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Abstract. A multisignature scheme allows a group of n players to produce
a short string which is equivalent to n separate signatures on the same message.
Assuming the Random Oracle Model (ROM), the aggregate signature schemes of
Boneh et al. [BGLS03] and Bellare and Neven [BN06] provide multisignatures
secure in the standard public key setting, but their multisignature verification
algorithms involve respectively O(n) bilinear maps and O(n) exponentiations.
Ristenpart and Yilek [RY07] recently showed two multisignature schemes rely-
ing on groups with bilinear maps, with just O(1) bilinear maps in multisignature
verification, which are secure if each public key is accompanied by so-called
“proof of (secret key) possession” (POP). We show how to achieve secure mul-
tisignatures in the POP model using any group where CDH or DDH problems are
hard. Both schemes have multisignature verification with O(1) exponentiations,
and their POP messages take O(1) group elements and require O(1) exponenti-
ations to verify. Moreover, the security of the proposed schemes is tightly related
to the CDH and DDH problems, in ROM.

1 Introduction

A multisignature scheme allows a group of n players to sign a common message so that
instead of n separate signatures the players produce a short string which can be verified
against the set of the public keys of the participating players. Such scheme is interesting
if the resulting string is shorter than n separate signatures and/or the verification time
is faster than n separate signature verifications. Applications of multisignatures include
scenarios where the number of signers is moderate, like co-signing, distribution of cer-
tificate authorities, or aggregation of PKI certificate chains. However, multisignatures
can potentially be useful also in very large groups of signers, e.g. for aggregation of
acknowledgements in response to a broadcast.

Rogue Key Attacks and the KOSK Assumption. Multisignature schemes are possible be-
cause of homomorphic properties of arithmetic operations involved in standard signa-
tures. For example, a BLS signature [BLS04] on message m under public key yi = gxi

is σi = H(m)xi , i.e. a value s.t. (g, yi, H(m), σi) is a DDH tuple. A correspond-
ing multisignature can be created as σ =

∏n
i=1 σi, and it can be verified under the
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combined public key y =
∏n

i=1 yi, because (g, y, H(m), σ) is also a DDH tuple. Un-
fortunately, the same homomorphic properties which enable aggregation of signatures
into multisignatures can enable a “rouge key attack” on such schemes. For example,
the above scheme is insecure because an adversary who picks y2 = gx/y1 for some
existing key y1 and any x can use x = DL(g, y1 ∗ y2) to issue multisignatures on be-
half of key set {y1, y2}. Indeed, as Micali et al. [MOR01] point out, many proposed
multisignature schemes are vulnerable to such rouge key attacks, e.g. [LHL94, Har94],
or their security requires trusted generation of each key, e.g. [OO91, OO99]. Interest-
ingly, rouge key attackers usually do not know the private key corresponding to the
rogue public key. Indeed, under the discrete logarithm assumption it is provably hard
to compute the private key x2 s.t. y2 = gx2 in the above attack. This observation led
Micali, Ohta, and Reyzin [MOR01] to construct the first multisignature scheme secure
without assuming trusted key generation. However, that scheme requires all potential
signers to engage in an interactive initialization protocol in which every player proves
knowledge of its secret key to all others, and such initialization procedure does not
tolerate dynamic groups and does not scale well to large groups. One way to remove
this initialization procedure is to assume the so-called knowledge of secret key (KOSK)
assumption [Bol03] on key registration process: The KOSK assumption states that if
an adversary registers a public key then the adversary’s algorithm must also explicitly
output a corresponding secret key. Two secure multisignature schemes were proposed
under this assumption using bilinear maps, by Boldyreva [Bol03] in ROM and by Lu et
al. [LOS+06] in the standard model (i.e. without ROM).

Multisignatures in the Key Registration Model. One way to realize the KOSK assump-
tion is to employ so-called Key Registration Model (KR) for Public Key Infrastructure
(PKI), introduced in the context of multisignatures by Ristenpart and Yilek [RY07]. In
the KR model for PKI, a CA issues a certificate on a key only if its owner passes a
special key registration protocol. For example, the PKCS#10 [PKC00] standard for CA
operation asks the user to sign a challenge message under its public key. This challenge-
signature pair is called a proof of possession of the secret key (POP) in PKCS#10, but
we’ll use this term more broadly, for any user-generated string verified by either the
CA or by multisignature verifiers (see the “Key Verification” model below). The intu-
itive goal of the POP mechanism in PKCS#10 was to assure that someone has access to
the secret key corresponding to the public key being certified, but this mechanism does
not implement the KOSK assumption in general. Indeed, Ristenpart and Yilek [RY07]
showed that the schemes of [Bol03, LOS+06] are insecure in the KR model if key reg-
istration is implemented with POPs of PKCS#10. Nevertheless, [RY07] also showed
that using a slight variant of the same POP mechanism the schemes of [Bol03, LOS+06]
yield secure multisignature schemes in the KR model, relying on bilinear maps.

Alternatively, one can realize the KOSK model by implementing POPs with con-
currently secure zero-knowledge proofs of knowledge (ZKPK) of a secret key. Such
ZKPK’s can be achieved in ROM by the results of Fischlin [Fis05] using O(log κ)
group elements where κ is the security parameter. Combined with the multisignature
protocol of [MOR01], this implies a multisignature scheme in the KR model secure
under the DL assumption. However, non-constant-sized POPs are less practical if POP
messages are verified by multisignature receivers instead of by the CA’s (see the “Key
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Registration vs. Key Verification” below). Moreover, due to the heavy use of the forking
lemma in the reduction of [MOR01], the exact security of this scheme is not optimal.

Multisignatures in the Plain Public Key Model. One of the drawbacks of multisignatures
in the KR model is that they require modifications to the current operation of the CA’s.
(In addition to imposing non-standard trust requirements on CA’s, as we argue below.)
It is therefore highly interesting to provide multisignature schemes which are secure
in the plain setting where no special registration process is assumed for public keys.
The first such scheme is implied in ROM by an aggregate signature scheme of Boneh
et al. [BGLS03], with the analysis extended by Bellare et al. [BNN07]), but its mul-
tisignature verification algorithm requires O(n) bilinear map operations. Bellare and
Neven recently proposed a multisignature secure in the plain setting which does bilin-
ear maps [BN06]. While this scheme has a significantly smaller cost of multisignature
verification, it still requires O(n) exponentiations: The way [BN06] avoid KOSK and
KR models is by using independent challenges in the proofs of knowledge of discrete
logarithm performed by each player in the multisignature generation protocol. How-
ever, the multisignature verification operation then becomes a multi-exponentiation on
n public keys and n different exponents, and to the best of our knowledge the cost of
such multiexponentiation is still O(n) the cost of a single exponentiation.

Key Registration vs. Key Verification. The fact that current multisignatures in the plain
setting have slower verification than current schemes secure in the KR model motivates
looking closer at the KR model. For example, to the best of our knowledge it has not
been previously observed that the Key Registration model requires non-standard trust
assumptions among the PKI participants. Consider an application of a multisignature
scheme, where a multisignature is formed by some users certified by CA’s trusted by
the multisignature verifier, and some certified by CA’s who are unknown to this verifier.
Assume that the verifier is interested in checking whether or not the message was signed
by all the users of the first type but does not care if users of the second type have
also contributed to the multisignature. An example is a petition signed by individuals
whose public keys are certified by different CA’s, some widely known and trusted, some
less so. If a multisignature scheme secure in the KR model is used then the verifier
cannot conclude that the message was signed by the users she cares about, certified by
the CA’s she recognizes and trusts as long as a single participant in the multisignature
is certified by a CA which she does not recognize and/or trust. This is because the
scheme provides no security guarantees if the prescribed key registration procedure,
e.g. POP verification, is not followed with regards to even a single key participating in
the multisignature. This imposes a limitation on the use of multisignatures compared
to standard signatures or multisignatures secure in the plain setting, since in either of
the last two cases the verifier can decide if the users she cares about signed the petition
whether or not it was also signed by keys certified by unknown or suspect CA’s.

We propose to remove this limitation in the usage of multisignatures secure in the
KR model by considering an alternative mode of PKI operation which we call the Key
Verification (KV) Model. In the KV model each private key owner also produces a POP
string, but instead of handing it to the CA during the key registration process she at-
taches it to her key (or a PKI certificate on the key). This POP message is then verified
by a multisignature receiver instead of by the CA, for example together with verification
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of PKI certificates on that key. We note that in the multisignature schemes we propose
POP verification costs are comparable to DSA certificate verification, and this cost can
be further reduced by batching. The Key Verification model of operation should also
make it easier to adopt multisignature schemes: Since the CA operation does not need
to change, a multisignature scheme secure in the KV model can potentially use exist-
ing private-public keys and certificates. For example, our CDH-based multisignature
scheme can utilize existing DSA or Schnorr signature public keys. We stress that while
the KR and KV models differ in how a multisignature scheme operates, any multisigna-
ture scheme secure in the KV model trivially implies a scheme secure in the KR model,
and any scheme secure in the KR model which has a non-interactive key registration
process (e.g. the schemes given by [RY07]) implies a scheme secure in the KV model.

Our Contributions. We propose two multisignature schemes in the KV (or KR) model,
denoted MDDH and MCDH. Both schemes take three rounds, have multisignature ver-
ification procedures with O(1) exponentiations, do not require bilinear maps, and their
security is tightly related in ROM to, respectively, the CDH and DDH problems. The
POP messages in both schemes take O(1) group elements and their verification takes
O(1) exponentiations. Figure 1 summarizes the comparison between ours and previous
multisignature schemes. In this table, RY+BLS and RY+Waters refers to the first and
the second schemes of [RY07] respectively, BGLS refers to the multisignature scheme
implied by the aggregate signature proposed by Boneh et al [BGLS03], MOR+Fischlin
refers to the scheme of Micali et al [MOR01] with its initialization phase replaced by
key registration using Fischlin’s ZKPK’s [Fis05], and BN refers to the scheme proposed
by Bellare and Neven [BN06].

Compared to the two schemes of [RY07] our schemes do not rely on groups with
bilinear maps, but they do so at the cost of relying on the ROM model, which one of
the schemes of [RY07] avoids, and by using an interactive multisignature generation.
This drawback is significant in many applications but it can be mitigated in applications
where the same set of players is expected to repeatedly engage in several instances of
the multisignature protocol, as long as the multisignature procedure is fast on-line, i.e.
if the signed message is an input to the players only in the last round of the interaction,
which is the case with our DDH-based scheme. (It is an open problem whether the
CDH-based scheme can be made fast on-line without sacrificing other parameters.)

In comparison with the DL-based scheme in the Key Verification model implied
by the combined results of [MOR01, Fis05], our POP messages are shorter and faster
to verify, which is especially important in the Key Verification model where POP’s
must be attached to public keys and verified by multisignature recipients. To achieve
280 security the POP size and verification time in the scheme implied by [MOR01,
Fis05] would be larger by roughly a factor of ten when compared to our CDH-based and
DDH-based schemes. Moreover, the security reduction from the DL problem implied
by these two results is inexact, while our schemes have exact reductions from CDH or
DDH problems, and in many groups of interest the DL and CDH problems are almost
equivalent [MW00].

Finally, compared to the scheme of [BN06] which works in a plain model, our
schemes require a Key Verification model. This is a drawback, but as discussed in
a subsection above, in many scenarios the Key Verification model of PKI operation
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MS Scheme
Assumption Degradation Protocol Key Sig.Ver. Signing Signature

on Security(1) in Security(2) Rounds Setup Time(3) Time(3) Length(4)

RY+BLS GapDH 1/qs 1 POP O(1) O(1) |G1|
RY+Waters GapDH 1/qs 1 POP O(1) O(1) |G1|+ |G2|

BGLS GapDH 1/qs 1 Plain O(n) O(1) |G1|
MOR+Fischlin DL(5) 1/qsqh

2 2 POP O(1) O(1) 2|q|
BN DL(5) 1/qh 3 Plain O(n) O(1) |G|+ |q|

MDDH DDH exact 3 POP O(1) O(1) 2|q|
MCDH CDH(6) exact 3 POP O(1) O(n) |G|+ 2|q|+ 2κ

Fig. 1. (1) All schemes except RY+Waters assume a ROM model; (2) Security degradation is
given as a factor f s.t. if a multisignature adversary succeeds with probability ε then the reduc-
tion breaks its underlying security assumption with probability Ω(f ∗ε) in comparable time. Here
qs and qh denote, respectively, the number of adversary’s signature and hash queries; (3) Compu-
tational costs are the number of modular exponentiations (or bilinear maps for the GapDH-based
schemes); (4) Signature length is measured in bits, where κ is the security parameter, |G| is the
number of bits required to represent elements in group G, q is the group order, and G1 and G2 are
two groups of points on an elliptic curve with asymmetrical bilinear maps. For example κ = 80,
|G| = |q| = |G1| = 160 and |G2| = 6 ∗ 160; (5) The reduction for the Fischlin+MOR scheme
is our best estimate. The reduction given in [BN06] for the BN scheme has ε/qh degradation, but
it seems that one can modify it to provide only 1/qh degradation using the version of the forking
lemma originally given by Pointcheval and Stern [PS00]; (6) For the MCDH protocol we only
give an exact security reduction from the expected-time hardness of the CDH problem.

creates a small overhead in the certificate verification process. On the other hand, our
schemes have tight reductions from CDH/DDH problems while the security reduction
of [BN06] encounters a security degradation due to the use of the forking lemma, and
our schemes make O(1) exponentiation operations during multisignature verification
compared to O(n) exponentiation cost in [BN06]. We stress that while it might seem
that our schemes require O(n) verification, because we require that each multisignature
verifier checks all n POP messages attached to the certificates of the n players involved
in the multisignature, the O(1) multisignature verification in the KV model is better
than O(n) verification in the plain model for two reasons: (1) Since every entity in PKI
normally would keep a hash table of previously verified keys, the initial cost of key
verification amortizes over all multisignature verifications which involve this key. (2)
If the CA’s use DL-based certificates, then the cost of key verification imposed by our
schemes is only a constant factor higher than the cost of certificate verification.

In terms of multisignature size, our DDH-based scheme is the same as that of [BN06],
and the multisignature in our CDH-based scheme is about 2 times larger than the mul-
tisignature of [BN06], when implemented over elliptic curves. Note, however, that if
one takes the exact security results into account, the two schemes achieve the same
level of provable security when the scheme of [BN06] is implemented over twice larger
groups, assuming the near equivalence of the DL and CDH problems. Unlike all other
multisignature schemes discussed, our CDH based scheme requires O(n) signing time
per party due to verification of NIZKs generated by each player. This may or may not
be a drawback in different applications, but it seems that the communication costs of
multisignature generation would often trump this computational cost. We point out that
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our CDH based scheme has a tight reduction only from expected-time hardness of the
CDH problem. However, in generic groups the expected-time hardness of the CDH is
essentially the same as the fixed-time hardness of this problem, i.e. for every algorithm
which solves the CDH problem in a generic group of size q with probability ε and
expected-time T , it holds that T/ε ≤ √q.

Organization. After preliminaries in Section 2 we define secure multisignatures in the
Key Verification model in Section 3, and present our DDH-based and CDH-based mul-
tisignature schemes respectively in Sections 4 and 5.

2 Preliminaries: Notation and Assumptions

Let G be a multiplicative group of a prime order q, and let g be its generator. All arith-
metic operations are either modulo q, when involving numbers chosen in Zq , or they
are operations in G, when involving group elements. We use notation x

r← S to denote
a probabilistic process which assigns to variable x a uniformly chosen value in set S.
We write a|b to denote the concatenation of bit strings a and b.

The computational Diffie Hellman (CDH) problem in group G is a problem of com-
puting gxy, given the tuple (g, gx, gy) for random x, y in Zq , while the decisional Diffie
Hellman (DDH) problem in G is the problem of distinguishing between tuples of the
form (g, gx, gy, gxy) for random x, y in Zq , and (g, gx, gy, gz) for random x, y, z in Zq .

Definition 1. The CDH problem is (t, ε)-hard in G if for any algorithm B running in
time t, we have AdvCDH

G (B) ≤ ε where:

AdvCDH
G (B) = Pr

x,y
r←Zq

[B(g, gx, gy) = gxy]

Definition 2. The DDH problem is (t, ε)-hard in G if for any algorithm B running in
time t, we have AdvDDH

G (B) ≤ ε where:

AdvDDH
G (B) = | Pr

x,y
r←Zq

[B(g, gx, gy, gxy) = 1]− Pr
x,y,z

r←Zq

[B(g, gx, gy, gz) = 1]|

Hardness of DL problem in G is implied by the hardness of either the DDH problem
or the CDH problem in G, but the converse is not known to be true. However, all these
problems have the same hardness as the DL problem in generic groups [Sho00]. More-
over, by the results of Maurer and Wolf [MW99], the CDH problem is very closely
related to the DL problem in a large class of groups that are commonly used in cryp-
tography. Also, see [Bon98] for various groups where DDH assumption might hold.

3 Multisignature Schemes

We define a Multisignature Scheme (MS) in the Key Verification (KV) model as a tuple
(Setup, KGen, KVrfy, MSign, Vrfy) where Setup, KGen, KVrfy and Vrfy are efficient
probabilistic algorithms and MSign is an interactive protocol s.t.
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– par ← Setup(1κ), on input the security parameter κ generates the public parame-
ters par.

– (sk, pk, π)← KGen(par), executed by each user on input par, generates this user’s
secret key sk, the corresponding public key pk, and a proof of validity of this public
key, denoted π.

– {0, 1} ← KVrfy(par, pk, π) verifies whether pk is a valid key, given the proof π.
– MSign is a multisignature protocol executed by a group of players who intend to

sign the same message m. Each player Pi executes MSign on public inputs par,
message m and private input ski, its secret key, and outputs a multisignature σ.

– {0, 1} ← Vrfy(par, m, PKSet, σ) verifies whether σ is a valid multisignature on
message m on behalf of the set of players whose public keys are in set PKSet.

The above set of procedures must satisfy the following correctness property. Let
par be any output of Setup(1κ). First, any (sk, pk, π) output by KGen(par) satis-
fies KVrfy(par, pk, π) = 1. Second, for any n ≤ nmax, any message m, and any
(ski, pki, πi) tuples, i ∈ {1, ..., n}, generated by KGen(par), if one executes n in-
stances of protocol MSign, where the i-th instance executes on inputs (par, m, ski),
and if all the messages between these instances are correctly delivered, then each in-
stance outputs the same string σ s.t. Vrfy(par, m, {pk1, pk2, ...pkn}, σ) = 1.

Multisignature security in Key Verification model. As in the previous works on mul-
tisignatures, e.g. [MOR01, BN06, RY07], we define multisignature security as universal
unforgeability under a chosen message attack against a single honest player. Namely, we
define the adversarial advantage of an adversary A against the multisignature scheme
MS = (Setup, KGen, KVrfy, MSign, Vrfy), i.e. Advuu−cma

MS (A), as a probability that
experiment Expuu−cma

MS (A) described in Figure 2 outputs 1,where the probability goes
over the random coins of the adversary A and all the randomness used in the experi-
ment. We call a multisignature scheme (t, ε, nmax, qs)-secure if Advuu−cma

MS (A) ≤ ε
for every adversary A that runs in time at most t, makes at most qs signature queries,
and where the size of the group of players S on behalf of which the adversary forges
is bounded as |S| ≤ nmax. In the random oracle model we consider also a notion of
(t, ε, nmax, qs, qh)-secure multisignature scheme, where adversaryA is additionally re-
stricted to at most qh hash queries and the probability in the experiment Expuu−cma

MS (A)
is taken also over the random choice of all hash functions.

Experiment Expuu−cma
MS (A)

par← Setup(1κ); (sk∗, pk∗, π∗)← KGen(par); List← ∅;
Run A(par, pk∗, π∗), and for every signature query m made by A do the following:

List ← List ∪ {m}; Execute protocol MSign on behalf of an honest player on inputs
(par, m, sk∗), forwarding messages to and from A.

When A halts, parse its output as (m, σ, {(pki, πi)}i∈S) where S is some set of indexes.
If (m �∈ List) and (pk1 = pk∗) and (KVrfy(par, pki, πi) = 1 for all i ∈ S) and finally
(Vrfy(par, m, {pki}i∈S , σ)) = 1 then return 1; Otherwise return 0.

Fig. 2. Chosen Message Attack against Multisignature Scheme
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Remarks on MS syntax and definition of security: (1) In the security experiment
Expuu−cma

MS above we take the simplifying assumption that the Setup procedure is ex-
ecuted by an honest party. However, the public parameters in the two multisignature
schemes in this paper are needed to define groups of prime order where the CDH and
DDH assumptions hold, and such parameters can be chosen by a potentially dishonest
party and then verified by every player. (2) The syntax of a multisignature scheme in the
KV model is a simplification of the syntax used by [RY07], which modeled potentially
interactive key registration processes. Here we allow only non-interactive proofs, but
such proofs make multisignature schemes more flexible because they can be verified
either by the CA’s during the key registration process, as in [RY07], or by multisigna-
ture verifiers, e.g. together with verification of PKI certificates for a given key. (3) Note
that a multisignature in the KV model generalizes multisignatures in the plain-model if
one sets the proofs of public key validity to empty strings and sets the output of KVrfy
on any inputs to 1. (4) However, in contrast to the definition of multisignatures in the
plain model proposed by [MOR01] and [BN06], we do not include the set of partic-
ipants’ identities and/or their public keys as input in the multisignature protocol. The
participating players must be aware of one another in the protocol execution, but this
information is needed only to ensure proper communication, and does not need to be
part of the inputs to the multisignature protocol. Removing this input from the mul-
tisignature protocol gives more flexibility to applications of multisignatures, because in
some applications signers might care only about the message they are is signing and
not about the identities of other signers. This is the case for example in aggregation of
acknowledgments of broadcast reception. In such applications multisignature schemes
analyzed in the model of [MOR01, BN06] would have to be preceded by an additional
communication round for participants to broadcast their identities and/or public keys.
On the other hand, multisignature schemes which conform to our simplified model im-
ply schemes in the model of [MOR01, BN06] if the MSign protocol is executed on
the message appended with the list of identities and/or public keys of the participating
players. (5) The notion of multisignature security in [MOR01, BN06] treats a multisig-
nature effectively as a signature on a pair (m, PKSet), and their notion of forgery is
consequently broader than ours since it includes a case where an attacker forges a mul-
tisignature on a message that was previously signed by the honest player, but it was
signed together with a different set of public keys. In our model such adversary would
not be considered a successful forger since in our model an honest player is not required
to be aware of the other participants in a multisignature protocol. However, a scheme se-
cure according to our notion implies a scheme secure in the model of [MOR01, BN06]
if players execute the MSign protocol on the concatenation of message m and the set of
public keys PKSet of the participating players, as in item (4) above.

4 Three-Round DDH-Based Multisignature Scheme

We describe a multisignature scheme denoted MDDH, presented in Figure 3, with a
tight security reduction from the DDH problem. The MDDH scheme is a multisignature
version of the signature scheme of Katz and Wang [KW03], which also has an exact
security reduction from the DDH problem. The MDDH scheme takes three rounds and
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1. Setup(1κ): Let G be a multiplicative group of prime order q and let g be a generator of
G. Consider the following hash functions: G1 : G6 → Zq, H1 : G → {0, 1}2κ and
H2 : G6 × {0, 1}∗ → Zq. Pick g, h

r← G. Set par← (g, h, q).

2. KGen(par): Player Pi picks his (ski, pki, πi) tuple as follows:
Pick xi

r← Zq, compute yi ← gxi , zi ← hxi and set pki ← (yi, zi), ski ← xi;
Construct a “proof of possession” of xi, i.e. a NIZK proof of DLg(yi) = DLh(zi):

Pick k
r← Zq and compute u← gk, v ← hk;

Set e← G1(g, h, yi, zi, u, v), compute s← k + exi and set πi ← (s, e).

3. KVrfy(par, pk, π): Let pk=(y, z), π=(s, e). Accept if e = G1(g, h, y, z, gsy−e, hsz−e)

4. Protocol MSign: Let S where S ≤ nmax be the set of players that participate in the
protocol. Each player can determine the set S after the first protocol step. Player Pi on
inputs (par, m, ski), performs the following steps:

4.1 Pick ki
r← Zq, compute Ai ← gki , Bi ← hki , CAi ←H1(Ai), CBi ←H1(Bi);

Broadcast (yi, zi, CAi , CBi).
4.2 Receive (CAj , CBj ) for all Pj ∈ S/{Pi} and broadcast (Ai, Bi).
4.3 Receive (Aj , Bj , yj , zj) for all Pj ∈ S/{Pi};

Abort if CAj �= H1(Aj) or CBj �= H1(Bj) for any Pj ∈ S/{Pi};
Compute y ←�Pj∈S yj , z ←�Pj∈S zj , A←�Pj∈S Aj , B ←�Pj∈S Bj ;

Set e←H2(g, h, y, z, A,B, m), compute si ← exi + ki and broadcast si.
4.4 Output multisignature σ = (e, s), where s =

�
Pj∈S sj .

5. Vrfy(par, m, {pk1, pk2, ..., pkn}, σ):
Parse σ as (e, s) and each pki as (yi, zi). Compute y ←�n

i=1 yi and z ←�n
i=1 zi;

If e = H2(g, h, y, z, gsy−e, hsz−e, m) then accept otherwise reject.

Fig. 3. MDDH multisignature scheme

has fast signing and verification procedures. It requires only two group exponentiations
per party for signing and two double-exponentiations for verification. The length of
the MDDH signature is 2|q|, which can be 320 bits, only twice the size of shortest
multisignature schemes [RY07, BGLS03], which, however, are based on a potentially
stronger assumption of GapDH on a group with a bilinear map.

Theorem 1. If DDH problem is (t′, ε′)-hard in group G, then multisignature MDDH
in Figure 3 is (t, ε, nmax, qs, qh)-secure in ROM where

ε ≤ ε′ +
qh

2 + 2qs(qh + nmax)
22κ

+
qsqh

q − qh
+

qh

q

t ≥ t′ − 2.4(qs + nmax)te − 4qsnmaxtm

and tm and te are the times of one multiplication and one q-bit exponentiation in G.

Proof sketch. Due to space constraints we relegate the formal proof of this theorem to
the full version of this paper [BJ08], but we give a rough sketch of the proof here. Given
an adversary A against the MDDH scheme we construct an algorithm B that solves
the DDH problem in group G as follows: The reduction embeds its DDH challenge
(g, h, y1, z1) into the public key of the sole honest player P1 by setting par = (g, h)
and pk1 = (y1, z1). Note that the multisignature protocol performed by each player
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is a version of a standard HVZK proof system for DL-equality, with the first message
Ai, Bi in this proof system preceded by a round of ROM-based commitments CAi , CBi .
As observed in [BN06], this round of commitment enables straight-line simulation of
this HVZK proof system: Namely, B picks both the challenge e and P1’s response s1

uniformly at random in Zq , computes A1 = gs1y−e
1 and B1 = hs1z−e

1 , pretends to
commit to these values by sending random CA1 , CB1 values, and thanks to the fact that
the adversary commits to his contributions Ai and Bi for Pi ∈ S/{P1}, the reduction
B can compute the values A and B before she publishes his own contribution A1, B1

in step 4.2. In this way B can embed the challenge e in the output to the appropriate
query (g, h, y, z, A, B, m) made by A to H2 . This reduction fails only if (1) A man-
ages to change one of his committed values; (2) A manages to decommit any of his
commitments C to some X s.t. C = H1(X) without queryingH1 on X ; (3) A makes
query (g, h, y, z, A, B, m) toH2 before the reduction embeds challenge e in the answer.
However, all these cases happen with at most negligible probability in ROM. Finally,
the special soundness property of the above proof system ensures that if both the mul-
tisignature verification and all the key verification procedures pass then both (g, h, y, z)
where y =

∏
i∈S(yi) and z =

∏
i∈S(xi) and (g, h, yi, zi) for each Pi are DH tuples,

and hence so must be the input tuple (g, h, y1, z1). We leave the details of this proof to
the full version [BJ08].

5 Three-Round CDH-Based Multisignature Scheme

We describe a multisignature scheme, denoted MCDH and presented in Figure 4, whose
security is tightly related to the expected-time hardness of the CDH problem in the
Key Verification model. The MCDH scheme is a multisignature version of the CDH-
based signature of [KW03] and [GJ03]. It takes three rounds, the multisignature is
(|G| + 2|q|+ 2κ)-bit long, and its verification procedure requires only two exponenti-
ations. We note, however, that the low round complexity and a tight reduction from the
(expected time) CDH problem comes at the following non-standard cost: Each player
in the multisignature generation procedure must verify ZK proofs issued by the other
players, and thus the computational cost of the signing algorithm is O(n) exponentia-
tions where n is the size of the signing group. This, however, will not be an important
drawback as long as the number of signers is modest or if the communication costs
in n-sized group of signers dominate the O(n)-exponentiations cost for each signer. As
we discuss at the end of this section, this cost can be avoided if one tolerates an increase
in the number of protocol rounds.

Theorem 2. If there is no adversary that can solve the CDH problem in group G in
expected time t′ with probability ε′, then the multisignature scheme MCDH, described
in figure 4 is (t, ε, nmax, qs, qh)-secure in random oracle model where

ε ≤ 2ε′ +
2q2

h + 4qsqh

22κ
+

(2qs + 3)qh

q
+

qsqh

q − qh

t ≥ 1
2

(t′ − (qh − 6(nmax + 1)(qs + 1))te − 4qsnmaxtm)

where tm and te are the times of one multiplication and one q-bit exponentiation in G.
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1. Setup(1κ) : Let G be a multiplicative group of prime order q and let g be a generator of
G. Consider the following hash functions: G1 : G → G, G2 : G6 → Zq , H1 : G →
{0, 1}2κ ,H2 : {0, 1}∗ → {0, 1}2κ , H3 : {0, 1}∗ × {0, 1}2κ → G, H4 : G8 → Z

2
q and

H5 : G6 → Zq. Set par← (g, q);

2. KGen(par): Player Pi picks an (ski, pki, πi) tuple as follows:
Pick xi

r← Zq, compute yi ← gxi and set pki ← yi and ski ← xi;
Construct πi as “proof of possession” of xi:

Set h← G1(yi), z ← hxi and construct a NIZK proof of DLg(yi) = DLh(z):
Pick k

r← Zq and compute u← gk, v ← hk;
Set e← G2(g, h, yi, z, u, v), compute s← k + exi and set πi ← (z, s, e);

3. KVrfy(par, pk, π): Let pk = y, π = (z, s, e) and h← G1(y).
Accept if e = G2(g, h, y, z, gsy−e, hsz−e).

4. Protocol MSign: Let S where S ≤ nmax be the set of players that participate in the
protocol. Each player can determine the set S after the first protocol step. Player Pi on
inputs (par, m, ski), performs the following steps:

4.1 Pick ki
r← Zq, compute Ai ← gki and set CAi ← H1(Ai). If bit b

(m)
i is not set,

pick b
(m)
i

r← {0, 1}. Broadcast (b
(m)
i , yi, CAi).

4.2 Receive (b
(m)
j , yj , CAj ) for all Pj∈S/{Pi}; Abort if for any of them, CAj = CAi .

Set p←H2(b
(m)
1 |b(m)

2 |...|b(m)

|S| ), where the global order among players can be deter-
mined e.g. by hashing the message broadcasted by players in the previous round. (If
two players broadcast the same message, the order between them can be arbitrary.)
Set h←H3(m, p) and Compute zi ← hxi and Bi ← hki ;
Construct NIZK proof πi that DLg(yi) = DLh(zi) and DLg(Ai) = DLh(Bi):

Pick r
r← Zq, set u← gr, v ← hr and (ei, fi)←H4(g, h, yi, zi, Ai, Bi, u, v);

Compute ti ← r + eixi + fiki and set πi ← (ei, fi, ti);
Broadcast (Ai, Bi, zi, πi).

4.3 Receive (Aj , Bj , zj , πj) for all Pj ∈ S/{Pi}; Let πj = (ej , fj , tj);

Abort if (ej , fj) �= H4(g, h, yj , zj , Aj , Bj , g
tjy

−ej

j A
−fj

j , htj z
−ej

j B
−fj

j ) or CAj �=
H1(Aj) for any Pj ∈ S/{Pi}.
Compute y ← �Pj∈S yj , z ← �Pj∈S zj , A ← �Pj∈S Aj and B ← �Pj∈S Bj ;

Set e←H5(g, h, y, z, A,B), si ← ki + exi and broadcast si.
4.4 Output σ = (z, e, s, p), where s =

�
Pj∈S sj .

5. Vrfy(par, m, {pk1, pk2, ..., pkn}, σ):
Parse σ as (z, e, s, p) and each pki as yi. Set y ←�n

i=1 yi and h←H3(m, p);
If e = H5(g, h, y, z, gsy−e, hsz−e) then accept otherwise reject.

Fig. 4. MCDH multisignature scheme

Proof. Let A be an adversary that attacks the multisignature scheme MCDH, depicted
in figure 4, in time t and with success probability ε and makes qs signing queries and
at most qh hash queries and produces a forgery on behalf of n ≤ nmax players. We
construct an algorithm B, that given oracle access to A, solves CDH problem in group
G, i.e. given (g, y1, ĥ) ∈ G3 where y1 = gx1 it outputs ĥx1 in expected time t′ and with
success probability ε′. AssumeAmakes qG1 , qG2 , qH1

, qH2
, qH3

, qH4
and qH5

queries
to G1 , G2 , H1 , H2 , H3 , H4 andH5 respectively and qG1 + qG2 + qH1

+ qH2
+ qH3

+
qH4

+ qH5
≤ qh, the total number of hash queries. In what follows we show how the

CDH-attacker B proceeds given a CDH challenge (g, y1, ĥ).
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Initialization: The algorithm B sets up tables G1, G2, H1, H2, H3, H4 and H5 to sim-
ulate the hash functions G1 , G2 , H1 , H2 , H3 , H4 and H5 respectively which are filled
out throughout the simulation. It also uses table B to store the bits b(m) assigned to each
message m. The algorithm B then sets the public parameters and the honest player’s
public key as par = g and pk1 = y1 respectively. Algorithm B picks βy1

r← Zq and
assigns G1[y1] = gβy1 . It then computes z1 ← (y1)βy1 and produces a simulated NIZK
proof of DL-equality between DLg(y1) and DLh(z1) where h = G1[y1]. To simulate
this proof, B picks e, s

r← Zq and assigns G2[(g, h, y1, z1, g
sy−e

1 , hsz−e
1 )] = e. Fi-

nally, B executes A on input (par, pk1, π1) where π1 = (s, e). Note that G1[y1] and
G2[(g, h, y1, z1, g

sy−e
1 , hsz−e

1 )] are set before the execution of A starts. Note also that
indeed DLg(y1) = DLh(z1) since z1 = (y1)βy1 = gx1βy1 = hx1 .

Answering hash queries: If a query has been made before, thenB returns the appropriate
entry from the appropriate table e.g. if A queries G1 on y, B responds with G1[y].
If A makes a new query to G2 , H1 , H4 and H5 , B answers with an element chosen
uniformly at random from the appropriate domain. If A makes a new query y to G1 , B
answers with ĥβy where βy

r← Zq . If A makes a new query b = b1|...|b|S| to H2 , B
answers with an element chosen uniformly at random form {0, 1}2κ except when the
following failure cases happen: (a) If a collision happens in H2 then the simulator sets
a flag bad1 ← true, stops and returns “fail”. (b) If A queries H2 for the first time on
b = b1|...|b|S| andH2(b) = p for some previous query (m, p) toH3 then the simulator
sets a flag bad2 ← true, stops and returns “fail”. IfA makes a new query (m, p) toH3 ,
the simulator looks up the table H2: (a) If there exists no entry in H2 corresponding to
p then the simulator picks α(m,p)

r← Zq and answers the query as ĥα(m,p) ; (b) If the
simulator finds an entry b = b1|...|b|S| corresponding to p in H2 then it assigns a bit

b1
(m) to message m if it has not been yet assigned, picks α(m,p)

r← Zq and checks

whether the first element of the vector b is equal to b1
(m): If so, the simulator responds

to the query as gα(m,p) and otherwise it responds to the query as ĥα(m,p) .

Answering signature queries: To answer each signature query, simulator runs the ad-
versary twice after step 4.1. In the first execution, B runs the adversary to the point that
it can learn Aj , Bj and zj for all Pj ∈ S, but it does not complete this execution since
it will not know how to correctly create the response s1 in the zero-knowledge proof on
behalf of player P1. The simulator then rewinds the adversary and uses the values it has
learned in the first execution to simulate the proof-of-knowledge protocol on behalf of
player P1. If the adversary uses the same values {Aj, Bj , zj}Pj∈S in both executions
then the simulator knows the queryH5 (g, h, y, z, A, B) into which it should embed its
chosen challenge e. The only way this simulation can fail is if the adversary changes
his values zj , Aj and Bj for Pj ∈ S/{P1} in the second execution. However due
to the soundness property of NIZK proof of DL-equality and the collision resistance
property of H1 , this can happen with only a negligible probability. This is because the
adversary has revealed yj’s and committed to Aj ’s in the first round. Moreover, the
adversary gives a NIZK proof that DLg(yj) = DLh(zj) and DLg(Aj) = DLh(Bj) for
all Pj ∈ S/{P1}. The details of the signature query simulation on input m are given
bellow. We point out that if the adversary aborts and/or sends values which do not pass
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verification procedures in any point in the simulation below then the simulator stops
this instance of the multisignature generation protocol, just like an honest player P1.

Step 1. If bit b(m)
1 has not been chosen for message m, pick b

(m)
1

r← {0, 1}; Otherwise

use the previously chosen value. Pick CA1

r← {0, 1}2κ. Send (b(m)
1 , y1, CA1)

to A.
Step 2,3. Upon receiving (b(m)

j , yj , CAj ) for all Pj ∈ S/{P1}, verify whether for
all Pj ∈ S/{P1}, CAj �= CA1 ; Abort if verification fails. Set p ←
H2(b

(m)
1 |b(m)

2 |...|b(m)
|S| ) and h ← H3(m, p). Retrieve α(m,p) assigned to

(m, p) in the simulation of this query toH3 and compute z1 ← y
α(m,p)
1 . Note

that our simulation procedure for H3 ensures that h = H3(m, p) = gα(m,p)

and thus z1 = y
α(m,p)
1 = gx1α(m,p) = hx1 .

Run SIMR as a subroutine and let {(A(1)
j , B

(1)
j , z

(1)
j )}Pj∈S/{P1} be

the values it returns. If SIMR did not stop, rewind the adversary to the
point where SIMR is called, and run SIML as a subroutine on input
{(A(1)

j , B
(1)
j , z

(1)
j )}Pj∈S/{P1}.

Step 4. Compute the multisignature from appropriate values gained in SIMR simu-
lation.

Procedure SIMR:

Step 2’. Pick k1
r← Zq and compute A

(1)
1 ← gk1 , B

(1)
1 ← hk1 . If H1[A

(1)
1 ] is not set,

assign H1[A
(1)
1 ]← CA1 ; Otherwise set bad3 ← true, stop and return “fail”.

Simulate the NIZK proof that DLg(y1) = DLh(z1) and DLg(A
(1)
1 ) =

DLh(B(1)
1 ):
Pick e1, f1, t1

r← Z
3
q , set u1 ← gt1y−e1

1 (A(1)
1 )−f1 , v1 ← ht1z−e1

1

(B(1)
1 )−f1 .

If H4[(g, h, y1, z1, A
(1)
1 , B

(1)
1 , u1, v1)] is not set, set it to (e1, f1);

Otherwise set bad4 ← true, stop and return “fail”.

Send (A(1)
1 , B

(1)
1 , z1, (e1, f1, t1)) to A.

Step 3’. Upon receiving (Aj , Bj , zj, (ej , fj , tj)) for all Pj ∈ S/{P1}, verify whether

for all Pj ∈ S/{P1}, (ej , fj) = H4(g, h, yj , zj, Aj , Bj , g
tj y
−ej

j A
−fj

j ,

htj z
−ej

j B
−fj

j ) and CAj = H1(Aj). If the verification does not pass,
stop the simulation of this multisignature instance. Otherwise return
{(Aj , Bj , zj)}Pj∈S/{P1}.

Procedure SIML({(z(1)
j , A

(1)
j , B

(1)
j )}Pj∈S/{P1}):

Step 2. Pick (s1, e)
r← Z

2
q and compute A

(2)
1 ← gs1y−e

1 , B(2)
1 ← hs1z−e

1 . If H1[A
(2)
1 ]

is not set, assign H1[A
(2)
1 ] ← CA1 ; Otherwise set bad5 ← true, stop and re-

turn “fail”.
Simulate the NIZK proof that DLg(y1) = DLh(z1) and DLg(A

(2)
1 ) =

DLh(B(2)
1 )
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Pick e1, f1, t1
r← Z

3
q , set u1 ← gt1y−e1

1 (A(2)
1 )−f1 , v1 ← ht1z−e1

1

(B(2)
1 )−f1 .

If H4[(g, h, y1, z1, A
(2)
1 , B

(2)
1 , u1, v1)] is not set, set it to (e1, f1);

Otherwise set bad6 ← true, stop and return “fail”.
Compute y ← ∏

Pj∈S yj , z ← z1

∏
Pj∈S/{P1} z

(1)
j , A ← A

(2)
1

∏
Pj∈S/{P1}

A
(1)
j , B ← B

(2)
1

∏
Pj∈S/{P1}B

(1)
j . If H5[(g, h, y, z, A, B)] is not set, set it to

e; Otherwise set bad7 ← true, stop and return “fail”.
Send (A(2)

1 , B
(2)
1 , z1, (e1, f1, t1)) to A.

Step 3. Upon receiving (Aj , Bj , zj, (ej , fj , tj)) for all Pj ∈ S/{P1}, verify whether
for all Pj ∈ S/{P1},
(a) Aj = A

(1)
j ; If not, set bad8 ← true, stop and return “fail”.

(b) Bj = B
(1)
j and zj = z

(1)
j ; If not, set bad9 ← true, stop and return “fail”.

(c) (ej , fj) = H4(g, h, yj, zj , Aj , Bj , g
tj y
−ej

j A
−fj

j , htj z
−ej

j B
−fj

j ) and
CAj = H1(Aj); If not stop the simulation of this multisignature instance.
If all the verifications pass, send s1 to A.

Finalization: After receiving a valid forgery (m, σ, {(pki, πi)}Pi∈S) from A, the al-
gorithm B attempts to output ẑ = ĥx1 . Let σ = (z, e, s, p) and pki = yi and πi =
(zi, ei, si) for all Pi ∈ S. If in the simulation of H3 for query (m, p), the simulator
finds an entry b = b1|...|b|S| corresponding to p in H2, and moreover the first element

of the vector b is equal to b
(m)
1 , then it stops and returns “fail”; otherwise B retrieves

α(m,p) assigned to (m, p) in the simulation ofH3 and βyi assigned to yi in the simula-
tion to G1 for all Pi ∈ S and returns ẑ where

ẑ =

⎧
⎪⎨

⎪⎩

z
1/α(m,p)

�
Pi∈S/{1}(zi)

1/βyi
when S/{P1} �= ∅

z1/α(m,p) otherwise

Note that if (g, y, ĥα(m,p) , z) where y =
∏

Pi∈S(yi) and (g, yi, ĥ
βyi , zi) where Pi ∈

S/{P1} are all DH tuples, then (g, y1, ĥ, ẑ) is also a DH tuple. We will argue that if
the multisignature verification passes then with a high probability (g, y, ĥα(m,p) , z) is a
DH tuple and if the key verification passes for all of the adversary’s public keys then
with a high probability (g, yi, ĥ

βyi , zi)’s are also all DH tuples, in which case ẑ is the
answer to the reduction’s CDH challenge. But first let’s look at the probability of failure
events. Let Ei for i = 1..9, denote the failure event that badi = true. The algorithm B
provides a perfect simulation for adversaryA conditioned on events Ei where i = 1..9
not happening. More precisely, if events Ei for i = 1..9 do not happen then: Firstly, the
view of the adversary interacting with the simulator in SIMR branch is identical to the
view of the adversary in the real execution conditioned on the event that the simulation
stops in step (3’), i.e. ifA’s responses in that step do not pass the verification procedure.
Secondly, the view of the adversary interacting with the simulator in SIML branch is
identical to the view of the adversary in the real execution conditioned on the event
thatA’s responses in step (3’) are correct, i.e. that values {(z(1)

j , A
(1)
j , B

(1)
j )}Pj∈S/{P1}
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which are input to SIML satisfy the verification condition. (Note that the SIML branch
executes only under this condition.) We start by upper-bounding the probabilities of all
the “fail” events:

The event E1 corresponds to a collision in H2 . Thus Pr[E1] ≤ (qH2
)2/22κ. To

upper bound E2, it is enough to upper bound the event that H2 is queried on some
b = b1|...|b|S| whereH2(b) = p for some previous query (m, p) toH3 . The probability
that any query to H2 hits some p s.t. (m, p) is also queried to H3 is at most qH3

/22κ

and there are at most qH2
queries to H2 , thus Pr[E2] ≤ qH2

qH3
/22κ. The events E3

and E5 reflect the possibility that H1 has been queried on A1 before it is set by B in a
particular signing query. Since no information about A1 is revealed before it is set by B,
thus both of these events can be upper bounded by qsqH1

/22κ. Similarly both E4 and
E6 can be upper bounded by qsqH4

/q. The event E7 reflects the possibility thatH5 has
been queried on (g, h, y, z, A, B) before it is set by B in a particular signing query. Here
we have two cases: either adversary has queriedH1 on A1 or B1 in a particular signing
query or he has not. In the first case which happens with probability at most 2qH1

/22κ,
the adversary knows both A and B and can easily queryH5 on (g, h, y, z, A, B) before
it is set by B. In the second case A still has some information about A and B and can
happen to queryH5 on (g, h, y, z, A, B) with probability at most qH5

/(q−qH1
). Thus,

Pr[E7] ≤ 2qsqH1
/22κ + qsqH5

/(q − qH1
). The event E8 corresponds to a collision

in H1 . Now since CAj �= CA1 for all Pj ∈ S, and CA1 is the only output of H1

that is being manipulated by B in SIMR and SIML, therefore with regards to value
CAj , for any Pj ∈ S/{P1}, the hash function H1 remains collision resistant across

these SIML and SIMR executions. Thus the value A
(1)
j revealed for CAj in SIMR

and value Aj revealed for CAj in SIML can be different with probability at most
(qH1

)2/22κ. Hence Pr[E8] ≤ (qH1
)2/22κ. The event E9 reflects the possibility thatA

has cheated on at least one of the NIZK proofs in SIMR or SIML branches. However
due to special soundness property of this double-DL-equality proof system, for given
tuple (g, h, yi, zi, Ai, Bi) not satisfying double-DL-equality, for any ui, vi ∈ G, there’s
at most q different (e, f) ∈ Zq pairs that satisfy the verification equation for some t.
Therefore the probability of hitting such pair in qH4

queries is bounded by qH4
/q. Thus

Pr[E9] ≤ 2qH4
/q.

There is also a possibility of failure in reduction after A outputs a valid forgery.
Namely if in the simulation of H3 for query (m, p) where m is in the forgery, the
simulator finds an entry b = b1|...|b|S| corresponding to p in H2, and moreover the first

element of the vector b is equal to b
(m)
1 , the query is answered by gα(m,p) and therefore

is useless for the reduction. However since with probability 1/2, the first element of

the vector b is not equal to b
(m)
1 , therefore with probability at least 1/2 the reduction

proceeds to output ẑ after obtaining a valid forgery fromA.
Now since Vrfy(g, m, {pki}Pi∈S , σ) = 1, thus due to special soundness property

of DL-equality proof system, except for a probability of qH5
/q, (g, y, ĥα(m,p) , z) is a

DH tuple. Similarly Since KVrfy(par, pki, π) = 1 for all Pj ∈ S/{P1}, except for a
probability of qG2 /q, the tuples (g, yj, ĥ

βyj , zj) where Pj ∈ S/{P1} are all DH tuples.

Therefore, (g, y1, ĥ, ẑ) is also a DH tuple except for these error probabilities, and thus
B solves the DH problem with advantage ε′ = 1/2(ε− err) where
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err ≤ qH2
(qH2

+ qH3
) + 4qsqH1

+ (qH1
)2

22κ
+

2(qs + 1)qH4
+ qH5

+ qG2
q

+
qsqH5

q − qH1

The fact that qG1 + qG2 + qH1
+ qH2

+ qH3
+ qH4

+ qH5
≤ qh yields the desired result.

Calculating the running time of the simulator is little bit complicated due to the
tree-like nature of its execution structure. Let’s focus on “answering to the signature
queries” part since it is the most time consuming part of the execution. Let r1|r2|...|ri

be the randomness of the real execution of the protocol in which the randomness of
the jth signature query instance, 1 ≤ j ≤ i, is rj . Therefore r1|r2|...|ri determines the
path of real execution up to ith signature query. Accordingly let ti(r1|r2|...|ri) be the
running time of the real execution of the protocol in ith round of answering signature
queries. By assumption we have ∀r1, r2, ..., rqs

∑qs

i=1 ti(r1|r2|...|ri) = T where T is
the total running time of the forger in “answering to the signature queries” part.

Let sL
i and sR

i be the running times of the simulator in SIML and SIMR branches of
the execution respectively that interact with the adversary in the ith signature query. As
we mentioned before the view of the adversary interacting with the simulator in SIMR

branch is similar to the view of the adversary in real execution of the protocol condi-
tioned on the halting of the adversary except possibly with some negligible factor of fail-
ure. Similarly except for a negligible probability, the view of the adversary interacting
with the simulator in SIML branch is similar to the view of the adversary in real execu-
tion. This can be stated more formally as follows: for all random coins of the adversary,
(A, SIMR)$ SIMR

= (A, P )$ P |A aborts and (A, SIML)$ SIML
= (A, P )$ P . This

means that there is a one to one correspondence between the randomness of each sig-
nature query in the real execution and the execution of the simulator both in SIML and
in SIMR. Therefore we can calculate the running time of the simulator by calculating
the following:

T ′ = t1(rL
1 ) + t1(rR

1 ) + ... + tqs(r
L
1 |rL

2 |...|rL
qs−1|rL

qs
) + tqs(r

L
1 |rL

2 |...|rL
qs−1|rR

qs
)

Note that there exist random coins that lead to non-constant reduction: Consider an
extreme case in which ∀1≤i≤qs−1, ti(rL

1 |rL
2 |...|rL

i ) = 0 and ti(rL
1 |rL

2 |...|rR
i ) = T and

tqs(rL
1 |rL

2 |...|rL
qs

) = tqs(rL
1 |rL

2 |...|rL
qs

) = 0. In this case T ′ = qsT . However we can
still get a tight bound on the expected running time of the simulator.

E[T ′] =
∑

rL
1 ,rR

1 ,...,rL
qs

,rR
qs
←{0,1}22qsκ

(
1

22qsκ

qs∑

i=1

(
ti(rL

1 |rL
2 |...|rL

i ) + ti(rL
1 |rL

2 |...|rR
i )
)
)

=

(

tqs(r
L
1 |rL

2 |...|rR
qs

) +
qs−1∑

i=1

ti(rL
1 |rL

2 |...|rL
i )

)

+
qs∑

i=1

ti(rL
1 |rL

2 |...|rL
i )

+
qs−1∑

i=1

(
ti(rL

1 |rL
2 |...|rR

i )− ti(rL
1 |rL

2 |...|rL
i )
)

= 2T

The last equation is because according to the definition the first two terms add up to 2T
and for any function f defined on any domain D,

∑
x,y∈D2 (f(x)− f(y)) = 0.

There are two multi-exponentiations and one single exponentiation in initialization
phase, one single exponentiation per each query to H3 and one single exponentiation
per each query to G1 . The reduction also makes three single exponentiations, at most
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4nmax + 2 multi-exponentiations and at most 4nmax multiplications per each sign-
ing query in the signing phase, and 2(n − 1) multi-exponentiations in KVrfy and two
multi-exponentiations in Vrfy algorithms and nmax single exponentiations in finaliza-
tion phase. Therefore, ignoring the cost of hash-table lookups, assuming that a two or
three exponent multi-exponentiation take at most 25% more time than an exponentia-
tion, the total running time of the algorithm B can be upper-bounded as

t′ ≤ 2t + (qh + 6(nmax + 1)(qs + 1))te + 4qsnmaxtm

Note on the Security Reduction. There are two crucial tricks we use which allow us
to compress the protocol to three rounds and maintain exact security reduction. First,
we use the signature randomization technique introduced by Katz and Wang [KW03],
which in the multisignature setting extends the signed message with n bits instead of
just one. This idea allows to replace the 1/qs factor encountered in the security reduc-
tion for the full-domain hash signature with a constant factor of 1/2. However, to make
the exact security reduction to go through, each player must have its own bit for the
reduction to play with, and hence the signature size grows by exactly n bits. However
we use an intermediate hash function to avoid this linear blowup and maintain constant
signature size. Secondly, we use the ZK proofs to ensure that the adversary cannot ma-
nipulate values zj and Bj provided by potentially corrupt players in the second round.
Inclusion of such ZK proofs in the protocol fixes these values across instances of the
same adversarial algorithm executing on the same inputs. This enables a very simple
rewinding schedule in the simulation: The simulator attempts the execution once, learns
the adversarial contributions zj, Bj if the adversary reveals them accompanied with a
correct ZK proof, rewinds the adversary, and equipped with the knowledge of the values
the adversary is bound to use again (we are aided here by the fact that the soundness
of the ZK proofs we use is unconditional), the simulator then successfully straight-line
simulates the protocol on behalf of an honest player. If the adversary fails to reveal
correct zj, Bj values, the simulator has an even easier job because the first execution
already forms a correct simulation, since the honest player would abandon the protocol
if any protocol participant failed in this way. Thus the simulator repeats an execution
of every instance of the signature scheme at most twice. At surface, the time of such
simulation seems to be at most twice the total time of the adversary. However, upon
closer inspection, it is clear that there are adversaries for which the running time of the
simulator is qs times the running time of the adversary. Namely in an extreme scenario
in which the adversary takes its maximum time on the random coins that run it in the
first execution in the simulation and takes zero time on the remaining random coins.
However as we argue in the proof of the theorem 2 the expected running time of the
simulation is at most twice as the expected running time of the adversary.
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