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Abstract. In this contribution, we face the problem of predicting intracellular fluxes using a 
multi-criteria optimization approach, i.e. the simultaneous optimization of two or more cellular 
functions. Based on Flux Balance Analysis, we calculate the Pareto set of optimal flux distribu-
tions in E. coli for three objectives: maximization of biomass and ATP, and minimization of  
intracellular fluxes. These solutions are able to predict flux distributions for different environ-
mental conditions without requiring specific constraints, and improve previous published  
results. We thus illustrate the usefulness of multi-objective optimization for a better understand-
ing of complex biological networks. 
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1   Introduction 

Intracellular fluxes in biochemical networks can be calculated in silico under the as-
sumption that cellular systems operate in an optimal way with respect to a certain bio-
logical objective. Network capabilities and flux distributions have thus been predicted 
by using, for example, Metabolic Flux Balance Analysis (FBA), the fundamentals of 
which can be found in e.g. (Varma and Palsson 1994). FBA only requires the 
stoichiometric model of the network, but since the linear system of mass balance 
equations at steady-state is generally under-determined, appropriate cellular functions 
(objectives) must be defined, as well as other possible additional constraints, to find a 
unique solution. Successful applications of FBA include the prediction of E. coli 
metabolic capabilities (Edwards et al. 2001) and the genome-scale reconstruction of 
the metabolic network in S. cerevisiae (Forster et al. 2003). 

In this context, a particularly interesting question which have been addressed re-
cently in detail (Schuetz et al. 2007; Nielsen 2007) concerns the principles behind the 
optimal biochemical network operation, i.e.: “which are the criteria being optimized 
in these systems?”  By far, the most common objective considered is the maximiza-
tion of growth (or biomass yield), although other criteria, such as maximization of 
ATP yield (van Gulik and Heijnen 1995) or minimization of the overall intracellular 
flux (Bonarios et al. 1996), have been proposed for different systems and conditions. 

Since neither we nor nature have a single goal, a more desirable and realistic ap-
proach is to consider the simultaneous optimization of two or more criteria, often con-
flicting. As a consequence, the solution will not be unique but instead this strategy 
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will result in a set of solutions representing the optimal trade-offs between the differ-
ent objectives. Multi-objective (or multi-criteria) optimization is better able to cope 
with the complexity of models from systems biology (Handl et al. 2007), but few ap-
plications are found in literature in comparison with other scientific and engineering 
fields (Sendín et al. 2006). 

In this work we face the solution of multi-objective optimization (MO) problems 
derived from FBA. By simultaneously optimizing several common cellular functions, 
the aim of this study is to test the capabilities of this approach for predicting intracel-
lular fluxes independently from the environmental conditions and without imposing 
additional, case-dependent and potentially artificial constraints conditioning the final 
solution. After presenting the basic concepts and methods in MO, we will consider the 
central carbon metabolism in Escherichia coli as a case study to assess whether opti-
mality principles can be generally applied. 

2   Multi-Objective Flux Balance Analysis (MOFBA) 

2.1   Problem Formulation and Basic Concepts 

Assuming a biological network operating at steady-state, and if a stoichiometric 
model is available, the Multi-Objective Flux Balance Analysis problem can be stated 
as finding the flux distribution which optimizes simultaneously two or more objective 
functions subject to the mass balance equations: 
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Z is the vector of n objective functions (linear as well as non-linear); S is the (m x 
r) stoichiometric matrix, where m is the number of intracellular metabolites and r the 
number of reactions; v is the vector of r fluxes, with lower and upper bounds vL and 
vU, respectively. Additional constraints can be imposed depending on the problem and 
the available experimental data and the knowledge about the system. 

Simultaneous optimization of multiple objectives differs from traditional single-
objective optimization in that if the objectives are in conflict with each other, there 
will not be a unique solution which optimizes simultaneously all of them. The key 
concept here is that of Pareto-optimal solution.  

A point v* in the solution space is said to be Pareto-optimal if there does not exist 
another feasible point v such that Zi(v) ≤ Zi (v*) for all i=1,…,n and Zj(v) < Zj(v*) for 
some j. In other words, v* is optimal in the sense that improvement in one objective 
can only be achieved by worsening one or more of the others. Thus, the solution of a 
MO problem is a family of potentially infinite points, none of which can be said to be 
better than another. This family is known as Pareto-optimal set or Pareto front. 
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2.2    Methods for Multi-Objective Optimization 

Traditionally, multiple objectives are optimized simultaneously by defining a com-
posite function combining different criteria. The most widely used approach consists 
in optimizing a weighted sum of the objectives, where each weight represents the 
relative importance of the associated objective. Within FBA, this type of utility func-
tions has also been proposed, as e.g. maximization of ATP yield per flux unit (Dauner 
and Sauer 2001; Schuetz et al. 2007). However, this approach will yield only one op-
timal solution, overlooking the trade-off between the objectives. 

In this work we have combined two well-known techniques for generating the 
complete Pareto-front (or at least a good representation of it): 

• ε-Constraint (EC): This is also a common and intuitive method for solving a MO 
problem. In this approach, the original MO problem is transformed into a single-
objective linear programming (LP) problem (if the objective functions and the con-
straints are linear) or a non-linear programming (NLP) problem by optimizing one of 
the objectives while the others are incorporated as inequality constraints. By changing 
the value of the parameter ε (i.e. the bounds on the objectives converted to con-
straints), different Pareto-optimal solutions can be obtained. Its main drawback is the 
difficulty to choose appropriate values for the parameters of the method to obtain a 
good picture of the Pareto front, so that no regions are over- or under- represented. 

• Normal Boundary Intersection (NBI): This technique (Das and Dennis 1998) 
was developed to overcome the drawbacks of methods like the weighted sum ap-
proach in which it is difficult to obtain a complete representation of the Pareto-
optimal set. Starting from the individual optima for each objective, NBI also  
converts the original MO problem into a set of LPs/NLPs in such a way that a sys-
tematic change in the method parameters generates an even spread of points on the 
Pareto front. Thus, the complete trade-off between the objectives can be captured 
by solving a lesser number of optimization problems. However, some regions of 
the Pareto surface can be missed in problems with more than two objectives.  

It should be noted that global optimization (GO) solvers will be needed for both ap-
proaches if the associated single-objective NLPs are non-convex. 

3   Case Study 

Here we consider the central carbon metabolism in Escherichia coli, which has been stud-
ied in (Schuetz et al. 2007) to examine the predictive capacity of 11 linear and non-linear 
network objectives. The stoichiometric model consists of 98 reactions and 60 metabolites, 
and 10 split ratios Ri (i=1,…,10) at pivotal branch points were defined (Figure 1). 

Taking as reference the above mentioned work, we address the problem in which 
three relevant cellular functions are optimized simultaneously: 
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Fig. 1. Central carbon metabolism pathways in Escherichia coli. Red arrows represent the split 
ratios which describe the systemic degree of freedom of the network (for further explanation 
and abbreviations see Schuetz et al. 2007). 

Table 1. Experimental flux split ratios (R) for the conditions considered 

 Aerobic Anaerobic 

 Batch 
Continuous 

C-limited 

Continuous 

C-limited 

Continuous 

N-limited 

Batch 

NO3 resp. 

vBiomass 8.3 mM/g·h 5.0 mM/g·h 7.0 mM/g·h 4.0 mM/g·h 1.77 mM/g·h 

 ExpC1 ExpC2 ExpC3 ExpC4 ExpC5 

R1 0.70 ± 0.02 0.69 ± 0.12 0.64 ± 0.05 0.96 ± 0.14 0.82 ± 0.02 

R2 0.13 ± 0.06 0.23 ± 0.20 0.19 ± 0.11 0.00 ± 0.05 0.00 ± 0.05 

R3 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 

R4 0.78 ± 0.02 0.84 ± 0.14 0.70 ± 0.06 0.72 ± 0.10 0.96 ± 0.02 

R5 0.81 ± 0.03 0.91 ± 0.21 0.84 ± 0.14 0.90 ± 0.15 0.96 ± 0.02 

R6 0.24 ± 0.02 0.64 ± 0.13 0.85 + 0.09 0.50 ± 0.06 0.02 ± 0.01 

R7 0.00 ± 0.05 0.46 ± 0.13 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 

R8 0.00 ± 0.05 0.35 ± 0.08 0.12 ± 0.03 0.01 ± 0.01 0.00 ± 0.05 

R9 0.58 ± 0.03 0.00 ± 0.05 0.00 ± 0.05 0.04 ± 0.01 0.65 ± 0.01 

R10 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 0.00 ± 0.05 0.30 ± 0.02 
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subject to the mass balance equations and the upper and lower bounds on fluxes (Eqs. 
2-3). No additional constraints are imposed. It should be noted that objective func-
tions Z1 and Z2 are linear, and the overall intracellular flux (Z3) is non-linear, but  
convex. 

Pareto-optimal solutions obtained with a combination of the methods described 
above will be compared with experimental flux data from E. coli (Table 1) under five 
environmental conditions (oxygen or nitrate respiring batch cultures and aerobic 
chemostats). The overall agreement is quantified using a standardized Euclidean dis-
tance between the computed split ratios and the experimental ones. 

4   Results and Discussion 

4.1   Optimization Settings 

The three-objective optimization problem defined above is solved using a combina-
tion of the ε-constraint technique and NBI. The solution strategy consists of the fol-
lowing steps: 

1. Maximize vBiomass using LP  
2. Choose different values bmi for vBiomass in the range [0, vBiomass

max] 
3. For each value bmi, the following bi-objective optimization problem is solved us-

ing NBI: maximization of ATP and minimization of the overall intracellular flux 
subject to the ε-constraint:  vBiomass ≥ bmi 

The resulting NLPs from application of NBI are solved by means of a multi-start 
clustering algorithm, GLOBALm (Sendín et al. 2008).  This is a global optimization 
method which can detect the potential existence of multiple optima (i.e. solutions with 
the same value of the objective function and different flux profiles). For the sake of 
comparison with the results reported in (Schuetz et al. 2007), we have made use of the 
solvers included in the MATLAB® Optimization Toolbox (The MathWorks, Inc.): 
linprog for the LPs and fmincon as local solver within GLOBALm for the NLPs. 

4.2   Pareto-Optimal Sets 

The resulting Pareto surfaces (interpolated) for both aerobic and anaerobic conditions 
are showed in Figures 2 and 3, respectively. The trade-off between ATP yield and the 
overall intracellular flux is also depicted for each one of the biomass fluxes corre-
sponding to the experimental conditions. Both Pareto-optimal sets obtained using the 
hybrid approach εConstraint-NBI are represented in Figure 4. 

From inspection of these figures is clearly evident the existing conflict between 
ATP production and the overall intracellular flux for a given biomass flux. Maximum 
ATP yields (higher in the aerobic case) are achieved at the expense of an increase in 
the enzyme usage and with low growth rates. On the other side, biomass can be 
maximized while maintaining the overall intracellular flux at low levels. The cost to 
pay in this case is a decrease in the ATP yield. 
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Fig. 2. Pareto front in aerobic conditions 
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Fig. 3. Pareto front in anaerobic conditions 
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Fig. 4. Comparison of Pareto-optimal sets 

4.3   Analysis of Solutions 

Split ratios for each Pareto solution are compared with the experimental data, select-
ing those which yield the closest flux predictions (Table 2). 

Table 2. Selected Pareto-optimal points 

 ExpC1 ExpC2 ExpC3 ExpC4 ExpC5 

 A B C D E 

vBiomass 8.3 5.0 11.0 7.0 1.75 

R1 0.74 0.98 0.64 0.98 0.55 

R2 0.42 0.00 0.09 0.00 1.00 

R3 0.00 0.00 0.0 0.00 0.00 

R4 0.80 0.98 0.72 0.85 0.97 

R5 0.81 0.92 0.70 0.86 0.52 

R6 0.31 0.79 0.59 0.77 0.01 

R7 0.00 0.12 0.0 0.00 0.00 

R8 0.00 0.00 0.0 0.00 0.00 

R9 0.50 0.04 0.05 0.09 0.74 

R10 0.00 0.00 0.0 0.00 0.22 
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For the continuous cultures, the best predictions were found in Schuetz et al. 
(2007) when maximizing biomass or ATP yield coupled with several constraints. 
Somewhat similar flux distributions were obtained here, but we want to stress the fact 
that no additional, case-specific, constraints were imposed. For example, solution B 
(for C-limited continuous cultures) is similar to that resulting from maximization of 
ATP subject to an overproduction of 35% of NADPH relative to the NADPH re-
quirement for biomass production, and the flux profile C maximizes biomass while 
satisfying a constraint on intracellular fluxes (limited to a 200% of the glucose uptake 
rate), and an upper bound on the oxygen uptake of 150% of the glucose uptake. For 
N-limited continuous cultures, point D also improves the prediction obtained when 
only one single objective is considered (with or without additional constraints). 

5   Conclusions 

In this work we have addressed the question of whether intracellular fluxes can be 
predicted considering optimality principles. The assumption here is that fluxes are 
distributed to optimize not only one single cellular function but several objectives si-
multaneously (multi-objective optimization). 

In general terms, Pareto-optimal flux distributions improve the best predictions ob-
tained with traditional FBA using different combinations of objective functions and 
constraints. The advantage of the multi-objective approach is that no additional, case-
specific, constraints are needed, and it can be a powerful tool for a better understand-
ing of the factors that influence the metabolic flux. 
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