...

abababababababababababababababab aBaBaBaBaBaBaBaBaBaBaBaBaBaBaBaB

block 129 abababababababababababababababab thiS�MesSagE�IS�pArT�of�a�collis

(64 bytes) abababababababababababababababab ioN�EXAmPle�FOr�rc4-HASH.�COSIC.

RC4-Hash64(M) = 0023dd337650ef0d9b5e77be533ea644198ff0d8f1d8190628d95b9dd04dadf5

RC4-Hash64(M
�) d9cd2c1ad8adc8555f03ea3819df4128bc96462a53c7e0cc1afffe78db3bd652x

expected time complexity for finding a collision pair, if only the last block of P ,
resp. M0,1, is varied in order to obtain the desired value for the pointer j. Of
course, a colliding message pair can always be extended with an equal suffix.

Tables 3 and 4 give examples of colliding message pairs for RC4-Hash64, con-
structed using fixed points of type I and type II, respectively. Additional con-
straints were imposed to arrive at meaningful messages.

5 Discussion

Kelsey-Schneier Second Preimages. Since fixed points of the compression func-
tion of RC4-Hash can be constructed very easily, one may consider to use them
to mount a Kelsey-Schneier second preimage attack [6]. This involves building
expandable messages, i.e., messages of varying length, which all collide on the
intermediate hash result immediately after processing the message. The main
problem which makes the Kelsey-Schneier second preimage attack fail for RC4-
Hash, is the very large internal state of RC4-Hash. Because of this, the Kelsey-
Schneier attack is much slower than exhaustive search in this case.

Multicollisions. A multicollision is a (large) set of messages that all hash to the
same value. Multicollisions and their applications were described by Joux [5],
although Coppersmith already used them in 1985 [2]. In order to obtain multi-
collisions for RC4-Hash, we simply concatenate the method from Sect. 4 several
times. Concatenating it k times yields 2k colliding messages. Actually, only part
of the method needs to be repeated k times. Indeed, as the value of the pointer
j is maintained by the fixed points, only the search for message blocks M0,1

has to be repeated. Thus, the expected time for finding 2k colliding messages
for RC4-Hash is 27 + k · 28 compression function evaluations. Naturally, also the
method of Kelsey and Schneier [6] to construct multicollisions can be applied,
and both methods can even be combined.

Collisions for RC4-Hash 365

Mitigating the Attack. The collision attack described in this paper is built on the
existence of two types of fixed points of the compression function of RC4-Hash,
which were described in Sect 3. These fixed points use patterns where all the
(reordered) message bytes are equal (type I) or alternate between two values
(type II). Replacing the message reordering r(·) with a message expansion that
guarantees that such patterns can never occur foils the attack. Another approach
would be to introduce asymmetry, for instance using intermediate rounds.

6 Conclusion

We have shown that RC4-Hash is not collision resistant. There exist two distinct
types of fixed points for a number of iterations of the RC4-Hash compression
function C. These can be used to construct colliding message pairs with an
expected effort of less than 29 compression function evaluations. This also leads
to multicollisions, yielding 2k colliding messages with an expected effort of 27 +
k · 28 compression function evaluations.

References

1. Chang, D., Gupta, K.C., Nandi, M.: “RC4-Hash: A New Hash Function Based on
RC4”. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp.
80–94. Springer, Heidelberg (2006)

2. Coppersmith, D.: Another Birthday Attack. In: Williams, H.C. (ed.) CRYPTO
1985. LNCS, vol. 218, pp. 14–17. Springer, Heidelberg (1986)

3. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

4. Finney, H.: An RC4 cycle that can’t happen, Newsgroup post in sci. crypt (Septem-
ber 1994)

5. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

6. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

7. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)

8. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester
(1996)

9. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

10. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

11. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

366 S. Indesteege and B. Preneel

Appendix
Table 5. The message reordering r(·)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57, 48, 39, 30, 21, 12, 3,

58, 49, 40, 31, 22, 13, 4, 59, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61,
52, 43, 34, 25, 16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9,
0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23, 16, 9, 2, 59, 52, 45,

38, 31, 24, 17, 10, 3, 60, 53, 46, 39, 32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19,
12, 5, 62, 55, 48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7,
0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1, 48, 31, 14, 61, 44, 27,

10, 57, 40, 23, 6, 53, 36, 19, 2, 49, 32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37,
20, 3, 50, 33, 16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

Table 6. The initial value permutation SIV

145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248,
236, 218, 192, 217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12,
233, 189, 159, 169, 240, 156, 184, 200, 209, 173, 20, 252, 96, 211, 143, 101,
44, 223, 118, 1, 232, 35, 239, 9, 114, 109, 161, 183, 88, 66, 219, 78,

157, 174, 187, 193, 199, 99, 52, 120, 89, 166, 18, 76, 241, 13, 225, 6,
146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19, 91, 108, 186,
116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179, 175,
251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230,
58, 153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152,

165, 235, 227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94,
42, 243, 228, 87, 82, 27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92,

198, 172, 170, 55, 115, 30, 107, 17, 56, 31, 135, 229, 40, 111, 37, 222,
182, 25, 43, 119, 244, 191, 122, 102, 21, 93, 97, 131, 164, 10, 130, 47,
176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48, 142, 73, 123, 204,
206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254, 90,
194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110,

Input: Key K consisting of κ bytes.
Output: Initial internal state of RC4, 〈S, i, j〉.
1: // RC4 Key Scheduling Algorithm (KSA)
2: S ← {0, 1, · · · , 255}
3: j ← 0
4: for i = 0 to 255 do
5: j ← j + S[i] + K[i mod κ]
6: swap(S[i], S[j])
7: end for
8: return 〈S, 0, 0〉

Input: RC4 internal state 〈S, i, j〉.
Output: One byte of keystream, updated internal state.
1: // RC4 pseudo-random byte generation (PRBG)
2: i ← i + 1
3: j ← j + S[i]
4: swap(S[i], S[j])
5: return S[S[i] + S[j]]

Fig. 5. The RC4 stream cipher, consisting of a key scheduling algorithm (top) and a
pseudo-random byte generator (bottom). All arithmetic is done modulo 256 [8].

New Applications of Differential

Bounds of the SDS Structure

Jiali Choy and Khoongming Khoo

DSO National Laboratories
20 Science Park Drive, Singapore 118230

{cjiali,kkhoongm@}dso.org.sg

Abstract. In this paper, we present some new applications of the
bounds for the differential probability of a SDS (Substitution-Diffusion-
Substitution) structure by Park et al. at FSE 2003. Park et al. have
applied their result on the AES cipher which uses the SDS structure
based on MDS matrices. We shall apply their result to practical ciphers
that use SDS structures based on {0, 1}-matrices of size n × n. These
structures are useful because they can be efficiently implemented in
hardware. We prove a bound on {0, 1}-matrices to show that they cannot
be MDS and are almost-MDS only when n = 2, 3, or 4. Thus we have
to apply Park’s result whenever {0, 1}-matrices where n ≥ 5 are used
because previous results only hold for MDS and almost-MDS diffusion
matrices. Based on our bound, we also show that the {0, 1}-matrices
used in E2, Camellia, and MCrypton are optimal or almost-optimal
among {0, 1}-matrices. Using Park’s result, we prove differential bounds
for the E2 and MCrypton ciphers, from which we can deduce their
security against boomerang attack and some of its variants. At ICCSA
2006, Khoo and Heng constructed block cipher-based universal hash
functions, from which they derived Message Authentication Codes
(MACs) which are faster than CBC-MAC. Park’s result provides us
with the means to obtain a more accurate bound for their universal
hash function. With this bound, we can restrict the number of MAC’s
performed before a change of MAC key is needed.

Keywords: SPN, branch number, differential, {0, 1}-matrices, universal
hash functions.

1 Introduction

Differential cryptanalysis is one of the most well-known attacks on block ciphers.
It exploits differential characteristics, which consist of a sequence of difference
patterns in consecutive rounds, with high probability. However, even if the max-
imal characteristic probability is low, one cannot conclude that the cipher is
secure against differential attack as it may not be necessary to fix the values of
the input and output differences for intermediate rounds to perform the attack.
Instead, one must turn to the concept of a differential, which is the set of all
differential characteristics with the same initial and terminal difference. To be

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 367–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

368 J. Choy and K. Khoo

provably secure against differential cryptanalysis, the differential probability of
all differentials must be low enough.

Another motivation for studying differential probability is to analyze a ci-
pher’s security against boomerang attacks [21] and its variants such as amplified
boomerang attacks [13] and rectangle attacks [3]. In usual differential cryptanal-
ysis, it is not easy to determine the differential probability of a cipher if it has too
many rounds. In boomerang-based attacks, a cipher is split into two shorter sub-
ciphers from which it is easier to find a differential with high probability for each
half. These differentials are then combined to form boomerang attacks based on
adaptive chosen plaintext-ciphertexts, or amplified boomerang and rectangle at-
tacks based on chosen plaintexts. If we can prove that a cipher has low differential
probability over reduced rounds, then we can prove security against these attacks.

S. Hong et al. [11] analyzed the provable security of the SPN (Substitution-
Permutation Network) structure depicted in Figure 1 in Appendix C. This struc-
ture is widely used in many block cipher designs as it is highly parallelizable and
its security is more easily analyzed. Each round consists of key addition, substi-
tution, and permutation of bits. The diffusion layer is paramount to the whole
design as it provides the avalanche effect to ensure good randomization. An SPN
cipher with a low branch number associated with its diffusion layer is regarded
as weak against differential and linear cryptanalysis. In particular, their paper
dealt with the provable security against differential and linear cryptanalysis of
an SPN structure with a maximal distance separable (MDS) diffusion layer and
an almost-MDS diffusion layer.

In [18], Park et al. extended Hong’s results in two directions:

(i) Improvement 1: They took into account the differential and linear proba-
bility distribution of the S-boxes involved as compared to Hong et al. who
considered the maximal differential and linear probability of the S-box. This
enabled them to derive differential and linear probability bounds which are
better (lower) than previously known bounds in [8] and [18].

(ii) Improvement 2: They derived the differential and linear probability of the
SDS (Substitution-Diffusion-Substitution) structure for diffusion layers with
any specified differential or linear branch number respectively, as opposed
to Hong et al.’s results which are only applicable for MDS and almost-MDS
diffusion layers.

They then went on to prove differential and linear bounds for the AES cipher
which are better than the known bounds by Rijmen and Daemen in [8]. This
demonstrates the advantage of their result for Improvement 1. However, the sec-
ond advantage of their analysis is that we can derive the differential and linear
probability of SDS structures where the diffusion layer is not MDS or almost-MDS
(Improvement 2 above). We shall demonstrate the practicability of their results
by applying these results to SDS structures based on diffusion layers which are
{0, 1}-matrices. They are widely used in ciphers like Camellia, E2 and MCrypton
[1,12,15] because they require less gates when implemented in hardware and will
be well-suited to constrained environments such as RFID tags.

New Applications of Differential Bounds of the SDS Structure 369

First, we prove an upper bound for the branch numbers of {0, 1}-matrices of
size n×n. This will provide us with an idea of {0, 1}-matrices which are optimal
or almost-optimal. We show that {0, 1}-matrices are never MDS and they are
almost-MDS only when n = 2, 3, or 4. Thus we need to apply Park’s result
whenever n ≥ 5. The ciphers E2, Camellia, and MCrypton use {0, 1}-matrices.
With our bounds, we can show that the diffusion mappings in these ciphers are
optimal or almost-optimal among {0, 1}-matrices.

Second, we apply Park’s result [18] to derive a general formula for the dif-
ferential probability of the SDS structure which uses an affine transform of the
inverse S-box over GF (2m) and a diffusion mapping with any arbitrary branch
number. This will allow us to prove the differential probability of E2 [12] and
MCrypton [15]. Furthermore, we are also able to prove the resistance of these
ciphers against boomerang attack [21] and some of its variants [3,13].

Third, we improve on an upper bound for a universal hash construction by
Khoo and Heng [14]. In their paper, the authors showed that we can implement
a block cipher-based universal hash function which uses reduced rounds and is
parallelizable. This results in a universal hash function-based message authen-
tication code (MAC) which is faster than CBC-MAC. However, we show that
the upper bound in [14] is approximate and is, in fact, higher than the actual
bound. By applying on Park’s result [18], we can give a more accurate bound for
the MAC. Based on this bound, we can restrict the number of authentications
performed before a change of MAC-key is needed.

2 Definitions

A measure of the efficiency of block ciphers against differential cryptanalysis is
to have low maximal differential.

Definition 1. The maximal differential of a function f : GF (2)w → GF (2)w is
defined as

Δf = max
Δx �=0,Δy | {x ∈ GF (2)w|f(x) ⊕ f(x ⊕ Δx) = Δy} |

In the subsequent sections, we consider an SPN structure with an mn-bit round
function. Let each S-box Si be an m × m bijective function

Si : GF (2)m → GF (2)m (1 ≤ i ≤ n).

Also we assume that the round keys, which are XORed with the input data at
each round, are independent and uniformly random.

Definition 2. For any given Δx, Δy, Γx, Γy ∈ GF (2)m, the differential proba-
bility of each Si is defined as

DPSi(Δx → Δy) =
{x ∈ GF (2)m|Si(x) ⊕ Si(x ⊕ Δx) = Δy}

2m
,

370 J. Choy and K. Khoo

where we consider Δx to be the input difference and Δy the output difference.
The maximal differential probability of Si is defined as

DP ((Si)max) = max
Δx �=0,Δy DPSi(Δx → Δy).

The maximal values of DP ((Si)max) for 1 ≤ i ≤ n is defined as

p =max
1≤i≤n (DP (Si)max).

Si is strong against differential cryptanalysis if DP ((Si)max) is low enough,
while a substitution layer is strong if p is low enough. However, it is important
to note that a strong S-box and a strong substitution layer do not ensure a
secure SPN structure against differential attacks. To evaluate provable security,
one has to take the diffusion layer into account as well. The latter is an invertible
linear mapping, the purpose of which is to provide an avalanche effect, both in
the context of differential and linear approximations. In the differential context,
this means that small input changes should cause large output changes, and
conversely, to produce a small output change, a large input change should be
necessary.

A differentially active S-box is an S-box given a non-zero input difference.
Differentially inactive S-boxes with zero input difference always have zero output
difference with probability 1. Due to the independent round key assumption, the
key addition layer in Figure 1 has no effect on the number of active S-boxes.

Definition 3. Let x = (x1, · · · , xn)t ∈ GF (2m)n. The Hamming weight of x is
defined as

wt(x) = #{i|xi
= 0},

which is the number of non-zero m-bit characters in x.

Now define a SDS (Substitution-Diffusion-Substitution) function as shown in
Figure 2 in Appendix C. Let the diffusion layer of the SDS function be denoted
by D, its input difference by Δx = x⊕x∗, its output difference by Δy = y⊕y∗ =
D(x) ⊕ D(x∗). If D is linear, we have Δy = D(Δx). The minimum number of
differentially active S-boxes of the SDS function is given by the branch number
of the diffusion layer.

Definition 4. The branch number of a diffusion layer D is defined as:

Br(D) = min
v �=0

{wt(v) + wt(D(v))} (1)

If we want to find the number of active S-boxes in two consecutive rounds of
the SPN structure, we may disregard the two key addition layers since they
have no influence on the number. Consequently, we only need to consider the
SDS function. Therefore, Br(D) gives a measure of the worst case diffusion: it
is a lower bound for the number of active S-boxes in two consecutive rounds

New Applications of Differential Bounds of the SDS Structure 371

of a differential characteristic approximation. Since a cryptanalyst will always
exploit the worst case, this is a good measure of the diffusion property.

Definition 5. A diffusion layer is maximal distance separable (MDS) if Br(D)
is n + 1; it is called almost-MDS if Br(D) is equal to n.

Proposition 1. ([11, Theorem 1,Theorem 3]) Assume that the round keys,
which are XORed to the input data at each round, are independent and uni-
formly random. The probability of each differential of the SDS structure (and
consequently, the SPN structure)

(i) is bounded by pn if D is MDS, i.e. if Br(D) = n + 1;
(ii) is bounded by pn−1 if D is almost-MDS, i.e. if Br(D) = n.

However, the above lemma has been improved by Park et al. to apply to SDS
structures where the diffusion layer need not be MDS or almost-MDS.

Proposition 2. ([18, Theorem 1]) Assume that the round keys, which are
XORed to the input data at each round, are independent and uniformly ran-
dom. If Br(D) = k, the probability of each differential of the SDS structure (and
consequently, the SPN structure) is bounded by:

max

⎛
⎝ max

1≤i≤n
max

1≤u≤2m−1

2m−1∑
j=1

DPSi(u → j)
k
, max
1≤i≤n

max
1≤u≤2m−1

2m−1∑
j=1

DPSi(j → u)
k

⎞
⎠

As a corollary, Park et al. obtained the following result which can be viewed as
a direct generalization of Hong et al.’s result.

Proposition 3. ([18, Corollary 1]) Assume that the round keys, which are
XORed to the input data at each round, are independent and uniformly ran-
dom. The probability of each differential of the SDS structure (and consequently,
the SPN structure) is bounded by pk−1 if Br(D) = k.

3 Branch Number of {0, 1}-Matrices

We shall look at the differential probability of the SDS structure where the
diffusion layer is a matrix with entries 0 or 1, which we call {0, 1}-matrices. The
reason we study {0, 1}-matrices is because they are faster to compute than MDS
transforms which are used in many block ciphers like Rijndael, Square and Shark
[8,10,19]. Another reason is that in hardware implementation, they will take up
less space and thus allow for more compact implementation.

In this section, we consider a closely related problem: The study of the branch
number of such matrices. The proofs of results in this section can be found in
Appendix A.1, A.2, and A.3.

372 J. Choy and K. Khoo

Theorem 1. Let A : GF (2m)n → GF (2m)n be an n × n {0, 1}-matrix over
GF (2m). Then the branch number of A is at most 2n+4

3 .

By studying the upper bound of Theorem 1, it is easy to deduce the following
Corollary.

Corollary 1. Let A : GF (2m)n → GF (2m)n be an n × n {0, 1}-matrix over
GF (2w). Then A is not a MDS matrix and it can be an almost-MDS matrix
only when n = 2, 3, or 4.

In Table 1 in Appendix B, we list the upper bounds for the branch number of
{0, 1}-matrices for different n. We see from Corollary 1 that when we want to
deduce the true differential probability of SDS structures, where the diffusion
layer is represented by a {0, 1}-matrix, we can only apply the known results (on
almost-MDS matrices) from [11] for n = 2, 3, or 4. For n ≥ 5, we have to apply
Theorem 1 from [18].

3.1 Some {0, 1}-Matrices with Optimal Branch Numbers

Based on Theorem 1, we give the following definition.

Definition 6. A {0, 1}-matrix A of size n×n is called optimal (w.r.t. Theorem
1) if its branch number is " 2n+4

3 #. It is called almost-optimal (w.r.t. Theorem 1)
if its branch number is " 2n+4

3 # − 1.

We shall look at some {0, 1}-matrices with optimal or almost optimal branch
numbers. The first matrix we shall study has 0 on the diagonal and 1 elsewhere.

Proposition 4

(i) Consider the following n×n matrix A, n ≥ 2, which maps from GF (2m)n →
GF (2m)n.

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
1 0 1 . . . 1
1 1 0 . . . 1
...

...
...

. . .
...

1 1 1 . . . 0

⎞
⎟⎟⎟⎟⎟⎠ . (2)

The branch number of A is min(n, 4).
(ii) More generally, a n × n matrix A : GF (2m)n → GF (2m)n where each row

and each column has 1 occurrence of 0 and n − 1 occurrences of 1, has
branch number min(n, 4).

(iii) When n = 4, the matrices in part (ii) are the only 4 × 4 {0, 1}-matrices
over GF (2m) with optimal branch number 4.

By referring to Table 1, we see that the matrices in Proposition 4 part (ii)
are optimal among {0, 1}-matrices when n = 2, 3, 4, 5 and almost-optimal when
n = 6. These matrices are used in the MCrypton cipher where n = 4.

The following {0, 1}-matrix acting on 8 bytes is used in the E2 and Camellia
cipher:

New Applications of Differential Bounds of the SDS Structure 373

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

It is known that this diffusion layer has branch number 5 (see [12,1]). By referring
to Table 1, it is an almost-optimal {0, 1}-matrix.

4 Differential Bounds and Security Against Boomerang
Attacks for Ciphers Based on {0, 1}-Matrices

We shall now study SDS structures where the S-boxes are affine transforms of
the inversion function over GF (2m) defined by: S(x) = x−1 when x
= 0 and
S(0) = 0.

In order to apply Proposition 2, we need to find the difference distribution
DPS(u → j) where u ∈ GF (2m) is fixed and j varies over all of GF (2m),
i.e. the difference distribution for each row of the difference table. Likewise, we
need to find the difference distribution of the columns. It is well-known that the
difference distribution table of S−1(x) is the transpose of the original difference
distribution table. Since S−1(x) = S(x) for the inversion function, the difference
distribution of the columns will be the same as that for the rows.

From the proof of [17, Proposition 6], we see that S(x) + S(x+ u) = j, where
u is fixed and j varies over GF (2m), can be reduced to a quadratic equation and
it has 0 or 2 solutions for x in general. Only when m is even, we have 4 solutions
for one value of j. Thus the inversion mapping has maximal differential 4 when
m is even and 2 when m is odd. It is also well-known that the sum of each row
of the difference distribution table should be 2m. From this, we can easily get
the difference distribution for each row of the inversion mapping shown in Table
2 in Appendix B.

Theorem 2. Consider a SDS structure where the S-boxes are affine transforms
of the inversion function over GF (2m) defined by: S(x) = x−1 when x
= 0 and
S(0) = 0, and the diffusion mapping has branch number Br(D) = k. Then the
differential probability of the SDS structure is:

(i) 2(1−m)(k−1) − 2(1−m)k+1 + 2(2−m)k when m is even;
(ii) 2(1−m)(k−1) when m is odd.

The proof of Theorem 2 can be found in Appendix A.4.

Remark 1. Note that when n is even, the upper bound for the differential prob-
ability from Proposition 3 is (4/2m)k−1 = 2(2−m)(k−1). By simplifying the in-
equality:

2(2−m)k − 2(1−m)k+1 < 2m−2(2(2−m)k − 2(1−m)k+1),

374 J. Choy and K. Khoo

we get the inequality:

2(1−m)(k−1) − 2(1−m)k+1 + 2(2−m)k < 2(2−m)(k−1).

This shows that the bound in Theorem 2 is better (lower) than that obtained
from Proposition 3 when n is even. On the other hand, the upper bound of
Theorem 2 and Proposition 3 is the same when n is odd.

4.1 Application on the E2 Cipher

The E2 cipher is a 12-round Feistel block cipher with a block size of 128 bits and
a key size of 128, 192, or 256 bits [12]. There is also an initial transform (IT)
that XORs a subkey, multiplies by a subkey and performs a byte permutation
BP ; and a final transformation (FT) that performs an inverse byte permutation
BP−1, divides by a subkey and XORs a subkey.

The nonlinear F -function in each Feistel round maps 64-bit to 64-bit with the
help of two 64-bit subkeys K(1) and K(2). It is defined by:

F (x, K(1), K(2)) = L(S(D(S(x ⊕ K(1))) ⊕ K(2))),

where S : GF (28)8 → GF (28)8 is defined as:

S(x0, x1, x2, x3, x4, x5, x6, x7) = (s(x0), s(x1), s(x2), s(x3), s(x4), s(x5), s(x6), s(x7)).

Each s : GF (28) → GF (28) is affinely equivalent to the inversion function on
GF (28) and D is a 8-byte linear transform defined by the matrix in equation
(3), which is known to have branch number 5 [1,12]. The final linear transform
L is a 1-byte cyclic rotation over 8 bytes.

Before we go on to the analysis, we shall need the following standard result
on the differential probability of Feistel ciphers.

Proposition 5. [22] Consider a 3-round Feistel cipher with 2w-bit block size
and nonlinear function F : GF (2)w → GF (2)w. If the maximal differential
probability of F (x) is p, then the maximal differential probability of the 3-round
cipher is p2.

In [12], the authors derived the differential characteristic probability of E2 and
concluded that it has practical security against differential cryptanalysis. Here
we can give upper bounds for its differential probability in Theorem 3. The proof
of the result can be found in Appendix A.5.

Theorem 3. The differential probability of 3 rounds of the E2 cipher is at most
2−55.39.

Thus to defend E2 against a stronger form of differential attack using true dif-
ferentials, we can recommend a change of key after every 255 encryptions.

New Applications of Differential Bounds of the SDS Structure 375

Security of E2 against Boomerang Attack. There is also a stronger form of
differential attack called boomerang attack [21]. It splits R−1 rounds (R−2 for
Feistel ciphers) of an R-round block cipher into 2 shorter ciphers such that the
differential probability of each part is known to be large, say with probability p
for the differential α → β for the first part and probability q for the differential
γ → δ for the second part. The distinguisher is the following boomerang process:

(i) Ask for the encryption of a pair of plaintexts (P1, P2) such that P1⊕P2 = α
and denote the corresponding ciphertexts by (C1, C2).

(ii) Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

(iii) Check whether (P3, P4) = α.

For a random permutation, the probability that the last condition is satisfied is
2−blocksize. The probability that a quartet of plaintexts and ciphertexts satisfies
the boomerang conditions is (pq)2. Therefore, we have a distinguisher which
distinguishes between the cipher being attacked and a random cipher if (pq)2 <
2−blocksize.

For the E2 cipher, 8 rounds of the cipher already has maximal differential
characteristic probability ((2−6)5)2 × ((2−6)5)2 × (2−6)5 = 2−150 which is less
than 2−128. Here we use the easily proven fact that there are at least 2 active
F -functions for every 3 rounds and at least 1 active F -function every 2 rounds.
Thus it is unlikely that an adversary can find a good differential over 8 rounds
and any good differential is likely to involve 7 or less rounds. Thus when the
adversary splits 12− 2 = 10 rounds into two sub-ciphers, they will each contain
at least 3 rounds. By Theorem 3, we see that the differential probabilities p, q of
the 2 sub-ciphers are at most 255.39. Thus (pq)2 ≤ 2−221.570 < 2−128 and E2 is
secure against boomerang attack.

Remark 2. We have used the assumption that if the differential characteristic
probability of R′ rounds of a cipher is less than 2−blocksize, then it is not likely that
a good differential over R′ rounds can be found. This is in line with the common
approach of practical provable security against differential cryptanalysis employed
in the proofs of security of many ciphers like Camellia [1], AES [8], SQUARE [10],
E2 [12], MCrypton [15] and SHARK [19]. Thus if our assumption is not true, then
the approach is wrong because although we can prove that the differential char-
acteristic probability is less than 2−blocksize, we can still find a differential with
high probability to launch differential cryptanalysis. We shall also make the same
assumption in the analysis of MCrypton against boomerang attack in Section 4.2.

Security of E2 Against Variants of Boomerang Attack. Since the
boomerang attack requires adaptively chosen plaintexts and ciphertexts, many
of the techniques that were developed for using distinguishers in key recov-
ery attacks cannot be applied. As an alternative, the amplified boomerang at-
tack [13] encrypts many plaintext pairs with the same input difference α and
looks for right quartets which satisfy the requirements of the boomerang pro-
cess. Out of x plaintext pairs, the number of right quartets is expected to be

376 J. Choy and K. Khoo

x2·2−blocksize+1p2q2 [4]. For a random permutation, the expected number of right
quartets is x2 · 2−2·blocksize. Therefore, if (pq)2 > 2−blocksize+1, then we would
count more quartets than random noise. For protection against the amplified
boomerang attack, we would want to show that (pq)2 < 2−blocksize+1. Following
the above argument, we know that (pq)2 ≤ 2−221.570 < 2−128+1 = 2−127. Thus,
E2 is also secure against the amplified boomerang attack.

Another variant of the boomerang attack is: suppose the initial and terminal
differences, α and δ, are fixed while the intermediate differences, β and γ, are
allowed to vary over index sets Λ, Ω ⊆ GF (2)blocksize respectively, i.e. the at-
tacker tries to find several differential paths with the same initial and terminal
differences of high probability. Then he needs

∑
β∈Λ Pr2(α → β)

∑
γ∈Ω Pr2(γ →

δ) > 2−blocksize to get a good distinguisher for the attack to succeed. For E2,
we know that for any α, β, γ, δ, Pr2(α → β) · Pr2(γ → δ) ≤ 2−221.570. Thus the
attacker must obtain at least &2221.570/2−128' + 1 = &293.570' + 1 > 1028 high
probability differential paths for the attack to work. It is highly improbable that
the attacker will be able to find such a large number of useful differential paths
and hence, this attack is unlikely to succeed.

4.2 Application on the MCrypton Cipher

The MCrypton cipher is a 12-round block cipher with a block size of 64 bits and
a key size of 64, 96, or 128 bits [15]. Its structure is similar to that of the AES
cipher [8] but it uses lightweight components suited for RFID applications. The
plaintext is first written as a 4 by 4 array of nibbles and XORed to a 64-bit
subkey. It then goes through 12 rounds of transformation where every round is
composed of four operations:

ρK = σK ◦ τ ◦ π ◦ λ,

The substitution operation λ transforms each nibble by an affine transform of
the inversion map on GF (24). The linear map π multiplies each column of the
array by one of the 4× 4 {0, 1}-matrices from Proposition 4 part (ii). The linear
map τ transposes the 4 by 4 array. Finally, a 64-bit subkey is XORed with the
array. The proof of the following Theorem 4 is given in Appendix A.6.

Theorem 4. The differential probability of 4 rounds of the MCrypton cipher is
at most 2−22.62.

Thus, to defend MCrypton against a stronger form of differential attack using
true differentials, we can recommend a change of key after every 222 encryptions.

Security of MCrypton Against Boomerang Attack. For MCrypton, 8
rounds of the cipher should have differential characteristic probability at most
(2−2)32 = 2−64 if we follow the approach of AES. However, due to the careful
choice of S-boxes and diffusion mappings of MCrypton in [15, Section 3], the
authors proved that the differential characteristic probability is at most 2−96 <
2−64. Therefore it is unlikely that an adversary can find a good differential over
8 rounds and any good differential is likely to involve 7 or less rounds. Thus

New Applications of Differential Bounds of the SDS Structure 377

when the adversary splits 12−1 = 11 rounds into two sub-ciphers, they will each
contain at least 4 rounds. By Theorem 4, we see that the differential probabilities
p, q of the 2 sub-ciphers are at most 2−22.62. Thus (pq)2 ≤ 2−90.49 < 2−64 and
MCrypton is secure against boomerang attack.

Security of MCrypton Against Variants of Boomerang Attack. Since
(pq)2 ≤ 2−90.59 < 2−64+1 = 2−63, MCrypton is also secure against the amplified
boomerang attack. For the second variant of the boomerang attack where only
the initial and terminal differences are fixed while the intermediate differences
are allowed to vary, at least &290.59/264'+1 = &226.59'+1 > 108 high probability
differential paths are required. Again, it is unlikely that the attacker will be able
to find that many useful differential paths.

5 On Differential Probability, Universal Hash Functions
and Message Authentication Codes

Let H : [GF (2)w]∗ → GF (2)w be a family of functions. The probabilities below,
denoted by Prh∈H [·], are taken over the choice of h ∈ H .

Definition 7. H is a Δ-universal family of hash functions if for all x, y ∈
[GF (2)w]∗ with x
= y and all a ∈ GF (2)w, Prh∈H [h(x) − h(y) = a] = 2−w.

Definition 8. H is an ε-almost-Δ-universal (ε-AΔU) family of hash functions
if Prh∈H [h(x) − h(y) = a] ≤ ε.

It is well-known that ε ≥ 2−w (see [20]). Universal hash functions can be used
to construct Message Authentication Codes (MAC) via the Wegman-Carter ap-
proach [23]. The MAC tag is given by the value h(msg) exclusive-or-ed with the
one-time-pad OTP as follows:

MACh,OTP (msg) = h(msg) ⊕ OTP

where h is a randomly chosen hash function from the family H and OTP is a
random one-time-pad. The communicating parties must share the secret key pair
(h, OTP) in this scenario. However, it is not practical to generate one-time-pads
long enough to handle long messages. In [6], Brassard proposed that we sub-
stitute the one-time-pad encryption with a computationally secure encryption
scheme, for example, AES.

In [14], the authors constructed the following universal hash functions based
on functions with low maximal differential.

Proposition 6. ([14, Theorem 1]) Let f : GF (2)w → GF (2)w have maxi-
mal differential Δf . Let x = (x1, . . . , xr) and msg = (msg1, . . . , msgr) where
xi, msgi ∈ GF (2)w. The function sum hash (FSH) family of functions defined
by FSH = {hx : [GF (2)w]r → GF (2)w|x ∈ [GF (2)w]r} where hx(msg) =∑r

i=1 f(msgi + xi) is an ε-AΔ universal family of hash functions with ε ≤ Δf

2w .

By applying Proposition 6 to Proposition 3 and Theorem 2, we get the following
result.

378 J. Choy and K. Khoo

Proposition 7. Let hx : GF (2)mnr → GF (2)mn be a FSH based on a SDS
structure defined by

hx(msg) =
r∑

i=1

(S(D(S(msgi + xi))),

where x = (x1, . . . , xr), msg = (msg1, . . . , msgr), D : GF (2m)n → GF (2m)n

has branch number k and S(·) is a layer of n m-bit S-boxes. Then hx(msg) is
an ε-AΔ universal family of hash functions with:

(i) ε ≤ pk−1 if the maximal differential probability of the S-boxes is p;
(ii) ε ≤ 2(1−m)(k−1) − 2(1−m)k+1 + 2(2−m)k if the inversion S-box on GF (2m) is

used where m is even;
(iii) ε ≤ 2(1−m)(k−1) if the inversion S-box on GF (2m) is used where m is odd.

Proposition 7 can be viewed as an improvement over [14, Theorem 6] where
the authors only approximated the upper bound of the universal hash function
by the differential characteristic probability pk, which is too high. By using the
above two-round structure, we may be able to use it to compute a message
authentication code (MAC) based on:

MACK,x(msg) = EncK(
r∑

i=1

(S(D(S(msgi + xi)))),

where Enc(·) is a R-round block cipher where each round XORs a subkey, applies
the S-box layer S and then, the diffusion layer D. In this way, we get a MAC
which is R/2 times faster than encryption and is easily parallelizable. Based on
the upper bound on ε, we can restrict the number of MAC computations to
less than

√
ε−1 when a change of MAC key is needed, so as to protect against

forgery attacks. In this case, the MAC key consists of the encryption key K and
a sequence of secret values xi ∈ GF (2)mn which are to be shared between the
sender and receiver. It may not be feasible to generate and share long strings
of secret values x1, x2, x3, . . . In [14], it is suggested that a single secret value
x1 ∈ GF (2)mn be chosen to seed a LFSR of length mn bits to produce x2, x3, . . .

5.1 Applications to Ciphers Used in Practice

By applying Proposition 6 where f is taken to be the 3-round E2 cipher, we can
construct an E2-based MAC as follows:

MACK,x(msg) = E2K(
r∑

i=1

3-Round-E2(msgi + xi)),

where x = (x1, . . . , xr) and msg = (msg1, . . . , msgr). From Theorem 3, we
see that the above MAC is based on a universal hash function with collision
probability at most ε ≤ 2−55.39. Thus we require a change of MAC key before√

ε−1 ≈ 227.7 MAC computations. Moreover, the above MAC is 12/3 = 4 times
faster than CBC-MAC based on 12-round E2.

Similarly, by applying Proposition 6 where f is taken to be the 4-round
MCrypton cipher, we can also construct a MCrypton-based MAC as follows:

New Applications of Differential Bounds of the SDS Structure 379

MACK,x(msg) = MCryptonK(
r∑

i=1

4-Round-MCrypton(msgi + xi)),

From Theorem 4, we see that the above MAC is based on a universal hash
function with collision probability at most ε ≤ 2−22.62. Thus we require a change
of MAC key before

√
ε−1 ≈ 211.3 MAC computations. Moreover, the above MAC

is 12/4 = 3 times faster than CBC-MAC based on 12-round MCrypton.

Remark 3. Note that our universal-hash based MAC is parallelizable while CBC-
MAC is not. So if we can have N copies of the E2 cipher, for example, then our
MAC will be 4N times faster than E2-based CBC-MAC.

Remark 4. Note that we could have included the subkeys in the reduced-round
ciphers used to define the universal hash function. This will not affect the prob-
ability bound of the universal hash function and heuristically, do give a more
secure MAC as the secret key K is not just used in the final encryption, but also
in the compression of every message block msgi.

6 Conclusion

In this paper, we proved an upper bound for the branch numbers of {0, 1}-
matrices. Furthermore, we showed that they are never MDS and are almost-
MDS only when n = 2, 3, or 4. The ciphers E2, Camellia, and MCrypton were
found to employ {0, 1}-matrices which are optimal or almost-optimal. We also
used Park’s result on the differential probability of the SDS structure in [18]
to obtain a general formula for the differential probability of such a structure
which uses an affine transform of the inverse S-box in its S-box layer. With this
formula, we were able to prove the differential probability of E2 and MCrypton,
as well as their resistance against boomerang attack and its variants. Our results
provide new direction in the analysis of block ciphers based on {0, 1}-matrices or
non-MDS matrices and affine transforms of inverse S-boxes against differential-
based attacks. Finally, we improved on the upper bound for a FSH based on a
SDS structure. Two MACs based on E2 and MCrypton, faster than CBC-MAC
and with provable collision probability, were also proposed.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: A 128-bit Block Cipher Suitable for Multiple Platforms - Design and
Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012. Springer,
Heidelberg (2001)

2. Barreto, P.S.L.M., Rijmen, V.: The WHIRLPOOL Hashing Function. Primitive
submitted to NESSIE, revised on May 2003 (September 2000),http://paginas.
terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

3. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html
http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

380 J. Choy and K. Khoo

4. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attack. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

5. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4 (1991)

6. Brassard, G.: On computationally secure authentication tags requiring short secret
shared keys. In: Crypto 1983, pp. 79–86. Springer, Heidelberg (1983)

7. Daemen, J., Rijmen, V.: The Wide Trail Strategy. In: Honary, B. (ed.) Cryptogra-
phy and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001)

8. Daemen, J., Rijmen, V.: The Design of Rijndael: AES, The Advanced Encryption
Standard. Springer, Heidelberg (2002)

9. Daemen, J., Govaerts, R., Vandewalle, J.: Correlation Matrices. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 275–285. Springer, Heidelberg (1995)

10. Daemen, J., Knudsen, L., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. Hong, S., Lee, S., Lim, J., Sung, J., Cheong, D., Cho, I.: Provable Security against
Differential and Linear Cryptanalysis for the SPN Structure. In: Schneier, B. (ed.)
FSE 2000. LNCS, vol. 1978, pp. 273–283. Springer, Heidelberg (2001)

12. Kanda, M., Moriai, S., Aoki, K., Ueda, H., Takashima, Y., Ohta, K., Matsumoto, T.:
E2 - A New 128-bit Block Cipher. IEICE Transactions Fundamentals - Special Sec-
tion on Cryptography and Information Security, vol. E83-A no. 1, pp. 48-59 (2000)

13. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

14. Khoo, K., Heng, S.H.: New Constructions of Universal Hash Functions based on
Function Sum. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar,
D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3982, pp. 416–
425. Springer, Heidelberg (2006)

15. Lim, C.H., Korkishko, T.: mCrypton - A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.)
WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

16. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

17. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

18. Park, S., Sang, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

19. Rijmen, V., Daemen, J., Preneel, B., Bosselars, A., Win, E.D.: The Cipher Shark.
In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 99–111. Springer, Heidelberg
(1996)

20. Stinson, D.R.: On the connections between universal hashing, combinatorial designs
and error-correcting codes. In: Congressus Numerantium, vol. 114, pp. 7–27 (1996)

21. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

22. Wallen, J.: Design Principles of the KASUMI Block Cipher,
http://citeseer.ist.psu.edu/wallen00design.html

23. Wegman, M.N., Carter, J.L.: New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences 22(3), 265–279 (1981)

http://citeseer.ist.psu.edu/wallen00design.html

New Applications of Differential Bounds of the SDS Structure 381

A Proofs

A.1 Proof of Theorem 1

Proof. Suppose A has branch number k, where k > (2n+4)/3. Let v be a vector
of weight 1. Then

wt(Av) ≥ k − 1 > (2n + 1)/3.

On the other hand, if v is a vector of weight 2, then

wt(Av) ≥ k − 2 > (2n − 2)/3.

Thus the XOR-sum of any two columns of A has weight greater than (2n−2)/3.
These two facts contradict each other: if v1 and v2 have weight greater (2n +

1)/3, then each of v1 and v2 has less than (n − 1)/3 zeroes. For a bit of v1 ⊕ v2

to be 1, exactly one of the corresponding bits of v1 or v2 must be 0. Thus v1⊕v2

has less than 2(n − 1)/3 = (2n − 2)/3 ones, which is a contradiction. �

A.2 Proof of Corollary 1

Proof. For n ≥ 2, it is easy to see that the upper bound from Theorem 1: 2n+4
3

is always less than n+1, the MDS bound. It is also easy to show that the upper
bound 2n+4

3 is at least as large as n, the almost-MDS bound, when n ≤ 4. �

A.3 Proof of Proposition 4

Proof. To prove part (i). It is easy to see that A has branch number 2 when
n = 2.

For the case n = 3: If the input has weight 1, then the output which corre-
sponds to a column of the matrix will have weight 2. If the input has weight 2,
then the output which corresponds to a linear combination of two columns will
have weight at least 2. If the input has weight 3, then there will definitely be ≥ 4
non-zero entries in the total (input and output) as the output must be non-zero.
Thus the branch number of A is 3.

For the case n ≥ 4: If the input has weight 1, then the output which cor-
responds to a column of the matrix will have weight n − 1 ≥ 3. If the input
has weight 2, then the output which corresponds to a linear combination of two
columns will have weight at least 2. If the input has weight 3, then the output
which corresponds to a linear combination of three columns will have weight at
least 1. If the input has weight ≥ 4, then there will be ≥ 5 non-zero entries in
total since the output is non-zero. Thus the branch number of A is 4.

It is easy to see that permuting the rows and columns of a matrix will preserve
its branch number, thus part (ii) follows naturally from part (i).

Part (iii) is verified by a computer search over all 4 × 4 {0, 1}-matrices. �

382 J. Choy and K. Khoo

A.4 Proof of Theorem 2

Proof. Because the S-boxes used are affine transforms of the inversion function,
they have the same difference distribution. Moreover, every row and every col-
umn of the inversion function have the same distribution as explained above;
thus we just need to consider one row in the difference table. This allows us to
simplify the upper bound in Proposition 2 to

∑2m−1
j=1 DPSi(u → j)k, u
= 0.

(i) When n is even:

2m−1∑
j=1

DPSi(u → j)
k ≤ (2/2m)k(2m−1 − 2) + (4/2m)k

= 2(1−m)(k−1) − 2(1−m)k+1 + 2(2−m)k.

(ii) When n is odd:

2m−1∑
j=1

DPSi(u → j)
k ≤ (2/2m)k × 2m−1

= 2(1−m)(k−1). �

A.5 Proof of Theorem 3

Proof. Because the inversion map is used and the diffusion map has branch
number 5, we can apply Theorem 2 with m = 8 and k = 5 to get an upper
bound for the differential probability of the SDS structure in the F -function:

DPSDS ≤ 2(1−8)(5−1) − 2(1−8)5+1 + 2(2−8)5 ≈ 2−27.696.

The final linear transform L does not influence the maximal differential proba-
bility of the F function since it simply rotates the bytes. Therefore, the maximal
differential probability of F is 2−27.696. By applying Proposition 5, the maximal
differential probability of 3 rounds of E2 is at most (2−27.696)2 = 2−55.392. �

A.6 Proof of Theorem 4

Proof. Here we base much of the proof that follows on the wide trail strategy
(see [7, Theorem 3], [8, Theorem 9.5.1]). The design of MCrypton follows the
design principle in AES [8] where τ is a diffusion optimal mapping. After an
admissible re-arrangement of the operations in MCrypton, we can view the cipher
as alternating between π◦λ and τ ◦π◦τ ◦λ. The linear map τ ◦π◦τ has the same
branch number as π but it acts on bundles of size 4-nibble (16-bit). Since the
branch number of π is 4 and τ is a diffusion optimal transposition of bundles,
τ ◦ π ◦ τ also has branch number 4.

Each bundle over a λ◦π◦λ transformation is a 16-bit SDS structure consisting
of the linear map π sandwiched between two layers of four 4-bit S-boxes. Since

New Applications of Differential Bounds of the SDS Structure 383

π has branch number 4 by Proposition 4 part (ii) and each S-box is an affine
transform of the inversion function on GF (24), we can apply Theorem 2 with
m = 4, k = 4. The maximal differential probability is:

DPSDS ≤ 2(1−4)(4−1) − 2(1−4)4+1 + 2(2−4)4 ≈ 2−7.54.

Next, we can view 4 rounds of MCrypton as τ ◦ π ◦ τ sandwiched between
two layers of four bundles where each bundle has differential probability at most
2−7.54. By Proposition 3, the differential probability of 4 rounds is upper bounded
by (2−7.54)4−1 = 2−22.62. �

B Tables

Table 1. Upper Bound for the Branch Number in Theorem 1

Size of n for n × n {0, 1}-Matrix 2 3 4 5 6 7 8 9 10

Upper Bound of Branch Number 2 3 4 4 5 6 6 7 8

Table 2. Difference Distribution for Each Row of the Difference Distribution Table for
the Inversion Mapping on GF (2m)

Difference Frequency (m even) Frequency (m odd)

0 2m−1 + 1 2m−1

2 2m−1 − 2 2m−1

4 1 0

C Diagrams

Fig. 1. One round of a SPN structure

384 J. Choy and K. Khoo

Fig. 2. SDS function

HAPADEP: Human-Assisted Pure

Audio Device Pairing

Claudio Soriente, Gene Tsudik, and Ersin Uzun

Computer Science Department,
University of California, Irvine

{csorient,gts,euzun}@ics.uci.edu

Abstract. The number and diversity of personal electronic gadgets have
been steadily increasing but there has been fairly little progress in secure
pairing of such devices. The pairing challenge revolves around establish-
ing on-the-fly secure communication without any trusted (on- or off-line)
third parties between devices that have no prior association. One basic
approach to counter Man-in-the-Middle (MiTM) attacks in such setting
is to involve the user in the pairing process. Previous research yielded
some interesting secure pairing techniques, some of which ask too much
of the human user, while others assume availability of specialized equip-
ment (e.g., wires, photo or video cameras) on personal devices. Further-
more, all prior methods assumed an established insecure channel over a
common digital (human-imperceptible) communication medium, such as
infrared, 802.11 or Bluetooth.

In this paper we introduce a very simple technique called HAPADEP
(Human-Assisted Pure Audio Device Pairing). HAPADEP uses the au-
dio channel to exchange both data and verification information among
devices without requiring any other means of common electronic commu-
nication. Despite its simplicity, a number of interesting issues arise in the
design of HAPADEP. We discuss design and implementation highlights
as well as usability features and limitations.

Keywords: User-Aided Security, Secure Device Pairing, Authentication
Protocols, Secure First Connect, Man-in-the-Middle attacks.

1 Introduction and Motivation

The popularity of sophisticated personal devices, such as PDAs, multimedia
players, cameras and smartphones, has prompted the need for security mech-
anisms specifically tailored for such devices. One of the main challenges is the
problem referred to as: Secure First Connect, Secure Initialization or Secure De-
vice Pairing.1 Regardless of the name, this problem entails the establishment of
a secure communication channel between previously unassociated devices.

Traditional cryptographic means of establishing secure communication chan-
nels (e.g., authenticated key exchange protocols) are generally unsuitable for

1 In this paper, we use the term ”device pairing” to refer to the problem at hand.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 385–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

386 C. Soriente, G. Tsudik, and E. Uzun

secure device pairing. This is because mutually unfamiliar devices have no prior
context and no common point of trust: no on-line Trusted Third Party (TTP),
no off-line Certification Authority (CA), no Public Key Infrastructure (PKI)
and, of course, no common secrets.

Since no pre-shared secret or other means of authentication exists between
two unfamiliar devices and the communication transpires over some human-
imperceptible medium (e.g., infrared or radio), user assistance in the secure
device pairing process is simply unavoidable. This is because of the very real
threat of so-called Man-in-the-Middle (MiTM) attacks. A MiTM attack can
occur whenever unauthenticated communication is involved. One of the best-
known examples is the textbook Diffie-Hellman Key Exchange protocol [29].
The security research community has recognized, and begun responding to, this
challenge starting in the late 1990-s, i.e., the pioneering work of Stajano, et al.
[8]. A number of techniques have been proposed since then, varying greatly in
the assumptions about device features, degree and nature of user involvement
as well as environmental factors.

Several standardization bodies also recognized the importance of the problem
and have begun working on specifying more usable and more secure procedures
for device pairing. Wi-Fi Alliance has released specifications for Wi-Fi Protected
Setup [4]. Microsoft has released specifications for Windows Connect Now-NET
[22], Bluetooth Special Interest Group has released specifications on Simple Pair-
ing [11] and the Universal Serial Bus (USB) forum has released the specifications
for Wireless USB Association Models [30].

Despite significant recent progress, the design space of the device pairing prob-
lem has not been fully explored. In particular, two issues remain unaddressed:

– Denial-of-Service (DoS): unlike MiTM attacks, DoS attacks aim to prevent
communication. In the device pairing setting, the goal of a DoS attack is to
preclude the two devices from establishing a secure channel. Such an attack
is trivial to mount: the adversary only needs to jam the interface of one
or both devices. This is easy with Bluetooth or 802.11, but a little harder
(since it requires line-of-sight) – yet still doable – with infrared. The gist of
the problem is two-fold:
(1) the inability of the human user to detect a DoS attack while it is taking
place, and,
(2) even if a DoS attack is detected, the difficulty of determining its source

– Common Channel: all prior techniques require the existence (and set-up)
of a common means of electronic communication between two devices. The
devices must have at least one interface in common, whether wired (as in [8])
or wireless (as in [13,10,23,14,15]). This can be problematic, for two reasons:
(1) The two devices might not (at least at the time of pairing) have a com-
mon interface, e.g., one only has a Bluetooth interface, while the other –
802.11. Why pair such devices? One reason could be because they would
later connect to the Internet via respective interfaces and need to communi-
cate securely.
(2) Wireless interfaces typically take some time and effort to configure.
This can be a real challenge for an ordinary user. For example, in case of

HAPADEP: Human-Assisted Pure Audio Device Pairing 387

802.11-equipped devices, each must be put into the ad hoc mode and an
ad hoc network must be manually configured. Similarly, infrared (IrDA) in-
terfaces must be manually activated on both devices; IrDA also requires
line-of-sight alignment. In case of Bluetooth, one device needs to be dis-
coverable and then the other must discover it. This is tricky if there are
many Bluetooth-enabled devices around, and may turn into a real headache
if multiple devices share the same default (or common) name. Appendix A
shows some screen-shots from the confusing procedures involved in config-
uring 802.11 and Bluetooth for initial ad-hoc communication.

The work described in this paper attempts to fill the gap left by prior tech-
niques. The proposed protocol – HAPADEP or Human-Assisted Pure Audio
Device Pairing – obviates the need for a common human-imperceptible commu-
nication channel and its set-up. It uses the audio channel for communicating
both protocol messages and human-perceived authentication/verification infor-
mation. HAPADEP takes advantage of the fact that many modern devices are
equipped with audio in/out interfaces, i.e. a speaker and a microphone, and such
interfaces are very inexpensive to add for the others. In our usability evaluations,
HAPADEP has shown itself to be easy to use and preferred by the users over
most other techniques. Also, as we describe further in the paper, HAPADEP
offers some natural (albeit limited) means of protection against both DoS and
MiTM attacks.

The rest of this paper is organized as follows: we survey related work in
section 2 and describe the HAPADEP protocol in section 3. We describe two
HAPADEP variants in section 4 and discuss their respective usability factors in
section 5. Section 6 discusses the security and some other aspects of HAPADEP
and section 7 finalizes the paper with summary and future work.

2 Related Work

There is a fairly large body of relevant prior work on the general topic of secure
device pairing.

The earliest work by Stajano, et al. [8] made a seminal contribution by bring-
ing the problem into the spotlight. The proposed techniques, however, required
the use of standardized physical interfaces and cables. The follow-on work by
Balfanz, et al. [5] and Feeney, et al. [7] made progress by suggesting the use
of infrared communication as the human-verifiable side-channel. Though timely
in its day, this approach is no longer viable since: (1) few modern devices are
equipped with IrDA interfaces and (2) the infrared channel itself is not fully
immune to DoS and MiTM attacks.

Another early approach involves image comparison. It encodes the authen-
tication data into images and asks the user to compare them on two devices.
Prominent examples include “Snowflake” [9], “Random Arts Visual Hash” [3]
and “Colorful Flag” [6]. Since these methods require both devices to have dis-
plays with sufficiently high resolution, applicability is limited to high-end devices,

388 C. Soriente, G. Tsudik, and E. Uzun

such as: laptops, PDAs and certain cell phones. A more practical approach,
based on SAS protocols [24,17], suitable for simpler displays and LEDs has been
investigated by Roth, et al. [26].

The Seeing-is-Believing technique by McCune, et al. [13] uses the visual chan-
nel to perform secure device pairing. One device sends its public key to the other
through a human-imperceptible channel (such as 802.11) and, at the same time,
displays a visual encoding of the public key in the form of a bar code. The
receiver device, with the help of the user, takes a picture of the bar code and
compares it with the one computed locally. The user is not required to recognize
pictures, but it requires at least one device to have a photo camera, and the qual-
ity of the picture, either printed or displayed, to be quite good. For bidirectional
authentication the above sequence must be repeated twice.

Saxena, et al. [23] considered a variation of Seeing-is-Believing [13] method
by showing how to achieve secure pairing if one device is equipped with a video
camera, while the other has at least a single LED. In this method, the device
equipped with an LED uses its “blinking” capability to transmit the hash. The
device with a camera records the blinking pattern, extracts the hash and com-
pares with the hash computed as a result of the protocol. If they match, it asks
the user to accept on the other device; otherwise it asks user to abort.

Another device pairing approach – Loud-and-Clear [10] – uses audio as its
human-perceptible channel. Loud-and-Clear protocols involve two devices ex-
changing their keys and computing the hash of the exchanged cryptographic
material. The hash is then translated in a syntactically correct English-like
“Madlib” (non-sensical) sentence that can be played by one of the devices and
showed on a text display on the other: the user compares the sequences and
verifies the key exchange. The authors consider many other scenarios and varia-
tions of the protocol, but the main contribution is the ability to perform secure
device pairing between a device equipped with a speaker and another equipped
with a simple (text) display. Moreover, the generation of syntactically correct
text helps the user in the verification process.

Yet another approach –“Button-Enabled Device Authentication (BEDA)” –
by Soriente, et al. [27], suggests a pairing method for interface constrained de-
vices. To accommodate wide variety devices, this method has several variants:
“LED-Button”, “Vibration-Button” and “Button-Button”. In the first two vari-
ants, the sending device blinks its LED (or vibrates) and the user presses a
button on the receiving device at each such event. String is encoded as the delay
between consecutive blinks (or vibrations). In the Button-Button variant the
user simultaneously presses buttons on both devices and random user-controlled
inter-button-press delays are used as a means of establishing a common secret.
Saxena, et al. [25] also proposed a pairing method suitable for constrained de-
vices. The proposed method is based on synchronized audio-visual patterns and
involve users comparing them, e.g., in the form of “beeping” and “blinking”,
transmitted as simultaneous streams. The advantage of these methods is that
they require devices to only have very basic interface such as buttons, LEDs or
a basic beeper.

HAPADEP: Human-Assisted Pure Audio Device Pairing 389

There have been other proposals suggesting the use of technologies that are
more expensive and less common. Kinberg, et al. suggested an approach requir-
ing RF and ultrasound receiver/transmitters on both devices in their earlier work
[15] and laser technology (requires each device to be equipped with a laser tran-
sreceiver) in their more recent proposal [14]. Holmquist, et al. [12] and Mayrhofer
et al. [21] proposed the use of a common movement pattern as the security ini-
tiator when the two devices are shaken together. This requires both devices to be
equipped with two-axis accelerometers; it is also unsuitable for physically large
devices.

All aforementioned techniques adhere to one common design element: they use
two channels to perform the pairing process. The primary human-imperceptible
channel is used to exchange the cryptographic material, and, then, a secondary
human-perceptible channel is used to verify the integrity of the process. The
main drawback of this approach is the requirement that devices must have a
common communication channel, such as 802.11a/b/g/n, Bluetooth, IrDA, and
WiBro. In some scenarios, a common communication channel might not be avail-
able at the time of pairing and, even when available, configuring it to establish
communication is time-consuming and cumbersome.

3 HAPADEP: General Operation

The HAPADEP protocol relies only on the audio channel. A speaker and a mi-
crophone are the only required device features. (In fact, in its simplest, unilateral
flavor, HAPADEP eliminates the need for a microphone in one of the devices.)
We consider both unilateral and bilateral key exchange protocol flavors. When
talking about the former, we use the term personal to denote the device receiving
the public key and target to denote the device sending (delivering) its public key.
In the bilateral protocol, we use a more generic term peer.

A unilateral protocol is said to be verifiable if the user, at the end of the
protocol execution, is sure that one device has correctly received the public key
sent by the other device (The same property trivially extends to bilateral key
exchange). The notion of verifiable key exchange is somewhat different from
the notion of authenticated key exchange as the latter guarantees the owner
of the received cryptographic material, while the former guarantees its sender.
However, since pairing scenarios involve direct exchange of information – rather
than delivery via intermediaries – verified key exchange is sufficient to ensure
security.

The HAPADEP protocol consists of two phases, as shown in Figure 1. Dur-
ing the first transfer phase the target device sends its public key (and any other
cryptographic material) to the personal device; during this phase, the user is only
responsible for triggering the execution of the protocol, i.e., pushing a button
on each device. To transfer the key over the audio channel, the target encodes
its key using the codec and plays the resulting audio sequence. The personal
device records the audio sequence and decodes it to retrieve the key. In a bilat-
eral key exchange protocol, the transfer phase is repeated with the devices that

390 C. Soriente, G. Tsudik, and E. Uzun

Fig. 1. HAPADEP Operation

automatically switch roles. Since encoded public keys are fairly large (several
hundred bits), encoding is done using a fast codec that provides faster data
transmission rate. Although the faster transmission rate has a side-effect of pro-
ducing rather unpleasant-sounding audio, the transfer only takes about 3 seconds
(6 seconds for the bilateral case). Moreover, the human user is not expected to
pay close attention or be actively involved at this stage.

During the second verification phase the user is directly involved in verifying
that the key exchange is secure and successful. A relatively slow codec is used to
encode the digest of the cryptographic material exchanged in the transfer phase.
The bit rate of this codec can be much lower than the faster codec used in the first
phase2, however, the output needs to be pleasant to the human ear and easily
recognizable. In the verification phase, each device plays the audio sequence
created using the slow codec and waits for the user to decide whether the two
sequences match. The user is expected to listen to both sequences carefully and
indicate (e.g., by pressing a key) a match or lack thereof.

It might seem like the verification phase is unnecessary. Indeed, we could
imagine a simpler protocol which would avoid the verification phase relying
instead on the human user to detect exactly which device is playing during the
transfer phase: if the target is actually playing the audio sequence, any audible
MiTM will be noticed. However, two issues would arise: First, the output of

2 Since verification data is small, the low bit rate is not a concern here.

HAPADEP: Human-Assisted Pure Audio Device Pairing 391

the fast codec is not pleasant to the human ear which might discourage users
from paying attention and identifying the audio source. And even if they pay
attention or the output is made pleasant, asking to decide if there were any
other audio source producing a similar sound is problematic as there may be
many such sources in a fairly crowded city spot. Second, it is important to verify
the successful termination of the protocol and give a satisfying proof to the user.
Note that the user can be sure that the target device is playing but s/he cannot
tell whether or what the personal device is recording.

Another näıve approach might be to use the slow (more pleasant-sounding)
codec for the cryptographic exchange and play the recorded audio on the receiver.
Then, the user would be expected to determine whether the sequentially played
sequences by the devices are the same. However, the amount of data encoded as
audio would be much larger which would result in long audio sequences, making
it tiresome for the user.

Since both devices are capable of playing, recording and comparing audio se-
quences, it might also seem possible to have the devices themselves (without any
user involvement) check whether the two audio sequences played during the verifi-
cation phase are identical. This approach would remove all burden from the user.
However, it would be easy for a malicious device to participate to both transfer
and verification phases, pretending to be the target device. In other words, the
presence of the user telling which device (among several) is playing is an essential
feature termed by Balfanz, et al. as Demonstrative Identification [5].

Since the protocol must be fast, secure and usable, we claim that the need for
two phases and two different codecs is well-justified.

4 Implementation

In the implementation of HAPADEP, choosing the right codecs is crucial. In
the case of fast codec, the two main requirements are reliability (low error rate)
and high bit-rate. In this respect, any reliable and fast codec that can cope with
reasonable amount of background noise can be used in the implementation. The
slow codec, on the other hand, has to be chosen very carefully since it directly
affects the usability and the security of the protocol. In HAPADEP, user’s ability
to tell whether the verification sequences are the same one or they are different is
crucial for the security of the protocol. So the output has to be easily recognizable
by a human user.

In our implementation, the fast codec is based on the results of the Digital
Voices project at PARC [18,20,19]. 240 bits are encoded in a 3.4-second midi
audio sequence where the first 160 bits represent the actual public key (in the
EC-DSA cryptosystem) and the last 80 bits are for error checking. The Bouncy
Castle [1] crypto package is used for cryptographic computations.

For the human-verifiable audio generation (slow codec), we implemented (and
experimented with) two different approaches:

– Using pleasant-sounding short melodies
– Using grammatically correct MadLib sentences

392 C. Soriente, G. Tsudik, and E. Uzun

The implementations details for each approach are as follows:

Generating a Melody: The codec uses the hash of the exchanged crypto-
graphic protocol data to produce a MIDI score played by a piano. Using this
codec, playing time for the resulting MIDI sequence (generated from a 80 bit
input) takes about 5.6-seconds. For each byte of the input, the first four bits are
used to select a specific symbol to add to the score from among the seven major
chords, the seven minor chords, pause and sustain; the second four bits together
with the previous ones and the present octave, are used to select the octave at
which the note is played. The result is an easily recognizable audio sequence,
very similar to sounds produced by a child playing a toy piano. Each device can
replay the sequence multiple times so that the user (if desired) can make sure
that the two devices play the same (or different) sequences.

Generating a Sentence: Another way to convert cryptographic data to
human-verifiable audio is by producing grammatically correct sentences. The
logic is similar to the MadLib game which was also used in the Loud-and-Clear
[10] device pairing technique. We employed the same MadLib generation method
to create grammatically correct but non-sensical English sentences consisting of
8 S/KEY-generated words. Each word is chosen from a dictionary of size 210,
which makes the input length 80 bits (same as with the melody generation).

5 Usability Analysis

Armed with two versions of HAPADEP software, we were interested to investi-
gate their respective usability factors. To this end, we performed usability ex-
periments discussed in this section.

We recruited 20 subjects for the experiments. Subjects were chosen on a first-
come first-serve basis from the respondents to recruiting posters. Subjects were
mainly university students which resulted in a fairly young, well-educated and
technology-savvy participant group.

Test Procedure: Our usability tests were conducted in a variety of campus
venues (depending mainly on the subjects’ preferences), including, but not lim-
ited to: cafés, student dorms and apartments, classrooms, office spaces and out-
door terraces. After giving a brief overview of our study goals, participants were
asked to fill out the background questionnaire (see Appendix B) to collect de-
mographic information and learn about their music- and computer-related skills
and background. Next, users were given a brief introduction to the mobile phones
used in the tests to demonstrate some basic operations needed during the test.

Each user was then given the two devices and asked to follow on-screen in-
structions to complete the given tasks. A user was asked to pair the devices four
times in total; twice using the melody variant and twice using the MadLib (sen-
tence) variant. Each variant was tested once with no attack assumption (where
verification sequences matched) and once under attack simulation (verification
sequences were forced to be randomly different) in order to analyze users’ ability

HAPADEP: Human-Assisted Pure Audio Device Pairing 393

to distinguish matching and different sequences. To reduce the learning effect
on test results, the four tasks were presented to the user in random order. The
transition between tasks were automated (four executions are started automati-
cally one after the other) and the user actions were logged automatically by the
testing framework [16]. After completing the tasks, each participant filled out a
post-test questionnaire (see Appendix B) form and was given 5 minutes of free
discussion time followed by a short interview.

Results: We collected data in two ways: (1) by timing and logging user inter-
action, and (2) via questionnaires and structured interviewing.

The sentence-based variant was faster then the melody-based variant when the
two values matched. Whereas, the melody-based variant was ahead when the two
values differed. Albeit, average completion time hovered around 68 seconds for
both methods, as shown in table 1. Although playing a melody takes less time
than vocalizing a sentence, the users replayed melodies more to be able to de-
cide whether they were same. When the sentences matched, participants re-played
them 1.3 times on average, and 1.75 times when they didn’t match. The average
play count for melodies was 1.5 for matching and 1.8 for non-matching sequences.

Table 1. Summary of the logged data

Method Completion Time (sec.) Fatal Error Rate Safe Error Rate

Melody (No Attack) 62.15 N/A 10%

Melody (Under Attack) 74.5 15% N/A

Sentences (No Attack) 56.95 N/A 0%

Sentences (Under Attack) 80.5 5% N/A

In HAPADEP, if the user indicates (forces) a match in case of two different
audio sequences, the protocol clearly cannot be assumed secure. Such a careless-
ness can allow the attacker to succeed in an impersonation or MiTM attack. Due
to its grave effect on security, we call such errors as fatal errors. On the other
hand, indicating no match for matching values does not introduce any security
vulnerabilities but simply voids the current pairing session. We call such errors
as safe errors due to their benign nature. In the context of secure device pairing,
notions of safe and fatal errors are first introduced by Uzun et al. in [28].

As shown in Table 1, using melodies for verification caused higher fatal and
safe error rates. Many participants stated that they would recognize different
melodies better if they had a chance to execute the protocol few times and
get their hearing “adjusted” before the tests. Subjects who tested the melody
variant with non-matching sequences (before matching ones) complained about
their initial tendency to tolerate the difference between melodies, since they
did not know how much difference they should have expected. Those who tried
matching melodies first also complained about the same issue but claimed that
they tended to be alerted by slight differences in sequences, due to different
quality speakers in the devices. We believe that this is a fundamental problem

394 C. Soriente, G. Tsudik, and E. Uzun

with the current melody variant since the security software cannot tolerate any
insecure trial-and-error learning period.

Ontheother hand, comparing sentences resulted inacceptable error rates.There
was only one subject who accidentally pressed the same button for different sen-
tences causing a fatal error to be logged. However, the subject realized his mistake
immediately and asked if there was a way to cancel. So, even in this case, the cause
of the error was not the user’s inability to recognize non-matching sentences but
probably our poor GUI design which facilitated this kind of interaction. Security
risks of this type of errors can be classified as being lower than those due to unno-
ticed errors, since the user is aware of the mistake and can thus take an immediate
recovery action. However, security software should be free of such errors, since it is
hard to accurately foresee the damage an attacker can cause even in few seconds.

In the post-test questionnaire, we solicited user opinions and preference about
the tested methods. Participants found comparing sentences easier and more
usable in general and preferred to play the sentences one after the other between
devices. 95% of the participants rated comparing sentences as easy and 80%
preferred it over melodies. Comparing melodies got lower usability rankings, and
we observed that it was usable only if both devices started to play the melody
at the same time (more-or-less in stereo). Participants were more sensitive to
background noise or distractive elements when they were comparing melodies
and only 50% of the participants found it easy.

After they filled the post-test questionnaire, we interviewed the participants
about their experience with current pairing technologies and HAPADEP. We
found out that 70% of the participants tried to setup a secure wireless 802.11
home network and 45% of subjects tried bluetooth pairing before. When we
told them HAPADEP (in melody or sentence flavor depending on their choice)
can be used as a replacement for those procedures, all people that had previous
Wi-Fi pairing experience told they would prefer to use HAPADEP instead. 56%
of the people with previous bluetooth pairing experience also said they would
prefer HAPEDEP and 22% said they may prefer HAPADEP in certain scenarios
but not always. Only four participants had tried infrared communication; two
of them said they could not get it to work.

From our usability analysis, we conclude that the HAPADEP melody variant
is not mature enough to provide both usability and security. In the rest of the
paper, we assume a MadLib (sentence-based) variant.

6 Discussion

In HAPADEP, two devices establish either a unidirectional or bidirectional se-
cure channel by exchanging their public keys over the audio channel. Assuming
that the devices are not compromised, the cryptographic primitives and the pub-
lic key schemes are secure; an attacker can only perform Denial-of-Service (DoS)
or Man-in-the-Middle (MiTM) or impersonation attacks.

To perform a DoS attack, the attacker can play a loud audio and prevent
the personal device from recording what the target device is playing. In such

HAPADEP: Human-Assisted Pure Audio Device Pairing 395

cases the transfer phase has to be repeated numerous times. However, such DoS
attacks can be recognized (actually, heard) by the user and be traced to its
source. The adversary may try to use very low or very high (not audible to the
human ear) frequencies but the decoders can be easily tuned to filter out such
frequencies forcing the channel always to be human-perceptible.

In an impersonation attack, the attacker’s goal is to convey its public key
to the personal device by impersonating the target. In the verification phase,
however, both devices vocalize sentences that represent their respective views
of the exchanged cryptographic material. Note that the target device would
compute the sentence based on what it has sent and the personal device computes
it based on what it has received. Assuming that the underlying hash function is
second pre-image resistant, any impersonation attack would result in different
sentences computed on, and vocalized by, the devices. Our usability tests showed
that the users are quite capable of recognizing matches and mismatches in device-
vocalized MadLib sentences, even in reasonably noisy and crowded environments.
Also note that an active impersonation attack would involve a third (adversarial)
device attempting to super-impose its sound over one or both legitimate devices
and the user can pinpoint the attacker by identifying the third audio source.

While the only requirement for both devices are a speaker and a microphone,
the user must be able to perform two (usually) simple tasks:

– Recognize which device is playing the MadLib sentence, among possibly
several nearby devices

– Recognize whether two devices are indeed vocalizing the same sentence.
(User can replay the sentences as many times as s/he wants and can choose
to play them simultaneously or sequentially).

Our usability tests indicated that most non-hearing-impaired adults are capable
of performing both activities and so HAPADEP is an easy to use alternative to
prior techniques.

Unlike previous proposals, HAPADEP needs only one communication chan-
nel. This is crucial when devices don’t have any other common communication
interface at the time of pairing. If devices have another common interface like
Wi-Fi or bluetooth, using HAPADEP is still useful as it dramatically improves
the usability by eliminating the need to configure such interfaces. Audio, as a
broadcast medium by nature, doesn’t need any initial configuration or discovery
phase as it is in Wi-Fi or bluetooth. Whenever devices share another common
interface and the aim of the pairing is to continue to communicate over it, HA-
PADEP protocol can be easily modified to transfer the necessary information
for automatic configuration of such interfaces. In our prototype implementation,
including the bluetooth physical addresses into the exchanged messages needs
less than 1 second extra transmission time. After successful termination of HA-
PADEP, devices are able to automatically initiate secure communication over
their bluetooth interface without any user involvement.

The implementation of HAPADEP is straightforward and the source code
is available online [2]. We implemented, and experimented with, two variants,
based on melodies and sentences (MadLibs). Although the former performed

396 C. Soriente, G. Tsudik, and E. Uzun

somewhat poorer than the latter in our experiments, our original motivation for
using melodies was two-fold:

– Melodies can be generated on-the-fly without storing any lookup dictionaries.
– Many devices, including those on the low end of the spectrum, are capable

of playing chords, but not text-to-speech (TTS).

Storing lookup dictionaries for sentence generation would take up additional
storage space of about 50 KB of ROM. TTS engines usually need better compu-
tation capabilities and more memory as well. (There are several embedded TTS
engines with small footprints that work on almost any cell phone or PDA, but
they still do not run on more constrained devices, e.g., bluetooth headsets).

7 Summary and Future Work

This paper introduced HAPADEP – a new approach to secure device pairing.
HAPADEP can be viewed as an extension of the previously proposed Loud-
and-Clear technique [10] where all communication is conducted over the user-
perceptible audio channel. HAPADEP is easy to implement and deploy, as our
experience indicates. It also offers some built-in protection against DoS and
MiTM attacks. The former, in particular, distinguishes it from prior solutions.
In addition, HAPADEP doesn’t require any common digital interface or initial
communication setup and, when available, can help to automate the needed
setup of other interfaces thus representing the most usable and lowest-cost device
pairing solution to-date.

In HAPADEP, using a different cryptographic authentication protocol may
result in smaller footprint and potentially a better usability. Currently, we are
working on a new HAPADEP variant that employs a 3-round Short Authenti-
cation Strings (SAS) protocol, such as [24,17]. Depending on the availability of
a common interface, this variant would need one or three fast codec transmis-
sions and a very short sentence comparison of only two words for verification.
The shorter verification phase would decrease the pairing time and the storage
needs for dictionaries but the effects of increased rounds and shorter verification
sentences on usability is to be addressed in our future work.

Although our usability study clearly indicates that the current melody variant
is not the best approach, we are planning to evaluate possible improvements, such
as using mixed instruments, different algorithms, forcing simultaneous play of
the verification melodies, etc. Making the melody variant a usable alternative is
still important as it could be the only option for highly constrained devices that
cannot accommodate text-to-speech technology.

Acknowledgements

We thank C. Lopes for the help with the audio codecs and Nokia for providing
us the phones we used in our tests. We also thank N. Saxena, N.Asokan and the
anonymous reviewers for their comments and suggestions.

HAPADEP: Human-Assisted Pure Audio Device Pairing 397

References

1. Bouncy Castle Crypto APIs, http://www.bouncycastle.org/

2. HAPADEP website, http://sconce.ics.uci.edu/hapadep/

3. Perrig, A., Song, D.: Hash visualization: A new technique to improve real-world
security. In: Proceedings of the 1999 International Workshop on Cryptographic
Techniques and E-Commerce (CrypTEC 1999), pp. 131–138 (July 1999)

4. Alliance, W.: Wi-fi protected setup specification. WiFi Alliance Document (Jan-
uary 2007)

5. Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to strangers: Authen-
tication in ad-hoc wireless networks. In: Symposium on Network and Distributed
Systems Security (NDSS 2002) (February 2002)

6. Ellison, C.M., Dohrmann, S.: Public-key support for group collaboration. ACM
Trans. Inf. Syst. Secur. 6(4), 547–565 (2003)

7. Feeney, L.M., Ahlgren, B., Westerlund, A.: Demonstration abstract: Spontaneous
networking for secure collaborative applications in an infrastructureless environ-
ment. In: International conference on pervasive computing (pervasive 2002) (2002)

8. Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for ad-hoc
wireless networks. In: Security Protocols, 7th International Workshop (1999)

9. Goldberg, I.: Visual Key Fingerprint Code (1996),
http://www.cs.berkeley.edu/iang/visprint.c

10. Goodrich, M.T., Sirivianos, M., Solis, J., Tsudik, G., Uzun, E.: Loud and clear:
Human-verifiable authentication based on audio. In: ICDCS 2006: Proceedings of
the 26th IEEE International Conference on Distributed Computing Systems (2006)

11. B. S. I. Group.Simple pairing whitepaper (2006), http://www.bluetooth.com/

Bluetooth/Apply/Technology/Research/Simple Pairing.htm

12. Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.-
W.: Smart-its friends: A technique for users to easily establish connections between
smart artefacts. In: UbiComp 2001: Proceedings of the 3rd international confer-
ence on Ubiquitous Computing, Atlanta, Georgia, USA, pp. 116–122. Springer,
Heidelberg (2001)

13. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-Is-Believing: Using Camera Phones
for Human-Verifiable Authentication. In: 2005 IEEE Symposium on Security and
Privacy, pp. 110–124 (2005)

14. Kindberg, T., Zhang, K.: Secure spontaneous device association. In: Dey, A.K.,
Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 124–131.
Springer, Heidelberg (2003)

15. Kindberg, T., Zhang, K.: Validating and securing spontaneous associations between
wireless devices. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 44–
53. Springer, Heidelberg (2003)

16. Kostiainen, K., Uzun, E.: Framework for comparative usability testing of dis-
tributed applications, http://sconce.ics.uci.edu/CUF/

17. Laur, S., Nyberg, K.: Efficient mutual data authentication using manually authen-
ticated strings. In: Pointcheval, D., Mu, Y., Chen, K. (eds.) CANS 2006. LNCS,
vol. 4301, pp. 90–107. Springer, Heidelberg (2006)

18. Lopes, C.: The digital voices project home page,
http://www.isr.uci.edu/∼lopes/dv/dv.html

19. Lopes, C.V., Aguiar, P.M.: Acoustic modems for ubiquitous computing. IEEE Per-
vasive Computing 02(3), 62–71 (2003)

http://www.bouncycastle.org/
http://sconce.ics.uci.edu/hapadep/
http://www.cs.berkeley.edu/iang/visprint.c
http://www.bluetooth.com/Bluetooth/Apply/Technology/Research/Simple_Pairing.htm
http://www.bluetooth.com/Bluetooth/Apply/Technology/Research/Simple_Pairing.htm
http://sconce.ics.uci.edu/CUF/
http://www.isr.uci.edu/~lopes/dv/dv.html

398 C. Soriente, G. Tsudik, and E. Uzun

20. Lopes, P., Aguiar, C.V.: Aerial acoustic communications. In: 2001 IEEE Workshop
on the Applications of Signal Processing to Audio and Acoustics, pp. 219–222
(2001)

21. Mayrhofer, R., Gellersen, H.: Shake well before use: Authentication based on ac-
celerometer data. In: Proc. Pervasive 2007: 5th International Conference on Per-
vasive Computing (2007)

22. Microsoft. Windows connect now-ufd and windows vista specification. version 1.0
(2006), http://www.microsoft.com/whdc/Rally/WCN-UFDVistaspec.mspx

23. Saxena, N., Ekberg, J.-E., Kostiainen, K., Asokan, N.: Secure Device Pairing based
on a Visual Channel. In: 2006 IEEE Symposium on Security and Privacy (2006)

24. Pasini, S., Vaudenay, S.: Sas-based authenticated key agreement. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 395–409.
Springer, Heidelberg (2006)

25. Prasad, R., Saxena, N.: Efficient device pairing using human-comparable syn-
chronized audiovisual patterns. In: Applied Cryptography and Network Security
(ACNS) (June 2008)

26. Roth, V., Polak, W., Rieffel, E.G., Turner, T.: Simple and effective defense against
evil twin access points. In: WISEC, short paper, pp. 220–235 (2008)

27. Soriente, C., Tsudik, G., Uzun, E.: BEDA: Button-Enabled Device Association.
In: IWSSI (2007)

28. Uzun, E., Karvonen, K., Asokan, N.: Usability Analysis of Secure Pairing Meth-
ods. In: Dietrich, S., Dhamija, R. (eds.) USEC 2007. LNCS, vol. 4886. Springer,
Heidelberg (2007)

29. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory IT–22(6), 644–654 (1976)

30. Wireless USB Specification. Association models supplement. revision 1.0. USB Im-
plementers Forum (2006), http://www.usb.org/developers/wusb/

http://www.microsoft.com/whdc/Rally/WCN-UFDVistaspec.mspx
http://www.usb.org/developers/wusb/

HAPADEP: Human-Assisted Pure Audio Device Pairing 399

Appendix A: Screen-Shots of Some Confusing Steps in
Wi-Fi and Bluetooth Connection Set-Up

400 C. Soriente, G. Tsudik, and E. Uzun

Appendix B: Background and Post-test Questionnaires

One-Time Password Access to Any Server

without Changing the Server

Dinei Florêncio and Cormac Herley

Microsoft Research, One Microsoft Way, Redmond, WA
dinei@microsoft.com, c.herley@ieee.org

Abstract. In this paper we describe a service that allows users one-time
password access to any web account, without any change to the server,
without changing anything on the client, and without storing user creden-
tials in-the-cloud. The user pre-encrypts his password using an assigned
set of keys and these encryptions are sent as one-time passwords to his
cell phone or carried. To login he merely enters one of the encryptions
as prompted, and the URRSA service decrypts before forwarding to the
login server. Since credentials are not stored (the service merely decrypts
and forwards) it has no need to authenticate users. Thus, while the user
must trust the service, there are no additional passwords or secrets to
remember. Since our system requires no server changes it can be used
on a trust-appropriate basis: the user can login normally from trusted
machines, but when roaming use one-time passwords. No installation of
any software or alteration of any settings is required at the untrusted
machine: the user merely requires access to a browser address bar.

Keywords: Passwords, one-time passwords, authentication, replay re-
sistance.

1 Introduction

Users increasingly find themselves in the position of having to enter sensitive in-
formation on untrusted machines. As access to more and more services is pushed
online, the range of sensitive information that a user must protect grows with
time. Passwords are the most obvious example. Email, bank and brokerage ac-
counts, employee benefits sites, dating and social networking sites almost uni-
versally allow password protected access to services. A user who logs in to any
such account from an untrusted machine runs the risk that a keylogger will cap-
ture the password and allow unauthorized access. In addition, the number of
machines that must be regarded as untrusted also grows. Most obviously, any
machine at an internet café or kiosk must be assumed suspect. But additionally
a user’s own home computer can easily be infected with spyware.

The problem we address is to enable a user to login from a machine that
is untrusted. For simplicity we will assume the worst: everything the user does
on such a machine is observed and logged. Everything typed, everything that
appears on the screen, and all of the network traffic is captured and is available

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 401–420, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

402 D. Florêncio and C. Herley

to an attacker. Nonetheless we want to be able to login to password protected
accounts from such a machine, without risking catastrophic loss of data. While
there are widely varying estimates of the dollar size of the fraud problem that
password stealing causes [20] the fear and confusion is very real. We assume that
preventing passwords from falling into the wrong hands is more important than
protecting the rest of the data from a session. Thus we are not protecting the
privacy of data, and we do not prevent session hijacking.

Our approach for passwords to a particular account will be to generate a se-
ries of one-time passwords that can be used to login. The actual mechanism we
employ will be for the user to navigate to a webserver that will act as a Man-In-
The-Middle (MITM). We call the system URRSA: Universal Replay-Resistant
Secure Authentication. The one-time data will be provided to the URRSA server,
which then performs a decryption and substitution: replacing the one-time pass-
word typed at the suspect machine with the true password forwarded to the
login server. In this way the sensitive information is not typed at the untrusted
machine, and neither is it displayed or downloaded to the compromised environ-
ment; nor is it stored at the URRSA server.

We make several requirements of the solution in order to be useful:

– No change to existing login server.
– No change to the browser or client software environment. We do not assume

that the roaming user has installation privileges. We do not require the user
to change the browser proxy settings. Requiring users to alter browser proxy
settings we believe makes the User Experience of Impostor [27] and KLASSP
[15] unworkable for a realistic deployment.

– No storage of credentials in the cloud: this removes the single point of attack
that such a server would represent.

– No authentication of the user to the service: if we try to authenticate with a
password we are back where we started. The alternatives, such as smartcards,
greatly increase the complexity of the service and the burden on the user.

Our main goal in this paper is to describe the technology and give sufficient detail
to allow implementation. However, it is legitimate to question whether users will
trust such a system. The answer is obviously dependent on who runs it. There
are two deployment scenarios that don’t involve trusting a third party. The first
is that the login server runs the service. For example, using URRSA, PayPal or
Fidelity might offer OTP access to those clients who desire it without altering
their current authentication process. The second is that the user self-hosts the
service on a machine that he controls. Obviously this solution requires that the
user maintain a server and a fixed IP address or a domain name; so this is
possible only for a small minority of users. Both of these deployment models are
potentially useful, and get around the issue of trust by having the “third party”
be one of the existing two parties. The final model, and potentially most useful,
is of URRSA offered as a web-service hosted by a third party. The success of
online financial management sites such as www.yodlee.com, www.mint.com and
www.wesabe.com demonstrates that at least some users will trust such a service.

www.yodlee.com
www.mint.com
www.wesabe.com

One-Time Password Access to Any Server without Changing the Server 403

At Yodlee, for example, users give the service passwords to their bank and
credit-card accounts so that it can daily update bill and payment information.

In the next section we review related work. In Section 3 we show how any
account can be transformed into a one-time password account without having to
change the server or the browser. We review implementation details in Section
4. Section 5 examines attacks and Section 6 evaluates our deployment.

2 Related Work

2.1 Coping Strategies and Simple Tricks to Evade Spyware

Sometimes coping strategies can be enough to evade a keylogger. Herley and
Florêncio [11] describe a simple trick that users can employ to confound keylog-
gers by obfuscating their passwords. By interspersing the legitimate password
characters with random characters typed outside the password field, the tech-
nique is able to confuse most existing keyloggers. While useful, this is not a
durable solution, as keyloggers could be easily modified to capture enough ad-
ditional information to retrieve the actual password.

Another technique that can be used to authenticate without explicitly typing
passwords involves storing the password or equivalent information in a book-
mark, and accessing it from a standard web browser. A flexible way of achieving
that is based on the use of bookmarklets. These are small JavaScript programs
that are stored as bookmarks. JavaScript is flexible enough that it can be even
used to hash a general password, and generate site-specific passwords [1]. Storing
the password (or equivalent information) in a URL link, bookmarklets avoid the
need to type the target site password. Access could be achieved when roaming,
by storing the bookmarklets on a USB drive, for example. Nevertheless, this is
not necessarily safe. If its use were to become widespread, hackers could attack
the bookmarklets directly. If the file containing the bookmarklets is copied when
inserting the USB drive, every single password on the drive could be compro-
mised (thus making the user less secure not more). It would make matters worse
not better if checking a hotmail account exposed the BankOfAmerica credentials
stored on the same device to be exposed.

Another group of solutions involves having the web site use some authenti-
cation method other than simply typing passwords - sometimes in combination
with some typing. Examples include on-screen keyboards, two-factor authen-
tication, challenge-responses systems, and many others. These usually apply
only to the site that adopts that particular mechanism, and require a major
change in the server and User Experience. Rather than have users key their
passwords some web sites have experimented with on-screen keyboards as a
method of secure data entry. These schemes can be attacked by having the
keylogger do a screen capture at each mouse click event. An interesting work by
Tan et al. [31] addresses the question of minimizing the chances that a password
entered using an on-screen keyboard is captured by an observer. This work ad-
dresses the “shoulder surfing” risk rather than the risk that the machine itself is

404 D. Florêncio and C. Herley

running spyware, but has interesting analysis of the usability of various alterna-
tive password entering mechanisms.

2.2 Challenge Response Mechanisms

The use of challenge response has been explored as a means of achieving re-
sistance against replay attacks when the user must login from an untrusted
environment. Cheswick [12] examines on a higher level the use of Challenge-
Response authentication mechanisms to evade spyware. The advantage of such
systems is that a spy who observes a successful login session cannot perform a
replay attack: the challenge will be different for each event and observing a single
response helps the attacker very little. Cheswick reviews a number of approaches
from the point of view of usability. Each of these schemes would require changes
at the server.

Pering et al. [28] explore the use of a series of the user’s own images up-
loaded in advance. The user is then authenticated by successfully responding to
a series of challenges, which essentially involve picking his images from random
images. Another image based scheme is proposed by Weinshall [32]. To avoid an
image-similarity attack, the images are assigned, rather than uploaded. Further-
more, to reduce the amount of information given out with each authentication
session, the user is not directly asked which images are his. Instead, the image
set memberships are used to select a certain path on an image mosaic, with the
user providing only a code that depends on the path’s endpoint. It is pointed
out by Golle and Wagner [18] that observing as few as six logins of this scheme
can allow an attacker to determine the secret. Coskun and Herley [13] show that
a challenge response scheme that relies on the users memory and calculating
ability alone is almost certainly vulnerable to brute-force attack.

2.3 Proxy-Based Systems

Four works that directly address authentication from untrusted machines are
Impostor [27], that of Wu et al. [25], Delegate [21], and KLASSP [15]. All use
a proxy to intervene.

The Impostor [27] system of Pashalidis and Mitchell, is a passwordmanagement
system where roaming users can access their credentials. Rather than have users
authenticate themselves by typing a master password (as is the case for [17]), a
challenge response authentication is used. The user is assigned a large string that
forms the secret. When requesting access the user is challenged to provide char-
acters from randomly selected positions in the string, and is authenticated only
if she responds correctly. In this way the user reveals only a small portion of the
secret string to any compromised machine. A replay attack is difficult, since the
challenge positions change each time the user contacts the proxy. Nonetheless, Im-
postor potentially protects strong secrets with weak ones. If strong (e.g. 60 bit)
passwords are stored with the system an extension of the three character challenge
originally proposed would be necessary (as shown in [13] such a scheme is vulner-
able to an attacker who observes several logins). Impostor runs as a HTTP proxy,

One-Time Password Access to Any Server without Changing the Server 405

and the user must direct their browser to the proxy. Wu et al. [25] sketch a similar
architecture where a proxy stores credentials; the proxy delivers a challenge which
must be answered by SMS to authenticate the user.

Another proxy-based system which stores users credentials is Delegate of Jam-
malamadaka et al. [21]. Like Impostor, they store the passwords in the cloud,
and act as a proxy to serve as intermediary between the server and the un-
trusted terminal. Credentials are filled by the proxy in web requests as they
are forwarded to the login server. A cell phone is used for the user to explic-
itly authorize credential insertion when necessary. This requires, of course, that
the user has cell reception. By contrast our system has no such requirement.
An additional feature is that Delegate uses a rule-based hierarchy to request
additional authentication whenever a sensitive operation is requested. This can
be used to reduce the risks of a session hijacking (e.g., by requesting additional
authentication when a money transfer is requested) as well as to remove sensi-
tive information (e.g., account balances) from web pages provided by the server.
These rules are generally to be provided by security experts, or learned from the
user on a previous interactive session from a safe terminal.

The KLASSP proxy [15] of Florêncio and Herley also functions as a MITM
proxy for communication with the login server. The user enters a mapped pass-
word M(pwd) on the untrusted machine, and the proxy unmaps before forward-
ing M−1M(pwd) to the login server. The mapping M() has, of course, been
agreed in advance between the user and the proxy and serves as a shared se-
cret. KLASSP suggests two broad directions for mappings. In the first the user
obfuscates the password by entering either password keys or random keys in
response to prompts from the proxy (in a variation on [28] the prompts are a se-
ries of images, where the user’s personal images act as sentinels to signal a true
password character). As with Impostor, this technique protects strong secrets
with weak ones. In the second the user encrypts the password using a large and
cumbersome encryption table.

Impostor and KLASSP have in common that they are implemented as HTTP
proxies. This means that the user must force the browser on the untrusted ma-
chine to use the proxy. This is inconvenient and is not always possible (e.g. the
user may not have permissions). In Internet Explorer this requires editing Tools,
Internet Options, Connections, LAN settings, un-checking “Automatically de-
tect settings”, checking “Use a proxy server”, entering the IP address and port
number, clicking “Advanced options” and checking “Apply same proxy for all
protocols.” Further the settings must be undone when the user leaves; if this is
neglected or forgotten there is a risk that the next user of the machine has his
traffic routed through the proxy also.

2.4 One-Time Passwords and S/Key

Several one-time password systems have been proposed that limit the attacker’s
ability to exploit any information he obtains. Notable among them is S/Key
[22,29] which generates a series of passwords by iteratively taking a cryptographic
hash of a secret key. At each login the server verifies that the hash of what the

406 D. Florêncio and C. Herley

user presents is the previously used password. Since each of the passwords is used
only once it is of no use to an attacker. A further advantage is that the server need
store only the previously used password. Thus even the database at the server
contains nothing useful to the attacker. A popular implementation of S/Key for
Unix is described by Haller [19]. The user carries a list of OTP’s; generally these
are sequences of short English words, so the user must type a total of about
20-24 characters to authenticate. An alternative one-time password system is
OTPW by Kuhn [2]. Instead of being generated from a single secret (as with
S/Key) here the passwords are independently chosen random secrets, and the
hash of each is stored on the server.

Mannan and van Oorschot [24] describe MP-Auth: a system that uses a
trusted mobile device such as a PDA or smart-phone to enter the password.
The device encrypts the password using the end server’s public key before pass-
ing it to the untrusted terminal. MP-Auth has the advantage of not requiring
(as we do) that the user trust a proxy, but does not work with existing login
servers, and requires a channel (such as bluetooth) between the trusted device
the untrusted machine.

SecurID from RSA [3] gives a user a password that evolves over time, so
that each password has a lifetime of only a minute or so. This solution requires
that the user be issued with a physical device that generates the password. This
solution requires considerable infrastructure change on the server side, which has
limited its use. However SecurID has the advantage of being immune to OTP
stealing attacks (see Section 5.3).

2.5 In-the-Cloud Password Managers

One sub category of challenge response system is worth a separate note: in-the-
cloud password management systems. These systems store the sensitive informa-
tion at a server in-the-cloud, and have the server deliver the sensitive information
directly to the desired destination on the user’s behalf. An early example is [17].
Storing all this sensitive information in the server provides a new vulnerability.
Indeed, if an attacker gains access to the user’s account at this server, it would
have access not only to the information that the user typed, but to any other
information stored there as well. Further, a server storing hundreds or thousands
of users sensitive information can itself become a target for attacks.

An early in-the-cloud example, proposed by Gaber et al. [17], used a mas-
ter password when a browser session was initiated to access a web proxy, and
unique domain-specific passwords were used for other web sites. Since users au-
thenticated themselves by typing the master password, this clearly offers no
defence against keyloggers. The same is true of other in-the-cloud systems such
as Passport, where the user authenticates himself using a master password, or
www.clipperz.com where a passphrase is used.

2.6 Relation to Our Service

One-time Passwords offer well understood security enhancements over existing
password systems. Our proposed scheme gets the excellent protection enjoyed by

www.clipperz.com

One-Time Password Access to Any Server without Changing the Server 407

users of existing OTP systems [22,19,2,3] to all users. We wish to be clear that we
will have the same security and usability questions that arise with other OTP sys-
tems; e.g. from a usability standpoint the user must keep the OTP list safely, and,
like most OTP systems, session hijacking is still possible. The advantages we of-
fer over previous approaches is that we give OTP protection without changes to the
existing server. A consequence is that users can have trust-appropriate authentica-
tion. When using a trusted machine they can continue to login as before. However
when they decide the circumstances demand they can use one-time passwords to
access the account. When an OTP list is generated it is sent by SMS text message
to the user’s cellphone, but users who prefer may print and carry a hardcopy OTP
list. We view the cellphone as preferable for a number of reasons. It represents a de-
vice that the user generally carries anyway.The user is less likely to lose or misplace
a cellphone than a hardcopy OTP list. Finally, by using an out of band channel like
SMS to send OTP’s to the user new OTP lists can be generated without requiring
the user to return to a trusted location (see Section 4.3).

An advantage of the system we propose with respect to the proxy-based sys-
tems Impostor and KLASSP [27,15] is that it is implemented as a MITM web
service rather than a HTTP proxy. Users do not need to change the proxy set-
tings on the browser before they begin and undo them when they are done. Thus
the burden is much lower than with [15] or [27]. Further the service is involved
only for the duration of the connection to a password protected account. For
example an Impostor or KLASSP user during a one hour session might change
the proxy settings at the beginning and undo them at the end. If he visited
several password protected accounts, but also news and information sites the
proxy would handle all of the traffic for the entire hour. With our MITM service
implementation the URRSA server is involved only from login to logout on each
password protected account. The entire traffic for BankOfAmerica would flow
through the service, but none of the general browsing traffic would. Thus the
load on the service is greatly reduced (in comparison with Impostor or KLASSP)
and privacy is enhanced. Delegate [21] does not explain how its proxy mecha-
nism works. We assume, since it makes no mention of the crucial processing of
the request-response stream that is the heart of our system (Section 4.2), that
it is also implemented as a HTTP proxy.

The URRSA service can be seen as a descendant of KLASSP [15], where
the mapping M() becomes a true encryption of the password, and the proxy
is a reverse proxy. Independently, and after, one of the authors of Impostor
also developed and deployed a similar system [4]. This appears to be based on a
reverse proxy similar to CGIProxy rather than the scheme we describe in Section
4 but is similar in many other respects to our service.

3 Method

URRSA provides a service that allows users to access a website requiring au-
thentication, without having to type the actual password in the clear. The only
time the actual password is typed is during the registration, which is done in

408 D. Florêncio and C. Herley

advance from a safe location. At registration, the user receives versions of the
true password, each encrypted with a different key. The service will decrypt using
any of the keys only once, so effectively the user receives One Time Passwords
each of which can be used once to access the registered site from untrusted lo-
cations. Our approach does not store any passwords at the URRSA server. The
server needs to store only the encryption keys used, not the actual password. By
doing this we remove the information stored with the service as a vulnerability:
the keys have no value to the attacker without the corresponding OTPs (and if
an attacker has the OTPs, he doesn’t need to steal the keys, just use the ser-
vice). More importantly, we remove the need to authenticate the user. We wish
to be clear however that, while the service does not store user passwords, the
user must still trust the service.

3.1 Mapping Strategy

In theory passwords can contain upper and lower case letters, digits and any
of a few dozen special characters. While in practice we know that the majority
of users seldom use extended characters [14] we must nonetheless support all
possibilities. Letters and digits give 62 characters and we allow for 66 special
characters, for a total of 128 possible characters. Call this set C. An obvious
way of encoding the password characters would be to use a simple permutation
code that maps C to itself, and to apply this to all characters independently.
Thus a length N password (i.e. in CN) would be mapped to another password in
CN . There are a few problems with this approach. First, permutation codes leak
information when two characters of the original password are the same. More
significantly we have the following complications:

– Confusion sets: certain characters such as the number “zero” and the letter
“O”, or the number “one”, the upper case “I” and lower case “L” can be
hard to tell apart when context is removed.

– SMS restrictions: certain characters (e.g. []{}) cannot be sent by SMS (see
e.g. [5]).

– Unfamiliar keyboards: layout for the position of special characters varies
greatly on international keyboards. Some characters requiring meta-keys
(e.g. Shift, Alt, Alt-Gr etc) can be very hard to find.

It is important to exclude confusion sets. This is especially the case if the user
carries the OTP list on his cell phone, since we have no control whatever over the
fonts in which the OTP will be displayed. We require that every password map to
an OTP that is unambiguously readable on any display. This rules out “O” and
“0” etc. The set of characters that cannot be sent by SMS must be excluded from
any mapping we produce. Since the phone will merely receive and display we have
no opportunity to perform any mappings there. Finally, even common special
characters such as “@” can be hard to find on an unfamiliar keyboard (e.g. on
many keyboards it requires pressing the Alt-Gr key which often causes confusion
since Alt-Gr does not exist on US keyboards). The problem is compounded when

One-Time Password Access to Any Server without Changing the Server 409

the meta keys such as SHIFT, Alt, Alt-Gr, Esc etc are labeled in a language or
alphabet unfamiliar to the user. While we wish to support the minority of users
who have unusual characters in their passwords we do not wish to force a user
with a simple password such as “Snoopy2” to search for characters like “%” and
“¿” on the keyboard in a Chinese internet café.

To avoid any and all confusion, we restrict the output OTPs to use only cap-
ital letters and digits, not including the above mentioned characters: “0”, “O”,
“I”, and ”1”. Therefore the valid characters are easily identifiable: ABCDE-
FGHJKLMNPQRSTUVWXYZ23456789. Call this set D. This gives us 32 char-
acters, enough to carry 5 bits of information per character.

So we have an input password with N characters drawn from an alphabet
of 128 symbols (i.e. the set C). We wish to map to an OTP drawn from an
alphabet of 32 symbols (i.e. the set D). Clearly the OTP must be longer than
the input password. We transform the input password to a string of 7N bits, and
encrypt those bits using the one time encryption pad. We then map the result
(5-bits at time) to a password OTPi with M symbols drawn from an alphabet
of only 32 symbols. Clearly, OTPi will have M = ceil(7N/5) characters. Thus
the procedure maps a password from CN to an OTP from DM . For example the
9 character input password “{Qp#oL{4s” might map to the 13 character OTP
“RM8BQ47AAKW3U.” The OTP contains only characters that are unambigu-
ously readable on any display and easily found on any keyboard. We then repeat
the process with different encryption keys to produce each of the desired OTPs.
For decoding, we follow the reverse procedure. Pseudo-code for this encoding is
given in Section A.1. To decrypt the password, the URRSA server needs only
to know which encryption key was used. The url and userID pair allows this to
be determined. After receiving this information, the server checks which was the
last key used and informs the user which OTP to use next. This information is
all that is required to tell the Service which key to use (see Section 4.2), and to
guarantee that service and User are in sync. Since the service merely decrypts
and forwards no authentication of the user with the service is required.

As described each input password of a length N would map to an OTP
of length M = ceil(7N/5). However, since we know that a majority of users
choose weak passwords [14] this is actually somewhat wasteful. The two pass-
words “snoopy” and “G(r!e9” will map to the same length. If we Huffman encode
[30] the plaintext password before encryption and mapping we can reduce the
length of the average OTP that must be typed. Huffman decoding is done at
login time. Note that we have not weakened user passwords in so doing; we have
merely ensured that weak passwords from CN will be mapped to the shortest
possible strong password. It is also worth noting that password strength does
not necessarily increase security when password stealing attacks such as phishing
and keylogging are the main threats [16].

3.2 User Experience

The user merely navigates to http://{URRSA}/OTPLogin login page at the web-
server and enters first the url and userID of the account he wishes to access

http://{URRSA}/OTPLogin

410 D. Florêncio and C. Herley

(this allows the proxy to retrieve the keys used to generate that user’s one-time
passwords). The user then enters the k-th OTP from his OTP list, allowing the
server to decrypt and temporarily store the true password. The user’s browser
is directed to open https://{URRSA 1} (which directs our server to fetch the
registered login page). The user need type nothing further and merely clicks the
submit button and login proceeds. Observe that the URRSA service does not
authenticate the user. It has no need to, since it does not know any of the user’s
passwords and merely decrypts and forwards.

If we compare the user experience between logging in directly (i.e. navigating
directly to the login server and risking a keylogger) and using our service we
find as follows (we will use PayPal as an example). To go directly to the login
server the user types https://www.paypal.com in the address bar and then his
userID and password and clicks submit. To login using our service the user types
http://{URRSA}/OTPLogin in the address bar, then types www.paypal.com and
his userID at the loaded page and submits. A new page loads on which he enters
the requested OTP and submits. Finally, when the https://{URRSA 1} page
loads (which will be a copy of the https://www.paypal.com just loaded by the
service) he clicks submit one more time. Thus it can be seen that the additional
burden on the user is not very great: the user has one additional URL to type,
and two additional clicks. The sequence of events is detailed in Section A.2.

3.3 Acting as a MITM Webservice

The MITM service that URRSA performs can be regarded as a reverse proxy [23].
Conceptually (if we dealt only with static HTML pages) a reverse proxy works by
fetching a first document for the client and translating all links therein to again
go through the proxy. For example if the client wants https://www.abc.com/foo
it would instead ask for https://{URRSA 1}/foo. The proxy receives the request
and forwards to the server at www.abc.com; the server delivers the request to the
proxy, which passes it back to the client browser. This is not to be confused with
a HTTP proxy, where the browser is configured to direct all traffic to the proxy
[23]. Reverse proxies are also sometimes known as CGIproxies after a particu-
larly popular family of implementations [6]. While conceptually simple, reverse
proxying modern web-sites is a complex task. Examples of reverse proxy can be
seen at any of a number of anonymizing web proxies. However most anonymizing
proxies offer a somewhat brittle experience [26]. In particular dynamically gen-
erated links are often handled incorrectly, and missing images and broken links
are a common experience. In addition many are unable to handle SSL traffic
successfully, certificate errors are common, and cookies do not always get cor-
rectly assigned. We are unaware of a single anonymizing reverse proxy that is
robust enough to handle the complicated request/response stream that occurs
during an authentication.

We are able to simplify the problem by attempting considerable less gener-
ality than anonymizing reverse proxies offer. Rather than reverse proxy for any
possible domain, and all the links therein we seek to handle only the limited
number of domains and sub-domains encountered during login at a site. A login

https://{URRSA_1}
https://www.paypal.com
http://{URRSA}/OTPLogin
www.paypal.com
https://{URRSA_1}
https://www.paypal.com
https://www.abc.com/foo
https://{URRSA_1}/foo
www.abc.com

One-Time Password Access to Any Server without Changing the Server 411

server generally has links to fewer external domains than a conventional site (e.g.
when logging into www.PayPal.com a user sees essentially only content from the
PayPal and PayPalObjects domains while loading www.nytimes.com involves
as many as ten distinct domains). So our task will be to translate only for the
domain(s) to which the user is authenticating and not for a plurality of sites.

4 Implementation

We have implemented the URRSA server and deployed on an internet facing
machine: see Section 6 below. We now address some of the issues related to
implementation. This architecture and flow of events during an authentication
is illustrated in Figure 1. We use ASP.Net scripting to handle the the actions
to be performed at the web server. There are three web services running on the
server: OTPRegistration, OTPLogin and OTPRefresh, which we review in turn.

4.1 Registration Webservice

To use the service a user must first navigate to {URRSA}/OTPRegistration and
get a list of one-time passwords. He enters the url and userID of an account
he wishes to access and is assigned a randomly chosen set of keys. Recall that
the url and userID pair uniquely identifies the user, and hence the set of keys
issued. He also enters the password, pwd, for this account; and indicates the
cellphone number he wishes the list sent to. The webservice then generates a list
of 10 one-time passwords and sends them by SMS text message to the desired
number.

For this step OTPRegistration interfaces to an SMS gateway service. There
are several providers which expose programmable interface to make sending text
messages simple. In our implementation we use Clickatell [7] which offers a va-
riety of means of triggering the send message. In the simplest, after establishing
an account and paying for credits, a message can be sent merely by navigating to:
http://api.clickatell.com/http/sendmsg?user=xxxxx&password=xxxxx&
api id=xxxxx&to=xxxxxxx&text=xxxxxx, where the fields to be filled are the
user account name, password, application id, destination phone number and SMS
message. This could be invoked by causing the user’s browser to navigate to the
appropriate address once the OTP list has been calculated. While simple, this
leaves our password to the SMS gateway (though not the user’s password) in the
clear on the trusted machine. While the machine is trusted by the user, the user
is not necessarily trusted by the server, and this would potentially allow him to
replay and exhaust the message budget at the gateway. Instead we use an API
integrated with the server, which also causes the desired message to be sent. We
are limited to only 10 passwords by the 160 character limit that applies to SMS
messages. This step must be done at a trusted machine. The keys are stored at
the server along with the url and userID, but no record of the password is kept.

In the event that the user does not have a cellphone he may elect to carry
a copy on paper. In this case the webservice then generates a larger list of 30

www.PayPal.com
PayPal
PayPalObjects
www.nytimes.com
OTPRegistration
OTPLogin
OTPRefresh
{URRSA}/OTPRegistration
OTPRegistration
http://api.clickatell.com/http/sendmsg?user=xxxxx&password=xxxxx&
api_id=xxxxx&to=xxxxxxx &text=xxxxxx

412 D. Florêncio and C. Herley

one-time passwords which he prints and carries. The OTP’s can be carried on
a PDA, or an mp3 player that is capable of displaying text files. This has the
advantage that storage is no longer an issue. As with any OTP system the user
must protect the list (see coverage of attacks in Section 5).

4.2 Login Webservice

Now to login the user navigates to {URRSA}/OTPLogin. He is asked for the url
and userID of the account he wishes to access. Since this pair uniquely identifies
him this allows the proxy to retrieve the keys. For the k-th login the user is
prompted to enter the k-th OTP from his list: OTPk. The server decrypts to
get the true password. The user’s browser is instructed to automatically open
https://{URRSA 1}. Using the onclick event for the “Submit” button we can
use, for example the Javascript Open() command, which causes a new window
to open with a specified URL.

B
R
O
W
S

WEB
SERVER

T
A
R
G
E
T

S

Contact URRSA webserver

Send userid, url

Send one-time password

auto-transfer to Populate login form with

password

UR RSA Server

userid

1

2

4 5

3

S
E
R TRANSLATE

S
E
R
V
E
R

auto-transfer to
https://{URRSA_1 }

User clicks “submit” Send userid, password

actual userid, “roguePwd”

Replace “roguePwd”
with actual password

6

8 7

5

Done

Fig. 1. The sequence of steps logging in using the URRSA service. See a description in
Section A.2. The heart of the service is the translation which acts as a MITM service: it
sits between the client browser and the login server and edits the request/response traffic
between them. The implementation this part is described in detail in Section 4.2.

Backend Processing. To reliably translate as a MITM service between
https://{URRSA 1} and https://www.paypal.com our URRSA implementa-
tion must perform [23]:

– request URL mapping
– request header mapping
– response header mapping
– response body link translations
– cookie re-assignment
– certificate replacement.

{URRSA}/OTPLogin
https://{URRSA_1}
https://{URRSA_1}
https://www.paypal.com

One-Time Password Access to Any Server without Changing the Server 413

These changes can be implemented directly on the request/response stream
using the WebClient and HttpWebResponse classes in .Net. There are also a
variety of proxy applications that offer the ability to modify in real-time re-
quest/response traffic [8,9,10]. The most common mapping that must be per-
formed on the request header is to the Host field. Requests that are constructed
relative to a given host will require mapping of this field. For example, in re-
questing https://www.BankOfAmerica.com/accounts the GET request issued
by the browser is for /accounts and the Host from which it is to be retrieved
is in the header. However, when using a reverse proxy we want the browser
to request /accounts from URRSA 1. The proxy must then map URRSA 1 to
www.BankOfAmerica.com as the request goes by.

Response headers often contain information about the document in the
Location field. The most common case is to indicate the new location when
a document has moved. This is a very common way to allowing sites to add
and change web site content and point several access points at a single login
page. Before forwarding the response back to the browser we have the proxy
map www.paypal.com to URRSA 1. Cookies play an important rôle at many login
servers. When a cookie is set by PayPal the same origin policy will cause the
browser to return that cookie only with requests sent to PayPal. This is prob-
lematic, since the browser at the untrusted machine is connected to URRSA 1
rather than www.paypal.com. We solve this by re-assigning the domain to which
cookies belong in the response header.

When SSL connected to PayPal the browser receives a PayPal certificate
signed by Verisign (a Certificate Authority (CA) trusted by most browsers).
The URRSA server will maintain two SSL connections. From PayPal it receives
a PayPal certificate signed by Verisign, just as a regular client would. For the
SSL connection it maintains with the client it must have its own certificate, also
signed by a CA trusted by the browser. Thus the user will never see a PayPal
certificate, but rather one for URRSA 1.

The response content must have all references to the end server replaced with
ones to the proxy. For example translate requests such as https://www.paypal.
com/images/logo.gif to https://{URRSA 1}/images/logo.gif. Table 2 lists
the rules to carry out the mappings referred to above.

The changes described so far allow us to translate for a single host. However,
for many sites content is loaded from more than one host. For example, when
logging into PayPal the browser loads content both from www.paypal.com and
www.paypalobjects.com. For gmail content is loaded from mail.google.com
and www.google.com, while for sites such as myspace as many as a dozen or more
hosts can be involved. We solve this by having a single IP address, or host, at the
proxy handle each host that is involved in a login at the end server. For example
for Paypal the translations for www.paypal.comwill be handled at URRSA 1 while
those for www.paypalobjects.comwill be handled at URRSA 2. This has the major
advantage that relative links in the response are resolved automatically without
intervention by the proxy. This represents a major point of difference with reverse
proxies based on CGIProxy: these use a single proxy host for any and all hosts

https://www.BankOfAmerica.com/accounts
/accounts
/accounts
URRSA_1
URRSA_1
www.BankOfAmerica.com
www.paypal.com
URRSA_1
URRSA_1
www.paypal.com
URRSA_1
https://www.paypal.
com/images/logo.gif
https://{URRSA_1}/images/logo.gif
www.paypal.com
www.paypalobjects.com
mail.google.com
www.google.com
www.paypal.com
URRSA_1
www.paypalobjects.com
URRSA_2

414 D. Florêncio and C. Herley

involved in the login session. Thus all relative links must be found and translated.
A detailed description of reverse proxying can be found in [26].

In addition, recall that we must insert the user’s decrypted password into the
request as the login page is submitted to the server.When a login page is loaded the
response content (Step 5 of Figure 1) contains a password field. We auto-populate
this field by replacing in the response body the string type=‘‘password’’ with
type=‘‘password’’ value=‘‘roguePwd’’. This causes the login page that ap-
pears to the user to have an already filled in password field (this is not of course
the user’s password, but rather the “roguePwd” string). We have a further rule
that replaces in the request header the string “roguePwd” with the just de-
crypted user password (Step 6 of Figure 1).

Having the login page appear with an auto-populated password field serves a
number of functions. First, it provides the sentinel value for which the URRSA
server will search the request header to do the actual password switch. Second,
many login pages will not allow submission with an empty password field, so
the field must contain something. Finally, in having the field auto-filled with a
value that is of no use to an attacker we greatly reduce the risk that the user
reflexively types his password when faced with an empty login page.

Table 2 lists the rules to carry out the mappings between www.paypal.com
and URRSA 1 referred to above. A similar set of rules would translate between
www.paypalobjects.com and URRSA 2. Essentially any server can be handled in
this way, where we dedicate an IP address or host at the proxy to each host at
the end server. A more scalable reverse proxy scheme is described in [26].

4.3 Refresh Webservice

When the user requires a new OTP he can re-register. Alternatively, he can
have a new list generated and sent to his cell phone. This works as follows. A
service {URRSA}/OTPRefresh resembles the {URRSA}/OTPRegistration service.
The user identifies himself by giving the url and userID of the account for which
he requires a new OTP list. However, instead of presenting his true password for
encryption he submits the last OTP on his list. This allows the server to retrieve
the key i. The proxy decrypts to get the true password, and then re-encrypts to
form a new list and transmits them to the desired number. In this manner the
user can repeatedly refresh his OTP list without having to return to a trusted
machine. Of course, he must refresh the list before he uses the last OTP on his
list. OTP Refresh is not available if the user carries the list by paper, since the
proxy has no out-of-band channel to send a fresh list.

5 Attacks

5.1 Lost or Stolen OTP List

First, the technology is a one-time password (OTP) technique, and therefore, sub-
ject to the same kind of vulnerabilities as other OTP systems. It deserves emphasis
that the list must be generated at a trusted location and should be kept carefully.

www.paypal.com
URRSA_1
www.paypalobjects.com
URRSA_2
{URRSA}/OTPRefresh
{URRSA}/OTPRegistration

One-Time Password Access to Any Server without Changing the Server 415

The OTP list is sent by SMS text message to the user’s cellphone, but printing and
carrying a hardcopy is also supported. The list contains the url of the login server
along with the OTP list, but not the userID. If the OTP sheet is lost or stolen the
finder will possess a series of one-time passwords, but will not know the userID of
the account for which they work. We recognize that this is an imperfect defence,
and do not claim to have solved the problem of users who are careless or lose their
OTP sheet (it is for this reason that we regard the phone as a better channel).
However a user who discovers he has lost his OTP sheet can render it useless by
generating a new sheet. If he can go to a trusted PC he generates a new sheet and
the old one is worthless (since a new set of keys is generated). A user who cannot
reach a trusted PC can still render the lost OTP sheet worthless by re-registering
at an untrusted PC. By typing random characters instead of the true password
he will receive one-time encryptions of junk, but this accomplishes a key reset at
the service, rendering the lost OTP’s useless. He cannot now use the service until
reaching a trusted PC. A user who carries the OTP list both on a cell phone and
by paper and who loses the paper can, of course, render the lost sheet useless by
using the {URRSA}/OTPRefresh service.

5.2 Brute-Force and Denial of Service

An attacker who wishes to guess or brute force the password will gain nothing
by going through the service, since we do not protect strong secrets with weak
ones. To login normally he would require the userID and password, to login via
the service he requires the userID and the password encrypted with the correct
key. Any lockout policies enforced by the login server (e.g. “Three strikes and
you’re out”) remain in effect. An attacker who observes several logins or gains
access to the entire list cannot brute-force the password.

The proxy itself is a likely point of attack. Observe, however, that the OTP
Login Web interface (described in Section 4.2) is merely a conventional password
web interface: it accepts text and password HTML form fields from the user and
relays them to backend processing. Thus the web facing portion of the proxy
is implemented with a tried and trusted password server. The fact that we use
components with well-understood attack surfaces increases the expectation that
attacking the system will be hard. Since at the backend credentials are stored
only temporarily, a snapshot of the database would gain an attacker little. A
rogue employee at the proxy would see at any given time only the credentials of
users currently logging in.

Since we do not authenticate users it is possible to exhaust a user’s OTP list by
repeatedly invoking the OTPLogon service (with the correct url and userID but
incorrect OTP’s). This form of denial of service is possible, but gains the attacker
nothing unless he can lure the user into typing the true password in the clear.

5.3 Session Hijacking and OTP Stealing

There are two main active attacks on the system: session hijacking and OTP
stealing. Session hijacking is not addressed by our technique. Indeed, even long
established OTP solutions such as SecurID [3] have this vulnerability. However

416 D. Florêncio and C. Herley

session hijacking is a complicated attack that requires code tailored to each tar-
get login server. The fact that RSA has had considerable commercial success
protecting high-value accounts in spite of this well-known vulnerability suggests
that session-hijacking is not a common attack. In addition the techniques sug-
gested in [21], which require explicit out-of-band authorization for important
transactions, might present a way of addressing this problem.

OTP stealing is the technique that malware can employ to get OTP’s from
the user. There are a number of variations; the simplest is to allow a user to
connect to {URRSA}/OTPLogin, have him enter the requested OTP and then fail
to submit it. If the user assumes that he mis-typed he might try again, and
give the attacker a second OTP. Depending on the user the attacker might gain
anywhere between one and three OTP’s this way (we assume that it is unlikely
that a user will type more than that). This is a well-known attack on all static
OTP systems; dynamic systems such as securID do not have this vulnerability
since each OTP is good for only a few seconds. We do not eliminate this attack.
However, we point out that an attacker who logs in with a stolen OTP has full
access, but cannot change the account password. This is so, since almost all
web services require the original password before allowing a change; while the
attacker has one or more OTP’s he cannot use these to derive the password. This
restricts the attacker: if he has stolen three OTP’s he can now login three times.
He cannot change or get access to the true password and thus every access must
continue to be done via URRSA. It is possible to restrict the types of actions
that can be performed via the proxy. For example, submission of the HTML
form that changes the user email, address or phone number might be forbidden.
This can be accomplished by adding a rule to the translations in Table 2 that
drops the request that contains any such POST. Finally, we point out that the
OTP stealing attacker leaves a clue to his presence in that he must cause a login
to fail for each OTP he steals (i.e. each OTP becomes worthless after its first
use). Thus, in the absence of failed login attempts the user can be confident that
no OTP has been stolen. A user who suspects that an OTP has been stolen can,
of course, render them useless by connecting to {URRSA}/OTPLogin.

6 Status and Evaluation

We have implemented the system described and deployed on an internet-facing
server. The service currently supports OTP logins to a number of sites. The
entire server code is small enough that it can comfortably be hosted on a modest
desktop machine. This makes self-hosting a real possibility: i.e. users who have
a fixed IP address or domain name might run their own instance. This removes
the necessity of trusting a proxy maintained by a third party.

The URRSA instance in its current form has been in active use by a small
number of users for over six months. A large number of successful logins to have
been handled. These were carried out from a variety of networks; i.e. machines
that exist on home networks, are behind corporate firewalls, internet cafés and
public library locations have all been tried. The service works well with Internet
Explorer, Firefox, Safari and Opera. Users report that all of the functionality

{URRSA}/OTPLogin
{URRSA}/OTPLogin

One-Time Password Access to Any Server without Changing the Server 417

generally available at a server works well when accessed through the URRSA ser-
vice. Users do not report perceptible delay, and the service is generally transpar-
ent to users once connection is established. The service is running at
www.urrsa.com. It is not possible to invite general use as yet. However, for
demonstration and verification purposes, we may allow restricted access as con-
ditions permit.

7 Conclusions

We have described a system that allows users one-time password access to ac-
counts without changing the server or the client. The method is entirely general
and can be applied to almost any login server. Among the key contributions are
a very simple user experience and a truly robust MITM translation. We do not
authenticate users: thus there are no additional secrets to remember or tokens
for the user to carry. The service acts as a transparent MITM between user and
login server: thus there are no browser settings to be done or undone. We em-
ploy a simple mapping of the arbitrary input password to restricted character
set OTP’s: thus every OTP is readable without ambiguity no matter what dis-
play or font is used, can be transmitted over SMS, and can be entered even on
unfamiliar keyboards without the use of meta keys.

Acknowledgements. the authors wish to thank Eric Lawrence, Ziqing Mao,
Nikita Pandey, Erin Renshaw and Dany Rouhana for help with various stages
of this work.

References

1. http://labs.zarate.org/passwd/

2. http://www.cl.cam.ac.uk/∼mgk25/otpw.html
3. http://www.rsasecurity.com

4. http://www.kyps.net

5. http://www.csoft.co.uk/sms/character sets/encoding.htm

6. http://www.jmarshall.com/tools/cgiproxy

7. http://www.clickatell.com

8. http://www.fiddlertool.com

9. http://www.xk72.com/charles/

10. http://www.portswigger.net/proxy

11. Herley, C., Florêncio, D.: How To Login From an Internet Café without Worrying
about Keyloggers. In: Symp. on Usable Privacy and Security (2006)

12. Cheswick, W.: Johnny Can Obfuscate: Beyond Mother’s Maiden Name. In: Proc.
Usenix HotSec (2006)

13. Coskun, B., Herley, C.: Can “Something You Know” be Saved? In: Wu, T.-C.,
Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 421–440.
Springer, Heidelberg (2008)

14. Florêncio, D., Herley, C.: A Large-Scale Study of Web Password Habits. In: WWW
2007, Banff (2007)

15. Florêncio, D., Herley, C.: KLASSP: Entering Passwords on a Spyware Infected
Machine. In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186. Springer,
Heidelberg (2006)

www.urrsa.com
http://labs.zarate.org/passwd/
http://www.cl.cam.ac.uk/~mgk25/otpw.html
http://www.rsasecurity.com
http://www.kyps.net
http://www.csoft.co.uk/sms/character_sets/encoding.htm
http://www.jmarshall.com/tools/cgiproxy
http://www.clickatell.com
http://www.fiddlertool.com
http://www.xk72.com/charles/
http://www.portswigger.net/proxy

418 D. Florêncio and C. Herley

16. Florêncio, D., Herley, C., Coskun, B.: Do Strong Web Passwords Accomplish Any-
thing?. In: Proc. Usenix Hot Topics in Security (2007)

17. Gaber, E., Gibbons, P., Matyas, Y., Mayer, A.: How to make personalized web
browsing simple, secure and anonymous. In: Proc. Finan. Crypto 1997 (1997)

18. Golle, P., Wagner, D.: Cryptanalysis of a Cognitive Authentication Scheme. In:
Symp. on Security and Privacy (2007)

19. Haller, N.: The S/KEY One-Time Password System. In: Proc. ISOC Symposium
on Network and Distributed System Security (1994)

20. Herley, C., Florêncio, D.: Phishing as a Tragedy of the Commons. In: NSPW 2008,
Lake Tahoe, CA (2008)

21. Jammalamadaka, R.C., van der Horst, T.W., Mehrotra, S., Seamons, K., Venka-
subramanian, N.: Delegate: A Proxy based Architecture fort Secure Website Access
from an Untrusted Machine. In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS,
vol. 4186. Springer, Heidelberg (2006)

22. Lamport, L.: Password Authentication with Insecure Communication. Communi-
cations of the ACM (1981)

23. Luotonen, A.: Web Proxy Servers. Prentice-Hall, Englewood Cliffs (1998)
24. Mannan, M., van Oorschot, P.C.: Using a Personal Device to Strengthen Password

Authentication from an Untrusted Computer. In: Dietrich, S., Dhamija, R. (eds.)
FC 2007 and USEC 2007. LNCS, vol. 4886. Springer, Heidelberg (2007)

25. Wu, M., Garfinkel, S., Miller, R.: Secure Web Authentication with Mobile Phones.
In: DIMACS Workshop on Usable Privacy and Security Software (2004)

26. Mao, Z., Herley, C.: Robust Reverse Proxy Implementation. MSR-TR
27. Pashalidis, A., Mitchell, C.J.: Impostor: A single sign-on system for use from un-

trusted devices. In: Proceedings of IEEE Globecom (2004)
28. Pering, T., Sundar, M., Light, J., Want, R.: Photographic Authentication through

Untrusted Terminals. IEEE Security and Privacy (2003)
29. Schneier, B.: Applied Cryptography, 2nd edn. Wiley, Chichester (1996)
30. Bell, T.C., Cleary, J.G., Witten, I.H.: Text Compression. Prentice-Hall, Englewood

Cliffs (1990)
31. Tan, D., Keryana, P., Czerwinski, M.: Spy-resistant keyboard: more secure pass-

word entry on public touch screen displays. In: CHISIG 2005 (2005)
32. Weinshall, D.: Cognitive Authentication Schemes Safe Against Spyware. In: Symp.

on Security and Privacy (2006)

A Additional Details

A.1 Pseudo-code of the Mapping Procedure

Here is a pseudo code illustrating the above encoding procedure:

//Encode
// get bits from input password P
BitString = 0;
TotalBits = 0;
for each character P[i] {

PP = table128_lookup_character(P[i]);
BitString = BitString <<7 + PP;
TotalBits += 7;

}

One-Time Password Access to Any Server without Changing the Server 419

//encrypt
Key = get next TotalBits bits from One Time Encryption Pad
BitString = BitString XOR Key;
//convert bits to OTPi characters
i = 0;
while TotalBits > 0 {

PP = BitString AND 31
OTPi[i] = table32[PP];
BitString = BitString >> 5;
TotalBits -= 5;
i++;

}

A.2 Sequence of Events

1. User navigates to http://{URRSA}/OTPLogon, enters the userID and url (e.g.
www.paypal.com). This allows the server to determine the key values, that
were used to generate the OTP list.

2. For the k-th login the user enters the k-th one-time password OTPk
3. The server decrypts to get the true password pwd
4. Browser is auto-transferred to request the url via the URRSA service (e.g.

we request https://{URRSA 1}).
5. Server requests https://www.paypal.com, receives the response and popu-

lates login form with userID and “roguePwd,” and sends to user.
6. User receives pre-populated https://www.paypal.com page and clicks sub-

mit button.
7. Server receives request, replaces “roguePwd” with pwd, forwards to

https://www.paypal.com.
8. Login proceeds and server continues in a MITM rôle until the user navigates

from the site.

A.3 Login Servers That Do Not Use Forms

Our system is applicable to login servers that use HTML forms and POST
a password to be authenticated at the server. While this appears to account
for the vast majority of login servers there are exceptions. Certain institutions
implement an entirely proprietary authentication on their website using Flash or
a comparable technology. For example FirstTech Credit Union uses only Flash
on their login page https://online.firsttechcu.com/

Table 1. A summary of the services described. The variable URRSA represents the
host domain name or IP address (e.g. we give the hostname of our implementation in
Section 6). The last service is requested after an OTP has been received from the user
and decrypted.

http://{URRSA}/OTPRegistration Register login domain and userID and receive OTP list

http://{URRSA}/OTPLogin Enter login domain, userID and requested OTP

http://{URRSA}/OTPRefresh Enter login domain, userID and requested OTP to get new OTP list

https://{URRSA 1} MITM service that performs mappings described in Section 4.2 and Table 2.

http://{URRSA}/OTPLogon
https://{URRSA_1}
https://www.paypal.com
https://www.paypal.com
https://www.paypal.com
https://online.firsttechcu.com/
URRSA
http://{URRSA}/OTPRegistration
http://{URRSA}/OTPLogin
http://{URRSA}/OTPRefresh
https://{URRSA_1}

420 D. Florêncio and C. Herley

Table 2. The translation rules applied to the request/response stream to reverse proxy
between the two hosts www.paypal.com and URRSA 1

Modify Search for Replace with

Request Header URRSA 1 www.paypal.com

Response Header www.paypal.com URRSA 1

Response Header domain=.paypal.com domain=URRSA 1

Response Body www.paypal.com URRSA 1

Response Body www.paypalobjects.com URRSA 2

Response Body type=“password” type=“password” value=“roguePwd”

Request Header roguePwd Actual password as decrypted

www.paypal.com
URRSA_1
URRSA_1
www.paypal.com
www.paypal.com
URRSA_1
.paypal.com
URRSA_1
www.paypal.com
URRSA_1
www.paypalobjects.com
URRSA_2

Can “Something You Know” Be Saved?

Baris Coskun1 and Cormac Herley2

1 Polytechnic University, Brooklyn, NY
2 Microsoft Research, Redmond, WA

Abstract. “Something you know,” in the form of passwords, has been
the cornerstone of authentication for some time; however the inability
to survive replay attack threatens this state of affairs. While “something
you know” may always be used in addition to “something you have” we
examine whether it can be salvaged as the solo factor for authentication.
A recent surge of interest in Challenge Response authentication schemes
raises the question whether a secret shared between the user and the
server can allow secure access even in the presence of spyware.

Our conclusion is negative. Assuming only a limit on the amount that
a user can remember and calculate we find that any scheme likely to be
usable is too easily brute forced if the attacker observes several logins.
This is true irrespective of the details of the scheme. The vital parameter
is the number of bits of the secret involved in each bit of the response.
When this number is too low the scheme is easily brute-forced, but mak-
ing it high makes the scheme unworkable for the user. Our conclusion
is that single factor “something you know” schemes have a fundamental
weakness unless the number of logins the attacker observes can be re-
stricted.

Keywords: Authentication, passwords, challenge response.

1 Introduction

Authentication is commonly implemented by requiring a user to provide proof
of one or more of:

– Something you know (e.g. a password)
– Something you have (e.g. a smartcard)
– Something you are (e.g. a fingerprint).

Passwords have enjoyed a long run as the dominant means of authentication. An
active web user today will access financial institutions, social networking, and
email accounts using passwords. It is not uncommon for users to have twenty or
more password-protected accounts, and to type passwords several times per day.
With this success has come a host or problems and attacks. Users notoriously
choose weak passwords, potentially opening the door to brute-force attacks. The
Phishing phenomenon has shown that users can be lured into divulging their
passwords to sites masquerading as the real login server. Malicious spyware such

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 421–440, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

422 B. Coskun and C. Herley

as a keylogger can capture the password and thereby afterward allow an attacker
access to the protected account.

Despite these problems passwords are still almost universally used for account
access, even when assets of considerable value are protected. A majority of the
large banks and financial institutions in the US appear to use password only
access. The reasons for the success are clear: passwords are a simple and well-
understood technique. They allow institutions to offer users 24/7 access to their
accounts from any browser. No special hardware or training is required, and they
rely on memory only. In addition it is argued in [9] that losses from password
stealing attacks may not be as high as often assumed.

Our focus in this paper is on the failure of passwords to resist replay attack.
That is, a single login from a spyware infected machine gives an attacker every-
thing he needs to gain access to an account. If an unsuspecting user accesses
their bank account from an infected internet cafe machine it is easy for the spy-
ware to gather the userID and password and then access the account when the
attacker chooses.

There has been a great deal of password related work recently, which we at-
tempt to review in Section 2. Our goal in this paper is to evaluate mechanisms for
access control from untrusted machines that rely only on the memory and calcu-
lating power of the user. Examples are the recently proposed scheme of Weinshall
[17], the Virtual Password work of Lei et al. [12], the picture authentication work
of Pering et al. [15], and the work of Cheswick [3]. Each of these approaches at-
tempts to allow users to login securely from untrusted machines. That is, spyware
running on the machine and observing a login should not be able to use that infor-
mation to gain access to the account. To be useful, the scheme should allow several
logins from the same machine without giving the attacker enough information to
gain access. Golle and Wagner [7] for example recently showed that the Weinshall
scheme could be broken after observing 7 or so logins. We show how to break the
Virtual Passwords scheme of [12] in Section A.

The constraints that we impose are that the scheme should rely only on the
user’s memory and calculating ability. As we will see in Section 2 none of the
solutions proposed so far to the untrusted login problem possess all of the desired
features mentioned above. Our goal is to determine whether it is possible to
construct a scheme which satisfies all of the requirements. For example, can the
break in Weinshall’s scheme be fixed or is it a fundamental hole? The pattern of
progress on this question has been of suggested solutions, such as [17], followed
by rebuttals, such as [7]. This is an unsatisfying state of affairs. The problem
is important enough that researchers often return to it in hopes of a solution.
Yet, in breaking such a scheme we seldom find out whether that particular
scheme was flawed or whether there is a fundamental limitation that prevents us
from designing a “Something You Know” scheme that will withstand determined
attack. This paper demonstrates that the problem is truly a fundamental one:
Weinshall [17] and the other schemes commit the common error of failing to
involve enough bits of the secret in calculating each bit of the output. For any
scheme that fails to do so a brute-force attack can determine the secret given

Can “Something You Know” Be Saved? 423

enough observed logins. The only ways to avoid this is to involve more bits of
the secret per output bit, increase the size of the secret, or restrict the number
of logins observed. But we show that increasing either the secret size or number
of bits used places an insupportable burden on the user: for example to involve
each bit of a 60-bit secret in each bit of a 20-bit login would require the user to
make two binary decisions per second at a sustained rate for 10 minutes in order
to login.

2 Related Work

2.1 Challenge Response Authentication

A scheme introduced by Weinshall [17] assigns a user thirty images to memorize.
When logging in the user is presented with a palette containing 8 × 10 images.
Starting at the top left corner he calculates a path by moving down or to the
right depending on whether the current image is one of his thirty images. On
reaching the bottom or right edge of the palette the path exits and he enters a
2-bit number to indicate the exit point. This is performed 11 times for a 22-bit
login. The scheme was broken using SatSolver by Golle and Wagner [7].

Pering et al. [15] suggest having the user upload a number of his own images.
When logging in he is presented with a palette of four images, one of which is
his. He selects his image (thus effectively giving away 2 bits) and repeats 10
times for a 20 bit login. Clearly the user must upload to the server at least 10×
as many images as the attacker will observe logins.

Lei et al. [12] propose a scheme to secure users’ passwords in spyware in-
fected environments. The user must calculate response symbols that are derived
from symbols of a fixed password and a challenge symbol string using modular
arithmetic. The complexity of the calculation appears considerable. The authors
suggest a helper application can be used to assist the user in performing the
calculations. We show how this scheme can be broken in Section A. Cheswick [3]
explores the general feasibility of allowing multiple logins from a single shared
secret. He proposes a number of approaches, but draws no definite conclusion
on whether the goal is attainable or not.

2.2 Logging in from Untrusted Machines

Pashalidis and Mitchell [14] propose a single sign-on system as a means of evading
spyware on an untrusted machine. Credentials are stored in the cloud and a
challenge response authentication is used to grant access. The user is assigned
a secret string, and when accessing the credentials is challenged to produce the
characters at three randomly chosen positions in the string.

Florêncio and Herley [5] propose a proxy-based solution where the user maps
the password in a fashion that is unmapped by a MITM proxy before forwarding
to the login server. The same authors suggest [2] a simple trick that allows a
user to evade current generation keyloggers when entering a password on an
untrusted machine.

424 B. Coskun and C. Herley

Lim [13] proposes a scheme to prevent spyware from capturing screenshots.
The user enters data from an on-screen keyboard. Rather than comprising a
single image the on-screen keyboard is formed from several images displayed in
rapid succession. A single screen shot at the time of the mouse click will not tell
the spyware what key was selected, while capturing many images will force the
spyware to consume resources thereby risking discovery.

One-time password systems such as S/Key [11,8] resist replay. SecurID [1] is a
well known commercial product that generates time-evolving one-time codes on
a keychain device that match codes generated at the server. In an enhancement
of [5] Florêncio and Herley [4] propose a proxy-based solution where the user
enters an encrypted version of the true password that is decrypted by the proxy
before forwarding to the login server. As with any one-time password system
the user must carry either a list of the one-time passwords, or a device that
calculates them. The scheme of [4] differs from [11,8,1] in that it works with
existing password servers without modification.

2.3 Alternatives to Passwords

Passwords are so widely used, and attacks on them so varied that a large lit-
erature has grown around addressing these attacks. We can give only a small
sample of recent password related work. Graphical passwords [10,16] address
the oft-cited problem with passwords that users have too many passwords to
remember and often make weak easily guessed choices. This approach promises
to improve the password strength and memorability, it of course does nothing to
address the replay attack. Florencio et al. [6] argue that passwords strength is
of limited importance when password stealing techniques such as phishing and
keylogging are the main threats.

Two-factor authentication is the practice of requiring possession of a piece
of hardware, or a biometric before allowing login. While far more secure tokens
often require an issuing authority, and require that the user carry something.
Our work can be seen as an examination of whether one factor schemes can ever
truly resist replay.

3 Challenge-Response Schemes

Shared secret (i.e. “Something you know”) schemes require that a user prove
that she knows the secret before access is granted to an account. Passwords are
the simplest case, since entry of the password, P, causes the server to conclude
that the request for access has come from the correct user. However, since the
secret is not dynamic, a single observation suffices to allow an attacker to break
the system. One-time password systems, by contrast, deny an attacker useful
information, even assuming he observes a login. Here, the user possesses a list,
rather than a single password, and enters the i-th password, Pi, on demand
from the server. The successive passwords Pi, can be derived from a single
secret, as with S/Key [11,8], dynamically generated on-the-fly as with SecureID

Can “Something You Know” Be Saved? 425

[1], encrypted versions of a single static password as in [4] or just a pre-computed
set of random strings. In each case, of course, the user must carry the list of one-
time passwords (or the device that calculates them). We consider it unreasonable
to expect that a user will commit to memory a series of passwords each of which
will be used only once.

With a challenge response scheme the user again shares a secret S with the
server, but to login demonstrates that she knows the secret without revealing the
secret itself. Instead of delivering the entire secret, the user delivers something
derived from the secret in response to a challenge from the server. Thus the server
produces a random challenge Ci and requests that the user return f(S,Ci),
where f() represents a calculation that the user must perform (of which more
below). The server will produce a new challenge for each login, and hence the
attacker cannot simply replay an observed response, since

f(S,Ci)
= f(S,Cj).

The basic outline of the three authentication schemes discussed is given in
Figure 6.

While replay may not be possible on a challenge response scheme there is
still the possibility that given several observations f(S,Ci), for i = 0, 1, 2 · · ·
the attacker may be able to determine the secret S. Clearly this depends on
the function f(). Ideally, an attacker should be unable to determine the secret
even after observing many logins. If such a scheme exists it could be enormously
beneficial. It would share with passwords the fact that it is memory based and
requires no hardware. And yet it would entirely solve phishing, keylogging and
other password stealing attacks.

3.1 General Setup and Notation

We will assume that during a registration process the user and server agree to
share an N-bit secret S. For the i-th login the user provides the userID and
receives a randomly chosen challenge Ci from the server. Given this challenge,
she must calculate, and deliver to the server, the M -bit response

R = f(S,Ci).

This model is sufficiently general to cover the major existing challenge response
proposals e.g. [17,3,15,12].

The Secret. The size, N , of the secret space must be large. Recall that Ci is
known to the attacker, and of course f() must be public. If N is small enough
the attacker might just list the response

R
′
= f(S

′
,Ci)

for each of the 2N possible secrets. Any S
′
for which R

′
= R is a candidate for

the true secret. There would be only 2N−M candidate secrets after observing a

426 B. Coskun and C. Herley

single response. Subsequent logins would narrow the field further. The key to
avoiding this attack is that 2N must be too large for an attacker to list. The
tradeoff, of course, is that N must be small enough for the user to remember
and perform calculations on. A 256-bit secret space will resist enumeration, but
this is equivalent to a 77-digit PIN, and is probably far too much for a user to
remember. How many bits a user can be expected to remember and perform
calculations on is somewhat representation dependent. In theory users might be
able to remember an N = 80 bit secret (i.e. equivalent to an 24-digit PIN), but it
is hard to argue that they could also reliably perform calculations on such a large
secret. Weinshall [17] makes both the memorization and calculation tasks simpler
by making the user memorize the secret in a set membership format. At the lower
end if a machine can evaluate the response to 210 challenges per second (this
is approximately the rate we achieved with an implementation of the Weinshall
scheme [17]) then even a secret space of size N = 37 can be exhaustively searched
by a single machine in a single year. Since enumerating responses to a challenge
is a task easily divided among many machines we probably have to consider
secrets on the order of 50 bits as the minimum that can even be considered for
successive logins on a compromised machine. Thus we get a probable range for
the secret space, bounded below by 50 bits as the minimum to resist enumeration
and above by 80 bits as probably the most that a human can be expected to
remember and calculate on.

The Response. Of course R should be drawn from a large enough space to
make random guessing unlikely to succeed. For example, if M = 20 then a single
random guess at R has only a one in a million chance of succeeding. Since the
response must be entered using keyboard and/or mouse R is generally delivered
as a series of T symbols R = R(0)R(1)R(2) · · ·R(T − 1), where each R(t) is a
k-bit symbol and kT ≈ M. For example, the response to the challenge might be
a 6-digit number since log2(10) ·6 ≈ 20. In [17] the response is a series of T = 11
2-bit symbols, giving a 22-bit effective login.

The Challenge. The challenge is the random component that makes each
response different. The form that it takes depends on the form in which the secret
is stored. The main requirement is that the server have a large enough suite of
challenges. If there are fewer than 2M challenges then we have unnecessarily
reduced the size of the output response space (making the attackers guessing
task easier).

The Calculation. Without loss of generality we’ll say that each response sym-
bol is produced by a separate calculation function: R(t) = ft(S,Ci). Thus overall

R = [f0(S,Ci)f1(S,Ci)f2(S,Ci) · · · fT−1(S,Ci)].

Each of the ft() represents a calculation the user must perform, using the secret
and the challenge, to produce the response symbol R(t). In general it will involve
fewer than N bits of the secret. This is so, since if each bit of R depends uniformly
at random on each bit of S the user must carry out at least M · (N − 1) binary

Can “Something You Know” Be Saved? 427

decisions (see Section 4.4). For an 80-bit secret and a 20-bit response, this would
be 1600 binary decisions for a single login. Even if a user could reliably make 2
decisions per second the login would take 13.3 minutes, which is absurd. Thus,
we will assume, in general, that U ≤ N of the bits of S are used in the calculation
ft() of each of the response symbols R(t). The lower U the easier the task for the
user. It is clear that U = N represents an insupportable burden. However, as we
will see in Section 4, making U too small invites a divide-and-conquer attack. U
will play a vital role in the tradeoff between usability and security.

We emphasize that the calculation f(R,Ci) must be simple enough for a user
to perform quickly and accurately. The user must not employ any calculating
devices hosted on the untrusted machine. For example, using even a software
calculator on the untrusted machine (such as the scheme of [12] suggests) would
be unacceptable, since the attacker would have access to the input as well as the
output.

We also rule out using the assistance of a calculator on a cell phone, mp3
player or other device, but for a different reason. If the user has access to a cell
phone it makes more sense to carry a list of one-time passwords than to perform
a challenge response calculation. Our goal is to determine whether a memory
alone challenge response scheme can resist attack.

Example Schemes. The described notation and framework are applicable to
all challenge-response authentication schemes although the mapping function is
different in each scheme. For instance in Weinshall’s scheme [17] briefly described
in Section 2, the shared secret is the set of 30 images selected among 80. Here
the size of the secret is N = log2

(
80
30

)
≈ 73 bits. Ci is the permutation of the 80

images which is currently being displayed on the panel and the mapping function
M is the mental path that the user is supposed to follow. The response R(t) is
the label through which the path drawn by the user exits the panel. Since R(t)
can be either 0,1,2 or 3, it is a k = 2 bit response. Finally, the server requires 11
challenge-response rounds, which makes T = 11.

3.2 Two Trivial Solutions

Hand Over the Bits Unmodified. A trivial solution is to have ft() just select
k bits of the secret. For example, the first time the user logs in she might be
asked to enter the first M bits of the secret S, the second time the next M and
so on. This has the merit of being simple, but this is good for only N/M logins
on the same machine. After that the attacker knows the entire secret and those
bits cannot be re-used. In fact this is equivalent to a one-time password system.
A variant of this is used in [15], since the user gives away bits each time he
indicates an image.

Challenge for Random Bits of Secret. A related alternative is to prompt
the user for specific randomly chosen portions of the secret, which are deliv-
ered unmodified (this is suggested e.g. in [14]). For example, if the secret were
remembered in the form of a 24-digit number the server might challenge for 6

428 B. Coskun and C. Herley

randomly chosen digits of the secret (thereby giving a 20-bit login). This has
the merit of again being simple, but extending the number of logins that can be
achieved. However the probability that the attacker who has observed n logins
possesses any particular digit is

Pr{Attacker knows digit|W logins} = 1 − (1 − M/N)W .

For example, after 8 logins he knows each digit with 90% probability. At this
point he has a 53% probability of being able to answer any given challenge
successfully. If he gets three attempts before the account is locked he has a
greater than 90% chance of being able to successfully respond to one of the
challenges.

What’s Wrong with These Solutions. It is apparent that in order to with-
stand more than N

M challenge-response rounds, the server should never ask for
the secret bits themselves. For this purpose a carefully designed f() function,
which proves to the server that the user knows the secret without revealing the
secret bits, is required. Such an f() function should be one-way in the first place
so that it should be very hard to determine the input given the output of the
function. Otherwise, the scheme would be equivalent to the case where the user
submits secret bits as the response.

3.3 Attack Model

First we introduce our attack model. We assume that the attacker has installed
spyware on the untrusted machine and observes everything that happens there.
All keystrokes, all mouse-movements, everything that goes on the screen, and
all network traffic is available to the attacker.

Thus, following the general pattern of a challenge response scheme in Figure
6 the attacker will observe both the challenge from the server Ci and the client’s
response R = f(S,Ci). We further assume that the calculating function f() is
public, so that the secret S is the only thing concealed from the attacker. Since
we desire that the user be able to login multiple times we will assume that the
attacker observes a series of W logins and gets the MW -bit stream:

Γ = R0R1R2 · · ·RW−1.

Since he has seen the response the attacker can try as many off-line guesses
at the secret as computation will allow. That is he can calculate

Γ
′
= R

′
0R

′
1R

′
2 · · ·R

′
W−1,

for as many trial secrets S
′

as he wishes. If he finds an S
′

for which Γ
′
= Γ he

has not necessarily found S. For example, after a single login (i.e. W = 1) there
would be 2N−M secrets that produce the same response as S. However as the
number of observed logins increases collisions decrease rapidly. When MW > N,
i.e. the total number of observed bits is greater than the secret size, collisions
are negligible and we do not consider them further.

Can “Something You Know” Be Saved? 429

We Cannot Conceal How Many Bits are Used. Recall, from Section 3.1
that the number of bits of the secret U involved in each output bit is an important
parameter. This cannot be concealed from the attacker. We can measure the
effective number of bits used by a given scheme as follows. Choose two secrets S
and S

′
which differ by one bit. Generate A randomly chosen challenges and count

the number, B, for which the two secrets produce different responses. Thus the
measured fraction of responses where the two secrets produce the same response
is (A − B)/A. We have already seen (in the case of k-bit symbols) that the
expected value is 1 − U/N · (1 − 1/2k). Thus if we compare the expected and
actual values we can estimate U as

U =
NB

A
· 1
1 − 1/2k

. (1)

Of course A and B should be large enough to generate a stable estimate of the
actual fraction of responses that remain unchanged. We can use this to estimate
the effective number of bits used, for example in the Weinshall [17] scheme, where
we find Ueff ≈ 7.8. We will see that this is the fatal weakness, not just of this
scheme, but of any scheme which does not make absurd calculating requirements
of the user.

4 A Brute Force Attack

We now show how secret can be identified within a reasonable time when the
number of bits, U, used to calculate an output symbol is small. The weakness is
that when U � N similar secrets produce similar responses. The outline of the
attack is as follows:

– When secrets are close the responses are close
– It’s easy to find a secret that’s close
– Once close, it’s easy to get closer.

Taken together this gives that the only escape from brute-force attack is to make
U large. But we show in Section 4.4 that this forces the burden of calculation
on the user to be infeasible.

4.1 When Secrets Are Close the Responses Are Close

First suppose that S is the user’s secret and S
′
is an unrelated secret chosen at

random. We expect that the probability that two symbols from their respective
responses to Ci are the same is Pr{R(t) = R(t)

′} = 1/2k. This merely says that
all response symbols are equally likely and, for unrelated secrets, the response
symbols coincide at random. However, when S and S′ are close and U � N this
is no longer true: suppose they differ by e bits i.e. |S− S

′ | = e. Now, since only
a U -bit portion of the N -bit secret is used to calculate each response symbol
this portion might include none of the different bits. For example, if S and S

′

430 B. Coskun and C. Herley

differed in only a single position (i.e. e = 1) we would have R(t) = R
′
(t) unless

that single bit was one of the U bits used in this calculation.
In general the probability that none of the e bits where S and S′ differ are

included in any of the U bits used to calculate R(t) is:

N − e

N

N − 1 − e

N − 1
· · · N − (U − 1) − e

N − (U − 1)
=

⎛
⎝U−1∏

j=0

N − j − e

N − j

⎞
⎠ .

When this occurs R(t) = R
′
(t). Otherwise the responses might still be the same

with probability 1
2k . Hence the probability of having R(t) = R

′
(t) given that

|S− S′| = e, can be written as:

pe =

⎛
⎝U−1∏

j=0

N − j − e

N − j

⎞
⎠ +

⎛
⎝1 −

⎛
⎝U−1∏

j=0

N − j − e

N − j

⎞
⎠
⎞
⎠/

2k . (2)

We graph this in Figure 1. As e decreases (i.e. S and S
′
get closer) pe deviates

from 1
2k and gets closer to 1 as shown. When e is very small the probability that

R(t) = R
′
(t) is almost 1. This is important since it says that the probability

that the response symbols are equal increases as the distance between the secrets
decreases.

Now let’s examine the consequences for the attacker who gathers TW response
symbols from the W observed login events. Define Simm(Γ,Γ

′
) as the number of

symbol positions in which the two response streams agree; this ranges between 0
and TW. Now, Pr{Simm(Γ,Γ

′
) = d} is binomially distributed with probability

pe given in (2):

Pr{Simm(Γ,Γ
′
) = d | |S− S

′ | = e} = Bpdf (d, TW, pe).

In Figure 2 (a) we show how this is influenced by distance (for N = 80, U =
10, k = 2 and W = 10 logins) by showing the distributions for e = 12 and
e = 40. Observe that the mean of Simm(Γ,Γ

′
) for secrets that are distance

40 from S is TWp40 = 100 × 0.25 = 25 while for secrets at distance 12 it is
TWp12 = 100 × 0.413 = 41.3. Also observe that for a given scheme (i.e. N, U
and k fixed) the separation increases with the number of logins observed. Figure
2 (b) we show the same scheme as in (a), but now with W = 20 logins. Clearly
it gets easier to tell secrets that are close to S from those that are far when
the attacker observes more logins. Thus the attacker is always assisted by more
observations: the more logins he observes the greater the separation between the
binomials and the more reliably he can distinguish secrets that are close from
secrets that are far from the true secret.

We emphasize that when Simm(Γ,Γ
′
) is large it does not imply that |S−S

′ |
is small, but it does mean that the probability is higher. Thus, among a large
enough collection of secrets it is possible to distinguish in probability those that
are close to the true secret from those that are far.

Can “Something You Know” Be Saved? 431

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
r {

 R
(t)

=R
’(t

) ⏐
 |S

−S
’|

=
e

}

e

Fig. 1. Probability that an output symbol R(t) is the same for two N-bit secrets that

differ in e positions: Pr{R(t) = R(t)
′ | |S − S

′ | = e} vs. e. We are using N = 80,
U = 10 and k = 2. Observe that when secrets are close (i.e. e small) the probability of
the outputs being equal is high.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Simm(Γ,Γ’)

P
r {

 S
im

m
(Γ

,Γ
’)

⏐
|S

−S
’|

=
e

}

e=40
e=12

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Simm(Γ,Γ’)

P
r {

 S
im

m
(Γ

,Γ
’)

⏐
|S

−S
’|

=
e

}

e=40
e=12

Fig. 2. Secrets that are close produce responses that are close. The expected number
of positions where the responses are the same for depends on distance from the true
secret. Using N = 80, U = 10 and k = 2 and secrets that are 40 and 12 bits from the
true secret. (a) TW = 100 (i.e. 10 logins each with 10 2-bit symbols). (a) TW = 200
(i.e. 20 logins each with 10 2-bit symbols).

4.2 It’s Easy to Find a Secret That’s Close

If the attacker has a large collection of candidate secrets he now has a good
strategy to tell secrets that are close from secrets that are far. By selecting only
those points for which

Simm(Γ,Γ
′
) ≥ Threshold (3)

we can remove from consideration those that are likely to be far away. For
example, in Figure 2, if we threshold at TWp12, i.e. the mean of the p12 binomial,
we include a fraction 1−Bcdf(TWp12, TW, p12) = 0.5 of secrets that are distance
12 from S and only 1−Bcdf(TWP12, TW, p40) = 0.0065 of those that are distance

432 B. Coskun and C. Herley

Fig. 3. Figuring out which of your neighbors take you closer to/away from the true
secret. The graph shows that even the binomial pdfs with probabilities pe+1 and pe−1

are separated when e is small enough. The scheme shown is for N = 73, U = 8.8, k = 2
with 10 logins.

40. Thus, at a threshold of TWp12 the vast majority of distance-40 points are
discarded, while only 0.50 of distance-12 points are. Of course there are many
more secrets at distance 40 than at distance 12, i.e.

(
N
40

)
�

(
N
12

)
. But if the

attacker starts with a large enough collection of candidate secrets S
′

he can
quickly trim the collection to include only those that have a higher probability
of being close. Of the 2N total secrets in the space the number of points that
satisfy (3) (i.e. have response streams that are close to that produced by the
true secret) is given by summing the tails of the binomials multiplied by the
number of points:

N∑
k=0

(
N

k

)
· (1 − Bcdf (Threshold, TW, pk)).

A total of
(
N
e

)
secrets will live within an e-ball of the user’s secret. Thus we

should expect that if the attacker selected

2N

/(
N

e

)
secrets at random, at least one would be a distance e from the user’s secret S.
Of these we expect a fraction∑N

k=0

(
N
k

)
· (1 − Bcdf (Threshold, TW, pk))

2N

to satisfy (3).
For simplicity, let’s choose Threshold = TWpe so the attacker retains 50 % of

the points that are a distance e from the true secret. Thus for a cost of 2N/
(
N
e

)
response evaluations the attacker will end up with(

N∑
k=0

(
N

k

)
· (1 − Bcdf (TWpe, TW, pk))

)/(
N

e

)

Can “Something You Know” Be Saved? 433

secrets with a 50 % probability that one of them is a distance e from the true
secret. Every doubling the number of points examined reduces the probability
that he misses the true secret by a factor of 2. Taking 2N+Q/

(
N
e

)
evaluations

improves the chances that includes at least one point within distance e of the
true secret to 1 − (1 − 0.5)Q.

4.3 Once Close, It’s Easy to Get Closer

Suppose we have S
′

such that |S − S
′ | = e, where e is small. How do we now

find S? First consider the N secrets that are distance 1 from S
′
, i.e. consider S

′′

such that |S′ − S
′′ | = 1. For e of these we will have

|S− S
′′ | = e − 1,

and for the remaining N − e we have

|S− S
′′
| = e + 1.

That is, each distance-1 neighbor of S
′
is either a distance-(e− 1) or a distance-

(e + 1) neighbor of the true secret S.
Of course the attacker doesn’t know which N−e of the N neighbors are closer,

and which e are further away. But he does know that the responses Γ
′
that are

closest to Γ are more likely to come from the distance-(e− 1) neighbors. This is
made explicit in Figure 3 where we plot

Pr{Simm(Γ,Γ
′
) = d | |S − S

′′ | = e + 1} = Bpdf (d, TW, pe+1)

and
Pr{Simm(Γ,Γ

′
) = d | |S − S

′′ | = e − 1} = Bpdf (d, TW, pe−1)

for the scheme as in Figure 2 (i.e. N = 80, U = 10 and k = 2) and e = 12. Thus,
while the tails of the binomials overlap, it is more likely, for example, that if
Simm(Γ,Γ

′
) ≥ 95 that S

′
is a distance-(e − 1) neighbor of S.

Suppose S
′
is a distance-e neighbor of S. Now, if the attacker retains (among

the N distance-1 neighbors of S
′
) the three that maximize Simm(Γ,Γ

′′
) it is

overwhelmingly probable that he retains at least one distance-(e − 1) neighbor
of S. We quantify this in Figure 4 which shows the probability of one of the e
secrets that are closer to S being among the three that maximize Simm(Γ,Γ

′′
).

As can be seen for small enough e the attacker is almost guaranteed to have
at least one point that is closer among the top three. For example, using the
W = 20 login plot of Figure 4 if |S−S

′ | = 17 and we choose the three distance-1
neighbors of S

′
that have responses closest to Γ the probability is 0.997 that

one of them is closer to the true secret (i.e. for one of them S
′′ |S − S

′′ | = 16).
Thus given a secret that is close, the attacker has a high probability of getting
one point (among three) that is closer still. Since, this probability increases as
e decreases, the closer he gets the easier it gets. Now the attacker need merely
iterate.

434 B. Coskun and C. Herley

At worst, this would give the attacker 3e points to consider before finding
the secret, which is of course a huge improvement over

(
N
e

)
. In fact we can do

better; rather than retain 3m points for each m = 0, 1, · · · e we retain only the
10 points that maximize Simm(Γ,Γ

′′
). Figure 5 shows the probability that this

simplification finds the correct secret as a function of e. To calculate this curve we
measured the number of times that, starting at S

′
, this algorithm found it’s way

to S given that |S − S
′ | = e. This was done numerically, by generating random

N -bit secrets, and challenges that use a randomly chosen U bits of the secret.
The k-bit symbols were generated uniformly at random from the U challenge
bits, and we repeat TW times to simulate a stream of W logins. As can be seen
the attacker can find his way “home” by, starting at S

′
, retaining the 10 secrets

that maximize Simm(Γ,Γ
′′
).

4.4 Putting the Pieces Together

We put the pieces of the above analysis together to form a generic brute-force
attack to reveal the user’s secret S given the observation from W logins Γ.
Essentially the attacker chooses enough brute force points to ensure that several
of them are close and applies the test of (3) to retain only those that are probably
close. On all of the retained points he attempts to iterate and get closer. Those
points that actually are close will converge to the true secret. This leads to the
following algorithm.

– foreach(2N+Q/
(
N
e

)
random secrets S

′
){

– for (m = 0, 1, · · · , e − 1){
– Calculate Simm(ΓΓ

′′
) of the distance-1 neighbors of each element in list

– Retain the 10 secrets that maximize Simm(Γ,Γ
′′
).

– if (Simm(Γ,Γ
′′
) = TW for any list secret) break }}

Since we keep 10 secrets in the list, and each secret has N distance-1 neighbors
this algorithm requires 10Ne evaluations.

Our fundamental unit of complexity is an evaluation of Γ
′

for a given secret
S

′
. The overall complexity is the cost of the brute-force search plus the cost of

finding the true secret from the points that survive the threshold test:(
2N + 10 · N · e ·

N∑
k=0

(
N

k

)
· (1 − Bcdf (TWpe, TW, pk))

)/(
N

e

)
. (4)

The complexity is inversely related to e. The brute-force (left-hand) term dom-
inates for small e. For example, if e = N/2 even a small collection of randomly
chosen secrets will contain one e-neighbor, while if e = 1 we must include almost
the whole secret space.

Choosing the largest possible e for a given scheme will minimize the attacker’s
complexity. Of course, the attacker must limit his choice of e to those that allow
reliable zooming in on the true secret once a distance-e neighbor has been found.
For example, in the scheme shown in Figure 5 at e = 17 the attacker is almost

Can “Something You Know” Be Saved? 435

Fig. 4. Given a secret S
′
that is distance e from the true secret S how easy is it to get

closer still? The graph shows the probability that the attacker finds a secret distance
e− 1 from S if he chooses the three distance-1 neighbors of S

′
that produce responses

most like the observed response. The scheme shown is for N = 73, U = 8.8, k = 2 with
10 and 20 logins (left and right resp).

Fig. 5. Given a secret S
′

that is distance e from the true secret S how easy is it to
get closer still? The graph shows the probability that by retaining the 10 points that
maximize Simm(Γ,Γ

′′
) and iterating that we find our way from S

′
to the true secret.

This reduces the complexity from 3e to 10 · N · e points that must be searched. The
scheme shown is for N = 73, U = 8.8, k = 2 with 10 logins.

guaranteed to successively find secrets that are 16, 15, · · ·2, 1 from the true secret,
while at e = 35 this is extremely unlikely to happen.

We evaluate numerically the largest e that gives the algorithm of Section 4.3 a
0.975 probability of converging to the true secret from a distance e. The results
are tabulated in Table 1. As can be seen when U = 5 the attacker can start quite
far away (i.e. e large) and still find the secret, while for U = 10 he must start a
great deal closer. The table also makes clear that the more logins the attackers
observes the easier his task gets (i.e. as W increases so also does the value of e
from which he can reliably expect to find the secret).

436 B. Coskun and C. Herley

Table 1. The largest value of distance e to have the algorithm of Section 4.3 find
the true secret with probability 0.975. We evaluate this for U = 5 (left) and U = 10
(right). Clearly, the more logins W the attacker observes the easier fidning the true
secret becomes. Also, for small U almost any starting point will allows convergence
to S

′
. But even at U = 4 a human will require at least 60 seconds to calculate the

response to a challenge.

W N = 50 N = 60 N = 70 N = 80

10 19 21 26 39

15 20 29 33 39

20 23 29 34 39

25 24 29 34 39

W N = 50 N = 60 N = 70 N = 80

10 10 11 15 16

15 11 14 16 17

20 13 15 17 18

25 14 16 18 20

Complexity of the User’s Task. In Section 4.1 we showed that secrets that
are close produce responses that are close. We used the fact that if none of the
e bits where S and S

′
differ is among the U bits used to calculate a particu-

lar output symbol then the two secrets produce the same output symbol R(t).
However, if any of the e bits where they differ was involved we assumed that all
outputs were equally likely. So the output would be the same with probability
1/2k. Thus, for secrets that differ from S in any of the U bits used to calculate
R(t) the output symbol R

′
(t) has a uniform random distribution. This implies

that each of the k bits of the output symbol depends on all U input bits, but
is independent of the other k − 1 output bits. Hence at least k(U − 1) binary
decisions must be performed to calculate this symbol. This is in fact a loose
lower bound, but tells us that the user must perform at least M(U − 1) binary
decisions per login.

If the output symbol does not change uniformly at random based on the U
input bits things only get better for the attacker. Suppose that only one bit where
S an S

′
differ is used among the U that are used to calculate R(t). Now if the

probability that the symbol is unchanged is higher than a uniform assignment
it merely serves to make the attacker’s task easier, and the algorithm of Section
4.4 work better. Previously the attacker could infer closeness only when none of
the e differing bits were involved. But now, when only one bit is involved the
probability that R(t) = R

′
(t) is higher than when e bits are involved. Thus the

probability that |S − S
′ | is small when

What is Needed to Resist Brute-Force? Since M(U − 1) is lower bound on
the number of binary decisions the user must perform, we can decide the maximum
permissible U for a given burden on the user. Unfortunately this is extremely low.
If we assume the user can perform a single binary decision per second then, if a
one minute login procedure is acceptable (i.e. it would take the user this time to
respond to the challenge) then we have U = 60/20 + 1 = 4. Even this assumes
that the user can reliably perform 60 binary decisions without error. Of course we
cannot reduce M = 20, since we require a minimum of a 20-bit login.

We summarize the cost of brute-forcing a U = 5 scheme in Table 2. For each
secret size N , and number of observed logins W we take the value of e from

Can “Something You Know” Be Saved? 437

Table 2. Time in minutes to brute-force a Challenge Response scheme for a given
secret size and number of logins observed when U = 5 bits of the secret are involved
in each output bit. This requires at least 80 binary decisions be made by the user, and
a more than one minute login procedure.

W N = 50 N = 60 N = 70 N = 80

10 9.9 24 16 58

15 10.5 15.9 23 32

20 12.2 20.5 30.2 42

25 17.5 27.8 41.4 57

Table 1 and calculate the complexity from (4). We assume that the attacker can
perform 1000 evaluations per second for the N = 50, U = 5, k = 2 case when
he has observed W = 10 logins. The costs are given in hours to have a 0.9375
probability of finding the secret.

We summarize the cost of brute-forcing such a scheme in Table 2. The costs
are given in hours required to have a 0.9375 probability of finding the true secret
using our brute force method. That is, by choosing the largest value of e for a
given scheme we calculated the number of trials required using (4). We assumed
estimated that 10000 trials per second could be performed. The table makes
clear the necessity of using large secrets. We regard it as infeasible to expect
the user to perform more than 60 binary decisions for a login, and thus secrets
larger than N = 80 (i.e. the equivalent of a 24 digit PIN) must be used.

5 Conclusion

We have examined the question of whether “Something You Know” can be saved
as the sole factor for authenticating a user in the presence of spyware. Our con-
clusion is negative. We find that in a challenge response scheme the number of
bits U of the secret involved in each bit of the response is the key parameter
to surviving brute force. Unfortunately the amount of binary decisions the user
must perform increases at least linearly with this parameter. This gives a fun-
damental tradeoff for which there appear to be no good choices. The Weinshall
scheme [17], which used about 7.8 bits of the secret per output bit required
about 3 minutes for the user to respond to the challenge. If we try to limit the
login to a one minute login procedure we find that given enough observed logins
the scheme is quickly brute-forced. This is true independent of the details of the
scheme.

Golle and Wagner [7] conclude that “something you know” schemes be tested
with SatSolver. We would add that measuring the number of bits of the secret
involved in each output bit is paramount. Unless U can be made large, brute-
forcing is trivial. This suggests that good alternatives between passwords, which
do withstand replay, and one-time password or two-factor schemes ar very hard
to find.

438 B. Coskun and C. Herley

References

1. http://www.rsasecurity.com

2. Herley, C., Florêncio, D.: How To Login From an Internet Café without Worrying
about Keyloggers. In: Symp. on Usable Privacy and Security (2006)

3. Cheswick, W.: Johnny Can Obfuscate: Beyond Mother’s Maiden Name. In: Proc.
Usenix HotSec (2006)

4. Florêncio, D., Herley, C.: One-Time Password Access to Any Server Without
Changing the Server. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC
2008. LNCS, vol. 5222, pp. 401–420. Springer, Heidelberg (2008)

5. Florêncio, D., Herley, C.: KLASSP: Entering Passwords on a Spyware Infected
Machine. In: Jesshope, C., Egan, C. (eds.) ACSAC 2006. LNCS, vol. 4186. Springer,
Heidelberg (2006)

6. Florêncio, D., Herley, C., Coskun, B.: Do Strong Web Passwords Accomplish Any-
thing? In: Proc. Usenix Hot Topics in Security (2007)

7. Golle, P., Wagner, D.: Cryptanalysis of a Cognitive Authentication Scheme. In:
Symp. on Security and Privacy (2007)

8. Haller, N.: The S/KEY One-Time Password System. In: Proc. ISOC Symposium
on Network and Distributed System Security (1994)

9. Herley, C., Florêncio, D.: Phishing as a Tragedy of the Commons. In: NSPW 2008,
Lake Tahoe, CA (2008)

10. Jermyn, I., Mayer, A., Monrose, F., Reiter, M.K., Rubin, A.D.: The Design and
Analysis of Graphical Passwords. In: Usenix Security (1999)

11. Lamport, L.: Password Authentication with Insecure Communication. Communi-
cations of the ACM (1981)

12. Lei, M., Xiao, Y., Vrbsky, S., Li, C.-C., Liu, L.: A Virtual Password Scheme to
Protect Passwords. In: Proceedings of IEEE ICC (2008)

13. Lim, J.: Defeat spyware with anti-screen capture technology using visual persis-
tence. In: SOUPS (2007)

14. Pashalidis, A., Mitchell, C.J.: Impostor: A single sign-on system for use from un-
trusted devices. In: Proceedings of IEEE Globecom (2004)

15. Pering, T., Sundar, M., Light, J., Want, R.: Photographic Authentication through
Untrusted Terminals. IEEE Security and Privacy (2003)

16. Suo, X., Zuo, Y., Owen, G.S.: Graphical Passwords: a Survey. In: ACSAC (2005)
17. Weinshall, D.: Cognitive Authentication Schemes Safe Against Spyware. In: Symp.

on Security and Privacy (2006)

http://www.rsasecurity.com

Can “Something You Know” Be Saved? 439

A Breaking the Virtual Passwords Scheme of Lin et al. [12]

The recently suggested Virtual Passwords scheme of Lei et al. [12] unfortunately
appears to fall to the divide-and-conquer attack described above. In that work,
user secret is an n-digit PIN, such that S = S0S1...Sn−1 where Si ∈ {0, 1, .., 9}.
For each login, server presents an n-digit challenge such that C = C0C1...Cn−1

where Ci ∈ {0, 1, .., 9}. The response calculation function is defined as follows:

R(t) =
{

(aS0 + C0 + S1 + b) mod Z i = 0
(aR(t − 1) + Ci + Si + b + Si+1) mod Z i = 1, 2, .., n− 1 (5)

where a and b are two other random numbers that user has to remember and a
is relatively prime to Z in order to make the response function bijective.

In general, since R and C are observable by the attacker, the only unknown
parameters for each response R(t), are a, b, Si and Si+1. For the sake of usability,
the response for each login is also an n-digit number , such that R(t) ∈ {0, 1, .., 9}.
Therefore one has to set Z = 10, which also implies that a ∈ {1, 3, 7, 9} due
to relatively prime constraint. On the other hand, regardless of the actual b
value, without loss of generality we can consider that b ∈ {0, 1, .., 9} due to the
properties of modular arithmetic. Therefore for each R(t), attacker has to try
4×10×10×10 = 4000 different combinations of the parameters a, b, Si and Si+1

to see which combination matches the observed response R(t). After one login,
the attacker is left only with 4000/10 = 400 combinations as R(t) can be only
one of the 10 possible values. Similarly after second and third login, the attacker
will have only 40 and 4 possible choices respectively. And finally, the attacker
will get the true parameter combination after observing the fourth login.

In summary, in the worst case attacker reveals S, a and b after observing four
login sessions at a cost of n(4000+ 400+ 40 + 4) trials. However, in fact she can
do much better both in terms of the number of logins observed and the number
of trials, since the same a and b is used for every R(t) and a single S(i) is used
for multiple R(t)s.

B Explanatory Tables

Password Authentication
Client → Server: U,P

OTP Authentication
Client → Server: U,Pi

Challenge Response Authentication
Client → Server: U
Client ← Server: Ci

Client → Server: f(S, Ci)

Fig. 6. The basic types of access control discussed: password, one-time password and
challenge response

440 B. Coskun and C. Herley

S N-bit secret shared by client and server

R M -bit client response for a single login

R(t) k-bit symbol of the response (R = R(0)R(1) · · ·R(T − 1))

f() calculation performed by the user

ft() R(t) = ft(S,Ci)

Γ Observed series of W logins (Γ = R0R1 · · ·RW−1)

U # bits of S used to calculate each R(t)

Bpdf (d, n, p) Binomial pdf for n trials with probability p.

Bcdf (d, n, p) Binomial cdf for n trials with probability p.

Fig. 7. Summary of notation and symbols used

New Communication-Efficient Oblivious Transfer
Protocols Based on Pairings

Helger Lipmaa

University College London, UK

Abstract. We construct two simple families of two-message (n, 1)-oblivious
transfer protocols based on degree-t homomorphic cryptosystems with the
communication of respectively 1 + �n/t� and 3 + �n/(t + 1)� ciphertexts. The
construction of both families relies on efficient cryptocomputable conditional dis-
closure of secret protocols; the way this is done may be of independent interest.
The currently most interesting case t = 2 can be based on the Boneh-Goh-Nissim
cryptosystem. As an important application, we show how to reduce the commu-
nication of virtually any existing oblivious transfer protocols by proposing a new
related communication-efficient generic transformation from computationally-
private information retrieval protocols to oblivious transfer protocols.

Keywords: Computationally-private information retrieval, conditional disclosure
of secrets, homomorphic encryption, oblivious transfer.

1 Introduction

In an (n, 1)-oblivious transfer protocol, (n, 1)-OT, Alice on input 0 ≤ σ < n retrieves
the σth element of Bob’s database D = (D0, . . . , Dn−1). One requires that Alice ob-
tains no information about any Dj for j
= σ, and that Bob obtains no information about
σ. It is well-known that by general reductions, one can base both two-party computa-
tion [Yao82, IP07, Lip08] and multi-party computation [Kil88] on (2, 1)-OT. Efficient
(n, 1)-OT is a cornerstone of many handcrafted cryptographic protocols. Thus, it is im-
portant to construct (n, 1)-OT protocols that are efficient for values of n ranging from
n = 2 to say n = 220. The currently most communication-efficient (n, 1)-OT protocols
for large n were proposed in [Lip05, GR05], while some of the most communication-
efficient (2, 1)-OT protocols were proposed in [AIR01, LL07].

New Linear Protocols. We first propose two new families OTSt and OTXt, for t ≥ 1,
of linear-communication (n, 1)-OT protocols. Later in the paper we use these families
to construct sublinear (n, 1)-OT protocols. Both families rely on a cryptosystem that
enables to cryptocompute (that is, compute-on-ciphertexts) degree-t polynomials with
coefficients from ZN ∪ {�}, where � denotes a pseudorandom element of the plaintext
group ZN . (It’s formally defined by multiplication and addition to elements of ZN .) We
call such a cryptosystem degree-t homomorphic. The case t = 1 includes additively
homomorphic cryptosystems like the Paillier [Pai99], and the case t = 2 includes the
BGN cryptosystem [BGN05].

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 441–454, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

442 H. Lipmaa

Table 1. Comparison of different instantiations of OTX, OTS with the protocols from [AIR01,
LL07]. Here, |c| denotes the length of ciphertexts in bits; |pk| and |c| depend on the underlying
cryptosystem. Here ’?’ means that currently there are no known cryptosystems that are suitable
in this case.

Protocol Alice’s comm. Bob’s comm. Max
 PKC |c| CDS eq.

Previous instantiations
[AIR01] = OTS1 |pk| + |c| n|c| ≤ 64 Mult. hom. 180 (7)
[LL07] = OTS1 |pk| + |c| n|c| ≤ 680 Add. hom. 1536 (7)
New instantiations
OTS2 |pk| + |c| �n/2�|c| ≤ 64 BGN 1536 (7)
OTX1 |pk| + 2|c| n|c| ≤ 680 Add. hom. 1536 (6)
OTX2 |pk| + 3|c| �n/3�|c| ≤ 64 BGN 1536 (5)
Generic, hypothetical instantiations for t > 2

OTSt |pk| + |c| �n/t�|c| ? ? ? (7)
OTXt |pk| + 3|c| �n/(t + 1)�|c| ? ? ? (5)

Without loss of generality, assume that t | n. We also assume that the database elements
are �-bit long. Then, (n, 1)-OTSt is a parallel repetition of n/t copies of an atomic (t, 1)-
OTSt protocol that use a common secret/public key pair. They also share Alice’s first
message that consists of the public key and of an encryption of Alice’s index σ. In every
single instance of (t, 1)-OTSt, Bob cryptocomputes his reply as a single encryption of the
sum of two polynomials Correctt−1

i (σ) and CDSSt
i(σ), where the first polynomial takes

care of the correctness and the second polynomial implements conditional disclosure of
secrets (CDS, [GIKM00, AIR01, BGN05, LL07]) to guarantee Bob’s privacy.

More precisely, Correctti(σ) is the unique degree-t polynomial such that
Correctti(σ) = Dσ if "σ/t# = i, and CDSSt

i(σ) is a degree-t polynomial such that
CDSSt

i(σ) = 0 for "σ/t# = i and CDSSt
i(σ) = � for "σ/t#
= i. Thus, Correctti(σ) +

CDSSt
i(σ) is equal to Dσ if "σ/t# = i, and to �, otherwise. In particular, OTS1 corre-

sponds to the (n, 1)-OT protocols from [AIR01, LL07].
The protocol (n, 1)-OTXt is similarly composed from atomic (t + 1, 1)-OTXt pro-

tocols. Here, however, Bob’s reply is a sum of Correctti(σ) and of a CDS polynomial
CDSX′

i(σ) if t = 1, and of a CDS polynomial CDSXt
i(σ) if t > 1. Because of the use of

Correctti(σ), the number of atomic protocols is decreased to &n/(t + 1)'. However, the
corresponding CDS polynomials are more complicated and require Bob to communi-
cate 2 ciphertexts per atomic protocol (if t = 1), or Alice to communicate 3 ciphertexts
(if t > 1). The basic reason behind the added complexity is that there is no degree-t
polynomial f such that f(σ) = 0 for "σ/(t+1)# = i and f(σ) = � for "σ/(t+1)#
= i.

Given the state of the art on existing degree-t homomorphic cryptosystems and effi-
cient CDS protocols, one can instantiate the protocols OTSt and OTXt with t = 1 or
t = 2 as summarized in Table 1. (Here, the increase of |c| to 1536 in factorization-based
schemes takes into account the recent advances in factoring.) Thus, the new protocols
are communication-efficient even when n is small, say n = 2 or n = 3. See Sect. 3 for
more comparison.

New Communication-Efficient Oblivious Transfer Protocols 443

New Sublinear Protocols. The most communication-efficient known sublinear
(n, 1)-OT protocols are constructed by combining a communication-efficient
(n, 1)-computationally-private information retrieval (CPIR) protocol such as [Lip05,
GR05] with a linear (n, 1)-OT protocol from [AIR01, LL07], i.e., with OTS1. For
� < 264, the communication of the combined protocols decreases if OTS1 is replaced
with either OTS2 or OTX2. In the case of the only known CPIR protocol with log-
communication [GR05], this replacement decreases slightly the communication of the
combined protocol. In the case of Lipmaa’s CPIR protocol from [Lip05], for small
�, the transformed oblivious transfer protocol is not only more secure but also more
communication-efficient than Lipmaa’s original CPIR protocol. We also point out that
the existence of degree-2 cryptosystem with efficient decryption would imply the sec-
ond log-communication oblivious transfer protocol.

General Remarks. Apart from presenting the concrete protocols, the current paper
has a few more contributions. First, it provides a precise complexity analysis of the
oblivious transfer protocols from [BGN05]. Second, it defines a clean methodology for
cryptocomputing protocols, where Bob’s answer is a sum of two polynomials, one of
which takes care of the correctness and the second one takes care of Bob’s privacy by
using recent advances in defining efficient cryptocomputable protocols for conditional
disclosure of secrets [LL07]. Third, it can be seen as a unification of several different
oblivious transfers from the literature, and then generalisation to not yet studied cases.

Caveats. The proposed two-message protocols are secure only if the plaintext group
order N of the underlying cryptosystem has no small prime divisors. This means that
if the group order is composite (like in the case of existing additively homomorphic
cryptosystems or the BGN cryptosystem) then one can either rely on the PKI model,
use zero-knowledge proofs or correctness, or say use Lenstra’s ECM algorithm to detect
small divisors of N . See [LL07] for a discussion. This is not a problem if N is prime,
for example, if we rely on lifted Elgamal. More relevantly, this is also not a problem if
the cryptosystem does not have efficient decryption as it is the case with the BGN: in
the case of BGN, one only has to verify that the smallest prime divisor p of N is large
enough so that doing O(

√
p) operations is infeasible.

Notation. For a set S, U(S) denotes the uniform distribution on it. � is used as a new
element of some fixed group or ring, and is defined by it’s multiplication or addition
with other group elements. That is, if the group/ring order is prime, then � · 0 = 0,
� · i = � and � + j = � for any i
= 0 and any j.

Road-map. In Sect. 2, we give necessary preliminaries. In Sect. 3, we describe the
protocols OTSt and OTXt. In Sect. 4, we describe a generic transformation of any
(n, 1)-CPIR protocol to a (n, 1)-OT protocol with a comparable communication. In
Sect. 5, we discuss related work.

2 Preliminaries

Composite Order Bilinear Groups. Let G and GT be two multiplicative cyclic groups
of order N where N = pq ∈ Z and p, q are λ-bit primes for some fixed security

444 H. Lipmaa

parameter λ ∈ Z+, e : G × G → GT is a bilinear map, and for some fixed generator
g of G, e(g, g) is a generator of GT . We assume that group operations and e are all
efficiently computable. Let G be a bilinear group generation algorithm that outputs such
a tuple (p, q, G, GT , e). [BGN05] suggest the following example. Pick large primes
p < q and let N = pq. Find the smallest � so P = �N − 1 is prime and equal to 2
modulo 3. Consider the points on the elliptic curve y2 = x3 + 1 over FP . This curve
has P + 1 = �N points, so it has a subgroup G of order N . We let GT be the order N
subgroup of F∗

P 2 and e : G × G → GT be the modified Weil pairing from [BF03].
Let (p, q, G, GT , e) ← G(λ). For an adversary A, define AdvSD(A), the advan-

tage of A in solving the subgroup decision problem [BGN05] as That is, the task of

AdvSD(G,GT ,e)(A) := |Pr[x ← G : A(pq, G, GT , e, x) = 1]| − |Pr[x ← G : A(pq, G, GT , e, xq) = 1]| .

A is to distinguish random elements of G from random elements of its order p sub-
group. We say that (G, GT , e) is a (τ, ε)-SD group if for any τ -time adversary A,
AdvSD(G,GT ,e)(A) ≤ ε.

Public-key Cryptosystems. A public-key cryptosystem is a tuple (K, E ,D) of algo-
rithms with (possibly public-key dependent) plaintext space M, randomizer space R
and ciphertext space C, such that G generates a random secret/public key pair (sk, pk),
Epk(m; r) = c encrypts a plaintext m ∈ M to a ciphertext c ∈ C by using a randomizer
r ∈ R, and Dsk(c) = m decrypts a ciphertext c ∈ C to a plaintext m ∈ M. One
requires that for any (sk, pk) ∈ G and for any m ∈ M, r ∈ R, Dsk(Epk(m; r)) = m.
A public-key cryptosystem is (τ, ε)-IND-CPA secure if for a freshly generated pub-
lic/secret key pair (sk, pk), any τ -time adversary A can distinguish random encryptions
of any two plaintext messages m1, m2, even chosen by himself, with probability ≤ ε.
(The probability is also taken over the choice of the keys.)

Additively Homomorphic Public-key Cryptosystems. A public-key cryptosystem is
additively homomorphic if M = (ZN , +, 0) for some integer N , (C, ·, 1) is a finite
cyclic group, and if

Dsk(Epk(m1; r1) · Epk(m2; r2)) = m1 + m2

for any m1, m2, r1, r2. In addition, we require that Epk(m; r) · Epk(0; U(R)) =
Epk(m; U(R)) for any m, r; this enables to perform efficient rerandomization. There
are many well-known additively homomorphic public-key cryptosystems, see for ex-
ample, [Pai99, DJ01].

Disclose-if-equal. For an additively homomorphic cryptosystem, given an encryption
c = Epk(m; r) of some m, one can compute c1 ← c� · Epk(0; U(R)) = Epk(� ·
m; U(R)). If gcd(m, N) = 1 (resp., gcd(m, N) > 1) and � = U(ZN) then c1 =
Epk(U(ZN); U(R)) is a random encryption of a random value from ZN (resp., in some
nontrivial subgroup of ZN). In a disclose-if-equal protocol, Alice on input a obtains
Bob’s input b1 if a = b2 for Bob’s second input b2, otherwise Alice obtains �. In a
simple disclose-if-equal protocol [AIR01, LL07], given a random encryption of a, Bob
computes a random encryption of

� · (b2 − a) + b1 (1)

New Communication-Efficient Oblivious Transfer Protocols 445

and returns it to Alice. However, this protocol is not secure by itself: if b2 − a is a non-
trivial divisor of N , then because � · (b2 − a) belongs to a non-trivial subgroup of ZN ,
Alice can obtain partial information about b1 [LL07]. This means that if decryption is
inefficient, then this disclose-if-equal protocol is computationally private for Bob un-
der the subgroup decision assumption. Otherwise, one should use the disclose-if-equal
protocol of [LL07] that forces c1 to be an encryption of a (statistically) pseudorandom
value of ZN for any m
= 0, while c1 is an encryption of 0 if m = 0. This can then
used in the described disclose-if-equal protocol. Briefly, in the implementation of the
Laur-Lipmaa protocol, instead of Eq. (1), one uses the polynomial

� · (b2 − a) + † · 2� + b1 . (2)

where † denotes the formal random element of Z	N/2	
. Alice recovers the answers
modulo 2� with � < p − 1 − ε, where p is the smallest prime divisor of N and 2−ε

is the desired privacy level of honest Bob. Denote by Z̃N the set ZN enhanced by
all possible formal random elements that are computable by Bob. Thus, given an ad-
ditively homomorphic cryptosystem, Bob can cryptocompute linear polynomials f ∈
Z̃N [M1, . . . , Mt].

The BGN Cryptosystem and Degree-t Homomorphic Cryptosystems. The BGN
cryptosystem is defined as follows [BGN05]. The algorithm K runs G to generate
(p, q, G, GT , e). Let N ← pq. Pick generators g, u ← U(G) and let h ← uq. Out-
put public key pk ← (N, G, GT , e, g, h) and private key sk ← p. To encrypt a message
m ∈ Z2	 where 2� < q with public key pk, pick a random r ← R := ZN and compute
Epk(m; r) ← gmhr ∈ G. To decrypt a ciphertext c using the private key sk, compute
first cp = (gmhr)p = (gp)m and then recover m by computing the discrete logarithm
of cp on base gp. This can be done in time O(2�/2) and thus one must take say � < 64
or � = O(log λ). Set g1 ← e(g, g) and h1 ← e(g, h), clearly g1 has order N and
h1 has order q. Define the associated BGN cryptosystem (Ea,Da) in group GT , with
Ea

pk(m; r) := gm
1 hr

1 where Da is defined as the discrete logarithm of Ea
pk(m; r)p on

base gp
1 .

Given BGN encryptions of any m1, m2, one can compute a BGN encryption of
m1 + m2 as Epk(m1) · Epk(m2), and an associated BGN encryption of m1m2 as
e(Epk(m1), Epk(m2)). In particular,

Ea
pk(m; r) = e(Epk(m; r), g) .

Thus, given BGN encryptions of any m1, . . . , mt, and using the disclose-if-equal pro-
tocol of Eq. 1, one can compute associated BGN encryptions of

Ea
pk(f(m1, . . . , mt)) (3)

for any quadratic polynomial f ∈ Z̃N [M1, . . . , Mt]. This generalizes the computations
that one can do in the case of additively homomorphic cryptosystems.

We call a cryptosystem degree-t homomorphic if one can cryptocompute (associated)
encryptions of type Eq. (3) for any degree-t polynomial f ∈ Z̃N [M1, . . . , Mt], given
encryptions of Mi. Thus, t = 1 in the case of additively homomorphic public-key
cryptosystems and t = 2 in the case of the BGN cryptosystem.

446 H. Lipmaa

Conditional Disclosure of Secrets. During a conditional disclosure of secrets (CDS)
protocol (see, for example, [GIKM00, AIR01, BGN05, LL07]), Alice obtains Bob’s
secret exactly iff her own input belongs to some publicly specified set of valid inputs;
if Alice’s input is incorrect then Alice obtains usually a value that is statistically close
to a uniformly random plaintext. There exist several general approaches of constructing
CDS protocols that are cryptocomputable given a degree-t homomorphic cryptosystem.
In particular, efficient cryptocomputable CDS protocols for many tasks for t = 1 and
t = 2 were respectively proposed in [AIR01, LL07] and [BGN05]; such protocols are
usually based on disclose-if-equal subprotocols.

Oblivious Transfer. Assume that Alice has an input σ ∈ {0, . . . , n − 1} and Bob has a
database D = (D0, . . . , Dn−1) where Di ∈ {0, 1}�. In an (n, 1)-oblivious transfer pro-
tocol for �-bit strings, (n, 1)-OT�, Alice obtains Dσ and no additional information, and
Bob obtains no information about σ. We only consider two-message oblivious transfer
(OT) protocols. An OT protocol is correct when in the case of honest parties, Alice re-
ceives Dσ. An OT protocol is (τ, ε1)-private for Alice if for any two indices σ1, σ2, even
chosen by Bob himself, a τ -time Bob cannot distinguish the first messages of Alice that
correspond to σ1, σ2. An OT protocol is statistically ε2-private (resp., computation-
ally (τ2, ε2)-private) for Bob if there exists an unbounded simulator that, only given
access to the first message of Alice and Bob’s database element Dσ, generates Bob’s
second message from the distribution that is statistically ε2-close to (resp., computa-
tionally (τ2, ε2)-indistinguishable from) Bob’s response in the real protocol to Alice’s
first message. An OT protocol is statistically (resp., computationally) (τ1, ε1; τ2, ε2)-
relaxed-secure if it is correct, (τ1, ε1)-private for Alice and statistically (resp., compu-
tationally) (τ2, ε2)-private for Bob. A statistically (resp., computationally) (τ, ε)-secure
(n, 1)-computationally-private information retrieval (CPIR) protocol is the same as a
statistically (resp., computationally) (τ, ε; poly(λ), 1)-relaxed-secure OT protocol.

The presented security definition is standard in the case of CPIR and OT proto-
cols [AIR01, Lip05, BGN05, NP05] but also say in the case of private keyword search
protocols [FIPR05]. A proof that one can run many copies of corresponding protocols
securely, while using the same public key in every copy, can be found in [LL07].

3 New Families of Oblivious Transfer Protocols

We next propose two families OTXt and OTSt of linear-communication (n, 1)-OT pro-
tocols that use the properties of a degree-t cryptosystem to decrease the number of com-
municated ciphertexts to 3+ &n/(t+1)' and 1+ &n/t', respectively. Sect. 4 uses these
linear protocols to construct sublinear protocols.

Underlying Idea of OTXt. Without loss of generality, assume that (t + 1) | n. The
basic idea of the first new protocol, that we call (n, 1)-OTX, follows. Alice first gen-
erates a new key pair for a degree-t homomorphic cryptosystem. She sends to Bob the
new public key with a random encryption of σ. Given that, for every 0 ≤ i < n/(t+1),
Bob cryptocomputes the polynomial Correctti(σ) + CDSXt

i(σ), where Correctti(σ) and
CDSXt

i(σ) are two degree-t polynomials that take care of protocol’s correctness and

New Communication-Efficient Oblivious Transfer Protocols 447

Bob’s privacy respectively. More precisely, Correctti is the unique degree-t polynomial,
such that Correctti(σ) = Dσ if "σ/(t + 1)# = i. For example,

Correct1i (σ) =((2i + 1) − σ) · D2i + (σ − 2i) · D2i+1 ,

Correct2i (σ) =
1
2
· ((3i + 1) − σ)((3i + 2) − σ) · D3i+

(σ − 3i)((3i + 2) − σ) · D3i+1+
1
2
· (σ − 3i)(σ − (3i + 1)) · D3i+2 .

Second, CDSXt
i(σ) is a degree-t polynomial such that

CDSXt
i(σ)

{
0 , "σ/(t + 1)# = i ,

CDSXt
i(σ) = � , otherwise .

That is, CDSXt
i implements a cryptocomputable conditional disclosure of secrets pro-

tocol. Therefore, Correctti(σ) + CDSXt
i(σ) is equal to Dσ if &σ/(t + 1) = i', and to �

otherwise.
A “minor” complication here is that such a polynomial CDSX must have degree t+1

while we need a degree-t polynomial. To overcome this issue, we let Alice send to Bob
three encryptions of (σ2, σ1, σ0), where

σ2 ←"σ/(t + 1)# , σ1 ← "(σ mod (t + 1))/t# , σ0 ← σ mod t . (4)

E.g., if σ = 14 and t = 4 then σ2 = 2, σ1 = 1, and σ1 = 0. From these encryptions,
Bob can cryptocompute an encryption of σ = (t + 1)σ2 + tσ1 + σ0. We now redefine

CDSXt
i(σ2, σ1, σ0) := � ·(σ2 − i) + � · (σ1 − 1)σ1 + � ·

t−1∏
i=0

(σ0 − i) + � · σ1σ0 . (5)

Clearly, CDSXt
i is a degree-t polynomial with the required properties, that is,

CDSXt
i(σ2, σ1, σ0) = 0 if &σ/(t + 1)' = i and CDSXt

i(σ2, σ1, σ0) = �, other-
wise. (Here, the last 3 monomials together guarantee that the result is pseudorandom,
unless σ0
∈ {0, . . . , t − 1} and σ1 = 0, or σ0 = 0 and σ1 = 1, that is, unless
2σ1 + σ0
∈ {0, . . . , t}.)

After that, Bob returns all n/(t + 1) ciphertexts to Alice who decrypts the "σ/(t +
1)#th ciphertext. Thus, if 0 ≤ σ < n then Alice retrieves Dσ , and if σ
∈ {0, . . . , n − 1}
then Alice retrieves a close-to-uniformly random value.

The case t = 1 is different. In this case, we are not aware of a protocol with the
communication of &n/2'+O(1) ciphertexts. The main problem is that the CDS protocol
for showing that x ∈ {0, 1} by methods of [LL07] requires Bob to send two ciphertexts
to Alice, because there is no way to check that σ0 ∈ {0, 1} by using a single linear
polynomial. Instead, as in [LL07], we transfer Correct1i twice, where the first time Alice
obtains the answer if σ0 = 0 and in the second time Alice obtains the answer if σ0 = 1;
this corresponds to the protocols of [AIR01, LL07]. More precisely, assume that 2 | n.
In OTX1, Alice transfers to Bob one public key and two ciphertexts of σ1 = "σ/2# and

448 H. Lipmaa

σ0 = σ mod 2. For every 0 ≤ i < n/2, Bob forwards to Alice random encryption of
the vector (Correct1i (σ), Correct1i (σ)) + CDSX′

i(σ1, σ0), where

CDSX′
i(σ1, σ0) := (� · (σ1 − i) + � · σ0, � · (σ1 − i) + � · (σ0 − 1)) . (6)

Thus, the communication of OTX1 is 1 public key and n + 2 ciphertexts.

Full Description of (n, 1)-OTX2. We now follow up with a precise definition of the
(n, 1)-OTXt protocol. For simplicity’s sake, we only give an implementation in the
case t = 2 and assume that one uses the BGN cryptosystem. The general case is a
straightforward extension.

Let (K, E ,D) be the BGN cryptosystem with plaintext group order N ; let p be the
smallest prime divisor of N . Assume Alice’s private input is 0 ≤ σ < n and Bob’s
private input is D = (D0, . . . , Dn−1). Fix � < log2 p such that doing O(2�/2) steps
is feasible; for example, � := 64. (For the decryption to be polynomial-time in n, one
needs that � = O(log n). However, in practical applications n is too small for the
asymptotic notion to start to become relevant.) Without loss of generality, assume that
3 | n. The protocol description follows:

1. Alice runs K to generate a new secret/public key pair (sk, pk). She stores sk. She
computes c2 ← Epk(σ2; U(R)), c1 ← Epk(σ1; U(R)) and c0 ← Epk(σ0; U(R)),
for σi computed according to Eq. (4), and sends (pk, c2, c1, c0) to Bob.

2. If c2, c1 or c0 is not a valid ciphertext then Bob rejects. Otherwise, Bob computes
c ← c3

2c
2
1c0, di ← Epk(i; 0) for i ∈ {1, . . . , n}, and a vector of ciphertexts b =

(b1, . . . , bn/3), where

fi ←e(c2/di, g)U(ZN) · e(c1/d1, c1)U(ZN) · e(c0/d1, c0)U(ZN) · e(c1, c0)U(ZN) ,

bi ←e(d3i−2/a, d3i−1/a)D3i/2 · e(a/d3i, d3i−2/a)D3i−1 ·

e(a/d3i, a/d3i−1)D3i−2/2 · fi · hU(R)
1

for i ∈ {1, . . . , n/3}, and sends b to Alice.
3. Alice outputs Da

pk(b	σ/3
), or “reject” if decryption is not successful.

Theorem 1. Assume that the BGN cryptosystem is (τpkc, εpkc)-IND-CPA secure,
(G, GT , e) is a (τg , εg)-SD group, that the public key is correctly generated with N =
pq and p < q, and that � = O(log n) � log2 p. Then the (n, 1)-OTX2 protocol is
computationally (τpkc − O(1), 3εpkc; τg, εg)-relaxed-secure.

Proof.
CORRECTNESS: clearly, if cj is generated correctly for j ∈ {0, 1, 2}, then bi is a ran-
dom associated encryption of a message distributed according to Xi := Correct2i (σ) +
CDSX2

i (σ2, σ1, σ0). Clearly, if σ = 3σ2+2σ1+σ0 ∈ {3i, 3i + 1, 3i + 2} then e = Dσ.

ALICE’S PRIVACY: the only thing Bob sees is 3 ciphertexts (together with a fresh public
key pk). Therefore, Alice’s privacy follows directly from the IND-CPA security of the
BGN cryptosystem.

BOB’S PRIVACY: we need to construct a simulator that on inputs (pk, Dσ, c2, c1, c0)
solely, where pk is a random public key and σ ← Dsk(c3

2c
2
1c0), computes a second

New Communication-Efficient Oblivious Transfer Protocols 449

round message that has almost the same distribution as b, that is, it is a random associ-
ated encryption of Xi. Simulator does the following. It rejects if any of ci is not a valid
ciphertext. First, if σ
∈ {0, . . . , n − 1}, then it outputs a random associated encryption
of a random element from U(ZN). On the other hand, in this case, Xi is a random el-
ement of either ZN or of some nontrivial subgroup of ZN (e.g., when σ1 = p). Thus,
Xi and U(ZN) are computationally (τg, εg)-indistinguishable by the subgroup decision
assumption. Second, if σ ∈ {0, . . . , n − 1} then the simulator outputs a random associ-
ated encryption of Dσ. Clearly, in this case simulator’s output has distribution Xi. �

An Alternative Family OTS. We will next give a short description of an alternative
family OTS of (n, 1)-OT� protocols. In OTSt, Bob cryptocomputes polynomials

Correctt−1
i (σ) + CDSSt

i(σ) ,

where Correctt−1
i is as defined before and CDSSt

i is another, simpler, CDS polynomial.
More precisely, assume that t | n. In OTSt, Alice transfers a new public key and a
random encryption of σ, and Bob replies with n/t random encryptions of Correctti(σ)+
CDSSt

i(σ), where

CDSSt
i(σ) := � ·

t−1∏
j=0

(σ − (ti + j)) (7)

for 0 ≤ i ≤ n/t − 1.
Therefore, in OTSt, Alice transfers 1 public key and 1 ciphertext, while Bob transfers

&n/t' ciphertexts (as opposed to 3 and &n/(t + 1)' ciphertexts in the case of OTXt).
Clearly, OTS1 corresponds to the oblivious transfer protocol from [AIR01, LL07]. The
only other current instantiation is OTS2 when coupled with the BGN cryptosystem. To
the best of our knowledge, if � ≤ 64 and one disregards the length of the public key
and ciphertexts then OTS2 is the most communication-efficient available (2, 1)-OT�

protocol, having the total communication of 1 public key and 2 ciphertexts.

On the Use of Disclose-if-equal. Whenever the cryptosystem has efficient decryption,
one must use the disclose-if-equal protocol of [LL07]. In this case, one must assume
that � < log2 p − log2 n − ε, where 2−ε is the desired statistical privacy-level of Bob.

Comparison. In the case t = 1, the underlying cryptosystem must be additively ho-
momorphic. One can use either the lifted Elgamal (that has inefficient decryption) or
say the Paillier [Pai99] or the Damgård-Jurik [DJ01]. Then, OTS1 corresponds resp. to
the Aiello-Ishai-Reingold protocol [AIR01] or to the Laur and Lipmaa protocol [LL07],
while OTX1 is a related but slightly less efficient protocol. Compared to the case t = 2,
the case t = 1 benefits from the existence of a wide variety of additively homomor-
phic public-key cryptosystems, shorter public keys, and efficient decryption that makes
it possible to obliviously transfer long strings with say � ≥ 680. On the other hand,
the number of transferred ciphertexts is larger than in the case of t = 2. Moreover, the
ciphertexts of existing additively homomorphic cryptosystems are twice longer than
the ciphertexts of the BGN cryptosystem. On the other hand, the ciphertexts of lifted
elliptic-curve-based Elgamal are shorter than the ciphertexts of the BGN cryptosystem.

450 H. Lipmaa

In the case t = 2, one uses a degree-2 homomorphic cryptosystem, for example,
the Boneh-Goh-Nissim cryptosystem [BGN05]. Compared to t = 1, one now trans-
fers less ciphertexts. Additionally, because these instantiations operate on the cipher-
texts of the BGN cryptosystem, they can be used in conjunction with other protocols
that rely on the BGN cryptosystem; such applications include efficient non-interactive
zero-knowledge proofs from [GOS06]. On the other hand, one is currently restricted
to the BGN cryptosystem that has longer public keys, compared to existing additively
homomorphic public-key cryptosystems, and inefficient decryption that only allows to
efficiently transfer strings with say � ≤ 64.

From the communication-efficiency view-point, if neglecting the length of the public
key and assuming that � is small, for n ≤ 15, the most efficient new protocol is (n, 1)-
OTS2, while for n > 15, the most efficient protocol is (n, 1)-OTX2. In many common
applications of oblivious transfer, the public key is shared with other protocols and thus
does not incur a communication overhead.

Note that both (n, 1)-OTX and (n, 1)-OTS are secure only if one assumes that the
public key is correctly generated. As in the case of protocols based on known additively
homomorphic public-key cryptosystems, one needs that the smallest prime divisor of
N is sufficiently large, see [LL07]. This assumption can be modeled by saying that this
protocol is secure in the PKI model, or by letting Alice prove once in zero knowledge
that the public key is correct and then using the same public key in many instances of
the protocol. Yet another possibility is to use Lenstra’s ECM algorithm to verify that N
does not have small prime factors. These and other remedies are thoroughly discussed
in [LL07]. In the case of the BGN, because it does not have efficient decryption, it is
sufficient to verify that the smallest prime divisor p of N is larger than say 2160.

4 Sublinear Oblivious Transfer

A common methodology to construct (n, 1)-OT protocols is to first construct
a communication-efficient (n, 1)-CPIR protocol and then apply an efficient transforma-
tion to transfer it to a comparably efficient (n, 1)-OT protocol. Examples of
communication-efficient (n, 1)-CPIR protocols include [Lip05, GR05]. A typical trans-
formation was proposed in [AIR01] and later refined in [LL07] to work with existing
additively homomorphic cryptosystems. Next, we generalize the approach of [AIR01,
LL07].

We now describe a new transformation based on OTXt for t > 1; the transformation
based on OTSt is similar. Without loss of generality, assume that (t + 1) | n. Recall
that during the OTXt protocol, Bob first constructs a database of n/(t + 1) ciphertexts,
such that the ith ciphertext encrypts Dσ if "σ/(t+1)# = i, and �, otherwise. Then Bob
transfers the whole database of ciphertexts to Alice. Instead, we can use in parallel any
two-message (n/(t + 1), 1)-CPIR protocol so that Alice will obtain the "σ/(t + 1)#th
ciphertext. The resulting transformed protocol is clearly relaxed-secure: first, because
OTXt is relaxed-secure even if Alice sees all intermediate ciphertexts, the composed
protocol is also relaxed-secure. Second, Bob only sees the first messages of Alice of
both protocols and thus the composed protocols preserves Alice’s privacy iff both OTXt

and the used CPIR protocol preserve Alice’s privacy.

New Communication-Efficient Oblivious Transfer Protocols 451

In general, let Π1 be the OTXt (or say the OTSt) protocol, and let Π2 be an arbi-
trary CPIR protocol. We denote the transformed protocol by Π2 ◦ Π1, the case Π1 =
OTS1 corresponds to the transformation proposed in [AIR01, LL07]. Clearly, if Π1 on
database elements of length � has the first message of C1(n, �) bits and the second mes-
sage of C2(n, �) ciphertexts, and Π2 on database elements of length λ with C3(n, λ)
bits of communication, then the transformed protocol Π2 ◦ Π1 has the communication
of C1(n, �) + C3(C2(n, �), λ) bits. Here, λ is the length of ciphertexts in bits. Thus,
Π2◦OTS1 has the communication of |pk|+&2 log2 N'+C3(n, &2 log2 N') bits, where
|pk| = &log2 N' ≈ 1536 bits. On the other hand, Π2 ◦ OTXt has the communication
of |pk| + 3&log2 N' + C3(&n/(t + 1)', &log2 N') bits, where |pk| is somewhat longer
compared to the case of OTS1.

If Π2 is the Gentry-Ramzan CPIR protocol [GR05] with communication O(log2 n+
�) then the total communication of Π2 ◦ OTS1 is |pk| + O(log2 n + 2 log2 N). In
this case, the total communication of Π2 ◦ OTXt is not significantly different unless
t is large. On the other hand, the communication decrease is significant in the case of
less communication-efficient CPIR protocols. Recall that Lipmaa’s (n, 1)-CPIR proto-
col [Lip05]—when used on top of the Damgård-Jurik cryptosystem [DJ01]—has the
communication of (

1
2
· log2

2 n + (s + 3/2) · log2 n + s

)
λ

bits, where λ = &log2 N', and s is the smallest integer such that sk > � where k is the
security parameter. Thus, applying Lipmaa’s CPIR protocol on the OTX2-transformed
database of n/3 ciphertexts results in the protocol Π2 ·OTX2 that has the communica-
tion of(

3(s + 1) +
1
2
· log2

2

n

3
+
(

(s + 1) +
3
2

)
· log2

n

3
+ (s + 1)

)
λ

=
(

1
2

log2
2 n +

(
s +

5
2
− log2 3

)
log2 n + (4 − log2 3) s + 4 +

5
2
· log2 3+

1
2
· log2

2 3
)

λ

bits. This means that—assuming that the strings to be transferred are short with say
� ≤ 264—the OTX2-transformation actually reduces the communication of Lipmaa’s
original CPIR protocol, on top of increasing its security. This same will be true with
virtually any superlogarithmic-communication CPIR protocol.

Recursive OTXt. We can recursively apply OTXt to itself. Bob’s original database
has n items, each � bits. The intermediate database, generated by OTXt has &n/(t+1)'
ciphertexts, each &log2 N' bits. One can next apply the (&n/(t+1)', 1)-OTXt protocol
ξ := &log2 N/�' times to retrieve all &log 2N' bits of the &n/(t + 1)'th intermediate
ciphertext. Continuing, in the level r recursion, Alice sends 1 public key and 3r cipher-
texts and Bob sends ξr−1 · &n/(t + 1)r−1' ciphertexts.

Interestingly, if there existed a degree-2 homomorphic cryptosystem with ξ = 2 then
this recursive construction would result in an O(log n) communication (n, 1)-OT pro-
tocol. More precisely, r ← (ln n − ln 6 + ln ln 1.5)/ ln 1.5 would result in the optimal

452 H. Lipmaa

communication of (3 lnn + 3− 3 ln 6 +3 ln ln 1.5)/ ln 1.5 ≈ 5.1 log2 n− 12.5 cipher-
texts. The same asymptotic result holds whenever ξ ≤ t, while the optimal case for
ξ ≥ t is just the trivial one with r = 1.

5 Related Work

Boneh, Goh and Nissim [BGN05] considered the application of degree-2 homomorphic
cryptosystems to construct efficient oblivious transfer protocols. They proposed two
similar but yet different (n, 1)-CPIR protocols. The next protocol is a symbiosis of
both that achieves the same communication complexity as their second protocol but
is somewhat simpler to execute. In addition, we provide the precise communication
complexity estimate. In this protocol, � = O(log n) as in (n, 1)-OTX. The database
is viewed as comprising of n1/3 chunks, each chunk containing n2/3 entires, where
Alice is interested in retrieving entry (I, J, K) of D. For 0 ≤ i, j < 3

√
n, Alice sends

Bob random encryptions of [i = I] and [j = J]. Bob uses the encryption scheme’s
homomorphic properties to compute associated encryptions of

DI,J,k =
∑

0≤i,j< 3√n

[i = I][j = J]Di,j,k

for 0 ≤ k < 3
√

n. Bob sends the 3
√

n resulting associated ciphertexts to Alice who
decrypts the Kth entry. As briefly mentioned in [BGN05], recursively applying this
scheme results in a communication complexity O(nελ) for any ε > λ. More pre-
cisely, assuming that a ciphertext is η� bits, after R rounds of recursion this protocol
has the communication of (2"3R/2# + η	3R/2
−1)n1/3R

ciphertexts. In the asymp-
totically optimal case 3R =

√
2 logη n, this results in the communication of (1 +

o(1)) exp(
√

2 ln η · ln n) ciphertexts. In the case of say η = 24 (for example, if ci-
phertexts are 1536 bits long and � = 64), this protocol is inferior to the protocol of
Stern [Ste98].

The essential differences, compared to OTX2, are: first, (n, 1)-OTX2 requires Al-
ice to send three ciphertexts and Bob to send &n/3' ciphertexts, while the protocols
of [BGN05] that correspond to one-dimensional case require Alice to send n cipher-
texts and Bob to send one ciphertext. Second, one can combine OTXt and OTSt with
an arbitrary existing sublinear computationally-private information retrieval protocol
to construct an almost as efficient oblivious transfer protocol. The oblivious transfer
protocols from [BGN05] do not seem to share this property. In the case of protocols
of [BGN05] it seems that one can only use standard communication-balancing tech-
niques that are not in par with the state-of-the art CPIR protocols of [Lip05, GR05].
Third, the protocols from [BGN05] are not private for Bob, and thus one must couple
them with say OTX2 to design a real oblivious transfer protocol. In this sense, the new
protocols are orthogonal to the protocols from [BGN05].

Open Problems. Constructing a degree-2 homomorphic cryptosystem with efficient
decryption is a major open problem. As we showed in Sect. 4, such a cryptosystem
would make it possible to construct another (n, 1)-OT protocol with O(log n) com-
munication. Constructing degree-t, for t > 2, homomorphic cryptosystems is another

New Communication-Efficient Oblivious Transfer Protocols 453

well-known open problem. We stress that not much is known about degree-t, t ≥ 2,
homomorphic cryptosystems. It may come out that the ciphertext lengths of such cryp-
tosystems grow linearly with t. A more specific open problem posed by this paper is to
construct a degree-1 homomorphic cryptosystem based (n, 1)-OT protocol (for exam-
ple, a more efficient version of OTX1) with communication O(1) + &n/2'.

Acknowledgments. We would like to thank Jens Groth and Brent Waters for helpful
comments. The author was partially supported by the Estonian Science Foundation,
grant 6848.

References

[AIR01] Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

[BF03] Boneh, D., Franklin, M.K.: Identity-Based Encryption from The Weil Pairing.
SIAM Journal of Computing 32(3), 586–615 (2003)

[BGN05] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In:
Kilian [Kil05], pp. 325–341

[DJ01] Damgård, I., Jurik, M.: A Generalisation, A Simplification And Some Applications
of Pailliers Probabilistic Public-Key System. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

[FIPR05] Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search And Oblivious
Pseudorandom Functions. In: Kilian [Kil05], pp. 303–324.

[GIKM00] Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting Data Privacy in Private
Information Retrieval Schemes. Journal of Computer and System Sciences 60(3),
592–629 (2000)

[GOS06] Groth, J., Ostrovsky, R., Sahai, A.: Perfect Non-Interactive Zero-Knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 338–359.
Springer, Heidelberg (2006)

[GR05] Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Con-
stant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidel-
berg (2005)

[IP07] Ishai, Y., Paskin, A.: Evaluating Branching Programs on Encrypted Data. In: Vad-
han, S. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg (2007)

[Kil88] Kilian, J.: Founding Cryptography on Oblivious Transfer. In: Proceedings of the
Twentieth Annual ACM Symposiumon Theory of Computing, Chicago, Illinois,
USA, 2-4 May 1988, pp. 20–31. ACM Press, New York (1988)

[Kil05] Kilian, J. (ed.): TCC 2005. LNCS, vol. 3378. Springer, Heidelberg (2005)
[Lip05] Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication.

In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp.
314–328. Springer, Heidelberg (2005)

[Lip08] Lipmaa, H.: Private Branching Programs: On Communication-Efficient Cryptocom-
puting. Technical Report 2008/107, International Association for Cryptologic Re-
search (2008), http://eprint.iacr.org/2008/107

[LL07] Laur, S., Lipmaa, H.: A New Protocol for Conditional Disclosure of Secrets And
Its Applications. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
207–225. Springer, Heidelberg (2007)

http://eprint.iacr.org/2008/107

454 H. Lipmaa

[NP05] Naor, M., Pinkas, B.: Computationally Secure Oblivious Transfer. Journal of Cryp-
tology 18(1), 1–35 (2005)

[Pai99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

[Ste98] Stern, J.P.: A New And Efficient All Or Nothing Disclosure of Secrets Protocol.
In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 357–371.
Springer, Heidelberg (1998)

[Yao82] Yao, A.C.-C.: Protocols for Secure Computations (Extended Abstract). In: 23rd An-
nual Symposium onFoundations of Computer Science, Chicago, Illinois, USA, 3–5
November 1982, pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)

A New (k, n)-Threshold Secret Sharing Scheme

and Its Extension

Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima,
and Toshiaki Tanaka

KDDI R&D Laboratories, Inc.,
2-1-15 Ohara, Fujimino-Shi, Saitama 356-8502, Japan

{kurihara,kiyomoto,ka-fukushima,toshi}@kddilabs.jp
http://www.kddilabs.jp/

Abstract. In Shamir’s (k, n)-threshold secret sharing scheme (thresh-
old scheme), a heavy computational cost is required to make n shares
and recover the secret. As a solution to this problem, several fast
threshold schemes have been proposed. This paper proposes a new
(k, n)-threshold scheme. For the purpose to realize high performance,
the proposed scheme uses just EXCLUSIVE-OR(XOR) operations
to make shares and recover the secret. We prove that the proposed
scheme is a perfect secret sharing scheme, every combination of k
or more participants can recover the secret, but every group of less
than k participants cannot obtain any information about the secret.
Moreover, we show that the proposed scheme is an ideal secret sharing
scheme similar to Shamir’s scheme, which is a perfect scheme such that
every bit-size of shares equals that of the secret. We also evaluate the
efficiency of the scheme, and show that our scheme realizes operations
that are much faster than Shamir’s. Furthermore, from the aspect of
both computational cost and storage usage, we also introduce how to
extend the proposed scheme to a new (k, L, n)-threshold ramp scheme
similar to the existing ramp scheme based on Shamir’s scheme.

Keywords: Secret sharing scheme, threshold scheme, threshold ramp
scheme, exclusive-or, entropy, random number, ideal secret sharing
scheme.

1 Introduction

A secret sharing scheme is an important tool for distributed file systems
protected against data leakage and destruction, secure key management sys-
tems, etc. The basic idea of secret sharing introduced by Shamir and Blakley
independently[1,2] is that a dealer distributes a piece of information (called a
share) about the secret to each participant such that qualified subsets of par-
ticipants can recover the secret but unqualified subsets of participants cannot
obtain any information about the secret. Shamir’s threshold scheme is based
on polynomial interpolation (‘Lagrange interpolation’) to allow any k out of n
participants to recover the secret.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 455–470, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.kddilabs.jp/

456 J. Kurihara et al.

However, Shamir’s scheme has two problems: large storage is required to retain
all the shares, and heavy computational cost is needed to make shares and recover
the secret due to processing a (k − 1)-degree polynomial.

In order to reduce each bit-size of shares in Shamir’s scheme, ramp secret
sharing schemes have been proposed [3,4,5,6,7] that involve a trade-off between
security and storage usage. In ramp schemes, we can consider intermediate sets,
which are neither qualified nor forbidden sets to recover the secret, and hence,
partially leak information on the secret. For instance, in the (k, L, n)-threshold
ramp scheme[3,4], we can recover the secret from arbitrary k or more shares,
but no information about the secret can be obtained from any k − L or less
shares. Furthermore, we can realize that every bit-size of shares is 1/L of the
bit-size of the secret. However, an arbitrary set of k− l shares is an intermediate
set which leaks information about the secret with equivocation (l/L)H(S) for
l = 1, 2, . . . , L, where S denotes the random variable induced by the secret s.

On the other hand, as a solution to the heavy computational cost problem
associated with Shamir’s scheme with no leak of information about the secret
from k− 1 or less shares, Ishizu et al. proposed a fast (2, 3)-threshold scheme[8].
By generalizing Ishizu et al.’s scheme for the number of participants, Fujii
et al. introduced a fast (2, n)-threshold scheme[9,10]. These schemes enable fast
computation to make shares and recover the secret from two or more shares by
using just EXCLUSIVE-OR(XOR) operations. In these schemes, no information
about the secret can be obtained from one share, but the secret can be recovered
from each pair of shares. Furthermore, every bit-size of shares equals the bit-size
of the secret as with Shamir’s scheme. Especially, in Fujii et al.’s scheme, shares
are constructed by concatenating XORed terms of a divided piece of the secret
and a random number with the properties of prime numbers. These XORed
terms are circulated in a specific pattern and do not overlap with each other.
Kurihara et al. proposed a fast (3, n)-threshold scheme using XOR operations[11]
as an extension of Fujii et al.’s scheme by constructing shares with the secret and
two sets of random numbers, which are concatenated XORed terms of a divided
piece of the secret and two random numbers. This (3, n)-threshold scheme is an
ideal scheme as with Shamir’s and Fujii et al.’s. Since no method has ever been
investigated to extend the circulation property of this (3, n)-threshold scheme,
an extension of this (3, n)-threshold scheme has not been proposed before.

Shiina et al. proposed another fast (k, n)-threshold scheme using XOR or
additive operations[12]. This scheme can be applied to a cipher or signature
which uses a homomorphism, and leaks no information about the secret from
less than k shares. However, every bit-size of shares is (nCk−n−1Ck) = O(nk−1)
times as large as the bit-size of the secret. To address this efficiency problem,
Kunii et al. introduced an alternative method[13] to construct shares in Shiina
et al.’s scheme. However, the bit-size of shares is log2 n or more times larger than
the bit-size of the secret.

Thus, how to construct a fast (k, n)-threshold scheme using XOR operations
such that every bit-size of shares equals the bit-size of the secret, where k ≥ 4
and arbitrary n, remained an open question.

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 457

Our Contributions. In this paper, we present a new (k, n)-threshold scheme
which realizes fast computation to make shares and recover the secret by using
just XOR operations. Our contribution can be summarized as follows:

– We realize a new (k, n)-threshold scheme by constructing shares with the
secret and k − 1 sets of random numbers, which are concatenated XORed
terms of a divided piece of the secret and k − 1 random numbers. These
XORed terms are circulated in a specific pattern with k dimensions, and do
not overlap with each other because the properties of prime numbers are
used.

– We show that the proposed scheme is a perfect secret sharing scheme, every
combination of k or more participants can recover the secret, but every group
of less than k participants cannot obtain any information about the secret.
We also show that the proposed scheme is an ideal secret sharing scheme
similar to Shamir’s scheme, which is a perfect scheme such that every bit-
size of shares equals that of the secret.

– By an implementation on a PC, we show that the proposed scheme is able
to make n shares from the secret and recover the secret from k shares more
quickly than Shamir’s scheme if n is not extremely large. Under our imple-
mentation, our scheme performs the operations 900-fold faster than Shamir’s
for (k, n) = (3, 11).

– We introduce how to extend our (k, n)-threshold scheme to a new (k, L, n)-
threshold ramp scheme which realizes not only fast computation but also
reduction of storage usage to retain n shares.

Organization. The rest of this paper is organized as follows: In Section 2,
we give several notations and definitions, and provide a definition of the secret
sharing scheme. In Section 3.1 of Section 3, we propose a new (k, n)-threshold
scheme using just XOR operations. Moreover, in Section 3.2, we prove that our
(k, n)-threshold scheme is an ideal secret sharing scheme as with Shamir’s, and
the efficiency of the proposed scheme is discussed in Section 4. In Section 5, we
introduce how to extend our (k, n)-threshold scheme to a new (k, L, n)-threshold
ramp scheme. Finally, we present our conclusions in Section 6.

2 Preliminaries

2.1 Notations and Definitions

Throughout this paper, we use the following notations and definitions:

– ⊕ denotes a bit-wise EXCLUSIVE-OR(XOR) operation.
– ‖ denotes a concatenation of binary sequences.
– n ∈ N denotes the number of participants.
– np is a prime number such that np ≥ n.
– Arithmetic operations (±, ×) on values of indexes of random numbers,

divided pieces of the secret, pieces of shares, their XORed terms, and
their random variables, are performed modulo np. Hence, Xc(a±b) denotes
Xc(a±b) mod np

.

458 J. Kurihara et al.

– H(X) denotes Shannon’s entropy of a random variable X .
– |X | denotes the number of elements of a finite set X .
– 2X denotes the family of all subsets of X .

2.2 Secret Sharing Scheme

Let P = {Pi | 0 ≤ i ≤ n − 1, i ∈ N0} be a set of n participants. Let D(
∈ P)
denote a dealer who selects a secret s ∈ S and gives a share wi ∈ Wi to every
participant Pi ∈ P , where S denotes the set of secrets, and Wi denotes the set
of possible shares that Pi might receive.

The access structure Γ (⊂ 2P) is a family of subsets of P which contains
the sets of participants qualified to recover the secret. Especially, Γ of a (k, n)-
threshold scheme is defined by Γ = {A ∈ 2P | |A| ≥ k}.

Let S and Wi be the random variables induced by s and wi, respectively. A
secret sharing scheme is perfect if

H(S|VA) =
{

0 (A ∈ Γ)
H(S) (A
∈ Γ) , (1)

where A ⊂ P denotes a subset, and VA = {Wi | Pi ∈ A} denotes the set of
random variables of shares that are given to every participant Pi ∈ A. For any
perfect secret sharing scheme, the inequation H(S) ≤ H(Wi) is satisfied[14,15].

Let p(s) and p(wi) be the probability mass functions of S and Wi defined
as p(s) = Pr{S = s} and p(wi) = Pr{Wi = wi}, respectively. In general, the
efficiency of a secret sharing scheme is measured by the information rate ρ [16]

defined by ρ = H(S)
max
Pi∈P

H(Wi)
. The maximum possible value of ρ equals one for

perfect secret sharing schemes. When the probability distributions on S and
Wi are uniform, i.e. p(s) = 1/|S| and p(wi) = 1/|Wi|, the information rate is

ρ = log2 |S|
max
Pi∈P

log2 |Wi| , that is, the ratio between the length (bit-size) of the secret

and the maximum length of the shares given to participants. A secret sharing
scheme is said to be ideal if it is perfect and ρ = 1 [16,17,18]. Shamir’s scheme[1]
is recognized as being a typical ideal secret sharing scheme.

3 A (k, n)-Threshold Scheme

In this section, we describe the proposed (k, n)-threshold scheme. This scheme
enables to make n shares (distribution) and recover the secret from k or more
shares (recovery) using just XOR operations, for arbitrary threshold k and the
number of participants n. We realize this scheme by extending the circulation
property of Kurihara et al.’s (3, n)-threshold scheme[11]. Moreover, we show that
our scheme is an ideal scheme as with Shamir’s.

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 459

Table 1. Distribution Algorithm of Pro-
posed (k, n)-Threshold Scheme

INPUT : s ∈ {0, 1}d(np−1)

OUTPUT : (w0, . . . , wn−1)

1: s0 ← 0d, s1 ‖ · · · ‖ snp−1 ← s

2: for i ← 0 to k − 2 do

3: for j ← 0 to np − 1 do

4: ri
j ← GEN({0, 1}d)

5: end for

6: end for (discard r0
np−1)

7: for i ← 0 to n − 1 do

8: for j ← 0 to np − 2 do

9: w(i,j) ←
��k−2

h=0 rh
h·i+j

�
⊕ sj−i

10: end for

11: wi ← w(i,0) ‖ · · · ‖ w(i,np−2)

12: end for

13: return (w0, . . . , wn−1)

Table 2. Recovery Algorithm of Pro-
posed (k, n)-Threshold Scheme

INPUT : (wt0 , wt1 , . . . , wtk−1)

OUTPUT : s

1: for i ← 0 to k − 1 do

2: w(ti,0) ‖ · · · ‖ w(ti,np−2) ← wti

3: end for

4: w ← (w(t0,0), . . . , w(t0,np−2), . . . ,

w(tk−1,0), . . . , w(tk−1,np−2))
T

5: M ← MAT (t0, . . . , tk−1)

6: (s1, . . . , snp−1)
T ← M · w

7: s ← s1 ‖ · · · ‖ snp−1

8: return s

3.1 Our Scheme

In this scheme, the secret s ∈ {0, 1}d(np−1) needs to be divided equally into np−1
blocks s1, s2, . . . snp−1 ∈ {0, 1}d, where np is a prime number such that np ≥ n,
and d > 0 denotes the bit-size of every divided piece of the secret. Also, D uses n
shares, w0, · · · , wn−1, of a (k, np)-threshold scheme to construct a (k, n)-threshold
scheme if the desired number of participants n is a composite number.

Table 1 and Table 4 denote the distribution algorithm and the structure of
shares in our (k, n)-threshold scheme, respectively. To make shares, our (k, n)-
threshold scheme requires 13 steps: First, D divides the secret s ∈ {0, 1}d(np−1)

into np − 1 pieces of d-bit sequence s1, . . . , snp−1 ∈ {0, 1}d equally at step 1,
where s0 denotes a d-bit zero sequence, i.e. s0 = 0d and s0 ⊕ a = a. We
call this d-bit zero sequence a ‘singular point’ of divided pieces of the secret.
1 Next, at step 2-6, (k − 1)np − 1 pieces of d-bit random number r0

0 , . . . , r
0
np−2,

r1
0 , . . . , r

1
np−1, . . . , r

k−2
0 , . . . , rk−2

np−1 are chosen from {0, 1}d independently from
each other with uniform probability 1/2d, where GEN(X) denotes a function to
generate an (log2 |X |)-bit random number from a finite set X . At step 7-12, D
makes pieces of shares by means of the following equation:

w(i,j) =

{
k−2⊕
h=0

rh
h·i+j

}
⊕ sj−i, (2)

1 It is not necessary for the singular point to be s0, i.e. we can set an arbitrary singular
point sm (0 ≤ m ≤ np − 1) and the others are np − 1 divided pieces of the secret.
For the sake of simplicity, we suppose that the singular point is s0 in this paper.

460 J. Kurihara et al.

Table 3. Algorithm of the Function MAT ()

INPUT : t0, t1, . . . , tk−1

OUTPUT : M

1: for i ← 0 to k − 1 do

2: for j ← 0 to np − 2 do

3: v(ti,j) ← V EC(ti, j) =
�
i
np−1
j i

np

ti+j i
np

2ti+j . . . i
np

(k−2)ti+j
i
np−1
j−ti−1

�
4: end for

5: end for

6: G ← (v(t0,0), . . . ,v(tk−1,np−2))
T

7:

�
G2 G1 J1

Ø G0 J0

�
← FG

�	
G Ik(np−1)

�
=
	
Ḡ J

8: [Inp−1 M] ← BG ([G0 J0])

9: return M

Table 4. Structure of Shares of Proposed (k, n)-Threshold Scheme

j = 0 j = 1 · · · j = np − 2

w(0,j)

�
k−2
h=0

rh
0

�
⊕s0

�
k−2
h=0

rh
1

�
⊕s1 · · ·

�
k−2
h=0

rh
−2

�
⊕s−2

w(1,j)

�
k−2
h=0

rh
h

�
⊕s−1

�
k−2
h=0

rh
h+1

�
⊕s0 · · ·

�
k−2
h=0

rh
h−2

�
⊕s−3

...
...

...
. . .

...

w(n−1,j)

�
k−2
h=0

rh
h·(n−1)

�
⊕s−n+1

�
k−2
h=0

rh
h·(n−1)+1

�
⊕s−n+2 · · ·

�
k−2
h=0

rh
h·(n−1)−2

�
⊕s−n−1

where 0 ≤ i ≤ n−1, 0 ≤ j ≤ np−2. Finally, D concatenates these pieces and con-
structs shares wi = w(i,0) ‖ · · · ‖ w(i,np−2), and sends shares to each participant
through a secure channel. If n < np, step 7-12 does not work for 0 ≤ i ≤ np − 1
but it does for 0 ≤ i ≤ n − 1, and hence D does not generate np − n shares
wn, · · · , wnp−1. Thus, it is possible to add new participants Pn, · · · , Pnp−1 after
distribution by generating wn, · · · , wnp−1 anew as necessary. However, to gener-
ate new shares, k existing shares should be gathered, and all random numbers
and the secret should be stored.

Eq.(2) shows that these pieces of shares are circulated in a specific pattern
with k dimensions by the indexes of a divided piece of the secret k random
numbers, and do not overlap with each other because the properties of prime
numbers are used.

Table 2 denotes the recovery algorithm in the scheme. First, each share is di-
vided into d-bit pieces at step 1-3. Next, at step 4, k(np − 1)-dimensional vector
w is generated, which is a vector of divided pieces of shares. At step 5, k(np−1)×

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 461

k(np−1) binary matrix M is obtained by the function MAT (). All divided pieces
of the secret, s1, . . . , snp−1, are recovered by calculating M ·w at step 6. Finally,
the secret s is recovered by concatenating s1, . . . , snp−1 at step 7.

Table 3 denotes the algorithm of the function MAT () which makes the matrix
M. First, (knp − 2)-dimensional binary vector v(ti,j) is obtained from indexes ti
and j at step 1-5. V EC() denotes the function to make v(ti,j), where ixy denotes
a x-dimentional binary row vector such that the only y-th element equals one
(0 ≤ y ≤ x− 1) and the others are zero. v(ti,j) is defined as the generator vector
of w(ti,j), i.e. w(ti,j) = v(ti,j) · r, where r is defined by

r = (r0
0 ,. . ., r

0
np−2, r

1
0 ,. . ., r

1
np−1, . . . , r

k−2
0 ,. . ., rk−2

np−1, s1,. . ., snp−1)T,

where s0 is omitted for the simple reason that s0 = 0d. For instance, v(0,1) =
(0100 01000 01000 1000) if k = 4 and np = 5. At step 6, the k(np−1)×(knp−2)
binary matrix G is generated by v(t0,0), . . . ,v(tk−1,np−2) as follows:

G =
(
v(t0,0), . . . ,v(t0,np−2), . . . ,v(tk−1,0), . . . ,v(tk−1,np−2)

)T
,

which is the generator matrix such that w = G · r. At step 7, the matrix
[G Ik(np−1)] is generated by column-wise concatenation, and transformed into
a row echelon form

[
Ḡ J

]
= FG

([
G Ik(np−1)

])
by performing the forward

elimination step of Gaussian elimination with the elementary row operations
on GF(2), where FG() and Ik(np−1) denote a forward elimination function and
the k(np − 1) × k(np − 1) identity matrix, respectively. Furthermore, Ḡ and J
correspond to the transformed matrices from G and Ik(np−1), respectively. And,[
Ḡ J

]
is divided into block matrices denoted as follows:

[
Ḡ J

]
=

[
G2 G1 J1

Ø G0 J0

]
,

where G0, G1 and G2 are an (np − 1) × (np − 1) block matrix, (k − 1)(np −
1) × (np − 1) block matrix and (k − 1)(np − 1) × (knp − np − 1) block matrix,
respectively. J0 and J1 are an (np − 1) × k(np − 1) block matrix and a (k −
1)(np−1)×k(np−1) block matrix, respectively. Ø denotes a null matrix. Then,
the backward substitution part of Gaussian elimination is executed on [G0 J0],
and we obtain the matrix

[
Inp−1 M

]
= BG([G0 J0]), where BG() and M

denote the function of backward substitution and a transformed matrix from
J0, respectively. Finally, MAT () outputs M as a matrix to recover s1, . . . , snp−1

from divided pieces of shares.
Our (k, n)-threshold scheme proposed in this paper is a direct extension of

Kurihara et al.’s (3, n)-threshold scheme[11] and Fujii et al.’s (2, n)-threshold
scheme[9] in terms of the structure of shares. Accordingly, the distribution and
recovery algorithms of our (k, n)-threshold scheme for k = 3 and k = 2 can
be utilized as Kurihara et al.’s (3, n)-threshold scheme and Fujii et al.’s (2, n)-
threshold scheme, respectively.

462 J. Kurihara et al.

3.2 The Proof of the Ideal Secret Sharing Scheme

Here, we introduce the following two theorems.

Theorem 1. Let A denote an arbitrary set of participants such that |A| ≤ k−1.
Then, since A is not in Γ of our proposed scheme, we have

H(S|VA) = H(S), (3)

where VA denotes a set of random variables of shares that are given to each
participant in A.

Proof (proof sketch). Let A = {Pt0 , . . . , Ptk−2} denote a set of k−1 participants,
where t0, . . . , tk−2 are arbitrary numbers such that 0 ≤ ti, tj ≤ n−1 and ti
= tj
if i
= j. Correspondingly, let VA = {Wt0 , . . . , Wtk−2} denote a set of k−1 random
variables, where Wt0 , . . . , Wtk−2 are induced by wt0 , . . . , wtk−2 , respectively. And
also, W(ti,0), . . . , W(ti,np−2) denotes random variables induced by divided pieces
of shares w(ti,0), . . . , w(ti,np−2).

The following condition is supposed: s1, . . . , snp−1, r0
0 , . . . , r

0
np−2, . . . , rk−2

0 ,
. . . , rk−2

np−1 are pairwise independent. And, r0
0 , . . . , r

0
np−2, . . . , r

k−2
0 , . . . , rk−2

np−1 are
chosen from the finite set {0, 1}d with uniform probability 1/2d.

We define generator matrices U and V which satisfy the following equation:

W = U · R ⊕ V · S,

= (w(t0,0),. . ., w(t0,np−2),. . ., w(tk−2,0),. . ., w(tk−2,np−2))T, (4)

where R and S are denoted by R = (r0
0 ,. . ., r

0
np−2, r

1
0 ,. . ., r

1
np−1,. . ., r

k−2
0 ,. . .,

rk−2
np−1)

T and S=(s1, . . . , snp−1)T, respectively. U and V are (k − 1)(np − 1) ×
(knp − 1) and (k − 1)(np − 1) × (np − 1) matrices, respectively. Eq.(4) can be
transformed into U·R = W⊕V·S. We consider the elementary row operation on
U in this equation. Then, from Lemma 1, all rows of U are linearly independent.
Hence, the hamming weight of each row of Ū is one or more, where Ū denotes
a row-reduced echelon form of U. Thus, each element of the vector obtained by
Ū ·R is a random number or a XORed combination of r0

0 , . . . , r
k−2
np−1. Therefore,

all the elements of the vector obtained by Ū ·R are random numbers which are
pairwise independent and uniformly distributed over {0, 1}d. This means that
W obtained from any S is uniformly distributed over {0, 1}d(k−1)(np−1). Thus,
since S is independent from W, we have H(S|W) = H(S). Therefore, Eq.(3) is
satisfied. �

Theorem 2. Let A denote an arbitrary set of participants such that |A| ≥ k.
Then, since A is in Γ of our proposed scheme, the following equation is satisfied:

H(S|VA) = 0. (5)

where VA denotes a set of random variables of shares that are given to each
participant in A.

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 463

Proof (proof sketch). Let t0, . . . , tk−1 be arbitrary numbers such that 0 ≤ ti, tj ≤
n − 1 and ti
= tj if i
= j. Arithmetic operations (±,×) on values of indexes
of random numbers, divided pieces of the secret, pieces of shares, their XORed
terms, and their random variables are performed modulo np.

We define generator matrices U and V which satisfy the following equation:

W=U · R ⊕ V · S,

=(w(t0,0),. . ., w(t0,np−2),. . ., w(tk−1,0),. . ., w(tk−1,np−2))T,

where R and S are denoted by R = (r0
0 ,. . ., r

0
np−2, r

1
0 ,. . ., r

1
np−1,. . ., r

k−2
0 ,. . .,

rk−2
np−1)

T and S = (s1, . . . , snp−1)T, respectively. Let
[
Ū V̄

]
denote the ma-

trix transformed from
[
U V

]
by the elementary row operation. Then, from

Lemma 1, we can obtain the following vector by using XOR operations on di-
vided pieces of shares:

[
Ū V̄

]
·
[
R
S

]
= (∗, . . . , ∗ | {sα ⊕ sβ}, {sα+1 ⊕ sβ+1}, . . . , {sα−2 ⊕ sβ−2})T .(

α= tk−1−tk−2−
k−3∑
i=0

ti, β =−tk−1+tk−2−
k−3∑
i=0

ti

)
.

Since np is a prime number, we can also obtain

sα−1⊕sβ−1 =
np−2⊕
m=0

(sα+m ⊕ sβ+m).

Hence, we can consider the set X ={xm =sα+m⊕sβ+m|0≤m≤np−1} to recover
the secret. Then, since {pC =2p(tk−2−tk−1) | 0≤p≤np−1} is an additive group
with order np,

{C, 2C,. . ., (np − 1)C}≡{1,. . ., np − 1} (mod np)

is satisfied. Therefore, since s0 = 0d was inserted as a singular point, we can
recover all the divided pieces of the secret sequentially as follows:

m = −α : sC = x−α,
m = C − α : s2C = xC−α ⊕ sC ,

...
...

m = (np − 1)C − α : s(np−1)C = x(np−1)C−α ⊕ s(np−2)C ,

Therefore, since all the divided pieces of the secret can be recovered from k
shares, Eq.(5) is satisfied. �

From these two theorems, the access structure Γ of our scheme is denoted by
Γ = {A ∈ 2P | |A| ≥ k}, and Eq.(1) is satisfied. Therefore, our scheme is a
perfect secret sharing scheme. Furthermore, since every bit-size of shares equals
the bit-size of the secret if we can suppose that s ∈ {0, 1}d(np−1) (d > 0), i.e.

464 J. Kurihara et al.

10-2

10-1

100

101

102

103

104

105

(3,11) (3,59) (3,109) (5,11) (10,11) (10,23)

A
ve

ra
ge

 P
ro

ce
ss

in
g

T
im

e
(S

ec
)

(Threshold k, Number of Participants n)

Our Scheme (Distribution)
Shamir’s Scheme (Distribution)

Our Scheme (Recovery)
Shamir’s Scheme (Recovery)

Fig. 1. Distribution and Recovery Processing Time for n = np

the size of the secret is d(np − 1) bits,2 the information rate ρ equals one. Thus,
our scheme is ideal as with Shamir’s.

4 Evaluation of Efficiency

In this section, we evaluate the efficiency of our scheme by comparing it with
Shamir’s scheme. First, we show the result of computer simulation by imple-
menting both our scheme and Shamir’s. Next, we consider the two schemes from
the perspective of computational cost.

Computer Simulation. We compared the proposed scheme with that of
Shamir’s for (k, n) = (3, 11), (3, 59), (3, 109), (5, 11), (10, 11) and (10, 23) by
implementation on a PC, where every scheme is implemented for n = np. Fig.1
denotes the processing time required to make n(= np) shares from 4.5 MB data
(secret) and recover the 4.5 MB secret from k shares, w0, · · · , wk−1 by using our
scheme and Shamir’s scheme. The simulation environment and conditions are
summarized in Table 5. For the implementation of Shamir’s scheme, we used
SSSS Version 0.5[19], which is a free software licensed under the GNU GPL.
An 8-byte block was processed in each cycle in the distribution and recovery
operations under Shamir’s scheme. In Fig.1, the horizontal axis and vertical axis
denote pairs of threshold and the number of participants, i.e. (k, n), and the
processing time, respectively.

2 If the size of the secret s were not multiple of (np−1), it is required to apply padding
operations to the secret bit sequence to make shares and hence the bit-size of each
share is larger than that of the secret.

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 465

Table 5. Simulation Environment and Conditions

CPU / RAM : Pentium 4 3.0GHz / 2.0GB
Operating system : Debian GNU/Linux 4.0
Compiler : GCC 4.1
Source of random numbers : /dev/urandom

Size of the secret s : 4.5MB
(k, n) : (3, 11), (3, 59), (3, 109), (5, 11), (10, 11), (10, 23)

Implementation of Shamir’s scheme : SSSS Version 0.5[19]
Operating unit in Shamir’s scheme : 8 byte/operation

This graph shows that our scheme performed processing much faster than
Shamir’s. In (3, 11)-threshold schemes, our scheme was more than 900-fold faster
than Shamir’s in terms of both distribution and recovery. Similarly, in (3, 59),
(3, 109), (5, 11), (10, 11) and (10, 23)-threshold schemes, Fig.1 shows that our
scheme achieved far more rapid processing than Shamir’s.

Consideration. In our proposed distribution algorithm, step 9 at Table 1 re-
quires (k−2)d bitwise XOR operations to make one divided piece of share w(i,j)

which is constructed with s0, or else, (k − 1)d bitwise XOR operations to make
w(i,j) constructed without s0. Thus, (np − 2)(k− 1)d+(k− 2)d XOR operations
are required to make each share of w0, . . . , wnp−2. Furthermore, (np −1)(k−1)d
XOR operations are required to make wnp−1. Hence, the average number of

XOR operations to make one share is
{

(k − 1) − 1
np

}
· log2 |S|. Therefore, our

distribution algorithm requires an average of{
(k − 1) − 1

np

}
n · log2 |S| = O(kn) · log2 |S|,

bitwise XOR operations to make n shares. If n = np, it equals {(k − 1)n −
1} · log2 |S|. Since the cost of modulo np operations on indexes can be regard
as being negligible by using the fixed generator matrix in a manner similar to
the recovery algorithm, we omit the cost of the operations here for the sake of
simplicity.

On the other hand, in the proposed recovery algorithm, we can assume that
at the most {k(np − 1)− 1}d XOR operations are required to recover one of the
divided pieces of the secret with all divided pieces of k shares, and at the most
{k(np−1)−2}d XOR operations are required to recover one of the other divided
pieces of the secret with k(np−1)−1 divided pieces of k shares. Thus, the upper
bound of the number of XOR operations required to recover the secret by using
a block matrix M is roughly denoted by{

k(np − 1) − 2np − 3
np − 1

}
· log2 |S| = O(knp) · log2 |S|.

The recovery algorithm also requires O(k3np
3) bitwise XOR operations to exe-

cute forward elimination (step 7 of Table 3) and partial backward substitution

466 J. Kurihara et al.

(step 8 of Table 3) of Gaussian elimination as a pre-computation cost to obtain
M at the function MAT ().

On the other hand, in Shamir’s scheme, O(kn) and O(k log2 k) arithmetic
operations are required to make shares and recover the secret, respectively[1].

From Fig.1, it is evident that the processing time for distribution in both
Shamir’s and our scheme is linearly increasing with each of k and n. However,
though the processing time for recovery in Shamir’s scheme is constant and in-
dependent of n if threshold k is fixed, that of our scheme increases as the number
of participants n(= np) grows in Fig.1. The computational cost of recovery in
Shamir’s scheme depends only on k, but that in our scheme depends on both k
and np. Thus, though our scheme is much more efficient than Shamir’s for not
so large np as shown in Fig.1, our scheme will not perform faster processing to
recover the secret than Shamir’s if np is extremely large. We will determine the
upper bound of np for the value of k as a future work, in which our scheme will
be shown to be faster than Shamir’s.

5 How to Extend Our Scheme to a Fast Ramp Scheme

In terms of improved efficiency for both computational cost and storage usage,
a (k, L, n)-threshold ramp scheme[4,3] based on our (k, n)-threshold scheme can
be realized. In this section, we briefly show how the new ramp scheme can be
constructed.

In the distribution phase of our (k, L, n)-threshold ramp scheme (1 ≤ L ≤
k − 1), the differences from our (k, n)-threshold scheme can be summarized as
follows:

– The secret s ∈ {0, 1}dL(np−1) is equally divided into L(np − 1) pieces
s0
0,. . . ,s

0
np−2 ,. . . ,sL−1

0 ,. . . ,sL−1
np−2 ∈ {0, 1}d. And, the singular points in di-

vided pieces of the secret are s0
np−1, . . . , s

L−1
np−1 = 0d.

– To make n shares, the dealer D generates k − L sets of random numbers
{r0

0 , . . . , r
0
np−2}, {r1

0 , . . . , r
1
np−1}, . . . , {rk−L−1

0 , . . . , rk−L−1
np−1 }, where the bit-

size of each element in every set is d.
– The dealer makes pieces of shares w(i,j) by the following equation:

w(i,j) =

(
k−L−1⊕

h=0

rh
h·i+j

)
⊕
(

L−1⊕
h=0

sh
(k−L+h)·i+j

)
.

The above differences mean that the ramp scheme can be realized by replacing
L − 1 sets of random numbers by an L − 1 set of divided pieces of the secret,
where each set of divided pieces of the secret has a singular point. On the other
hand, we can recover the secret from k shares by similar recovery algorithm
to our (k, n)-threshold scheme. The differences in the recovery phase are only
the area of the generator matrix on which the partial backward substitution is
performed and hence the size of matrix M.

Then, the bit-size of each share is 1/L of the bit-size of the secret, and the
efficiency in terms of computational cost for both distribution and recovery is

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 467

same as our (k, n)-threshold scheme: An average of O(kn) · log2 |S| bitwise XOR
operations is required to make n shares. To generate matrix M, O(k3n3

p) bitwise
XOR operations are required. Also, the upper bound of bitwise XOR operations
to recover the secret by using M is O(knp) · log2 |S|.

In a manner similar to [4], it can be proved that the security property of this
ramp scheme is same as Yamamoto’s ramp scheme based on Shamir’s scheme.

6 Conclusion

In this paper, we proposed a new (k, n)-threshold secret sharing scheme which
uses just XOR operations to make shares and recover the secret, and we proved
that the proposed scheme is an ideal secret sharing scheme. We estimated the
computational cost in our scheme and Shamir’s scheme for values of k and n.
Also, we implemented our scheme on a PC for specific parameters, and showed
that our scheme was more efficient than Shamir’s in terms of computational cost
provided n is not extremely large. Moreover, we introduced an extension of our
scheme to a new (k, L, n)-threshold ramp scheme, which can realize both fast
computation and reduction of storage usage.

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

2. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS, vol. 48, pp. 313–
317 (1979)

3. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 242–269. Springer, Heidelberg (1985)

4. Yamamoto, H.: On secret sharing systems using (k, L, n) threshold scheme. IEICE
Trans. Fundamentals (Japanese Edition) J68-A(9), 945–952 (1985)

5. Kurosawa, K., Okada, K., Sakano, K., Ogata, W., Tsujii, T.: Non perfect secret
sharing schemes and matroids. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS,
vol. 765, pp. 126–141. Springer, Heidelberg (1994)

6. Ogata, W., Kurosawa, K.: Some basic properties of general nonperfect secret shar-
ing schemes. J. Universal Computer Science 4(8), 690–704 (1998)

7. Okada, K., Kurosawa, K.: Lower bound on the size of shares of nonperfect secret
sharing schemes. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994.
LNCS, vol. 917, pp. 34–41. Springer, Heidelberg (1995)

8. Ishizu, H., Ogihara, T.: A study on long-term storage of electronic data. In: Proc.
IEICE General Conf., vol. D-9-10(1), p. 125 (2004) (in Japanese)

9. Fujii, Y., Tada, M., Hosaka, N., Tochikubo, K., Kato, T.: A fast (2, n)-threshold
scheme and its application. In: Proc. CSS 2005, pp. 631–636 (2005) (in Japanese)

10. Hosaka, N., Tochikubo, K., Fujii, Y., Tada, M., Kato, T.: (2, n)-threshold secret
sharing systems based on binary matrices. In: Proc. SCIS. pp. 2D1–4 (2007) (in
Japanese)

11. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (3, n)-threshold
secret sharing scheme using exclusive-or operations. IEICE Trans. Fundamen-
tals, E91-A(1), 127–138 (2008)

468 J. Kurihara et al.

12. Shiina, N., Okamoto, T., Okamoto, E.: How to convert 1-out-of-n proof into k-out-
of-n proof. In: Proc. SCIS 2004, pp. 1435–1440 (2004) (in Japanese)

13. Kunii, H., Tada, M.: A note on information rate for fast threshold schemes. In:
Proc. CSS 2006, pp. 101–106 (2006) (in Japanese)

14. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. Inform. Theory 29(1), 35–41 (1983)

15. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. Cryptology 6, 35–41 (1983)

16. Blundo, C., De Santis, A., Gargano, L., Vaccaro, U.: On the information rate of
secret sharing schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
149–169. Springer, Heidelberg (1993)

17. Stinson, D.R.: Decomposition constructions for secret sharing schemes. IEEE
Trans. Inform. Theory 40(1), 118–125 (1994)

18. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Florida (1995)
19. Poettering, B.: SSSS: Shamir’s Secret Sharing Scheme,

http://point-at-infinity.org/ssss/

Appendix 1: Lemma 1

In this appendix, we present Lemma 1, which shows the linear independence
and dependence of rows of generator matrix G. However, since the proof is too
long to present in a paper because of the description about the elementary row
operation on G, we omit a detailed proof.

Lemma 1. Let t0, . . . , tL−1 denote indexes of L− 1 shares, which are arbitrary
numbers such that 0 ≤ ti, tj ≤ n − 1 and ti
= tj if i
= j. Arithmetic operations
(±,×) on values of indexes of matrices, vectors, random numbers, divided pieces
of the secret, pieces of shares and their XORed terms are performed modulo np.

Let the vectors S and R be denoted by S = (s0, s1,. . ., snp−1)T, and, R =
(r0

0 ,. . ., r
0
np−2, r

1
0 ,. . ., r

1
np−1,. . ., r

k−2
0 ,. . ., rk−2

np−1)
T, respectively. Let the matrices U

and V be generator matrices of L(np − 1) pieces of L shares such that

W = U · R ⊕ V · S

=
(
w(t0,0), . . . , w(t0,np−2), . . . , w(tL−1,0), . . . , w(tL−1,np−2)

)T
,

where though s0 = 0d is a singular point, we include s0 as a variable in S to
describe V briefly.

Then, the following equation is satisfied:

rank
([

U V
])

=
{

L(np − 1) (1 ≤ L ≤ k − 1)
k(np − 1) (L ≥ k) .

Remark 1. From Lemma 1, all rows of U are linearly independent if 1 ≤ L ≤
k − 1, and all rows of U are linearly dependent if L ≥ k. Moreover,

[
U V

]
can

be transformed into
[
Ū V̄

]
by the elementary row operation if L = k, which

http://point-at-infinity.org/ssss/

A New (k, n)-Threshold Secret Sharing Scheme and Its Extension 469

[
Ū V̄

]
·
[
R
S

]
=(∗,. . ., ∗ | {sα ⊕ sβ}, {sα+1 ⊕ sβ+1}, . . . , {sα−2 ⊕ sβ−2})T . (6)(

α = −
k−3∑
i=0

ti − tk−2 + tk−1, β = −
k−3∑
i=0

ti + tk−2 − tk−1

)
.

Proof (proof sketch). U and V can be denoted by

U =

⎛
⎜⎜⎜⎝

Inp−1 E(t0) E(2t0) · · · E((k−2)t0)

Inp−1 E(t1) E(2t1) · · · E((k−2)t1)

...
...

...
. . .

...
Inp−1 E(tL−1) E(2tL−1) · · · E((k−2)tL−1)

⎞
⎟⎟⎟⎠ , V =

⎛
⎜⎜⎜⎝

E((np−1)t0)

E((np−1)t1)

...
E((np−1)tL−1)

⎞
⎟⎟⎟⎠ ,

respectively. Inp−1 denotes an (np − 1)× (np − 1) identity matrix and E(j) (0 ≤
j ≤ np − 1) denotes the following (np − 1) × np matrix:

E(j) =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0...
. . .

...
... Inp−j

0 · · · 0 0
0 0 · · · 0

Ij−1

...
...

. . .
...

0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ . (7)

Then, by the elementary row operation on [U V], we can obtain the following
matrix M if 1 ≤ L ≤ k − 1:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

Inp−1 E(t0) ∗ · · · ∗ ∗ · · · ∗ E(−t0)

Ø E(2)
(t0,t1)

∗ · · · ∗ ∗ · · · ∗ E(2)
(−t0,−t1)

Ø Ø E(2)
(2t1,2t2)

· · · ∗ ∗ · · · ∗ E(2)
(f2(t2),g2(t2))...

...
...

. . .
...

...
. . .

...
...

Ø Ø Ø · · · E(2)
(2tL−2,2tL−1)

∗ · · · ∗ E(2)
(fL−1(tL−1),gL−1(tL−1))

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where E(2)
(i,j) denotes E(2)

(i,j) = E(i) ⊕ E(j). fm(ti) and gm(ti) are denoted by

fm(ti)=−
m−2∑
j=0

tj−tm−1+ti, gm(ti)=−
m−2∑
j=0

tj +tm−1−ti,

respectively. Since the rank of E(2)
(i,j) equals np − 1 if i
≡ j (mod np), the rank of

M equals L(np − 1) and all rows of U are linearly independent if 1 ≤ L ≤ k− 1.

satisfies the following equation:

470 J. Kurihara et al.

In contrast, [U V] can be transformed into the following matrix M if L ≥ k:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Inp−1 E(t0) ∗ · · · ∗ E((k−2)t0)

Ø E(2)
(t0,t1) ∗ · · · ∗ E(2)

(−t0,−t1)

Ø Ø E(2)
(2t1,2t2) · · · ∗ E(2)

(f2(t2),g2(t2))...
...

...
. . .

...
...

Ø Ø Ø · · · E(2)
(2tk−3,2tk−2) E(2)

(fk−2(tk−2),gk−2(tk−2))

Ø Ø Ø · · · Ø E(2)
(fk−1(tk−1),gk−1(tk−1))

Ø Ø Ø · · · Ø Ø...
...

...
. . .

...
...

Ø Ø Ø · · · Ø Ø

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the rank of M equals k(np − 1) and all rows of U are linearly dependent
if L > k. Moreover, we can obtain the following vector with M:

E(2)
(fk−1(tk−1),gk−1(tk−1))

· S =

⎛
⎜⎜⎝

(sfk−2(tk−2) ⊕ sgk−2(tk−2))
(sfk−2(tk−2)+1 ⊕ sgk−2(tk−2)+1)...
(sfk−2(tk−2)−2 ⊕ sgk−2(tk−2)−2)

⎞
⎟⎟⎠ .

Therefore, by the elementary row operation on
[
U V

]
, we can obtain the vector

denoted at Eq.(6) if L = k. �

Appendix 2: A Short Example

We present a short description of the recovery procedure from w0, w1, w2 and w4

for k = 4 and n = np = 5 as an example. At step 5 of Table 2, we execute the
function MAT (0, 1, 2, 4) denoted at Table 3, and obtain 16 × 16 binary matrix
M. In the function MAT (), first, we obtain the generator matrix G from indexes
of shares, which is denoted as follows:

G =

⎛
⎜⎜⎝

I4 E(0) E(0) Ē(0)

I4 E(1) E(2) Ē(4)

I4 E(2) E(4) Ē(3)

I4 E(4) E(3) Ē(1)

⎞
⎟⎟⎠ ,E(j) =

⎛
⎜⎜⎜⎜⎜⎝

0...
0
1 Ē(j)
0...
0

⎞
⎟⎟⎟⎟⎟⎠ ,

where E(j) is the same matrix as Eq.(7). Then, by the elementary row operation
on [G I16] in MAT (), [I4 M] is obtained, which is denoted as follows:

[I4 M] =

⎛
⎝1000 1111 0001 0101 1011

0100 0111 1110 1000 0001
0010 0011 0110 0001 0100
0001 0001 0010 1010 1001

⎞
⎠ .

At step 6 of Table 2, all divided pieces of the secret are recovered with M and
w by the operation (s1, s2, s3, s4)T = M ·w.

Strong Accumulators from Collision-Resistant Hashing

Philippe Camacho1,�, Alejandro Hevia1,��, Marcos Kiwi2,���,
and Roberto Opazo3

1 Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, 3er piso, Santiago, Chile

{pcamacho,ahevia}@dcc.uchile.cl
2 Dept. Ing. Matemática & Ctr. de Modelamiento Matemático,

UMI 2807 U. Chile–CNRS
mkiwi@dim.uchile.cl

3 CEO Acepta.com
roberto.opazo@acepta.com

Abstract. Accumulator schemes were introduced in order to represent a large
set of values as one short value called the accumulator. These schemes allow one
to generate membership proofs, i.e. short witnesses that a certain value belongs
to the set. In universal accumulator schemes, efficient proofs of non-membership
can also be created. Li, Li and Xue [11], building on the work of Camenisch
and Lysyanskaya [5], proposed an efficient accumulator scheme which relies on
a trusted accumulator manager. Specifically, a manager that correctly performs
accumulator updates.

In this work we introduce the notion of strong universal accumulator schemes
which are similar in functionality to universal accumulator schemes, but do not
assume the accumulator manager is trusted. We also formalize the security re-
quirements for such schemes. We then give a simple construction of a strong uni-
versal accumulator scheme which is provably secure under the assumption that
collision-resistant hash functions exist. The weaker requirement on the accumu-
lator manager comes at a price; our scheme is less efficient than known universal
accumulator schemes — the size of (non)membership witnesses is logarithmic in
the size of the accumulated set in contrast to constant in the scheme of Camenisch
and Lysyanskaya.

Finally, we show how to use strong universal accumulators to solve a practical
concern, the so called e-Invoice Factoring Problem.

Keywords: Accumulators, Collision-resistant Hashing, e-Invoice.

1 Introduction

Accumulator schemes were introduced by Benaloh and De Mare [3]. These primitives
allow to represent a potentially very large set by a short value called accumulator. More-
over, the accumulator together with a so called witness provides an efficiently verifiable
proof that a given element belongs to the accumulated set.

� Gratefully acknowledges the support of CONICYT via FONDAP en Matemáticas Aplicadas.
�� Gratefully acknowledges the support of CONICYT via FONDECYT No. 1070332.

��� Supported by CONICYT via FONDECYT No. 1010689 and FONDAP en Matemáticas Apli-
cadas.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 471–486, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

472 P. Camacho et al.

Barić and Pfitzmann [1] refined the security definition of accumulator schemes, and
introduced the concept of collision-free accumulators. This notion was further extended
by Camenisch and Lysyanskaya [5] to a dynamic setting where updates (additions
and deletions) to the accumulator are possible. They proposed a new construction and
showed how to use it to efficiently implement membership revocation in group signa-
tures, and anonymous credential systems. In particular, they show how to keep track
of valid identities using an accumulator, so proving membership is done by arguing in
zero-knowledge that a certain secret value was accumulated. For a thorough discussion
of accumulators we refer the interested reader to the survey of Fazio and Nicolosi [9].

Li, Li and Xue [11] recently introduced the notion of universal accumulators, which
not only allow efficient generation of membership, but also of non-membership proofs.
Building on [5], Li et al. construct universal accumulator schemes and point out useful
applications, e.g. proving that a certificate has not been revoked, or that a patient does
not have a disease. However, their construction inherits an undesirable property from
Camenisch and Lysyanskaya’s scheme; updates of the set (addition and deletion of
elements) require the accumulator manager to be trusted. This falls short of Benaloh and
De Mare’s initial goal: to provide membership proofs even if the accumulator manager
is corrupted.

We propose a new accumulator scheme based on hash trees similar to those used in
the design of digital timestamping systems [3,2]. Recall that in hash trees values are
associated to leaves of a binary tree. The values of sibling nodes are hashed in order to
compute the value associated to their parent node, and so on and so forth, until a value
for the root of the tree is obtained. The tree’s root value is defined as the accumulator of
the set of values associated to the leaves of the tree. We cannot directly use hash trees
to obtain the functionality of universal and dynamic accumulators. Indeed, we need
to add and delete elements from the accumulated set (tree node values if using hash
trees) while at the same time be able to produce non–membership proofs. We solve this
last issue using Kocher [10] trick; instead of associating values to the tree’s leaves, we
associated a pair of consecutive accumulated set elements. To prove that an element
x is not in the accumulated set now amounts to showing that a pair (xα,xβ), where
xα ≺ x ≺ xβ, belongs to the tree but the pairs (xα,x) and (x,xβ) do not.

The drawbacks of using a hash tree based scheme are twofold. First, the size of wit-
nesses and the update time is logarithmic in the number of values accumulated. In con-
trast, witnesses and updates can be computed in constant time in RSA modular expo-
nentiation based schemes like the ones of [5,3,1,11]. We believe, nonetheless, that this
problem may in fact not exist for reasonable set sizes — a claim that we will later support.
The second drawback is the accumulator’s manager storage space requirements which
is linear in the number of elements. However, this is not an issue for the accumulator’s
users, since they only need logarithmic in the accumulated set size storage space.

Overall, the main advantages of our scheme in comparison to Li et al.’s [11] are:
(1) the accumulator manager need not to be trusted, and (2) since we only assume the
existence of cryptographic hash functions as opposed to the Strong RSA Assumption,
the underlying security assumption is (arguably) weaker. (Indeed, collision-resistance
can be based on the intractability of factoring or computing discrete logarithms [7]
while Strong-RSA is likely to be a stronger assumption than factoring [4].)

Strong Accumulators from Collision-Resistant Hashing 473

1.1 Our Contributions

Our contribution is threefold. First, we strengthen the basic definition of universal ac-
cumulators by allowing an adversary to corrupt the accumulator manager. This gives
rise to the notion of strong universal accumulators. Second, we show how to construct
strong universal accumulators using only collision-resistant hash functions. Our con-
struction has interesting properties of its own. As in [5,11], we use auxiliary informa-
tion to compute the (non)membership witness, but this information (called memory)
need not to be kept private, and does not allow an adversary to prove inconsistent state-
ments about the accumulated set. Indeed, the construction provides almost the same
functionality as the (dynamic) universal accumulators described in [11], namely:

• All the elements of the set are accumulated in one short value.
• It is possible to add and remove elements from the accumulated set.
• For every element of the input space there exists a witness that proves whether

the element has been accumulated or not.

Under stronger assumptions (concretely, Strong RSA) we show how to enhance our
basic scheme in order to allow dynamic updates of witnesses.

Our last contribution is showing how to apply strong universal accumulators to
solve a multi-party computational problem of practical relevance which we name the
e-Invoice Factoring Problem. Solving this problem was indeed the original motivation
that gave rise to this work.

In Section 2, we give some background definitions and formally introduce the notion
of strong universal accumulator schemes. In Section 3, we describe our basic strong
universal accumulator scheme and rigorously establish its security. In Section 4, we
discuss the efficiency of the scheme in practice, and outline a variant that allows wit-
ness updates. Section 5 briefly motivates the e-Invoice Factoring Problem. In Section 6,
we conclude with some comments. Due to space restrictions the e-Invoice Factoring
Problem is described in the full version of this paper where it is also shown how it can
be solved using strong universal accumulator schemes.

2 Definitions and Notations

Let neg : N → N denote a negligible function, that is, for every polynomial p(·) and any
large enough integer n, neg(n) < 1/p(n). Let also || denote the operation of concatena-

tion between binary strings. If R() is a randomized algorithm, we write a
R← R() to denote

the process of choosing a according to the probability distribution induced by R. We also
denote by 〈R()〉 the set of all possible values a returned by R with positive probability.
We distinguish between an accumulator scheme (the protocol, see below), its short repre-
sentation or accumulator value, and its corresponding accumulated set X . For simplicity,
however, we may use these terms indistinguishably when it’s clear from the context.

SYNTAX. We formally define the syntax of a strong universal accumulator scheme (with
memory). Our definition differs from that of Li et al. [11] as we consider an algorithm
to verify if the accumulator value has been updated correctly (by adding or deleting a
certain value), and we are not interested in hiding the order in which the elements are
inserted into the accumulated set.

474 P. Camacho et al.

Definition 1 (Strong Universal Accumulators with Memory). Let M be a set of val-
ues. A strong universal accumulator scheme (with memory) for the input set X ⊆ M is
a tuple A = (Setup,Witness,Belongs,Update,CheckUpdate) where

• Setup is a randomized algorithm which on input a security parameter k ∈ N,
outputs a public data structure m0 (also called the memory), and returns an ini-
tial accumulator value Acc0 in the set Y = {0,1}k. Both the accumulator value
Acc and the memory m will be typically held and updated by the accumulator
manager.

• Witness is a randomized algorithm which takes as input x ∈ M and memory m,
and outputs a witness of membership w if x ∈ X (x has been accumulated) or a
witness of nonmembership w′ if x
∈ X.

• Belongs is a randomized algorithm which on input a value x ∈ M, a witness w
and the accumulator value Acc ∈Y outputs a bit 1 if w is deemed a valid witness
that x ∈ X, outputs 0 if w is deemed a valid witness that x
∈ X, or outputs the
special symbol ⊥ if w is not a valid witness of either statement.

• Updateop is a randomized algorithm that updates the accumulator value by ei-
ther adding an element (op = add) to or removing an element (op = del) from
the accumulated set. The algorithm takes an element x ∈ M, an accumulator and
memory pair (Accbefore,mbefore), and outputs an updated accumulator and mem-
ory pair (Accafter,mafter), and an update witness wop.

• CheckUpdate is a randomized algorithm that takes as input a value x ∈ M, a
pair of accumulator values (Accbefore,Accafter), and an update witness w, and
returns a bit b. Typically, this algorithm will be executed by parties other than
the accumulator manager in order to verify correct update of the accumulator
by the manager. If b = 1, w is deemed a valid witness that an update operation
(for op ∈ {add,del}) which replaced Accbefore with Accafter as the accumulator
value, was valid. Otherwise, w is deemed invalid for the given accumulator pair.

All the above algorithms are supposed to have complexity polynomial in the security
parameter k.

In the above definition the memory m is a public data structure which is computed
from the set. Although public, this structure only needs to be maintained (stored) by
the accumulator manager who updates the accumulator and generates membership and
non-membership witnesses. In particular, the memory is not used to verify correct ac-
cumulator updates nor to check the validity of (non)membership witnesses.

Definition 2. An accumulator value Acc represents the set X ⊆M, denoted by Acc⇒X,
if and only if there exists a sequence {(Acci,xi,mi)}1≤i≤n, where n = |X |, and values
Acc0,m0 where xi ∈ M for 1 ≤ i ≤ n and

• X = {xi}1≤i≤n ,

• (Acc0,m0) ∈ 〈Setup()〉 ,
• (Acci,mi,wi) = Updateadd(xi,Acci−1,mi−1) for all 1 ≤ i ≤ n.

If no such sequence exists Acc does not represents set X, denoted by Acc � X.

Strong Accumulators from Collision-Resistant Hashing 475

Note that this definition also considers sets that have been formed by successive addition
and deletions of elements as there is always a sequence of only addition operations that
leads to the same set.

SECURITY. Universal accumulators as defined in [11] satisfy a basic consistency prop-
erty: it must be unfeasible to find both a valid membership witness and a valid non-
membership witness for the same value x ∈ M. As mentioned there, this is equivalent to
saying that given X ⊆ M it is impossible to find x ∈ X that has a valid nonmembership
witness or to find x ∈ M\X that has a valid membership witness.

In order to be able to cope with malicious accumulator managers, we adapt the se-
curity notion in [11] as follows. First, we let the adversary select not only the value x
and the witness w but also the accumulated set X ⊂ Y , the accumulator value Acc ∈ Y
and whether x belongs or not to X . We restrict the adversary so he must choose a
pair (Acc,X) for which there exists a sequence of valid addition operations (namely,
Updateadd with values in X) that can produce an accumulated value Acc. This last re-
striction can be justified by noticing that, in the scenario we consider, parties other than
the accumulator manager can externally verify the correctness of each update operation
by using the CheckUpdate algorithm. Thus, security holds as long as it is unfeasible for
the adversary to fool the CheckUpdate verification, namely given an accumulator value
Accbefore, the adversary is unable to efficiently generate an accumulator value Accafter, a
set X , an input value x, and a valid update witness w for which Accbefore actually repre-
sents set X and CheckUpdate(x,Accbefore,Accafter,w) = 1, but Accafter
⇒ X ∪{x} if w
is an addition witness or Accafter
⇒ X \ {x} if w is an deletion witness.

Definition 3 (Security of Strong Universal Accumulators with Memory). A strong
universal accumulator with memory is secure if for every probabilistic polynomial-time
adversary A the following conditions hold:

• (Consistency)

Pr

[
(x,w1,w2,X ,Acc) ← A(k);

Acc ⇒ X , Belongs(x,w1,Acc) = 1, Belongs(x,w2,Acc) = 0

]
= neg(k) .

• (Secure addition)

Pr

⎡
⎣ (Accbefore,X ,Accafter,x,w) ← A(k) :

Accbefore ⇒ X , Accafter � X ∪{x},
CheckUpdate(x,Accbefore,Accafter,w) = 1

⎤
⎦ = neg(k) .

• (Secure deletion)

Pr

⎡
⎣ (Accbefore,X ,Accafter,x,w) ← A(k) :

Accbefore ⇒ X , Accafter � X\{x},
CheckUpdate(x,Accbefore,Accafter,w) = 1

⎤
⎦ = neg(k) .

The type of accumulators we consider in this work is not necessarily quasi-commutative
[5,11] as they may not hide the order in which the elements were added to the set. More
precisely, our definition tolerates that the value of the accumulator may depend on a
particular sequence of Updateadd and Updatedel operations that produced a particular

476 P. Camacho et al.

accumulator value Acc. Our only requirement is that the accumulated set X represented
by any accumulator value is well defined. The following proposition shows this is so if
we use a secure strong universal accumulator scheme. The proof is omitted due to space
constraints.

Proposition 1. Let A a secure strong universal accumulator scheme, and k ∈ N a se-
curity parameter. Given any adversary A , consider the experiment ExpSUAcc

A,A in which
the adversary is allowed to submit as many queries to oracle O() as it wants and then
stops. Oracle O() is stateful and operates as follows: on any first query, the oracle cre-
ates an empty set X ′, runs Setup(k) to obtain (Acc′,m′) which it returns as the query
answer. Then, for each subsequent query of the form (x,Acc,w) the oracle computes
b ← CheckUpdate(x,Acc′,Acc,w), and if b = 1, it sets Acc′ ← Acc, X ′ ← X ′ ∪ {x},
and returns bit b as the answer to the oracle query. If b = 0 it does not modify Acc
or X ′ and it simply returns ⊥. We say adversary A wins ExpSUAcc

A,A if after A stops,
it holds that Acc
⇒ X ′. Then, for every probabilistic polynomial time adversary A ,

Pr
[

A wins in ExpSUAcc
A,A

]
is negligible in k.

Our security definition (Definition 3) for the dynamic scenario (where addition and
deletion of elements are allowed) differs from the one in [5] where the adversary is
only able to add and delete elements by querying the accumulator manager, who is
uncorruptible. In contrast, in our definition the adversary is allowed to control the ac-
cumulator. However, we require that during each update at least an uncorrupted partic-
ipant verifies the update with CheckUpdate to guarantee the consistency between the
accumulated value and the history of additions and deletions.

DYNAMIC ACCUMULATORS. The standard definition of dynamic accumulators (see for
example the one in [5]) adds two requirements which so far we have not considered.
First, it requires the existence of an additional efficient algorithm that allows to publicly
and efficiently update membership witnesses after a change in the accumulator value
so witnesses can be proven valid under the new accumulator value. And secondly, it
requires that both the accumulator updating algorithm as well as the witness updating
algorithm to run in time independent from the size n of the accumulated set.

Our construction can be extended to achieve efficient witness update while still
tolerating corrupted accumulator managers although under stronger assumptions (see
Section 4). Regarding the efficiency of accumulator updates, we only achieve loga-
rithmic dependency on n. In practice, such dependency may be appropriate for many
applications.

3 Our Scheme

We assume that there exist a public broadcast channel with memory. Depending on
the level of security required, this can be a simple trusted web server, or a bulletin
board that guarantees that every participant can see the published information and that
nobody can delete posted message. For a discussion on bulletin boards and an example
of their use in another cryptographic protocol, the interested reader is referred to [6].
We rely on broadcast channels in order to ensure that the publication of the successive

Strong Accumulators from Collision-Resistant Hashing 477

accumulator values that correspond to updates of the set cannot be forged. In particular,
an adversary who controls the manager of the accumulator cannot publish different
accumulator values to different groups of participants.

3.1 Preliminaries

Our scheme is inspired by time stamping systems like those described in [3,2]. In these
systems a document needs to be associated to a certain moment in time. The solution
proposed there is to divide the time in periods (e.g. hours, days), and place each docu-
ment as a leaf at the bottom of a binary tree (say, T) with other documents that belong
to the same period of time, say t. Then the values associated to each pair of leaves with
the same parent node are hashed in order to derive the value of the parent node. This
process is repeated until the value v of the root node of the tree is computed. This value
v is then published as a representative of the tree T for period t. Later, a given document
m can be proven to belong to a certain period of time t by presenting a valid subtree of
tree T corresponding to time period t that includes the document m.

We use the above approach to build an accumulator scheme that works for dynamic
sets and also allows proofs of nonmembership. In this case, building a proof of non-
membership is somehow similar to the trick of Kocher (in [10]) — instead of storing
elements of the set, we store pairs of consecutive elements of the set. Then, proving that
an element x is not in the accumulated set X amounts to simply proving that there exists
elements xα and xβ, xα < x < xβ, such that a pair (xα,xβ) is stored in the tree.

Our solution uses collision-resistant hash functions, which we formalize as families
of functions. In practice we can use a well known hash function like SHA-256, for
example. We start recalling the standard notion of collision-resistant hash functions.

Definition 4. A hash-function family is a function H : K ×M → Y where K and Y are
non-empty sets and M and Y are sets of strings.

Definition 5. (Collision-Resistance) Let H : K ×M → Y be a hash-function family.
Let k be a security parameter, where k = |K| = |Y |. Then H is collision-resistant if and
only if for every polynomial time probabilistic algorithm A we have:

Pr[κ R← K;(m,m′) ← A(k) : m
= m′, Hκ(m) = Hκ(m′)] = neg(k)

where κ R← K means that κ is selected uniformly at random in the set of keys K.

In the following H will denote a randomly selected function of a collision-resistant
hash-family function H : K ×M → Y , where M is the set of all binary strings and Y is
the set {0,1}k, for a large enough security parameter k ∈ N.

We assume the set X we want to accumulate is ordered and denote by xi the ith

element of X = {x1,x2, ...,xn}, n∈N. Let x0 =−∞ and xn+1 = +∞ two special elements
such that −∞≺ x j ≺+∞ for all x j ∈ X , where ≺ is the order relation on X (for example,
the lexicographic order on bit strings).

Observe that showing x ∈ X is equivalent to proving that:

(xα,xβ) ∈ {(xi,xi+1) : 0 ≤ i ≤ n} ∧ (x = xα ∨ x = xβ).

478 P. Camacho et al.

On the other hand, showing that x /∈ X corresponds to proving:

xα ≺ x ≺ xβ ∧ (xα,xβ) ∈ {(xi,xi+1) : 0 ≤ i ≤ n}.

Consider now the following recursive definition of labeled binary tree T :

• T equals the empty tree Nil, or
• T = (S; left,right) where S is a label (string) and Left(T) = le f t and Right(T) =

right are trees.

Here left and right are the left and right child of T respectively. Each tree T has as-
sociated a node N = node(T) which is called the root of T as well as the parent
of Left(T) and Right(T). Each node N = node(S; left,right) has associated a string
Label(N) = S. Sometimes we identify the tree with its root and we write Label(T)
to denote Label(node(T)). We say that N′ is a node of T if N′ = node(T) or N′ is a
node of Left(T) or Right(T). A leaf is a node of the form (S;Nil,Nil). If T = Nil, then
we say that T has depth 0 and denote it as depth(T) = 0. Otherwise, let depth(T) =
1 + max{depth(Left(T)),depth(Right(T))}. A tree T is balanced if |depth(Left(T))−
depth(Right(T))| ≤ 1. It is a well known fact that a balanced tree with n nodes has
maximum depth O(log(n)).

The set {H(xi||xi+1) : 0 ≤ i ≤ n} will be called the base of X under H. Since H is a
collision-resistant hash function and no two xi are identical, H(xi||xi+1)
= H(x j||x j+1)
for i
= j, except with negligible probability.

A balanced binary tree T is called a model of X under H if:

• For every node N in T there are strings ValN and Proof N , called node value and
node proof respectively, such that Label(N) = (ValN ;Proof N).

• The base of X is {ValN : N is a node of T}.
• T has n + 1 nodes.
• Proof N = H(ValN ||Proof Left(N)||Proof Right(N)) for every node N of T (where

Proof Nil corresponds to the empty string).

Figure 1 depicts a toy example of a model of a set.
A subtree T ′ of a labeled binary tree T is a tree such that: (a) Label(T ′) = Label(T),

(b) Left(T ′) is a subtree of Left(T) or Left(T ′) = Nil, and (c) Right(T ′) is a subtree of
Right(T) or Right(T ′) = Nil.

Let T be a labeled binary tree. We denote its collection of node values by V (T). We
say that V ⊆ V (T) generates a minimal subtree U of T if U is a subtree of T obtained
by taking all nodes in T that belong to all paths from T ’s root to a node whose value is in
V (the paths include both the root of T and the nodes of value in V) and all the children
of these nodes. Figure 2 illustrates the concept of minimal subtree. If U is generated by
a singleton {S}, then we say that U is generated by S.

Proposition 2. Let H :K ×M → Y be a collision-resistant hash function family and H
a uniformly chosen function in H . Let X ⊂ M be an adversarially-chosen polynomial
size set (on the security parameter k), and T be a model of X under H. Then, given T ,
no adversary can efficiently compute a labeled binary tree T ′ and a value V such that
V ∈ V (T ′)\V (T) and Proof T ′ = Proof T , except with negligible probability.

Strong Accumulators from Collision-Resistant Hashing 479

H(x6||x7) H(x7||x8)

H(x3||x4) H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x3)

H(−∞||x1)

Fig. 1. A tree model T of the set X = {x1, . . . ,x8}. Only node values are shown. Note that the
place of the values in the tree is irrelevant.

d e

c

g h

f

b

k l

j

n o

m

i

a

Fig. 2. A tree and its minimal subtree (nodes with values in boldface) generated by the node of
value j. Children of the nodes that are on the path from j to a are underlined.

Proof. Let A be a polynomial time stateful adversary which works in two phases. First,
on input the security parameter and a hash function H ∈ H , A outputs a set X ⊂ M of
size polynomial on k. Then, given a model T for X under H, it outputs a labeled bi-
nary tree T ′ and a value V satisfying the conditions of the proposition. Since Proof T ′ =
Proof T and value V is in V (T ′) but not in V (T) there must exist a node N′ in T ′ and a
node N in T such that Proof N′ = H(ValN′ ||Proof Left(N′)||Proof Right(N′)) and Proof N =
H(ValN ||Proof Left(N)||Proof Right(N)) are equal but ValN ||Proof Left(N)||Proof Right(N)
=
ValN′ ||Proof Left(N′)||Proof Right(N′). Nodes N and N′ can be found efficiently by simply
traversing both trees in some fixed order.

Now, let B be an adversary that is given a uniformly selected at random collision-
resistant hash function H ∈ H . B first queries A to obtain a set X which it uses to build a
model T for X under H. Then, B runs A as a subroutine to obtain another labeled binary
tree T ′ and a value V such that Proof T = Proof T ′ and V ∈ V (T ′) \ V (T). Finally,
following the procedure mentioned above, B will be able to find a collision for H.

3.2 A Strong Universal Accumulator with Memory Using Hash Trees

In this section we use hash trees to build a universal accumulator with memory.

THE CONSTRUCTION. Let k ∈ N be the security parameter and let X = {x1,x2, ...,xn}
be a subset of M = {0,1}k. We define the accumulator scheme HashAcc below.

480 P. Camacho et al.

• The memory m is a model of X .
• Setup: The algorithm first sets X equal to the empty set. Then, it picks a hash

function H uniformly at random from the family H by first computing a random
index i ∈ K (say using standard multiparty computation techniques among all
participants, including the accumulator manager) and then setting H = Hi.1 The
algorithm then initializes m to a single root node Nm with value H(−∞||+ ∞).
Finally, the accumulator manager publishes Accinit = Proo fNm .

• Witness: On input x ∈ M and memory m, it computes the witness w = (w1,w2)
as follows. First, the algorithm sets w1 = (xα,xβ) where x = xα or x = xβ if x ∈ X .
Otherwise, if x /∈ X the algorithm sets w1 = (xα,xβ) where xα ≺ x ≺ xβ. Finally,
it sets w2 as the minimal subtree of m generated by the value H(xα||xβ).

• Belongs: On input x ∈ M, witness w = ((x′,x′′),u), and accumulator value Acc,
it first checks if the following conditions hold: (a) Proof u = Acc, (b) H(x′||x′′) ∈
Vu, (c) (x = x′ or x = x′′), and (c’) (x′ ≺ x ≺ x′′). The algorithm outputs 1 if
conditions (a), (b), and (c) hold; it outputs 0 if (a), (b), and (c’) hold. Otherwise,
it outputs ⊥.

• Updateop: On input an element x ∈ M, an accumulator value Accbefore, and a
memory mbefore, it proceeds as follows. Consider two cases depending on whether
the update is an addition (op= add) or a deletion (op = del).

If op = add and x
∈ X , the algorithm adds x into X by modifying mbefore as
follows:
1. It replaces the value H(xα||xβ) from the appropriate node in mbefore (where

xα ≺ x ≺ xβ) by the value H(xα||x).
2. It augments the tree mbefore with a new leaf N of value H(x||xβ) so the result-

ing tree mafter is a balanced tree. Let VPar(N) be the (parent) node where N is
attached as a leaf.

The resulting tree is denoted mafter. Figure 3 illustrates the process of inserting
an element into mbefore.

Once tree mafter is built, the new accumulator is simply the value of the root of
the tree, namely Accafter = Proof mafter

. The witness wadd = (add,wadd,1,wadd,2)
that the update (addition) has been done correctly is computed as follows:

• wadd,1 corresponds to the minimal subtree of mbefore generated by the set
{H(xα||xβ),ValVPar(N)}, and,

• wadd,2 corresponds to the minimal subtree of mafter generated by the set
{H(xα||x),H(x||xβ)}.

If op = del, deleting x from X is done in a similar way as follows. First,
the update algorithm locates the two nodes of mbefore that contain x. Let Vα and
Vβ be those nodes, and let H(xα||x) and H(x||xβ) be their respective values, for
some xα ≺ x ≺ xβ. The goal is to remove these nodes and replace them with a
new node with value H(xα||xβ) in a way that the derived tree is still balanced.
This is done by first replacing Vα with the single node with value H(xα||xβ),
and then replacing Vβ with a leaf node L (for example, the rightmost leaf on

1 A common heuristic to avoid interaction is to simply pick H =SHA-256 [12], for example.

Strong Accumulators from Collision-Resistant Hashing 481

H(x6||x7) H(x7||x8)

H(x3||x4)

H(x||x3)

H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x)

H(−∞||x1)

Fig. 3. Inserting x into the tree of Figure 1 where x2 ≺ x ≺ x3

the last level of the tree). These replacements yield a new tree mafter whose root
label is set to the value of the accumulator Accafter = Proo fmafter . The witness
wdel = (del,wdel,1,wdel,2,wdel,3) is then computed as follows:

• wdel,1 corresponds to the minimal subtree of mbefore generated by the set
{H(xα||x),H(x||xβ),ValL},

• wdel,2 is the pair (xα||xβ) such that xα ≺ x ≺ xβ, and
• wdel,3 is the minimal subtree of mafter generated by H(xα||xβ).

The algorithm Updateop outputs the new accumulator value Accafter, the modified
memory mafter, and the update witness wop.

• CheckUpdate: On input an element x ∈ M, two accumulator values Accbefore,
Accafter, and an update witness w, it proceeds as follows. If w = (add,w1,w2)
then, the algorithm outputs 1 provided that:

• w1 is a tree obtained by adding a leaf to w2,
• Except for the node of value H(xα||xβ) (for xα ≺ x ≺ xβ) all nodes which

are common to w1 and w2 have the same value in either one of the trees,
• Proof w1

= Accbefore and Proof w2
= Accafter, and

• H(xα||x),H(x||xβ) ∈ V (w2).

Otherwise, it outputs 0. We omit the case w = (del,w1,w2,w3) which is similar.

SECURITY. We now prove that the scheme HashAcc of the previous section is secure
under Definition 3.

First, note that if memory m is a model of X , then the memory obtained after execut-
ing Update in order to add a new element x /∈ X , is a model of X ∪ x. Indeed, suppose
xα ≺ x ≺ xβ and let H(xα||xβ) be the value of a node V in m. By replacing node V with
the node of value H(xα||x) and adding the node of value H(x||xβ), we clearly obtain a
set of values {H(xi||xi+1), 0 ≤ i ≤ n+1} that corresponds to the successive intervals of
the set X ∪{x} (where n = |X |).

Intuitively, CheckUpdate must guarantee that the updated memory (tree) used to
compute the new accumulated value still has the property of having all the successive
intervals of the accumulated set as node values, that each interval appears once and only
once in the tree, and that no other node value can belong to the tree.

482 P. Camacho et al.

H(x3||x4) H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x3)

H(−∞||x1)

H(x3||x4)

H(x||x3)

H(x4||x5)

H(x1||x2)

H(x5||x6) H(x8||+∞)

H(x2||x)

H(−∞||x1)

(a) (b)

Fig. 4. (a) The minimal subtree of the tree shown in figure 1 and generated by {H(x2||x3),
H(x4,x5)}. (b) The minimal subtree of the tree shown in Figure 3 and generated by {H(x2||x),
H(x||x3)}.

Theorem 1. Let H :K×M →Y be a collision-resistant hash function family. Then, the
accumulator scheme HashAcc is a secure strong universal accumulator scheme (with
memory).

Proof. We need to prove the properties Consistency, Addition, and Deletion.

• (Consistency) First, we note that Acc ⇒ X implies that there exists a memory m
which is a model of X . Let us now suppose that there is an adversary A that can
compute a value x and two witnesses w1,w2 such that Belongs(x,w1,Acc) = 1
and Belongs(x,w2,Acc) = 0. We assume without lost of generality that x ∈ X .
Any such adversary A is in fact able to find xα and xβ, xα ≺ x ≺ xβ, such that
H(xα||xβ) belongs to V (m). Since m is a model for X , by Proposition 2 this
adversary will only succeed with negligible probability. The argument for x /∈ X
is analogous.

• (Secure Addition) Consider the case where the update is the addition of a value x
such that xα ≺ x ≺ xβ and H(xα,xβ) belongs to the base of X , where Accbefore ⇒
X . Assume that CheckUpdate(x,Accbefore,Accafter,w) = 1 where both x and w =
(add,Ubefore,Uafter) are arbitrarily chosen by the adversary, and Accafter � X ∪
{x}. Then, for some two elements u,v ∈ M the adversary is effectively able
to build a tree S∗ = Uafter containing a value H(u||v) that does not belong to
(V (mbefore)∪ {H(xα||x),H(x||xβ)})\{H(xα||xβ)} = V (mafter) and such that in
addition Proo fS∗ = Proo fUafter = Accafter = Proo fmafter . This contradicts Propo-
sition 2.

• (Secure Deletion) This case is similar to the addition of an element.

EFFICIENCY. We analyze the computational efficiency of the proposed scheme.

Theorem 2. Let n be the size of X. The witnesses of (non)membership and of updates
have size O(log(n)). The update process Update, the verification processes Belongs
and CheckUpdate can be done in time O(log(n)).

Proof. It is enough to show that a minimal subtree U of T generated by a constant
number of node values has a size O(log(n)). Indeed, first note that a minimal subtree
of a tree generated by a constant number of node values is the union of the minimal
subtrees generated by each of the values. It is easy to see that the size of a minimal

Strong Accumulators from Collision-Resistant Hashing 483

subtree generated by a node value is proportional to the depth of the node. This, and the
fact that T is balanced, implies the desired conclusion.

4 Other Considerations and Further Extensions

EFFICIENCY. Our solution is theorically less efficient than the scheme proposed in [11].
Nonetheless, if one considers practical instances of these schemes the difference effec-
tively vanishes as in most implementations hash functions operations are significantly
faster than RSA exponentiations – which is the core operation used by the schemes
in [11,5]. Table 2 shows the time taken by one single RSA exponentiation versus the
time taken by our scheme for update operations as a function of the number of the ac-
cumulated elements. For the time measurements, we used the openssl benchmarking
command (see [13]) on a personal computer. Notice that RSA timings were obtained
using signing operations, as in the scheme proposed in [11] where exponents may not
be small. Timings for SHA operations were measured using an input block of 1024 bits.
The comparison is based on the fact that our scheme requires at most 4×2log(N) hash
computations, where N is the number of accumulated elements, given that at most four
branches of the Merkle tree used in our construction (three for wdel,1 and one for wdel,3,
see Section 3.2) will have to be recomputed in the case of deletions.

Our results show that even for large values of N using a hash-based scheme is still
very efficient. Moreover, our scheme is faster than using a single RSA operation with a
2048-bit key.

DYNAMIC ACCUMULATORS AND WITNESS UPDATE. Our construction as described
in Section 3.2 does not allow to update witnesses ([5]). This feature allows a user to
recompute her witness after a new value is added or removed from the set X of accu-
mulated values so the new witness can be verified against the new accumulator value. A

Table 1. Running time for RSA and SHA operations

Algorithm Note Operations per second
SHA-256 input block of 1024 bits 65507
SHA-512 input block of 1024 bits 16856
RSA-512 signing operation 1179

RSA-1024 signing operation 236
RSA-2048 signing operation 40

Table 2. Comparison of performance between simple RSA exponentiation and logarithmic num-
ber of computations of SHA. N is the number of elements that are accumulated. Time is repre-
sented in milliseconds.

N RSA-512 RSA-1024 RSA-2048 SHA-256 SHA-512
23 0,845 4,23 25 0,37 1,42
210 0,845 4,23 25 1,22 4,75
220 0,845 4,23 25 2,44 9,5
230 0,845 4,23 25 3,66 14,24

484 P. Camacho et al.

simple way to achieve this is to keep track of each accumulator value Acc using the con-
struction of Camenisch and Lysyanskaya [5]. Concretely, let AccCL be the accumulator
scheme proposed in [5]. Under our modified scheme, a witness that x ∈ X is now com-
posed by two parts: a witness as computed by our construction and a witness that Acc
has been accumulated into the accumulator AccCL. Since the construction in [5] allows
both public updates to the accumulator as well as public computation of membership
witnesses, we can update the two-part witness now by simply updating the witness that
Acc was at some moment a value for the accumulator in our original scheme. Notice
that this combined scheme allows the efficient update of witnesses while still preserv-
ing the main security property of our scheme (security against a malicious accumulator
manager). Obviously, the new feature comes at a cost: lower efficiency and new security
assumptions (strong RSA). How to avoid these costs is an open problem.

5 The e-Invoice Factoring Problem

In this section we describe an application of strong universal accumulators that yields an
electronic analog of a mechanism called factoring through which a company, henceforth
referred to as the Provider (P), sells a right to collect future payment from a company
Client (C). The ensuing discussion is particularly concerned with the transfer of pay-
ment rights associated to the turn over of invoices, that is, invoice factoring. The way
invoice factoring is usually performed in a country like Chile is that P turns a purchase
order from C to a third party, henceforth referred to as Factoring Entity (FE). The latter
gives P a cash advance equal to the amount of C’s purchase order minus a fee. Later,
FE collects payment from C.

There are several benefits to all the parties involved in a factoring operation. The
provider obtains liquidity and avoids paying interests on credits that he/she would oth-
erwise need (it is a common practice for some clients as well as several trading sectors
in Chile to pay up to 6 months after purchase). The client gets a credit at no cost and is
able to perform a purchase for which he might not have found a willing provider.

The main phases of a factoring operation are summarized below: (a) C requests from
P either goods or services, (b) P delivers the goods/services to C, (c) P makes a factoring
request to FE , (d) FE either rejects or accepts P’s request — in the latter case FE gives
P a cash advance on C’s purchase, (e) later, FE asks C to settle the outstanding payment,
and finally (f) C pays FE .

A risk for FE is that P can generate fake invoices and obtain cash advances over
them. This danger is somewhat diminished by the fact that such dishonest behavior
has serious legal consequences. More worrisome for FE is that P may duplicate real
invoices and request cash advances from several FEs simultaneously. But, Chile’s local
practice makes this behavior hard to carry forth. Indeed, invoices are printed in blocks,
serially numbered and pressure sealed by the local IRS agency (known as Servicio de
Impuestos Internos (SII)). A FE will request the physical original copy of an invoice
when advancing cash to P. It is illegal, and severely punished, to make fake copies or
issue unsealed invoices.

Strong Accumulators from Collision-Resistant Hashing 485

Approximately half a decade ago, an electronic invoicing system began operating in
Chile. Background and technical information concerning this initiative can be down-
loaded from the website of the SII, specifically from [8].

The newly deployed electronic invoicing system has been widely successful. It has
been hailed as a major step in the government modernization. Furthermore, it has cre-
ated strong incentives for medium to small size companies to enter the so called “infor-
mation age”. Nevertheless, the system somewhat disrupts the local practice concerning
factoring. Specifically, a FE will not be able to request the original copy of an invoice,
since in a digital world, there is no difference between an original and a copy. This
creates the possibility of short term large scale fraud being committed by unscrupulous
providers. Indeed, a provider can “sell” the same invoice to many distinct FEs. We re-
fer to the aforementioned situation created by the introduction of electronic invoicing
as the e-Invoice Factoring Problem. In the full version of this paper we show how to
address this problem using strong universal accumulator schemes.

6 Conclusion

We introduced the notion of strong universal accumulator scheme, which provide al-
most the same functionality as do the universal accumulator schemes defined in [11],
namely (a) a set is represented by a short value called accumulator, (b) it is possible
to add and remove elements dynamically from the (accumulated) set, and (c) proofs of
membership and nonmembership can be generated using a witness and the accumulated
value. In this notion, however, the accumulator manager does not need to be trustworthy
and might be compromised by an adversary.

We also give a construction of a strong universal accumulator scheme based on cryp-
tographic hash functions which relies on a public data structure to compute accumulated
values and witnesses (of membership and nonmembership in the accumulated set). We
argue that the proposed scheme is practical and efficient for most applications. In par-
ticular, we discuss an application to a concrete and relevant problem — the e-invoice
factoring problem.

References

1. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signed scheme without
trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer,
Heidelberg (1997)

2. Bayer, D., Haber, S., Stornetta, W.S.: Improving the efficiency and reliability of digital time-
stamping. In: Capocelli, R.M., DeSantis, A., Vaccaro, U. (eds.) Sequences II: Methods in
Communication, Security, and Computer Science, pp. 329–334. Springer, Heidelberg (1993)

3. Benaloh, J., De Mare, M.: One-way accumulators: A decentralised alternative to digital sig-
natures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer,
Heidelberg (1994)

4. Boneh, D., Venkatesan, R.: Breaking RSA not be equivalent to factoring. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)

5. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revo-
cation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
61–76. Springer, Heidelberg (2002)

486 P. Camacho et al.

6. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority
election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118.
Springer, Heidelberg (1997)

7. Damgård, I.: Collision free hash functions and public key signature schemes. In: Price, W.L.,
Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg
(1988)

8. Servicio de Impuestos Internos. Información sobre factura electrónica [June 19, 2008],
https://palena.sii.cl/dte/mn info.html

9. Fazio, N., Nicolisi, A.: Cryptographic accumulators: Definitions, constructions and applica-
tions (2003) [June 19, 2008],
http://www.cs.nyu.edu/∼nicolosi/papers/accumulators.ps

10. Kocher, P.C.: On certificate revocation and validation. In: Hirschfeld, R. (ed.) FC 1998.
LNCS, vol. 1465, pp. 172–177. Springer, Heidelberg (1998)

11. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz,
J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521. Springer, Heidelberg (2007)

12. National Institute of Standards and Technology (NIST). FIPS Publication 180: Secure Hash
Standard (SHS) (May 1993)

13. OpenSSL Project. OpenSSL Package (June 2008) [June 19, 2008],
http://www.openssl.org

http://www.cs.nyu.edu/~nicolosi/papers/accumulators.ps
http://www.openssl.org

A Novel Audio Steganalysis Based on

High-Order Statistics of a Distortion Measure
with Hausdorff Distance

Yali Liu1, Ken Chiang2, Cherita Corbett2, Rennie Archibald3,
Biswanath Mukherjee3, and Dipak Ghosal3

1 Electrical & Computer Engineering, University of California, Davis,
Davis, CA 95616 USA
yliu@ece.ucdavis.edu

2 Sandia� National Laboratories, Livermore, CA 94551, USA
3 Department of Computer Science, University of California, Davis,

Davis, CA 95616 USA

Abstract. Steganography can be used to hide information in audio me-
dia both for the purposes of digital watermarking and establishing covert
communication channels. Digital audio provides a suitable cover for high-
throughput steganography as a result of its transient and unpredictable
characteristics. Distortion measure plays an important role in audio ste-
ganalysis - the analysis and classification method of determining if an
audio medium is carrying hidden information. In this paper, we propose
a novel distortion metric based on Hausdorff distance. Given an audio
object x which could potentially be a stego-audio object, we consider
its de-noised version x′ as an estimate of the cover-object. We then use
Hausdorff distance to measure the distortion from x to x′. The distor-
tion measurement is obtained at various wavelet decomposition levels
from which we derive high-order statistics as features for a classifier to
determine the presence of hidden information in an audio signal. Exten-
sive experimental results for the Least Significant Bit (LSB) substitution
based steganography tool show that the proposed algorithm has a strong
discriminatory ability and the performance is significantly superior to ex-
isting methods. The proposed approach can be easily applied to other
steganography tools and algorithms.

1 Introduction

Steganography is the art and science of hiding a secret message within an in-
nocuous and open carrier medium, such as digital audio, image, and video. To
achieve covert communications without raising suspicion, media containing some
hidden information (stego-objects) should be indistinguishable from media with-
out any hidden information (cover-objects). The rapid proliferation of Voice over
� Sandia is a mutiprogram laboratory operated by Sandia Corporation, a Lockheed

Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-04AL85000.

T.-C. Wu et al. (Eds.): ISC 2008, LNCS 5222, pp. 487–501, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

488 Y. Liu et al.

Internet Protocol (VoIP) and other Peer-to-Peer (P2P) audio services provide
vast opportunities for covert communications [1]. By slightly altering the binary
sequence of the audio samples with existing steganography tools, covert com-
munication channels may be relatively easy to establish. Moreover, the inherent
redundancy in the audio signal and its transient and unpredictable character-
istics imply a high hidden capacity. This is further aided by the fact that the
human ear is insensitive to small distortions in the audio signal. All these make
audio a good candidate for use as a “cover” for covert communications to hide
secret messages.

The countermeasure to steganography is steganalysis. In particular, steganal-
ysis seeks to identify suspected information streams; determine whether or not
they have hidden messages encoded into them; and, if possible, recover the hid-
den information. Steganalysis can also serve as an effective way to judge the
security performance of steganography techniques, leading to new steganogra-
phy methods followed by new and improved steganalysis techniques for their
detection. As covert communications greatly increase the possibility of unknown
malicious activities from a security standpoint, there is significant demand in
steganalysis technique to detect hidden information in open digital media con-
tent. In this paper, similar to most of the steganalysis work, we focus on the
detection of the presence of hidden content, rather than message recovery or
other functions.

In recent years, there has been significant effort in the steganalysis of digital
images [2][3][4]. Typically, natural images tend to be contiguous and smooth,
which leads to high spatial coherence among adjacent pixels. Since the hid-
den message is usually independent of the cover-image, embedding the hidden
message into the cover-image may decrease or even destroy the inherent natu-
ral correlation. As a result, most of the image steganalysis algorithms attempt
to determine some particular statistical features that can capture this change.
Although most image steganalysis algorithms claim that they can be easily ex-
tended to other types of media files (e.g., audio), many of the models capture
statistical regularities inherent to the spatial composition of images, which are
not present in other types of media files such as audio [5]. As a result, deeper re-
search must be conducted on the feature extraction when identifying stego-audio
files.

Compared to image steganalysis, audio steganalysis is relatively unexplored.
Johnson et al. proposed a universal steganalysis algorithm that exploits the
statistical regularities of recorded speech [5]. In [6], audio quality metrics were
adopted to capture the distortion introduced by the hidden information. Later in
[7], Avcibas proposed an audio steganalysis algorithm using content-independent
distortion measures. However, all these audio distortion measurements are seek-
ing ways in which the existing quality metrics can reflect the sensitivity to the
presence of hidden messages.

In this paper, we propose an audio steganalysis scheme that measures audio
distortion using Hausdorff Distance [8]. Among various distance measures, Haus-
dorff distance was chosen because of its successful applications in matching given

A Novel Audio Steganalysis Based on High-Order Statistics 489

templates in arbitrary target images [9]. Its strong discriminatory power makes it
very helpful in the distortion measurement process. High order statistics derived
from this distortion measure can then be used to generate features for a classi-
fier. Unlike previous work in audio steganalysis that used the traditional audio
quality metrics, such as signal-to-noise ratio (SNR), Perceptual Audio Quality
Measure (PAQM) [6], and other such metrics, the proposed distortion measure
is designed specifically to detect modifications to pure audio content as follows.

Given an audio object x which could potentially be a stego-audio object, we
consider its de-noised version x′ as an estimate of the cover-object. After ap-
propriate segmentation, we apply wavelet decomposition to both x and x′ to
generate wavelet coefficients [10] at different levels of resolution. Next, Haus-
dorff distances are used to test the similarities between the wavelet coefficients
of the audio signals and their de-noised versions. The statistical moments of
these Hausdorff distances are used as the features to train a classifier on the
difference between known cover-audio objects and stego-audio objects with dif-
ferent hidden content loadings. Simulations with numerous audio sequences show
that our algorithm provides significantly higher classification rates than existing
schemes that use standard audio quality metrics or statistical moments without
considering audio quality. Moreover, as the proposed scheme makes no assump-
tions about the embedding technique used, it should be easily applicable to other
steganography tools and algorithms.

The paper is organized as follows. Section 2 provides the related work. In
Section 3, we briefly introduce the general idea of steganalysis based on audio
distortion before presenting the novel steganalysis distortion metric based on
Hausdorff distance and the corresponding high-order statistics used as a feature
vector. In Section 4, we implement our technique and present our experimental
results and performance comparisons. Section 5 concludes the paper.

2 Related Work

In recent years, there has been significant research effort in steganalysis with
primary focus on digital images. Since there are similarities between images and
audios, in this section, we review some image steganalysis algorithms which may
be helpful for the audio steganalysis. It should be noted that many steganalysis
techniques are specific to some particular data hiding methods [2][11][12][13]
[14]. However, since the data-embedding method is typically unknown prior to
detection, we focus on the design of a unified steganalysis algorithm to detect the
presence of steganography independent of the steganography algorithms used.
Moreover, we focus on passive detection as opposed to active warden steganalysis
[6] which aim to detect and modify the hidden content.

2.1 High-Order Statistics and Steganalysis

A number of prior studies have shown that high-order statistics are very effective
in differentiating stego-images from cover-images. In [15], Farid proposed a gen-
eral steganalysis algorithm based on image high-order statistics. In this method,

490 Y. Liu et al.

a statistical model based on the first (mean) and higher-order (variance, skew-
ness, and kurtosis) magnitude statistics, extracted from wavelet decomposition,
is used for image steganography detection. In [16], a steganalysis method based
on the moments of the histogram characteristic function was proposed. It has
been proved that, after a message is embedded into an image, the mass center
(the first moment) of histogram characteristic function will decrease. In [10],
Holotyak et al. used higher-order moments of the probability density function
(PDF) of the estimated stego-object in the finest wavelet level to construct the
feature vectors. Due to the limited number of features used in the steganalysis
technique proposed in [16], Shi et al. proposed the use of statistical moments of
the characteristic functions of the wavelet sub-bands [17]. Because the nth statis-
tical moment of a wavelet characteristic function is related to the nth derivative
of the corresponding wavelet histogram, the constructed 39-dimensional feature
vector has proved to be sensitive to embedded data.

Usually, the steganalysis algorithms based on the high-order statistics can
achieve satisfactory performance on image files, regardless of the underlying
embedding algorithm. However, these statistical models may not be appropriate
for audio files because these models capture statistical regularities inherent to
the spatial composition of images which is not present in audio [5].

2.2 Distortion Measures and Steganalysis

The concept of using distortion measures to classify cover-objects and stego-
objects was introduced by Avcibas et al. in 2003 [18]. Since the presence of
steganography communication in a signal can be modeled as additive noise in
the time or frequency domains [16], the de-noised versions of the image signals
can be used to represent close approximations of the cover-images. It has been
shown that the distortion (measured by the distance in the feature space) of
the cover-image to its de-noised version is different than the distortion between
a stego-image and its de-noised version. Specifically, some image quality met-
rics, e.g., Minkowsky [18], correlation, and human visual system (HVS) based
measures [19][20], are selected as the feature set to distinguish between cover-
images and stego-images. This concept was extended to audio steganalysis in
[6]. Similar to [18], the potential of distortion audio metrics is used to build a
steganalyzer to discriminate between cover-audio objects and stego-audio ob-
jects. Particularly, the traditional audio quality metrics, such as SNR, PAQM,
and other such metrics are tested for their sensitivity to the presence of stegano-
graphic content. In [7], Avcibas proposed an audio steganalysis algorithm using
content-independent distortion measures. By removing content dependency dur-
ing the distortion measurement, the paper shows that the discriminatory power
is enhanced.

Note that all these algorithms attempt to find good features from the standard
quality metrics which are designed to evaluate the perceptual and objective qual-
ity performance of images or audio. As the primary motivation for developing
these quality metrics was for purposes other than steganalysis, the capability of
distinguishing changes in quality due to embedding content using steganography

A Novel Audio Steganalysis Based on High-Order Statistics 491

Cover-audio

Stego-noise

Stego-audio

(a)

De-noise
)(~ nxc

)(nxc

)(nN

)()()(nNnxnx cs

De-noise)(~)(~ nNnxc)()(nNnxc

(b) (c)

)(nxc

Fig. 1. Schematic descriptions of (a) additive noise steganography model, (b) de-
noising a cover-audio object, and (c) de-noising a stego-audio object

may be limited. Consequently, we argue that it is better to define a distortion
metric that is designed specifically to detect modifications to audio content. Fur-
thermore, since the high-order moments have been helpful in image steganalysis,
we believe they can also contribute in audio steganalysis if used properly.

3 Methodology

In this section, we first review steganography message embedding techniques
and set up a steganalyer based on audio distortion. Then based on the approxi-
mate additive noise model, an audio steganalysis using high-order statistics of a
distortion measure with Hausdorff distance is proposed.

3.1 Steganalysis Based on Audio Distortion

Due to the natural noise in the media transmission process, e.g., quantization,
sensor, and channel, a number of steganography hiding schemes try to disguise
the hidden message as a naturally present noise. As such, a generalized ad-
ditive noise scheme has been developed in [20] that is capable of embedding
data with any given distribution. Moreover, the work in [15] shows that most
of the steganography algorithms, e.g., Least Significant Bit (LSB) steganogra-
phy, spread spectrum image steganography, or even more robust and stealthy
steganography schemes such as Discrete Cosine Transform (DCT) steganogra-
phy, can be approximated as an additive noise scheme.

The same additive noise model can also be applied to audio files. The steganog-
raphy message embedding process is shown in Figure 1. Let xc(n) denote a cover-
audio object and xs(n) be its stego-version. Let N(n) be an independent and
identically distributed (i.i.d) Gaussian noise; then the stego-audio object can be
expressed as xs(n) = xc(n)+N(n) with the additive noise model. A good feature
should enlarge the distance between xc(n) and xs(n). However, it is important
to note that, in a real communication environment, a reference audio file needs

492 Y. Liu et al.

Distortion
Measure)(~ nxcDe-noise

)(nxc)(ndc

Distortion
Measure

de-noise

Feature
Calculation

Classifier
Training

Distortion
Measure

De-noise

)(ndT Feature
Calculation Classifier

)(nfc

File Class

(a)

(b)

)(nxs
)(~ nxs

)(nfs)(nd s

)(nxT
)(~ nxT

)(nfT

Fig. 2. Schematic description of (a) training and (b) testing for the steganalysis

to be used since we cannot get specific information about the original cover-
audio object. The de-noised version of an audio file has already been shown to
be a good estimation of the cover signal [6]. Note that the de-noised version of
stego-audio is still the de-noised cover-audio with some i.i.d. Gaussian noise.

The training and testing procedures for the steganalysis are shown in Figure 2.
Let x̃c(n) and x̃s(n) be the de-noised versions of a cover-audio object and a
stego-audio object, respectively. The defined distortion metric, in fact, is simply
trained to differentiate between the distances, denoted as dc(n) and ds(n), of the
cover-audio object and stego-audio object to their de-noised versions. Instead of
using dc(n) and ds(n) as audio features, further feature calculation procedures
are performed before going to the classifier training process. The test audio file
xT (n) will go through the same procedures of distortion measure and feature
selection until the resulting feature vector fT (n) is achieved, and then used to
judge the test file type with the training model.

In addition to feature calculation, the classifier plays an important role in the
steganalysis process. It affects the classification performance in terms of success
classification rate as well as the computational complexity. In our work, we use
the freely available package Library for Support Vector Machines (LIBSVM)
[21], which is powerful software for data classification and is widely used in
steganalysis.

3.2 Feature Calculation

Wavelet de-noising. The goal of the de-noising process is to recover the char-
acteristics of the original cover-audio object while also removing as much noise
as possible. Considering the non-stationary characteristics of audio signals [5],
a smoothing filter may not be very suitable for estimating the cover-object.
Among many other techniques, Wiener filtering is a powerful tool for additive
noise reduction. In its basic form, Wiener theory assumes that signals are station-
ary processes. However, this assumption is not realistic for audio signals, whose

A Novel Audio Steganalysis Based on High-Order Statistics 493

characteristics change in time and therefore are considered non-stationary sig-
nals. As a result, we consider adopting the wavelet de-noising technique. Using
the thresholding technique [22], wavelet approximation allows an adaptive rep-
resentation of signal discontinuities. Wavelets also provide unconditional basis
for a variety of function spaces and thus provide better approximation power
than Fourier basis to help recover the characteristics of the cover-audio signal
more effectively.

Distortion Measure. Once we get the de-noised version of an audio signal, a
distance measurement will be applied to measure the distortion or degradation
of the original audio signal. Such a measurement should respond to the presence
of a hidden message in an accurate, consistent, and monotonic (with respect
to the size of the hidden message) way. It should be noted that, instead of
gathering information directly from audio files, signatures of the audio files are
generated based on their wavelet coefficients at different levels of resolution and
will be used to test the distance of the audio file and its de-noised version.
The wavelet transform is chosen for its well-known capability of multi-resolution
decomposition [23], which can help to enlarge the influence of the additive noise
present as a result of embedding. Since the hidden information may only modify
a small portion of the cover-objects, the distortion is calculated at their pre-
defined small segments separately. At this point, the time-frequency localization
[23] characteristic of the wavelet transform may also provide some information
about the discontinuities that occur.

Since the distortion metric should be sensitive to the presence of a hidden
message and its reaction should be proportional to the embedding strength,
Hausdorff distance [8] is used as a dissimilarity measure. Among dissimilarity
measures over binary images, the Hausdorff distance has often been used in the
content-based retrieval domain and is known to have successful applications in
object matching [18]. On the other hand, Hausdorff distance is very sensitive to
noise [24][9]. A small distortion can result in a significant distance between two
objects. However, in steganalysis, the main issue under consideration is not the
content of an audio file but the minor distortions introduced during the data-
hiding process. As a result, this characteristic of Hausdorff distance makes it
very helpful in the steganalysis.

The Hausdorff distance is basically a max-min distance. Suppose the length of
each segment of the audio file is M . After de-noising and wavelet decomposition
at level p, for mth segment, the wavelet coefficients of the audio file and its
de-noised version are Cp

m = {C1
m, C2

m, . . . , Cq
m} and C̃p

m = {C̃1
m, C̃2

m, . . . , C̃q
m},

where q = M/2p. Then, its distortion measure with Hausdorff distance is:

Hp
m = max{h(Cp

m, C̃p
m), h(C̃p

m, Cp
m)} (1)

where

h(Cp
m, C̃p

m) = maxi=1,2,...,q{minj=1,2,...,q‖cj
m − c̃j

m‖} (2)

is the directed Hausdorff distance from Cp
m to C̃p

m and ‖cj
m − c̃j

m‖ is some un-
derlying norm on the point of ci

m and c̃j
m. Here, we use the absolute difference.

494 Y. Liu et al.

Feature Calculation. As in [14], to get good local distortion estimation, the
segment size M that the audio file is split into should not be very large (in
our experiment, we set M as 1024 audio samples). As a result, the number of
Hausdorff distances after the distortion measurement is still very large. It is
unrealistic to use these distances directly for steganalysis. A feasible approach is
to extract a certain amount of data (features) from these distances and use them
to represent the distortion measurement for steganalysis. Because the task of the
segmentation is to test the distortion regularity for the audio files, high-order
statistics based on the moments will be used as the final feature.

Suppose the entire audio length is L samples, then the total number of seg-
ments is & L

M '. For wavelet decomposition level p, where p = 0, 1, . . . , P , the
overall distortion measured using Hausdorff distance is:

Dp = 〈Hp
1 , Hp

2 , . . . , Hp

� L
M �〉 (3)

and the feature vector V p = 〈vp
1 , vp

2 , . . . , vp
K〉 can be extracted according to the

following equation.

vp
i =

∑n
j=1(f

p
j)i · dp

j∑n
j=1d

p
j

, i = 1, 2, . . . , K (4)

where dp
j is the amplitude of jth frequency component fp

j to the distortion dis-
tances Dp and K is the total number of moments.

In this way, for each wavelet decomposition level, we have K features. For a
total P -level wavelet decomposition plus the level 0 which is the signal itself, we
have (P + 1) × K features which form a high-dimensional feature vector:

V = 〈V 0, V 1, . . . , V p〉 (5)

for steganalysis.

3.3 Algorithm Summary

In summary, the proposed feature calculation algorithm proceeds along the fol-
lowing steps:

Step 1. For a given audio file x(n), apply wavelet de-noising to get its de-noised
version x̃(n).

Step 2. Partition the signal x(n) and x̃(n) with pre-defined segment length M .
Calculate the wavelet coefficients cp

m at different levels p for segment m.

Step 3. For each wavelet decomposition level p, calculate the distortion measure
Hp

m with Hausdorff distance in Equation (1) for all the segments.

Step 4. Set up the feature vector V p by calculating the moments of Dp using
Equation (3) for each wavelet decomposition level p.

Step 5. Set up the high-dimensional feature V using Equation (5).

A Novel Audio Steganalysis Based on High-Order Statistics 495

4 Experimental Results

To evaluate the performance of the proposed steganalysis algorithm, we ran-
domly picked 994 wav files from the wav surfer database [25]. All these wav
files are parts of movies or television programs and have different audio charac-
teristics. These audio files (compressed to MP3 formats) are transformed into
standard PCM wav format using Nero Wave Edit before processing. The sam-
pling rate is 44.1 kHz with 16 bits per sample. The audio file lengths vary from
one second to 298 seconds. As for the steganography tool, we have used Steghide
[26] due to its robustness against a number of different steganalysis tools. For
the results presented in this paper, we have set P (the number of wavelet de-
composition levels) to 4 and K (the number of high order moments) to 5. This
implies that a 25-D feature vector is generated for each audio file.

4.1 Performance Comparison with Other Audio Steganalysis
Algorithms

In this section, we compare the performance of the proposed algorithm with
three known algorithms referred to in Section 2. Each experiment randomly
selects 895 of the 994 original audio as cover-audio objects. For each audio object,
we create a corresponding stego-audio object with a specific amount of hidden
content (measured with hidden ratio). As a result, 895 stego-audio files and
their original 895 cover-audio files are used for training the classifier. Here, the
hidden ratio is the percentage of the size of the hidden message to the hidden
capacity (the maximum size of the information that can be hidden) which is
determined by Steghide. From the remaining 99 audio files, we obtain 99 pairs,
each pair consisting of the original audio and the corresponding stego-audio
with a specific hidden ratio. These 99 pairs of audio are used for testing. Note
that in this section, we only focus on the feature effectiveness and assume that
the hidden ratio information is known before testing, i.e., the hidden ratios are
the same in the training and testing processes. The performance metric used is
the correct classification rate1 with the average computed from 10 independent
experiments.

Of the three different reference algorithms considered for comparison, the
first two were selected to test the importance of high-order statistics in audio
steganlalysis. Particularly, one algorithm (HOMWC) [15] is directly based on the
high-order moments of the wavelet coefficients of the audio signal. The second
algorithm (SMCFWS) [17] is based on statistical moments of the characteristic
functions of wavelet sub-bands. In order to make a fair comparison of the per-
formance of the algorithms, we have considered the first 5 moments for the first
4 wavelet decomposition levels as in our algorithm as well. The third algorithm
(QMGAQM) [6] is based on the quality measurement with general audio quality
metrics. Similarly to the study in [6], a 5-D feature vector based on SNR and
PAQM and other such metrics is used to train the classifier.
1 The correct classification rate is the average detection rate to all the original audio

objects and stego-audio objects.

496 Y. Liu et al.

10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Hidden ratio (%)

C
or

re
ct

 C
la

ss
if

ic
at

io
n

ra
te

 (
%

)

Proposed algorithm
HOMWC
SMCFWS
QMGAQM

Fig. 3. Comparison of correct classification rate with other audio steganalysis
algorithms

Figure 3 plots the correct classification rate as a function of the hidden ratio.
It is clearly observed that the correct classification rate achieved by our proposed
algorithm is more than 90% with 100% hidden ratio and 85% for 50% hidden
ratio. Even with only 10% hidden ratio, our approach can still achieve more
than 66% successful detection. More importantly, the proposed algorithm shows
strong monotonic characteristics with different hidden ratios. On the other hand,
it is observed that the SMCFWS algorithm does not perform well. Although the
algorithm using moments of wavelet coefficients (HOMWC) is fairly good, our
algorithm can still get more than 10% improvement in the correct classification
rate. This does not come as a surprise since these algorithms work very well
in the stego-image identification due to their ability to capture the statistical
regularities inherent in the spatial composition of images which are not present
in audio. Note that the performance of the algorithm with audio quality metrics
(QMGAQM) is fairly good at low hidden ratio. However, the classification rate
does not show strong monotonic characteristics with respect to different hidden
ratios. This confirms our aforementioned doubt that the standard audio quality
metrics may or may not reflect modifications to pure audio content.

4.2 Performance with Respect to Different Hidden Ratios

In the previous section, we compared the feature effectiveness with different
audio steganalysis algorithms using the same hidden ratio at the training process
and testing. However, in a real system, the hidden ratio information will be
unknown before the test. In this section, we evaluate the performance of the
proposed algorithm by considering different hidden ratios during the training
process. Similar to the previous section, we randomly select 895 original audio
files as cover-audio objects. Their corresponding stego-audio files are generated
based on five different hidden ratios: 10%, 30%, 50%, 80%, and 100%. For each

A Novel Audio Steganalysis Based on High-Order Statistics 497

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

Test Hidden Ratio (%)

Fa
ls

e
Po

si
tiv

e
(F

P)
 R

at
e

(%
)

Training Hidden Ratio = 10%
Training Hidden Ratio = 30%
Training Hidden Ratio = 50%
Training Hidden Ratio = 80%
Training Hidden Ratio = 100%

(a)

10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Test Hidden Ratio (%)

Fa
ls

e
N

eg
at

iv
e

(F
N

)
R

at
e

(%
)

Training Hidden Ratio = 10%
Training Hidden Ratio = 30%
Training Hidden Ratio = 50%
Training Hidden Ratio = 80%
Training Hidden Ratio = 100%

(b)

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

Test Hidden Ratio (%)

E
rr

or
 D

et
ec

tio
n

R
at

e
(%

)

FP Rate
FN Rate

(c)

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

Test Hidden Ratio (%)

C
or

re
ct

 C
la

ss
if

ic
at

io
n

R
at

e
(%

)

Training Hidden Ratio = 10%
Training Hidden Ratio = 30%
Training Hidden Ratio = 50%
Training Hidden Ratio = 80%
Training Hidden Ratio = 100%
Training Hidden Ratio = 30% + 80%

(d)

Fig. 4. Detection performance at different hidden ratios. (a) FP rate with different
training hidden ratios; (b) FN rate with different training hidden ratios; (c) FP rate
and FN rate with the 30% + 80% training hidden ratio; (d) correct classification rate
with different training hidden ratios.

hidden ratio, we created 895 stego-audio objects and used them in conjunction
with the original 895 cover-audio objects for training the classifier. This leaves
99 pairs of audio files (original audio objects and their stego-versions with the
same hidden ratio) to be used for testing. The performance metrics used are the
false positive (FP) and false negative (FN) rates reported as an average of ten
independent experiments.

Figure 4(a) and 4(b) plot the detection performance at different hidden ratios
during the training and testing processes. They show that both FP and FN of our
algorithm are influenced by the hidden ratio in the training process. Specifically,
the higher the hidden ratios used in the training process, the lower the FP. This is
consistent with the fact that distortion is higher with higher hidden ratios. Thus,
at high hidden ratios, the test cover-audio object is less likely to be misjudged
as a stego-audio object. However, the large distortion introduced by the high hid-
den ratios in the training process will make the system more likely to miss-classify
stego-audio objects with lower hidden ratio. Consequently, there is a trade-off be-
tween FP and FN. Concerning this trade-off, we find it is reasonable to train our

498 Y. Liu et al.

SVM models with audio files embedded with multiple hidden ratios. Therefore,
during the training process, for each cover-audio object, multiple versions of the
stego-audio objects with the selected set of the hidden ratios are used. Considering
the unknown properties of the test audio and computation cost for the training
process, only limited combinations of the hidden ratios may be selected. In our
study, we find 30% and 80% hidden ratios can help to train the system with a good
representation of the cover-audio objects and stego-audio objects simultaneously.

Figure 4(c) plots the simulation results for the test audio objects containing
different hidden ratios with a training set that contains stego-audio objects with
both 30% and 80% hidden ratios (denoted as 30% + 80%). The low FP rate and
FN rate indicate that, in most cases, the system can distinguish the cover-audio
objects and stego-audio objects successfully. More importantly, these results show
that multiple training hidden ratios greatly improve the robustness of our algo-
rithm. Our improved robustness can be observed as both FP rate and FN rate are
almost unchanged with different test hidden ratios, which is very helpful since we
usually do not know the hidden ratio of a stego-object in advance.

Figure 4(d) plots the correct classification rates by the influence of different
hidden ratios in the training process. Note that the smaller the difference between
the test hidden ratio and the training hidden ratio, the better classification
performance we achieve. Moreover, with the help of multiple training hidden
ratios, the correct classification rate shows strong robust characteristics and for
most cases the correct classification rate is much higher than the best one we can
get with only one training hidden ratio. Although there is still some small gap
between the performance of multiple hidden ratios at higher hidden ratios, e.g.,
80% and 100%, the improvement in classification can be achieved by increasing
the number of training hidden ratios.

4.3 Analysis of Feature Contributions

To measure the effectiveness of each feature in the 25-D feature vector, we define
the relative feature distance as:

Δ =
vs − vc

vs
× 100% (6)

where vc and vs are the feature vectors obtained from cover-audio objects and
stego-audio objects, respectively. Figure 5 plots the relative feature distance for
100 audio files randomly selected from our audio database. The hidden ratio in
this section is set to be 100%. The results show that the differences between the
features of the cover-object and stego-object are less noticeable with the higher
wavelet decomposition level. This is because the embedded information corre-
sponds to high frequency noise. In the wavelet decomposition process, the lower
levels correspond to the higher frequency bands and higher levels lead to decreas-
ing frequency bands. As a result, the feature at the lower wavelet levels will better
detect changes resulting from noise. Finally, Table 1 shows the contribution of
each dimension of the 25-D feature vector to the classification performance by
separately applying each dimension as a one-dimensional (1-D) feature for ste-
ganalysis. The performance is measured with the correct classification rate for

A Novel Audio Steganalysis Based on High-Order Statistics 499

0 20 40 60 80 100
−5

0

5

10

15

Test file index

Δ(
%

)

Level0 Moment1

0 20 40 60 80 100
−5

0

5

10

15

Test file index

Δ(
%

)

Level1 Moment1

0 20 40 60 80 100
−5

0

5

10

15

Test file index

Δ(
%

)

Level3 Moment1

0 20 40 60 80 100

−2000

−1500

−1000

−500

0

Test file index

Δ(
%

)

Level0 Moment2

0 20 40 60 80 100

−2000

−1500

−1000

−500

0

Test file index

Δ(
%

)

Level1 Moment2

0 20 40 60 80 100

−2000

−1500

−1000

−500

0

Test file index

Δ(
%

)

Level3 Moment2

0 20 40 60 80 100

−2

−1.5

−1

−0.5

0
x 10

4

Test file index

Δ(
%

)

Level0 Moment3

0 20 40 60 80 100

−2

−1.5

−1

−0.5

0
x 10

4

Test file index

Δ(
%

)

Level1 Moment3

0 20 40 60 80 100

−2

−1.5

−1

−0.5

0
x 10

4

Test file index

Δ(
%

)

Level3 Moment3

0 20 40 60 80 100

−8

−6

−4

−2

0
x 10

4

Test file index

Δ(
%

)

Level0 Moment4

0 20 40 60 80 100

−8

−6

−4

−2

0
x 10

4

Test file index

Δ(
%

)

Level1 Moment4

0 20 40 60 80 100

−8

−6

−4

−2

0
x 10

4

Test file index

Δ(
%

)

Level3 Moment4

0 20 40 60 80 100

−4

−3

−2

−1

0
x 10

5

Test file index

Δ(
%

)

Level0 Moment5

0 20 40 60 80 100

−4

−3

−2

−1

0
x 10

5

Test file index

Δ(
%

)

Level1 Moment5

0 20 40 60 80 100

−4

−3

−2

−1

0
x 10

5

Test file index

Δ(
%

)

Level3 Moment5

Fig. 5. Feature effectiveness with respect to different wavelet decomposition levels and
statistical orders

the randomly-selected 895 cover-audio objects and their stego-versions in the
training process. The results show that the correct classification rates are dif-
ferent for different 1-D features. Particularly, the correct classification rate is
much higher at the lower wavelet decomposition levels compared to the higher
levels, and the original signal gets a median correct classification rate within the
different wavelet decomposition levels. Also, within the same level, the correct
classification rate increases with the increasing moment order. These results con-
firm our previous analysis for the different feature effectiveness. In addition, it
can be observed that the correct classification rates using any 1-D feature vector
or any 5-D feature vector are significantly lower than using the combined 25-D
feature vector. In other words, the 25 features collectively perform much better,
thus these features are complementary in steganalysis.

500 Y. Liu et al.

Table 1. Correct classification rate of 1-D feature for the training data

Moment Order Level 0 Level 1 Level 2 Level 3 Level 4

1 55.30 57.42 55.02 51.79 51.06
2 62.94 65.56 55.91 53.01 51.78
3 65.90 77.23 56.19 53.57 52.40
4 66.35 79.80 58.25 55.80 52.57
5 67.18 82.75 59.04 56.25 52.68
5-D feature vector 68.97 85.77 69.87 60.71 54.30
25-D feature vector 89.45

5 Conclusion

In this paper, we presented an audio steganalysis method that is based on audio
distortion measurement and high-order statistics in the feature selection. A dis-
tortion metric based on Hausdorff distance was designed specifically to detect
modifications and additions to audio media. We considered the de-noised version
of the audio object as an estimate of the cover-object. We then used the Hausdorff
distance to measure the distortion. The distortion measurement was obtained at
various wavelet decomposition levels from which we derived high-order statistics
as features for a classifier to determine the presence of hidden information in an
audio signal. Results from simulations with numerous audio sequences showed
that our algorithm provides significantly higher detection rates than existing
schemes that use standard audio quality metrics or statistical moments without
considering audio quality.

References

1. Dittmann, J., Hesse, D., Hillert, R.: Steganography and steganalysis in voice-over
ip scenarios: operational aspects and first experiences with a new steganalysis tool
set. In: Security, Steganography, and Watermarking of Multimedia Contents VII,
San Jose, CA, USA, January 2005, pp. 607–618. SPIE (2005)

2. Fridrich, J., Goljan, M., Du, R.: Reliable detection of LSB steganography in color
and grayscale images. In: Proceedings of the 2001 workshop on multimedia and
security: new challenges, Ottawa, Ontario, Canada, october 2001, pp. 27–30. ACM
Press, New York (2001)

3. Johnson, N.F., Jajodia, S.: Steganalysis of images created using current steganogra-
phy software. In: Proceedings of the Second International Workshop on Information
Hiding, Portland, OR, USA, April 1998, pp. 273–289. Springer, Heidelberg (1998)

4. Westfeld, A., Pfitzmann, A.: Attacks on steganographic systems. In: Proceedings
of the Third International Workshop on Information Hiding, Dresden, Germany,
september 1999, pp. 61–76. Springer, Heidelberg (1999)

5. Johnson, M.K., Lyu, S., Farid, H.: Steganalysis of recorded speech. In: Delp III,
E.J., Wong, P.W. (eds.) Security, Steganography, and Watermarking of Multimedia
Contents VII, May 2005, vol. 5681, pp. 664–672. SPIE (2005)

6. Ozer, H., Avcibas, I., Sankur, B., Memon, N.D.: Steganalysis of audio based on audio
quality metrics. In: Delp III, E.J., Wong, P.W. (eds.) Security and Watermarking of
Multimedia Contents V, January 2003, vol. 5020, pp. 55–66. SPIE (2003)

A Novel Audio Steganalysis Based on High-Order Statistics 501

7. Avcibas, I.: Audio steganalysis with content-independent distortion measures. Sig-
nal Processing Letters, IEEE 13(2), 92–95 (2006)

8. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using
the hausdorff distance. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 15(9), 850–863 (1993)

9. Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: Shape
Modeling and Applications, SMI 2001 International Conference on, Genova, Italy,
pp. 188–197 (May 2001)

10. Holotyak, T., Fridrich, J., Voloshynovskiy, S.: Blind statistical steganalysis of ad-
ditive steganography using wavelet higher order statistics. In: Lecture Notes in
Computer Science, pp. 273–274. Springer, Heidelberg (2005)

11. Chandramouli, R., Memon, N.: Analysis of LSB based image steganography tech-
niques. In: Image Processing, 2001. International Conference on, Thessaloniki,
Greece, pp. 1019–1022 (October 2001)

12. Dabeer, O., Sullivan, K., Madhow, U., Chandrasekaran, S., Manjunath, B.S.: De-
tection of hiding in the least significant bit. Signal Processing, IEEE Transactions
on 52(10), 3046–3058 (2004)

13. Dumitrescu, S., Wu, X.: Steganalysis of LSB embedding in multimedia signals.
In: Multimedia and Expo, 2002. ICME 2002. IEEE International Conference on,
Lusanne, Switzerland, pp. 581–584 (August 2002)

14. Dumitrescu, S., Wu, X., Wang, Z.: Detection of LSB steganography via sample
pair analysis. In: Proceedings of the Fifth International Workshop on Information
Hiding, Noordwijkerhout, The Netherlands, pp. 355–372 (October 2002)

15. Farid, H.: Detecting hidden messages using higher-order statistical models. In:
Image Processing. 2002. International Conference on, Rochester, NY, USA, pp.
905–908 (September 2002)

16. Harmse, J.J.: Steganalysis of additive noise modelable information hiding. Master’s
thesis, Rensselaer Polytechnic Institute, Troy, New York, USA (2003)

17. Shi, Y.Q., Xuan, G., Yang, C., Gao, J., Zhang, Z., Chai, P., Zou, D., Chen, C.,
Chen, W.: Effective steganalysis based on statistical moments of wavelet charac-
teristic function. In: IEEE International Conference on Information Technology:
Coding and Computing, ITCC 2005, April 2005, pp. 768–773. IEEE Computer
Society Press, Los Alamitos (2005)

18. Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. Im-
age Processing, IEEE Transactions on 12(2), 221–229 (2003)

19. Watson, A.B. (ed.): Digital images and human vision. MIT Press, Cambridge
(1993)

20. Nill, N.: A visual model weighted cosine transform for image compression and
quality assessment. Communications, IEEE Transactions on 33(6), 551–557 (1985)

21. A Library for Support Vector Machines,
http://www.csie.ntu.edu.tw/cjlin/libsvm/

22. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet
shrinkage. Journal of the American Statistical Association 90(432), 1200–1224
(1995)

23. Burrus, C.S., Gopinath, R.A., Guo, H.: Introduction to wavelets and wavelets trans-
forms, a primer. Prentice Hall, Englewood Cliffs (1998)

24. Veltkamp, R., Hagedoorn, M.: State-of-the-art in shape matching. Technical Report
UU-CS-1999-27, Utrecht University, the Netherlands (1999)

25. Wave files, http://www.wavsurfer.com/
26. Steghide, http://steghide.sourceforge.net/

http://www.csie.ntu.edu.tw/cjlin/libsvm/
http://www.wavsurfer.com/
http://steghide.sourceforge.net/

Author Index

Anagnostakis, K.G. 146
Antonatos, S. 146
Antoniades, D. 146
Archibald, Rennie 487
Athanasopoulos, Elias 146, 161

Baek, Joonsang 285
Bangerter, Endre 17
Bao, Feng 64
Batina, Lejla 341
Burnside, Matthew 191

Camacho, Philippe 471
Champagne, David 47
Chen, Liqun 31
Chen, Songqing 97
Chiang, Ken 487
Chow, Sherman S.M. 260
Choy, Jiali 367
Corbett, Cherita 487
Coskun, Baris 421
Crandall, Jedidiah R. 114

Deng, Robert H. 64, 131
Ding, Jintai 215
Ding, Xuhua 64
Djackov, Maksim 17

Elbaz, Reouven 47

Florêncio, Dinei 401
Frias-Martinez, Vanessa 175
Fukushima, Kazuhide 455

Gao, Debin 131
Ghosal, Dipak 487
Gierlichs, Benedikt 341
Goodrich, Michael T. 80
Gueron, Shay 331

Heo, Young-Jun 114
Herley, Cormac 401, 421
Hevia, Alejandro 471
Huang, Jianyong 316
Huang, Xiao-Wei 277

Indesteege, Sebastiaan 355
Ioannidis, Sotiris 146, 161
Iwahashi, Ryan 114

Jang, Jong-Soo 114

Keromytis, Angelos D. 175, 191
Khoo, Khoongming 367
Kiwi, Marcos 471
Kiyomoto, Shinsaku 455
Koo, Bon Wook 298
Kounavis, Michael E. 331
Kurihara, Jun 455

Lee, Heejo 131
Lee, Ruby B. 47
Lemke-Rust, Kerstin 341
Li, Peng 131
Ling, San 204
Lipmaa, Helger 441
Liu, Joseph K. 285
Liu, Lei 97
Liu, Yali 487
Löhr, Hans 31
Lu, Yi 204

Maitra, Subhamoy 228
Makridakis, A. 146
Manulis, Mark 31
Markatos, Evangelos P. 146, 161
Mukherjee, Biswanath 487

Oh, Jin-Tae 114
Oliveira, Daniela A.S. de 114
Opazo, Roberto 471

Papamanthou, Charalampos 80
Pappas, Vasilis 161
Park, Hyundo 131
Park, Je Hong 298
Phan, Raphael C.-W. 260
Preneel, Bart 355

Sadeghi, Ahmad-Reza 1, 17, 31
Sanadhya, Somitra Kumar 244
Sarkar, Palash 244
Sarkar, Santanu 228

504 Author Index

Schmidt, Dieter 215
Seberry, Jennifer 316
Soriente, Claudio 385
Stolfo, Salvatore J. 175
Stüble, Christian 1
Susilo, Willy 285, 316

Tamassia, Roberto 80
Tanaka, Toshiaki 455
Ting, Pei-yih 277
Triandopoulos, Nikos 80
Tsudik, Gene 385

Uzun, Ersin 385

Wang, Huaxiong 204
Werner, Fabian 215
Winandy, Marcel 1
Wu, S. Felix 114
Wu, Wenling 298

Yan, Guanhua 97
Yang, Yanjiang 64
Yeom, Yongjin 298

Zhang, Lei 298
Zhang, Zhao 97
Zhou, Jianying 285

	Title Page
	Preface
	Table of Contents
	Property-Based TPM Virtualization
	Introduction
	Use Case Scenario: Corporate Computing
	Requirements on TPM Virtualization
	Background and Related Work
	The Trusted Platform Module
	Integrity Measurement
	Property-Based Attestation
	Trusted Channel
	TPM Virtualization

	Flexible vTPM Architecture
	Property Management and Property Providers
	Flexible Key Generation and Usage
	User-Defined vTPM Policy
	Initialization of the vTPM

	Realizing Property-Based Functionality with vTPM
	Property-Based Attestation
	Property-Based Sealing

	Migration of vTPM
	Requirements Revisited
	Conclusion and Future Work
	References

	A Demonstrative Ad Hoc Attestation System
	Introduction
	Ad Hoc Attestation – Basic Notions and Security Goals
	Overview of Token Technology
	Demonstrative Ad Hoc Attestation System
	Trusted Computing Basics and Notation
	System Description
	Sketch of an Alternative Protocol

	Related Work
	Conclusion and Future Work
	References

	Property-Based Attestation without a Trusted Third Party
	Introduction and Background
	SystemModel forPBA
	Solutions
	Preliminaries
	TPM Signatures
	Commitment Scheme
	Ring Signatures

	Ring Signature-Based PBA without TTP
	Security Parameters
	Setup
	Signing and Verifying Protocol
	Protocol Properties

	Security of Our PBA Scheme
	Security Model
	Security Analysis

	Conclusion and Future Work
	References

	The Reduced Address Space (RAS) for Application Memory Authentication
	Introduction
	Security Model
	Related Work
	Tree Traversal
	Physical Address Space Tree (PAS Tree)
	Virtual Address Space Tree (VAS Tree)

	The TMU Architecture
	Overview
	Dynamic Integrity Tree over the Reduced Address Space (RAS)
	Maintaining a Dynamic Integrity Tree over an Expanding RAS
	UPR List and TMU Tags

	Security Analysis
	Performance Evaluation
	Initialization
	Runtime

	Conclusion
	References

	An Efficient PIR Construction Using Trusted Hardware
	Introduction
	System Model and Definition
	Basic Construction
	Overview
	A Basic PIR Scheme
	Security Analysis

	A Construction without Storage Assumption
	Auxiliary Data Structures
	The Improved Scheme
	Security Analysis

	Scheme Complexity
	Conclusion
	References

	Athos: Efficient Authentication of Outsourced File Systems
	Introduction
	Model and Definitions
	Efficient Authenticated Storage
	Analysis, Experiments and Discussion
	Conclusions
	References

	BotTracer: Execution-Based Bot-Like Malware Detection
	Introduction
	BotTracer Design
	Whitelist and Starting Point Set
	Command and Control Channel Detection
	Information Harvesting/Dispersion Behavior Analysis

	BotTracer Evaluation
	Prototype Implementation and Experimental Setup
	Channel Establishment Detection
	Information Harvesting/Dispersion Detection
	False Positive Experiments

	BotTracer Limitations
	Conclusion
	References

	Towards Automatically Generating Double-Free Vulnerability Signatures Using Petri Nets
	Introduction
	Vulnerability Signatures Versus Exploit Signatures
	The ASN.1 Double-Free Vulnerability
	Vulnerability Description

	A Petri Net Approach
	Symbolic Execution
	The Signature Generation Process

	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Distinguishing between FE and DDoS Using Randomness Check
	Introduction
	Characteristics of FE and DDoS and Related Work
	FE and DDoS
	Related Work

	FDD (FE and DDoS Distinguisher) Using Randomness Check
	Overview of FDD
	Matrix Construction and Operations
	Matrix Rank as the Randomness Check
	Distinguishing FE and DDoS

	Evaluation and Discussion
	FE and DDoS Traces
	Results and Discussion

	Conclusion
	References

	Antisocial Networks: Turning a Social Network into a Botnet
	Introduction
	Related Work
	Background
	Experimental Evaluation
	Experimental Setup
	Attack Magnitude
	Attack Distribution
	Tracking Popularity

	Attack Firepower
	Discussion and Countermeasures
	Defending Against a FaceBot
	Preventing a FaceBot

	Conclusion
	References

	Compromising Anonymity Using Packet Spinning
	Introduction
	Related Work
	Packet Spinning Attack
	Attack Evaluation
	Compromising Anonymity
	Countermeasures
	Conclusion and Future Work
	References

	Behavior-Based Network Access Control: A Proof-of-Concept
	Introduction
	Related Work
	The BB-NAC Architecture
	Pre-connect Phase
	Post-connect Phase

	Experiments and Evaluation of the Architecture
	Evaluation of the Pre-connect Phase
	Evaluation of the Post-connect Phase
	NAC Security Enforcement over Time: Concept Drift
	BB-NAC Latency Analysis

	Conclusions and Future Work
	References

	Path-Based Access Control for Enterprise Networks
	Introduction
	Example
	Contributions

	Related Work
	Architecture
	Graph-Based Access Control
	KeyNote-Based Access Control

	Implementation
	Evaluation
	Conclusion
	References

	Cryptanalysis of Rabbit
	Introduction
	Description of Rabbit
	Initialization

	Bias of Rabbit
	Related Work
	Our Results

	An Extended Multi-frame Attack on Rabbit
	Step One: Recover $x_{j,1}^i,x_{j,2}^i$'s
	Step Two: Recover $g_{j,0}^i$'s, $g_{j,1}^i$'s
	Step Three: Recover $c_{j,2}^i$'s, $\phi_{7,2}^i$'s from s_3^i's
	Step Four: Recover the Key
	Overall Complexity

	Conclusion
	References

	Algebraic Attack on HFE Revisited
	Introduction
	TheHFEScheme
	The Algebraic Attack
	The Algebraic Attack Revisited
	Computer Experiments
	Experiment on the Number of Solutions
	Experiment of Solving Equations by F_4

	New HFE Cryptosystems for Encryption
	Conclusion
	References

	Revisiting Wiener’s Attack – New Weak Keys in RSA
	Introduction
	NewWeakKeysI
	NewWeakKeysII
	Conclusion
	References

	Deterministic Constructions of 21-Step Collisions for the SHA-2 Hash Family
	Introduction
	Notation
	The SHA-2 Hash Family and Collisions Attacks
	The SHA-2 Hash Family
	Collision Attacks Against the SHA-2 Hash Family

	Nonlinear Local Collisions for SHA-2
	Conditions on the Differential Paths of Tables 1 and 2

	Deterministically Constructing 21-Step Collisions for the SHA-2 Family
	Cross Dependence Equation
	Values of δW_9 for the Sanadhya-Sarkar Local Collision
	Obtaining 21-Step Collisions

	Another Construction for Deterministic 21-Step Collisions in SHA-2
	Infeasibility of 21-Step SHA-512 Collision Using Nikoli \'{c} -Biryukov Local Collision
	Magnitude of δW_9 Values for the Nikoli \'{c}- Biryukov Local Collision
	Magnitude of $\sigma_1(W)-\sigma_1(W-1)$ Values for SHA-512
	Infeasibility of the 21-Step Collision Using NB Differential Path

	Some Concluding Remarks
	References

	Proxy Re-signatures in the Standard Model
	Introduction
	Applications
	Our Contributions

	Definitions
	Bilinear Pairings and Existentially Unforgeable Signatures
	Proxy Re-signatures
	Review of the Security Model for Proxy Re-signatures

	Models for Different Proxy Re-signature Schemes
	Public Versus Private Proxy for External Security
	Limited-Proxy Security Versus Delegatee Security
	Delegatee Security for Non-interactive Schemes
	Security for Transparent and Non-transparent Schemes
	Security for Bidirectional Schemes
	Transitivity

	Analysis of a Bidirectional Proxy Re-signature Scheme
	Review
	Attacks

	Homomorphic Compartment Signatures
	Hierarchical Signatures and Homomorphic Signatures
	Generalizing Hierarchical Signatures
	Security for Compartment Signatures
	Examples

	Generic Proxy Re-signature Scheme and Instantiation
	Security
	A Concrete Scheme in the Standard Model

	Forward-Security and Temporary Delegation
	References

	An RSA-Based (t,n) Threshold Proxy Signature Scheme without Any Trusted Combiner
	Introduction
	An RSA-Based Proxy Signature Scheme
	Setup
	The Proxy Generation Protocol
	The Proxy Signature Signing Protocol
	The Proxy Signature Verification Protocol

	RSA Threshold (t,n) Proxy Signature Scheme
	Setup
	The Proxy Sharing Protocol
	The Proxy Signature Signing Protocol
	The Proxy Signature Verification Protocol

	Security Analysis
	Secrecy: The Original Signer’s Private Key Must Be Kept Secret
	Proxy Protected: Only the Delegated Proxy Signer Can Generate the Partial Proxy Signature
	Unforgeability: Only t or More Proxy Signers Can Jointly Generate a Valid Proxy Signature
	Non-repudiation: Any Valid Proxy Signature Must Be Generated by t or More Proxy Signers and the Original Signer Cannot Deny Having Delegated the Power to the Proxy Signers
	Time Constraint: The Proxy Signature Signing Keys Can Be Used Only During the Delegation Period
	Known Signers: The System can Identify the Actual Signers in the Proxy Group for Internal Auditing

	Conclusions
	References

	Certificate-Based Signature Schemes without Pairings or Random Oracles
	Introduction
	Preliminaries
	Notations
	Mathematical Assumptions

	Security Model
	A CBS without Pairing
	Security Analysis

	A CBS without Random Oracles
	Security Analysis

	Concluding Remarks
	References

	Improved Impossible Differential Attacks on Large-Block Rijndael
	Introduction
	Preliminaries
	Notations

	Impossible Differential Attacks on Rijndael-160
	Improved Impossible Differential Attack on Rijndael-160
	New Impossible Differential Attack on Rijndael-160

	Impossible Differential Attacks on Rijndael-192
	Improved Impossible Differential Attack on Rijndael-192
	New Impossible Differential Attacks on Rijndael-192

	Impossible Differential Attacks on Rijndael-224
	Improved Impossible Differential Attack on Rijndael-224
	New Impossible Differential Attack on Rijndael-224

	Impossible Differential Attack on Rijndael-256
	Improved Impossible Differential Attack on Rijndael-256
	New Impossible Differential Attack on Rijndael-256

	Conclusion
	References

	A Five-Round Algebraic Property of the Advanced Encryption Standard
	Introduction
	Description of the AES
	A Five-Round Property of AES
	The δ Algorithm
	Variants of Algorithm δ

	The Modified Version of the AES: δ AES
	Conclusions
	References

	Vortex: A New Family of One-Way Hash Functions Based on AES Rounds and Carry-Less Multiplication
	Introduction
	Design Methodology of the Vortex Family
	Algorithm Description
	Security and Performance of Vortex
	Concluding Remarks
	References

	Comparative Evaluation of Rank Correlation Based DPA on an AES Prototype Chip
	Introduction
	Previous Work
	Architecture of the AES Hardware Module
	Rank Correlation
	Established Side-Channel Attacks and Distinguishers
	Single-bit and Multi-bit DPA
	Pearson Correlation
	Multivariate Analysis

	Experimental Results
	Difference of Means
	Template Attack
	Overall Comparison
	Correlation Coefficients
	Stochastic Methods

	Conclusions
	References

	Collisions for RC4-Hash
	Introduction
	Description of RC4-Hash
	Fixed Points of the Compression Function \mathcal{C}
	Fixed Points of Type I
	Fixed Points of Type II
	Relation to Finney States

	Collisions for RC4-Hash
	Discussion
	Conclusion
	References

	New Applications of Differential Bounds of the SDS Structure
	Introduction
	Definitions
	Branch Number of $\{0,1\}$-Matrices
	Some $\{0,1\}$ -Matrices with Optimal Branch Numbers

	Differential Bounds and Security Against Boomerang Attacks for Ciphers Based on $\{0,1\}$-Matrices
	Application on the E2 Cipher
	Application on the MCrypton Cipher

	On Differential Probability, Universal Hash Functions and Message Authentication Codes
	Applications to Ciphers Used in Practice

	Conclusion
	References

	HAPADEP: Human-Assisted Pure Audio Device Pairing
	Introduction and Motivation
	Related Work
	HAPADEP: General Operation
	Implementation
	Usability Analysis
	Discussion
	Summary and Future Work
	References

	One-Time Password Access to Any Server without Changing the Server
	Introduction
	Related Work
	Coping Strategies and Simple Tricks to Evade Spyware
	Challenge Response Mechanisms
	Proxy-Based Systems
	One-Time Passwords and S/Key
	In-the-Cloud Password Managers
	Relation to Our Service

	Method
	Mapping Strategy
	User Experience
	Acting as a MITM Webservice

	Implementation
	Registration Webservice
	Login Webservice
	Refresh Webservice

	Attacks
	Lost or Stolen OTP List
	Brute-Force and Denial of Service
	Session Hijacking and OTP Stealing

	Status and Evaluation
	Conclusions
	References

	Can “Something You Know” Be Saved?
	Introduction
	Related Work
	Challenge Response Authentication
	Logging in from Untrusted Machines
	Alternatives to Passwords

	Challenge-Response Schemes
	General Setup and Notation
	Two Trivial Solutions
	Attack Model

	A Brute Force Attack
	When Secrets Are Close the Responses Are Close
	It’s Easy to Find a Secret That’s Close
	Once Close, It’s Easy to Get Closer
	Putting the Pieces Together

	Conclusion
	References

	New Communication-Efficient Oblivious Transfer Protocols Based on Pairings
	Introduction
	Preliminaries
	New Families of Oblivious Transfer Protocols
	Sublinear Oblivious Transfer
	Related Work
	References

	A New (k,n)-Threshold Secret Sharing Scheme and Its Extension
	Introduction
	Preliminaries
	Notations and Definitions
	Secret Sharing Scheme

	A (k,n)-Threshold Scheme
	Our Scheme
	The Proof of the Ideal Secret Sharing Scheme

	Evaluation of Efficiency
	How to Extend Our Scheme to a Fast {\it Ramp} Scheme
	Conclusion
	References

	Strong Accumulators from Collision-Resistant Hashing
	Introduction
	Our Contributions

	Definitions and Notations
	Our Scheme
	Preliminaries
	A Strong Universal Accumulator with Memory Using Hash Trees

	Other Considerations and Further Extensions
	The e-Invoice Factoring Problem
	Conclusion
	References

	A Novel Audio Steganalysis Based on High-Order Statistics of a Distortion Measure with Hausdorff Distance
	Introduction
	Related Work
	High-Order Statistics and Steganalysis
	Distortion Measures and Steganalysis

	Methodology
	Steganalysis Based on Audio Distortion
	Feature Calculation
	Algorithm Summary

	Experimental Results
	Performance Comparison with Other Audio Steganalysis Algorithms
	Performance with Respect to Different Hidden Ratios
	Analysis of Feature Contributions

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

