
Rewriting Logic Using Strategies for Neural

Networks: An Implementation in Maude�

Gustavo Santos-Garćıa1, Miguel Palomino2, and Alberto Verdejo2

1 Universidad de Salamanca
santos@usal.es

2 Departamento de Sistemas Informáticos y Computación, UCM
miguelpt@sip.ucm.es, alberto@sip.ucm.es

Summary. A general neural network model for rewriting logic is proposed. This
model, in the form of a feedforward multilayer net, is represented in rewriting logic
along the lines of several models of parallelism and concurrency that have already been
mapped into it. By combining both a right choice for the representation operations and
the availability of strategies to guide the application of our rules, a new approach for
the classical backpropagation learning algorithm is obtained. An example, the diagno-
sis of glaucoma by using campimetric fields and nerve fibres of the retina, is presented
to illustrate the performance and applicability of the proposed model.

Keywords: Neural networks, rewriting logic, Maude, strategies, executability.

1 Introduction

Rewriting logic [8] is a logic of concurrent change that can naturally deal with
states and with highly nondeterministic concurrent computations. It has good
properties as a flexible and general semantic framework for giving semantics to a
wide range of languages and models of concurrency. Indeed, rewriting logic was
proposed as a unifying framework in which many models of concurrency could
be represented, such as labeled transition systems, concurrent object-oriented
programming, or CCS, to name a few [6, 9, 5].

Artificial neural networks [4] are another important model of parallel com-
putation. In [7] it was argued that rewriting logic was also a convenient frame-
work in which to embed neural nets, and a possible representation was sketched.
However, and to the best of our knowledge, no concrete map has ever been con-
structed either following those ideas or any others. Our goal with this paper is to
fill this gap. In our representation of neural networks we consider the evaluation
of patterns by the network, as well as the training required to reach an optimal
performance.

Since its conception, rewriting logic was proposed as the foundation of an
efficient executable system called Maude [1]. Here we write our representation

� Research supported by Spanish project DESAFIOS TIN2006–15660–C02–01 and by
Comunidad de Madrid program PROMESAS S–0505/TIC/0407.

J.M. Corchado et al. (Eds.): DCAI 2008, ASC 50, pp. 424–433, 2009.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009

Rewriting Logic Using Strategies for Neural Networks 425

directly in Maude to be able to run our neural networks and apply them to a
real case-study, the analysis of campimetric fields and nerve fibres of the retina
for the diagnosis of glaucoma [3].

The paper is organized as follows. In Section 2 we review those aspects of
Maude that will be used in our specification, mainly object-oriented modules
and strategies. Section 3 introduces multilayer perceptrons and the backprop-
agation algorithm. Their specification in Maude, and an appropriate strategy
for their evaluation and training, is presented in Section 4. The application of
our implementation to the study of the diagnosis of glaucoma is considered in
Section 5, and Section 6 concludes.

2 Maude

Maude [1] is a high performance language and system supporting both equa-
tional and rewriting logic computation for a wide range of applications. The key
novelty of Maude is that besides efficiently supporting equational computation
and algebraic specification it also supports rewriting logic computation. Mathe-
matically, a rewrite rule has the form l : t −→ t′ if Cond with t, t′ terms of the
same type which may contain variables. Intuitively, a rule describes a local con-
current transition in a system: anywhere a substitution instance σ(t) is found,
a local transition of that state fragment to the new local state σ(t′) can take
place.

Full Maude [1] is an extension of Maude with a richer module algebra of
parameterized modules and module composition operations and with special
syntax for object-oriented specifications. These object-oriented modules have
been exploited in the specification of neural networks.

2.1 Object Oriented Modules

An object in a given state is represented as a term < O : C | a1 : v1,..., an
: vn > where O is the object’s name, belonging to a set Oid of object identifiers,
C is its class, the ai’s are the names of the object’s attributes, and the vi’s are
their corresponding values. Messages are defined by the user for each application.

In a concurrent object-oriented system the concurrent state, which is called a
configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting (modulo the multiset structural axioms of
associativity, commutativity, and identity) using rules that describe the effects
of communication events between some objects and messages. The rewrite rules
in the module specify in a declarative way the behavior associated with the
messages. The general form of such rules is

M1 . . .Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉 −→
〈Oi1 : F ′

i1
| atts ′i1〉 . . . 〈Oik

: F ′
ik

| atts ′ik
〉

〈Q1 : D1 | atts ′′1 〉 . . . 〈Qp : Dp | atts ′′p〉 M ′
1 . . . M ′

q if Cond

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different numbers
among the original 1, . . . , m, and Cond is a rule condition. The result of applying

426 G. Santos-Garćıa, M. Palomino, and A. Verdejo

a rewrite rule is that the messages M1, . . . , Mn disappear; the state and possibly
the class of the objects Oi1 , . . . , Oik

may change; all the other objects Oj vanish;
new objects Q1, . . . , Qp are created; and new messages M ′

1, . . . , M
′
q are sent.

2.2 Maude’s Strategy Language

Rewrite rules in rewriting logic need to be neither confluent nor terminating.
This theoretical generality requires some control when the specifications become
executable, because it must be ensured that the rewriting process does not go
in undesired directions and eventually terminates. Maude’s strategy language
can be used to control how rules are applied to rewrite a term [2]. Strategies
are defined in a separate module and are run from the prompt through special
commands.

The simplest strategies are the constants idle and fail, which always suc-
ceeds and fails, respectively. The basic strategies consist of the application of a
rule to a given term, and with the possibility of providing a substitution for the
variables in the rule. In this case a rule is applied anywhere in the term where
it matches satisfying its condition. When the rule being applied is a conditional
rule with rewrites in the conditions, the strategy language allows to control how
the rewrite conditions are solved by means of strategies. An operation top re-
stricts the application of a rule just to the top of the term. Basic strategies are
then combined so that strategies are applied to execution paths. Some strat-
egy combinators are the typical regular expression constructions: concatenation
(;), union (|), and iteration (* for 0 or more iterations, + for 1 or more, and !
for a ‘repeat until the end’ iteration). Another strategy combinator is a typical
‘if-then-else’, but generalized so that the first argument is also a strategy. The
language also provides a matchrew combinator that allows a term to be split in
subterms, and specifies how these subterms have to be rewritten. Recursion is
also possible by giving a name to a strategy expression and using this name in
the strategy expression itself or in other related strategies.

For our implementation, the full expressive power of the strategy language
will not be needed and all our strategies will be expressed as combinations of the
application of certain rules (possibly instantiated), concatenation, and ‘repeat
until the end’ iteration. For efficiency reasons, we have extended the previous
strategy language with a new combinator one(S) which, when applied to a term
t, returns one of the possible solutions of applying the strategy S to t.

3 Multilayer Perceptrons

A neural network is defined in mathematical terms as a graph with the following
properties: (1) each node or neuron i is associated with a state variable xi storing
its current output; (2) each junction between two neurons i and k, called synapse
or link, is associated with a real weight ωik; (3) a real activation threshold θi is
associated with each neuron i; (4) a transfer function fi(yk, ωik, θi) is defined for
each neuron, and determines the activation degree of the neuron as a function

Rewriting Logic Using Strategies for Neural Networks 427

of its threshold, the weights of the input junctions and the outputs yk of the
neurons connected to its input synapses.

Multilayer perceptrons are networks with one or more layers of nodes between
the layer of input units and the layer of output nodes. These hidden layers
contain neurons which obtain their input from the previous layer and output
their results to the next layer, to both of which they are fully-connected. Nodes
within each layer are not connected and have the same transfer function. In
our case, the transfer function has the form f(

∑
k ωikyk − θi), where f(x) is a

sigmoidal function. It is defined by f(x) = 1/(1 + e(ν−x)), which corresponds to
a continuous and derivable generalization of the step function.

3.1 The Backpropagation Algorithm

The accuracy of the multilayer perceptron depends basically on the correct
weights between nodes. The backpropagation training algorithm is an algorithm
for adjusting those weights, which uses a gradient descent method to minimize
the mean quadratic error between the actual outputs of the perceptron and the
desired outputs.

Let xk
ij and yk

ij be the input and output, respectively, for the i pattern of
node j of layer k. Let ωk

ij be the weight of the connection of neuron j of layer
k with neuron i of the previous layer. By definition of the perceptron by layers,
the following relationships are fulfilled xk

ij =
∑

l ωk
ljy

k−1
il ; yk

ij = f(xk
ij).

The mean quadratic error function between the real output of the perceptron
and the desired output, for a particular pattern i, is defined as Ei = 1

2

∑
j,k(yk

ij−
dk

ij)
2 , where dk

ij is the desired output for pattern i of node j of layer k. In order to
minimize the error function we use the descending gradient function, considering
the error function Ep and the weight sequence ωk

ij(t), started randomly at time
t = 0, and adapted to successive discrete time intervals. We then have ωk

ij(t+1) =
ωk

ij(t) − η ∂El/∂ωk
ij(t), where η is the so-called learning rate constant.

We can conclude that wij(t + 1) = wij(t) + ηδjx
′
i , where x′

i is the output of
neuron i, and δj is an error term for node j. For output neurons, it must be
δj = yj(1− yj)(dj − yj) . For a hidden node j, δj = x′

j(1− x′
j)

∑
k δkwjk , where

k ranges over all neurons in the layers above neuron j. Internal node thresholds
are adapted in a similar manner.

4 Implementing the Multilayer Perceptron

In this section we focus on specifying a three-layer perceptron in Maude and
designing a strategy for evaluation and training. In order to have a running
net we need to specify the number of layers, the neurons in each of them, the
weights of all links, and the input patterns which, in general, will be multiple.
Whereas the object-oriented representation is very convenient for specifying their
behavior, it is clear that introducing all these data directly in this form would be
very cumbersome. Hence, we have decided to use matrices and vectors of values

428 G. Santos-Garćıa, M. Palomino, and A. Verdejo

to specify thresholds and weights, and to define equations and rules to transform
them into the object-oriented representation.

The core of our representation of perceptrons in Maude revolves around the
definition of two classes to represent neurons and synapses as individual objects:

class Neuron | x : Float, t : Float, st : Nat .

class Link | w : Float, st : Nat .

Each neuron object carries its current activation value x, depending on its thresh-
old t, and an attribute st that will be used to determine whether the neuron has
already fired or not, that is, whether it is still waiting for input or has already
output a value. Similarly, link objects store their numerical weight and contain
an attribute st to flag whether some value has already passed through them or
not. A net then is a “soup” (a multiset) of neurons and links.

Neurons and links are identified by a name. We define two operations that
take natural numbers as arguments and return an object identifier: for neurons,
the numbers correspond to the layer and the position within the layer; for links,
the numbers correspond to the output layer and the respective positions within
each layer of the neurons connected.

op neuron : Nat Nat -> Oid . op link : Nat Nat Nat -> Oid .

The evaluation of the network is essentially performed by repeated applica-
tion of the rules feedForward and sygmoid. Rule feedForward calculates the
weighted sum of the inputs to the neuron, whereas sygmoid just applies the
sigmoidal function syg (defined somewhere else in the code) to the net input.
As can be seen in feedForward, the attribute st of links is assumed to be 0
prior to their firing and becomes 1 once the information has been sent from one
neuron to the other. Hence, pending some kind of reset, links can only be used
once. Similarly, the rule sygmoid sets the attribute st of a neuron to 1 once the
sigmoidal function has been applied.

rl [feedForward] : < neuron(L, I) : Neuron | x : X1 , st : 1 >

<link(s L,I,J) : Link | w:W, st:0> <neuron(s L,J) : Neuron | x:X2, st:0>

=> <neuron(L,I) : Neuron | x:X1, st:1> <link(s L,I,J) : Link | w:W, st:1>

< neuron(s L, J) : Neuron | x : (X2 + (X1 * W)) , st : 0 > .

rl [sygmoid] : < neuron(L, I) : Neuron | x : X , t : T , st : 0 >

=> < neuron(L, I) : Neuron | x : syg(_-_(X, T), L) , st : 1 > .

Evaluation of a perceptron starts by obtaining an input pattern through the
rule nextPattern, which is guided by the message netStatus. A message of
the form netStatus(N0, 0, 0, N1) means that the s N0-th pattern should be
considered, and then the following patterns until the N1-th.

msg netStatus : Nat Nat Nat Nat -> Msg .

crl [nextPattern] : netStatus(N, N1, N2, N0) =>

netStatus(s N, N1, N2, N0) inPatternConversion(s N, inputPattern(s N), 0)

outPatternConversion(s N, outputPattern(s N), 0) if N < N0 .

Rewriting Logic Using Strategies for Neural Networks 429

Before starting the feedforward process, the values of the neurons in the
input layer and the corresponding weights are reset. After that, the rule
introducePattern inserts the input pattern in the neurons of the input layer
and removes them from the configuration.

rl [introducePattern] : < neuron(0, I) : Neuron | x : X , st : 0 >

inputPattern(N, I, X0) => < neuron(0, I) : Neuron | x : X0 , st : 1 > .

Once we are done with the evaluation of all patterns, we compute the error and
mark the current object net(N) as completed.

rl [computeError] : < net(N0) : Net | e : E , st : 0 >

< neuron(2, I) : Neuron | x : X0 , st : 1 > outputPattern(N, I, X1, 0)

=> < net(N0) : Net | e : (E + ((_-_(X1, X0)) * (_-_(X1, X0)))), st : 0 >

< neuron(2, I) : Neuron | x : X0, st : 1 > outputPattern(N, I, X1, 1) .

4.1 Backpropagation in Maude

For training the net we need neurons and links to hold additional information,
namely the error terms δj and the adjusted weights ωk

ij(t + 1). Since evaluation
is part of backpropagation, we define NeuronTR and LinkTR as subclasses of
Neuron and Link with an additional attribute to store the extra information.

class LinkTR | w+1 : Float . subclass LinkTR < Link .

class NeuronTR | dt : Float . subclass NeuronTR < Neuron .

Note that the rules for evaluating a net also apply to these new objects; the
new attributes are simply ignored. The next step demands the evaluation of the
error terms before adjusting the weights. The calculation of these δj depends on
whether we are working with the output or hidden layers. For the output layer,
the corresponding rule is straightforward:

rl [delta2] : outputPattern(N, I, D, 1)

< neuron(2, I) : NeuronTR | x : X , dt : DT , st : 2 >

=> < neuron(2, I) : NeuronTR | x : X ,

dt : (X * ((_-_(1.0, X)) * (_-_(D, X)))) , st : 3 > .

The case for the remaining layers is a bit more involved and is split in three
phases: the rule delta1A initializes dt to zero, delta1B below takes care of
calculating the sum of the weights multiplied by the corresponding error term,
and delta1C computes the final product. Again, in all these rules the status
attribute st is correspondingly updated.

rl [delta1B] : < neuron(1, J) : Neuron | dt : DT1, st : 2 >

< link(2, J, K):Link | w:W, st:2 > < neuron(2, K):Neuron | dt:DT2, st:2 >

=> < neuron(1, J) : Neuron | dt : (DT1 + (DT2 * W)), st : 2 >

< link(2, J, K):Link | w:W, st:3 > < neuron(2, K):Neuron | dt:DT2, st:2 > .

Once the error terms are available, the updated weights can be calculated: rule
link1 does it for the hidden layer and link2 for the output layer. Finally the
old weights are replaced by the adjusted ones with the rule switchLink. Here
we show rule link1:

430 G. Santos-Garćıa, M. Palomino, and A. Verdejo

rl [link1] : < neuron(0, I) : Neuron | x : X1, st : 1 >

< link(1, I, J) : Link | w : W, w+1 : W1, st : 1 >

< neuron(1, J) : Neuron | dt : DT, st : 3 >

=> < neuron(0, I) : Neuron | x : X1, st : 1 >

< link(1, I, J) : Link | w : W, w+1 : (W + (eta * (DT * X1))), st : 3 >

< neuron(1, J) : Neuron | dt : DT, st : 3 > .

4.2 Running the Perceptron: Evaluation and Training

Our specification is nondeterministic and not all of its possible executions may
correspond to valid behaviors of a perceptron. Hence, in order to be able to use
the specification to simulate the evaluation of patterns we need to control the
order of application of the different rules by means of strategies.

The main strategy feedForwardStrat takes a natural number as argument
and applies to a Configuration (that is, a perceptron), chooses a layer L’ and
applies rule feedForward, at random positions and as long as it is enabled, to
compute the weighted sum of values associated to each neuron at the layer.
When all sums have been calculated, it applies the sigmoidal function to all of
them by means of rule sygmoid which, again, is applied at random positions and
as long as it is enabled.

strat feedForwardStrat : Nat @ Configuration .

sd feedForwardStrat(L’) := one(feedForward[L<-L’])!; one(sygmoid[L<-s L’])!.

There are two auxiliary strategies. The strategy inputPatternStrat takes care
of making the successive patterns available and of resetting the appropriate at-
tributes of the neurons and links, whereas computeOutput is invoked to compute
the error once a pattern has been evaluated.

strat inputPatternStrat : @ Configuration .

sd inputPatternStrat :=

one(resetNeuron) ! ; one(resetLink) ! ; one(nextPattern) .

strat computeOutput : @ Configuration .

sd computeOutput := one(computeError) ! ; setNet .

Last, all these previous strategies are combined into the evaluation strategy,
which inputs the next pattern, computes the values of the neurons in the hidden
and the output layers, and returns the error:

strat evaluateANN : @ Configuration .

sd evaluateANN := inputPatternStrat ; feedForwardStrat(0) ;

feedForwardStrat(1) ; computeOutput .

Then, to force the evaluation of the first M patterns by the multilayer perceptron
the following command would be executed:

(srew ann netStatus(0, 0, 0, M) using one(evaluateANN) ! .)

where the input patterns would have been suitable defined and ann would be a
term of the form:

Rewriting Logic Using Strategies for Neural Networks 431

neuronGeneration(0, input0, threshold0, 0)

neuronGeneration(1, input1, threshold1, 0) linkGeneration(1, link1, 0, 0)

neuronGeneration(2, input2, threshold2, 0) linkGeneration(2, link2, 0, 0)

Similarly as for evaluation, we need to define an appropriate strategy for train-
ing the perceptron. Assuming we have already calculated the output associated
to a pattern, we next must calculate the error terms, use them to obtain the
adjusted weights, and transfer them to the right attribute. That can be easily
done by applying the rules defined in the previous section in the right order.

strat backpropagateANN : @ Configuration .

sd backpropagateANN := one(delta2) ! ; one(link2) ! ;

one(delta1A) ! ; one(delta1B) ! ; one(delta1C) ! ; one(link1) ! ;

one(switchLink) ! .

Finally, training anet consists in evaluating apatternwith the strategyevaluate
ANN and then adjusting the weights accordingly with backpropagateANN.

strat stratANN : @ Configuration .

sd stratANN := evaluateANN ; backpropagateANN .

5 Example: Diagnosis of Glaucoma

For the diagnosis of glaucoma, we proposed the use of a system that employs
neural networks and integrates the analysis of the nerve fibers of the retina from
the study with scanning laser polarimetry (NFAII;GDx), perimetry and clinical
data [3]. In that work, the resulting multilayer perceptron was developed using
MatLab.

We used the data from that project as a test bed for our specification of
the backpropagation algorithm in Maude. Our results were equivalent and the
success rate was of 100% but the execution time of our implementation lagged far
behind, which motivated us to optimize our code. Since equations are executed
much faster than rules by Maude and, in addition, do not give rise to branching
but linear computations, easily handled by strategies, we simplified rules as much
as possible. The technique used was the same in all cases and is illustrated here
with the rule feedForward:

rl [feedForward] : C => feedForward(C) .

op feedForward : Configuration -> Configuration .

eq feedForward(C < neuron(L, I) : Neuron | x : X1 , st : 1 >

< link(s L, I, J) : Link | w : W , st : 0 >

< neuron(s L, J) : Neuron | x : X2 , st : 0 >)

= feedForward(C < neuron(L, I) : Neuron | >

< link(s L, I, J) : Link | w : W , st : 1 >

< neuron(s L, J) : Neuron | x : (X2 + (X1 * W)) >) .

eq feedForward(C) = C [owise] .

The evaluation and training strategies had to be correspondingly modified since
the combinator ! was no longer needed. The resulting specification is obviously
less natural, but more efficient.

432 G. Santos-Garćıa, M. Palomino, and A. Verdejo

6 Conclusions

We have presented a specification of multilayer perceptrons, in a two step fash-
ion. First we have shown how to use rewrite rules guided by strategies to sim-
ulate the evaluation of patterns by a perceptron, and then we have enhanced
the specification to make the training of the net possible. The evaluation pro-
cess is straightforward, essentially amounting to the repeated application of two
rules, feedForward and sygmoid, which further does credit to the suitability of
rewriting logic as a framework for concurrency. The training algorithm requires
more rules, but the strategy is also rather simple.

The simplicity of the resulting specification should be put in perspective. Our
first attempts at specifying perceptrons made use of a vector representation like
the one we have used here for inputting the data and similar to that proposed in
[7]. Such representation was actually suitable for the evaluation of patterns but
proved unmanageable when considering the training algorithm. The election of
our concrete representation in which neurons and links are individual entities and
which, at first sight, might not strike as the most appropriate, is of paramount
importance.

In addition to the representation, availability of strategies turned out to be
decisive. With the vector representation layers could be considered as a whole
and there was no much room for nondeterminism, while the change to the object-
oriented representation gave rise, as we have observed, to the possible interleav-
ing of rules in an incorrect order. It then became essential the use of the strategy
language to guide the rewriting process in the right direction.

As a result, our specification is the happy crossbreed of an object-oriented
representation and the use of strategies: without the first the resulting specifi-
cation would have been much more obscure, whereas without the availability of
the strategy language, its interest would have been purely theoretical.

In addition to the novel application of rewriting logict to neural nets, the
advantage provided by our approach lies on the allowing the subsequent use of
the many tools developed in rewriting logic, such as the LTL model-checker or
the inductive theorem prover [1, 5], to study the net.

The complete Maude code, the data used for the examples, and the results of the
evaluation can be downloaded from http://maude.sip.ucm.es/∼miguelpt/.

References

1. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott, C.
(eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

2. Eker, S., Mart́ı-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and
rewriting. In: Archer, M., de la Tour, T.B., Muñoz, C.A. (eds.) 6th International
Workshop on Strategies in Automated Deduction, STRATEGIES 2006, Part of
FLOC 2006, Seattle, Washington, August 16. Electronic Notes in Theoretical Com-
puter Science, vol. 174(11), pp. 3–25. Elsevier, Amsterdam (2007)

http://maude.sip.ucm.es/~miguelpt/

Rewriting Logic Using Strategies for Neural Networks 433

3. Hernández Galilea, E., Santos-Garćıa, G., Franco Suárez-Bárcena, I.: Identification
of glaucoma stages with artificial neural networks using retinal nerve fibre layer
analysis and visual field parameters. In: Corchado, E., Corchado, J.M., Abraham,
A. (eds.) Innovations in Hybrid Intelligent Systems, Advances in Soft Computing,
pp. 418–424. Springer, Heidelberg (2007)

4. Lippman, R.P.: An introduction to computing with neural nets. IEEE ASSP Mag-
azine, 4–22 (1987)

5. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: Gabbay, D. (ed.) Handbook of Philosophical Logic, 2nd edn., vol. 9, pp. 1–81.
Kluwer Academic Press, Dordrecht (2002)

6. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: Roadmap and bibliography. Theo-
retical Computer Science 285(2), 121–154 (2002)

7. Meseguer, J.: Research directions in rewriting logic. In: Berger, U., Schwichten-
berg, H. (eds.) Computational Logic: Marktoberdorf, Germany, July 29 – August
6, vol. 165, pp. 347–398. NATO Advanced Study Institute (1997)

8. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

9. Talcott, C.L.: An actor rewriting theory. In: Meseguer, J. (ed.) Workshop on Rewrit-
ing Logic and its Applications, WRLA 1996. Electronic Notes in Theoretical Com-
puter Science, vol. 4, pp. 360–383. Elsevier, Amsterdam (1996)

	Rewriting Logic Using Strategies for Neural Networks: An Implementation in Maude
	Introduction
	Maude
	Object Oriented Modules
	Maude’s Strategy Language

	Multilayer Perceptrons
	The Backpropagation Algorithm

	Implementing the Multilayer Perceptron
	Backpropagation in Maude
	Running the Perceptron: Evaluation and Training

	Example: Diagnosis of Glaucoma
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

