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Summary. We present a new, efficient and scalable tool, named BIORED, for pattern discovery
in proteomic and genomic sequences. It uses a genetic algorithm to find interesting patterns in
the form of regular expressions, and a new efficient pattern matching procedure to count pattern
occurrences. We studied the performance, scalability and usefulness of BIORED using several
databases of biosequences. The results show that BIORED was successful in finding previously
known patterns, thus an excellent indicator for its potential. BIORED is available for download
under the GNU Public License at http://www.dcc.fc.up.pt/biored/. An online demo
is available at the same address.
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1 Introduction

The identification of interesting patterns (or subsequences) in biosequences has an im-
portant role in computational biology. Databases of genomic and proteomic sequences
have grown exponentially, and therefore pattern discovery still is a hard problem requir-
ing clever algorithmic to achieve manageable levels of efficiency and powerful pattern
languages to be useful.

Patterns often have an important biological significance, hence pattern discovery
is an important problem in computational biology. It is, however, a computationally
hard task, given the combinatorial involved. The rationale behind pattern discovery in
biosequences (proteomic and genomic) is that the patterns correspond to subsequences
preserved through evolution, and the reason for being preserved is because they are
important to the function or structure of the molecule.

In this paper we describe BIORED, a new efficient and scalable tool to discover in-
teresting patterns in genomic and proteomic sequences. It accepts a powerful pattern
language that is a subset of regular expressions and uses a novel genetic algorithm to
discover patterns together with a new efficient pattern matching procedure to count
pattern occurrences in the sequences. We validate BIORED by applying it to several
databases in order to try to rediscover previous known patterns and we study its se-
quential performance. BIORED is capable of efficiently finding patterns in very large
sequence databases and be used to find considerably large patterns.
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2 Background

The problem of pattern discovery here addressed can be stated as follows. Let Σ be an
alphabet of residues (proteomic or genomic). Given a set of sequences S, each sequence
composed with characters not restricted to the alphabet Σ, and a pattern size k, the
goal is to find the best interesting pattern p with size k accordingly to some evaluation
function.

We consider deterministic patterns with wild-cards and ambiguous characters. More
specifically, the pattern language is a subset of regular expressions. Every position in
the regular expression can be only composed by classes of characters belonging to Σ.
A class is represented within brackets. The “.” (referred to as don’t care character) is
used to denote a class of characters composed by all elements in Σ. For compactness
of representation, it is also possible to negate the class. In this case, all characters be-
longing to the alphabet and not shown in the class, are the ones that compose the class.
The negation is denoted by “ˆ”. For instance, the pattern with length 3 “[GT].A” has
two matches in the sequence AATAAGTTAA.

The chosen pattern language is a compromise between simplicity and power. The
idea is to allow the discovery of complex patterns while having a sufficiently fast match-
ing algorithm. Although interesting patterns may have gaps, which may be the result of
deletions or insertions, many others have undergone smaller mutations and have an
equal length. The principle is that we can usually find sub-patterns of larger patterns
and later extend them. Another advantage of using (a subset) of regular expressions
is that the resulting language is well supported by a considerable number of programs
(e.g., grep, sed, emacs, etc) and programming languages (e.g., Perl, PHP, etc).

3 A Genetic Algorithm for Pattern Discovery in Biosequences

BIORED uses a genetic algorithm (GA) [1] to perform pattern discovery. It receives
as input a database containing a set of sequences, the length of a pattern k, and some
other parameters (such as the maximum number of generations i), and tries to find an
interesting pattern of length k.

The implementation of a GA requires the prior definition of a (1) a genetic repre-
sentation of a pattern (solution), and (2) a fitness function to evaluate the patterns. The
implementation of the fitness function involves counting the number of matches of a
pattern in the input sequences. This can be a limiting performance factor for the algo-
rithm, therefore we devised an efficient matching procedure.

We next describe the genetic operators used, the fitness function (interestingness
metric) and a sequential algorithm for counting the matches.

3.1 Genetic Operators

A genetic operator [1] is a process that aims at maintaining genetic diversity. The op-
erators are analogous to those that occur in the natural world: survival of the fittest, or
selection; sexual or asexual reproduction, or crossover; and mutation.
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BIORED implements a rank selection operator that sorts the individuals in the popu-
lation by comparing their fitness value. Each individual is then given a probability of be-
ing chosen for reproduction depending on its position. For n individuals, a n(n + 1)/2
slots roulette-wheel is constructed, with the fittest individual receiving n slots, the sec-
ond fittest n − 1, and so on, with the least fit individual receiving just one slot.

During the alternation (or reproduction) phase of the GA, we use three classical ge-
netic operators: mutation, crossover and elitism. The crossover operator selects a char-
acter position in the individual to be generated. It then sets the first part with the contents
of the first individual and the second part with the contents of the second individual
(both selected using a rank selection operator). The mutation operator randomly flips
some of the bits that compose the chromosome. The elitism operator selects some of
the best individuals to be copied verbatim to the next generation, without suffering any
mutation.

3.2 Interestingness Based on Statistical Significance

To guide the search for a pattern and for ranking a set of patterns one needs some
measure to assess, in some way, their quality or interestingness. In a GA context, such
measure is called fitness function. In complex problems, such as pattern discovery, GAs
have a tendency to converge towards local optima rather than the global optimum of the
problem. This problem may be alleviated by using a different fitness function, or by
using techniques to maintain a diverse population of solutions. Therefore, two fitness
functions were considered based on statistical interestingness.

Several approaches have been proposed to determine if a pattern is statistically in-
teresting [2, 3, 4], i.e., if the number of occurrences of a pattern in a set of sequences is
greater than the expected value. A pattern is considered statistically interesting if it is
overrepresented in the sequences where it occurs. To measure the over-representation,
we need to consider the expected number of occurrences and the standard deviation of
this value. Equivalently, we need to know how the values are distributed.

We assumed that the probability of the symbols (from Σ) to appear in S are in-
dependent and identically distributed. Under these assumptions, the word probability
follows a Binomial distribution. The Binomial distribution gives the discrete proba-
bility b(x; n, p) of obtaining exactly x successes (matches) out of n Bernoulli trials
(pattern positions). We consider every character position, that can be a possible place
for the word occurrence, as a Bernoulli trial. For example, if we have the sequence
ACGATCAGTACA and the pattern that we are computing the statistics for has length
5 then there are exactly 8 places where the pattern can occur. Generalizing, having a
sequence and a word of length Sn and Wn respectively, there are Sn − Wn + 1 places
where the word can appear if Sn≥Wn or zero otherwise. Each Bernoulli trial is true
with probability p. The probability p is the multiplication of the probabilities of the in-
dividual pattern positions. In turn, the pattern positions probabilities is the sum of the
probabilities of the symbols that compose the position. For efficiency reasons, the bino-
mial distribution is approximated by the Poisson distribution for large values of n and
small values of p, with λ = np, or equivalently p(x; λ) ≈ b(x; n, λ/n) [5].

We are interested to know if the pattern is overrepresented, therefore we calculate the
probability of the pattern to appear at least the same number of times in a database as it
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effectively appears. Equivalently, we compute the complementary cumulative distribu-
tion function (Fc) of the Poisson distribution for x−1: Z = Fc(x−1) = P (X > x−1).
Since, the Z can take very small values we use the negative logarithmic of Z , more
specifically, − log(Z). We next denote − log(Z) as I.

The first fitness function relates the interestingness of the pattern with its complexity,

f1 =
I

complexityx

for x = 0, 1, 2, 3. The complexity is the sum of the number of characters recognized
by each pattern position. For instance, ACGT has complexity 4, while [AC]CGT has
complexity 5 and [AC][CG][GT][TA] has complexity 8. The parameter x is used to
reduce the patterns complexity, thus improving their quality. Generally, the low quality
patterns are a direct result of being too general.

The second fitness function (f2) borrows ideas from the evaluation function F-
measure,

f2 =
2 × logpn × cpx

logpn + cpx

where p is the probability of the pattern, m is the maximum complexity with same

length and alphabet can have, cpx = 1 − complexity
m , logpn = I/10000. A ceiling of

10000 is assumed to the value of I.
In general, it is not possible to determine which fitness function behaves better in

a set of sequences without some kind of experimentation. This experimentation needs
only to be done once for each sequence, and can be done automatically by executing
the programs for all the possible fitness functions and choosing the one that achieves
the best results.

3.3 Counting Matches

The fitness function, or interestingness metric, requires knowing the number of (over-
lapping) occurrences of every pattern in the sequence. For example, in the sequence
AAATAA, the pattern AA occurs three times and the pattern AA[AT] occurs twice.

Counting the number of occurrences of a single pattern can be troublesome. For
instance, if the sequences have total length of n and the pattern is composed by either
symbols or unit-length don’t care characters with length m, the best algorithm runs in
O(n log m) time (worst-case) [6]. If we could come up with an algorithm with an equal
complexity for the worst-case, the best we could do would be O(ni log m), where i is
the number of different patterns (number of individuals of the population). However,
since unit-length don’t care characters are a subset of classes of characters, the chosen
pattern language is more powerful than the pattern language referred in [6].

Since the GA generates several individuals (patterns) in each generation that need to
be evaluated, we tried to devise an efficient method to evaluate them simultaneously.

If the algorithm could only handle a single pattern, then it is possible to use a linear
solution based on bit-parallelism [7] if the pattern length is small (only a few machine
words are needed). The bits are used to simulate a non-deterministic finite automaton
(NFA) that describes the pattern.



160 P. Pereira, F. Silva, and N.A. Fonseca

To expand the algorithm to evaluate several patterns at once, a window with length k
is moved through the sequence. Note that all patterns have the same length k. For each
window position every pattern is checked for a match. In a sequence with size n, the
number of window positions (window size is k) is n − k + 1 (assuming that n ≥ k).

The counting matches algorithm worst-case complexity is O(nik) with the input
size n, i the number of individuals in the population, and k the length of the patterns.
However, the algorithm is on average much faster, achieving a complexity of O(ni/w),
where w is the number of bits in a machine word. The average complexity is directly
linked to the average case of the naive string matching.

In spite of the effort to have an efficient counting operation, it remains the bottle-
neck of the matching algorithm. A parallel version of BIORED was thus developed that
achieved linear speedup up to 22 processors [8].

3.4 Implementation

The BIORED was implemented using the C language because the speed was crucial and
to perform an extreme control on memory usage. For the statistic functions we used the
R [9] library. Note that BIORED can be executed in a variety of platforms, such as
clusters and in GRIDs.

The alphabet letters (representing nucleotides or residues) are implemented using an
unsigned integer with 32 bits. This representation has the advantage of being simple to
apply the genetic operators, namely the crossover and the mutation. This means that a
population with i individuals, each having length k, uses exactly 4ik bytes of memory
using the DNA alphabet. In general, the algorithm uses |Σ|ik/8 bytes of memory, where
Σ is the alphabet used.

We use a binary vector as a chromosome to represent a pattern. The binary vector
can, conceptually, be seen as signaling if a character belonging to Σ is present or not
at a determinate pattern position. For example, the DNA pattern [AC]T[ACGT]G is
represented as 1100,0001,1111,0010, if A is represented with the bit-mask 1000,
C 0100, G 0010 and T 0001.

The initial population (set of patterns) is randomly initialized. Each bit in an individ-
ual has the probability 0.7 of being activated (this value was selected after performing
several experiments). The probability was empirically chosen to guarantee the diversity
of the population, representing patterns that actually occur in the data.

The probability of undergoing crossover was set to 0.75 and the mutation probability
to 0.01. Only the fittest individual is considered an elite. These values were chosen after
some experiments with DNA and residue sequences and are the values that proved to
work better. By default, the program halts after completing 500 generations. This value
was chosen based on the performance experiments done.

Finally, it is worth mention that BIORED includes an option setting to allow the use
of symbol probabilities (distribution) different from those observed in the sequences.
This requires the user to give an extra file (with sequences) to the program from where
the distribution is computed. An example of the usefulness of this option is demon-
strated in Section 5.
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4 Performance Evaluation

We study the performance of BIORED and the behavior of the GA in terms of con-
vergence and execution time. The databases used in the experiments are indicated in
Table 1 and were obtained from the release 38 of the Ensembl project [10]. All experi-
ments were ran in a Cluster with Dual core “AMD Opteron Processor 250” computers,
with 4 gigabytes of RAM (but only 600 Mb free) running the Linux operating system
(kernel 2.6).

Table 1. Organisms used for evaluation

Organism Length (bp)
Saccharomyces cerevisiae (whole genome) 12156606

Anopheles gambiae (chromosome 2R) 61545105
Drosophila melanogaster (whole genome) 144141726

Figure 1 shows the effect on the runtime when we alter a single parameter, such
as the population size or the pattern length. Theoretically, the runtime is expected to
double when the population size is doubled. However, the optimizations performed in
the algorithm makes the runtime vary.
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Fig. 1. Run time variation with different populations and pattern lengths (in seconds)

The three organisms used (see Table 1) can be processed in about (largest to smallest)
27, 10 and 4 hours, running for one-thousand generations with a population size of 128
individuals and searching for patterns with length of 64. These values for running times
are, in our view, excellent for a sequential execution, considering the relative large size
of the data used. In fact, other pattern discovery tools failed to cope with the same
data, thus making it impossible to compare relative efficiency (details are discussed in
Section 6).

When the pattern length is increased something apparently strange happens. Until a
certain pattern length the runtime increases and then it decreases. This is, once again,
related to the size of the search space. When the search space grows too much, the
genetic algorithm has difficulty in finding an admissible pattern. A possible solution
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to this problem could be to initialize the population with statistically interesting words
(naturally, found with another tool).

The results show a very small variation on the runtimes when the population sizes in-
crease from 32 to 64 individuals. This effect is a direct consequence of the implemented
bit-parallelism technique and the execution on 64-bit architectures.

We evaluated BIORED’s convergence and discovered that when the pattern length in-
creases, the population size must also be increased for the convergence to be smoother.
This happens because it is more difficult to obtain an admissible large pattern. This was
expected, since the search space of a DNA pattern with length 64 is 24×64. Furthermore,
as the size of the pattern decreases, the faster the algorithm converges. This was also
expected since the search space becomes exponentially smaller as the size of the pattern
decreases.

5 Validation

We demonstrate the usefulness of BIORED in two case studies. The goal is to rediscover
some already known patterns.

Human Gene for Proinsulin

In the first case study we chose a database with the human gene for proinsulin from
chromosome 11 [11]. BIORED was configured to run with a population of 32 indi-
viduals, pattern length of 14, and to stop after one-thousand generations. It yielded the
pattern [CG][AT]GGGG[AT][CG][AT]GGGG[AT]with a score of 381.6, occurring 48 times
and with a probability of 0.00000133. The pattern found is very similar to a previously
reported pattern ACAGGGGTGTGGGG [12].

Drosophila Melanogaster

In the second case study, we used a database with the whole genome of the Drosophila
melanogaster. More concretly, we used the organism disjoint introns (sections of
DNA that are spliced out after transcription but before the RNA is used) as input
to BIORED, and configured it to use a population of 64 individuals, and a pattern
length of 27. The symbols probabilities were gathered from the whole genome. The
best pattern after 4096 generations was ATTGTAAGTCTTTAAATATATTCGTGT with a score
of 7309.4, occurs 256 times and has a probability smaller than 10−9. Curiously, this
pattern is a sub-word of the consensus described in [13]. The consensus was manu-
ally converted to a regular expression producing (after some simplification) the follow-
ing pattern: [ˆG][AG]AGTT[CT]GT[ˆA][GT]C[CT]T[AG]AGTCTTT[CT]GTTT.Note that the
original pattern, as it is, achieves a score of 904.2 on the entire genome, i.e., the entire
genome was used to compute the distribution of the symbols, while the pattern found
by BIORED achieves a score of 7309.4.

6 Related Work

Several pattern discovery tools and algorithms have been developed [14, 15, 4]. Some
approaches are based on exhaustive search that guarantee that the best pattern
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(accordingly to some specifications) is found. An heuristic approach does not guarantee
that the best pattern is found, instead it finds a good “enough” pattern. The advantage
of the heuristic approach is that it is often faster than the exhaustive search, but may not
find the best solution (pattern).

The Teiresias [14] is closely related to our proposal in terms of the pattern language.
It is based on well-organized exhaustive search based on combinations of shorter pat-
terns. The Teiresias algorithm guarantees that all maximal [14] patterns are reported.
The algorithm needs to receive as input the minimum number of literals that a pattern
can contain, L. Another required parameter is W that indicates the maximum distance
between any consecutive L literals. In general, if we use the same L parameter and in-
crease the W parameter, the execution time of the scanning phase, which is the phase
where the algorithm gathers seed patterns with the desired L and W characteristics,
greatly increases. In the worst case the algorithm is O(n3log n), but it is reported to
work very well when the inputs are highly regular and the parameters W and L are
small.

The admissible patterns are similar to the ones we consider. The original Teiresias
algorithm only supported one wild card equivalent to our “.”. Newer versions support
equivalency classes. In an equivalency class the user needs to specify the characters that
are to be treated as equal in the actual pattern discovery process. These are similar to
the classes of characters supported by BIORED.

A critical problem with Teiresias is that it has a very high memory usage. In an at-
tempt to compare the performance of Teiresias with BIORED we configured Teiresias
to support the same classes of characters as BIORED, and tried to identify the pre-
viously discovered pattern in the human gene of proinsulin. Teiresias crashed after 8
minutes with a memory consumption of several gigabytes. These parameters were cho-
sen to verify if it could identify the previously discovered pattern in the human gene of
proinsulin using the BIORED.

In conclusion, Teiresias seems to be unable to cope with classes that overlap each
other (which is exactly the classes supported by BIORED) since it has an extremely
high memory consumption that prevents any empirical comparison since it crashes even
for small sequences.

Pratt [15] is another tool to discover patterns conserved in sets of unaligned protein
sequences. The patterns that can be found are a subset of the patterns that can be de-
scribed using Prosite notation [16]. In particular, variable length gaps are allowed. Pratt
is very memory intensive, contrasting to BIORED, which is pretty light in memory con-
sumption. Pratt tries to find a pattern that occurs in the greatest number of sequences as
possible, while the program presented here considers the total number of occurrences
in all sequences.

MEME (Multiple EM for Motif Elicitation) [17] uses a stochastic search to discover
patterns. It does not require a pattern length parameter, which can be estimated by
the algorithm itself. The algorithm is based on expectation maximization technique.
Individual MEME patterns cannot contain gaps, and thus are equivalent to the patterns
we consider. The overall complexity of MEME is quadratic in the size of the database
and linear in the length of the pattern [17], while our proposal is linear in the size of the
database and in the length of the pattern.
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7 Conclusion

We presented a new pattern discovery tool that discovers interesting patterns, in the
form of a regular expression. using a genetic algorithm. The algorithm has a conserva-
tive memory usage of O(ik|Σ|) and a worst-case time complexity of O(nikg), where
Σ is the alphabet used, i is the number of individuals of the population, k is the length
of the pattern, n is the size of the input, and g is the number of generations. However,
the algorithm is on average much faster, achieving a complexity of O(gni/w), where
w is the number of bits in a machine word. The average complexity is directly linked
to the average case of the naive string matching. Experiments showed the usefulness
of the algorithm, by demonstrating that it is capable of discovering previously known
patterns.

The contributions of this paper are three-fold. First, we describe and evaluate a tool
that uses a genetic algorithm to discover patterns in genomic and proteomic sequences.
Second, we also propose an efficient pattern matching procedure, a crucial component
for achieving high performance in any pattern discovery tool. Finally, for a practitioner
we provide a pattern discovery tool that is efficient (in terms of execution time and
memory usage), has a powerful pattern language, does not impose restrictions on the
pattern length, is general (can handle proteomic and genomic sequences), and can han-
dle large databases of sequences, and can be used in a with number of settings (personal
computers, clusters, and grids).

Finally, there is still space for improvement. For instance, BIORED implements a
simple and fast statistical approach to determine the interestigness of a pattern. In order
to improve the statistical accuracy, we plan to include, as an option, more rigorous tests
such us the recently proposed complementary statistical tests for accessing exception-
alities of motif counts [18].
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