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Summary. We present, RNer, a tool that performs Named Entity Recognition and
Normalization of gene and protein mentions on biomedical text. The tool we present
not only offers a complete solution to the problem, but it does so by providing easily
configurable framework, that abstracts the algorithmic details from the domain specific.
Configuration and tuning for particular tasks is done using domain specific languages,
clearer and more succinct, yet equally expressive that general purpose languages. An
evaluation of the system is carried using the BioCreative datasets.

1 Introduction

Three factors have motivated the biomedical community to get interested in
literature mining [10]. The first one is due to the recent high throughput tech-
niques, like DNA microarrays, that, by involving large collections of entities,
place bigger demands in the researcher’s use of previous knowledge. The second
factor is the fast pace at which scientific articles are being published, making it
hard for researchers to keep up to date. Coupled with these is the trend followed
by many editorials of making the articles available on-line, thus, making them
readily available for analysis by software tools.

Named entity recognition (NER) is an important tool for literature mining,
as it is found as an initial step in many information extraction applications [11].
Named entity recognition has been used in domains other than the biomedical,
like news wire text. It is in the biomedical domain, however, where it presents
the most challenges. Gene and protein names are the amongst the most common
subjects for NER in the biomedical domain. They have several characteristics
that makes them specially challenging. They are very numerous, in the order of
millions, the number growing continuously, and the names used to refer to them
are not necessarily standardized [7]. Furthermore, in many cases the names are
the same across different genes or match some common English words, producing
a significant amount of ambiguity [1]. These problems not only affect finding the
mentions in the text, but also the subsequent task of identifying the actual entity
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they refer to. This identification step is usually referred to as normalization, and
is as much a challenging task as NER itself [2].

Several initiatives have dealt with the problem of NER in the biomedical
context. We have studied closely the BioCreative competition [11, 2], which had
several tasks relating to NER and normalization. We used some of the resources
they provided to evaluate our system. As for the availability of tools for NER
and normalization, we have found several freely available tools for the NER step
alone. Some of them, like Abner and Banner [8, 6] we have studied in detail. At
the time we did not find any available tool that implemented the normalization
step, which motivated us to develop our own.

Examining the state of the art in NER reveals a strong trend towards the use
of conditional random fields (CRF). These probabilistic models have proven to
be appropriate for text labeling [5], which is how NER is usually approached.
For NER, we use CRF to predict labels for a sequence of words given a set of
features associated with each word. Most of the work on NER using CRF differs
basically in the features used. In fact, the nature of the CRF algorithm reduces
the problem to determining a suitable set of features. Most common features are
orthographic: Does the word have any uppercase letter? Any digits? Is there a
slash character in the word? Etc.

We developed a system, which we call RNer, for both NER and normaliza-
tion that implemented a standard approach, but offered a practical way to be
extended and configured. For NER, we implemented the same ideas from Abner
and Banner, abstracted the core inner workings of the algorithm and committed
all the details on creating the features to a domain specific language (DSL).
For the normalization task we developed our own solution, based on some ideas
from the BioCreative competition, and also separated all the configuration op-
tions to domain specific languages. The Ruby programming language was used
in the implementations, mainly because its clear syntax and meta-programming
possibilities makes defining DSL a very easy task.

The advantage of the use of DSLs is that it allows to integrate and test new
ideas, for both NER and Normalization, using a more descriptive language than
the original programming language. This makes adding new functionality closer
to configuration than it is to programming, which has enabled us to produce a
working tool with competitive performance with very little effort.

2 System Overview

This is an overview of the process we have implemented. Following sections
will cover each aspect in more detail, but this section should be useful to gain
perspective for further discussion.

The CRF model for NER is trained off-line. The training text is turned into
a stream of words, with the words forming part of the entity mentions labeled
accordingly. The model is trained so that, when a new stream of words comes
along, it can assign the labels to determine mention boundaries.
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The Normalization system is not trained like the NER, but rather, a data
structure is generated from a lexicon file to help identify the mentions. The
lexicon file contains each gene, along with the list of identifiers with which it
is commonly referred to in the literature, usually in a per-organism basis. The
Normalization works by matching the mentions found with the synonyms in the
lexicon by progressively transforming each into simpler forms until a match, or
matches, are made. The matches so found are then evaluated according to a
set of rules to produce a match score. This match score is used to select the
best match, or to reject them all, if none is found to be good enough. If two
matches have the same score, the system selects the best match by comparing
the overlap between the words in the text where the mention was found, and the
text describing the gene in the correspondent Entrez GeneRIF entry.

3 Named Entity Recognition

The approach we follow for NER is based on that of Abner. We will describe
briefly how it works. A more detailed description can be found in [5] or [9].

Finding mentions in text means determining the words that are likely to
constitute a gene name. This is commonly done by labeling the words with
their position relative to the mentions. The IOB schema that we use [8], has the
label B mark the initial word on a mention, label I mark any other word in the
mention, and label O is used for words that are outside of any mention. Named
Entity Recognition is done by assigning these labels to a new sequence of words.

The labeling of a sequence of words using Conditional Random Fields is done
by representing each word by a set of features, and using a probabilistic model
to determine the sequence of labels that was most likely to have produce such
a sequence of features. This model is built in an off-line, phase using example
data, which, in our case, is the one provided as training for the BioCreative
competition. Optionally, an specific NER model can be build for each organism
by including in the training data the gene synonyms found in the organism
lexicon.

Our system uses CRF++ [4] to build the model and produce the labels, as it
provides bindings for Ruby. Abner and Banner use Mallet, a Java implementa-
tion of CRF with similar characteristics. The main difference between all three
systems resides in the features used to represent each word. Abner defines a set
of features based on morphological features, these features are further expanded
in Banner, which includes semantic features as well. Our system abstracts all
the feature generation from the rest of the system, and provides a DSL language
to specify it. The features used to evaluate our system include those in Abner
and Banner, excluding the syntactic based ones, as they slowed the system down
considerably, and they did not seem to significantly enhance performance in our
application.

We will now take a look at the DSL used to define the features. Figure 1 shows
the definition of three of the features exemplifying the three ways to do this.
The first one defines the feature hasDigits with a regular expression, so that
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hasDigits /\d/

prefix_3 /^(...)/

downcase do |w| w.downcase end

Fig. 1. Feature declaration

if the word has a digit, then the feature is true. In the second case, prefix 3
is defined with a regular expression capture, in this case the feature value is
what ever is captured in by the parenthesis, the first three characters. The last
example uses a code block, the result of which, the word in lower case, is assigned
to the feature. These three features, along with 25 others, are described in the
default configuration file, and can be easily over written, and extended. Regular
expressions are used since they themselves are a DSL for string matching, and
arguably the best way to capture the requisites of this particular domain.

The CRF tool that we use, CRF++ [4], has a particular characteristic of being
able to consider a certain context around each word at any particular step, as
opposed to just the current state and word features. This context may be defined
in another section of our DSL, as shown in figure 2, which just states that features
special, token2, isPunctuation and isDelim from words surrounding the
current one in distance of up three should be considered. The features used here
must have been defined in the previous DSL.

context_features %w(special token2 isPunctuation isDelim)

context_window %w(1 2 3 -1 -2 -3)

Fig. 2. CRF++ context

4 Normalization

Normalization is the name given to the process of identifying to what gene
or protein a mention found in the text refers to. The BioCreative competition
features some methods that do not separate NER from normalization. However
the most common choice is to consider both process separate.

Our approach to Normalization is a 3 step pipeline. Mentions are assigned a
number of candidate genes. The choice for each candidate is scored, filtered, and
sorted; and the best is selected, if any survive the filtering. In the case that a
draw still remains after scoring, it is resolved in a so called disambiguation step.
Let us look at these three process in more detail: candidate matching, scoring
and disambiguation.

Candidate matching is done using a ordered list of string matching functions,
each one been more permissive than the previous one. The idea behind this setup
is to find the best matches as soon as possible. This early stop avoids generating
an unnecessary large list of candidates. However, functions at the end of the list
should allow for lax enough matching, so that candidates are produced, even
if unlikely; the following scoring step will use a more sophisticated method to
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equal do |w| [w] end

standard do |w| [w.downcase.split(/\s+/).sort.join("")] end

words do |w| w.scan(/[a-z]+/i) end

Fig. 3. Declaration of name indexes

reevaluate their appropriateness. The matching functions are implemented using
cue indexes. Each function turns a gene name into a list of cues, forming an index
that associates each cue with the list of genes having the correspondent names.
When a mention to a gene is found in the text, the system produces the cues for
the first index, and checks if any matches are made; if not, it repeats the process
for the next index. This is carried along until a match is made, or the last index
also fails.

The system only needs the cue generator functions, which are defined using a
DSL like in figure 3. In this abridged example the first index function cue is the
name or mention as-is; the second takes each word in the mention, sorts them,
and joins them together in lowercase –this is a more accommodating cue; whereas
the third index returns a list of cues composed of the words in the name or
mention. Having in common any of the cues in the list will be enough to produce
a match. For example, the mention lactamase beta 2 would generate the cues
lactamase beta 2 for the equal index, 2betalactamase for the standard index
and lactamase, beta, and 2 for the words index.

The candidates generated in the previous process might be numerous, includ-
ing plenty of false positives. To evaluate how good a match each candidate gene
is, we compare each of the synonyms the gene has with the mention, generating
similarity scores. The candidate gene is assigned the score of the best ranking
name. The score is calculated as follows. Both mention and names are chunked
down into tokens, and each token is assigned a token class. Each token class is
then examined to evaluate the overlap in tokens. Each overlapping scenario is
assigned a positive or negative score, and the total sum is the similarity score.
The system uses a DSL to specify the token classes and another DSL to specify
the cases and their scores.

The three examples in figure 4 illustrate the three ways to define the token
types. The first one identifies a token as a roman numeral using a regular expres-
sion. If only the name of the type is given, as done in the second case, a default
regular expression is attached, matching the same name, case insensitive, and
with a possible “s” character at the end, to account for possible plurals (This
is offered for convenience, an explicit regular expression could be used for cases
that do not adhere to this pluralization rule). The last example uses a code block
to make this check, in this particular case, it makes use of a hash of Greek letter

roman /^[IV]+$/

promoter

greek do |w| $greek[w.downcase] != nil end

Fig. 4. Token types
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same.greek 5

miss.greek -3

diff.promoter -10

Fig. 5. Token comparison weights

names to check if the token is one of them. This, again, is done case insensitive.
Tokens not assigned to any of the defined classes are assigned the class other.
For example, Lactamase Beta 2 would have a token of class number, which will
be 2, a token of class greek, which will be B, and a token of class other, which
will be lactamase. The tokens proposed in the application by default include 12
rules and 11 additional words.

Example figure 5 shows three ways to specify the scores that receive the
different cases that could arise when comparing two token classes. The first
states that if the same Greek letter names are found in the two, a value of
5 is added to the similarity measure. The second states that if the mention is
missing a Greek letter, 3 is subtracted, and the last one states that if one of them
has the token promoter and the other does not, 10 is subtracted. We have six
operators: same, distinct, common, diff, miss, and extra. Meaning that
they have the same tokens, no tokens in common, at least one in common, at
least one different, the mention is missing one or the mention has an extra token.
For example, the mention Lactamase 2 and the name Lactamase Beta 2 would
have a common other token, a common number token, but the mention would
be missing a greek token.

transform.roman do |t| [t[0].arabic, ’number’] end

compare.number do |l1,l2|

val = 0

val -= 4 if (l1 - l2).length >0 || (l2 - l1).length >0

val -= 8 if l1[0] != l2[0] && l1[0]

val += 3 if l1[0] == l2[0]

val

end

Fig. 6. Advanced comparisons: Transformations and custom comparisons

In order to add more flexibility to this method, we have added two other
operators: transform, used to change tokens from one type to another, and com-
pare, that allows comparing a certain type of tokens using a code block. Figure
6 holds an example of both. The first one turns a roman to a number, allowing
the number 1 to match I in roman form, for example. The second compares the
numbers of mention and name in a finner grained manner.

We now have the ability to assign a similarity score between a mention and
each of its candidate genes. For each candidate gene the best score amongst
those from all it’s known synonyms is selected. We use these score to rule out
those candidates that score to low, and also to establish a ranking amongst those
who score high enough. If there are several candidate genes containing the same
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synonym (as it often occurs) they will score the same. In order to resolve the
draws, we have a final step of disambiguation.

The disambiguation step is done by comparing the context in which the men-
tion occurs, the paragraph for example, with the description of that gene in the
Entrez Gene database. The comparison is made by finding the words in common
between the text in the mentions context and the text in the gene description,
and adding their word weights. The word weights are their inverse document
frequency [3], calculated from a corpus of example text drawn from PubMed
article abstracts.

5 Evaluation

The NER system comes with a set of default configurations, mostly copied from
Abner, but with a few additions. The system performs fairly well with these
defaults for gene mention recognition. We plugged our system into the BioCre-
ative competition evaluation sets using these defaults. The results are shown in
table 1, we downloaded Abner and Banner and performed the same tests. RNer,
as we will call our system, seems to outperform Abner slightly. Banner performs
significantly better than both, possibly because it uses syntactic information as
features, which our default configuration did not include.

The Normalization step also comes with a default configuration. We show
results for the BioCreative I task 1-B in tables 2 and 3. These results are obtained
using only the default configuration, no specific tuning is performed for either
organism, nor is the provided training data used in any way. We have performed
the analysis using our NER system, as well as Abner and Banner. Our NER

Table 1. Results for the BioCreative I task 1-B

System Precision Recall F-Measure

RNer 0.819 0.780 0.799
Abner 0.789 0.741 0.764
Banner 0.836 0.828 0.832

Table 2. Results for the yeast dataset of the BioCreative I task 1-B

NER Precision Recall F-Measure

RNer 0.936 0.863 0.898
Abner 0.941 0.809 0.870
Banner 0.933 0.816 0.870

Table 3. Results for the mouse dataset of the BioCreative I task 1-B

NER Precision Recall F-Measure

RNer 0.695 0.645 0.669
Abner 0.680 0.649 0.664
Banner 0.666 0.686 0.675
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system outperforms Abner and Banner in the yeast dataset. Banner, however,
outperforms both in the mouse dataset.

6 Discussion

Ruby, our implementation language, proved to be very useful due to its clear
syntax and meta-programming possibilities. Ruby can also be compiled into
Java bytecode and used in any Java framework. The result is a simple to use
system that works out of the box but at the same time is flexible and easy to
configure and adapt to other domains. Domain specific languages allow us to
describe the specifics of the system in a more clear and succinct way.

While the system does not, for the time being, beat any record in perfor-
mance, it shows competitive and promising results, even though no organism
based tuning is performed and the training data for normalization, provided in
BioCreative, is not being used.

7 Availability

This system was developed as part of another system called SENT, available at
http://sent.dacya.ucm.es. Very likely, this system will be made available to
public domain when SENT is published, along with the rest of the code that
composes the SENT. In the meantime it will be provided free upon request.
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