

Lecture Notes in Computer Science 5229
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Rafail Ostrovsky Roberto De Prisco
Ivan Visconti (Eds.)

Security
and Cryptography
for Networks

6th International Conference, SCN 2008
Amalfi, Italy, September 10-12, 2008
Proceedings

13

Volume Editors

Rafail Ostrovsky
University of California, Los Angeles
Department of Computer Science
Box 951596, 3732D BH, Los Angeles, CA, 90095-1596, USA
E-mail: rafail@cs.ucla.edu

Roberto De Prisco
Università di Salerno
Dipartimento di Informatica ed Applicazioni
via Ponte don Melillo, 84084 Fisciano (SA), Italy
E-mail: robdep@dia.unisa.it

Ivan Visconti
Università di Salerno
Dipartimento di Informatica ed Applicazioni
via Ponte don Melillo, 84084 Fisciano (SA), Italy
E-mail: visconti@dia.unisa.it

Library of Congress Control Number: 2008933864

CR Subject Classification (1998): E.3, C.2, D.4.6, K.4.1, K.4.4, K.6.5, F.2

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-85854-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85854-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12512393 06/3180 5 4 3 2 1 0

Preface

The 6th Conference on Security and Cryptography for Networks (SCN 2008)
was held in Amalfi, Italy, on September 10–12, 2008. The first four editions of
the conference where held in Amalfi, while, two years ago, the fifth edition was
held in the nearby Maiori. This year we moved back to the traditional location.

Security and privacy are increasing concerns in computer networks such as
the Internet. The availability of fast, reliable, and cheap electronic communica-
tion offers the opportunity to perform, electronically and in a distributed way,
a wide range of transactions of a most diverse nature. The conference brought
together researchers in the fields of cryptography and security in communication
networks with the goal of fostering cooperation and exchange of ideas. The main
topics of the conference this year included anonymity, implementations, authen-
tication, symmetric-key cryptography, complexity-based cryptography, privacy,
cryptanalysis, cryptographic protocols, digital signatures, public-key cryptogra-
phy, hash functions, identification.

The international Program Committee consisted of 24 members who are top
experts in the conference fields. The PC received 71 submissions and selected
26 papers for presentation at the conference. These proceedings include the 26
accepted papers and the abstract of the invited talk by Shai Halevi.

The PC selected papers on the basis of originality, quality and relevance to
the conference scope. Due to the high number of submissions, paper selection
was a difficult task and many good papers had to be rejected. Each paper was
refereed by three or four reviewers. We thank the members of the PC for the
effort invested in the selection process. We also gratefully acknowledge the help
of the external reviewers who evaluated submissions in their area of expertise.
The names of these reviewers are listed on page VIII, and we apologize for any
inadvertent omissions or mistakes.

Finally, we would like to thank the authors of all submitted papers and the
conference participants, who ultimately made this conference possible.

September 2008 R. Ostrovsky
R. De Prisco

I. Visconti

SCN 2008

September 10–12, 2008, Amalfi, Italy

Program Chair

Rafail Ostrovsky University of California, Los Angeles, USA

General Chairs

Roberto De Prisco Università di Salerno, Italy
Ivan Visconti Università di Salerno, Italy

Program Committee

Carlo Blundo Università di Salerno, Italy
Xavier Boyen Voltage Inc, USA
Ran Canetti IBM, USA
Dario Catalano Università di Catania, Italy
Ronald Cramer CWI & Leiden University, The Netherlands
Serge Fehr CWI, The Netherlands
Juan Garay Bell Labs - Alcatel-Lucent, USA
Rosario Gennaro IBM, USA
Jens Groth University College London, UK
Yuval Ishai Technion and UCLA, Israel and USA
Jonathan Katz University of Maryland, USA
Eyal Kushilevitz Technion, Israel
Ueli Maurer ETH Zurich, Switzerland
Daniele Micciancio UCSD, USA
Phong Nguyen ENS, France
Tatsuaki Okamoto NTT Laboratories, Japan
Rafail Ostrovsky (chair) UCLA, USA
Giuseppe Persiano Università di Salerno, Italy
Benny Pinkas University of Haifa, Israel
Tal Rabin IBM, USA
Leonid Reyzin Boston University, USA
Adi Rosen CNRS and University of Paris 11, France
Adam Smith Pennsylvania State University, USA
Ivan Visconti Università di Salerno, Italy

VIII Organization

Referees

Divesh Aggarwal
Zuzana Beerliova
Charles Bouillaguet
Suresh Chari
Debbie Cook
Cécile Delerablée
Mario Di Raimondo
Orr Dunkelman
Dario Fiore
Sebastian Gajek
David Galindo
Peter Gaži
Craig Gentry
Sharon Goldberg
Amir Herzberg

Alejandro Hevia
Dennis Hofheinz
Susan Hohenberger
Emeline Hufschmitt
Charanjit Jutla
Bhavana Kanukurthi
Aggelos Kiayias
Eike Kiltz
Vladimir Kolesnikov
Gaëtan Leurent
Anna Lysyanskaya
Vadim Lyubashevsky
Alexander May
Lorenz Minder
David Molnar

Christopher Portmann
Emmanuel Prouff
Dominik Raub
Mike Rosulek
Amit Sahai
Christian Schaffner
Nigel Smart
Stefano Tessaro
Carmine Ventre
Enav Weinreb
Daniel Wichs
Vassilis Zikas
Cliff Changchun Zou

Table of Contents

Invited Talk

Storage Encryption: A Cryptographer’s View (Abstract) 1
Shai Halevi

Session 1: Implementations

Implementing Two-Party Computation Efficiently with Security against
Malicious Adversaries . 2

Yehuda Lindell, Benny Pinkas, and Nigel P. Smart

CLL: A Cryptographic Link Layer for Local Area Networks 21
Yves Igor Jerschow, Christian Lochert, Björn Scheuermann, and
Martin Mauve

Faster Multi-exponentiation through Caching: Accelerating (EC)DSA
Signature Verification . 39

Bodo Möller and Andy Rupp

Session 2: Protocols I

Privacy Preserving Data Mining within Anonymous Credential
Systems . 57

Aggelos Kiayias, Shouhuai Xu, and Moti Yung

Improved Privacy of the Tree-Based Hash Protocols Using Physically
Unclonable Function . 77

Julien Bringer, Hervé Chabanne, and Thomas Icart

Session 3: Encryption I

Two Generic Constructions of Probabilistic Cryptosystems and Their
Applications . 92

Guilhem Castagnos

Cramer-Shoup Satisfies a Stronger Plaintext Awareness under a Weaker
Assumption . 109

Isamu Teranishi and Wakaha Ogata

Session 4: Encryption II

General Certificateless Encryption and Timed-Release Encryption 126
Sherman S.M. Chow, Volker Roth, and Eleanor G. Rieffel

X Table of Contents

Efficient Certificate-Based Encryption in the Standard Model 144
Joseph K. Liu and Jianying Zhou

Session 5: Primitives

An Improved Robust Fuzzy Extractor . 156
Bhavana Kanukurthi and Leonid Reyzin

On Linear Secret Sharing for Connectivity in Directed Graphs 172
Amos Beimel and Anat Paskin

Session 6: Signatures

Expressive Subgroup Signatures . 185
Xavier Boyen and Cécile Delerablée

Anonymous Proxy Signatures . 201
Georg Fuchsbauer and David Pointcheval

Multisignatures Using Proofs of Secret Key Possession, as Secure as the
Diffie-Hellman Problem . 218

Ali Bagherzandi and Stanis�law Jarecki

Session 7: Hardware and Cryptanalysis

Using Normal Bases for Compact Hardware Implementations of the
AES S-Box . 236

Svetla Nikova, Vincent Rijmen, and Martin Schläffer

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC
Codes . 246

Marco Baldi, Marco Bodrato, and Franco Chiaraluce

Full Cryptanalysis of LPS and Morgenstern Hash Functions 263
Christophe Petit, Kristin Lauter, and Jean-Jacques Quisquater

A New DPA Countermeasure Based on Permutation Tables 278
Jean-Sébastien Coron

Session 8: Protocols II

Simplified Submission of Inputs to Protocols . 293
Douglas Wikström

Unconditionally Reliable and Secure Message Transmission in Directed
Networks Revisited . 309

Arpita Patra, Ashish Choudhary, and C. Pandu Rangan

Table of Contents XI

Session 9: Encryption III

Linear Bandwidth Naccache-Stern Encryption . 327
Benôıt Chevallier-Mames, David Naccache, and Jacques Stern

Immunising CBC Mode against Padding Oracle Attacks: A Formal
Security Treatment . 340

Kenneth G. Paterson and Gaven J. Watson

Constructing Strong KEM from Weak KEM (or How to Revive the
KEM/DEM Framework) . 358

Joonsang Baek, David Galindo, Willy Susilo, and Jianying Zhou

Session 10: Key Exchange

New Anonymity Notions for Identity-Based Encryption 375
Malika Izabachène and David Pointcheval

A Universally Composable Group Key Exchange Protocol with
Minimum Communication Effort . 392

Jun Furukawa, Frederik Armknecht, and Kaoru Kurosawa

An Identity-Based Key Agreement Protocol for the Network Layer 409
Christian Schridde, Matthew Smith, and Bernd Freisleben

Author Index . 423

Storage Encryption: A Cryptographer’s View

Shai Halevi

IBM Research, Hawthorne, NY, USA
shaih@alum.mit.edu

Abstract. Encryption is the bread-and-butter of cryptography, with
well-established notions of security and a large variety of schemes to meet
these notions. So what is left for researchers in cryptography to look at
when it comes to encrypting storage? In this talk I will cover cryptogra-
phy issues that arise when introducing encryption to real-world storage
systems, with some examples drawn from the work of the IEEE 1619
standard committee that deals with standardizing aspects of storage en-
cryption. The issues that I plan to touch upon include:

Encryption Schemes and Modes-of-Operation: The use of “authen-
ticated” vs. “transparent” encryption, “wide block” vs. “narrow block”
transparent encryption modes, and other considerations.

Issues with Key-Management and IV-Management: How to avoid
nonce collision when your nonces are only 96-bit long, why you may want
to use deterministic encryption for key-wrapping, what is the difference
between key-wrapping and KEM/DEM, and related questions.

Self-Encryption of Keys: Can an encryption scheme remain secure
when used to encrypt its own secret key? It turns out that this require-
ment sometimes comes up when encrypting storage. I will talk about
several aspects of this problem, including the not-so-bad, the bad, and
the ugly.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementing Two-Party Computation

Efficiently with Security Against Malicious
Adversaries�

Yehuda Lindell1, Benny Pinkas2, and Nigel P. Smart3

1 Dept. Of Computer Science,
Bar Ilan University,
Ramat Gan, Israel

lindell@cs.biu.ac.il
2 Dept. of Computer Science,

University of Haifa
Haifa 31905, Israel
benny@pinkas.net

3 Dept. Computer Science,
University of Bristol,

Woodland Road, Bristol, BS8 1UB, United Kingdom
nigel@cs.bris.ac.uk

Abstract. We present an implementation of the protocol of Lindell and
Pinkas for secure two-party computation which is secure against mali-
cious adversaries [13]. This is the first running system which provides
security against malicious adversaries according to rigorous security def-
inition and without using the random oracle model. We ran experiments
showing that the protocol is practical. In addition we show that there is
little benefit in replacing subcomponents secure in the standard model
with those which are only secure in the random oracle model. Throughout
we pay particular attention to using the most efficient subcomponents in
the protocol, and we select parameters for the encryption schemes, com-
mitments and oblivious transfers which are consistent with a security
level equivalent to AES-128.

1 Introduction

Secure multi-party computation is a process which allows multiple participants
to implement a joint computation that, in real life, may only be implemented
using a trusted party. The participants, each with its own private input, com-
municate without the help of any trusted party, and can compute any function

� The first author was supported by The Israel Science Foundation (grant No. 781/07)
and by an Infrastructures grant from the Israeli Ministry of Science. The other au-
thors were supported by the European Union under the FP7-STREP project CACE.
The second author was also supported by The Israel Science Foundation (grant
No. 860/06).

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 2–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Implementing Two-Party Computation 3

without revealing information about the inputs (except for the value of the func-
tion). A classic example of such a computation is the Millionaires’ problem, in
which two millionaires want to know who is richer, without revealing their actual
worth.

Multi-party computation has been considered by the theoretical cryptography
community for a long time, starting with the pioneering work of Yao [24] in 1986.
Yao’s garbled circuit construction is relatively simple, and runs in a constant
number of rounds. Yao’s construction still remains the most attractive choice
for generic secure two-party computation.

In recent years attention has focused on whether the theoretical work has any
practical significance. In the two-party case the main contribution has been the
FairPlay compiler [15], which is a generic tool translating functions written in
a special high-level language to Java programs which execute a secure protocol
implementing them. There are two major drawbacks with the current FairPlay
implementation. Firstly it only provides weak security against malicious adver-
saries (where reducing the cheating probability to 1/k requires increasing the
overhead by a factor of k), and has no proof of security (in particular, it is clear
that it cannot be proven secure under simulation-based definitions). As such, its
usage can only be fully justified for providing security against honest but curious
(aka semi-honest) adversaries.1 Secondly it does not make use of the latest and
most efficient constructions of its various component parts.

In recent years the theoretical community has considered a number of ways
of providing a variant of Yao’s protocol which is secure against malicious ad-
versaries. In the current paper we examine one of the more recent and efficient
protocols for providing security for Yao’s protocol against malicious adversaries,
namely the protocol of Lindell and Pinkas [13] which is proved to be secure ac-
cording to a standard simulation based definition, and as such can be securely
used as a primitive in more complex protocols (see [8, Chapter 7], which in turn
follows [6]).

Our work presents the following contributions:

– We provide an efficient implementation of the protocol of [13], which is se-
cure against malicious adversaries. This is, to our best knowledge, the first
implementation of a generic two-party protocol that is secure against mali-
cious adversaries according to a standard simulation based definition. The
implementation demonstrates the feasibility of the use of such protocols.

– We derive a number of optimizations and extensions to the protocol and to
the different primitives that it uses. Unlike prior implementations we pay
particular attention to using the most efficient constructions for the vari-
ous components. For example we use elliptic curve based oblivious transfer
protocols instead of finite field discrete logarithm based protocols.

1 The cryptographic community denotes adversaries which can operate arbitrarily as
“malicious”. Semi-honest (or honest but curious) adversaries are supposed to follow
the protocol that normal users are running, but they might try to gain information
from the messages they receive in the protocol. It is, of course, easier to provide
security against semi-honest adversaries.

4 Y. Lindell, B. Pinkas, and N.P. Smart

– We also examine the difference between using protocols which are secure in
the random oracle model (ROM) and protocols in the standard model.2 Of
particular interest is that our results show that there appears to be very
little benefit in using schemes which are secure in the ROM as opposed to
the standard model.3

1.1 Related Work

Research on security against malicious adversaries for computationally secure
protocols started with the seminal GMW compiler [9]. As we have mentioned,
we base our work on the protocol of [13], and we refer the reader to that work
for a discussion of other approaches for providing security against malicious
adversaries (e.g., [14,11,23]). We note that a simulation based proof of security
(as in [13]) is essential in order to enable the use of a protocol as a building
block in more complex protocols, while proving the security of the latter using
general composition theorems like those of [6,8]. This is a major motivation
for the work we present in this paper, which enables efficient construction of
secure function evaluation primitives that can be used by other protocols. (For
example, the secure protocol of [2] for finding the kth ranked element is based on
invoking several secure computations of comparisons, and provides simulation
based security against malicious adversaries if the invoked computations have a
simulation based proof. Our work enables to efficiently implement that protocol.)

The first generic system implementing secure two-party computation was Fair-
Play [15], which provided security against semi-honest adversaries and limited se-
curityagainstmalicious adversaries (seediscussionabove).FairPlayMP is a generic
system for secure multi-party computation, which only provides security against
semi-honest adversaries [3]. Another system in the multi-party scenario is SIMAP,
developing a secure evaluation of an auction using general techniques for secure
computation [5,4]. It, too, supports only security against semi-honest adversaries.

1.2 Paper Structure

Section 2 introduces Yao’s protocol for secure two-party computation, while Sec-
tion 3 presents the protocol of [13] which is secure against malicious adversaries.
Section 4 presents the different efficient sub-protocols that we used. Finally,
Section 5 presents the results of our experiments.
2 A random oracle is a function which is modeled as providing truly random answers.

This abstraction is very useful for proving the security of cryptographic primitives.
However, given any specific implementation of a function (known to the users who
use it), this assumption no longer holds. Therefore it is preferable to prove security
in the standard model, namely without using any random oracle.

3 This is surprising since for more traditional cryptographic constructions, such as
encryption schemes or signature schemes, the random oracle constructions are almost
always twice as efficient in practice compared to the most efficient standard model
schemes known. Part of the reason for the extreme efficiency of our standard model
constructions is our use of a highly efficient oblivious transfer protocol which reduces
the amortized number of zero-knowledge proofs which are required to be performed.

Implementing Two-Party Computation 5

2 Yao’s Garbled Circuit

Two-party secure function evaluation makes use of the famous garbled circuit
construction of Yao [24]. In this section we briefly overview the idea. Note, how-
ever, that the following basic protocol is not secure against malicious adversaries,
which is why the advanced protocol in the next section is to be preferred. The
basic idea is to encode the function to be computed via a Binary circuit and
then to securely evaluate the circuit on the players’ inputs.

We consider two parties, denoted as P1 and P2, who wish to compute a func-
tion securely. Suppose we have a simple Binary circuit consisting of a single
gate, the extension to many gates given what follows is immediate. The gate has
two input wires, denoted w1 and w2, and an output wire w3. Assume that P1

knows the input to wire w1, which is denoted b1, and that P2 knows the input to
wire w2, which is denoted b2. We assume that each gate has a unique identifier
Gid (this is to enable circuit fan out of greater than one, i.e. to enable for the
output wire of a gate to be used in more than one other gate). We want P2 to
determine the value of the gate on the two inputs without P1 learning anything,
and without P2 determining the input of P1 (bar what it can determine from
the output of the gate and its own input). We suppose that the output of the
gate is given by the function G(b1, b2) ∈ {0, 1}.

Yao’s construction works as follows. P1 encodes, or garbles, each wire wi by
selecting two different cryptographic keys k0

i and k1
i of length t, where t is a

computational security parameter which suffices for the length of a symmetric
encryption scheme. In addition to each wire it associates a random permutation
πi of {0, 1}. The garbled value of the wire wi is then represented by the pair
(kbi

i , ci), where ci = πi(bi).
An encryption function Es

k1,k2
(m) is selected which has as input two keys

of length t, a message m, and some additional information s. The additional
information s must be unique per invocation of the encryption function (i.e.,
used only once for any choice of keys). The precise encryption functions used are
described in Section 4.1. The gate itself is then replaced by a four entry table
indexed by the values of c1 and c2, and given by

c1, c2 : E
Gid‖c1‖c2

k
b1
1 ,k

b2
2

(
k

G(b1,b2)
3 ‖c3

)
,

where b1 = π−1
1 (c1), b2 = π−1

2 (c2), and c3 = π3(G(b1, b2)). Note that each entry
in the table corresponds to a combination of the values of the input wires, and
contains the encryption of the garbled value corresponding to these values of the
input wires, and the corresponding c value. The resulting look up table (or set
of look up tables in general) is called the Garbled Circuit.

P1 then sends to P2 the garbled circuit, its input value kb1
1 , the value c1 =

π1(b1), and the mapping from the set {k0
3, k

1
3} to {0, 1} (i.e. the permutation

π3). P1 and P2 engage in an oblivious transfer (OT) protocol so that P2 learns
the value of kb2

2 , c2 where c2 = π2(b2). P2 can then decrypt the entry in the
look up table indexed by (c1, c2) using kb1

1 and kb2
2 ; this will reveal the value of

6 Y. Lindell, B. Pinkas, and N.P. Smart

k
G(b1,b2)
3 ‖c3 and P2 can determine the value of G(b1, b2) by using the mapping

π−1
3 from the set c3 to {0, 1}.
In the general case the circuit consists of multiple gates. P1 chooses random

garbled values for all wires and uses them for constructing tables for all gates.
It sends these tables (i.e., the garbled circuit) to P2, and in addition provides P2

with the garbled values and the c values of P1’s inputs, and with the permutations
π used to encode the output wires of the circuit. P2 uses invocations of oblivious
transfer to learn the garbled values and c values of its own inputs to the circuits.
Given these values P2 can evaluate the gates in the first level of the circuit, and
compute the garbled values and the c values of the values of their output wires.
It can then continue with this process and compute the garbled values of all
wires in the circuit. Finally, it uses the π permutations of the output wires of
the circuit to compute the real output values of the circuit.

Traditionally, for example in hardware design, one uses circuits which are
constructed of simple gates which take at most two inputs and produce as most
one output. In a Yao circuit a gate which takes n inputs and produces m outputs
is encoded as a look up table which has 2n rows, each consisting of a string of
O(m · t) bits (where t is the security parameter which denotes the length of a
key). Hence, it is often more efficient to use non-standard gates in a Yao circuit
construction. For example a traditional circuit component consisting of k 2-to-1
gates, with n input and m output wires can be more efficiently encoded as a
single n-to-m gate if 4k > 2n. In what follows we therefore assume the more
suitable n-to-m gate construction. The extension of the above gate description
to this more general case is immediate.

3 The Lindell-Pinkas Protocol

The protocol was presented in [13] and was proved there to be secure according
to the real/ideal-model simulation paradigm [6,8]. The proof is in the standard
model, with no random oracle model or common random string assumptions. We
describe below the protocol in some detail, for full details see [13]. We remark
that this description is not essential in order to understand the results of our
paper. The important things to note are the basic structure of the protocol,
as described in the next paragraph, and the fact that the protocol is based
on the use of different types of commitments (statistically binding, statistically
hiding, and computational), and of an oblivious transfer protocol. We describe
the implementation of these primitives in Section 4.

The basic structure of the protocol: The protocol proceeds in the following
steps. It has statistical security parameters s1 and s2. We replace P2’s input wires
with a new set of O(s2) input wires, and change the original circuit by adding
to it a new part which translates the values of the new input wires to those of
the original wires. Then P1 generates s1 copies of Yao circuits and passes them
to P2, along with O(s2

1) commitments to the inputs. The input decommitments
for P1’s inputs are transferred to P2 via a batched oblivious transfer. Finally,
after executing a number of cut-and-choose checks on the transferred circuits and

Implementing Two-Party Computation 7

commitments, P2 evaluates half of the circuits and determines the output value
as the majority value of the outputs of these circuits. One of the contributions
of this paper is to examine each of the above operations in turn and optimize
the parameters and components used in the Lindell-Pinkas description.

3.1 The Protocol in Detail

As explained in [13] it suffices to present a protocol for the case where the output
is learnt by P2 and P1 learns nothing. We consider the computation of f(x, y)
where P1’s input is x ∈ {0, 1}n and P2’s input is y ∈ {0, 1}n.

The protocol is parameterized by two statistical security parameters s1 and s2.
(In [13] these are a single statistical security parameter but we shall see later that
in order to optimize performance these parameters really need to be treated sepa-
rately.) The protocol takes as input a circuit description C0(x, y) which describes
the function f(x, y). We use the notation comb to refer to a statistically binding
commitment scheme, comh to refer to a statistically hiding commitment scheme,
and comc to refer to a commitment scheme which is only computationally binding
and hiding. See Section 4 for our precise choice of these protocols.

The protocol itself is quite elaborate, but, as demonstrated in Section 5, it
can be implemented quite efficiently.

0. Circuit construction: The parties replace C0, in which P2 has n input
wires, with a circuit C in which P2 has � input wires, where � = max(4n, 8s2).
The only difference between the circuits is that each original input wire of P2

in C0 is replaced with an internal value which is computed as the exclusive-
or of a random subset of the � input wires of C. (Given an input to the
original circuit, P2 should therefore choose a random input to the new circuit,
subject to the constraint that the internal values are equal to the original
input values.) The exact construction is presented in Section 5.2 of [13]. (In
order to avoid unnecessary extra gates in the circuit segment that computes
the original input wires as a function of the new input wires, we designed
the exact wiring using a variant of structured Gaussian elimination.)

We let the new input wires of P2 be given by ŷ ← ŷ1, . . . , ŷ�.
1. Commitment construction: P1 constructs the circuits and commits to

them, as follows:4
(a) P1 constructs s1 independent copies of a garbled circuit of C, denoted

GC1, . . . , GCs1 .
(b) P1 commits to the garbled values of the wires corresponding to P2’s input

to each circuit. That is, for every input wire i corresponding to an input
bit of P2, and for every circuit GCr , P1 computes the ordered pair

(c0
i,r, c

1
i,r) ← (comc(k0

i,r), comc(k1
i,r)),

where kb
i,r is the garbled value associated with b on input wire i in circuit

GCr . We let (dc0
i,r , dc1

i,r) denote the associated decommitment values.

4 In [13] this commitment is done with a perfectly binding commitment scheme, how-
ever one which is computationally binding will suffice to guarantee security.

8 Y. Lindell, B. Pinkas, and N.P. Smart

(c) P1 computes commitment-sets for the garbled values that correspond
to its own inputs to the circuits. That is, for every wire i that corre-
sponds to an input bit of P1, it generates s1 pairs of commitment sets
{Wi,j , W

′
i,j}s1

j=1, in the following way:
Denote by kb

i,r the garbled value that was assigned by P1 to the value
b ∈ {0, 1} of wire i in GCr. Then, P1 chooses b ← {0, 1} and computes

Wi,j ← 〈comc(b), comc(kb
i,1), . . . , comc(kb

i,s1
)〉,

W ′
i,j ← 〈comc(1−b), comc(k1−b

i,1), . . . , comc(k1−b
i,s1

)〉.

There are a total of n · s1 commitment-sets (s1 per input wire). We
divide them into s1 supersets, where superset Sj is defined to be the set
containing the jth commitment set for all wires. Namely, it is defined as
Sj = {(Wk,j , W

′
k,j)}n

k=1.
2. Oblivious transfers: For every input bit of P2, parties P1 and P2 run a

1-out-of-2 oblivious transfer protocol in which P2 receives the garbled values
for the wires that correspond to its input bit (in every circuit).

Let i1, . . . , iw be the input wires that correspond to P2’s input, then, for
every j = 1, . . . , w, parties P1 and P2 run a 1-out-of-2 OT protocol in which:
(a) P1’s input is the pair of vectors [dc0

ij ,1, . . . , dc0
ij ,s1

], and [dc1
ij ,1, . . . , dc1

ij ,s1
].

(b) P2’s input are the bits ŷj , and its output should be [dc
ŷj

ij ,1, . . . , dc
ŷj

ij ,s1
].

3. Send circuits and commitments: P1 sends to P2 the garbled circuits, as
well as all of the commitments that it prepared above.

4. Prepare challenge strings:
5

(a) P2 chooses a random string ρ2 ← {0, 1}s1 and sends comh(ρ2) to P1.
(b) P1 chooses a random string ρ1 ∈ {0, 1}s1 and sends comb(ρ1) to P2.
(c) P2 decommits, revealing ρ2.
(d) P1 decommits, revealing ρ1.
(e) P1 andP2 set ρ ← ρ1 ⊕ ρ2.
The above steps are run a second time, defining an additional string ρ′.

5. Decommitment phase for check-circuits: We refer to the circuits for
which the corresponding bit in ρ is 1 as check-circuits, and we refer to the
other circuits as evaluation-circuits. Likewise, if the jth bit of ρ′ equals 1,
then all commitments sets in superset Sj = {(Wi,j , W

′
i,j)}n

i=1 are referred to
as check-sets; otherwise, they are referred to as evaluation-sets.

For every check-circuit GCr, party P1 operates in the following way:
(a) For every input wire i corresponding to an input bit of P2, party P1 de-

commits to the pair (c0
i,r, c

1
i,r).

(b) For every input wire i corresponding to an input bit of P1, party P1 de-
commits to the appropriate values in the check-sets {Wi,j , W

′
i,j}.

For every pair of check-sets (Wi,j , W
′
i,j), party P1 decommits to the first

value in each set i.e., to the value that is supposed to be a commitment to
the indicator bit, com(0) or com(1)).

5 In [13] it is proposed to use perfectly binding and computationally hiding com-
mitments here, but statistically binding and computationally hiding commitments
actually suffice.

Implementing Two-Party Computation 9

6. Decommitment phase for P1’s input in evaluation-circuits: P1 de-
commits to the garbled values that correspond to its inputs in the evaluation-
circuits.

7. Correctness and consistency checks: Player P2 performs the following
checks; if any of them fails it aborts.
(a) Checking correctness of the check-circuits: P2 verifies that each check-

circuit GCi is a garbled version of C.
(b) Verifying P2’s input in the check-circuits: P2 verifies that P1’s decom-

mitments to the wires corresponding to P2’s input values in the check-
circuits are correct, and agree with the logical values of these wires
(the indicator bits). P2 also checks that the inputs it learned in the
oblivious transfer stage for the check-circuits correspond to its actual
input.

(c) Checking P1’s input to evaluation-circuits: Finally, P2 verifies that for
every input wire i of P1 the following two properties hold:
i. In every evaluation-set, P1 chooses one of the two sets and decom-

mitted to all the commitments in it which correspond to evaluation-
circuits.

ii. For every evaluation-circuit, all of the commitments that P1 opened
in evaluation-sets commit to the same garbled value.

8. Circuit evaluation: If any of the above checks fails, P2 aborts and outputs
⊥. Otherwise, P2 evaluates the evaluation circuits (in the same way as for the
semi-honest protocol of Yao). It might be that in certain circuits the garbled
values provided for P1’s inputs, or the garbled values learned by P2 in the
OT stage, do not match the tables and so decryption of the circuit fails. In
this case P2 also aborts and outputs ⊥. Otherwise, P2 takes the output that
appears in most circuits, and outputs it.

3.2 The Statistical Security Parameters

The protocol uses two statistical security parameters, s1 and s2. The parame-
ter s1 is mainly used to prevent P1 from changing the circuit that is evaluated,
or providing inconsistent inputs to different copies of the circuit. The protocol
requires P1 to provide s1 copies of the garbled circuit, and provide (s1)2 commit-
ments for each of its input bits. The security proof in [13] shows that a corrupt
P1 can cheat with a success probability that is exponentially small in s1. The
original proof in [13] bounds the cheating probability at 2−s1/17, which would
require a large value of s1 in order to provide a meaningful security guarantee.
We conjecture that a finer analysis can provide a bound of 2−s1/4, and in the
full version of this paper we intend to prove this; this conjecture is based on an
analysis of a similar problem that was shown in [10]. A bound of 2−s1/4 would
mean that a relatively moderate value of s1 can be used.6

6 The experiments in Section 5 assume a bound of 2−s1/4. The overhead of different
parts of the protocol is either linear or quadratic in s1. If we end up using a worse
bound of 2−s1/c, where 4 < c ≤ 17, the timings in the experiments will be increased
by factor in the range c/4 to (c/4)2.

10 Y. Lindell, B. Pinkas, and N.P. Smart

The parameter s2 is used to prevent a different attack by P1, in which it
provides corrupt values to certain inputs of the oblivious transfer protocol and
then uses P2’s reaction to these values to deduce information about P2’s inputs
(see [13] for details). It was shown that setting the number of new inputs to be
� = max(4n, 8s2) bounds the success probability of this type of attack by 2−s2 .
The values of s1 and s2 should therefore be chosen subject to the constraint
that the total success probability of a cheating attempt, max(2−s1/4, 2−s2), is
acceptable. Therefore, one should set s1 = 4s2.

3.3 Optimizing the Protocol Components

The protocol uses many components, which affect its overall overhead. These
include the encryption scheme, the commitment schemes, and oblivious transfer.
Much of our work was concerned with optimizing these components, in order to
improve the performance of the entire protocol. We describe in the next section
the different optimizations that we applied to the different components.

4 Subprotocols

To implement the above protocol requires us to define a number of sub-protocols:
various commitment schemes, OT protocols and encryption schemes. In what fol-
lows we select the most efficient schemes we know of, in both the random oracle
model (ROM) and the standard model. We assume that the concrete computa-
tional security parameter (as opposed to the statistical security parameter) is
given by t. By this we mean that we select primitives which have security equiv-
alent to t bits of block cipher security. Thus we first select an elliptic curve E of
prime order q ≈ 22t, and a symmetric cryptographic function with a t-bit key.

Elliptic curve. We let 〈P 〉 = 〈Q〉 = E, an elliptic curve of prime order q ≈ 22t,
where no party knows the discrete logarithm of Q with respect to P .

Symmetric cryptographic function. The function that will be used for sym-
metric key cryptography is defined as a key derivation function KDF(m, l), which
takes an input string m and outputs a bit string of length l. We use the KDF
defined in ANSI X9.63, which is the standard KDF to use in the elliptic curve
community [19]. It is essentially implemented as encryption in CTR mode where
the encryption function is replaced by the SHA-1 hash function.

4.1 Encryption Scheme for Garbled Circuits

The encryption scheme Es
k1,k2

(m) used to encrypt the values in the Yao circuit
is defined by the algorithms in Figure 1. We assume that ki ∈ {0, 1}t. The ROM
version is secure on the assumption that the function KDF is modelled as a
random oracle, whilst the standard model scheme is secure on the assumption
that KDF(k‖s, l) is a pseudo-random function, when considered as a function
on s keyed by the key k. We remark that the encryption is secure as long as

Implementing Two-Party Computation 11

the string s is used only once for any choice of key k. Note that the non-ROM
version requires two invocations of the KDF, since we do not know how to
analyze the security of a pseudo-random function if part of its key is known to
an adversary (namely, if we use KDF(k1‖k2‖s, |m|), where KDF is modeled as a
pseudo-random function, k2 is secret and k1 is known to an adversary, we cannot
argue that the output is pseudo-random).

Input: Keys k1, k2 of length t, and a string s. For encryption an l-bit message m in
also given. For decryption, an l-bit ciphertext c is given.

ROM Version

Encryption Es
k1,k2(m)

1. k ← KDF(k1‖k2‖s, |m|).
2. c ← k ⊕ m.

Decryption

1. k ← KDF(k1‖k2‖s, |m|).
2. m ← k ⊕ c.
3. Return m.

Non-ROM Version

Encryption Es
k1,k2(m)

1. k ← KDF(k1‖s, |m|).
2. k′ ← KDF(k2‖s, |m|).
3. c ← m ⊕ k ⊕ k′

Decryption

1. k ← KDF(k1‖s, |c|).
2. k′ ← KDF(k2‖s, |c|).
3. m ← c ⊕ k ⊕ k′.
4. Return m.

Fig. 1. ROM and non-ROM encryption algorithms for the Yao circuits

4.2 Commitment Schemes

Recall we have three types of commitment schemes; statistically binding, statis-
tically hiding and computationally binding/hiding, to commit to a value m ∈
{0, 1}t. (Note that the elliptic curve E is of order q ≈ 22t and so we can view m
as a number in Zq if desired.)

A Statistically Binding Commitment : comb(m)
We define the statistically binding commitment scheme as in Figure 2. The ran-
dom oracle model based scheme is statistically binding, since to break the binding
property we need to find collisions in the hash function H . Since H is modelled
as a random oracle, the probability of any adversary finding a collision given
a polynomial number of points of H is negligible, even if it is computationally
unbounded. The scheme is also computationally hiding by the fact that H is
modelled as a random oracle (in fact, it’s even statistically hiding if the adver-
sary is limited to a polynomial number of points of H). The non-ROM scheme
is statistically binding because P and c1 fully determine r, which together with
Q and c2 in turn fully determine m. The fact that it is computationally hiding
follows directly from the DDH assumption over the elliptic curve used.

12 Y. Lindell, B. Pinkas, and N.P. Smart

ROM Version
H is a hash function modeled as a random
oracle.
Commitment comb(m)

1. r ← {0, 1}t.
2. c ← H(m‖r).
3. Return c.

Decommitment

1. Reveal m and r.
2. Check if c = H(m‖r).
3. Return m.

Non-ROM Version
P and Q are elements on an elliptic
curve, as described above.
Commitment comb(m)

1. r ← Zq.
2. c1 ← [r]P .
3. c2 ← [r][m]Q.
4. Return (c1, c2).

Decommitment

1. Reveal m and r.
2. Check if c1 = [r]P .
3. Check if c2 = [r][m]Q.
4. Return m.

Fig. 2. ROM and non-ROM statistically binding commitment schemes

The Statistically Hiding Commitment : comh(m)
For the statistically hiding commitment scheme we use the Pederson commit-
ment [18]:

comh(m) ← [r]P + [m]Q

where r is a random number of size q and we treat m as an integer modulo q.
Note that 0 ≤ m < 2t < q < 22t. Decommitment is performed by revealing r
and m, and then verifying the commitment is valid. This is actually a perfectly
hiding commitment (since given comh(m) there exists, for any possible value
of m′, a corresponding value r′ for which comh(m) = [r′]P + [m′]Q) and so in
particular the commitment is also statistically hiding. That the commitment is
computationally binding follows from the fact that any adversary who can break
the binding property can determine the discrete logarithm of Q with respect to P .

A Computational Commitment Scheme : comc(m)
We use the ROM version of the statistically binding commitment scheme in
Figure 2 for both the ROM and non-ROM commitments here. This is clearly
suitable in the ROM. Regarding the non-ROM case, this scheme is computation-
ally binding on the assumption that H is collision-resistant. Furthermore, it is
computationally hiding when H(m‖r) is modelled as a PRF with key r and mes-
sage m. We remark that when m is large, this latter assumption clearly does not
hold for typical hash functions based on the Merkle-Damg̊ard paradigm (where
given H(k‖m) one can easily compute H(k‖m‖m′) for some m′). However, it
is reasonable when m fits into a single iteration of the underlying compression
function (as is the case here where m ∈ {0, 1}t and t is a computational security
parameter which we set to the value t = 128.).

Implementing Two-Party Computation 13

4.3 Oblivious Transfer

Recall in our main protocol we need to perform w = max(4n, 8s2) 1-out-of-
2 oblivious transfers in Stage 2. We batch these up so as to perform all the
OT’s in a single batch. The OT’s need to be performed in a manner which has
a simulation based proof of security against malicious adversaries, hence the
simple protocols of [17,1,12] are not suitable for our purposes (the simulation
based proof is needed in order to be able to use a composition of the OT protocol
in our protocol, see [6]). We therefore use a modification of the batched version
of the protocol of Hazay and Lindell [10], which we now describe in the elliptic
curve setting. (We note that this protocol has a simulation based proof of security
in the standard model, without any usage of a random oracle.)

We assume that P1’s input is two vectors of values

[x0
1, . . . , x

0
w] and [x1

1, . . . , x
1
w],

where |x0
j | = |x1

j |. Party P2 has as input the bits i1, . . . , iw and wishes to obtain
the vector [xi1

1 , . . . , xiw
w].

We assume two zero-knowledge proofs-of-knowledge protocols which we shall
describe in Appendix A. The first, DL([x]P ; x), proves, in zero-knowledge, knowl-
edge of the discrete logarithm x of [x]P ; the second, DH(P, [a]P, [b]P, [ab]P),
proves that the tuple P ,[a]P ,[b]P ,[ab]P is a Diffie–Hellman tuple.

The protocol follows. The main things to notice are that the zero-knowledge
proofs of knowledge are performed only once, regardless of the number of items
to be transfered, and that protocol is composed of only two rounds (in addition
to the rounds needed by the zero-knowledge proofs).

1. P2 chooses α0, α1 ∈ Zq and computes Q0 ← [α0]P and Q1 ← [α1]P , it then
executes the protocol DL(Q0; α0) with party P1.

2. For j=1, . . . , w party P2 chooses rj ∈ Zq and computes Uj ← [rj]P , V0,j ←
[rj]Q0 + [ij]P , V1,j ← [rj]Q1 + [ij]P . These values are then sent to P1.

3. P1 chooses ρj ∈ Zq, for j = 1, . . . , w and sends them to P2.
4. Both parties then locally compute

U ←
w∑

j=1

[ρj]Uj , V ←
w∑

j=1

[ρj](V0,j − V1,j).

Party P2 executes the protocol DH(P, Q0 −Q1, U, V) with party P1.
5. For j = 1, . . . , w P1 then performs the following steps:

(a) Select R0,j , R1,j ∈ 〈P 〉 at random.
(b) Select s0,j , t0,j, s1,j , t1,j ∈ Zq.
(c) Set e0,j ← (W0,j , Z0,j , y0,j) where

W0,j ← [s0,j]U + [t0,j]P,

Z0,j ← [s0,j]V0 + [t0,j]Q0 + R0,j ,

y0,j ← x0
j ⊕KDF(R0,j , |x0

j |).

14 Y. Lindell, B. Pinkas, and N.P. Smart

(d) Set e1,j ← (W1,j , Z1,j , y1,j) where

W1,j ← [s1,j]U + [t1,j]P,

Z1,j ← [s1,j](V1 − P) + [t1,j]Q1 + R1,j ,

y1,j ← x1
j ⊕KDF(R1,j , |x1

j |).

The values (e0,j , e1,j) are then sent to P2 for each value of j.
6. For j = 1, . . . , w, party P2 then computes

R← Zij ,j − [αij]Wij ,j

and outputs
x

ij

j ← yij ,j ⊕KDF(R, |xij

j |).

For each index in the vector of inputs, the protocol requires P1 to perform 10
multiplications, and P2 to perform 8 multiplications. (This is without consider-
ing the zero-knowledge proofs, which are performed once in the protocol.) The
security of the above scheme is fully proven in [10], with the only exception that
here a KDF is used to derive a random string in order to mask (i.e., encrypt) the
x0

j and x1
j values (in [10] it is assumed that x0

j and x1
j can be mapped into points

in the Diffie-Hellman group). The use of a KDF for this purpose was proven
secure in the context of hashed ElGamal in [22], on the assumption that KDF
is chosen from a family of hash functions which are entropy smoothing.

5 Timings

In our implementation we selected t = 128 as the security parameter. As a result,
we chose the KDF to be implemented by SHA-256, and as the elliptic curve E
we selected the curve secp256r1 from the SECG standard [20].

We performed a set of experiments which examined the system using a circuit
which evaluates the function x > y for inputs x and y of n = 16 bits in length.
The standard circuit (using simple 2-to-1 gates) for this problem consists of 61
2-to-1 gates and 93 internal wires. We optimized this circuit by replacing it with
a circuit consisting of 48 internal wires and fifteen 3-to-1 gates and one 2-to-1
gate. We only looked at the case of P2 obtaining the result, the extension to
the first party obtaining the result is standard and requires an extension to the
circuit to be made, for which similar optimizations can be made.

The size of the modified circuit: Step 0 of the protocol replaces the circuit
with a different one which has max(4n, 8s2) input wires. The statistical security
parameter s2 therefore affects the size of the circuit, both in terms of the number
of wires and the number of gates. When n < 2s2, as in our experiments, we have
8s2 new input wires. Each original input wire is replaced with the exclusive-or of
about 4s2 input wires, which can be computed using 4s2 − 1 gates. The circuit
therefore grows by about 4ns2 gates, which in our case translate to 2560 gates for
s2 = 40, and 3840 gates for s2 = 60. We managed to optimize this construction

Implementing Two-Party Computation 15

by using a variant of structured Gaussian elimination in order to reuse gates.
As a result, for the case of s2 = 40, the augmented circuit produced in Stage 0
has over one thousand gates and over one thousand five hundred internal wires.
If s2 is increased to 60 then the augmented circuit now has over one thousand
five hundred gates and over two thousand internal wires. The exact increase in
size depends on the random choices made in Stage 0, but the above values are
indicative.

Implementation: The program was implemented in C++ using standard li-
braries; the elliptic curve routines made use of specially written assembly func-
tions to perform the arithmetic instructions. On the machine that was used for
the experiments, and the curve we were using, the software needed 3.9 millisec-
onds for a basic multiplication, 1.2 milliseconds to multiply the fixed generator,
and 5.1 milliseconds in order to compute (aP + bQ) (using a variant of the
method described in Algorithm 14.88 of [16]).

The input to the program was a circuit represented by a text file, each line of
the text file represented a gate. For example the line

2 1 0 16 32 0100

represents a 2-to-1 gate which has input wires numbered 0 and 16 and produces
the output wire 32. The value of the gate is given by the string which follows.
The above example implements a two-bit “less than” gate, namely it will output
a 1 on wire 32 only if w0 < w16, i.e. the value of wire 0 is zero and the value of
wire 16 is one.

Experiments: We performed a set of experiments with different values of the
statistical security parameters s1 and s2, and using both the ROM and standard
model versions of the protocol. The run times, in seconds, are presented in Table
1, and are reported for each step of the protocol. Timings are performed using
the standard Linux system timing facilities, and are as such only indicative.
The wall time is measured using the standard time function and the system and
user times are measured using the getrusage function. The wall time represents
the elapsed wall clock time in running the program, the user time represents
the amount of time each party actually performed some computation, whereas
the syst time represents the time spent by each party in system routines (for
example transmitting data, or writing to disk, etc.). All timings were performed
on an Intel Core 2 6420 running at 2.13 GHZ with 4096 KB of cache and 2 GB
of RAM and are given in seconds.

Basic observations: The computation is not instantaneous but overall the run
time is quite reasonable (the overall run time is about 2-3 minutes for a security
parameter s1 = 160). The run time is affected, of course, by the fact that 160
copies of the circuit are being used in the computation (compared to a protocol
secure against semi-honest adversaries, which uses only a single copy of the
circuit), and the fact that each circuit is much larger than its original form (in
the experiment more than 1000 gates are added to the circuit in Step 0, where
the original circuit consisted of less than 20 gates).

16 Y. Lindell, B. Pinkas, and N.P. Smart

Oblivious transfers: It is a little surprising that Step 2, which includes the
oblivious transfers, is not the main bottleneck of the protocol. This is true even
though we implemented an OT protocol which is secure against malicious ad-
versaries according to a full simulation definition.

Preprocessing: About half of the run time is consumed by Step 1, where P1

prepares the circuits and the commitments. This step can be run offline, before
the inputs are known, reducing the online run time by about 50%.

Scaling: Increasing s1 by a factor of c1 increases by a factor of c2
1 the number

of commitments generated by P1 in Step 1, and increases the number of circuits
by c1. Increasing s2 by a factor of c2 increases the size of the modified part of
the circuit (which is the bulk of the circuit in our experiments) by a factor of
c2, and therefore the total size of the circuits is increased by a factor of c1c2.
In the experiments, we increased both s1 and s2 by a factor of 1.5 (from 40 to
60, and from 160 to 240, respectively). We therefore expected the overhead to
increase by a factor of 2.25. The actual measurements showed an increase by a
factor slightly larger than 2.

We did not conduct experiments with circuits of different sizes. When all
other parameters are fixed, we expect the run time to be linear in the size of
the modified circuit (after the modifications done in Step 0). We can estimate
the size of the modified circuit as follows: If P2 has n input wires in the original
circuit, then the modified circuit is expected to have about n

2 max(4n, 8s2) more
gates. (Applying structured Gaussian elimination can enable us to reuse gates
and minimize the size of the modified circuit.)

Performance in the ROM and in the standard model: What is interest-
ing about the timings is that there is very little difference between the timings
in the ROM and those in the standard model. In Step 1 the ROM version
is more efficient simply due to the slightly more efficient encryption scheme
used.7 Given the large number of encryptions needed to produce the garbled
circuit this translates into a small advantage for the ROM version compared
to the standard-model implementation. For a similar reason one obtains a per-
formance improvement in the ROM in Step 7 in which the circuit is evaluated
by P2. The decrease in performance of the ROM compared to the standard
model in Step 3 we cannot explain, but it is likely to be caused by experimental
error.

In viewing the timings it should be born in mind that the main place that
the random oracle model is used is in the oblivious transfers in Step 2. At this
point we use the ROM to reduce the round complexity of the two required
zero-knowledge proofs (see Appendix A for details of this). However, these two

7 The KDF is invoked in the standard model protocol about twice as many times
as in the ROM protocol (since the encryption function in the standard model calls
the KDF twice). The increase in the run time of Step 1 when changing the ROM
implementation to the standard-model implementation (for s1 = 160) is from 60sec
to 67sec. We therefore estimate that the circuit construction (Step 1(a)) takes about
7 seconds in the ROM protocol and 14 seconds in the standard model protocol.

Implementing Two-Party Computation 17

proofs are only used once in the whole run of the protocol as we have batched
the oblivious transfers, and therefore the run time of Step 2 is about the same
in both the ROM and the standard model protocols.

What is surprising about the fact that the standard model is comparable in
performance to the ROM is that for simpler cryptographic functionalities, such
as encryption or signature schemes, the performance of the best ROM based
scheme is often twice as fast as the best known standard model scheme.

6 Future Work

An obvious task is to develop the current implementation into a complete system
for secure computation. In particular, the system should include a front end that
will enable users to provide a high-level specification of the function that they
want to compute, and specify the different security parameters that shall be used.
A natural approach for this task would be to modify the FairPlay compiler [15]
to support our implementation.

Table 1. Run times of our experiments

Run Times in the Random Oracle
Model

Step
Time 1 2 3 4 5 6 7 8 Total

P1, s1 = 160, s2 = 40

Wall 74 20 24 0 7 10 0 0 135
User 60 17 12 0 3 4 0 0
Syst 16 2 3 0 0 0 0 0

P2, s1 = 160, s2 = 40

Wall 74 20 24 0 8 9 35 1 171
User 0 8 14 0 8 7 29 1
Syst 0 0 10 0 2 4 8 0

P1, s1 = 240, s2 = 60

Wall 159 34 51 0 19 13 0 0 276
User 123 30 24 0 11 6 0 0
Syst 35 2 9 0 1 0 0 0

P2, s1 = 240, s2 = 60

Wall 159 34 51 0 19 13 78 3 358
User 0 12 28 0 17 10 61 2
Syst 0 0 22 0 7 5 18 0

Run Times in the standard Model

Step
Time 1 2 3 4 5 6 7 8 Total

P1, s1 = 160, s2 = 40

Wall 84 20 24 0 7 7 0 0 142
User 67 18 10 0 5 3 0 0
Syst 15 0 5 0 0 0 0 0

P2, s1 = 160, s2 = 40

Wall 84 20 24 0 7 7 40 2 184
User 0 10 13 0 7 5 32 4
Syst 0 0 11 0 1 3 8 2

P1, s1 = 240, s2 = 60

Wall 181 35 45 0 18 12 0 0 291
User 145 30 24 0 8 8 0 0
Syst 35 0 7 0 1 2 0 0

P2, s1 = 240, s2 = 60

Wall 181 35 45 0 18 12 87 5 362
User 0 12 23 0 15 9 70 7
Syst 0 0 21 0 4 3 20 0

The performance of the system is greatly affected by the circuit modification in
Step 0 of the protocol, which increases the number of inputs and the size of the cir-
cuit. We implemented this step according to the randomized construction in [13].
Another option is to use a linear error-correction code for defining the relation be-
tween the original and new input wires of the circuit. (A careful examination of

18 Y. Lindell, B. Pinkas, and N.P. Smart

the proof in [13] shows that this is sufficient.) We need an [N, k, d] linear binary
code which encodes k bit words into N bit words with a distance of d = s2 (say,
d = 40). The parameter k corresponds to the number of original input wires of P2,
while N corresponds to the number of new input wires. The code should satisfy
two criteria: (1) the rate k/N should be as high as possible, to keep the number
of new input wires close to the number of original input wires, and (2) the block
length k should be minimized, to enable the code to be applied (and the rate k/N
to be achieved) even if P2’s input is relatively short.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital
Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

2. Aggarwal, G., Mishra, N., Pinkas, B.: Secure Computation of the k-th Ranked Ele-
ment. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 40–55. Springer, Heidelberg (2004)

3. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP – A System for Secure Multi-
Party Computation, manuscript (2008)

4. Bogetoft, P., Christensen, D.L., D̊amgard, I., Geisler, M., Jakobsen, T., Krøigaard,
M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.:
Multiparty Computation Goes Live, Cryptology ePrint Archive 2008/068 (2008)

5. Bogetoft, P., Damg̊ard, I., Jakobsen, T., Nielsen, K., Pagter, J.: A practical im-
plementation of secure auctions based on multiparty integer computation. In: Di
Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer,
Heidelberg (2006)

6. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology 13(1), 143–202 (2000)

7. Chaum, D., Pederson, T.P.: Wallet Databases with Observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

8. Goldreich, O.: Foundations of Cryptography: Volume 2 – Basic Applications. Cam-
bridge Univ. Press, Cambridge (2004)

9. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A
Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp.
218–229 (1987)

10. Hazay, C., Lindell, Y.: Oblivious transfer, polynomial evaluation and set intersec-
tion. Manuscript (2008)

11. Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on commit-
ted inputs. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97–114.
Springer, Heidelberg (2007)

12. Kalai, Y.T.: Smooth Projective Hashing and Two-Message Oblivious Transfer. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 78–95. Springer, Hei-
delberg (2005)

13. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

14. Malkhi, D., Franklin, M.K.: Efficiency tradeoffs for malicious two-party computa-
tion. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 458–473. Springer, Heidelberg (2006)

Implementing Two-Party Computation 19

15. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay — a secure two-party com-
putation system. In: Proc. of 13th USENIX Security Symposium (2004)

16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1996)

17. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th SODA, pp.
448–457 (2001)

18. Pederson, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

19. Standards for Efficient Cryptography, SEC 1: Elliptic Curve Cryptography,
http://www.secg.org/download/aid-385/sec1 final.pdf

20. SECG. Standards for Efficient Cryptography, SEC 2: Recommended elliptic curve
domain parameters, http://www.secg.org

21. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

22. Shoup, V.: Sequences of games: A tool for taming complexity in security proofs.
Manuscript (2004)

23. Woodruff, D.: Revisiting the Efficiency of Malicious Two-Party Computation. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 79–96. Springer, Heidel-
berg (2007)

24. Yao, A.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167 (1986)

A Zero Knowledge Proofs

We now describe the zero-knowledge proof-of-knowledge protocols required in
the OT protocol. In the ROM we use the standard Fiat-Shamir transform of an
interactive honest-verifier Σ-protocol into a non-interactive protocol via hashing
the commitment with the random oracle so as to produce the random challenge.

In the standard model we need to cope with non-honest verifiers by getting
the verifier to commit to his challenge before the prover’s commitment is is-
sued. We use a highly-efficient transformation described in [10] to transform an
honest-verifier Sigma protocol to a protocol that is a zero-knowledge proof of
knowledge (the transformation is proven secure under the assumption that the
discrete logarithm problem is hard and hence is highly suitable for proofs of
Diffie-Hellman type statements).

A.1 DL(Q; x)

We assume a prover Pro who knows x and a verifier Ver who only knows Q
and P . The two protocols, one in the ROM and one in the standard model, are
presented in Fig. 3. They are based on the HVZK proof of Schnorr [21].

A.2 DDH(P, [a]P, [b]P, [ab]P)

We assume a prover Pro who knows b and a verifier Ver who only knows the
four protocol inputs P , Q = [a]P , U = [b]P and V = [b]Q. The two variants of
the protocol are given in Fig. 4, both are based on the HVZK protocol from [7].

http://www.secg.org/download/aid-385/sec1_final.pdf
http://www.secg.org

20 Y. Lindell, B. Pinkas, and N.P. Smart

ROM Version

– Pro computes k ← Zq, R ← [k]P , s ← H(R), z ← xs+ k. It sends R and z to Ver.
– Ver computes s ← H(R). and accepts if [z]P = [s]Q + R.

Non-ROM Version

– Pro computes a ← Zq, A ← [a]P . It sends A to Ver.
– Ver computes s, t ← Zq, C ← [s]P + [t]A. and sends C to Pro.
– Pro computes k ← Zq, R ← [k]P . and sends R to Ver.
– Ver sends s, t to Pro.
– Pro checks whether C = [s]P + [t]A. and sends z ← xs + k and a to Ver.
– Ver accepts if [z]P = [s]Q + R and A = [a]P .

Fig. 3. ROM and non-ROM zero-knowledge proof of knowledge of discrete logarithms

ROM Version

– Pro computes r ← Zq, A ← [r]P , B ← [r]Q, s ← H(A‖B), z ← bs + r. and sends
A, B and z to Ver.

– Ver computes s ← H(A‖B) and accepts if [z]P = [s]U + A and [z]Q = [s]V + B .

Non-ROM Version

– Pro computes w ← Zq, W ← [w]P and sends V to Ver.
– Ver computes s, t ← Zq, C ← [s]P + [t]A and sends C to Pro.
– Pro computes r ← Zq, A ← [r]P , B ← [r]Q and sends A and B to Ver.
– Ver sends s, t to Pro.
– Pro checks whether C = [s]P + [t]V . and sends z ← bs + r and w to Ver.
– Ver accepts if [z]P = [s]U + A, [z]Q = [s]V + B and W = [w]P .

Fig. 4. ROM and non-ROM zero-knowledge proof of knowledge of DDH tuple

CLL: A Cryptographic Link Layer

for Local Area Networks

Yves Igor Jerschow, Christian Lochert, Björn Scheuermann, and Martin Mauve

Institute of Computer Science, Heinrich Heine University, Düsseldorf, Germany
{jerschow,lochert,scheuermann,mauve}@cs.uni-duesseldorf.de

Abstract. Ethernet and IP form the basis of the vast majority of LAN
installations. But these protocols do not provide comprehensive security
mechanisms, and thus give way for a plethora of attack scenarios. In this
paper, we introduce a layer 2/3 security extension for LANs, the Cryp-
tographic Link Layer (CLL). CLL provides authentication and confiden-
tiality to the hosts in the LAN by safeguarding all layer 2 traffic including
ARP and DHCP handshakes. It is transparent to existing protocol im-
plementations, especially to the ARP module and to DHCP clients and
servers. Beyond fending off external attackers, CLL also protects from
malicious behavior of authenticated clients. We discuss the CLL proto-
col, motivate the underlying design decisions, and finally present imple-
mentations of CLL for both Windows and Linux. Their performance is
demonstrated through real-world measurement results.

1 Introduction

Ethernet and the Internet Protocol (IP) are the main building blocks for the vast
majority of modern Local Area Networks (LANs). However, these protocols,
and thus virtually all installed LANs, do not provide comprehensive security
mechanisms. Hence, malicious local users are potentially able to eavesdrop, to
inject or modify information, or to take on fake identities.

One especially critical component is the Address Resolution Protocol (ARP) [20].
It performs the task of coupling the network layer with the link layer by resolving
IP addresses into the corresponding MAC addresses. However, ARP lacks an au-
thentication mechanism, making it vulnerable to different types of attacks. This
constitutes a severe threat in every LAN that is accessible to not fully trustworthy
users. By emitting ARP messages with wrong IP/MAC mappings—commonly re-
ferred to as ARP spoofing—a malicious user can impersonate other hosts, intercept
and modify foreign IP traffic by becoming a Man in the Middle (MiM), or mount
a Denial of Service (DoS) attack against other hosts. Using freely available tools,
e. g. [18, 9], ARP spoofing can be easily performed even by users without deeper
knowledge of the underlying protocols.

Preventing ARP attacks in the case of dynamic IP addresses requires to take
also the Dynamic Host Configuration Protocol (DHCP) [7] into account. It is
employed in almost every LAN to automatically assign IP addresses and con-
figuration parameters. It does not provide an authentication mechanism either

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 21–38, 2008.
© Springer-Verlag Berlin Heidelberg 2008

22 Y.I. Jerschow et al.

and thus can also become the target of various attacks. By setting up a rogue
DHCP server and announcing forged IP addresses for the default gateway or the
DNS server, an adversary is able to run a MiM or DoS attack against clients
requesting an IP address via DHCP. Furthermore, the legitimate DHCP server
is also vulnerable. In a DHCP starvation attack the adversary takes on many
different client identities (usually MAC addresses) and requests each time a new
IP address, until the server’s address pool gets exhausted. Thereby the attacker
can prevent new clients from acquiring a valid IP configuration.

Since modern operating systems enable the injection of raw Ethernet packets
containing arbitrary MAC and IP addresses in their headers even in user mode,
there exists no external barrier which would impede address fraud. The outlined
attack scenarios are covered in more detail, e. g., in [1, 5, 23].

In this paper, we tackle the challenge of securing the communication in local
area networks, including ARP and DHCP. We introduce a comprehensive layer
2/3 security protocol—the Cryptographic Link Layer (CLL). It provides authen-
tication and confidentiality between neighboring hosts in Ethernet LANs. Each
machine gets identified by its IP/MAC address pair. Beyond safeguarding ARP
and DHCP, CLL protects arbitrary layer 2 traffic, especially all encapsulated IP
packets. We propose to employ CLL, e. g., in enterprise and campus networks
being often accessed by frequently changing, not fully trustworthy users as well
as in all kinds of publicly accessible LANs (like Internet cafés or Wi-Fi hotspots).
Note that CLL does not affect the operation of higher layer security protocols.

Beginning with an ARP request, CLL applies public key cryptography to per-
form an initial handshake between two hosts with the aim to establish a security
association. The two hosts prove their identity to each other and exchange keying
material. Hereupon, secured IP data packets may be sent.

We have implemented and evaluated CLL on both Windows and Linux. In
typical LANs running at 100Mbit/s, our implementation operates at full wire-
speed, thus securing the network without compromising the throughput. To ease
the migration procedure, CLL-enabled machines can be configured to interoper-
ate with ordinary, unsecured hosts. We make our CLL implementation available
for free download including the sources, and complement it with a toolkit for
key and certificate management [12].

The remainder of this paper is organized as follows. In the next section, we re-
view previous approaches on securing ARP, DHCP, and the link layer. Section 3
sketches the architecture of CLL, before Section 4 justifies the underlying crypto-
graphic design decisions. In Sections 5 and 6 we detail the operation of CLL’s pro-
tocol components. Section 7 describes the implementation of CLL and
evaluates its performance. Finally, we conclude the paper with a summary in
Section 8.

2 Related Work

Above the link layer, there already exist well-proven security protocols which
provide authentication and confidentiality by means of cryptography. SSH [24]
and SSL / TLS [6] operate at the application level or directly below it. At the

CLL: A Cryptographic Link Layer for Local Area Networks 23

network layer, IPsec [13] can protect IP datagrams being exchanged between
two end-points. However, IPsec does not authenticate the IP address of the
communicating party. This enables an authorized IPsec user to impersonate the
IP address of another host that is temporarily switched off or knocked out by
a DoS attack. While SSH, SSL/TLS, and IPsec cannot protect from attacks on
ARP and DHCP, the encryption performed by these protocols will still prevent
the disclosure of sensitive data. An attacker would have to content himself with
the power of rendering his victims unable to communicate.

Reviewing the attempts to cope with the insecurity of ARP, there exist two
main directions. One is to detect the bulk of ARP attacks by means of a spe-
cialized Intrusion Detection System (IDS) like Antidote [2] or ArpWatch [3] and
to warn the user or network administrator in time. Such tools monitor all in-
coming ARP messages and trigger an alarm, e. g., on observing an abnormally
high number of ARP replies or a changed IP/MAC mapping. However, these
ARP watchdogs cannot provide full protection against ARP attacks; in particu-
lar, they are not able to distinguish whether the MAC address in the first ARP
reply is genuine or not. The other approach is to secure ARP by using cryp-
tographic techniques. In the following, we discuss some current research taking
this direction.

Gouda and Huang [10] specify a theoretical architecture with an ARP server
sharing a symmetric key for message authentication with every host in the LAN.
Each host periodically notifies the server about its current IP/MAC mapping
and resolves the MAC addresses of its neighbors with the aid of the ARP server.
However, this does not prevent an authorized machine from purposely announc-
ing a mapping of a neighboring host’s IP address to its own MAC address. In
contrast, CLL authenticates all hosts based on their IP/MAC address pair. It
thus also avoids ARP spoofing attempts originating from malicious, but autho-
rized users. Furthermore, CLL does not require a central server.

In [5], Bruschi et al. introduce Secure ARP (S-ARP) which uses public key
signatures to authenticate the ARP replies. All hosts in the LAN hold a pri-
vate/public key pair and initially enroll at a central server, the Authoritative
Key Distributor (AKD). The AKD maintains a repository of public keys and
the corresponding (static) IP addresses. Whenever a host requires a neighbor’s
public key to verify the signature of an ARP reply, it inquires about it from the
AKD. The AKD’s reply packet is digitally signed as well and the AKD’s pub-
lic key is preinstalled on all machines. S-ARP comes with an implementation
for Linux 2.4, but it requires a kernel patch and does not support dynamically
assigned IP addresses.

On the basis of S-ARP, Lootah et al. propose Ticket-based ARP (TARP) [16].
It foregoes a central key server and instead employs digitally signed attestations
of IP/MAC mappings, so-called tickets. The tickets are issued by a trusted party,
the Local Ticket Agent (LTA). The host responding to an ARP request attaches
its ticket to the ARP reply and thereby proves the validity. Since the LTA’s
public key is preinstalled on each host, received tickets can be verified quickly.
In comparison to S-ARP, TARP requires at most one public key operation per

24 Y.I. Jerschow et al.

ARP exchange and no private key operations, and thus offers better performance.
However, the authors state that an attacker is able to impersonate a host that
is currently offline, by replaying its previously captured ticket. TARP has been
implemented on Linux 2.6 with support for DHCP-assigned IP addresses. Note,
however, that both S-ARP and TARP aim to secure only ARP, while CLL
provides overall layer 2 security by safeguarding DHCP and data packets as well.

RFC 3118 [8] specifies how DHCP can be extended by an authentication
mechanism. In this scheme, the DHCP server shares with each client a symmetric
key. It is used to authenticate the DHCP messages. However, DHCPDISCOVER,
the first message sent by the client, remains unauthenticated. Consequently, users
still might be able to perform a DHCP starvation attack. This is not the case
with CLL. Another drawback is that currently no DHCP implementations with
RFC 3118 support are available.

Applying cryptography at the link layer is common in Wi-Fi networks. Wi-
Fi Protected Access (WPA) and WPA2 provide authentication and confiden-
tiality between wireless nodes and the access point. The IEEE working group
802.1AE [11] specifies MACsec as the analog of WPA/WPA2 for LANs. In con-
trast to CLL, WPA/WPA2 and MACsec authenticate hosts based only on their
MAC address. The content of ARP and DHCP control packets encapsulated in
layer 2 frames is not examined. Therefore these protocols cannot protect from
ARP and DHCP attacks originating from legitimate users. Moreover, we are not
aware of any MACsec implementation being available at this time.

The main contribution of this paper is a novel, comprehensive approach to
layer 2 security, which provides a more complete protection of the LAN than even
a combination of three existing protocols (e. g., TARP, RFC 3118, and IPsec)
could achieve. That is because besides eliminating the discussed shortcomings of
these protocols, CLL also authenticates broadcast traffic. The tackled security
problems are all related to each other—they arise from the lack of authentication
at layer 2 and the link to layer 3. Thus, a comprehensive approach to solve them
seems appropriate.

3 Protocol Overview

CLL is designed as a transparent filtering service between the network adapter
and the IP stack. It thus operates at the border between the link and the net-
work layer, as displayed in Figure 1. All outgoing packets including the Ether-
net header are authenticated and their payload is optionally encrypted before
they are handed over to the network card for transmission. Incoming packets are
passed to the IP stack only after they have been successfully authenticated and—
if applicable—decrypted. CLL can be enabled or disabled without modifying the
other protocol stack components. For them, CLL’s services are transparent. But
in fact, CLL appends its cryptographic headers to outgoing packets, and puts
its own ID into the EtherType field of the Ethernet header. From successfully
authenticated incoming packets CLL strips off its cryptographic headers and
restores the original EtherType value before passing them up. While the opera-
tion of CLL does not require any modifications to switches, routers must either

CLL: A Cryptographic Link Layer for Local Area Networks 25

transport layer

link and physical layer

TCP/UDP

IP

ARP DHCP

application layer

CLL

network layer

Fig. 1. CLL in the protocol stack

support CLL (and benefit from it) or exchange packets with the end systems in
the standard, insecure manner.

CLL identifies hosts by their IP/MAC address pair. Each machine on the
LAN holds a private/public key pair and a certificate issued by the local Cer-
tificate Authority (CA)—usually the network administrator—which establishes
the binding between its public key, the MAC and the IP address. To verify cer-
tificates, each host requires the CA’s public key. Typically it will be installed in
the form of a self-signed certificate along with the host’s own certificate, but a
more complex Public Key Infrastructure (PKI) to support multiple LANs is also
conceivable.

Basically, CLL divides all network traffic into four packet types: ARP and
DHCP1 control packets, unicast and broadcast IP data packets. Authentication
is performed for all packet types and, in addition, an optional payload encryption
is provided for unicast IP packets.

While ARP and broadcast IP packets are authenticated by means of public key
cryptography (digital signatures in conjunction with certificates), unicast IP and
DHCP packets get secured using fast symmetric key algorithms. Safeguarding
unicast IP packets with a message authentication code and optionally a block
cipher requires each pair of communicating hosts to share a secret key. For
that purpose, CLL employs a key exchange protocol to negotiate shared keys
on-demand. Since the IP traffic flow between two hosts always begins with an
ARP exchange, CLL adopts it to establish a security association (SA) between
the two peers. The two machines authenticate each other, negotiate a secret
key and agree on the cryptographic algorithms to protect their IP packets. The
establishment of an SA is subsequently referred to as handshake.

To determine the sender’s (claimed) identity during the authentication of
incoming packets, CLL examines the Ethernet header and, depending on the

1 Though being encapsulated in an UDP segment and an IP datagram, we handle
DHCP messages as a separate layer 3 packet type due to the functional position of
DHCP below the network layer.

26 Y.I. Jerschow et al.

protocol, also the ARP, IP, or DHCP header. Where applicable, it performs a
consistency check: the sender’s MAC address can be also found in the ARP
header or—in case of a DHCP client—in the DHCP header, and it must match
the address specified in the Ethernet header. Such a cross-layer consistency check
is not performed by other protocol layers. It is, however, crucially important to
ward off ARP spoofing and DHCP starvation attacks. Layer 2 authentication
alone would not suffice for this purpose.

The following listing summarizes the various LAN attacks fended off by CLL:

• ARP spoofing: impersonation, MiM and DoS attack
• DHCP spoofing: rogue DHCP server (MiM & DoS), DHCP starvation attack

(DoS)
• generic unicast attacks: injection of spoofed packets, eavesdropping
• generic broadcast attacks: injection of spoofed packets, special case: smurf

attack2

4 Cryptographic Design Decisions

The security philosophy of CLL is to provide the user with a suite of up-to-
date cryptographic algorithms and corresponding parameters, letting her choose
between them on her own responsibility. Such a design has the advantage of con-
sidering individual security perceptions, allowing to trade off between highest-
level security and best performance, and supporting the prompt exchange of an
algorithm being reported as broken. With our implementation, we nevertheless
provide a reasonable default configuration to assist users without deeper un-
derstanding of cryptography. The general level of protection provided by CLL
may be also selected. Either CLL just authenticates all types of packets or it
additionally also encrypts the payload of unicast IP packets (including the IP
header). Skipping the encryption step will result in a better performance and
should be done whenever a higher layer security protocol like IPsec already en-
sures confidentiality. CLL allows to use different ciphers and hash functions in
each direction of an SA. With regard to system complexity, we however prescribe
the algorithms used for key exchange, key derivation, and DHCP packet authen-
tication. Table 1 summarizes the algorithms proposed for CLL and supported
by our implementation.

During the handshake CLL applies the Diffie-Hellman key agreement protocol
to exchange a symmetric master key with perfect forward secrecy between the
two peers. Since handshake packets are digitally signed, there exists no suscep-
tibility to man-in-the-middle attacks. To the negotiated master key we apply a
deterministic key derivation function to generate for each direction two properly
sized keys—one for the message authentication code and one for the optional
cipher.

2 Flooding the victim via spoofed broadcast ping messages being answered by all other
hosts.

CLL: A Cryptographic Link Layer for Local Area Networks 27

Table 1. Algorithms and parameters in CLL

message auth. codes
• HMAC with MD5, SHA-160/256, RIPEMD-160 or HAS-160
• 128–256 bit key length

encryption
• optionally with a block cipher in CBC mode, 128–256 bit key length
• available ciphers: Twofish, AES, RC6, RC5, Blowfish, MARS,

Serpent, CAST-128/256, SEED, GOST
key exchange Diffie-Hellman, 2048-bit group No. 14 from the IPsec specification
key derivation IEEE 1363a Key Derivation Function 2 (KDF2) using RIPEMD-160
key rollover periodically on demand, e. g., every 30 min

digital signatures
• RSA with variable key length (typically 1024–2048 bits)
• RSASSA-PSS signature scheme with SHA-160/256 or RIPEMD-160

certificates X.509 v3 with RSA signature, ASN.1 BER/DER encoding

CLL guarantees the authenticity of unicast IP and DHCP packets by means
of a Hashed Message Authentication Code (HMAC) [4] attached to the end of
each packet. In addition to authentication, CLL offers to protect unicast IP
packets from eavesdropping by optionally encrypting them with a block cipher
in Cipher Block Chaining (CBC) mode. When establishing an SA, we generate
a random Initialization Vector (IV) and use afterwards the last encrypted block
of the preceding packet as the next packet’s IV. Since transmissions on the link
layer are unreliable, the sender also prepends the current IV to each packet. If
the payload size is not a multiple of the block size, random padding bytes are
appended. We first encrypt the plaintext and then compute the HMAC for the
ciphertext, since this is the only order that is generally considered secure [14].
It also enables to detect a forged packet without the need to decrypt it.

To sign handshake and broadcast IP packets, CLL applies the well-known
RSA algorithm in conjunction with certificates. RSA offers the great advantage
of supporting public key signatures and encryption with a single key pair. And
though CLL’s security architecture does not require any public key encryption,
in practice the local CA can make use of RSA encryption to securely deploy the
DHCP HMAC keys to the users.

5 Operation of CLL in Detail

5.1 Basic Packet Format

When securing Ethernet frames, CLL inserts its own headers and replaces the
EtherType value in the Ethernet header with its own identifier (0x07D0, other-
wise unassigned by IEEE). Figure 2 depicts the generic layout of an Ethernet
frame safeguarded by CLL. The CLL header is placed behind the Ethernet
header. It has been designed as a compact bit field to save overhead. It consists
of a version number (currently 1) like in IP, a field specifying the encapsulated
packet type (unicast or broadcast IP packet, ARP handshake packet, DHCP client

28 Y.I. Jerschow et al.

Fig. 2. An Ethernet frame in CLL

or server packet, internal certificate packet), and a Boolean flag stating whether
the payload has been optionally compressed by CLL. This main CLL header is
followed by one or more inner headers depending on the encapsulated packet’s
type. Therein we store, among cryptographic parameters, the original EtherType
number. Behind the inner headers resides the payload, i. e., an ARP, IP, or DHCP
packet. Finally, each secured Ethernet frame terminates with an authentication
field containing either an HMAC (unicast IP and DHCP packets) or an RSA
signature (ARP handshake and broadcast IP packets) computed over the whole
frame.

5.2 ARP Handshake and SA Setup

Overview. To safeguard unicast IP packets, CLL needs to establish an SA
between each pair of communicating hosts. For this, CLL takes advantage of the
ARP mechanism and expands it at the same time with authentication. Figure 3
illustrates this ARP handshake between two hosts A and B.

When started, a CLL implementation should first flush the ARP cache, thus
ensuring that all IP traffic to other hosts is preceded by an ARP request. Having
intercepted the ARP request, CLL wraps it up into a digitally signed handshake

ARP request Diffie-Hellman A
crypto algorithms A timestamp A

nonce certificate A (MAC + IP)

A B

A B
RSA
siga-
ture

ARP reply Diffie-Hellman B
crypto algorithms B timestamp B

nonce certificate B (MAC + IP)

RSA
signa-
ture

RSA
signa-
ture

Fig. 3. ARP handshake: Diffie-Hellman key exchange in conjunction with RSA signa-
tures

CLL: A Cryptographic Link Layer for Local Area Networks 29

packet. It includes the host certificate and cryptographic parameters to establish
the SA. The handshake packet is broadcasted like an ordinary ARP request and
every station on the LAN checks whether it holds the inquired IP address. At the
destination host, CLL verifies the certificate of the requesting host and validates
the packet’s signature. Invalid packets are dropped. Then it must be checked
whether the sender’s IP/MAC address pair claimed in the ARP request (and
its MAC address stated in the Ethernet header) matches the one specified in its
certificate.

If the handshake packet turns out to be valid, CLL creates a new SA with the
requesting host, based on the local and the received cryptographic parameters.
Finally, CLL strips off everything from the handshake packet except for the
ARP header, restores the ARP EtherType number in the Ethernet header and
passes the resulting ordinary ARP request up the protocol stack to the ARP
module. The ARP module creates then an ARP table entry for the requesting
host, and responds with an ARP reply. This reply gets intercepted again and is
encapsulated into a digitally signed handshake packet analogously to the ARP
request, along with the local cryptographic parameters and the host certificate.
CLL then unicasts this second handshake packet to the requesting host like a
usual ARP reply. In the following, we refer to the first handshake packet as
the handshake request and to the second one as the handshake reply. On the
requesting host the handshake reply undergoes the same verification process
before the SA is established and the ARP reply is passed up to the ARP module.

Creating an SA implies the computation of a joint master key from the public
and private Diffie-Hellman values. From the master key, CLL then derives the
four keys for the HMAC and the optional block cipher. At any time, only one
SA is permitted per host pair.

Handshake Packet Details. We employ a UNIX timestamp and a nonce
to protect against replay attacks. CLL requires the clocks of all hosts on the
LAN to be synchronized within reasonable limits decided on by the network
administrator, e. g., in the range of 2–5 minutes. This can be easily achieved if the
users manually adjust their computer’s clock occasionally. An automatic clock
synchronization, for instance by using NTP [17], is also possible after having
established an SA to a trustworthy server.

The nonce is a random 64-bit number generated by the initiator of the hand-
shake, which expects to find it repeated in the handshake reply. It ensures that
the peer actually participates in the protocol, i. e., its handshake reply has not
been replayed. Due to the nonce, it is not necessary to verify the timestamp in the
handshake reply. It must, however, be stored for comparisons with timestamps
of possibly future handshake requests.

The other important handshake element are the cryptographic parameters.
Each host specifies the hash function configured for the HMAC and the block
cipher potentially chosen to protect the payload against eavesdropping, along
with the key sizes. A compression algorithm may be specified as well, if a host
intends to compress its outgoing unicast IP packets. Moreover, each party states
how long the SA should be valid before it is either extended or removed due

30 Y.I. Jerschow et al.

to inactivity. The actual SA validity period is the minimum of the two claims.
However, it may not fall below a threshold currently set to 15 minutes to prevent
permanent handshakes or renegotiations.

Retransmissions and Conflicts. CLL addresses the possibility of a handshake
packet loss by means of retransmissions. In case of a lost (or just unanswered)
handshake request the standard ARP retransmission mechanism will trigger a
new ARP request. Having intercepted this ARP request, CLL retransmits the
respective cached handshake request after updating its timestamp and signature.
Through caching we avoid the computation-intensive generation of new Diffie-
Hellman values.

The loss of a handshake reply will also result in a retransmission of the cor-
responding handshake request. The answering peer caches the received original
handshake request as well as its own handshake reply. It is therefore able to
recognize the incoming duplicate handshake request, and retransmits its hand-
shake reply. Due to the receiver relying on the nonce, we can even omit to update
timestamp and signature in this case.

Theoretically, it is conceivable that two hosts without an SA concurrently
send each other a handshake request, when both of them have a pending IP
datagram destined for the other one. However, only the creation of a single SA
is allowed between two hosts. CLL resolves this issue by performing an integer
comparison between the two 48-bit MAC addresses: the handshake request of
the host with the higher MAC address “wins”.

Complete and Incomplete SAs. From the point of view of a host, we refer
to an SA as complete when it is known for sure that the peer has also established
the SA. Host A as the initiator of an ARP handshake can set up the SA with
its peer B only after having received the handshake reply. A’s SA is therefore
complete right from the start. Host A can immediately send secured unicast IP
packets to its peer B and be certain that B will be able to verify and decrypt
them.

In contrast, host B first has an incomplete SA, as long as it cannot be sure
whether A has received its handshake reply. Usually, the IP datagram of host A
that triggered the ARP request will quickly reach host B and thereby confirm
the set up SA. However, as long as this is not the case, host B may not transmit
any IP packets to its peer—A might not be able to authenticate them. Instead,
in the unlikely case that B wants to transmit to A before A has sent the first
packet, B must queue its IP datagram and send a new handshake request to A.
This enforces the creation of a new SA, replacing the existing incomplete one.

Safeguarding against Replay Attacks. While the initiator of the SA pro-
tects itself against a replayed handshake reply with the aid of a nonce, its peer
has to rely on the timestamp check when judging the freshness of an incoming
handshake request. However, a timestamp is considered valid within a period
of several minutes (smaller than the minimum SA duration) to tolerate time
deviations. It hence does not assure a complete protection by itself. An attacker
may try to replace an existing SA by replaying a captured outdated handshake

CLL: A Cryptographic Link Layer for Local Area Networks 31

A B

A B
TwofishTwofish

IP
datagram

HMAC
(SHA-1)

HMAC
(MD5)sequence

number B

AAEE SS

IP
datagram

sequence
number A

Fig. 4. Transmission of unicast IP packets safeguarded with a block cipher and a
message authentication code

request bearing a timestamp which is still valid. CLL fends off such attacks by
comparing the timestamp of a new handshake request with the timestamp of
the handshake request or reply which led to the establishment of the currently
existing SA. The use of timestamps avoids the necessity of a third message for
a second nonce in the other direction, which would render the ARP handshake
more complex.

5.3 Unicast IP Packets

Having created ARP table entries and established an SA, unicast IP packets
can be transmitted between the two peers. This is illustrated in Figure 4. While
host A encrypts its packets with the block cipher AES and authenticates them
with an HMAC using the hash function SHA-1, its peer B employs Twofish and
MD5. Taking the sender’s MAC address the receiver looks up the corresponding
SA to verify the packet’s HMAC, sequence number, source IP address, and to
decrypt the IP datagram. Only if the peer is a router, its IP address may differ
from the source address stated in the IP header.

Each unicast IP packet contains a sequence number to protect against replay
attacks. It is incremented by one with each packet sent to the respective desti-
nation. The receiver tolerates packet losses and only checks whether a packet’s
sequence number is larger than that of its predecessor. The sequence numbers
are transmitted as plaintext to avoid an unnecessary decryption of replayed uni-
cast IP packets. However, in order not to reveal the number of packets exchanged
between two hosts so far, we generate the initial sequence numbers—one for each
direction—at random.

Note that once having created an SA, CLL can also secure unicast packets
carrying some other layer 3 protocol, e. g., Novell’s IPX.

5.4 Periodical Key Rollover

By design, an SA has a short lifetime of typically 15–60 minutes like an ARP
cache entry. But if any IP packets are transmitted during this period, it is re-
newed by a new Diffie-Hellman key exchange. New session keys for the HMAC

32 Y.I. Jerschow et al.

A B
renegotiation request

renegotiation ack

renegotiation reply

via new SA

via old SA

via old SA

Fig. 5. Renegotiation—renewing an SA

and block cipher as well as sequence numbers are derived from a new master key.
We call the extension of an SA renegotiation. Figure 5 illustrates the messages
exchanged between two peers to extend their SA.

The renegotiation request and reply are the counterparts of the handshake
request and reply. They are transferred through the existing SA like usual uni-
cast packets. Each peer establishes a new SA after receiving the corresponding
renegotiation packet. Just like when initially setting up an SA, host A’s SA is
complete from the beginning on, while host B first has an incomplete SA. But in
case of a renegotiation, we cannot expect that an IP packet will be transmitted
from A to B shortly and render B’s SA complete as well. Therefore, host A has
to explicitly acknowledge the reception of the renegotiation reply. It does so by
means of a renegotiation ack sent through the new SA.

The renegotiation is initiated by the peer that first determines the expiration of
the SA according to its clock. Concurrent renegotiation attempts are resolved in
the same way as in the ARP handshake by performing a MAC address comparison.

During the renegotiation the peers re-exchange and re-validate their current
certificates to address a possible expiration of the previous ones, especially in case
of short-lived certificates issued via DHCP. While a renegotiation is in progress,
pending IP packets destined for the peer can be still transferred through the old
SA, i. e., there is no need to delay and queue them. We address the possibility
of renegotiation packet losses by means of a retransmission mechanism.

5.5 Broadcast Packets

CLL authenticates broadcast IP packets like handshake packets by means of an
RSA signature. To verify the signature, the receivers require the sender’s host
certificate. However, the variable payload size of a broadcast packet may well be
too large to piggyback the certificate and still stay within the maximum segment
size limit. Therefore, we broadcast the certificate in advance in a special certifi-
cate packet. CLL sends a certificate packet only when dispatching a broadcast
packet and when more than a minute has passed since the previous certificate
transmission, i. e., periodically on demand. All hosts on the LAN cache the re-
ceived host certificates. Thus they need to validate each certificate only once
and henceforth have the correct public key readily available for future signature
verifications.

Like handshake packets, broadcast packets are protected against replay at-
tacks by means of a timestamp combined with an additional counter. If a host
sends more than one broadcast packet at the same UNIX time (i. e., within one

CLL: A Cryptographic Link Layer for Local Area Networks 33

second), it increments this counter with each packet by one. All receivers store
for each sender the timestamp and counter from its last broadcast packet. Sub-
sequent packets from the same sender must bear a newer timestamp or the same
timestamp with a higher counter value.

When dealing with high-rate broadcast traffic, the generation of RSA signa-
tures on a per-packet basis may become computationally infeasible in real-time.
However, in this case it is conceivable to queue outgoing broadcast packets for a
short time and sign the accumulated group of packets as a whole with a single
private key operation before dispatching them. The receivers would reassemble
this group and verify the overall signature attached to the last packet. A sophis-
ticated but also more complex approach tolerating packet losses might be the
application of a specialized broadcast authentication protocol like TESLA [19].

6 Integrating and Securing DHCP

6.1 Basic Concept

So far, we have described the case of a static IP configuration, where the lo-
cal CA creates for each machine a host certificate incorporating its MAC and
IP address. However, CLL also supports the automatic assignment of IP ad-
dresses by means of DHCP. The DHCP message exchange is safeguarded and
extended. CLL protects DHCP not only from unauthorized attackers, but also
from malicious behavior originating from authenticated hosts.

In case DHCP is used, the local CA issues a base certificate for each host, bear-
ing only the machine’s MAC address and no IP address. The DHCP server uses
the base certificate as a template to generate a full-fledged host certificate, which
contains the assigned IP address. Thus, it acts as a second CA. The host certificate
issued by the DHCP server has the same validity period as the IP address lease.
When extending the DHCP lease, the host certificate is renewed accordingly.

Securing DHCP implies the authentication of all DHCP packets and a con-
sistency check of the DHCP header in client-originated messages. Since CLL
supervises the complete DHCP traffic in a transparent way, it also takes on the
automatic application for a host certificate and its issuing. Its operation does not
require any modifications on the employed DHCP client or server. On the client
side, CLL attaches the base certificate to the DHCPREQUEST message. On the
server CLL verifies this request and strips off its own headers, before passing it
up to the DHCP module. It then waits for the outgoing DHCPACK message.
This message constitutes the confirmation that the DHCP server has assigned
the requested IP address. CLL extracts from it the allocated IP address along
with the lease time, and issues a corresponding host certificate. Piggybacked on
the DHCPACK message, the new host certificate finally reaches the client, which
can now finalize its IP configuration and is ready to establish SAs.

6.2 Authenticating the Packets

We have designed the authentication of DHCP packets in a way that allows to
employ an HMAC from the beginning, without requiring an initial public key

34 Y.I. Jerschow et al.

handshake. DHCP traffic occurs only between the clients and typically one single
trusted server controlled by the local CA. Therefore, the number of communi-
cating host pairs is limited and it is feasible to statically configure pre-shared
HMAC keys. This task may be performed during the certificate enrollment with-
out any additional effort. The local CA can generate a secret HMAC key for a
host along with its base certificate. After encrypting the HMAC key with the
host’s public RSA key it can deliver these items to the user, e. g., via e-mail.

If the issued HMAC key were completely random, one would have to promptly
configure it on the DHCP server as well, which involves some effort. Instead, we
use a single DHCP master key, a concept adopted from [8]. From this master
key we derive for each host the corresponding HMAC key by means of a key
derivation function. The master key is known only to the local CA and the DHCP
server. The pair <MAC address, expiration time of the base certificate>, in the
following denoted as client ID, serves as the derivation parameter. This scheme
does not require to inform the DHCP server about any newly certified hosts.

Since all hosts include their client ID into every sent DHCP packet, the DHCP
server can deduce the corresponding HMAC key in an ad-hoc fashion and authen-
ticate the packet. Conversely, when the DHCP server responds to the client, it
has the right HMAC key already available. By incorporating the expiration time
of the base certificate into the client ID we restrict the lifetime of the HMAC key.
DHCP packets with expired client IDs are thus easily dropped without further
verification. This allows, for instance, to immediately ignore DHCPDISCOVER
messages sent by no longer authorized hosts.

To protect against replay attacks, we employ the same technique already
introduced with broadcast packets, i. e., a UNIX timestamp in conjunction with
a counter for packets bearing the same timestamp. A consistency check of the
MAC and IP addresses stated in the DHCP header renders the authentication
complete.

6.3 Further Security Measures

We consider the two DHCP messages DHCPDECLINE and DHCPRELEASE as
a security risk. The first one allows a malicious client to spuriously tell the DHCP
server that the IP address assigned to it is already in use by some other machine,
thus making a DHCP starvation attack possible. The second one is utilized to
release an assigned IP address to the DHCP server’s address pool before the
corresponding lease has expired. However, we cannot force a host to give up its
certificate, and a malicious user might continue to use its certificate and with it
the released IP address, while the address has also been assigned to some other
machine. Therefore, we decided to simply drop these messages. Note that this
does not violate the DHCP specification: these messages are transmitted in an
unreliable manner without any retransmissions, i. e., they may get lost en route
anyway. Moreover, no host is obliged to release its IP address ahead of time.

CLL allows to restrict the number of authenticated DHCP packets originated
by the same host that the DHCP server will process during a specified time
interval. Thereby the server can be secured against overload caused by malicious

CLL: A Cryptographic Link Layer for Local Area Networks 35

or misconfigured clients, attempting to renew their IP address lease extremely
often. This would force the server to continuously issue new host certificates,
which includes an expensive private key operation.

These security measures prevent malicious behavior originating from authen-
ticated hosts. Without them attacks on DHCP would be still feasible and one
would have to extensively analyze the server’s DHCP logfiles to backtrack the
identity of the attacker.

7 Implementation and Evaluation

7.1 CLL as a Cross-Platform Service

We have implemented CLL in C++ as a user-mode service on both Windows
(2000, XP, 2003, Vista) and Linux (kernels 2.4 and 2.6) using Visual C++ 2005
and GNU GCC 4.x respectively. Our CLL implementation consists of a platform
independent core, which interoperates with a tailored portability layer providing
a consistent interface for OS specific functionality. The responsibilities of the
portability layer include crafting and filtering raw Ethernet frames, configuring
the network interface (ARP, IP, MTU), and the interfaces for threads and timers.

To set up a filter handler for Ethernet frames in user-mode, we employ the
packet filtering framework WinpkFilter [21] on Windows. On Linux, we have im-
plemented a link layer filtering solution on our own. We unbind the real network
adapter from the IP stack, transparently replace it with a virtual one (a tap de-
vice), and set up a raw PF PACKET socket to send and receive Ethernet frames
through the unbound real network adapter. A maybe somewhat more efficient
kernel-level implementation of CLL’s packet processing engine would constitute
a complex and error-prone task, especially when targeting multiple platforms.
We therefore leave it for future work. But despite the overhead of additional
context switches, our user-mode approach achieves good performance, and is
able to operate at wire-speed in 100Mbit LANs. To support the large number of
cryptographic algorithms proposed for CLL, we employ the comprehensive open
source crypto library Botan [15].

Aiming to provide a real-world solution, we address in our implementation
such issues like persistent storage of SA configurations (to tolerate an OS re-
boot) and backward compatibility. To support non-CLL capable devices like
network printers or NAS and to enable a step-by-step migration, CLL can be
configured to communicate with legacy hosts in the standard, insecure fash-
ion. This is accomplished by providing the CLL-enabled hosts with a list of the
legacy IP/MAC address pairs. CLL then sets up static ARP entries and thereby
provides at least an unidirectional protection against ARP spoofing.

Since the drivers of common Wi-Fi adapters exhibit an Ethernet-compatible
interface to the network stack, Wi-Fi networks can be secured by CLL as well.

7.2 Performance Evaluation

We have conducted a performance evaluation with two hosts A and B, where A
is a laptop equipped with an AMD64 Turion 1.8GHz CPU running Linux 2.6.20

36 Y.I. Jerschow et al.

Table 2. Performance of the ARP handshake

action duration in ms

1st ping A → B using CLL: ARP handshake 27.4

1st ping A → B without CLL: usual ARP exchange 0.92

generating the private & public DH value (2048 bits) host A: 26.3 host B: 44.1

deriving the master key with DH host A: 7.2 host B: 15.7

computing an RSA-1024 signature host A: 3.1 host B: 5.7

(32-bit) and B is a PC with an Intel Core 2 Duo E6400 2.13GHz processor
running Windows XP SP-2. The presented results are averaged over multiple
runs.

The first series of measurements, shown in Table 2, is devoted to the over-
head of the ARP handshake. For digital signatures both hosts use an RSA-1024
module. By pinging the neighboring host with no previously established SA we
measure the time to perform the ARP handshake and the subsequent ICMP echo
exchange. We compare it to the delay of the first ping in an ordinary unsecured
setup, including a plain ARP message exchange.

Though it takes 30 times longer than a usual ARP exchange, the one-time
delay of 27.4ms induced by the ARP handshake with CLL is negligibly short for
practical purposes. This low value is achieved due to an optimization in our im-
plementation: we precompute the Diffie-Hellman values in a background thread,
and thus have them readily available at the beginning of an ARP handshake.
Otherwise the handshake would last 26.3 + 44.1 = 70.4ms longer. The delay
of 27.4ms can be broken down by measuring the computation time of the two
dominating operations—the derivation of the master key with Diffie-Hellman
and the creation of an RSA signature3. Deriving the master key is performed
in parallel, thus taking max{7.2, 15.7} = 15.7ms, while signing is carried out
sequentially and requires 3.1 + 5.7 = 8.8ms. Summing this up yields 24.5ms.
The remaining 2.9ms are used for by the verification of the host certificates and
handshake signatures, and also include the network round-trip time (RTT).

In the second series of measurements, we analyze the TCP throughput (using
the tool ttcp [22]), the CPU load incurred at the sender and receiver, and the
RTT between two hosts already sharing an SA. The results are shown in Table 3.
When comparing the TCP throughput achievable with CLL to the result using
a conventional, unsecured protocol stack, we observe only a very small decrease
in speed of approximately 2% without encryption and 3% with encryption.
It can be attributed quite exactly to the overhead induced by the additional
CLL headers and fields. Encryption and authentication of packets with CLL
apparently has virtually no effect on the achievable data rate in 100Mbit LANs,
which proves the feasibility of our approach.

3 Though host B’s CPU is faster than host A’s CPU, the public key operations are
slowed down by missing big integer assembler optimizations in Botan on Windows
platforms.

CLL: A Cryptographic Link Layer for Local Area Networks 37

Table 3. Performance of unicast transmissions in a 100 Mbit LAN

action measured values
TCP throughput using CLL:

• HMAC(MD5)
A → B: 11 263 KB/s 55 / 26 % CPU (tx / rx)
B → A: 11 312 KB/s 22 / 60 % CPU (tx / rx)

• Twofish / HMAC(MD5)
A → B: 11 113 KB/s 75 / 38 % CPU (tx / rx)
B → A: 11 160 KB/s 31 / 76 % CPU (tx / rx)

TCP throughput without CLL
A → B: 11 522 KB/s 45 / 17 % CPU (tx / rx)
B → A: 11 519 KB/s 10 / 44 % CPU (tx / rx)

RTT: 100 pings A→B using CLL min: 0.287 ms ∅: 0.377 ms max: 0.501 ms σ : 0.046 ms
RTT: 100 pings A→B without CLL min: 0.178 ms ∅: 0.198 ms max: 0.231 ms σ : 0.012 ms

By comparing the CPU utilization with and without CLL being used, we
assess the induced additional CPU load. The overhead of piping the packets
through the user-mode and computing the HMAC turns out to be
entirely admissible. Even when enabling the block cipher, host A still has a
quarter of its CPU time left for other tasks when processing packets at full
wire-speed. The faster host B runs with a CPU utilization of only one third in
the same situation. This machine obviously has the potential to operate CLL
even in a Gigabit LAN, and to achieve a throughput of at least some hundred
Mbit/s. Just like the TCP throughput, the RTT measured when running CLL
in the Twofish /HMAC(MD5) configuration is very satisfactory. On average it
is 0.38ms, i. e., only twice the ordinary RTT without CLL. It should thus not
represent a drawback for any typical application scenario.

8 Conclusion

In this paper, we have introduced the Cryptographic Link Layer (CLL). CLL em-
ploys public key cryptography to identify all hosts in the Ethernet LAN based
on their IP/MAC address pairs. It safeguards the packets transmitted between
them against different spoofing attacks and eavesdropping. Pairs of hosts will-
ing to communicate first establish security associations by an extension of the
ARP handshake. In the course of this, the hosts authenticate each other, ex-
change cryptographic parameters, and negotiate symmetric session keys to pro-
tect their following unicast packets with a message authentication code and an
optional cipher. Broadcast packets are also secured by CLL using digital signa-
tures. When IP addresses are to be configured dynamically, CLL extends DHCP
to automatically issue host certificates with the leased IP address. In the course
of this, it also adds authentication to DHCP and safeguards it against various
attacks.

We have implemented CLL on both Windows and Linux without modifying
the existing protocol stack. Backward compatibility to ordinary, unsecured hosts
can be enabled to support a step-by-step migration and retain legacy devices.

38 Y.I. Jerschow et al.

The evaluation of CLL demonstrated the excellent performance of our protocol
in a 100Mbit Ethernet LAN, where it achieved wire-speed throughput and short
round-trip times.

References

[1] Altunbasak, H., Krasser, S., Owen, H., Sokol, J., Grimminger, J., Huth, H.-P.: Ad-
dressing the Weak Link Between Layer 2 and Layer 3 in the Internet Architecture.
In: LCN 2004: Proceedings of the 29th Annual IEEE International Conference on
Local Computer Networks, November 2004, pp. 417–418 (2004)

[2] Antidote, http://antidote.sourceforge.net
[3] ArpWatch, http://ee.lbl.gov and http://freequaos.host.sk/arpwatch
[4] Bellare, M., Canetti, R., Krawczyk, H.: Message Authentication Using Hash Func-

tions: the HMAC Construction. RSA CryptoBytes 2(1) (1996)
[5] Bruschi, D., Ornaghi, A., Rosti, E.: S-ARP: a Secure Address Resolution Protocol.

In: ACSAC 2003: Proceedings of the 19th Annual Computer Security Applications
Conference, December 2003, pp. 66–74 (2003)

[6] Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346 (April 2006)

[7] Droms, R.: Dynamic Host Configuration Protocol. RFC 2131 (March 1997)
[8] Droms, R., Arbaugh, W.: Authentication for DHCP Messages. RFC 3118 (June

2001)
[9] Ettercap, http://ettercap.sourceforge.net

[10] Gouda, M.G., Huang, C.-T.: A secure address resolution protocol. Computer Net-
works 41(1), 57–71 (2003)

[11] IEEE 802.1AE: Media Access Control (MAC) Security,
http://www.ieee802.org/1/pages/802.1ae.html

[12] Jerschow, Y.I.: The CLL service & toolkit for Windows and Linux,
http://www.cn.uni-duesseldorf.de/projects/CLL

[13] Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301
(December 2005)

[14] Krawczyk, H.: The Order of Encryption and Authentication for Protecting Com-
munications (or: How Secure Is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

[15] Lloyd, J.: Botan Cryptographic Library, http://botan.randombit.net
[16] Lootah, W., Enck, W., McDaniel, P.: TARP: Ticket-based Address Resolution

Protocol. Computer Networks 51(15), 4322–4337 (2007)
[17] Mills, D.L.: Network Time Protocol (Version 3) Specification, Implementation and

Analysis. RFC 1305 (March 1992)
[18] Montoro, M.: Cain & Abel, http://www.oxid.it/cain.html
[19] Perrig, A., Canetti, R., Tygar, J.D., Song, D.: The TESLA Broadcast Authenti-

cation Protocol. RSA CryptoBytes 5(2), 2–13 (2002)
[20] Plummer, D.C.: Ethernet Address Resolution Protocol: Or converting network

protocol addresses to 48.bit Ethernet address for transmission on Ethernet hard-
ware. RFC 826 (November 1982)

[21] NT Kernel Resources: WinpkFilter, http://www.ntkernel.com
[22] Test TCP (TTCP) - Benchmarking Tool for Measuring TCP and UDP Perfor-

mance, http://www.pcausa.com/Utilities/pcattcp.htm
[23] Vyncke, E., Paggen, C.: LAN Switch Security. Cisco Press (2007)
[24] Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251

(January 2006)

http://antidote.sourceforge.net
http://ee.lbl.gov
http://freequaos.host.sk/arpwatch
http://ettercap.sourceforge.net
http://www.ieee802.org/1/pages/802.1ae.html
http://www.cn.uni-duesseldorf.de/projects/CLL
http://botan.randombit.net
http://www.oxid.it/cain.html
http://www.ntkernel.com
http://www.pcausa.com/Utilities/pcattcp.htm

Faster Multi-exponentiation through Caching:

Accelerating (EC)DSA Signature Verification

Bodo Möller1,� and Andy Rupp2

1Google
bmoeller@acm.org

2Horst Görtz Institute for IT Security
arupp@crypto.rub.de

Abstract. When verifying digital signatures, achieving a high through-
put can be crucial. We present a technique that is useful for ECDSA
and DSA signatures. It assumes that common domain parameters are
used (which is typical of ECDSA) and that at least some signers recur
(as in many application scenarios). We can achieve noticeable speedups
in very different environments—from highly restricted ones where mem-
ory is very scarce to larger machines without severe memory restrictions.
Requirements for the target platform are very small for a beneficial appli-
cation of our technique. This makes it attractive for embedded systems,
where ECDSA is a signature scheme of choice.

More generally, what we consider is the task of computing power prod-
ucts

�
1≤i≤k gei

i (“multi-exponentiation”) where base elements g2, . . ., gk

are fixed while g1 is variable between multi-exponentiations but may re-
peat, and where the exponents are bounded (e.g., in a finite group). We
present a new technique that entails two different ways of computing
such a product. The first way applies to the first occurrence of any g1

where, besides obtaining the actual result, we create a cache entry based
on g1, investing very little memory or time overhead. The second way
applies to any multi-exponentiation once such a cache entry exists for
the g1 in question and provides for a significant speed-up.

Keywords: Efficient implementation, elliptic curve cryptography, ex-
ponentiation, ECDSA, DSA, embedded cryptography.

1 Introduction

Consider a scenario where we repeatedly have to verify ECDSA signatures [1],
trying to keep the computational delay small for each verification. A time-
consuming step in ECDSA signature verification is computing a linear com-
bination u1G + u2Q of elliptic curve points G and Q, where G is specified by
domain parameters (i.e., fixed) and where Q constitutes the signer’s public key,
with integers u1 and u2 in the interval

(
0, ord(G)−1

)
both depending on the spe-

cific signature. The same group with the same point G will typically be shared
� Work done while the author was with the Horst Görtz Institute for IT Security.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 39–56, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

40 B. Möller and A. Rupp

by many signers since elliptic curve domain parameters are often taken from
(intersecting) standards such as [19, Appendix 6], [1, Annex J], and [6] (with
domain parameter specifications NIST P-192 aka prime192v1 aka secp192r1
and NIST P-256 aka prime256v1 aka secp256r1 common to all three of these).
Also, we usually can expect some signers and thus their Q values to recur. For
instance, consider public-key infrastructures:

– A verifying party will encounter end-entity certificates signed by possibly
very many different intermediate certification authorities. When a new cer-
tification authority appears for the first time, the verifying party does not
yet know how popular this particular certification authority is, i.e. if it has
signed many or just very few end-entity certificates.

– The same applies to signatures on documents, such as the ECDSA signa-
tures stored on the new digital “e-passports”. When verifying a passport for
airport immigration procedures, then quite possibly the next passenger in
line may be using a passport signed by the same agency. On the other hand,
the current passenger could be the only one from this particular country for
days.

Thus, for a given G, we have to compute linear combinations u1G + u2Q where
Q sometimes is “new” and sometimes is “old” (has been seen before); but
when a new Q appears, we generally do not know if and how frequently it will
reappear.

There are well-known techniques to compute u1G + u2Q much faster than by
computing both u1G and u2Q individually, and this can be done yet faster if G
and Q are both fixed and a one-time precomputation depending on these points
has been done. Performing such precomputation whenever a “new” Q shows up
may pay out if Q turns out to repeat, so that G and Q are fixed for a number
of linear combinations. However, this is an investment of resources that would
be lost if this particular Q does in fact not repeat.

We present a new technique that nearly avoids this drawback, provided that
space for permanently fixed precomputation depending on G only is not severely
limited. The first occurrence of some point Q in a computation u1G + u2Q
will incur very little penalty in terms of memory or time, and yet will leave
behind useful precomputed data that can be cached to speed up subsequent
linear combination computations involving the same G and Q.

While the ECDSA scenario best illustrates the practical use of our technique1,
the approach is in fact not restricted to the ECDSA or DSA case but may be
1 Another approach to speed up ECDSA signature verification is due to Antipa

et al. [2,24]. It works best for a slightly modified variant of the original signature
scheme, dubbed ECDSA∗, but under appropriate circumstances, it can be useful for
the verification of standard ECDSA signatures. Where it makes sense to use the
technique from [2,24], our technique may be preferable depending on the expected
proportion of “old” to “new” Q values. In fact, we can get some of the benefit of
[2,24] for any “new” Q and all of the benefit of our technique for any “old” Q by
using a combination of both techniques in the case of a “new” Q, using specific
imbalanced-scalar parameterizations within [2,24]. We omit further details on this.

Faster Multi-exponentiation through Caching 41

applied in more general settings: It is suitable for any abelian group or (more
generally) abelian semigroup with an identity element, henceforth written mul-
tiplicatively so that what we just described as linear combinations now turns
into power products. Computing power products sometimes is called multi-
exponentiation since it is a generalization of computing powers (exponentiation).
The computational task that we will consider is computing power products of
the form

∏
1≤i≤k

gei

i

where base elements g2, . . ., gk are fixed once and for all, whereas g1 is variable
between multi-exponentiations and may repeat, while all exponents ei are as-
sumed to be ephemeral. We will assume that the exponents are positive and
at most � bits long. (An appropriate value of � is usually implied by the group
order. A negative exponent for a group can be handled through inversion of the
base element, or by reduction of the exponent modulo o where o is some multiple
of the order of the base element, such as the group order.) For our technique
to work as intended, we also assume that the exponent to variable base g1 is
not pathologically short (i.e., its length not just a fraction of �); rare statisti-
cal outliers are no problem. Besides ECDSA signature verification, this setting
also covers DSA signature verification [19]; however, it only applies when using
common domain parameters, which is much more customary for ECDSA.

Concerning the implementation platform, we only need to make very mild
assumptions that are, in particular, commonly satisfied by embedded systems:
We assume that at least read-only memory is not severely limited, so that pre-
computation depending on g2, . . ., gk can be permanently stored. We also assume
that some memory is available for caching at least one group element with an
integer. Such data will be put into cache memory when performing a multi-
exponentiation

∏
1≤i≤k gei

i involving a “new” g1 (i.e., one for which no cache
entry currently exists), and can be used to speed up any subsequent multi-
exponentiation repeating the same g1 as long as the cache entry is kept. While
the method is easier to describe assuming that dedicated cache memory is avail-
able, Appendix C will show that the technique can be quite useful even if this
is not the case and a portion of fast read/write memory has to be sacrificed
instead: In a specific example scenario where read/write memory is very scarce
(which is typical of smart cards and other embedded devices), our technique
already leads to a 10% average speed advantage. The technique is also useful
for devices without such constraints; the specific speed advantage factor gained
by using our method strongly depends on the concrete application scenario and
can be significantly higher than the 10% in said example.

Like many approaches for exponentiation using precomputation (such as the
Lim/Lee approach [12]), our technique has roots that can be traced back to
Pippenger [21,22]; see also [4]. The novelty here in this regard is that for cached
precomputation, we do not store powers of the form g2n

1 as by [21], which would

42 B. Möller and A. Rupp

impose some computational overhead while computing
∏

1≤i≤k gei

i when g1 is
new. Instead, we store other powers of g1 that happen to come up without effort
if we arrange the computation suitably.

Section 2 describes preliminaries for our technique: interleaved multi-
exponentiation, and radix-2 exponent splitting. Then, Section 3 presents the
novel multi-exponentiation technique, which relies on caching certain interme-
diate results that can be obtained by investing very little additional read/write
memory or time, allowing us to speed up later multi-exponentiations if an
appropriate cache entry is available. Section 4 gives example performance
figures for the new technique in certain application scenarios. Appendix A
provides a comprehensive example to illustrate the technique. Appendix B dis-
cusses some implementation aspects. Finally, Appendix C considers a particu-
lar scenario to demonstrate the performance gain achievable by using the new
technique.

2 Multi-exponentiation

We show known techniques that we later will use and combine in a novel way.
Section 2.1 describes interleaved multi-exponentiation, an approach for com-
puting power products. It also briefly describes some properties of radix-2 ex-
ponent representations that can be used in interleaved multi-exponentiation.
Section 2.2 describes the technique of radix-2 exponent splitting, which can be
used to obtain shorter exponents by converting exponentiation tasks into multi-
exponentiation tasks, or converting k-fold multi-exponentiation tasks into k′-fold
multi-exponentiation tasks with k′ > k. Radix-2 exponent splitting is a useful
technique for fixed bases (namely, for exponentiation or multi-exponentiation
with precomputation that can be done in advance).

2.1 Interleaved Multi-exponentiation

We build on the straightforward multi-exponentiation strategy that has been
called interleaving in [14], which generalizes well-known methods for single expo-
nentiations such as the (left-to-right) binary or sliding window methods. Assume
that radix-2 representations ei =

∑
0≤j≤� bi,j · 2j, bi,j ∈ Bi, of all exponents are

given where each Bi is a set of integers. We write ei = (bi,�, bi,�−1, . . ., bi,1, bi,0)2
and call the bi,j digits and Bi a digit set. We require that every gb

i for b ∈ Bi\{0}
be available from precomputed data. Note that in a group where inversion is
particularly easy (such as those used in elliptic curve cryptography where an
inversion requires just obtaining an additive inverse in the underlying field or
performing a field addition), obtaining g−b

i from precomputed data is easy if gb
i

has been stored; so both b and −b can be included in set Bi if the single element
gb

i has been stored in a precomputed table of powers. In this setting, interleaved
multi-exponentiation computes the power product as follows.

Faster Multi-exponentiation through Caching 43

A ← 1G {Start with identity element}
for j = � down to 0 do

A ← A2

for i = 1 to k do
if bi,j �= 0 then

A ← A · gbi,j

i {Multiply by [inverse of] precomputed element}
return A

This is a left-to-right technique in that it proceeds from the most significant
digits (“left”) down to the least significant digits (“right”).

Typical digits sets are of the form B±(m) = {±1,±3,±5,±7, . . .,±m, 0} for
groups where inversion is easy, or B(m) = {1, 3, 5, 7, . . ., m, 0} for semigroups
in general. Here parameter m is an odd integer, often but not necessarily of
the form (11. . .11)2, i.e. m = 2w − 1, w ≥ 1 an integer. This special form
applies to the sliding window technique (cf. [9]) and to various variants of it that
employ signed-digit representations of exponents, such as those introduced in [13]
using a right-to-left conversion from binary to signed-digit representation and in
[17,3,20] using left-to-right conversions. The general case with an arbitrary odd
m was introduced as fractional window representations in [15], with left-to-right
conversions for the signed-digit case suggested in [11,23,16]. Different digits sets
can be used for different exponents, so we have Bi = B(mi) or Bi = B±(mi)
with per-exponent parameters mi when employing such representations.

The length of a representation is the number of digits that remain if we drop
any leading zeros (so the length of (b�, b�−1, . . ., b1, b0)2 is � + 1 if b� �= 0). Max-
imum length l + 1 is sufficient to represent any l-bit integer e (2l−1 ≤ e < 2l)
in any of the representations mentioned above [18] (length l is sufficient for any
of the unsigned-digit representations), and the minimum length with these rep-
resentations is l + 1 −

⌈
log2 m

⌉
. Thus, the maximum outer loop index � in the

algorithm as shown above is sufficient for integers up to � bits.
The weight of a representation is the number of digits that are non-zero. The

conversion techniques mentioned above are known to achieve, for any integer e,
the minimum weight possible given the respective digit set [18,16]. For unsigned
and signed fractional window representations using digit set {1, 3, 5, . . ., m, 0} or
{±1,±3,±5, . . .,±m, 0}, the average weight for random integers up to � bits is
slightly above

�

w(m) +
m + 1
2w(m)

and
�

1 + w(m) +
m + 1
2w(m)

,

respectively, where w(m) =
⌊
log2(m + 1)

⌋
; for the average density (weight di-

vided by �), we have convergence to the resulting estimates as � goes to ∞
(see [16]). For the special case m = 2w − 1 (i.e., the sliding window technique
and its non-fractional signed-digit counterparts), such that w(m) = w, the above
is simply �/(1 + w) and �/(2 + w), respectively.

Observe that in the interleaved multi-exponentiation algorithm as shown
above, (semi-)group operations need not actually be performed until after the

44 B. Möller and A. Rupp

first multiplication of A by a precomputed element or its inverse, since A = 1G

holds up to this point. This means that the initial squarings of 1G can be skipped,
and the first operation A ← A · gbi,j

i amounts to an assignment A ← g
bi,j

i .
To estimate the time required to perform an interleaved multi-exponentiation,

we thus need the maximum length of the representations of the ei to determine
the number of squarings, and the weight of the representation of each ei to deter-
mine the number of other multiplications by elements available from precomputed
data. (The maximum length is one more than the number of squarings, and the
sum of the weights is one more than the number of other multiplications.) This is
not counting any group inversions, since we would only use these in the algorithm
if inversion is easy. In addition to this, we have to look at the time needed for pre-
computation. If gi is a fixed base, we can assume that the required powers gb

i have
been precomputed in advance (and possibly built into ROM) and thus do not enter
the time estimate. However, if gi is not fixed, some effort goes into precomputing
these powers: from gi, the powers g3

i , . . ., gmi

i can be computed using one squaring
(to obtain g2

i as an intermediate value) and mi−1
2 other multiplications.

(Note that the minimum-weight property of a conversion technique does not
mean that it always provides the best radix-2 representation possible given the
particular digit set. As discussed in [15, Section 5.1] and [16, Section 4], modified
signed fractional window representations can sometimes reduce length without
increasing weight. In certain situations, it may even be of advantage to accept
a slight increase of weight for the sake of length reduction if saved squarings
[due to length reduction] outweigh the additional multiplications [due to weight
increase]. To pursue this approach, we can generalize the concept of radix-2
representations: e.g., (100000)2 = 25 could be converted into 3 ·22 +5 ·22, which

is not a proper radix-2 representation but might be written as
(3
5 00

)
2

using a

“double digit” of weight 2. Details are out of the scope of the present paper; we
just mention this as a reminder that minimum-weight radix-2 representations
can sometimes be improved by applying appropriate substitution rules.)

2.2 Radix-2 Exponent Splitting

We have seen that the length of exponent representations is important to effi-
ciency since it determines the number of squarings needed for interleaved multi-
exponentiation. For an exponent e, this length is around log2 e with any of the
representations mentioned in Section 2.1 as long as parameter m is reasonably
small. Radix-2 exponent splitting, shown in the following, is a simple but effec-
tive idea (underlying [5] and made explicit in [8]) to get better performance if
all bases are fixed.

For exponentiations ge with exponent representations e = (b�, . . . , b0)2 of
maximum length � + 1, we can decide to split each such representation into
some number s of shorter exponent representations. To wit, let � + 1 = L1 +
· · · + Ls with positive integers Li ≈ �+1

s , and then let e1 = (bL1−1, . . ., b0)2,
e2 = (bL1+L2−1, . . ., bL1)2, and so on:

Faster Multi-exponentiation through Caching 45

e = (b�, . . . , b0)2 = (bL1+···+Ls−1, . . ., bL1+···+Ls−1︸ ︷︷ ︸
es

,

bL1+···+Ls−1−1, . . ., bL1+···+Ls−2︸ ︷︷ ︸
es−1

, . . ., bL1−1, . . ., b0︸ ︷︷ ︸
e1

)2

Then from e =
∑

1≤i≤s ei · 2L1+···+Li−1 it follows that

ge = ge1 ·
(
g2L1)e2 · · · · ·

(
g2L1+···+Ls−2)es−1 ·

(
g2L1+···+Ls−1)es ,

and thus by defining gi = g2
�

1≤I<i LI we have transformed the task of com-
puting ge into the s-fold multi-exponentiation

∏
1≤i≤s gei

i . There is no need to
actually evaluate the ei as integers here since we already have appropriate rep-
resentations of them—namely, portions of the original representation as shown.

Thanks to exponent splitting, the maximum length of exponent representa-
tions can go down from � + 1 to

⌈
�+1

s

⌉
if the Li are chosen accordingly. If g is

fixed (and the parameters Li are constant), then so are the gi as defined here.
Thus, the powers gb

i needed by the interleaved multi-exponentiation algorithm
in Section 2.1 can be precomputed in advance. So using additional memory for
precomputed data (possibly ROM) allows us to save time in each exponentiation.

So far, we have looked at radix-2 exponent splitting applied to exponentia-
tion, not to multi-exponentiation: each single exponentiation is converted into a
multi-exponentiation. Radix-2 exponent splitting can just as well be applied
for any fixed base in multi-exponentiation tasks, converting a k-fold multi-
exponentiation into some k′-fold multi-exponentiation, k′ > k. However, since
the exponent splitting technique needs additional precomputed data (the powers
gi = g2

�
1≤I<i LI of base g), it cannot be used to advantage for bases that are

not fixed. Thus, if there is any base that is not fixed (as in the case of DSA
and ECDSA signature verification), long exponent representations may remain,
and radix-2 exponent splitting hence will typically provide essentially no speed
advantage in this situation.

3 Faster Multi-exponentiation by Caching Intermediate
Results

This section describes a novel technique for computing power products∏
1≤i≤k gei

i assuming that g2, . . ., gk are fixed base elements, while g1 is a vari-
able base element whose values may recur. The technique is based on interleaved
multi-exponentiation and on exponent splitting, but adds new features. It con-
sists of two different multi-exponentiation algorithms. The first algorithm, de-
scribed below in Section 3.1, is employed whenever a “new” g1 value appears.
This algorithm not only computes the multi-exponentiation result, but also out-
puts certain intermediate results, intended to be cached for later use. The second
algorithm, described below in Section 3.2, can be employed whenever an “old” g1

46 B. Möller and A. Rupp

value appears, namely one for which a cache entry already exists. This algorithm
then exploits the cache entry created by the first algorithm to compute the new
multi-exponentiation result faster.

For both algorithms, we assume that parameters for radix-2 exponent splitting
have been fixed, i.e. we have constant integers s and L1, . . ., Ls as described in
Section 2.2, used identically for all bases g2, . . . , gk. We demand that L1 + 1 ≥
max1≤i≤s Li. For these bases, we furthermore assume that digit sets for exponent
representations have been fixed (see Section 2.1), and that there is a fixed length
limit �+1 for exponent representations. (This is enough for exponents up to � bits,
using any of the representations mentioned in Section 2.1.) We also require that
powers of g2, . . ., gk as required for radix-2 exponent splitting using the given
digit sets and exponent splitting parameters are precomputed in advance. These
are constant elements, so they may be stored in ROM. Due to our assumption
that at least read-only memory is not severely limited, it should be possible to
store quite a number of such precomputed elements, allowing us to use reasonably
large digit sets in the representations of exponents e2, . . ., ek that will undergo
radix-2 exponent splitting.

Of course, since cache entries take up read/write memory, they eventually may
have to be expired as new g1 values occur. Once the cache entry for a certain g1

has been deleted, this particular value again will have to be considered “new” if
it occurs once more later. In extreme cases, the cache might provide space just
for a single cache entry. Then, depending on the caching strategy implemented,
g1 might be recognized as “old” only if two immediately consecutive multi-
exponentiations involve the same g1 value, since any new value might lead to
an instant cache eviction to make space for a new entry. However, it would also
be possible to keep the existing cache entry for a while even if new g1 values
appear, meaning that any cacheable data created for such a new g1 value would
have to be discarded for lack of space. Which caching strategy is to be preferred
depends very much on the statistical properties of the application scenario.

3.1 Multi-exponentiation for a New Base g1

If no cache entry based on g1 is available,
∏

1≤i≤k gei

i should be computed as
follows. As in Section 2.1, we assume that the exponents are given in represen-
tations ei =

∑
0≤j≤� bi,j · 2j, bi,j ∈ Bi.

First, apply radix-2 exponent splitting (Section 2.2) to the representations
of exponents e2 through ek such that all of the resulting exponent represen-
tations observe maximum length L = max1≤i≤s Li (≈ �+1

s). This transforms
the k-fold multi-exponentiation task into a multi-exponentiation task with more
bases, where the exponent to g1 appears unchanged but all other exponent rep-
resentations have been split into parts no longer than L digits. The list of bases
has expanded from (g1, g2, . . ., gk) into

(
g1, g2, g

2L1

2 , . . ., g2L1+···+Ls−1

2 , . . . , gk, g2L1

k , . . ., g2L1+···+Ls−1

k

)
;

we will assume that g1 keeps its index (i = 1). Now apply the interleaved multi-
exponentiation algorithm from Section 2.1 to this new

(
1 + (k − 1)s

)
-fold power

Faster Multi-exponentiation through Caching 47

product. (Remember that appropriate precomputed powers of the bases except g1

are assumed to be available e.g. from ROM.) This will generate the desired result,∏
1≤i≤k gei

i . Additionally, it will generate certain intermediate values that turn
out to be very useful.

Observe that no loop iteration before j = L1 may involve non-zero exponent
digits for any base other than g1 (since we have L1 + 1 ≥ Li for any of the
exponent splitting parameters L2, . . ., Ls). In other words, before this round,
A has never been multiplied with a power of a base other than g1 . In particular,
we have A = g

(b1,�,...,b1,L1)2
1 just after the inner loop iteration for j = L1, i = 1

(and still after the outer loop iteration for j = L1 if L1 ≥ maxi Li). From this
and earlier loop iterations, we can obtain the following s−1 intermediate values:

j = L1 + · · ·+ Ls−1 ⇒ A = g
(b1,�,...,b1,L1+···+Ls−1)2
1

.

j = L1, i = 1 ⇒ A = g
(b1,�,...,b1,L1)2
1

Thus, we can output the following data to be cached—a cache entry comprising
g1 itself (as index to the cache) and s−1 pairs, each consisting of an integer and
the corresponding power of g1:

(
g1,

(
(b1,�, . . ., b1,L1)2, g

(b1,�,...,b1,L1)2
1

)
,

. . .,
(
(b1,�, . . ., b1,L1+···+Ls−1)2, g

(b1,�,...,b1,L1+···+Ls−1)2
1

))

Note that when writing this to cache, the integers may be evaluated as such—
there is no need to store the specific radix-2 representations. (However, since all
of these integers are derived from e1 following a fixed rule, it is clear that at most
� bits are sufficient to store complete information on all of them, should memory
efficiency be an utmost concern.) With any of the representations mentioned in
Section 2.1, these partial integers are guaranteed to be non-negative, with

(b1,�, . . ., b1,L1)2 ≥ . . . ≥ (b1,�, . . ., b1,L1+···+Ls−1)2 ≥ 0.

Furthermore, if e1 is uniformly random from some set (0, . . ., q) of integers
where q is an �-bit integer, then (unless Ls is very small) all of these inte-
gers will actually be positive with high probability (and will be reasonably
close to 2�−L1, . . ., 2�−L1−···−Ls−1 , respectively; i.e., since � =

∑
1≤i≤s Li, to

2L2+···+Ls , . . ., 2Ls).
Depending on the assumed distribution of e1, it may be a good idea to skip

writing a cache entry if it ever turns out that (b1,�, . . ., b1,L1+···+Ls−1)2 = 0. In
any case, writing a cache entry should be skipped if all of the integers in it would
be zero (and thus the corresponding powers of g1 trivial).

48 B. Möller and A. Rupp

3.2 Multi-exponentiation for an Old Base g1

If a cache entry based on g1 is available (created as described in Section 3.1),
then

∏
1≤i≤k gei

i may be computed as follows. First, parse the cache entry as(
g1, (λ1, G1), . . ., (λs−1, Gs−1)

)
. Here we have Gi = gλi

1 for 1 ≤ i ≤ s− 1, and
if one of the exponent representations mentioned in Section 2.1 was used while
creating the cache entry as specified in Section 3.1, we have λ1 ≥ . . . ≥ λs−1 ≥ 0.
Now split e1 into integers Ei (1 ≤ i ≤ s):

– let d0 = e1;
– for 1 ≤ i ≤ s− 1, let Ei =

⌊di−1
λi

⌋
and di = di−1 − Eiλi;

– and finally, let Es = ds−1.

In the exceptional case that λi = 0, Ei = 0 should be substituted for
⌊di−1

λi

⌋
. By

this construction, we have e1 = E1λ1 + · · ·+ Es−1λs−1 + Es. It follows that

ge1
1 = GE1

1 · · · · ·GEs−1
s−1 · gEs

1 ,

and thus we have transformed the power ge1
1 into a power product using new

exponents Ei. This step is similar to radix-2 exponent splitting; we call it modular
exponent splitting. Suitable digit sets for radix-2 representations of each of the
new exponents can be chosen depending on how much read/write memory is
available for storing powers of the bases G1, . . ., Gs−1 and g1 (cf. Section 2.1).

For the exponents to the fixed bases g2, . . ., gk, we again (exactly as in Sec-
tion 3.1) assume that these are given in representations ei =

∑
0≤j≤� bi,j · 2j ,

bi,j ∈ Bi. We apply radix-2 exponent splitting to these, giving us exponent
representations of maximum length L.

In total, by applying both modular exponent splitting and radix-2 exponent
splitting, we have converted the k-fold multi-exponentiation into a ks-fold multi-
exponentiation. The maximum length of exponent representations here may ex-
ceed L since we do not have strict guarantees regarding the Ei. However, under
the assumptions regarding the distribution of e1 stated in Section 3.1, the max-
imum length will remain around L with high probability.

This completes the description of our new technique. For an illustrative ex-
ample we refer the reader to Appendix A.

4 Performance

Our multi-exponentiation technique can be used under many different
parameterizations—the number of bases may vary; the length of exponents
may vary; the amount of memory available for fixed precomputation (such as
ROM) may vary; the amount of memory available for cache entries (such as
slow read/write memory) may vary; the amount of memory available for vari-
able precomputed elements (i.e., intermediate powers) needed by the interleaved
exponentiation algorithm may vary; and under any of these parameterizations,
we have to decide on parameters s and L1, . . ., Ls for exponent splitting (s-fold

Faster Multi-exponentiation through Caching 49

exponent splitting with exponent segment lengths Li), and we have to decide
on digit sets and representation conversion techniques for the exponents to the
fixed bases g2, . . ., gk on the one hand, and for any of the s partial exponents
created from e1 when the algorithm from Section 3.2 uses a cache entry on the
other hand. This encompasses a large variety of different settings.

In the present section, we will look at a specific range of rather simple
use scenarios for our new technique to assess its performance. Let us assume
that we want to implement the multi-exponentiation technique in an environ-
ment where only a very limited amount of fast read/write memory is avail-
able but where we have some slower memory suitable for the cache, and where
we have plenty of read-only memory for permanently fixed precomputed ele-
ments. As powers of g1 are frequently needed in the course of the algorithm,
this is what we will use such fast memory for. As particular examples, let us
consider the cases where we have such fast memory space to store 4, 8, 16 or
32 group elements, and let � be 160, 192 or 256, which are practical values for
ECDSA. Note that restricting the space for storing powers of a base also limits
the number of different digit values that we can use in exponent representations
for the interleaved multi-exponentiation algorithm. We have implemented our
new multi-exponentiation strategy and counted certain group operations under
these prerequisites for different values of the splitting parameter s, always using
reasonable Li ≈ �+1

s and a left-to-right signed fractional window representa-
tion using appropriate digit sets B±(m) = {±1,±3, . . .,±m, 0} such as to fully
utilize the fast memory. (See [11,23,16] for details regarding left-to-right signed
fractional window conversions.)

We have repeatedly simulated the behavior of our technique for uniformly
random exponents in the interval (0, . . ., 2� − 1), covering both the case of “new
bases” to create cache entries (Section 3.1) and the case of “old bases” to observe
the performance given such cache entries (Section 3.2). In these simulations, we
have counted the following operations:

– Squarings (S) and other multiplications (M) used for precomputing powers
of g1 (including powers of cache entries derived from g1);

– squarings (S) and multiplications (M) by precomputed powers of g1 (or of
cache entries) within the interleaved multi-exponentiation algorithm.

We have excluded from counting any of the multiplications by fixed precomputed
elements (from ROM), since these are not a limiting factor given the assumption
that plenty of space is available for these elements: low-weight exponent represen-
tations accordingly may be used for the corresponding exponents, so changes of
the parameterization have less of an impact here. (Refer to Section 2.1 for applica-
ble weight estimates.) The simulation results can be found in Table 1. The values
in the first row (s = 1) reflect the special situation when no splitting at all is done.
This applies to the multi-exponentiation algorithm for a new base g1 for which no
cache entry is available (Section 3.1), where a signed-digit representation is used
for the full-length exponent e1. The remaining rows contain operation counts for
cases where g1 is an old base, i.e., an existing cache entry is used (Section 3.2).
As we can see from the table, the number of squarings will be reduced to about

50 B. Möller and A. Rupp

Table 1. Experimental performance figures (squarings and multiplications with powers
of g1) for s-fold exponent splitting with exponents up to �-bits, with space for 4, 8, 16,
or 32 elements for variable precomputation

#var = 4 #var = 8 #var = 16 #var = 32

s = 1

precomp. 1S + 3M 1S + 7M 1S + 15M 1S + 31M
� = 160 159.9S + 31.5M 156.0S + 26.1M 155.0S + 22.3M 154.0S + 19.5M
� = 192 188.9S + 37.9M 187.9S + 31.4M 187.0S + 26.9M 186.0S + 23.5M
� = 256 252.9S + 50.6M 251.9S + 42.1M 251.0S + 36.0M 250.0S + 31.5M

s = 2

precomp. 2S + 2M 2S + 6M 2S + 14M 2S + 30M
� = 160 79.5S + 39.9M 79.1S + 32.0M 78.6S + 26.8M 78.6S + 23.2M
� = 192 95.7S + 47.9M 94.7S + 38.5M 95.0S + 32.2M 93.7S + 27.8M
� = 256 127.6S + 63.9M 126.9S + 51.4M 126.6S + 42.8M 126.8S + 36.8M

s = 3

precomp. 1S + 1M 3S + 5M 3S + 13M 3S + 29M
� = 160 54.7S + 49.4M 53.4S + 37.4M 52.8S + 30.5M 52.4S + 25.9M
� = 192 64.3S + 59.1M 63.3S + 44.7M 62.9S + 36.6M 62.3S + 31.1M
� = 256 85.8S + 78.6M 85.0S + 59.6M 84.5S + 48.5M 84.5S + 41.1M

s = 4

precomp. 0S + 0M 4S + 4M 4S + 12M 4S + 28M
� = 160 40.6S + 53.9M 40.7S + 40.7M 39.3S + 32.8M 38.8S + 27.8M
� = 192 48.4S + 64.5M 47.6S + 48.6M 47.6S + 39.2M 46.9S + 33.1M
� = 256 64.1S + 85.7M 64.1S + 64.7M 63.4S + 52.1M 62.9S + 43.8M

s = 5

precomp. 3S + 3M 5S + 11M 5S + 27M
� = 160 33.0S + 46.4M 31.9S + 36.0M 31.1S + 30.0M
� = 192 39.7S + 55.8M 39.4S + 43.1M 38.4S + 35.7M
� = 256 51.8S + 73.7M 51.4S + 56.9M 50.5S + 47.1M

s = 6

precomp. 2S + 2M 6S + 10M 6S + 26M
� = 160 29.4S + 50.4M 29.0S + 38.8M 27.8S + 31.9M
� = 192 32.0S + 59.6M 32.2S + 45.9M 31.7S + 37.7M
� = 256 45.0S + 79.7M 45.7S + 60.9M 44.3S + 49.8M

s = 7

precomp. 1S + 1M 7S + 9M 7S + 25M
� = 160 27.8S + 53.8M 26.9S + 40.8M 26.0S + 33.5M
� = 192 30.1S + 64.0M 28.9S + 48.6M 28.4S + 39.5M
� = 256 40.5S + 84.7M 39.4S + 64.1M 38.2S + 52.1M

�/s as expected using the new modular exponent splitting technique. Moreover,
the number of multiplications performed during the multi-exponentiation slightly
increases from row to row: this due to the fact that smaller digit sets have to be
used to obey the space limits while the splitting parameter is increased. (Note that
s ≥ 5 cannot be used with space for only 4 dynamically precomputed elements,
so the corresponding parts of the table are left empty.)

Note that the size of cache entries does not affect the statistics as reflected
in the table. With severe memory constraints for the cache, s = 2 might be the
only option. Comparing the row s = 1 (which describes the case of a multi-
exponentiation not using a cache entry) with the row s = 2 shows that our
technique provides for a noticeable speed-up even with just s = 2.

It also should be noted that our multi-exponentiation technique for old
bases g1 (Section 3.2) involves s− 1 divisions with remainder to perform s-fold
modular exponent splitting. This starts with an �-bit denominator and a divisor
around �− �

s bits; both operands will decrease by around �
s in each subsequent

division. Thus, the total extra cost of these modular divisions should usually be
reasonably small. The typical size of results means that around � bits will still
suffice to store the resulting shorter exponents.

Please refer to Appendix B for certain implementation aspects. See Ap-
pendix C for a performance comparison of our technique with an immediate
approach in a particular scenario.

Faster Multi-exponentiation through Caching 51

References

1. American National Standards Institute (ANSI). The elliptic curve digital signature
algorithm (ECDSA). ANSI X9.62 (1998)

2. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accel-
erated verification of ECDSA signatures. In: Preneel, B., Tavares, S. (eds.) SAC
2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)

3. Avanzi, R.M.: A note on the sliding window integer recoding and its left-to-right
analogue. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
130–143. Springer, Heidelberg (2004)

4. Bernstein, D.J.: Pippenger’s exponentiation algorithm. Draft (2002),
http://cr.yp.to/papers.html#pippenger

5. Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast exponentiation
with precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658,
pp. 200–207. Springer, Heidelberg (1993)

6. Certicom Research. Standards for efficient cryptography – SEC 2: Recommended
elliptic curve cryptography domain parameters. Version 1.0 (2000),
http://www.secg.org/

7. Cohen, H., Ono, T., Miyaji, A.: Efficient elliptic curve exponentiation using mixed
coordinates. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp.
51–65. Springer, Heidelberg (1998)

8. de Rooij, P.: Efficient exponentiation using precomputation and vector addition
chains. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 389–399.
Springer, Heidelberg (1995)

9. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms 27,
129–146 (1998)

10. Institute of Electrical and Electronics Engineers (IEEE). IEEE standard specifica-
tions for public-key cryptography. IEEE Std 1363-2000 (2000)

11. Khabbazian, M., and Gulliver, T. A.: A new minimal average weight representation
for left-to-right point multiplication methods. Cryptology ePrint Archive Report
2004/266 (2004), http://eprint.iacr.org/

12. Lim, C.H., Lee, P.J.: More flexible exponentiation with precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994)

13. Miyaji, A., Ono, T., Cohen, H.: Efficient elliptic curve exponentiation. In: Han, Y.,
Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 282–290. Springer, Heidelberg
(1997)

14. Möller, B.: Algorithms for multi-exponentiation. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 165–180. Springer, Heidelberg (2001)

15. Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H.
(eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)

16. Möller, B.: Fractional windows revisited: Improved signed-digit representations
for efficient exponentiation. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS,
vol. 3506, pp. 137–153. Springer, Heidelberg (2005)

17. Muir, J.A., Stinson, D.R.: New minimal weight representations for left-to-right
window methods. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 366–
383. Springer, Heidelberg (2005)

18. Muir, J.A., Stinson, D.R.: Minimality and other properties of the width-w nonad-
jacent form. Mathematics of Computation 75, 369–384 (2006)

http://cr.yp.to/papers.html#pippenger
http://www.secg.org/
http://eprint.iacr.org/

52 B. Möller and A. Rupp

19. National Institute of Standards and Technology (NIST). Digital Signature Stan-
dard (DSS). FIPS PUB 186-2 (2000)

20. Okeya, K., Schmidt-Samoa, K., Spahn, C., Takagi, T.: Signed binary representa-
tions revisited. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 123–139.
Springer, Heidelberg (2004)

21. Pippenger, N.: The minimum number of edges in graphs with prescribed paths.
Mathematical Systems Theory 12, 325–346 (1979)

22. Pippenger, N.: On the evaluation of powers and monomials. SIAM Journal on
Computing 9, 230–250 (1980)

23. Schmidt-Samoa, K., Semay, O., Takagi, T.: Analysis of fractional window recoding
methods and their application to elliptic curve cryptosystems. IEEE Transactions
on Computers 55, 48–57 (2006)

24. Struik, M., Brown, D.R., Vanstone, S.A., Gallant, R.P., Antipa, A., Lambert, R.J.:
Accelerated verification of digital signatures and public keys. United States Patent
Application Publication US 2007/0064932 A1 (2007)

A An Example

As an illustrative toy example, let us apply our new technique to multi-exponentiations
gd
1 · ge

2 with exponents of size at most � = 18 bits. To keep the example simple, we use
unsigned-digit (instead of signed-digit) exponent representations. Let the digit sets
for the fixed base be B2 = {1, 3, 5, 7, 0}. For radix-2 and modular exponent split-
ting, we use splitting parameter s = 3. Thus, g2 is replaced a priori by three fixed

bases g2, g3, g4 where g3 = g26

2 , g4 = g212

2 . Accordingly, we precompute the powers
(g2, g

3
2 , g5

2 , g7
2 , g3, g

3
3, g

5
3, g

7
3, g4, g

3
4 , g5

4 , g7
4) and save this data in ROM. We consider an

environment with a limited amount of fast read/write memory and assume that we
have only space to store 8 powers of the variable base g1. Hence, we can choose digit
set B1 = {1, 3, . . . , 15, 0} for exponentiations with a new base (Section 3.1) and digit
sets B1 = {1, 3, 0}, BG1 = BG2 = {1, 3, 5, 0} for exponentiations with an old base
(Section 3.2).

Multi-exponentiation for a New Base g1. Let us now consider the com-
putation of gd

1 · ge
2 for d = 205802 = (110010001111101010)2 and e = 245153 =

(111011110110100001)2 where g1 is a new base, i.e. no cached precomputed data based
on g1 is available. Before the actual multi-exponentiation, we compute the powers
(g1, g

3
1 , . . . , g15

1) and save these in fast read/write memory. Encoding e1 := d using B1

yields

e1 = (3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 15, 0, 0, 5, 0, 1, 0)2.

Encoding e using B2 and then splitting into three parts e2, e3, e4 yields

e4 = (7, 0, 0, 0)2,
e3 = (7, 0, 0, 5, 0, 0)2,
e2 = (5, 0, 0, 0, 0, 1)2.

The following table shows what happens while performing the multi-exponentiation�4
i=1 gei

i as described in Section 3.1, based on interleaved multi-exponentiation as
explained in Section 2.1:

Faster Multi-exponentiation through Caching 53

j A Cache entry (so far)

17 1 (g1)
16 g3

1

13 (g3
1)

23
g1 = g25

1

12 (g25
1)2 = g50

1
�
g1, (50, g50

1)
�

6 (g50
1)2

6
g15
1 = g3215

1
�
g1, (3215, g3215

1), (50, g50
1)

�
5 (g3215

1)2g5
2g7

3 = g6430
1 g5

2g7
3

3 (g6430
1 g5

2g7
3)

22
g5
1g7

4 = g25725
1 g20

2 g28
3 g7

4

2 (g25725
1 g20

2 g28
3 g7

4)
2g5

3 = g51450
1 g40

2 g61
3 g14

4

1 (g51450
1 g40

2 g61
3 g14

4)2g1 = g102901
1 g80

2 g122
3 g28

4

0 (g102901
1 g80

2 g122
3 g28

4)2g2 = g205802
1 g161

2 g244
3 g56

4

As we can see here, until and including round j = 6, the variable A contains no powers
of bases other than g1. Intermediate powers of g1 for caching are available at the points
j = 12 and j = 6 of the computation.

Multi-exponentiation for an Old Base g1. Let us compute gd
1 · ge

2 for d =
73660 = (10001111110111100)2 , e = 236424 = (111001101110001000)2 where g1 is
an old base for which the cache entry (g1, (λ1 = 3215, G1 = g3215

1), (λ2 = 50, G2 =
g50
1)) as created above is available. First, the powers (g1, g

3
1, G1, G

3
1, G

5
1, G2, G

3
2, G

5
2)

are precomputed and stored in fast read/write memory. Next, we perform modular
exponent splitting as described in Section 3.2:

d0 = d = 73660,

E1 =
�

d0
λ1

�
= 22 and d1 = d0 − E1λ1 = 2930,

E2 =
�

d1
λ2

�
= 58 and d2 = d1 − E2λ2 = 30,

E3 = d2 = 30

Encoding E1, E2 and E3 using BG1 , BG2 and B1 yields

E1 = (10110)2 = (5, 1, 0)2,
E2 = (111010)2 = (3, 0, 0, 5, 0)2,
E3 = (11110)2 = (3, 0, 3, 0)2.

By encoding e using B2 and then splitting into 3 parts e2, e3, e4 (using radix-2 exponent
splitting), we obtain

e4 = (7, 0, 0, 0)2,
e3 = (3, 0, 0, 0, 7, 0)2,
e2 = (1, 0, 0, 0)2.

The table below shows what happens in the interleaved multi-exponentiation to com-
pute GE1

1 GE2
2 gE3

1 ge2
2 ge3

3 ge4
4 :

j A

5 g3
3

4 (g3
3)

2G3
2 = G3

2g
6
3

3 (G3
2g

6
3)

2g3
1g2g

7
4 = G6

2g
3
1g2g

12
3 g7

4

2 (G6
2g

3
1g2g

12
3 g7

4)
2G5

1 = G5
1G

12
2 g6

1g2
2g24

3 g14
4

1 (G5
1G

12
2 g6

1g2
2g24

3 g14
4)2G1G

5
2g

3
1g7

3 = G11
1 G29

2 g15
1 g4

2g55
3 g28

4

0 (G11
1 G29

2 g15
1 g4

2g55
3 g28

4)2 = G22
1 G58

2 g30
1 g8

2g110
3 g56

4

54 B. Möller and A. Rupp

B Implementation Aspects

On-The-Fly Signed-Digit Conversions. In our descriptions of multi-
exponentiation algorithms, we have employed radix-2 representations of exponents by
referring to their individual digits. However, this by no means is meant to imply that
these digits need to be explicitly obtained and stored in advance, which would be quite
inconvenient if memory is scarce. Left-to-right signed fractional window representa-
tions [11,23,16] are very convenient for our purposes since (for any given maximum
digit value m) there is a finite-state machine that transforms the binary representation
into the corresponding signed-digit representation. As the name suggests, this conver-
sion machine starts at the most significant digit (“left”) and continues towards the
least significant digit (“right”). Since interleaved multi-exponentiation is a left-to-right
technique as well, this often means that the signed digits can be obtained on the fly.

To make this work with radix-2 exponent splitting, we need to add an additional
first left-to-right pass through the binary representation. This is essentially a dry run of
the signed fractional window conversion, used to determine the first binary digits that
will affect each of the segments of the signed-digit representation. For s-fold radix-2
exponent splitting, such a dry run can be used to initialize each of s finite-state ma-
chines, which afterwards can be used to obtain the digits of the individual segments
(exactly as in the case of the on-the-fly conversion using just a single such machine
that we would use in the case without splitting).

A simpler alternative would be to first split the binary representation, and then
generate the signed-digit representations individually. This could be done truly on
the fly, i.e., without the additional left-to-right pass. However, this strategy often will
increase the total weight of the resulting representations [15], so the two-pass technique
usually should lead to better performance.

Variants of the Signed Fractional Window Representation. In our per-
formance estimates in Section 4, we optimistically assumed that besides ROM and fast
read/write memory, there is another kind of memory that we can use for the cache.
This is an assumption that we made for simplicity, but which is not necessary. In fact
we may use some of the fast read/write memory for a small cache without completely
losing this memory for precomputed powers of g1.

This can be achieved by observing that we may modify the parameter m for the
left-to-right signed fractional window representation while performing the conversion.
Thus, in the algorithm from Section 3.1, provided that m ≥ 2s−1, we may initially use
some maximum-size digit set B±(m) = {±1, ±3, . . ., ±m, 0} for signed digits b1,� down

to b1,L1+···+Ls−1 , then cache the current group element g
(b1,�,...,b1,L1+···+Ls−1)2
1 in the

memory space that so far held gm
1 , and then use the smaller digit set B±(m − 2) for

subsequent digits b1,L1+···+Ls−1−1 down to b1,L1+···+Ls−2 . Continuing in this fashion,
we eventually give up digits ±m, ±(m − 2), . . ., ±

�
m − 2(s − 1)

�
.

C Performance Comparison

This appendix demonstrates the merits of our new technique for multi-exponentiation
with caching in one particular situation where very little memory is available for use as
a cache. We show that our method is of advantage even under this severe restriction.
We make the following assumptions:

Faster Multi-exponentiation through Caching 55

– We look at two-fold multi-exponentiation, ge1
1 ge2

2 . Base element g2 is fixed; base el-
ement g1 is variable such that the current value will repeat in the directly following
multi-exponentiation with probability Pold = 1

2 .
– The exponents e1 and e2 are uniformly random integers up to � = 256 bits.
– Storage is available for 128 fixed precomputed elements in read-only memory (de-

rived from the fixed base g2), and for only 2 precomputed elements in read/write
memory. The latter includes input value g1. In addition to this, we have space for
variable A in the algorithm from Section 2.1, and the memory holding the expo-
nents. (Note that typically the memory needed for the exponents is less than the
memory needed for a single group element: for elliptic curve cryptography using
projective coordinates over a 256-bit field, one group element takes 768 bits.)

– Different from the assumptions as used in Section 4, we have no additional cache
memory. That is, a group element to be cached has to be kept in one of the two
read/write storage units for precomputed elements.

– We use rough estimates S = 0.7 and M = 1 for the amount of time spent on
each group squaring (e.g., elliptic curve point doubling) and on each group multi-
plication (e.g., elliptic curve point addition). (For example, when using Jacobian
projective coordinates for elliptic curves over prime fields, a point doubling takes
10 or 8 field multiplications depending on the curve, and a general point addi-
tion requires 16 field multiplications [10], or 11 field multiplications in the case
of “mixed coordinates” [7]. Mixed coordinates require a one-time conversion step
to one of the inputs to convert it into affine coordinates, which is reasonable for
precomputed values. Accordingly, 8

11 ≈ 0.73 is one way to justify our estimate
S
M

≈ 0.7, although in the following we neglect the cost of the conversion.)

If (instead of applying our new caching strategy) we directly use interleaved multi-
exponentiation in this situation, employing signed-digit representation as explained in
Section 2.1, we can keep precomputed values g2, g

3
2 , g5

2 , . . ., g255
2 in read-only memory,

and use read/write memory for g1 and g3
1 , thus achieving an exponentiation cost of

approximately �256

4
+

256

10

�
M + 255S ≈ 268.1

(or 89.5M+254S ≈ 267.3 according to experimental simulation results) plus 1M+1S =
1.7 to precompute g3

1 from g1 when g1 has changed from the previous computation. By
assumption, this happens with probability 1

2 , resulting in a total estimate of 268.1 +
1.7
2 ≈ 269.0 (for the simulation: 268.2).

Our method initially performs worse than this, namely, in the case with a new base
(Section 3.1). Here, the read-only memory will contain g2, g

3
2 , g5

2 , . . ., g127
2 , plus similar

powers of g2128

2 . The read/write memory initially is filled with precomputed elements g1

and g3
1 . To perform the multi-exponentiation as described in Section 3.1, we use radix-2

exponent splitting for exponent e2 to obtain partial exponent representations no longer
than 129 digits. For exponent e1, we use a signed fractional window representation
variant as sketched in Appendix B, i.e., where digit set parameter m is modified within
the conversion: the more significant digits can use digits set {±1, ±3, 0}, whereas the
less significant digits (digits b1,127, . . ., b1,0) are restricted to digit set {±1, 0}. This
is because we no longer keep g3

1 in memory when the method from Section 3.1 has
determined a group element to be cached, thus freeing a memory location for use as
cache space. The performance estimate for this multi-exponentiation is

�128

4
+

128

3
+

256

9

�
M + 255S ≈ 281.6

56 B. Möller and A. Rupp

(simulation: 102.7M + 253.8S ≈ 280.4) plus 1M + 1S ≈ 1.7 to precompute g3
1 from

g1. We benefit from the extra effort put into this computation whenever the same g1

reappears in the following multi-exponentiation. In this case, the multi-exponentiation
will only take approximate effort

�128

3
+

128

3
+

256

9

�
M + 127S ≈ 202.7

(simulation: 113.9M +128.2S ≈ 203.6). The average cost given Pold = 1
2 comes to 242.1

(simulation: 242.0). Thus, our method provides an average 10 percent performance
improvement in this specific scenario.

Privacy Preserving Data Mining within

Anonymous Credential Systems

Aggelos Kiayias1,�, Shouhuai Xu2,��, and Moti Yung3

1 Computer Science and Engineering, University of Connecticut
Storrs, CT, USA

aggelos@cse.uconn.edu
2 University of Texas, San Antonio, TX, USA

shxu@cs.utsa.edu
3 Google Inc. and Computer Science, Columbia University

New York, NY, USA
moti@cs.columbia.edu

Abstract. Regular (non-private) data mining can be applied to manage
and utilize accumulated transaction data. For example, the accumulated
relative service time per user per month can be calculated given indi-
vidual transaction data from which the user compliance with a service
agreement can be determined and possibly billing can be processed. Nev-
ertheless, due to user privacy concerns, cryptographic research developed
transactions based on unlinkable anonymous credentials. Given the na-
ture of anonymous credentials the ease of managing accumulated data
(e.g., per user) is lost. To restore the possibility of management and accu-
mulation of data it seems that a suitable form of privacy preserving data
mining is needed. Indeed, privacy preserving data mining methods have
been suggested for various protocols and interactions where individual
data can be contributed in an encrypted form, but not within the context
of anonymous credentials. Given our motivation we suggest a new no-
tion of performing “privacy preserving data mining within the context of
anonymous cryptographic credential systems,” so as to protect both the
privacy of individually contributed data and the identity of their sources
while revealing only what is needed. To instantiate our approach we focus
on a primitive we call “data mining group signatures” (DMGS), where it
is possible for a set of authorities to employ distributed quorum control
for conducting privacy preserving data mining operations on a batch of
transactions while preserving maximum possible anonymity. We define
and model the new primitive and its security goals, we then present a
construction and finally show its privacy and security properties. Along
the way we build a methodology that safely combines multi-server pro-
tocols as sub-procedures in a more general setting.

� Research partly supported by NSF Career award CNS-0447808 and NSF SGER
Grant 0751095.

�� Research partly supported by NSF Grant IIS-0524612.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 57–76, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

58 A. Kiayias, S. Xu, and M. Yung

1 Introduction

Private (i.e., anonymous) transactions protect civil liberties. Moreover, they help
service providers adhere to regulations as well as reduce potential liability. It is
expected that anonymous transactions in the future will be based on notions
like electronic cash [8,11], anonymous credentials [10,9], and group signatures
[12]. For example, recently, it has even been proposed to integrate anonymous
credentials into the new security architecture of the next generation Internet
that is currently being investigated (cf., [25,31]); the intent is to aid in prevent-
ing network abuses such as Distributed Denial-of-Service (DDoS) attacks while
protecting the privacy of the honest users.

However, what we claim here is that the impact of privacy on the management
aspect of anonymous transaction systems, namely how to properly manage and
utilize the anonymous transaction data while retaining user privacy, is not well
understood, and has not been investigated sufficiently. This is true even though
deanonymization of transactions has been identified as an important requirement
for anonymous transaction systems (for example, group signatures (e.g., [2,3])
enable the deanonymization of a certain transaction, traceable signatures [21]
enable the identification of all transactions of a certain user, fair blind signatures
[30] enable the “unblinding” of the signing protocol, offline e-cash [11] enable the
deanonymization of the transaction source in case of double spending or even
n-time spending in the case of [7], and unclonable identification [13,6] prohibits
over-usage within time periods).

Still, deanonymization is only one limited aspect of what administration of
an anonymous system is interested in. As a matter of fact, in none of the anony-
mous transaction systems mentioned above it is possible to extract, for example,
information about usage statistics within a time period without revoking the
anonymity of the transactions first. Such management operations are crucial in
assuring that users perform within usage bounds (that are “percentage-wise”
within time periods, e.g., no more than 10% of transactions in a batch), and in
enabling billing users based on their (e.g.) monthly usage etc. In general, the
administration may be interested in performing various management operations
on the transaction data, and in revealing different aspects of the data distribu-
tion and perhaps imposing deanonymization when the distribution gets skewed
for some of the transaction originators.

The goal of this paper is to initiate the study of privacy in data available
from anonymous credential transaction systems. To this end we present the no-
tion of “data mining group signatures,” which enable administrators to write
small “code snippets” that will be carried out distributedly by a set of mining
authorities and will compute (in a distributed manner over a protocol proce-
dures library) the desired output of a mining operation in a privacy preserving
manner.

Other related work. Previous studies on privacy preserving data mining (see,
e.g., [24,1,16,22,20]), focused on processing multiple private datasets, which are
in the form of plaintext but should not be mutually disclosed. The difference here

Privacy Preserving Data Mining within Anonymous Credential Systems 59

is that the data being processed are the “identification tags,” which are implicitly
collected from anonymous transactions and are in the form of ciphertexts.

1.1 Our Results

Basic contributions. Let us reiterate that our first contribution is identifying
the need of privacy preserving data mining in the context of anonymous trans-
actions. We focus on designing a transaction system that enables distributed
operations on the scrambled identity tags that accompany anonymous transac-
tions. The notion allows a group of system servers to perform data mining with
trusted quorum control: as long as the majority of servers is honest, only the
required mining operations are performed and system privacy is preserved. This
general notion and its applications for operation and control are then modeled in
the context of group signatures, a very basic, general and long-lived anonymous
credential system.

In addition we propose a model for performing and sequentially combining
a suite of multi-server secure computational tasks (threshold cryptography, and
round table protocols). The composition preserves the security correctness and
robustness of the functionality when performed by a single trusted (black-box)
entity. This leads to a proof of security and correctness against a static minority-
controlling adversary. While earlier works considered such proofs of protocols
in isolation, a proof for a dynamic combination of protocols among a suite of
protocol procedures was not available in the literature.

Implications. Our motivation gives rise to two exemplifying usage characteris-
tics called “usage histogram” and “blinded usage histogram with outlier detec-
tion,” which are implemented efficiently within a data mining group signature
scheme without further privacy exposures. Usage histograms can be computed
in order to aggregate transactions per user. A typical application of a usage
histogram is statistics or billing. While there is no linking to the original trans-
actions, the data mining system in this case is capable of obtaining a histogram
that shows the number of transactions per user. Compared to usage histograms,
blinded usage histograms can better protect the users’ anonymity because there
is no identity information in the histograms — the histogram is extracted but
the names corresponding to each column are blinded. A typical application may
be in detection of misbehavior in violation of a service agreement by observing
the usage histograms and isolating columns that are, say, too high. The data
mining system can then obtain unmasked identities of exactly those users that
correspond to the selected columns.

Applications. We stress that using our methodology one can write other little
abstract programs (i.e., snippets) that can use the suite of basic procedures and
be executed by the mining servers to run any mining operation. Nevertheless,
the exemplifying histograms and blinded histograms by themselves can already
find specific applications such as the following.

60 A. Kiayias, S. Xu, and M. Yung

* For each period of time (e.g., every month), the authorities can extract the
usage counts of each user’s data mining group signatures. This allows the
authority to detect any significant deviation from a user’s normal usage,
which may cause further investigations. This utility can be used as a way to
detect misbehaving parties or simply maintain statistics about the system
(without actually linking a user to the actual transactions).

* Given the network log of packets during a packet flooding attack, where each
packet has an associated data mining group signature (that is validated for
packets to be routed) as suggested in one of the next generation Internet se-
curity architecture proposals, the authority (i.e., a set of parties running the
distributed cryptosystems presented in this paper) can identify the senders
that send packets more than a threshold because they are potentially the
attackers, whereas the senders who send a small number of packets remain
anonymous. Note that signing and verifying need only be applied to fractions
of packets to preserve efficiency.

* In business management, usage histograms can be utilized for operations like
billing (as mentioned above). This can also be used to detect dead accounts
(where there was no usage). Moreover, the histograms can also serve as a
basis for developing more advanced applications such as privacy preserving
decision tree mining [23] and Bayes classifier learning [32].

Discussion: Our approach vs. E-cash. One may consider employing (virtual) e-
cash for usage monitoring (not as a payment but for monitoring purposes). Let
us examine how one may attempt to use e-cash as a technical tool for monitoring
activities. Recall that in the e-cash model every user gets coins (or an amount
that can be split into coins); in our setting each participant will draw from the
bank “server coins” that will be used for transactions in the next time period.
When a user performs an anonymous transaction a coin is used so that the
user cannot be traced and the transaction remains anonymous. This has several
implications.

First, in e-cash the maximum usage has to be known a-priori. If the a-priori
number differs among users, it already reveals something about their intended
usage and is in violation of anonymity. For example, if the a-priori amount is used
and a user needs additional coins, this reveals over-usage before the monitoring
is conducted (the bank knows the identity of users). On the other hand, if the
bank is prohibited from knowing the identity of users (as a remedy to the above
drawback), users may draw a lot of coins beyond need (and malicious users may
combine their pool of coins without initially committing to “who will use the
money”).

As another remedy, one may suggest that in the case of users drawing the same
number of coins (which as indicated above it is already problematic), at the end
of the period users who did not use all their coins will deposit back their coin (so
a user that did not get any service will deposit all her coins). This would require
all users to act in a period even if they have no intention whatsoever of using the
service; forcing subscribers to take action even if they are not active in a period
is a problem from usability/system-management and may be unacceptable from

Privacy Preserving Data Mining within Anonymous Credential Systems 61

a user point of view (e.g., user may be allowed to be off-line for a period); on
the other hand, not forcing all users to be active may reveal usage intention
in violation of anonymity. Regarding depositing the unused coins, it should be
also assured that a depositing user is indeed depositing the coins she withdrew
(without combining them with other users) while also possibly preserving the
anonymity of the user who is depositing back her coins. Otherwise, misbehaving
users combining their states can bias the anonymous distribution, so that if one
user over-used the system and the second user under-used the system, they can
negotiate coin exchange so they show that they both are behaving well. If a user
shows the unspent coins under his name, this is not a blinded histogram any
more. Additionally, even the case of a named histogram, which may be used to
detect over-spending and under-spending at the same time, cannot be achieved
because if a user under-spent, she may choose not to show all her remaining
coins and thus cheat the system simply this way.

The above limitations are caused by the fact that monitoring via long-lived
credentials as we do here can be used in itself for billing and is a natural “pay
per use” method, whereas e-cash has to be drawn first and represents essentially
a “debit card” like instrument.

Moreover, as argued above, the coins themselves are anonymous. Thus, to
allow usage histograms based on names, the coins have to be de-anonymized,
(i.e., escrowed coins – a mechanism that exists). But once de-anonymized, the
coins are still associated with the transactions where they were spent (where
the “payment” took place). This jeopardizes the anonymity of the transactions.
Therefore, we do not see that e-cash helps in such anonymous monitoring of
usage that is independent of the transactions without requiring another layer of
anonymization.

In summary, the e-cash method as a tool to solve privacy-preserving usage
monitoring in the case of anonymous credentials, does not seem to solve the
problem, though superficially it seems related. Its inadequacy is based on various
objections, some based on attacks on the system and misuses, and some based
on unsuitability to the target goal of usage monitoring. Finally we recall that, in
fact, e-cash is a form of anonymous credentials that the mechanisms we propose
here can augment to accommodate some form of monitoring if suitably modified;
but we chose to demonstrate our approach based on group signatures whose
long-lived credential nature is particularly suited to our objectives.
Organization: The rest of the paper is organized as follows. In section 2 we
discuss our methodology for composing multiserver protocols for ciphertext com-
putations. In section 3 we present a model for data mining group signatures
(DMGS). In section 4 we present a concrete DMGS scheme. In section 5 we
conclude the paper.

2 MultiServer Protocols and Their Composition

The section presents our methodology of composing a suite of distributed mul-
tiserver protocols for specialized computation over ciphertexts. This building

62 A. Kiayias, S. Xu, and M. Yung

block will be used to construct the data-mining group signature scheme in sec-
tion 4. The model of allowing arbitrary sequential composition of such protocols
is novel; for ease of presentation and simplification we will employ the random
oracle model in our construction and assume a static adversary throughout. The
protocols will be carried out by a set of servers M1, . . . ,Mm.

Distributed Multi-server Protocols. An m-server protocol execution is based on
an interactive program P that is run by all servers and, provided that m > 1,
an adversarial program A who controls at most t − 1 of the servers subject to
the constraint m ≥ 2t− 1; the execution has the following characteristics:

– Participants. The serversM1, . . . ,Mm and the adversary A. At the start of
the protocol the adversary selects a set of up to t− 1 servers to corrupt such
that m ≥ 2t− 1.

– Input and Output. Each participating server is given private and public input.
The input to each server includes the number of servers m (it is assumed
that the protocol P operates on any given number of servers). At the end of
the computation each server running program P will produce private output
as well as a public output that should be equal among all honest servers. The
private input of corrupted servers as well as the public input is given to the
adversary at the start of the protocol. The public input includes the security
parameter 1κ (and note that all parties are polynomial-time bounded in κ).

– Communication Model. We assume that the communication is synchronous
and that the protocol execution proceeds in rounds. In each round the pro-
gram of each server using its current state and history of communication
up and including the previous round produces two types of messages to be
delivered to other servers; the first type is a point-to-point private message
that is delivered privately to the intended recipient. This type of transmis-
sion models secure authenticated point to point channels between a pair of
servers. The second type of message is a broadcast message that will be
delivered to all servers at the beginning of the next round. At each round
a server produces private messages for all other servers as well as a public
broadcast message.

– Adversarial Operation. At each round the adversary is activated last, after
the honest participants have submitted their messages. Based on the private
messages directed to the corrupted parties, the public broadcast messages
as well as all information available from previous rounds to the corrupted
parties, the adversary decides the public and private messages that will be
delivered from the servers under its control, i.e., the corrupted servers in this
round.

A suite of m-server protocols Suite = 〈PROT1, . . . , PROTs〉 is a set of protocols
that can be executed sequentially and use a joint state. In particular after an
initialization protocol is performed (by convention PROT1) subsequent protocols
executions can be sequentially composed in an arbitrary fashion and they will
all employ the same state. The private input of the server in each protocol will

Privacy Preserving Data Mining within Anonymous Credential Systems 63

be the current state of the server. The public input to the set of servers will be
provided externally. We will use a special notation 〈Prot1, . . . , Prots〉 to denote
the single server versions of the programs of the protocols 〈PROT1, . . . , PROTs〉
(recall that each PROT� is defined for any number of servers).

An execution of an m-server protocol suite Suite denoted by ESuiteA (1κ, 1m)
where A is the adversary, is a simulation of the program of A that proceeds as
follows: (i) First the adversary A is executed with inputs 1m, 1κ and it selects a
set of at most t−1 servers to corrupt subject to the constraint m ≥ 2t−1. (ii) The
initialization protocol Prot1 is executed as described above with the adversary
participating on behalf of the corrupted servers; note that this protocol requires
no private inputs for any of the servers and its public input is 1κ, m; the private
outputs of honest servers are maintained as an internal state of the execution that
is inaccessible to the adversary. (iii) Subsequently, the adversary A may provide
a public input and ask the honest servers to execute together with the corrupted
servers under the adversary’s control any of the protocols in the suite. This step
can be repeated sequentially as many times as the adversary commands. (iv)
The adversary A may terminate the execution at any time outputing a single
bit which is also the output of the execution E .

Definition 1. A suite of m-server protocols Suite = 〈PROT1, . . . , PROTs〉 is
called t-distribution-safe if for all adversaries A corrupting less than t servers,
it holds that there exists an expected polynomial-time simulator S such that for
all m ≥ 2t− 1,

|Prob[ESuiteA (1κ, 1m) = 1]−Prob[SProt1,...,Prots(1κ) = 1]| = negl(κ)

The intuition behind this definition is that an adversary that controls at most
t−1 servers is incapable of gaining any advantage due to server corruption while
executing an arbitrary sequential composition of the protocols in the suite. This
is argued by the fact that the adversary’s knowledge gain can be simulated
by a sequential execution of the same set of protocols with a single trusted
server (represented by the set of oracles available to the simulator S). Given
that anything the adversary can compute in the corrupted server setting, it can
also compute while interacting with a single honest server we conclude that the
protocol suite is “distribution-safe.” Note that distribution-safety as a property
suggests that a single-server functionality is distributed to a set of servers in a
manner that any correctness or security property that the protocol suite may
satisfy is preserved. Distribution safety does not impose by itself any correctness
or security guarrantee on the protocol suite (and these will be argued separately).

We next define a protocol suite that relates to ElGamal encryption and we will
take advantage of in our construction. We first describe the encryption function
itself that is loosely based on [29] and then we describe the protocol suite that
we will need. Let 〈G1〉 be a group of prime order q; the public key includes
G1, G2, H, q where G2, H ∈ 〈G1〉. The secret key is the value w = logG1

H . Given
a plaintext M ∈ Zq the encryption is the tuple 〈U1, U2, C〉 = 〈Gr

1, G
r
2, H

rGM 〉
where r ←R Zq accompanied with a non-interactive proof of knowledge for the

64 A. Kiayias, S. Xu, and M. Yung

statement PK(ρ : U1 = Gρ
1 ∧ U2 = Gρ

2); this is a proof of equality of discrete-
logs that can be made non-interactive following the Fiat-Shamir heuristic [15].
Overall the ciphertext will have the form Ω = (U1, U2, C, π) with π standing for
the non-interactive proof of knowledge. Occasionally, we may use the notation
Ω◦ to denote (U1, U2, C) and call this the “reduced ciphertext.” This would be
useful in contexts where it is certain that the ciphertext is valid (i.e., the U1, U2

are properly formed).
We note that we do not require the actual recovery of M (thus encrypting

GM does not hurt the efficiency of decryption); alternatively one can think of
the size of the plaintext space as polynomial in κ (this would be indeed the case
in our setting) and thus the recovery of M is possible through exhaustive search
(or even a baby-step giant-step strategy). Following [29] one can show that the
above cryptosystem is IND-CCA2 in the random oracle model assuming the
Decisional Diffie Hellman assumption.

We proceed next to define a protocol suite for the encryption scheme defined
above that is parameterized by two hash functions H,H′. Each server maintains
a set QUAL that contains the set of properly acting servers in a sequence of an
execution. The way that the protocols in the suite maintain QUAL will guarantee
that all honest servers maintain the same set and in all cases |QUAL| ≥ t. The
protocols for the servers M1, . . . ,Mm are as follows:

– ParGen is an m-server protocol with public output defined by the proba-
bilistic function f , where f(1κ) is a tuple that includes the description of a
group that contains G1 as well as the κ-bit prime q which is the order of G1.
We assume that this the group is selected from a predetermined table (that
contains one entry for each κ) and thus ParGen is non-interactive.

– ExpGen is an m-server protocol that using the group description of 〈G1〉 and
the parameters t, m, it enables the i-th server to compute a public output
(H, H1, . . . , Ht−1) as well as the private output wi where H = H0 = Gw

1 is

a random element of 〈G1〉 and it holds that w
(t,m′)←→ (wi1 , . . . , wim′) where

QUAL = {i1, . . . , im′} ⊆ {1, . . . , m} as well as H0H
i�
1 . . . H

it−1
�

t−1 = Gwi� for

� = 1, . . . , m′. The notation w
(t,m)←→ (w1, . . . , wm) means that w1, . . . , wm is

a secret-sharing of w (cf. [28]) so that using any t out of the m shares it is
possible to reconstruct w but any less than t shares reveal no information
about w.

This protocol can be realized by the distributed key generation DKG pro-
tocol of [18] which builds on [14,27].

We note that the DKG protocol relies on Pedersen commitments which
also require a value F ∈ 〈G1〉 with unknown discrete-logarithm. Such value
can be calculated by having each server computing F = H(τ) where τ is a
fixed string known to all parties (and is unique for each invocation of the
system); we assume that the range of H can be mapped to 〈G1〉. Note that
the protocol fails if F = 1 (a negligible probability event).

Privacy Preserving Data Mining within Anonymous Credential Systems 65

– PkGen2. This is an m-server protocol to compute the value G2. The calcu-
lation of G2 can be done in the same way as the value F given above but
using the hash function H′ instead.

* Init : the sequential composition of the protocols (ParGen, ExpGen, PkGen2)
in this order constitutes the initialization of the protocol suite. Subsequent
protocol executions employ the parameters generated by this execution.

– ExpRecon is an m-server protocol that on input V ∈ 〈G1〉 it produces the

public output V w where w
(t,m′)←→ (wi1 , . . . , wim′) is the secret-sharing of the

secret-key (committed to H = Gw) that is held by the QUAL = {i1, . . . , im′}
subset of the m servers.

The protocol is realized as follows: The i-th server broadcasts Vi = V wi

as well as a non-interactive proof of knowledge of the statement PK(α :
Vi = V α ∧ H0H

j
1 . . . Hjt

t = Gα); this is a proof of equality of discrete-
logarithms that is made non-interactive using the hash function H′. Upon
receiving the values Vi1 , . . . , Vim′ accompanied by the NIZK’s πi1 , . . . , πim′ ,
each server finds t values Vi for which the proofs are valid, say Λ = 〈i1, . . . , it〉
and computes

∏
l∈Λ V

λΛ
l

il
where λΛ

1 , . . . , λΛ
t are the Lagrange coefficients that

satisfy
∑

l∈Λ λΛ
l · p(il) = p(0) for all polynomials p of degree less than t in

Zq.
If a server finds that the proof πi is not valid, it removes server i from

the set QUAL.
– DEC is an m-server protocol that on input a ciphertext (U1, U2, C, π) it returns

the decryption GM of the ciphertext or the value ⊥ to stand for failure.
Specifically, given a ciphertext, the i-th server checks whether the proof π is
valid; in case the test fails the server outputs ⊥. Otherwise, the servers in
QUAL execute the ExpGen protocol on input U1 to compute Uw

1 = Hr and
subsequently decrypt C by returning C/Hr as public output.

– MIX is an m-server protocol that on input a sequence of ciphertextsΩ1, . . . ,Ωn

it outputs a sequence of ciphertexts Ω′
1, . . . , Ω

′
n such that if 〈L1, . . . , Ln〉 is

the vector of plaintexts of the given ciphertexts, the output of the protocol
is a vector of ciphertexts whose plaintexts are as follows 〈Lp(1), . . . , Lp(n)〉
for some randomly selected permutation p.

The MIX protocol follows a roundtable format: according to a schedule,
each server reencrypts and shuffles a vector of ciphertexts 〈Ω◦

1 , . . . , Ω◦
n〉; then

it broadcasts the shuffled list together with a proof of a correct shuffle that
ensures that all plaintext values have been retained. Note that each server
acts on the output of a previous server according to the schedule. If a server
is found to produce an incorrect shuffle, the protocol restarts with the mis-
behaving server removed from QUAL. There are a number of protocols that
are suitable for our setting e.g., [17,26,19]. Below we describe our MIX based
on a shuffling protocol that builds on [19].

The first server Mj in the schedule will check all NIZK proofs that ac-
company the input vector of ciphertexts. It will then operate on the reduced
ciphertexts Ω◦

1 , . . . , Ω◦
n. We modify the shuffle protocol of [19] as follows: in

a first stage each server will broadcast a commitment to the permutation it

66 A. Kiayias, S. Xu, and M. Yung

will use as well as an NIZK that ensures the commitment is properly formed
(broadcasting this commitment is also part of the shuffling protocol). Once
this stage is completed the servers will execute the shuffling protocol ac-
cording to the schedule adhering to their original commitments and using
the Fiat-Shamir heuristic with the hash function H′ to make the proof non-
interactive. The parameters for the Pedersen type of commitment as the one
used in [19] can be produced by the m servers by executing the protocol
PkGen2 prior to the execution of the mixing protocol (using fixed strings
derived from the τ string each time).

– CMP is an m-server protocol that on input two ciphertexts Ω, Ω′ it returns
public output 1 if and only if DEC(Ω) = DEC(Ω′) (and 0 otherwise). We
notice that CMP as a protocol relates to a private equality test (or PET), see,
e.g., [16]. However, PET is a two-party protocol where two parties wish to
check whether their private values are equal or not; on the other hand in a
CMP protocol a set of servers operate on two ciphertexts and wish to check
whether the corresponding plaintexts are equal when nobody gets to know
the decryption of the ciphertexts.

We present two solutions to the above CMP protocol problem that, depend-
ing on the network connectivity between the servers either one can be more
suitable. The basic idea underlying them is the following observation: Let Ω =
〈U1, U2, C, π〉 and Ω′ = 〈U ′

1, U
′
2, C

′, π′〉, and define Ψ◦ = 〈U1/U ′
1, U2/U ′

2, C/C′〉.
Observe that, assuming Ω, Ω′ were valid ciphertexts encrypting GM , GM ′

re-
spectively, Ψ◦ is a valid reduced ciphertext for the value GM−M ′

. It follows that
if M = M ′ the reduced ciphertext Ψ◦ encrypts G0 and this property can be
tested without leaking substantial information about M, M ′.
Roundtable protocol for CMP. The first solution is suitable for settings
where the servers prefer to minimize broadcasting. It includes the following
stages:

1. Each server Mj selects a random value aj selected from Z∗
q and broadcasts

a commitment to aj denoted by ψ = C(aj) as well as a NIZK proof that the
commitment is well-formed.

2. Given the ciphertexts Ω, Ω′, the server Mj where j is the smallest value in
QUAL, “random scales” the ciphertext, an operation denoted by Ψ◦ r−s−→
Ψ ′◦, that proceeds as follows: the server computes Ψ ′◦ = (V1, V2, D) =
(Uaj

1 , U
aj

2 , Caj) where Ψ◦ = (U1, U2, C) and aj is the value committed in
stage 1. The server broadcasts Ψ ′◦. Observe that after this operation is exe-
cuted by the first server the resulting ciphertext Ω′◦ is either an encryption of
G0 (if M1 = M2) or a valid ciphertext of the plaintext Gaj(M1−M2). Moreover,
if M1 �= M2, then aj(M1−M2) is uniformly distributed over Z∗

q . Finally Mj

computes a NIZK proof PK(α : V1 = Uα
1 ∧ V2 = Uα

2 ∧D = Cα ∧ψ = C(aj))
based on the hash function H′. The next server in QUAL collects (V1, V2, D),
verifies the proof and repeats the process. If a server produces an invalid proof
it is removed from QUAL and the protocol is restarted.

Privacy Preserving Data Mining within Anonymous Credential Systems 67

3. After at least t of the participating servers execute step 2 (this will be guar-
ranteed by the assumption that m ≥ 2t− 1 and the fact that the adversary
controls at most t−1 servers), the servers enter the third stage of the proto-
col: if Ψ◦ is the final result from stage 2, the servers execute the protocol DEC
on Ψ◦ (omitting the part where the proof is being checked). The servers con-
clude by returning “1” if the decryption of Ψ◦ results in 1 (i.e., G0 mod P)
and “0” otherwise.

Threshold protocol for CMP. The second protocol solution to CMP is more
suitable for cases where there is a great number of servers and broadcasting is
an inexpensive operation (in this setting the roundtable approach of the first
solution may be inefficient). It will be broken into the following stages:

1. The servers execute ExpGen on group 〈G1〉 to produce Z0, Z1, . . . , Zt−1 ∈
〈G1〉; recall that this results in Z = Z0 = Gz such that z

(t,m)←→ (zi1 , . . . , zim′)
for some subset QUAL′ = {i1, . . . , im′} of QUAL. The internal state of each
server contains now the share zi.

2. The servers in QUAL′ as determined from the previous stage, execute three
instances of the protocol ExpRecon on input U1, U2, C respectively, where
Ψ◦ = (U1, U2, C). This results in the scaled ciphertext Ψ ′◦ = (V1, V2, D) =
(Uz

1 , Uz
2 , Cz).

3. The servers execute the protocol DEC on Ψ ′◦ (omitting the part where the
proof is being checked). The servers conclude by returning “1” if the decryp-
tion of Ψ ′◦ results in 1 (i.e., G0 mod P) and “0” otherwise.

We conclude the section by showing that the protocol suite we defined above
is t-distribution-safe:

Theorem 1. The suite of m-server protocols 〈ParGen, ExpGen, PkGen2, DEC, MIX,
CMP〉 described above is t-distribution-safe assuming the discrete-logarithm as-
sumption and that H is a random oracle controlled by the simulator, for m ≥
2t− 1 servers.

3 Data Mining Group Signatures (DMGS): Model

We now define “data mining group signatures” (DMGS), that extend the notion
of group signatures with a MINING code snippet: a distributed algorithm that can
be executed by a quorum of mining servers and will be based on the ciphertext
manipulations and operations of the previous section; the code computes a given
usage characteristic (the data mining objective of the system). The participants
involved in the system are the users/signers, the DMGS manager (i.e., credential
issuer) that is denoted by DMGM, and the data mining servers M1, . . . ,Mm.
The adversary we will assume will be t-threshold meaning that it can corrupt
at most t − 1 mining servers. While the corruptions of the mining servers will
be assumed to be static in our security modeling the adversary can adaptively
corrupt the group members.

68 A. Kiayias, S. Xu, and M. Yung

Definition 2. (DMGS) A data-mining group-signature scheme is comprised of:

1. Setup: This stage consists of two parts.
(a) KeyGDMGM: On input a security parameter κ and an upper bound on

the number of users n, this probabilistic algorithm outputs the data min-
ing group signature manager’s public key YDMGM (including all system
parameters), the public user database, and the secret keys of all users
sk1, . . . , skn. The secret keys sk1, . . . , skn are distributed privately to the
users and the DMGM terminates by discarding all its random coin tosses.
To each user key ski there is a corresponding public-key pki and a name
idi that are part of the public user database {idi, pki}i (we may refer to
this table as: public user database). The table can be accessed through
a function tableLook(·), that given pki returns idi, the identity of the i-
th user. Without loss of generality we will assume that idi = i but in
practice idi may contain more information about the user.

(b) KeyGDM: this is an m-server protocol that with public input the parame-
ters 1κ, t, m, it enables the data mining servers M1, . . . ,Mm to produce
as public output the public key YDM that will be attached to the public key
of the system, which is denoted by Y = YDMGM||YDM. At the completion
of the protocol each data mining server will also return the private output
Sj which will be a share of the virtual key skDM.

2. Sign: A probabilistic algorithm that given the system public key Y, a user’s
secret key ski, and a message M , it outputs a signature for the message M .
We write SIGN(Y, ski, M) to denote the application of the signing algorithm.
A signature δ produced by the SIGN algorithm contains a mining tag denoted
by mtδ.

3. Verify: An algorithm for establishing the validity of a signature on a mes-
sage with respect to a system public key Y. Notice that VERIFY(Y, M, δ) ∈
{true, false}.

4. OPEN is an m-server protocol that given a signature δ, it enables the mining
servers S1, . . . ,Sm recover a value pki that can be used to identify a user
from the public user database, or the value ⊥. When it will be clear from
the context what servers are participating in the execution we will denote the
output of the protocol simply by OPEN(δ).

5. MINING: This is an m-server protocol that enables the mining servers to col-
laboratively compute some application-dependent usage characteristic func-
tion usageChar : N∗ → T where T is some arbitrary range. The protocol
MINING will be expressed as an algorithm that is executed by each mining
server locally and includes calls to the subprotocols MIX, tableLook(DEC),
and CMP that operate on the mining tags of a given vector of valid signa-
tures. Two concrete implementations will be presented in Section 4. When it
will be clear from the context what servers are participating in the execution
we will denote the output of the protocol by simply MINING(δ1, . . . , δK).

A ppt adversary A for a DMGS has access to the following oracles: Setup via
KeyGDMGM and KeyGDM; OSign which receives a user’s identity i and a message

Privacy Preserving Data Mining within Anonymous Credential Systems 69

M , returns Sign(Y, ski, M), and sets hist(Sign) = hist(Sign)||(i, M); MINING and
tableLook; Corrupt which receives a group signature user’s identity i and returns
ski and sets Corr = Corr ∪ {i}.

The formalization of the security properties will be performed in the setting
of a single honest mining server. Subsequently, arguing the security of our multi-
server construction will be split in two steps: first we will prove that it satisfies
the properties stated below in the single server setting; then we will show that it
satisfies distribution-safety as defined in the previous section, hence the advan-
tage cannot gain significant advantage from corrupting a minority of servers.

Definition 3. (security of DMGS) The security properties of data mining group
signatures are:

1. Correctness: We require that a scheme possesses “signature correctness” that
suggests the following probability is overwhelming:

Pr

⎡
⎣
〈YDMGM, public user database, sk1, . . . , skn〉 ← KeyGDMGM(1κ, n);
〈YDM,S〉 ← KeyGDM(YDMGM, t = 1, m = 1); Y := YDMGM||YDM;
δ ← Sign(Y, ski, M) : true = Verify(Y, M, δ) ∧ i = tableLook(OPEN(δ)

⎤
⎦

and similarly for “mining correctness” the following probability is overwhelm-
ing:

Pr

⎡
⎢⎢⎢⎢⎣

〈YDMGM, public user database, sk1, . . . , skn〉 ← KeyGDMGM(1κ, n);
〈YDM,S〉 ← KeyGDM(YDMGM, t = 1, m = 1); Y := YDMGM||YDM;
(δ1, . . . , δK)← AOSign,MINING,Corrupt(1κ);
output1 ← usageChar(tableLook(OPEN(δ1)), . . . , tableLook(OPEN(δK)));
output2 ← MINING(δ1, . . . , δK)] : output1 = output2

⎤
⎥⎥⎥⎥⎦

recall that the MINING protocol is a code snippet that employs the subprotocols
DEC, CMP and MIX (as defined in section 2) that operate on the mining tags
of the signatures.

2. Traceability: For any ppt adversary A, the following probability is negligible:

Pr

⎡
⎢⎢⎢⎢⎣

〈YDMGM, public user database, sk1, . . . , skn〉 ← KeyGDMGM(1κ, n);
〈aux,YDM,S1, . . . ,Sm, m, t〉 ← A(YDMGM); Y := YDMGM||YDM;
〈M, δ〉 ← ASign,Corrupt(Y, aux) s.t. (i, M) �∈ hist(Sign);
true← VERIFY(Y, M, δ); i ← tableLook(OPEN(δ)) :
(i �∈ Corr) ∨ (i /∈ {1, . . . , n})

⎤
⎥⎥⎥⎥⎦

3. Anonymity: an adversary A against anonymity is a ppt that receives the
public-key Y of the system as well as it is allowed to corrupt any number of
signers adaptively. The identifiers of the corrupted signers are maintained in
a set Corr . Furthermore A interacts with three oracles OSign, Open, Mining,
where OSign stands for an oracle that receives (i, M) and returns a signature
on behalf of i-th signer whereas Open and Mining stand for the single (honest)
server executions of the corresponding two protocols defined above.

70 A. Kiayias, S. Xu, and M. Yung

Consider now an oracle anonSign with the specification that it takes as
input a pair (i, M) but it ignores its first input (which is the user’s iden-
tity) and records all its answers. We also define two oracles anonOpen and
anonMining. (1) anonOpen takes as input a signature δ on M ; if δ is not valid
it returns ⊥; if δ was the output of anonSign on input (i, M) it returns pki

(the public-key of the user on whose behalf anonSign produced a signature),
otherwise (if δ was not produced by anonSign) the oracle behaves as Open as
long as Open returns some pki such that i ∈ Corr (otherwise, if i �∈ Corr
the oracle returns ⊥). (2) anonMining is given as input a sequence of valid
signatures δ1, . . . , δK ; if δj was the output of anonSign on input (i, M), set
Lj = i. Otherwise, compute i = tableLook(Open(δj)) and if i ∈ Corr set
Lj = i; if on the other hand, i �∈ Corr return ⊥. Finally, the anonMining
oracle returns usageChar(L1, . . . , LK).

A data mining group signature, satisfies anonymity if there exists an ora-
cle anonSign such that for the oracles anonOpen, anonMining as defined above
it holds that any ppt anoymity adversary A cannot distinguish between these
three oracles and the OSign, Open, Mining oracles.

Some remarks about the definition above are in place: The definition of anonymity
is in the sense of indistinguishability between the real implementation of Mining
and Open functionalities and an idealized version of them. This allows maximum
flexibility in designing distributed datamining schemes.

The definition of anonymity implies the non-malleability of the encryption
algorithm employed in DMGS, since if an adversary is capable of modifying
the signature of an uncorrupted user without affecting its validity, this would
force the anonOPEN oracle to return ⊥ (something that would not occur in the
case of the OPEN oracle). Furthermore, observe that the definition of anonymity
implies that the encryption algorithm satisfies IND-CPA security (as all signa-
tures and hence ciphertexts can be simulated by anonSign without the plaintext
information that corresponds to the signer’s identity).

Note that the functions of anonOpen, anonMining can consult the correspon-
dence between simulated signatures and identities and thus maintain correctness
as in a real world execution.

4 Data Mining Group Signatures: Efficient Construction

Here we present a concrete DMGS scheme based on the short group signature
of Boneh et al. [4], which is based on bilinear maps. The public parameters of
the scheme are the following:

(p1) Two groups of order p where p is a �p-bit prime, denoted by G1 = 〈g1〉
and G2 = 〈g2〉, so that e : G1 × G2 → GT is a bilinear map such that (1)
for all u ∈ G1, v ∈ G2, a, b ∈ Z, e(ua, vb) = e(u, v)ab, and (2) e(g1, g2) �=
1GT . Moreover, let ψ be a computable isomorphism from G2 to G1 with
ψ(g2) = g1.

(p2) An elliptic curve group of prime order q where q is �q-bit prime, denoted
by 〈G1〉, over which the Decisional Diffie-Hellman is hard.

Privacy Preserving Data Mining within Anonymous Credential Systems 71

We assume p = q for simplicity but our construction can also be ported to the
more general setting that different size groups are being used. We notice that �p

can be quite small, e.g., the order of 170 bits is sufficient. Now we specify the
signature scheme.

KeyGDMGM: The public parameters are selected as described above in (p1) and
(p2). The key-generator selects γ ←R Zp and sets w = gγ

2 . The key YDMGM

is set to 〈g1, g2, w, u, desc(G1||G2||GT ||e), n〉, where desc(·) is a description of
the given groups including membership test and definition of group operation,
and the users’ secret keys are set to ski = 〈xi, σi = g

1/(γ+xi)
1 〉 for xi ←R Zp.

Note that e(σi, g
xi
2 w) = e(g1, g2) is the property satisfied by all user secret keys,

and that σi or Gxi will uniquely identify the user. We also let u ∈ G1 to be
a generator of the group. The DMGM maintains a user database that contains
entries of the form {(idi, G

xi)}i. The algorithm tableLook(·) on input Gxi will
return the identity idi. Note that idi, G

xi can be required to be digitally signed
by the user so that non-repudiation is facilitated (but we do not consider this
aspect in our current modeling).

KeyGDM: here we use the m-server protocols ExpGen and PkGen2 from section 2
over the group 〈G1〉. Recall that the protocol is based on parameters m, t and
will produce the values H0, H1, . . . , Ht−1 ∈ 〈G1〉 as well as the private output
Si for each server i such that GSi = H0H

i
1 . . . Hit−1

t−1 . The public-key that will be

used for encryption will be H0 = Gs
1 with s

(t,m)←→ (S1, . . . ,Sm). Additionally the
protocol PkGen2 produces value G2 ∈ 〈G1〉.

Remark 1. If the DMGM should not know the private keys of the users (i.e., if
the property of exculpability is required), then according to [4] one can achieve
this by extending the above KeyGDMGM algorithm as follows: instead of giving
user i the private key (σi = g

1/(γ+xi)
1 , xi), the user and the key issuer can execute

an interactive protocol so that at the end user i will obtain a triple (σi, xi, yi)
such that σγ+xi

i hyi

1 = g1, where h1 ∈ G1 is a public parameter, and yi ←R Zp is
chosen by the user and kept secret from the group manager. If done so, the SIGN
protocol below needs to be extended correspondingly (but this can be done in a
straightforward manner).

Sign: Given a user’s secret key 〈x, σ〉 and a message M . The signing algorithm will
be obtained by applying the Fiat-Shamir heuristics on an appropriately selected
proof of knowledge. The proof will also be helpful for the non-malleability aspects
of the ciphertext that is embedded into the signature. Below we explain this proof
in detail. First, the signer computes the following values: T1 = gz

1uz′
, T2 = gz′

1 σ,
T3 = Gr

1, T4 = Gr
2, T5 = Hr

0Gx, where r, z, z′ ←R Zp.
Subsequently the signer will construct the signature on a given message M by

providing a proof for a suitable set of relations; the signer knows the witnesses
vx, vz, vz′ , vxz, vxz′ , vr that satisfy the following relationships: T1 = gvz

1 uvz′ in
G1, T3 = Gvr

1 in 〈G1〉, T4 = Gvr
2 in 〈G1〉, T5 = Hvr

0 Gvx in 〈G1〉, T vx
1 = gvxz

1 uvxz′

in G1, and e(T2, g2)vx · e(g1, g2)−vxz′ · e(g1, w)−vz′ = e(g1, g2)/e(T2, w) in GT .

72 A. Kiayias, S. Xu, and M. Yung

As a consequence, the signature is constructed as follows: first the values
ρz, ρz′ , ρx, ρxz, ρxz′ ←R Zp and ρr ←R Zq are selected. Then the following values
are computed:

R1 = gρz

1 uρz′ , R2 = e(T2, g2)ρx · e(g1, g2)−ρxz′ · e(g1, w)−ρz′

R3 = Gρr

1 , R4 = Gρr

2 , R5 = Hρr

0 Gρx , R6 = T ρx

1 g−ρxz

1 (u)−ρxz′ ,

Then we employ the hash function H′ to compute

c ← H′(M ||Y||M ||T1||T2||T3||T4||T5||R1||R2||R3||R4||R5||R6)

Subsequently the following values are computed: sx = ρx + cx in Zp, sz =
ρz + cz in Zp, sz′ = ρz′ + cz′ in Zp, sxz = ρxz + cxz in Zp, sxz′ = ρxz′ + cxz′

in Zp, sr = ρr + cr in Zq. The output of the signing algorithm is the tuple:
δ = 〈T1, T2, T3, T4, T5, c, sx, sz, sz′ , sxz, sxz′ , sr〉.

Verify: Signature verification is achieved by the following test: c
?= H′

(
Y||M ||T1||

T2||T3||T4||T5||gsz
1 usz′T−c

1 ||Ẽ||Gsr
1 T−c

3 ||Gsr
2 T−c

4 ||T−c
5 GsxHsr

0 ||T sx
1 g−sxz

1 u−sxz′
)

,

where Ẽ = e(T2, g2)sx · e(g1, g2)−sxz′ · e(g1, w)−sz′ · (e(g1, g2)/e(T2, w))−c.

OPEN: this m-server protocol is a modification of the DEC protocol of section 2.
The only essential difference is that the test for signature validity based on
the public-key Y substitutes the verification of the proof that accompanies the
ciphertext there. Observe that the tuple mt = (T3, T4, T5) can be parsed out of
δ and corresponds to a reduced ciphertext in the terminology of section 2. The
mining servers execute the DEC protocol as described there to produce the value
Gxi = DEC(mt) that can be used to identify the signer in conjunction with the
tableLooK function. Recall that the user database contains entries of the form
{(idi, G

xi)}i and the table can be queried by the function tableLook(·) that on
input Gxi will return idi.

MINING: The MINING protocol will be an m-server protocol that is given as input
a vector of signatures (δ1, . . . , δK) (with the precondition that they are valid) out
of which their mining tags (mtδ1 , . . . , mtδK) can be parsed; these correspond to
reduced ciphertexts of the underlying encryption scheme. We present two differ-
ent MINING protocols that employ the MIX, DEC, CMP as sub-protocols operating
over the mining tags that are parsed from the given vector of valid signatures.

(I) Usage histogram: The usage histogram functionality asks for a histogram
(idi, counti) for i = 1, . . . , n where counti is the number of signatures signer idi

contributed.

Code snippet for MINING: usage histogram
Parse δ1, . . . , δK to obtain mtδ1 , . . . , mtδK ;
〈mt′1 . . . mt′K〉 ← MIX(mtδ1 , . . . , mtδK);
for i = 1 to K do idi ← tableLook(DEC(mt′i));
SORT(id1, . . . , idK);

Privacy Preserving Data Mining within Anonymous Credential Systems 73

The complexity of the usage-histogram functionality is equal to O(K log K +
Kdec + mix(K)), where dec is the cost of DEC and mix is the cost of MIX (note
that SORT is implemented locally by each server on its local output).

(II) Blinded usage histogram with outlier detection : Given the sequence of signa-
tures, we want to create a histogram that contains entries of the form (i, counti)
where i corresponds to one of the signers that produced some of the signatures
among δ1, . . . , δK and counti corresponds to the number of signatures that were
contributed by this user; note that here i does not identify the user (it is not
equal to the user’s identity and not correlated with it — it is simply a histogram-
specific pseudonym for the user and is used only for the presentation of the his-
togram). Besides this, detecting outliers requires the mining servers to discover
the identity of signers that either over-use (e.g. spammers) or under-use (e.g.
those that haven’t seen enough advertisements) the system. To facilitate this
the algorithm takes two parameters lo, hi ∈ {1, . . . , K} and requires the recovery
of the identity of any signer whose usage is below (resp. above) lo (resp. hi):

Code snippet for MINING blinded usage histogram with outlier detection
Parse δ1, . . . , δK to obtain mtδ1 , . . . , mtδK ;
〈mt′1 . . .mt′K〉 ← MIX(mtδ1 , . . . , mtδK);
for i = 1 to K do

k = 0;
if mt′i �= NIL then

k = k + 1;
count[k] = 1;
for j = i + 1 to K do

if mt′j �= NIL then
test ← CMP(mt′i, mt′j);
if test == 1 then

count[k] = count[k] + 1;
mt′j = NIL;

output 〈k, count[k]〉;
if (count[k] < lo) or (count[k] > hi)

then output id ← tableLook(DEC(mt′i));

The complexity of the blinded usage histogram generation isO(K2cmp+mix(K)),
where cmp is the cost of CMP.

Correctness and Security Arguments. Below we argue how our construction spec-
ified above satisfies the model that we put forth in sections 2 and 3.

Our security arguments will be split into steps. First we will show that our
suite of multi-server protocols is t-distribution safe for m ≥ 2t− 1 servers. This
will enable us to reduce any adversary that takes advantage of the multi-server
nature of the system and corrupt a set of t − 1 servers to an adversary that
performs the same attack against a single honest server. Then, we will show
that our scheme in the single server setting satisfies the properties we put forth
in section 3.

74 A. Kiayias, S. Xu, and M. Yung

Theorem 2. The suite of m-server protocol suite 〈KeyGDM, OPEN, DEC, MIX, CMP〉
is t-distribution-safe under the discrete-logarithm assumption and that H is a
random oracle that is controlled by the simulator provided that m ≥ 2t− 1.

Theorem 3. The DMGS scheme introduced above satisfies (i) correctness, (ii)
traceability, (iii) anonymity, based on: the Strong-Diffie Hellman Assumption
over G1, G2, the Decisional Diffie-Hellman Assumption over 〈G1〉 and the as-
sumption that H′ is modeled as a random oracle.

5 Conclusion

We conceptualized the notion of privacy preserving data mining within anony-
mous credential systems. We advocated this general notion as fundamental to
adapting anonymous credentials in general systems. We then instantiated it in
the context of group signatures as “data mining group signatures” and presented
two particular instantiations of it. We included a modeling of the notion, intro-
duced distribution safety as a way to modularly argue the security of distributed
cryptosystems and we presented an explicit construction of our notion. A num-
ber of issues remain for further investigation: Extending the mining instances
to other cases crucial in transaction systems while maintaining efficiency is an
important direction. Our definition of the notion is based on combining the
properties of correctness, traceability and anonymity; considering attackers that
adaptively decide which of the properties to violate (as in a simulation-based
“ideal functionality” formulation) is an open subject to consider. Even further,
presenting constructions without the random oracle idealization or in a fully
concurrent execution model are open questions as well.

References

1. Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked ele-
ment. In: Cachin and Camenisch [5], pp.40–55

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880. Springer, Heidelberg (2000)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) Advances in Cryptology – EUROCRYPT 2003, Warsaw,
Poland. LNCS, vol. 2656. Springer, Heidelberg (2003)

4. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

5. Cachin, C., Camenisch, J. (eds.): Advances in Cryptology - EUROCRYPT 2004,
International Conference on the Theory and Applications of Cryptographic Tech-
niques, nterlaken, Switzerland, May 2-6, 2004. LNCS, vol. 3027. Springer, Heidel-
berg (2004)

6. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:
How to win the clonewars: efficient periodic n-times anonymous authentication. In:
Juels, A., Wright, R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer
and Communications Security, pp. 201–210. ACM, New York (2006)

Privacy Preserving Data Mining within Anonymous Credential Systems 75

7. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005)

8. Chaum, D.: Blind signatures for untraceable payments. In: Crypto (1982)
9. Chaum, D.: Security without identification: Transactions systems to make big

brother obsolete. C. ACM 28(10), 1030–1044 (1985)
10. Chaum, D.: Showing credentials without identification. In: Pichler, F. (ed.) EU-

ROCRYPT 1985. LNCS, vol. 219, pp. 241–244. Springer, Heidelberg (1986)
11. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.

(ed.) CRYPTO 1988. LNCS, vol. 403. Springer, Heidelberg (1990)
12. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT

1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)
13. Damg̊ard, I., Dupont, K., Pedersen, M.Ø.: Unclonable group identification. In:

Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 555–572. Springer,
Heidelberg (2006)

14. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
Proceedings of the 28th Symposium on Foundations of Computer Science (FOCS),
pp. 427–437. IEEE Computer Society Press, Los Alamitos (1987)

15. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

16. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set inter-
section. In: Cachin and Camenisch [5], pp.1–19

17. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

18. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 295–310. Springer, Heidelberg (1999)

19. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt, Y.
(ed.) Public Key Cryptography. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg
(2003)

20. Jagannathan, G., Wright, R.N.: Privacy-preserving distributed k-means clustering
over arbitrarily partitioned data. In: Grossman, R., Bayardo, R., Bennett, K.P.
(eds.) KDD, pp. 593–599. ACM, New York (2005)

21. Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Ca-
menisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer,
Heidelberg (2004)

22. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

23. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880. Springer, Heidelberg (2000)

24. Lindell, Y., Pinkas, B.: Privacy preserving data mining. J. Cryptology 15(3), 177–
206 (2002)

25. Liu, X., Yang, X., Wetherall, D., Anderson, T.: Efficient and secure source authen-
tication with packet passports. In: Proceedings of 2nd USENIX Steps to Reduce
Unwanted Traffic on the Internet workshop (SRUTI 2006) (2006)

26. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Samarati, P.
(ed.) Proceedings of the 8th ACM Conference on Computer and Communications
Security, Philadelphia, PA, USA, November 2001, pp. 116–125. ACM Press, New
York (2001)

76 A. Kiayias, S. Xu, and M. Yung

27. Pedersen, T.P.: A threshold cryptosystem without a trusted party (extended ab-
stract). In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 522–526.
Springer, Heidelberg (1991)

28. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

29. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. J. Cryptology 15(2), 75–96 (2002)

30. Stadler, M., Piveteau, J.-M., Camenisch, J.: Fair blind signatures. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, Springer, Heidelberg
(1995)

31. Yang, X., Wetherall, D., Anderson, T.: A dos-limiting network architecture. In:
ACM SIGCOMM, pp. 241–252 (2005)

32. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer
data without loss of accuracy. In: SIAM International Data Mining Conference
(2005)

Improved Privacy of the Tree-Based Hash

Protocols Using Physically Unclonable Function�

Julien Bringer1, Hervé Chabanne1, and Thomas Icart1,2

1Sagem Sécurité
2Université du Luxembourg
firstname.name@sagem.com

Abstract. In 2004, Molnar and Wagner introduced a very appealing
protocol dedicated to the identification of RFID tags. Their scheme relies
on a binary tree of secrets which are shared – for all nodes except the
leaves – amongst the tags. Hence the compromise of one tag also has
implications on the other tags with whom it shares keys. We describe a
new man-in-the-middle attack against this protocol which allows to break
privacy even without opening tags. Moreover, it can be applied to some
other RFID protocols which use correlated keys as the one described
recently by Damg̊ard and Pedersen at CT-RSA 2008.

We introduce a modification of the initial scheme to allow us to thwart
this and to strengthen RFID tags by implementing secrets with Physi-
cal Obfuscated Keys (POKs). This doing, we augment tags and scheme
privacy, particularly general resistance against physical threats.

Keywords: RFID tags, Tree-Based Hash Protocol, POK, PUF, Privacy.

1 Introduction

Radio Frequency Identification (RFID) tags are made of a small chip containing
a unique identification number. They communicate in the air with the system
via a reader. One of their main applications is to track objects on which they
are attached.

RFID systems have to deal with the scarcity of tags resources as well as the pri-
vacy needed for tag identification. In [10,11], a protocol which seems well suited
to handle these two constraints has been introduced. Indeed, the identification
protocol of Molnar et al. requires only limited cryptographic functionality and
has some useful properties such as the delegation of some identifications from
a Trusted Center to readers. This protocol relies on a binary tree of secrets.
The secret corresponding to a leaf is uniquely associated to one tag, but all the
other secrets in the tree are shared with different tags. Thus, as it is studied
in [4,12,13], the compromise of the keying material of some tag leads to learn
the shared keys with some other tags. If many tags are compromised, this could
allow to track some non-compromised tags. This can be considered as a main

� This work was partially supported by the french ANR RNRT project T2TIT.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 77–91, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

78 J. Bringer, H. Chabanne, and T. Icart

threat to the privacy of the system. This problem has already been addressed in
[2], the compromise of tags still leaks information about the keying material of
the system.

To thwart this, we want to increase the resistance of tags against physical
threats. Physical Obfuscated Keys (POKs) have been introduced by Gassend [6]
as a mean to securely store a secret inside a chip. They are strongly related
to Physical Unclonable Functions (PUFs). Indeed, POKs were introduced as a
proposition to implement keys in a more secure manner. They are built such that
their observations by an adversary corrupt the chip and then destroy them. Note
that the use of PUFs inside RFID tags has already been considered in [3,15].

The main achievement of this paper is to describe how to replace each secret
by two POKs during the Tree-Based Hash protocol. They are activated alter-
nately and each one taken separately does not reveal anything on the secret.
Cryptographic computations are carried out with two steps, where during a
step, only one POK is activated. Moreover an adversary can gain access only to
one POK by sacrificing the chip. By construction the underlying key is thus safe
from this compromise of one POK.

Our paper is as follows. In Sect. 2, we recall the principles of the Tree-Based
Hash protocol [11] and those of POKs. In Sect. 3 and 4, we describe our privacy
model. In Sect. 5, we explain why some private informations leak with a Tree-
Based Hash protocol. In fact, we show a new attack against [11] and [5] where
an adversary is able to track tags even without compromising any tags. In Sect.
6, we describe our modification of the protocol. Section 7 examines the security
of our proposition and Section 8 examines the privacy of our scheme to formally
prove the latter in the random oracle model. Section 9 concludes. Security proofs
and practical implementations are sketched in appendices A and B.

2 Preliminaries

2.1 The Protocol [11] in a Nutshell

In the following, we describe the general principles of the Tree-Based Hash pro-
tocol and invite the readers to go through [11] to get full details.

During system initialization, a Trusted Center generates a tree of secrets (keys),
for instance a binary one. Each leaf is associated to a tag. A tag knows all keys
K1, . . . , Kd along the path from the root to its leaf. Let F denotes an appropri-
ate public pseudo-random function. When a tag is challenged by a reader which
sends to it a random value r, it responds by generating a new value each time –
FK1(r, r

′), FK2(r, r
′), . . ., FKd

(r, r′) – where r′ is another random value generated
and transmitted by the tag. The Trusted Center can easily check to which key
corresponds the received value in its tree of secrets by verifying for a given (r, r′):

1. to which node corresponds FK1(r, r′),
2. between the 2 children of this node, which one is associated with FK2(r, r′),
3. repeat this verification, level after level from the root to the leaves,
4. and then identify which leaf (tag) comes with FKd

(r, r′).

Improved Privacy of the Tree-Based Hash Protocols 79

A Practical Example. To get a better idea of the involved figures, we take
back the example given in [11]. They have 220 tags. The binary tree is replaced
by a tree with a branching factor Q = 210 and is made of two levels. Each tag
stores two 64-bit secrets. Using a Tree-Based identification protocol enables to
reduce the number of tests a Trusted Center needs to do. In this example, a
Trusted Center has to compute only 2 × 210 times the function F, 210 for each
round, instead of 220 without this protocol. This improvement is very interesting,
because if the system’s size is S, the number of computation for the Trusted
Center is always in O(logQ(S)Q) computation.

It should be noted that this protocol is very similar to a popular RFIDs
singulation algorithm: the tree walking algorithm [1]. Using this protocol leads
to an optimized singulation.

2.2 Physical Unclonable Function and Physically Obfuscated Key

Gassend in [6] introduces the concept of PUF. A Physical Unclonable Function
(PUF) is a function that maps challenges (stimuli) to responses, that is embodied
by a physical device, and that has the following properties:

1. easy to evaluate,
2. hard to characterize, from physical observation or from chosen challenge-

response pairs,
3. hard to reproduce.

For a given challenge, a PUF always gives the same answer. The hardness of
characterization and the reproduction is hard; i.e. it is impossible to reproduce
or to characterize the PUF thanks to a reasonable amount of resources (time,
money, . . .). PUF can thus be viewed as pseudo-random function1 where the
randomness is insured thanks to physical properties. In the rest of this paper,
PUFs are formalized as perfect random functions, i.e. functions with maximal
output’s entropy.

We also write GenPUF(12k

) for a generator of random, independent PUFs.
One kind of PUF, as mentioned in [15] as I-PUF for Integrated Physical Un-

clonable Function, has other interesting properties:

1. The I-PUF is inseparably bound to a chip. This means that any attempt to
remove the PUF from the chip leads to the destruction of the PUF and of
the chip.

2. It is impossible to tamper with the communication (measurement data) be-
tween the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

These properties insure the impossibility to analyze physically a PUF without
changing its output. Hence, physical attacks corrupt the PUF and the chip leav-
ing the attacker without any information about the PUF. Particularly, volatile
1 Note however that they can be limited in the number of possible challenge-response

pairs as explained in [8].

80 J. Bringer, H. Chabanne, and T. Icart

memory cannot be read out without destroying the I-PUF. Silicon PUF have been
already described in [7] and can be taken as relevant examples of I-PUF, they are
based on delay comparison among signals running through random wires. More-
over, they only require a few resources to be implemented. A practical example
of implementation is described in [14].

In [6], it is shown how to implement a key with a PUF, this implementation
is called a Physically Obfuscated Key (POK), by applying a fixed hard-wired
challenge to the PUF. In fact, using different challenges, several POKs can be
obtained from one PUF. In the sequel, we refer to a POK as a value, stored in a
tag, which is accessible only when the underlying PUF is stimulated.

2.3 How We Use POKs

The key has to be stored digitally when involved in some computations, whatever
the use of the tag is. Consequently, it could be possible to get a dump of the
volatile memory and then to obtain the value of the key. This type of attack
has been considered in [2] with a general line of defense for POKs: split the
computations with the key in two steps. Of course, the difficulty we encounter
is to cope with cryptographic computations and to find a way to split them.

A key K of the tree would be hard-wired thanks to two POKs K ′ and K ′′

such that K = K ′ ⊕ K ′′where the two parts K ′ and K ′′ are different for each
tag.

Note that challenges used to stimulate the PUF to generate keys are stored
in the tag. Because the equality K = K ′ ⊕K ′′ stands for all tags in the same
branch, neither K ′ and K ′′ need to be known from the outside, nor pairs of
input/output from the PUF do.

3 Security Model

Here we propose to apply to RFID systems the following security model for
completeness and soundness. This is a simplification of [16].

3.1 Adversary Model

We sketch the possible actions of an adversary over a system. The system con-
tains a Trusted Center TC which wants to communicate with N tags. We as-
sume that the protocol is a challenge-response protocol: to authenticate a tag,
the Trusted Center sends a challenge and then waits for a response from the tag.

– SendTC: this function enables the adversary to interact with the TC. Using
this function, he gets a challenge a0 and he possibly tries to answer by
playing the role of a tag, in order to gain information over the key material.
Nevertheless, he does not receive the result of the identification.

– SendTag: this function enables an adversary to communicate with a tag.
SendTag(T , a0) means the adversary sends a0 to the tag T . This leads to
the complete output from the tag.

Improved Privacy of the Tree-Based Hash Protocols 81

– Result: this function allows an adversary to determine whether a bit string,
taken as input by the function, is a valid communication transcript of the
protocol. Result gives the authentication result the TC would have pro-
duced for a sent challenge and a response from a tag which are read in the
input bit string.

– Corrupt: this function enables the adversary to open a tag to get all the
memory, volatile and non-volatile. Corrupt enables an adversary to get
keys – if any – inside a tag and to get the volatile memory at any moment
of the tag computation.

We also suppose that an adversary has access to any random oracle which may
be used in the protocol.

3.2 Completeness

Definition 1. The scheme is complete when the probability of a genuine tag
to fail during the identification process is negligible. I.e. for all tags T ,

Pr
(
Result

(
aTC
0 ,SendTag

(
T , aTC

0

))
= false | aTC

0 = SendTC ()
)

is negligible.

3.3 Soundness

Definition 2. The scheme is sound, if any polynomially bounded adversary
A cannot produce a valid communication transcript CA, except with a negligible
probability. Furthermore, CA must neither lead to the identification of a corrupted
tag nor be an eavesdropped communication. I.e.

Pr (Result (CA) = true)

is negligible.

These definitions are the adaptation of the usual correctness and soundness in
the model. Correctness ensures a legitimate tag identifies itself with an over-
whelming probability. Soundness ensures that no adversary can impersonate a
tag. Nevertheless, in the definition of soundness, we assume that adversaries are
active. For instance, they can impersonate a TC or eavesdropped communica-
tions or even corrupt tags to get information on secrets of the system.

4 Privacy Model

We present here our model of privacy. To define privacy, we define a game. An
adversary relevant against privacy is able to win this game with a non negligible
probability.

Thanks to the experiment described in Fig. 1, A is an adversary who wants
to find a privacy leakage in the protocol (where R← denotes an element taken at

82 J. Bringer, H. Chabanne, and T. Icart

random). The privacy is defined as the advantage of the adversary over two tags
amongst two systems of tags he had chosen. If the advantage of A is negligible,
this means he is not able to link any tag inside S1 and S2. If A is relevant for this
game, he is able to construct subsystems with a special property: given a tag,
he can determine in which subsystem it belongs. This definition is more general
than anonymity and untraceability. If tags can be identified from an adversary
or can be traced, it is easy for an adversary to construct subsystems in order to
succeed at our game.

Experiment Exppriv
A,S :

Setup:
1. Initialize one system S.

Phase 1 (learning):
1. A may do the following in any interleaved order:

(a) make arbitrary SendTag queries to any tag in S,
(b) make arbitrary SendTC queries,
(c) make arbitrary Result queries,
(d) make arbitrary Corrupt queries to any tag in S,
(e) make arbitrary calls to the random oracle.

Phase 2 (challenge):
1. A selects two subset of S: S1 and S2,
2. A selects two non corrupted tags T1 ∈ S1 and T2 ∈ S2.
3. Remove T1 and T2 from S1 and S2.

4. Let b
R← {1, 2} to select Tb one of these tags.

5. A may do the following in any interleaved order:

(a) make arbitrary SendTag queries to any tag in S1\T1, S2\T2 and Tb,
(b) make arbitrary SendTC queries,
(c) make arbitrary Result queries,
(d) make arbitrary Corrupt queries to any tag in S1\T1, S2\T2,
(e) make arbitrary calls to the random oracle.

6. A outputs a guess index b′

Exppriv
A,S succeeds if b = b′.

Fig. 1. Privacy Experiment

Definition 3. A protocol in a RFID system is private if for a polynomially
bounded adversary A following the experiment Exppriv

A,S , then

|Pr[b′ = b]− Pr[b′ �= b]|

is negligible.

In each step, A is allowed to use the random oracle, but we omit it to simplify.
This privacy definition is more general than the privacy definition of Juels and

Weis in [9]. This is a consequence of the possibility to consider shared keys inside
tags whereas it is not taken in account in their model. Indeed in their model,
they suppose keys inside tags are all independent. In this case, it is unnecessary

Improved Privacy of the Tree-Based Hash Protocols 83

to consider the whole system to determine whether an adversary has advantages
on distinguishing two tags, whereas it is an important threat to consider in Tree-
Based protocols. Furthermore, the original Tree-Based Hash protocol is private
in their model although it is not in ours (cf. Sect. 5).

Vaudenay in [16] defines a new model of privacy. Privacy is defined as a leakage
of information of the whole system. In the Vaudenay’s model, a system of tags is
private if it is possible to perfectly simulate the system. An adversary should not
be able to distinguish whether he is attacking a legitimate system or a simulated
one. From now on, this seems to be the most general model as it is clear that a
privacy leakage is a gain of information on the system. Nevertheless, a system
could not be perfectly simulated – as it is the case for our scheme introduced in
Sect. 6 when we allow the adversary to use the Result oracle – without implying
that there exists a way to obtain information over tags inside the system. That is
why we introduce our privacy definition which can be seen as a kind of trade-off
between [9] and [16].

5 A New Privacy Leakage Against Tree-Based Hash
Protocols

The original Tree-Based Hash protocol proposed in [11] had been proved to have
some privacy leakage in [4,12,13]. Opening a tag, while keys are not protected,
leads to the knowledge of shared keys in the system. Note that in one version
of the protocol in [11](the one described in section 2.1), there are cases where
it is possible to determine whether two tags share keys even without getting
physically the keys.

Let us denote CT
1 (r) = FK1(r, r′), . . . , CT

d (r) = FKd
(r, r′) the outputs of the

tag T for the challenge r. CT
i (r) = FKi(r, r′) is the output needed to authenti-

cate at the depth i in the tree of keys. Suppose the CT
i (r) are independent from

each other. As a consequence, CT
i (r) can be computed without the knowledge of

CT
1 (r), . . . , CT

i−1(r), C
T
i+1(r), . . . , C

T
d (r). In this case, using one Result query and

two SendTag queries, it is possible to determine whether two tags share one key.
Getting a random challenge r from SendTC, the adversary can use Send-

Tag(T , r) and SendTag(T ′, r). He is then in possession of two communications
CT

1 (r), . . . , CT
d (r) and CT ′

1 (r), . . . , CT ′

d (r). For instance, to test whether the two
tags have the same first key, the adversary uses the Result query on the commu-
nication

(
r, CT ′

1 (r), CT
2 (r), . . . , CT

d (r)
)
. If this communication is an admissible

one, this means T and T ′ share the same first key. Otherwise, they do not. Of
course, it is possible to do the same for a key at a different position.

This attack is practically feasible as the adversary only needs to interact with
two tags and a reader. In fact, it is a general privacy threat that concerns RFID
systems using correlated keys inside tags. As soon as the different components
of a response (the Ci above) are not linked together, an adversary can mix the
answers of several tags to learn if they share keys.

For instance it is the case of the new protocol recently introduced in [5]: It is a
protocol with correlated keys, but unlike [11] it does not rely on a tree of secrets

84 J. Bringer, H. Chabanne, and T. Icart

in order to increase the possible choices of tuples of keys associated to tags, which
allows to increase the resistance against corruption. However messages answered
by a tag are still independent and the technique above still attacks the privacy
of the scheme. In the next section, our protocol is constructed to avoid also this
kind of vulnerability.

6 Our Proposition

6.1 System Parameters

Because of PUF and use of different random values for each key inside a tag, our
protocol strengthens tags against the privacy leakage described in the previous
section (see section 8 for this result).

We now give the parameters of our scheme. Our RFID system is made of
N tags, the tree of key has a branching factor Q and a depth d. We use a
pseudo-random function H implemented by a hash function.

The length of the random challenge a0 sent by the TC is lr, the length of keys
is lK and the length of the output of the hash function is lH . The number of
tags N is usually smaller than 240. A probability is considered negligible as soon
as it is negligible in at least one of the following parameters: N, lr, lK , lH . These
systems is denoted S(N, Q, d, lr, lH , lK).

Setup. To create our system of tags, we need a generator function: Gen(1k) outputs
a random element of size k. To create our system of tags, we first use Q + Q2 +
. . .+Qd times the function Gen to create our tree of keys. Each key is an output of
Gen(1lK). During the creation of a new tag, a set of keys is given, which enabled it
to identify itself. The set of keys is made thanks to our tree of keys, which means it
represents a path from the root to a leaf. All the tags have of course different sets of
keys, with possibly d−1 keys shared. For one tag T , it is denoted as KT

1 , . . . , KT
d .

A tag is created with a new PUF obtained from GenPUF(12lK). As shown before,
each key is implemented inside a tag via two POKs. To generate the value of these
POKs, we once more use Gen. For each KT

i , Gen(1lc) outputs a challenge c. This
challenge is hard-wired with the PUF and outputs PUF(c) = K ′T

i . The couple
of POKs associated to the key KT

i is (K ′T
i , K ′′T

i = K ′T
i ⊕ KT

i). As the PUF is
considered to be a perfect random-function, K ′T

i and K ′′T
i are considered to be

random values of entropy lK . This means that the knowledge of only one of these
values does not reveal anything on KT

i .

6.2 The Protocol

In Fig. 2 is the description of our new protocol, where K̂j
i denotes the key at

the depth i on the jth branch of the tree. The TC sends to the tag a challenge
a0, which is a random value. The tag T computes a random value rT1 and sends
a1 = H(a0, r

T
1). The tag switches on the first POK to get K ′T

1 and computes
A′ = rT1 ⊕K ′T

1 . This operation erases in volatile memory rT1 . The second POK
is switched on to get K ′′T

1 , and this erases K ′T
1 . Finally the tag computes A′′ =

Improved Privacy of the Tree-Based Hash Protocols 85

Tag T TC

a0←−−−−−−− pick a0

pick rT
1

a1 = H(a0, r
T
1)

The first POK is
switched on to get K′T

1

A′ = rT
1 ⊕ K′T

1

The second POK is
switched on to get K′′T

1

A′′ = A′ ⊕ K′′T
1

= rT
1 ⊕ KT

1
a1, rT

1 ⊕KT
1−−−−−−−−−→

...
...

pick rT
d

ad = H(ad−1, r
T
d)

...
ad, rT

d ⊕KT
d−−−−−−−−−→

for i = 1 to d
for j = 1 to Q

rj′
i = K̂j

i ⊕ rT
i ⊕ KT

i

if ai = H(ai−1, r
j′
i)

then go to the next stage
associated to the found key

end for
if no match, fails

end for

Fig. 2. The Identification Protocol

A′ ⊕K ′′T
1 and sends rT1 ⊕KT

1 . The tag picks a random value rT2 and computes
a2 = H(a1, r

T
2) and sends it to the TC. It computes rT2 ⊕ KT

2 using the same
tricks as before. It repeats these operations d− 1 times.

Then the Trusted Center (TC) tries amongst all the key K̂j
1 in the tree’s first

level whether it gets the equality H(a0, r
T
1 ⊕ KT

1 ⊕ K̂j
1) = a1. If it finds one

correct key, it searches the next key amongst the possible keys in the tree. If the
operation is successful for the d levels then the tag is authenticated.

This protocol has all the advantages of the Tree-Based Hash protocols: it
allows delegation and to have less computation for the TC than the exhaustive
search but with an increased time of computation for the tag.

86 J. Bringer, H. Chabanne, and T. Icart

7 Security Analysis

In our protocol, SendTag outputs (a1, r
T
1 ⊕KT

1 , . . . , ad, r
T
d ⊕KT

d) and Result

returns whether the 2d + 1-tuple (a0, a1, r
T
1 ⊕KT

1 . . . , ad, r
T
d ⊕KT

d) is correct.

7.1 Restriction on the Corrupt Query Due to POKs

In our case, we make the hypothesis that corrupting a tag T leads an adversary
to the knowledge of only one of the three possible type of sets:

1. ai−1, rTi and ai = H(ai−1, r
T
i),

2. ai−1, rTi , ai = H(ai−1, r
T
i) and rTi ⊕K ′T

i ,
3. ai−1, ai = H(ai−1, r

T
i), rTi ⊕K ′′T

i and rTi ⊕KT
i .

Note that in the two first cases, an adversary does not learn the final output.
Thanks to the possible actions of the adversary as defined in Sect. 3.1, we can
prove:

Theorem 1. Corrupt queries leak at most as many information on the key
material as SendTag queries.

Proof. Getting ai−1, rTi and ai is trivially of no interest. Getting ai−1, rTi , ai and
rTi ⊕K ′T

i is equivalent as getting ai−1, rTi and K ′T
i . As K ′T

i is a random value of
maximal entropy lK , this leaks no information about KT

i . Finally, getting ai−1,
ai, rTi ⊕K ′′T

i and rTi ⊕KT
i is equivalent as getting ai−1, ai, K ′′T

i and rTi ⊕KT
i .

Because K ′′T
i is a random value of entropy lK , this is equivalent as getting ai−1,

ai, and rTi ⊕KT
i which is exactly a part of an output of a SendTag query. �

In the sequel, we do not distinguish Corrupt from SendTag in proofs.

Remark 1. Formalizing Corrupt this way is convenient for our model and our
proofs. The reality behind this formalization is still an open implementation
issue. More concretely, the ability of an adversary to obtain a key from a POK
without destroying the tag has to be evaluated precisely. This topic is however
outside the scope of this paper.

7.2 Completeness and Soundness

Theorem 2. Our scheme is complete. If H is preimage and collision resistant,
then our scheme is sound.

The proofs are available in Appendix A.

8 Privacy Analysis

As shown before in Sect. 5, this is an important point to determine whether an
adversary gains any advantage using different outputs from different tags while
he is using Result queries. In this paper, the protocol described has the property
that an adversary cannot use different outputs from tags to make a new one which
has a good probability of being admissible. This is shown in the following.

Improved Privacy of the Tree-Based Hash Protocols 87

Proposition 1. If H is collision resistant, an adversary, by mixing different
outputs from different tags in a Result query gets a positive answer only with
a negligible probability.

Proof.A uses the SendTag query on tags in S. Then he uses the Result query.
His query is of the form a0, . . . , a

T 1

i−1, r
T 2

i−1⊕KT 2

i−1, a
T 3

i , rT
4

i ⊕KT 4

i , . . . To be a valid
communication, it has to exist a key K̂ such that aT 3

i = H(aT 1

i−1, r
T 4

i ⊕KT 4

i ⊕K̂).
We also have the equality aT 3

i = H(aT 3

i−1, r
T 3

i). If the first equality occurs, while
T 1, T 3 and T 4 represent different tags, this leads to a collision on the output of
H as rT

3

i and rT
4

i are generated randomly and aT 1

i−1 and aT 3

i−1 are outputs from
H . So this proves this communication is valid with a negligible probability. �

Hence, in the sequel, we suppose an adversary never uses different SendTag

outputs in one Result query.

Remark 2. Furthermore, if A tries some Result queries on a randomly mod-
ified communication from one tag, he gets a positive answer with a negligible
probability. Consequently, Result query can just be used to verify whether a
communication from one tag is valid or not.

Below, the random oracle H represents the hash function used in our protocol
and we assume that the random generator in each tag is perfect.

Theorem 3. Our protocol, in the random oracle model, is private.

Proof. Let Li,lp
C be the list of all the communications of A with tags in Si during

the learning phase and Li,cp
C during the challenge phase except Tb. Let Lb

C be the
communication with Tb. Let Llp

R
and Lcp

R
the Result (or SendTC or Corrupt)

queries used in the experiment. Let Llp = L1,lp
C ∪ L2,lp

C ∪ Llp
R

and Lcp = L1,cp
C ∪

L2,cp
C ∪ Lcp

R
. Let L1 be L1,lp

C ∪ L1,cp
C and L2 be L2,lp

C ∪ L2,cp
C .

To determine whether Tb is in S1 or S2, A has to determine whether Tb shares
keys with tags in S1 or in S2. To achieve this, either he made some queries to
the random oracle or not.

– Case 1: A did not make any random oracle query. So A can obtain a clue
that Tb is in Si just by looking at Llp, Lcp and Lb

C. We already proved in
Sect. 8 that use of Result only helps to verify whether a communication
from one tag is valid or not. To get a useful information, A has to compare
the communications in L1, L2 and Lb

C.
To this aim, amongst triplets (aT

i−1, a
T
i , rTi ⊕KT

i), A needs to distinguish
values which are correlated to the same keys. However, a triplet (aT

i−1, a
T
i ,

rTi ⊕KT
i) is indistinguishable from a random one under the random oracle

hypothesis as long as he does not make a query to the oracle. The only way
to distinguish communications is thus to find at least one collision between
Lb
C and L1 ∪ L2. The probability to get such a collision is negligible.

– Case 2:Amade some random oracle queries but none of the form H(aT
i , rTi ⊕

KT
i ⊕K̂) where K̂ is a key in S1 or S2 and aT

i , rTi ⊕KT
i is a part of an output

from a tag. In this case, A has no more information than in the previous
case, and the conclusion is the same

88 J. Bringer, H. Chabanne, and T. Icart

– Case 3: A made some random oracle queries and one of them is of the
form H(aT

i , rTi ⊕KT
i ⊕ K̂). This means A got a key of this system. As we

already proved in a previous remark, this event has a negligible probability
to happen.

The overall advantage of A is negligible in the security parameters for a polyno-
mially bounded adversary. �

9 Conclusion

Following a general trend in inserting PUFs inside RFIDs, we modify the Tree-
Based Hash protocols to allow the integration of POKs. Because of the fact that
keys inside a tag are now physically obfuscated, we show that an adversary is
not able to impersonate a tag. Moreover, we prove our tag system has no privacy
leakage. We thus believe that our work helps to strengthen the security of the
overall protocol.

Acknowledgments

The authors wish to thank the anonymous reviewers for their comments, Jean-
Sébastien Coron and Bruno Kindarji for their help to enhance the quality of the
paper.

References

1. Auto-ID Center. Draft protocol specification for a 900 MHz Class 0 Radio Fre-
quency Identification Tag (2003)

2. Avoine, G., Buttyán, L., Holczer, T., Vajda, I.: Group-based private authentication.
In: Proceedings of the International Workshop on Trust, Security, and Privacy for
Ubiquitous Computing (TSPUC 2007). IEEE, Los Alamitos (2007)

3. Bolotnyy, L., Robins, G.: Physically Unclonable Function-based security and pri-
vacy in RFID systems. In: International Conference on Pervasive Computing and
Communications – PerCom 2007, New York, USA, March 2007, pp. 211–220. IEEE
Computer Society Press, Los Alamitos (2007)

4. Buttyán, L., Holczer, T., Vajda, I.: Optimal key-trees for tree-based private au-
thentication. In: Privacy Enhancing Technologies, pp. 332–350 (2006)

5. Damg̊ard, I., Pedersen, M.Ø.: RFID security: Tradeoffs between security and effi-
ciency. In: CT-RSA 2008 (2008)

6. Gassend, B.: Physical random functions. Master’s thesis, Computation Structures
Group, Computer Science and Artificial Intelligence Laboratory, MIT (2003)

7. Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical random
functions. In: Atluri, V. (ed.) ACM Conference on Computer and Communications
Security, pp. 148–160. ACM, New York (2002)

8. Guajardo, J., Kumar, S.S., Schrijen, G.J., Tuyls, P.: FPGA Intrinsic PUFs and
Their Use for IP Protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

Improved Privacy of the Tree-Based Hash Protocols 89

9. Juels, A., Weis, S.A.: Defining strong privacy for RFID. In: PERCOMW 2007, pp.
342–347. IEEE Computer Society Press, Washington (2007)

10. Molnar, D., Wagner, D.: Privacy and security in library RFID: issues, practices,
and architectures. In: Proceedings of the ACM Conference on Computer and Com-
munications Security, pp. 210–219 (2004)

11. Molnar, D., Soppera, A., Wagner, D.: A scalable, delegatable pseudonym protocol
enabling ownership transfer of RFID tags. In: Preneel, B., Tavares, S. (eds.) SAC
2005. LNCS, vol. 3897, pp. 276–290. Springer, Heidelberg (2006)

12. Nohara, Y., Inoue, S., Baba, K., Yasuura, H.: Quantitative evaluation of unlinkable
id matching systems. In: Workshop on Privacy in the Electronic Society (2006)

13. Nohl, K., Evans, D.: Quantifying information leakage in tree-based hash protocols
(short paper). In: ICICS, pp. 228–237 (2006)

14. Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication
and secret key generation. In: DAC, pp. 9–14. IEEE, Los Alamitos (2007)

15. Tuyls, P., Batina, L.: RFID-tags for anti-counterfeiting. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 115–131. Springer, Heidelberg (2006)

16. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

A Security Proofs

Completeness
In our scheme, errors could occur because of collisions in the output of the hash
function. For instance, a part of a communication (ai−1, H(ai−1, r

T
i), rTi ⊕KT

i)
could lead to an error when for a tag T ′, we get the equality H(ai−1, r

T
i) =

H(ai−1, r
T
i ⊕ KT

i ⊕ KT ′

i). This could appear with a probability at most Q
2lH

.
Because there are d stages, the overall probability to fail in the identification is
O(dQ

2lH
) which is negligible in the parameters.

Soundness
We first remark the following. Let us define a family of functions Ha,b derived
from H . b is a bit string of size lb. Ha,b is a function from {0, 1}lb to {0, 1}lH such
that Ha,b(x) = H(a, b⊕ x). As H is preimage resistant, we can consider that an
adversary has a negligible probability to find a preimage of Ha,b(x) whatever a
and b are. If there are polynomially many ai and bj, an adversary has a negligible
probability to find x even if he knows Hai,bj (x) for all ai and bj.

Now, we denote L1 the list of all the communications produced via the
SendTag queries, L2 the communications sent to the TC either with the
SendTC query or the Result query.

To simplify the notation, we prove that the scheme is sound with d = 1. This
is a sufficient condition, as the difficulty to authenticate increases with d. We
denote M , the maximum number of operations made by A.

Assume A has received the challenge aTC
0 and outputs the couple (a1, x1). We

overestimate the probability of success of A. There are two cases:

– Case 1: A did not use H to output a1. This means:
• either aTC

0 had been tested by A thanks to the SendTag query, this
could arise with a probability less than M

2lr
,

90 J. Bringer, H. Chabanne, and T. Icart

Table 1. Resources needed in the first case

Tag Tag → TC TC

numbers non-volatile computation communication computation
memory

220 200 bits 2 AES and 2 random 328 bits 2 × 210

230 300 bits 3 AES and 3 random 492 bits 3 × 210

• or he tried a random answer. In this sub-case, he has a probability of
success less than M.Q

2lH
thanks to the collision resistance property.

– Case 2: A used H to output a1. So we denote a1 = H(aTC
0 , x′

1). This means
• either there is no key K̂ like x′

1 = x1 ⊕ K̂. The probability of success is
thus less than M.Q

2lH
,

• or there is a key K̂ in the key material such that x′
1 = x1 ⊕ K̂. Conse-

quently A possesses one key. He could achieve this only using the infor-
mation from L1 and L2.A only knows triplets of the form

(
a0, H(a0, r

T),
rT ⊕KT) for some tags T . A change of variable leads to: a0, Ha0,rT (KT),
rT . Thanks to the previous remark on preimage resistance property, we
can conclude that the probability A got one key is negligible.

We can conclude that our scheme is sound as the overall probability of any
adversary is negligible.

B Practical Example

We propose for our protocol, as an example, the following parameters:

– the size of the reader challenge lr is 64,
– the size of any POK lK is 100
– the size of the output of H lH is 64.

For instance, the first 64 bits of AESai−1,1..28||ri
(ai−1||ri,1..64).

They have been chosen to minimize the non-volatile memory inside the tag and
the communication between tags and readers, but they should lead to a sufficient
security to insure the secrecy of the keys and the impossibility to authenticate
without the knowledge of the keys. We use AES as it is possible to implement
it with not too many gates and because the problem to find a preimage or any
collision is usually believed intractable.

Security can be improved by increasing the parameters:

– the size of the reader challenge lr is 64,
– the size of any POK lK is 116
– the size of the output of H lH is 64.

For instance, the first 64 bits of AESai−1,1..12||ri
(ai−1||ri,1..64).

The two tables Table 1 and Table 2 summarize the concrete resources used in
our scheme in the two previous cases for some example parameters. We use a
branching factor of 210 in all cases.

Improved Privacy of the Tree-Based Hash Protocols 91

Table 2. Resources needed in the second case

Tag Tag → TC TC
numbers non-volatile computation communication computation

memory

220 232 bits 2 AES and 2 random 360 bits 2 × 210

230 348 bits 3 AES and 3 random 540 bits 3 × 210

Two Generic Constructions of Probabilistic

Cryptosystems and Their Applications

Guilhem Castagnos

GREYC, Ensicaen,
Boulevard Maréchal Juin, BP 5186, 14032 Caen cedex, France

guilhem.castagnos@info.unicaen.fr

Abstract. In this paper, we build, in a generic way, two asymmetric
cryptosystems with a careful study of their security. We present first an
additively homomorphic scheme which generalizes, among others, the
Paillier cryptosystem, and then, another scheme, built from a deter-
ministic trapdoor function. Both schemes are proved semantically se-
cure against chosen plaintext attacks in the standard security model and
modify versions can be proved secure against adaptive chosen ciphertext
attacks.

By implementing these constructions with quotients of Z, elliptic
curves and quadratic fields quotients we get some cryptosystems yet
described in the past few years and provide variants that achieve higher
levels of security than the original schemes. In particular, using quadratic
fields quotients, we show that it is possible to build a new scheme se-
cure against adaptive chosen ciphertext attacks in the standard security
model.

Keywords: Probabilistic Encryption, Homomorphic Scheme, Generic
Construction, Paillier Cryptosystem, Quadratic Fields, IND-CPA and
IND-CCA2 security, Standard Model.

1 Introduction

In 1984, Goldwasser and Micali have designed the first probabilistic cryptosystem
and defined the adequate notion of security for this type of scheme: the notion
of semantic security. After this system, based on quadratic residuosity, many
probabilistic schemes built from the same principle have been proposed: chrono-
logically by Benaloh ([Ben88]), Naccache and Stern ([NS98]), Okamoto and
Uchiyama ([OU98]) and at last, the most achieved system have been proposed
by Paillier ([Pai99]) and then generalized by Damg̊ard and Jurik (cf. [DJ01]),
allowing to encrypt larger messages. All these schemes use quotients of Z, their
one-wayness is based on factoring and their semantic security is based on the
hardness of distinguishing some powers. Moreover, these schemes are additively
homomorphic, i. e., if we got a multiplicative group structure on the ciphertexts
set and an additive one on the plaintexts set, then, if ci is a valid encryption of
mi, with i ∈ {1, 2}, c1c2 is a valid ciphertext of m1+m2. This property has many

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 92–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Two Generic Constructions of Probabilistic Cryptosystems 93

applications, for example the systems of Paillier and Damg̊ard and Jurik can be
used to design electronic vote systems (cf. [BFP+01, Jur03]), for Private Infor-
mation Retrieval (cf. [Lip05]), or for building Mix-nets (cf. [NSNK06, Jur03]).
At the present time, the Paillier and Damg̊ard-Jurik cryptosystems are almost
the only schemes that are additively homomorphic and practical. The system
of Paillier has also been adapted in elliptic curves over Z/n2Z by Galbraith
in [Gal02]. Another finite group, simpler than elliptic curves over finite ring can
be used to adapt this system: the group of norm 1 quadratic integers modulo n,
where n is an RSA integer (this adaptation was only briefly sketched in [Cas07]).

A fast and non-homomorphic variant of the Paillier scheme has been pro-
posed by Catalano, Gennaro et al. in [CGH+01], and later adapted in elliptic
curves by Galindo, Mart́ın et al. (cf. [GMMV03]) and again in quadratic fields
quotients in [Cas07]. These schemes can also be seen like probabilistic variants
of deterministic trapdoor functions: respectively RSA, KMOV (cf. [KMOV92])
and LUC (cf. [SL93]).

In this paper, we propose two generic constructions that capture the ideas of
all these schemes. In section 2, we show how to build a generic homomorphic
encryption trapdoor whose semantic security is based on the hardness of the
problem of distinguishing kth powers of a group, for a well-chosen integer k.
Note that this construction is essentially known as it is a direct generalization of
the Paillier scheme. We include it here for completeness as a formal exposition is
not known by the author. Then, in section 3, we modify the previous construction
in order to get more efficient schemes. This will result in a method to build a
probabilistic trapdoor function from a deterministic trapdoor function which
satisfies some properties.

For each construction, we do a careful study of both one-wayness and semantic
security. For the first one, we begin with a scheme secure against chosen-plaintext
attacks (the homomorphic schemes can not be secure against chosen-ciphertext
attacks because of their obvious malleability) and then we show that we can
modify this construction to use universal hash proof systems (cf. [CS02]) in order
to build an IND-CCA2 scheme in the standard model. The second construction
can be viewed as a simple way to transform a deterministic trapdoor function
into an encryption primitive IND-CPA secure in the standard model against a
decision problem relative to the properties of the deterministic trapdoor function
used. We also present a variant IND-CCA2 secure in the random oracle model
by using standard techniques.

In section 4, we apply these generic constructions in quotients of Z, elliptic
curves and quadratic fields quotients. By doing this, we will see that a large
number of probabilistic schemes proposed these last years can be considered as
applications of the generic constructions. This study also leads to an historical
treatment of probabilistic encryption based on factoring. With quadratic fields
quotients, the application of the generic construction of section 2 leads to a
concise but detailed description of the practical homomorphic cryptosystem only
briefly sketched at the end of [Cas07]. Moreover, we will show that this scheme
can be transformed to build an IND-CCA2 secure cryptosystem in the standard
model.

94 G. Castagnos

Notations: In all the paper, G will denote a finite multiplicative abelian group,
k a nonnegative integer and g an element of G of order k. We will denote |G| the
order of the group G. Let Gk be the subgroup of kth power of G. We will suppose
that k

∣∣ |G| and denote λ := |G| /k. Moreover, we will suppose that λ and k are
coprime. Given a group element h, 〈h〉 will denote the group generated by h.

Given an integer i, |i|2 will denote the size of i in bits, i. e., |i|2 := �log2 k�+1.
We will denote by n an RSA integer, i. e., n will be the product of two distinct

odd primes p and q, large enough, such that the factorization of n is infeasible
in reasonable time (i. e., |n|2 ≥ 1024).

For two algorithmic problems A and B, we will denote A
P⇐= B whenever A

is polynomial-time reducible to B, and A
P⇐⇒ B whenever the two problems are

polynomial-time equivalent.

2 Additively Homomorphic Trapdoor Function

Let us first state a straightforward result of group theory.

Theorem 1. Let G be a finite multiplicative abelian group, k a nonnegative
integer such that k divides |G| and that k and λ := |G| /k are coprime, then

1. the order of Gk is λ;
2. the order of the quotient group G/Gk is k;
3. Gk =

{
x ∈ G, xλ = 1

}
;

4. If g is an element of G of order k then G/Gk is cyclic and G/Gk = 〈π(g)〉
where π denotes the canonic surjection π : G → G/Gk.

Proof (sketch). We use the decomposition of G in a direct sum of cyclic groups,
and the fact that in a cyclic group of order n, the equation xk = 1 has zero or
gcd(n, k) roots. As a consequence, there are k kth roots of unity in G and the
kernel of the map x �→ xk has order k. This proves 1. and 2.; to prove 3. and 4.,
one uses the fact that λ and k are coprime. ��

From this theorem, one can also deduce that Gλ has order k and that Gλ is
actually the subgroup of kth roots of unity of G. Note that g will be a generator
of Gλ, i. e., Gλ = 〈g〉. One can see that there is an isomorphism:

Gλ × Gk ∼−→ G.

The evaluation of this isomorphism if easy: one simply multiply the two elements.
The decomposition of an element of G in a product of a kth root of unity by a kth

power is less obvious, unless one knows the values of λ and k. As these integers
are coprime, there exists μ and ν such that μλ + νk = 1 and c =

(
cμ
)λ(

cν
)k.

In the following, we are going to use this isomorphism to build the trapdoor
function. Before that, we define a decision problem.

Two Generic Constructions of Probabilistic Cryptosystems 95

Definition 1. We will call the decision residuosity problem of degree k in G,
and will denote ResG,k,g, the following problem: Given c an element of G and g
an element of order k1, decide whether c ∈ Gk or not.

We want to build an homomorphic encryption whose semantic security is based
on the difficulty of the decision residuosity problem of degree k in G. This con-
struction will generalize, among others, the system of Paillier (cf. [Pai99]) where
G =

(
Z/n2Z

)× with n an RSA integer and k = n.

Public Key. The group G, the integer k and the element g will be public.
Plaintext messages will be the elements of Z/kZ. We will suppose known an
efficient algorithm to generate random elements of Gk, and an efficient algorithm
to compute the discrete logarithm to base g in 〈g〉.

Encryption Primitive:

EG,k,g :
{

Z/kZ −→ G
m �−→ gmρ

where ρ is a random element of Gk.
According to Theorem 1, 4., if π denotes the canonic surjection π : G → G/Gk,

π(g) is a generator of the quotient group G/Gk. So if c ∈ G is an encryption of
m ∈ Z/kZ, we will have

m = log π(g)

(
π(c)

)
.

As a consequence, the decryption function associated to EG,k,g will be a surjective
morphism from (G,×) to (Z/kZ, +), and a cryptosystem based on the EG,k,g

primitive will be additively homomorphic. As the scheme is homomorphic, it
also enjoys the “self-blinding” property: given c an encryption of m, one can
produce another valid ciphertext c′ of m by computing c′ := cρ′, where ρ′ is a
random element of Gk.

Private Key and Decryption Algorithm. The integer λ is a trapdoor for
the EG,k,g function. Let c ← EG,k,g(m). There exists an element ρ ∈ Gk such
that c = gmρ. According to Theorem 1, 3., cλ = gmλ. Thanks to the public
algorithm for the discrete logarithm problem in 〈g〉, we can recover mλ in the
ring Z/kZ, and them m, as λ and k are coprime.

One-Wayness. Let us define a new computational problem.

Definition 2. Given c an element of G we will call the residuosity class of
degree k of c the element m of Z/kZ such that m = logπ(g)

(
π(c)

)
. We will

denote ClassG,k,g, the problem of computing the residuosity class of degree k of
elements of G.

1 This condition is technical, in order to prove the equivalence in Theorem 3. We will
see that in practice, (cf. section 4), given G and k, it will be easy to find an element
of order k in G.

96 G. Castagnos

A scheme built from the EG,k,g function will be one-way if and only if the
ClassG,k,g problem is hard. It is easy to see that this problem is random self-
reducible (so all the instances of the problem have the same complexity) and does
not depend of the choice of the element g of order k, thanks to the properties of
the discrete logarithm.

In the decryption algorithm, we have seen that one can decrypt an encryption
c = gmρ of m thanks to the knowledge of λ. It is also possible to decrypt c by
computing the element x of G such that xk ≡ c (mod Gλ). Note that x is indeed
unique modulo Gλ = 〈g〉, the subgroup of kth roots of unity. As

m = logπ(g)

(
π(c)

)
= logπ(g)

(
π(c/xk)

)
,

and as c/xk is an element of Gλ = 〈g〉, one can recover m by computing the
discrete logarithm of c/xk to base g in 〈g〉. As a consequence of the existence
of this decryption process, we define another computational problem in order to
analyse the ClassG,k,g problem.

Definition 3. We will denote C–RSAG,k, the following problem: Given c an
element of G, find x such that xk ≡ c (mod Gλ).

Remark 1. If one knows how to manipulate the elements of G/Gλ and to lift
them in G, the C–RSAG,k problem is equivalent to the problem of the local
inversion of the automorphism x �→ xk of G/Gλ, which is a generalization of the
RSA function (G/Gλ has order λ which is prime to the exponent k).

If one knows λ, i. e., the order of G, one can solve the C–RSAG,k problem: given
c ∈ G, the element

x := ck−1 mod λ

verifies xk ≡ c (mod Gλ). As a consequence, we can state the following theorem
which generalizes Theorem 1 and 2 of [Pai99].

Theorem 2. Let G be a finite multiplicative abelian group, k a nonnegative
integer such that k divides |G| and that k and |G| /k are coprime, and let g be
an element of G of order k. We have the following reductions:

ClassG,k,g
P⇐=

(
C–RSAG,k ∧ Dlog 〈g〉

)
P⇐=

(
OrderG ∧ Dlog 〈g〉

)
.

where Dlog 〈g〉 denotes the discrete logarithm problem in 〈g〉 and OrderG the
problem of computing |G|.

Remark 2. The problem Dlog 〈g〉 appears in the previous theorem for complete-
ness, but in practice, as we said earlier, we will hope that this problem is easy
in order to be able to decrypt efficiently.

Semantic Security

Theorem 3. Let G be a finite multiplicative abelian group, k a nonnegative
integer such that k divides |G| and that k and |G| /k are coprime, and let g be

Two Generic Constructions of Probabilistic Cryptosystems 97

an element of G of order k. An encryption scheme built from the EG,k,g primitive
is semantically secure against Chosen-Plaintext Attacks if and only there exists
no polynomial algorithm to solve the decision residuosity problem of degree k in
G.

Proof. To prove that a scheme is semantically secure, one can use the “real or
random property”: i. e., prove that no polynomial time algorithm can distinguish
an encryption of a chosen message, m, from an encryption of a random message.
In our construction, an encryption of a random message is a random element of
G. So we have to distinguish a random element of G from an encryption of m.
As the scheme is homomorphic, this is equivalent to distinguish encryption of 0
in G, that is an element of Gk, in G. ��

Generation of Random Elements of Gk. To generate random elements of
Gk, one can just take at random elements of G and raise them to the power of k.
If one can work in the quotient group G/Gλ and lift the elements of this group
in G, one can also use the isomorphism G/Gλ → Gk, x �→ xk. The encryption
function becomes:

E ′G,k,g :
{

Z/kZ × G/Gλ ∼−→ G
(m , ρ) �−→ gmρk

It is trivial to see that E ′G,k,g is a group isomorphism.

Remark 3. If one can not generate random elements of G or random elements
of G/Gλ, a solution to generate elements of Gk is to publish an element ρ of
Gk of high order and to generate others kth powers by raising ρ to a random
power. Note that in this case, the semantic security of the scheme relies on a
slightly different problem: the decision problem of distinguishing the elements of
〈ρ〉 in G.

IND-CCA2 Variant in the Standard Model. The system of Paillier, gener-
alized by the previous construction, has been used in [CS02] to build an IND-
CCA2 cryptosystem in the standard security model by an application of a general
framework built from a subset membership problem and some projective hash
families. Our construction with the decision residuosity problem can be easily
adapted to fit the framework of [CS02] with only one extra hypothesis. We refer
the reader to [CS02] for definitions.

Suppose that the group G is cyclic. Denote H = Hom(G, G). Then, from the
example 7.4.2 in [CS02], one can prove that the group system G := (H, G, Gk, G)
is diverse and that the projective hash family derived from G is 1/p̃-universal
where p̃ is the smallest prime dividing λ (Theorem 2 of [CS02]). With this, we get
an 1/p̃-universal hash proof system (UHPFS). Following the general construction
of [CS02], from this UHPFS, one can build a scheme that is IND-CCA2 secure
in the standard model, providing that p̃ is sufficiently large, and assuming the
hardness of the decision residuosity problem.

98 G. Castagnos

3 Non-homomorphic Trapdoor Function

In this section, we change the previous construction in order to reduce the en-
cryption and decryption costs. The idea is to replace the most costly step of the
encryption process: the evaluation of the function x �→ xk. This exponentiation
will be replaced by a function f , cheaper to evaluate. This idea corresponds to
the scheme of [CGH+01], which uses a function built from the RSA function.
By doing this, we will loose the homomorphic property.

We have to build the function f in order to still have an efficient way to
decrypt. In the previous section, we saw that if was possible to decrypt by
inverting the automorphism x �→ xk of G/ 〈g〉. We are going to replace this
automorphism by a known determinist trapdoor function f , permutation of a
subset of G/ 〈g〉. The function f will be built from f . As a consequence, the
construction of this section will enable oneself to build a probabilistic trapdoor
function from a determinist one.

Construction of f . We suppose that we know a trapdoor permutation f
of a subset Λ of G/ 〈g〉. In this section, π will denote the canonical surjection
G → G/ 〈g〉. We suppose that π is computable at low cost for anyone who knows
G and g.

We define Ω := π−1(Λ) and Λ, a subset of Ω such that Λ be a representative
set of Λ, i. e., π(Λ) = π(Ω) = Λ and π is a bijection from Λ to Λ. We suppose
that it is easy to find the unique representative of a class of Λ in Λ. Let f be a
function from Λ to Ω such that the following diagram commutes:

Λ
f

�
�

Ω G

π

Λ ∼
f

Λ G/ 〈g〉

Public Key. The group G, the integer k and the element g will be public.
Plaintext messages will be the elements of Z/kZ. We will suppose known an
efficient algorithm that returns random elements of Λ, an efficient algorithm
to evaluate the function f , and an efficient algorithm to compute the discrete
logarithm to base g in 〈g〉.

Encryption Primitive:

EG,f,g :
{

Z/kZ × Λ −→ Ω
(m , ρ) �−→ gmf(ρ)

It is easy to see that EG,f,g is well defined as 〈g〉 f(Λ) = Ω and bijective:
suppose that gm1f(ρ1) = gm2f(ρ2) then π

(
f(ρ1)

)
= π

(
f(ρ2)

)
. As π ◦ f = f ◦ π,

π ◦ f is bijective so ρ1 = ρ2. As a consequence, m1 = m2 in Z/kZ.

Two Generic Constructions of Probabilistic Cryptosystems 99

Private Key and Decryption Algorithm. The private key is the trapdoor
that allows to invert f . Let c ∈ Ω be a ciphertext. To decrypt c, we have to
recover m ∈ Z/kZ such that there exists ρ ∈ Λ such that c = gmf(ρ). We have
π(c) = π ◦ f(ρ) = f ◦ π(ρ). With the private key we recover π(ρ) and then its
representative ρ ∈ Λ. Then, by computing c/f(ρ) we get gm and then m thanks
to the algorithm for the discrete logarithm problem in 〈g〉.

One-Wayness. Let us give the definition of the problem on which relies the
one-wayness of a scheme built from the EG,f,g primitive.

Definition 4. We will denote ClassG,f,g the following problem: given c an ele-
ment of Ω, find m ∈ Z/kZ such that there exists ρ in Λ such that c = gmf(ρ).

Now we define two others problems and we give a theorem that links the three
problems.

Definition 5. We will denote HenselG,g−f the following problem: given c an
element of Λ = π(Ω), find the element c of Ω such that c = f(ρ) where ρ is the
element of Λ such that c = π(f(ρ)). We will denote Inv−f the problem of local
inversion of the trapdoor f , i. e., given c an element of Λ, find ρ in Λ such that
c = f (ρ).

Theorem 4. Let G be a finite multiplicative abelian group, k a nonnegative
integer, g an element of G of order k, Λ a subset of G/ 〈g〉, Λ a representative
set of Λ in G and f a trapdoor permutation of Λ. We denote π the canonic
surjection from G to G/ 〈g〉 and f a function from Λ to Ω := π−1(Λ) such that
π ◦ f = f ◦ π. We have the following relations:

ClassG,f,g
P⇐⇒

(
HenselG,g−f ∧ Dlog 〈g〉

)
P⇐=

(
Inv−f ∧ Dlog 〈g〉

)

where Dlog 〈g〉 denotes the discrete logarithm problem in 〈g〉.

Proof. We prove the left equivalence, the reduction on the right will follow from
the decryption algorithm. Suppose that we have two oracles that solve respec-
tively the HenselG,g−f and Dlog 〈g〉 problems. Let c be an element of Ω. We
want to recover m ∈ Z/kZ in the decomposition c = gmf(ρ) with ρ ∈ Λ. We
have π(c) = π

(
f(ρ)

)
. We give π(c) to the oracle for the HenselG,g−f problem.

We get the element c′ of Ω such that c′ = f(ρ). Given c/c′, the oracle for the
Dlog 〈g〉 problem returns m.

For the opposite way, we have an oracle that solve the ClassG,f,g problem.
If g′ is an element of 〈g〉, we take a random element ρ in Λ. By giving g′f(ρ)
to the oracle, we get m, the discrete logarithm of g′ to base g. Suppose now
that we have an element c, of Λ, for which we want to solve the HenselG,g−f
problem. We take m′ at random in Z/kZ. We denote c the element of Λ such
that π(c) = c. We give gm′

c ∈ Ω to the oracle (note that it is a random query
for the oracle). We then get from the oracle the element m of Z/kZ such that
gm′

c = gmf(ρ) with ρ element of Λ. As π(gm′
c) = c = π

(
f(ρ)

)
, the element

gm′−mc is a correct answer to the HenselG,g−f problem. ��

100 G. Castagnos

Remark 4. This theorem establishes that the security of a system built from the
EG,f,g primitive relies on the security of the trapdoor f . For the Catalano et al.
scheme, (cf. [CGH+01] and section 4), an instance of this construction in which
f is the classic RSA function, the result of [CNS02] states that the equivalence
actually holds. Unfortunately, the proof of this result uses intrinsic properties of
the RSA function and can not be exploited for the generalized case.

Semantic Security

Definition 6. Let us denote ResG,f,g, the problem of distinguishing the ele-
ments of f(Λ) in Ω.

Theorem 5. An encryption scheme built from the EG,f,g primitive is semanti-
cally secure against Chosen-Plaintext Attacks if and only there exists no polyno-
mial algorithm that solve the decision ResG,f,g problem.

Proof. A scheme built from the construction of the previous section, and a
scheme built from EG,f,g shares a similar property:

(c ← EG,f,g(m)) ⇐⇒
(

c

gm
∈ f(Λ)

)
.

As a consequence, the proof of Theorem 3 can be easily adapted. ��

IND-CCA2 Variant in the ROM. Using standard techniques, one can modify the
EG,f,g primitive to make it resistant against adaptive chosen-ciphertext attacks
in the random oracle model. One can simply add h(m, ρ) to the ciphertext,
where h is an hash function viewed like a random oracle. One can also use the
Fujisaki-Okamoto conversion (cf. [FO99]) in order to reduce the ciphertexts size.

4 Applications

We will use the constructions of sections 2 and 3 in algebraic groups over
(Z/nsZ)× where s is a nonnegative integer. RSA integers will allow to use the
group order as a trapdoor. This would lead to an historical of probabilistic cryp-
tography based on factoring.

The idea of working modulo ns with s > 1 is due to Paillier (cf. [Pai99]) and
Damg̊ard and Jurik (cf. [DJ01]) for the case s > 2. As we shall see in the following,
this enables oneself tomeet thehypothesis of the generic construction: the subgroup
ofnth roots of unity of the group consideredwill be the kernel of the reduction mod-
ulo n, and its elements will be easy to describe. As a consequence, we will exhibit
an element g of order n such that the discrete logarithm problem in 〈g〉 is easy.

4.1 Schemes in Quotients of Z

The first probabilistic cryptosystem, proposed by Goldwasser and Micali in
1984 (cf. [GM84]) is very similar to the generic construction explained in section
2. Its semantic security is based on a well-known problem, the quadratic resid-
uosity problem (i. e., k = 2), but its expansion is awful as one bit is encrypted
with |n|2 bits.

Two Generic Constructions of Probabilistic Cryptosystems 101

G = (Z/nZ)×, k Prime, k | ϕ(n), Benaloh (88). The cryptosystem of
Goldwasser-Micali has been generalized by Benaloh in [Ben88]. The group G is
now (Z/nZ)×, the integer k is an odd prime such that k divides ϕ(n) and k does
not divide λ := ϕ(n)/k. Let g be an element of order k, to encrypt an element
m ∈ Z/kZ, one uses the encryption primitive EG,k,g defined in section 2: an
encryption of m is gmrk where r is a random element of (Z/nZ)×. The drawback
of this system is that k has to be small because there is no particular algorithm
for computing discrete logarithms in 〈g〉. As a consequence, the expansion of the
system, |n|2 / |k|2 remains high.

G = (Z/nZ)×, k Smooth, k | ϕ(n), Naccache-Stern (98). Naccache and
Stern have improved in [NS98] the previous system. They still use G = (Z/nZ)×

but k is chosen smooth. This leads to a more efficient algorithm for computing
discrete logarithms in 〈g〉 by using the Pohlig-Hellman algorithm. Naccache and
Stern state that the expansion can be reduced to 4.

Okamoto and Uchiyama have proposed in [OU98] to work modulo n = p2q.
The following system is an improvement of their proposal.

G =
(
Z/n2Z

)×
, k = n, Paillier (99). The system of Paillier (cf. [Pai99]) cor-

responds to an application of the EG,k,g encryption function with G =
(
Z/n2Z

)×,
and k = n. If we suppose that gcd(n, ϕ(n)) = 1, as |G| = nϕ(n), k divides |G|
and k is prime to λ := |G| /k = ϕ(n). One can see that the subgroup Gλ of G, the
subgroup of nth roots of unity, is the kernel of the surjective homomorphism:(
Z/n2Z

)× → (Z/nZ)×. As a consequence, this subgroup is a cyclic group of
order n, generated by g :≡ 1 + n (mod n2). Moreover, the discrete logarithm
problem in 〈g〉 is trivial as for all i ∈ Z/nZ, gi ≡ 1 + in (mod n2). To encrypt,
one can use the isomorphism E ′G,k,g defined in section 2. The encryption function
is thus the isomorphism:

{
Z/nZ × (Z/nZ)× ∼−→

(
Z/n2Z

)×
(m , r) �−→ gmrn

where m is the plaintext and r a random element. The trapdoor is ϕ(n), i. e.,
the factorization of n, and the decryption algorithm is the application of the
generic algorithm described in section 2. The expansion of this system is 2.

An IND-CCA2 variant of this scheme has been designed by Cramer and Shoup
in [CS02]. As previously said, this variant can also be obtained from the con-
struction of section 2, if the group G is cyclic. One can have a cyclic group by
choosing Sophie Germain primes for p and q: with this choice there exists a cyclic
group of order nϕ(n)/2 in

(
Z/n2Z

)×, isomorphic to Z/nZ × (Z/nZ)+, where
(Z/nZ)+ is the subgroup of elements of

(
Z/n2Z

)× that have a positive Jacobi
symbol (see [CS02] subsection 8.2 for details).

Damg̊ard and Jurik have proposed in [DJ01] a generalization of the Pail-
lier cryptosystem. They work in the group G =

(
Z/ns+1Z

)× with s > 1 and
k = ns. One obtains a system that allows oneself to encrypt messages of arbitrary

102 G. Castagnos

length (by increasing s). This can have many applications (cf. [DJ01, Jur03]).
The expansion of this scheme is 1 + 1/s.

G =
(
Z/n2Z

)×
, f = RSA, Catalano et al. (01). In [CGH+01], Catalano,

Gennaro et al. have proposed a probabilistic encryption scheme presented like a
fast variant of the Paillier cryptosystem. With the help of the generic construc-
tion of section 3, one can also see this scheme as a probabilistic version of the
RSA cryptosystem. Let G =

(
Z/n2Z

)×, and g ≡ 1 + n (mod n2). The quotient
group G/ 〈g〉 is isomorphic to (Z/nZ)×. We denote respectively Ω and Λ, the
sets of elements of G and G/ 〈g〉, i. e.,

Ω :=
{
r ∈ N, 0 < r < n2, gcd(r, n) = 1

}
,

and
Λ := {r ∈ N, 0 < r < n, gcd(r, n) = 1} .

With the notation of section 3, one actually has Λ := Λ, and the set Λ is a
representative set of the classes of Ω modulo n. Let e be an integer prime to
ϕ(n), the RSA function, f : x �→ (xe mod n) is a permutation of Λ. This function
is lifted from Λ to Ω by considering f : x �→ (xe mod n2), so that π ◦ f = f ◦ π.
To encrypt, we use the EG,f,g primitive and we obtain the following encryption
function: {

Z/nZ × Λ −→ Ω
(m , r) �−→ gmre mod n2

where m is the plaintext and r a random element. The decryption is done has
described in section 3: one reduces the ciphertext modulo n and recover r by
inverting the RSA function, thanks to the knowledge of d, the inverse of e modulo
ϕ(n), the trapdoor of the function f .

Remark 5. The previous scheme can be generalized by taking G =
(
Z/ns+1Z

)×
with s > 1, in order to decrease the expansion. One has to redefine the set Ω
accordingly and to lift f in f : x �→ xe mod ns+1.

One can apply the non-homomorphic construction of section 3, with all the known
trapdoor functions of Z/nZ, e. g., Demytko’s (cf. [Dem94]) or LUC (cf. [SL93]).
Note that with the LUC function, one gets a scheme already proposed in [Cas07].

4.2 Schemes in Elliptic Curves over Z/ns+1Z

Both constructions can be applied in elliptic curves. This leads respectively to the
systems of Galbraith (cf. [Gal02]) and Galindo, Mart́ın et al. (cf. [GMMV03]).

G = E/(Z/ns+1Z), k = ns, Galbraith (02). In [Gal02], Galbraith has
adapted the Damg̊ard and Jurik scheme (and hence the Paillier scheme) in el-
liptic curves. This homomorphic scheme can also be viewed as an application of

Two Generic Constructions of Probabilistic Cryptosystems 103

the EG,k,g primitive of section 2. The group G is the group of points of an elliptic
curve over Z/ns+1Z, i. e., the set of elements (X : Y : Z) of P2(Z/ns+1Z) such
that

Y 2Z = X3 + aXZ2 + bZ3,

where a and b are two elements of Z/ns+1Z such that 4a3 + 27b2 is invertible.
We denote this group Ea,b/(Z/ns+1Z) (See [Gal02] for more details on elliptic
curves over rings).

One can prove that the order of this group is ns |Ea,b/(Z/nZ)|. By taking
k = ns, and supposing that ns is prime to λ := |Ea,b/(Z/nZ)|, one can apply
the generic construction. The tricky part of this adaptation is to find an element
g of G of order ns such that the discrete logarithm problem is easy in 〈g〉. Once
again, we look for g in the kernel of the reduction modulo n from Ea,b/(Z/ns+1Z)
to Ea,b/(Z/nZ). One can see that the element g := (n : 1 : n3 + an7 + bn9 + · · ·)
is of order ns and that discrete logarithms are easy to compute in 〈g〉 (again
see [Gal02] for details on this element g, on the subgroup 〈g〉 and how to compute
the group law in this subgroup and in G).

To encrypt a message m of Z/nsZ, one use the EG,k,g primitive of section 2:
a ciphertext for m is a point of the form m.g + P where P is a random “nsth

power”. To produce a such P , as it is difficult to produce an element of the curve
without knowing the factorization of n, one can not take a random element of
G or of Ea,b/(Z/nZ) and take it to the “power” ns. Hence, we use the method
exposed in Remark 3: a nsth

power is part of the public key.
A drawback of this scheme is its cost as one has to do costly scalar multi-

plications in elliptic curve over a huge base ring (as the security is based on
factorization and not on the discrete logarithm problem, we can not reduce the
size of this ring).

G = E/(Z/n2Z), f = KMOV , Galindo et al. (03). In [GMMV03],
Galindo, Mart́ın et al. have proposed a non-homomorphic scheme based on the
KMOV trapdoor permutation (cf. [KMOV92]). This scheme is not a direct adap-
tation of the generic construction of section 3 as the KMOV function is not a
permutation of a subset of a group. Indeed, the KMOV function is a permutation
of the set {

(x, y) ∈ Z/nZ× Z/nZ,
(
y2 − x3

)
∈ (Z/nZ)×

}
,

and maps (x, y) to e.(x, y), where the scalar multiplication is performed on the
elliptic curve E0,y2−x3/(Z/nZ) where e is prime to (p + 1)(q + 1) and p and q
are chosen congruent to 2 modulo 3 (it is hard to take points on a fixed curve
without knowing p and q). So, one has to apply the generic construction with
a group G that depends on the plaintext message. One define ad hoc subsets Λ
and Ω of Z/n2Z and lift the KMOV function from Λ to Ω by computing e.(x, y)
in a curve modulo n2. See [GMMV03] for more details.

Again, one can generalize this scheme by working modulo ns with s > 2.

104 G. Castagnos

4.3 Additively Homomorphic Scheme in Quadratic Fields Quotients

In this subsection, we apply the generic construction of section 2 in another
finite group, not widely used in cryptography, the group of norm 1 elements of
a quadratic field modulo n. We will obtain the system only briefly sketched at
the end of [Cas07].

Definition 7. Let Δ be a non-square integer, and a an odd integer prime to Δ.
We will denote (OΔ/aOΔ)∧ the group of norm one elements of OΔ/aOΔ, where
OΔ denotes the ring of integers of Q(

√
Δ). We will denote ϕΔ(a) the order of

the group (OΔ/aOΔ)∧.

We refer the reader to [Cas07] for the basic properties of this group. We only
recall that exponentiation can be efficiently computed in this group by using
the Lucas sequence, and that if n is prime to Δ, then for s > 1, the order of(
OΔ/ns+1OΔ

)∧ is

ϕΔ(ns+1) = ns ϕΔ(n) = ns

(
p−

(
Δ

p

))(
q −

(
Δ

q

))
,

where
(

Δ
p

)
denotes the well-known Legendre symbol. Moreover, note that the

group (OΔ/psOΔ)∧ is cyclic (the same holds modulo qs).

G =
(OΔ/n2OΔ

)∧
, k = n,. We apply the construction of section 2 with

G =
(
OΔ/n2OΔ

)∧, where Δ is a non-square integer prime to n. The order of
G is n ϕΔ(n), so we set k = n and λ = ϕΔ(n) and suppose that k and Λ are
coprime.

Element of order n: As previously seen, we look for an element of order n
in the kernel of the reduction modulo n from

(
OΔ/n2OΔ

)∧ to (OΔ/nOΔ)∧.
This reduction is surjective by the Hensel Lemma. The element g ≡ 1 + n

√
Δ

(mod n2) is a generator of this kernel and g is indeed of order n as gr ≡ 1+nr
√

Δ
(mod n2) for all integer r. As a consequence of this expression of gr, the discrete
logarithm problem in 〈g〉 is easy.

kth powers generation: To simplify, we suppose that Δ is neither a square modulo
p nor modulo q. It is easy to see that the map α �→ α/α from (OΔ/nOΔ)× to
(OΔ/nOΔ)∧ is surjective and that its kernel is (Z/nZ)×. As a consequence, the
map

Ψ : r �→ r +
√

Δ

r −
√

Δ
=

r2 + Δ

r2 −Δ
+

2r

r2 −Δ

√
Δ,

from Z/nZ to (OΔ/nOΔ)∧ is well-defined, injective and is almost surjective (we
only miss 1 and elements that allow to factor n (elements different from 1 and
that are congruent to 1 modulo p or 1 modulo q). Moreover, the map β �→ βn

from (OΔ/nOΔ)∧ to Gn is an isomorphism. As a consequence, the map

Z/nZ → Gn : r �→ Ψ(r)n,

is still injective and almost surjective.

Two Generic Constructions of Probabilistic Cryptosystems 105

Encryption function: The encryption function is
{

Z/nZ × (Z/nZ)× −→ G
(m , r) �−→ gmΨ(r)n

where m is the plaintext and r a random element, and the public key is (n, Δ)
where n = pq is an RSA integer, Δ is a non-square integer, prime to n and Δ is
neither a square modulo p nor modulo q.

Decryption algorithm: The trapdoor is λ = ϕΔ(n). The decryption algorithm
is the same as the generic one. Note that it can be sped up by using Chinese
remaindering (this is true for all the others schemes presented in this paper).

Security: The one-wayness of the scheme is based on the ClassG,k,g problem
and the reductions of Theorem 2 hold. The semantic security is based on the the
difficulty of distinguishing the elements of Gn in G (As the map r �→ Ψ(r)n is in-
jective and almost surjective, almost all the element of Gn can be produced. The
ones that are not produced are either easy to distinguish or allow to factor n).

Expansion: The cryptosystem expansion is 4, a priori, but can be reduced to
3. One defines a lifting L of the elements of (OΔ/nOΔ)∧ in

(
OΔ/n2OΔ

)∧.
Then, an element α of

(
OΔ/n2OΔ

)∧ is represented by the couple (k, α mod n) ∈
Z/nZ× (OΔ/nOΔ)∧ with k such that α = (1 + n

√
Δ)k L(α mod n). Note that

the computation of this representation (by using the Hensel Lemmma) only costs
a few multiplications and one inversion. This method can also be applied for the
system of Galbraith.

Comparison with others additively homomorphic systems: In the following table,
we compare this system with the Paillier and Galbraith schemes. The unity of
complexity is the cost of a multiplication modulo n. We use the following esti-
mations: a multiplication modulo n2 costs as much as 3 multiplications modulo
n (by using radix n representation), a multiplication modulo p2 costs as much as
a multiplication modulo n and three multiplications modulo p as much as a mul-
tiplication modulo n. An inversion modulo n costs as much as 10 multiplications
modulo n. We have used Chinese remaindering for all the schemes.

Cryptosystem Paillier Galbraith QF scheme

Group
(
Z/n2Z

)×
E/(Z/n2Z)

(
OΔ/n2OΔ

)∧

Encryption 9
2 |n|2 + 1 35 |n|2 + 3 9 |n|2 + 20

Decryption 3
2 |n|2 + 5

3 21 |n|2 + 5
3 3 |n|2 + 4

3

We see that the scheme in quadratic fields is much more faster than the
system that uses elliptic curves, thanks to efficient exponentiation using Lucas

106 G. Castagnos

sequences. This scheme complexity is not far from the Paillier cryptosystem (the
factor two is inherited from the respective costs of exponentiation in Z/n2Z and
in

(
OΔ/n2OΔ

)∧). As a result, this scheme is still practical.
If all the schemes are based on factorization, from Theorem 2, we see that

the intermediate problems on which the one-wayness of the schemes are based
are not the same. For Paillier, it is the RSAn problem i. e., the inversion of the
map x �→ xn in (Z/nZ)×. For the presented scheme, it is the adaptation of this
problem in (OΔ/nOΔ)∧, i. e., the inversion of the map α �→ αn. We do not know
if one problem is easier than the other (as the only known way to solve them is to
factor n), but this scheme brings some diversity as the Paillier scheme is almost
the only practical additively homomorphic scheme known. Another advantage
of this scheme is that one has more choice for the public key than for the Paillier
scheme: one can choose freely the modulus n and the discriminant Δ.

Generalization: This scheme can also be generalized by working modulo ns+1

with s > 1 in order to encrypt messages of Z/nsZ. One has only to find an ele-
ment g of order ns and an efficient algorithm for the discrete logarithm problem.
One can see that the following element:

g := n
√

Δ + 1 +
1
2
Δn2 − 1

23
Δ2n4 +

1
24

Δ3n6 − 5
27

Δ4n8 + · · ·

obtained by successive applications of the Hensel Lemma is indeed of order
ns. Given gk, one can still compute the discrete logarithm k at low cost, by
computing recursively k mod n2, k mod n4, . . .

IND-CCA2 variant of this scheme: Similarly to the Paillier cryptosystem, one
can design a variant that is IND-CCA2 in the standard model. A cyclic group
is obtained in the same way, by using primes p and q such that (p − (Δ/p))/2
and (q − (Δ/q))/2 are both primes. Then, one obtains a subgroup of order
n ϕΔ(n)/2. Note that some optimisations used by Cramer and Shoup in [CS02]
to get compact ciphertexts for the adaptation of the Paillier scheme can also be
done here as

(
OΔ/n2OΔ

)∧ is very similar to
(
Z/n2Z

)×.

5 Conclusion

We have proposed two generic constructions that generalize many probabilistic
cryptosystems already proposed. This process helps to capture the ideas behind
these schemes. In particular, we have seen that the efficient homomorphic cryp-
tosystem proposed in the group of norm 1 elements of a quadratic field is very
similar to the Paillier scheme and can serve to construct an IND-CCA2 secure
system in the standard model, which is a rare object. We hope that these generic
constructions will help to propose new probabilistic cryptosystems. One possible
domain of application could be class groups of quadratic orders such as those
used in the NICE cryptosystem (cf. [PT00]).

Two Generic Constructions of Probabilistic Cryptosystems 107

References

[Ben88] Benaloh, J.C.: Verifiable Secret-Ballot Elections. PhD thesis, Yale Uni-
versity (1988)

[BFP+01] Baudron, O., Fouque, P., Pointcheval, D., Poupard, G., Stern, J.: Practi-
cal multi-candidate election system. In: Proc. of PODC 2001 (2001)

[Cas07] Castagnos, G.: An efficient probabilistic public-key cryptosystem over
quadratic fields quotients. Finite Fields Appl. 13(3), 563–576 (2007)

[CGH+01] Catalano, D., Gennaro, R., Howgrave-Graham, N., Nguyen, P.Q.: Pail-
lier’s cryptosystem revisited. In: Proceedings of the 8th ACM Conference
on Computer and Communications Security, pp. 206–214 (2001)

[CNS02] Catalano, D., Nguyen, P.Q., Stern, J.: The Hardness of Hensel Lift-
ing: The Case of RSA and Discrete Logarithm. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 299–310. Springer, Heidelberg
(2002)

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002)

[Dem94] Demytko, N.: A New Elliptic Curve Based Analogue of RSA. In: Helle-
seth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 40–49. Springer,
Heidelberg (1994)

[DJ01] Damg̊ard, I., Jurik, M.J.: A Generalisation, a Simplification and some
Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c.
(ed.) PKC 2001. LNCS, vol. 1992. Springer, Heidelberg (2001)

[FO99] Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key
Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999.
LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

[Gal02] Galbraith, S.D.: Elliptic Curve Paillier Schemes. Journal of Cryptol-
ogy 15(2), 129–138 (2002)

[GM84] Goldwasser, S., Micali, S.: Probabilistic Encryption. J. Comput. Syst.
Sci. 28, 270–299 (1984)

[GMMV03] Galindo, D., Mart́ın, S., Morillo, P., Villar, J.L.: An Efficient Semantically
Secure Elliptic Curve Cryptosystem Based on KMOV. In: Proc. of WCC
2003, pp. 213–221 (2003)

[Jur03] Jurik, M.: Extensions to the Paillier Cryptosystem with Applications to
Cryptological Protocols. PhD thesis, Aarhus University (2003)

[KMOV92] Koyama, K., Maurer, U.M., Okamoto, T., Vanstone, S.A.: New Public-
Key Schemes Based on Elliptic Curves over the Ring Zn. In: Feigenbaum,
J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 252–266. Springer, Heidel-
berg (1992)

[Lip05] Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Commu-
nication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005.
LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)

[NS98] Naccache, D., Stern, J.: A New Public Key Cryptosystem Based on Higher
Residues. In: Proceedings of the Third ACM Conference on Computer and
Communications Security, pp. 59–66 (1998)

[NSNK06] Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: a formal
model and a Paillier-based three-round construction with provable secu-
rity. Int. J. Inf. Secur. 5(4), 241–255 (2006)

108 G. Castagnos

[OU98] Okamoto, T., Uchiyama, S.: A New Public Key Cryptosystem as Secure
as Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403,
pp. 308–318. Springer, Heidelberg (1998)

[Pai99] Paillier, P.: Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

[PT00] Paulus, S., Takagi, T.: A new public-key cryptosystem over quadratic
orders with quadratic decryption time. Journal of Cryptology 13, 263–
272 (2000)

[SL93] Smith, P., Lennon, M.J.J.: LUC: A New Public Key System. In: Proc.
of the Ninth IFIP Int. Symp. on Computer Security (1993), pp. 103–117
(1993)

Cramer-Shoup Satisfies a Stronger Plaintext

Awareness under a Weaker Assumption

Isamu Teranishi1 and Wakaha Ogata2

1 NEC Corporation,
1753, Shimonumabe, Nakahara-Ku, Kawasaki, Kanagawa, 211-8666, Japan

teranisi@ah.jp.nec.com
2 Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro-ku Tokyo, 152-8550, Japan
wakaha@mot.titech.ac.jp

Abstract. In the seminal paper of Eurocrypt 2006, Dent defined a new
assumption, simulatability, and showed that the well-known Cramer-
Shoup public-key encryption scheme satisfied the weakest version of the
plaintext awareness, the computational plaintext awareness, under the
simulatability assumption, the DDH assumption, the DHK assumption,
and the collision resistance of the hash function. However, a tricky aspect
of the computational plaintext awareness was later shown. Moreover,
the definition of the simulatability is elaborated. In this paper, we show
that the Cramer-Shoup scheme satisfies a stronger variant of the plain-
text awareness, the statistical plaintext awareness, under a weaker and
simpler assumption than the simulatability. In particular, we show the
statistical PA2-ness of the Cramer-Shoup scheme under computational
assumptions.

Keywords: Statistical Plaintext Awareness, Standard Model, Cramer-
Shoup Scheme.

1 Introduction

1.1 Background

Plaintext Awareness (PA2) [BR94,BDPR98,HLM03,BP04,D06,TO06,BD08] is
one of the most fundamental notions about Public-Key Encryption schemes
(PKEs). Intuitively, a PA2 secure PKE is a scheme such that an adversary
cannot generate a ciphertext “without knowing” the corresponding plaintext.
More precisely, a PKE is called PA2 secure, if there exists an extractor which
can extract the plaintext from the ciphertext generated by the adversary.

Although PA2-ness was first defined in the random oracle model
[BR94,BDPR98], Bellare and Palacio [BP04] succeeded in defining PA2-
ness in the standard model. They gave three variants of standard model
PA2-ness: perfect/statistical/computational PA2-ness, depending on whether
the extracted plaintext was perfectly/statistically/computationally indistin-
guishable from the decryption. The PA2-nesses are important even in the

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 109–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

110 I. Teranishi and W. Ogata

standard model, because they can bring some insight into or an alternative
perception of the design of existing PKEs, as said by Bellare and Palacio [BP04].

In the seminal paper [D06], Dent provided a sufficient condition for compu-
tational PA2-ness and showed the computational PA2-ness of the well-known
Cramer-Shoup scheme [CS98] by using it.

Theorem 1 (Cramer-Shoup is Computationally PA2 Secure[D06]).
The Cramer-Shoup scheme is computationally PA2 secure, if the underlying
group satisfies the simulatability [D06], the DHK assumption [D91,BP04] and
the DDH assumption, and also if the hash function is collision resistant.

Here, the simulatability is an assumption which Dent newly introduced in [D06].
The intuitive meaning of it is as follows: there exist polytime computable func-
tions α : {0, 1}� → G and β : G → {0, 1}� such that α ◦ β and β ◦ α are
computationally indistinguishable from the identity maps. The intuitive mean-
ing of the DHK assumption is as follows: “If an adversary A(g, h) outputs (u, v)
such that (g, h, u, v) is a DDH-tuple, then A knows r satisfying (u, v) = (gr, hr).”

The above result is quite important for the study of the PA-ness, because
the Cramer-Shoup scheme is the only known example of the standard model
PA secure scheme. However, the formal definition of the underlying assumption,
simulatability, is elaborate despite the simplicity of the intuition behind it. In
fact, the formal definition allows a distinguisher to execute an “adaptively chosen
message attack”, and therefore prevents us from describing it simply.

Moreover, although Dent showed the computational PA2-ness of the Cramer-
Shoup scheme, a tricky aspect of the computational PA2-ness was later
shown:

Proposition 2 (Tricky Aspect of theComputationallyPA2-ness[TO06]).
There exists a computationally PA2 secure PKE and an adversary such that no
extractor can succeed in extracting the correct plaintext.

It is also shown in [TO06] that there are no such PKE and an adversary in the
case of the statistical PA-ness. Thus, we can say that the statistical PA2-ness is
more similar to our intuition.

1.2 Our Results

Statistical PA2-ness of Cramer-Shoup Scheme: In this paper, we show that the
Cramer-Shoup scheme satisfies a stronger PA2 security, statistical PA-ness, un-
der assumption weaker and simpler than that of [D06]. That is, we introduce a
weaker and simpler assumption, the computationally random-like property whose
intuitive meaning is a “known message attack version of simulatability,” and
show the following theorem:

Theorem 3 (Cramer-Shoup is Statisitically PA2 Secure under Weaker
Assumption). The Cramer-Shoup scheme is statistically PA2 secure if the un-
derlying group satisfies the computationally random-like property, the DDH as-
sumption and the DHK assumption, and also if the hash function is collision
resistant.

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 111

We stress that we show the statistical PA2-ness of the Cramer-Shoup scheme
under only computational assumptions. See Subsection 4.3, for the reason we
can show the statistical PA-ness from the computational assumptions.

Sufficient Condition for the PA2-ness: In order to prove the PA2-ness of the
Cramer-Shoup scheme, we give a sufficient condition for the statistical PA2-ness.
Although Dent [D06] already gave another sufficient condition for the compu-
tational PA2-ness, our condition is not for the computational PA2-ness but for
the statistical PA2-ness.

Moreover, our sufficient condition is formalized in a more practical way than
that descrebed by Dent [D06]. That is, we formalize a part of our sufficient
condition based on a slightly modified version of the IND-CCA2 game. Therefore,
we can prove this part of our sufficient condition by slightly modifying the proof
of the IND-CCA2 security of [CS98]. This means that we can prove the PA2-ness
more easily.

2 Preliminary

In this section, we review the definition of notions described in Section 1.1. See
Section 1.1 for the intuitions behind the definitions.

Definition 4 (Standard Model PA-ness[BP04]). Let Π = (Gen, Enc, Dec)
be a PKE. Let A, K, and P be polytime machines, which are respectively called
adversary, extractor, and plaintext creator.

For plaintext creator P, its state stP, and its random tape μ, we let
Encpk ◦ P(Q; μ) denote the algorithm which executes the following procedures:
(M, stP) ← P(Q, stP; μ), C ← Encpk(M), and output C. Note that the state stP
was initialized to the null string ε.

For security parameter λ, we define two experiments PADec
Π,A,Enc◦P(λ) and

PAK
Π,A,Enc◦P(λ), shown in Fig. 1, where RA, ρ, and μ are the random tapes of

A, K, and P, List is the list of encryption queries of A, and stK is the state of K.
We say that extractor K is perfectly, statistically, or computationally successful

for A if, for any P, PADec
Π,A,Enc◦P(λ) and PAK

Π,A,Enc◦P(λ) are perfectly, statistically,
or computationally indistinguishable respectively.

We say that a PKE Π is perfectly, statistically, or computationally PA2 secure
if for any adversary A, there exists a perfectly, statistically, or computationally
successful extractor K for A. We also say that a PKE Π is perfectly, statistically,
or computationally PA1 secure if, for any adversary A which makes no encryp-
tion query, there exists a perfectly, statistically, or computationally successful
extractor K for A.

Definition 5 (DHK Assumption [D91,BP04]). Let λ be a security param-
eter. Let G = Gλ be a family of cyclic groups with the prime order q = qλ. Let A
and K be polytime machines, named adversary and extractor respectively. We
define an experiment DHKK

G,A(λ) shown in Fig.2. Here, NonDH is a symbol which

112 I. Teranishi and W. Ogata

Fig. 1. Experiments for the Standard Model PA Security [BP04]

—DHKK
G,A(λ)—

Take random tapes RA and ρ randomly.
g ← G, x ← Zq, h ← gx. Initialize stK to ε.
Run A(g, h; RA).
If A makes a query Q = (u, v) ∈ G2

(r, stK) ← K(g, h, Q, RA, stK; ρ).
If r ∈ Zq and (u, v) = (gr, hr), send r to A as the reply.
If r = NonDH and v
= ux, send r to A as the reply.
Otherwise, return 0 and terminate the experiment.

Return 1.

Fig. 2. Experiment for the DHK assumption

means that “I think that (g, h, u, v) is not a DH-tuple.” We say that the DHK
assumption on G holds, if G satisfies the following property:

∀A∃K : Pr[DHKK
G,A(λ) �= 1] is negligible for λ.

Definition 6 (Simulatable Group [D06]). Let λ be a security parameter.
Let G = Gλ be a family of cyclic groups with the prime order q = qλ. We say that
G is simulatable if there exist a polynomial � = �(λ), a deterministic polytime
function α : {0, 1}� → G and a probabilistic polytime function β : G → {0, 1}�

satisfying the following properties:

(1) α(β(a; ρ)) = a holds for any a ∈ G and ρ.
(2) Let Ob

β◦α be the oracle such that, on inputting a symbol query, selects R ∈
{0, 1}� and a random tape ρ of β randomly and outputs R or β(α(R); ρ),
depending on whether b = 0 or b = 1. Then, for any polytime adversary A,
the following probability is negligible:

|Pr[b ← {0, 1}, b′ ← AOb
β◦α(1λ) : b = b′]− 1

2
|

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 113

(3) Let Ob
α be the oracle such that, on inputting a symbol query, selects R ∈

{0, 1}� and a ∈ G randomly, outputs α(R) or a, depending on whether b = 0
or b = 1. Then, for any polytime adversary A, the following probability is
negligible:

|Pr[b ← {0, 1}, b′ ← AOb
α(1λ) : b = b′]− 1

2
|.

3 Sufficient Condition for Statistical PA2-ness

In [D06], Dent provided a very elegant idea for showing the PA2-ness, i.e. “if a
ciphertext seems random, the encryption oracle is meaningless and therefore the
PA2-ness is almost equivalent to the PA1-ness.” Then he provided a sufficient
condition for the computational PA2-ness by formalizing this idea.

In this section, we explain a new sufficient condition for the PA2-ness. Al-
though our sufficient condition is also based on the Dent’s above-mentioned
idea. ours allows us to show not the computational PA2-ness but the statisti-
cal PA2-ness. Moreover, our condition is formalized in a more practical way, as
described in Section 1.2.

3.1 Our Sufficient Condition

In order to formalize our sufficient condition, we introduce two notions, a com-
putationally random-like PKE and an EPA1 security, whose intuitive meanings
are “a ciphertext seems random” and “almost equivalent to the PA1-ness.” Be-
fore giving them, we introduce a new notion, computationally random-like set,
whose intuitive meaning is described in Section 1.

Definition 7 (Computationally Random-like Set). Let λ be a security
parameter and X = Xλ be a finite set parametrized by λ. We say that X is
computationally random-like if there exists a polynomial � = �(λ), a deterministic
polytime function α : {0, 1}� → X and a probabilistic polytime function β :
X → {0, 1}� such that, for uniformly randomly selected R ← {0, 1}�, a ←
X , and a random tape ρ, the distributions of (α(R), R) and (a, β(a; ρ)) are
computationally indistinguishable.

We now define the computationally random-like PKE. Intuitively, we say that a
PKE is computationally random-like if there exists a computationally random-
like set X such that a ciphertext is indistinguishable from a randomly selected
element of X , even if a distinguisher has access to a decryption oracle. The
precise definition is as follows:

Definition 8 (Computationally Random-Like PKE). Let Π = (Gen, Enc,
Dec) be a PKE. We say that Π is computationally random-like if there exists a
computationally random-like set X = Xλ of (honestly or dishonestly generated)
ciphertexts such that for any polytime adversary A,

|Pr[b ← {0, 1}, (pk, sk) ← Gen(1λ), b′ ← AEoXb
pk,Decsk(pk) : b = b′]− (1/2)|

is negligible.

114 I. Teranishi and W. Ogata

Fig. 3. Experiments for the Equality-PA2 (left) and for the Equality-PA1+ (right)

Here, EoXb
pk is an oracle such that, if an adversary sends a plaintext M , it

outputs C0 ← Encpk(M) or C1 ← X , depending on whether b = 0 holds or not.
A is not allowed to send to the decryption oracle answers from the EoXb

pk-oracle.

We next introduce a variant of the PA security, equality-PA (EPA) security.
Recall that the definition of PA-ness only requires that M ′ � Decsk(C) holds,
where M ′ is an output of extractor, “�” is indistinguishability, C is a decryption
query of an adversary. Our EPA-ness is a variant of the PA-ness which requires
not only that M ′ � Decsk(C) but M ′ = Decsk(C) with overwhelming probability.

Definition 9 (Equality-PA Security). We take Π = (Gen, Enc, Dec), A, K,
and P as in Definition 4 and define Encpk ◦ P(Q; μ) as in Definition 4. For a
security parameter λ, we define an experiment EPADec,K

Π,A,Enc◦P(λ) shown in the left
of Fig. 3. We say that extractor K is successful for A, if it satisfies the following
property:

∀P : Pr[EPADec,K
Π,A,Enc◦P(λ) = 1] is negligible for λ.

We let EPADec,K
Π,A (λ) denote EPADec,K

Π,A,Enc◦P(λ) if adversary A makes no encryption
query to a plaintext creator P.

We say that PKE Π is Equality-PA2 (EPA2) secure if, for any A, there exists
a successful extractor K. We say that PKE Π is Equality-PA1 (EPA1) secure if,
for any polytime adversary A which makes no encryption query, there exists a
successful extractor K.

Since equality implies the indistinguishability, the following theorem clearly
holds:

Theorem 10 (EPA2 ⇒ Statistical PA2). If a PKE is EPA2 secure, then it
is statistically PA2 secure.
1 One can set the length of the bit string R arbitrarily, because A can obtain a bit

string of arbitrary length by making randomness queries many times.

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 115

We now describe our sufficient condition. See Section 3.3 for the proof.

Theorem 11 (Comp. Random-Like + EPA1 ⇒ EPA2 (⇒ Stat. PA2)).
If a PKE is a computationally random-like and EPA1 secure, then it is EPA2
secure (and therefore is statistically PA2 secure).

3.2 Randomness Oracle

Before showing Theorem 11, we review notions and a result given by Dent [D06].
In [D06], Dent defined an oracle named the randomness oracle which defined
as follows: if an adversary makes a query a symbol query, it selects a random
bit string R and sends R back to the adversary. Dent then gave a variant of
the PA1 security, PA1+ security, where an adversary was allowed to access the
randomness oracle. He formalized his sufficient condition by using the PA1+

security.
Since Dent had to carefully discuss about the difference from the PA1 security

and the PA1+ security, one may think that we also have to discuss carefully
about the difference between the EPA1 security and the EPA1+ security. Here
the EPA1+ security is a variant of the EPA1 security where an adversary was
allowed to access the randomness oracle. However, such careful discussion is
unnecessary because the EPA1+ security is equivalent to EPA1 security.

In order to formalize the above discussion, we give the formal definition of
EPA1+ security. Let EPA1+Dec,K

Π,A (λ) be the experiment depicted at the right of
Fig.3. We say that PKE Π is EPA1+ secure if ∀A∃K∀P : Pr[EPA1+Dec,K

Π,A (λ) = 1]
is negligible for λ.

Theorem 12 (EPA1 ⇔ EPA1+). A PKE is EPA1 secure if and only if it is
EPA1+ secure.

Proof. Since EPA1+ security clearly implies EPA1 security, we prove that the con-
verse is also true. Let Π be an EPA1 secure PKE and A0 be an adversary for the
EPA1+ security. We let RA0 be the random tape of A0, n0 be the number of the
randomness queries of A0, and Ri be the answer to the i-th randomness query.

In order to show that A0 has a successful extractor, we will construct adver-
sary B0 for the EPA1 security satisfying the following property: the behavior of
B0(pk; RA0‖R1‖ · · · ‖Rn0) is the same as that of A0(pk; RA0) which is given Ri

as the answer to the i-th randomness query. Here “B0(pk; RA0‖R1‖ · · · ‖Rn0)”
means that B0 is given a public key pk as an input and RA0‖R1‖ · · · ‖Rn0 as the
random tape. Since the hypothesis ensures the existence of a successful extractor
L0 for B0, we will construct the extractor K0 for A0 by using L0.

We now describe the algorithm of adversary B0 for the EPA security. For a
public key pk and a random tape RB0 , B0(pk; RB0) parses its random tape RB0 as
RA0‖R1‖ · · · ‖Rn0 andexecutesA0(pk; RA0). IfA0 makes the i-th randomness query,
B0 sends back Ri as an answer. If A0 makes a decryption query, B0 answers it by
passing the queries to the decryption oracle. B0 finally outputs the output of A0.

116 I. Teranishi and W. Ogata

From the assumption, there is a successful extractor, named L0, of the EPA1+

security for B0. We construct an extractor K0 for A0 by using L0. We denote how
K0 extracts the plaintext from Cj0 , where j0 is an arbitrary integer and Cj0 is
the j0-th decryption query of A0. Our basic idea behind the construction of K0

is quite simple: “Since the behavior of B0 is almost the same as that of A0, L0

cannot distinguish the j0-th decryption query of B0 from that of A0. Thus, K0

can extract the plaintext by feeding Cj0 to L0.”
We subtly modify the above idea, because A0 and B0 have one small but

essential discrepancy. Recall that B0(pk; B0) = B0(pk; RA0‖R1‖ · · · ‖Rn0) can be
executed only if all of RA0 , R1, . . ., Rn0 are given in advance as the random
tape. In contrast, when A0 makes decryption query Cj0 , A0 only knows RA0 , R1,
. . ., Rkj0

but does not know Rkj0+1, . . ., Rn0 . Here kj0 is the number of times
that A0 has made the randomness queries before it makes the j0-th decryption
query. From the definitions, extractor L0 and K0 have to extract plaintexts only
from data which B0 and A0 know respectively. Thus, L0 needs all of RA0 , R1,
. . ., Rn0 , although K0 can use only R1, . . . , Rkj0

.
In order to resolve this discrepancy, K0 selects R′

k0+1, . . . , R
′
n0

randomly,
sets R

[j0]
B0

= RA0‖R1‖ · · · ‖Rkj0
‖R′

kj0+1‖ · · · ‖R′
n0

, simulates EPA1+Dec,L0
Π,B0

(λ) with

feeding R
[j0]
B0

as the random tape of B0, obtains an answer of L0 to the j0-th
decryption query of B0, and outputs the answer.

We now give the precise description of K0. Since K0 uses the same algorithm
as A0 as a subroutine of B0, we denote the subroutine as A0 in order to dis-
tinguish the subroutine from A0 itself. The inputs of K0 are a public key pk,
the ciphertext Cj0 , the random tape RA0 of A0, the list List = R1‖ · · · ‖Rkj0

of the answers from the randomness oracle, the state stK0 , and the random
tape ρK0 of K0. On inputting them, K0 parses ρK0 as R′

kj0+1‖ . . . ‖R′
n0
‖ρL0 ,

sets R
[j0]
B0

= RA0‖R1‖ · · · ‖Rkj0
‖R′

kj0+1‖ · · · ‖R′
n0

, initializes stL0 to ε and ex-

ecutes A0(pk; RA0). If A0 makes the i-th query to the randomness oracle for
i ≤ kj0 , K0 sends Ri back to A0. If A0 makes the i-th query to the random-
ness oracle for i > kj0 , the extraction has failed. In this case, K0 outputs fail
and terminates, (although we can prove that the extraction never failed). If A0

makes the j-th decryption query Cj for j < j0, K0 computes (M [j0]
j , stL0) ←

L0(pk, Cj , R
[j0]
B0

, stL0 ; ρL0) and sends M
[j0]
j back to A0. If A0 makes the j0-th

decryption query Cj0 , K0 computes (M [j0]
j0

, stL0) ← L0(pk, Cj0 , R
[j0]
B0

, stL0 ; ρL0),

outputs (M [j0]
j0

, stK0), and terminates.
The only difference between the behavior of K0 and that of EPA1+Dec,L0

Π,B0
(λ)

is as follows: K0 does not check whether M
[j0]
j = Decsk(Cj) holds or not, al-

though EPA1+Dec,L0
Π,B0

(λ) does. However, since the output M
[j0]
j of extractor L0 for

the EPA1+ security is equal to Decsk(Cj) with overwhelming probability, this
checking is unnecessary. Therefore, the messages M

[j0]
1 , . . . , M

[j0]
j0

generated by
K0 are equal to Decsk(C1), . . . , Decsk(Cj0) with overwhelming probability.

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 117

By using induction, we show that the output M
[j0]
j0

= Decsk(Cj0) of K0 is
equal to Decsk(Cj0) with overwhelming probability. Suppose that K0 succeeds
in outputting the decrypted plaintexts for j < j0. From the definition of K0,
adversary A0 and the subroutine A0 of K0 are given the same input pk, the
same random tape RA0 , and the same answer R1, . . . , Rkj0

to the randomness
queries. From the induction hypothesis, both A0 and A0 are given the decrypted
plaintexts as an answers for the the first, . . ., (j0 − 1)-th decryption queries.
These facts mean that A0 and A0 makes the same j0-th decryption query. That
is, Cj0 = Cj0 holds. Hence, M

[j0]
j0

= Decsk(Cj0) = Decsk(Cj0). This means that
K0 is successful. ��

We can see that the above proof becomes invalid if we consider not the EPA
security but computational PA security. Recall that the computational PA-ness
ensures the computational indistinguishability between a tuple (M1, . . . , Mn) of
outputs of extractor and (Decsk(C1), . . . , Decsk(Cn)), only if all Ci are output by
the same adversary B0 with the same random tape RB0 . Here Decsk(Ci) is the
i-th decryption query of B0.

In the above proof, K0 inputs new R
[j0]
B0

to extractor L0 each times K0 is exe-

cuted. Therefore, we cannot conclude that the tuple (M [1]
1 , . . . , M

[n0]
n0) of outputs

of L0 is computationally indistinguishable from (Decsk(C1), . . . , Decsk(Cn0)), if we
only assume the computational PA-security of Π . Since an answer of K0 to the
j0-th encryption query of A0 is M

[j0]
j0

, this means that K0 may not be a successful
extractor for the computational PA2 security.

3.3 Proof of Theorem 11

Proof. Let Π be a PKE which is computationally random-like and EPA1 secure.
From Theorem 12, Π is EPA1+ secure. Since Π is computationally random-
like, there exist a computationally random-like set X = Xλ and functions α :
{0, 1}� → X and β : X → {0, 1}� satisfying the property described in Definition 8
and 7.

Let A0 be an adversary for the EPA2 security of Π and n0 be the number of
steps of A0. In order to show that A0 has a successful extractor, we will construct
an adversary B0 for the EPA1+ security, which executes A0, obtains random bits
R′

1, . . . , R
′
n0

from the randomness oracle, and feeds C′
1 = α(R′

1), . . ., C′
n = α(R′

n)
to A0 as an answer to the encryption queries. The EPA1+ property of Π ensures
the existence of extractor L0 for B0. We will construct extractor K0 for A0 by
using L0.

The precise description of adversary B0 for the EPA1+ security is as follows.
B0(pk; R) executes A0(pk; R). If A0 makes a decryption query, B0 answers it by
making a decryption query. If A0 makes the i-th encryption query Qi, B0 sends
query to the randomness oracle, receives an answer R′

i, computes C′
i = α(R′

i),
and sends C′

i back to A0. Finally, B0 outputs the output of A0.
From the EPA1+ security of Π , there exists an extractor L0 for B0. We con-

struct extractor K0 for A0 by using L0. We would like to denote how K0 extracts

118 I. Teranishi and W. Ogata

the plaintext from Ĉj , where j is an arbitrary integer and Ĉj is the j-th decryp-
tion query of A0. Let k be the number of times that A0 has made the encryption
queries before it makes the j-th decryption query.

Our idea behind the construction of K0 is as follows: K0 obtains Decsk(Ĉj) by
feeding Ĉj to L0. However, recall that L0 is an extractor for adversary B0 of the
EPA1+ security although K0 is an extractor for adversary A0 of the statistical
PA2 security. This means that L0 requires the list List′ = R′

1‖ · · · ‖R′
k as an input

although K0 is given the list CList = C1‖ · · · ‖Ck as an input. Here List′ is the
list of the answers from the randomness oracle to B0 and CList is the list of
the answers from the encryption oracle to A0. Therefore, K0 selects ρ1, . . . , ρk

randomly, sets R1 = β(C1; ρ1), . . ., Rk = β(Ck; ρk), and feeds not List′ but
List = R1‖ · · · ‖Rk to L0.

The precise description of K0 is as follows. K0(pk, Ĉj , R, CList, st; ρK0) parses
CList as CList = C1‖ · · · ‖Ck, parses ρK0 as ρK0 = ρL0‖ρ1‖ · · · ‖ρn0 , computes
R1 = β(C1; ρ1), . . ., Rk = β(Ck; ρk), sets List = R1‖ · · · ‖Rk, obtains (M̂j, st) ←
L0(pk, Ĉj , R, List, st; ρL0), and outputs (M̂j , st).

Finally we show that extractor K0 for A0 is successful. We fix an arbitrary
plaintext creator P0. Our idea behind the proof of the successfulness of K0 is as
follows. Since L0 is successful, output M̂j of L0(· · · , Ĉj , · · · , List′, · · ·) is equal to
Decsk(Ĉj) with overwhelming probability in EPA1+Dec,L0

Π,B0
(λ). From the definitions

of EPA1+Dec,L0
Π,B0

(λ) and B0, the experimenter of EPA1+Dec,L0
Π,B0

(λ) feeds to L0 the
list List′ of answers R′

1, . . . , R
′
k from the randomness oracle, and B0 feeds C′

1 =
α(R′

1), . . ., C′
k = α(R′

k) to its subroutine A0. Since X is random-like, (C′
i, R

′
i) =

(α(R′
i), R

′
i) is computationally indistinguishable from (C′′

i , β(C′′
i , ρi)), where C′′

i

is a randomly selected element of X and ρi is a randomly selected bit string.
Since Π is random-like, a randomly selected element C′′

i of X is computationally
indistinguishable from a ciphertext Ci = Encpk(Mi; ri). Here Mi is a plaintext
computed by a plaintext creator P0 from the i-th encryption query of A0, and
ri is a random tape. In particular, if we set R′′

i = β(C′′
i , ρi) and Ri = β(Ci, ρi),

R′′
i is computationally indistinguishable from Ri.
Therefore, output M̂j of L0(· · · , Ĉj , · · · , List, · · ·) is equal to Decsk(Ĉj)

with overwhelming probability, even in the following experiment: A0 is fed
C1 = Encpk(M1; r1), . . ., Ck = Encpk(Mk; rk) as answers to encryption
queries, and L0 is fed List = R1‖ · · · ‖Rk = β(C1; ρ1)‖ · · · ‖β(Ck; ρk). Since
K0 feeds List = β(C1; ρ1)‖ · · · ‖β(Ck; ρk) to L0, the above experiment is the
same as EPADec,K0

Π,A0
(λ). Thus, output M̂j of K0(· · · , Ĉj , · · · , Clist, · · ·) is equal

to Decsk(Ĉj) with overwhelming probability, where Clist = C1‖ · · · ‖Ck =
Encpk(M1; r1)‖ · · · ‖Encpk(Mk; rk). This means that K0 is successful.

We now formally prove that K0 is successful. We fix an arbitrary plaintext
creator P0 and construct a distinguisher D0 for the random-like property of X
and an adversary C0 for the game (depicted in Definition 8) of the random-
like property of Π . Let (C∗, R∗) be an instance of for distinguishing game of
Definition 7. D0 would like to know whether C∗ = α(R∗) holds or R∗ = β(C∗; ρ∗)
holds for some random tape ρ∗. D0(C∗, R∗) obtains (pk, sk) ← Gen(1λ), selects

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 119

i0 ∈ {1, . . . , n0} randomly, selects R and ρL0 randomly, initializes List† and
st to ε, and executes A0(pk; R). If A0 makes the i-th encryption query Qi for
i < i0, D0 selects C′′

i ∈ X and ρi randomly, computes R′′
i = β(C′′

i ; ρi), resets
List† ← List†‖R′′

i , and sends C′′
i back to A0. If A0 makes the i-th encryption

query Qi0 , D0 resets List† ← List†‖R∗, and sends C∗ back to A0. If A0 makes
the i-th encryption query Qi for i > i0, D0 selects R′

i ∈ {0, 1}� randomly,
computes C′

i = α(R′
i), resets List† ← List†‖R′

i, and sends C′
i back to A0. If

A0 makes the j-th decryption query Ĉj , D0 computes M̂j ← Decsk(Ĉj) and
(M̂ ′

j , st) ← L0(pk, Ĉj , R, List†, st; ρL0). If M̂j �= M̂ ′
j holds, D0 outputs 0 and

terminates. Otherwise, D0 sends M̂j back to A0. If A0 terminates, D0 outputs 1
and terminates.

We next construct an adversary C0 for the game described in Definition 8.
Let pk∗ be an instance of this game. C0(pk∗) sets pk = pk∗, and selects
i0 ∈ {1, . . . , n0} randomly, selects random tapes R, ρL0 , and μ randomly, ini-
tializes st, stP0 , and List‡ to ε, and executes A0(pk; R). If A0 makes the i-th
encryption query Qi for i < i0, C0 selects a random tape ri randomly, computes
(Mi, stP0) ← P0(Qi, stP0 ; μ) and Ci ← Encpk(Mi; ri), computes Ri ← β(Ci; ρi),
resets List‡ ← List‡‖Ri, and sends Ci back to A0. If A0 makes the i0-th en-
cryption query Qi0 , C0 computes (Mi0 , stP0) ← P0(Qi0 , stP0 ; μ), makes query
Mi0 to EoX-oracle, obtains an answer C∗

i0 , computes R∗
i0 ← β(C∗

i0 ; ρi0), re-
sets List‡ ← List‡‖R∗

i0
, and sends C∗

i0
back to A0. If A0 makes the i-th en-

cryption query Qi for i < i0, C0 selects C′′
i ∈ X and ρi randomly, computes

R′′
i ← β(C′′

i ; ρi), resets List‡ ← List‡‖R′′
i , and sends C′′

i back to A0. If A0 makes
the j-th decryption query Ĉj , C0 makes decryption query Ĉj , obtains an answer
M̂j, and computes (M̂ ′

j, st) ← L0(pk, Ĉj , R, List‡, st; ρL0). If M̂j �= M̂ ′
j holds, C0

outputs 0 and terminates. Otherwise, C0 sends M̂j back to A0. If A0 terminates,
C0 outputs 1 and terminates.

One can easily show that the following the distributions of 1. and 2. are equal,
the distributions of 3. and 4. are equal, and the distributions of 5. and 6. are
equal.

1. An output of EPA1+Dec,L0
Π,B0

(λ).

2. An output of D0, in the case where i0 = 1 and C∗ = α(R∗) hold.

3. An output of D0, in the case where i0 = n0 and R∗ = β(C∗; ρ∗) hold.

4. An output of C0, in the case where i0 = 1 hold and Ci0 is a randomly selected
element of X .

5. An output of C0, in the case where i0 = n0 hold and Ci0 = Encpk(Mi0) holds.

6. An output of EPADec,K0
Π,A0

(λ).

Since PKE Π is computationally random-like, a hybrid argument shows that
the distribution of 2. and 3. are computationally indistinguishable and the dis-
tribution of 4. and 5. are computationally indistinguishable also. Therefore, the
theorem holds. ��

120 I. Teranishi and W. Ogata

4 Statistical PA2-ness of Cramer-Shoup Scheme

In this section, we show that the Cramer-Shoup scheme is statistically PA2
secure under a weaker assumption than Dent assumed in [D06]. The description
of the Cramer-Shoup scheme is reviewed in Fig.4.

4.1 Our Assumption Is Weaker Than Dent’s One[D06]

First, we show that our assumption, the random-like property, is weaker than
Dent’s one [D06], simulatability.

Theorem 13 (Simulatable Group ⇒ Random-Like Group). If a prime
order cyclic group G is simulatable, then it is computationally random-like.

Proof. Suppose that there exists a group G which is not computationally random-
like but is simulatable. From the simulatability of G, there exists a polynomial
� = �(λ), a deterministic polytime function α : {0, 1}� → G and a probabilistic
polytime function β : G → {0, 1}� satisfying the properties (1), (2), and (3) of
Definition 6.

We show that (�, α, β) satisfies the condition of the computationally random-
like property of G. That is, we show that, for any polytime distinguisher D,
|Pr[D(α(R), R) = 1] − Pr[D(a, β(a; ρ)) = 1]| is negligible. Here R ∈ {0, 1}�, ρ,
and a ∈ G are randomly selected.

To this end, we take an arbitrary distinguisher D0. By using D0, we construct
polytime adversaries B2 and B3 for the experiments of (2) and (3) of Definition 6.
B2(1λ) sends query to Ob

β◦α, obtains R∗ as an answer, executes D0(α(R∗), R∗),
obtains an outputs b′ of D0, and outputs b′. In contrast, B3(1λ) sends query
to Ob

α, obtains a∗ as an answer, selects ρ randomly, executes D0(a∗, β(a∗; ρ)),
obtains an outputs b′ of D0, and outputs b′.

One can easily show that the following properties hold:

– The distribution of D0(α(R∗), R∗) for randomly selected R∗ ∈ {0, 1}� is the
same as that of an output of B2

O0
β◦α .

– The distribution of an output of B2
O1

β◦α is the same as that of
an output of B3

O0
α , because the property (1) of Definition 6 implies

(α(β(α(R∗); ρ)), β(α(R∗); ρ)) = (α(R∗), β(α(R∗); ρ)).
– The distribution of an output of B3

O1
α is the same as that of D0(a, β(a)) for

randomly selected a ∈ G.

—Gen(1λ)—
g, h ← G, z, z′, x, x′, y, y′ ← Zq.

(b, c, d) ← (gzhz′
, gxhx′

, gyhy′
).

pk ← (g, h, b, c, d).
sk ← (z, z′, x, x′, y, y′).
Output (pk, sk).

—Encpk(M)—
r ← Zq

(u, v, e) ← (gr, hr, Mbr).
θ ← H(u, v, e).
π ← (cdθ)r.
Output C = (u, v, e, π).

—Decsk(C)—
θ ← H(u, v, e).

If ux+θyvx′+θy′
= π,
output ⊥.

Otherwise,

output e/uzvz′
.

Fig. 4. The Cramer-Shoup Scheme

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 121

Since |Pr[D0(α(R∗), R∗) = 1] − Pr[D0(a∗, α(a∗; ρ∗)) = 1]| is non-negligible,
this means that the winning probability of B2 or B3 is non-negligible. This con-
tradicts the property (2) or (3) of Definition 6.

4.2 Proof of Main Theorem

We finally show our main theorem, Theorem 3. From our sufficient condition
(Theorem 11), all we have to prove is that the Cramer-Shoup scheme is compu-
tationally random-like and is EPA1 secure. Recall that our experiment for the
definition of a random-like PKE is quite similar to that for the definition of the
IND-CCA2 security. Therefore, we can prove this part of our sufficient condition
by slightly modifying the proof of the IND-CCA2 security of [CS98].

Proof (The Cramer-Shoup Scheme is Random-Like). We set X = G4. Since G is
computationally random-like, G4 is clearly computationally random-like. Recall
the proof [CS98] of the IND-CCA2 security of the Cramer-Shoup scheme. In the
proof, the authors of [CS98] showed that a ciphertext is indistinguishable from a
random element of G4 even if an adversary can access the decryption oracle. This
means that the winning advantage that an adversary enjoys the game descrebed
in Definition 8 is negligible. ��

We next prove the EPA1 security of the Cramer-Shoup scheme. To do so, we
introduce a new notion, regularity. Intuitively, we say that a PKE is regular
if, for any ciphertext C satisfying Decsk(C) �= ⊥, there exists (M, r) satisfying
C = Encpk(M ; r) with overwhelming probability. This property clearly holds if
C is an honestly generated ciphertext. The essence of the regularity is that the
property holds even if C is maliciously generated. The precise definition of the
regularity is as follows:

Definition 14 (Regularity). Let Π = (Gen, Enc, Dec) be an encryption
scheme. For a public key/secret key pair (pk, sk) of Π , let Dsk be the set of
the bit string C satisfying Decsk(C) �= ⊥, and let Epk be the set of the bit string
C satisfying C = Encpk(M ; r) for some M and r.

We say that Π is regular, if for any pk0 and C0,

Pr[(pk, sk) ← Gen(1λ), C0 ∈ Dsk \ Epk0
| pk = pk0]

is negligible for λ.

Note that some artificial PKEs do not satisfy the regularity. See the full paper
for an example. One can easily show the following lemma:

Lemma 15. The Cramer-Shoup scheme is regular.

We now prove EPA1 security of the Cramer-Shoup scheme.

Proof (The Cramer-Shoup Scheme is EPA1 Secure). Since the underlying
group G is computationally random-like, there exists a polynomial � = �(λ), and

122 I. Teranishi and W. Ogata

functions α : {0, 1}� → G and β : G → {0, 1}� satisfying the property described
in Definition 7.

Let A0 be an adversary against EPA1 security and n0 be the number of steps
of A0. We have to construct an extractor for A0. A basic strategy for construct-
ing an extractor for A0 is as follows. Let pk = (g, h, b, c, d) be a public key. We
construct adversary B0 for the DHK property, which executes A0, obtains de-
cryption queries C1 = (u1, v1, e1, π1), C2 = (u2, v2, e2, π2), . . . of A0, and makes
a query (ui, vi) for each i. Then the DHK assumption ensures the existence of
extractor L0 for B0. From the definition, L0 succeeds in outputting ri with over-
whelming probability. Here ri is an element of Zq satisfying (ui, vi) = (gri , hri).
(To simplify, we here omit to consider the case where ri = NonDH.) The plain-
text Mi = Decsk(Ci) is easily computable from Ci, if we know the random
tape ri of Ci = Encpk(Mi; ri) = (ui, vi, ei, πi) = (gri , hri , Mib

ri , (cdθi)ri). Here
θi = H(ui, vi, ei). Therefore, we can construct extractor K0 for A0 by using L0.

However, we have to subtly modify the above basic strategy, because there is
a small discrepancy between B0 and A0. Let RA0 and RB0 be the random tapes
of A0 and B0. From the definition of the DHK assumption, B0 are given g, h and
RB0 only, although A0 are given g, h, b, c, d and RA0 . Thus, in order to execute
A0, B0 has to construct (b, c, d, RA0) in a deterministic way, by using its input
(g, h, RB0) only. Therefore, B0 parses RB0 as RB0 = Rb‖Rc‖Rd‖RA0 , and sets
(b, c, d) = (α(Rb), α(Rc), α(Rd)).

The precise description of B0 is as follows. B0(g, h; RB0) parses RB0 as
RB0 = Rb‖Rc‖Rd‖RA0 , computes (b, c, d) = (α(Rb), α(Rc), α(Rd)), sets pk =
(g, h, b, c, d), and executes A0(pk; RA0). If A0 makes the i-th decryption query
Ci = (ui, vi, ei, πi), B0 makes query (ui, vi) and obtains answer ri. If ri = NonDH
holds, B0 sends ⊥ to A0. Otherwise, B0 computes θi = H(ui, vi, ei) and
π′

i = (cdθi)ri . If πi = π′
i holds, B0 sends ei/bri to A0. Otherwise, B0 sends

⊥ to A0. If A0 terminates, B0 terminates.
From the DHK assumption, there exists an extractor L0 of the DHK prop-

erty for B0. By using L0 as a subroutine, we construct an extractor K0 of A0

for the EPA1 property. The basic strategy to construct K0 has already been
described. However, we have to modify the basic strategy because of the pre-
viously mentioned discrepancy between B0 and A0. From the definitions, ex-
tractor L0 and K0 have to extract plaintexts only from data known by B0 and
A0 respectively. Recall that B0 is given (g, h, RB0) = (g, h, Rb‖Rc‖Rd‖RA0), al-
though A0 is given (g, h, b, c, d, RA0) = (g, h, α(Rb), α(Rc), α(Rd), RA0). That
is, B0 knows (Rb, Rc, Rd) although A0 does not know (Rb, Rc, Rd) itself but
(α(Rb), α(Rc), α(Rd)) only. Thus, L0 needs (g, h, Rb, Rc, Rd, RA0) although K0

can use (g, h, α(Rb), α(Rc), α(Rd), RA0) only.
In order to resolve this discrepancy, K0 selects ρb, ρc, and ρd randomly, sets

R′
b = β(b, ρb), R′

c = β(c, ρc), and R′
d = β(d, ρd), and executes L0 by feeding

(g, h, R′
b, R

′
c, R

′
d, RA0). We will show that (R′

b, R
′
c, R

′
d) is indistinguishable from

(Rb, Rc, Rd) by using the random-like property of G. Hence, we will be able to show
that L0 can output the correctdiscrete logarithm ri even if L0 is not fed (Rb, Rc, Rd)
but (R′

b, R
′
c, R

′
d). Therefore, we will be able to show that K0 is successful.

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 123

We now give the precise description of K0. We describe how K0 extract a plain-
text from Ci, where i is an arbitrary number and Ci is the i-th encryption query
of A0. On input public key pk, ciphertext Ci, random tape RA0 of A0, the state
st of K0, and the random tape ρK0 of K0, K0 perform as follows. K0 parses pk
as (g, h, b, c, d), Ci as (ui, vi, ei, πi), and ρK0 as ρb‖ρc‖ρd‖ρL0, computes R′

b =
β(b; ρb), R′

c = β(c; ρc), and R′
d = β(d; ρd), sets R′

B0
= R′

b‖R′
c‖R′

d‖RA0 , executes
L0(g, h, (ui, vi), R′

B0
, st; ρL0), and obtains the output (ri, st) of L0. If ri = NonDH

holds, K0 outputs (⊥, st). Otherwise, K0 computes θi = H(ui, vi, ei) and π′
i =

(cdθi)ri . If πi = π′
i holds, K0 outputs (ei/bri, st). Otherwise, K0 outputs (⊥, st).

In order to show that K0 is successful, we show that subroutine L0 of K0 can
output the correct discrete logarithm with overwhelming probability even in the
experiment EPADec,K0

Π,A0
(λ). To this end, we use the assumption that G is random-

like. We construct an adversary C0 for the computationally random-like property
of G. Let (a∗, R∗) be an instance of the game of computationally random-like
property. C0 would like to know whether a∗ = α(R∗) holds or R∗ = β(a∗; ρ∗)
holds for some ρ∗. C0(a∗, R∗) selects j0 ∈ {1, 2, 3} randomly, selects Rj randomly
and sets aj = α(Rj) for j < j0, sets Rj0 = R∗ and aj0 = a∗, selects aj ∈ G
and a random tape ρj randomly, and sets Rj = β(aj ; ρj) for j > j0. Then
C0 sets (b†, c†, d†, R†

b, R
†
c, R

†
d) = (a1, a2, a3, R1, R2, R3), randomly selects g ∈ G,

x ∈ Zq, and a random tapes RA0 and ρL0 , sets h = gx, pk = (g, h, b†, c†, d†),
st = ε, and R†

B0
= RA0‖R

†
b‖R†

c‖R
†
d, and executes A0(pk; RA0). If A0 makes the i-

th decryption query (ui, vi, ei, πi), C0 executes L0(g, h, (ui, vi), R
†
B0

, st; ρL0), and
obtains the output (ri, st) of L0. If ri = NonDH and vi = ui

x hold, C0 outputs
0 and terminates. If ri ∈ Zq and (ui, vi) �= (gri , hri) hold, C0 outputs 0 and
terminates. Otherwise, C0 computes θi = H(ui, vi, ei) and π′

i = (cdθi)ri . If πi =
π′

i holds, C0 sends ei/bri back to A0. Otherwise, C0 sends ⊥ back to A0. If A0

terminates, C0 outputs 1 and terminates.
If R∗ = β(a∗; ρ∗) and j0 = 1 holds, the distribution of output of C0 is the same

as that of DHKL0
G,B0

(λ). If a∗ = α(R∗) and j0 = 3, the distribution of output of
C0 is the same as that of EPADec,K0

Π,A0
(λ). This means that L0 outputs the correct

discrete logarithm with overwhelming probability even in EPADec,K0
Π,A0

(λ).
We now show that K0(pk, Ci, RA0 , st; ρK0) outputs the correct answer with over-

whelming probability.As before,wewrite pkas (g, h, b, c, d) andCi as (ui, vi, ei, πi).
Let (ri, st) be the output of L0(g, h, (ui, vi), RB0 , st; ρL0), sk = (z, z′, x, x′, y, y′, pk)
be the unknown secret key corresponding to pk and θi be H(ui, vi, ei).

We first consider the case where ri �= NonDH. Since L0 outputs the cor-
rect discrete logarithm with overwhelming probability, (ui, vi) = (gri , hri) holds
with overwhelming probability. From the definition of the Cramer-Shoup en-
cryption scheme, Decsk(Ci) is equal to ei/ui

zvi
z′

or ⊥, depending on whether
ui

x+θiyvi
x′+θiy

′
= πi holds or not. From (ui, vi) = (gri , hri), it follows that

ei/ui
zvi

z′
= ei/grizhriz

′
= ei/bri and ui

x+θiyvi
x′+θiy

′
= grix+riθiyhrix

′+riθiy
′
=

(gxhx′
)r(gyhy′

)θiri = (cdθi)ri . Recall that K0 outputs ei/ui
zvi

z′
or ⊥, depending

on whether (cdθi)ri = ei holds or not. This means that the output of K0 is equal
to Decsk(C0) with overwhelming probability.

124 I. Teranishi and W. Ogata

We next consider the case where ri = NonDH. Since L0 outputs the cor-
rect output with overwhelming probability, there is no s ∈ Zq satisfying
(ui, vi) = (gs, hs). This means that there is no (M, s) ∈ G × Zq satisfying
Ci = Encpk(M ; s). Since the Cramer-Shoup scheme is regular, Decsk(Ci) = ⊥
holds with overwhelming probability. Since the output of K0 is ⊥, the output of
K0 is equal to Decsk(C0) with overwhelming probability. ��

4.3 The Reason We Succeed in Showing the Statistical PA-ness

The main theorem, Theorem 3, shows the statistical PA2-ness of the Cramer-
Shoup scheme based on computational assumptions, such as the computationally
random-like assumption and the DDH assumption. This seems strange at first
glance. Hence, we here see why the statistical PA2-ness can be derived from
computational assumptions. We proved the statistical PA2-ness as follows:

1. Prove that “EPA1 + computationally random-like ⇒ statistically PA2”
(Theorem 11).

2. Prove that EPA1-ness of the Cramer-Shoup scheme from the DHK assump-
tion.

3. Prove the computational random-like property of the Cramer-Shoup scheme
from the computational assumptions.

The key point for proving the statistical PA2-ness is our new notion, the
EPA1 security. In fact, we fail to prove the statistical PA2-ness of it, if we
replace the EPA1-ness of Theorem 11 with the statistical PA1-ness. Recall that
X �stat Y and Y �comp Z only implies X �comp Z, where X , Y , and Z are
random variables. Therefore, statistical PA1-ness + computationally random-like
property only implies (at most) computational PA2 security.

In contrast, EPA1 security + computationally random-like property implies
the statistical PA2 security. The reason is as follow. Recall that the EPA1 (Equal-
ity-PA1) security means that “the equality M = Decsk(C) holds with over-
whelming probability,” where M is an output of an extractor K(· · · , C, List, · · ·).
Clearly, the computational indistinguishability changes the probability only neg-
ligibly. That is, if List′ is computationally indistinguishable from List, the equality
M ′ = Decsk(C) also holds with overwhelming probability, where M ′ is an output
of an extractor K(· · · , C, List′, · · ·). (Here List is the list of random elements of X
and List′ is the list of encryptions. Their computational indistinguishability is en-
sured by the computational random-like property.) Hence, the Equality-PA1-ness
+ the computationally random-like implies the Equality-PA2-ness (and therefore
implies statistical PA2-ness). Therefore, we can say that the EPA1 security al-
lows us to show the statistical PA2-ness.

Another reason we can succeed in proving the statistical PA2-ness is in the
definition of the DHK assumption. Recall that the DHK assumption ensures that
an output of an extractor is not only indistinguishable but equal to the discrete
logarithm with overwhelming probability. Hence, we can prove the Equality-PA1-
ness of the Cramer-Shoup scheme under the DHK assumption and therefore can
prove its statistical PA2-ness by using Theorem 11.

Cramer-Shoup Satisfies a Stronger Plaintext Awareness 125

References

[BDPR98] Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among No-
tions of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

[BP04] Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption
without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS,
vol. 3329, pp. 48–62. Springer, Heidelberg (2004)

[BR94] Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg
(1995)

[BD08] Birkett, J., Dent, A.W.: Relations Among Notions of Plaintext Awareness.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 47–64. Springer, Hei-
delberg (2008)

[B01] Boneh, D.: Simplified OAEP for the RSA and Rabin Functions. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 275–291. Springer, Heidelberg
(2001)

[CS98] Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Se-
cure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

[CS01] Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key En-
cryption Schemes (2001)

[D91] Damg̊ard, I.: Towards practical public key systems secure against chosen
ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 445–456. Springer, Heidelberg (1992)

[D06] Dent, A.W.: Cramer-Shoup is Plaintext-Aware in the Standard Model. In:
EUROCRYPT 2006 (2006)

[F06] Fujisaki, E.: Plaintext Simulatability. IEICE Trans. Fundamentals, E89-A,
pp.55-65. Preliminary version (2006), http://eprint.iacr.org/2004/218.pdf

[FO99] Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key En-
cryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS,
vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

[FOPS01] Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP Is Secure
under the RSA Assumption. In: CRYPTO 2001, pp. 260–274; J. Cryptology
17(2), pp.81-104 (2004)

[HLM03] Herzog, J., Liskov, M., Micali, S.: Plaintext Awareness via Key Registration.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer,
Heidelberg (2003)

[M01] Manger, J.: A Chosen Ciphertext Attack on RSA Optimal Asymmetric En-
cryption Padding (OAEP) as Standardized in PKCS #1 v2. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (2001)

[S00] Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext
Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–
288. Springer, Heidelberg (2000)

[S01] Shoup, V.: OAEP Reconsidered. In: CRYPTO 2001, pp.239–259 (2001); J.
Cryptology, 15(4), 223–249 (2002)

[TO06] Teranishi, I., Ogata, W.: Relationship between Standard Model Plaintext
Awareness and Message Hiding. In: ASIACRYPT 2006. IEICE Transactions
2008 91-A(1), pp.244-261

[TO08] Teranishi, I., Ogata, W.: Relationship between Two Approaches for Defining
the Standard Model PA-ness. In: ACISP 2008 (2008)

General Certificateless Encryption

and Timed-Release Encryption

Sherman S.M. Chow1,�, Volker Roth2, and Eleanor G. Rieffel2

1 Department of Computer Science
Courant Institute of Mathematical Sciences

New York University, NY 10012, USA
schow@cs.nyu.edu

2 FX Palo Alto Laboratory
3400 Hillview Avenue

Palo Alto, CA 94304, USA
{vroth,rieffel}@fxpal.com

Abstract. While recent timed-release encryption (TRE) schemes are
implicitly supported by a certificateless encryption (CLE) mechanism,
the security models of CLE and TRE differ and there is no generic
transformation from a CLE to a TRE. This paper gives a generalized
model for CLE that fulfills the requirements of TRE. This model is se-
cure against adversaries with adaptive trapdoor extraction capabilities,
decryption capabilities for arbitrary public keys, and partial decryption
capabilities. It also supports hierarchical identifiers. We propose a con-
crete scheme under our generalized model and prove it secure without
random oracles, yielding the first strongly-secure security-mediated CLE
and the first TRE in the standard model. In addition, our technique of
partial decryption is different from the previous approach.

Keywords: Security-mediated certificateless encryption, timed-release
encryption, standard model.

1 Introduction

In identity-based encryption (IBE) [29], encryption is done with respect to any
arbitrary string viewed an identifier (ID). Since the birth of practical IBE con-
structions, this idea has been used to achieve other security goals, such as cer-
tificateless encryption (CLE) [1,14,16] and timed-release encryption (TRE) [3].

CLE is intermediate between IBE and traditional public key encryption
(PKE). Traditional PKE requires a certification infrastructure but allows users
to create their own public/private key pairs so that their private keys are truly
private. Conversely, IBE avoids the need for certificates at the expense of adding
a trusted key generation center (KGC) that generates the private keys, which
means the KGC has the capability to decrypt all messages. CLE combines the
� This research is done while the first author was a research intern of FXPAL. We

thank Wolfgang Polak for helpful discussions and the reviewers for their feedback.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 126–143, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

General Certificateless Encryption and Timed-Release Encryption 127

advantages of both: no certificates are needed and messages can only be de-
crypted by the recipient. Generally, CLE is constructed by combining IBE and
PKE. The existence of the PKE component means that the KGC cannot de-
crypt messages. Instantaneous revocation is difficult for typical CLE schemes.
Security-mediated certificateless encryption (SMCLE) addresses this issue.

In TRE, a message is encrypted under a public key and a time; both the
private key and a time-dependent trapdoor are needed for decryption. A time-
server is trusted to keep a trapdoor confidential until an appointed time. Apart
from delayed release of information, TRE supports many other applications due
to its small trapdoor size and its commitment provision (see [11,18]).

1.1 The Difficulty of Converting between CLE and TRE

A practical TRE requires system parameters to be small relative to the number of
supported time periods. IBE supports an efficient time-based unlock mechanism
by treating the identities as time periods [4,26]. This approach supports only
universal disclosure of encrypted documents since one trapdoor can decrypt all
ciphertexts for a specific time; the inherent key-escrow property of IBE prohibits
the encryption for a designated receiver.

Since CLE is an “escrow-free version” of IBE, and both TRE and CLE are a
kind of double-encryption, it is natural to think CLE is what we are looking for to
realize a TRE. While most recent TRE schemes can be viewed as containing an
implicit CLE mechanism, a generic transformation from CLE to TRE is unlikely
to be provable secure [7]. Difficulty in reducing the confidentiality of TRE to that
of CLE arises when the adversary is a “curious” time-server. In CLE, an identity
is associated with only one public key, so a curious KGC is not allowed to replace
the public key associated with an identifier arbitrarily (otherwise, decryption is
trivial since it holds both parts of secrets). On the other hand, in TRE a time
identifier is never bound to any public key, so the public key associated with a
time identifier can be replaced. There is no way to simulate this implicit public
key replacement when CLE is viewed as a black box.

There is another subtle difference in modeling of curious users. In a secure
multi-user system, the security of a user is preserved even if other users are
compromised. In CLE, the user secret key together with the trapdoor given by
the KGC give the full private key. With the assumption that the user secret key
will be securely deleted after the combination, most CLE models assume the
adversary can get only trapdoors and full private keys. For most CLE schemes
under this model (e.g. [17]), the user secret key cannot be recovered from the
trapdoor and the full private key. Moreover, some CLE formulations [2,24,30] do
not have user secret keys at all. In TRE, user secret keys are held by each user,
which makes it impossible to reduce the security of TRE to that of CLE.

1.2 Our Contributions

Our generalized model for CLE overcomes the aforementioned difficulties and
has sufficient power to fulfill the requirements of TRE. Our model is secure

128 S.S.M. Chow, V. Roth, and E.G. Rieffel

against an adversary with adaptive trapdoor extraction capabilities for arbitrary
identifiers (instead of selective identifiers, e.g. [4,27]), decryption capabilities for
arbitrary public keys (as considered in strongly-secure CLE [17]) and partial
decryption capabilities (as considered in security-mediated CLE [12]). Our model
also supports hierarchical identifiers which have not been considered formally for
CLE and TRE. Design choices behind our formulation are justified.

All previous concrete TRE schemes [3,7,8,9,10,15,18,21,23], and the only con-
crete SMCLE scheme [12], were proven in the random oracle model. Our model is
strong but achievable: our proposed scheme is the first strongly-secure SMCLE.
With our security-preserving transformation from a general CLE to a TRE, it
also yields the first TRE in the standard model.

This work enriches the study of SMCLE by providing a novel partial decryp-
tion technique which is different from that in [12], and enriches TRE by sup-
porting a new business model for the time-server. Finally, hierarchy of identifiers
makes decryption of ciphertext for passed periods more manageable.

2 Related Work

2.1 Timed-Release Encryption

Early TRE schemes require interaction with the time-server. Rivest, Shamir and
Wagner’s idea [28] require senders to reveal the release-time of the messages
in their interactions with the server, so the senders cannot be anonymous to
the server. In Di Crescenzo, Ostrovsky and Rajaopalan ’s scheme [15], it is the
receiver who interacts with the time-server by invoking a “conditional oblivious
transfer protocol”, which is computationally intensive.

Blake and Chan made the first attempt to construct a non-interactive TRE
[3]. The formal security model of message confidentiality was later considered
independently by Cheon et al. [10] and Cathalo, Libert and Quisquater [7]. The
former focuses on authenticated TRE. The latter also formalizes the release-time
confidentiality. The recovery of past time-dependent trapdoors from a current
trapdoor was studied in [9] and [26], which employs a hash chain and a tree
structure [6] respectively. The study of the pre-open capability in TRE was
initiated in [23] and improved by [18]. Recently, Chalkias, Hristu-Varsakelis and
Stephanides proposed an efficient TRE scheme [8] with random oracles.

2.2 Certificateless Encryption

Al-Riyami and Paterson [1] proposed certificateless encryption in 2003. Exten-
sive surveys of CLE security models and constructions can be found in [14,16].
Two types of adversaries are considered in certificateless encryption. A Type-I
adversary models coalitions of rogue users without the master secret. Due to the
lack of a certificate, the adversary is allowed to replace the public keys of users.
A Type-II adversary models a curious KGC who has the master key but cannot
replace the public keys of any users. In Al-Riyami and Paterson’s security model

General Certificateless Encryption and Timed-Release Encryption 129

for encryption [1], a Type-I adversary can ask for the decryption of a cipher-
text under a replaced public key. Schemes secure against such attacks are called
“strongly-secure” [17], and the oracle is termed a “strong decryption oracle”. A
weaker type of adversary, termed Type-I−, can only obtain a correct plaintext
if the ciphertext is submitted along with the corresponding user secret key.

The Al-Riyami and Paterson scheme [1] is secure against both Type-I and
Type-II adversaries in the random oracle model. It was believed [24,25,27] that
[25] gave the first CLE in the standard model. However, it is possible to in-
stantiate a prior generic construction in [12] with a PKE and an IBE in the
standard model to obtain a secure CLE without random oracles. Both [25] and
the instantiation of [12] are only secure against Type-I− attacks. Based on [19], a
selective-ID secure CLE without random oracles was proposed [27]. This scheme
cannot be efficiently extended to a TRE since the user’s public key is depen-
dent on the identity, which is never coupled with a fixed time-identifier in TRE.
Recently, the first strongly-secure CLE in the standard model is proposed [17].

Al-Riyami and Paterson give an extension for hierarchical CLE [1]. However,
no security model is given. We are not aware of any literature with formal work
on hierarchical CLE, particularly none proven secure in the standard model.

Baek et al. proposed the first CLE that does not use pairings [2]. The CLE
proposal [24] uses similar ideas, but their security proof ignores the public key
replacement of the target user being attacked. This limitation is removed in Sun,
Zhang and Baek’s work [30]. To replace the pairing, these schemes make part of
the user’s public key dependent on the identity-specific trapdoor given by the
KGC, which means TRE cannot be obtained trivially from these constructions.

Security-mediated certificateless encryption (SMCLE), introduced by Chow,
Boyd and González Nieto [12], adds a security-mediator (SEM) who performs
partial decryption for the user by request. This idea gives a more general treat-
ment of the decryption queries in the CLE paradigm: the adversary can ask for
partial decryption results under either the SEM trapdoor generated by the KGC
or the user secret key A concrete construction in the random oracle model and
a generic construction in the standard model are proposed in [12]. Prior to our
work, no strongly-secure SMCLE existed in the standard model.

3 General Security-Mediated Certificateless Encryption

3.1 Notation

We use an ID-vector
»
ID = (ID1, ID2, · · · , IDL) to denote a hierarchy of identifiers

(ID1, ID2, · · · , IDL). The length of
»
ID is denoted by | # »

ID| = L. Let
»
ID||IDr denote

the vector (ID1, ID2, · · · , IDL, IDr) of length | # »
ID|+1. We say that

»
ID is a prefix

of
»

ID′ if | # »
ID| ≤ |

»

ID′| and IDi = ID′
i for all 1 ≤ i ≤ | # »

ID|. We use ∅ to denote
an empty ID-vector where |∅| = 0 and ∅||IDr = IDr. Finally, we use the notation
({0, 1}n)≤h to denote the set of vectors of length less than or equal to h, where
each component is a n-bit long bit-string.

130 S.S.M. Chow, V. Roth, and E.G. Rieffel

3.2 Syntax

We propose a new definition of the (security-mediated) certificateless encryption,
which also extends the definition of a 1-level SMCLE scheme in [12] to h levels.

Definition 1. An h-level SMCLE scheme for identifiers of length n is defined
by the following sextuple of PPT algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 1λ, outputs a master secret key Msk (which can also be denoted as
d∅), and the global parameters Pub (which include h = h(λ) and n = n(λ)
implicitly) We assume all other algorithms take Pub implicitly as an input.

– Extract (run by the server or any one who holds a trapdoor) is a possibly
probabilistic algorithm which takes a trapdoor d # »

ID corresponding to an h-level
identifier

»
ID ∈ ({0, 1}n)≤h , and a string IDr ∈ {0, 1}n, outputs a trapdoor

key d # »
ID||IDr

associated with the ID-vector
»
ID||IDr. The master secret key

Msk is a trapdoor corresponding to a 0-level identifier.
– KGen (run by a user) is a probabilistic algorithm which generates a pub-

lic/private key pair (pku, sku).
– Enc (run by a sender) is a probabilistic algorithm which takes a message m

from some implicit message space, an identifier
»

ID ∈ ({0, 1}n)≤h, and the
receiver’s public key pku as input , returns a ciphertext C.

– DecS (run by any one who holds the trapdoor, either a SEM in SMCLE or a
receiver in CLE) is a possibly probabilistic algorithm which takes a ciphertext
C and a trapdoor key d # »

ID, returns either a token D which can be seen as a
partial decryption, or an invalid flag ⊥ (which is not in the message space).

– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the
ciphertext C, the receiver’s secret key sku and a token D as input, returns
either the plaintext, an invalid flag ⊥D denoting D is an invalid token, or
an invalid flag ⊥C denoting the ciphertext is invalid.

For correctness, we require that DecU (C, sk, DecS(C, Extract(Msk,
»

ID))) = m for

all λ ∈ N, all (Pub, Msk) $← Setup(1λ), all (pk, sk) $← KGen, all message m, all

ID-vector
»

ID in ({0, 1}n)≤h and all C
$← Enc(m,

»

ID, pk).

3.3 Security

Each adversary has access to the following oracles:

1. An ExtractO oracle that takes an ID-vector
»
ID ∈ ({0, 1}n)≤h as input and

returns its trapdoor d # »
ID.

2. An UskO oracle that takes a public key pk as input and returns its corre-
sponding private key sk.

3. A DecOS oracle that takes a ciphertext C and an ID-vector
»
ID, and outputs

DecS(C, d # »
ID). Note that C may or may not be encrypted under

»
ID.

4. A DecOU oracle that takes a ciphertext C, a public key pk and a token D,
and outputs DecU (C, sk, D) where sk is the secret key that matches pk.

General Certificateless Encryption and Timed-Release Encryption 131

5. A DecO oracle that takes a ciphertext C, an ID-vector
»
ID, and a public

key pk; outputs DecU (C, sk, D) where sk is the secret key that matches pk,
D = DecS(C, d # »

ID) and C may or may not be encrypted under
»
ID and pk.

Following common practice, we consider the two kinds of adversaries.

1. A Type-I adversary that models any coalition of rogue users, and who aims
to break the confidentiality of another user’s ciphertext.

2. A Type-II adversary that models a curious KGC, who aims to break the
confidentiality of a user’s ciphertext1.

We use the common security model in which the adversary plays a two-phased
game against a challenger. The game is modeled by the experiment below, X ∈
{I, II} denotes whether an PPT adversary A = (Afind,Aguess) is of Type-I or II,
and determines the allowed oracle queries O and the auxiliary data Aux.

Definition 2. Experiment ExpCCA−X
A (λ)

(Pub, Msk) $← Setup(1λ)

(m0, m1, pk∗,
»

ID∗, state) $← AO
find(Pub, Aux)

b
$← {0, 1}, C∗ $← Enc(mb,

»
ID∗, pk∗)

b′
$← AO

guess(C
∗, state)

If (|m0| �= |m1|) ∨ (b �= b′) then return 0 else return 1

O is a set of oracles ExtractO(·), UskO(·), DecOS(·, ·), DecOU (·, ·, ·), DecO(·, ·, ·).

Variables marked with ∗ refer to challenges by the adversary. The adversary
chooses a public key pk∗ and an ID-vector

»
ID∗ to be challenged with, and

the challenger returns a challenge ciphertext C∗. The following two definitions
prohibit the adversary from trivially using the oracles to query for the answer
to (parts of) the challenge.

Definition 3. A hierarchical security-mediated certificateless encryption scheme
is (t, qE , qD, ε) CCA-secure against a Type-I adversary if |Pr[ExpCCA−I

A (λ) =
1]− 1

2 | ≤ ε for all t-time adversary A making at most qE extraction queries and
qD decryption queries (of any type), subjects to the following constraints:

1. Aux = ∅, i.e. no auxiliary information is given to the adversary.
2. No ExtractO(

»
ID′) query throughout the game, where

»
ID′ is a prefix of

»
ID∗.

3. No UskO(pk) query throughout the game for any pk.
4. No DecOS(C∗,

»
ID∗) query throughout the game.

5. No DecO(C∗,
»

ID∗, pk∗) query throughout the game.

All public keys in the game are chosen by the adversary. It is natural to assume
the adversary knows the corresponding secret keys.

1 A rogue SEM is weaker than a Type-II adversary.

132 S.S.M. Chow, V. Roth, and E.G. Rieffel

Definition 4. A hierarchical security-mediated certificateless encryption scheme
is (t, qK , qD, ε) CCA-secure against a Type-II adversary if |Pr[ExpCCA−II

A (λ) =
1]− 1

2 | ≤ ε for all t-time adversary A making at most qD decryption queries (of
any type), subjects to the following conditions:

1. Aux = (Msk, {pk∗1, · · · , pk∗qK
}), i.e. A is given the master secret and a set of

challenge public keys.
2. pk∗ ∈ {pk∗1, · · · , pk∗qK

}, i.e. the challenge public key must be among the set
given by the challenger.

3. No UskO(pk) query throughout the game if pk /∈ {pk∗1, · · · , pk∗qK
} or pk = pk∗.

4. No DecOU (C∗, pk∗, D) query throughout the game, where D is outputted by
the algorithm DecS(C∗, d # »

ID∗).
5. No DecO(C∗,

»

ID∗, pk∗) query throughout the game.

Since Msk is given to the adversary, the challenge public key must be in the set
given by the challenger.

3.4 Discussions on Our Choices for Definition

This section explains the intuitions behind the choices made in formulating our
definition and highlights the relationship between existing definitions and ours.

User key generation. In order to support more general applications like TRE,
the interface for the algorithms needs a more general syntax. A subtle change is
that our user key generation algorithm KGen only takes the system parameter as
input but not the identifier. In some CLE schemes [2,24,27,30] the inclusion of
the identifier, or the trapdoor for an identifier, is essential for the generation of
the user public key. For these schemes, KGen can be executed only after Extract,
so straightforward adaption results in inefficient TREs in which the size of the
user public key grows linearly with the number of supported time periods.

Simplification of Type-I adversary. In existing models for 1-level CLE [1,17],
ExtractO query of

»
ID∗ is allowed; if such a query is issued, the challenge public

key pk∗ can no longer be chosen by the adversary. In our discussion, we sepa-
rate this behavior from the Type-I model and consider this type of adversarial
behavior (ExtractO(

»

ID′) where
»

ID′ is a prefix of
»

ID∗) as a weaker variant of,
and hence covered by, a Type-II adversary. It is true that our resulting defi-
nition for Type-I adversary is weaker, but the “missing part” is not omitted
from the security requirement since CLEs must consider Type-II adversaries;
this simplification was justified and adopted in [22, Section 2.3].

Existing models also allow full private key extraction for the public keys pre-
pared by the challenger. In our Type-I game, all of the public keys to be attacked
are generated by the adversary, so UskO query is prohibited. The remaining sce-
nario, where the adversary intends to attack a public key given by the challenger,
is also a weaker variant of our Type-II model. To conclude, we keep the essence
of the existing models, and include the adversarially chosen public keys (for
Type-I) and UskO (for Type-II) to match with TRE.

General Certificateless Encryption and Timed-Release Encryption 133

Strong decryption oracle. In our definition, the decryption oracle works even
if the public key is adversarially chosen but the secret key is not supplied. The
original definition of CLE [1] does not allow a strong decryption oracle for curious
KGC adversary, but it is considered in recent work [17]. Adding the following
restriction weakens Definition 4 to correspond to a Type-II− attack:

5. (Type-II−) No DecO(C,
»

ID, pk) query throughout the game for any C if pk /∈
{pk∗1, · · · pk∗qK

}, unless the corresponding secret key sk is supplied when the
DecO query is made.

The Type-I− game can be obtained by adding Aux = {pk∗1, · · · pk∗qK
} and the

above restriction to Definition 3, but with a restriction on UskO as in Definition 4.

Implicit public key replacement. In our generalization of CLE, we “remove”
(i.e. make implicit) the oracle for replacing the public key corresponding to an
identifier. This change may affect the following choices:

1. The adversary’s choice of the victim user it wishes to be challenged with,
2. The choice of user in decryption oracle queries.

However, there are other “interfaces” in our model such that the adversary can
still make the above choices. Our model still allows the adversary to choose which
identifier/public key it wants to attack. For decryption queries, the adversary
can just supply different combination of identifier and public key to the DecOS

and DecOU oracles. In this way, implicit replacement is done. In other words,
when compared with the original model [1], the security model is not weakened,
but generalized to cover applications of CLE such as TRE.

Reason for “removing” public key request and replacement oracles.
In traditional definitions of CLE [1], oracles for retrieving and replacing public
key depend upon the fact that an identifier is always bound to a particular
user. Replacing a user’s public key means changing the public key associated
with a certain identifier. In TRE, identifiers correspond to policies governing the
decryption, so a single identifier may be “shared” among multiple users. For this
reason, our model must be free from the concept of “user = identifier”.

Alternative definition of public key replacement. What about allowing
a restricted public key replacement, such that a public key associated with an
identifier can be replaced by a public key associated with another identifier, but
not an arbitrary one supplied by the adversary? This definition still requires an
identifier to belong to a single user. Moreover, this definition makes the treatment
of a strong decryption oracle complicated: the idea of restricted replacement
among a fixed set of public keys does not match well with decrypting under
adversarially chosen public keys.

SMCLE is more general than plain CLE. The two separate decryption
oracles in the SMCLE model provide a more general notion than CLE:

1. Some CLE schemes are not CCA-secure when the adversary has access to a
partial decryption oracle (see [12]).

134 S.S.M. Chow, V. Roth, and E.G. Rieffel

2. Since the decryption oracle is separated in two, the SMCLE model does not
have the notion of a “full” private key which is present in previous CLE
models (a full private key is a single secret for the complete decryption of
the ciphertext). On the ground that separated secrets can always be concate-
nated into a single full one, this simplification (of private key) has already
been adopted in more recent models [22].

Difference with the previous SMCLE definition. Our user decryption
oracle DecOU returns different invalid flags for the cases of invalid token from
the SEM or invalid ciphertext. This distinction was not captured in [12].

User decryption oracle in SMCLE. To exclude trivial attacks, our Type-II
adversary model disallows the challenge ciphertext C∗ to be decrypted by the
decryption oracle under the challenge public key and a token D obtained from the
algorithm (not the oracle) DecS(C∗, ID∗), where ID∗ is the challenge identifier.
To implement this restriction, our new SMCLE definition checks whether a token
D is a valid token, corresponding to a ciphertext and an identifier.

While our security definition is tightly coupled with the ability to check the
token, we think that it is natural for the user to be able to perform such a test
(especially if the user pays for each token). Even without an explicit testing
algorithm, the challenger may do the test as well since it simulates the scheme’s
execution. It gives a weaker definition if we prohibit any decryption query for
the challenge ciphertext under the challenge public key, irrespective of the token.

Justifications for our definition of hierarchical CLE. In the hierarchical
scheme of [1], an entity at level k derives a trapdoor for its children at level
k + 1 using both its trapdoor and its secret key. In our proposed model, a level
k entity uses only the trapdoor obtained from its parent at level k − 1 to derive
keys for its children. We do not see any practical reason for requiring the secret
key in the trapdoor derivation. Our definition avoids certain complications: for
example, in [1], the decryption requires the public keys of all the ancestors.

We do allow the decryption of the ciphertext under
»
ID′ which is a prefix of

»
ID∗. This is stronger than the counterpart in some hierarchical IBE models [20].

Theorem 1. If there exists a secure 1-level SMCLE scheme under Definition 3
and 4, there exists a CLE scheme which is secure under the definition of [1].

Proof. Our aim is to build a simulator B which uses an adversary A of CLE
to break the security of our 1-level SMCLE scheme. The simulator basically
forwards everything (the system parameters, the oracle queries and responses,
and the guess) back and forth between its own SMCLE challenger and the CLE
adversary. Faced with a Type-II adversary of CLE, the simulator acts as a Type-
II security of 1-level SMCLE. For a Type-I adversary of CLE, B flips a fair coin to
determine its guess whether A will issue an ExtractO query of

»
ID∗. If it guesses

not, B just plays the Type-I game as usual. If it guesses so, B will try to use A to
win the Type-II game of SMCLE instead. The ExtractO query can be answered
by B because it owns Msk now. The reduction tightness is reduced by a factor
of 2. This simple trick is also used in [17, Appendix B, Game 4].

General Certificateless Encryption and Timed-Release Encryption 135

We omit the details for most queries, but focus on the distinctions that involve
public key requests and replacement. The simulator must maintain a table to
store the binding between an identifier and a public key. Whenever a Type-I
adversary issues a public key request query, B executes (pk, sk) $← KGen, stores
sk (so B can reply if A asks for it), and returns pk. For a Type-II adversary,
B picks a random public key from {pk∗1, · · · , pk∗qK

} and assigns it as the public
key of the queried ID. When A makes a key replacement query, the simulator
updates its own table. For every other request regarding a particular identifier,
the simulator retrieves the corresponding public key from its table and queries
its own challenger accordingly. Finally, decryption queries of the CLE adversary
are answered by combining results from the two partial decryption oracles. ��

4 Our Proposed Construction

4.1 Preliminaries

Let G and GT be multiplicative groups of prime order p for which there exists
an efficiently computable bilinear map ê : G×G → GT such that

1. Bilinearity: For all u, v ∈ G and r, s ∈ Zp, ê(ur, vs) = ê(u, v)rs.
2. Non-degeneracy: ê(u, v) �= 1GT for all u, v ∈ G \ {1G}.

Our scheme’s security relies on the intractability of the following problems:
Definition 5. The Decision 3-Party Diffie-Hellman Problem (3-DDH) in G is
to decide if T = gβγδ given (g, gβ, gγ , gδ, T) ∈ G5. Formally, defining the advan-
tage of a PPT algorithm D, Adv3−DDH

D (λ), as

| Pr[1 $← D(g, gβ, gγ , gδ, T)|T ← gβγδ ∧ β, γ, δ
$← Z∗

p]

−Pr[1 $← D(g, gβ, gγ , gδ, T)|T $← G ∧ β, γ, δ
$← Z∗

p]|.

We say 3-DDH is intractable if Adv3−DDH
D (λ) is negligible in λ for all PPT D.

Compared with the Bilinear Diffie-Hellman (BDH) problem, the problem in-
stance of 3-DDH is purely in G while that of BDH contains an element t̂ ∈ GT .
If BDH problem is solvable, one can solve 3-DDH by feeding (g, gβ, gγ , gδ, ê(g, T))
to a BDH oracle. The above assumption has been employed in [17].

We introduce avariantof theweakBilinearDiffie-Hellman Inversion∗ (wBDHI∗)
assumption [4] below in the favor of 3-DDH. The original h-wBDHI∗ problem in
(G, GT) [4] is to decide whether t̂ = ê(g, gγ)αh+1

. The term “inversion” comes from
the equivalence to the problem of deciding whether t̂ = ê(g, gγ)1/α.

Definition 6. The h-Weak Diffie-Hellman Exponent Problem (h-wDHE) in G

is to decide if T = gγαh+1
given (g, gγ , gα, gα2

, · · · , gαh

, T) ∈ Gh+3. Formally,
defining the advantage of a PPT algorithm D as

Advh−wDHE
D (λ) = |Pr[1 $← D(g, gγ , gα, gα2

, · · · , gαh

, T)|T← gγαh+1
∧ α, γ

$← Z∗
p]

− Pr[1 $← D(g, gγ , gα, gα2
, · · · , gαh

, T)|T $← G ∧ α, γ
$← Z∗

p]|.

We say h-wDHE is intractable if Advh−wDHE
D (λ) is negligible in λ for all PPT D.

136 S.S.M. Chow, V. Roth, and E.G. Rieffel

We require a family of collision resistant hash functions H too.

Definition 7. A hash function H
$← H(λ) is collision resistant if

AdvCR
C (λ) = Pr[H(x) = H(y) ∧ x �= y|(x, y) $← C(1λ, H) ∧H

$← H(λ)]

is negligible as a function of the security parameter λ for all PPT algorithms C.

4.2 Proposed Construction

Our construction is an h-level generalization of the concrete construction for
1-level in [17]. While [17] uses the technique of [5] to achieve strong decryp-
tion oracle, we use the same technique for a different purpose, which is a new
way (other than the only known way in [12]) to support partial decryption oracle.

Setup(1λ, n): Let G, GT be two multiplicative groups with a bilinear map ê as
defined before. They are of the same order p, which is a prime and 2λ < p < 2λ+1.

– Encryption key: choose two generators g, g2 ∈R G.
– Master public key: choose an exponent α ∈R Zp and set g1 = gα.
– Hash key for identifier-based key derivation: choose h many (� + 1)-

length vectors
#»
U 1, · · · ,

#»
Uh ∈R G�+1, where each

#»
U j = (u′

j , uj,1, · · · , uj,�),
1 ≤ j ≤ h. � is a tunable parameter which is a factor of n and 1 ≤ � ≤ n.
Each vector

#»
U j (1 ≤ j ≤ h) corresponds to the j-th level of the hierarchy.

We use the notation
»
ID = (ID1, · · · , IDj , · · · , IDk) to denote a hierarchy

of k n-bit string IDj ’s. We write IDj as � blocks each of length n/� bits
(IDj,1, · · · , IDj,�). We define F #»

U j
(IDj) = u′

j

∏�
i=1 u

IDj,i

j,i .
– Hash key for ciphertext validity: choose an (n + 1)-length vector

#»
V =

(v′, v1, · · · , vn) ∈R Gn+1. This vector defines the hash function F #»
V (w) =

v′
∏n

j=1 vj
bj where w is a n-bit string b1b2 · · · bn.

– Hash function: pick a function H : {0, 1}∗ → {0, 1}n from a family of
collision-resistant hash functions according to the parameter λ.

The public parameters Pub and the master secret key Msk are given by

Pub = (λ, p, G, GT , ê(·, ·), n, �, g, g1, g2,
#»
U 1, · · · ,

#»
Uh,

#»
V , H(·)), Msk = gα

2 .

We require the discrete logarithms (with respect to g) of all G elements in Pub
except g, g1 to be unknown to the KGC. In practice, these elements can be gen-
erated from a pseudorandom function of a public seed.

Extract(d # »
ID, IDr): For

»
ID = (ID1, · · · , IDk) for k ≤ h, a trapdoor is in the form:

d # »
ID = (a1, a2,

#»z k+1, · · · , #»z h) = (gα
2 · (

k∏
j=1

F #»
U j

(IDj))r, gr, (
#»
U k+1)

r
, · · · , (#»

Uh)
r
),

where r ∈R Z∗
p and (

#»

U j)
r

= ((u′
j)

r
, (uj,1)

r
, · · · , (uj,�)

r).

General Certificateless Encryption and Timed-Release Encryption 137

Note that (a1, a2) is sufficient for decryption, while #»z k+1, · · · , #»z h can help the
derivation of the trapdoor for (ID1, · · · , IDk, IDk+1) for any n-bit string IDk+1 and
k + 1 ≤ h. To generate d # »

ID||IDr
parse d # »

ID = (a1, a2, (zk+1, zk+1,1, · · · , zk+1,�),
· · · , (zh, zh,1, · · · , zh,�)) and parse IDr as � blocks (IDr,1, · · · , IDr,�) where each
block is of length n/� bits, pick t ∈R Z∗

p and output where the multiplication of

d # »
ID||IDr

= (a1·zk+1

�∏
i=1

(zk+1,i)IDr,i ·(
k+1∏
j=1

F #»
U j

(IDj))t, a2·gt, #»z k+2·(
#»

U k+2)
t · · · , #»z h·(

#»

Uh)
t

two vectors are defined component-wise, i.e. #»z j · #»ν j = (zj ·νj , zj,1 ·νj,1, · · · , zj,� ·
νj,�). d # »

ID becomes shorter as the length of
»
ID increases.

KGen(): Pick sk ∈R Z∗
p, return pk = (X, Y) = (gsk, gsk

1) and sk as the key pair.

Enc(m,
»
ID, pk): To encrypt m ∈ GT for

»
ID = (ID1, · · · , IDk) where k ≤ h,

parse pk as (X, Y), then check that it is a valid public key by verifying2 that
ê(X, g1) = ê(g, Y). If equality holds, pick s ∈R Z∗

p and compute

C = (C1, C2, τ, σ) = (m · ê(Y, g2)s,

k∏
j=1

F #»
U j

(IDj)
s
, gs, F #»

V (w)s)

where w = H(C1, C2, τ,
»
ID, pk).

DecS(C, d # »
ID): Parse C as (C1, C2, τ, σ), and d # »

ID as (a1, a2, · · ·). First check
if ê(τ,

∏k
j=1 F #»

U j
(IDj) · F #»

V (w′)) = ê(g, C2 · σ) where w′ = H(C1, C2, τ,
»
ID, pk).

Return⊥ if inequality holds or any parsing is not possible, otherwise pick t ∈R Z∗
p

and return

D = (D1, D2, D3) = (a1 · F #»
V (w′)t, a2, g

t).

DecU (C, sk, D): Parse C as (C1, C2, τ, σ) and check if ê(τ,
∏k

j=1 F #»
U j

(IDj) ·
F #»

V (w′)) = ê(g, C2 ·σ) where w′ = H(C1, C2, τ,
»
ID, pk). If equality does not hold

or parsing is not possible, return ⊥C . Next, parse D as (D1, D2, D3) and check
if ê(g, D1) = ê(g1, g2)ê(D2,

∏k
j=1 F #»

U j
(IDj))ê(D3, F #»

V (w′))3. If equality does not
hold or parsing is not possible, return ⊥D. Otherwise, return

m ← C1 ·
(

ê(C2, D2)ê(σ, D3)
ê(τ, D1)

)sk

.

2 One pairing computation can be saved by a trick adopted in [17]: pick ξ ∈R Z∗
p and

compute C1 = m · ê(Y, g2 · gξ)s/ê(X, gsξ
1).

3 The same trick for minimizing the number of pairing computations involved in check-
ing the ciphertext and the token can be incorporated to the final decryption step.
The modified decryption algorithm only uses 4 pairing computations; however, it
gives a random message (instead of an invalid flag ⊥) for an invalid ciphertext.

138 S.S.M. Chow, V. Roth, and E.G. Rieffel

4.3 Analysis

Similar to [4], the ciphertext size of our scheme is independent of the hierarchy
length. This is also beneficial when it is used as a TRE (see Section 5.5).

In the concrete SMCLE scheme of Chow, Boyd and González Nieto [12],
partial decryption uses the pairing function ê(·, ·) to pair part of the ciphertext
and the ID-based private key. To make this partial decryption result verifiable
requires turning a generic interactive proof-of-knowledge non-interactive. Our
scheme employs a different technique such that the token generated by the partial
decryption is publicly and non-interactively verifiable.

Our scheme’s security is asserted by Theorem 2; [13] contains a proof.

Theorem 2. Our scheme is secure against Type-I attack and Type-II attack
(Definition 3 and 4) if h-wDHE problem and 3-DDH problem is intractable.

5 Applying General Certificateless Encryption to TRE

5.1 Syntax of Timed-Release Encryption

For ease of discussion, consider only 1-level of time-identifiers as in [7]. It can be
shown that our results hold for an h-level analog.

Definition 8. A TRE scheme for time-identifiers of length n (n is a
polynomially-bounded function) is defined by the following sextuple of PPT
algorithms:

– Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 1λ, outputs a master secret key Msk, and the global parameters
Pub. We assume that λ and n = n(λ) are implicit in Pub and all other
algorithms take Pub implicitly as an input.

– Extract (run by the server) is a possibly probabilistic algorithm which takes
the master secret key Msk and a string ID ∈ {0, 1}n, outputs a trapdoor key
dID associated with the identifier ID.

– KGen (run by a user) is a probabilistic algorithm which generates a pub-
lic/private key pair (pku, sku).

– Enc (run by a sender) is a probabilistic algorithm which takes a message
m from some implicit message space, an identifier ID ∈ {0, 1}n, and the
receiver’s public key pku as input, returns a ciphertext C.

– DecS (run by any one who holds the trapdoor, either a SEM or a receiver) is
a possibly probabilistic algorithm which takes a ciphertext C and a trapdoor
key dID as input, returns either a token D which can be seen as a partial
decryption of C, or an invalid flag ⊥ (which is not in the message space).

– DecU (run by a receiver) is a possibly probabilistic algorithm which takes the
ciphertext C, the receiver’s secret key sku and a token D as input, returns
either the plaintext, an invalid flag ⊥D denoting D is an invalid token, or
an invalid flag ⊥C denoting the ciphertext is invalid.

General Certificateless Encryption and Timed-Release Encryption 139

For correctness, we require that DecU (C, sk, DecS(C, Extract(Msk, ID))) = m for

all λ ∈ N, all (Pub, Msk) $← Setup(1λ), all (pk, sk) $← KGen, all message m, all

identifier ID in {0, 1}n and all C
$← Enc(m, ID, pk).

5.2 Timed-Release Encryption from Certificateless Encryption

Given a SMCLE scheme {SMC.Setup,SMC.Extract,SMC.KGen,SMC.Enc,
SMC.DecS ,SMC.DecU}, a TRE scheme {T RE .Setup, T RE .Extract,
T RE .KGen, T RE .Enc, T RE .DecS , T RE .DecU} can be built as below.

T RE .Setup(1λ, n): Given a security parameter λ and the length of the time-
identifier n, execute (Msk, Pub) ← SMC.Setup(1λ, n), retain Msk as the master
secret key and publish Pub as the global parameters.

T RE .Extract(Msk, ID): For a time-identifier ID ∈ {0, 1}n, the time-server returns
dID ← SMC.Extract(Msk, ID).

T RE .KGen(): Return (sk, pk) ← SMC.KGen() as the user’s key pair.

T RE .Enc(m, ID, pk): To encrypt m ∈ GT for pk under the time ID ∈ {0, 1}n,
return SMC.Enc(m, ID, pk), which may be ⊥ if pk is an invalid public key.

T RE .DecS(C, dID): To partially decrypt C by a time-dependent trapdoor dID,
return D ← SMC.DecS(C, dID).

T RE .DecU (C, sk, D): To decrypt C by the secret key sk and the token D, just
return SMC.DecU (C, sk, D).

Theorem 3. If SMC is an 1-level SMCLE scheme which is CCA-secure against
Type-I adversary (Definition 3), T RE is CCA-secure against Type-I adversary.

Theorem 4. If SMC is an 1-level SMCLE scheme which is CCA-secure against
Type-II adversary (Definition 4), T RE is CCA-secure against Type-II adversary.

Proof. The security models of TRE can be found in [13]. We prove by contradic-
tion. SupposeA is a Type-X adversary such that |Pr[ExpCCA′−X

A (λ) = 1]− 1
2 | > ε,

we construct an adversary B with |Pr[ExpCCA−X
B (λ) = 1]− 1

2 | > ε in the face of
a SMCLE challenger C where the running times of B and A are equal.

Setup: When C gives B (Pub, Aux), B just forwards it to A. The public key to
be passed to A is either chosen from the a set of public key in Aux (in Type-II
game), or chosen by B itself (in Type-I game).

First Phase of Queries: B forwards every request of A to the oracles of its
own challenger C. From the description of T RE , we can see that every legitimate
oracle query made by A can be answered faithfully.

140 S.S.M. Chow, V. Roth, and E.G. Rieffel

Challenge: When A gives B (m0, m1, pk∗, ID∗), B just forwards it to C.
Second Phase of Queries: Again, B just forwards every request of A to the
oracles of its own challenger C. From the description of T RE , it is easy to see
that every oracle query which does not violate the restriction enforced by A also
does not violate the restriction enforced by C.
Output: Finally, A outputs a bit b, B forwards it to C as its own answer. The
probability for A to win the TRE experiment simulated by B is equal to the
probability for B to win the SMCLE game played against C. It is easy to see
that the running times of A and B are the same. ��

These theorems show that the scheme presented in section 4 can be instantiated
as a TRE scheme without a random oracle.

5.3 Certificateless Encryption from Timed-Release Encryption

One may expect that a general CLE can be constructed from any TRE. The
usage of time-identifiers, however, is only one specific instantiation of the timed-
release idea. Other formulations of TRE, different from Definition 8, exist; for
example, in [9], time is captured by the number of repeated computations of one-
way hash function. Also, the notion of CLE supports an exponential number of
arbitrary identifiers4, so a CLE scheme cannot be realized by a TRE if the total
number of time periods supported is too few.

There is an important difference in the definitions of security between CLE
and TRE: the public keys in TRE are certified while there is no certification in
CLE, so public keys can be chosen adversarially. Typically in TRE [3,8,10,18,23],
a single public key is given to the adversary as the target of attack. However,
the non-standard TRE formulation in [7] does allow uncertified public keys.

5.4 Security-Mediator in Timed-Release Encryption

The introduction of a security-mediator to the TRE paradigm gives a new busi-
ness model for the time-server due to the support for partial decryption. Tradi-
tional TRE allows the time-server to release only a system-wide time-dependent
trapdoor. The time-server can charge for each partial decryption request of a
ciphertext by the time-dependent trapdoor; the partial decryption of one ci-
phertext would not help the decryption of any other ciphertext.

5.5 Time Hierarchy

Since each identifier corresponds to a single time period, the server must publish
t private keys once t time-periods have passed. The amount of data that must
be posted can be reduced given a hierarchical CLE by using the Canetti, Halevi
4 Even though the scheme may be insecure when more than a polynomial number of

trapdoors are compromised by a single adversary.

General Certificateless Encryption and Timed-Release Encryption 141

and Katz (CHK) forward secure encryption [6] in reverse [4]. For a total of T
time periods, the CHK framework is set up as a tree of depth log T . To encrypt a
message for time t < T , the time identifier is the CHK identifier for time period
T−t. Release of trapdoor is done in the same manner: the private key for the time
period T − t is released on the tth time period. This single private key enables
anyone to derive the private keys for CHK time periods T − t, T − t + 1, · · · , T ,
so the user can obtain trapdoors for times 1, · · · , t. This trick enables the server
to publish only a single private key of O(log2 T) group elements at any time.

6 Conclusions

Cryptographers seek and try to achieve the strongest possible security definition.
Previous models of certificateless encryption (CLE) were too restrictive: they
could not give the desired security properties when instantiated as timed-release
encryption (TRE). Our generalized CLE model supports the requirements of
TRE; all future CLE proposals in our general model automatically give secure
TRE schemes. Our model is defined against full-identifier extraction, decryption
under arbitrary public key, and partial decryption, to achieve strong security. Our
concrete scheme yields the first strongly-secure (hierarchical) security-mediated
CLE and the first TRE in the standard model.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003), http://eprint.iacr.org/2003/126

2. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless Public Key Encryption With-
out Pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 134–148. Springer, Heidelberg (2005)

3. Blake, I.F., Chan, A.C.-F.: Scalable, Server-Passive, User-Anonymous Timed Re-
lease Cryptography. In: ICDCS 2005, pp. 504–513. IEEE Computer Society, Los
Alamitos (2005)

4. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440–456. Springer, Heidelberg (2005)

5. Boyen, X., Mei, Q., Waters, B.: Direct Chosen Ciphertext Security from Identity-
based Techniques. In: ACM CCS 2005, pp. 320–329 (2005)

6. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
Journal of Cryptology 20(3), 265–294 (2007)

7. Cathalo, J., Libert, B., Quisquater, J.-J.: Efficient and Non-interactive Timed-
Release Encryption. In: Qing, S., Mao, W., López, J., Wang, G. (eds.) ICICS 2005.
LNCS, vol. 3783, pp. 291–303. Springer, Heidelberg (2005)

8. Chalkias, K., Hristu-Varsakelis, D., Stephanides, G.: Improved Anonymous Timed-
Release Encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 311–326. Springer, Heidelberg (2007)

9. Chalkias, K., Stephanides, G.: Timed Release Cryptography from Bilinear Pair-
ings Using Hash Chains. In: Leitold, H., Markatos, E.P. (eds.) CMS 2006. LNCS,
vol. 4237, pp. 130–140. Springer, Heidelberg (2006)

http://eprint.iacr.org/2003/126

142 S.S.M. Chow, V. Roth, and E.G. Rieffel

10. Cheon, J.H., Hopper, N., Kim, Y., Osipkov, I.: Timed-Release and Key-Insulated
Public Key Encryption. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS,
vol. 4107, pp. 191–205. Springer, Heidelberg (2006)

11. Chow, S.S.M.: Token-Controlled Public Key Encryption in the Standard Model.
In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS,
vol. 4779, pp. 315–332. Springer, Heidelberg (2007)

12. Chow, S.S.M., Boyd, C., González-Nieto, J.M.: Security-Mediated Certificateless
Cryptography. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 508–524. Springer, Heidelberg (2006)

13. Chow, S.S.M., Roth, V., Rieffel, E.G.: General Certificateless Encryption and
Timed-Release Encryption. Cryptology ePrint Archive, Report 2008/023 (2008)
(Full Version)

14. Chow, S.S.M.: Certificateless Encryption. In: Identity-Based Cryptography. IOS
Press, Amsterdam (to appear, 2008)

15. Crescenzo, G.D., Ostrovsky, R., Rajagopalan, S.: Conditional Oblivious Transfer
and Timed-Release Encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999)

16. Dent, A.W.: A Survey of Certificateless Encryption Schemes and Security Models.
Cryptology ePrint Archive, Report 2006/211 (2006)

17. Dent, A.W., Libert, B., Paterson, K.G.: Certificateless Encryption Schemes
Strongly Secure in the Standard Model. In: Cramer, R. (ed.) PKC 2008. LNCS,
vol. 4939, pp. 344–359. Springer, Heidelberg (2008),
http://eprint.iacr.org/2007/121

18. Dent, A.W., Tang, Q.: Revisiting the Security Model for Timed-Release Public-Key
Encryption with Pre-Open Capability. In: Garay, J.A., Lenstra, A.K., Mambo, M.,
Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 158–174. Springer, Heidelberg
(2007)

19. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

20. Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

21. Hristu-Varsakelis, D., Chalkias, K., Stephanides, G.: Low-cost Anonymous Timed-
Release Encryption. In: Symposium on Information Assurance and Security, pp.
77–82. IEEE Computer Society, Los Alamitos (2007)

22. Hu, B.C., Wong, D.S., Zhang, Z., Deng, X.: Certificateless Signature: A New Se-
curity Model and An Improved Generic Construction. Designs, Codes and Cryp-
tography 42(2), 109–126 (2007)

23. Hwang, Y.H., Yum, D.H., Lee, P.J.: Timed-Release Encryption with Pre-open Ca-
pability and Its Application to Certified E-mail System. In: Zhou, J., López, J.,
Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 344–358. Springer,
Heidelberg (2005)

24. Lai, J., Kou, W.: Self-Generated-Certificate Public Key Encryption Without Pair-
ing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 476–489.
Springer, Heidelberg (2007)

25. Liu, J.K., Au, M.H., Susilo, W.: Self-Generated-Certificate Public Key Cryptogra-
phy and Certificateless Signature / Encryption Scheme in the Standard Model. In:
ASIACCS 2007. ACM, New York (2007)

26. Nali, D., Adams, C.M., Miri, A.: Hierarchical Time-based Information Release.
International Journal of Information Security 5(2), 92–104 (2006)

http://eprint.iacr.org/2007/121

General Certificateless Encryption and Timed-Release Encryption 143

27. Park, J.H., Choi, K.Y., Hwang, J.Y., Lee, D.H.: Certificateless Public Key Encryp-
tion in the Selective-ID Security Model (Without Random Oracles). In: Takagi, T.,
Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
60–82. Springer, Heidelberg (2007)

28. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release
Crypto. Technical Report MIT/LCS/TR-684, Massachusetts Institute of Technol-
ogy (1996)

29. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

30. Sun, Y., Zhang, F., Baek, J.: Strongly Secure Certificateless Public Key Encryption
Without Pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.)
CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007)

Efficient Certificate-Based Encryption in the

Standard Model�

Joseph K. Liu and Jianying Zhou

Cryptography and Security Department
Institute for Infocomm Research

Singapore
{ksliu,jyzhou}@i2r.a-star.edu.sg

Abstract. In this paper, we propose a new Certificate-Based Encryp-
tion (CBE) scheme which is fully secure in the standard model. We
achieve chosen ciphertext (CCA) security directly without any transfor-
mation. When compared to all previous generic constructions (in either
random oracle or standard model), our scheme is far more efficient than
those schemes. When compared to the CBE scheme in [16] (which is the
only concrete implementation secure in the standard model), we enjoy
a great improvement in terms of space efficiency. Their scheme requires
more than 160 group elements for the public parameters in order to gain
an acceptable security. Our scheme just requires 5 group elements. In
addition, the message space of our scheme is almost double as the one in
[16]. A larger message space implies that it requires a smaller number of
encryption operations of the same plaintext, resulting in a smaller overall
ciphertext and overhead as well.

1 Introduction

Public Key Infrastructure (PKI). In traditional public key cryptography
(PKC), a user Alice signs a message using her private key. A verifier Bob verifies
the signature using Alice’s public key. However, the public key is just a random
string and it does not provide authentication of the signer by itself. This problem
can be solved by using a certificate generated by a trusted party called the Cer-
tificate Authority (CA) that provides an unforgeable signature and trusted link
between the public key and the identity of the signer. The hierarchical framework
is called public key infrastructure (PKI) to issue and manage certificate (chain).
In this case, before the verification of a signature, Bob needs to obtain Alice’s
certificate in advance and verify the validity of her certificate. If it is valid, Bob
extracts the corresponding public key which is then used to verify the signature.
In the point of view of a verifier, it takes two verification steps for independent
signatures. It seems not efficient and not practical enough, especially when the
number of users is very large.

� This work is partially funded by the EU project SMEPP-033563.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 144–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Efficient Certificate-Based Encryption in the Standard Model 145

Identity-Based cryptography (IBC). Identity-based cryptography (IBC),
invented by Shamair [17] in 1984, solves this problem by using Alice’s identity
(or email address) which is an arbitrary string as her public key while the cor-
responding private key is a result of some mathematical operation that takes
as input the user’s identity and the master secret key of a trusted authority,
referred as “Private Key Generator (PKG)”. In this way, the certificate is im-
plicitly provided and it is no longer necessary to explicitly authenticate public
keys. The main disadvantage of identity-based cryptography is an unconditional
trust to the PKG. This is even worse than traditional PKC since the secret key
of every user is generated by the PKG, it can impersonate any user, or decrypt
any ciphertext.

Certificate-Based cryptography (CBC). To integrate the merits of IBC
into PKI, Gentry [10] introduced the concept of Certificate-Based encryption
(CBE). A CBE scheme combines a public key encryption scheme and an identity
based encryption scheme between a certifier and a user. Each user generates his
own private and public key and request a certificate from the CA while the
CA uses the key generation algorithm of an identity based encryption (IBE) [5]
scheme to generate certificate. Unlike traditional PKI, the certificate in CBC
is implicitly used as part of the user private key for decryption, which requires
both the user-generated private key and the certificate. Although the CA knows
the certificate, it does not have the user private key. Thus it cannot decrypt
anything. In addition to encryption, several certificate-based signature schemes
[12,13,15] and ring signature scheme [4] were also proposed.

In parallel toCBC, certificateless cryptography [1] and self-generated-certificate
public key cryptography [14] are another solutions to the key escrow problem in-
herited by IBC.

1.1 Related Works

The original scheme of Gentry relied on the original identity-based encryption
(IBE) scheme of Boneh-Franklin [5] and then on the Fujisaki-Okamoto transform
[8] to obtain full security in the random oracle model. Some generic constructions
were proposed in [18,7] for constructing a CBE from an IBE (although Yum-
Lee construction [18] was broken by Galindo et al. [9]) while another generic
construction was given in [2] from a certificateless encryption (CLE) scheme. A
concrete construction in the standard model was also proposed in [16].

1.2 Contribution

In this paper, we propose a new CBE scheme that is fully chosen ciphertext
(CCA) secure in the standard model. Although there are some previous results
for generic construction of a CBE from either existing IBE or CLE scheme,
they are not comparable in efficiency to our scheme. When compare to the one
proposed in [16], we enjoy a number of efficiency improvements:

1. We greatly reduce the size of public parameters. Their scheme requires the
size of public parameters to be n + 4 group elements, where n is the length

146 J.K. Liu and J. Zhou

of a bitstring representing the user public information (e.g. hash of public
key). n should be at least 160 in order to claim a reasonable security. On
the other side, we just need 5 group elements, no matter how large the user
public information is.

2. Their scheme requires Boneh-Katz transform [6] to achieve CCA security. It
needs a message authentication code (MAC) and an encapsulation scheme
in addition to the basic scheme. One of the main drawback is the reduction
of message space. Normally for a pairing e : G × G → GT , usually the
size of a group element in GT representation is about 1024 bits. Without
the Boneh-Katz transform, the message space of their scheme is GT , that is,
1024 bits. However, after applying the transform, it is reduced by at least 448
bits [6] due to the additional encapsulation information. Thus it only allows
to encrypt a 576 bits message for a single encryption operation. In contrast,
our scheme achieves CCA security directly without any transformation. Our
message space remains 1024 bits. A larger message space implies that it
requires a smaller number of encryption operations (which includes pairings
and exponentiations) for the same plaintext, resulting in a smaller overall
ciphertext as well.

Organization. In the rest of the paper, it is organized as follow. We review some
preliminaries in Section 2. Security model is given in Section 3. Our proposed CBE
scheme is presented in Section 4. Finally a concluding remarks is given in Section 5.

2 Preliminaries

2.1 Notations

Pairing. Let e be a bilinear map such that e : G × G → GT such that it has
the following properties:

– G and GT are cyclic multiplicative groups of prime order p.
– each element of G and GT has unique binary representation.
– g is a generator of G.
– (Bilinear) ∀x, y ∈ G and a, b ∈ Zp, e(xa, yb) = e(x, y)ab.
– (Non-degenerate) e(g, g) �= 1.

2.2 Mathematical Assumptions

Definition 1 (Truncated Decision q-AugmentedBilinearDiffie-Hellman
Exponent Assumption (q-ABDHE)). We define the truncated decision q-
ABDHE problem [11] as follows: Given a vector of q + 3 elements:

(
g̃, g̃(α)q+2

, g, gα, g(α)2 , . . . , g(α)q)
∈ Gq+3

and an element Z ∈ GT as input, output 1 if Z = e(g(α)q+1
, g̃) and output 0

otherwise. We say that the decision (t, ε, q)-ABDHE assumption holds in (G, GT)
if no t-time algorithm has advantage at least ε over random guessing in solving
the decision q-ABDHE problem in (G, GT).

Efficient Certificate-Based Encryption in the Standard Model 147

Definition 2 (DecisionalBilinearDiffie-Hellman(DBDH)Assumption).
The Decisional Bilinear Diffie-Hellman (DBDH) problem in G is defined as fol-
lows: On input (g, ga, gb, gc) ∈ G4 and Z ∈ GT , output 1 if Z = e(g, g)abc and 0
otherwise. We say that the (t, ε)-DBDH assumption holds in (G, GT) if no t-time
algorithm has advantage at least ε over random guessing in solving the DBDH
problem in (G, GT).

3 Security Model

We use the simplified model of [2] in the definition of our scheme and the security
model.

Definition 3. A certificate-based encryption (CBE) scheme is defined by six
algorithms:

– Setup is a probabilistic algorithm taking as input a security parameter. It
returns the certifier’s master key msk and public parameters param. Usually
this algorithm is run by the CA.

– UserKeyGen is a probabilistic algorithm that takes param as input. When
run by a client, it returns a public key PK and a secret key usk.

– Certify is a probabilistic algorithm that takes as input (msk, τ, param, λ, PK)
where λ is a bit string containing user identification information. It returns
Cert′τ which is sent to the client. Here τ is a string identifying a time period.

– Consolidate is a deterministic certificate consolidation algorithm taking as
input (param, τ, Cert′τ) and optionally Certτ−1. It returns Certτ , the cer-
tificate used by a client in time period τ .

– Encrypt is a probabilistic algorithm taking as input (τ, param, λ, PK, m)
where m is a message. It outputs a ciphertext C.

– Decrypt is a deterministic algorithm taking (param, Certτ , usk, C) as input
in time period τ . It returns either a message m or the special symbol ⊥
indicating a decryption failure.

We require that if C is the result of applying algorithm Encrypt with intput
(τ, param, PK, m) and (usk, PK) is a valid key-pair, then m is the result of
applying algorithm Decrypt on input (param, Certτ , usk, C), where Certτ is the
output of Certify and Consolidate algorithms on input (msk, param, τ, PK). That
is, we have

DecryptCertτ,usk
(Encryptτ,PK(m)) = m

We also note that a concrete CBE scheme may not involve certificate consolida-
tion. In this situation, algorithm Consolidate will simply output Certτ = Cert′τ .

In the rest of this paper, for simplicity, we will omit Consolidate and the time
identifying string τ in all notations.

The security of CBE is defined by two different games and the adversary
chooses which game to play. In Game 1, the adversary models an uncertified
entity while in Game 2, the adversary models the certifier in possession of the
master key msk attacking a fixed entity’s public key.

148 J.K. Liu and J. Zhou

Definition 4 (CBE Game 1). The challenger runs Setup, gives param to the
adversary A1 and keeps msk to itself. The adversary then interleaves certification
and decryption queries with a single challenge query. These queries are answered
as follows:

– On certification query (λ, PK, usk), the challenger checks that (PK, usk)
is a valid key-pair. If so, it runs Certify on input (msk, param, λ, PK) and
returns Cert. Else it returns ⊥.

– On decryption query (λ, PK, usk, C), the challenger checks that (PK, usk) is
a valid key-pair. If so, it generates Cert by using algorithm Certify with inputs
(msk, param, λ, PK) and outputs DecryptCert,usk(C). Else it returns ⊥.1

– On challenge query (λ∗, PK∗, usk∗, m0, m1), the challenger checks that (PK∗,
usk∗) is a valid key-pair. If so, it chooses a random bit b ∈R {0, 1} and
returns C∗ = Encryptλ∗,PK∗(mb). Else it returns ⊥.

Finally A1 outputs a bit b′ ∈ {0, 1}. The adversary wins the game if b = b′

and (λ∗, PK∗, usk∗, C∗) was not submitted to the decryption oracle after the
challenge, and (λ∗, PK∗, usk∗) was not submitted to the certification query. We
define A1’s advantage in this game to be Adv(A1) = 2|Pr[b = b′]− 1

2 |.

Definition 5 (CBE Game 2). The challenger runs Setup, gives param and
msk to the adversary A2. The challenger then runs UserKeyGen to obtain a
key-pair (PK∗, usk∗) and gives λ∗, PK∗ to the adversary A2. The adversary
interleaves decryption queries with a single challenge query. These queries are
answered as follows:

– On decryption query (C), the challenger generates Cert, by using algorithm
Certify with inputs (msk,param,λ∗, PK∗). It then outputs DecryptCert,usk∗(C).

– On challenge query (m0, m1), the challenger randomly chooses a bit b ∈R

{0, 1} and returns C∗ = Encryptλ∗,PK∗(mb).

Finally A2 outputs a guess b′ ∈ {0, 1}. The adversary wins the game if b = b′

and C∗ was not submitted to the decryption oracle after the challenge. We define
A2’s advantage in this game to be Adv(A2) = 2|Pr[b = b′]− 1

2 |.

We note that our model does not support security against Malicious Certifier.
That is, we assume that the certifier generates all public parameters honest,
according to the algorithm specified. The adversarial certifier is only given the
master secret key, instead of allowing to generate all public parameters. Although
malicious certifier has not been discussed in the literature, similar concept of
Malicious Key Generation Centre (KGC) [3] has been formalized in the area of
certificateless cryptography.

Definition 6 (Secure CBE). A CBE scheme is said to be (t, qc, qd, ε)-secure
against adaptive chosen ciphertext attack if all t-time adversary making at most

1 Note that in the decryption oracle of Game 1, we need to take the user secret key
as input. This is the same as all previous CBE schemes [10,2].

Efficient Certificate-Based Encryption in the Standard Model 149

qc certification query (for Game 1 only) and at most qd chosen ciphertext decryp-
tion queries have advantage at most ε in either CBE Game 1 or CBE Game 2.

4 The Proposed Scheme

4.1 Construction

Our scheme is motivated by Gentry’s identity based encryption scheme [11].
Details are as follow.

Setup. Let e : G×G → GT be a pairing. Let p be the group order of G and GT .
The CA chooses generators g, g2, g

′
2, g

′′
2 ∈ G and randomly selects α ∈R Zp. It

computes g1 = gα. It also chooses two hash functions H, H ′ : {0, 1}∗ → Zp from
a family of universal one-way hash functions. The master secret msk is α while
the public parameters param are (H, H ′, e, p, g, g1, g2, g

′
2, g

′′
2).

UserKeyGen. The user randomly selects β, γ, δ, ξ, δ′, ξ′ ∈R Zp and computes h1 =
gβ, h2 = gγ , h3 = gδ, h4 = gξ, h′

3 = gδ′
, h′

4 = gξ′
. The public key PK is

(h1, h2, h3, h4, h
′
3, h

′
4) and the user secret key usk is (β, γ, δ, ξ, δ′, ξ′).

Certify. Suppose a user with public key PK and identification information λ ∈
{0, 1}∗ wants to be certified. He sends pk = (h1, h2, h3, h4, h

′
3, h

′
4) and λ to the

CA. The CA randomly selects r1, r
′
1, r

′′
1 ∈R Zp and computes h = H(h1, h2, h3,

h4, h
′
3, h

′
4, λ) and

r2 = (g2g
−r1)

1
α−h r′2 = (g′2g

−r′
1)

1
α−h r′′2 = (g′′2 g−r′′

1)
1

α−h

The certificate Cert is (r1, r2, r
′
1, r

′
2, r

′′
1 , r′′2). Similar to [11], we require that the

CA always uses the same random values r1, r
′
1, r

′′
1 for this user. This can be

accomplished, for example, by using an internal log to ensure consistency.

Encrypt. To encrypt a message m ∈ GT using public key (h1, h2, h3, h4, h
′
3, h

′
4)

and λ, randomly selects s ∈R Zp, computes h = H(h1, h2, h3, h4, h
′
3, h

′
4, λ) and

C1 = gs
1g

−sh C2 = e(g, g)s C3 = m · e(g, g2)−s · e(h1, h2)−s

C4 = e(g, g′2)
s · e(g, g′′2)sφ · e(h1, h2)s · e(h3, h4)s · e(h′

3, h
′
4)

sφ

where φ = H ′(C1, C2, C3). Outputs the ciphertext C = (C1, C2, C3, C4).

Decrypt. To decrypt ciphertext C = (C1, C2, C3, C4) with certificate (r1, r2,
r′1, r

′
2, r

′′
1 , r′′2) and secret key (β, γ, δ, ξ, δ′, ξ′) with respect to public key (h1, h2, h3,

h4, h
′
3, h

′
4) and λ, computes

m = C3 · e(C1, r2) · (C2)r1+βγ

and φ = H ′(C1, C2, C3). Outputs m if

C4 = e(C1, r
′
2r

′′
2

φ)(C2)r′
1+r′′

1 φ+βγ+δξ+δ′ξ′φ

Otherwise outputs ⊥.

150 J.K. Liu and J. Zhou

Correctness. If the ciphertext is well formed, we have

e(C1, r
′
2r

′′
2

φ)(C2)r′
1+r′′

1 φ+βγ+δξ+δ′ξ′φ

= e
(
gs
1g

−sh, (g′2g
−r′

1)
1

α−h (g′′2 g−r′′
1)

φ
α−h

)

· e(g, g)s(r′
1+r′′

2 φ) · e(g, g)sβγ · e(g, g)sδξ · e(g, g)sδ′ξ′φ

= e(gs, g′2g
′′
2

φ) · e(gs, g−(r′
1+r′′

1 φ)) · e(g, g)s(r′
1+r′′

2 φ)

· e(gβ , gγ)s · e(gδ, gξ)s · e(gδ′
, gξ′

)sφ

= e(g, g′2)
s · e(g, g′′2)sφ · e(h1, h2)s · e(h3, h4)s · e(h′

3, h
′
4)

sφ

= C4

On the other side, we have

C3 · e(C1, r2) · (C2)r1+βγ

= m · e(g, g2)−s · e(h1, h2)−s · e
(
gs
1g

−sh, (g2g
−r1)

1
α−h

)

· e(g, g)sr1 · e(g, g)sβγ

= m · e(g, g2)−s · e(h1, h2)−s · e
(
gs(α−h), (g2g

−r1)
1

α−h
)

· e(g, g)sr1 · e(gβ, gγ)s

= m · e(g, g2)−s · e(h1, h2)−s · e(g, g2)s · e(g, g)−sr1 · ·e(g, g)sr1 · e(h1, h2)s

= m.

4.2 Security Analysis

Theorem 1. Let q = qc+1 where qc is the number of certification query allowed.
Assume thetruncated decision (t, ε, q)-ABDHE assumption holds for (G, GT , e).
Then our proposed CBE scheme is (t′, ε′, qc, qd) secure against Game 1 adversary,
where

t′ = t−O(texp · q2) ε′ = ε + qd/p

where texp is the time required for an exponentiation in G.

Proof. The Game 1 security of our scheme is more or less similar to the IND-ID-
CCA security of Gentry’s IBE scheme [11]. In this extended abstract, we may
omit some of the details here. Readers may refer to [11] for the full explanation
of some steps.

Let A1 be an adversary that (t′, ε′, qc, qd)-wins Game 1. We construct an
algorithm B that solves the truncated decision q-ABDHE problem, as follows. B
takes an input a random truncated decision q-ABDHE challenge (g̃, g̃(q+2), g, g(1),
. . . , g(q), Z), where Z is either e(g(q+1), g̃) or a random element of GT (we denote
g(i) = g(αi)). Algorithm B proceeds as follow.

Setup: B generates random polynomials f(x), f ′(x), f ′′(x) ∈ Zp[x] of degree q.
It sets g1 = g(1) and g2 = gf(α), computing g2 from (g, g(1), . . . , g(q)). Similarly,

Efficient Certificate-Based Encryption in the Standard Model 151

it also sets g′2 = gf ′(α) and g′′2 = gf ′′(α). B also chooses two hash functions
H, H ′ : {0, 1}∗ → Zp from a family of universal one-way hash functions.

It sends the public parameters (H, H ′, g, g1, g2, g′2, g
′′
2) to A1. Since g, α, f(x),

f ′(x), f ′′(x) are chosen uniformly at random, g2, g
′
2, g

′′
2 are also uniformly random

and the public parameters have a distribution identical to that in the actual
construction.

Oracle Queries:

– Certification Query: B responds to a query on public key PK = (h1, h2,
h3, h4, h

′
3, h

′
4), user identification information λ and secret key usk = (β, γ, δ,

ξ, δ′, ξ′). B checks whether PK is corresponding to usk. If it is not, output
⊥. Then it computes h = H(h1, h2, h3, h4, h

′
3, h

′
4, λ). If h = α, B uses α to

solve truncated decision q-ABDHE immediately. Else, to generate let Fh(x)
denote the (q−1)-degree polynomial (f(x)− f(h))/(x−h). B sets (r1, r2) =
(f(h), gFh(α)). These are valid certificate values for h, since

gFh(α) = g(f(α)−f(h))/(α−h) = (g2g
−f(h))1/(α−h)

as required. It computes the remainder of the certificate in a similar way.
– Decryption Query: To respond to a decryption query on (λ, PK, usk, C), B

generates a certificate for PK as above. It then decrypts C by performing
the usual Decrypt algorithm with the certificate and the secret key usk.

Challenge: A1 outputs a challenged public key PK∗ = (h∗
1, h

∗
2, h

∗
3, h

∗
4, h

′∗
3, h

′∗
4),

user identification information λ∗, secret key usk∗ = (β∗, γ∗, δ∗, ξ∗, δ′
∗
, ξ′

∗) and
two messages m0, m1. Again, B checks whether PK∗, usk∗ is a valid key pair.
It outputs ⊥ if it is not. Else, B computes h∗ = H(h∗

1, h
∗
2, h

∗
3, h

∗
4, h

′∗
3, h

′∗
4, λ

∗).
If h∗ = α, B uses α to solve truncated decision q-ABDHE immediately. Else B
chooses a random bit b ∈R {0, 1}, and computes a certificate (r1, r2, r

′
1, r

′
2, r

′′
1 , r′′2)

for PK∗ as in the certification query. Let f2(x) = xq+2 and let F2,h∗(x) =
(f2(x) − f2(h∗))/ (x − h∗), which is a polynomial of degree q + 1. B sets

C∗
1 = g̃f2(α)−f2(h∗) ; C∗

2 = Z ·e(g̃,

q∏
i=0

gF2,h∗,iα
i

) ; C∗
3 =

mb

e(C∗
1 , r2)(C∗

2)r1(C∗
2)β∗γ∗

where F2,h∗,i is the coefficient of xi in F2,h∗(x). After setting φ = H ′(C∗
1 , C∗

2 , C∗
3),

B sets
C∗

4 = e(C∗
1 , r′2r

′′
2

φ)(C∗
2)r′

1+r′′
1 φ+β∗γ∗+δ∗ξ∗+δ′∗ξ′∗φ

It sends (C∗
1 , C∗

2 , C∗
3 , C∗

4) to A1 as the challenge ciphertext.
Let s = (logg g̃)F2,h∗(α). If Z = e(g(q+1), g̃), then C∗

1 = gs(α−h∗) and

mb/C∗
3 = e(C∗

1 , r2)(C∗
2)r1(C∗

2)β∗γ∗
= e(g, g2)se(h∗

1, h
∗
2)

s

Thus (C∗
1 , C∗

2 , C∗
3 , C∗

4) is a valid ciphertext for (PK∗, mb) under randomness s.
Since logg g̃ is uniformly random, s is random, and so (C∗

1 , C∗
2 , C∗

3 , C∗
4) is a valid,

appropriately-distributed challenge to A1.

152 J.K. Liu and J. Zhou

Output: Finally A1 outputs a bit b′ ∈ {0, 1}. If b = b′, B outputs 1 indicating
that Z = e(g(q+1), g̃). Otherwise it outputs 0.

Probability Analysis: When B’s input is sampled according to the problem in-
stance, B’s simulation appears perfect to A1 if A1 makes only certification
queries. B’s simulation still appears perfect if A1 makes decryption queries only
on public keys for which it queries the certificate, since B’s responses give A1

no additional information. Furthermore, querying well-formed ciphertexts to the
decryption oracle does not help A1 distinguish between the simulation and the
actual construction, since by the correctness of Decrypt, well-formed ciphertexts
will be accepted. Finally querying a non-well-formed ciphertext does not help
A1 distinguish, since this ciphertext will fail the Decrypt check under every valid
certificate. Thus, by following the approach of Lemma 1 of [11], we claim that
the decryption oracle, in the simulation and in the actual construction, rejects
all invalid ciphertexts under public keys not queried by A1, except with proba-
bility qd/p.

Time Complexity: In the simulation, B’s overhead is dominated by computing
gFh(α) in response toA1’s certification query on PK, where Fh(x) is a polynomial
of degree q−1. Each such computation requires O(q) exponentiations in G. Since
A1 makes at most q − 1 such queries, t = t′ +O(texp · q2). ��

Theorem 2. Assume (t, ε)-DBDH assumption holds for (G, GT , e). Then our
proposed CBE scheme is (t′, ε′, qc, qd) secure against Game 2 adversary, where

t′ = t ε′ = ε + qd/p

Proof. Let A2 be an adversary that (t′, ε′, qc, qd)-wins Game 2. We construct
an algorithm B that solves the DBDH problem, as follows. B takes an input
a random DBDH challenge (g, ga, gb, gc, Z), where Z is either e(g, g)abc or a
random element of GT . Algorithm B proceeds as follow.

Setup: B randomly generates α, v, x, y, t, w, t′, w′ ∈R Zp and sets g1 = gα, g2 =
gv, g′2 = gx, g′′2 = gy. B also chooses two hash functions H, H ′ : {0, 1}∗ → Zp

from a family of universal one-way hash functions.
The public parameters param are (H, H ′, g, g1, g2, g′2, g

′′
2) while the master

secret key msk is α. B also sets h1 = ga, h2 = gb, h3 = gt, h4 = gw, h′
3 =

gt′ , h′
4 = gw′

as the challenged public key PK. B also constructs some binary
string as the identification information λ. (param, msk, λ, PK) are given to the
adversary A2. Obviously the public parameters and the challenged public key
have a distribution identical to that in the actual construction.

Oracle Queries:

– Decryption Query: To respond to a decryption query on C = (C1, C2, C3, C4),
B first computes φ = H ′(C1, C2, C3) and

Efficient Certificate-Based Encryption in the Standard Model 153

C4 · C3 · Cv
2

Cx+yφ+tw+t′w′φ
2

=
e(g, g′2)

s · e(g, g′′2)sφ · e(h1, h2)s · e(h3, h4)s · e(h′
3, h

′
4)

sφ

e(g, gx)s · e(g, gy)sφ · e(gt, gw)s · e(gt′ , gw′)sφ

· m · e(g, g2)−s · e(h1, h2)−s e(g, gv)s

= m

It then generates the certificate (r1, r2, r
′
1, r

′
2, r

′′
1 , r′′2) using the knowledge of

α, and further checks

C4
?=

m · e(C1, r
′
2r

′′
2

φ) · (C2)r′
1+r′′

1 φ+tw+t′w′φ−v

C3

It outputs m if it is equal, otherwise outputs ⊥.

Challenge: A2 outputs two messages m0, m1. B randomly chooses a bit b ∈R

{0, 1}, computes h = H(h1, h2, h3, h4, h
′
3, h

′
4, λ) and sets

C∗
1 = (gc)α−h C∗

2 = e(g, gc) C3 = mb · e(gc, g−v) · Z−1

C4 = e(gc, gx) · e(gc, gv)φ · Z · e(gc, gtw) · e(gc, gt′w′
)φ

where φ = H ′(C∗
1 , C∗

2 , C∗
3). The challenged ciphertext C∗ = (C∗

1 , C∗
2 , C∗

3 , C∗
4) is

sent to A. It can be easily seen that if Z = e(g, g)abc, C∗ is a valid, appropriately-
distributed challenge ciphertext.

Output: Finally A2 outputs a bit b′ ∈ {0, 1}. If b = b′, B outputs 1 indicating
that Z = e(g, g)abc. Otherwise it outputs 0.

Probability Analysis: Similar to Game 1, the simulation remains perfect except
with probability qd/p that the decryption oracle will not reject all invalid ci-
phertext.

Time Complexity: The time complexity for B depends only on A. Thus we have
t′ = t. ��

4.3 Efficiency Analysis

Previous generic constructions [18,7,2] are not comparable to our scheme in terms
of efficiency. When compare to the one in [16] (the only concrete implementation
that is fully secure in the standard model), we enjoy a great improvement in
terms of space efficiency. First, our scheme requires just 5 group elements (about
800 bits, assuming each group element costs 160 bits in the optimal case) in the
public parameters. But the scheme in [16] needs 164 group elements (about 26240
bits) in order to achieve the same level of security.

Second, the message space of our scheme is in GT , which is about 1024 bits.
The message space of the scheme in [16] is around 576 bits only. The main

154 J.K. Liu and J. Zhou

reason for this difference is that. Although the chosen plaintext secure (CPA)
version of the scheme in [16] allows the message space to be in GT , in order
achieve CCA security, it requires an additional encapsulation scheme and the
Boneh-Katz transform. The transform modifies the scheme a bit, by encrypting
M = m||dec where m is the original message, dec is the decommitment string
and M is the combined message which should be in GT . According to [6], the
suggested length of dec should be at least 448 bits. That is, the message space
of the original message is reduced to 1024 − 448 = 576 bits. If we want to
encrypt a message of 1024 bits, we need to split it into two parts and encrypt
it part by part. It results in a double increase of both computation cost and
ciphertext size, and maybe security reduction as well. This difference becomes
significant if we want to encrypt a large message. On the other side, as we do
not require any transformation or encapsulation scheme to achieve CCA security,
our message space can be remained as 1024 bits, without suffering any efficiency
reduction.

In terms of computation cost, although we require some pairing operations
in the encryption algorithm, they can be pre-computed by the CA and given as
part of the public parameters. For those pairing operations related to the public
key of the intended receiver, they can be pre-computed by the receiver and given
as part of the public key as well. In this way, the encryptor does not need to
compute any pairing operation. For the decryption algorithm, we require two
pairing operations.

5 Concluding Remarks

In this paper, we propose a new CBE scheme which is motivated from Gentry’s
IBE scheme [11]. Our scheme is fully CCA secure in the standard model. We
do not require any MAC or encapsulation scheme to achieve CCA security. This
facilitates us to achieve significant improvement in efficiency when compared to
[16]. We believe the concept of certificate-based encryption with our efficient
implementation allows it to be used in some practical applications, and particu-
larly suitable to be employed in computation limited devices, or wireless sensor
network.

We also remark that our scheme does not support malicious CA security.
That is, we assume that the CA generates the public parameters according to
the algorithm honestly. This is the same as all CBE schemes in the literature.
However, recently Au et al. [3] pointed out that a malicious KGC in certificateless
cryptography (with respect to CA in certificate-based setting) may pose some
security risks to the system, by generating the public parameters in a malicious
way. We note that our system (and all previous CBE schemes) may suffer similar
attack. We have not discussed those risks in this paper. We leave it as an open
problem to future research.

Efficient Certificate-Based Encryption in the Standard Model 155

References

1. Al-Riyami, S.S., Paterson, K.: Certificateless public key cryptography. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003)

2. Al-Riyami, S.S., Paterson, K.G.: CBE from CL-PKE: A generic construction and
efficient schemes. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 398–415.
Springer, Heidelberg (2005)

3. Au, M., Chen, J., Liu, J., Mu, Y., Wong, D., Yang, G.: Malicious KGC attacks
in certificateless cryptography. In: ASIACCS 2007, pp. 302–311. ACM Press, New
York (2007)

4. Au, M., Liu, J., Susilo, W., Yuen, T.: Certificate based (linkable) ring signature. In:
Dawson, E., Wong, D.S. (eds.) ISPEC 2007. LNCS, vol. 4464, pp. 79–92. Springer,
Heidelberg (2007)

5. Boneh, D., Franklin, M.K.: Identity-Based Encryption from the Weil Pairing. In: Kil-
ian,J. (ed.)CRYPTO2001.LNCS,vol.2139,pp.213–229.Springer,Heidelberg(2001)

6. Boneh, D., Katz, J.: Improved efficiency for cca-secure cryptosystems built using
identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 87–103. Springer, Heidelberg (2005)

7. Dodis, Y., Katz, J.: Chosen-ciphertext security of multiple encryption. In: Kilian,
J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 188–209. Springer, Heidelberg (2005)

8. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999)

9. Galindo, D., Morillo, P., Ràfols, C.: Breaking Yum and Lee generic constructions
of certificate-less and certificate-based encryption schemes. In: Atzeni, A.S., Lioy,
A. (eds.) EuroPKI 2006. LNCS, vol. 4043, pp. 81–91. Springer, Heidelberg (2006)

10. Gentry, C.: Certificate-based encryption and the certificate revocation problem. In:
EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer, Heidelberg (2003)

11. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

12. Kang, B.G., Park, J.H., Hahn, S.G.: A certificate-based signature scheme. In:
Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 99–111. Springer, Hei-
delberg (2004)

13. Li, J., Huang, X., Mu, Y., Susilo, W., Wu, Q.: Certificate-based signature: Security
model and efficient construction. In: López, J., Samarati, P., Ferrer, J.L. (eds.)
EuroPKI 2007. LNCS, vol. 4582, pp. 110–125. Springer, Heidelberg (2007)

14. Liu, J., Au, M., Susilo, W.: Self-generated-certificate public key cryptography and
certificateless signature/encryption scheme in the standard model. In: ASIACCS
2007, pp. 273–283. ACM Press, New York (2007)

15. Liu, J., Baek, J., Susilo, W., Zhou, J.: Certificate based signature schemes without
pairings or random oracles. In: ISC 2008. LNCS, vol. 5222. Springer, Heidelberg
(to appear, 2008)

16. Morillo, P., Ràfols, C.: Certificate-based encryption without random oracles (2006),
http://eprint.iacr.org/2006/012/

17. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

18. Yum, D.H., Lee, P.J.: Identity-based cryptography in public key management. In:
Katsikas, S.K., Gritzalis, S., López, J. (eds.) EuroPKI 2004. LNCS, vol. 3093, pp.
71–84. Springer, Heidelberg (2004)

http://eprint.iacr.org/2006/012/

An Improved Robust Fuzzy Extractor

Bhavana Kanukurthi and Leonid Reyzin

Boston University Computer Science
111 Cummington St., Boston, MA 02215, USA

http://cs-people.bu.edu/bhavanak, http://www.cs.bu.edu/~reyzin

Abstract. We consider the problem of building robust fuzzy extractors,
which allow two parties holding similar random variables W , W ′ to agree
on a secret key R in the presence of an active adversary. Robust fuzzy
extractors were defined by Dodis et al. in Crypto 2006 to be noninterac-
tive, i.e., only one message P , which can be modified by an unbounded
adversary, can pass from one party to the other. This allows them to be
used by a single party at different points in time (e.g., for key recovery
or biometric authentication), but also presents an additional challenge:
what if R is used, and thus possibly observed by the adversary, before
the adversary has a chance to modify P . Fuzzy extractors secure against
such a strong attack are called post-application robust.

We construct a fuzzy extractor with post-application robustness that
extracts a shared secret key of up to (2m−n)/2 bits (depending on error-
tolerance and security parameters), where n is the bit-length and m is
the entropy of W . The previously best known result, also of Dodis et al.,
extracted up to (2m − n)/3 bits (depending on the same parameters).

1 Introduction

Consider the following scenario. A user Charlie has a secret w that he wants to
use to encrypt and authenticate his hard drive. However, w is not a uniformly
random key; rather, it is a string with some amount of entropy from the point
of view of any adversary A. Naturally, Charlie uses an extractor [NZ96], which
is a tool for converting entropic strings into uniform ones. An extractor Ext is
an algorithm that takes the entropic string w and a uniformly random seed i,
and computes R = Ext(w; i) that is (almost) uniformly random even given i.

It may be problematic for Charlie to memorize or store the uniformly random
R (this is in contrast to w, which can be, for example, a long passphrase already
known to Charlie, his biometric, or a physical token, such as a physical one-way
function [PRTG02]). Rather, in order to decrypt the hard drive, Charlie can
use i again to recompute R = Ext(w; i). The advantage of storing i rather than
R is that i need not be secret, and thus can be written, for example, on an
unencrypted portion of the hard drive.

Even though the storage of i need not be secret, the authenticity of i is
very important. If A could modify i to i′, then Charlie would extract some
related key R′, and any guarantee on the integrity of the hard drive would
vanish, because typical encryption and authentication schemes do not provide

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 156–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Improved Robust Fuzzy Extractor 157

any security guarantees under related-key attacks. To authenticate i, Charlie
would need to use some secret key, but the only secret he has is w.

This brings us to the problem of building robust extractors: ones in which the
authenticity of the seed can be verified at reconstruction time. A robust extractor
has two procedures: a randomized Gen(w), which generates (R, P) such that R
is uniform even given P (think of P as containing the seed i as well as some
authentication information), and Rep(w, P ′), which reproduces R if P ′ = P and
outputs ⊥ with high probability for an adversarially produced P ′ �= P .

Note that in the above scenario, the adversaryA, before attempting to produce
P ′ �= P , gets to see the value P and how the value R is used for encryption and
authentication. Because we want robust fuzzy extractors to be secure for a wide
variety of applications, we do not wish to restrict how R is used and, therefore,
what information about R is available to A. Rather, we will require that A has
low probability of getting Rep(w, P ′) to not output ⊥ even if A is given both P
and R. This strong notion of security is known as post-application robustness.

An additional challenge may be that the value w when Gen is run is slightly
different from the value w′ available when Rep is run: for example, the user may
make a typo in a long passphrase, or a biometric reading may differ slightly.
Extractors that can tolerate such differences and still reproduce R exactly are
called fuzzy [DORS08]. Fuzzy extractors are obtained by adding error-correcting
information to P , to enable Rep to compensate for errors in w′. The specific
constructions depend on the kinds of errors that can occur (e.g., Hamming errors,
edit distance errors, etc.).

Robust (fuzzy) extractors are useful not only in the single-party setting de-
scribed above, but also in interactive settings, where two parties are trying to
derive a key from a shared (slightly different in the fuzzy case) secret w that
either is nonuniform or about which some limited information is known to the
adversary A. One party, Alice, can run Gen to obtain (R, P) and send P to the
other party, Bob, who can run Rep to also obtain R. However, if A is actively
interfering with the channel between Alice and Bob and modifying P , it is impor-
tant to ensure that Bob detects the modification rather than derives a different
key R′. Moreover, unless Alice can be sure that Bob truly received P before she
starts using R in a communication, post-application robustness is needed.

Prior Work. Fuzzy extractors, defined in [DORS08], are essentially the non-
interactive variant of privacy amplification and information reconciliation proto-
cols, considered in multiple works, including [Wyn75, BBR88, Mau93, BBCM95].
Robust (fuzzy) extractors, defined in [BDK+05, DKRS06], are the noninteractive
variant of privacy amplification (and information reconciliation) secure against
active adversaries [Mau97, MW97, Wol98, MW03, RW03, RW04].

Let the length of w be n and the entropy of w be m. Post-application robust
fuzzy extractors cannot extract anything out of w if m < n/2, because an extrac-
tor with post-application robustness implies an information-theoretically secure
message authentication code (MAC) with w as the key1, which is impossible if
1 The MAC is obtained by extracting R, using it as a key to any standard information-

theoretic MAC (e.g., [WC81]), and sending P along with the tag to the verifier.

158 B. Kanukurthi and L. Reyzin

m < n/2 (see [DS02] for impossibility of deterministic MACs if m < n/2 and its
extension by [Wic08] to randomized MACs). Without any set-up assumptions,
the only previously known post-application robust extractor, due to [DKRS06],
extracts R of length 2

3 (m − n/2 − log 1
δ) (or even less if R is required to be

very close to uniform), where δ is the probability that the adversary violates ro-
bustness. Making it fuzzy further reduces the length of R by an amount related
to the error-tolerance. (With set-up assumptions, one can do much better: the
construction of [CDF+08] extracts almost the entire entropy m, reduced by an
amount related to security and, in the fuzzy case, to error-tolerance. However,
this construction assumes that a nonsecret uniformly random string is already
known to both parties, and that the distribution on w, including adversarial
knowledge about w, is independent of this string.)

Our Results. The robust extractor construction of [DKRS06] is parameterized
by a value v that can be decreased in order to obtain a longer R. In fact, as shown
in [DKRS06], a smaller v can be used for pre-application robustness (a weaker
security notion, in which A gets P but not R). We show in Theorem 2 that the
post-application-robustness analysis of [DKRS06] is essentially tight, and if v is
decreased, the construction becomes insecure.

Instead, in Section 3, we propose a new construction of an extractor with
post-application robustness that extracts R of length m−n/2− log 1

δ , improving
the previous result by a factor of 3/2 (more if R is required to be very close
to uniform). While this is only a constant-factor increase, in scenarios where
secret randomness is scarce it can make a crucial difference. Like [DKRS06], we
make no additional set-up assumptions. Computationally, our construction is
slightly more efficient than the construction of [DKRS06]. Our improved robust
extractor translates into an improved robust fuzzy extractor using the techniques
of [DKRS06], with the same factor of 3/2 improvement.

Inaddition,we show(inSection3.2) a slight improvement for thepre-application
robust version of the extractor of [DKRS06], applicable when the extracted string
must be particularly close to uniform.

2 Preliminaries

Notation. For binary strings a, b, a||b denotes their concatenation, |a| denotes
the length of a. For a binary string a, for we denote by [a]ji , the substring
b = aiai+1 . . . aj. If S is a set, x ← S means that x is chosen uniformly from S.
If X is a probability distribution (or a random variable), then x ← X means that
x is chosen according to distribution X . If X and Y are two random variables,
then X × Y denotes the product distribution (obtained by sampling X and Y
independently). All logarithms are base 2.

Random Variables, Entropy, Extractors. Let Ul denote the uniform dis-
tribution on {0, 1}l. Let X1, X2 be two probability distributions over some set
S. Their statistical distance is

SD (X1, X2)
def= max

T⊆S
{Pr[X1 ∈ T]− Pr[X2 ∈ T]} =

1
2

∑
s∈S

∣∣∣∣Pr
X1

[s]− Pr
X2

[s]
∣∣∣∣

An Improved Robust Fuzzy Extractor 159

(they are said to be ε-close if SD (X1, X2) ≤ ε). We will use the following lemma
on statistical distance that was proven in [DKRS08]:

Lemma 1. For any joint distribution (A, B) and distributions C and D over
the ranges of A and B respectively, if SD ((A, B), C ×D) ≤ α, then SD((A, B),
C ×B) ≤ 2α.

Min-entropy. The min-entropy of a random variable W is defined as H∞(W)
= − log(maxw Pr[W = w]) (all logarithms are base 2, unless specified other-
wise). Following [DORS08], for a joint distribution (W, E), define the (average)
conditional min-entropy of W given E as

H̃∞(W | E) = − log(E
e←E

(2−H∞(W |E=e)))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A com-
putationally unbounded adversary who receives the value of E cannot find the
correct value of W with probability greater than 2−�H∞(W |E). We will use the
following lemma from [DORS08]:

Lemma 2. Let A, B, C be random variables. If B has at most 2λ possible val-
ues, then H̃∞(A|B, C) ≥ H̃∞((A, B)|C) − λ ≥ H̃∞(A|C) − λ. In particular,
H̃∞(A|B) ≥ H∞((A, B)) − λ ≥ H∞(A)− λ.

Because in this paper the adversary is sometimes assumed to have some external
information E about Alice and Bob’s secrets, we need the following variant,
defined in [DORS08, Definition 2], of the definition of strong extractors of [NZ96]:

Definition 1. Let Ext : {0, 1}n → {0, 1}l be a polynomial time probabilistic
function that uses r bits of randomness. We say that Ext is an average-case
(n, m, l, ε)-strong extractor if for all pairs of random variables (W, E) such that
w ∈W is an n-bit string and H̃∞(W | E) ≥ m, we have SD((Ext(W ; X), X, E),
(Ul, X, E)) ≤ ε, where X is the uniform distribution over {0, 1}r.

Any strong extractor can be made average-case with a slight increase in input
entropy [DORS08, Section 2.5]. We should note that some strong extractors, such
as universal hash functions [CW79, HILL99] discussed next, generalize without
any loss to average-case.

The Leftover Hash Lemma We first recall the notion of universal hash-
ing [CW79]:

Definition 2. A family of efficient functions H =
{
hi : {0, 1}n → {0, 1}�

}
i∈I

is universal if for all distinct x, x′ we have Pri←I [hi(x) = hi(x′)] ≤ 2−l.
H is pairwise independent if for all distinct x, x′ and all y, y′ it holds that

Pri∈I [hi(x) = y ∧ hi(x′) = y′] ≤ 2−2�. ♦

Lemma 3 (Leftover Hash Lemma, average-case version [DORS08]).
For �, m, ε > 0, H is a strong (m, ε) average-case extractor (where the index
of the hash function is the seed to the extractor) if H is universal and � ≤
m + 2− 2 log 1

ε .

160 B. Kanukurthi and L. Reyzin

This Lemma easily generalizes to the case when H is allowed to depend on the
extra information E about the input X . In other words, every function inH takes
an additional input e, and the family H is universal for every fixed value of e.

Secure Sketches and Fuzzy Extractors. We start by reviewing the def-
initions of secure sketches and fuzzy extractors from [DORS08]. Let M be a
metric space with distance function dis (we will generally denote by n the length
of each element in M). Informally, a secure sketch enables recovery of a string
w ∈ M from any “close” string w′ ∈ M without leaking too much information
about w.

Definition 3. An (m, m̃, t)-secure sketch is a pair of efficient randomized pro-
cedures (SS, SRec) s.t.:

1. The sketching procedure SS on input w ∈ M returns a bit string s ∈ {0, 1}∗.
The recovery procedure SRec takes an element w′ ∈M and s ∈ {0, 1}∗.

2. Correctness: If dis(w, w′) ≤ t then SRec(w′, SS(w)) = w.
3. Security: For any distribution W over M with min-entropy m, the (average)

min-entropy of W conditioned on s does not decrease very much. Specifically,
if H∞(W) ≥ m then H̃∞(W | SS(W)) ≥ m̃.

The quantity m− m̃ is called the entropy loss of the secure sketch. ♦

In this paper, we will construct a robust fuzzy extractor for the binary Hamming
metric using secure sketches for the same metric. We will briefly review the
syndrome construction from [DORS08, Construction 3] that we use (see also
references therein for its previous incarnations). Consider an efficiently decodable
[n, n − k, 2t + 1] linear error-correcting code C. The sketch s = SS(w) consists
of the k-bit syndrome w with respect to C. We will use the fact that s is a
(deterministic) linear function of w and that the entropy loss is at most |s| = k
bits in the construction of our robust fuzzy extractor for the Hamming metric.

We note that, as was shown in [DKRS06], the secure sketch construction for
the set difference metric of [DORS08] can be used to extend the robust fuzzy
extractor construction in the Hamming metric to the set difference metric.

While a secure sketch enables recovery of a string w from a close string w′,
a fuzzy extractor extracts a close-to-uniform string R and allows the precise
reconstruction of R from any string w′ close to w.

Definition 4. An (m, �, t, ε)-fuzzy extractor is a pair of efficient randomized pro-
cedures (Gen, Rep) with the following properties:

1. The generation procedure Gen, on input w ∈ M, outputs an extracted string
R ∈ {0, 1}� and a helper string P ∈ {0, 1}∗. The reproduction procedure Rep
takes an element w′ ∈M and a string P ∈ {0, 1}∗ as inputs.

2. Correctness: If dis(w, w′) ≤ t and (R, P) ← Gen(w), then Rep(w′, P) = R.
3. Security: For any distribution W over M with min-entropy m, the string R is

close to uniform even conditioned on the value of P . Formally, if H∞(W) ≥
m and (R, P) ← Gen(W), then we have SD ((R, P), U� × P) ≤ ε. ♦

An Improved Robust Fuzzy Extractor 161

Note that fuzzy extractors allow the information P to be revealed to an adversary
without compromising the security of the extracted random string R. However,
they provide no guarantee when the adversary is active. Robust fuzzy extractors
defined (and constructed) in [DKRS06] formalize the notion of security against
active adversaries. We review the definition below.

If W, W ′ are two (correlated) random variables over a metric spaceM, we say
dis(W, W ′) ≤ t if the distance between W and W ′ is at most t with probability
one. We call (W, W ′) a (t, m)-pair if dis(W, W ′) ≤ t and H∞(W) ≥ m.

Definition 5. An (m, �, t, ε)-fuzzy extractor has post-application (resp., pre-appli-
cation) robustness δ if for all (t, m)-pairs (W, W ′) and all adversaries A, the
probability that the following experiment outputs “success” is at most δ: sample
(w, w′) from (W, W ′); let (R, P) = Gen(w); let P̃ = A(R, P) (resp., P̃ = A(P));
output “success” if P̃ �= P and Rep(w′, P̃) �=⊥. ♦

We note that the above definitions can be easily extended to give average-case
fuzzy extractors (where the adversary has some external information E corre-
lated with W), and that our constructions satisfy those stronger definitions,
as well.

3 The New Robust Extractor

In this section we present our new extractor with post-application robustness.
We extend it to a robust fuzzy extractor in Section 5. Our approach is similar
to that of [DKRS06]; a detailed comparison is given in Section 4.

Starting point: key agreement secure against a passive adversary.

Recall that a strong extractor allows extraction of a string that appears uniform
to an adversary even given the presence of the seed used for extraction. Therefore,
a natural way of achieving key agreement in the errorless case is for Alice to
pick a random seed i for a strong extractor and send it to Bob (in the clear).
They could then use R = Ext(w; i) as the shared key. As long as the adversary
is passive, the shared key looks uniform to her. However, such a protocol can
be rendered completely insecure when executed in the presence of an active
adversary because A could adversarially modify i to i′ such that R′ extracted by
Bob has no entropy. To prevent such malicious modification of i we will require
Alice to send an authentication of i (along with i) to Bob. In our construction,
we authenticate i using w as the key and then extract from w using i as the
seed. Details follow.

Construction. For the rest of the paper we will let w ∈ {0, 1}n. We will assume
that n is even (if not, drop one bit of w, reducing its entropy by at most 1). To
compute Gen(w), let a be the first half of w and b the second: a = [w]n/2

1 , b =
[w]nn/2+1. View a,b as elements of F2n/2 . Let v = n −m + log 1

δ , where δ is the
desired robustness. Choose a random i ∈ F2n/2. Compute y = ia + b. Let σ
consist of the first v bits of y and the extracted key R consist of the rest of y:
σ = [y]v1, R = [y]n/2

v+1. Output P = (i, σ).

162 B. Kanukurthi and L. Reyzin

Gen(w):
1. Let a = [w]n/2

1 , b = [w]nn/2+1

2. Select a random i ← F2n/2

3. Set σ = [ia + b]v1, R = [ia + b]n/2
v+1 and output P = (i, σ)

Rep(w, P ′ = (i′, σ′)):
1. Let a = [w]n/2

1 , b = [w]nn/2+1

2. If σ′ = [i′a + b]v1 then compute R′ = [i′a + b]n/2
v+1 else output ⊥

Theorem 1. Let M = {0, 1}n. Setting v = n/2 − �, the above construction
is an (m, �, 0, ε)− fuzzy extractor with robustness δ, for any m, �, ε, δ satisfying
� ≤ m− n/2− log 1

δ as long as m ≥ n/2 + 2 log 1
ε .

If ε is so low that the constraint m ≥ n/2 + 2 log 1
ε is not satisfied, then the

construction can be modified as shown in Section 3.1.

Proof. Extraction. Our goal is to show that R is nearly uniform given P . To
do so, we first show that the function hi(a, b) = (σ, R) is a universal hash family.
Indeed, for (a, b) �= (a′, b′) consider

Pr
i

[hi(a, b) = hi(a′, b′)] = Pr
i

[ia + b = ia′ + b′]

= Pr
i

[i(a− a′) = (b − b′)]

≤ 2−n/2 .

To see the last inequality recall that (a, b) �= (a′, b′). Therefore, if a = a′, then
b �= b′ making the Pri[i(a− a′) = (b− b′)] = 0. If a �= a′, then there is a unique
i = (b − b′)/(a− a′) that satisfies the equality. Since i is chosen randomly from
F2n/2, the probability of the specific i occurring is 2−n/2.

Because |(R, σ)| = n/2, Lemma 3 gives us SD
(
(R, P), U|R| × U|P |

)
≤ ε/2 as

long as n/2 ≤ m + 2 − 2 log 2
ε , or, equivalently, (R, P) is 2(n/2−m)/2−1-close to

U|R| × U|P |. Applying Lemma 1 to A = R, B = P , C = Un
2 −v, D = Un

2
× Uv,

we get that (R, P) is ε-close to U(n
2)−v × P , for ε = 2(n/2−m)/2. From here it

follows that for extraction to be possible, m ≥ n/2 + 2 log 1
ε .

Post-Application Robustness. In the post-application robustness security
game, the adversary A on receiving (P = (i, σ), R) (generated according to
procedure Gen) outputs P ′ = (i′, σ′), and is considered successful if (P ′ �= P) ∧
[i′a + b]v1 = σ′. In our analysis, we will assume that i′ �= i. We claim that this
does not reduce A’s success probability. Indeed, if i′ = i then, for P ′ �= P to
hold, A would have to output σ′ �= σ. However, when i′ = i, Rep would output
⊥ unless σ′ = σ.

In our analysis, we allow A to be deterministic. This is without loss of gen-
erality since we allow an unbounded adversary. We also allow A to arbitrarily
fix i. This makes the result only stronger since we demonstrate robustness for a
worst-case choice of i.

An Improved Robust Fuzzy Extractor 163

Since i is fixed and A is deterministic, (σ, R) determines the transcript tr =
(i, σ, R, i′, σ′). For any particular tr, let Succtr be the event that the transcript
is tr and A wins, i.e., that ia + b = σ||R ∧ [i′a + b]v1 = σ′. We denote by Badtr

the set of w = a||b that make Succtr true. For any tr, Prw[Succtr] ≤ |Badtr|2−m,
because each w in Badtr occurs with probability at most 2−m. We now partition
the set Badtr into 2� disjoint sets, indexed by R′ ∈ {0, 1}�:

BadR′

tr
def= {w |w ∈ Badtr ∧ [i′a + b]�v+1 = R′}
= {w | (ia + b = σ||R) ∧ (i′a + b = σ′||R′)}

For a particular value of (tr, R′), w = a||b is uniquely determined by the con-
straints that define the above set i.e; |BadR′

tr | = 1. Since Badtr =
⋃

R′∈{0,1}� BadR′

tr ,
we get |Badtr| ≤ 2� = 2n/2−v. From here it follows that

Pr[Succtr] ≤ |Badtr|2−m ≤ 2n/2−v−m .

Pr[Succtr] measures the probability that the transcript is tr and A succeeds.
To find out the probability that A succeeds, we need to simply add Pr[Succtr]
over all possible tr. Since a transcript is completely determined by σ, R, the total
number of possible transcripts is 2|σ|+|R| = 2n/2 and, therefore, A’s probability
of success is at most 2n−v−m.

To achieve δ-robustness, we need to set v to at least n−m+ log 1
δ . From here

it follows that � = n
2 − v ≤ 1

2 (2m− n− 2 log 1
δ). ��

3.1 Getting Closer to Uniform

If ε is so low that the constraint m ≥ n/2 + 2 log 1
ε is not satisfied, then in

our construction we can simply shorten R by β = n/2 + 2 log 1
ε − m bits, as

follows: keep v = n−m+ log 1
δ (regardless of �), and let R = [ia+ b]�+v

v+1, for any
� ≤ 2m− n− log 1

δ − 2 log 1
ε . This keeps σ the same, but shortens R enough for

the leftover hash lemma to work. The proof remains essentially the same, except
that to prove robustness, we will give the remaining bits [ia + b]n/2

�+v+1 for free
to A.

3.2 Improving the Construction of [DKRS06] When the Uniformity
Constraint Dominates

The construction of Dodis et al. [DKRS06] parses w as two strings a and b of
lengths n− v and v, respectively. The values σ, R are computed as σ = [ia]v1 + b
and R = [ia]nv+1; P = (i, σ). In order to get R to be uniform given P , the value
v is increased until the leftover hash lemma can be applied to (R, σ). However,
we observe that this unnecessarily increases the length of σ (i.e., for every bit
added to v, two bits are subtracted from R). Instead, we propose to improve this
construction with essentially the same technique as we use for our construction
in Section 3.1. The idea is to simply shorten R without increasing the length of
σ. This improvement applies to both pre- and post-application robustness.

164 B. Kanukurthi and L. Reyzin

For post-application robustness, suppose the uniformity constraint dominates,
i.e., 2 log 1

ε > (2m−n+log 1
δ)/3. Modify the construction of [DKRS06] by setting

v = (2n−m+log 1
δ)/3 and R = [ia]n−v−β

v+1 , where β = 2 log 1
ε−(2m−n−log 1

δ)/3.
This will result in an extracted key of length � = (4m− 2n− log 1

δ)/3− 2 log 1
ε .

However, even with the improvement, the extracted key will be always shorter
than the key extracted by our scheme, as explained in Section 4.2

In contrast, this improvement seems useful in the case of pre-application ro-
bustness. Again, suppose the uniformity constraint dominates, i.e., 2 log 1

ε >
log 1

δ . Modify the construction of [DKRS06] by setting v = n −m + log 1
δ and

R = [ia]n−v−β
v+1 , where β = 2 log 1

ε − log 1
δ . This will result in an extracted key of

length � = 2m− n− 2 log 1
ε − log 1

δ , which is 2 log 1
ε − log 1

δ longer than the key
extracted without this modification.

4 Comparison with the Construction of [DKRS06]

4.1 When the Robustness Constraint Dominates

Recall that the construction of Dodis et al. [DKRS06] parses w as two strings
a and b of lengths n − v and v, respectively. The values σ, R are computed as
σ = [ia]v1 + b and R = [ia]nv+1; P = (i, σ). Notice that, like in our construction,
increasing v improves robustness and decreases the number of extracted bits. For
pre-application robustness, setting v = n−m + log 1

δ suffices, and thus the con-
struction extracts nearly (2m−n) bits. However, for post-application robustness,
a much higher v is needed, giving only around 1

3 (2m− n) extracted bits.
The post-application robustness game reveals more information to A about w

than the pre-application robustness game. This additional information—namely,
R—may make it easier for A to guess σ′ for a well-chosen i′. The key to our
improvement is in the pairwise independence of the function ia+b that computes
both σ and R: because of pairwise independence, the value (σ, R) of the function
on input i tells A nothing about the value (σ′, R′) on another input i′. (This
holds, of course, for uniformly chosen key (a, b); when (a, b) has entropy m, then
A can find out n−m bits of information about σ′.)

In contrast, in the construction of [DKRS06], only σ is computed using a
pairwise independent hash function. This works well (in fact, better than our
construction, because b can be shorter) for pre-application robustness, where A
does not find out R. But it makes it possible for R to decrease A’s uncertainty
about σ′ by as much as � = |R|, thus necessitating the length v of σ′ (and hence
σ) to be v > � + (n −m) (the (n −m) term is the amount of entropy already
potentially “missing” from σ′ because of the nonuniformity of w). See Section 4.3
for a detailed description of an adversarial strategy that utilizes R to obtain σ′

in the [DKRS06] construction.
Another way to see the differences between the two constructions is through

the proof. In the proof of post-application robustness, the transcript tr includes
R, which makes for 2� times more transcripts than in the proof of pre-application
robustness. However, the fact that this R imposes an additional constraint of w,

An Improved Robust Fuzzy Extractor 165

thus reducing the size of the set Badtr, can compensate for this increase. It turns
out that for the construction of [DKRS06], this additional constraint can be
redundant if the adversary is clever about choosing i′ and σ′, and the size of
Badtr doesn’t decrease. Using a pairwise-independent function for computing R
in our construction ensures that this additional constraint decreases the size
of Badtr by 2�. Thus, our construction achieves the same results for pre- and
post-application robustness.

4.2 When the Uniformity Constraint Dominates

It should be noted that there may be reasonable cases when the uniformity con-
straint ε on R is strong enough that the construction of [DKRS06] extracts even
fewer bits, because it needs to take v ≥ n−m+2 log 1

ε to ensure near-uniformity
of R given P . In that case, as long as m ≥ n/2 + 2 log 1

ε , our construction will
extract the same amount of bits as before, thus giving it an even bigger advan-
tage. And when m < n/2 + 2 log 1

ε , our construction still extracts at least 3/2
times more bits than the construction of [DKRS06], even with the improvement
of Section 3.2 applied (this can be seen by algebraic manipulation of the relevant
parameters for the post-application robustness case).

4.3 Why the Construction of [DKRS06] Cannot Extract More Bits

Recall that the robust fuzzy extractor of [DKRS06] operates as follows: parse w
as two strings a, b of lengths n− v, v respectively and compute σ = [ia]v1 + b and
R = [ia]nv+1; P = (i, σ).

For post-application robustness, the concern is that R can reveal information
to the adversary about σ′ for a cleverly chosen i′. Because the length of σ′ is v
and �+(n−m) bits of information about σ′ may be available (the � term comes
from |R|, and (n−m) term comes from the part of w which has no entropy), this
leads to the requirement that v ≥ � + n−m + log 1

δ to make sure the adversary
has to guess at least log 1

δ bits about σ′. Plugging in � = n − 2v, we obtain
� ≤ 2

3 (m− n/2− log 1
δ), which is the amount extracted by the construction.

Here we show an adversarial strategy that indeed utilizes R to obtain infor-
mation about σ′ to succeed with probability δ/2. This demonstrates that the
analysis in [DKRS06] is tight up to one bit. To do so we have to fix a particular
(and somewhat unusual) representation of field elements. (Recall that any rep-
resentation of field elements works for constructions here and in [DKRS06], as
long as addition of field elements corresponds to the exclusive-or of bit strings.)
Typically, one views F2n−v as F2[x]/(p(x)) for some irreducible polynomial p
of degree n − v, and represents elements as F2-valued vectors in the basis
(xn−v−1, xn−v−2, ..., x2, x, 1). We will do the same, but will reorder the basis ele-
ments so as to separate the even and the odd powers of x: (xn−v−1, xn−v−3, . . . , x,
xn−v−2, xn−v−4, . . . , 1) (assuming, for concreteness, that n− v is even). The ad-
vantage of this representation for us is that the top half of bits of some value
z ∈ F2n−v is equal to the bottom half of the bits of z/x, as long as the last bit
of z is 0.

166 B. Kanukurthi and L. Reyzin

Now suppose the distribution on w is such that the top n−m bits of b are 0
(the rest of the bits of w are uniform). Then by receiving σ and R, the adversary
gets to see the top �+(n−m) bits of ia. Therefore, the adversary knows �+(n−m)
bits from the bottom half of ia/x as long as the last bit of ia is 0, which happens
with probability 1/2. To use this knowledge, the adversary will simply ensure
that the difference between σ′ and σ is [ia/x]v1, by letting i′ = i + i/x.

Thus, the adversarial strategy is as follows: let i′ = i + i/x; let τ consist of
the � bits of R, the top n−m bits of σ, and log 1

δ = v − �− (n −m) randomly
guessed bits, and let σ′ = σ + τ . The adversary wins whenever τ = [ia/x]v1,
which happens with probability 2v−�−(n−m)/2 = δ/2, because all but log 1

δ bits
of τ are definitely correct as long as the last bit of ia is 0.

The above discussion gives us the following result.

Theorem 2. There exists a basis for GF (2n−v) such that for any integer m
there exists a distribution W of min-entropy m for which the post-application
robustness of the construction from [DKRS06, Theorem 3] can be violated with
probability at least δ/2, where v is set as required for robustness δ by the con-
struction (i.e., v = (n− �)/2 for � = (2m− n− 2 log 1

δ)/3).

Note that our lower bound uses a specific representation of field elements, and
hence does not rule out that for some particular representation of field elements, a
lower value of v and, therefore, a higher value of � is possible. However, a security
proof for a lower value of v would have to then depend on the properties of that
particular representation and would not cover the construction of [DKRS06] in
general.

5 Tolerating Binary Hamming Errors

We now consider the scenario where Bob has a string w′ that is close to Alice’s
input w (in the Hamming metric). In order for them to agree on a random string,
Bob would first have recover w from w′. To this end, Alice could send the secure
sketch s = SS(w) to Bob along with (i, σ). To prevent an undetected modification
of s to s′, she could send an authentication of s (using w as the key) as well.
The nontriviality of making such an extension work arises from the fact that
modifying s to s′ also gives the adversary the power to influence Bob’s verification
key w∗ = SRec(w′, s′). The adversary could perhaps exploit this circularity to
succeed in an active attack (the definition of standard authentication schemes
only guarantee security when the keys used for authentication and verification
are the same).

We break this circularity by exploiting the algebraic properties of the Ham-
ming metric space, and using authentication secure against algebraic manipula-
tion [DKRS06, CDF+08]. The techniques that we use are essentially the same
as used in [DKRS06], but adapted to our construction. We present the con-
struction here and then discuss the exact properties that we use in the proof of
security.

An Improved Robust Fuzzy Extractor 167

Construction. Let M be the Hamming metric space on {0, 1}n. Let W be a
distribution of min-entropy m over M. Let s = SS(w) be a deterministic, linear
secure sketch; let |s| = k, n′ = n − k. Assume that SS is a surjective linear
function (which is the case for the syndrome construction for the Hamming
metric mentioned in Section 2). Therefore, there exists a k× n matrix S of rank
k such that SS(w) = Sw. Let S⊥ be an n′ × n matrix such that n × n matrix(

S
S⊥

)
has full rank. We let SS⊥(w) = S⊥(w).

To compute Gen(w), let s = SS(w), c = SS⊥(w); |c| = n′. We assume that
n′ is even (if not, drop one bit of c, reducing its entropy by at most 1). Let
a be the first half of c and b the second. View a, b as elements of F2n′/2 . Let
L = 2� k

n′ � (it will important for security that L is even). Pad s with 0s to
length Ln′/2, and then split it into L bit strings sL−1, . . . , s0 of length n′/2 bits
each, viewing each bit string as an element of F2n′/2 . Select i ← F2n′/2 . Define
fs,i(x) = xL+3 +x2(sL−1x

L−1 + sL−2x
L−2 + · · ·+ s0)+ ix. Set σ = [fs,i(a)+ b]v1,

and output P = (s, i, σ) and R = [fs,i(a) + b]n
′/2

v+1 .

Gen(w):
1. Set s = SS(w), c = SS⊥(w), k = |s|, n′ = |c|.

- Let a = [c]n
′/2

1 , b = [c]n
′

n′/2+1

- Let L = 2� k
n′ �. Pad s with 0s to length Ln′/2.

- Parse the padded s as sL−1||sL−2|| . . . ||s0 for si ∈ F2n′/2 .
2. Select i ← F2n′/2 .

3. Set σ = [fs,i(a) + b]v1 , and output R = [fs,i(a) + b]n
′/2

v+1 and P = (s, i, σ).

Rep(w′, P ′ = (s′, i′, σ′)):
1. Compute w∗ = SRec(w′, s′)

- Verify that dis(w∗, w′) ≤ t and SS(w∗) = s′. If not, output ⊥.
2. Let c′ = SS⊥(w∗). Parse c′ as a′||b′.
3. Compute σ∗ = [fs′,i′(a′) + b′]v1.

- Verify that σ∗=σ′. If so, output R=[fs′,i′(a′)+b′]n
′/2

v+1 , else output ⊥.

In the theorem statement below, let B denote the volume of a Hamming ball
or radius t in {0, 1}n (log B ≤ nH2(t/n) [MS77, Chapter 10, §11, Lemma 8] and
log B ≤ t log(n + 1) [DKRS06]).

Theorem 3. Assume SS is a deterministic linear (m, m − k, t)−secure sketch
of output length k for the Hamming metric on {0, 1}n. Setting v = (n−k)/2− l,
the above construction is an (m, l, t, ε) fuzzy extractor with robustness δ for any
m, l, t, ε satisfying l ≤ m− n/2− k − log B − log

(
2
⌈

k
n−k

⌉
+ 2

)
− log 1

δ as long

as m ≥ 1
2 (n + k) + 2 log 1

ε .

Again, if m < 1
2 (n + k) + 2 log 1

ε , the construction can be modified, as shown in
Section 5.1.

Proof. Extraction. Our goal is to show that R is nearly uniform given P =
(i, s, σ). To do so, we first note that for every s, the function hi(c) = (σ, R) is a

168 B. Kanukurthi and L. Reyzin

universal hash family. Indeed for c �= c′ there is a unique i such that hi(c) = hi(c′)
(since i(a − a′) is fixed, like in the errorless case). We also note that H̃∞(c |
SS(W)) ≥ H̃∞(c, SS(W)) − k = H∞(W) − k = m − k by Lemma 2. Because
|(R, σ)| = n′/2, Lemma 3 (or, more precisely, its generalization mentioned in the
paragraph following the lemma, needed here because hi depends on s) gives us

SD
(
(R, P), U|R| × SS(W)× Un′/2 × Uv

)
≤ ε/2

for n′/2 ≤ m − k + 2 − 2 log(2/ε). This is equivalent to saying that (R, P) is
2(n′/2−m+k) 1

2−1-close to U|R| × SS(W)× Un′/2 × Uv.
Applying Lemma 1 to A = R, B = P , C = Un′/2−v, D = SS(w)×Un′/2×Uv,

we get that (R, P) is ε-close to Un′
2 −v × P , for ε = 2(n′

2 −m+k)/2.

From here it follows that for extraction to be possible, m ≥ 1
2 (n+k)+2 log 1

ε .

Post-Application Robustness. In the post-application robustness security
game, the adversary A on receiving (P = (s, i, σ), R) (generated according to
procedure Gen) outputs P ′ = (s′, i′, σ′), and is considered successful if (P ′ �=
P) ∧ Rep(w′, s′) �= ⊥. In our analysis, we will assume that (i′, s′) �= (i, s). We
claim that this does not reduce A’s success probability. Indeed, if (i′, s′) = (i, s)
then, c′ computed within Rep will equal c. So, for P ′ �= P to hold, A would
have to output σ′ �= σ. However, when (i′, c′, s′) = (i, c, s), Rep would compute
σ∗ = σ, and therefore would output ⊥ unless σ′ = σ.

In our analysis, we allow A to be deterministic. This is without loss of gen-
erality since we allow an unbounded adversary. We also allow A to arbitrarily
fix i. This makes the result only stronger since we demonstrate robustness for a
worst-case choice of i.

Since i is fixed and A is deterministic, the tr = (i, s, σ, R, i′, s′, σ′) is deter-
mined completely by (s, σ, R). Recall that the prime challenge in constructing a
robust fuzzy extractor was that A could somehow relate the key used by Rep to
verify σ′ to the authentication key that was used by Gen to come up with σ. As
was done in [DKRS06], we will argue security of our construction by showing
that the MAC scheme implicitly used in our construction remains unforgeable
even whenA could force the verification key to be at an offset (of her choice) from
the authentication key. We will formalize such an argument by assuming that
A learns Δ = w′ − w. Recall that w∗ = SRec(w′, s′) and c′ = a′||b′ = SS⊥(w∗).
The following claim that was proven in [DKRS06] states that given (Δ, s), A
can compute the offsets Δa = a′ − a, Δb = b′ − b induced by her choice of s′.

Claim. Given Δ = w′ − w, and the sketches s, s′,A can compute Δa = a′ − a
and Δb = b′ − b, or determine that Rep will reject before computing a′, b′.

In other words, she can compute the offset between the authentication key that
Gen used to come up with σ and the verification key that Rep will use to verify σ′.
We will now argue that as long as W has sufficient min-entropy, even knowing
the offset does not help A succeed in an active attack. Recall that since i is
arbitrarily fixed by A, A’s success depends on w, w′, or, alternatively, on w, Δ.
Fix some Δ. For any particular tr, let Succtr,Δ be the event that the transcript

An Improved Robust Fuzzy Extractor 169

is tr and A wins, i.e., that fs,i(a) + b = σ||R ∧ [fs′,i′(a′) + b′]v1 = σ′ ∧ SS(w) = s,
conditioned on the fact that w′ − w is Δ. We denote by Badtr,Δ the set of w
that make Succtr,Δ true. We now partition the set Badtr,Δ into 2� disjoint sets,
indexed by R′ ∈ {0, 1}�:

BadR′

tr,Δ
def= {w |w ∈ Badtr,Δ ∧ [fs′,i′(a′) + b′]�v+1 = R′}
= {w | (fs,i(a) + b = σ||R) ∧ (fs′,i′(a′) + b′ = σ′||R′) ∧ SS(w) = s}.

By Claim 1, fixing (tr, Δ), also fixes Δa, Δb. It follows that every w ∈ BadR′

tr,Δ
needs to satisfy

fs,i(a)− fs′,i′(a + Δa) = (Δb + σ − σ′)||(R −R′) ∧ SS(w) = s.

For a given tr, Δ, R′, the right hand side of the first equation takes a fixed value.
Let us now focus on the polynomial fs,i(a)− fs′,i′(a+Δa). We will consider two
cases:

– Δa = 0: In this case, fs,i(x)− fs′,i′(x) is a polynomial in which a coefficient
of degree 2 or higher is nonzero if s �= s′ and a coefficient of degree 1 or
higher is nonzero if i �= i′.

– Δa �= 0: Observe that the leading term of the polynomial is ((L + 3) mod
2)ΔaxL+2. Since we forced L to be even, the coefficient of the leading term
is nonzero, making fs,i(x) − fs′,i′(x + Δa) a polynomial of degree L + 2.

Therefore, in either case, the fs,i(x) − fs′,i′(x + Δa) is a nonconstant poly-
nomial of degree at most L + 2. A nonconstant polynomial of degree d can
take on a fixed value at most d times. It, therefore, follows that there are
at most L + 2 values of a such that fs,i(a) − fs′,i′(a + Δa) = (Δb + σ −
σ′)||(R − R′). Each such a uniquely determines b = (σ||R) − fs,i(a). And w

is uniquely determined by c = a||b = SS⊥(w) and s = SS(w). Therefore, there
are at most L + 2 values of w in the set BadR′

tr,Δ i.e, |BadR′

tr,Δ| ≤ L + 2. Since
Badtr,Δ =

⋃
R′∈{0,1}� BadR′

tr,Δ, we get |Badtr,Δ| ≤ (L + 2)2� = (L + 2)2n′/2−v.
Thus, Prw[Succtr,Δ] ≤ |Badtr|2−H∞(w|Δ) ≤ (L + 2)2n′/2−v−H∞(w|Δ).

To find out the probability Prw[SuccΔ] that A succeeds conditioned on a par-
ticular Δ, we need to add up Prw[Succtr,Δ] over all possible transcripts. Recalling
that each transcript is determined by σ, R and s and hence there are 2n′/2+k of
them, and that n′ + k = n, we get Prw[SuccΔ] ≤ (L + 2)2n−v−H∞(w|Δ).

Finally, the probability of adversarial success it at most

E
Δ

Pr
w

[SuccΔ] ≤ (L + 2)2n−v−�H∞(w|Δ) .

In particular, if the errors Δ are independent of w, then H̃∞(w|Δ) = H∞(w) =
m, and the probability of adversarial success is at most (L + 2)2n−v−m. In the
worst case, however, the entropy of w may decrease at most by the number of
bits needed to represent Δ. Let B be the volume of the hamming ball of radius t

170 B. Kanukurthi and L. Reyzin

in {0, 1}n. Then, Δ can be represented in log B bits and H̃∞(w|Δ) ≥ m− log B,
by Lemma 2. From here it follows that

Pr[A′s success] ≤ B(L + 2)2n−v−m

To achieve δ−robustness, we want B(L+2)2n−v−m ≤ δ i.e., v ≥ n−m+logB +
log(L + 2) + log 1

δ . Setting v = n − m + log B + log(L + 2) + log 1
δ , and using

L = 2� k
n−k � it follows that

� ≤ m− n/2− k − log B − log
(

2
⌈

k

n− k

⌉
+ 2

)
− log 1

δ . ��

5.1 Getting Closer to Uniform

If ε is so low that m ≥ 1
2 (n + k) + 2 log 1

ε does not hold, we can modify our
construction just as we did in section 3.1, by shortening R by β = 1

2 (n + k) +
2 log 1

ε −m. That is, keep v = n−m + log B + log(L + 2) + log 1
δ fixed and let

R = [fs,i(a) + b]�+v
v+1, where � ≤ n/2− v − β.

References

[BBCM95] Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized pri-
vacy amplification. IEEE Transactions on Information Theory 41(6), 1915–
1923 (1995)

[BBR88] Bennett, C., Brassard, G., Robert, J.: Privacy amplification by public dis-
cussion. SIAM Journal on Computing 17(2), 210–229 (1988)

[BDK+05] Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote
authentication using biometric data. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 147–163. Springer, Heidelberg (2005)

[CDF+08] Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of alge-
braic manipulation with applications to robust secret sharing and fuzzy
extractors. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
471–488. Springer, Heidelberg (2008)

[CW79] Carter, J.L., Wegman, M.N.: Universal classes of hash functions. Journal
of Computer and System Sciences 18, 143–154 (1979)

[DKRS06] Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and au-
thenticated key agreement from close secrets. In: Dwork, C. (ed.) CRYPTO
2006. LNCS, vol. 4117, pp. 20–24. Springer, Heidelberg (2006)

[DKRS08] Dodis, Y., Katz, J., Reyzin, L., Smith, A.: Robust fuzzy extractors and
authenticated key agreement from close secrets. Manuscript (2008)

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. SIAM Journal
on Computing 38(1), 97–139 (2008)

[DS02] Dodis, Y., Spencer, J.: On the (non-)universality of the one-time pad. In:
43rd Annual Symposium on Foundations of Computer Science, pp. 376–
385. IEEE, Los Alamitos (2002)

An Improved Robust Fuzzy Extractor 171

[HILL99] Hrastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: Construction of pseu-
dorandom generator from any one-way function. SIAM Journal on Com-
puting 28(4), 1364–1396 (1999)

[Mau93] Maurer, U.: Protocols for secret key agreement by public discussion based
on common information. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS,
vol. 773, pp. 461–470. Springer, Heidelberg (1994)

[Mau97] Maurer, U.: Information-theoretically secure secret-key agreement by NOT
authenticated public discussion. In: Fumy, W. (ed.) EUROCRYPT 1997.
LNCS, vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

[MS77] MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes.
North-Holland Elsevier Science (1977)

[MW97] Maurer, U., Wolf, S.: Privacy amplification secure against active adver-
saries. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
307–321. Springer, Heidelberg (1997)

[MW03] Maurer, U., Wolf, S.: Secret-key agreement over unauthenticated pub-
lic channels — Part III: Privacy amplification. IEEE Trans. Info. The-
ory 49(4), 839–851 (2003)

[NZ96] Nisan, N., Zuckerman, D.: Randomness is linear in space. Journal of Com-
puter and System Sciences 52(1), 43–53 (1996)

[PRTG02] Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way func-
tions. Science 297, 2026–2030 (2002)

[RW03] Renner, R., Wolf, S.: Unconditional authenticity and privacy from an arbi-
trarily weak secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 78–95. Springer, Heidelberg (2003)

[RW04] Renner, R., Wolf, S.: The exact price for unconditionally secure asymmetric
cryptography. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 109–125. Springer, Heidelberg (2004)

[WC81] Wegman, M.N., Carter, J.L.: New hash functions and their use in authen-
tication and set equality. Journal of Computer and System Sciences 22,
265–279 (1981)

[Wic08] Wichs, D.: Private Communication (2008)
[Wol98] Wolf, S.: Strong security against active attacks in information-theoretic

secret-key agreement. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998.
LNCS, vol. 1514, pp. 405–419. Springer, Heidelberg (1998)

[Wyn75] Wyner, A.D.: The wire-tap channe. Bell System Technical Journal 54(8),
1355–1387 (1975)

On Linear Secret Sharing for Connectivity in

Directed Graphs

Amos Beimel1 and Anat Paskin2

1 Dept. of computer science, Ben-Gurion University, Beer Sheva, Israel
2 Dept. of computer science, Technion, Haifa, Israel

Abstract. In this work we study linear secret sharing schemes for s-t
connectivity in directed graphs. In such schemes the parties are edges of a
complete directed graph, and a set of parties (i.e., edges) can reconstruct
the secret if it contains a path from node s to node t. We prove that
in every linear secret sharing scheme realizing the st-con function on
a directed graph with n edges the total size of the shares is Ω(n1.5).
This should be contrasted with s-t connectivity in undirected graphs,
where there is a scheme with total share size n. Our result is actually
a lower bound on the size monotone span programs for st-con, where
a monotone span program is a linear-algebraic model of computation
equivalent to linear secret sharing schemes. Our results imply the best
known separation between the power of monotone and non-monotone
span programs. Finally, our results imply the same lower bounds for
matching.

1 Introduction

Secret sharing schemes, introduced by [11,35,26], are a method in which a dealer
holding a secret can distribute shares to parties in a network such that only pre-
defined authorized sets of parties can reconstruct the secret from their shares.
These schemes, whose original motivation was secure storage, have found nu-
merous applications as a building box in complex cryptographic schemes, e.g.,
Byzantine agreement [32], secure multiparty computations [8,16,17], threshold
cryptography [20], access control [30], and attribute based encryption [25]. In
most applications it is important that the scheme is linear, that is, the shares
are a linear combination of the secret and some random elements. Linear secret
sharing schemes are equivalent to monotone span programs, a computational
model introduced by Karchmer and Wigderson [28].

In this work we study linear secret sharing schemes for a natural function: the
parties are edges of a complete directed graph, and a set of parties (i.e., edges)
is authorized if it contains a path from node s to node t. We prove that in every
linear secret sharing scheme realizing the st-con function on a directed graph
with n edges the total size of the shares is Ω(n1.5). Studying linear secret shar-
ing for this function has both a cryptographic motivation and a computational
complexity motivation. We first discuss the cryptographic motivation. Benaloh

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 172–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Linear Secret Sharing for Connectivity in Directed Graphs 173

and Rudich [10] (see also [4,28]) showed that there exists a simple and very effi-
cient linear secret sharing scheme for the analogous function where the graph is
undirected. This scheme was used in [30] to design a protocol for reliable access
control. The obvious open problem is if this scheme can be generalized to deal
with directed graphs. The computational complexity motivation is separating the
power of monotone and non-monotone span programs. Our results imply that
over infinite fields and large finite fields non-monotone span programs are more
efficient than monotone span programs by a multiplicative factor of Ω(n0.5).
This is the best separation known to-date.

1.1 Previous Results

In this section we will give a short background on secret sharing schemes, lin-
ear secret sharing schemes, monotone span programs, and the equivalence of
the latter two notions. Finally, we will discuss some known results on the s-t
connectivity function.

Secret-sharing schemes were first introduced by Blakley [11] and Shamir [35]
for the threshold case, that is, for the case where the subsets that can reconstruct
the secret are all the sets whose cardinality is at least a certain threshold. Secret-
sharing schemes for general access structures were introduced by Ito, Saito, and
Nishizeki [26]. More efficient schemes were presented in, e.g., [9,36,14,28,37,22].
Even with the more efficient schemes, the size of the shares for general access
structures with n parties is �2O(n), where the secret is an �-bit string. Lower
bounds for secret sharing schemes were proved in [29,9,15,13,21,18,19,12,31].
The best lower bound was proved by Csirmaz [18], proving that, for every n,
there is an access structure with n parties such that sharing an �-bit secrets
requires shares of length Ω(�n/ logn). Still there is an exponential gap between
the lower-bounds and the upper-bounds.

Span programs and monotone span programs, introduced by Karchmer and
Wigderson [28], are linear-algebraic models of computation. More specifically,
a monotone span program is presented as a matrix over some field, with rows
labeled by variables. The span program accepts an input if the rows whose
variables are satisfied by the input span a fixed nonzero vector. The size of a
span program is its number of rows. A detailed definition is given in Section 2.
Lower bounds for monotone span programs have been studied in several papers.
Beimel, Gál, and Paterson [6] provided a technique for proving lower bounds for
monotone span programs and proved a lower bound of O(n2.5) for a function
with n variables. Babai, Gál, and Wigderson [2], using the technique of [6],
proved the first super-polynomial lower bound – they prove an nΩ(log n/ log log n)

lower bound for the size of monotone span programs for the clique problem.
Gál [23] gave a characterization of span program size and improved the lower
bound for the clique function to nΩ(log n). Proving exponential lower bounds for
an explicit function is an open problem (it is known that such lower bound holds
for most functions [34]). Gál and Pudlák [24] have shown limitations of current
techniques for proving lower bounds for monotone span programs. Beimel and
Weinreb [7] showed a separating of the power of monotone span programs over

174 A. Beimel and A. Paskin

different fields, for example, they showed that there are functions that have
small monotone span program over the field GF(2), however, they require super
polynomial monotone span programs over fields whose characteristic is not 2.

In most applications of secret sharing schemes it is important that the scheme
is linear, that is, the shares are a linear combination of the secret and some
random elements. Linearity implies that if we sum shares distributed for two
secrets, then we get shares of the sum of the secrets. This property is useful,
for example, when designing secure multi-party protocols [8,16,17]. Karchmer
and Wigderson [28] showed that monotone span programs imply linear secret
sharing schemes (this result was implicitly proved also by Brickell [14]). More
precisely, if there is a monotone span of size s computing a function f over a
field F then there is a secret sharing scheme realizing f such that the domain
of secrets is F and the total number of bits of the shares is s log |F|. In fact,
monotone span programs and linear secret sharing schemes are equivalent [3].
Thus, proving lower bounds for monotone span programs implies the same lower
bounds for linear secret sharing schemes.

In this work we prove lower bounds for the st-con function. This function is
widely studied in complexity both for directed and undirected graphs. For ex-
ample, st-con in directed graphs is NL-complete, while Reingold [33] has proved
that st-con in undirected graphs is in deterministic log-space. Another exam-
ple where undirected st-con is easier than directed st-con was given by Ajtai
and Fagin [1]; they showed that while undirected st-con is definable in monadic
second order logic, the directed case is not. We continue this line of research
by proving that for monotone span programs undirected st-con is easier than
directed st-con, although the gap we can prove is much smaller.

The circuit complexity of st-con has been studied as well. The directed (and
undirected) st-con function has a polynomial-size monotone circuit of depth
O(log n); this circuit has unbounded fan-in. This implies a monotone formula for
st-con of size nO(log n) and, using the construction of Benaloh and Leichter [9],
there is a secret sharing scheme realizing the st-con function in which the size of
the shares is nO(log n). Karchmer and Wigderson [27] have proved that for mono-
tone formulae this is optimal – every monotone formula computing undirected
(and, hence, directed) st-con function has size nΩ(log n).

1.2 Our Results

In this work we prove that a monotone span program computing the st-con
function on a directed graph with n edges has size Ω(n1.5). We supply two proofs
of this lower bound. The first proof uses the characterization of span program
size given by Gál [23]; this proof only holds for finite fields. The second proof
uses the condition of Beimel, Gál, and Paterson [6]; this proof holds for every
field. As monotone span program are equivalent to linear secret sharing schemes,
our result implies that in every linear secret sharing scheme realizing the st-con
function in directed graphs, the total size of the shares is Ω(n1.5).

Our lower bound has a few additional implications. First, it shows that, for
monotone span programs and linear secret sharing, undirected st-con is easier

On Linear Secret Sharing for Connectivity in Directed Graphs 175

than directed st-con. This is true since there is a monotone span program real-
izing undirected st-con whose size is n [10,28] (see Example 1 below).

Furthermore, our lower bound supplies the best known separation between
the power of monotone and non-monotone span programs. Beimel and Gál [5]
proved that over infinite fields and large finite fields the directed st-con function
on graphs with n edges has a non-monotone span program of size O(n). Thus,
our result shows a separation of multiplicative factor of Ω(n0.5) between mono-
tone and non monotone span programs for directed st-con. Separations between
monotone and non-monotone models of computation is an important question
in complexity, e.g., the exponential separation between the power of monotone
and non-monotone circuits [38]. Separations between the power of monotone and
non-monotone span programs is interesting since monotone span programs can
be exponentially more powerful than monotone circuits [2].

Finally, our result implies the same lower bound for matching and bipartite
matching. This follows from the projection reduction from directed st-con to
bipartite matching. Babai, Gál, and Wigderson [2] constructed a non-monotone
span program, over large enough fields, for matching whose size is n (where n is
the number of edges in the graph). Thus, the same separation between monotone
and non-monotone span programs holds for matching.

1.3 Organization

In Section 2 we define monotone span programs. In Section 3 we give our first
proof of the lower bound and in Section 4 we give our second proof of the lower
bound.

2 Preliminaries

2.1 Monotone Span Programs

We start with the definition of monotone span programs. As discussed above,
monotone span programs are equivalent to linear secret sharing schemes; we use
monotone span programs to prove lower bounds on linear secret sharing schemes.

Definition 1 (Monotone Span Program [28]). A monotone span program
over a field F is a triplet M̂ = 〈M, ρ, v〉, where M is a matrix over F, v is a
nonzero row vector called the target vector (it has the same number of coordinates
as the number of columns in M), and ρ is a labeling of the rows of M by variables
from {x1, . . . , xn} (every row is labeled by one variables, and the same variable
can label many rows).

A monotone span program accepts or rejects an input by the following crite-
rion. For every input u ∈ {0, 1}n define the sub-matrix Mu of M consisting of
those rows whose labels are satisfied by the assignment u. The monotone span
program M̂ accepts u if and only if v ∈ span(Mu), i.e., some linear combination
of the rows of Mu gives the target vector v. A monotone span program computes

176 A. Beimel and A. Paskin

a Boolean function f if it accepts exactly those inputs u where f(u) = 1. The
size of M̂ is the number of rows in M .1

Monotone span programs compute only monotone functions, and every mono-
tone Boolean function can be computed by a monotone span program. The size of the
smallest monotone span program over F that computes f is denoted by mSPF(f).

Example 1. Consider the undirected-st-con function, whose input is an undi-
rected graph with two designated nodes s and t and its output is 1 iff the graph
contains a path from s to t. Formally, we consider the following function: The
input is an undirected graph with m + 2 nodes; the variables of the function
are the n =

(
m+2

2

)
possible edges. Karchmer and Wigderson [28] construct a

monotone span program of size n for this function, that is, each edge labels ex-
actly one row in the program (a linear secret sharing scheme equivalent to this
program was previously shown in [10]).

We next describe this span program. Assume the nodes of the input graph
are z0, . . . , zm+1, where z0 = s and zm+1 = t. The program has m + 2 columns
and n rows. For every edge (zi, zj), where i < j, there is a row in the program;
in this row all entries in the row are zero, except for the ith entry which is 1
and the jth entry which is −1. The target vector is the same as the row labeled
by (s, t), that is, (1, 0, . . . , 0,−1). It can be proven that over every field F, this
program computes the undirected-st-con function.

2.2 The st-con Function

In the rest of the paper we will refer to the st-con function in directed graphs as
st-con. Formally, we consider the following function: The input is a directed graph
with m+2 nodes. The graph contains two designated nodes s, t. The variables are
the n = m(m + 1) possible edges in the graph. The function outputs 1 iff there is
a directed path from node s to node t. Our main results are summarized below.

Theorem 1. For every field F

mSPF(st-con) = Ω(n1.5).

Theorem 2. For every finite field F and every linear secret sharing scheme over
F realizing st-con the total number of bits in the shares is

Ω(n1.5 log |F|).

3 First Proof

3.1 Proof Outline

We use the following theorem of Gál [23] to prove our lower bound.
1 The choice of the fixed nonzero vector v does not affect the size of the span program.

It is always possible to replace v by another nonzero vector v′ via a change of basis
without changing the function computed and the size of the span program. Most
often v is chosen to be the 1 vector (with all entries equal 1).

On Linear Secret Sharing for Connectivity in Directed Graphs 177

Theorem 3 ([23]). Let f : {0, 1}n → {0, 1} be a monotone function. Let U
denote the set of maxterms of f , and V denote the set minterms of f , and let
U ′ ⊆ U, V ′ ⊆ V . If there exists a monotone span program of size s computing
f over a field F, then there exist matrices F1, . . . , Fn, each matrix has |U ′| rows
and |V ′| columns (each row of the matrix is labeled by a u ∈ U ′ and each column
is labeled by a v ∈ V ′) such that

1.
∑n

i=1 Fi = 1 (that is, the sum of the matrices over F is the all-one matrix).
2. The non-zero entries in Fi are only in rows labeled by a u ∈ U ′ such that

ui = 0 and in columns labeled by a v ∈ V ′ such that vi = 1.
3.

∑n
i=1 rankF(Fi) ≤ s.

In this section, we prove the result for GF(2), but the proof easily generalizes
to other finite fields. The skeleton of the proof is as follows. We appropriately
choose subsets U ′, V ′ of the maxterms and minterms of st-con. We show that for
any matrices F1, . . . , Fn satisfying (1) and (2) in Theorem 3, there exist “many”
(Ω(n)) matrices Fe, such that a large fraction (Ω(1)) of the entries of Fe are
zero entries. Also, every Fe has some “singleton” 1 entries at fixed positions,
which are “well-spread” over the matrix. We then prove that every matrix Fe

with “many” zero entries has rank Ω(n0.5), this proof uses the partial knowledge
on the distribution of singletons, and the large number of zeros. By Theorem 3,
this implies that the size of every monotone span program computing st-con over
GF(2) has at least Ω(n0.5 · n) = Ω(n1.5) rows.

3.2 Details

To apply Theorem 3 we need to understand the minterms and maxterms of
st-con. Every minterm of st-con is a simple directed paths from s to t. Every
maxterm can be specified by a partition S ∪ T of V with s ∈ S, t ∈ T where
the edges in S×T are excluded and all other edges are included in the maxterm
(that is, the maxterm contains all edges in S × S, T × T , and T × S).

Defining U ′, V ′: Let w = m/d, where d is some constant to be fixed later.2 We ar-
range the nodes of the graph in layers L0, L1, . . . , Ld+1, where L0 = {s}, Ld+1 =
{t}, and all other layers contain w nodes. We consider the restriction st-con′

of the st-con function to directed graphs that contain only edges directed from
layer Li to layer Li+1. Note that the number of edges in the restricted function
st-con′ is a constant fraction of the number of edges in the function st-con, so
every lower bound for st-con′ implies the same lower bound for st-con (up to a
constant factor). We define the subsets U ′, V ′ as follows. Let V ′ be all the s-t
paths, that is, paths s, v1, . . . , vd, t, where vi ∈ Li. Let U ′ be the set of all s-t
cuts where 1/2 of the nodes in each layer Li, where 1 < i < d, are in S (and
the other half is in T). Additionally, {s} ∪ L1 ⊂ S and {t} ∪ Ld ⊂ T . Note that
|V ′| = wd and |U ′| =

(
w

w/2

)d−2.

2 As we see later, d = 4 will do.

178 A. Beimel and A. Paskin

Assume there is a monotone span program over F computing st-con′ and let
F1, . . . , Fn be the matrices guaranteed by Theorem 3.3 For an edge e = (x, y),
let Re denote the restriction of Fe to rows labeled by a cut u ∈ U ′ such that
ue = 0 (that is, the maxterm does not contain the edge (x, y)) and to columns
labeled by a path v ∈ V ′ such that ve = 1 (that is, the path contains the edge
(x, y)). Note that Re has wd−2 = |V ′|/w2 columns and 0.25

(
w

w/2

)d−2 = |U ′|/4
rows (as we consider cuts such that x ∈ S and y ∈ T).4 By (2) in Theorem 3,
rankF(Re) = rankF(Fe). We say that Re covers (u, v) if ue = 0 and ve = 1.
Denote the set of edges e such that Re covers (u, v) by S(u, v).

We start with a few simple observations. Obseration 1 and Obseration 2 follow
directly from (1) and (2) in Theorem 3 and the definition of the Re’s.

Observation 1. If |S(u, v)| = 1, then Fe(u, v) = Re(u, v) = 1 for the edge e ∈
S(u, v). We refer to such entries (u, v) as “singletons”.

Observation 2. If |S(u, v)| is even, then Re(u, v) = 0 for some e ∈ S(u, v).

L4

Su

Tu

s t

L1 L2 L3

Fig. 1. An illustration of a path and a cut for which |S(u, v)| is even. The vertices in
Su are black and the vertices in Tu are white. The edges in S(u, v) are the edge between
L1 and L2 and the edge between L3 and L4.

Lemma 1. Let c = 1/4. For d = 4 there are at least c|U ′||V ′| pairs (u, v) such
that |S(u, v)| is even.5

Proof. From the definition of U ′, V ′, and (2) in Theorem 3, it follows that S(u, v)
is precisely the set of edges in v that belong to Su × Tu (where the partition
Su ∪ Tu specifies the maxterm u). Fix some cut u ∈ U ′. For a path v the size of
S(u, v) is even if the path has an even number of edges going from Su to Tu. For
d = 4 this is true if the vertex in L2 is in Tu and the vertex in L3 is in Su, that
3 For an edge e = (s, x) or e = (x, t), the matrix Fe = 0 (by the definition of the

maxterms). We, therefore, ignore such matrices).
4 This is true if x ∈ Lj for 2 ≤ j ≤ d − 1; the number of rows for x ∈ L1 or x ∈ Ld−1

is 0.5
�

w
w/2

�d−2
= |U ′|/2.

5 For d = 5, the constant c is 0.5 and for any sufficiently large d, this constant ap-
proaches 1/2.

On Linear Secret Sharing for Connectivity in Directed Graphs 179

is, the edges in S(u, v) are the edge between L1 and L2 and the edge between
L3 and L4. See Fig. 1 for a description. Since half of the vertices of L2 are in Tu

and half of the vertices of L3 are in Su, for a quarter of the paths v ∈ V ′, the
size of S(u, v) is even. ��

We now move to our two main lemmas.

Lemma 2. There exist at least cw2 edges e such that Re contains at least a c
d

fraction of zeros, where c is the constant from Lemma 1.

Proof. We construct a set of edges as required, proceeding in iterations. By
Lemma 1, for all (u, v) the set

B = {(u, v) : |S(u, v)| is even}

must satisfy Re(u, v) = 0 for some edge e ∈ S(u, v). That is, we need to “cover”
the set B by edges in this sense, where e covers (u, v) ∈ B if Re(u, v) = 0.

Denote by Bi the set of entries uncovered at the beginning of iteration i. In
particular, B1 = B. By Lemma 1, |B1| = c|U ′||V ′| for some constant c. We start
an iteration i if |Bi| ≥ c|U ′||V ′|/2. Since there are at most w2(d − 1) − i ≤
w2d edges to choose from, at least one of them should cover at least

c|U ′||V ′|/2

w2d
uncovered entries (by the pigeon hole principle). We pick any of those e’s and
add it to the list. Note that the rectangle Re has at most |U ′|/2·|V ′|/w2 entries6,
thus a fraction of at least c/d of the entries of Re are 0. Each selected edge e
covers at most |U ′||V ′|/2w2 uncovered entries (the number of entries in Re).
Since we halt only when at least c|U ′||V ′|/2 pairs in B have been covered, at
least cw2 iterations are needed. ��

To complete the proof, it remains to show that every rectangle Re with “many”
zeros, as in Lemma 2, has high degree.

Lemma 3. Let Re, for e = (x, y), be a rectangle with a fraction of at least c/d
zero entries. Then rankGF(2)(Re) = Ω(n0.5).

Proof. In the following proof we restrict our attention only to the rows and
columns of Re. First note that a fraction of at least c/2d of the rows contain at
a fraction of at least c/2d zero entries (otherwise the fraction of zero entries in
Re is less than c/2d · 1+ (1− c/2d) · c/2d < c/d). Thus, the number of rows with
at least c|V ′|/(2w2d) zero entries is at least c|U ′|/(8d). We will show that these
rows contain many distinct rows, which will imply that Re has rank Ω(n0.5).

Fix any row u0 of Re with at least c|V ′|/(2w2d) zero entries. We show that
the row u0 can only appear in Re a small number of times (labeled by different
u’s). Let M be the set of columns in which this row has zero entries; the size of
M is at least c|V ′|/(4d). Let e = (x, y), where x belongs to layer Lj for some j
and y ∈ Lj+1.

We first prove that M contains a subset M ′ of paths of size ε · w for some
sufficiently small constant ε (to be fixed later) such that every two paths in M ′

6 This is the number of entries if x ∈ L1, otherwise this number is |U ′|/4 · |V ′|/w2.

180 A. Beimel and A. Paskin

have no nodes in common except for x, y, s, t. Similarly to the proof of Lemma 2,
we construct this set iteratively. In the first iteration, we add to M ′ some arbi-
trary path in M . We continue adding paths until there are εw paths. In iteration
i + 1, we have added i paths to M ′. We prove that another path can be added
so that all the paths in M ′ satisfy the invariant of being disjoint up to including
s, x, y, t. Any path using one of the w− i unused nodes in every layer Lk, where
k �= j, j + 1, can be used here. The number of all columns of Re with this prop-
erty is at least (w − i)d−2 ≥ (w(1 − ε))d−2, thus the number of columns in Re

violating this property is at most

wd−2−(w(1−ε))d−2 =wd−2(1−(1−ε)d−2) ≈ wd−2ε(d−2) = |V ′|ε(d−2) < |V ′|εd.

(for a sufficiently small constant ε). Taking ε ≤ c/(4d2), there are at least
c|V ′|/(4d)− |V ′|εd > 1 paths in M satisfying this property.

Having proved M ′ =
{
v1, . . . , vε|M|

}
as above exists, we consider the set of

rows
B′ = {u : e /∈ u and |S(u, v)| > 1 for every v ∈M ′}.

Notice that for every u /∈ B′, where e /∈ u, there exists a v ∈ M ′ such that
|S(u, v)| = 1, thus, by Obseration 1, Re(u, v) = 1, however, Re(u0, v) = 0
since v ∈ M (where M is the set of columns with zero entries in the row u0).
Thus, B′ is the set of rows in Re that can be equal to the row u0. Recall that
e = (x, y) ∈ S(u, v) for every row u of Re and every column v of Re (by the
definition of Re). Thus, S(u, v) > 1 if the cut u does not contain at least one
edge on the path v in addition to the edge (x, y).

We next show that B′ is of negligible size. We do this by calculating the prob-
ability that a cut chosen with uniform distribution is B′. We choose a random
cut u = (S, T) by first choosing for each node in v1 if its in S or in T , then the
nodes corresponding to v2, and so on, where the inclusion in S or T is selected
at random according to the proportion of the remaining colors for that layer
(conditioned on the choices for the previous vi’s). The cut u forms a singleton
with a given vi, selected in iterations i, if the node in vi from Lk for j′ ≤ j are in
S, and the rest of the nodes in vi are in T . This happens with probability at least
(1/2− ε)d−2 def= 1− f . Thus, with probability at most f the cut u does not form
a singleton with a given vi. Note f is some constant. Therefore, |S(u, v)| > 1 for
every v ∈ M ′ with probability at most

f |M
′| = f εw = 2−θ(w).

This implies that the size of B′ is at most 2−θ(w)|U ′|/2.
Since there are at least c|U ′|/(4d) rows with a fraction of at least c/(2d) zeros,

and each such row can appear at most 2−θ(w)|U ′|/2 in Re, the number of distinct
rows in Re is at least

c|U ′|/(4d)
2−θ(w)|U ′|/2

= 2θ(w).

This implies that rankGF(2)(Fe)=rankGF(2)(Re)=log(2θ(w))=θ(w) = θ(n0.5). ��

On Linear Secret Sharing for Connectivity in Directed Graphs 181

By Lemma 2 and Lemma 3, there are Ω(n) matrices Fe such that

rankGF(2)(Fe) = θ(n0.5).

Thus, by Theorem 3, every monotone span program computing st-con has size
Ω(n1.5).

4 Second Proof

In this proof we use a technique of [6] to prove lower bounds for monotone span
programs. They prove that if the set of minterms of f contains a “big” set of
self-avoiding minterms as defined below, then for every field F the size of every
monotone span program over F computing f is “big”.

Definition 2 (Self-Avoiding Minterms). Let f be a monotone Boolean func-
tion and V be the set of all of its minterms. Let V ′ ⊆ V be a subset of the
minterms of f . We say that V ′ is self avoiding for f , if every v ∈ V ′ contains
a set C(v) ⊆ v, called the core of v, such that the following three conditions are
satisfied.

1. |C(v)| ≥ 2.
2. The set C(v) uniquely determines v in V ′. That is, no other minterm in V ′

contains C(v).
3. For any subset Y ⊆ C(v) , the set

SY =
⋃

A∈V ′,A∩Y �=∅
A \ Y

does not contain any minterm in V .

Note that (3) requires that SY contains no minterm from f , not just none
from V ′.

Theorem 4. Let f be a monotone Boolean function, and let V ′ be a self-avoiding
subset of minterms for f . Then for every field F,

mSPF(f) ≥ |V ′| .

As in the first proof, we consider a graph with m+2 nodes, and let w = m/4. We
arrange the nodes of the graph in layers L0, L1, . . . , L5, where L0 = {s}, L5 =
{t}, and all other layers contain w nodes. We denote the nodes in layer Lj ,
where 1 ≤ j ≤ 4 by vj,1, . . . , vj,w. We consider the restriction st-con′ of the
st-con function to directed graphs that contain only edges directed from layer
Li to layer Li+1. We prove that every monotone span program for st-con′ has
size Ω(w3) = Ω(n1.5). The proof is by exhibiting a self-avoiding set of minterms
as defined in Definition 2.

182 A. Beimel and A. Paskin

The self-avoiding set for st-con′. For every a, b, c ∈ {1, . . . , w} there is a path
Pa,b,c in the set:

s, v1,a, v2,b, v3,c, v4,a, t.

That is, the indices of the nodes from L1 and L4 are equal. The core C(Pa,b,c)
is {(v1,a, v2,b), (v3,c, v4,a)}. Clearly, the core determines the path Pa,b,c.

We have to show that for every Y ⊆ C(P) the set SY does not contain a path
from s to t. If |Y | = 1 then SY does not contain an edge from one layer. E.g., if
Y = {(v1,a, v2,b)} then SY does not contain any edges going from V1 to V2.

We next consider the somewhat more complex case when |Y | = 2. In this case
SY is composed of the following edges:

1. (s, v1,a) from the first level.
2. (v1,a, v2,b′) for every b′ �= b from the second level.
3. (v2,b, v3,c′) for every c′, and (v2,b′ , v3,c) for every b′ from the third level.
4. (v3,c′ , v4,a) for every c′ �= c from the fourth level.
5. (v4,a, t) from the fifth level.

Assume SY contains a path from s to t. Since v2,b does not have any incoming
edges then the path has to pass through v2,b′ for some b′ �= b. Thus it must pass
through v3,c. But v3,c has no outgoing edges in SY , contradiction.

To conclude, we have proved that st-con′ has a self-avoiding set of size w3 =
O(n1.5) and Theorem 4 implies our main result – Theorem 1.

Acknowledgment. We would like to thank Eyal Kushilevitz for helpful
discussions.

References

1. Ajtai, M., Fagin, R.: Reachability is harder for directed than for undirected finite
graphs. J. Symb. Log. 55(1) (1990)

2. Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone
span programs. Combinatorica 19(3), 301–319 (1999)

3. Beimel, A.: Secure Schemes for Secret Sharing and Key Distribution. PhD thesis,
Technion (1996), www.cs.bgu.ac.il/beimel/pub.html

4. Beimel, A., Chor, B.: Universally ideal secret sharing schemes. IEEE Trans. on
Information Theory 40(3), 786–794 (1994)

5. Beimel, A., Gál, A.: On arithmetic branching programs. J. of Computer and System
Sciences 59, 195–220 (1999)

6. Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs.
Computational Complexity 6(1), 29–45 (1997); Conference version: FOCS 1995

7. Beimel, A., Weinreb, E.: Separating the power of monotone span programs over
different fields. SIAM J. on Computing 34(5), 1196–1215 (2005)

8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncrypto-
graphic fault-tolerant distributed computations. In: Proc. of the 20th ACM Symp.
on the Theory of Computing, pp. 1–10 (1988)

9. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidel-
berg (1990)

www.cs.bgu.ac.il/beimel/pub.html

On Linear Secret Sharing for Connectivity in Directed Graphs 183

10. Benaloh, J., Rudich, S.: Private communication (1989)
11. Blakley, G.R.: Safeguarding cryptographic keys. In: Merwin, R.E., Zanca, J.T.,

Smith, M. (eds.) Proc. of the 1979 AFIPS National Computer Conference, AFIPS
Conference proceedings, vol. 48, pp. 313–317. AFIPS Press (1979)

12. Blundo, C., De Santis, A., de Simone, R., Vaccaro, U.: Tight bounds on the in-
formation rate of secret sharing schemes. Designs, Codes and Cryptography 11(2),
107–122 (1997)

13. Blundo, C., De Santis, A., Giorgio Gaggia, A., Vaccaro, U.: New bounds on the
information rate of secret sharing schemes. IEEE Trans. on Information The-
ory 41(2), 549–553 (1995)

14. Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combin. Math. and
Combin. Comput. 6, 105–113 (1989)

15. Capocelli, R.M., De Santis, A., Gargano, L., Vaccaro, U.: On the size of shares for
secret sharing schemes. J. of Cryptology 6(3), 157–168 (1993)

16. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 11–19 (1988)

17. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

18. Csirmaz, L.: The size of a share must be large. In: De Santis, A. (ed.) Advances in
Cryptology – EUROCRYPT 1994. LNCS, vol. 950, pp. 13–22. Springer, Heidelberg
(1995); Journal version in J. of Cryptology 10(4), 223–231 (1997)

19. Csirmaz, L.: The dealer’s random bits in perfect secret sharing schemes. Studia
Sci. Math. Hungar. 32(3–4), 429–437 (1996)

20. Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Hei-
delberg (1992)

21. van Dijk, M.: On the information rate of perfect secret sharing schemes. Designs,
Codes and Cryptography 6, 143–169 (1995)

22. van Dijk, M.: A linear construction of secret sharing schemes. Designs, Codes and
Cryptography 12(2), 161–201 (1997)

23. Gál, A.: A characterization of span program size and improved lower bounds for
monotone span programs. Computational Complexity 10(4), 277–296 (2002)

24. Gál, A., Pudlák, P.: Monotone complexity and the rank of matrices. Inform. Pro-
cess. Lett. 87, 321–326 (2003)

25. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proc. of the 13th ACM conference on
Computer and communications security, pp. 89–98 (2006)

26. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: Proc. of the IEEE Global Telecommunication Conf., Globecom 87,
pp. 99–102 (1987); Journal version: Multiple assignment scheme for sharing secret.
J. of Cryptology 6(1), 15–20 (1993)

27. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM J. on Discrete Mathematics 3(2), 255–265 (1990)

28. Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th IEEE Struc-
ture in Complexity Theory, pp. 102–111 (1993)

29. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. on Information Theory 29(1), 35–41 (1983)

30. Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. IEEE
Transactions on Parallel and Distributed Systems 9(1), 909–922 (1998)

184 A. Beimel and A. Paskin

31. Padró, C., Sáez, G.: Secret sharing schemes with bipartite access structure. IEEE
Trans. on Information Theory 46, 2596–2605 (2000)

32. Rabin, M.O.: Randomized Byzantine generals. In: Proc. of the 24th IEEE Symp.
on Foundations of Computer Science, pp. 403–409 (1983)

33. Reingold, O.: Undirected ST-connectivity in log-space. In: Proc. of the 37th ACM
Symp. on the Theory of Computing, pp. 376–385 (2005)

34. Rónyai, L., Babai, L., Ganapathy, M.K.: On the number of zero-patterns of a
sequence of polynomials. Journal of the AMS 14(3), 717–735 (2001)

35. Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
36. Simmons, G.J., Jackson, W., Martin, K.M.: The geometry of shared secret schemes.

Bulletin of the ICA 1, 71–88 (1991)
37. Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans.

on Information Theory 40(1), 118–125 (1994)
38. Tardos, E.: The gap between monotone and non-monotone circuit complexity is

exponential. Combinatorica 8(1), 141–142 (1988)

Expressive Subgroup Signatures

Xavier Boyen1 and Cécile Delerablée2

1 Voltage, Palo Alto, California
xb@boyen.org

2 Orange Labs - ENS
cecile.delerablee@orange-ftgroup.com

Abstract. In this work, we propose a new generalization of the notion
of group signatures, that allows signers to cover the entire spectrum
from complete disclosure to complete anonymity. Previous group signa-
ture constructions did not provide any disclosure capability, or at best a
very limited one (such as subset membership). Our scheme offers a very
powerful language for disclosing exactly in what capacity a subgroup of
signers is making a signature on behalf of the group.

1 Introduction

Collective signatures allow an individual to make a signed statement
anonymously on behalf of a coalition. Whereas ring signatures [30] are uncon-
ditionally anonymous, group signatures [17] come with an anti-abuse protec-
tion mechanism, whereby a tracing authority can lift a signature’s anonymity
to uncover the identity of the signer in case of necessity. In group signatures,
membership to the group must be restricted and subject to a formal vetting
and enrollment process of its members: these are desirable properties in many
applications.

In many contexts, the blunt anonymity provided by group signatures goes
too far, and it would be preferable to go half-way between full anonymity and
full disclosure — e.g., to boost the credibility of a statement without completely
engaging the individual responsibility of the signer. This is especially important
in groups with many members, or with members of differing competences, or
any time several signers wish to sign a joint statement while retaining some
anonymity within a larger group.

The “Ad Hoc Group Signatures” from [20] at Eurocrypt 2004 provided a
partial answer, by allowing a signer to disclose that he or she belongs to a
particular subset of the group, not just the entire group. The “Mesh Signatures”
from [11] at Eurocrypt 2007 went further by providing a very expressive language
that signer(s) could use to make very specific statements as to the capacity in
which they created the signature (such as, “undersigned by, either, five senators,
or, two deputies and the prime minister”). Unfortunately mesh signatures were
a generalization of ring signatures with no provision for traceability.

In this work, we propose a group signature with a mesh-like expressive lan-
guage for proving and verifying complex propositions about group membership,

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 185–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

186 X. Boyen and C. Delerablée

including those whose fulfillment requires credentials from more than one group
member. Given a valid signature, anyone can verify that it was created by a
subgroup of signers that satisfied a certain condition (stated as an expression
given with the signature), and learn nothing else. However, the tracing author-
ity is able to unblind the signature and find out exactly how the condition was
fulfilled, and thus who the signers are.

The construction we propose is based primarily on the mesh signatures of [11],
which we modify in order to equip with a tracing capability. The tracing mecha-
nism is inspired by a number of recent group signature constructions [12,1,13,21],
which all made use of zero-knowledge proof systems in bilinear groups of com-
posite order [10,22,23]. Compared to those, however, the present work provides a
technical novelty: the composite algebraic group and the zero-knowledge proofs
had to be flipped “inside out” in order to be compatible with the more expressive
language that we implement.

Our signatures are efficient, both in the asymptotic and the practical sense: the
signature size will be linear in the size of the expression that it represents, with
a small proportionality constant. Although it would surely be nice to shrink the
cryptographic part of the signature further down to a constant-size component,
this is not of great importance here since the total signature size and verification
time would still have to be linear or worse — because the verification expression
has to be stated and used somewhere, and the access structure it represents is
likely to change from one signature to the next. (Contrast this with regular group
signatures, where it is more desirable to have signatures of constant size, because
the group composition is fixed and need not be repeated.) For comparison, our
fine-grained group signature is essentially as short and efficient as the mesh
signature of [11], which is the most relevant benchmark for it is the only known
anonymous signature that is as expressive as ours (albeit lacking the tracing
capability).

Our scheme satisfies (suitable version of) the usual two main security prop-
erties of group signatures originally defined in [5]. The two properties are here:
Full Anonymity for CPA-attacks [9] and Full Traceability with Dynamic Join
[6], from which other natural requirements such as existential unforgeability,
non-frameability, strong exculpability, collusion resistance, etc., can be shown
to follow (see [5,6]). We shall define the two core properties precisely as they
generalize to our more expressive notion of group signatures, and prove that
our scheme satisfies them under previously analyzed complexity assumptions,
in the standard model (unless a join protocol is used for strongly exculpability,
in which case we need either random oracles or a common reference string to
realize extractable commitments).

The name “Expressive Subgroup Signatures” is meant to capture that at
the core these are group signatures, albeit not ones whose level of (revocable)
anonymity is fixed and depends only on the group composition, but can be
adjusted “in the field” with great precision, any time a new signature is created
by any subgroup of signer(s) within the group boundaries.

Expressive Subgroup Signatures 187

1.1 Related Work

Ring signatures. Ring signatures were introduced in [30]. Each user in the system
has a public key, and can generate a ring signature. Such a signature implicates
some other users, chosen by the signer, and is such that a verifier is convinced
that someone in the ring formed by the public keys of the signer and the chosen
members is responsible for the signature, but nothing else. Constant-size ring
signatures were constructed in [20]. Recently, a number of ring signatures without
random oracles have been constructed from pairings, such as [18,7,31,11].

Mesh signatures. Mesh signatures were recently proposed [11] as a powerful gen-
eralization of ring signatures, with a rich language for striking the desired balance
from full disclosure to full anonymity and almost anything in between (including
complex statements involving, inter alia, trees of conjunctions and disjunctions
of multiple potential signers). The work of [11] gave the first unconditionally
anonymous ring signatures without random oracles as a special case.

Group signatures. Group signatures were first proposed in [17] to allow any
member of a specific group to sign a message on behalf of the group, while
keeping the signer anonymous within the group. However, a tracing authority
has the ability to uncover the identity of the signer, which it should only do
in certain extenuating circumstances. Group signatures have attracted much
attention in the research community; we mention for example the works of
[1,2,3,5,6,9,12,13,14,15,16,27,29,32].

For completeness, we mention the recently proposed notion of “attribute-
based group signature” [26,25], which, contrarily to what the name might sug-
gest, is a far cry from fulfilling our goal. (These signatures are rather inflexible,
as they require that the attribute trees be constructed by the setup authority,
and not the signer. Furthermore, verifying each attribute tree requires a different
public key which must be requested interactively from the setup authority.)

2 Preliminaries

2.1 Composite-Order Pairings

Our construction makes use of bilinear pairings defined over groups of composite
order, whose cryptographic applications were first investigated in [10].

A (symmetric) composite-order pairing is an efficiently computable function
e : G×G → GT , where G and GT are finite cyclic groups of order N = pq, and
with the following properties:

Bilinearity: ∀u, v ∈ G, ∀a, b ∈ Z, we have e(ua, vb) = e(u, v)ab mod N .
Non-degeneracy: ∃g ∈ G such that e(g, g) has order N and thus generates GT .

Although the composite group order N can be made public, it is usually impor-
tant that the factorization N = pq remains a secret. The most common hardness
assumption that relies on hardness of factoring in the context of bilinear maps
is called the Decision Subgroup assumption.

188 X. Boyen and C. Delerablée

The Decision Subgroup Assumption. Let G be a bilinear group of order
N = pq. Let Gp be the subgroup of points of order p with no residue of order q,
that is, u ∈ Gp iff up = 1 ∈ G. Similarly, we let Gq be the subgroup of points of
order q congruent to 1 in Gp.

Informally, the decision subgroup assumption says that one cannot efficiently
distinguish G from Gp with non-negligible advantage.

Formally, we consider an “instance generator” G, which, on input 1λ, outputs
a tuple (p, q, G, GT , e), where p and q are random λ-bit primes, G and GT are
cyclic groups of order N = pq, and e : G × G → GT is a bilinear pairing. The
subgroup decision problem is, given (N, G, GT , e) derived from an execution of
G(1λ), to decide whether a given element w was chosen randomly in G or in Gp.
The Subgroup Decision assumption states that this is infeasible in polynomial
time with non-negligible probability above 1/2, that of a random guess.

An alternative definition is to give the distinguisher two reference generators
gN ∈ G and gp ∈ Gp in addition to (N, G, GT , e) and w; the task remains to
decide whether w ∈ G or w ∈ Gp. We use this definition to simplify our proofs.

The Poly-SDH Assumption. The traceability proof of the ESS scheme will
be based on the unforgeability of the mesh signature scheme of [11], which was
itself proved from the so-called Poly-SDH assumption in bilinear groups. The
(q, �)-Poly-SDH is a parametric assumption that mildly generalizes the earlier
Strong Diffie-Hellman assumption [8] in such groups. It can be stated as:

(Poly-SDH) Given g, gα1 , ..., gα� ∈ G and q � pairs (wi,j , g1/(αi+wi,j)) for
1 ≤ i ≤ � and 1 ≤ j ≤ q, choose a list of values w1, ..., w� ∈ Fp and output
� pairs (wi, gri/(αi+wi)) such that

∑�
i=1 ri = 1.

2.2 Group Signatures

A group signature scheme involves a group manager, an opening manager, group
members and outsiders. The group manager is able to add new members by
issuing private keys thanks to a master key MK, while the opening manager can
use the tracing key TK to revoke the anonymity of any group signature.
Such a scheme is specified as a tuple GSS = (Setup, Join, Sign, Verify, Trace) of
algorithms described as follows:
– The setup algorithm Setup generates, according to a security parameter, a

public verification key PK, a master key MK, and a tracing key TK.
– The enrollment algorithm, Join, that generates a private signing key using

the master key MK. The private key is then given to the new user.
– The group signing algorithm, Sign, that outputs a signature σ on a message

M , using a group member’s private key.
– The (usually deterministic) group signature verification algorithm, Verify,

that takes as input the group verification key PK and a signature σ on a
message M , and outputs either valid or invalid.

– The (usually deterministic) tracing algorithm, Trace, that takes a valid signa-
ture σ and a tracing key TK, and outputs the identity of a group member or⊥.

The following correctness and security properties are required.

Expressive Subgroup Signatures 189

Consistency. Given a group signature generated by a honest group member, the
verify algorithm should output valid, and the tracing algorithm should identify
the actual signer.

Security. Bellare, Micciancio, and Warinschi [5] characterize the fundamental
properties of group signatures in terms of two crucial security properties from
which a number of other properties follow. The two important properties are
Full Anonymity and Full Traceability.

It is noted in [5] that the full traceability property implies that of exculpability
[4], which is the requirement that no party should be able to frame a honest group
member as the signer of a signature he did not make, not even the group manager.
However, the model of [5] does not consider the possibility of a (long-lived)
group master, which leaves it as a potential framer. To address this problem
and achieve the notion of strong exculpability, introduced in [2] and formalized
in [29,6], one also needs an interactive enrollment protocol, call Join, at the end
of which only the user himself knows his full private key; the same mechanism
may also enable concurrent dynamic group enrollment [6,29]. In this work, we
opt for this stronger notion and thus we shall explicitly describe such a Join
protocol.

We refer the reader mainly to [5] for more precise definitions of these and
related notions.

2.3 Mesh Signatures

We now briefly recapitulate the notion of mesh signature introduced in [11].
In short, a mesh signature is a non-interactive witness-indistinguishable proof

that some monotone boolean expression Υ (L1, . . . , Ln) is true, where the input
literals Li denote the validity of “atomic signatures” of the form {Msgi}Keyi

for
arbitrary messages and different keys. (The special case of ring signatures [30]
corresponds to Υ being a flat disjunction.)

Admissible mesh expressions Υ consist of trees of And, Or, and Threshold
gates, and single-use input literals, generated by the following grammar:

expr ::= L1 | ... | L� single-use input symbols
| ≥t{expr1, ...,exprm} t-out-of-m threshold, with 1 < t < m
| ∧{expr1, ...,exprm} m-wise conjunction, with 1 < m
| ∨{expr1, ...,exprm} m-wise disjunction, with 1 < m

Not all literals need to be true in order for Υ to be satisfied. However the
mesh signature must only attest to the truth of Υ without revealing how it is
satisfied: this is the anonymity property. Conversely, a signer should not be able
to create a mesh signature without possessing a valid atomic signature for every
literal set to true: this is the unforgeability property.

2.4 Security of Expressive Subgroup Signatures

ESS are just as expressive as mesh signatures, and provide the same anonymity,
except that the latter can be lifted by a tracing authority. We require:

190 X. Boyen and C. Delerablée

ESS Anonymity. The notion of anonymity we seek is not that we wish to
hide the identity of the users named in the ESS expression Υ (which is public
anyway), but to hide who among the users actually created the signature.

Precisely, we require that the identity of the actual signer(s) be computation-
ally indistinguishable in the set of all valid ESS signatures specified by the same
expression Υ , even under full exposure of all user keys. This is the same notion as
in the mesh signatures of [11], except that here the requirement is computational
and not information-theoretic in order not to stymie the tracing authority, and
is of course conditional on the secrecy of the tracing key.

ESS Traceability. Traceability is the group-signature version of unforgeability.
For ESS, as for mesh signatures before them, this notion is tricky to formalize
because of the potentially complex dependences that may exist between good
and forged signatures. To see this, consider a coalition of two forgers, U1, U2,
and a honest user, U3. Suppose that the forgers fabricate a valid ESS signature
σ for the expression Υ = {m1}U1 ∨ ({m2}U2 ∧ {m3}U3), that can be traced the
subgroup U2, U3. Is that a successful forgery? What if σ traced to U2 only?

The answer is a double “yes”: in the first case, because U3 was wrongly des-
ignated by the tracer; and in the second case, because U2 alone could not have
satisfied Υ , which means that some guilty party escaped detection. If on the
other hand, the finger were pointed at U1, the signature would have a satisfac-
tory explaination that involves only (the parties that we know to be) the culprits:
this would be a failed forgery since the coalition got caught.

The ESS traceability challenge is thus, for any coalition of signers, to come
up with a valid signature σ for an expression Υ (L1, . . . , Ln), such that σ, either,
traces to at least one user outside of the coalition, or, traces to a subset of the
coalition that does not validate Υ (that is, when Υ is “false” after setting the
designated literals Li to “true” and only those).

Strong Exculpability. This last notion is borrowed straight from group signa-
tures [2,29,6], and is orthogonal to the above. It gives any user the possibility to
dispute his alleged binding to any certificate that he did not request. To defend
from such accusation, the group manager (who signed the disputed certificate)
must produce a valid certificate request signed by the user’s individual key reg-
istered in some PKI. The enrollment protocol must guarantee that only the user
learns the private key associated with their certificates. Together, this prevents
the ESS group manager from framing users for signatures they did not make.

2.5 Formal Security Models

We now specify the formal ESS security model in accordance with the previously
stated requirements.

Anonymity. The ESS anonymity game is played between a challenger and an
adversary.

Initialization. The challenger gives to the adversary the public param-
eters of an ESS.

Expressive Subgroup Signatures 191

Interaction. The following occurs interactively, in any order, driven by
the adversary.
User enrollment. The adversary may ask the challenger to enroll

a polynomially bounded number of new users in the group. The
adversary may either impersonate the user in the enrollemnt pro-
tocol, or ask the challenger to simulate it all by itself. The re-
sulting public certificates are published.

Signature queries. The adversary may ask the challenger to sign
any ESS expression Υ on behalf of the users it controls.

Key recovery. The adversary may ask the challenger to reveal the
group signing key of any user.

The challenger processes each request before accepting the next one.
Challenge: The adversary finally output a specification Υ and two sets

of assignments χ1 and χ2 to its literals Li, that both cause Υ to be
satisfied. These truth assignments indicate which users are supposed
to sign Υ . The adversary must also supply the necessary atomic
signatures for the users for which it has the keys.
The challenger chooses one assignment b ∈ {1, 2} at random, and
creates an ESS signature σ on the specification Υ using only atomic
signatures corresponding to the true literals in χi. The signature σ
is given to the adversary.

Guess: The adversary makes a guess b′, and wins the game if b = b′.

The adversary’s advantage in the ESS anonymity game is Pr[b = b′]− 1/2, where
the probability is defined over the random coins used by all the parties.

Traceability. The ESS traceability game is played between a challenger and an
adversary.

Initialization. The challenger gives to the adversary the public param-
eters of an ESS. The challenger also reserves a number � of user
indices to represent the “honest users” under its control.

Interaction. The following occurs interactively, in any order, driven by
the adversary.
Honest user enrollment. The adversary may request that the

challenger create up to � honest users, kept in the challenger’s
control. The challenger publishes the corresponding certificates.

Corrupted user enrollment. The adversary makes polynomially
user enrollment queries, for the users under the adversary’s con-
trol. The adversary chooses or receives the user secret keys in
accordance with the chosen enrollment protocol. The challenger
computes the corresponding certificates in accordance with the
enrollment protocol, and publishes them.

ESS signature queries. The adversary makes up to q ESS signa-
ture queries, one at a time, on specifications Υj , indicating to
the challenger which ones of the honest users are supposed to
issue the signature. To be acceptable, each request must be for

192 X. Boyen and C. Delerablée

a signature that the specified subset of honest users is supposed
to be able to make based on the specification and supporting
atomic signatures provided by the adversary.
The adversary may also make up to q queries for atomic signa-
tures, to each of the users controlled by the challenger.

The challenger processes each request before accepting the next one.
Forgery: The adversary finally output a fresh valid ESS signature σ

for some specification Υ of its choice. It wins the game if the list of
literals Li designated by the tracing algorithm on input σ fails to
satisfy the two following properties:
1. All the designated literals Li correspond to atomic signatures
{Msgi}Useri

under the adversary’s control (either because the
adversary controls the corresponding user, or had obtained the
atomic signature by querying the challenger).

2. The specification formula Υ (..., Li, ...) can be satisfied by setting
all the designated literals to “true” () and all the other literals
to “false” (⊥).

The adversary’s advantage in the ESS traceability game is simply the probability
that it wins the game. The probability is defined over the random coins used by
all the parties.

3 Construction

Our Expressive Subgroup Signature construction will bring together a number
of different techniques.

To get the anonymity properties we seek, we will naturally start with the
ring/mesh signatures from [11], which comes with a powerful language and proof
system. We use it to create an anonymous group identification mechanism for
certificates issued by the group manager. Since we need a signature scheme and
not just an identification scheme, we shall extend the certificates into certificate
chains ending with actual signatures from users’ keys. This part is easy to do us-
ing the mesh language, so this step will be a simple matter of specifying how the
various terminal signatures and their supporting certificates should be assem-
bled. This gives us a multi-user anonymous signature with a central authority.
However, we still lack traceability.

To get traceability, we need to build a trapdoor that will remove the blinding
from the mesh signatures. Recall that the ring and mesh signatures from [11] con-
sist of one signature element per ring or mesh member. Some of those elements
are “live”, meaning that they were created using the member’s actual secret key.
The remaining elements are “blank” and do not contribute to the verification
equation. Since it would be easy to tell who the signers were just by finding the
live elements, the elements are information-theoretically blinded so that they all
look the same. Here, to get traceability, we shall swap out the perfect blinding
for one that has a trapdoor. Since the mesh signatures require a bilinear pairing

Expressive Subgroup Signatures 193

for their verification, we shall add the trapdoor into the bilinear group, using a
standard trick used in several previous constructions [22]. We simply translate
the signatures into a bilinear group of composite order, and restrict the blind-
ing elements to one of its two algebraic subgroups. An adversary will just see
smoke under the proper hardness assumption [10]; but a tracing authority that
knows the order of the subgroups will be able to cancel the blinding (by pairing
each signature component with a neutral element in that subgroup), and hence
distinguish which signature components are live and which ones are blank.

In the following subsections, we explain step-by-step how to construct expres-
sive subgroup signatures. We work in an algebraic group G of composite order
N = pq and equipped with a bilinear pairing e : G × G → GT . We call G the
bilinear group and GT the targer group; both are of order N . Bilinearity is the
property that ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab mod N .

3.1 User Credentials

Users must be affiliated with the group in order to create signatures, which
means that they must have acquired proper credentials from the group manager
(which controls the user vetting and enrollment process).

In its most basic instantiation, a certificate for user i could simply be a secret
key for the Boneh-Boyen signature scheme [8]. The secret key (yi, zi) ∈ Z2

p

would be securely handed over to the user, and the corresponding public key
(gyi , gzi) ∈ G2 signed by the group manager and perhaps published as part of the
group description. A signature on m ∈ Zp would be a random pair (t, S) ∈ Zp×G,
where S = g1/(yi+m+zit), which is verifiable by testing e(S, gyigmgzit) = e(g, g).
The drawback is that the group manager would know yi and zi and would thus
be able to create signatures on the user’s behalf. We would also need to embed
a tracing trapdoor into all user-generated signatures.

In the preferred instantiation, a group certificate will depend on a secret
component that is known only to the user, to prevent users from being framed.
It should also depend on a secret from the manager, to guarantee traceability.
Using a technique close to the one proposed by Delerablée and Pointcheval [19],
we let the credentials for user i consist of a secret key (xi, yi, zi) and a public
certificate (Ai, Bi, Ci), where Ai = gyi/(γ+xi), Bi = g1/(γ+xi), and Ci = gzi/(γ+xi),
for some random xi. Here, γ and Γ = hγ are respectively the secret and public
key of the group manager, and g and h are two fixed generators of the group G.
The certificate of user i is the triple (Ai, Bi, Ci) signed by the group manager.
For randomly chosen t ∈ Zp, an “atomic signature” on m ∈ Zp will be a pair:

σ = (t, S) ∈ Zp ×G s.t. S = (Γhxi)1/(yi+m+zit) .

The verification equation is thus: e(S, AiB
m
i Ct

i) = e(h, g).
For simplicity reasons, we can merely suppose a enrollment protocol where

the user chooses (yi, zi), sends (gyi , gzi) to the group manager along with a
proof of knowledge, and receives (xi, Ai, Bi, Ci) in return. Nevertheless, following

194 X. Boyen and C. Delerablée

a technique from [19], in Section 3.7 we present a more complex “dynamic”
enrollment protocol, which renders our scheme secure under concurrent join [28],
and provides strong user exculpability [6] against dishonest managers.

3.2 Atomic Signatures

Using their credentials, users are able to create atomic signatures on any message
of their choice, which for simplicity we assume represented as an integer m ∈ Zp.
Atomic signatures provide no anonymity; they merely serve as building blocks
in more complex assemblies.

An atomic signature created from credentials as above is a pair (t, S) ∈ Zp×G
that satisfies a verification equation of the form,

e(S, AiB
m
i Ct

i︸ ︷︷ ︸
R

) = e(h, g) ,

with respect to a publicly verifiable certificate (Ai, Bi, Ci) associated to user i.
We observe for later use that this is exactly a Boneh-Boyen signature, and that
the right-hand side e(h, g) in the verification equation is the same for all users.

3.3 Ring Signatures

Once we have atomic signatures of the previous form, we can easily construct an
information-theoretically anonymous ring signature, based on the approach pro-
posed in [11]. Suppose that there are n users with public certificates (A1, B1, C1)
through (An, Bn, Cn), and consider the following verification equation for some
message m, or more generally, for respective user messages m1 through mn:

n∏
i=1

e(Si, AiB
mi

i Cti

i︸ ︷︷ ︸
Ri

) = e(h, g) .

Any one of the n users is able to create, by himself, a vector of n pseudo-
signatures (ti, Si) for i = 1, . . . , n that will jointly verify the preceding equation.
In order to do so, the user will need his own key and everyone else’s certificates.
For example, user 1 would pick random r2, . . . , rn, and t1, . . . , tn, and set:

S1 = (Γhx1)1/(y1+m1+z1t1) ·
[n∏

i=2

Rri

i

]
, S2 =

[
R−r2

1

]
, . . . , Sn =

[
R−rn

1

]
.

It is easy to see that, for any random choice of ri ∈ Zp, the blinding terms
in the square brackets will cancel each other in the product of pairings in the
verification equation; e.g., e(Rr2

2 , R1) from S1 will cancel e(R−r2
1 , R2) from S2.

What is left is the Boneh-Boyen signature component (Γhx1)1/(y1+m1+z1t1) in S1,
which in the verification equation will produce the value e(h, g) we seek.

Expressive Subgroup Signatures 195

For the example of user 1 being the actual signer, the cancellation that occurs
is, in extenso, if we let S′

1 = (Γhx1)1/(y1+m1+z1t1):

n∏
i=1

e(Si, Ri) = e(S1, R1) · e(
n∏

i=2

Rri

i , R1) ·
n∏

i=2

e(Si, Ri)

= e(S′
1, R1) · e(

n∏
i=2

Rri

i , R1) ·
n∏

i=2

e(R−ri
1 , Ri)

= e(h, g) ·
n∏

i=2

e(Ri, R1)ri ·
n∏

i=2

e(R1, Ri)−ri = e(g, h)

The point is that user 2 (or any other user j) could have achieved the same
result by using his own secret key inside S2 (or Sj), but nobody else could,
without one of the users’ key. Also, because there are 2n components in the
signature, but 2n − 1 randomization parameters and 1 perfectly symmetric
verification equation, it is easy to see that the joint distribution of the full
signature (ti, Si)n

i=1 is the same regardless of which one of the n listed users
created it.

Hence, this is a ring signature, i.e., a witness-indistinguishable proof for the
disjunction “{m1}user1 ∨ {m2}user2 ∨ . . . ∨ {mn}usern

”. The signature can be
shown to be unconditionally anonymous, and existentially unforgeable under the
n-Poly-SDH assumption [11], which slightly generalizes the SDH assumption [9].

3.4 Mesh Signatures

The next step is to turn those ring signatures into something that is much more
expressive. Recall that ring signatures can be viewed as witness-indistinguishable
“disjunctions” of individual signatures. Since the disjunction L1∨L2∨ . . .∨Ln is
the least restrictive of all (non-trivial) propositional expressions over L1, . . . , Ln,
it should be possible to express different statements by adding more constraints
to the signature. E.g., we could require that supplemental verification equa-
tions be satisfied conjointly. The “mesh signatures” of [11] are based on this
principle.

A classic result from [24] shows that any monotone propositional expression
over a set of literals can be represented efficiently and deterministically using
a system of linear equations {

∑n
i=1 λi,jνi = λj}k+1

j=1 over the same number of
variables: a literal Li will be true in a true assignment if and only if the corre-
sponding variable νi has a non-zero value in the corresponding system solution
(of which there may be many).

In the construction of [11], the linear system coefficients λi,j will become
public exponents in the verification equations. Depending on the expression it
represents, a mesh signature (ti, Si)n

i=1 requires 1 ≤ k + 1 ≤ n verification
equations (with the usual Ri = AiB

mi

i Cti

i computable from public values):

196 X. Boyen and C. Delerablée

n∏
i=1

e(Si, Ri) = e(h, g) ,

n∏
i=1

e(Si, Ri)λi,1 = 1 ,

. . .
n∏

i=1

e(Si, Ri)λi,k = 1 .

To make a signature, the signer, or coalition of signers, must prove that the
propositional expression has a solution, i.e., that there is a vector of Si that
passes all the equations. This can be done by setting Si ← ((Γhxi)1/(y1+mi+z1t1))νi

given any solution vector (ν1, . . . , νn) of the linear system. However, for every
index i with a non-zero solution νi �= 0, the signer(s) will be unable to create Si

unless they possess or are able to create the atomic signature (Γhxi)1/(y1+m+z1t1).
Only for νi = 0 can they get by without it.

This procedure results in a valid signature, but not in an anonymous one. The
last step is thus to hide the witness, i.e., the vector (ν1, . . . , νn) used to build the
Si. This is done by adding blinding terms to the Si just as in the ring signature.
The result is an unconditionally anonymous signature for arbitrary monotone
propositional expressions.

The entire mesh signing process and its security proofs are somewhat more
involved. Full mesh signatures also require a presence of a dummy user “in the
sky” (with a public random public key and no known secret key), who will “sign”
a hash of the entire mesh expression in order to “seal” it. We refer the reader to
[11] for details.

3.5 Tracing Trapdoor

We now have an expressive anonymous signature, albeit not a traceable one. To
make mesh signatures traceable, we need to redefine the mesh signature scheme
in bilinear groups of composite order N . The factorization N = pq is a trapdoor
that is only known to the tracing authority. Let thus GN � Gp ⊗Gq.

ESS signatures are defined as mesh signatures in a composite-order group G.
We do require however that the “main” generator g generate only the subgroup
Gp of order p. That is, we impose that gp = 1 ∈ G or equivalently g ≡ 1 ∈ Gq.
Since the Ai, Bi, Ci, and thus the Ri, are powers of g, all those elements will
belong in the subgroup Gp of order p. It is easy to see that, since the verification
equation is of the form

∏
e(Si, Ri) = e(h, g), both sides will always evaluate into

the target subgroup of order p, with no contribution of order q. It follows that
only the Gp components of the Si will matter for ESS verification.

In order to provide a tracing capability, we pick h as a generator of the entire
group G, hence with a non-trivial component h �≡ 1 ∈ Gq. The same will be true
for the public key Γ = hγ . As a result, all the user-created atomic signatures of
the form S = (Γhxi)1/(...) will also contain a non-trivial component S �≡ 1 ∈ Gq,

Expressive Subgroup Signatures 197

which has no effect on the ESS verification equation, per the preceding argument.
These order-q components will be our tracers, since they appear in all atomic
signatures (which are powers of h ∈ G), but not in any of the blinding coefficients
(which are powers of g ∈ Gp).

Since we now work in a composite-order group of order N , we redefine the
user’s signing exponents in ZN instead of Zp.

Remark that if h had no residue of order q, then everything would be in Gp.
It would be as if the subgroup Gq did not exist, and the ESS scheme would
reduce to an information-theoretically untraceable mesh signature in Gp. As the
Decision Subgroup assumption [10] states that h ∈ G and h ∈ Gp should look
the same to an outsider, it follows that our tracing mechanism cannot be public
and will thus require some trapdoor (in this case, the factorization of N).

3.6 Tracing Procedure

The presence of a non-trivial residue of order q in h will act as a silent tracer for
lifting the anonymity of any signature, using the factorization of N as trapdoor.

To unblind an ESS signature (ti, Si)n
i=1, the tracing authority raises each Si

to the power of p, to strip it from all components of order p. Then, for each i:

– If the residue (Si)p = 1, there was no contribution from h in Si, hence νi = 0,
and thus the truth value of the associated literal Li is “false”. Conclusion:
user i did not participate in the creation of the ESS signature.

– If the residue (Si)p �= 1, there was some h contribution in Si, hence νi �= 0,
and thus the truth value of the associated literal Li is “true”. Conclusion:
(an atomic signature issued by) user i took part in the ESS signature.

The tracer can thus efficiently determine the exact set of users that are involved
(and in what capacity).

We emphasize that, unlike tracing schemes in many other contexts that can
only guarantee that one of the guilty parties will be exposed, here the tracing
authority finds out exactly how the signature was constructed, and thus uncovers
the identity of all of the culprits.

Notice also that such detailed “exhaustive tracing” requires signatures whose
size is (at least) linear in the size of the propositional expression. Hence, in that
respect, our scheme is optimally compact up to a constant factor.

3.7 Concurrent Join Protocol

As in [19] we can define a Join protocol, using some standard techniques: an ex-
tractable commitment (Ext-Commit), a zero-knowledge proof of equality of the
discrete logarithms (NIZKPEqDL), and a zero-knowledge proof of knowledge of a
discrete logarithm (NIZKPoKDL). During this protocol, a future group member
(Ui) interacts with the group manager (GM), in order to obtain a valid group
certificate (Ai, Bi, Ci), with a private key (xi, yi, zi), with (yi, zi) not known

198 X. Boyen and C. Delerablée

by the group manager. We suppose, as in [19] that there is a separated PKI
environment: each user Ui has a personal secret key usk[i] and the corresponding
certified public key upk[i].

We refer to the full version of the paper for the details of the Join protocol.

3.8 The Full ESS Construction

The step-by-step construction outlined above gives us the complete ESS scheme.
The only operational differences with the mesh signature scheme of [11]
are:

1. the setup, which asks for a bilinear group G of composite order N = pq, two
generators g ∈ Gp and h ∈ G, and a group manager’s public key Γ = hγ ;

2. the existence of two additional algorithms or protocols: one for joining the
group, the other for tracing a signature.

For reference purposes, the complete ESS construction in full detail as well as
security proofs can be found in the full version of the paper. The construction
follows exactly the outline given above. Most of the technicalities are borrowed
directly from the mesh signature scheme of [11], with which the ESS scheme
shares many similarities.

4 Security

Theorem 1 (Anonymity). There is no PPT algorithm that wins the Expres-
sive Subgroup Signature anonymity game over G with advantage ε in time τ ,
unless the Decision Subgroup problem in G is decidable in time τ ′ ≈ τ with
advantage ε′ ≥ ε/2.

Theorem 2 (Traceability). There is no PPT algorithm that wins the Expres-
sive Subgroup Signature traceability game over G with advantage ε in time τ ,
unless the Decision Subgroup problem is decidable in time τ ′ with advantage ε′,
and mesh signatures in Gp can be existentially forged in time τ ′′ with advantage
ε′′, where τ ′ + τ ′′ ≈ τ and ε′ + ε′′ ≥ ε/2.

5 Conclusion

In this work, we have proposed a new generalization of the notion of group
signatures, that allows signers to cover the entire spectrum from complete dis-
closure to complete anonymity. Previous group signature constructions did not
provide any disclosure capability, or at best a very limited one (such as subset
membership). Our scheme offers a very powerful language for disclosing exaclty
in what capacity a subgroup of signers is making a signature on behalf of the
group.

Expressive Subgroup Signatures 199

References

1. Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group
signatures without random oracles. Cryptology ePrint Archive, Report 2005/385
(2005), http://eprint.iacr.org/

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

3. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-efficient revocation in group signatures.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg
(2003)

4. Ateniese, G., Tsudik, G.: Some open issues and new directions in group signatures.
In: Franklin, M. (ed.) FC 1999. LNCS, vol. 1648, pp. 196–211. Springer, Heidelberg
(1999)

5. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003)

6. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dy-
namic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153.
Springer, Heidelberg (2005)

7. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

10. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

11. Boyen, X.: Mesh signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 210–227. Springer, Heidelberg (2007)

12. Boyen, X., Waters, B.: Compact group signatures without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer,
Heidelberg (2006)

13. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15.
Springer, Heidelberg (2007)

14. Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EU-
ROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997)

15. Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical
aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133.
Springer, Heidelberg (2005)

16. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

17. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

http://eprint.iacr.org/

200 X. Boyen and C. Delerablée

18. Chow, S.M., Wei, V.K.-W., Liu, J.K., Yuen, T.H.: Ring signatures without random
oracles. In: ASIACCS 2006 Conference on Computer and Communications Security,
Taipei, Taiwan, pp. 297–302. ACM Press, New York (2006)

19. Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures.
In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer,
Heidelberg (2006)

20. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc
groups. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 609–626. Springer, Heidelberg (2004)

21. Groth, J.: Fully anonymous group signatures without random oracles. In: Kuro-
sawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Hei-
delberg (2007)

22. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

23. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
Cryptology ePrint Archive, Report 2007/155 (2007), http://eprint.iacr.org/

24. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in
Complexity Theory, pp. 102–111 (1993)

25. Khader, D.: Attribute based group signature with revocation. Cryptology ePrint
Archive, Report 2007/241 (2007), http://eprint.iacr.org/

26. Khader, D.: Attribute based group signatures. Cryptology ePrint Archive, Report
2007/159 (2007), http://eprint.iacr.org/

27. Kiayias, A., Yung, M.: Extracting group signatures from traitor tracing schemes.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 630–648. Springer,
Heidelberg (2003)

28. Kiayias, A., Yung, M.: Group signatures: Provable security, efficient construc-
tions and anonymity from trapdoor-holders. Cryptology ePrint Archive, Report
2004/076 (2004), http://eprint.iacr.org/

29. Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg
(2005)

30. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)

31. Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In:
Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer,
Heidelberg (2007)

32. Song, D.X.: Practical forward secure group signature schemes. In: ACM CCS 2001
8th Conference on Computer and Communications Security, Philadelphia, PA,
USA, November 5–8, 2001, pp. 225–234. ACM Press, New York (2001)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Anonymous Proxy Signatures

Georg Fuchsbauer and David Pointcheval

École normale supérieure, LIENS -CNRS - INRIA, Paris, France
http://www.di.ens.fr/{~fuchsbau,~pointche}

Abstract. We define a general model for consecutive delegations of sign-
ing rights with the following properties: The delegatee actually signing
and all intermediate delegators remain anonymous. As for group signa-
tures, in case of misuse, a special authority can open signatures to reveal
the chain of delegations and the signer’s identity. The scheme satisfies a
strong notion of non-frameability generalizing the one for dynamic group
signatures. We give formal definitions of security and show them to be
satisfiable by constructing an instantiation proven secure under general
assumptions in the standard model. Our primitive is a proper generaliza-
tion of both group signatures and proxy signatures and can be regarded
as non-frameable dynamic hierarchical group signatures.

1 Introduction

The concept of delegating signing rights for digital signatures is a well studied
subject in cryptography. The most basic concept is that of proxy signatures, in-
troduced by Mambo et al. [MUO96] and group signatures, introduced by Chaum
and van Heyst [CvH91]. In the first, a delegator transfers the right to sign on
his behalf to a proxy signer in a delegation protocol. Now the latter can produce
proxy signatures that are verifiable under the delegator’s public key. Security of
such a scheme amounts to unforgeability of proxy signatures, in that an adver-
sary cannot create a signature without having been delegated, nor impersonate
an honest proxy signer.

On the other hand, in a group signature scheme, an authority called the
issuer distributes signing keys to group members, who can then sign on behalf
of the group, which can be viewed as delegating the group’s signing rights to
its members—there is one single group signature verification key. The central
feature is anonymity, meaning that from a signature one cannot tell which one
of the group members actually signed. In contrast to ring signatures [RST01],
to preclude misuse, there is another authority holding an opening key by which
anonymity of the signer can be revoked. Generally, one distinguishes static and
dynamic groups, depending on whether the system and the group of signers
are set up once and for all or members can join dynamically. For the dynamic
case, a strong security notion called non-frameability is conceivable: Nobody—
not even the issuer nor the opener—is able to produce a signature that opens to
a member who did not sign. The two other requirements are traceability (every
valid signature can be traced to its signer) and anonymity, that is, no one except
the opener can distinguish signatures of different users.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 201–217, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 G. Fuchsbauer and D. Pointcheval

It is of central interest in cryptography to provide formal definitions of primi-
tives and rigorously define the notions of security they should achieve. Only then
can one prove instantiations of the primitive to be secure. Security of group sig-
natures was first formalized by Bellare et al. [BMW03] and then extended to
dynamic groups in [BSZ05]. The model of proxy signatures and their security
were formalized by Boldyreva et al. [BPW03].1

The main result of this paper is to unify the two above-mentioned seemingly
rather different concepts, establishing a general model which encompasses proxy
and group signatures. We give security notions which imply the formal ones for
both primitives. Moreover, we consider consecutive delegations where all del-
egators (except the first of course) remain anonymous. As for dynamic group
signatures, we define an opening authority separated from the issuer and which
in addition might even be different for each user (for proxy signatures, a plausible
setting would be to enable the users to open signatures on their behalf). We call
our primitive anonymous proxy signatures, a term that already appeared in the
literature (see e.g. [SK02])—however without providing a rigorous definition nor
security proofs. As it is natural for proxy signatures, we consider a dynamic set-
ting allowing to define non-frameability which we extend to additionally protect
against wrongful accusation of delegation.

The most prominent example of a proxy signature scheme is “delegation-by-
certificate”: The delegator signs a document called the warrant containing the
public key of the proxy and passes it to the latter. A proxy signature then consists
of a regular signature by the proxy on the message and the signed warrant which
together can by verified using the delegator’s verification key only. Although not
adaptable to the anonymous case—after all, the warrant contains the proxy’s
public key—, a virtue of the scheme is the fact that the delegator can restrict
the delegated rights to specific tasks specified in the warrant. Since our model
supports re-delegation, it is conceivable that a user wishes to re-delegate only a
reduced subset of tasks she has been delegated for. We represent tasks by natural
numbers and allow delegations for arbitrary sets of them, whereas re-delegation
can be done for any subsets.

The primary practical motivation for the new primitive is GRID Computing,
where Alice, after authenticating herself, starts a process. Once disconnected, the
process may remain active, launch sub-processes and need additional resources
that require further authentication. Alice thus delegates her rights to the process.
On the one hand, not trusting the environment, she will not want to delegate all
her rights, which can be realized by delegation-by-certificate. On the other hand,
there is no need for the resources to know that it was not actually Alice who was
authenticated, which is practically achieved solely by full delegation, i.e., giving
the private key to the delegatee. While the first solution exposes the proxy’s
identity, the second approach does not allow for restriction of delegated rights

1 Their scheme has later been attacked by [TL04]. Note, however, that our definition
of non-frameability prevents this attack, since an adversary querying PSig(·, warr, ·)
and then creating a signature for task′ is considered successful (cf. Sect. 3.3).

Anonymous Proxy Signatures 203

nor provide any means to trace malicious signers. Anonymous proxy signatures
incorporate both requirements at one blow.

Another benefit of our primitive is that due to possible consecutiveness of
delegations it can be regarded as non-frameable, dynamic hierarchical group
signatures, a concept introduced by Trolin and Wikström [TW05] for the static
setting.

After defining the new primitive and a corresponding security model, in order
to show satisfiability of the definitions, we give an instantiation and prove it
secure under the (standard) assumption that families of trapdoor permutations
exist. The problem of devising a more efficient construction is left for future work.
We emphasize furthermore that delegation in our scheme is non-interactive (the
delegator simply sends a warrant she computed w.r.t. the delegatee’s public key)
and does not require a secure channel.

2 Algorithm Specification

We describe an anonymous proxy signature scheme by giving the algorithms it
consists of. First of all, running algorithm Setup with the security parameter λ
creates the public parameters of the scheme, as well as the issuing key ik given
to the issuer in order to register users and the opener’s certification key ock
given to potential openers. When a user registers, she and her opening authority
run the interactive protocol Reg with the issuer. In the end, all parties hold the
user’s public key pk, the user is the only one to know the corresponding signing
key sk, and the opener possesses ok, the key to open signatures on the user’s
behalf.

Once a user U1 is registered and holds her secret key sk1, she can delegate
her signing rights to user U2 holding pk2 for a set of tasks TList by running
Del(sk1, TList, pk2) to produce a warrant warr1→2 enabling U2 to proxy sign on
behalf of U1. Now if U2 wishes to re-delegate the received signing rights for a
possibly reduced set of tasks TList′ ⊆ TList to user U3 holding pk3, she runs
Del(sk2, warr1→2, TList′, pk3), that is, with her warrant as additional argument,
to produce warr1→2→3. Every user in possession of a warrant valid for a task
task can produce proxy signatures σ for messages M corresponding to task via
PSig(sk, warr, task, M).2 Anyone can then verify σ under the public key pk1

of the first delegator (sometimes called “original signer” in the literature) by
running PVer(pk1, task, M, σ).

Finally, using the opening key ok1 corresponding to pk1, a signature σ can be
opened via Open(ok1, task, M, σ), which returns the list of users that have re-
delegated as well as the proxy signer.3 Note that for simplicity, we identify users
with their public keys. Figure 1 gives an overview of the algorithms constituting
an anonymous proxy signature scheme.
2 Note that it depends on the concrete application to check whether M lies within the

scope of task.
3 We include task and M in the parameters of Open so the opener can verify the

signature before opening it.

204 G. Fuchsbauer and D. Pointcheval

� �
�

� �

�

�

�

�RegIssuer (ik) Opener (ock)

User

pk, okpk

pk, sk
...

.

λ → Setup → pp, ik, ock

skx, [warr→x,] TList, pky → Del → warr[→]x→y

sky, warrx→...→y , task, M → PSig → σ

pkx, task, M, σ → PVer → b ∈ {0, 1}
okx, σ, task, M and registry-data → Open → a list of users or ⊥ (failure)

Fig. 1. Inputs and outputs of the algorithms

Consider a warrant established by executions of Del with correctly registered
keys. Then for any task and message we require that the signature produced
with it pass verification.

Remark (Differences to the Model for Proxy Signatures). The specifica-
tion deviates from the one in [BPW03] in the following points: First, dealing with
anonymous proxy signatures there is no general proxy identification algorithm;
instead, only authorized openers holding a special key may revoke anonymity.
Second, in contrast to the above specifications, the proxy-designation protocol
in [BPW03] is a pair of interactive algorithms and the proxy signing algorithm
takes a single input, the proxy signing key skp. However, by simply defining the
proxy part of the proxy-designation protocol as

skp := (sk, warr)

any scheme satisfying our specifications is easily adapted to theirs.

3 Security Definitions

3.1 Anonymity

Anonymity ensures that signatures do not leak information on the identities of
the intermediate delegators and the proxy signer. While this holds even in the
presence of a corrupt issuer, the number of delegators involved may not remain
hidden.

Anonymous Proxy Signatures 205

Expanon-b
PS,A (λ)

(pp, ik, ock) ← Setup(1λ)

(st, pk, (sk0, warr0), (sk1, warr1), task, M)

← A1(pp, ik : USndToO, ISndToO, OK, Open)

if pk /∈ OReg, return 0

for c = 0 . . 1

σc ← PSig(skc, warrc, task, M)

if PVer(pk, task, M, σc) = 0, return 0

(pkc
2, . . . , pkc

kc
) ← Open(OK(pk), task, M, σc)

if opening succeeded and k0
= k1, return 0

d ← A2(st, σb : Open)

if A1 did not query OK(pk) and A2 did not query Open(pk, task, M, σb), return d,

else return 0

Fig. 2. Experiment for Anonymity

A quite “holistic” approach to define anonymity is the following experiment in
the spirit of CCA2-indistinguishability: The adversary A, who may control the
issuer and all users, is provided with an oracle to communicate with an opening
authority, who is assumed to be honest. A may also query opening keys and the
opening of signatures. Eventually, he outputs a public key, a message, a task and
two secret key/warrant pairs under one of which he is given a signature. Now A
must decide which pair has been used to sign. Note that our definition implies all
conceivable anonymity notions, such as proxy-signer anonymity, last-delegator
anonymity, etc.

Figure 2 depicts the experiment, which might look more complex than ex-
pected, as there are several checks necessary to prevent the adversary from triv-
ially winning the game by either

1. returning a public key he did not register with the opener,
2. returning an invalid warrant, that is, signatures created with it fail verifica-

tion, or
3. having different lengths of delegation chains.4

The experiment simulates an honest opener as specified by Reg with whom
the adversary communicates via the USndToO and ISndToO oracles, depending
on whether he impersonates a user or the issuer. It also keeps a list OReg of
the opening keys created and the corresponding public keys. Oracle OK, called
with a public key, returns the corresponding opening key from OReg and when
Open is called on (pk′, task′, M ′, σ′), the experiment looks up the corresponding
4 The experiment checks 2. and 3. by using each of the returned warrants to create

a signature, open both and check if the number of delegators match. Note, that
traceability (cf. Sect. 3.2) guarantees that valid signatures can be opened.

206 G. Fuchsbauer and D. Pointcheval

opening key ok′ and returns Open(ok′, M ′, task′, σ′) if pk′ has been registered
and ⊥ otherwise.

Definition 1 (Anonymity). A proxy signature scheme PS is anonymous if
for any probabilistic polynomial-time (p.p.t.) adversary A = (A1, A2), we have

∣∣Pr
[
Expanon-1

PS,A (λ) = 1
]
− Pr

[
Expanon-0

PS,A (λ) = 1
]∣∣ = negl(λ) .

Remark (Hiding the Number of Delegations). A feature of our scheme is
that users are able to delegate themselves. It is because of this fact—useful per
se to create temporary keys for oneself for use in hostile environments—that one
could define the following variant of the scheme:

Suppose there is a maximum number of possible delegations and that be-
fore signing, the proxy extends the actual delegation chain in her warrant to
this maximum by consecutive self-delegations. The scheme would then satisfy
a stronger notion of anonymity where even the number of delegations remains
hidden. What is more, defining standard (non-proxy) signatures as self-delegated
proxy signatures, even proxy and standard signatures become indistinguishable.

Since we also aim at constructing a generalization of group signatures in accor-
dance with [BSZ05], we split the definition of what is called security in [BPW03]
into two parts: traceability and non-frameability. We thereby achieve stronger
security guarantees against malicious issuers.

3.2 Traceability

Consider a coalition of corrupt users and openers (the latter however follow-
ing the protocol) trying to forge signatures. Then traceability guarantees that
whenever a signature passes verification it can be opened.5

In the game for traceability we let the adversary A register corrupt users and
see the communication between issuer and opener. To win the game, A must
output a signature and a public key under which it is valid such that opening of
the signature fails.

Figure 3 shows the experiment for traceability, where the oracles SndToI and
SndToO simulate issuer and opener respectively, according to the protocol Reg.
In addition, they return a transcript of the communication between them. The
experiment maintains a list of generated opening keys, so OK returns the opening
key associated to the public key it is called with, or ⊥ in case the key is not
registered—in which case Open returns ⊥, too.

Definition 2 (Traceability). A proxy signature scheme PS is traceable if
for any p.p.t. adversary A, we have

Pr
[
Exptrace

PS,A(λ) = 1
]

= negl(λ) .

5 The issuer is assumed to behave honestly as he can easily create unopenable signa-
tures by registering dummy users and sign in their name. The openers are partially
corrupt, otherwise they could simply refuse to open or not correctly register the
opening keys.

Anonymous Proxy Signatures 207

Exptrace
PS,A(λ)

(pp, ik, ock) ← Setup(1λ)

(pk, task, M, σ) ← A(pp : SndToI, SndToO)

if PVer(pk, task, M, σ) = 1 and Open(OK(pk), task, M, σ) = ⊥
return 1, else return 0

Fig. 3. Experiment for Traceability

3.3 Non-frameability

Non-frameability ensures that no user is wrongfully accused of delegating or
signing. In order to give a strong definition of non-frameability where we accord
the adversary as much liberty as possible in his oracle queries, we require an
additional functionality of the proxy signature scheme: Function OpenW applied
to a warrant returns the list of delegators involved in creating it.

In the non-frameability game, the adversary can impersonate the issuer and
the opener as well as corrupt users. He is given all keys created in the setup,
and oracles to register honest users and query delegations and proxy signatures
from them. To win the game, the adversary must output a task, a message and
a valid signature on it, such that the opening reveals either

1. a second delegator or proxy signer who was never delegated by an honest
original delegator for the task,

2. an honest delegator who was not queried the respective delegation for the
task, or

3. an honest proxy signer who did not sign the message for the task and the
respective delegation chain.

We emphasize that querying re-delegation from user U2 to U3 with a warrant
from U1 for U2 and then producing a signature that opens to (U ′

1, U2, U3) is
considered a success. Note furthermore that it is the adversary that chooses the
opening key to be used. See Fig. 4 for the experiment for non-frameability.

Oracles for non-frameability: ISndToU (OSndToU) enables the adversary
impersonating a corrupt issuer (opener) to communicate with an honest user.
When first called without arguments, the oracle simulates a user starting the
registration procedure and makes a new entry in HU , the list of honest users.
Oracles Del and PSig are called with a user’s public key, which the experiment re-
places by the user’s secret key from HU before executing the respective function;
e.g., calling Del with parameters (pk1, TList, pk2) returns Del(sk1, TList, pk2).
Oracle SK takes a public key pk as argument and returns the corresponding
private key after deleting pk from HU .

Definition 3 (Non-frameability). A proxy signature scheme PS is non-

frameable if for any p.p.t. adversary A we have

208 G. Fuchsbauer and D. Pointcheval

Expn-frame
PS,A (λ)

(pp, ik, ock) ← Setup(1λ)

(ok, pk1, task, M, σ) ← A(pp, ik, ock : ISndToU, OSndToU, SK, Del, PSig)

if PVer(pk1, task, M, σ) = 0 or Open(ok, task, M, σ) = ⊥, return 0

(pk2, . . . , pkk) = Open(ok, task, M, σ)

if pk1 ∈ HU and no queries Del(pk1, TList, pk2) with TList � task made

return 1 (Case 1)

if for some i ≥ 2, pki ∈ HU and no queries Del(pki, warr, TList, pki+1) with

TList � task and OpenW(warr) = (pk1, . . . , pki) made, return 1 (Case 2)

if pkk ∈ HU and no queries PSig(pkk, warr, task, M) made

with OpenW(warr) = (pk1, . . . , pkk−1) made, return 1 (Case 3)

return 0

Fig. 4. Experiment for Non-Frameability

Pr
[
Expn-frame

PS,A (λ) = 1
]

= negl(λ) .

Remark. In the experiment Expn-frame
PS,A , the opening algorithm is run by the

experiment, which by definition behaves honestly. To guard against a corrupt
opener, it suffices to add a (possibly interactive) zero-knowledge proof to the
system and have the opener prove correctness of opening.

4 An Instantiation of the Scheme

4.1 Building Blocks

To construct the generic scheme PS, we will use the following cryptographic
primitives (cf. Appendix A for the formal definitions) whose existence is implied
by assuming trapdoor permutations [Rom90, DDN00, Sah99].

– DS = (Kσ, Sig, Ver), a digital signature scheme secure against existential
forgeries under chosen-message attack [GMR88].

– PKE = (Kε, Enc, Dec), a public-key encryption scheme with indistinguish-
able encryptions under adaptive chosen-ciphertext attack (CCA2) [RS92].

– Π = (P, V, Sim), a non-interactive zero-knowledge (NIZK) proof system for
an NP-language to be defined in the following that is simulation sound
[BDMP91, Sah99].

4.2 Algorithms

The algorithm Setup establishes the public parameters and outputs the issuer’s
and the opener’s certification key. The public parameters consist of the security
parameter, a common random string for non-interactive zero-knowledge proofs

Anonymous Proxy Signatures 209

�

�

�

�

Reg

• (pkσ, skσ) ← Kσ(1λ)

• produce sig,
pkσ, sig

a signature on pkσ

cert, pkε, certω

sk := (pk, skσ)

pk := (pkσ, pkε, cert, certω, pp)

• verify cert and certω

User x Issuer (skα)

Opener (skω)

certω

pkε,
pkσ

• (pkε, skε) ← Kε(1
λ)

• certω ← Sig(skω, (pkσ, pkε))

• write (pkσ, pkε, skε) to OReg

• if sig invalid for pkσ,

• cert ← Sig(skα, pkσ)

• write (pkσ, sig) to IReg

return ⊥

public: pp = (λ, pkα, pkω, crs)

Fig. 5. Registration protocol

and the two signature verification keys corresponding to the issuer’s and the
opener’s key:

Setup

1λ → (pkα, skα) ← Kσ(1λ); (pkω, skω) ← Kσ(1λ); crs ← {0, 1}p(λ)

pp, ik, ock ← pp := (λ, pkα, pkω, crs); ik := skα; ock := skω

The registration protocol is depicted in Fig. 5: When a user joins the system,
she creates a pair of verification/signing keys (pkσ, skσ) and signs pkσ (possibly
via an external PKI) in order to commit to it. She then sends pkσ and the signa-
ture sig to the issuer. The latter, after checking sig, signs pkσ with his certificate
issuing key skα and writes the user data to IReg , the registration table.

In addition, the issuer sends pkσ to the authority responsible for opening
the user’s signatures. The opener creates an encryption/decryption key pair
(pkε, skε) and a certificate on pkε and pkσ, which he sends together with pkε to
the issuer, who forwards it to the user.6

6 In practice, our protocol would allow for the opener to communicate directly with
the user without the detour via the issuer—consider for example the case where each
user is his own opener. We define the protocol this way to simplify exposition of the
security proofs.

210 G. Fuchsbauer and D. Pointcheval

It is by having users create their own signing keys skσ that a corrupt authority
is prevented from framing users. The user is however required to commit to her
verification key via sig, so that she cannot later repudiate signatures signed with
the corresponding signing key. Now to frame a user by creating a public key
and attributing it to her, the issuer would have to forge sig. Note that it is
impossible to achieve non-frameability without assuming some sort of PKI prior
to the scheme.

Algorithm Del enables user x to pass her signing rights to user y (if called
with no optional argument warrold), or to re-delegate the rights represented in
warrold for the tasks in TList. A warrant is an array where warr [i] corresponds
to the ith delegation and warr [i][task] contains basically a signature by the ith

delegator on the next delegator’s public key and task.
More specifically, consider user x being the kth delegator. If k > 1, she first

copies all entries for the tasks to re-delegate from warrold to the new warrant
warr. She then writes her public key to warr[k][0] that will later be used by
the delegatee, and finally produces a signature on the task, the public keys of
the delegators, her and the delegatee’s public key and writes it to warr[k][task].

Del

skx, [warrold] parse skx � (pkx, skσ); k := |warrold| + 1 // k = 1 if no warrold

TList, pky → for all 1 ≤ i < k

warr[i][0] := warrold[i][0]

for all task ∈ TList, warr[i][task] := warrold[i][task]

warr[k][0] := pkx

for all 1 ≤ i ≤ k, parse warr[i][0] � (pkσi, pkεi, certi, certωi, pp)

for all task ∈ TList

warr ← warr[k][task] ← Sig
�
skσ, (task, pkσ1, . . . , pkσk, pkσy)

�

For every k, we define a relation Rk specifying an NP-language LRk
. Basically,

a theorem (pkα, pkω, pkσ1, pkε1, certω1, task, M, C) is in LRk
if and only if

(1) pkε1 is correctly certified w.r.t. pkω,
(2) there exist verification keys pkσ2, . . . , pkσk that are correctly certified w.r.t.

pkα,
(3) there exist warrant entries warri for 1 ≤ i < k, s.t. pkσi verifies the delega-

tion chain pk1 → · · ·→ pki+1,
(4) there exists a signature s on the delegation chain and M valid under pkσk,
(5) C is an encryption using some randomness ρ of all the verification keys,

certificates, warrants and the signature s.

We define formally:

Rk

[
(pkα, pkω, pkσ1, pkε1, certω1, task, M, C),

(pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s, ρ)
]

:⇔ Ver
(
pkω, (pkσ1, pkε1), certω1

)
= 1 ∧ (1)∧

2≤i≤k Ver
(
pkα, pkσi, certi

)
= 1 ∧ (2)

Anonymous Proxy Signatures 211

∧
1≤i≤k−1 Ver

(
pkσi, (task, pkσ1, . . . , pkσi+1), warri

)
= 1∧ (3)

Ver
(
pkσk, (task, pkσ1, . . . , pkσk, M), s

)
= 1 ∧ (4)

Enc
(
pkε1, (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s), ρ

)
= C (5)

Note that for every k, the above relation Rk defines in fact an NP-language
LRk

, since given a witness, membership of a candidate theorem is efficiently
verifiable and furthermore the length of a witness is polynomial in the length of
the theorem. Let Πk := (Pk, Vk, Simk) be a simulation-sound NIZK proof system
for LRk

.
Now to produce a proxy signature, it suffices to sign the delegation chain and

the message, encrypt it together with all the signatures for the respective task
from the warrant and prove that everything was done correctly, that is, prove
that Rk is satisfied:

PSig

sk,warr, k := |warr| + 1, parse sk � (pkk, skσ)

task, M → parse pkk �
�
pkσk, pkεk, certk, certωk, (λ, pkα, pkω, crs)

�

for 1≤ i<k: parse pki := warr[i][0] � (pkσi, pkεi, certi, certωi, pp)

set warri := warr[i][task]

s ← Sig
�
skσ, (task, pkσ1, . . . , pkσk, M)

�
; ρ ← {0, 1}pε(λ,k)

W := (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s)

C ← Enc(pkεx, W ; ρ)

π ← Pk

�
1λ, (pkα, pkω,pkσ1, pkε1, warrω1, task, M, C), W ‖ρ, crs

�

σ ← σ := (C,π)

Verifying a proxy signature then amounts to verifying the proof it contains:

PVer

pkx, task, parse pkx �
�
pkσx, pkεx, certx, certωx, (λ, pkα, pkω, crs)

�

M, σ → σ � (C, π)

b ← b := Vk

�
1λ, (pkα, pkω, pkσx, pkεx, certωx, task, M, C), π, crs

�

To open a signature, after checking its validity, decrypt the ciphertext contained
in it:

Open

okx, task, parse okx � (pkx, skεx); σ � (C, π)

M, σ → parse pkx �
�
pkσx, pkεx, certx, certωx, (λ, pkα, pkω, crs)

�

if Vk

�
1λ, (pkα, pkω,pkσx, pkεx, certωx, task, M, C), π, crs

�
= 0

return ⊥
(pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s)

:= Dec(skεx, C)

(pk2, . . , pkk) ← if for some i, pki is not in IReg , return ⊥

212 G. Fuchsbauer and D. Pointcheval

4.3 Security Results

From the definition of the algorithms, it should be apparent that running PSig
with a warrant correctly produced by registered users returns a signature which
is accepted by PVer and correctly opened by Open. Moreover, the defined scheme
satisfies all security notions from Sect. 3:

Lemma 1. The proxy signature scheme PS is anonymous (Definition 1).

Lemma 2. The proxy signature scheme PS is traceable (Definition 2).

Due to space limitations, we refer to the full version [FP08] for the proofs of
Lemmata 1 and 2.

Lemma 3. The proxy signature scheme PS is non-frameable (Definition 3).

Proof (of Lemma 3).
Figure 6 shows experiment Expn-frame

PS,A rewritten with the code of the respective
algorithms. Note that we can dispense with the OSndToU-oracle, because in our
scheme the user communicates exclusively with the issuer.

We construct an adversary B against the signature scheme DS having input a
verification key pk and access to a signing oracleOSig. B simulates Expn-frame

PS for
A, except that for one random user registered by A via ISndToU, B sets pkσ to
his input pk, hoping that A will frame this very user. If B guesses correctly and
A wins the game, a forgery under pk can be extracted from the proxy signature
returned by A. Let n(λ) be the maximal number of ISndToU queries A makes.

Adversary B and its handling of A’s ISndToU and SK oracle queries or detailed
in Fig. 6. To answer oracle calls Del and PSig with argument pk∗ = (pk, ··), B
replaces the line with Sig(skσ, (task, pkσ1, . . .)) in the respective algorithms by
a query to his own signing oracle. For all other public keys, B holds the secret
keys and can thus answer all queries.

Let S denote the event
[
(pkα, pkω, pkσ1, pkε1, certω1, task, M, C) ∈ LR

]
and

E1, E2, E3 denote the union of S and the event that Expn-frame returns 1 in
line 7, 8, 9, respectively. Then the following holds:7

Advn-frame
PS,A (λ) ≤ Pr[E1] + Pr[E2] + Pr[E3] + Pr[Expn-frame

PS,A (λ) = 1 ∧ S̄]

We now show that the four summands are negligible:

1. Consider the event E∗
1 := [E1 ∧ pkσ1 = pk]. Then, since S is satisfied,

we have Ver
(
pk, (task, pkσ1, pkσ2), warr1

)
= 1,. So, B returns a valid mes-

sage/signature pair.
The forgery is valid, since B did not query its oracle for (task, pkσ1, pkσ2)

as this only happens when A queries ODel((pkσ1, ··), {··, task, ··}, (pkσ2, ··)),
which by E1 is not the case. Moreover, B simulates perfectly, for E1 implies
OSK((pk, ··) was not queried. All in all, we have

Adveuf-cma
DS,B ≥ Pr[E∗

1] = Pr[pk∗ = pk1] · Pr[E1] = 1
n(λ) Pr[E1]

7 If not otherwise defined, we use Adv•
••(·) as shortcut for Pr[Exp•

••(·) = 1].

Anonymous Proxy Signatures 213

Expn-frame
PS,A (λ)

1 (pkα, skα) ← Kσ(1λ); (pkω, skω) ← Kσ(1λ); crs ← {0, 1}p(λ)

2 pp := (λ, pkα, pkω, crs)

3 (ok, pk, task, M, σ) ← A(pp, skα, skω : ISndToU, SK, Del, PSig)

4 parse ok� ((pkσ1, pkε1, cert1, certω1, pp), skε1); σ � (C, π)

5 if Vk

�
1λ, (pkα, pkω,pkσ1, pkε1, certω1, task, M, C), π, crs

�
= 0 then return 0

6 (pkσ2, . . . , pkσk, cert2, . . . , certk, warr1, . . . , warrk−1, s) := Dec(skε1, C)

7 if pk1 ∈ HU and no queries ODel(pk1, {··, task, ··}, pk2) then return 1

8 if ∃ i : pki ∈ HU and no queries ODel(pki, warr, {··, task, ··}, pki+1)

with warr[j][0][1] = pkσj for 1 ≤ j ≤ i then return 1

9 if pkk ∈ HU and no queries OPSig(pkk, warr, task, M)

with warr[j][0][1] = pkσj for 1 ≤ j ≤ k then return 1

10 return 0

OISndToU(∅)
1 (pkσ, skσ) ← Kσ(1λ)

2 HU := HU ∪ {(pkσ, skσ)}
3 return pkσ

OSK((pkσ, ··))
1 if ∃ skσ : (pkσ, skσ) ∈ HU ,

2 delete the entry and return skσ

3 otherwise, return ⊥

Adversary B(pk : Sig(sk, ·))
0 j∗ ← {1, . . . , n}; j := 0

...

7 if pkσ1 = pk and no queries ODel((pk1, ··), {··, task, ··}, (pkσ2, ··))
then return

�
(task, pkσ1, pkσ2), warr1

�

8 if ∃ i : pkσi = pk and no queries ODel((pkσi, ··), warr, {··, task, ··}, (pkσi+1, ··))
with warr[j][0][1] = pkσj for 1 ≤ j ≤ i

then return
�
(task, pkσ1, . . . , pkσi+1), warri

�

9 if pkσk = pk and no queries OPSig((pkσk, ··), warr, task, M) with

warr[j][0][1] = pkσj for 1 ≤ j ≤ k, then return
�
(task, pkσ1, . . . , pkσk, M), s

�

10 return 0

OISndToU(∅) by B

1 j := j + 1; if j = j∗, return pk

2 (pkσ, skσ) ← Kσ(1λ)

3 HU := HU ∪ {(pkσ, skσ)}
4 return pkσ

OSK((pkσ, ··)) by B

1 if pkσ = pk then abort

2 else if ∃ skσ : (pkσ, skσ) ∈ HU

3 delete entry, return skσ

4 return ⊥

Fig. 6. Instantiated experiment for non-frameability and adversary B against DS

214 G. Fuchsbauer and D. Pointcheval

2. Consider the event [E2 ∧ pkσi = pk]: Then S implies

Ver(pk,
(
(task, pkσ1, . . . , pkσi+1), warri

)
= 1

So, B returns a valid signature on a message he did not query its signing
oracle: Only if A queries ODel((pkσi, ··), warr, {··, task, ··}, (pkσi+1, ··)) with
warr[j][0][1] = pkσj for 1 ≤ j ≤ i + 1, B queries (task, pkσ1, . . . , pkσi+1).
Moreover, B simulates perfectly, as there was no query OSK((pk, ··). As for
1., we have 1

n(λ) Pr[E2] ≤ Adveuf-cma
DS,B .

3. Consider the event [E3 ∧ pkσk = pk]: There were no OSK((pk, ··) queries and
by S, B outputs a valid pair. B did not query (task, pkσ1, . . . , pkσk, M) (as
A made no query OPSig((pkσk, ··), warr, task, M) with warr[j][0][1] = pkσj

for 1 ≤ j ≤ k). Again, we have 1
n(λ) Pr[E3] ≤ Adveuf-cma

DS,B

4. The event Pr[Expn-frame
PS,A (λ) = 1] implies

Vk(1λ, (pkα, pkω, pkσ1, pkε1, certω1, task, M, C), π, crs) = 1,

which, together with S̄ contradicts soundness of Π : based on Expn-frame
PS,A , we

could construct an adversary Bs against soundness of Π which after receiving
crs (rather than choosing it itself), runs along the lines of the experiment
until Line 4 and then outputs

(
(pkα, pkω, pkσ1, pkε1, certω1, task, M, C), π

)
.

We have thus

Pr[Expn-frame
PS,A (λ) = 1 ∧ S̄] ≤ Advss

Π,Bs
��

Theorem 1. Assuming trapdoor permutations, there exists an anonymous
traceable non-frameable proxy signature scheme.

Proof. Follows from Lemmata 1, 2 and 3. ��
We have thus defined a new primitive unifying the concepts of group and proxy
signatures and given strong security definitions for it. Moreover, Theorem 1
shows that these definitions are in fact satisfiable in the standard model, albeit
by a inefficient scheme. We are nonetheless confident that more practical instan-
tiations of our model will be proposed, as it was the case for group signatures; see
e.g. [BW07] for an efficient instantiation of a variation of the model by [BMW03].
We believe in particular that the novel methodology to construct NIZK proofs
introduced by [GS08] will lead to practically usable implementations.

Acknowledgments

This work was partially funded by EADS, CELAR, ANR PAMPA and ECRYPT.

References

[BMW03] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 614–629. Springer, Heidelberg (2003)

Anonymous Proxy Signatures 215

[BSZ05] Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case
of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 136–153. Springer, Heidelberg (2005)

[BDMP91] Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-
knowledge proof systems. SIAM Journal on Computing 20(6), 1084–1118
(1991)

[BPW03] Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes
for delegation of signing rights. IACR ePrint Archive: Report 2003/096
(2003)

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007)

[CvH91] Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EU-
ROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

[DDN00] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal
on Computing 30(2), 391–437 (2000)

[FP08] Fuchsbauer, G., Pointcheval, D.: Anonymous Proxy Signatures,
http://www.di.ens.fr/homedirfuchsbau

[GMR88] Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme se-
cure against adaptive chosen-message attacks. SIAM Journal on Comput-
ing 17(2), 281–308 (1988)

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–
432. Springer, Heidelberg (2008)

[MUO96] Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating sign-
ing operation. In: Proceedings of the 3rd ACM Conference on Computer
and Communications Security (CCS). ACM, New York (1996)

[RS92] Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991.
LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)

[RST01] Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg
(2001)

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure signa-
tures. In: 22nd Annual Symposium on Theory of Computing, pp. 387–394.
ACM, New York (1990)

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: 40th Symposium on Foundations of Com-
puter Science, pp. 543–553. IEEE, Los Alamitos (1999)

[SK02] Shum, K., Wei, V.K.: A strong proxy signature scheme with proxy signer
privacy protection. In: 11th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2002),
pp. 55–56. IEEE, Los Alamitos (2002)

[TL04] Tan, Z., Liu, Z.: Provably secure delegation-by-certification proxy signature
schemes. IACR ePrint Archive: Report 2004/148 (2004)

[TW05] Trolin, M., Wikström, D.: Hierarchical group signatures. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 446–458. Springer, Heidelberg (2005)

http://www.di.ens.fr/homedirfuchsbau

216 G. Fuchsbauer and D. Pointcheval

A Formal Definitions of the Employed Primitives

A.1 Signature Scheme DS = (Kσ, Sig, Ver)

DS is a digital signature scheme, that is

∀λ ∈ N ∀m ∈ {0, 1}∗ ∀ (pk, sk) ← Kσ(1λ) : Ver
(
pk, m, Sig(sk, m)

)
= 1

We assume DS is secure against existential forgery under chosen-message attack,
that is

∀ p.p.t. A : Pr
[
Expeuf-cma

DS,A (λ) = 1
]

= negl(λ) with

Expeuf-cma
DS,A (λ)

(pk, sk) ← Kσ(1λ)

(m, σ) ← A(pk : Sig(sk, ·))
if Ver(pk, m, σ) = 1 and A never queried m, return 1, else return 0

A.2 Public-Key Encryption Scheme PKE = (Kε, Enc, Dec)

PKE is a public-key encryption scheme, that is

∀λ ∈ N ∀m ∈ {0, 1}∗ ∀ (pk, sk) ← Kε(1λ) : Dec(sk, Enc(pk, m)) = m

We assume that PKE satisfies indistinguishability under adaptive chosen-cipher-
text attacks, i.e.,

∀ p.p.t. A = (A1, A2) :∣∣Pr
[
Expind-cca-1

PKE,A (λ) = 1
]
− Pr

[
Expind-cca-0

PKE,A (λ) = 1
]∣∣ = negl(λ) with

Expind-cca-b
PKE,A (λ)

(pk, sk) ← Kε(1
λ)

(m0, m1, st) ← A1(pk : Dec(sk, ·))
y ← Enc(pk, mb)

d ← A2(st, y : Dec(sk, ·))
if |m0| = |m1| and A2 never queried y return d, else return 0

A.3 Non-interactive Zero-Knowledge Proof System Π = (P, V, Sim)
for LR

We require that Π satisfy the following properties:

– Completeness ∀λ ∈ N ∀ (x, w) ∈ R with |x| < �(λ) ∀ r ∈ {0, 1}p(λ) :

V
(
1λ, x, P(1λ, x, w, r), r

)
= 1

Anonymous Proxy Signatures 217

– Soundness ∀ p.p.t. A :

Pr
[
r ← {0, 1}p(λ); (x, π) ← A(r) : x /∈ L ∧ V(1λ, x, π, r) = 1

]
= negl(λ)

– Adaptive Single-Theorem Zero Knowledge ∀ p.p.t. A :

Advzk
Π,A(λ) :=

∣∣Pr
[
Expzk

Π,A(λ) = 1
]
−Pr

[
Expzk-S

Π,A(λ) = 1
]∣∣ = negl(λ) with

Expzk
Π,A(λ)

r ← {0, 1}p(λ)

(x,w, stA) ← A1(r)

π ← P(x,w, r)

return A2(stA, π)

Expzk-S
Π,A(λ)

(r, stS) ← Sim1(1
λ)

(x,w, stA) ← A1(r)

π ← Sim2(stS, x)

return A2(stA, π)

– Simulation Soundness

∀ p.p.t. A : Pr
[
Expss

Π,A(λ) = 1
]

= negl(λ) with

Expss
Π,A(λ)

(r, stS) ← Sim1(1
λ)

(y, stA) ← A1(r)

π ← Sim2(stS , y)

(x, π′) ← A2(stA, π)

if π
= π′ and x /∈ LR and V(1λ, x, π′, r) = 1 return 1, else return 0.

Multisignatures Using Proofs of Secret Key Possession,
as Secure as the Diffie-Hellman Problem�

Ali Bagherzandi and Stanisław Jarecki

Department of Computer Science,
University of California, Irvine

{zandi,stasio}@ics.uci.edu

Abstract. A multisignature scheme allows a group of n players to produce
a short string which is equivalent to n separate signatures on the same message.
Assuming the Random Oracle Model (ROM), the aggregate signature schemes of
Boneh et al. [BGLS03] and Bellare and Neven [BN06] provide multisignatures
secure in the standard public key setting, but their multisignature verification
algorithms involve respectively O(n) bilinear maps and O(n) exponentiations.
Ristenpart and Yilek [RY07] recently showed two multisignature schemes rely-
ing on groups with bilinear maps, with just O(1) bilinear maps in multisignature
verification, which are secure if each public key is accompanied by so-called
“proof of (secret key) possession” (POP). We show how to achieve secure mul-
tisignatures in the POP model using any group where CDH or DDH problems are
hard. Both schemes have multisignature verification with O(1) exponentiations,
and their POP messages take O(1) group elements and require O(1) exponenti-
ations to verify. Moreover, the security of the proposed schemes is tightly related
to the CDH and DDH problems, in ROM.

1 Introduction

A multisignature scheme allows a group of n players to sign a common message so that
instead of n separate signatures the players produce a short string which can be verified
against the set of the public keys of the participating players. Such scheme is interesting
if the resulting string is shorter than n separate signatures and/or the verification time
is faster than n separate signature verifications. Applications of multisignatures include
scenarios where the number of signers is moderate, like co-signing, distribution of cer-
tificate authorities, or aggregation of PKI certificate chains. However, multisignatures
can potentially be useful also in very large groups of signers, e.g. for aggregation of
acknowledgements in response to a broadcast.

Rogue Key Attacks and the KOSK Assumption. Multisignature schemes are possible be-
cause of homomorphic properties of arithmetic operations involved in standard signa-
tures. For example, a BLS signature [BLS04] on message m under public key yi = gxi

is σi = H(m)xi , i.e. a value s.t. (g, yi, H(m), σi) is a DDH tuple. A correspond-
ing multisignature can be created as σ =

∏n
i=1 σi, and it can be verified under the

� Research supported by NSF CyberTrust Grant #0430622.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 218–235, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Multisignatures Using Proofs of Secret Key Possession 219

combined public key y =
∏n

i=1 yi, because (g, y, H(m), σ) is also a DDH tuple. Un-
fortunately, the same homomorphic properties which enable aggregation of signatures
into multisignatures can enable a “rouge key attack” on such schemes. For example,
the above scheme is insecure because an adversary who picks y2 = gx/y1 for some
existing key y1 and any x can use x = DL(g, y1 ∗ y2) to issue multisignatures on be-
half of key set {y1, y2}. Indeed, as Micali et al. [MOR01] point out, many proposed
multisignature schemes are vulnerable to such rouge key attacks, e.g. [LHL94, Har94],
or their security requires trusted generation of each key, e.g. [OO91, OO99]. Interest-
ingly, rouge key attackers usually do not know the private key corresponding to the
rogue public key. Indeed, under the discrete logarithm assumption it is provably hard
to compute the private key x2 s.t. y2 = gx2 in the above attack. This observation led
Micali, Ohta, and Reyzin [MOR01] to construct the first multisignature scheme secure
without assuming trusted key generation. However, that scheme requires all potential
signers to engage in an interactive initialization protocol in which every player proves
knowledge of its secret key to all others, and such initialization procedure does not
tolerate dynamic groups and does not scale well to large groups. One way to remove
this initialization procedure is to assume the so-called knowledge of secret key (KOSK)
assumption [Bol03] on key registration process: The KOSK assumption states that if
an adversary registers a public key then the adversary’s algorithm must also explicitly
output a corresponding secret key. Two secure multisignature schemes were proposed
under this assumption using bilinear maps, by Boldyreva [Bol03] in ROM and by Lu et
al. [LOS+06] in the standard model (i.e. without ROM).

Multisignatures in the Key Registration Model. One way to realize the KOSK assump-
tion is to employ so-called Key Registration Model (KR) for Public Key Infrastructure
(PKI), introduced in the context of multisignatures by Ristenpart and Yilek [RY07]. In
the KR model for PKI, a CA issues a certificate on a key only if its owner passes a
special key registration protocol. For example, the PKCS#10 [PKC00] standard for CA
operation asks the user to sign a challenge message under its public key. This challenge-
signature pair is called a proof of possession of the secret key (POP) in PKCS#10, but
we’ll use this term more broadly, for any user-generated string verified by either the
CA or by multisignature verifiers (see the “Key Verification” model below). The intu-
itive goal of the POP mechanism in PKCS#10 was to assure that someone has access to
the secret key corresponding to the public key being certified, but this mechanism does
not implement the KOSK assumption in general. Indeed, Ristenpart and Yilek [RY07]
showed that the schemes of [Bol03, LOS+06] are insecure in the KR model if key reg-
istration is implemented with POPs of PKCS#10. Nevertheless, [RY07] also showed
that using a slight variant of the same POP mechanism the schemes of [Bol03, LOS+06]
yield secure multisignature schemes in the KR model, relying on bilinear maps.

Alternatively, one can realize the KOSK model by implementing POPs with con-
currently secure zero-knowledge proofs of knowledge (ZKPK) of a secret key. Such
ZKPK’s can be achieved in ROM by the results of Fischlin [Fis05] using O(log κ)
group elements where κ is the security parameter. Combined with the multisignature
protocol of [MOR01], this implies a multisignature scheme in the KR model secure
under the DL assumption. However, non-constant-sized POPs are less practical if POP
messages are verified by multisignature receivers instead of by the CA’s (see the “Key

220 A. Bagherzandi and S. Jarecki

Registration vs. Key Verification” below). Moreover, due to the heavy use of the forking
lemma in the reduction of [MOR01], the exact security of this scheme is not optimal.

Multisignatures in the Plain Public Key Model. One of the drawbacks of multisignatures
in the KR model is that they require modifications to the current operation of the CA’s.
(In addition to imposing non-standard trust requirements on CA’s, as we argue below.)
It is therefore highly interesting to provide multisignature schemes which are secure
in the plain setting where no special registration process is assumed for public keys.
The first such scheme is implied in ROM by an aggregate signature scheme of Boneh
et al. [BGLS03], with the analysis extended by Bellare et al. [BNN07]), but its mul-
tisignature verification algorithm requires O(n) bilinear map operations. Bellare and
Neven recently proposed a multisignature secure in the plain setting which does bilin-
ear maps [BN06]. While this scheme has a significantly smaller cost of multisignature
verification, it still requires O(n) exponentiations: The way [BN06] avoid KOSK and
KR models is by using independent challenges in the proofs of knowledge of discrete
logarithm performed by each player in the multisignature generation protocol. How-
ever, the multisignature verification operation then becomes a multi-exponentiation on
n public keys and n different exponents, and to the best of our knowledge the cost of
such multiexponentiation is still O(n) the cost of a single exponentiation.

Key Registration vs. Key Verification. The fact that current multisignatures in the plain
setting have slower verification than current schemes secure in the KR model motivates
looking closer at the KR model. For example, to the best of our knowledge it has not
been previously observed that the Key Registration model requires non-standard trust
assumptions among the PKI participants. Consider an application of a multisignature
scheme, where a multisignature is formed by some users certified by CA’s trusted by
the multisignature verifier, and some certified by CA’s who are unknown to this verifier.
Assume that the verifier is interested in checking whether or not the message was signed
by all the users of the first type but does not care if users of the second type have
also contributed to the multisignature. An example is a petition signed by individuals
whose public keys are certified by different CA’s, some widely known and trusted, some
less so. If a multisignature scheme secure in the KR model is used then the verifier
cannot conclude that the message was signed by the users she cares about, certified by
the CA’s she recognizes and trusts as long as a single participant in the multisignature
is certified by a CA which she does not recognize and/or trust. This is because the
scheme provides no security guarantees if the prescribed key registration procedure,
e.g. POP verification, is not followed with regards to even a single key participating in
the multisignature. This imposes a limitation on the use of multisignatures compared
to standard signatures or multisignatures secure in the plain setting, since in either of
the last two cases the verifier can decide if the users she cares about signed the petition
whether or not it was also signed by keys certified by unknown or suspect CA’s.

We propose to remove this limitation in the usage of multisignatures secure in the
KR model by considering an alternative mode of PKI operation which we call the Key
Verification (KV) Model. In the KV model each private key owner also produces a POP
string, but instead of handing it to the CA during the key registration process she at-
taches it to her key (or a PKI certificate on the key). This POP message is then verified
by a multisignature receiver instead of by the CA, for example together with verification

Multisignatures Using Proofs of Secret Key Possession 221

of PKI certificates on that key. We note that in the multisignature schemes we propose
POP verification costs are comparable to DSA certificate verification, and this cost can
be further reduced by batching. The Key Verification model of operation should also
make it easier to adopt multisignature schemes: Since the CA operation does not need
to change, a multisignature scheme secure in the KV model can potentially use exist-
ing private-public keys and certificates. For example, our CDH-based multisignature
scheme can utilize existing DSA or Schnorr signature public keys. We stress that while
the KR and KV models differ in how a multisignature scheme operates, any multisigna-
ture scheme secure in the KV model trivially implies a scheme secure in the KR model,
and any scheme secure in the KR model which has a non-interactive key registration
process (e.g. the schemes given by [RY07]) implies a scheme secure in the KV model.

Our Contributions. We propose two multisignature schemes in the KV (or KR) model,
denoted MDDH and MCDH. Both schemes take three rounds, have multisignature ver-
ification procedures with O(1) exponentiations, do not require bilinear maps, and their
security is tightly related in ROM to, respectively, the CDH and DDH problems. The
POP messages in both schemes take O(1) group elements and their verification takes
O(1) exponentiations. Figure 1 summarizes the comparison between ours and previous
multisignature schemes. In this table, RY+BLS and RY+Waters refers to the first and
the second schemes of [RY07] respectively, BGLS refers to the multisignature scheme
implied by the aggregate signature proposed by Boneh et al [BGLS03], MOR+Fischlin
refers to the scheme of Micali et al [MOR01] with its initialization phase replaced by
key registration using Fischlin’s ZKPK’s [Fis05], and BN refers to the scheme proposed
by Bellare and Neven [BN06].

Compared to the two schemes of [RY07] our schemes do not rely on groups with
bilinear maps, but they do so at the cost of relying on the ROM model, which one of
the schemes of [RY07] avoids, and by using an interactive multisignature generation.
This drawback is significant in many applications but it can be mitigated in applications
where the same set of players is expected to repeatedly engage in several instances of
the multisignature protocol, as long as the multisignature procedure is fast on-line, i.e.
if the signed message is an input to the players only in the last round of the interaction,
which is the case with our DDH-based scheme. (It is an open problem whether the
CDH-based scheme can be made fast on-line without sacrificing other parameters.)

In comparison with the DL-based scheme in the Key Verification model implied
by the combined results of [MOR01, Fis05], our POP messages are shorter and faster
to verify, which is especially important in the Key Verification model where POP’s
must be attached to public keys and verified by multisignature recipients. To achieve
280 security the POP size and verification time in the scheme implied by [MOR01,
Fis05] would be larger by roughly a factor of ten when compared to our CDH-based and
DDH-based schemes. Moreover, the security reduction from the DL problem implied
by these two results is inexact, while our schemes have exact reductions from CDH or
DDH problems, and in many groups of interest the DL and CDH problems are almost
equivalent [MW00].

Finally, compared to the scheme of [BN06] which works in a plain model, our
schemes require a Key Verification model. This is a drawback, but as discussed in
a subsection above, in many scenarios the Key Verification model of PKI operation

222 A. Bagherzandi and S. Jarecki

MS Scheme
Assumption Degradation Protocol Key Sig.Ver. Signing Signature

on Security(1) in Security(2) Rounds Setup Time(3) Time(3) Length(4)

RY+BLS GapDH 1/qs 1 POP O(1) O(1) |G1|
RY+Waters GapDH 1/qs 1 POP O(1) O(1) |G1| + |G2|

BGLS GapDH 1/qs 1 Plain O(n) O(1) |G1|
MOR+Fischlin DL(5) 1/qsqh

2 2 POP O(1) O(1) 2|q|
BN DL(5) 1/qh 3 Plain O(n) O(1) |G| + |q|

MDDH DDH exact 3 POP O(1) O(1) 2|q|
MCDH CDH(6) exact 3 POP O(1) O(n) |G| + 2|q| + 2κ

Fig. 1. (1) All schemes except RY+Waters assume a ROM model; (2) Security degradation is
given as a factor f s.t. if a multisignature adversary succeeds with probability ε then the reduc-
tion breaks its underlying security assumption with probability Ω(f ∗ε) in comparable time. Here
qs and qh denote, respectively, the number of adversary’s signature and hash queries; (3) Compu-
tational costs are the number of modular exponentiations (or bilinear maps for the GapDH-based
schemes); (4) Signature length is measured in bits, where κ is the security parameter, |G| is the
number of bits required to represent elements in group G, q is the group order, and G1 and G2 are
two groups of points on an elliptic curve with asymmetrical bilinear maps. For example κ = 80,
|G| = |q| = |G1| = 160 and |G2| = 6 ∗ 160; (5) The reduction for the Fischlin+MOR scheme
is our best estimate. The reduction given in [BN06] for the BN scheme has ε/qh degradation, but
it seems that one can modify it to provide only 1/qh degradation using the version of the forking
lemma originally given by Pointcheval and Stern [PS00]; (6) For the MCDH protocol we only
give an exact security reduction from the expected-time hardness of the CDH problem.

creates a small overhead in the certificate verification process. On the other hand, our
schemes have tight reductions from CDH/DDH problems while the security reduction
of [BN06] encounters a security degradation due to the use of the forking lemma, and
our schemes make O(1) exponentiation operations during multisignature verification
compared to O(n) exponentiation cost in [BN06]. We stress that while it might seem
that our schemes require O(n) verification, because we require that each multisignature
verifier checks all n POP messages attached to the certificates of the n players involved
in the multisignature, the O(1) multisignature verification in the KV model is better
than O(n) verification in the plain model for two reasons: (1) Since every entity in PKI
normally would keep a hash table of previously verified keys, the initial cost of key
verification amortizes over all multisignature verifications which involve this key. (2)
If the CA’s use DL-based certificates, then the cost of key verification imposed by our
schemes is only a constant factor higher than the cost of certificate verification.

In terms of multisignature size, our DDH-based scheme is the same as that of [BN06],
and the multisignature in our CDH-based scheme is about 2 times larger than the mul-
tisignature of [BN06], when implemented over elliptic curves. Note, however, that if
one takes the exact security results into account, the two schemes achieve the same
level of provable security when the scheme of [BN06] is implemented over twice larger
groups, assuming the near equivalence of the DL and CDH problems. Unlike all other
multisignature schemes discussed, our CDH based scheme requires O(n) signing time
per party due to verification of NIZKs generated by each player. This may or may not
be a drawback in different applications, but it seems that the communication costs of
multisignature generation would often trump this computational cost. We point out that

Multisignatures Using Proofs of Secret Key Possession 223

our CDH based scheme has a tight reduction only from expected-time hardness of the
CDH problem. However, in generic groups the expected-time hardness of the CDH is
essentially the same as the fixed-time hardness of this problem, i.e. for every algorithm
which solves the CDH problem in a generic group of size q with probability ε and
expected-time T , it holds that T/ε ≤ √q.

Organization. After preliminaries in Section 2 we define secure multisignatures in the
Key Verification model in Section 3, and present our DDH-based and CDH-based mul-
tisignature schemes respectively in Sections 4 and 5.

2 Preliminaries: Notation and Assumptions

Let G be a multiplicative group of a prime order q, and let g be its generator. All arith-
metic operations are either modulo q, when involving numbers chosen in Zq , or they
are operations in G, when involving group elements. We use notation x

r← S to denote
a probabilistic process which assigns to variable x a uniformly chosen value in set S.
We write a|b to denote the concatenation of bit strings a and b.

The computational Diffie Hellman (CDH) problem in group G is a problem of com-
puting gxy, given the tuple (g, gx, gy) for random x, y in Zq , while the decisional Diffie
Hellman (DDH) problem in G is the problem of distinguishing between tuples of the
form (g, gx, gy, gxy) for random x, y in Zq , and (g, gx, gy, gz) for random x, y, z in Zq .

Definition 1. The CDH problem is (t, ε)-hard in G if for any algorithm B running in
time t, we have AdvCDH

G (B) ≤ ε where:

AdvCDH
G (B) = Pr

x,y
r←Zq

[B(g, gx, gy) = gxy]

Definition 2. The DDH problem is (t, ε)-hard in G if for any algorithm B running in
time t, we have AdvDDH

G (B) ≤ ε where:

AdvDDH
G (B) = | Pr

x,y
r←Zq

[B(g, gx, gy, gxy) = 1]− Pr
x,y,z

r←Zq

[B(g, gx, gy, gz) = 1]|

Hardness of DL problem in G is implied by the hardness of either the DDH problem
or the CDH problem in G, but the converse is not known to be true. However, all these
problems have the same hardness as the DL problem in generic groups [Sho00]. More-
over, by the results of Maurer and Wolf [MW99], the CDH problem is very closely
related to the DL problem in a large class of groups that are commonly used in cryp-
tography. Also, see [Bon98] for various groups where DDH assumption might hold.

3 Multisignature Schemes

We define a Multisignature Scheme (MS) in the Key Verification (KV) model as a tuple
(Setup, KGen, KVrfy, MSign, Vrfy) where Setup, KGen, KVrfy and Vrfy are efficient
probabilistic algorithms and MSign is an interactive protocol s.t.

224 A. Bagherzandi and S. Jarecki

– par ← Setup(1κ), on input the security parameter κ generates the public parame-
ters par.

– (sk, pk, π) ← KGen(par), executed by each user on input par, generates this user’s
secret key sk, the corresponding public key pk, and a proof of validity of this public
key, denoted π.

– {0, 1}← KVrfy(par, pk, π) verifies whether pk is a valid key, given the proof π.
– MSign is a multisignature protocol executed by a group of players who intend to

sign the same message m. Each player Pi executes MSign on public inputs par,
message m and private input ski, its secret key, and outputs a multisignature σ.

– {0, 1} ← Vrfy(par, m, PKSet, σ) verifies whether σ is a valid multisignature on
message m on behalf of the set of players whose public keys are in set PKSet.

The above set of procedures must satisfy the following correctness property. Let
par be any output of Setup(1κ). First, any (sk, pk, π) output by KGen(par) satis-
fies KVrfy(par, pk, π) = 1. Second, for any n ≤ nmax, any message m, and any
(ski, pki, πi) tuples, i ∈ {1, ..., n}, generated by KGen(par), if one executes n in-
stances of protocol MSign, where the i-th instance executes on inputs (par, m, ski),
and if all the messages between these instances are correctly delivered, then each in-
stance outputs the same string σ s.t. Vrfy(par, m, {pk1, pk2, ...pkn}, σ) = 1.

Multisignature security in Key Verification model. As in the previous works on mul-
tisignatures, e.g. [MOR01, BN06, RY07], we define multisignature security as universal
unforgeability under a chosen message attack against a single honest player. Namely, we
define the adversarial advantage of an adversary A against the multisignature scheme
MS = (Setup, KGen, KVrfy, MSign, Vrfy), i.e. Advuu−cma

MS (A), as a probability that
experiment Expuu−cma

MS (A) described in Figure 2 outputs 1,where the probability goes
over the random coins of the adversary A and all the randomness used in the experi-
ment. We call a multisignature scheme (t, ε, nmax, qs)-secure if Advuu−cma

MS (A) ≤ ε
for every adversary A that runs in time at most t, makes at most qs signature queries,
and where the size of the group of players S on behalf of which the adversary forges
is bounded as |S| ≤ nmax. In the random oracle model we consider also a notion of
(t, ε, nmax, qs, qh)-secure multisignature scheme, where adversaryA is additionally re-
stricted to at most qh hash queries and the probability in the experiment Expuu−cma

MS (A)
is taken also over the random choice of all hash functions.

Experiment Expuu−cma
MS (A)

par ← Setup(1κ); (sk∗, pk∗, π∗) ← KGen(par); List ← ∅;
Run A(par, pk∗, π∗), and for every signature query m made by A do the following:

List ← List ∪ {m}; Execute protocol MSign on behalf of an honest player on inputs
(par, m, sk∗), forwarding messages to and from A.

When A halts, parse its output as (m, σ, {(pki, πi)}i∈S) where S is some set of indexes.
If (m
∈ List) and (pk1 = pk∗) and (KVrfy(par, pki, πi) = 1 for all i ∈ S) and finally
(Vrfy(par, m, {pki}i∈S , σ)) = 1 then return 1; Otherwise return 0.

Fig. 2. Chosen Message Attack against Multisignature Scheme

Multisignatures Using Proofs of Secret Key Possession 225

Remarks on MS syntax and definition of security: (1) In the security experiment
Expuu−cma

MS above we take the simplifying assumption that the Setup procedure is ex-
ecuted by an honest party. However, the public parameters in the two multisignature
schemes in this paper are needed to define groups of prime order where the CDH and
DDH assumptions hold, and such parameters can be chosen by a potentially dishonest
party and then verified by every player. (2) The syntax of a multisignature scheme in the
KV model is a simplification of the syntax used by [RY07], which modeled potentially
interactive key registration processes. Here we allow only non-interactive proofs, but
such proofs make multisignature schemes more flexible because they can be verified
either by the CA’s during the key registration process, as in [RY07], or by multisigna-
ture verifiers, e.g. together with verification of PKI certificates for a given key. (3) Note
that a multisignature in the KV model generalizes multisignatures in the plain-model if
one sets the proofs of public key validity to empty strings and sets the output of KVrfy
on any inputs to 1. (4) However, in contrast to the definition of multisignatures in the
plain model proposed by [MOR01] and [BN06], we do not include the set of partic-
ipants’ identities and/or their public keys as input in the multisignature protocol. The
participating players must be aware of one another in the protocol execution, but this
information is needed only to ensure proper communication, and does not need to be
part of the inputs to the multisignature protocol. Removing this input from the mul-
tisignature protocol gives more flexibility to applications of multisignatures, because in
some applications signers might care only about the message they are is signing and
not about the identities of other signers. This is the case for example in aggregation of
acknowledgments of broadcast reception. In such applications multisignature schemes
analyzed in the model of [MOR01, BN06] would have to be preceded by an additional
communication round for participants to broadcast their identities and/or public keys.
On the other hand, multisignature schemes which conform to our simplified model im-
ply schemes in the model of [MOR01, BN06] if the MSign protocol is executed on
the message appended with the list of identities and/or public keys of the participating
players. (5) The notion of multisignature security in [MOR01, BN06] treats a multisig-
nature effectively as a signature on a pair (m, PKSet), and their notion of forgery is
consequently broader than ours since it includes a case where an attacker forges a mul-
tisignature on a message that was previously signed by the honest player, but it was
signed together with a different set of public keys. In our model such adversary would
not be considered a successful forger since in our model an honest player is not required
to be aware of the other participants in a multisignature protocol. However, a scheme se-
cure according to our notion implies a scheme secure in the model of [MOR01, BN06]
if players execute the MSign protocol on the concatenation of message m and the set of
public keys PKSet of the participating players, as in item (4) above.

4 Three-Round DDH-Based Multisignature Scheme

We describe a multisignature scheme denoted MDDH, presented in Figure 3, with a
tight security reduction from the DDH problem. The MDDH scheme is a multisignature
version of the signature scheme of Katz and Wang [KW03], which also has an exact
security reduction from the DDH problem. The MDDH scheme takes three rounds and

226 A. Bagherzandi and S. Jarecki

1. Setup(1κ): Let G be a multiplicative group of prime order q and let g be a generator of
G. Consider the following hash functions: G1 : G6 → Zq, H1 : G → {0, 1}2κ and
H2 : G6 × {0, 1}∗ → Zq. Pick g, h

r← G. Set par ← (g, h, q).

2. KGen(par): Player Pi picks his (ski, pki, πi) tuple as follows:
Pick xi

r← Zq, compute yi ← gxi , zi ← hxi and set pki ← (yi, zi), ski ← xi;
Construct a “proof of possession” of xi, i.e. a NIZK proof of DLg(yi) = DLh(zi):

Pick k
r← Zq and compute u ← gk, v ← hk;

Set e ← G1(g, h, yi, zi, u, v), compute s ← k + exi and set πi ← (s, e).

3. KVrfy(par, pk, π): Let pk=(y, z), π=(s, e). Accept if e = G1(g, h, y, z, gsy−e, hsz−e)

4. Protocol MSign: Let S where S ≤ nmax be the set of players that participate in the
protocol. Each player can determine the set S after the first protocol step. Player Pi on
inputs (par, m, ski), performs the following steps:

4.1 Pick ki
r← Zq, compute Ai ← gki , Bi ← hki , CAi ← H1(Ai), CBi ← H1(Bi);

Broadcast (yi, zi, CAi , CBi).
4.2 Receive (CAj , CBj) for all Pj ∈ S/{Pi} and broadcast (Ai, Bi).
4.3 Receive (Aj , Bj , yj , zj) for all Pj ∈ S/{Pi};

Abort if CAj
= H1(Aj) or CBj
= H1(Bj) for any Pj ∈ S/{Pi};
Compute y ←

�
Pj∈S yj , z ←

�
Pj∈S zj , A ←

�
Pj∈S Aj , B ←

�
Pj∈S Bj ;

Set e ← H2(g, h, y, z, A,B, m), compute si ← exi + ki and broadcast si.
4.4 Output multisignature σ = (e, s), where s =

�
Pj∈S sj .

5. Vrfy(par, m, {pk1, pk2, ..., pkn}, σ):
Parse σ as (e, s) and each pki as (yi, zi). Compute y ←

�n
i=1 yi and z ←

�n
i=1 zi;

If e = H2(g, h, y, z, gsy−e, hsz−e, m) then accept otherwise reject.

Fig. 3. MDDH multisignature scheme

has fast signing and verification procedures. It requires only two group exponentiations
per party for signing and two double-exponentiations for verification. The length of
the MDDH signature is 2|q|, which can be 320 bits, only twice the size of shortest
multisignature schemes [RY07, BGLS03], which, however, are based on a potentially
stronger assumption of GapDH on a group with a bilinear map.

Theorem 1. If DDH problem is (t′, ε′)-hard in group G, then multisignature MDDH
in Figure 3 is (t, ε, nmax, qs, qh)-secure in ROM where

ε ≤ ε′ +
qh

2 + 2qs(qh + nmax)
22κ

+
qsqh

q − qh
+

qh

q

t ≥ t′ − 2.4(qs + nmax)te − 4qsnmaxtm

and tm and te are the times of one multiplication and one q-bit exponentiation in G.

Proof sketch. Due to space constraints we relegate the formal proof of this theorem to
the full version of this paper [BJ08], but we give a rough sketch of the proof here. Given
an adversary A against the MDDH scheme we construct an algorithm B that solves
the DDH problem in group G as follows: The reduction embeds its DDH challenge
(g, h, y1, z1) into the public key of the sole honest player P1 by setting par = (g, h)
and pk1 = (y1, z1). Note that the multisignature protocol performed by each player

Multisignatures Using Proofs of Secret Key Possession 227

is a version of a standard HVZK proof system for DL-equality, with the first message
Ai, Bi in this proof system preceded by a round of ROM-based commitments CAi , CBi .
As observed in [BN06], this round of commitment enables straight-line simulation of
this HVZK proof system: Namely, B picks both the challenge e and P1’s response s1

uniformly at random in Zq , computes A1 = gs1y−e
1 and B1 = hs1z−e

1 , pretends to
commit to these values by sending random CA1 , CB1 values, and thanks to the fact that
the adversary commits to his contributions Ai and Bi for Pi ∈ S/{P1}, the reduction
B can compute the values A and B before she publishes his own contribution A1, B1

in step 4.2. In this way B can embed the challenge e in the output to the appropriate
query (g, h, y, z, A, B, m) made by A to H2 . This reduction fails only if (1) A man-
ages to change one of his committed values; (2) A manages to decommit any of his
commitments C to some X s.t. C = H1(X) without queryingH1 on X ; (3) A makes
query (g, h, y, z, A, B, m) toH2 before the reduction embeds challenge e in the answer.
However, all these cases happen with at most negligible probability in ROM. Finally,
the special soundness property of the above proof system ensures that if both the mul-
tisignature verification and all the key verification procedures pass then both (g, h, y, z)
where y =

∏
i∈S(yi) and z =

∏
i∈S(xi) and (g, h, yi, zi) for each Pi are DH tuples,

and hence so must be the input tuple (g, h, y1, z1). We leave the details of this proof to
the full version [BJ08].

5 Three-Round CDH-Based Multisignature Scheme

We describe a multisignature scheme, denoted MCDH and presented in Figure 4, whose
security is tightly related to the expected-time hardness of the CDH problem in the
Key Verification model. The MCDH scheme is a multisignature version of the CDH-
based signature of [KW03] and [GJ03]. It takes three rounds, the multisignature is
(|G| + 2|q|+ 2κ)-bit long, and its verification procedure requires only two exponenti-
ations. We note, however, that the low round complexity and a tight reduction from the
(expected time) CDH problem comes at the following non-standard cost: Each player
in the multisignature generation procedure must verify ZK proofs issued by the other
players, and thus the computational cost of the signing algorithm is O(n) exponentia-
tions where n is the size of the signing group. This, however, will not be an important
drawback as long as the number of signers is modest or if the communication costs
in n-sized group of signers dominate the O(n)-exponentiations cost for each signer. As
we discuss at the end of this section, this cost can be avoided if one tolerates an increase
in the number of protocol rounds.

Theorem 2. If there is no adversary that can solve the CDH problem in group G in
expected time t′ with probability ε′, then the multisignature scheme MCDH, described
in figure 4 is (t, ε, nmax, qs, qh)-secure in random oracle model where

ε ≤ 2ε′ +
2q2

h + 4qsqh

22κ
+

(2qs + 3)qh

q
+

qsqh

q − qh

t ≥ 1
2

(t′ − (qh − 6(nmax + 1)(qs + 1))te − 4qsnmaxtm)

where tm and te are the times of one multiplication and one q-bit exponentiation in G.

228 A. Bagherzandi and S. Jarecki

1. Setup(1κ) : Let G be a multiplicative group of prime order q and let g be a generator of
G. Consider the following hash functions: G1 : G → G, G2 : G6 → Zq , H1 : G →
{0, 1}2κ , H2 : {0, 1}∗ → {0, 1}2κ , H3 : {0, 1}∗ × {0, 1}2κ → G, H4 : G8 → Z2

q and
H5 : G6 → Zq. Set par ← (g, q);

2. KGen(par): Player Pi picks an (ski, pki, πi) tuple as follows:
Pick xi

r← Zq, compute yi ← gxi and set pki ← yi and ski ← xi;
Construct πi as “proof of possession” of xi:

Set h ← G1(yi), z ← hxi and construct a NIZK proof of DLg(yi) = DLh(z):
Pick k

r← Zq and compute u ← gk, v ← hk;
Set e ← G2(g, h, yi, z, u, v), compute s ← k + exi and set πi ← (z, s, e);

3. KVrfy(par, pk, π): Let pk = y, π = (z, s, e) and h ← G1(y).
Accept if e = G2(g, h, y, z, gsy−e, hsz−e).

4. Protocol MSign: Let S where S ≤ nmax be the set of players that participate in the
protocol. Each player can determine the set S after the first protocol step. Player Pi on
inputs (par, m, ski), performs the following steps:

4.1 Pick ki
r← Zq, compute Ai ← gki and set CAi ← H1(Ai). If bit b

(m)
i is not set,

pick b
(m)
i

r← {0, 1}. Broadcast (b
(m)
i , yi, CAi).

4.2 Receive (b
(m)
j , yj , CAj) for all Pj∈S/{Pi}; Abort if for any of them, CAj = CAi .

Set p ← H2(b
(m)
1 |b(m)

2 |...|b(m)
|S|), where the global order among players can be deter-

mined e.g. by hashing the message broadcasted by players in the previous round. (If
two players broadcast the same message, the order between them can be arbitrary.)
Set h ← H3(m, p) and Compute zi ← hxi and Bi ← hki ;
Construct NIZK proof πi that DLg(yi) = DLh(zi) and DLg(Ai) = DLh(Bi):

Pick r
r← Zq, set u ← gr, v ← hr and (ei, fi) ← H4(g, h, yi, zi, Ai, Bi, u, v);

Compute ti ← r + eixi + fiki and set πi ← (ei, fi, ti);
Broadcast (Ai, Bi, zi, πi).

4.3 Receive (Aj , Bj , zj , πj) for all Pj ∈ S/{Pi}; Let πj = (ej , fj , tj);

Abort if (ej , fj)
= H4(g, h, yj , zj , Aj , Bj , g
tjy

−ej

j A
−fj

j , htj z
−ej

j B
−fj

j) or CAj
=
H1(Aj) for any Pj ∈ S/{Pi}.
Compute y ←

�
Pj∈S yj , z ←

�
Pj∈S zj , A ←

�
Pj∈S Aj and B ←

�
Pj∈S Bj ;

Set e ← H5(g, h, y, z, A,B), si ← ki + exi and broadcast si.
4.4 Output σ = (z, e, s, p), where s =

�
Pj∈S sj .

5. Vrfy(par, m, {pk1, pk2, ..., pkn}, σ):
Parse σ as (z, e, s, p) and each pki as yi. Set y ←

�n
i=1 yi and h ← H3(m, p);

If e = H5(g, h, y, z, gsy−e, hsz−e) then accept otherwise reject.

Fig. 4. MCDH multisignature scheme

Proof. Let A be an adversary that attacks the multisignature scheme MCDH, depicted
in figure 4, in time t and with success probability ε and makes qs signing queries and
at most qh hash queries and produces a forgery on behalf of n ≤ nmax players. We
construct an algorithm B, that given oracle access to A, solves CDH problem in group
G, i.e. given (g, y1, ĥ) ∈ G3 where y1 = gx1 it outputs ĥx1 in expected time t′ and with
success probability ε′. AssumeAmakes qG1

, qG2
, qH1

, qH2
, qH3

, qH4
and qH5

queries
to G1 , G2 , H1 , H2 , H3 , H4 andH5 respectively and qG1

+ qG2
+ qH1

+ qH2
+ qH3

+
qH4

+ qH5
≤ qh, the total number of hash queries. In what follows we show how the

CDH-attacker B proceeds given a CDH challenge (g, y1, ĥ).

Multisignatures Using Proofs of Secret Key Possession 229

Initialization: The algorithm B sets up tables G1, G2, H1, H2, H3, H4 and H5 to sim-
ulate the hash functions G1 , G2 , H1 , H2 , H3 , H4 and H5 respectively which are filled
out throughout the simulation. It also uses table B to store the bits b(m) assigned to each
message m. The algorithm B then sets the public parameters and the honest player’s
public key as par = g and pk1 = y1 respectively. Algorithm B picks βy1

r← Zq and
assigns G1[y1] = gβy1 . It then computes z1 ← (y1)βy1 and produces a simulated NIZK
proof of DL-equality between DLg(y1) and DLh(z1) where h = G1[y1]. To simulate
this proof, B picks e, s

r← Zq and assigns G2[(g, h, y1, z1, g
sy−e

1 , hsz−e
1)] = e. Fi-

nally, B executes A on input (par, pk1, π1) where π1 = (s, e). Note that G1[y1] and
G2[(g, h, y1, z1, g

sy−e
1 , hsz−e

1)] are set before the execution of A starts. Note also that
indeed DLg(y1) = DLh(z1) since z1 = (y1)βy1 = gx1βy1 = hx1 .

Answering hash queries: If a query has been made before, thenB returns the appropriate
entry from the appropriate table e.g. if A queries G1 on y, B responds with G1[y].
If A makes a new query to G2 , H1 , H4 and H5 , B answers with an element chosen
uniformly at random from the appropriate domain. If A makes a new query y to G1 , B
answers with ĥβy where βy

r← Zq . If A makes a new query b = b1|...|b|S| to H2 , B
answers with an element chosen uniformly at random form {0, 1}2κ except when the
following failure cases happen: (a) If a collision happens in H2 then the simulator sets
a flag bad1 ← true, stops and returns “fail”. (b) If A queries H2 for the first time on
b = b1|...|b|S| andH2(b) = p for some previous query (m, p) toH3 then the simulator
sets a flag bad2 ← true, stops and returns “fail”. IfA makes a new query (m, p) toH3 ,
the simulator looks up the table H2: (a) If there exists no entry in H2 corresponding to
p then the simulator picks α(m,p)

r← Zq and answers the query as ĥα(m,p) ; (b) If the
simulator finds an entry b = b1|...|b|S| corresponding to p in H2 then it assigns a bit

b1
(m) to message m if it has not been yet assigned, picks α(m,p)

r← Zq and checks

whether the first element of the vector b is equal to b1
(m): If so, the simulator responds

to the query as gα(m,p) and otherwise it responds to the query as ĥα(m,p) .

Answering signature queries: To answer each signature query, simulator runs the ad-
versary twice after step 4.1. In the first execution, B runs the adversary to the point that
it can learn Aj , Bj and zj for all Pj ∈ S, but it does not complete this execution since
it will not know how to correctly create the response s1 in the zero-knowledge proof on
behalf of player P1. The simulator then rewinds the adversary and uses the values it has
learned in the first execution to simulate the proof-of-knowledge protocol on behalf of
player P1. If the adversary uses the same values {Aj, Bj , zj}Pj∈S in both executions
then the simulator knows the queryH5 (g, h, y, z, A, B) into which it should embed its
chosen challenge e. The only way this simulation can fail is if the adversary changes
his values zj , Aj and Bj for Pj ∈ S/{P1} in the second execution. However due
to the soundness property of NIZK proof of DL-equality and the collision resistance
property of H1 , this can happen with only a negligible probability. This is because the
adversary has revealed yj’s and committed to Aj ’s in the first round. Moreover, the
adversary gives a NIZK proof that DLg(yj) = DLh(zj) and DLg(Aj) = DLh(Bj) for
all Pj ∈ S/{P1}. The details of the signature query simulation on input m are given
bellow. We point out that if the adversary aborts and/or sends values which do not pass

230 A. Bagherzandi and S. Jarecki

verification procedures in any point in the simulation below then the simulator stops
this instance of the multisignature generation protocol, just like an honest player P1.

Step 1. If bit b(m)
1 has not been chosen for message m, pick b

(m)
1

r← {0, 1}; Otherwise

use the previously chosen value. Pick CA1

r← {0, 1}2κ. Send (b(m)
1 , y1, CA1)

to A.
Step 2,3. Upon receiving (b(m)

j , yj , CAj) for all Pj ∈ S/{P1}, verify whether for
all Pj ∈ S/{P1}, CAj �= CA1 ; Abort if verification fails. Set p ←
H2(b

(m)
1 |b(m)

2 |...|b(m)
|S|) and h ← H3(m, p). Retrieve α(m,p) assigned to

(m, p) in the simulation of this query toH3 and compute z1 ← y
α(m,p)
1 . Note

that our simulation procedure for H3 ensures that h = H3(m, p) = gα(m,p)

and thus z1 = y
α(m,p)
1 = gx1α(m,p) = hx1 .

Run SIMR as a subroutine and let {(A(1)
j , B

(1)
j , z

(1)
j)}Pj∈S/{P1} be

the values it returns. If SIMR did not stop, rewind the adversary to the
point where SIMR is called, and run SIML as a subroutine on input
{(A(1)

j , B
(1)
j , z

(1)
j)}Pj∈S/{P1}.

Step 4. Compute the multisignature from appropriate values gained in SIMR simu-
lation.

Procedure SIMR:

Step 2’. Pick k1
r← Zq and compute A

(1)
1 ← gk1 , B

(1)
1 ← hk1 . If H1[A

(1)
1] is not set,

assign H1[A
(1)
1] ← CA1 ; Otherwise set bad3 ← true, stop and return “fail”.

Simulate the NIZK proof that DLg(y1) = DLh(z1) and DLg(A
(1)
1) =

DLh(B(1)
1):
Pick e1, f1, t1

r← Z3
q , set u1 ← gt1y−e1

1 (A(1)
1)−f1 , v1 ← ht1z−e1

1

(B(1)
1)−f1 .

If H4[(g, h, y1, z1, A
(1)
1 , B

(1)
1 , u1, v1)] is not set, set it to (e1, f1);

Otherwise set bad4 ← true, stop and return “fail”.

Send (A(1)
1 , B

(1)
1 , z1, (e1, f1, t1)) to A.

Step 3’. Upon receiving (Aj , Bj , zj, (ej , fj , tj)) for all Pj ∈ S/{P1}, verify whether

for all Pj ∈ S/{P1}, (ej , fj) = H4(g, h, yj , zj, Aj , Bj , g
tj y

−ej

j A
−fj

j ,

htj z
−ej

j B
−fj

j) and CAj = H1(Aj). If the verification does not pass,
stop the simulation of this multisignature instance. Otherwise return
{(Aj , Bj , zj)}Pj∈S/{P1}.

Procedure SIML({(z(1)
j , A

(1)
j , B

(1)
j)}Pj∈S/{P1}):

Step 2. Pick (s1, e)
r← Z2

q and compute A
(2)
1 ← gs1y−e

1 , B(2)
1 ← hs1z−e

1 . If H1[A
(2)
1]

is not set, assign H1[A
(2)
1] ← CA1 ; Otherwise set bad5 ← true, stop and re-

turn “fail”.
Simulate the NIZK proof that DLg(y1) = DLh(z1) and DLg(A

(2)
1) =

DLh(B(2)
1)

Multisignatures Using Proofs of Secret Key Possession 231

Pick e1, f1, t1
r← Z3

q , set u1 ← gt1y−e1
1 (A(2)

1)−f1 , v1 ← ht1z−e1
1

(B(2)
1)−f1 .

If H4[(g, h, y1, z1, A
(2)
1 , B

(2)
1 , u1, v1)] is not set, set it to (e1, f1);

Otherwise set bad6 ← true, stop and return “fail”.
Compute y ←

∏
Pj∈S yj , z ← z1

∏
Pj∈S/{P1} z

(1)
j , A ← A

(2)
1

∏
Pj∈S/{P1}

A
(1)
j , B ← B

(2)
1

∏
Pj∈S/{P1} B

(1)
j . If H5[(g, h, y, z, A, B)] is not set, set it to

e; Otherwise set bad7 ← true, stop and return “fail”.
Send (A(2)

1 , B
(2)
1 , z1, (e1, f1, t1)) to A.

Step 3. Upon receiving (Aj , Bj , zj, (ej , fj , tj)) for all Pj ∈ S/{P1}, verify whether
for all Pj ∈ S/{P1},
(a) Aj = A

(1)
j ; If not, set bad8 ← true, stop and return “fail”.

(b) Bj = B
(1)
j and zj = z

(1)
j ; If not, set bad9 ← true, stop and return “fail”.

(c) (ej , fj) = H4(g, h, yj, zj , Aj , Bj , g
tj y

−ej

j A
−fj

j , htj z
−ej

j B
−fj

j) and
CAj = H1(Aj); If not stop the simulation of this multisignature instance.
If all the verifications pass, send s1 to A.

Finalization: After receiving a valid forgery (m, σ, {(pki, πi)}Pi∈S) from A, the al-
gorithm B attempts to output ẑ = ĥx1 . Let σ = (z, e, s, p) and pki = yi and πi =
(zi, ei, si) for all Pi ∈ S. If in the simulation of H3 for query (m, p), the simulator
finds an entry b = b1|...|b|S| corresponding to p in H2, and moreover the first element

of the vector b is equal to b
(m)
1 , then it stops and returns “fail”; otherwise B retrieves

α(m,p) assigned to (m, p) in the simulation ofH3 and βyi assigned to yi in the simula-
tion to G1 for all Pi ∈ S and returns ẑ where

ẑ =

⎧⎪⎨
⎪⎩

z
1/α(m,p)

�
Pi∈S/{1}(zi)

1/βyi
when S/{P1} �= ∅

z1/α(m,p) otherwise

Note that if (g, y, ĥα(m,p) , z) where y =
∏

Pi∈S(yi) and (g, yi, ĥ
βyi , zi) where Pi ∈

S/{P1} are all DH tuples, then (g, y1, ĥ, ẑ) is also a DH tuple. We will argue that if
the multisignature verification passes then with a high probability (g, y, ĥα(m,p) , z) is a
DH tuple and if the key verification passes for all of the adversary’s public keys then
with a high probability (g, yi, ĥ

βyi , zi)’s are also all DH tuples, in which case ẑ is the
answer to the reduction’s CDH challenge. But first let’s look at the probability of failure
events. Let Ei for i = 1..9, denote the failure event that badi = true. The algorithm B
provides a perfect simulation for adversaryA conditioned on events Ei where i = 1..9
not happening. More precisely, if events Ei for i = 1..9 do not happen then: Firstly, the
view of the adversary interacting with the simulator in SIMR branch is identical to the
view of the adversary in the real execution conditioned on the event that the simulation
stops in step (3’), i.e. ifA’s responses in that step do not pass the verification procedure.
Secondly, the view of the adversary interacting with the simulator in SIML branch is
identical to the view of the adversary in the real execution conditioned on the event
thatA’s responses in step (3’) are correct, i.e. that values {(z(1)

j , A
(1)
j , B

(1)
j)}Pj∈S/{P1}

232 A. Bagherzandi and S. Jarecki

which are input to SIML satisfy the verification condition. (Note that the SIML branch
executes only under this condition.) We start by upper-bounding the probabilities of all
the “fail” events:

The event E1 corresponds to a collision in H2 . Thus Pr[E1] ≤ (qH2
)2/22κ. To

upper bound E2, it is enough to upper bound the event that H2 is queried on some
b = b1|...|b|S| whereH2(b) = p for some previous query (m, p) toH3 . The probability
that any query to H2 hits some p s.t. (m, p) is also queried to H3 is at most qH3

/22κ

and there are at most qH2
queries to H2 , thus Pr[E2] ≤ qH2

qH3
/22κ. The events E3

and E5 reflect the possibility that H1 has been queried on A1 before it is set by B in a
particular signing query. Since no information about A1 is revealed before it is set by B,
thus both of these events can be upper bounded by qsqH1

/22κ. Similarly both E4 and
E6 can be upper bounded by qsqH4

/q. The event E7 reflects the possibility thatH5 has
been queried on (g, h, y, z, A, B) before it is set by B in a particular signing query. Here
we have two cases: either adversary has queriedH1 on A1 or B1 in a particular signing
query or he has not. In the first case which happens with probability at most 2qH1

/22κ,
the adversary knows both A and B and can easily queryH5 on (g, h, y, z, A, B) before
it is set by B. In the second case A still has some information about A and B and can
happen to queryH5 on (g, h, y, z, A, B) with probability at most qH5

/(q−qH1
). Thus,

Pr[E7] ≤ 2qsqH1
/22κ + qsqH5

/(q − qH1
). The event E8 corresponds to a collision

in H1 . Now since CAj �= CA1 for all Pj ∈ S, and CA1 is the only output of H1

that is being manipulated by B in SIMR and SIML, therefore with regards to value
CAj , for any Pj ∈ S/{P1}, the hash function H1 remains collision resistant across

these SIML and SIMR executions. Thus the value A
(1)
j revealed for CAj in SIMR

and value Aj revealed for CAj in SIML can be different with probability at most
(qH1

)2/22κ. Hence Pr[E8] ≤ (qH1
)2/22κ. The event E9 reflects the possibility thatA

has cheated on at least one of the NIZK proofs in SIMR or SIML branches. However
due to special soundness property of this double-DL-equality proof system, for given
tuple (g, h, yi, zi, Ai, Bi) not satisfying double-DL-equality, for any ui, vi ∈ G, there’s
at most q different (e, f) ∈ Zq pairs that satisfy the verification equation for some t.
Therefore the probability of hitting such pair in qH4

queries is bounded by qH4
/q. Thus

Pr[E9] ≤ 2qH4
/q.

There is also a possibility of failure in reduction after A outputs a valid forgery.
Namely if in the simulation of H3 for query (m, p) where m is in the forgery, the
simulator finds an entry b = b1|...|b|S| corresponding to p in H2, and moreover the first

element of the vector b is equal to b
(m)
1 , the query is answered by gα(m,p) and therefore

is useless for the reduction. However since with probability 1/2, the first element of

the vector b is not equal to b
(m)
1 , therefore with probability at least 1/2 the reduction

proceeds to output ẑ after obtaining a valid forgery fromA.
Now since Vrfy(g, m, {pki}Pi∈S , σ) = 1, thus due to special soundness property

of DL-equality proof system, except for a probability of qH5
/q, (g, y, ĥα(m,p) , z) is a

DH tuple. Similarly Since KVrfy(par, pki, π) = 1 for all Pj ∈ S/{P1}, except for a
probability of qG2

/q, the tuples (g, yj, ĥ
βyj , zj) where Pj ∈ S/{P1} are all DH tuples.

Therefore, (g, y1, ĥ, ẑ) is also a DH tuple except for these error probabilities, and thus
B solves the DH problem with advantage ε′ = 1/2(ε− err) where

Multisignatures Using Proofs of Secret Key Possession 233

err ≤
qH2

(qH2
+ qH3

) + 4qsqH1
+ (qH1

)2

22κ
+

2(qs + 1)qH4
+ qH5

+ qG2

q
+

qsqH5

q − qH1

The fact that qG1
+ qG2

+ qH1
+ qH2

+ qH3
+ qH4

+ qH5
≤ qh yields the desired result.

Calculating the running time of the simulator is little bit complicated due to the
tree-like nature of its execution structure. Let’s focus on “answering to the signature
queries” part since it is the most time consuming part of the execution. Let r1|r2|...|ri

be the randomness of the real execution of the protocol in which the randomness of
the jth signature query instance, 1 ≤ j ≤ i, is rj . Therefore r1|r2|...|ri determines the
path of real execution up to ith signature query. Accordingly let ti(r1|r2|...|ri) be the
running time of the real execution of the protocol in ith round of answering signature
queries. By assumption we have ∀r1, r2, ..., rqs

∑qs

i=1 ti(r1|r2|...|ri) = T where T is
the total running time of the forger in “answering to the signature queries” part.

Let sL
i and sR

i be the running times of the simulator in SIML and SIMR branches of
the execution respectively that interact with the adversary in the ith signature query. As
we mentioned before the view of the adversary interacting with the simulator in SIMR

branch is similar to the view of the adversary in real execution of the protocol condi-
tioned on the halting of the adversary except possibly with some negligible factor of fail-
ure. Similarly except for a negligible probability, the view of the adversary interacting
with the simulator in SIML branch is similar to the view of the adversary in real execu-
tion. This can be stated more formally as follows: for all random coins of the adversary,
(A, SIMR)$ SIMR

= (A, P)$ P |A aborts and (A, SIML)$ SIML
= (A, P)$ P . This

means that there is a one to one correspondence between the randomness of each sig-
nature query in the real execution and the execution of the simulator both in SIML and
in SIMR. Therefore we can calculate the running time of the simulator by calculating
the following:

T ′ = t1(rL
1) + t1(rR

1) + ... + tqs(r
L
1 |rL

2 |...|rL
qs−1|rL

qs
) + tqs(r

L
1 |rL

2 |...|rL
qs−1|rR

qs
)

Note that there exist random coins that lead to non-constant reduction: Consider an
extreme case in which ∀1≤i≤qs−1, ti(rL

1 |rL
2 |...|rL

i) = 0 and ti(rL
1 |rL

2 |...|rR
i) = T and

tqs(rL
1 |rL

2 |...|rL
qs

) = tqs(rL
1 |rL

2 |...|rL
qs

) = 0. In this case T ′ = qsT . However we can
still get a tight bound on the expected running time of the simulator.

E[T ′] =
∑

rL
1 ,rR

1 ,...,rL
qs

,rR
qs

←{0,1}22qsκ

(
1

22qsκ

qs∑
i=1

(
ti(rL

1 |rL
2 |...|rL

i) + ti(rL
1 |rL

2 |...|rR
i)
)
)

=

(
tqs(r

L
1 |rL

2 |...|rR
qs

) +
qs−1∑
i=1

ti(rL
1 |rL

2 |...|rL
i)

)
+

qs∑
i=1

ti(rL
1 |rL

2 |...|rL
i)

+
qs−1∑
i=1

(
ti(rL

1 |rL
2 |...|rR

i)− ti(rL
1 |rL

2 |...|rL
i)
)

= 2T

The last equation is because according to the definition the first two terms add up to 2T
and for any function f defined on any domain D,

∑
x,y∈D2 (f(x)− f(y)) = 0.

There are two multi-exponentiations and one single exponentiation in initialization
phase, one single exponentiation per each query to H3 and one single exponentiation
per each query to G1 . The reduction also makes three single exponentiations, at most

234 A. Bagherzandi and S. Jarecki

4nmax + 2 multi-exponentiations and at most 4nmax multiplications per each sign-
ing query in the signing phase, and 2(n − 1) multi-exponentiations in KVrfy and two
multi-exponentiations in Vrfy algorithms and nmax single exponentiations in finaliza-
tion phase. Therefore, ignoring the cost of hash-table lookups, assuming that a two or
three exponent multi-exponentiation take at most 25% more time than an exponentia-
tion, the total running time of the algorithm B can be upper-bounded as

t′ ≤ 2t + (qh + 6(nmax + 1)(qs + 1))te + 4qsnmaxtm

Note on the Security Reduction. There are two crucial tricks we use which allow us
to compress the protocol to three rounds and maintain exact security reduction. First,
we use the signature randomization technique introduced by Katz and Wang [KW03],
which in the multisignature setting extends the signed message with n bits instead of
just one. This idea allows to replace the 1/qs factor encountered in the security reduc-
tion for the full-domain hash signature with a constant factor of 1/2. However, to make
the exact security reduction to go through, each player must have its own bit for the
reduction to play with, and hence the signature size grows by exactly n bits. However
we use an intermediate hash function to avoid this linear blowup and maintain constant
signature size. Secondly, we use the ZK proofs to ensure that the adversary cannot ma-
nipulate values zj and Bj provided by potentially corrupt players in the second round.
Inclusion of such ZK proofs in the protocol fixes these values across instances of the
same adversarial algorithm executing on the same inputs. This enables a very simple
rewinding schedule in the simulation: The simulator attempts the execution once, learns
the adversarial contributions zj, Bj if the adversary reveals them accompanied with a
correct ZK proof, rewinds the adversary, and equipped with the knowledge of the values
the adversary is bound to use again (we are aided here by the fact that the soundness
of the ZK proofs we use is unconditional), the simulator then successfully straight-line
simulates the protocol on behalf of an honest player. If the adversary fails to reveal
correct zj, Bj values, the simulator has an even easier job because the first execution
already forms a correct simulation, since the honest player would abandon the protocol
if any protocol participant failed in this way. Thus the simulator repeats an execution
of every instance of the signature scheme at most twice. At surface, the time of such
simulation seems to be at most twice the total time of the adversary. However, upon
closer inspection, it is clear that there are adversaries for which the running time of the
simulator is qs times the running time of the adversary. Namely in an extreme scenario
in which the adversary takes its maximum time on the random coins that run it in the
first execution in the simulation and takes zero time on the remaining random coins.
However as we argue in the proof of the theorem 2 the expected running time of the
simulation is at most twice as the expected running time of the adversary.

References
[BGLS03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted

signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

[BJ08] Bagherzandi, A., Jarecki, S.: Multisignatures using proofs of secret key possession,
as secure as the diffie-hellman problem. ePrint Archive (2008)

[BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tology 17(4), 297–319 (2004)

Multisignatures Using Proofs of Secret Key Possession 235

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: ACM Conference on Computer and Communications Security,
pp. 390–399 (2006)

[BNN07] Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 411–422. Springer, Heidelberg (2007)

[Bol03] Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003.
LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

[Bon98] Boneh, D.: The decision diffie-hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)

[Fis05] Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with on-
line extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168.
Springer, Heidelberg (2005)

[GJ03] Goh, E.-J., Jarecki, S.: A signature scheme as secure as the diffie-hellman problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer,
Heidelberg (2003)

[Har94] Harn, L.: Group-oriented (t,n) threshold digital signature scheme and digital
multisignature. In: IEEE Proceedings on Computers and Digital Techniques,
vol. 141(5), pp. 307–313 (1994)

[KW03] Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: ACM Conference on Computer and Communications Security,
pp. 155–164 (2003)

[LHL94] Li, C.-M., Hwang, T., Lee, N.-Y.: Threshold-multisignature schemes where sus-
pected forgery implies traceability of adversarial shareholders. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 194–204. Springer, Heidelberg (1995)

[LOS+06] Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate
signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EU-
ROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)

[MOR01] Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended
abstract. In: ACM Conference on Computer and Communications Security, pp. 245–
254 (2001)

[MW99] Maurer, U.M., Wolf, S.: The relationship between breaking the diffie-hellman proto-
col and computing discrete logarithms. SIAM J. Comput. 28(5), 1689–1721 (1999)

[MW00] Maurer, U.M., Wolf, S.: The diffie-hellman protocol. Des. Codes Cryptogra-
phy 19(2/3), 147–171 (2000)

[OO91] Ohta, K., Okamoto, T.: A digital multisignature scheme based on the fiat-shamir
scheme. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS,
vol. 739, pp. 139–148. Springer, Heidelberg (1993)

[OO99] Ohta, K., Okamoto, T.: Multisignature schemes secure against active insider attacks.
IEICE Transactions on Fundamentals of Electronics Communications and Com-
puter Sciences E82-A(1), 21–31 (1999)

[PKC00] PKCS#10. Certification request syntax standard. In: RSA Data Security, Inc. (2000)
[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signa-

tures. J. Cryptology 13(3), 361–396 (2000)
[RY07] Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty

signatures against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 228–245. Springer, Heidelberg (2007)

[Sho00] Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

Using Normal Bases for Compact Hardware

Implementations of the AES S-Box

Svetla Nikova1, Vincent Rijmen1,2, and Martin Schläffer2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium

2 Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

martin.schlaeffer@iaik.tugraz.at

Abstract. The substitution box (S-box) of the Advanced Encryption
Standard (AES) is based on the multiplicative inversion s(x) = x−1 in
GF(256) and followed by an affine transformation in GF(2). The S-box
is the most expansive building block of any hardware implementation of
the AES, and the multiplicative inversion is the most costly step of the
S-box transformation. There exist many publications about hardware
implementations of the S-box and the smallest known implementations
are based on normal bases. In this paper, we introduce a new method
to implement the multiplicative inversion over GF(256) based on normal
bases that have not been considered before in the context of AES imple-
mentations.

Keywords: AES, S-box, hardware implementation, normal basis.

1 Introduction

The first efficient hardware implementation of the multiplicative inversion in
GF(256) has been proposed by Rijmen [9] and first imlemented by Rudra et al.
[10] and Wolkerstorfer et al. [13]. They decompose the elements of GF(256) into
polynomials of degree 2 over the subfield GF(16). In the next step, the elements
of GF(16) are further decomposed into polynomials of degree 4 over GF(2).
The resulting operations in GF(2) work on bit-level and can be implemented in
hardware using simple gates.

Satoh et al. [11] and further Mentens et al. [6] use the different tower field
decomposition in their implementation. They first start by decomposing the ele-
ments of GF(256) into polynomials over GF(16) as well. But then the elements
of the field GF(16) are further decomposed into polynomials over the subfield
GF(4) before implementing the final operations in GF(2). In all these approaches
the field elements are represented by using polynomial bases. In contrast, Can-
right has been able to further reduce the size of the S-box computation by using
normal bases at all levels of the tower field decomposition [3,2].

In this paper, we propose a new way to implement the inversion of the AES S-
box. We use normal bases as in the approach of Canright but do not decompose

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 236–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Using Normal Bases for Compact Hardware Implementations 237

the elements of GF(16) into elements of GF(4). Table 1 illustrates the relation
between the four mentioned approaches. We show that our implementation of the
AES S-box can be at least as compact as the one proposed by Canright when
counting the required number of gates. Which of the approaches is the best
depends not only on the used hardware technology, but also on the application
of the circuit and the resulting hardware criteria like size, timing, or power
consumption [12]. Therefore, we cannot make an unambiguous ranking of the
different implementations, but we are convinced that our alternative has its
merits, already simply because it increases the available options of a hardware
designer.

Table 1. Four approaches to decompose elements of GF(256) into elements of smaller
subfields

Decomposition of field elements
GF(256)→GF(16) → GF(2) GF(256)→GF(16) → GF(4) → GF(2)

Polynomial Rijmen [9], Rudra et al. [10], Satoh et al. [11],
bases Wolkerstorfer et al. [13] Mentens el al. [6]

Normal bases this paper Canright [3,2]

The paper is organized as follows. In Section 2 we briefly recall some properties
of normal bases which are relevant for the implementation of the AES S-box.
Subsequently, in Section 3 we study extensively the different normal bases of
GF(16) over GF(2) and discuss the impact of the choice of basis on the structure
and complexity of the multiplicative inversion over GF(16). Additional hardware
related considerations are made in Section 4 and we conclude in Section 5

2 Normal Bases

In this section we briefly summarize some properties of normal bases over finite
fields [5]. The finite field GF(2mp) is isomorphic to a p-dimensional vector space
over GF(2m). This implies that it is possible to construct a basis for GF(2mp).
A basis consists of p elements β0, β2, . . . , βp−1 ∈ GF(2mp) such that all elements
of GF(2mp) can be written as a linear combination of the elements βj , with
all coefficients elements of GF(2m). As in all vector spaces, there are many
different choices possible for the basis, and the choice of basis may influences the
complexity to describe transformations on the vector space.

2.1 Construction

A normal basis is constructed by choosing an element θ ∈ GF(2mp) and setting
βj = θ2mj

. Not all elements of GF(2mp) result in a basis, but there exist always
some suitable elements. Let now

x =
p−1∑
j=0

cjθ
2mj

, cj ∈ GF(2m).

238 S. Nikova, V. Rijmen, and M. Schläffer

We raise both sides to the power 2m. This operation is linear over GF(2mp) and
corresponds to the identity transformation for all elements in GF(2m). Then we
obtain

x2m

=
p−1∑
j=0

(cj)2
m

(θ2mj

)2
m

=
p−1∑
j=0

cjθ
2m(j+1)

=
p−1∑
j=0

cj−1θ
2mj

.

In words, this corresponds to the following property.

Property 1 ([5]). If the elements of the finite field GF(2mp) are represented by
p-dimensional vectors over GF(2m) using a normal basis, then raising an element
to the power 2m corresponds to rotating the coordinates of the element by one
position.

Let now m = 1 and consider the inversion map used in the AES S-box. We
denote this map by s. Then we have:

s(0) = 0,

s(x) = x−1, x �= 0.

Equivalently, we can write: s(x) = x254. Clearly, s(x2) = x508 = (s(x))2. Hence
we obtain the following property.

Property 2. If the elements of the finite field GF(2mp) are represented in a nor-
mal basis, then the inversion map s(x) is rotation invariant:

rot(s(x)) = s(rot(x)).

For the remainder of this section, we set p = 2 and let v be an element of
GF(22m) such that v + v� = 1 with � = 2m. Then {v, v�} is a normal basis
of GF(22m) and the coordinate vectors consist of two elements of GF(2m). We
denote by g the trace of v over GF(2m):

g = v2 + v, (1)

and g ∈ GF(2m). We show now that the use of a normal basis leads to simple
formulas for products and inverses of elements.

2.2 Multiplication

Let (a, b) and (c, d) be the coordinates of two elements of GF(22m). The coordi-
nates of the product are given by the following formula:

(e, f) = (a, b)× (c, d) ⇔ ev + fv� = acv2 + (ad + bc)v�+1 + bdv2�

⇔
{

e = (a + b)(c + d)g + ac
f = (a + b)(c + d)g + bd

Here the element g is defined by (1).

Using Normal Bases for Compact Hardware Implementations 239

2.3 Inversion

Let (a, b) be the coordinates of an element of GF(22m). The coordinates of the
inverse element are given by the following formula:

(c, d) = (a, b)−1 ⇔ 1 = (av + bv�)(cv + dv�)
⇔ 1 = acv2 + (ad + bc)(v2 + v) + bd(v2 + 1)

⇔
{

c = ((a + b)2g + ab)−1b
d = ((a + b)2g + ab)−1a

(2)

Again the element g is defined by (1).

3 Implementing the AES Inverse Using Normal Bases

Canright has investigated all 432 possible tower field decompositions using poly-
nomial and normal bases in his work [3,2]. He has obtained the smallest hardware
implementation of the S-box by using normal bases at all three levels. However,
he did not consider the decomposition of the field GF(16) into the subfield GF(2)
using normal bases. In this section we derive this decomposition and present for-
mulas for the inversion in GF(16) using the additional normal bases.

3.1 Inversion in GF(256)

Assume a normal basis {v, v16}. Equation (2) suggests the following 3-stage
approach to implement the inverse [2,3].

Step 1: Compute the product ab and add the result to (a + b)2g. Computing
the product is a nonlinear operation and the remaining operations are linear.

Step 2: Compute the multiplicative inverse over GF(16) of the result of Step 1.
Step 3: Multiply the result of Step 2 once with a, and once with b.

Note that Step 3 uses twice the same hardware. Hence, hardware can be saved by
splitting Step 3 up into two steps using the same circuit. The computation of the
multiplicative inverse over GF(16) can be computed by applying recursion, i.e.
describing GF(16) as an extension field of GF(4) using the tower field approach.
We have opted for a direct computation of the inverse over GF(16), as explained
in the next section.

3.2 Normal Bases in GF(16)

The field GF(16) can be described directly as an extension field of GF(2). This
approach gives a 4-dimensional basis with coordinate elements from GF(2), i.e.
m = 1 and p = 4. The field GF(16) counts exactly 8 solutions to the following
equation:

θ + θ2 + θ4 + θ8 = 1. (3)

240 S. Nikova, V. Rijmen, and M. Schläffer

These 8 elements define 8 possible normal bases: {θ, θ2, θ4, θ8}. Note that if θ1

satisfies (3), then so do θ2
1, θ4

1 and θ8
1, i.e. they define rotated versions of the

same 4 base vectors. Thus the number of the normal bases reduces to two, as
noted in [7].

It is called an optimal normal base (ONB) [7], because the complexity of
the multiplication formula in this basis is minimal, i.e. equal to 2n − 1 = 7
[4]. In the non-optimal normal basis (NB), the complexity of the multiplication
formula equals 9 [8]. In those two cases multiplying x = (x0, x1, x2, x3) with
y = (y0, y1, y2, y3) results in z = (z0, z1, z2, z3), where

NB: z3 = x2y3 + x3y2 + x1y3 + x3y1 + x3y0 + x0y3 + x2y2 + x0y1 + x1y0.
ONB: z3 = x3y1 + x0y1 + x0y2 + x1y3 + x1y0 + x2y0 + x2y2.

(4)
As noted by Paar [8] the multiplication in any normal basis is rotation symmetric,
so the rest of the output bits z0, z1 and z2 can be computed by rotating the input
bits. Note that the multiplicative group of GF (16) has order 15 and we know
from group theory that this group is the direct product of two cyclic groups of
order 3 and order 5. Remember that the intersection of these two subgroups is
trivial.

3.3 Inversion in GF(16)

We now study in detail how the choice of θ influences the complexity of the map
s(x).

1. Equation (3) can be rewritten as

(θ + θ4)2 + (θ + θ4) = 1.

It follows that for all θ satisfying (3), the elements θ + θ4 and θ2 + θ8 are the
roots of the polynomial x2 + x + 1. The roots of this polynomial are exactly
the two elements of order 3 in GF(16).

2. In a normal base, the zero element of GF(16) always has coordinates 0000,
while the unit element always has 1111. Hence we always have s(0000) =
(0000) and s(1111) = (1111).

3. It follows from Property 2 that x and s(x) must have coordinates with the
same rotational symmetry. Hence, the inverse map must map elements with
rotational symmetry to elements with the same symmetry. Hence we have
the following commutative diagram:

This implies that s({0101, 1010}) = {0101, 1010}. The inversion map has
only two fixed points: the zero element and the unit element and it follows

Using Normal Bases for Compact Hardware Implementations 241

that s(0101) = 1010 and s(1010) = 0101: We can conclude that 0101 and
1010 are the two elements of order 2. Together with the unit element, they
form the cyclic subgroup of order 3 of the multiplicative group of GF (16).

4. The remaining 12 elements of GF(16) can be partitioned into 3 sets with 4
elements each. The index of Si denotes the number of ones in each represen-
tation:

S1 = {0001, 0010, 0100, 1000}
S2 = {0011, 0110, 1100, 1001}
S3 = {0111, 1110, 1101, 1011}

Due to the rotational symmetry of s, this partitioning is consistent with s.
If one element of Si is mapped to an element of Sj , then all elements of Si

are mapped to elements of Sj , and since s is an involution, this also implies
that all elements of Sj are mapped to elements of Si.

5. Assume now that s(Si) = Si. Then the rotational symmetry of s implies:

∃r, ∀v ∈ Si : s(v) = rotr(v).

Since s is an involution we have

rotr(rotr(v)) = rot2r(v) ≡ v.

This implies that 2r = 0 (mod 4). Since we cannot have new fixed points
for s, r �= 0 we get r = 2. We require that s(S2) �= S2 because otherwise, we
would get s(0011) = (1100), and the corresponding element satisfies x−1 +
x = 1. Since this would mean that it is a root of the polynomial x2 + x + 1
we get a contradiction because the roots of this polynomial have coordinates
(0101) and (1010). Hence, there are only two possibilities left: either s(S1) =
S1 and s(S2) = S3, or s(S1) = S2 and s(S3) = S3. Further analysis shows
that

s(S1) = S1 ⇔ s(0001) = (0100),
s(S3) = S3 ⇔ s(0111) = (1101),

because other choices lead to violations of Property 2. For each of these
possibilities, there are 4 possibilities left for s(0, 0, 1, 1) and this choice de-
termines completely the action of s on the coordinate vectors. Table 2 lists
the 8 remaining candidates for the inversion map in GF(16). The cases A-D
correspond to the 4 choices for S1 = s(S2) and the cases E-H to the 4 choices
for S3 = s(S2).

242 S. Nikova, V. Rijmen, and M. Schläffer

Table 2. 8 candidates for the inversion map in GF(16). The first 4 cases have s(S2) =
S1, the last 4 have s(S2) = S3.

x s(x)
A B C D E F G H

0000 0000 0000 0000 0000 0000 0000 0000 0000
1111 1111 1111 1111 1111 1111 1111 1111 1111
0101 1010 1010 1010 1010 1010 1010 1010 1010
1010 0101 0101 0101 0101 0101 0101 0101 0101

0001 0011 0110 1100 1001 0100 0100 0100 0100
0010 0110 1100 1001 0011 1000 1000 1000 1000
0100 1100 1001 0011 0110 0001 0001 0001 0001
1000 1001 0011 0110 1100 0010 0010 0010 0010

0011 0001 1000 0100 0010 0111 1011 1101 1110
0110 0010 0001 1000 0100 1110 0111 1011 1101
1100 0100 0010 0001 1000 1101 1110 0111 1011
1001 1000 0100 0010 0001 1011 1101 1110 0111

0111 1101 1101 1101 1101 0011 0110 1100 1001
1011 1110 1110 1110 1110 1001 0011 0110 1100
1101 0111 0111 0111 0111 1100 1001 0011 0110
1110 1011 1011 1011 1011 0110 1100 1001 0011

The two choices S1 = s(S2) and S3 = s(S2) can be restated as S3 = s(S3)
and S1 = s(S1). Hence, the choice is which elements will have order 5 and
will form together with the unit element the cyclic subgroup of order 5 of
the multiplicative group of GF (16).

Recall that the two cyclic groups of order 3 and order 5 build up the
multiplicative group of GF (16). Thus the fact that the cyclic group of order
3 is fixed and for the cyclic group of order 5 we have 2 choices implies that
we have two choices for the multiplicative group of GF (16) this naturally
corresponds to the fact that we have only two normal bases in GF (16).

6. Finally, we use the fact that s must satisfy

s(xy) = s(x)s(y), ∀x, y

to eliminate all but two of the candidate maps. We obtain that only case A
and case H are inversion maps, corresponding to the optimal, respectively
the normal base, mentioned before.

Table 3 gives the truth tables for the Boolean functions that computes the
rightmost bit f0 of s(x) in the two cases:

(f3, f2, f1, f0) = s(x3, x2, x1, x0)

Due to the rotational symmetry of s, the other output bits f3, f2 and f1 can
be computed by rotating the input bits. The Algebraic Normal Form (ANF) of
each output bit f0 is given by:

NB: f0 = x0 + x3 + x0x1 + x1x3 + x0x1x2 + x0x1x3 + x1x2x3

ONB: f0 = x1 + x0x3 + x0x2 + x1x3 + x0x1x2 + x0x1x3 + x1x2x3
(5)

Using Normal Bases for Compact Hardware Implementations 243

Table 3. The truth tables for the Boolean functions computing the rightmost bit of
s(x) in the two cases

x A (NB) H (ONB)

0000 0 0
0001 1 0
0010 0 0
0011 1 0
0100 0 1
0101 0 0
0110 0 1
0111 1 1
1000 1 0
1001 0 1
1010 1 1
1011 0 0
1100 0 1
1101 1 0
1110 1 1
1111 1 1

In the next section we show how the ANF can be simplified to reduce the number
of operations and the resulting hardware size.

4 Hardware Considerations

In this section we optimize the hardware implementation of the different normal
bases regarding their size. We present the size of the inversion in GF(16) using
the two normal bases and compare our results with the results of Canright.

4.1 Optimizing the Implementation

In order to achieve minimal hardware implementations, the 4 formulae for the 4
output bits of the inversion in GF(16) need to be further optimized. We compute
the four output bits in parallel and share intermediate terms between different
functions. Hence, formulae which allow to share many terms, have an advantage.

Secondly, ‘+’ operations (XOR) are usually very expensive in hardware im-
plementations. For instance using the AMS 0.35μm technology [1], an XOR
gate costs 2.33 times more than a NAND gate. Hence, the final implementation
formulae should contain as little ‘+’ operations as possible. For instance, the
inversion formulae using the optimal normal basis (5) can be rewritten as:

f0 = NAND(NOR(NOR(NAND(x0, x2)), NAND(x3, x1),
NOR(NOR(NOR(x0, x3), x1), x2)), NAND(x1, x3))

f1 = NAND(NOR(NOR(NAND(x3, x1), NAND(x2, x0)),
NOR(NOR(NOR(x3, x2), x0), x1)), NAND(x0, x2))

f2 = NAND(NOR(NOR(NAND(x2, x0)), NAND(x1, x3),
NOR(NOR(NOR(x2, x1), x3), x0)), NAND(x3, x1))

f3 = NAND(NOR(NOR(NAND(x1, x3)), NAND(x0, x2),
NOR(NOR(NOR(x1, x0), x2), x3)), NAND(x2, x0))

(6)

244 S. Nikova, V. Rijmen, and M. Schläffer

These formulae use 16 NAND gates, 20 NOR gates, 20 NOT gates. When im-
plementing the 4 output bits in parallel, the inverters xi and the common terms
NAND(xi, xi+2) can be shared between different output bits. Therefore, these 4
functions can finally be implemented using 20 NOR gates, 8 NAND gates and 4
NOT gates.

4.2 Counting Gate Equivalents

We refer to the size of the NAND gate by one gate equivalent (GE). In the
AMS 0.35μm standard cell library [1] an XNOR gate corresponds to 2GE, an
XOR gate to 2.33GE, an inverter (INV) to 0.65GE and a NOR gate to 1GE.
These values give a total of 30.7GE for our best GF(16) inversion. This compares
favorably to the best GF(16) inversion circuit reported by Canright, which uses
9 XOR and 10 NAND gates, corresponding to 31.0GE [2]. Referring to personal
communication with Satoh, Canright equates XOR and XNOR gates to 1.75GE,
and inverters to 0.75GE. Using these values, our best GF(16) inversion costs
31.0GE, but the cost of the best Canright implementation is reduced to 25.8GE.

However, standard cell libraries provide additional operations other than the
basic Boolean operations INV, NAND, NOR, XNOR and XOR. For example,
there are extended operations with more than one input which can be used to
improve the 3-input NOR terms of (6). Additionally, the AMS 0.35μm library
provides specialized standard cells like AND-OR-INVERT (AOI) which compute
Q = A.B+C+1, or OR-AND-INVERT (OAI) which compute Q = (A+B).C+1.
Both can be implemented using only 1.33GE [1] and have far less size than
the XOR or XNOR gates. Using these additional cells, we have been able to
improve the GF(16) inversion of Canright to 26.7GE and the inversion based on
the optimal normal base formulae to 22.7GE. Table 4 gives an overview of these
results.

Table 4. Equivalent gate costs for the implementation of several GF(16) inversions

Design Canright’s GE [3] basic standard cells [1] all standard cells [1]

Canright 25.8 31.0 26.7
NB 34.3 34.0 24.7

ONB 31.0 30.7 22.7

5 Conclusion

In this paper, we discussed alternative constructions for the AES S-box using
normal bases for GF(16) over GF(2). We worked out example implementations
showing that our normal bases can compete with the results of Canright. Of
course, the final size of the S-box depends on the size of the multiplication in
GF(16) and on the complexity of the basis transformations as well. As shown in
Section 4.2, also the target technology influences the final count on the imple-
mentation cost. Therefore, our normal bases should at least be considered when
designing small AES S-box implementations.

Using Normal Bases for Compact Hardware Implementations 245

We did not check all possible cases, since the result can only be a specialized
implementation for a single target technology. Further, the best basis does not
only depend on the hardware size but on other optimization constraints such
as low power, timing and throughput as well. However, using our normal bases
new promising alternatives for hardware designers of compact AES S-boxes are
available.

References

1. Austria Microsystems. Standard Cell Library 0.35μm CMOS (C35),
http://asic.austriamicrosystems.com/databooks/c35/databook c35 33

2. Canright, D.: A very compact Rijndael S-box (May 2005),
http://web.nps.navy.mil/∼dcanrig/pub.

3. Canright, D.: A Very Compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.)
CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)

4. Certicom. F24 with Optimal Normal Basis Representation,
http://www.certicom.com/index.php?action=ecc tutorial,math9 1

5. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications.
Cambridge University Press, New York (1986)

6. Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A Systematic Evaluation of
Compact Hardware Implementations for the Rijndael S-Box. In: Menezes, A. (ed.)
CT-RSA 2005. LNCS, vol. 3376, pp. 323–333. Springer, Heidelberg (2005)

7. Mullin, R.C., Onyszchuk, I.M., Vanstone, S.A., Wilson, R.M.: Optimal Normal
Bases in GF (pn). Discrete Appl. Math. 22, 149–161 (1989)

8. Paar, C.: Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. PhD thesis, Institute for Experimental Mathematics, University of Essen
(1994)

9. Rijmen, V.: Efficient Implementation of the Rijndael S-box (2000),
www.iaik.tugraz.at/RESEARCH/krypto/AES/old/∼rijmen/rijndael/sbox.pdf

10. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer,
Heidelberg (2001)

11. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001.
LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

12. Tillich, S., Feldhofer, M., Großschädl, J., Popp, T.: Area, Delay, and Power Char-
acteristics of Standard-Cell Implementations of the AES S-Box. Journal of Signal
Processing Systems 50(2), 251–261 (2008)

13. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the AES
SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer,
Heidelberg (2002)

http://asic.austriamicrosystems.com/databooks/c35/databook_c35_33
http://web.nps.navy.mil/~dcanrig/pub
http://www.certicom.com/index.php?action=ecc_tutorial,math9_1
www.iaik.tugraz.at/RESEARCH/krypto/AES/old/~rijmen/rijndael/sbox.pdf

A New Analysis of the McEliece Cryptosystem

Based on QC-LDPC Codes

Marco Baldi1, Marco Bodrato2, and Franco Chiaraluce1

1 DEIT, Università Politecnica delle Marche
Ancona, Italy

{m.baldi,f.chiaraluce}@univpm.it
2 Centro Vito Volterra, Università di Roma Tor Vergata

Roma, Italy
bodrato@mail.dm.unipi.it

Abstract. We improve our proposal of a new variant of the McEliece
cryptosystem based on QC-LDPC codes. The original McEliece cryp-
tosystem, based on Goppa codes, is still unbroken up to now, but has
two major drawbacks: long key and low transmission rate. Our variant is
based on QC-LDPC codes and is able to overcome such drawbacks, while
avoiding the known attacks. Recently, however, a new attack has been
discovered that can recover the private key with limited complexity. We
show that such attack can be avoided by changing the form of some con-
stituent matrices, without altering the remaining system parameters. We
also propose another variant that exhibits an overall increased security
level. We analyze the complexity of the encryption and decryption stages
by adopting efficient algorithms for processing large circulant matrices.
The Toom-Cook algorithm and the short Winograd convolution are con-
sidered, that give a significant speed-up in the cryptosystem operations.

Keywords: McEliece cryptosystem, QC-LDPC codes, Cryptanalysis,
Toom-Cook, Winograd.

1 Introduction

The McEliece cryptosystem is a public-key cryptosystem based on algebraic
coding theory [1] that revealed to have a very high security level. It adopts a
generator matrix as the private key and one transformation of it as the public
key, while its security lies in the difficulty of decoding a large linear code with
no visible structure, that is known to be an NP complete problem [2].

The original McEliece cryptosystem is still unbroken, in the sense that a to-
tal break attack has never been found, and even local deduction attacks remain
quite intractable in practice [3,4]. Moreover, the system is two or three orders of
magnitude faster than competing solutions, like RSA, that is among the most
popular public key algorithms currently in use. Despite this, the McEliece cryp-
tosystem has been rarely considered in practical applications; this is due to the
fact it exhibits two major drawbacks: i) large size of the public key and ii) low
transmission rate (that is about 0.5).

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 246–262, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 247

In his original formulation, McEliece used Goppa codes of length n = 1024,
dimension k = 524, and minimum distance dmin of at least 101, that are able to
correct t = 50 errors. Several attempts have been made, later on, for overcoming
the drawbacks of the original system and/or further reducing the complexity,
but the adoption of alternative families of codes has not been possible without
compromising the system security. Generalized Reed-Solomon (GRS) codes, in
particular, were initially considered for an important variant of the McEliece
cryptosystem, proposed by Niederreiter [5], but they revealed to be unsecure.
On the other hand, when employing Goppa codes, the Niederreiter cryptosys-
tem shows some advantages: it has equivalent security to that of the McEliece
system, for codes with the same parameters [6], but it requires a key size more
than halved (when considering the values reported above), a transmission rate
slightly increased, and the possibility to use a public key in systematic form. For
these reasons, though renouncing to use GRS codes, the Niederreiter system is
considered a good alternative to the McEliece system.

A clever technique for increasing the transmission rate has been proposed by
Riek [7], and consists in mapping additional information bits onto the intentional
error vector. This approach could increase significantly the transmission rate,
but requires the introduction of an additional encoding and decoding stage to
implement a positional code on error vectors.

Low-Density Parity-Check (LDPC) codes represent the state of the art in for-
ward error correction techniques, and permit to approach the theoretical Shan-
non limit [8], while ensuring limited complexity. Quasi-cyclic (QC) LDPC codes
are a particular class of LDPC codes, able to join low complexity encoding of
QC codes with high-performing and low-complexity decoding techniques based
on the belief propagation principle. Several classes of QC-LDPC codes have been
proposed up to now, all having in common the parity-check matrix structure,
that is formed by sparse circulant blocks.

In a recent work, we have proposed to adopt a particular family of QC-LDPC
codes in the McEliece cryptosystem to reduce the key size and increase the trans-
mission rate [9]. We have shown such variant is able to counter all the general
attacks, and even new attacks that can compromise the security of previous
LDPC-based versions of the cryptosystem, like that proposed in [10].

Very recently, however, Otmani, Tillich and Dallot developed a new attack
that, exploiting a flaw in the transformation from the private key to the public
key, is able to recover the secret key with very high probability [11]. They pre-
sented three attack strategies, that will be denoted as OTD1, OTD2 and OTD3
in the following. In the same work, the authors also proved that a previous pro-
posal for the adoption of quasi-cyclic (but not LDPC) codes for shortening the
public key of the McEliece cryptosystem [12] is not secure.

In this paper, we shortly describe the three OTD attacks, and analyze the
flaw in the private-public key map that originates them. We propose a first
variant of the cryptosystem that is able to counter such attacks by adopting a
different form for its constituent matrices, without altering other parameters.

248 M. Baldi, M. Bodrato, and F. Chiaraluce

Furthermore, we present a second variant of the cryptosystem that provides
overall increased security.

In addition, we study the application, in this new version of the cryptosystem,
of efficient algorithms for computation on large circulant matrices, that permit
to reduce its encryption and decryption complexity. The main question concerns
encoding, that, in the case of QC codes, can be implemented through a barrel
shift-register with hardware complexity that increases linearly with the code
length. However, the total number of operations can still be high, thus reflecting
in latency issues. A common solution to this problem consists in searching for
sparse generator matrices [13,14]. Though this is possible for suitably designed
codes, such approach is unsuitable for codes randomly designed for the use in
cryptographic systems. In this case, however, efficient computation algorithms
can limit the number of operations. In this paper, we consider two possible
choices of efficient multiplication algorithms, namely, the Toom-Cook algorithm
and the short Winograd convolution, that actually yield reduced complexity.

2 Notation

Let F = GF (m) be the Galois field of order m, with m a prime power.
A p× p Toeplitz matrix A over F is defined as follows:

A =

⎡
⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · ap−1

a−1 a0 a1 · · · ap−2

a−2 a−1 a0 · · · ap−3

...
...

...
. . .

...
a1−p a2−p a3−p · · · a0

⎤
⎥⎥⎥⎥⎥⎦

. (1)

It is called circulant if ∀i, ai = ai−p. In this work we restrict our analysis to
binary circulant matrices, that is, we consider m = 2.

There is a natural isomorphism between the algebra of p×p circulant matrices
with entries in the field F and the ring of polynomials F[x]/(xp +1). If we denote
by X the matrix with entries:

Xi,j =
{

1 if j − i ≡ 1 (mod p)
0 if j − i �≡ 1 (mod p) , (2)

the isomorphism maps the matrix X to the monomial x and the generic circulant
matrix

∑p−1
i=0 αiXi to the polynomial

∑p−1
i=0 αix

i ∈ F[x]/(xp + 1). This isomor-
phism can be extended to matrices with circulant blocks, as will be shown in the
next section.

3 Improved McEliece Cryptosystem Based on QC-LDPC
Codes

In order to hide the secret code’s structure, we have recently proposed a variant of
the McEliece cryptosystem working as follows. Bob, in order to receive encrypted

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 249

messages, randomly chooses a code in a family of (n0, dv, p) QC-LDPC codes
based on Random Difference Families [9], by selecting its parity-check matrix
H, and produces a generator matrix G in reduced echelon form. Matrix H is
formed by a row {H0, . . . ,Hn0−1} of n0 binary circulant blocks with size p and
row/column weight dv, and it is part of Bob’s private key. Matrix G, instead, is
formed by a k × k identity matrix I (with k = k0 · p and k0 = n0 − 1), followed
by a column of k0 binary circulant blocks with size p. If we suppose Hn0−1 to
be non-singular, G can be obtained as follows:

G =

⎡
⎢⎢⎢⎢⎣
I

(
H−1

n0−1 ·H0

)T

(
H−1

n0−1 ·H1

)T

...(
H−1

n0−1 ·Hn0−2

)T

⎤
⎥⎥⎥⎥⎦

. (3)

The remaining part of Bob’s private key is formed by two other matrices: a
k × k non-singular matrix S and a sparse n × n non-singular matrix Q. S and
Q are regular matrices, formed by k0 × k0 and n0 × n0 blocks of p × p binary
circulants, respectively. Q has row/column weight m.

By exploiting the isomorphism introduced in Section 2, the generator matrix
G can be seen as a k0 × n0 matrix with entries in the ring of polynomials
R = GF (2)[x]/(xp + 1); S and Q are invertible matrices on the same ring with
size k0 × k0 and n0 × n0, respectively.

Then, Bob computes the public key as follows:

G′ = S−1 ·G ·Q−1 . (4)

It should be noted that G′ preserves the quasi-cyclic structure of G, due to the
block circulant form of S and Q.

G′ is made available in a public directory. Alice, who wants to send an en-
crypted message to Bob, extracts G′ from the public directory and divides her
message into k-bit blocks. If u is one of these blocks, Alice obtains the encrypted
version as follows:

x = u ·G′ + e = c + e .

In this expression, e is a vector of intentional errors randomly generated, with
length n and weight t′.

When Bob receives the encrypted message x, he first computes:

x′ = x ·Q = u · S−1 ·G + e ·Q . (5)

Vector x′ is a codeword of the LDPC code chosen by Bob (corresponding to
the information vector u′ = u · S−1), affected by the error vector e ·Q, whose
maximum weight is t = t′ · m. If t′ and m are suitably chosen, Bob is able to
correct all the errors with very high probability, by means of LDPC decoding,
thus recovering u′, and then u through a post-multiplication by S.

In the version of QC-LDPC based McEliece cryptosystem proposed in [9], we
fixed n0 = 4, dv = 13, p = 4032, m = 7 and t′ = 27. Both S and Q were chosen

250 M. Baldi, M. Bodrato, and F. Chiaraluce

sparse, and their non-null circulant blocks had row/column weight equal to m.
In particular, the following block-diagonal form for Q was adopted:

Q =

⎡
⎢⎢⎢⎣

Q0 0 0 0
0 Q1 0 0

0 0
. . . 0

0 0 0 Qn0−1

⎤
⎥⎥⎥⎦ (6)

that, jointly with its low density, gives raise to the flaw exploited by the OTD
attack, shortly described in the following subsection. In addition, as pointed out
in [11], matrix S should contain some null blocks in order to be non-singular.

3.1 The OTD Attack

The adoption of a sparse S and a sparse block-diagonal Q implies that, by
simply selecting the first k columns of the public key G′, obtained through
the transformation (4) with G in the form (3), an eavesdropper can derive the
following matrix:

G′
≤k = S−1 ·

⎡
⎢⎢⎢⎣

Q−1
0 0 . . . 0

0 Q−1
1 . . . 0

...
...

. . .
...

0 0 . . . Q−1
n0−2

⎤
⎥⎥⎥⎦ . (7)

By calculating the inverse of G′
≤k and considering its circulant block at po-

sition (i, j), the eavesdropper can easily obtain QiSi,j , being Si,j the circulant
block at position (i, j) in matrix S. Because of the isomorphism, this matrix
corresponds to the polynomial:

gi,j(x) = qi(x) · si,j(x) mod (xp + 1) (8)

where polynomials qi(x) and si,j(x), in turn, correspond to the blocks Qi and
Si,j , respectively.

Due to the fact that both Qi and Si,j are sparse (they have row/column weight
m), the vector of coefficients of gi,j(x) is obtained as the cyclic convolution of two
sparse vectors containing the coefficients of qi(x) and si,j(x). For this reason, it is
highly probable that gi,j(x) has exactly m2 non-null coefficients, and its support
contains at least one shift xla · qi(x), 0 ≤ la ≤ p− 1 [11]. This is the initial point
for three different attack strategies that, starting from the knowledge of gi,j(x),
aim at revealing part of the secret key. They are briefly described next.

OTD1 Attack Strategy. The first attack strategy consists in enumerating all
the m-tuples that belong to the support of gi,j(x). Each m-tuple is then validated
through inversion of its corresponding polynomial and multiplication by gi,j(x).
If the resulting polynomial has exactly m non-null coefficients, the considered
m-tuple corresponds to a shifted version of qi(x) with very high probability. For
the specified numerical values, this attack requires a work factor of 250.3 binary
operations.

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 251

OTD2 Attack Strategy. The second attack strategy is based on the periodic
autocorrelation of the coefficients vector of gi,j(x). In fact, it is highly probable
that the Hadamard product of the polynomial gi,j(x) with a d-shifted version of
itself, gd

i,j(x) ∗ gi,j(x), results in a shifted version of qi(x), for a specific value of
d. For this reason, the eavesdropper can calculate all the possible gd

i,j(x)∗gi,j(x)
and check whether the resulting polynomial has support with weight m. This
attack requires a work factor of 236 binary operations, that could be even further
reduced by calculating the periodic autocorrelation of the coefficients of gi,j(x)
(this can be made through efficient algorithms), in order to find the value of d.

OTD3 Attack Strategy. The third attack strategy consists in considering the
i-th row of the inverse of G′

≤k, that is:

Ri = [QiSi,0|QiSi,1| . . . |QiSi,n0−2] (9)

and the linear code generated by

GOTD3 = (QiSi,0)
−1 ·Ri =

[
I|S−1

i,0Si,1| . . . |S−1
i,0Si,n0−2

]
. (10)

Such code admits an alternative generator matrix in the following form:

G′
OTD3 = Si,0GOTD3 = [Si,0|Si,1| . . . |Si,n0−2] (11)

that coincides with a block row of matrix S. Since matrix S has been chosen
sparse, the code contains low weight codewords. Precisely, G′

OTD3 has row weight
equal to m(n0 − 1), that is very small compared to the code length.

Low weight codewords can be effectively searched through Stern’s algorithm
[15] and its variants [4]. Once having found matrix S, a significant part of the
secret key can be revealed by using (7). For the present choice of the system
parameters, searching for low weight codewords in the code generated by GOTD3

would require, on average, 232 binary operations.

3.2 First Variant of the Cryptosystem

The fundamental issue that validates the three OTD attack strategies relies in
the fact that both S and Q are sparse and that matrix Q has block-diagonal
form.

However, the three OTD attacks can be countered by adopting dense S ma-
trices, without altering the remaining system parameters. For example, S could
have row/column weight approximately equal to k0p/2, with odd weight blocks
along the main diagonal, and even weight blocks elsewhere, in order to assure
non-singularity of S, so that no further check is needed.

The adoption of dense S matrices prevents the eavesdropper from obtaining
Qi and Si,j , even knowing QiSi,j . In this case, in fact, the probability that
gi,j(x) has exactly m2 non-null coefficients, and that its support contains that
of at least one shift of qi(x) becomes extremely small. Furthermore, when S
is dense, the code generated by GOTD3 does not contain any more low weight
codewords, so all the three OTD attacks strategies are countered.

252 M. Baldi, M. Bodrato, and F. Chiaraluce

This modification has no effect on the number of errors to be corrected by
the secret code, since the error spreading is only due to matrix Q, that is kept
sparse (with row/column weight m).

On the other hand, the choice of a dense S influences complexity of the decod-
ing stage, that, however, can be reduced by resorting to efficient computation
algorithms for circulant matrices. Complexity of the cryptosystem with dense S
will be evaluated in Section 7.

As concerns matrix Q, the OTD attacks demonstrate that the choice of the
block-diagonal form is weak from the security viewpoint, so we avoid it in the
revised versions of the cryptosystem. For example, an alternative choice would
consist in obtaining Q from a matrix of n0 × n0 = 4 × 4 circulant blocks with
weight 2, except those along the main diagonal, that have weight 1, and by
permuting randomly its block rows and columns.

In this case, the inclusion of very low weight blocks in matrix Q could seem
a flaw. However, the absence of the block-diagonal structure prevents from at-
tacking each single block, and attacking a whole row or column would be too
involved (it would require p

(
p
2

)3 ≈ 281 attempts).

3.3 Second Variant of the Cryptosystem

In this second variant, we adopt the following set of parameters: n0 = 3, dv = 13
and p = 8192. The increased security level is achieved at the cost of a slightly
decreased transmission rate, from 0.75 to 0.67, that, however, remains higher
than in the original version. On the other hand, the reduction in the total number
of circulant blocks permits to double their size without increasing the key length.

Both the private and the public codes, in this system, have dimension k0p =
16384 bits and length n0p = 24576. By means of numerical simulations, we have
verified that such QC-LDPC codes are able to correct up to more than 470 errors
per frame. For such reason, it has been possible to choose t′ = 40 and m = 11
for this variant of the cryptosystem.

Matrix Q is formed by n0 × n0 = 3× 3 circulant blocks with size p, and has
row/column weight equal to m = 11. In this case, a possible choice consists in
obtaining Q from a matrix of n0 × n0 circulant blocks with weight 4, except
those along the main diagonal, that have weight 3, and by permuting randomly
its block rows and columns. In this case, attacking a whole row or column of Q
would require

(
p
4

)2(p
3

)
≈ 2131 attempts.

Matrix S, instead, is formed by k0 × k0 = 2 × 2 circulant blocks with size p
and it is dense, with row/column weight approximately equal to k0p/2. All its
blocks have even row/column weight, except those along the main diagonal, that
have odd weight, in order to allow non-singularity of the matrix.

3.4 Other Attacks

Having discussed above the OTD attack, in the following we list some of the
other most important attacks with their corresponding work factor for the second
cryptosystem variant, in order to assess its security. For a thorough description

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 253

of all the attack techniques already considered, we refer the interested reader to
[16]. where it is also proved that they are avoided for the parameters chosen in
the previous version of the cryptosystem (and, hence, in the first variant here
proposed).

Brute force attacks. Brute force attacks could be tempted by enumerating all
possible secret matrices H. However, the number of equivalent QC-LDPC codes
with the proposed choice of the system parameters is > 2386. Even considering
a single circulant block in H, the number of possible choices would be > 2122.

Information set decoding attacks. Information set decoding attacks could
be tempted through two different strategies. The first one consists in Lee and
Brickell’s method [3], that, however, would require 294 operations.

Alternatively, the vector of intentional errors e could be searched as the lowest

weight codeword in the extended code generated by G′′ =
[
G′

x

]
. With the new

choice of the parameters, however, this search would be very involved. By using
the Stern algorithm, for example, it would require more than 282 operations. For
the first variant, instead, a similar search would require 271 operations.

At the current stage of cryptanalysis, these attacks achieve the minimum work
factor, that can be hence considered as the security level of each cryptosystem
variant.

Attacks to the dual code. When the sparse structure of the private H is
not sufficiently hidden, the eavesdropper could recover it by searching for low
weight codewords in the dual of the public code, that admits G′ has parity-check
matrix. In this version of the cryptosystem, however, the dual of the public code
does not contain low weight codewords, due to the effect of matrix Q on the
rows of the private matrix H.

In the present case, matrix Q has row/column weight 11, so the dual of the
public code has codewords with weight≤ n0·dv ·m = 429. Due to the fact that the
rows of H are sparse, it is highly probable that the minimum weight codewords
in the dual of the public code have weight close to n0 · dv ·m. However, even a
lower weight would suffice to avoid attacks to the dual code. For example, if we
suppose the existence of p = 8192 codewords with weight 150 in the dual of the
public code (that has length n = 24576 and dimension p = 8192), searching for
one of them through the Stern algorithm would require more than 292 operations.

4 Fast Computations with Circulant Matrices

By exploiting the isomorphism described in Section 2, between the algebra of p×p
binary circulant matrices and the ring of polynomials R = GF (2)[x]/(xp + 1),
computing the determinant of S and Q to check their invertibility, and computing
the k0×n0 public matrix G′ = S−1GQ−1, require only a few tens of operations
in the ring R. Anyway, the key generation process is not the critical one for
efficiency, so we will focus complexity analysis on the vector-matrix products
used for encryption and decryption.

254 M. Baldi, M. Bodrato, and F. Chiaraluce

4.1 Vector-Matrix Product

The isomorphism extends also to vector-matrix product. Let us suppose to have
a vector u = (u0, u1, . . . , up−1), and a circulant p × p matrix A mapped to
the polynomial a(x) ∈ R by the isomorphism. The product w = u · A =
(w0, w1, . . . , wp−1) will then be the vector whose components satisfy the equa-
tion

∑p−1
i=0 wix

i ≡ (
∑p−1

i=0 uix
i) · a(x) mod (xp + 1). This vector-matrix product

computation can be accelerated basically with two possible strategies: using fast
polynomial multiplication algorithms based on evaluation-interpolation strate-
gies, or using optimized vector-matrix product exploiting the Toeplitz structure.

To compare the methods, we will count the total number of bit operations
needed. We will consider, for the näıve implementation, a number of operations
given by the number of non-zero entries in the matrix. For the dense scenario
we will consider that half of the entries are non-null. The starting value is hence
p2/2 operations. The two phases we will focus on are:

– The product u ·G′ used for encryption, where u is the message, seen as a
vector of k0 elements in R, and G′ is the public k0 × n0 matrix with entries in
R. The cost with the näıve estimate is p2k0n0/2 operations.

– The last step of decryption, that is, the product u′ ·S = u, where u′ is again
a k0 vector in R, and S is a k0 × k0 invertible matrix. The näıve cost for this
step is p2k2

0/2.

5 Fast Polynomial Product

All the algorithms for fast polynomial multiplication are based on the same
scheme: evaluation, point-wise multiplication, interpolation. The first strategy
of this kind was proposed by Karatsuba [17] and then generalized by Toom and
Cook [18,19]. We will call both of them Toom-s, with s the splitting order [20].

Other asymptotically faster algorithms exist for GF (2); the most interesting
ones are due to Cantor and Schönhage [21,22]. Another approach is the use
of segmentation, also known as Kronecker-Schönhage’s trick, but the threshold
between Toom-Cook and all these methods is far above 100 000 bits [23].

5.1 General Toom-Cook Approach

The Toom-s algorithm for polynomial product requires five steps:

– Splitting: The two operands are represented by two polynomials (f and g)
with s coefficients.

– Evaluation: f and g are evaluated in 2s− 1 points.
– Point-wise multiplication: Computed evaluations are multiplied to ob-

tain evaluations of the product, for example (f · g)(0) = f(0) · g(0).
– Interpolation: Once the values of the product f · g in 2s − 1 points are

known, the coefficients are obtained via interpolation.
– Recomposition: The coefficients of the result are combined to obtain the

product of the original operands.

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 255

Starting from [24], where the Toom-2,3,4 algorithms in GF (2) were described
in full details, we can estimate the cost of any one of the steps. Each product
of two polynomials would require the cost for evaluation Ce counted twice, the
cost for point-wise multiplication Cm, plus the cost for interpolation and recom-
position Ci. Since we are dealing with vector-matrix products, where the matrix
is fixed a priori, we can assume that all evaluations for the fixed operand are
pre-computed.

Moreover, when multiplying a k0 vector by a k0 × n0 matrix, we can reduce
the count to the strictly needed operations. We assume a pre-computation for
all the evaluations of the matrix entries, and we need to evaluate the vector
components only once: so we will count only k0 evaluations. After the n0k0

point-wise multiplications, we combine evaluated products figi(α), fjgj(α), . . .
to obtain evaluations for the results like

(figi + fjgj + · · ·)(α) ,

then we interpolate only the n0 result polynomials: so we count only n0 inter-
polations and recompositions.

5.2 Toom-2, also Known as Karatsuba

The Toom-2 algorithm splits the operands in two parts. Starting from two p-bits
long polynomials we operate on �p/2�-bits long parts.

Evaluation requires an addition of two parts. The 3 point-wise multiplication
operates on parts, and gives doubled parts for results. Interpolation requires
5/2 additions on such doubled parts. Since an addition of two polynomials in
GF (2)[x] with degree d requires d operations, we can conclude that the use of
Karatsuba to multiply a degree p polynomial by a fixed one requires:

– �p/2� operations for the evaluation,
– 3 multiplications of polynomials with degree �p/2�,
– 5�p/2� operations for the interpolation.

5.3 Cost of Exact Divisions

All the Toom-s with splitting order s > 2 require some exact divisions. We need
to evaluate the cost of this kind of operation.

First of all, we highlight the fact that all the divisions needed for Toom-3
and Toom-4 in GF (2)[x] are divisions by binomials of the form xw + 1, with
w ∈ {1, 2, 3}. Moreover, all the divisions in the Toom-Cook algorithm are exact
divisions [24] and, therefore, can be computed in linear time [25]. When the
divisor is in the very special form xw +1, exact division can be obtained in-place
with the following simple code.

Input: the degree d, the vector (a0, . . . , ad) of coefficients of the polynomial
A =

∑d
i=0 aix

i, the divisor in the form D = xw + 1.

Output: the overwritten vector (a0, . . . , ad−w) of coefficients of the new poly-
nomial A/D =

∑d−w
i=0 aix

i.

Execution: for i = 0 . . . (d− w), ai+w ← ai+w + ai.

256 M. Baldi, M. Bodrato, and F. Chiaraluce

So, a little bit less than d operations are required for any exact division needed
in Toom-3 and Toom-4 on GF (2). Since the division process cannot be paral-
lelized as the addition does, we add an extra weight and we double the cost:
we consider 2d bit operations for each exact division. The given algorithm over-
writes its input, so it should be slightly modified for general use; however, all the
algorithms presented in [24], and proposed here, works with in-place operations.
Other operations used in Toom-Cook are bit-shifts, but they can be avoided
with word-alignment [23] in software implementation, and they have practically
no cost in hardware implementations.

5.4 Toom-3 and Toom-4

From [24], we take the number of basic operations needed for the 3 and 4-way
splitting. As usual we consider p-bits operands.

With Toom-3 we operate on �p/3�-bits long parts. Evaluation requires 5
additions and 2 shifts per operand. The 5 point-wise multiplications involve
�(p/3)+2�-bits long parts, because of evaluations in x and x+1, which increase
the degree. Interpolation operates on doubled parts, and requires 10 additions,
2 shifts and 2 divisions by x + 1, plus 2 other additions for final recomposition;
in total we have a cost of 10 + 2 · 2 + 2 additions.

The Toom-3 product by a fixed operand hence requires:

– �p/3� · 5 bit operations for the evaluation,
– 5 multiplications of polynomials with degree �(p/3) + 2�,
– �(p/3) + 2� · 2 · 17 bit operations for the interpolation.

For Toom-4 we have �p/4�-bits long parts. Evaluation requires 15 additions
and 9 shifts per operand. The 7 point-wise multiplications involve �(p/4)+3�-bits
long parts. Interpolation operates on doubled parts, and requires 29 additions,
16 shifts and 4 divisions by x2 + 1 and x3 + 1, plus 3 other additions for final
recomposition; in total we have the cost of 29 + 4 · 2 + 3 additions.

The Toom-4 product by a fixed operand hence requires:

– �p/4� · 15 bit operations for the evaluation,
– 7 multiplications of polynomials with degree �(p/4) + 3�,
– �(p/4) + 3� · 2 · 40 bit operations for the interpolation.

All Toom-s methods can be used recursively and have asymptotic complexity
O(plogs(2s−1)), but the bigger the splitting order, the heavier the overhead of
evaluation/interpolation.

5.5 Numerical Examples

Let us fix the following choice for the system parameters: p = 8192, k0 = 2, n0 =
3, that are the choices adopted in the second variant of the cryptosystem (see
Section 3.3).

The use of 2 recursions of Toom-4, 1 of Toom-3 and 4 of Toom-2 reduces one
p-bit multiplication to 72 · 5 · 34 = 19845, 11-bits sized, sub-products, each one

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 257

with a cost of 112/2 operations. We have an overhead of 301 655 operations for
evaluations and 1 617 574 for interpolation. The total cost of computing u ·G′ is
then 301 655·k0+1 617 574·n0+72·5·34·112·k0·n0/2+n0·p = 12 684 343 bit opera-
tions, included the final reduction modulo (xp +1). This count gives a far smaller
result than the näıve technique, that requires k0 · n0 · p2/2 = 201 326 592 opera-
tions. With the same approach, we can obtain the cost of computing u′ · S = u:
8 657 332 operations using Toom-Cook, versus 134 217 728 with a näıve imple-
mentation.

With parameters p = 4096, k0 = 3, n0 = 4, that are very similar to the
choices adopted for the proposal in [9], we assume 3 recursions of Toom-4 and 3
of Toom-2, that result in a number of bit operations for u ·G′ of 8 074 444 versus
100 663 296 with the näıve approach. While for the decryption step u′ · S = u
we obtain 6 166 127 bit operations versus 75 497 472.

6 Vector-Toeplitz Convolution

Another approach to speed-up polynomial products in cryptography is the Wino-
grad convolution [26]. It is very similar to Karatsuba’s multiplication, but it has
a smaller overhead. We shortly recall it. Given an even sized 2d × 2d Toeplitz
matrix T, we can factorize it as follows:

(
T0 T1

T2 T0

)
=
(

I 0 I
0 I I

)⎛
⎝

T1 −T0 0 0
0 T2 −T0 0
0 0 T0

⎞
⎠
⎛
⎝

0 I
I 0
I I

⎞
⎠ ,

where I is the d×d identity matrix, and T0,T1,T2 are themselves d×d Toeplitz
matrices, as also T1−T0 and T2−T0. It follows that the vector-matrix product
(V0,V1) ·T can be computed with three steps:

– the addition V0 + V1,
– 3 vector-matrix sub-products by d× d Toeplitz matrices,
– 2 more additions to obtain the result.

Since circulant matrices are also Toeplitz and the proposed size p is a power
of 2, this optimization can be used for as many recursions as needed for our
computations. Asymptotic complexity is exactly the same for Toom-2 and this
approach, but if we analyze again the pre- and post-computation, we obtain:

– p/2 operations for the “evaluation”,
– 3 multiplications with dimension p/2,
– p/2 operations for the “interpolation”.

6.1 Numerical Examples

This method cannot be mixed with Toom-Cook, and its main advantage is that
it is much easier to implement in software.

If we consider again p = 8192, k0 = 2, n0 = 3, the use of 11 recursions of Wino-
grad’s method leads to 14 106 224 operations for encryption versus 12 684 343

258 M. Baldi, M. Bodrato, and F. Chiaraluce

obtained with Toom. The decryption step u′ · S = u can be completed in
9 871 080 operations, around 15% more than with the polynomial strategy, but
with a far simpler source code. With smaller parameters, for example p =
4096, k0 = 3, n0 = 4, the difference is smaller: 11 recursions used for encryption
give 8 103 706 operations, only 1% more than the cost computed using Toom-
Cook.

On the other hand, the use of polynomials gives greater flexibility. For exam-
ple, with the odd parameter p = 5555, k0 = 2, n0 = 3, 2 recursions of Toom-4 and
5 of Toom-2 give a cost for encryption of 7 310 809 bit operations, a 12× speed-
up with respect to the näıve approach. For the same parameters, Winograd’s
trick is not applicable at all, because p is odd.

7 Cryptosystem Complexity Assessment

In this section we evaluate the encryption and decryption complexity of the pro-
posed cryptosystem, by considering the usage of efficient computation algorithms
suitable for the particular structure of the matrices involved.

Encryption complexity is due to multiplication of the cleartext by the code
generator matrix and to addition of intentional errors. It can be expressed as
follows:

Cenc = Cmul (u ·G′) + n (12)

where Cmul (u ·G′) represents the number of operations needed for calculating
the product u ·G′ and n binary operations are considered for the addition of
vector e.

The decryption complexity, instead, can be divided into three parts:

Cdec = Cmul (x ·Q) + CSPA + Cmul (u′ · S) (13)

where Cmul (x ·Q) and Cmul (u′ · S) represent the number of operations needed
for computing x · Q and u′ · S, respectively, while CSPA is the number of op-
erations required for LDPC decoding through the sum-product algorithm. In
expressions (12) and (13), Cmul (u ·G′) and Cmul (u′ · S) involve multiplication
by dense matrices, so we can resort to efficient algorithms, like the Toom-Cook
method described in the previous section. Cmul (x ·Q), instead, expresses the
number of operations needed to perform the product of a 1×n vector by a sparse
n×n matrix (Q, with row/column weight equal to m). For this reason, we resort
to the näıve implementation, that has the lowest complexity Cmul (x ·Q) = n·m.

For the decoding complexity, the following expression can be adopted [16]:

CSPA = Iave · n [q (8dv + 12R− 11) + dv] (14)

where Iave is the average number of decoding iterations, q is the number of
quantization bits used inside the decoder and R = k0/n0 is the code rate. Nu-
merical simulations have permitted to verify that, for the codes involved in the
first cryptosystem implementation, assuming q = 6 and t = 190, it is Iave � 5.

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 259

For the codes used in the new variant, instead, assuming q = 6 and t = 470, it
is Iave � 9. These values of Iave are further reduced for smaller t.

As concerns the public key length, the proposed cryptosystem uses, as the
public key, a generator matrix, G′, formed by k0 × n0 circulant blocks with size
p. Therefore, it can be completely described by k0 · n0 · p bits.

Table 1. Comparison between the proposed versions of QC-LDPC based McEliece
cryptosystem and other schemes

McEliece Niederreiter RSA QC-LDPC QC-LDPC
(original) McEliece 1 McEliece 2

Key Size (bytes) 67072 32750 256 6144 6144

Information Bits 524 276 1024 12288 16384

Transmission Rate 0.5117 0.5681 1 0.75 0.6667

Enc Ops per bit 514 50 2402 658 776

Dec Ops per bit 5140 7863 738 112 4678 8901

Table 1 reports the characteristics of the two proposed variants of McEliece
cryptosystem based on QC-LDPC codes, both secure against the known attacks.
The first variant (noted as QC-LDPC McEliece 1) adopts the choice of the system
parameters we have already proposed in [9], with the only difference of p = 4096
instead of 4032. We have considered p coincident with a power of two in this
version because, for such values, a circulant matrix with odd row/column weight
is always non-singular, as shown in the Appendix A. The choice of p = 4096 in-
stead of 4032, however, has no effect on the system security. In the second variant
(noted as QC-LDPC McEliece 2), the system parameters have been changed in
order to increase the system security level. For the sake of comparison, also the
original McEliece, the Niederreiter and the RSA cryptosystems are considered.
The key length for the Niederreiter cryptosystem coincides with the number of
bits in the non-systematic part of matrix H.

From the security viewpoint, these systems are not equivalent: the first pro-
posal exhibits a security level of 271 binary operations, while the second one
exceeds the threshold of 280 binary operations, that is currently considered as
an up to date technology limit. The first three solutions are instead assumed
with their standard parameters [4]. In such case, the McEliece and Niederreiter
cryptosystems are not able to reach a similar security level; however, more secure
versions would yield increased complexity.

It results from the table that both the proposed variants of McEliece cryp-
tosystem based on QC-LDPC codes represent a trade-off between the original
McEliece cryptosystem (and its Niederreiter version) and other cryptosystems,
like RSA. In fact, they represent an advance in overcoming the drawbacks of the
original McEliece cryptosystem: they have very smaller public keys and increased
transmission rate. With respect to RSA, the proposed cryptosystems have the
advantage of very lower complexity, that is only slightly increased with respect
to the original McEliece version (that, moreover, has a lower security level).

260 M. Baldi, M. Bodrato, and F. Chiaraluce

8 Conclusions

We have elaborated on an implementation of the McEliece cryptosystem based
on QC-LDPC codes we have proposed for overcoming the main drawbacks of its
original version, that has been recently discovered to be subject to dangerous
attacks. We have described how these attacks exploit the sparse character of some
constituent matrices, together with their diagonal form, and we have proposed
two new variants of the cryptosystem that do not allow the application of such
attack techniques. As typical in cryptography, this does not exclude that further
attacks might be conceived in the future. So, an effort should be made for getting
a coding based cryptographic construction with a supporting proof of security,
similar to what done in the related area of lattice based cryptography [27]. For
the time being, based on our knowledge, we can say that possible progress in
cryptanalysis of the proposed system will require the definition of substantially
new strategies.

We have also reported complexity estimates based on the Toom-Cook method
for polynomials in GF (2)[x]. They can be partially extended to other cryptosys-
tems, such as NTRU, where polynomials modulo (xn ± 1) are used, and ECC
on GF (2n). For both these systems, the use of Karatsuba’s and Winograd’s fast
convolution were proposed [28,29], and the Toom-Cook method could be applied
as well, even if its effect should be not as impressive as in the proposed system.

The promising results obtained with Toom-Cook have their main reason in
the use of matrices. The additional cost of fast multiplication methods is quite
big, that is the reason why they are effective only for big operands. Numeri-
cal examples given in Section 5.5 show that, for deep recursion, more than half
the cost of a single product comes from evaluation and interpolation. This cost,
however, is reduced in the proposed cryptosystem, because only a few evalua-
tions and interpolations are needed for a set of multiplications, so that deepest
recursion and biggest saving are possible.

The application of the Toom-Cook method permits to reduce the encryption
and decryption complexity of the proposed cryptosystems that, furthermore, are
able to overcome the main drawbacks of the original McEliece cryptosystem in
terms of key size and transmission rate. For these reasons, they can be seen
as a valuable trade-off between the original McEliece cryptosystem and other
widespread solutions, like RSA.

References

1. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, 114–116 (1978)

2. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inform. Theory 24, 384–386 (1978)

3. Lee, P., Brickell, E.: An observation on the security of McEliece’s public-key cryp-
tosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–
280. Springer, Heidelberg (1988)

A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes 261

4. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Trans. Inform. Theory 44, 367–378 (1998)

5. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Contr. and Inform. Theory 15, 159–166 (1986)

6. Li, Y.X., Deng, R., Wang, X.M.: On the equivalence of McEliece’s and Niederre-
iter’s public-key cryptosystems. IEEE Trans. Inform. Theory 40, 271–273 (1994)

7. Riek, J.: Observations on the application of error correcting codes to public key
encryption. In: Proc. IEEE International Carnahan Conference on Security Tech-
nology. Crime Countermeasures, Lexington, KY, USA, October 1990, pp. 15–18
(1990)

8. Richardson, T., Urbanke, R.: The capacity of low-density parity-check codes under
message-passing decoding. IEEE Trans. Inform. Theory 47, 599–618 (2001)

9. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosys-
tem based on QC-LDPC codes. In: Proc. IEEE ISIT 2007, Nice, France, June 2007,
pp. 2591–2595 (2007)

10. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in
the McEliece cryptosystem. In: Proc. IEEE ISIT 2000, Sorrento, Italy, June 2000,
p. 215 (2000)

11. Otmani, A., Tillich, J.P., Dallot, L.: Cryptanalysis of two McEliece cryptosystems
based on quasi-cyclic codes. In: Proc. First International Conference on Symbolic
Computation and Cryptography (SCC 2008), Beijing, China (April 2008)

12. Gaborit, P.: Shorter keys for code based cryptography. In: Proc. Int. Workshop on
Coding and Cryptography (WCC 2005), Bergen, Norway, March 2005, pp. 81–90
(2005)

13. Richardson, T., Urbanke, R.: Efficient encoding of low-density parity-check codes.
IEEE Trans. Inform. Theory 47, 638–656 (2001)

14. Neal, R.M.: Faster encoding for low-density parity check codes using sparse matrix
methods (1999), http://www.cs.toronto.edu/∼radford/ftp/ima-part1.pdf.

15. Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen,
G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg
(1989)

16. Baldi, M., Chiaraluce, F.: LDPC Codes in the McEliece Cryptosystem (September
2007), http://arxiv.org/abs/0710.0142

17. Karatsuba, A.A., Ofman, Y.: Multiplication of multidigit numbers on automata.
Soviet Physics Doklady 7, 595–596 (1963)

18. Toom, A.L.: The complexity of a scheme of functional elements realizing the mul-
tiplication of integers. Soviet Mathematics Doklady 3, 714–716 (1963)

19. Cook, S.A.: On the minimum computation time of functions. PhD thesis, Dept. of
Mathematics, Harvard University (1966)

20. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: Towards optimal
Toom-Cook matrices. In: Brown, C.W. (ed.) Proceedings of the ISSAC 2007 Con-
ference, July 2007, pp. 17–24. ACM Press, New York (2007)

21. Cantor, D.G.: On arithmetical algorithms over finite fields. Journal of Combinato-
rial Theory A 50, 285–300 (1989)

22. Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2. Acta Informatica 7, 395–398 (1977)

23. Brent, R.P., Zimmermann, P., Gaudry, P., Thomé, E.: Faster multiplication in
GF(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS-VIII 2008. LNCS,
vol. 5011, pp. 153–166. Springer, Heidelberg (2008)

http://www.cs.toronto.edu/~radford/ftp/ima-part1.pdf
http://arxiv.org/abs/0710.0142

262 M. Baldi, M. Bodrato, and F. Chiaraluce

24. Bodrato, M.: Towards optimal Toom-Cook multiplication for univariate and mul-
tivariate polynomials in characteristic 2 and 0. In: Carlet, C., Sunar, B. (eds.)
WAIFI 2007. LNCS, vol. 4547, pp. 116–133. Springer, Heidelberg (2007)

25. Jebelean, T.: An algorithm for exact division. Journal of Symbolic Computation 15,
169–180 (1993)

26. Winograd, S.: Arithmetic Complexity of Computations. CBMS-NSF Regional Con-
ference Series in Mathematics, vol. 33. SIAM, Philadelphia (1980)

27. Micciancio, D.: Generalized compact knapsacks, cyclic lattices and efficient one-
way functions. Computational Complexity 16, 365–411 (2007)

28. Silverman, J.H.: High-speed multiplication of (truncated) polynomials. Technical
Report 10, NTRU CryptoLab (January 1999)

29. Weimerskirch, A., Stebila, D., Shantz, S.C.: Generic GF(2) arithmetic in software
and its application to ECC. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003.
LNCS, vol. 2727, pp. 79–92. Springer, Heidelberg (2003)

A Matrix Inversion in GF (2)[x]/(xp + 1)

For whatever choice of p, we work on the polynomial ring R = GF (2)[x]/(xp+1).
In any case xp + 1 is divisible by x + 1, because we are working in characteristic
2, so that the ring is not a field: it has zero divisors and non invertible elements.

If the chosen p is a power of two (p = 2a), then x + 1 is the only prime factor
of xp + 1 ≡ (x + 1)p and, in such a case, it is very easy to check if an element in
R is not invertible. In fact, it suffices checking if 1 is a root, or, equivalently, if
the number of non-zero (1) coefficients is even.

If p is not a power of two, the invertibility check becomes more involved.
Obviously general theorems are still valid, so that we can say that a generic
element f ∈ R is invertible if and only if it is coprime with xp + 1, and a matrix
is invertible if and only if its determinant is invertible. But invertible matrices
can exist that only contain non invertible entries.

So one needs a clever algorithm to compute the inverses of the matrices, either
by computing the inverse on any sub-ring GF (2)[x]/dα where dα|xp + 1, then
combining the results with the Chinese Remainder Theorem, or by a modified
version of Gaussian inversion, exploiting Bezout’s identity to obtain a pivot on
columns without invertible elements.

Full Cryptanalysis of LPS

and Morgenstern Hash Functions

Christophe Petit1,�, Kristin Lauter2, and Jean-Jacques Quisquater1,��

1 UCL Crypto Group���

2 Microsoft Research
christophe.petit@uclouvain.be, klauter@microsoft.com, jjq@uclouvain.be

Abstract. Collisions in the LPS cryptographic hash function of Charles,
Goren and Lauter have been found by Zémor and Tillich [17], but it was
not clear whether computing preimages was also easy for this hash func-
tion. We present a probabilistic polynomial time algorithm solving this
problem. Subsequently, we study the Morgenstern hash, an interesting
variant of LPS hash, and break this function as well. Our attacks build
upon the ideas of Zémor and Tillich but are not straightforward exten-
sions of it. Finally, we discuss fixes for the Morgenstern hash function
and other applications of our results.

1 Introduction

Hash functions are widely used in cryptographic applications such as com-
mitment schemes, digital signatures schemes, message authentication codes or
password encryption. Typically, a hash function is required to be preimage and
collision resistant and to have nearly uniform output distribution. Due to the
importance of cryptographic hash functions, the SHA family was designed as
a NIST standard [2]. However, recently discovered vulnerabilities in SHA-1
[15] prompted NIST to launch a competition for a New Cryptographic Hash
Algorithm [1].

The NIST competition is stimulating research on hash functions in the cryp-
tographic community and a lot of new schemes have been recently designed and
put forward. Particularly appealing from a theoretical point of view, some of
these schemes are provably secure, in the sense that their security relates to
the hardness of some mathematical problem [8,4,3,13]. A good reduction to a
simply formulated mathematical challenge facilitates the evaluation process and
increases the confidence once the function has resisted first cryptanalytic at-
tempts. However, it also gives the cryptanalyst a clue to break the scheme, and
is especially problematic if the mathematical challenge turns out to be easy.

� Research Fellow of the Belgian Fund for Scientific Research (F.R.S.-FNRS). Part
of this work was done while visiting the Security and Cryptography group of the
Computer Science Department, UCSD.

�� Part of this work was done while visiting MIT (CSAIL-Theory of Computation).
��� A member of BCRYPT and ECRYPT networks.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 263–277, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

264 C. Petit, K. Lauter, and J.-J. Quisquater

The LPS hash function proposed by Charles, Goren and Lauter is one of these
constructions [3]. It has a particularly elegant design, as the hash computation
can be interpreted as a random walk in the optimal expander graphs of Lubotzky,
Philips and Sarnak [7]. Finding collisions for this function is finding cycles in the
graphs, which also amounts to finding a non-trivial factorization of the identity in
terms of some particular elements of a projective group of matrices (a problem
we will call the decomposition problem). Charles, Goren and Lauter proposed
this problem as potentially hard. A major step in the breaking of the LPS hash
function has recently been performed by Zémor and Tillich [17] who produced
collisions by actually solving this problem.

One of the main contributions of this paper is an efficient algorithm that
finds preimages for the LPS hash function. As Zémor and Tillich did, we actu-
ally solve the underlying problem which was presumed hard. Both for efficiency
considerations and because of these new attacks, it also seemed worth studying
the Morgenstern hash function, an interesting variant of the LPS hash relying
on different graphs. A second main contribution of this paper is to adapt the
Zémor and Tillich attack to Morgenstern hashes, and as an example we give an
efficient collision finding algorithm. Combining the ideas of our two algorithms
also gives a preimage finding algorithm for Morgenstern hashes that we do not
present here due to space limitations.

The paper is organized as follows: in Section 2 we describe the LPS and Mor-
genstern hash functions; in Section 3 we recall the Zémor and Tillich algorithm;
Section 4 presents our preimage algorithm for LPS hashes; in Section 5 we adapt
Zémor and Tillich’s algorithm to Morgenstern hashes and in Section 6 we dis-
cuss fixes for LPS and Morgenstern hashes, as well as potential applications of
our results. In the appendix we give toy examples of our algorithms (1024−bit
examples are given in the full version of this paper [10]).

2 LPS and Morgenstern Hash Functions

A Cayley graph CG,S = (V, E) is a graph constructed from a group G and a
subset S of G as follows: V contains a vertex vg associated to each element
g ∈ G, and E contains the directed edge (vg1 , vg2) iff there is some s ∈ S such
that g2 = g1s. The elements of S are called the graph generators. The graph
CG,S is |S|-regular; it is connected iff S generates G; it is undirected iff S = S−1.

A general construction for a cryptographic hash function from a Cayley graph
was introduced by Zémor and Tillich [16,13,14] in the directed case and by
Charles, Goren and Lauter [3] in the undirected case. In this paper, we focus on
two instances of the undirected graph construction, which we now recall following
mainly the description given in [17].

Let a := |S|−1. We will define a function π which orders the set of generators
(minus one generator to avoid back-tracking). Fix a function π : {0, 1...a− 1} ×
S → S such that for any g ∈ S the set π({0, 1...a−1}×{g}) is equal to S\{g−1}.
Let g0 and gIV be arbitrary fixed elements of S and G respectively. The input
message is converted to a base a number x1...xk and the elements gi = π(xi, gi−1)

Full Cryptanalysis of LPS and Morgenstern Hash Functions 265

are computed recursively. The hashcode of the input message is the product of
group elements H(x) = gIV g1...gk.

We will call hash functions constructed following this design strategy Cayley
hashes. These hash functions have some very interesting properties:

– The girth of the Cayley graph is the length of the smallest cycle, and no two
distinct messages of the same length can collide if their length is less than
half the girth.

– If the chosen graphs are good expanders (see [6] for precise definitions and
applications), the outputs tend to be uniformly distributed, and the conver-
gence to the uniform distribution is fast.

– Differential cryptanalysis (DC), which has been the most successful approach
against SHA-1, does not seem to apply to Cayley hashes. Indeed, DC typi-
cally activates various portions of the message simultaneously, while in Cay-
ley hashes the bits (or k-its) are processed one at the time.

– Collision resistance is equivalent to the hardness of a simply-stated represen-
tation problem in the corresponding group: namely, this problem is to find
a factorization of the identity 1 = g1g2...gt with gi ∈ S and gigi+1 �= 1 for
all i ∈ {1, 2, ...t− 1}.

– Preimage resistance and second preimage resistance follow from similar prob-
lems.

One proposal by Charles, Goren and Lauter [3] is to use the celebrated LPS
graphs of Lubotzky, Philips and Sarnak [7] that we now describe. Let p and l be
primes, l small and p large, both p and l equal to 1 mod 4, and l being a quadratic
residue modulo p. To l and p is associated an LPS graph Xl,p as follows. Let i
be an integer such that i2 ≡ −1 mod p. The vertices of Xl,p are elements in the
group G = PSL(2, Fp) (i.e. 2 × 2 matrices of square determinant, modulo the
equivalence relation M1 ∼ λM2, λ ∈ F∗

p). The set S is S = {gj}j=1...,l+1, where

gj =
(

αj + iβj γj + iδj

−γj + iδj αj − iβj

)
, j = 1, ..., l + 1;

and (αj , βj , γj , δj) are all the integer solutions of α2 + β2 + γ2 + δ2 = l, with
α > 0 and β, γ, δ even. The Cayley graph Xl,p = CG,S is undirected since S is
stable under inversion.

The choice of LPS graphs was very appealing : they are Ramanujan (i.e.,
they have optimal expansion properties asymptotically [7,6]); they have no short
cycles, and computing the resulting hash functions turned out to be quite efficient
compared to other provable hashes [11]. Unfortunately, it turns out that LPS
hash function is neither collision nor preimage resistant (see Sections 3 and 4
below).

For efficiency reasons, we recently considered the use of Morgenstern graphs to
replace LPS graphs in Charles-Goren-Lauter’s construction [11]. Morgenstern’s
Ramanujan graphs [9] generalize LPS graphs from an odd prime p ≡ 1 mod 4 to
any power of any prime q. More specifically, we suggested the use of Morgenstern
graphs with q = 2k, that we now describe.

266 C. Petit, K. Lauter, and J.-J. Quisquater

Let q be a power of 2 and f(x) = x2+x+ε irreducible in Fq[x]. Let p(x) ∈ Fq[x]
be irreducible of even degree n = 2d and let Fqn be represented by Fq[x]/(p(x)).
The vertices of the Morgenstern graph Γq are elements of G = PSL2(Fqn) (i.e.
2×2 matrices modulo the equivalence relation M1 ∼ λM2, λ ∈ F∗

qn). Let i ∈ Fqn

be a root of f(x). The set S is taken to be S = {gj}j=1...,q+1, where

gj =
(

1 γj + δji
(γj + δji + δj)x 1

)
, j = 1, ..., q + 1;

where γj , δj ∈ Fq are all the q + 1 solutions in Fq for γ2
j + γjδj + δ2

j ε = 1. The
Cayley graphs Γq = CG,S are also undirected as each gj has order 2.

An interesting property of Morgenstern hashes compared to LPS hashes is
that arithmetic is done in fields that are extensions of F2 rather than in finite
prime fields, potentially leading to faster hashes for some architectures. The
total break of LPS hashes leads to the question of whether similar attacks can
be found for Morgenstern hashes. This is indeed the case, and as an example we
give a collision-finding attack for q = 2 in Section 5.

3 Zémor and Tillich Algorithm

As our new attacks will build upon it, we now briefly recall Zémor and Tillich’s
algorithm that finds collisions for LPS hashes [17]. The algorithm lifts the graph
generators and the representation problem from PSL(2, Fp) to an appropriate
subset Ω of SL(2, Z[i]) (in this section and the next one, i is the complex imagi-
nary number satisfying i2 + 1 = 0 while i is a solution to i2 +1 ≡ 0 mod p). The
relevant set is

Ω =
{(

a + bi c + di
−c + di a− bi

)
|(a, b, c, d) ∈ Ee for some integer e > 0

}

where Ee is the set of 4-tuples (a, b, c, d) ∈ Z4 such that
⎧⎨
⎩

a2 + b2 + c2 + d2 = le

a > 0, a ≡ 1 mod 2
b ≡ c ≡ d ≡ 0 mod 2.

We will call the first of these equations describing Ee the norm equation, as
the left-hand side of this equation is the norm of the quaternion corresponding
to the quadruplet (a, b, c, d) (see [7]). The set Ω has two important properties:
first, any element of Ω admits a unique factorization in terms of the lifts of the
graph generators, and second, there exists a multiplicative homomorphism from
Ω to PSL(2, Fp) that allows translation of this factorization back to PSL(2, Fp).

In their exposition, Zémor and Tillich decompose their attack into three steps.
The first step (lifting the decomposition problem to SL(2, Z[i])) amounts to
finding integers a, b, c, d and λ satisfying the following conditions:

⎧
⎨
⎩

(a, b, c, d) ∈ Ee

(a, b, c, d) not divisible by l
(a, b, c, d) ≡ λ(1, 0, 0, 0) mod p.

Full Cryptanalysis of LPS and Morgenstern Hash Functions 267

Putting every congruence condition into the norm equation leads to a diophan-
tine equation that was solved by Zémor and Tillich in their paper. The second
step of the attack is to factorize the lifted element I ′ of Ω into products of lifted
generators g′j, j = 1...l+1. We know this factorization is unique and has size e, so
let us write it I ′ = g′j1g

′
j2

...g′je
. Multiplying on the right by a lifted generator g′

gives a matrix that is divisible by l if and only if g′ = (g′je
)−1, so by trying each

of the graph generators we get the last factor, and we then proceed recursively.
The final step is to transpose the factorization of I ′ in Ω into a factorization of
the identity in PSL(2, Fp), but using the homomorphism from Ω to PSL(2, Fp),
this last step is trivial. For details on the attack we refer to [17].

4 Finding Preimages for LPS Hashes

Suppose we are given a matrix M =
(

M1 M2

M3 M4

)
∈ PSL(2, Fp) which has square

determinant, and we are asked to find a preimage, that is a factorization of it
with the graph generators. By solving two linear equations in Fp we can write it
in the form

M =
(

A + Bi C + Di
−C + Di A−Bi

)
.

Our algorithm follows along the lines of Zémor and Tillich’s. We first lift the
problem from PSL(2, Fp) to the set Ω defined above, then factorize in Ω and
finally come back to PSL(2, Fp). The only difference will be in the first step.
Lifting the representation problem now amounts to finding integers a, b, c, d and
λ satisfying the following conditions:

⎧⎨
⎩

(a, b, c, d) ∈ Ee

(a, b, c, d) not divisible by l
(a, b, c, d) ≡ λ(A, B, C, D) mod p.

We write a = Aλ + wp, b = Bλ + xp, c = Cλ + yp and d = Dλ + zp with
w, x, y, z ∈ Z. For convenience we choose e even, that is e = 2k for k an integer.
The norm equation becomes

(Aλ + wp)2 + (Bλ + xp)2 + (Cλ + yp)2 + (Dλ + zp)2 = l2k. (1)

In the case B = C = D = 0 the norm equation is (Aλ+wp)2 +(xp)2 +(yp)2 +
(zp)2 = l2k and was solved by Zémor and Tillich as follows: choose

Aλ + wp = lk + mp2

for small m and appropriate k, hence the equation is already satisfied modulo p2.
Simplifying by p2 we get a quadratic diophantine equation of type x2 +y2+z2 =
m(lk −mp2) which Zémor and Tillich show has a solution either for m = 1 or
for m = 2. In Equation 1, when B, C, D are non-zero we cannot divide by p2

because of the term 2p(wA + xB + yC + zD)λ. Since we do not, the coefficients

268 C. Petit, K. Lauter, and J.-J. Quisquater

of degree-2 terms are huge (at least p), and the equation is at first sight very
hard to solve.

We overcome this difficulty with a new idea. In the remainder of this section,
we will solve the preimage problem for diagonal matrices with A and/or B non-
zero, and then we will write any matrix as a product of four diagonal matrices
and up to four graph generators. Altogether this leads to an efficient probabilistic
algorithm that finds preimages of the LPS hash function.

Preimages for diagonal matrices. Now we show how to find a factorization of a
matrix

M =
(

A + Bi
A−Bi

)

such that A2 + B2 is a square modulo p. Write y = 2y′ and z = 2z′ where y′, z′

are integers. We need to find integer solutions to
⎧⎨
⎩

(Aλ + wp)2 + (Bλ + xp)2 + 4p2(y′2 + z′2) = l2k

Aλ + wp ≡ 1 mod 2
Bλ + xp ≡ 0 mod 2

Fix k = �logl(8p2)�. As A2 + B2 is a square, there are exactly two values for
λ in {0, 1, ...p− 1} satisfying the norm equation modulo p:

(A2 + B2)λ2 = l2k mod p.

Choose either of them, and let m := (l2k− (A2 +B2)λ2)/p. Our strategy will be
to pick random solutions to

⎧
⎨
⎩

l2k − (Aλ + wp)2 − (Bλ + xp)2 ≡ 0 mod p2

Aλ + wp ≡ 1 mod 2
Bλ + xp ≡ 0 mod 2

until the equation
4(y′2 + z′2) = n

has solutions, where

n :=
(
l2k − (Aλ + wp)2 − (Bλ + xp)2

)
/p2.

A random solution to the congruence system is computed as follows: until you
get x with the correct parity, pick a random w ∈ {0, 1, ...p− 1} with the right
parity and compute x = m

2λB −
A
B w mod p. By the way k, x and w are chosen we

are guaranteed that n > 0 so the equation 4(y′2 + z′2) = n has solution if and
only if 4 divides n and all prime factors of n congruent to 3 modulo 4 appear an
even number of times in the factorization of n. To avoid the factorization of n
in the algorithm, we will actually strengthen this condition to n being equal to
4 times a prime congruent to 1 modulo 4. When it has solutions, the equation
4(y′2 + z′2) = n is easily solved with the Euclidean algorithm, as recalled in
[17]. After lifting the problem to SL(2, Z[i]) the second and third steps of the
algorithm are the same as in Zémor-Tillich algorithm. So we are done with the
factorization of diagonal matrices.

Full Cryptanalysis of LPS and Morgenstern Hash Functions 269

Reduction to the diagonal case. Now we show how to decompose any matrix
M ∈ PSL(2, Fp) into a product of diagonal matrices and graph generators. We
may additionally assume that all the entries of M are nonzero: if they are not,
just multiply M by gg−1 for some adequate g in S, and consider the factorization
of g−1M . We will show how to find (λ, α, ω, β1, β2) with the last four being
squares, such that

(
M1 M2

M3 M4

)
= λ

(
1 0
0 α

)(
f1 f2

f3 f4

)(
1 0
0 ω

)
= λ

(
f1 ωf2

αf3 αωf4

)
(2)

and
(

f1 f2

f3 f4

)
=
(

1 2
−2 1

)(
1 0
0 β1

)(
1 2
−2 1

)(
1 0
0 β2

)(
1 2
−2 1

)

=
(

1− 4β1 − 4β2 − 4β1β2 2− 8β1 + 2β2 + 2β1β2

−2− 2β1 + 8β2 − 2β1β2 −4− 4β1 − 4β2 + β1β2

)
.

Lemma 1. Matrix equation (2) is equivalent to the following system:
⎧⎪⎪⎨
⎪⎪⎩

M2M3f1f4 −M1M4f2f3 = 0
αM1f3 −M3f1 = 0
ωM3f4 −M4f3 = 0
λf1 −M1 = 0

(3)

Proof : (⇒) Fourth equation is entry (1,1) of the matrix equation. Third equation
is entry (2,1) times M1 minus entry (1,1) times M3. Second equation is entry
(1,2) times M1 minus entry (1,1) times M2. First equation is entry (1,1) times
entry (2,2) times M2M3 minus entry (1,2) times entry (2,1) times M1M4.
(⇐) Last equation is M1 = λf1 that is entry (1,1). We have M2 = M1M4f2f3

M3f1f4
by

first equation so M2 = f2
M4f3
M3f4

M1
f1

= f2ωλ by third and fourth equation, that is
entry (1,2). We have M3 = αM1f3

f1
= αλf3 by second then fourth equation, that

is entry (2,1). We have M4 = ωM3
f4
f3

by third equation, so using the already
proved entry (2,1) we have M4 = ωαλf3

f4
f3

= ωf4αλ that is entry (2,2). �
In the system of equations (3), the first equation only involves β1 and β2 while
the other equations are linear once β1 and β2 are fixed. So we can concentrate
on solving the first equation, which is quadratic in both β1 and β2:

M2M3f1f4 − M1M4f2f3 = 4(M2M3 −M1M4)(−β2
1 + 3β1 + 4)β2

2

+
(
M2M3(12β2

1 + 49β1 + 12) + M1M4(−12β2
1 + 76β1− 12)

)
β2

+4(M2M3 −M1M4)
(
4β2

1 + 3β1 − 1
)
.

Our algorithm then proceeds as follows:

1. Pick a random β1 which is a square.
2. Compute the discriminant of the quadratic equation in β2, β1. If it is not a

square, go back to 1.

270 C. Petit, K. Lauter, and J.-J. Quisquater

3. Solve the quadratic equation. If none of the roots is a square, go back to 1.
Else, assign a quadratic root to β2.

4. Compute f1, f2, f3, f4.
5. Solve αM1f3 −M3f1 = 0 to get α. If α is not a square, go back to 1.
6. Solve ωM3f4 −M4f3 = 0 to get ω. If ω is not a square, go back to 1.

This concludes the exposition of our algorithm.

Runtime analysis. First consider the algorithm for diagonal matrices. Assuming
n behaves “as a random number” then according to the prime number theorem
we will need O(log n) = O(log p) trials before getting one n of the correct form.
For each trial, the most expensive computation is a primality test, which can
be done in polynomial time (in our implementation, we actually use the proba-
bilistic function mpz probab prime p of GNU MP). So the algorithm for diagonal
matrices is probabilistic polynomial time. In the reduction algorithm, the proba-
bility for a random number to be a square modulo p being one half, we estimate
that a solution (λ, α, ω, β1, β2) with the last four being squares can be found in
about 24 trials. Consequently, the whole algorithm is probabilistic polynomial
time. Our implementation using GNU MP finds preimages in less than 2 minutes
for 1024-bit parameters on an Intel Pentium M processor 1.73GHz.

5 Collisions for the Morgenstern Hash Function

Now we show how to adapt Zémor and Tillich’s algorithm for finding collisions in
Morgenstern hashes when q = 2. Our algorithm lifts the representation problem
from SL(2, F2n) to a subset Ω of SL(2, A) where A = F2[x, y]/(y2 + y + 1) (in
this section, i will denote a root of i2 + i + 1 = 0 in A while i is a root of the
same equation in F2n). The relevant set is

Ω =
{(

a + bi c + di
x(c + di + d) a + bi + b

)
|(a, b, c, d) ∈ Ee for some integer e > 0

}

where Ee is the set of 4-tuples (a, b, c, d) ∈ F2[x] such that
⎧
⎨
⎩

(a2 + b2 + ab) + (c2 + d2 + cd)x = (1 + x)e

a ≡ 1 mod x
b ≡ 0 mod x.

Again call the first of these equations the norm equation. We point out that
in this section, small letters a, b, c, d, i, p are polynomials in x over F2, while
capitalized letters will be used for elements of the field F2n . By [9], corollary 5.4
and 5.7, if we restrict Ee to tuples (a, b, c, d) not divisible by (1+x), the elements
of Ω have a unique factorization in terms of the lifts of the graph generators:

g′0 =
(

1 1 + i
ix 1

)
, g′1 =

(
1 1
x 1

)
, g′2 =

(
1 i

(1 + i)x 1

)
.

Full Cryptanalysis of LPS and Morgenstern Hash Functions 271

Moreover, the “reduction modulo p” (a, b, c, d) → (A, B, C, D) = (a, b, c, d) mod
p gives a homomorphism from Ω to SL(2, F2n):

(
a + bi c + di

x(c + di + d) a + bi + b

)
→

(
A + Bi C + Di

x(C + Di + D) A + Bi + B

)
.

From this it is now clear how the second and third steps of Zémor and Tillich
algorithm will work for Morgenstern hashes, so we now give details for first step.
This amounts to lifting the representation problem, that is finding a, b, c, d, λ ∈
F2n satisfying the following conditions:

⎧
⎨
⎩

(a, b, c, d) ∈ Ee

(a, b, c, d) not divisible by x+1
(a, b, c, d) ≡ λ(1, 0, 0, 0) mod p.

Write b = xpb′, c = pc′, d = pd′ for b′, c′, d′ ∈ F2[x] and arbitrarily choose
e = 2k and a = (1+x)k +xpm, with k ∈ Z and m ∈ F2[x] still to be determined.
Note that such an a satisfies a ≡ 1 mod x. The norm equation becomes

x2p2m2 + x2p2b′2 + xpb′
(
(1 + x)k + mxp

)
+ xp2(c′2 + d′2 + c′d′) = 0.

Simplifying by xp we get

xpm2 + xpb′2 + b′
(
(1 + x)k + xpm

)
+ p(c′2 + d′2 + c′d′) = 0.

Reducing this equation modulo p we get b′
(
(1 + x)k + xpm

)
≡ 0 which implies

b′ = pb′′ for some b′′ ∈ Fp. The norm equation becomes

xpm2 + xp3b′′2 + pb′′
(
(1 + x)k + xpm

)
+ p(c′2 + d′2 + c′d′) = 0.

Simplifying again by p we get

c′2 + d′2 + c′d′ = n(b′′, m, k) := xm2 + xp2b′′2 + b′′(1 + x)k + b′′xpm.

Our approach for step 1 will be to generate random m and b′′ (with x + 1 � b′′)
until the equation c′2 + d′2 + c′d′ = n(b′′, m, k) has solutions, then to solve this
equation for c′, d′. As will be clear later, the equation has a solution if and only
if all the irreducible factors of n are of even degree. So in particular

– We will choose b′′ = b(3)x + 1 for some b(3) ∈ F2[x] to avoid an x factor.
– As the term xp2b′′2 is of odd degree, we will make another term of higher

even degree, with the following strategy:
• Choose b′′ and m randomly of degree equal to or less than R.
• Choose k = 2 deg(p) + deg(b′′)+ 2 + (deg(b′′) + ε) where ε = 0 if deg(b′′)

is even and ε = 1 if deg(b′′) is odd.

If R is large enough we get an n with the desired property after sufficiently many
random trials on b′′ and m. In our implementation, we chose R = 10 which is
more than enough for 1024-bit parameters. It remains to show how to solve the
equation c′2 + d′2 + c′d′ = n and to explain the condition on the degrees of
irreducible factors of n. We begin with the solution of the equation.

272 C. Petit, K. Lauter, and J.-J. Quisquater

Solving c2 + d2 + cd = n. It is enough to have an algorithm solving it when
n is irreducible. Indeed, if c2

1 + d2
1 + c1d1 = n1 and c2

2 + d2
2 + c2d2 = n2 then

(c3, d3) = (c1c2 + d1d2, c1d2 + c2d1 + d1d2) satisfies c2
3 + d2

3 + c3d3 = n1n2. So
suppose n is irreducible of even degree.

We describe a continued fraction algorithm for polynomials over F2 and then
we use it to solve the equation. For a fraction ξ = P

Q where P and Q are
polynomials, let P = a0Q + r0 where deg r0 < deg Q. Let Q = a1r0 + r1 with
deg r1 < deg r0, then recursively for i = 2, ..., define ri−2 = airi−1 + ri with
deg ri < deg ri−1. (This is the Euclidean algorithm applied to the ring F2[x]).
Define p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1, and then recursively pi =
aipi−1 + pi−2 and qi = aiqi−1 + qi−2. (The fraction pi/qi is the ith truncated
continued fraction of P/Q.) We see recursively that qipi−1 + qi−1pi = 1, so
pi

qi
+ pi−1

qi−1
= 1

qi−1qi
and

P

Q
= a0 +

n∑
i=0

1
qi+1qi

where n is the first i such that pi/qi = P/Q. Define a “norm” v on quotients of
polynomials as follows: v

(
a
b

)
= deg a− deg b if a, b �= 0, v

(
a
b

)
= 0 if b = 0, and

v
(

a
b

)
= −∞ if a = 0. Note that v(qi+1) ≥ v(qi), v(pi+1) ≥ v(pi), and that

v

⎛
⎝P

Q
+ a0 +

n′−1∑
i=0

1
qi+1qi

⎞
⎠ = v

(
n∑

i=n′

1
qi+1qi

)
≤ −v(qn′+1)− v(qn′)

As n has even degree, we can compute α ∈ F2[x] such that α2+α+1 ≡ 0 mod n
(see next paragraph). We apply a continued fraction expansion to ξ = α

n and let
pi/qi be the successive approximations. Let j be such that

v(qj) ≤
v(n)

2
≤ v(qj+1).

We have

q2
j + (qjα + pjn)2 + qj(qjα + pjn) ≡ q2

j + q2
j α2 + q2

j α ≡ 0 mod n.

On the other hand, as

deg(qjα + pjn) = v(n) + v(qj) + v

(
ξ +

pj

qj

)
≤ v(n) + v(qj)− v(qj)− v(qj+1)

≤ v(n)/2 = deg(n)/2

we have

v
�
q2

j + (qjα + pin)2 + qi(qjα + pjn)
�

≤ 2max (deg(qj), deg(qjα + pjn)) ≤ deg n.

Consequently,
q2
j + (qjα + pjn)2 + qj(qjα + pjn) = n

and (c, d) = (qj , qjα + pjn) is a solution to c2 + d2 + cd = n.

Full Cryptanalysis of LPS and Morgenstern Hash Functions 273

Solutions to α2 + α + 1 ≡ 0 mod n. As the map x → x2 + x is linear in F2,
solutions to this equation, if there are any, are found easily by writing down
then solving a linear system of equations. We conclude the exposition of our
algorithm by showing the following lemma.

Lemma 2. For n irreducible, α2 + α + 1 ≡ 0 mod n has solutions if and only if
d := deg(n) is even.
(⇒) Suppose α satisfies α2 + α + 1 ≡ 0 mod n. Then 1 = α + α2. Squaring each
side we get 1 = α2 + α22

, then squaring again and again we get 1 = α22
+ α23

,...
until 1 = α2d

+ α2d−1
= α + α2d−1

. Summing up these equations we get d = 0,
so d must be even.
(⇐) Now suppose d is even. Let β be a generator of F∗

2d and let α = β
2d−1

3 .
Then α3 = 1 and α �= 1 so α2 + α + 1 = 0. �
Runtime analysis. We give some estimates for the complexity of our algorithm.
Assuming the polynomial n generated from random (b′′, m) behaves like random
polynomials of degree k, the number of its irreducible factors is asymptotically
K = O(log deg n) [5]. For n of degree even, we can reasonably approximate
the probability that all its factors are of even degree by (1/2)K , hence we will
need 2K = O(log n) = O(deg p) random trials. The factorization of n can be
done in O(log2+ε n) [12] and the continued fraction algorithm is of complexity
O(deg n), so the global complexity of our algorithm is probabilistic polynomial
time in deg p. Our implementation of the algorithm finds collisions for 1024-bit
parameters in a few seconds on a Pentium Intel M processor 1.73GHz.

6 Discussion and Further Work

In this paper, we presented efficient algorithms finding preimages for the LPS
hash function and collisions for the Morgenstern hash function with q = 2.
Similar algorithms with the same complexity can be derived for finding preimages
for the Morgenstern hash function and for different q values. Our algorithms
build upon the Zémor and Tillich algorithm [17] although they are not trivial
extensions of it.

The modified version of LPS hashes proposed by Zémor and Tillich remains
unbroken so far regarding both the collision and the preimage properties, as well
as their original scheme [13] (with carefully chosen parameters) that used as

graph generators A0 =
(

x 1
1 0

)
and A1 =

(
x x + 1
1 1

)
. To avoid our new attack,

we suggest modifying the Morgenstern hash function as follows: multiply by
g0g1 if the bit is 0 and by g0g2 if the bit is 1. However, it is not clear what
would be the advantages of such a scheme compared to Zémor and Tillich’s, as
it would not necessarily have better expansion properties, and comparing the
graph generators, it will certainly be slower.

In further work, we would like to study the applicability of our algorithm to
the Zémor-Tillich (ZT) hash function. The Cayley graphs used in ZT hashes
can be naturally embedded into Morgenstern graphs, so our cryptanalysis of

274 C. Petit, K. Lauter, and J.-J. Quisquater

Morgenstern hashes might actually open new perspectives on breaking the ZT
scheme. Our results may also have applications outside the cryptographic com-
munity. The preimage finding algorithm actually solves the diophantine equation
(1) which at first sight seems to be a very hard problem. Our path-finding and
Zémor and Tillich cycle-finding may improve understanding of LPS graphs when
considering their Ihara Zeta-function. Finally, expander graphs have numerous
applications in computer science [6], some of which could benefit from our new
path-finding algorithm.

Because of all these actual and potential applications, we stress that our
algorithms and their running time estimates still may and should be improved
in many ways. The algorithm of Section 4 gives paths of length about 8 log p
while the diameter of LPS graphs is known to be 2 log p. Choosing a smaller
k value in the algorithm will decrease this length and may also improve the
running time. Finding other decompositions with less than 4 diagonal matrices
is another interesting approach. Finally, adapting our algorithms to make them
deterministic is a particularly interesting open problem.

References

1. http://csrc.nist.gov/groups/ST/hash/documents/SHA-3 FR Notice Nov02
2007%20-%20more%20readable%20version.pdf

2. FIPS 180-2 secure hash standard
3. Charles, D.X., Goren, E.Z., Lauter, K.E.: Cryptographic hash functions from ex-

pander graphs. Journal of Cryptology (to appear)
4. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-

resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

5. Flajolet, P., Soria, M.: Gaussian limiting distributions for the number of compo-
nents in combinatorial structures. J. Comb. Theory Ser. A 53(2), 165–182 (1990)

6. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.
Amer. Math. Soc. 43, 439–561 (2006)

7. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–
277 (1988)

8. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Provably secure FFT
hashing. In: NIST 2nd Cryptogaphic Hash Workshop (2006)

9. Morgenstern, M.: Existence and explicit construction of q + 1 regular Ramanujan
graphs for every prime power q. Journal of Combinatorial Theory B 62, 44–62 (1994)

10. Petit, C., Lauter, K.E., Quisquater, J.-J.: Full cryptanalysis of LPS and Morgen-
stern hash functions. Cryptology ePrint Archive, Report 2008/173 (2008),
http://eprint.iacr.org/

11. Petit, C., Lauter, K.E., Quisquater, J.-J.: Cayley hashes: A class of efficient graph-
based hash functions (preprint, 2007)

12. Shoup, V.: On the deterministic complexity of factoring polynomials over finite
fields. Inf. Process. Lett. 33(5), 261–267 (1990)

13. Tillich, J.-P., Zémor, G.: Hashing with SL2. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)

14. Tillich, J.-P., Zémor, G.: Group-theoretic hash functions. In: Cohen, G., Lobstein,
A., Zémor, G., Litsyn, S.N. (eds.) Algebraic Coding 1993. LNCS, vol. 781, pp.
90–110. Springer, Heidelberg (1994)

http://csrc.nist.gov/groups/ST/hash/documents/SHA-3_FR_Notice_Nov02_2007%20-%20more%20readable%20version.pdf
http://csrc.nist.gov/groups/ST/hash/documents/SHA-3_FR_Notice_Nov02_2007%20-%20more%20readable%20version.pdf
http://eprint.iacr.org/

Full Cryptanalysis of LPS and Morgenstern Hash Functions 275

15. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

16. Zémor, G.: Hash functions and Cayley graphs. Des. Codes Cryptography 4(4),
381–394 (1994)

17. Zémor, G., Tillich, J.-P.: Collisions for the LPS expander graph hash function. In:
Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965. Springer, Heidelberg (2008)

A Toy Example of the Preimage-Finding (Path-Finding)
Algorithm in the LPS Graph

As an example of our preimage algorithm, we now give a second preimage
for the message m =“This is not for NIST”, when the parameters are p =
1125899906842769 and l = 5. The ASCII code for m is 01010100 01101000
01101001 01110011 00100000 01101001 01110011 00100000 01101110 01101111
01110100 00100000 01100110 01101111 01110010 00100000 01001110 01001001
01010011 01010100 which in base 5 gives 3023231443000032312104001244030134
21040324420122212133431310442432021. We start at the identity, with gIV the
identity and g0 = M1. We identify the six graph generators

M±1 =
(

1± 2i 0
0 1∓ 2i

)
, M±2 =

(
1 ±2
∓2 1

)
M±3 =

(
1 2i
2i 1

)

with their indices. The function π we choose is given in figure A. The hash value
obtained is

M =
(

1113908155375639 815055784352014
485525153198538 30164330826615

)
.

-3 -2 -1 1 2 3

0 -3 3 2 1 -1 -2
1 2 -3 3 2 1 -1
2 -1 -2 -3 3 2 1
3 1 -1 -2 -3 3 2
4 2 1 -1 -2 -3 3

Fig. 1. Table for the function π: the table gives the index of the next matrix for a given
current matrix and a given base 5 digit

We apply our path-finding algorithm on M . First, we get a matrix decom-
position as in Section 4. After 11 trials, the resulting λ, α, ω, β1 and β2 values
are

λ = 1051846637406052
α = 698130975272599
ω = 846326642296745

β1 = 150389273084944
β2 = 480539407839455.

276 C. Petit, K. Lauter, and J.-J. Quisquater

Then we factorize

Mα :=
(

1 0
0 α

)
=
(

349065487636300 + 795285597612250i 0
0 349065487636300− 795285597612250i

)
.

We choose k = 48, resulting in λ = 222458048101540 and
m = 11210387681441600668869823936886993015607319565640625. After 234
random trials for x, we finally get x = 523712450310834, w = 207632734870715,
and n = 4.2489205976128525372183128649803320961. The Euclidean algorithm
gives us the solution y = 2782001231666122912, z = 1489057773063985790. So
the lift of Mα is

M ′
α =

⎛
⎜⎜⎝

311426103887630914544037511835 3132254927569356406015273012423328
+i766565480745454184887163124346 +i1676530007976242663293697980252510

−3132254927569356406015273012423328 311426103887630914544037511835
+i1676530007976242663293697980252510 −i766565480745454184887163124346

⎞
⎟⎟⎠ .

We multiply M ′
α by each of the lifts of the graph generators. Since M ′

αg′3 is
divisible by l = 5, g′−3 is the last (right-hand) factor of M ′

α. After 2k steps, we
get the whole factorization of M ′

α, which we translate into a factorization of Mα

whose indices are 3 -1 2 2 3 1 1 3 1 3 3 3 2 2 3 -1 2 1 1 -3 1 1 1 3 -1 2 -3 2 3 1
-2 -2 -2 1 2 1 1 -3 2 1 2 1 -2 3 -1 3 2 -3 -2 3 1 -2 3 3 2 -3 -1 2 2 2 -1 -3 -1 -3 2 3
1 2 -3 -1 3 2 2 1 3 -2 -3 1 3 -2 -1 -2 3 1 3 2 1 -2 -1 -1 -3 2 1 1 -2 -3. We get the
factorizations of Mω, Mβ1 and Mβ2 the same way. Finally, we put all the pieces
of information together and get the sequence -3 -2 1 1 2 -3 -1 -1 -2 1 2 3 1 3 -2
-1 -2 3 1 -3 -2 3 1 2 2 3 -1 -3 2 1 3 2 - 3 -1 -3 -1 2 2 2 -1 -3 2 3 3 -2 1 3 -2 -3 2 3
-1 3 -2 1 2 1 2 -3 1 1 2 1 -2 -2 - 2 1 3 2 -3 2 -1 3 1 1 1 -3 1 1 2 -1 3 2 2 3 3 3 1 3
1 1 3 2 2 -1 3 2 3 -1 -3 -2 -2 1 3 2 -3 -3 2 3 -2 -3 -3 -2 -1 -2 3 1 1 2 3 2 1 1 -3 1 2
2 1 -2 1 1 2 -3 -2 3 -2 -3 1 1 3 1 2 1 -3 -1 -3 -3 -1 2 3 1 -3 -3 -1 -1 2 -1 3 -2 1 -3
-3 -1 -2 1 1 -2 -1 -1 3 -2 3 2 2 1 -3 -2 -1 -3 -1 -3 -1 3 2 -1 3 3 -2 -1 -2 1 1 2 2 -3
-1 3 2 2 -3 -2 -3 -1 -3 1 -3 -2 -1 3 1 -2 3 -2 3 2 1 3 -2 -2 -3 -3 -2 -2 3 -2 -2 -3 -1 3
1 3 -1 -3 -3 -3 -3 -2 1 3 3 1 -2 3 -1 -2 1 2 -3 1 -2 -2 1 -2 -2 -1 2 2 2 2 2 1 -3 1 1 2
1 1 3 3 -1 3 3 -2 -1 3 1 2 -1 2 3 -1 2 -3 -2 1 -2 1 1 3 -2 2 -2 -3 -2 -1 3 3 -2 -1 3
2 -3 2 3 -2 1 1 1 1 -2 1 1 2 -1 3 -1 -2 -1 -2 -1 -2 -2 3 2 1 3 - 2 -2 -3 -3 -2 3 3 2 1
1 1 1 3 2 -1 -3 2 -3 -2 -1 -3 1 -2 -2 -2 1 -2 -1 -2 -1 2 - 1 -3 -1 -3 -2 -1 -2 -3 -1 -3
-1 2 2 3 3 -2 -2 -2 -3 -1 -1 -1 2 -3 -1 3 -1 2 -3 - 3 that collides with the original
message “This is not for NIST”.

B Collisions for Morgenstern Hashes, q = 2 and
deg p(x) = 20

Now we give a small example for our collision-finding algorithm. The polynomial
we choose to target is p(x) = x20+x17+x14+x13+x12+x11+x9+x7+x5+x3+
x2 + x + 1. We choose R = 10 and generate random m and b′′. After 3 random
trials we get m = x9+x8+x7+x6+x5+x4, b′′ = x10+x8+x5+x2+1 so k = 52,
a = x52 + x48 + x36 + x32 + x30 + x25 + x24 + x22 + x20 +x15 +x14 + x12 + x11 +
x10 +x9 +x4 +x3 +x+1, b = x51 +x50 +x48 +x47 +x46 +x45 +x44 +x40 +x39 +
x38 +x37 +x36 +x35 +x34 +x32 +x31 +x30 +x29 +x28 +x27 +x25 +x24 +x23 +

Full Cryptanalysis of LPS and Morgenstern Hash Functions 277

x22 +x20 +x19 +x18 +x16 +x11 +x10 +x9 +x8 +x5 +x4 +x3 +x2 +x and n =
x62+x61+x59+x57+x55+x53+x52+x51+x50+x49+x48+x46+x45+x40+x37+
x31+x29+x28+x26+x25+x24+x23+x16+x15+x13+x12+x10+x6+x5+x3+1.

The polynomial n has three factors n1 = x56+x54+x53+x50+x48+x46+x44+
x40+x36+x34+x33+x30+x29+x22+x20+x18+x13+x11+x7+x6+x5+x3+1,
n2 = x4+x3+x2+x+1 and n3 = x2+x+1 which are all of even degrees. For each
factor ni we compute α such that α2+α+1 ≡ 0 mod ni and use this value and the
continued fraction algorithm to recover (ci, di) such that c2

i +d2
i +cidi ≡ 0 mod ni:

we get (c1, d1) = (x26 +x25 +x24 +x21 +x20 +x18 +x16 +x14 +x13 +x11 +x8 +
x6 +x5 +x+1, x28 +x23 +x21 +x19 +x15 +x13 +x10 +x7 +x5 +x4 +x2 +x+1),
(c2, d2) = (x, x2 + 1) and (c3, d3) = (x, 1).

Combining these partial results we get c = x51 +x50 +x47 +x41 +x40 +x36 +
x31 + x27 + x26 + x25 + x24 + x23 + x22 + x20 + x18 + x17 + x16 + x14 + x12 +
x11 + x10 + x9 + x7 + x4 and d = x51 + x50 + x49 + x48 + x47 + x45 + x44 + x43 +
x42 + x39 + x36 + x33 + x31 + x30 + x29 + x27 + x26 + x25 + x22 + x21 + x20 +
x18 + x17 + x16 + x14 + x13 + x9 + x7 + 1.

We can verify that

(a2 + b2 + ab) + (c2 + d2 + cd)x = (1 + x)2k

and (a, b, c, d) ≡ (1 + x)k(1, 0, 0, 0) mod p. We factorize the lifted matrix and,
using the indices of the generators given in Section 5, we get the following colli-
sion with the void message: 0 2 0 2 0 1 2 1 2 1 2 1 2 0 2 0 2 0 2 0 2 0 1 0 2 0 2
1 0 2 1 0 1 0 2 1 0 1 2 1 2 1 2 1 0 2 1 0 1 2 0 1 0 1 0 1 0 2 1 0 1 2 0 2 1 2 0 2 0 1
2 0 2 0 1 0 2 1 2 1 0 2 0 1 0 1 2 0 2 0 2 0 2 0 1 2 1 0 2 0 2 1 0 1.

A New DPA Countermeasure Based on

Permutation Tables

Jean-Sébastien Coron

University of Luxembourg
jean-sebastien.coron@uni.lu

Abstract. We propose and analyse a new countermeasure against Dif-
ferential Power Analysis (DPA) for the AES encryption algorithm, based
on permutation tables. As opposed to existing AES countermeasures, it
does not use random masking. We prove that our new countermeasure is
resistant against first-order DPA; we also show that it is quite efficient
in practice.

1 Introduction

The AES [4] encryption algorithm is with DES the most widely used encryption
algorithm. However, it is easy to see that without modification, AES is vulnerable
to Differential Power Analysis as introduced by Kocher et al. in [6,7]. A DPA
attack consists in extracting information about the secret key of a cryptographic
algorithm, by studying the power consumption of the electronic device during the
execution of the algorithm. The attack was first described on the DES encryption
scheme, but it was soon understood that the attack could easily be extended
to other symmetrical cryptosystems such as the AES, and also to public-key
cryptosystems such as RSA and Elliptic-Curves Cryptosystems [3].

A common technique to protect secret-key algorithms against side-channel
attacks consists in masking all data with a random integer, as suggested in
[2]. The masked data and the random integer are then processed separately and
eventually recombined at the end of the algorithm. An attacker trying to analyse
power consumption at a single point will obtain only random values; therefore,
the implementation will be secure against first-order Differential Power Analysis
(DPA). In order to obtain valuable information about the key, the attacker must
correlate the power consumption at multiple points during the execution of the
algorithm; this is called a High Order Differential Power Analysis (HO-DPA);
such attack usually requires a much larger number of power consumption curves,
which makes it infeasible in practice if the number of executions is limited (for
example, by using a counter). Many AES countermeasures have been described
based on random masking [1,5,9,10,12].

In this article we propose a different countermeasure against DPA for AES,
based on permutation tables. The main difference with existing AES counter-
measures is that it avoids random masking; in practice this can be an advantage
because random masking is subject to numerous patents [7]. We prove that our

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 278–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New DPA Countermeasure Based on Permutation Tables 279

countermeasure is resistant against first-order DPA (like the random masking
countermeasure) and we show that its efficiency is comparable to that of the
random masking countermeasure.

It works as follows: at initialisation time a randomised permutation table is
generated in RAM; this permutation table is then applied to the message and
to the key; then all intermediate variables that appear during the course of
the algorithm remain in permuted form; eventually the inverse permutation is
applied to obtain the resulting ciphertext.

We also describe a technique to reduce the RAM consumption of our per-
mutation table countermeasure, at the cost of increasing the running time. Our
technique is based on a compression scheme proposed in [11] for the classical
random masking countermeasure; here we adapt this scheme to permutation ta-
bles. We show that this variant is also secure against first-order DPA. Finally, we
also provide the result of implementations that show that our countermeasure
is reasonably efficient in practice, as it is only roughly four times slower than
the classical masking countermeasure, for a comparable RAM requirement (see
Table 1 in Section 7 for a detailed comparison).

2 The AES Encryption Algorithm

In this section we recall the main operations involved in the AES algorithm. We
refer to [4] for a full description. AES operates on a 4 × 4 array of bytes si,j ,
termed the state. For encryption, each AES round (except the last) consists of
four stages:

1. AddRoundKey: each byte of the state is xored with the round key ki,j ,
derived from the key schedule:

si,j ← si,j ⊕ ki,j

2. SubBytes: each byte of the state is updated using an 8-bit S-box:

si,j ← S(si,j)

3. ShiftRows: the bytes of the state are cyclically shifted in each row by a
certain offset; the first row is left unchanged.

4. MixColumns: the bytes of the state are modified column by column as
follows:

s′0,c ← (02 · s0,c)⊕ (03 · s1,c)⊕ s2,c ⊕ s3,c

s′1,c ← s0,c ⊕ (02 · s1,c)⊕ (03 · s2,c)⊕ s3,c

s′2,c ← s0,c ⊕ s1,c ⊕ (02 · s2,c)⊕ (03 · s3,c)
s′3,c ← (03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (02 · s3,c)

The pseudo-code for AES encryption with a 128-bit key is recalled in Figure 1
in Appendix. The word array w contains the round keys that are generated by
the key-schedule algorithm. We refer to [4] for a more detailed description.

280 J.-S. Coron

For decryption, each round (except the last) consists in the following
operations:

1. InvShiftRows: is the inverse of the ShiftRows operation. The bytes of the
state are cyclically shifted in each row by a certain offset; the first row is left
unchanged.

2. InvSubBytes: is the inverse of the SubBytes operation. The inverse S-box
S−1 is applied on each byte of the state.

3. AddRoundKey: the operation is equal to its own inverse.

4. InvMixColumns: is the inverse of the MixColumns operation. The bytes of
the state are modified column by column as follows:

s′0,c ← (0e · s0,c)⊕ (0b · s1,c)⊕ (0d · s2,c)⊕ (09 · s3,c)
s′1,c ← (09 · s0,c)⊕ (0e · s1,c)⊕ (0b · s2,c)⊕ (0d · s3,c)
s′2,c ← (0d · s0,c)⊕ (09 · s1,c)⊕ (0e · s2,c)⊕ (0b · s3,c)
s′3,c ← (0b · s0,c)⊕ (0d · s1,c)⊕ (09 · s2,c)⊕ (0e · s3,c)

The pseudo-code for the inverse cipher is recalled in Figure 2 in Appendix.
Finally, the key-schedule is based on the following operations:

1. SubWord: takes a four-byte input word and applies the S-box S to each of
the four bytes.

2. RotWord: takes a word [a0, a1, a2, a3] as input and performs a cyclic per-
mutation to return [a1, a2, a3, a0].

3. Xor with Rcon: takes as input a 32-bits word and xor it with the round
constant word array Rcon[i] = [(02)i−1, 00, 00, 00], for round 1 ≤ i ≤ 10.

We refer to [4] for a full description of the key-schedule.

3 The Permutation Table Countermeasure

In this section we describe our basic countermeasure with permutation tables.
A variant with a time-memory trade-off is described in Section 6.

Our countermeasure consists in using a randomised representation of the state
variables, using two independent 4-bit permutation tables p1 and p2 that are
freshly generated before each new execution of the algorithm. More precisely,
every intermediate byte x = xh‖xl, where xh is the high nibble and xl is the low
nibble, will be represented in the following form:

P (x) = p2(xh)‖p1(xl)

This permuted representation is then used throughout the execution of AES.
Eventually the original representation is recovered at the end of the encryption
algorithm, by applying the inverse permutation.

A New DPA Countermeasure Based on Permutation Tables 281

3.1 Generation of Permutation Tables p1 and p2

The 4-bit permutation tables p1 and p2 are generated for each new execution of
the algorithm as follows. Let s0 be a fixed 4-bit permutation table; one can take
for example:

s0 = [14, 6, 0, 5, 9, 1, 4, 15, 8, 10, 12, 2, 3, 13, 11, 7]

One defines a sequence of permutations si for i ≥ 0 as follows:

si+1(x) = s0 (si(x)⊕ ki)

where each ki ∈ {0, 1}4 is randomly generated. The 4-bit permutation p1 is then
defined as p1 := sn for some n (in practice, one can take n = 4). One applies
the same procedure to generate the other table p2 (with independently generated
ki’s). Every intermediate byte x = xh‖xl that appear in AES is then represented
as:

P (x) = p2(xh)‖p1(xl)

Therefore, P is a 8-bit permutation; its storage requires 16 bytes of RAM. In
the following we explain how to use this permuted representation throughout the
AES operations, so that the intermediate data are never manipulated in clear.

3.2 AddRoundKey

Given P (x) and P (y) we explain how to compute P (x⊕y) without manipulating
x and y directly (since otherwise this would give a straightforward DPA attack).

We define the following two 8-bit to 4-bit xor-tables; for all x′, y′ ∈ {0, 1}4:

XT1
4(x

′, y′) := p1(p−1
1 (x′)⊕ p−1

1 (y′))
XT2

4(x
′, y′) := p2(p−1

2 (x′)⊕ p−1
2 (y′))

Those two tables require a total of 256 bytes in memory. Then given p1(x) and
p1(y) one can compute p1(x⊕ y) using:

XT1
4(p1(x), p1(y)) = p1(x⊕ y)

for all x, y ∈ {0, 1}4. Similarly, we have:

XT2
4(p2(x), p2(y)) = p2(x⊕ y)

Using those two tables we define the following function for all x′, y′ ∈ {0, 1}8,
where x′ = x′

h‖x′
l and y′ = y′

h‖y′
l:

XT8(x′, y′) = XT2
4(x

′
h, y′

h)‖XT1
4(x

′
l, y

′
l)

Then given P (x) and P (y), one can compute P (x⊕ y) as:

XT8(P (x), P (y)) = P (x⊕ y) (1)

282 J.-S. Coron

The AddRoundKey operation can then be implemented as:

s′i,j ← XT8(s′i,j , k
′
i,j)

where s′i,j = P (si,j) and k′
i,j = P (ki,j). It is therefore necessary to use the

permuted representation for the round keys. We further describe how this is
done by modifying the key-schedule operations (see sections 3.9, 3.10 and 3.11).

3.3 SubBytes

Let S be the AES SBOX. We define the following randomised permutation S′:

S′(x) = P (S(P−1(x)))

Given P (x), the permuted representation of S(x) is then computed as:

P (S(x)) = S′(P (x))

The SubBytes operation on the permuted state variables can then be computed
using the table S′ as follows:

s′i,j ← S′(s′i,j)

The randomised table S′(x) requires 256 bytes in RAM.

3.4 ShiftRows

No modification is required.

3.5 MixColumns

Using 03 · x = (02 · x)⊕ x, the MixColumns operation can be written as follows
(first line):

s′0,c ← (02 · s0,c)⊕ (02 · s1,c)⊕ s1,c ⊕ s2,c ⊕ s3,c

Therefore, we must be able to compute P (02·x) from P (x). For any x = xh‖xl ∈
{0, 1}8, from x = (0‖xl)⊕ (xh‖0) we have:

02 · x = (02 · (0‖xl))⊕ (02 · (xh‖0))

and using equation (1), we obtain:

P (02 · x) = XT8

(
P (02 · (0‖xl)), P (02 · (xh‖0)

)
(2)

Therefore, for all x′ ∈ {0, 1}8 where x′ = x′
h‖x′

l, we define the following two
tables (4-bit to 8-bit):

ML(x′
l) := P

(
02 ·

(
0 ‖ p−1

1 (x′
l)
))

MH(x′
h) := P

(
02 ·

(
p−1
2 (x′

h) ‖ 0
))

A New DPA Countermeasure Based on Permutation Tables 283

which gives for any xl, xh ∈ {0, 1}4:

ML(p1(xl)) = P
(
02 · (0 ‖ xl)

)

MH(p2(xh)) = P
(
02 · (xh ‖ 0)

) (3)

Using equations (2) and (3), given P (x) = p2(xh)‖p1(xl), we can therefore
compute P (02 · x) as follows:

P (02 · x) = XT8(ML(p1(xl)), MH(p2(xh)))

For simplicity, given P (x) = x′
h‖x′

l, we denote:

D2(x′
h‖x′

l) = XT8

(
ML(x′

l), MH(x′
h)
)

so that for any x ∈ {0, 1}8:

P (02 · x) = D2(P (x)) (4)

The first line of the MixColumns operation with permuted data can therefore be
written as:

s′′0,c ← XT8

(
D2(s′0,c), XT8

(
D2(s′1,c), XT8

(
s′1,c, XT8(s′2,c, s

′
3,c)

)))

and the other three lines are implemented analogously. The storage of the two
ML and MH tables requires 32 bits of RAM.

3.6 InvShiftRows

The algorithm remains the same.

3.7 InvSubBytes

This is similar to the SubBytes algorithm: we define the following randomised
permutation S′−1:

S′−1(x) = P (S−1(P−1(x)))

Therefore, the InvSubBytes operation on the permuted state variables is com-
puted using table S′−1(x) as follows:

s′i,j ← S′−1(s′i,j)

Note that one can generate the randomised table S′−1(x) from S(x) only, so
that it is not necessary to store S−1(x) in ROM, using the fact that:

S′−1 = P ◦ S−1 ◦ P−1 = (P ◦ S ◦ P−1)−1.

284 J.-S. Coron

3.8 InvMixColumns

The first line of the InvMixColumns operation is as follows:

s′0,c ← (0e · s0,c)⊕ (0b · s1,c)⊕ (0d · s2,c)⊕ (09 · s3,c)

We have the following relations in GF(28):

0b = 09⊕ 02, 0d = 0c⊕ 01, 0e = 0c⊕ 02 (5)

Therefore only two tables for computing the multiplication by 09 and 0c are
required, from which multiplication by 0b, 0d and 0e can be computed without
additional tables. More precisely, for all x ∈ {0, 1}4, we build the following 4-bit
to 8-bit tables:

TL(x′
l) := P

(
09 ·

(
0 ‖ p−1

1 (x′
l)
))

TH(x′
h) := P

(
09 ·

(
p−1
2 (x′

h) ‖ 0
))

RL(x′
l) := P

(
0c ·

(
0 ‖ p−1

1 (x′
l)
))

RH(x′
h) := P

(
0c ·

(
p−1
2 (x′

h) ‖ 0
))

Storing those four tables requires 64 bytes in RAM. Then, as in section 3.5,
writing x′ = P (x) = x′

h‖x′
l = p2(xh)‖p1(xl), we obtain:

P (09 · x) = XT8

(
TH(x′

h), TL(x′
l)
)

P (0c · x) = XT8

(
RH(x′

h), RL(x′
l)
)

As previously we denote:

D9(x′
h‖x′

l) = XT8

(
TH(x′

h), TL(x′
l)
)

Dc(x′
h‖x′

l) = XT8

(
RH(x′

h), RL(x′
l)
)

Using equations (5), we also denote:

Db(x) = XT8(D9(x), D2(x))
Dd(x) = XT8(Dc(x), x)
De(x) = XT8(Dc(x), D2(x))

The first line of the InvMixColumns operation can then be rewritten as follows:

s′′0,c ← XT8

(
De(s′0,c), XT8

(
Db(s′1,c), XT8

(
Dd(s′2,c), D9(s′3,c)

)))

and the other three lines are rewritten analogously.

3.9 SubWord

The SubWord operation on the modified state variables is implemented like the
SubByte operation.

A New DPA Countermeasure Based on Permutation Tables 285

3.10 RotWord

The RotWord operation remains unmodified.

3.11 Xor with Rcon

Let
R(i) = 02i−1

for all 1 ≤ i ≤ 10. We have R(0) = 01 and R(i) = 02 ·R(i−1) for all 1 ≤ i ≤ 10.
Therefore, letting R′(i) := P (R(i)), we have:

R′(i) = P (R(i)) = P (02 ·R(i− 1)) = D2(R(i− 1))

Therefore the Rcon constant can be computed using the function D2(x) defined
in section 3.5.

4 Security

In this section we show that our countermeasure in resistant against first-order
DPA. This is due to the following lemma:

Lemma 1. For a fixed key and input message, every intermediate byte that
is computed in the course of the randomised AES algorithm has the uniform
distribution in {0, 1}8.

Proof. The proof follows directly from the fact that any intermediate AES data
x is represented as P (x), where P (xh‖xl) = p2(xh)‖p1(xl) is the randomised
permutation. From the construction of p1, p2, this implies that P (x) is randomly
distributed in {0, 1}8. ��

The previous lemma implies that an attacker who makes statistics about
power-consumption at a single point gets only random values; hence, the coun-
termeasure is resistant against first-order DPA (like the random masking coun-
termeasure). In order to obtain valuable information about the key, the attacker
must correlate the power consumption at multiple points during the execution of
the algorithm; this is called a High Order Differential Power Analysis (HO-DPA);
such attack usually requires a much larger number of power consumption curves,
which makes it infeasible in practice if the number of executions is limited (for
example, by using a counter).

5 A Compression Scheme

A very nice compression scheme for SBOX tables has been proposed in [11]. This
compression scheme works for SBOXes with a random mask; we recall it in this

286 J.-S. Coron

section.1 Then in Section 6 we show how to adapt it to our permutation table
countermeasure.

Let S(x) for x ∈ {0, 1}8 be a 8-bit to 8-bit SBOX. One defines S1(x) and
S2(x) such that S(x) = S2(x)‖S1(x) for all x ∈ {0, 1}8, where S1(x) and S2(x)
are 4-bit values. Let r1, r2 ∈ {0, 1}8 and s ∈ {0, 1}4 be random masks, and let
define the randomised table:

T (x) = S1(x⊕ r1)⊕ S2(x⊕ r2)⊕ s (6)

which is a 8-bit to 4-bit table. Let x′ = x⊕ (r1 ⊕ r2) be a masked data; we have
from (6):

S1(x) = S1(x′ ⊕ r1 ⊕ r2) = T (x′ ⊕ r2)⊕ S2(x′)⊕ s

S2(x) = S2(x′ ⊕ r1 ⊕ r2) = T (x′ ⊕ r1)⊕ S1(x′)⊕ s

which gives:

S1(x)⊕ s = T (x′ ⊕ r2)⊕ S2(x′) (7)
S2(x)⊕ s = T (x′ ⊕ r1)⊕ S1(x′) (8)

Therefore given the masked data x′ one can obtain a masked S1(x) and a
masked S2(x), by using the randomised table T . The advantage is that the
size of T is only half the size of a classically randomised SBOX table; here the
storage of T requires only 128 bytes of RAM instead of 256 bytes for a classically
randomised AES SBOX. More precisely, the algorithm is as follows:

InitTable(r1, r2, s)
1. Write S(x) = S2(x)‖S1(x)
2. Generate randomised table T (x) = S1(x⊕r1)⊕S2(x⊕r2)⊕s for all x ∈ {0, 1}8

TableLookUp(x′, r1, r2, s)
1. Generate a random t ∈ {0, 1}4
2. u ← T (x′ ⊕ r2)⊕ S2(x′)
3. v ← T (x′ ⊕ r1)⊕ S1(x′)⊕ t
4. Output y = v‖u ∈ {0, 1}8 and r′ = (s⊕ t)‖s.

Here we add an additional masking step with t so that the values u and v are
not masked with the same nibble s; from equations (7) and (8), we obtain that
the value returned by TableLookUp is such that y = S(x) ⊕ r′.

It is easy to see that this countermeasure is resistant against first-order DPA,
as all the variables that appear in the TableLookUp function are uniformly dis-
tributed. Note that the tables S1 and S2 are only stored in ROM; they don’t
need to be randomised because in the TableLookUp algorithm those tables are
accessed at point x′ which is already randomised.

1 In [11] the countermeasure is described in plain English which makes it difficult to
understand; here we attempt to provide a more clear description.

A New DPA Countermeasure Based on Permutation Tables 287

It is also easy to see that the countermeasure can be generalised to any SBOX
input and output size. Moreover, one can obtain a better compression factor by
splitting S(x) into more shares; for example, a 8-bit SBOX could be split into
8 tables (one for each output bit); then the resulting randomised T table would
be 8 times smaller, at the cost of increasing the running time for every table
look-up.

6 Time Memory Trade-Offs

In this section we describe three time-memory trade-offs. The goal is to re-
duce the RAM requirement of the permutation table countermeasure described
in Section 3, for implementation on low-cost devices, at the cost of increasing
the running time. The main time-memory tradeoff is based on the SBOX com-
pression scheme recalled in the previous section. The second idea consists in
using a single XOR table XT1

4(x
′, y′) instead of two XOR tables XT1

4(x
′, y′) and

XT2
4(x′, y′) as in Section 3.2. The third idea consists in removing tables TL, TH,

RL and RH, by using a “Double-And-Add” approach. In Section 7 we describe
the results of practical implementations of these time-memory trade-offs.

6.1 Compressed SBOX

The compression scheme of [11] recalled in the previous section was used for
random masking; here we show how to adapt this compression scheme to our
permutation table countermeasure.

We define a new permutation P ′(x) = p′2(xh)‖p′1(xl) where p′1 and p′2 are 4-bit
permutations tables which are generated like p1 and p2. As previously, we write:

S(x) = S2(x)‖S1(x)

where S1(x) and S2(x) are 4-bit nibbles. We then define a randomised table:

T (x′) = p1

(
S1

(
P−1(x′)

))
⊕ p2

(
S2

(
P−1

(
P ′−1(x′)

)))
(9)

The randomised table T (x′) is a 8-bit to 4-bit table; therefore, its storage requires
128 bits in memory, instead of 256 bytes for the randomised table S′(x′) in
Section 3.3. Writing x′ = P (x), we obtain from equation (9):

p1(S1(x)) = T (P (x))⊕ p2

(
S2

(
P−1

(
P ′−1 (P (x))

)))

This shows that given P (x) we can compute p1(S1(x)) using randomised table
T and table S2 stored in ROM. Similarly, writing x′ = P ′(P (x)), we obtain from
equation (9):

p2(S2(x)) = T (P ′(P (x))) ⊕ p1

(
S1

(
P−1 (P ′ (P (x)))

))

This shows that given P (x) we can compute p2(S2(x)) using randomised table
T and table S1 stored in ROM. Therefore, given P (x) we can compute:

P (S(x)) = p2 (S2(x)) ‖p1 (S1(x))

288 J.-S. Coron

using the following operations:

InitTable(P, P ′):
1. Write S(x) = S2(x)‖S1(x)
2. Generate table T (x′) = p1

(
S1

(
P−1(x′)

))
⊕ p2

(
S2

(
P−1

(
P ′−1(x′)

)))
for all

x′ ∈ {0, 1}8.

TableLookUp(x′, T, P, P ′)
1. u ← T (x′)⊕ p2

(
S2

(
P−1

(
P ′−1 (x′)

)))
2. v ← T (P ′(x′))⊕ p1

(
S1

(
P−1 (P ′ (x′))

))
3. Output v‖u

Given the tables P , P ′, T and denoting F (x′) = TableLookUp(x′, T, P, P ′),
the SubBytes operation on the permuted state variables is computed as follows:

s′i,j ← F (s′i,j)

The table T requires 128 bytes in memory, and the additional permutations P ′

and P ′−1 require 32 bytes in memory, so in total 160 bytes are required (instead
of 256 bytes for the randomised table S′). The InvSubBytes operation on the
permuted state variables with compressed inverse SBOX S−1 is obtained by
replacing S by S−1 in the previous equations.

6.2 Single XOR Table

In Section 3.2 two 8-bit to 4-bit xor-tables are defined. In this section, we show
that it is sufficient to define only one 8-bit to 4-bit xor-table. As in Section 3.2,
we define:

XT1
4(x

′, y′) := p1(p−1
1 (x′)⊕ p−1

1 (y′))

We also define the 4-bit to 4-bit permutations:

p12(x) = p1(p−1
2 (x)) (10)

p21(x) = p2(p−1
1 (x)) (11)

and we store those two permutation tables in RAM. Then we can define the
function:

XT2
4(x

′, y′) := p21(XT1
4(p12(x′), p12(y′)))

From equations (10) and (11) we obtain that for all xh, yh ∈ {0, 1}4:

XT2
4(p2(xh), p2(yh)) = p21(XT1

4(p1(xh), p1(yh)) = p21(p1(xh⊕yh)) = p2(xh⊕yh)

Therefore, the XT2
4 function takes the same values as the XT2

4 table defined in
Section 3.2. The advantage is that only 16 bytes of RAM are necessary to store
the permutation tables p12 and p21 instead of 128 bytes for the previous XT2

4

table.

A New DPA Countermeasure Based on Permutation Tables 289

6.3 Double and Add for InvMixColumns

The first line of the InvMixColumns operation is as follows:

s′0,c ← (0e · s0,c)⊕ (0b · s1,c)⊕ (0d · s2,c)⊕ (09 · s3,c)

In this section we show how to avoid the four tables TL, TH, RL and RH, using
a Double and Add method. More precisely, using the existing D2 function (see
equation (4)) we define the following functions:

D4(x′) := D2(D2(x′))
D8(x′) := D2(D4(x′))
D9(x′) := XT8(D8(x′), x′)
Db(x′) := XT8(D9(x′), D2(x′))
Dc(x′) := XT8(D8(x′), D4(x′))
Dd(x′) := XT8(Dc(x′), x′)
De(x′) := XT8(Dc(x′), D2(x′))

Therefore no additional table is required beyond the already defined ML and
MH tables. The first line of the InvMixColumns operation can then be rewritten
as follows:

s′′0,c ← XT8

(
De(s′0,c), XT8

(
Db(s′1,c), XT8

(
Dd(s′2,c), D9(s′3,c)

)))

and the other three lines are rewritten analogously.

6.4 Security

As for our basic permutation table countermeasure, all the intermediate variables
that appear in the time-memory tradeoff variants have the uniform distribution:

Lemma 2. For a fixed key and input message, every intermediate byte that is
computed in the course of the randomised AES algorithm with any of the three
time-memory trade-offs has the uniform distribution in {0, 1}8.

Therefore, the three previous time-memory tradeoffs are secure against first-
order DPA.

7 Implementation

We summarise in Table 1 the timings observed and RAM needed for each AES
operation. The timings are based on an implementation in C on a 2 GHz lap-
top under Linux. The RAM requirements are based on Tables 2 and 3 in Ap-
pendix. These timings show that the new countermeasure is reasonably efficient,
as it is only roughly four times slower than AES with masking countermeasure,
for a comparable amount of memory. We note that the time-memory tradeoffs
enable to spare 272 bytes in RAM compared to our basic permutation table
countermeasure.

290 J.-S. Coron

Table 1. Timings obtained using a C implementation of AES without countermeasure,
with masking countermeasure, and with proposed countermeasure: basic permutation
table, and with time-memory trade-offs, on a 2 GHz laptop under Linux

Countermeasure Timing (μs) RAM (bytes)

AES encryption without countermeasure 2.2 214
AES encryption with masking 4.0 474
AES encryption with basic permutation tables 11 778
AES encryption with permutation tables + trade-offs 27 570

AES decryption without countermeasure 4.0 214
AES decryption with masking 9.5 474
AES decryption with basic permutation tables 23 842
AES decryption with permutation tables + trade-offs 42 570

8 Conclusion

We have described a new countermeasure against DPA for AES, that does not
use random masking. Our countermeasure is provably secure against first order
DPA, and reasonably efficient compared to the classical random masking coun-
termeasure. We have also described three time-memory tradeoffs to reduce the
RAM requirement; this can be useful for smart-card implementations.

Acknowledgments. Thanks to Christophe Clavier for suggesting the “Double
and Add” approach in Section 6.3.

References

1. Akkar, M.L., Giraud, C.: An Implementation of DES and AES, Secure against
Some Attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162. Springer, Heidelberg (2001)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666. Springer, Heidelberg (1999)

3. Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

4. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer, Heidelberg (2002)

5. Golic, J.D., Tymen, C.: Multiplicative Masking and Power Analysis of AES. In:
Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

6. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)

7. Kocher, P., et al.: DES and Other Cryptographic processes with Leak Minimiza-
tion for smartcards and other cryptosystems. US 6,278,783 B1, June 3 (1999),
http://www.cryptography.com/technology/dpa/licensing.html

8. IBM Corporation, Space-efficient, side-channel attack resistant table lookups. Ap-
plication Patent 20030044003

http://www.cryptography.com/technology/dpa/licensing.html

A New DPA Countermeasure Based on Permutation Tables 291

9. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

10. Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Im-
plementations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS,
vol. 3786, pp. 292–305. Springer, Heidelberg (2006)

11. Rao, J.R., Rohatgi, P., Scherzer, H., Tinguely, S.: Partitioning attacks: Or How to
rapidly Clone Some GSM Cards. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy (2002)

12. Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC implementation of the AES
SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271. Springer, Heidelberg
(2002)

A AES Pseudo-code

Cipher(byte in[16], byte out[16], word w[44])
begin

byte state[16]
state=in
AddRoundKey(state,w[0,3])
for round=1 to 9

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state,w[round*4,(round+1)*4-1])

end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state,w[40,43])

end

Fig. 1. Pseudo-code for AES encryption

B List of Tables

We summarise in Table 2 the list of randomised tables required for each opera-
tion. Note that for decryption, we also need table S′ to compute the key-schedule,

Table 2. Randomised tables required for each AES operation, for the basic permutation
table countermeasure, and with the three time-memory tradeoffs

Operation Tables required

AES encryption, basic P , P −1, XT1
4, XT2

4, S′, ML, MH
AES decryption, basic P , P −1, XT1

4, XT2
4, S′−1, ML, MH,RL, RH,TL, TH

AES encryption, tradeoffs P , P −1, XT1
4, ML, MH, p12, p21, P ′, P ′−1, T

AES decryption, tradeoffs P , P −1, XT1
4, ML, MH, p12, p21, P ′, P ′−1, T

292 J.-S. Coron

but this table can be discarded at the end of the key-schedule. The RAM re-
quirement for those randomised tables is summarised in Table 3.

InvCipher(byte in[16], byte out[16], word w[44])
begin

byte state[16]
state=in
AddRoundKey(state,w[40,43])
for round=9 downto 1

InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state,w[round*4,(round+1)*4-1])
InvMixColumns(state)

end for
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state,w[0,3])

end

Fig. 2. Pseudo-code for AES decryption

Table 3. Memory requirement for the randomised tables

Operation RAM (bytes)

Permutations P and P −1 32
Xor-table XT1

4 128
Xor-table XT2

4 128
Randomised SBOX S′ 256
Randomised SBOX S′−1 256
Tables ML, MH 32
Tables TL, TH, RL, RH 64

Permutations p12 and p21 16
Permutations P ′ and P ′−1 32
Table T 128

Simplified Submission of Inputs to Protocols

Douglas Wikström�

CSC KTH Stockholm, Sweden
dog@csc.kth.se

Abstract. Consider an electronic election scheme implemented using a
mix-net; a large number of voters submit their votes and then a smaller
number of servers compute the result. The mix-net accepts an encrypted
vote from each voter and outputs the set of votes in sorted order without
revealing the permutation used. To ensure a fair election, the votes of
corrupt voters should be independent of the votes of honest voters, i.e.,
some type of non-malleability or plaintext awareness is needed. How-
ever, for efficiency reasons the servers typically expect inputs from some
homomorphic cryptosystem, which is inherently malleable.

In this paper we consider the problem of how non-malleability can be
guaranteed in the submission phase and still allow the servers to start
their computation with ciphertexts of the homomorphic cryptosystem.
This can clearly be achieved using general techniques, but we would like
a solution which is: (i) provably secure under standard assumptions, (ii)
non-interactive for submittors (iii) very efficient for all parties in terms
of computation and communication.

We give the first solution to this problem which has all these prop-
erties. Our solution is surprisingly simple and can be based on various
Cramer-Shoup cryptosystems. To capture its security properties we in-
troduce a variation of CCA2-security.

1 Introduction

Mix-Nets. A mix-net is a cryptographic protocol executed by N senders and k
mix-servers, where typically N is quite large and k is fairly small, e.g., N = 104

and k = 10. The functionality implemented by a mix-net corresponds to a trusted
party that collects inputs from the senders and then outputs the inputs in sorted
order. The main application of mix-nets is for electronic elections. All known effi-
cient robust mix-nets exploit the homomorphic properties of cryptosystems such
as the El Gamal cryptosystem [16] in an essential way. A problem with using a
homomorphic cryptosystem in the submission phase is that corrupted senders
can submit inputs that are related to those of honest senders, i.e., the cipher-
texts should be non-malleable during the submission phase and then become
homomorphic when the mixing starts.

Formally, the proof of security fails if a semantically secure cryptosystem is used
directly. When using the simulation paradigm, e.g., universally composable secu-
rity [4], a mix-net is said to be secure if for every adversary attacking the mix-net
� Work partly done while at ETH Zürich, Department of Computer Science.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 293–308, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

294 D. Wikström

there is an ideal adversary (simulator), typically running the adversary as a black-
box, attacking the ideal mix-net (the trusted party mentioned above) such that
no environment can tell the two models apart. The simulator does not know the
inputs of the honest parties and replaces them in its simulation, e.g., by zero mes-
sages. It must also extract the inputs of corrupted parties in its simulation and
hand them to the ideal mix-net, since otherwise these inputs would be missing
in the output from the ideal mix-net and the environment could trivially distin-
guish the two models. Any successful adversary must result in a successful attack
against the underlying cryptosystem, which means that the simulator can not use
the secret key of the cryptosystem to extract the inputs of corrupt senders.

General Case. More generally, consider a cryptographic protocol that starts
with a submission phase where many parties submit ciphertexts formed with a
public key pk , and a smaller group of servers hold shares of the secret key sk
corresponding to pk . The servers then compute and publish some function of
the input plaintexts. Typically, efficient protocols exploit the algebraic structure
of the cryptosystem, e.g., homomorphic properties. The problem with using a
semantically secure cryptosystem directly in such protocols is that it does not
guarantee that the plaintexts submitted by corrupt parties are unrelated to those
submitted by honest users.

Formally, the problem surfaces when the cryptographer constructing the pro-
tocol tries to reduce the security of his/her scheme to the security of the cryp-
tosystem. If the simulation paradigm is used, some kind of simulator must be
constructed and the simulator must extract the values of the corrupt parties to
be able to hand these to an ideal version of the protocol. The existence of a
successful adversary must contradict the security of the cryptosystem, i.e., ex-
traction must be done without using the secret key of the cryptosystem. This is
not possible using only a semantically secure cryptosystem.

Submission Problem. The submission problem is how to find a submission scheme
such that: (I) the inputs of corrupted parties can be extracted by the simulator
without using the secret key, and (II) its output is a list of ciphertexts of the
form expected by the servers computing the result. These requirements are es-
sential to allow use of the submission scheme as a prefix to the main protocol,
but there are also several natural additional properties that we can look for, or
even require, in the submission phase.

(i) The solution should be provably secure under standard assumptions in the
plain model, i.e., without any random oracles or generic groups.

(ii) The submission of inputs should be non-interactive for submittors.
(iii) The solution should be very efficient for all parties in terms of computation

and communication. More precisely, when N and k denotes the number of
submittors and servers respectively, then the computational complexity of
each submitter should be independent of k, the communication complexity
of each server should be independent of N , and the computational com-
plexity of each server should be of the form T (k)+T ′(N) for some functions
T and T ′.

Simplified Submission of Inputs to Protocols 295

1.1 Previous Work

Informally, we may view any solution to the problem as a form of proof of
knowledge of the encrypted plaintext, since any solution must allow the simulator
to extract the submitted plaintext without knowledge of the secret key of the
semantically secure cryptosystem. We classify the solutions in the literature and
some extensions as follows:

1. A non-interactive proof of knowledge in the random oracle model is used,
either using the Naor and Yung double ciphertext trick, or with rewinding.
Such solutions are typically very efficient, but unfortunately only heuristi-
cally secure [5]. Note that the CCA2-secure cryptosystems in the random
oracle model given by Shoup and Gennaro [29] may be viewed as instantia-
tions of this solution.

2. An interactive proof of knowledge [17] is used, either with a straight-line
extractor in the public key setting using the Naor and Yung [20] double-
ciphertext trick, or with a rewinding extractor.

3. A non-interactive proof of knowledge using general techniques [2] is used.
This is not efficient for either the submittor or the servers, even using the
recent techniques of Groth et al. [18]. One could also use the fairly general
zero-knowledge proofs based on homomorphic encryption of Damg̊ard, Fazio
and Nicolosi [12], but this requires non-standard assumptions. Note that
using a non-interactive proof in this way is essentially the construction of a
CCA2-secure cryptosystem under general assumptions given by Sahai [27]
based on the Naor-Yung double-ciphertext trick, but starting from a concrete
semantically secure cryptosystem with useful structure.

4. A non-interactive (for the submitter) proof of knowledge based on verifiable
secret sharing is used, for example using techniques from Abe, Cramer, and
Fehr [1]. Then the computational and communication complexity of the sub-
mitting party grows linearly with the number of servers, since each server
must receive an encrypted secret share, and the servers must interact for
each submitted ciphertext to verify its proof.

5. Non-interactive secret-key proofs using Cramer and Damg̊ard [7] could be
used. Their technique allows a prover and verifier to set up a secret key in a
preliminary phase that later allows the prover to show that it behaves in a
way consistent with the secret keys. Their scheme could be used in two ways.
Either each submittor would take part in a protocol in the preliminary phase
where the needed correlated secret keys are generated, or the servers would
generate secret keys relative each other that allow them to prove that they
performed the verification of a Cramer-Shoup ciphertext correctly. In the
former case, interaction is moved to a preliminary phase, but each submittor
must still interact with the servers and the servers must store a secret key
for each submittor. In the latter case, submitting is non-interactive for the
submittor, but each server must send and receive a non-interactive proof
for each sender, i.e., its communication complexity with the other servers is
linear in N .

296 D. Wikström

6. An arbitrary CCA2-secure cryptosystem is used and ciphertexts are trans-
lated into suitable semantically secure ciphertexts using general multiparty
computation techniques. This is inefficient both in terms of computation and
communication.

7. A special CCA2-secure cryptosystem such that a ciphertext can be trans-
formed more easily into a new ciphertext for the basic semantically secure
scheme needed by the servers is used. We list the solutions of this type we
are aware of below.
(a) Canetti and Goldwasser [6] and Lysyanskaya and Peikert [19] have given

CCA2-secure cryptosystems with distributed decryption which allows
transforming ciphertexts into ciphertexts for semantically secure cryp-
tosystems. These either involve interaction, expensive setup assumptions,
or only work for a small number of servers.

(b) Boneh, Boyen, and Halevi [3] give a CCA2-secure cryptosystem with
distributed decryption that may be viewed as containing a semantically
secure cryptosystem, but its security is based on a non-standard com-
plexity assumption based on pairings.

(c) Cramer, Damg̊ard, and Ishai [8] present a solution based on distributed
pseudo random functions and share conversion that is reasonably efficient
for a small number of servers and requires communication linear in the
number of ciphertexts between the servers to verify validity.

8. Prabhakaran and Rosulek [25] present a re-randomizable and replayable
CCA secure cryptosystem where one could view the transformation as triv-
ial, i.e., nothing would be done with the ciphertexts before handing them to
the underlying protocol.
This work is interesting, but we are not aware of any (interesting) underlying
protocol that accepts input ciphertexts of their cryptosystem. In fact, the
authors point out that it can not be used directly to construct a mix-net,
and even if that would be possible it would give an inefficient mix-net due
to the larger and more complex ciphertexts.
We remark that our work was publicly available [32] before their work was
published.

To summarize, there are numerous solutions to the submission problem which
satisfies properties (I) and (II), but no such solution has the properties (i)-(iii)
listed above for any interesting underlying protocol.

What Is Used In Existing Mix-Nets? There are numerous proposed mix-nets
with informal security arguments. If the submission problem is considered at all,
the Fiat-Shamir heuristic is used (mostly even without a proof in the random
oracle model). In the provably secure mix-nets either a secret sharing based
solution is used [30], or an interactive proof of knowledge is used [31,33].

1.2 Our Contribution

We give a simple solution to the submission problem that is efficient both in
terms of computation and communication. Although the solution is nothing

Simplified Submission of Inputs to Protocols 297

more than an observation on the Cramer-Shoup cryptosystem, it is novel and
important, since it gives a truly practical and provably secure way for senders to
submit their inputs to a mix-net, and this solution has eluded researchers ever
since the Cramer-Shoup cryptosystem appeared 10 years ago.

The Idea. Recall the original Cramer and Shoup scheme [10]. The cryptosystem
is deployed in a group Gq of prime order q in which the decision Diffie-Hellman
assumption is assumed to be hard. The key generator first chooses two random
generators g0, g1 ∈ Gq. Then it chooses x0, x1, y0, y1, z ∈ Zq randomly and de-
fines c = gx0

0 gx1
1 , d = gy0

0 gy1
1 , and h = gz

0 . It generates a collision-free hash
function H . Finally, it outputs (pk , sk) = ((H, g0, g1, c, d, h), (x0, x1, y0, y1, z)).
To encrypt a message m ∈ Gq using the public key pk the encryption algorithm
chooses r ∈ Zq randomly and outputs (u0, u1, e, v) = (gr

0, g
r
1, h

rm, crdrH(u0,u1,e)).
To decrypt a tuple (u0, u1, e, v) ∈ G4

q using the secret key sk the decryption algo-
rithm tests if ux0

0 ux1
1 (uy0

0 uy1
1)H(u0,u1,e) = v to check the validity of the ciphertext.

If so it outputs e/uz
0, and otherwise the unit element of the group.1

Note that h = gz and z have the form of an El Gamal [16] public and secret
key respectively and that (u0, e) is nothing more than an El Gamal ciphertext.
This is of course not a new observation. What seems to be a new observation is
the fact that the holder of the secret key may reveal (x0, x1, y0, y1) without any
loss in security as long as it never decrypts any ciphertext constructed after this
point, and that this solves the submission problem.

Generalizing and Applying the Idea. To allow us to generalize the observation
about the original Cramer-Shoup scheme and identify a class of cryptosystems
for which it applies, we introduce the notion of an augmented cryptosystem which
contains another cryptosystem as a component. In applications, the latter cryp-
tosystem will have some useful structure, e.g., be homomorphic, that allows
more efficient and simpler protocols. We also introduce a strengthened variation
of CCA2-security called submission security and observe that the generic scheme
of Cramer and Shoup [11] already satisfies this stronger definition. In the full
version [32] we also illustrate the use of the new notion by applying it to general
secure function evaluation, which strictly generalizes the notion of a mix-net.

The real efficiency gain from using our technique obviously depends on the
application, but it is clear that when the number of submittors N is large the
complexity of our solution based on the El Gamal cryptosystem is close to that
of the most efficient heuristic solution in the random oracle model. Due to the
cost of evaluating a pairing we also expect it to out-perform any solution based
on elliptic curves with pairings.

Limitations of Our Approach. When using our solution, no new inputs can be
accepted after part of the secret key is revealed. This is a minor drawback in
the targeted applications, since we have a large number of submitting parties
and executions of the underlying protocol are infrequent. When a new session

1 In [10] a special symbol ⊥ is output if the test fails, but this is only to simplify the
analysis. Any fixed output works just as well.

298 D. Wikström

is executed the servers simply generate a new key. However, it may be useful
to re-use the public key of the basic cryptosystem in the underlying protocol.
Thus, our definitions require that the augmentation can be replaced by a freshly
generated augmentation without any loss in security. This allows using several
independent augmentations that may be revealed sequentially, i.e., inputs can be
processed in batches and then input to the same underlying protocol. We remark
that for general threshold decryption, e.g. [6], our approach is not reasonable,
since users requesting a decryption expect the result immediately.

1.3 Notation

We denote by PT and PPT the sets of deterministic and probabilistic polyno-
mial time Turing machines respectively, and write PT∗ for the set of non-uniform
polynomial time Turing machines. We use n to denote the security parameter,
and say that a function ε(n) is negligible if for every constant c there exists a
constant n0 such that ε(n) < n−c for n > n0. If pk is the public key of a cryp-
tosystem, we denote by Mpk , Cpk , and Rpk the plaintext space, the ciphertext
space, and the randomness space respectively.

2 Augmented Cryptosystems

Keeping our observation about the original Cramer-Shoup cryptosystem in mind,
we formalize a general class of augmented cryptosystems that given part of the
secret key allow conversion of a ciphertext into a ciphertext of another basic
cryptosystem. In applications, the basic cryptosystem typically has special prop-
erties, e.g., it is homomorphic, that are exploited by the cryptographic protocol.
We introduce the following definition.

Definition 1 (Augmented Cryptosystem). A cryptosystem CS = (Kg, Enc,
Dec) is an augmentation of a cryptosystem CSB = (KgB, EncB, DecB) if there
exists an augmentation algorithm Aug ∈ PPT and a stripping algorithm Strip ∈
PT such that:

1. On input 1n, Kg computes (pkB, skB)=KgB(1n) and (pkA, skA)=Aug(pkB),
and outputs (pk , sk) = ((pkA : pkB), (skA : skB)).

2. On input ((skA : skB), c), Dec outputs DecB
skB (Strippk ,skA(c)).

Clearly, any cryptosystem can be viewed as a trivial augmentation of itself, and
if it is CCA2-secure then the trivial augmentation is also submission secure as
defined below, but we are interested in non-trivial augmentations where CSB

has structural properties useful in the construction of protocols.
Some readers may find it tempting to use a definition that mirrors the Cramer-

Shoup cryptosystem more closely to avoid the existence of trivial augmentations,
i.e., one could explicitly require that it is possible to check the “validity” of
a ciphertext using skA. We remind those readers that for most cryptographic
notions there are trivial instances, e.g., the identity map is a cryptosystem, and
we see no reason to impose unnecessary conditions on which particular properties
of the basic cryptosystem that should be considered useful.

Simplified Submission of Inputs to Protocols 299

2.1 Submission Security of Augmented Cryptosystems

Recall the game considered in the definition of CCA2-security [20,13,26]. The ad-
versary is given a public key pk . Then it may ask any number of decryption queries
to a decryption oracle Decsk (·) holding the secret key sk corresponding to pk .
The adversary must then choose two challenge messages m0 and m1. The game
is parameterized by a bit b and returns a challenge ciphertext of the form c =
Encpk (mb). Then the adversary is again allowed to ask arbitrary decryption queries
to Decsk (·) with the exception of c, and must finally output a guess b′ of the bit b.
If the cryptosystem is CCA2-secure, then the difference in distribution of b′ when
b = 0 or b = 1 respectively, should be negligible. Consider the following game.

Experiment 1 (Submission Security, Expsub−b
CS,CSB ,A

(n))

(pkB, skB) ← KgB(1n) // Basic keys

(pkA
j , skA

j) ← Aug(pkB) for j = 1, 2, 3, . . . // Augmentations

(pk j , sk j) ←
(
(pkA

j : pkB), (skA
j : skB)

)
// Augmented keys

(i, m0, m1, state) ← A
pkA

(·),sk
A
(·),Decsk(·) (·)(choose, pkB) // Choice of challenges

c ← Encpki
(mb) // Challenge ciphertext

d ← A
pkA

(·),sk
A
(·),Decsk(·) (·)(guess, state) // Guess of adversary

The experiment returns 0 if Decsk(·)(·) was queried on (i, c) or if it was queried
on (j, c′) for some c′ after skA

(·) was queried on j. Otherwise the experiment
returns d.

In the game above, the adversary is given a public key pkB of the basic
cryptosystem. It can request that the experiment generates an augmentation
(pkA

j , skA
j) = Aug(pkB), stores (pk j , sk j) = ((pkA

j : pkB), (skA
j : skB)), and

returns pk j = (pkA
j : pkB) to the adversary. This is done by submitting the

integer j to its pkA
(·)-oracle. Any subsequent identical queries j give the same pk j .

It can ask decryption queries. This is done by submitting an index and ciphertext
pair (j, c′) to its Decsk(·)(·)-oracle. It can request that the experiment reveals an
augmentation skA

j by submitting j to its skA
(·)-oracle, but after such a query no

more decryption queries of the form (j, c′) for some ciphertext c′ are allowed. Then
the adversary must choose an index i and two challenge messages m0 and m1. The
game is parameterized by a bit b and returns a challenge ciphertext of the form
c = Encpki

(mb). The adversary is then again allowed to: ask for more fresh public
keys, ask more decryption queries with the exception of decryption of (i, c), and
request more augmentations or augmentation keys. Finally, it outputs a guess b′

of b. If the cryptosystem is submission secure, then the difference in distributions
of b′ with b = 0 or b = 1 respectively should be negligible.

300 D. Wikström

We could equivalently have defined a game where the game only generates an
augmentation if requested to do so by the adversary, but the above is conceptu-
ally simpler.

Definition 2 (Submission Security). An augmentation CS of CSB is sub-
mission secure if ∀A ∈ PT∗: |Pr[Expsub−0

CS,CSBA
(n) = 1]− Pr[Expsub−1

CS,CSB ,A
(n) = 1]|

is negligible.

Example 1. A simple example of a submission secure cryptosystem can be de-
rived from the scheme of Sahai [27] based on the Naor and Yung double cipher-
text trick [20]. A semantically secure cryptosystem CSB is given and a CCA2-
secure cryptosystem CS = (Kg, Enc, Dec) is constructed as follows. To generate
a public key, compute (pkB

0 , skB
0) = KgB(1n) and (pkB

1 , skB
1) = KgB(1n), and

generate a common reference string CRS. Then output the key pair (pk , sk) =
((pkB

0 : pkB
1 , CRS), (skB

0 : skB
1)). To encrypt a message m, output (c0, c1, π) =

(EncB
pkB

0
(m), EncB

pkB
1
(m), π), where π is a simulation sound non-interactive adap-

tively zero-knowledge proof (NIZKP) that the same message is encrypted in c0

and c1. To decrypt, verify the NIZKP and output DecB
sk0

(c0) or 0 depending
on if the NIZKP was accepted or not. The augmentation algorithm Aug takes
(pkB

1 , CRS) as input and outputs (pkB
0 , skB

0) = KgB(1n). The stripping algo-
rithm Strip checks the NIZKP and outputs c0 or EncpkB

0
(0, 0) depending on if

the NIZKP was accepted or not.

3 Generic Cramer-Shoup Is Submission Secure

The fact that the generic CCA2-secure cryptosystem of Cramer and Shoup is
submission secure if we view it as an augmentation of a basic semantically secure
cryptosystem is quite easy to see from their security proof. On the other hand we
need to prove that this is indeed the case. Thus, we recall their scheme and prove
this fact, but we use coarse-grained and streamlined definitions. We also take the
liberty of ignoring the technical problem of constructing efficiently computable
hash families, since this complicates the definitions and does not add anything
to our exposition (see [11] for details).

3.1 Preliminaries

Subset Membership Problems. A subset membership problem consists of three
sets X , L � X , and W , and a relation R ⊂ X ×W . The idea is that it should
be hard to decide if an element is sampled from L or from X \ L. To be useful
in cryptography we also need some algorithms that allow us to sample instances
and elements, and check for membership in X .

Definition 3. A subset membership problem M consists of a collection of dis-
tributions (In)n∈N, an instance generator Ins ∈ PPT, a sampling algorithm
Sam ∈ PPT, and a membership checking algorithm Mem ∈ PT such that:

Simplified Submission of Inputs to Protocols 301

1. In is a distribution on instance descriptions Λ[X, L, W, R] specifying finite
non-empty sets X, L � X, and W , and a binary relation R ⊂ X ×W .

2. On input 1n, Ins outputs an instance Λ with distribution statistically close
to In.

3. On input 1n and Λ[X, L, W, R] ∈ [In] (the support of In), Sam outputs
(x, w) ∈ R, where the distribution of x is statistically close to uniform over
L.

4. On input 1n, Λ[X, L, W, R] ∈ [In], and ζ ∈ {0, 1}∗, Mem outputs 1 or 0
depending on if ζ ∈ X or not.

Definition 4. Let M be a subset membership problem. Sample Λ from In and
let x and x′ be randomly distributed over L and X \ L respectively. We say that
M is hard if for every A ∈ PT∗: |Pr[A(Λ, x) = 1]−Pr[A(Λ, x′) = 1]| is negligible.

Hash Families. Hash families are well known in the cryptographic literature and
there are many variations. We assume that all families are indexed by a security
parameter n.

Definition 5. A projective hash family H = (H, K, X, L, Π, S, α) consists of
finite non-empty sets K, X, L � X, Π, and S, a function α : K → S, and a
collection of hash functions H = (Hk : X×Π → Π)k∈K , where α(k) determines
Hk on L×Π .

Definition 6. Let H = (H, K, X, L, Π, S, α) be a projective hash family, and let
k ∈ K be random. Then H is universal2 if for every s ∈ S, x, x′ ∈ X with x �∈
L ∪ {x′}, and πx, π′

x, π, π′ ∈ Π, Prk[Hk(x, πx) = π ∧Hk(x′, π′
x) = π′ | α(k) = s]

is negligible.

The following definition and lemma are stated informally in [11].

Experiment 2 (Computationally Universal2, Expcuni2
H,A (n)). Let τk be the

predicate defined by τk((x, πx), π) ⇐⇒ Hk(x, πx) = π, and consider the fol-
lowing experiment.

k ← K

(x, πx, state) ← Aτk(·,·)(α(k))
← Aτk(·,·)(Hk(x, πx), state)

Denote by ((xi, πx,i), πi) the ith query to τk, and let il be the index of the
last query before the first output. If A asks a query ((xi, πx,i), πi) to τk with
Hk(xi, πx,i) = πi, xi ∈ X \ L, and i ≤ il or xi �= x, then output 1 and
otherwise 0.

302 D. Wikström

Definition 7. A projective hash family H is computationally universal2 if for
every A ∈ PT∗, Pr[Expcuni2

H,A (n) = 1] is negligible.

Lemma 1. If a projective hash family H is universal2, then it is computationally
universal2.

Proof. Denote by ((xi, πx,i), πi) the ith query of A and let Ei be the event that
Hk(xi, πx,i) = πi, xi ∈ X \ L, and i ≤ il or xi �= x. Condition on arbitrary fixed
values of (x, πx), π = Hk(x, πx), and α(k). Then the conditional probability of
the event Ei is negligible by universiality2 of H. Since the fixed values are arbi-
trary, this holds also without conditioning. Finally, A asks at most a polynomial
number of queries and the lemma follows from the union bound.

Definition 8. Let H = (H, K, X, L, Π, S, α) be a projective hash family, and let
k ∈ K, x ∈ X \L, and π ∈ X be random. Then H is smooth if for every πx ∈ Π
the distributions of (x, πx, α(k), Hk(x, πx)) and (x, πx, α(k), π) are statistically
close.

Universal Hash Proof Systems. Informally, a hash proof system may be viewed
as a non-interactive zero-knowledge proof system where only the holder of a
secret key corresponding to the public common random string can verify a proof.
Strictly speaking, the definition below corresponds, in the unconditional case, to
a special case of what Cramer and Shoup [11] call “extended strongly (smooth,
universal2)” hash proof system.

Definition 9. A (smooth, (computational) universal2) hash proof system P for
a subset membership problem M associates with each instance Λ[X, L, W, R] a
(smooth, (computationally) universal2) projective hash family H =
(H, K, X, L, Π, S, α), and the following algorithms

1. A key generation algorithm Gen ∈ PPT that on input 1n and Λ ∈ [In]
(the support of In) outputs (s, k), where k is randomly distributed in K and
s = α(k).

2. A private evaluation algorithm PEval ∈ PT that on input 1n, Λ ∈ [In],
k ∈ K, and (x, πx) ∈ X ×Π outputs Hk(x, πx).

3. A public evaluation algorithm Eval ∈ PT that on input 1n, Λ ∈ [In], α(k)
with k ∈ K, (x, πx) and w, with (x, w) ∈ R and πx ∈ Π, outputs Hk(x, πx).

4. A membership checking algorithm Mem ∈ PT that on input 1n, Λ ∈ [In],
and ζ ∈ {0, 1}∗ outputs 1 or 0 depending on if ζ ∈ Π or not.

3.2 Generic Scheme of Cramer and Shoup

Given the definitions above it is not hard to describe the generic cryptosys-
tem of Cramer and Shoup [11]. Let M be a hard subset membership prob-
lem, such that Π can be fitted with a group operation for any Λ, let P0 =
(Gen0, PEval0, Eval0, Mem0) be a smooth hash proof system for M, and let P1 =
(Gen1, PEval1, Eval1, Mem1) be a computationally universal2 hash proof system
for M.

Simplified Submission of Inputs to Protocols 303

Key Generation. Compute Λ[X, L, W, R] = Ins(1n), (s, k) = Gen0(1n, Λ),
(ŝ, k̂) = Gen1(1n, Λ), and output the key pair (pk , sk) = ((ŝ : Λ, s), (k̂ : k)).

Encryption of a message m ∈ Π. Compute (x, w) = Sam(Λ), π =
Eval0(Λ, s, x, w) = Hk(x), e = m+π, and π̂ = Eval1(Λ, ŝ, x, w, e) = Ĥ

�k(x, e),
and output (x, e, π̂).

Decryption of a ciphertext (x, e, π̂). Output m = e− PEval0(Λ, k, x) = e−
Hk(x), only if PEval1(Λ, k̂, x, e) = Ĥ

�k(x, e) = π̂ and otherwise output 0.

We have not modified the cryptosystem, except that we have introduced a colon
in the notation to distinguish the two parts of the public and secret keys as
needed in the definition of submission security, and we have replaced the special
symbol ⊥ by the zero plaintext.

Write CS = (Kg, Enc, Dec), and let CSB = (KgB, EncB, DecB) be the underly-
ing basic cryptosystem defined as follows. It has public key (Λ, s) and secret key
k. A message m ∈ Π is encrypted as (x, e), where e = Eval0(Λ, s, x, w) + m, and
a ciphertext (x, e) is decrypted by computing e−PEval0(Λ, k, x). It is clear that
CS is an augmentation of CSB, since we can define Aug(Λ, s) = Gen1(1n, Λ) and
define Strippk ,�k(x, e, π̂) to output (x, e) if PEval1(Λ, k̂, x, e) = π̂ and otherwise
EncpkB (0, 0).

Cramer and Shoup prove (see Theorem 1 in [11]) that CS is CCA2-secure
under the assumption that M is hard. We prove a stronger result.

Proposition 1. If M is a hard subset membership problem, then CS is a sub-
mission secure augmentation of CSB.

The key observations needed to extend Cramer’s and Shoup’s proof of CCA2-
security are:

1. The projective property of hash proofs implies that proofs computed using
a witness and hash proofs computed using the private key k̂ are identical
(indeed this is how a hash proof is verified). This means that the holder of k̂

can “perfectly simulate” proofs without the witness, i.e., even if k̂ is made
public the “simulated proof” looks exactly like a proof computed using a
witness.

2. The soundness of proofs computed by an adversary before k̂ is made public,
is not decreased by the publishing of k̂.

The generic Cramer-Shoup scheme generalizes several concrete schemes de-
scribed in [11], such as the El Gamal based scheme in the introduction, but also
schemes based on the Paillier cryposystem [22]. Both schemes are common in
efficient protocols.

3.3 Proof of Proposition 1

Conceptually, we follow the proof of Cramer and Shoup, but our proof is some-
what simplified, since we ignore the problem of approximating the hash families
by efficiently computable hash families.

304 D. Wikström

Denote by T
(0)
b the machine that simulates the experiment Expsub−b

CS,CSB ,A
(n)

with some adversary A ∈ PT∗, except that when computing the challenge cipher-
text (x, e, π̂), the two hash proofs π and π̂ are computed as π = PEval0(Λ, k, x) =
Hk(x) and π̂ = PEval1(Λ, k̂i, x, e) = Ĥ

�ki
(x, e), where i is the challenge index cho-

sen by the adversary. By the projectivity of hash proofs this does not change the
distribution of the experiment.

We now change T
(0)
b step by step until it is independent of b.

Claim 1. Denote by T
(1)
b the machine T

(0)
b except that x is chosen randomly in

X \ L. Then |Pr[T (0)
b = 1]− Pr[T (1)

b = 1]| is negligible.

Proof. Denote by Amem an algorithm that tries to solve the subset membership
problem M. It accepts as input (Λ, x), where x either belongs to L or X \ L.
It simulates T

(0)
b except that it uses the instance Λ and defines the challenge

ciphertext (x, e, π̂) using x from its input (Λ, x). Note that Amem is identically
distributed to T

(0)
b or T

(1)
b depending on if x ∈ L or x ∈ X\L. From the hardness

of M follows that |Pr[T (0)
b = 1]− Pr[T (1)

b = 1]| is negligible. �

Denote by (ij, (πj , ej , π̂j)) the jth query to the decryption oracle Decsk(·)(·),
and let jl be the index of the last query before the adversary outputs its choice
of challenge index and messages. Denote by (x, e, π̂) the challenge ciphertext,
and let E be the event that A asks a decryption query (ij , (πj , ej, π̂j)) with
Ĥ
�kij

(xj , ej) = π̂j , xj ∈ X \ L, and j ≤ jl or xj �= x, for some index j before it

requests skA
ij

from its skA
(·)-oracle (it may of course not ever do this).

Claim 2. Pr[E] is negligible.

Proof. Let Q be the total number of queries to the augmentation oracle pk (·)
made by the adversary. Without loss we assume that the adversary asks the
queries l = 1, . . . , Q.

Define Al
uni for l = 1, . . . , Q to be the machine that simulates T

(1)
b and

takes part in Experiment 2. The simulation is modified in that: ŝl is defined
as the hash proof key received in Experiment 2, whenever T

(1)
b needs to check

a hash proof as PEval1(Λ, k̂l, xj , ej) = Ĥ
�kl

(xj , ej) it simply queries its τ
�kl

(·, ·)-
oracle in Experiment 2 with (xj , ej) instead, and when it needs to compute
PEval1(Λ, k̂l, x, e) = Ĥ

�kl
(x, e) = π̂ it outputs (x, e) and waits for Ĥ

�kl
(x, e) = π̂

from the experiment instead. The computational universal2 property and the
union bound then implies the claim.

Note that the computational universal2 property can be applied despite that the
experiment reveals private hash proof keys, since by definition of submission
security the adversary only wins if it never asks a decryption query after this
point. This observation is the only essential change to the original proof. �
Denote by T

(2)
b the machine T

(1)
b , except that it outputs ⊥ if the event E oc-

curs. The machine T
(2)
b may not be efficient, but this does not matter since the

remainder of the argument is statistical in nature.

Simplified Submission of Inputs to Protocols 305

Claim 3. Denote by T
(3)
b the machine T

(2)
b except that in the computation of

the challenge ciphertext (x, e, π̂), π is chosen randomly in Π . Then |Pr[T (2)
b =

1]− Pr[T (3)
b = 1]| is negligible.

Proof. Consider an arbitrary fixed instance Λ of the subset membership problem
and an arbitrary fixed random string of the experiment conditioned on the event
Ē. Define a function f : X × S × Π → {0, 1} as follows. Let f(x, α(k), π)
simulate T

(2)
b except that the input parameters are used in the computation of

the challenge ciphertext. Note that f exists, since T
(2)
b outputs ⊥ if the event

E occurs and α(k) determines Hk on L by the projective property of H, so
the answers of all queries are determined by α(k). When k ∈ K, x ∈ X , and
π ∈ Π are randomly chosen, f(x, α(k), Hk(x)) is identically distributed to T

(2)
b

and f(x, α(k), π) is identically distributed to T
(3)
b . The claim now follows from

the smoothness of P.

Conclusion of Proof of the Proposition. To conclude the proof of the proposition
we simply note that the distributions of T

(3)
0 and T

(3)
1 are identical since Π is a

group. The claims above now imply that |Pr[T (0)
0 = 1]−Pr[T (0)

1 = 1]| is negligible.

4 Applications of Submission Security

The original motivation for this paper was to come up with a practical non-
interactive submission phase in El Gamal based mix-nets. For readers that are
not familiar with mix-nets we give an informal description of a construction that
goes back to Sako and Kilian [28]. In the full version [32] we also illustrate how the
notion of submission secure augmented cryptosystems can be used to construct
and analyze the submission phase of a protocol in a modularized way for general
secure function evaluation, and explain how this generalizes the mix-net setting
in the informal description.

4.1 Informal Description of Application to a Mix-Net

There are many senders S1, . . . , SN and few mix-servers M1, . . . , Mk, e.g., N =
104 and k = 10. In a joint key generation phase the mix-servers generate a
joint public key (g, h) such that each mix-server holds a verifiable secret share
sj of the joint secret key z such that h = gz. This can be done using Feld-
man verifiable secret sharing [14]. To submit a message mi ∈ Gq, a sender
Si computes an El Gamal ciphertext (u0,i, e0,i) = (gri , hrimi), where ri ∈ Zq

is randomly chosen. Then the mix-servers take turns at re-encrypting, using
the homomorphic property of El Gamal, and permuting the list of ciphertexts.
In other words, for j = 1, . . . , k, Mj computes and publishes {(uj,i, ej,i)} =
{(uj−1,πj(i)g

tj,i , ej−1,πj(i)h
tj,i)}, where tj,i ∈ Zq and πj are random. Finally, the

mix-servers jointly and verifiably decrypt the list {(uk,i, ek,i)} output by the last
mix-server Mk using their shares sj , sort the result, and output it.

306 D. Wikström

The idea is that due to the transformations computed by the mix-servers the
correspondence between the output plaintexts and the input ciphertexts should
be hidden. To ensure correctness, each mix-server also proves in zero-knowledge
that it processed the list of ciphertexts correctly. This is done using a so called
proof of a shuffle [21,15].

Unfortunately, the construction is completely insecure [24], since a malicious
sender Sl may compute its ciphertext as (u0,l, e0,l) = (ua

0,i, e
a
0,i) for some random

exponent a and then identify a matching pair (mi, m
a
i) in the final output, where

mi is the message sent by Si. This reveals the message mi sent by the honest
sender Si. Intuitively, what is needed is a non-malleable cryptosystem, but on
the other hand the cryptosystem must be homomorphic for re-encryption to be
possible. Formally, what is needed in the overall proof of security of the mix-
net (see [30,31,33]) is a way to extract the messages submitted by corrupted
players without using the secret key of the cryptosystem, as explained in the
introduction. In previous work this is either solved heuristically, or as in the
cited works a proof of knowledge is used explicitly.

We augment the above to make the cryptosystem used for submission identi-
cal to the Cramer-Shoup scheme. We set g0 = g and let the mix-servers generate
g1 ∈ Gq, x0, x1, y0, y1 ∈ Zq, c = gx0

0 gx1
1 , and d = gy0

0 gy1
1 , where x0, x1, y0, y1 are

verifiably secret shared among the mix-servers. This can be done using Pedersen
verifiable secret sharing [23] and takes place after the joint key h is generated. This
gives a Cramer-Shoup key pair ((H, g1, c, d : g0, h), (x0, x1, y0, y1 : z)) with verifi-
ably secret shared secret key. Due to the submission security of the cryptosystem
the mix-servers may simply reconstruct the first part (x0, x1, y0, y1) of the shared
key before starting the mixing process. This allows each mix-server to identify the
valid ciphertexts without any additional communication, and form the list of El
Gamal ciphertexts consisting of the El Gamal part of each valid ciphertext. Then
the mix-servers process the El Gamal ciphertexts as explained above.

5 Future Work

In the mix-net application, all messages are free-form. This may not be the
case in other applications. It is for example not the case in multi-candidate
homomorphic election schemes, e.g., [9], where the submitted messages must be
of a special form to encode a valid candidate. It is an interesting question if it is
possible to come up with an efficient hash proof system that constrains the set of
messages in this way. This would give a very efficient non-interactive submission
phase for such election schemes in the standard model.

Acknowledgments

I thank Eike Kiltz for helpful discussions, and I thank Ronald Cramer for answer-
ing my questions about the relation between the generic Cramer-Shoup scheme
and its concrete instantiations.

Simplified Submission of Inputs to Protocols 307

References

1. Abe, M., Cramer, R., Fehr, S.: Non-interactive distributed-verifier proofs and prov-
ing relations among commitments. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS,
vol. 2501, pp. 206–223. Springer, Heidelberg (2002)

2. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: 20th ACM Symposium on the Theory of Computing (STOC), pp.
103–118. ACM Press, New York (1988)

3. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold
encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,
vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 136–145. IEEE Computer Society Press, Los Alamitos (2001),
http://eprint.iacr.org

5. Canetti, R., Goldreich, O., Halevi, S.: The random oracle model revisited. In: 30th
ACM Symposium on the Theory of Computing (STOC), pp. 209–218. ACM Press,
New York (1998)

6. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 90–106. Springer, Heidelberg (1999)

7. Cramer, R., Damg̊ard, I.: Secret-key zero-knowlegde and non-interactive verifi-
able exponentiation. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 223–237.
Springer, Heidelberg (2004)

8. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005)

9. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient
multi-authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 103–118. Springer, Heidelberg (1997)

10. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS,
vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

11. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption (June 1999),
http://homepages.cwi.nl/∼cramer/

12. Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homo-
morphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 41–59. Springer, Heidelberg (2006)

13. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: 23rd ACM Sym-
posium on the Theory of Computing (STOC), pp. 542–552. ACM Press, New York
(1991)

14. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
28th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 427–438.
IEEE Computer Society Press, Los Alamitos (1987)

15. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

16. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

http://eprint.iacr.org
http://homepages.cwi.nl/~cramer/

308 D. Wikström

17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)

18. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for np.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006)

19. Lysyanskaya, A., Peikert, C.: Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 331–350. Springer, Heidelberg (2001)

20. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM Symposium on the Theory of Computing (STOC),
pp. 427–437. ACM Press, New York (1990)

21. Neff, A.: A verifiable secret shuffle and its application to e-voting. In: 8th ACM
Conference on Computer and Communications Security (CCS), pp. 116–125. ACM
Press, New York (2001)

22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

23. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

24. Pfitzmann, B., Pfitzmann, A.: How to break the direct RSA-implementation of
mixes. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS,
vol. 434, pp. 373–381. Springer, Heidelberg (1990)

25. Prabhakaran, M., Rosulek, M.: Rerandomizable rcca encryption. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007)

26. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 433–444. Springer, Heidelberg (1992)

27. Sahai, A.: Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In: 40th IEEE Symposium on Foundations of Computer Science
(FOCS), pp. 543–553. IEEE Computer Society Press, Los Alamitos (1999)

28. Sako, K., Killian, J.: Reciept-free mix-type voting scheme. In: Guillou, L.C.,
Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403.
Springer, Heidelberg (1995)

29. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 1–16.
Springer, Heidelberg (1998)

30. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004.
LNCS, vol. 2951, pp. 315–335. Springer, Heidelberg (2004)

31. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg
(2005)

32. Wikström, D.: Simplified submission of inputs to protocols. Cryptology ePrint
Archive, Report 2006/259 (2006), http://eprint.iacr.org/

33. Wikström, D., Groth, J.: An adaptively secure mix-net without erasures. In:
Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS,
vol. 4052, pp. 276–287. Springer, Heidelberg (2006)

http://eprint.iacr.org/

Unconditionally Reliable and Secure Message

Transmission in Directed Networks Revisited

Arpita Patra, Ashish Choudhary�, and C. Pandu Rangan��

Dept of Computer Science and Engineering
IIT Madras, Chennai India 600036

arpita@cse.iitm.ernet.in, ashishc@cse.iitm.ernet.in, rangan@iitm.ernet.in

Abstract. In this paper, we design URMT and USMT protocols which
are communication optimal in amortized sense and first of their kind.

Keywords: Error Probability, Information Theoretic Security.

1 Introduction

Consider the following problem: a sender S and a receiver R are a part of di-
rected synchronous network and are connected by uni-directional vertex disjoint
paths/channels (also called as wires), which are directed either from S to R
or vice-versa. An adversary At having unbounded computing power controls at
most t wires in Byzantine fashion. S intends to communicate a message MS

containing � ≥ 1 field elements from a finite field F to R. The challenge is to
design a protocol such that after interacting in phases1 as per the protocol, R
should output MR where MR = MS with probability at least 1 − poly(κ)2−κ

and κ is the error parameter. This problem is called unconditionally reliable mes-
sage transmission (URMT)[6,4]. The problem of unconditionally secure message
transmission (USMT)[6,4] has an additional restriction that At should get no
information about MS in information theoretic sense. If S and R are directly
connected by a private channel, as assumed in generic secure multiparty compu-
tation protocols [2,13,3,9], then reliable and secure communication between them
is guaranteed. However when S and R are not adjacent then URMT/USMT pro-
tocols help to simulate a virtual reliable/secure link with very high probability.

Existing Literature: The problem of URMT and USMT in directed networks
was first studied by Desmedt et al. [4]. Modeling the underlying network as a
directed graph is well motivated because in practice not every communication
channel admits bi-directional communication. For instance, a base-station may
communicate to even a far-off hand-held device but the other way round com-
munication may not be possible. Following the approach of Dolev et al.[5], the
authors in [4] have abstracted the underlying directed network in the form of
directed vertex disjoint paths/wires, which are directed either from S to R or
� Financial Support from Infosys Technology India Acknowledged.

�� Work Supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-
cure Communication and Computation Sponsored by Department of Information
Technology, Government of India.

1 A phase is a send from S to R or vice-versa.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 309–326, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

310 A. Patra, A. Choudhary, and C.P. Rangan

vice-versa. Under such settings, Desmedt et al. have shown that URMT/USMT
tolerating At is possible iff there are total 2t + 1 wires between S and R, of
which at least t + 1 should be directed from S to R [4]. Recently, Shankar et
al. [10] have studied URMT in arbitrary directed networks, where they have
given the complete characterization of URMT tolerating At by considering the
underling directed network as a whole. Their characterization shows that it is
inappropriate to model an underlying directed network in the form of directed
wires between S and R. However, it is likely to take exponential time to verify
whether a given directed network and At satisfies the conditions given in [10]
for the possibility of URMT. Moreover, as a part of their sufficiency condition,
the authors in [10] have given an exponential time URMT protocol. These two
shortcomings motivate us to relook at the wire based of Desmedt et al..

Network Model and Definitions: We follow the model of Desmedt et al. [4]
and abstract the network in the form of a directed graph G = (V, E), where
S and R are two special honest nodes in V . We assume that there are n di-
rected wires f1, f2, . . . , fn from S to R, called as top band and u directed wires
b1, b2, . . . , bu from R to S, called as bottom band. Moreover, we assume that the
wires in the top band are disjoint from the wires in the bottom band. Our results
can be easily generalized for the case when these wires are not disjoint. A central-
ized adversary At with unbounded computing power actively controls at most t
wires between S and R, including the top and bottom band in a colluded fashion.
The adversary is adaptive and its choice of corrupting a wire depends upon the
data seen so far. A wire once under the control of At, will remain so for the rest
of the protocol. A wire under the control of At may behave arbitrarily and the
communication over such wires is fully known and dictated by At. We say that
a wire is corrupted, if the value(s) sent over the wire is changed arbitrarily by
At. A wire which is not under the control of At is called honest. We assume that
n = max(t + 1, 2t− u + 1) and n + u = 2t + 1, which is the minimum number of
wires needed for the existence of URMT/USMT tolerating At [4]. The network
is synchronous and a protocol is executed in phases. Our protocols provide un-
conditional security; i.e., information theoretic security with an error probability
of at most poly(κ)2−κ in reliability, where κ is the error parameter. For this, all
our computations are performed over a finite field F with |F| = GF(poly(κ)2κ).
So each element is represented by O(κ) bits. MS denotes the message, which is
a sequence of � ≥ 1 elements from F, that S intends to send to R.

Our Contributions: One of the key parameters of any URMT/USMT protocol
is its communication complexity. Though the USMT protocol of [4] is efficient,
it is not optimal in terms of communication complexity. In this paper, we prove
the lower bound on the communication complexity of multiphase URMT/USMT
protocols2. Moreover, we show that our bounds are tight by giving efficient, poly-

2 Any single phase URMT/USMT protocol in directed network is no different from
a single phase URMT(USMT) protocol in undirected networks. So the connectiv-
ity requirement and lower bound on the communication complexity of single phase
URMT and USMT in undirected networks [8] holds for directed networks also.

Unconditionally Reliable and Secure Message Transmission 311

nomial time communication optimal URMT/USMT protocols which are first of
their kind. Specifically, we show that (a) There exists an O(u) phase URMT pro-
tocol, which reliably sends �κ bits by communicating O(�κ) bits for sufficiently
large �. (b) If at least one wire in the bottom band is un-corrupted, then there
exists an O(u) phase USMT protocol which securely sends �κ bits by commu-
nicating O(�κ) bits for sufficiently large �. Thus in (a) and (b), we can achieve
reliability and security respectively, with constant factor overhead in commu-
nication complexity in amortized sense. It is easy to see that the protocols in
(a) and (b) are communication optimal. (c) If full bottom band is corrupted by
At, then any multiphase USMT protocol needs to communicate Ω

(
n�
u κ

)
bits to

securely sends (�κ) bits. Moreover, we show that the bound is tight.

Tools Used: 1. Unconditionally Reliable Authentication [9,4]: It is used
to send a message M over a wire such that if the wire is uncorrupted, then R
correctly gets M and if the wire is corrupted, then R does not get M but is able
to detect the corruption with very high probability. This is done as follows: Let
a non-zero (a, b) ∈R F2 is securely established between S and R in advance. S
computes x = URauth(M ; a, b) = aM + b and sends (M, x) to R over the wire.
Let R receives (M ′, x′) along the wire. R verifies x′ ?= URauth(M ′; a, b). If the
test fails then R concludes that M ′ �= M , otherwise M ′ = M . The tuple (a, b)
is called authentication key. The probability that M ′ �= M , but still R fails to
detect it is at most 1

|F| , which is negligible in our context.

2. Unconditionally Secure Authentication [4]: Its goal is similar to
URauth, except that M should be secure. This is done as follows: Let (a, b, c) ∈R

F3−{(0, 0, 0)}, which is securely established between S and R in advance. S com-
putes (x, y) = USauth(M ; a, b, c) = (M + a, b(M + a) + c) and sends (x, y) to R
over the wire. Let R receives (x′, y′) along the wire. R verifies y′ ?= bx′+c. If the
test fails then R concludes that wire is corrupted, else R recovers x′ − a. It is
easy to see that M is information theoretic secure. Moreover, if (x′, y′) �= (x, y),
then R will detect it with probability ≥ (1 − 1

|F|).

3. Unconditional Hashing [1]: Let (v1, v2, . . . , v�) ∈ F� and k ∈ F−{0}. Then
we define hash(k; v1, v2, . . . , v�) = v1 + v2k+ v3k

2 + . . .+ v�k
�−1. Here k is called

the hash key. The probability that two different vectors map to the same hash
value for an uniformly chosen hash key is at most �

|F| . If At knows only k and
hash(k; v1, v2, . . . , v�), then first �− 1 elements in the vector will be secure.
4. Extracting Randomness [11]: Suppose S and R by some means agree on
x = [x1 x2 . . . xn] ∈ Fn such that At knows n − f components of x, but
has no information about the other f components of x. However S and R do
not know which values are known to At. The goal of S and R is to agree on
[y1 y2 . . . yf] ∈ Ff , such that At has no information about [y1 y2 . . . yf]. This
is done as follows:
Algorithm EXTRANDn,f (x): Let V be a publicly known n× f Vandermonde ma-
trix with members in F. S and R locally computes [y1 y2 . . . yf] = [x1 x2 . . . xn]V .

312 A. Patra, A. Choudhary, and C.P. Rangan

2 Three Phase USMT Protocol of Desmedt et al. [4,12]
We briefly recall the three phase USMT protocol of [4] to send a message mS ∈ F.
We call the protocol as ΠExisting. We recall the protocol to highlight few tech-
niques which are also used in our URMT and USMT protocols. In the protocol,
there are two cases: (a) There exists t + 1 non-faulty wires in the top band; (b)
There exists less than t+1 non-faulty wires in the top band. During Phase I, S
constructs (t+1)-out-of-n secret shares of mS and associates one share with one
wire in the top band. In order to authenticate the share associated with a wire,
S selects n pair of random authentication keys. S then sends to R the share
associated with a wire, authenticated with all the n keys. Parallely, S sends the
authentication keys to R, one over each wire. In addition, S associates a random
three tuple with each wire and sends it to R. If there are t + 1 non-faulty wires
in the top band, then at the end of Phase I, R will get at least t + 1 correct
shares with which he can recover mR.

If R cannot recover mR at the end of Phase I, then it implies that there
is at least one honest wire in the bottom band. So using the bottom band,
S and R tries to correctly and securely agree on a shared authentication key
and encryption key to securely communicate mS. For this, R uses the 3-tuples
(aR

i , bRi , cRi) received from S. Now R sends a random non-zero 2-tuple (dR
i , eR

i) to
S on each wire in bottom band. In addition, each such 2-tuple is authenticated
by u random non-zero keys. Now according to the values received from R, S
divides the bottom band into sub-sets B1,B2, . . . ,Bk, where k ≤ u, such that for
each 1 ≤ l ≤ k, all the wires in Bl behave in a ”consistent” way. In particular,
there exists at least one path set Bl that behave honestly during Phase II.
Though S cannot determine which path set was honest, S will try to use each
of them in a separate way and let R to determine which path set is honest. In
Phase II, 〈. . .〉 denotes a function used in [4], which maps a variable size (the
variable size is bounded by a pre-defined bound) ordered subset of F to an image
element in a field extension F∗. The Phase II is as follows:

Table 1. Phase I of USMT Protocol ΠExisting[4]

1. S selects a random polynomial p(x) of degree t over F such that p(0) = mS and
computes the secret shares (sS

1 , sS
2 , . . . , sS

n), where sS
i = p(i), 1 ≤ i ≤ n. In order to

authenticate each sS
i , S selects n random non-zero authentication keys (aS

i,j , b
S
i,j) ∈ F2,

1 ≤ j ≤ n. In addition, corresponding to each wire fi in top band, S selects a random
non-zero three tuple (aS

i , bSi , cSi) ∈ F3.
2. S sends {sS

i , dS
i,1, d

S
i,2, . . . , d

S
i,n} and the three tuple (aS

i , bSi , cSi) to R through wire fi

where di,j = URauth(sS
i ; aS

i,j , b
S
i,j), 1 ≤ j ≤ n. In addition, S sends the authentication

key (aS
i,j , b

S
i,j) to R through wire fj , for 1 ≤ j ≤ n.

Computation by R at the end of Phase I:

1. Let R receives {sR
i , dR

i,1, d
R
i,2, . . . , d

R
i,n} and (aR

i , bRi , cRi) along wire fi and keys
(aR

i,j , b
R
i,j) along wire fj . R computes Supporti = |{j : dR

i,j = URauth(sR
i ; aR

i,j , b
R
i,j)}|.

If Supporti ≥ t + 1, then R concludes that sR
i is a valid share. Otherwise, it is an

invalid share. If R receives t+1 valid shares then R recovers the secret mR from these
valid shares and terminates. Otherwise, R proceeds to execute Phase II.

Unconditionally Reliable and Secure Message Transmission 313

1. For 1 ≤ i ≤ n, R chooses a random non-zero rR
i ∈ F and computes βR =

{(rR
1 , γR

1), (rR
2 , γR

2), . . . , (rR
n , γR

n)}, where γR
j = hash(rR

j ; aR
j , bRj , cRj), 1 ≤ j ≤ n. For

each 1 ≤ i ≤ u, R selects a random non-zero 2-tuple (dR
i , eR

i) ∈ F2. In order to au-
thenticate (dR

i , eR
i), R selects u random non-zero keys {(vR

i,j , w
R
i,j) ∈ F2 : 1 ≤ j ≤ u}.

2. For each 1 ≤ i ≤ u, R sends βR, (dR
i , eR

i) and {αR
i,j : 1 ≤ j ≤ n}, where

αR
i,j = URauth(〈dR

i , eR
i 〉; vR

i,j , w
R
i,j) : 1 ≤ j ≤ u} to S via wire bi and the keys

(vR
i,j , w

R
i,j) to S via wire bj for each 1 ≤ j ≤ u.

Computation by S at the end of Phase II: 1. Let S receives βS
i , (dS

i , eS
i) and

{αS
i,j : 1 ≤ j ≤ u} from R via wire bi and (vS

i,j , w
S
i,j) from R via wire bj for each

1 ≤ j ≤ u. S divides the bottom band {b1, b2, . . . , bu} into subsets B1, B2, . . . , Bk,
where k ≤ u, such that for any l, m, p with 1 ≤ l ≤ k, 1 ≤ m, p ≤ u and
bm, bp ∈ Bl, we have: (a) βS

m = βS
p ; (b) αS

m,p = URauth(〈dS
m, eS

m〉; vS
m,p, wS

m,p); (c)
αS

p,m = URauth(〈dS
p , eS

p 〉; vS
p,m, wS

p,m).

2. For Bl, let bm ∈ Bl and βS
m = {(rS

i,l, γ
S
i,l) : 1 ≤ i ≤ n}. S computes the set

Fl = {i : γS
i,l = hash(rS

i,l; a
S
i , bSi , cSi), 1 ≤ i ≤ n}

If |Bl|+ |Fl| ≤ t then S decides that Bl is unacceptable set, otherwise Bl is acceptable.

From the properties of URauth and hash, it is easy to check that the following
holds: (a) If bi is an honest wire in the bottom band and bi ∈ Bl, then with very
high probability, the random 2-tuples that S has received along the wires in Bl

are not modified; (b) If bi is an honest wire in the bottom band and bi ∈ Bl,
then Bl is an acceptable set. However, all acceptable sets may look same to S
and S may not determine whether an acceptable set contains all honest wires.
In the worst case, At can control the bottom band in such a way that there are
u Bl’s, with one wire from the bottom band in each Bl.

Table 2. Phase III and Secret Recovery in Protocol ΠExisting

Phase III: S to R: For each acceptable set Bl and the corresponding set Fl, S does
the following:

– From the wires in Fl and Bl, S computes his version of the keys CS
l =
�

fi∈Fl
aS

i +
�

bi∈Bl
dS

i and DS
l =
�

fi∈Fl
bSi +

�
bi∈Bl

eS
i . S then sends (ψS

l , λS
l) to R over all

the wires in Fl, where ψS
l = 〈Bl, Fl, m

S + CS
l 〉 and λS

l = URauth(ψS
l ; CS

l , DS
l).

Message Recovery by R: R knows that in the worst case, S could have sent u
2-tuples over each wire in the top band, corresponding to the case when there are u
acceptable sets. Let R receives (ψR

i,l, λ
R
i,l) over wire fi for 1 ≤ i ≤ n and 1 ≤ l ≤ u.

1. For each 1 ≤ i ≤ n, R computes 〈BR
i,l, FR

i,l, τ
R
i,l〉 = ψR

i,l (that is, R decomposes
ψR

i,l). R then computes his version of the keys CR
i,l =

�
fj∈Fi,l

aR
j +
�

bj∈Bi,l
dR

j

and DR
i,l =

�
fj∈Fi,l

bRj +
�

bj∈Bi,l
eR

j .

2. For 1 ≤ i ≤ n, R checks whether λR
i,l

?
= URauth(ψR

i,l; CR
i,l, DR

i,l). If the equation
holds then R computes the secret mR = τR

i,l − CR
i,l and terminates.

314 A. Patra, A. Choudhary, and C.P. Rangan

S continues the protocol by assuming that each acceptable set is correct. In
other words, assuming that all the wires in an acceptable set Bl are non-faulty,
S determines which of the random 3-tuples (aS

i , bSi , cSi), have been correctly re-
ceived by R. Using these ”correctly-received-by-R” 3-tuples and the random
2-tuples received by S via the wires in Bl, S computes the authentication key
and encryption key to securely send the messages to R. If the assumption that
Bl contains only non-faulty wires is valid, then R would be able to compute
the same authentication and encryption key. Since at least one of the acceptable
path set is non-faulty, R will be able to decrypt the secret message correctly.
The Phase III is shown in Table 2. It is easy to check that with very high prob-
ability, mR = mS. Since, for an acceptable set Bl, |Fl|+ |Bl| > t, the adversary
learns no information about CS

l or DS
l and hence about mS.

Modified Version of Desmedt’s USMT Protocol: We now present a mod-
ified version of protocol ΠExisting , called ΠExisting

modified, where all the computation
and communication is done in F. The purpose of presenting ΠExisting

modified is to
introduce certain new techniques, which we have also used in our later proto-
cols. Protocol ΠExisting

modified will be used as a sub-protocol in our communication
optimal URMT and USMT protocols. The protocol securely sends a message
mS = {mS

1 mS
2 . . . mS

n
3
} containing n

3 = Θ(n) elements from F by communi-
cating O(n3) elements from F. During Phase I, S selects a random polynomial
MS(x) over F of degree n − 1 + t such that the lower order n

3 coefficients of
MS(x) are elements of mS. S then computes MS(1), MS(2), . . . , MS(n + t). S
selects n + t random polynomials fS

1 (x), fS
2 (x), . . . , fS

n+t(x) over F, each of de-
gree t, such that fS

i (0) = MS(i), 1 ≤ i ≤ n + t. S then evaluates each fS
i (x)

at x = 1, 2, . . . , n to form an n tuple fS
i = [fS

i (1) fS
i (2) . . . fS

i (n)]. S now
constructs an (n)× (n + t) matrix T where ith column of T contains the n tuple
fS

i , 1 ≤ i ≤ n + t. Let FS
j = [fS

1 (j) fS
2 (j) . . . fS

n+t(j)] denotes the jth, 1 ≤ j ≤ n
row of T . Now Phase I is as follows:

Phase I: S to R: Along wire fj , 1 ≤ j ≤ n, S sends the following to R: (a) The vector
FS

j , a random non-zero hash key αS
j and the n tuple [vS

1j vS
2j . . . vS

nj], where vS
ij =

hash(αS
j ; FS

i), 1 ≤ i ≤ n; (b) A random non-zero (n + 1) tuple (xS
1,j , x

S
2,j , . . . , x

S
n+1,j),

which is independent of FS
j .

Computation by R at the end of Phase I: Let R receives the vector FR
j , hash

key αR
j , the n tuple [vR

1j vR
2j . . . vR

nj] and the n + 1 tuple (xR
1,j , x

R
2,j , . . . , x

R
n+1,j) along

wire fj , 1 ≤ j ≤ n.
1. For 1 ≤ j ≤ n, R computes Supportj = |{fi : vR

ji = hash(αR
i ; FR

j)}|. If Supportj ≥
t+ 1, then R concludes that FR

j is a valid row of T . Otherwise, R concludes that FR
j

is an invalid row of T .
2. If R has received t + 1 valid rows, then R reconstructs the secret mR from them
and terminates protocol (see Theorem 1). Otherwise, R proceeds to execute Phase
II.

Lemma 1. If FR
j is a valid row, then with overwhelming probability FR

j = FS
j .

Lemma 2. During Phase I, at least n coefficients of MS(x) are information
theoretically secure.

Unconditionally Reliable and Secure Message Transmission 315

Theorem 1. If R gets t + 1 valid rows then R can securely recover mS with
very high probability.

For complete proof of Lemma 1, Lemma 2 and Theorem 1, please see the full
version of the paper [7]. �

If R does not get t + 1 valid rows, then R concludes that at least one wire in
the bottom band is honest. So R proceeds to execute Phase II as shown in
Table 3. Phase II is similar to the Phase II of protocol ΠExisting , except that
βR contains the hashed value of each n + 1 tuple received from S. Moreover,
along each wire in the bottom band, R now sends an (n + u) tuple and hash it
with u random keys. Now as in protocol ΠExisting , depending upon the values
received along the wires in the bottom band, S divides the bottom band into
different subsets. As in the previous protocol, it is straightforward to check that
the following holds: (a) If bi is an honest wire in the bottom band and bi ∈ Bl,
then with very high probability, the random (n + u)-tuples that S has received
along the wires in Bl are not modified; (b) If bi is an honest wire in the bottom
band and bi ∈ Bl, then Bl is an acceptable set.

Table 3. Phase II and computation by S at the end of Phase II in ΠExisting
modified

Phase II: R to S (if R has not recovered the secret at the end of Phase I)

1. For each 1 ≤ j ≤ n, R chooses a random non-zero hash key rR
j ∈ F and computes

the set βR = {(rR
j , γR

j) : 1 ≤ j ≤ n}, where γR
j = hash(rR

j ; xR
1,j , x

R
2,j , . . . , x

R
n+1,j).

2. For each 1 ≤ j ≤ u, R selects a random non-zero n + u tuple
(yR

1,j , y
R
2,j , . . . , y

R
n+u,j) ∈ Fn+u. In order to hash each such n tuple, R selects u

random non-zero keys {keyR
i,j : 1 ≤ i ≤ u} from F.

3. For each 1 ≤ j ≤ u, R sends βR and the n + u-tuple (yR
1,j , y

R
2,j , . . . , y

R
n+u,j) to

S over wire bj and the 2-tuple (keyR
i,j , α

R
i,j) to S over wire bi, 1 ≤ i ≤ u, where

αR
i,j = hash(keyR

i,j ; y
R
1,j , y

R
2,j , . . . , y

R
n+u,j).

Computation by S at the end of Phase II: For 1 ≤ j ≤ u, S receives βS
j and

the n + u-tuple (yS
1,j , y

S
2,j , . . . , y

S
n+u,j) over wire bj and the pair (keyS

i,j , α
S
i,j) over

bi, 1 ≤ i ≤ u. S then does the following:

1. S divides the bottom band {b1, b2, . . . , bu} into subsets B1, B2, . . . , Bk, where k ≤
u, such that for any l, m, p with 1 ≤ l ≤ k, 1 ≤ m, p ≤ u and bm, bp ∈ Bl,
we have: (a) βS

m = βS
p ; (b) αS

m,p = hash(keyS
m,p; y

S
1,p, yS

2,p, . . . , yS
n,p); (c) αS

p,m =
hash(keyS

p,m; yS
1,m, yS

2,m, . . . , yS
p,m).

2. For Bl, let bm ∈ Bl and βS
m = {(rS

j,l, γ
S
j,l) : 1 ≤ j ≤ n}. S then computes the set

FS
l = {j : γS

j,l = hash(rS
j,l; x

S
1,j , x

S
2,j , . . . , x

S
n+1,j), 1 ≤ j ≤ n}

If |Fl| + |Bl| ≤ t then S decides that Bl is unacceptable set, else it is acceptable.

Before proceeding further, we make the following important claim.

Claim. Let fi and bj be two honest wire in top and bottom band respectively.
Then at the end of Phase II, at least n elements in (xS

1,i, x
S
2,i, . . . , x

S
n+1,i) and

(yR
1,j , y

R
2,j, . . . , y

R
n+u,j) are information theoretically secure.

316 A. Patra, A. Choudhary, and C.P. Rangan

The Phase III of the protocol is as follows:

Phase III: S to R: For each acceptable set Bl and corresponding set Fl, S does the
following:

1. S considers the first n elements from the n + 1 tuples which it had sent over
the wires in Fl during Phase I and the first n elements from the (n + u) tuples
which S had received over the wires in Bl during Phase II. By using them, S
computes his version of n authentication keys CS

1,l =
�

fj∈Fl
xS

1,j +
�

bj∈Bl
yS
1,j ,

CS
2,l =

�
fj∈Fl

xS
2,j +

�
bj∈Bl

yS
2,j , . . ., CS

n,l =
�

fj∈Fl
xS

n,j +
�

bj∈Bl
yS

n,j .

2. For each element of mS (recall that |mS| = n
3), S takes three elements from the

keys computed in the previous step and computes the set SS
l = {(cSi,l, dS

i,l) : 1 ≤
i ≤ n

3 } where (cSi,l, d
S
i,l) = USauth(mS

i ; CS
3i−2, CS

3i−1, CS
3i), 1 ≤ i ≤ n

3 .
3. S sends the set Fl, Bl and SS

l to R over all the wires in the set Fl and terminates.

Message Recovery by R: Let R receives the sets FR
j,l, BR

j,l and SR
j,l along wire

fj , 1 ≤ j ≤ n, for 1 ≤ l ≤ u. R then does the following:

1. If for some j ∈ {1, 2, . . . , n} and some l ∈ {1, 2, . . . , u}, |FR
j,l| + |BR

j,l| ≤ t, then R
concludes that wire fj is corrupted and neglects all the values received along fj .

2. If fj is not neglected, then for each FR
j,l, BR

j,l and SR
j,l received along fj , R

does the following: let SR
j,l = {(cRj,i,l, d

R
j,i,l) : 1 ≤ i ≤ n

3 }. By using the in-
dex of the wires in FR

j,l and BR
j,l, R computes his version of authentication keys

CR
j,1,l, CR

j,2,l, . . . , CR
j,n,l. Then for each 1 ≤ i ≤ n

3 , R applies the verification process
of USauth on cRj,i,l, d

R
j,i,l, CR

3i−2, CR
3i−1 and CR

3i . If the verification is successful for
all 1 ≤ i ≤ n

3 , then R recovers mR
i from cRj,i,l, 1 ≤ j ≤ n

3 . Finally, R concatenates
mR

1 , mR
2 , . . . , mR

n
3

to reconstruct the secret mR and terminates.

Theorem 2. Protocol Πexisting
modified is a three phase USMT protocol which securely

sends Θ(nκ) bits by communicating O(n3κ) bits with very high probability.

Proof: For complete proof, see [7]. �

3 Unconditionally Secure Pad Establishment Protocol

We now propose a six phase protocol called ΠPad, which securely establishes
a random non-zero one time pad between S and R with very high probability
by communicating O(n3) field elements. If the entire bottom band is corrupted,
then the size of the pad is Θ(n2u). Otherwise the size of the pad is Θ(n3). We
first design a sub-protocol Π which is used in ΠPad.

Protocol Π: Suppose S and R in advance know that full bottom band is cor-
rupted. This implies that at most t− u and at least t + 1 wires in the top band
are corrupted and honest respectively. Under this assumption, we design a sub-
protocol Π , which securely establishes an information theoretic secure non-zero
random one time pad of size Θ(n2u) between S and R by communicating O(n3)
field elements, with very high probability.

Unconditionally Reliable and Secure Message Transmission 317

Let c = n2+t−u. S selects (t+1)×c random non-zero elements from F, denoted
by kS

1,1, k
S
1,2, . . . , k

S
1,c, k

S
2,1, k

S
2,2, . . . , k

S
2,c, . . . , k

S
t+1,1, k

S
t+1,2, . . . , k

S
t+1,c. Now using

these elements, S constructs an (t+1)×c matrix AS, where the jth, 1 ≤ j ≤ t+1
row of AS is [kS

j,1 kS
j,2 . . . kS

j,i . . . kS
j,c]. Now consider the ith, 1 ≤ i ≤ c column

of A containing the elements [kS
1,i kS

2,i . . . kS
t+1,i]

T . S forms a t degree polynomial
qi(x) passing through the t + 1 points [(1, kS

1,i), (2, kS
2,i), . . . , (t + 1, kS

t+1,i)] and
evaluates qi(x) at x = t+2, t+3, . . . , n to get yS

t+2,i, y
S
t+3,i, . . . , y

S
n,i respectively.

Finally, S constructs the matrix BS of size n×c, where the ith, 1 ≤ i ≤ c column
of BS is [kS

1,i kS
2,i . . . kS

t+1,i yS
t+2,i yS

t+3,i . . . yS
n,i]

T , the n points on qi(x).
Now using the jth, 1 ≤ j ≤ n row of BS, S forms a n2 + t − u − 1 degree

polynomial FS
j (x) = kS

j,1 + kS
j,2x

1 + kS
j,3x

2 + . . . + kS
j,cx

c−1. S also selects n

random and non-zero distinct elements from F, denoted by αS
1 , αS

2 , . . . , αS
n. Now

the protocol Π is formally expressed in Table 4.

Table 4. Protocol Π

Computation and Communication by S: Along wire fj , 1 ≤ j ≤ n, S sends to

R the polynomial FS
j (x), the random value αS

j and n tuple [vS
1j vS

2j . . . vS
nj] where

vS
ij = FS

i (αS
j), 1 ≤ i ≤ n. Let VS denotes the concatenation of the elements in the

first t + 1 rows of BS. S computes PS = EXTRAND|VS|,(u+1)n2(VS). The vector

PS denotes the information theoretically secure random pad of size Θ(n2u) which
will be correctly established with R with very high probability.

Computation by R:

1. Let R receives FR
j (x), the random value αR

j and the n tuple [vR
1j vR

2j . . . vR
nj]

along wire fj , 1 ≤ j ≤ n.
2. For 1 ≤ j ≤ n, R computes Supportj = |{i : FR

j (αR
i) = vR

ji}|. If Supportj ≥ t+1,
then R concludes that FR

j (x) is a valid polynomial. Otherwise, R concludes that
FR

j (x) is an invalid polynomial.
3. Since there are at least t+1 honest wires in the top band, R will get at least t+1

valid polynomials. Now using t+1 valid polynomials, R will construct array BR.
From BR, R computes VR, from which it finally computes PR and terminates.
With very high probability, PR = PS (see Lemma 3).

Theorem 3. If full bottom band is corrupted, then protocol Π securely estab-
lishes a random non-zero pad of Θ(n2uκ) bits by communicating O(n3κ) bits.

Proof: For complete proof see [7]. �

Six Phase Protocol ΠPad: We now present the protocol ΠPad which uses
protocols Π and ΠExisting

modified as black-box. The first two phases of the protocol are
given in Table 5. Before proceeding further, we make the following claim.

Claim. Let bj and fi be two honest wire in bottom and top band respectively.
Then at the end of Phase II, at least n2 elements in the tuple (yR

1,j , y
R
2,j, . . . ,

yR
n2+1,j) and (xS

1,i, x
S
2,i, . . . , x

S
n2+t,i) are information theoretically secure.

318 A. Patra, A. Choudhary, and C.P. Rangan

As in protocol Πexisting
modified, from the properties of hash function, it is straightfor-

ward to check that the following holds: (a) If fi is an honest wire in the top band
and fi ∈ Fl, then with very high probability, the random (n2 + t)-tuples that R
has received along the wires in Fl are not modified; (b) If fi is an honest wire
in the top band and fi ∈ Fl, then Fl is an acceptable set.

Table 5. First two phases of Protocol ΠPad

Phase I: R to S: Corresponding to each wire bj , 1 ≤ j ≤ u in the bottom band, R
selects a random non-zero n2 + 1 tuple (yR

1,j , y
R
2,j , . . . , y

R
n2+1,j) and sends it to S.

Phase II: S to R:

1. Let S receives (yS
1,j , y

S
2,j , . . . , y

S
n2+1,j) along wire bj . Corresponding to each wire

bj , 1 ≤ j ≤ u, S selects a random non-zero hash key rj from F and computes the
set βS = {(rS

j , γS
i) : 1 ≤ j ≤ u}, where γS

j = hash(rS
j ; yS

1,j , y
S
2,j , . . . , y

S
n2+1,j).

2. S associates a random non-zero n2 + t tuple (xS
1,j , x

S
2,j , . . . , x

S
n2+t,j) with wire

fj , 1 ≤ j ≤ n in the top band. Moreover, in order to hash the tuple, S selects n
random non-zero keys from F denotes by keyS

i,j , for 1 ≤ i ≤ n.
3. For each 1 ≤ j ≤ n, S sends the set βS and the (n2+t) tuple (xS

1,j , x
S
2,j , . . . , x

S
n2+t,j

to R along wire fj and the 2-tuple (keyS
i,j , α

S
i,j) to R along wire fi, 1 ≤ i ≤ n,

where αS
i,j = hash(keyS

i,j ; x
S
1,j , x

S
2,j , . . . , x

S
n2+t,j).

Computation by R at the end of Phase II:

1. For each 1 ≤ j ≤ n, R receives the set βR
j and the (n2 + t) tuple

(xR
1,j , x

R
2,j , . . . , x

R
n2+t,j) along wire fj and the 2-tuple (keyR

i,j , α
R
i,j) along wire

fi, 1 ≤ i ≤ n.
2. R divides the top band {f1, f2, . . . , fn} into subsets F1, F2, . . . , Fk, where k ≤

t + 1, such that for any l, m, p with 1 ≤ l ≤ k, 1 ≤ m,p ≤ n and fm, fp ∈ Fl, we
have: (a) βR

m = βR
p ; (b) αR

m,p = hash(keyR
m,p; x

R
1,p, xR

2,p, . . . , xR
n2+t,p); (c) αR

p,m =

hash(keyR
p,m; xR

1,m, xR
2,m, . . . , xR

n2+t,m).

3. For Fl, let fm ∈ Fl and βR
m = {(rR

j,l, γ
R
j,l) : 1 ≤ j ≤ u}. R computes the set

Bl = {j : γR
j,l = hash(rR

j,l; y
R
1,j , y

R
2,j , . . . , y

S
n2+1,j), 1 ≤ j ≤ u}

If |Fl| + |Bl| ≤ t then S decides that Fl is unacceptable, else it is acceptable set.

In the worst case, in R’s view, there can be at most t + 1 acceptable sets
because the adversary can control at most t wires in the top band. So there can
be t acceptable sets, corresponding to t corrupted wires and one acceptable set
corresponding to all the honest wires in the top band. The remaining phases of
the protocol is shown in Table 6.

Theorem 4. If the entire bottom band is corrupted then ΠPad securely estab-
lishes a random non-zero pad of size Θ(n2κ) bits between S and R with very
high probability. Otherwise, it establishes a random non-zero pad of size Θ(n3κ)
bits between S and R with very high probability. In either case, the protocol
terminates in six phases and communicates O(n3κ) bits.

Unconditionally Reliable and Secure Message Transmission 319

Table 6. Remaining phases in Protocol ΠPad

Phase III: R to S: For each acceptable set Fl and corresponding set Bl, R does the
following:

1. R concatenates the first n2 elements from (n2 + 1) and (n2 + t) tuples, which it
had sent and received over the wires in Bl and Fl respectively. Let VR

l denotes
the resultant vector.

2. Corresponding to vector VR
l , R selects a random non-zero hash key KR

l from F.
R then computes the 2-tuple (KR

l , γR
l = hash(KR

l ; VR
l)). R then sends Bl, Fl and

the 2-tuple (KR
l , γR

l) to S through all the wires in Bl.

Computation by S at the end of Phase III: Now using the hash value(s) re-
ceived from R, S tries to find whether there exists at least one uncorrupted wire
in the bottom band. For this, S does the following:

1. Let S receives index set FS
j,l and BS

j,l and 2-tuple (KS
j,l, γ

S
j,l) along wire bj , 1 ≤ j ≤

u for 1 ≤ l ≤ t + 1. If for some j ≤ u and some l ≤ t + 1, |FS
j,l| + |BS

j,l| ≤ t, then S
concludes that wire bj is corrupted and neglects all the values received along bj .

2. If FS
j,l, BS

j,l and the tuple (KS
j,l, γ

S
j,l) is not neglected in the previous step (i.e.,

bj is not discarded), then after knowing the index of the wires in FS
j,l and BS

j,l,
S computes his version of the vector VS

j,l. Here VS
j,l denotes the concatenation of

first n2 values from the (n2+1) and (n2+t) tuples, which S had received and sent

over the wires in BS
j,l and FS

j,l respectively. S now checks γS
j,l

?
= hash(KS

j,l; VS
j,l).

3. If the test in the last step succeeds for some l ≤ t+1 and j ≤ u, then S concludes
that the tuples that are exchanged along the wires in BS

j,l and FS
j,l are correctly

established between S and R. S now applies EXTRAND to VS
j,l to generate

a vector PS
1 of size tn2. Finally S terminates the protocol by sending a special

predefined ”success” value from F, along with the index of the wires in the set
BS

j,l and FS
j,l to R by executing the protocol Πexisting

modified. R securely (and hence
correctly) receives these indexes with very high probability and computes his
version of PR

1 and terminates. Since Πexisting
modified takes three phases, the protocol

will terminate at the end of Phase VI.
4. If the test in step 3 fails for all l and j, then S concludes that entire bottom

band is corrupted. In this case, S sends a special ”failure” value from F to R
by executing the three phase Πexisting

modified protocol. Parallely, S establishes a secure

pad PS
2 of size Θ(n2u) with R by executing single phase Protocol Π . At the end

of Πexisting
modified, R will know that the entire bottom band is corrupted. Parallely

at the end of Π , R will output PR
2 , with which very high probability is same as

PS
2 . Since Πexisting

modified takes three phases, the protocol will terminate at the end of
Phase VI.

4 URMT with Constant Factor Overhead

Let u ≤ t and n = max(2t− u + 1, t + 1). Then we present an URMT protocol
called ΠURMT which sends a message mS containing � field elements by commu-
nicating O(�) field elements with very high probability, where � = (t− u

2 +1)n2 =
Θ(n3). The total communication complexity of the protocol is O(n3) field ele-
ments and the protocol terminates in O(u) phases. The principle behind the
protocol is to create a win-win situation as follows: if the adversary corrupts at

320 A. Patra, A. Choudhary, and C.P. Rangan

most t − u
2 wires in the top band, then R recovers the message from the infor-

mation which it receives from the honest wires in the top band. On the other
hand, if more than t − u

2 wires are corrupted in the top band, then majority
wires in the bottom band will be honest and so both S and R comes to know
about the identity of corrupted wires in the top band by using the honest wires
in the bottom band. Now using this information, S can re-send mS so that R
can recover it correctly.

As a part of pre-processing step, S and R securely establishes Θ(n) random
non-zero elements from F with each other in advance with very high probability
by executing the three phase protocol Πexisting

modified. Let the set of these elements be
denoted by K. The elements in K will be used by S and R as authentication and
hash keys to reliably exchange the outcome of certain steps during the execution
of the protocol ΠURMT . Note that elements in K need not be distinct, but
they are randomly selected from F. We assume that initially all the elements
in K are marked as ”unused”. Each time S (R) needs a key(s) for hashing or
authentication, then the first ”unused” element(s) from K is/are selected as
key(s). In order to do the verification, R (S) also uses the same element(s) from
K as keys. Once the verification is done, the element(s) is/are marked as ”used”
Thus we can view K as a global set, which is parallely used by both S and R.

Let mS = [mS
1,1 mS

1,2 . . . mS
1,n2 mS

2,1 mS
2,2 . . . mS

2,n2 . . . mS
t−u

2 +1,1 mS
t−u

2 +1,2

. . . mS
t−u

2 +1,n2] be the message. S constructs array BS of size n×n2 from mS in
same way as in protocol Π with following modifications: S first constructs the
array AS of size (t − u

2 + 1) × n2 from mS, where the jth, 1 ≤ j ≤ (t − u
2 + 1)

row of AS is [mS
j,1 mS

j,2 . . . mS
j,n2]. By considering the elements in individual

columns as distinct points, S interpolates the unique (t− u
2) degree polynomial

passing through them. S then further evaluates the interpolated polynomials at
additional (t − u

2) values of x and gets the array BS. Now by considering the
elements along jth, 1 ≤ j ≤ n row of BS as coefficients, S constructs FS

j (x) of
degree n2 − 1. First two phases of ΠURMT are as follows:

Phase I: S to R: Along wire fj , 1 ≤ j ≤ n, S sends to R the polynomial FS
j (x), a

random non-zero value αS
j and n tuple [vS

1j vS
2j . . . vS

nj] where vS
ij = FS

i (αS
j), 1 ≤ i ≤ n.

Phase II: R to S

1. Let R receives FR
j (x), the value αR

j and the n tuple [vR
1j vR

2j . . . vR
nj] along wire

fj , 1 ≤ j ≤ n.
2. For 1 ≤ j ≤ n, R computes Supportj = |{i : FR

j (αR
i) = vR

ji}|. Let PR denotes
the set of wires fj , such that Supportj ≥ (t − u

2 + 1). In addition, R constructs a
directed graph GR = (VR, ER), called conflict graph, where VR = {f1, f2, . . . , fn}
and arc (fi, fj) ∈ ER if FR

i (αR
j)
= vR

ij .
3. Corresponding to graph GR, R constructs a conflict list YR of five tuples where

for each arc (fi, fj) ∈ ER, there exists a five tuple (fi, fj , α
R
j , FR

i (αR
j), vR

ij) in YR.
R sends YR to S through bottom band.

Unconditionally Reliable and Secure Message Transmission 321

Before proceeding further, we make the following claim.

Claim. Let fi be a wire which has delivered incorrect FR
i (x) �= FS

i (x) to R and
fj be an honest wire. Then with very high probability (fi, fj) ∈ ER.

Proof: For complete proof see [7]. �

Now S considers the conflict list which it receives identically through at least
u
2 + 1 wires. If S does not receives any conflict list identically through at least
u
2 + 1 wires, then S concludes that at least u

2 + 1 wires are corrupted in the
bottom band, which further implies that at most t− u

2 − 1 wires are corrupted
in the top band. In this case, the protocol proceeds as shown in Table 7.

Table 7. Execution of ΠURMT if S does not receives u
2 + 1 identical conflict lists

Phase III: S to R: By selecting two elements from K as authentication keys, S
authenticates an unique special predetermined signal ”terminate” and sends to R. R
receives the signal correctly with very high probability and concludes that at most
t− u

2 wires have delivered incorrect values during Phase I. So by using the polynomials
received along the first t− u

2 +1 wires in PR during Phase I, R constructs the array
BR. From BR, R recovers mR and terminates.

Lemma 3. If S does not receives the same conflict list through at least u
2 + 1

wires then with very high probability, R correctly recovers mS from the polyno-
mials delivered by the wires in PR.

Proof: For complete proof see [7]. �

If at the end of Phase III, S receives the same conflict list, say YS through at
least u

2 + 1 wires, then S does the following: let the five tuples in YS be of the

form (fi, fj, α
′R
j , F ′R

i (α′R
j), v′Rij). For each such four tuple, S checks α′R

j
?= αS

j

and vS
ij

?= v′Rij . If any of these test fails then S concludes that wire fj has delivered
incorrect values to R during Phase I and adds fj to a list LS

fault. On the other

hand, if both the test passes then S checks FS
i (αS

j) ?= F ′R
i (α′R

j). If the test fails
then S concludes that wire fi has delivered incorrect F ′R

i (x) �= FS
i (x) to R

during Phase I and adds fi to LS
fault. Note that S does not know whether YS

is a genuine conflict list and is indeed sent by R. But still S computes LS
fault.

S now finds the cardinality of list LS
fault. Now there are two possible cases. If

|LS
fault| ≤ (t− u

2), then S concludes that at least t− u
2 + 1 wires have delivered

correct polynomial during Phase I. S then performs the same computation as
shown in Table 7. The correctness of the protocol in this execution sequence is
given by Lemma 4.

Lemma 4. If |LS
fault| ≤ (t− u

2), then with very high probability, R can correctly
recover mS from the polynomials delivered by the wires in PR.

Proof: For complete proof see [7]. �

If |LS
fault| ≥ (t − u

2 + 1), then S further communicates with R to find whether
YS was indeed sent by R. For this, S and R executes the steps in Table 8.

Before proceeding further, we state the following lemma.

322 A. Patra, A. Choudhary, and C.P. Rangan

Table 8. Execution of ΠURMT if |LS
fault| ≥ (t − u

2 + 1)

Phase III: S to R: S selects 2|LS
fault| elements from the set K as authentications

keys and using them authenticates each element of LS
fault by using URauth function.

Let LS
faultauth

denotes the set of corresponding authenticated values. S then sends

(YS, LS
fault, L

S
faultauth

) to R through top band.

Phase IV: R to S: Let R receives (YR
j , LR

faultj
, LR

faultj,auth
) from S along wire

fj , 1 ≤ j ≤ n. From these values, R now tries to find out whether S has correctly
received the original YR over more that u

2 + 1 wires during Phase I, and if yes, then
the corresponding LS

fault. For this, R does the following:

1. For each 1 ≤ j ≤ n, R checks YR
j

?
= YR and |LR

faultj
| ≥ (t − u

2 + 1). In any of the
test fails, then R neglects all the values received along fj . Otherwise, R applies
the URauth function to each element of LR

faultj
by using the same keys from K,

which were used by S to authenticate LS
fault and computes the set L

′R
faultj,auth

.

R then checks L
′R
faultj,auth

?
= LR

faultj,auth
. If the test fails then again R discards

the values received along fj .
2. If as a result of previous step, R has discarded the values along all the wires in

the top band, then R concludes that S has not received original YR over more
that u

2 + 1 wires during Phase I, which further implies that at most t − u
2 − 1

wires were corrupted in the top band during Phase I. So R recovers mR by using
the polynomials received over the first t − u

2 + 1 wires in PR during Phase I.
Moreover, by selecting next two ”unused” elements k1, k2 from K as authenti-
cation keys, R computes response1 = URauth(”terminate”;k1, k2) where ”ter-
minate” is an unique pre-defined special element from F. R then send the tuple
(”terminate”, response1) to S through the bottom band and terminates.

3. If during step 1, there exists a j ∈ {1, 2, . . . , n} such that YR
j = YR, |LR

faultj
| ≥

(t − u
2 + 1) and L

′R
faultj,auth

= LR
faultj,auth

, then R concludes that S has cor-

rectly received original YR over more that u
2 + 1 wires during Phase I and

LR
faultj

is the corresponding Lfault sent by S. So R removes the wires in LR
faultj

from his view for further computation and communication. Note that if there
are more than one such j (whose probability is negligible), then R arbitrarily se-
lects one. Now by selecting k1, k2 from K as authentication keys, R computes
response2 = URauth(”continue”; k1, k2) where ”continue” is an unique pre-
defined special element from F. R then send the tuple (”continue”, response2) to
S through the bottom band.

Computation by S at the end of Phase IV: S checks whether it is getting any
2-tuple identically over at least u

2 + 1 wires. If not, then S concludes that R has
recovered mR and terminates. On the other hand, if S receives a 2-tuple say (xS

1 , yS
1)

over u
2 + 1 wires, then S verifies yS

1
?
= URauth(xS

1 ; k1, k2). If the test fails, then S
again concludes that R has recovered mR and terminates. On the other hand, if the

test succeeds then S further checks xS
1

?
= ”terminate”. If yes, then S again concludes

that R has recovered mR and terminates. If no then S concludes that YS was indeed
sent by R.

Unconditionally Reliable and Secure Message Transmission 323

Lemma 5. If |LS
fault| ≥ (t − u

2 + 1), then at the end of Phase III in Table 8
one of the following will happen:

1. If S has ”not” received the original YR over more that u
2 + 1 wires during

Phase I, then with very high probability R will be able to detect this. More-
over R will be able to correctly recover mR by using the polynomials received
over the wires in PR with very high probability.

2. If S has received the original YR over more that u
2 + 1 wires during Phase

I, then R will be able to detect this. Moreover, with very high probability, R
will correctly receive LS

fault, from which it will come to know the identity of
at least |LS

fault| corrupted wires in the top band.

Table 9. Execution of ΠURMT to re-send mS

S divides mS into blocks BS
1 , BS

2 , . . . , BS
u
2
, each of size |mS|

u
2

. Moreover S and R ini-

tializes variables wcS = 1, bcS = 1 and wcR = 1, bcR = 1 respectively. S and R now
executes the following steps:

1. While (wcS ≤ u
2 − 1) and (all the blocks of mS are not sent) do

(a) S sends the block BS
bcS to R only over wire fwcS in the top band.

(b) Let R receives BR
bcR along wire fwcR . Now by selecting kbc from the set K as

hash key, R computes xR
bc = hash(kbc; B

R
bcR) and sends xR

bc to S through the
bottom band.

(c) S correctly receives xR
bc through at least u

2 + 1 wires (recall that in this case

majority wires in bottom band are honest) and verifies xR
bc

?
= hash(kbc; B

S
bcS).

If the test fails then S concludes that wire fwcS has delivered incorrect BS
bcS

to R. So S increments wcS by one. Moreover, S authenticates an unique pre-
defined special ”increment-wire” element from F by using two keys from the
set K and sends it to R through the top band. R correctly receives the signal
with very high probability and accordingly increments wcR by one.
On the other hand, if the test succeeds then S concludes that wire fwcS

has delivered correct BS
bcS to R. So S increments bcS by one. Moreover, S

authenticates an unique pre-defined special ”increment-block” value from F
by using two keys from the set K and sends it to R through the top band.
R correctly receives the signal with very high probability and accordingly
increments bcR by one.

2. If all the blocks of mS are sent then both S and R terminates. Otherwise S
concatenates all the remaining blocks of mS and sends to R through wire f u

2
and

terminates. R correctly receives these blocks and terminates.

If at the end of Phase IV in Table 8, S recovers ”continue” signal from R
then S removes the wires in LS

fault from his view. S now knows that in both
S and R’s view, there are n− |LS

fault| wires in the top band, of which at most
t− |LS

fault| could be corrupted. Since |LS
fault| ≥ (t− u

2 + 1), in S and R’s view,
there are at most t− u

2 wires in the top band, of which at most u
2 − 1 could be

corrupted. Moreover, both S and R now knows that there exists at least u
2 + 1

honest wires in the bottom band. S now proceeds to re-send mS. For this, out of

324 A. Patra, A. Choudhary, and C.P. Rangan

the t− u
2 in their view, both S and R considers only the first u

2 wires. Without
loss of generality, let these be the wires f1, f2, . . . , fu

2
. Now both S and R knows

that at least one wire among these u
2 wires is honest. S now re-sends mS by

executing the steps given in Table 9. This will take Θ(u) phases.

Lemma 6. If YR is correctly received by S over more than u
2 + 1 wires during

Phase II and if the corresponding |LS
fault| ≥ (t − u

2 + 1), then with very high
probability, S will be able to correctly re-send mS by executing the steps in Table
9 by incurring a communication overhead of O(|mS|) field elements.

Theorem 5. If mS is a message containing � field elements where � ≥ (t− u
2 +

1)n2, then there exists an O(u) phase URMT protocol which reliably sends mS

with very high probability by communicating O(�) field elements. In terms of bits,
the protocol sends �κ bits by communicating O(�κ) bits.

Remark 1. In ΠURMT , we assumed that u ≤ t. If u > t, then we can modify the
protocol to reliably send a message containing (u

2 + 1)n2 = Θ(n3) field elements
with a communication overhead of O(n3) field elements.

5 Communication Optimal USMT Protocol

We now design an O(u) phase USMT protocol called ΠUSMT , which sends a
message MS containing � field elements by communicating O(n3) field elements
with very high probability. If the full bottom band is corrupted then � = Θ(n2u),
otherwise � = Θ(n3). The protocol is as follows:

1. Depending upon whether the full bottom band is corrupted or not, S and R
securely establishes a random non-zero one time pad Pad of length Θ(n2u) or
Θ(n3) with very high probability by executing the protocol ΠPad.

2. If Pad is of length Θ(n2u), then S selects a secret message MS of length Θ(n2u).
S then computes C = MS ⊕ Pad and reliably sends C to R with very high
probability by executing the protocol ΠURMT . R correctly receives C with very
high probability and recovers MR = C ⊕ Pad. On the other hand, if Pad is of
length Θ(n3), then S and R does the same computation, except that MS and C
(and hence MR) will be of length Θ(n3).

6 Lower Bound on the Communication Complexity

An obvious lower bound on communication complexity of URMT protocols to
send a message containing � field elements is Ω(�). Since, we have already shown
that this bound is tight by designing ΠURMT , we need not have to prove the
lower bound for URMT. Similarly, if at least one wire in the bottom band is
uncorrupted, then Ω(�) is a trivial lower bound on the communication complexity
of any USMT protocol to securely send � field elements. Again, since we have
already shown that this bound is tight by designing ΠUSMT (which securely
sends � field elements by communicating � field elements if there exists at least
one uncorrupted wire in the bottom band), we need not have to prove the lower
bound for this case. The lower bound for remaining case is given by Theorem 6.

Unconditionally Reliable and Secure Message Transmission 325

Theorem 6. Suppose there exists u ≤ t wires in the bottom band and n =
max(2t − u + 1, t + 1) wires in the top band. Moreover, the entire bottom band
is corrupted. Then any multiphase USMT protocol to send a message MS con-
taining � field elements from F, needs to communicate Ω(n�

u) field elements. In
terms of bits, the protocol needs to communicate Ω(n�

u κ) bits to send �κ bits.

Proof: The lower bound is derived by using entropy based arguments. We do
not give the proof here due to space constraint. For complete proof see [7]. The
lower bound in Theorem 6 is tight. Specifically, if the entire bottom band is
corrupted, then protocol ΠUSMT satisfies the lower bound. �

7 Conclusion and Open Problems

In this paper we have designed communication optimal URMT and USMT pro-
tocol in directed networks, which are first of their kind. It would be interesting
to reduce the phase complexity of our URMT and USMT protocols. Our URMT
and USMT protocols are communication optimal in amortized sense; i.e., they
achieve bit optimality for sufficiently large message size (�). We leave the issue of
designing communication optimal URMT/USMT protocols in directed networks
for small sized message as an open problem.

References

1. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006)

2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

3. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proc. of FOCS 1988, pp. 11–19 (1988)

4. Desmedt, Y., Wang, Y.: Perfectly secure message transmission revisited. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 502–517. Springer, Hei-
delberg (2002)

5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
JACM 40(1), 17–47 (1993)

6. Franklin, M., Wright, R.: Secure communication in minimal connectivity models.
Journal of Cryptology 13(1), 9–30 (2000)

7. Patra, A., Choudhary, A., Pandu Rangan, C.: Unconditionally reliable and secure
message transmission in directed networks revisited. Cryptology ePrint Archive,
Report 2008/262

8. Patra, A., Choudhary, A., Srinathan, K., Pandu Rangan, C.: Unconditionally reli-
able and secure message transmission in undirected synchronous networks: Possi-
bility, feasibility and optimality. Cryptology ePrint Archive, Report 2008/141

9. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

10. Shanker, B., Gopal, P., Srinathan, K., Pandu Rangan, C.: Unconditional reliable
message transmision in directed networks. In: Proc. of SODA 2008 (2008)

326 A. Patra, A. Choudhary, and C.P. Rangan

11. Srinathan, K., Narayanan, A., Rangan, C.P.: Optimal perfectly secure message
transmission. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 545–561.
Springer, Heidelberg (2004)

12. Wang, Y., Desmedt, Y.: Perfectly secure message transmission revisited
(manuscript), www.sis.uncc.edu/yonwang/

13. Yao, A.C.: Protocols for secure computations. In: Proc. of 23rd IEEE FOCS, pp.
160–164 (1982)

www.sis.uncc.edu/yonwang/

Linear Bandwidth Naccache-Stern Encryption

Benôıt Chevallier-Mames1, David Naccache2, and Jacques Stern2

1
dcssi, Laboratoire de cryptographie,
51, Boulevard de la Tour Maubourg

75700 Paris, France
benoit.chevallier-mames@sgdn.gouv.fr

2 École normale supérieure, Équipe de cryptographie,
45 rue d’Ulm, f-75230 Paris cedex 05, France

{david.naccache,jacques.stern}@ens.fr

Abstract. The Naccache-Stern (ns) knapsack cryptosystem is an orig-
inal yet little-known public-key encryption scheme. In this scheme, the
ciphertext is obtained by multiplying public-keys indexed by the mes-
sage bits modulo a prime p. The cleartext is recovered by factoring the
ciphertext raised to a secret power modulo p.

ns encryption requires a multiplication per two plaintext bits on the
average. Decryption is roughly as costly as an rsa decryption. However,
ns features a bandwidth sublinear in log p, namely log p/ log log p. As
an example, for a 2048-bit prime p, ns encryption features a 233-bit
bandwidth for a 59-kilobyte public key size.

This paper presents new ns variants achieving bandwidths linear in
log p. As linear bandwidth claims a public-key of size log3 p/ log log p, we
recommend to combine our scheme with other bandwidth optimization
techniques presented here.

For a 2048-bit prime p, we obtain figures such as 169-bit plaintext
for a 10-kilobyte public key, 255-bit plaintext for a 20-kilobyte public
key or a 781-bit plaintext for a 512-kilobyte public key. Encryption and
decryption remain unaffected by our optimizations: As an example, the
781-bit variant requires 152 multiplications per encryption.

Keywords: Public key cryptography, ns cryptosystem, multiplicative
knapsack, efficiency.

1 Introduction

The Naccache-Stern cryptosystem (ns), introduced a decade ago in [NS97], is a
public-key cryptosystem based on the following problem:

given p, c and a set {pi}, find a binary vector x such that c =
n−1∏
i=0

pxi

i mod p.

Trivially, if the pi-s are relatively prime and much smaller than p, the above
problem can be solved in polynomial time by factoring c in N.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 327–339, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

328 B. Chevallier-Mames, D. Naccache, and J. Stern

A trapdoor is obtained by extracting a secret (s-th) modular root of each pi

and publishing these roots, denoted vi = s
√

pi mod p. By raising a product of
such roots to the s-th power, each vi shrinks back to a much smaller pi and x
can be found by factoring the result in N.

Unfortunately, no security proofs linking ns’s security to standard complex-
ity assumptions are known, but at the same time, no efficient chosen-plaintext
attacks against ns’s one-wayness are known either.

More formally, let p be a large public prime1 and denote by n the largest
integer such that:

p >

n−1∏
i=0

pi where pi is the i-th prime (start from p0 = 2).

The secret-key 0 < s < (p − 1) is a random integer such that gcd(p− 1, s) = 1
and the public-keys are the n roots:

vi = s
√

pi mod p.

A message m =
n−1∑
i=0

2i mi, where mi ∈ {0, 1}, is encrypted as c =
n−1∏
i=0

vmi

i mod p

and recovered by:

m =
n−1∑
i=0

2i

pi − 1
×
⎧
⎩ gcd(pi, c

s mod p)− 1
⎫
⎭.

Denoting by ln(x) natural logarithms and by log(x) base-2 logarithms, it is
easy to see that ns’s bandwidth is sublinear: As pi ∼ i ln i, we have

ln p ∼
n∑

i=0

ln pi ∼ n ln n ⇒ ln ln p ∼ ln n,

which in turn gives:

n ∼ ln p

ln ln p
∼ log p

log log p
.

In a typical setting, a 2048-bit p corresponds to a sixteen kilobyte public-key
and allows encrypting 233-bit messages.

[NS97] also describes a variant depending on a parameter � ∈ N. Here, p is
such that

p >

n−1∏
i=0

pi
�.

m =
n−1∑
i=0

(� + 1)i mi, expressed in base (� + 1) (here mi ∈ [0, �]), is encrypted as

c =
n−1∏
i=0

vmi

i mod p,

1 For technical reasons, p must be a safe prime, cf. to Sections 2.4 of [NS97] or 5.

Linear Bandwidth Naccache-Stern Encryption 329

and decryption is straightforwardly modified. In this paper, we refer this version
as the “(� + 1)-base variant”.

The goal of this work is to improve the scheme’s bandwidth using more so-
phisticated arithmetic encoding approaches. Indeed, 233-bit plaintexts are often
insufficiently large in practice to include the message, the randomizer (typically
128 bits) and the redundancy (at least 160 bits, or better 256 bits) that one needs
to use chosen-ciphertext secure transformations such Fujisaki and Okamoto’s
[FO99, FO00].

In the next section, we propose a technique based on modular fractions that
multiplies bandwidth by log2 3 � 1.58 for binary-message ns.2 Section 3 de-
scribes a new message encoding technique that dramatically increases bandwidth
(to become linear in log p). Section 4 extends the previous idea to (� + 1)-base
ns, thereby further increasing bandwidth. Final figures are given in Section 4.3.
In Section 5, we examine the security of the proposed improvements. Finally,
Section 6 describes combinatorial problems whose solutions might yield even
more efficient ns variants.

2 Fractional Message Encoding

In this section, we show that using signed message bits allows to increase band-
width at no cost. Consider a message represented in a signed binary
notation, i.e.,

m =
n−1∑
i=0

2i mi where mi ∈ {−1, 0, 1}

and an unchanged encryption procedure. During decryption, the receiver recovers
a u such that:

u = cs =
a

b
mod p, with

⎧
⎪⎨
⎪⎩

a =
∏

mi=1
pi

b =
∏

mi=−1
pi.

and gcd(a, b) = 1.

The following theorem shows that, given u, one can recover a and b efficiently
using Gauss’s algorithm for finding the shortest vector in a two-dimensional
lattice [Val91].

Theorem 1 ([FSW02]). Let a, b ∈ Z such that |a| ≤ A and 0 < b ≤ B. Let
p be a prime such that 2AB < p. Let u = a/b mod p. Then given {A, B, u, p},
one can recover {a, b} in polynomial time.

Taking A = B = �√p�−1, we have that 2AB < p. If we assume in addition that
m was such that 0 ≤ a ≤ A and 0 < b ≤ B, we can recover a and b from s in
polynomial time. And by testing the divisibility of a and b by the small primes
pi, the receiver can eventually recover m as before.
2 This factor becomes log1+� (2� + 1) for the (� + 1)-base variant.

330 B. Chevallier-Mames, D. Naccache, and J. Stern

But what happens if |a| > A or b > B?

To tackle this case too, let us tweak the definition of p to p > 2w ×
n−1∏
i=0

pi,

for some small integer w ≥ 1 (we suggest to take w = 50), and define a finite
sequence {Ai, Bi} of integers such that:

Ai = 2wi and Bi =
⌊

p− 1
2Ai

⌋
.

For all i > 0, we have that ab < 2AiBi < p. Moreover, there must exist at
least one index i such that 0 ≤ a ≤ Ai and 0 < b ≤ Bi. Then using the algorithm
of Theorem 1, given Ai, Bi, p and s, one can recover a and b, and eventually
recover m. The problem is that we have just lost the guarantee that such an
{a, b} is unique. Namely, we could in theory hit another {a′, b′} whose modular
ratio gives the same u, for some other index i′ �= i. But we expect this to happen
with negligible probability for large enough w.

Senders wishing to eliminate even the negligible probability that decryption
will produce more than one plaintext can still simulate the decryption’s Gaussian
phase and, in case, re-randomize m until decryption becomes unambiguous.

The effect of this optimization is noteworthy as for the price of a constant
increase (e.g. � 50 bits) in p, bandwidth is multiplied by a factor of log2 3.

It is important to underline that while different signed binary representations
of a given m exist (e.g. 101 = 011 i.e. 22 − 20 = 21 + 20), the above procedure
will recover the exact encoding used to encrypt m and not an equivalent one.

Note that as � > 1 is used in conjunction with this technique (i.e., in the
(� + 1)-base variant), bandwidth improvement tends to one bit per prime as
� grows. Namely, fractional encoding increases bandwidth from n log(1 + �) to
n log(1 + 2�).

3 Small Prime Packing

Let the integer γ ≥ 2 be a system parameter. We now group the small primes
pi into n packs containing γ small primes each.3 That is, the first pack will
contain primes p1 to pγ , the second pack will include primes pγ+1 to p2γ etc. As
previously, the pi-s are indexed in increasing order.

We also update the condition on the large prime p to:

n∏
i=1

pγi < p.

In other words, we do not request p to be larger than the product of all the
small primes. Instead, we only request p to be larger than the product of the
largest representatives of each pack.

3 For the sake of simplicity, we now define the first prime as p1 = 2.

Linear Bandwidth Naccache-Stern Encryption 331

We now represent m in base γ, i.e.,

m =
n−1∑
i=0

γi mi where mi ∈ [0, γ − 1]

and encode m by picking in pack i the prime representing the message’s i-th
digit mi and multiplying all so chosen pi-s modulo p:

encoding(m) =
n−1∏
i=0

pγi+mi+1 mod p.

We can now apply this encoding to the ns and re-define encryption as:

c = encryption(m) = s
√

encoding(m) =
n−1∏
i=0

vγi+mi+1 mod p.

To decrypt c, the receiver computes u = cs mod p and recovers m by factoring
u. Note that as soon as a representative of pack i is found, the receiver can stop
sieving within pack i and start decrypting digit i + 1.

3.1 A Small Example

We illustrate the mechanism by a small toy-example.

• key generation for n = 3 and γ = 4:

The prime p = 4931 > pγ × p2γ × p3γ = 7 × 19 × 37 and the secret s = 3079
yield the v-list:

p
ac

k
1

⎧
⎪⎪⎨
⎪⎪⎩

v1 = s
√

2 modp = 1370

v2 = s
√

3 modp = 1204

v3 = s
√

5 modp = 1455

v4 = s
√

7 modp = 3234

p
ac

k
2

⎧
⎪⎪⎨
⎪⎪⎩

v5 = s
√

11 modp = 2544

v6 = s
√

13 modp = 3366

v7 = s
√

17 modp = 1994

v8 = s
√

19 modp = 3327

p
ac

k
3

⎧
⎪⎪⎨
⎪⎪⎩

v9 = s
√

23 modp = 4376

v10 = s
√

29 modp = 1921

v11 = s
√

31 modp = 3537

v12 = s
√

37 modp = 3747

• encryption of m = 35:

We start by writing m is base γ = 4, i.e., m = 35 = 2034 and encrypt it as:

c = v(0·4+3+1) × v(1·4+0+1) × v(2·4+2+1) = v4 × v5 × v11 mod 4931 = 4484.

• decryption:

By exponentiation, the receiver retrieves:

cs mod p = 44843079 mod 4931 = 7×11×31 = p(0·4+3+1)×p(1·4+0+1)×p(2·4+2+1),

whereby m = 2034.

332 B. Chevallier-Mames, D. Naccache, and J. Stern

3.2 Bandwidth Considerations

The bandwidth gain stems from the fact that, for large i, we have pγi+1 � pγi+γ

which allows the new format to accommodate log2 γ message bits at the price
of one single pγi+γ . This situation is much more favorable than the original ns,
where each message bit costs a new pi.

More precisely, pγi ∼ γi ln i yields an (n log γ)-bit bandwidth where:

n ∼ ln p/ln ln p ∼ log p/log log p

The bandwidth gain is thus a constant multiplicative factor (namely log γ)
and the increase in n is logarithmic. Note that at the same time, the vi-list
becomes γ times longer.

The following table shows the performances of the new encoding algorithm for
a 2048-bit p. The first row represents the original ns for the sake of comparison.

γ n plaintext bits = n log γ public key size = γn log p information rate= n log γ
log p

ns 233 233 bits 59 kilobytes 0.11

2 208 207 bits 104 kilobytes 0.10
4 189 378 bits 189 kilobytes 0.18
8 172 516 bits 344 kilobytes 0.25

16 159 635 bits 636 kilobytes 0.31
32 147 734 bits 1176 kilobytes 0.36
64 137 821 bits 2192 kilobytes 0.40

128 128 896 bits 4096 kilobytes 0.44
256 121 967 bits 7744 kilobytes 0.47
512 114 1025 bits 14592 kilobytes 0.50
1024 108 1080 bits 27648 kilobytes 0.53

As one can see, bandwidth improvement is significant, but the public keys are
huge. Fortunately, we address this issue in the Section 4.

3.3 Linear Bandwidth

Setting γ = n (i.e., n packs containing n primes each), we can approximate:

pγi ∼ γi ln i ∼ ni ln i ⇒
n∑

i=0

ln pγi ∼
n∑

i=0

ln(n2 ln n) ∼ n ln(n2) ∼ 2n lnn ∼ ln p.

As ln n ∼ ln ln p, we get an n logn bit bandwidth with:

n ∼ ln p

2 ln ln p
∼ log p

2 log log p
.

Substituting the expressions of n and log n into the bandwidth formula (that
is n log n), we see that the resulting information rate turns out to be 1

2 . This
encoding scheme therefore features a linear bandwidth, while ns is only sublinear.
Note that this format is compatible with fractional encoding (Section 2), thereby
allowing further constant-factor bandwidth gains.

Linear Bandwidth Naccache-Stern Encryption 333

3.4 Optimizing the Encoding of Zeros

We now observe that the encoding of zeros does not require using new primes.
The corresponding tweak to the encryption procedure is straightforward and
allows to lower the number of pi-s from γn to (γ − 1)n. This increases n and
hence the information rate.

For the previous toy-example, the packs will become:

p
ac

k
1

����
���

v1 = 1

v2 = s
√

2 modp

v3 = s
√

3 modp

v4 = s
√

5 modp
p
ac

k
2

����
���

v5 = 1

v6 = s
√

7 modp

v7 = s
√

11 modp

v8 = s
√

13 modp

p
ac

k
3

����
���

v9 = 1

v10 = s
√

17 modp

v11 = s
√

19 modp

v12 = s
√

23 modp

p can now be chosen as p = 1499 > pγ × p2γ× p3γ = 5× 13× 23, which is indeed
somewhat shorter than the modulus used in Section 3.1.

Figures are given in the following table, where the first row (i.e., γ = 2)
represents the original ns. As before, this results assume a 2048-bit p. The op-
timization is particularly interesting for small γ values.

γ n plaintext bits = n log γ public key size = (γ − 1) n log p information rate= n log γ
log p

2 233 233 bits 59 kilobytes 0.11 (original ns)
4 196 392 bits 147 kilobytes 0.19
8 175 525 bits 307 kilobytes 0.26
16 160 640 bits 600 kilobytes 0.31
32 148 740 bits 1147 kilobytes 0.36
64 137 822 bits 2158 kilobytes 0.40

128 128 896 bits 4064 kilobytes 0.44
256 121 968 bits 7714 kilobytes 0.47
512 114 1026 bits 14564 kilobytes 0.50

1024 108 1080 bits 27621 kilobytes 0.53

4 Using Powers of Primes

In this section we apply prime-packing to the (�+1)-base variant. We start with
an example, to explain as simply as possible the obtained scheme.

4.1 A Small Example

Take n = 1 and γ = 4, i.e. a single pack, containing {p1 = 2, p2 = 3, p3 = 5,
p4 = 7}. We also set � = 2, pick a modulus p > 7� = 72 = 49, define the public
key as:

{v1 = s
√

2 mod p, v2 = s
√

3 mod p, v3 = s
√

5 mod p, v4 = s
√

7 mod p}

and consider all pi products of weight smaller or equal to �:

70 × 50 × 30 × 20 70 × 50 × 30 × 21 70 × 50 × 30 × 22

70 × 50 × 31 × 20 70 × 50 × 31 × 21 70 × 50 × 32 × 20

70 × 51 × 30 × 20 70 × 51 × 30 × 21 70 × 51 × 31 × 20

70 × 52 × 30 × 20 71 × 50 × 30 × 20 71 × 50 × 30 × 21

71 × 50 × 31 × 20 71 × 51 × 30 × 20 72 × 50 × 30 × 20

334 B. Chevallier-Mames, D. Naccache, and J. Stern

All in all, we have 1 + 4 + 10 =
(
γ+�

�

)
= 15 products4 that can be associated

to 15 message digit values. Therefore, to encode a message digit m0 ∈ [0, 14],
we use any unranking algorithm [SW86] returning unrank(m0) = {a, b, c, d} and
encrypt m0 as:

c = encryption(m0) = v1
a × v2

b × v3
c × v4

d mod p.

For instance, using a lexicographic ranking of words of weight two:

unrank(0) = {0, 0, 0, 0} � 70 × 50 × 30 × 20

unrank(1) = {0, 0, 0, 1} � 70 × 50 × 30 × 21

unrank(2) = {0, 0, 0, 2} � 70 × 50 × 30 × 22

unrank(3) = {0, 0, 1, 0} � 70 × 50 × 31 × 20

unrank(4) = {0, 0, 1, 1} � 70 × 50 × 31 × 21

unrank(5) = {0, 0, 2, 0} � 70 × 50 × 32 × 20

unrank(6) = {0, 1, 0, 0} � 70 × 51 × 30 × 20

unrank(7) = {0, 1, 0, 1} � 70 × 51 × 30 × 21

unrank(8) = {0, 1, 1, 0} � 70 × 51 × 31 × 20

unrank(9) = {0, 2, 0, 0} � 70 × 52 × 30 × 20

unrank(10) = {1, 0, 0, 0} � 71 × 50 × 30 × 20

unrank(11) = {1, 0, 0, 1} � 71 × 50 × 30 × 21

unrank(12) = {1, 0, 1, 0} � 71 × 50 × 31 × 20

unrank(13) = {1, 1, 0, 0} � 71 × 51 × 30 × 20

unrank(14) = {2, 0, 0, 0} � 72 × 50 × 30 × 20

m0 = 12 will be encrypted as encryption(12) = s
√

3 × s
√

7 = v2 × v4 mod p.
Decryption recovers 20 × 31 × 50 × 71 by exponentiation and determines that
m0 = rank({1, 0, 1, 0}) = 12.

The bandwidth improvement stems from the fact that we encrypt log(15)
bits where the (� + 1)-base variant only encrypts log(3). In other words, the
prime-packing idea fits particularly well to the (� + 1)-base system.

Also, as is all practical instances
(
γ+�

�

)
will remain moderate (typically less

than one hundred), functions rank(·) and unrank(·) can be implemented as simple
lookup tables rather than as full-fledged constructive combinatorial algorithms.

4.2 Formal Description

Let us describe now the scheme formally. Let � ≥ 1 and γ be two integer pa-
rameters5 and consider n packs containing γ small primes each (the primes start
from p1 = 2). We pick a prime p such that:

n∏
i=1

pγi
� < p.

4 The attentive reader would rightly note that there are actually more pi products
smaller than p. This is true for very small primes in the first packs, but when one
considers packs whose minimal and maximal pi-s are roughly equivalent in size, the
number of products quickly tends to

�
γ+�

�

�
.

5
ns corresponds to the case {γ, �} = {1, 1} and the (� + 1)-base variant corresponds
to γ = 1.

Linear Bandwidth Naccache-Stern Encryption 335

As there are6 shows that there are
(
γ+�

�

)
different γ-tuples {d1, . . . , dγ} such

that 0 ≤ dk and
∑

k dk ≤ �, we define unrank(·) as an invertible function mapping
integers in [0,

(
γ+�

�

)
− 1] to {d1, . . . , dγ}-tuples.

To encrypt a message expressed in base
(
γ+�

�

)
, i.e., m =

n−1∑
i=0

(
γ+�

�

)i
mi with

mi ∈ [0,
(
γ+�

�

)
− 1], one computes:

c = encryption(m) =
n−1∏
i=0

γ∏
j=1

vγi+j
di,j mod p

where {di,1, . . . , di,γ} = unrank(mi).
To decrypt c, the receiver simply factorizes cs mod p in N and recovers each

mi by:

mi = rank({di,1, . . . , di,γ}).

4.3 Bandwidth Considerations

The table below shows that the variant described in this section features a better
bandwidth and smaller public-keys than the basic prime-packs encoding of Section
3. Data was generated for several public-key sizes (namely 10, 20, 50, and 500
kilobytes) and a 2048-bit p. The first line {γ, �} = {1, 1} is the original ns:

γ � n plaintext bits = n log
�γ+�

�

�
public key size = γn log p information rate= n

log
�

γ+�
�

�

log p

1 1 233 233 bits 59 kilobytes 0.11

8 66 5 169 bits 10 kilobytes 0.08

16 54 5 255 bits 20 kilobytes 0.12

64 73 3 398 bits 48 kilobytes 0.19

512 38 4 781 bits 512 kilobytes 0.38
128 10 16 781 bits 512 kilobytes 0.38

Note that encryption is very fast, since it requires � · n multiplications e.g. in
the 781-bit setting an encryption claims 152 multiplications.

5 Security Considerations

As stressed previously, no security proof is known for the original ns, and we
have no hope nor claim that our modifications may supplement this lack. In
this section we nonetheless recall certain security-related facts, some of which
are already known since [NS97], for the clarity and the self-containment of this
paper.

6 Cf. to Appendix A for a proof.

336 B. Chevallier-Mames, D. Naccache, and J. Stern

5.1 What Security Can Be Attained?

The most basic security property expected from any encryption scheme is one-
wayness (OW): an attacker should not be able to recover the plaintext given a
ciphertext. We capture this notion more formally by saying that for any adver-
sary A, success in inverting the effect of encryption must occur with negligible
probability.

Semantic Security (IND) [GM84], also known as indistinguishability of en-
cryptions captures a stronger privacy notion. The adversary A is said to break
IND when, after choosing two same-length messages m0 and m1, he can decide
whether a given ciphertext corresponds to m0 or to m1. An encryption scheme is
said to be semantically secure (or indistinguishable) if no probabilistic algorithm
can break IND.

The original ns cryptosystem, or the variants presented in Sections 2, 3 or 4
can not ensure indistinguishability, since they are by nature deterministic. The
hope however is that there might be one-way. To achieve full-security with our
variants (or with ns), one can use generic transformations such as [FO99, FO00]:
nevertheless, as there are no formal reductions from a standard hard problem to
an attack of ns-type schemes (be these the original ns or the variants proposed
herein), the application of these generic rules cannot possibly achieve a provably
security, but only give empirical security arguments.

5.2 Security Arguments

Our schemes can be broken if one solves the discrete-logarithm. It
is clear that a discrete-logarithm oracle will totally break the ns scheme or the
variants presented in this paper. Indeed, to this aim, it is sufficient to ask the
oracle for the discrete-logarithm of p1 in base v1, which is actually the secret key
s. Even if the primes are permuted or made secret, the fact that primes must be
small makes them easily guessable.

Larger message Space may Make ns-type Problems Harder. As one
can see, the schemes presented in this paper are — as is the original ns —
multiplicative knapsacks. Even if no efficient algorithm solving this problem
is known, one must ensure that a brute-force attack consisting in testing all
products is impossible. More precisely, getting back the arguments put forward
in Section 2.3 of [NS97], the message space must at least exceed 160 bits, if
one requires an 80-bit security, or 256 bits, if one wants 128-bit security. In
this perspective, our bandwidth improvements indirectly improve security by
easing the attainment of a larger message space. However, we cannot claim that
the variants are stronger, as bandwidth improvements come along with larger
public-keys, which — at least in the information theoretic sense — give more
information to the attacker about the secret key.

Small Factors of (p − 1). As stressed in Section 2.4 of [NS97], the small
factors of (p − 1) are important. Denote by QRp and QRp the quadratic and
non-quadratic residues modulo p respectively. Let

Linear Bandwidth Naccache-Stern Encryption 337

c =
n−1∏
i=0

vmi

i mod p.

By computing a = c
p−1
2 mod p, one gets

a =
∏

vi∈QRp

(−1)mi mod p,

which in turn leaks the value
∑

vi∈QRp
mi mod 2. This partial information leak-

age can also be applied to other small factors of (p−1). Therefore, [NS97] advised
to use a strong prime p, and to spare one mi to compensate the leakage (in other
words, they simply make

∑
vi∈QRp

mi mod 2 constant).
In our variants, it is not as simple to use same attacks. Indeed, in any given

prime pack, one expects to have some primes in QRp and others in QRp. For ex-
ample, with the variant of Section 3, getting c = encryption(m) =

∏n−1
i=0 vγi+mi+1

mod p, the attacker may compute a = c
p−1
2 mod p. As

a =
∏

vγi+mi+1∈QRp

(−1) mod p,

this reveals the parity of the number of message digits mi whose corresponding
primes are in QRp. Even if leakage is less precise than in the ns case, we still
recommend the use of a strong prime (and residue value compensation) with our
variants.

Can a Reduction from Attacking ns to Attacking our Variants Ex-

ist?. At a first glance, it might seem that reductions between ns and our variants
exist: indeed, one may hope that access to a decryption oracle D of one of our
schemes would yield an ns decryption oracle D′.

However, a simple observation shows that this is certainly impossible: in our
case, the public key is longer and contains more elements related to the secret key.
Therefore, from an ns public key and a challenge, it may certainly be possible
to build a challenge for our variants, but there is little hope that one might
reconstruct the entire public key.

Thus, we have no formal proof that the security of the original ns is equivalent
to the security of the variants proposed herein.

6 Further Research

We conclude this paper with a couple of interesting combinatorial problems
whose solution might further improve the ns’s bandwidth.

Setting � = 1, not all collections of γn integers allow encoding γn combina-
tions. Let S = {S1, ..., Sn} be n integer-sets, each of size γ and denote by Si[j]
the j-th element of Si. We call S an encoder if its Si-s can be used as a collection
of packs encoding exactly n log2 γ bits, or, in other words, if no collisions in the

338 B. Chevallier-Mames, D. Naccache, and J. Stern

integer sub-products of S occur. Improving the ns consists in finding “better”
encoders.

To compare encoders, we use their head-products, namely:

h(S) =
n∏

i=1

max
j

(Si[j])

Head-products lower-bound the modulus p and hence “measure” bandwidth.
We saw that when the Si[j] are the first small primes, S is an encoder and

h(S) =
∏n

i=1 piγ (Section 3). We also saw that when the smallest element in
each Si is one, the resulting S is still an encoder whose head-product is h(S) =∏n

i=1 pi(γ−1) (Section 3.4).
This gives raise to interesting combinatorial problems such as finding algo-

rithms for efficiently testing that a given S is an encoder, or finding algorithms for
constructing optimal encoders, i.e. encoders featuring a minimal head-product
(and consequently a maximal bandwidth).

As an example, a (rather inefficient) computer-aided exploration for n = 3
and γ = 4 discovered the optimal encoder S whose h(S) = 4× 8× 13 = 416:

p
ac

k
1

����
���

S1[1] = 1
S1[2] = 2
S1[3] = 3
S1[4] = 4

p
ac

k
2

����
���

S2[1] = 1
S2[2] = 5
S2[3] = 7
S2[4] = 8

p
ac

k
3

����
���

S3[1] = 1
S3[2] = 9
S3[3] = 11
S3[4] = 13

Interestingly, this encoder contains primes, but also powers of primes. Moreover,
throughout our search, non-optimal encoders containing composite integers (such
as 6) were found as well.

Decoding messages encoded with such complicated S-s might not always be
straightforward as in such atypical encoders, decoding is based on impossibilities
of certain factor combinations rather than on the occurrence of certain factors
in the product.

The above questions also generalize to packs of rationals.

References

[FO99] Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric
encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 537–554. Springer, Heidelberg (1999)

[FO00] Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryp-
tion at minimum cost. IEICE Transaction of Fundamentals of Electronic
Communications and Computer Science E83-A(1), 24–32 (2000)

[FSW02] Fouque, P.-A., Stern, J., Wackers, J.-G.: Cryptocomputing with rationals.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Hei-
delberg (2003)

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer
and System Sciences 28(2), 270–299 (1984)

[NS97] Naccache, D., Stern, J.: A new public-key cryptosystem. In: Fumy, W.
(ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 27–36. Springer, Heidelberg
(1997)

Linear Bandwidth Naccache-Stern Encryption 339

[SW86] Stanton, D., White, D.: Constructive combinatorics. Springer, New York
(1986)

[Val91] Vallée, B.: Gauss’ algorithm revisited. Journal of Algorithms 12(4), 556–572
(1991)

A Computing R�,γ

In this appendix, we recall how we evaluate the number, denotedR�,γ , of different
γ-tuples {d1, . . . , dγ} such that 0 ≤ dk and

∑
k dk ≤ �.(

γ+i−1
i

)
is the number of sequences of γ integers whose sum equals i. Therefore,

we have:

R�,γ =
�∑

i=0

(
γ + i− 1

i

)
.

Assume that we have R�,γ =
(
γ+�

�

)
. What happens for (� + 1)?

R�+1,γ =

�+1∑
i=0

(
γ + i − 1

i

)
= R�,γ +

(
γ + � + 1 − 1

� + 1

)
=

(
γ + �

�

)
+

(
γ + �

� + 1

)
=

(
γ + � + 1

� + 1

)

where the last line stems from Pascal’s rule.
As R0,γ = 1 =

(
γ
0

)
, we get by induction that:

R�,γ =
(

γ + �

�

)
.

Immunising CBC Mode Against Padding Oracle

Attacks: A Formal Security Treatment

Kenneth G. Paterson and Gaven J. Watson�

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
kenny.paterson@rhul.ac.uk, g.watson@rhul.ac.uk

Abstract. Padding oracle attacks against CBC mode encryption were
introduced by Vaudenay. They are a powerful class of side-channel, plain-
text recovering attacks which have been shown to work in practice against
CBC mode when it is implemented in specific ways in software. In partic-
ular, padding oracle attacks have been demonstrated for certain imple-
mentations of SSL/TLS and IPsec. In this paper, we extend the theory
of provable security for symmetric encryption to incorporate padding or-
acle attacks. We develop new security models and proofs for CBC mode
(with padding) in the chosen-plaintext setting. These models show how
to select padding schemes which provably provide a strong security no-
tion (indistinguishability of encryptions) in the face of padding oracle
attacks. We also show that an existing padding method, OZ-PAD, that
is recommended for use with CBC mode in ISO/IEC 10116:2006, prov-
ably resists Vaudenay’s original attack, even though it does not attain
our indistinguishability notion.

1 Introduction

When constructing cryptographic protocols to be used for protecting network
traffic, cryptographic primitives such as block ciphers (often operating in Cipher
Block Chaining (CBC) mode) and MACs are often combined in order to obtain
both confidentiality and integrity of the traffic. Typical examples of such pro-
tocols are the ESP protocol in IPsec and the SSL/TLS Record Layer protocol.
Theoretical analysis of such protocols until now has considered idealised crypto-
graphic components that are always correctly implemented. Unfortunately, this
is not always the case in practice, and often the exact manner in which these
components are implemented is highly significant for security.

Side channel attacks are a powerful class of techniques that can be used to
break implementations of cryptographic primitives which from a theoretical per-
spective appear to be secure. These attacks are mostly directed against embed-
ded system and smart card deployments of cryptography, but they can also be

� This author is supported by an EPSRC Industrial CASE studentship sponsored by
BT Research Laboratories.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 340–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Immunising CBC Mode Against Padding Oracle Attacks 341

used to perform attacks against network protocols. The padding oracle attack,
as introduced by Vaudenay [11], is a side channel attack of this type. A padding
oracle attack works against the CBC mode of operation of a block cipher. It
exploits the fact that, in real implementations, data typically must be padded
according to some rule before it can be encrypted. In contrast, all current theo-
retical security models for CBC mode assume that data is already neatly aligned
on a block boundary.

In such an attack, the adversary is assumed to be equipped with a padding
oracle that, given a ciphertext, tells the adversary whether or not the underly-
ing plaintext is correctly padded according to some specific padding rule. In his
original paper, Vaudenay showed that, for certain widely used padding schemes,
a padding oracle could be exploited to build a decryption oracle, i.e. to recover
plaintext. Further theoretical analysis of padding oracle and related attacks ap-
peared in [3,10,12,9]. Notably, the work in [10,12] influenced the subsequent de-
velopment of the ISO standard for CBC mode encryption (ISO/IEC 10116:2006),
which eventually recommended a padding scheme called OZ-PAD because it ap-
pears to resist padding oracle attacks.

Canvel et al. [5] described a real-world example of a padding oracle attack type
against the SSL/TLS Record Layer protocol as implemented in OpenSSL. The
padding oracle was present because the SSL/TLS specification uses a “MAC-
then-encrypt” construction and because the OpenSSL implementation behaved
differently when faced with a padding failure or a MAC failure. Interestingly,
the particular combination of CBC mode encryption and MAC algorithm used
in SSL/TLS was proven secure by Krawczyk in [8], but his proof does not di-
rectly consider any issues arising from padding. Thus the subsequent attack
by Canvel et al. demonstrates the limitations of existing security analysis in
practice. More recently, Degabriele and Paterson [6] used an extension of the
basic padding oracle techniques to find attacks against certain encryption-only
configurations of IPsec, both as specified in the relevant RFC [7] and as imple-
mented in RFC-compliant software. Again, the particular use of CBC mode in
IPsec is provably secure against chosen plaintext attackers in the usual model
for security for symmetric encryption [1]; however, the way in which [7] rec-
ommends dealing with padding failures actually leads to an attacker being
able to construct a padding oracle for RFC-compliant implementations. Thus,
simply rewriting code to eliminate padding oracles may not always be
possible.

The practical attacks of [5] and [6] demonstrate the inadequacy of current
security models for CBC mode encryption in the face of padding oracle attacks
and provide a strong motivation for the current paper.

1.1 Our Contribution

In this paper, we extend the existing security models for CBC mode encryption
[1] to include the real-world security concern that is represented by padding ora-
cle attacks. We give results relating these different security models, in the spirit
of [1]. This gives us a framework within which we can analyse the security of

342 K.G. Paterson and G.J. Watson

specific padding schemes operating in conjunction with CBC mode. In particu-
lar, we show that the OZ-PAD padding scheme offers a form of one-way security
against chosen-plaintext attack that is sufficient to resist Vaudenay’s original
plaintext-recovering padding oracle attack. We also show that certain padding
schemes, such as the Arbitrary Tail padding methods Abit and Abyte recom-
mended by Black and Urtubia in [3], offer much stronger security guarantees in
the form of indistinguishability of encryptions against chosen-plaintext attackers
equipped with padding oracles.

In this paper, for reasons of brevity, we focus exclusively on the case where
the attacker is a chosen-plaintext one. The equally important case of security
of authenticated encryption schemes making use of CBC mode encryption as a
component will be considered in a forthcoming companion paper. There, we as-
sume the attacker is equipped with a decryption oracle that may produce outputs
allowing the adversary to distinguish between padding failures and other types
of decryption failure. Such behaviour underlies the successful attacks against
OpenSSL in [5], for example.

1.2 Related Work

Bellare et al. [1] provided the first systematic study of security notions for
symmetric encryption, as well as specific security results for various modes of
operation of a block cipher. Our work in this paper relies extensively on this
foundational paper.

In addition to the practice-oriented work on SSL/TLS [5] and IPsec [6], sev-
eral real-world security protocols have been subjected to formal security analysis.
This includes the work of Bellare et al. [2], who extensively analysed the authen-
ticated encryption scheme used in SSH, showing that SSH is vulnerable to a
certain plaintext-guessing “reaction attack” in situations where fixed padding
is used (rather than the randomised padding recommended in the SSH speci-
fication). This work also considered provable security properties of the specific
encoding and cryptographic operations carried out by SSH, with the analysis
explicitly taking padding into account. However, it should be noted that the
security model used in [2] effectively denies the adversary access to the decryp-
tion oracle as soon as he submits an invalid ciphertext to it. This reflects what
SSH does in practice, but severely limits the use that a theoretical adversary
might make of such a decryption oracle. A second example of formal analysis of
real-world protocols is provided by the work of Boldyreva and Kumar [4], who
provided a provable security treatment of authenticated encryption in the Ker-
beros protocol suite. This analysis seems to take into account every component
used in the Kerberos authenticated encryption algorithm except for padding. A
third example is provided by [8], in which Krawczyk studies the security prop-
erties of the “MAC-then-encrypt” paradigm as used in SSL/TLS (but his proof
does not take into account any padding).

A useful survey of side channel attacks, including padding oracle attacks, can
be found in [13].

Immunising CBC Mode Against Padding Oracle Attacks 343

2 Definitions and Models for Chosen Plaintext Security

2.1 CBC Mode for Arbitrary Length Messages

Let F = {FK : K ∈ K} be a family of permutations with input-length and
output-length l and k-bit key K. In [1], Bellare et al. define CBC mode based on
the permutation family F to be the scheme CBC[F] = (E-CBC,D-CBC,K-CBC)
with inputs that are restricted to be a multiple of the block length l. In practice,
of course, plaintext messages may not satisfy this constraint, and so they need
to be padded before encryption and subsequently depadded after decryption.

Let B denote the set {{0, 1}il : i ≥ 0} of bit strings whose length is a non-
negative multiple of l, and let PAD : {0, 1}∗ → V ⊂ B and DPAD : B →
{0, 1}∗∪{⊥P } be functions defining a specific padding method. These mappings
should both be easy to compute. We say that V is the set of all valid padded
messages. For each i ∈ N, let Vi be the set of messages of length il bits (i blocks)
in V , so that V =

⋃
i Vi. Let I = B \ V and for each i ∈ N, let Ii be the set

of messages of length il bits in I, so that I =
⋃

i Ii. We say that I is the set
of all invalid padded messages. For consistency, we require that for any x ∈ I,
DPAD(x) returns ⊥P , and that x = DPAD(PAD(x)) for any x ∈ {0, 1}∗.

Given functions PAD, DPAD and family of permutations F , we define the
scheme CBCPAD[F] = (E-CBCPAD,D-CBCDPAD,K-CBC) as follows. This
scheme uses the same key generation algorithm K-CBC as in [1], taking as
input a security parameter k ∈ N and outputting a random k-bit key K for
the underlying permutation family, specifying a function FK . We then define
E-CBCK,PAD(x) = E-CBCFK

PAD(x) and D-CBCK,DPAD(y) = D-CBCFK

DPAD(y),
where:

function E-CBCFK
PAD(x) function D-CBCFK

DPAD(y)
x̃ = PAD(x) Parse y into l-bit blocks as y0y1 . . . yn

Parse x̃ into l-bit blocks x1x2 . . . xn for i = 1, . . . , n do xi = F −1
K (yi) ⊕ yi−1

y0
r← {0, 1}l x = DPAD(x1x2 . . . xn)

for i = 1, . . . , n do yi = FK(yi−1 ⊕ xi) return x
return y0y1y2 . . . yn

As an important illustrative example, we define OZ-PAD, as suggested by the
ISO standard ISO/IEC 10116:2006 for use with CBC mode:

Definition 1. [OZ-PAD] The respective padding and depadding functions are:
function PADOZ(x) function DPADOZ(x̃)
r = |x| mod l Parse x̃ as a sequence of l-bit blocks x1x2 . . . xn

return x̃ = x‖1‖0l−r−1 if xn = 0l, then set x =⊥
else Parse xn as x′‖1‖0l−r−1

Set x = x1x2 . . . xn−1x
′

return x

Note that with this definition, a padded plaintext is invalid precisely when its
last block is all-zero.

344 K.G. Paterson and G.J. Watson

2.2 Padding Oracles

A padding oracle P(·) indicates whether the plaintext message underlying the in-
put ciphertext is correctly or incorrectly padded, based upon some fixed padding
method and for some fixed key.

Definition 2. A padding oracle P, takes as input any string y ∈ {0, 1}∗ and
outputs one bit of information. If the underlying plaintext is correctly padded
(i.e. lies in the set V) the oracle outputs 1; otherwise it outputs 0. Formally:

Oracle P(y)
if D-CBCK,DPAD(y) �=⊥P , then return 1
else return 0

Vaudenay [11] showed how an attacker, given repeated access to a padding oracle
for CBC mode implemented with the padding method CBC-PAD, can perform
decryption to recover plaintexts. His results were extended by Black and Urtubia
to other padding methods in [3] and to other attack scenarios in [10,12].

2.3 Security Models

We now extend the usual security models for symmetric encryption as defined
in [1] to provide the adversary with additional access to a padding oracle as in
Definition 2. Here, we only consider the Chosen Plaintext Attack (CPA) setting.
We generalise the existing Left-or-Right Indistinguishability, Real-or-Random
Indistinguishability and Find-then-Guess Security definitions to include padding
oracles, and establish the essential equivalence of these different definitions (as
was done by Bellare et al. [1] for the usual case). Thereafter, we will prove results
using the Left-or-Right Indistinguishability definition.

In fact, our models provide much stronger notions of security than are
required to resist Vaudenay’s original attack: roughly speaking they provide
semantic security against an attacker equipped with encryption and padding
oracles, whereas Vaudenay’s attack only gives the attacker access to a padding
oracle. This enhanced security is certainly desirable, but many padding meth-
ods used in, or recommended for, practice (e.g. OZ-PAD as recommended in
ISO/IEC 10116:2006) cannot achieve our new notions. So we also introduce a
weaker “one-way” notion of security to more exactly quantify the resistance of
these padding methods to Vaudenay’s original attack.

Note that these models could be used more generally with other modes of
operation that require padding. This would be an interesting area for future
work.

Left-or-Right Indistinguishability. In this model, the attacker submits two
messages (x0, x1) to a left-or-right encryption oracle and its challenge is to de-
termine whether it receives the encryption of x0 or x1 in response. In our new
model, the two messages x0, x1 need not be of equal length but must be of equal
length once they are padded, otherwise there is a trivial attack. The attacker

Immunising CBC Mode Against Padding Oracle Attacks 345

will also be supplied with access to a padding oracle P to which it may submit
arbitrary strings. For b ∈ {0, 1}, we define the left-or-right encryption oracle
E-CBCPAD,K(LR(·, ·, b)) by:

Oracle E-CBCPAD,K(LR(x0, x1, b))
if b = 0, then C ← E-CBCPAD,K(x0)

else (b = 1), C ← E-CBCPAD,K(x1)
return C

Definition 3. [LOR-PO-CPA] Consider the encryption scheme CBCPAD. Let
b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to the oracles
E-CBCPAD,K(LR(·, ·, b)) and P(·). The game played is as follows

Experiment Explor-po-cpa−b
CBCP AD ,A (k)

K
r← K-CBC(k)

b′ ← AE-CBCPAD,K(LR(·,·,b)),P(·)(k)
return b′

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-po-cpa
CBCPAD,A(k) = Pr[Explor-po-cpa-1

CBCP AD ,A(k) = 1]− Pr[Explor-po-cpa-0
CBCPAD ,A(k) = 1].

The advantage function of the scheme is defined to be:

Advlor−po−cpa
CBCPAD

(k, t, qe, μe, qp) = max
A
{Advlor−po−cpa

CBCPAD,A (k)}

for any integers t, qe, μe, qp. The maximum is over all adversaries A with time
complexity t, making at most qe queries to the encryption oracle, totalling at
most 2μe bits, and qp queries to the padding oracle. The scheme is said to be
LOR-PO-CPA secure if Advlor−po−cpa

CBCPAD
is negligible for any adversary A whose

time complexity is polynomial in k.

Real-or-Random Indistinguishability. Here, the attacker submits a message
x to a real-or-random encryption oracle and its challenge is to determine whether
it receives the encryption of x or the encryption of some random r, in response.
In our new model the two messages x, r need not be of equal length but must be
of equal length once they are padded, otherwise a trivial attack is possible1. The
attacker will also be supplied with access to a padding oracle P . For b ∈ {0, 1},
we define the real-or-random oracle E-CBCPAD,K(RR(·, b)) by:

Oracle E-CBCPAD,K(RR(x, b))
if b = 1, then C ← E-CBCPAD,K(x)

else, r
r← {0, 1}∗ such that |E-CBCK(r)| = |E-CBCK(x)|

C ← E-CBCPAD,K(r)
return C

1 We must therefore assume that it is easy to generate r at random subject to this
constraint; this is the case for padding methods used in practice.

346 K.G. Paterson and G.J. Watson

Definition 4. [ROR-PO-CPA] Consider the encryption scheme CBCPAD.
Let b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to the oracles
E-CBCPAD,K(RR(·, b)) and P(·). The game played is as follows

Experiment Expror-po-cpa−b
CBCP AD ,A (k)

K
r← K-CBC(k)

b′ ← AE-CBCPAD,K(RR(·,b)),P(·)(k)
return b′

The attacker wins when b′ = b and its advantage is defined to be:

Advror-po-cpa
CBCPAD,A(k) = Pr[Expror-po-cpa-1

CBCP AD ,A(k) = 1]− Pr[Expror-po-cpa-0
CBCPAD ,A(k) = 1].

The advantage function of the scheme is defined to be:

Advror−po−cpa
CBCPAD

(k, t, qe, μe, qp) = max
A
{Advror−po−cpa

CBCPAD,A (k)}

for any integers t, qe, μe, qp. The maximum is over all adversaries A with time
complexity t, making at most qe queries to the encryption oracle, totalling at
most μe bits, and qp queries to the padding oracle. The scheme is said to be
ROR-PO-CPA secure if Advror−po−cpa

CBCPAD
is negligible for any adversary A whose

time complexity is polynomial in k.

Find-then-Guess Security. Here, the security game is defined in two stages.
First the attacker must find two messages x0, x1 upon which it wishes to be
challenged. The challenger then sends y, the encryption of either x0 or x1, to the
attacker. In the second stage, the attacker must guess which of these two mes-
sages x0, x1, is the decryption of y. Note that the two messages x0, x1 need not
be of equal length but must be of equal length once they are padded, otherwise
a trivial attack is possible.

Definition 5. [FTG-PO-CPA] Consider the encryption scheme CBCPAD. Let
b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to the oracles
E-CBCPAD,K(·) and P(·). The game played is as follows

Experiment Expftg-po-cpa-b
CBCPAD ,A(k)

K
r← K-CBC(k)

(x0, x1, s) ← AE-CBCPAD,K(·),P(·)(k, find)
y ← E-CBCPAD,K(xb)
b′ ← AE-CBCPAD,K(·),P(·)(k, guess, y, s)

return b′

The attacker wins when b′ = b and its advantage is defined to be:

Advftg-po-cpa
CBCPAD,A(k) = Pr[Expftg-po-cpa-1

CBCP AD ,A(k) = 1]− Pr[Expftg-po-cpa-0
CBCPAD ,A(k) = 1].

The advantage function of the scheme is defined to be:

Advftg−po−cpa
CBCPAD

(k, t, qe, μe, qp) = max
A
{Advftg−po−cpa

CBCPAD,A (k)}

Immunising CBC Mode Against Padding Oracle Attacks 347

for any integers t, qe, μe, qp. The maximum is over all adversaries A with time
complexity t, making at most qe queries to the encryption oracle, totalling at
most μe bits, and qp queries to the padding oracle. The scheme is said to be
FTG-PO-CPA secure if Advftg−po−cpa

CBCPAD
is negligible for any adversary A whose

time complexity is polynomial in k.

2.4 One-Way Security

As we shall see, many padding methods are not secure in the above models,
but do provide a weaker form of security, in that they prevent an attacker using
access to a padding oracle to perform decryption (i.e. they prevent Vaudenay’s
original attack). We next define a notion of security appropriate to this weaker
requirement. Now the attacker’s challenge is to find the decryption of a challenge
ciphertext c∗. For simplicity of presentation, we focus here on the case where
this ciphertext is selected uniformly at random from the set of valid ciphertexts
having at most n +1 blocks, for some value n = n(k). This uniform distribution
on ciphertexts will in turn imply a padding-specific distribution D on the space
of unpadded messages. Our definition is easily extended to the case of arbitrary
distributions on this space.

Definition 6. [OW-PO-CPA] Consider the encryption scheme CBCPAD. Let
k ∈ N. Let A be an attacker that has access to the oracles E-CBCPAD,K(·) and
P(·). The game played is as follows

Experiment Expow-po-cpa
CBCP AD ,A(k)

K
r← K-CBC(k)

x
r← D

c∗ ← E-CBCPAD,K(x)
x′ ← AE-CBCPAD,K(·),P(·)(k, c∗)
return x′

The attacker wins when x′ = x and its advantage is defined to be:

Advow-po-cpa
CBCPAD,A

(k) = Pr[Expow-po-cpa
CBCPAD ,A(k) = x].

The advantage function of the scheme is defined to be:

Advow−po−cpa
CBCPAD

(k, t, qe, μe, qp) = max
A
{Advow−po−cpa

CBCPAD,A
(k)}

for any integers t, qe, μe, qp. The maximum is over all adversaries A with time
complexity t, making at most qe queries to the encryption oracle, totalling at
most μe bits, and qp queries to the padding oracle. The scheme is said to be
OW-PO-CPA secure if Advow−po−cpa

CBCPAD
is negligible for any adversary A whose

time complexity is polynomial in k.

Note that this model does allow us to study an adversary which strictly adheres
to Vaudenay’s original attack model, i.e. where the adversary makes no queries
to the encryption oracle (qe = μe = 0).

348 K.G. Paterson and G.J. Watson

2.5 Relations between Models

We can prove that the same relations between the models without padding
oracles, established in [1], also hold for these new models. Proofs of the following
results are given in the appendix.

Theorem 1. [ROR-PO-CPA ⇒ LOR-PO-CPA] For the encryption
scheme CBCPAD,

Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ 2.Advror-po-cpa
CBCPAD

(k, t, qe, μe, qp).

Theorem 2. [LOR-PO-CPA ⇒ ROR-PO-CPA] For the encryption
scheme CBCPAD,

Advror-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp).

Theorem 3. [LOR-PO-CPA ⇒ FTG-PO-CPA] For the encryption scheme
CBCPAD,

Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ Advftg-po-cpa
CBCPAD

(k, t, qe + 1, μe, qp).

Theorem 4. [FTG-PO-CPA ⇒ LOR-PO-CPA] For the encryption scheme
CBCPAD,

Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ qe.Advftg-po-cpa
CBCPAD

(k, t, qe, μe, qp).

This last result establishes that if a scheme has security in the Find-then-Guess
sense then it is secure in the Left-or-Right sense, but the security shown is
qualitatively lower.

3 Padding Methods for Chosen Plaintext Security

We are now ready to consider the security of the scheme CBCPAD[F] for par-
ticular functions PAD, DPAD and permutation families F , in the presence of
padding oracles. We recall that this scheme is already known to be insecure for
many padding methods [11,3]. We divide our study of padding methods into two
types:

– Padding methods with invalid paddings (|I| > 0);
– Padding methods with no invalid paddings (|I| = 0).

3.1 Padding Methods with Invalid Paddings

We recall the definition of the OZ-PAD method from Section 2.1. Here, the only
invalid padded messages are those where the last block of plaintext is the all-zero
block, 0l. Since the likelihood of being able to generate a ciphertext where the
last block of plaintext is 0l is low, this suggests that OZ-PAD used with CBC
mode may provide some form of security. However, an adversary can exploit this
fact when performing a padding oracle attack against CBC mode using OZ-PAD
in our LOR-PO-CPA attack model, as follows:

Immunising CBC Mode Against Padding Oracle Attacks 349

1. Choose any two distinct messages m0, m1 of length less than l.
2. Query the left-or-right encryption oracle on input (m0, m1) to obtain output

of the form y0y1.
3. Submit (y0⊕m0)y1 to the padding oracle P . If the response is 0, then return

b′ = 0, otherwise return b′ = 1.

This very simple attack was first presented by Black and Urtubia in [3]. It
shows that OZ-PAD, as recommended in ISO/IEC 10116:2006 is not secure in
the sense of indistinguishability of encryptions. This attack can be applied to
many other padding methods which have invalid paddings:

Lemma 1. Consider a padding method defined by functions PAD, DPAD. Let
V1, I1 be the sets of one-block valid and invalid messages respectively. Then the
encryption scheme CBCPAD is not LOR-PO-CPA secure if either of the following
conditions is satisfied:

1. |V1| > |I1| > 0; or
2. |V1| ≥ 3 and |V1|, |I1| are both odd.

Proof. We wish to perform a similar attack as was successful against CBC mode
with OZ-PAD in the LOR-PO-CPA model. In order to do this, we must find two
messages m0, m1 such that their padded versions p0, p1 ∈ V1 satisfy p0⊕m ∈ V1

and p1 ⊕m ∈ I1 for some mask m ∈ {0, 1}l: submitting (m0, m1) to the left-or-
right encryption oracle gives an output of the form y0y1, and then the response
of the padding oracle to input (y0 ⊕m)y1 will tell us which one of m0, m1 was
encrypted.

Proof of 1: Select p1 arbitrarily from V1 and any value i1 ∈ I1; let m1 =
DPAD(p1), and set m = p1 ⊕ i1, so p1 ⊕m = i1 ∈ I1. The map φm defined by
φm(x) = x⊕m is an injective map from V1 to {0, 1}l. So |φm(V1)| = |V1| > |I1|.
This shows that, no matter the value of m, there exists some p0 ∈ V1 with
p0 ⊕ m /∈ I1; hence p0 ⊕ m ∈ V1. Now let m0 = DPAD(p0). Thus we have
constructed two messages m0, m1 and a mask m with the required properties.

Proof of 2: Set p0, v to be any two distinct values from V1, and set m = p0 ⊕ v
and m0 = DPAD(p0). Clearly p0 ⊕m = v ∈ V1 and m �= 0l. We now wish to
construct p1 ∈ V1 satisfying p1 ⊕m ∈ I1, and take m1 = DPAD(p1). Suppose,
for a contradiction, that p1⊕m ∈ V1 for every p1 ∈ V1. Then, given that m �= 0l,
we can divide V1 into a covering of disjoint sets of size 2 of the form {p1, p2}
satisfying the equation p1 ⊕m = p2. This contradicts the fact that V1 has odd
cardinality. It follows that p1⊕m ∈ I1 for some choice of p1 and we are done. �

Perhaps surprisingly, this result shows that any padding method having small
(but non-zero) numbers of invalidly padded messages cannot be secure in the
sense of indistinguishability. It includes the method OZ-PAD as an extremal
case (|I1| = 1). However, as we shall see, padding methods having no invalid
padded messages at all (implying |I1| = 0) are actually immune to padding
oracle attacks, being secure in our LOR-PO-CPA sense.

350 K.G. Paterson and G.J. Watson

Despite CBC mode with OZ-PAD not having LOR-PO-CPA security, we can
prove that it satisfies our weaker notion of OW-PO-CPA security, assuming that
the permutation family F used in its construction is a one-way permutation
family (a concept which we define formally below). This implies that CBC mode
with OZ-PAD provably resists Vaudenay’s original attack under a rather mild
assumption about the permutation family F .

Definition 7. [One-way Permutation Family] Let F = {FK : K ∈ K} be
a permutation family, with input and output length l and k-bit key. Let A be an
adversary with access to an oracle for F as defined in the experiment below:

Experiment Expowp
F,A(k)

K
r← K

x
r← {0, 1}l, y ← FK(x)

x′ ← AFK(·)(y)
return x′

The advantage of the adversary A is defined to be:

Advowp
F,A(k) = Pr[Expowp

F,A = x].

The advantage function of the permutation family is defined to be:

Advowp
F (k, t, qF) = max

A
{Advowp

F,A(k)}

where the maximum is over all A with time complexity t, each making at most
qF queries to the oracle for FK .

We informally say that F is a one-way permutation family to indicate that
Advowp

F (k, t, qF) is “low” for “reasonable” values of t, qF .

Theorem 5. [Security of CBCPAD with OZ-PAD] Let F = {FK : K ∈ K}
be a permutation family on {0, 1}l with a k-bit key. Let PAD and DPAD be
the padding and depadding functions for OZ-PAD. Then CBCPAD[F] is OW-
PO-CPA secure if F is a one-way permutation family. Concretely, for any
t, qe, μe, qp, we have:

Advow-po-cpa
CBCPAD[F](k, t, qe, μe, qp) ≤ Advowp

F (k, t′, qF) +
1
2l

.

where t′ = O(t) and qF ≤ 1 + qp + qe(1 + μe/l).

Proof. Assume we have an adversary A1, attacking CBCPAD[F] in the OW-
PO-CPA sense. We assume that A1 should be given a challenge ciphertext c∗

that is selected uniformly at random from the set of valid ciphertexts having at
most n + 1 blocks, for some value n. We use this adversary to construct a new
adversary A2 that breaks the one-wayness of the permutation family F . A2’s
input is a value y = FK(x) where K and x are selected uniformly at random,
and its job is to output the value x given oracle access to FK .

Immunising CBC Mode Against Padding Oracle Attacks 351

In the following construction for the adversaryA2 we use its input y to construct
a ciphertext c∗ on which to challenge A1. A2 selects c∗ uniformly at random from
the set {0, 1}il : 1 ≤ i ≤ n + 1, subject to the constraint that the last block
of c∗ equals y. Thus we may write c∗ = y0y1 . . . yj for some j ≥ 1 and some l-
bit blocks yi, 0 ≤ i ≤ j, with yj = y. A2 then tests if FK(yj−1) = y by making a
query to its oracle for FK . If this equation holds, thenA2 has successfully inverted
FK at y, so outputs yj−1 and halts. Since y is uniformly distributed, this event
occurs with probability at most 2−l. Otherwise, we see that yj−1 ⊕ F−1

K (y) �= 0l,
meaning that c∗ is a valid ciphertext (because the last block of the underlying
plaintext is validly padded according to the OZ-PAD method). By construction,
c∗ is uniformly distributed over the set of valid ciphertexts having at most n + 1
blocks, and so can be given to A1 as its challenge ciphertext.

Now A2 needs to provide simulations of A1’s oracles.
To handle A1’s queries to the padding oracle P on input a (q + 1)-block

ciphertext c = c0c1 . . . cq, A2 acts as follows. A2 calls FK on cq−1 and compares
FK(cq−1) to cq. If FK(cq−1) = cq and so cq−1 ⊕ F−1

K (cq) = 0l, then A2 outputs
0 as the response to A1’s query; otherwise A2 outputs 1. We see that A2’s
simulation of padding oracle queries is perfect and requires one query to FK for
each query made by A1.

To handle A1’s queries to the encryption oracle on input an unpadded plain-
text m, A2 acts as follows. First it applies the OZ-PAD padding method to m to
obtain a padded plaintext m̃ = m̃1m̃2 . . . m̃q having q blocks for some q. Notice
that q is at most 1 + |m|/l where |m| denotes the bit-length of m. Then A2

selects y0
r← {0, 1}l and sets yi = FK(yi−1 ⊕ m̃i) for each 1 ≤ i ≤ q. Finally, A2

outputs y0y1 . . . yq. This is obviously a correct encryption of m for the scheme
CBCPAD[F] with permutation FK ∈ F . It is also easy to see that if A1 makes
at most qe encryption queries totalling at most μe bits, then A2 makes at most
qe(1 + μe/l) queries to its oracle for FK in handling these encryption queries.

The final output of A1 is a guess at the plaintext corresponding to the de-
cryption of c∗. Let b denote the last block of the OZ-PAD padded version of
A1’s output. If A1’s output is correct, then we have the decryption equation
b = yj−1 ⊕ F−1

K (y). From this equation we have F−1
K (y) = b ⊕ yj−1 and so A2

outputs b⊕yj−1 as its guess for x. We see that A2 is correct if A1 is. Hence A2’s
success probability is the same as A1’s.

Counting the total number of oracle queries made by A2 and estimating its
running time as O(t) completes the proof. �

From the above theorem, we can say that CBC mode used with OZ-PAD does offer
security against Vaudenay’s original attack. Despite this, and as we previously
showed, OZ-PAD does not offer security in the stronger indistinguishability sense
that we desire. We therefore recommend using a padding method which does offer
this greater level of security. We now turn our attention to such methods.

3.2 Padding Methods With No Invalid Paddings

We first provide some examples of padding methods which have no invalid
padded messages (i.e. |I| = 0).

352 K.G. Paterson and G.J. Watson

Black and Urtubia [3] suggest the use of the Arbitrary Tail padding method.
Below, we define both the bit- and byte-oriented versions of this padding method;
the latter only applies for messages that are guaranteed to be a whole number
of bytes, and so does not strictly comply with our bit-oriented definitions.

Definition 8. [Abit Pad] Study the last bit b of the message m. Pad the mes-
sage with the opposite of bit b. At least one padding bit must be added. For the
empty string m = ε, pad with either 0 or 1 with equal probability.

Note that we slightly alter Black and Urtubia’s original definition of Abit Pad
to pad the empty string with a randomly chosen bit 0 or 1. This eliminates the
possibility of 1l being an invalid padded message. With this modification, Abit
Pad has no invalid padded messages.

Definition 9. [Abyte Pad] For a message m with k complete bytes, study the
last byte X of the message m. Pick some distinct random byte Y and pad the
message with this byte. At least one padding byte must be added.

Again, Abyte Pad has no invalid padded messages.
We prove the following simple result concerning the security of all padding

methods which have no invalid padded messages.

Theorem 6. [Security of CBCPAD for a padding method containing
no invalid paddings] Suppose F is a permutation family with length l. Let
PAD, DPAD be the padding and depadding functions for some padding method
with no invalid paddings. If CBC is LOR-CPA secure then CBCPAD is LOR-
PO-CPA secure. Concretely, for any t, qe, qp, μe

Advlor-po-cpa
CBCPAD[F](k, t, qe, μe, qp) ≤ Advlor-cpa

CBC[F](k, t, qe, μe).

Proof. Assume we have an adversary A1 that attacks CBCPAD in the LOR-
PO-CPA sense. We then use this adversary to construct a new adversary A2 to
attack CBC in the LOR-CPA sense.
A2 will use its encryption oracle to provide a simulation of A1’s encryption

oracle on input x. A2 first runs PAD on x, and sends the padded message
to its encryption oracle, so E-CBCK,PAD(x) = E-CBCK(PAD(x)). Since the
padding method being used has no invalid padded messages this means that
any chosen ciphertext corresponds to a valid padded plaintext and so A2 models
A1’s padding oracle by returning 1 to any query. Finally, A2 outputs whatever
A1 outputs. It is evident that A2’s success probability is equal to that of A1 and
the result follows. �

Note that this theorem can be strengthened to show that

Advlor-po-cpa
CBCPAD[F](k, t, qe, μe, qp) = Advlor-cpa

CBC[F](k, t, qe, μe)

under the assumption that the padding method satisfies PAD(DPAD(y)) = y
for all y. Any deterministic padding scheme meets this requirement.

Immunising CBC Mode Against Padding Oracle Attacks 353

From the results of Bellare et al. [1], we know that CBC mode without padding
is secure in the LOR-CPA sense if F is a pseudo-random permutation family.
From the above theorem, we see that CBCPAD[F] is secure in the LOR-PO-CPA
sense under the same condition on F , for any padding method having |I| = 0.
Given their strong security guarantees, we therefore recommend the use of the
methods such as the Abit Pad method with CBC mode.

4 Conclusion

In this paper we have extended existing security models for CBC mode encryp-
tion to incorporate padding and attacks based on padding oracles in the chosen
plaintext setting. We have then used these models to study the security of par-
ticular padding methods. We proved that, for a large number of padding meth-
ods where invalid padded messages do exist, a trivial attack can be performed
against CBC mode using such a method. We showed that the OZ-PAD method
recommended for use with CBC mode in ISO/IEC 10116:2006 provably resists
Vaudenay’s original padding oracle attack, even though it does not attain our
strongest indistinguishability notion. We also showed that any padding method
that has no invalid padded messages automatically achieves immunity against
padding oracle attacks, as it meets our IND-PO-CPA notion when combined
with CBC mode encryption built using a pseudo-random permutation family.
The Abit pad method is a very simple padding method with this property.

Given the results of this paper, we suggest that any future version of the
ISO/IEC 10116 standard be revised to recommend the use of a padding method
such as Abit pad in place of OZ-PAD.

In a companion paper to this, we further develop the theory of padding oracle
attacks and security models to cover the case of CCA security. We also examine
the question of how encryption and padding should be combined with integrity
protection in order to provably defeat padding oracle attacks, even in the face
of imperfect implementations of the type studied in [5].

References

1. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A concrete security treatment of
symmetric encryption. In: Proceedings of 38th Annual Symposium on Foundations
of Computer Science (FOCS 1997), pp. 394–403. IEEE, Los Alamitos (1997)

2. Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the
ssh authenticated encryption scheme: A case study of the encode-then-encrypt-
and-MAC paradigm. ACM Transactions on Information and Systems Security 7,
206–241 (2004)

3. Black, J., Urtubia, H.: Side-channel attacks on symmetric encryption schemes: The
case for authenticated encryption. In: Proceedings of the 11th USENIX Security
Symposium, San Francisco, CA, USA, August 5-9, 2002, pp. 327–338 (2002)

4. Boldyreva, A., Kumar, V.: Provable-security analysis of authenticated encryption
in kerberos. In: IEEE Symposium on Security and Privacy, pp. 92–100. IEEE Com-
puter Society, Los Alamitos (2007)

354 K.G. Paterson and G.J. Watson

5. Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password interception in
a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
583–599. Springer, Heidelberg (2003)

6. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-only
configurations. In: IEEE Symposium on Security and Privacy, pp. 335–349. IEEE
Computer Society, Los Alamitos (2007)

7. Kent, S.: IP encapsulating security payload (ESP). RFC 4303 (December 2005)

8. Krawczyk, H.: The order of encryption and authentication for protecting commu-
nications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 310–331. Springer, Heidelberg (2001)

9. Mitchell, C.J.: Error oracle attacks on CBC mode: Is there a future for CBC mode
encryption? In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS,
vol. 3650, pp. 244–258. Springer, Heidelberg (2005)

10. Paterson, K.G., Yau, A.K.L.: Padding oracle attacks on the ISO CBC mode en-
cryption standard. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
305–323. Springer, Heidelberg (2004)

11. Vaudenay, S.: Security flaws induced by CBC padding – applications to SSL,
IPSEC, WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (2002)

12. Yau, A.K.L., Paterson, K.G., Mitchell, C.J.: Padding oracle attacks on CBC-mode
encryption with secret and random IVs. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 299–319. Springer, Heidelberg (2005)

13. Zhou, Y., Feng, D.: Side-channel attacks: Ten years after its publication and the
impacts on cryptographic module security testing. Cryptology ePrint Archive, Re-
port 2005/388 (2005), http://eprint.iacr.org/

Appendix

Proof (of Theorem 1). Assume A1 is an adversary attacking CBCPAD in the
LOR-PO-CPA sense. We can use this adversary to construct a new adversary
A2 attacking CBCPAD in the ROR-PO-CPA sense.

Let E2(·) be A2’s encryption oracle and P(·) its padding oracle. A2 will run
A1 using its oracles to provide a simulation of A1’s oracles.

For b ∈ {0, 1} and any x0, x1, we define E1(LR(x0, x1, b)) to be E2(xb). So when
A1 queries its encryption oracle with E1(LR(x0, x1, b)) then A2 will respond with
the response given by the output given by its oracle for E2(xb).

Algorithm AE2(·),P(·)
2 (k)

let b
r← {0, 1}

if b = 0 then d ← AE1(LR(·,·,0)),P(·)
1 (k)

else d ← AE1(LR(·,·,1)),P(·)
1 (k)

if b = d return 1
else return 0

Now we find A2’s advantage. We have:

Advror-po-cpa
CBCPAD,A2

(k) = Pr[Expror-po-cpa-1
CBCPAD,A2

(k) = 1]− Pr[Expror-po-cpa-0
CBCPAD,A2

(k) = 1]

 http://eprint.iacr.org/

Immunising CBC Mode Against Padding Oracle Attacks 355

Let us first consider Pr[Expror-po-cpa-0
CBCPAD,A2

(k) = 1]. In this case the encryption ora-
cle E2(·) = E2(RR(xb, 0)) returns the encryption of a randomly chosen plaintext
r. Therefore since we defined E1(LR(x0, x1, b)) to be E2(xb), this means that
E1(LR(x0, x1, 0)) and E1(LR(x0, x1, 1)) return identically distributed answers
for any (x0, x1). The encryption oracle for this case therefore only outputs ci-
phertexts of randomly chosen plaintexts. This means that the padding oracle
can only be called on a randomly generated ciphertext or on the random out-
put from the encryption oracle. The Padding Oracle therefore only provides
information relating to the random ciphertext and its underlying plaintext and
does not output any information which can be used to distinguish between the
plaintext inputs x0, x1. We can therefore say that any input from the Padding
Oracle is independent of the bit b. Thus the Padding Oracle gives no assistance
in determining xb. Therefore Pr[Expror-po-cpa-0

CBCPAD,A2
(k) = 1] = 1

2 . Hence,

Advror-po-cpa
CBCPAD,A2

= Pr[Expror-po-cpa-1
CBCPAD,A2

(k) = 1]− 1
2

= 1
2 Pr[Explor-po-cpa-1

CBCPAD,A1
(k) = 1]− 1

2 Pr[Explor-po-cpa-0
CBCPAD,A1

(k) = 0]− 1
2

= 1
2 Pr[Explor-po-cpa-1

CBCPAD,A1
(k) = 1]− 1

2 (1 − Pr[Explor-po-cpa-0
CBCPAD,A1

(k) = 1])− 1
2

= 1
2 (Pr[Explor-po-cpa-1

CBCPAD,A1
(k) = 1]− Pr[Explor-po-cpa-0

CBCPAD,A1
(k) = 1])

= 1
2Advlor-po-cpa

CBCPAD,A1

Since Expror-po-cpa-1
CBCPAD,A2

(k) = 1 provides a perfect simulation of A1 against the
LOR-PO-CPA game. The algorithm simulating A2 outputs 1 only when b = d
and this is the same as A1 winning the LOR-PO-CPA game.

Since A1 is an arbitrary adversary we have,

Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ 2.Advror-po-cpa
CBCPAD

(k, t, qe, μe, qp). �

Proof (of Theorem 2). Assume A2 is an adversary attacking CBCPAD in the
ROR-PO-CPA sense. We can use this adversary to construct a new adversary
A1 attacking CBCPAD in the LOR-PO-CPA sense.

Let E1(·) be A1’s encryption oracle and P(·) its padding oracle. A1 will run
A2 using its oracles to provide a simulation of A2’s oracles.

For any x ∈ {0, 1}∗, define E2(x) to be E1(r, x), where r is chosen randomly
for each call to the oracle. So when A2 queries its encryption oracle with E2(x)
then A1 will respond with the response given by the output given by its oracle
for E1(r, x).

Algorithm AE1(·,·),P(·)
1 (k)

return AE2(·),P(·)
2 (k)

If A2’s hidden bit b is 0, then all responses from the encryption oracle are
random and this corresponds to the left response in A1’s encryption oracle.
Similarly, if A2’s hidden bit b is 1, then all responses are real and this corresponds
to the right response in A1’s encryption oracle. So A1’s advantage will be:

356 K.G. Paterson and G.J. Watson

Advlor-po-cpa
CBCPAD,A1

(k) = Pr[Explor-po-cpa-1
CBCPAD,A1

(k) = 1]− Pr[Explor-po-cpa-0
CBCPAD,A1

(k) = 1]
= Pr[Expror-po-cpa-1

CBCPAD,A2
(k) = 1]− Pr[Expror-po-cpa-0

CBCPAD,A2
(k) = 1]

= Advror-po-cpa
CBCPAD,A2

(k)

Since A2 is an arbitrary adversary we have,

Advror-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp). �

Proof (of Theorem 3). Assume A3 is an adversary attacking CBCPAD in the
FTG-PO-CPA sense. We can use this adversary to construct a new adversary
A1 attacking CBCPAD in the LOR-PO-CPA sense.

Let E1(·) be A1’s encryption oracle and P(·) its padding oracle. A1 will run
A3 using its oracles to provide a simulation of A3’s oracles.

For any x ∈ {0, 1}∗, define E3(x) to be E1(x, x). So when A3 queries its
encryption oracle with E3(x) then A1 will respond with the response given by
the output given by its oracle for E1(x, x).

Algorithm AE1(·,·),P(·)
1 (k)

Let (x0, x1, s) ← AE3(·,·),P(·)
3 (k, find)

return AE3(·),P(·)
3 (k, guess, E1(x0, x1), s)

If A3’s hidden bit b is 0, then all responses from the encryption oracle cor-
respond to the left response in A1’s encryption oracle. Similarly, if A2’s hidden
bit b is 1, then all responses correspond to the right response in A1’s encryption
oracle. So A1’s advantage will be:

Advlor-po-cpa
CBCPAD,A1

(k) = Pr[Explor-po-cpa-1
CBCPAD,A1

(k) = 1]− Pr[Explor-po-cpa-0
CBCPAD,A1

(k) = 1]
= Pr[Expftg-po-cpa-1

CBCPAD,A3
(k) = 1]− Pr[Expftg-po-cpa-0

CBCPAD,A3
(k) = 1]

= Advftg-po-cpa
CBCPAD,A3

(k)

Since A3 is an arbitrary adversary we have:

Advlor-po-cpa
CBCPAD

(k, t, qe, μe, qp) ≤ Advftg-po-cpa
CBCPAD

(k, t, qe + 1, μe, qp). �
Proof (of Theorem 4). Assume A1 is an adversary attacking CBCPAD in the
LOR-PO-CPA sense. We can use this adversary to construct a new adversary
A3 that attacks CBCPAD in the FTG-PO-CPA sense.

Let E3(·) be A3’s encryption oracle and P(·) its padding oracle. A3 will run
A1 using its oracles to provide a simulation of A1’s oracles.

For b ∈ {0, 1} and any x0, x1, we define E1(LR(x0, x1, b)) to be E3(xb). So when
A1 queries its encryption oracle with E1(LR(x0, x1, b)) then A3 will respond with
the output given by its oracle for E3(xb).

Algorithm AE3(·),P(·)
3 (k, find)

– Let i
r← {1, . . . , qe}

– Run A1 answering its encryption oracle queries with E1(LR(·, ·, 0)) = E3(x0)
and any padding oracle queries with P(·), until the i-th encryption oracle
query, which we denote (xi

0, x
i
1). (Where A1 has made the query and is

waiting for the oracle to respond.) A1’s state at this point is denoted by s.
– return (xi

0, x
i
1, s)

Immunising CBC Mode Against Padding Oracle Attacks 357

Now A3’s challenger selects a bit b
r← {0, 1} and gives A3 the value y, where

y = E3(xb).

Algorithm AE3(·),P(·)
3 (k, guess, y, s)

– Resume execution of A1 in state s by answering the i-th encryption query
(xi

0, x
i
1) with y then stop before another oracle query is made.

(Note: y = E1(LR(xi
0, x

i
1, b)) = E3(xi

b))
– Continue execution of A1, answering all encryption oracle queries now with
E1(LR(·, ·, 1)) = E3(x1) and any padding oracle queries with P(·), until A1

halts.
– if A1 outputs 1 then return 1, else return 0

Now define a sequence of qe + 1 experiments, for j = 0, . . . , qe:

Experiment Exphyb-atk-j
CBCPAD,A1

(k)
K

r← K(k)
Run A1

Answer first j encryption oracle queries of A1 by E1(LR(·, ·, 0))
Answer the remaining encryption oracle queries by E1(LR(·, ·, 1))
Answer any padding oracle queries by P(·)
return output of A1

We can now think of the experiment Expftg-po-cpa-b
CBCPAD,A3

(k) in terms of this new
experiment Exphyb-atk-j

CBCPAD,A1
(k). If b = 0 then y = CBCK(xi

0) and so the first i+1
responses from A1’s encryption oracle are E1(LR(·, ·, 0)), while the remaining
responses are E1(LR(·, ·, 1)). Therefore A1’s output will be the same as the
output of Exphyb-atk-i+1

CBCPAD,A1
(k).

On the other hand if b = 1 then y = CBCK(xi
1) and so the first i responses

from A1’s encryption oracle are E1(LR(·, ·, 0)), while the remaining responses
are E1(LR(·, ·, 1)). Therefore A1’s output will be the same as the output of
Exphyb-atk-i

CBCPAD,A1
(k).

Note that there are two special cases of this new experiment
Exphyb-atk-j

CBCPAD,A1
(k). If j = 0 then the experiment is the same as an LOR-PO-

CPA game when the random bit b is 0. Similarly, if j = qe then the experiment
is the same as an LOR-PO-CPA game when the random bit b is 1.

Since i is chosen at random from {1, . . . , qe}, A3’s advantage is determined as
the average of all the advantages over the random choice of i. Hence:

Advftg-po-cpa
CBCPAD,A3

(k)
= 1

qe
.
∑qe−1

i=0 (Pr[Exphyb-atk-i
CBCPAD,A1

(k) = 1]− Pr[Exphyb-atk-i+1
CBCPAD,A1

(k) = 1])
= 1

qe
.(Pr[Exphyb-atk-0

CBCPAD,A1
(k) = 1]− Pr[Exphyb-atk-qe

CBCPAD,A1
(k) = 1])

= 1
qe

.(Pr[Explor-po-cpa-1
CBCPAD,A1

(k) = 1]− Pr[Explor-po-cpa-0
CBCPAD,A1

(k) = 1])
= 1

qe
.Advlor-po-cpa

CBCPAD,A1
(k)

Since A1 is an arbitrary adversary, the claimed relation holds. �

Constructing Strong KEM from Weak KEM

(or How to Revive the KEM/DEM Framework)

Joonsang Baek1, David Galindo2, Willy Susilo3,
and Jianying Zhou1

1 Cryptography and Security Department
Institute for Infocomm Research, Singapore

{jsbaek,jyzhou}@i2r.a-star.edu.sg
2 Computer Science Department, University of Malaga

dgalindo@lcc.uma.es
3 Centre for Computer and Information Security Research

School of Computer Science and Software Engineering
University of Wollongong, Australia

wsusilo@uow.edu.au

Abstract. We propose a generic method that transforms a weakly
secure KEM, i.e. a KEM which is secure against constrained chosen ci-
phertext attack (CCCA), to a strongly secure KEM, i.e. a KEM which
is secure against full chosen ciphertext attack (CCA). The proposed
method does not depend on the random oracle nor any other non-
standard assumptions. Using this method, we obtain new efficient hybrid
encryption schemes based on Kurosawa&Desmedt and Hofheinz&Kiltz
weakly secure KEMs. These are the first hybrid encryption schemes
which are as efficient as Kurosawa&Desmedt and Hofheinz&Kiltz en-
cryption schemes, but whose security can be explained in the original
KEM/DEM framework.

1 Introduction

1.1 Motivation

As a systematic approach to build hybrid public key encryption schemes1, the
KEM/DEM (Key Encapsulation Mechanism/Data Encryption Mechanism)
framework was introduced by Cramer and Shoup [9]. The KEM/DEM frame-
work captures the most basic intuition about hybrid encryption schemes: the
KEM on input a public key as input generates a DEM-key and the DEM en-
crypts a plaintext message using the DEM-key generated by the KEM. In terms
of security, [9] shows that if the KEM is secure against chosen ciphertext attack
(CCA-secure) and DEM is one-time CCA-secure, the resulting hybrid encryption
scheme is CCA-secure2.
1 Hereinafter, we simply call them “hybrid encryption schemes”.
2 The term CCA-secure is somewhat abused here, since it has different (but related)

meanings depending on whether it refers to public key encryption, KEM or DEM
schemes.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 358–374, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Constructing Strong KEM from Weak KEM 359

However, it turned out the CCA-security for both KEM and DEM is not a
necessary condition but a mere sufficient one. One of the famous examples is
Kurosawa and Desmedt’s [17] hybrid encryption scheme: Although the KEM
part of Kurosawa and Desmedt’s hybrid encryption scheme is not CCA-secure
as shown in [14], the hybrid encryption scheme itself is proven to be CCA-
secure [17,13]. It seemed that the KEM/DEM framework had to be modified or
extended to capture a larger class of hybrid encryption schemes.

Indeed, Abe et al. [1,2] introduced another framework, called “Tag-KEM/
DEM”. Different from the normal KEM, the Tag-KEM takes arbitrary string
called “tag” as input. In the Tag-KEM/DEM framework, the DEM part becomes
a tag. It was shown in [2] that the CCA-security of Kurosawa and Desmedt’s hy-
brid encryption scheme can fully be explained in the Tag-KEM/DEM framework.

Recently, Hofheinz and Kiltz [15] proposed another framework which combines
a KEM secure against “constrained chosen ciphertext attack (CCCA)”, which is
weaker than usual CCA on KEM3, with a DEM which is one-time secure authen-
ticated encryption (AE-OT) to yield a CCA-secure hybrid encryption scheme.

One advantage of the KEM/DEM framework, as noted in [11], is that the
security requirements of the asymmetric and symmetric parts of the hybrid en-
cryption scheme can be completely separated and studied independently. Addi-
tionally, as pointed out in [22] and [2], the KEM/DEM framework is suitable
for streaming applications since the receiver does not need to buffer the entire
ciphertext. Indeed, the KEM/DEM approach to construct hybrid encryption
schemes has gained popularity among researchers and has been supported by
several standards including the ISO/IEC standard on public key encryption [16].

We argue that in spite of the new frameworks’ effectiveness in explaining some
hybrid encryption schemes, the original KEM/DEM framework is still very attrac-
tive as it is standardized, it allows “stream processing” and gives the users flexi-
bility in choosing the symmetric encryption algorithm for DEM. On the contrary,
the Tag-KEM/DEM framework does not provide stream processing in general and
the new framework proposed in [15] requires DEM to be one-time AE-OT, which
is strictly stronger than one-time CCA-secure symmetric encryption.

Last but not least, there is in our opinion a pedagogical reason for stick-
ing to the original KEM/DEM framework. The KEM/DEM framework is in-
tuitive and easier to understand by the general information security public, in
particular by implementors. We think there is no need for individuals outside
the cryptographic community to update their cryptographic knowledge at every
new theoretical advancement. Providing intuitive sound and stable cryptographic
frameworks could help to obtain less error-prone end-systems.

1.2 Our Contributions

First, we present a simple but useful method that transforms a CCCA-secure
KEM to a CCA-secure KEM. The basic idea behind this transformation is to

3 Readers are referred to Section 2.1 for the detailed reviews on the CCA and CCCA
notions of KEM.

360 J. Baek et al.

authenticate the ciphertext output by the CCCA-secure KEM using a secure
Message Authentication Code (MAC) with a (symmetric) key generated by the
CCCA-secure KEM.

Since the KEM parts of both Kurosawa and Desmedt’s [17], and Hofheinz and
Kiltz’s [15] hybrid encryption schemes are known to be CCCA-secure [15], our
transformation yields two new CCA-secure KEMs based the Decisional Diffie
Hellman (DDH) problem. We discuss in Section 4.2 that these KEM schemes
are the most efficient CCA-secure KEMs in the literature to our knowledge.

We also obtain new hybrid encryption schemes by combining our new KEM
schemes with any one-time CCA-secure DEMs. However, a particular interest-
ing case is when they are combined with length-preserving CCA-secure DEMs
[18,21]. In this case, the resulting hybrid encryption schemes are as efficient
as Kurosawa-Desmedt’s [13]4 and Hofheinz and Kiltz’s [15] hybrid encryption
schemes in terms of ciphertext length and computation time. In contrast to the
latter, the CCA-security of the new schemes can be explained in the original
KEM/DEM framework.

1.3 Further Discussion on Related Work

The concept of chosen ciphertext security for public key encryption was first
introduced by Naor and Yung [19] and further developed by Dolev, Dwork and
Naor [12]. Relations between the non-malleability and indistinguishability frame-
works for chosen ciphertext security were clarified by Bellare et al. [4]. As men-
tioned previously, the KEM/DEM framework for constructing hybrid encryption
was introduced by Cramer and Shoup [9].

After the KEM/DEM framework emerged, Abe et al. [1] proposed a new
framework, called “Tag-KEM/DEM”. Different from KEMs, the encapsulation
algorithm [1,2] of a Tag-KEM takes an arbitrary string called “tag” as input Sub-
sequently, a hybrid encryption scheme can be built regarding a DEM ciphertext
as a tag [1].

More recently, Hofheinz and Kiltz [15] introduced a new security notion for
KEM, “security against constrained chosen ciphertext attacks (CCCA)”. This
notion is weaker than the normal chosen ciphertext security for KEM. In CCCA
an attacker makes a decapsulation query by presenting a ciphertext together with
a boolean predicate, which represents some a-priori knowledge about the decap-
sulated key. Hofheinz and Kiltz showed that a hybrid encryption scheme in which
a DEM encrypts a plaintext message using a key output by the CCCA-secure
KEM is CCA-secure if the underlying DEM is a one-time secure authenticated
encryption scheme (AE-OT secure). However, as pointed out in Appendix D of

4 The original construction of Kurosawa and Desmedt’s hybrid encryption scheme
given in [17] is based on the information theoretically secure key derivation function
(KDF) and message authentication code (MAC). In [13], it is shown that these
primitives can be replaced by computationally secure ones. Throughout this paper,
“Kurosawa and Desmedt’s hybrid encryption scheme” refers to the scheme with
computationally secure KDF and MAC discussed in [13].

Constructing Strong KEM from Weak KEM 361

[15], authenticated encryption is a strictly stronger security notion than chosen-
ciphertext security for symmetric encryption as shown in [5]. Moreover, length-
preserving authenticated encryption does not exist while length-preserving CCA-
secure symmetric encryption does.

As a variant of Kurosawa and Desmedt’s KEM scheme, Okamoto [20] proposed
a new KEM scheme. Although this KEM scheme is validity-check-free, it requires
a special type of pseudo random function, called “πPRF”. However constructing
a πPRF family is still an open problem [20].

2 Preliminaries

In this section, we review the primitives used throughout this paper.
First, we introduce some notations. We use the notation A(·, . . . , ·) to de-

note an algorithm, with input arguments separated by commas. (Note that
our underlying computational model is a probabilistic Turing Machine.) We use
a ← A(x1, . . . , xn) to denote the assignment of an element from the output of A
on input (x1, . . . , xn) to the variable a. By “

par→” we denote “parsing operation”.
For instance, a

par→ (b, c) means that a string a is parsed as (b, c).

2.1 Key Encapsulation Mechanism (KEM) and Its Security Notions

Key Encapsulation Mechanism (KEM). The KEM scheme, denoted KEM, con-
sists of the following algorithms [9,22,16].

– KEM.Gen(1λ): A probabilistic algorithm that generates a public/private key
pair (pk, sk).

– KEM.Encap(pk): A probabilistic algorithm that generates a ciphertext/key
pair (φ, K).

– KEM.Decap(sk, φ): An algorithm that outputs either a key K or a special
symbol ⊥ (meaning “reject”).

CCA-Security for KEM. The security notion for KEM against (adaptive) cho-
sen ciphertext attack, is defined as follows. Let A be an attacker. Consider the
following game in which A interacts with the challenger.

Phase 1: The challenger runs the key generation algorithm providing 1λ

as input to generate a public/private key pair (pk, sk). The challenger then
computes a challenge ciphertext φ∗ and a key K∗

1 by running the encapsu-
lation algorithm. It also picks K∗

0 ∈ SK at random, where SK denotes the
key space. It then picks β ∈ {0, 1} at random and gives (pk, φ∗, K∗

β) to A.
Phase 2: A submits ciphertexts, each of which is denoted by φ. On receiving
φ, the challenger runs the decapsulation algorithm on input φ and passes the
resulting decapsulation to A. At the end of this phase, A outputs its guess
β′ ∈ {0, 1}.

362 J. Baek et al.

We define the attacker A’s success probability by

AdvCCA
A,KEM(λ) =

∣∣∣Pr[β′ = β]− 1
2

∣∣∣.

We say that KEM is CCA-secure if AdvCCA
KEM (λ) = maxA

{
AdvCCA

A,KEM(λ)
}

is
negligible for any attacker A.

Constrained CCA-Security for KEM. Hofheinz and Kiltz [15] defined a new se-
curity notion for KEM, called constrained chosen-ciphertext security (CCCA).
This is a relaxed security notion in which an attacker is allowed to make a de-
capsulation query only if it has some a-priori knowledge about the decapsulated
key. This is modeled by letting the attacker specify an efficiently computable
boolean predicate pred : SK → {0, 1}, where SK denotes the key space of key
K embedded in a given ciphertext φ. Then, the decapsulated key K is returned
only if pred(K) = 1; otherwise ⊥ is returned.

Formally, let A be the attacker. On receiving the decapsulation query con-
sisting on a pair of ciphertext and predicate (φ, pred), the “constrained decap-
sulation oracle” CDecap outputs K = KEM.Decap(sk, φ) if pred(K) = 1 and
otherwise it outputs ⊥. Now consider the following game.

Phase 1: The challenger runs the key generation algorithm providing 1λ

as input to generate a public/private key pair (pk, sk). The challenger then
computes a challenge ciphertext φ∗ and a key K∗

1 by running the encapsu-
lation algorithm. It also picks K∗

0 ∈ SK at random. It then picks β ∈ {0, 1}
at random and gives (pk, φ∗, K∗

β) to A.
Phase 2: A submits a pair of ciphertext and predicated, each of which is
denoted by (φ, pred), where φ �= φ∗. On receiving (φ, pred), the challenger
runs CDecap on input (φ, pred) and passes the resulting decapsulation to A.
At the end of this phase, A outputs its guess β′ ∈ {0, 1}.
We define the attacker A’s success probability by

AdvCCCA
A,KEM(λ) =

∣∣∣Pr[β′ = β]− 1
2

∣∣∣.

Notice that this notion becomes CCA (for KEM) when “pred” always outputs 1
for any input but is equivalent to the confidentiality against passive attack when
“pred” always outputs 0 for any input. Hence, in general, CCCA is weaker than
CCA. Indeed, admissible predicates must satisfy that the amount of uncertainty
the attacker has about the key is negligible. Formally, let QA denote the number
of decapsulation queries made by the attacker A. Then for attacker A in the
above experiment we define plaintext uncertainty uncertA(λ) as follows:

uncertA(λ) =
1

QA

∑
1≤i≤QA

Pr[predi(K) = 1 | K $← SK]

where predi : SK → {0, 1} is the predicateA submits with the i-th decapsulation
query. An attacker A is said to be “valid” if uncertA(λ) is negligible in λ. We say

Constructing Strong KEM from Weak KEM 363

that KEM is CCCA-secure if AdvCCCA
KEM (λ) = maxA

{
AdvCCCA

A,KEM(λ)
}

is negligible
for any admissible attacker A.

We remark that before the CCCA notion was defined, Abe et al. [2] had de-
fined a very similar notion called “LCCA”. In LCCA, an attacker also has access
to the “restricted decapsulation oracle”, which outputs a key (decapsulation) of
a queried ciphertext only when a certain predicate taking the key as input re-
turns 1. They showed that the KEM part of Kurosawa and Desmedt’s hybrid
encryption scheme is actually LCCA-secure. We note that our KEM construction
based on the CCCA-secure KEM, which will be presented in the next section, is
still secure even if the underlying KEM is assumed to be LCCA-secure. However,
due to its rigor (e.g. precise definition of uncertainty), we use the CCCA notion.

2.2 Message Authentication Code and Key Derivation Function

Message Authentication Code. Let MAC = (MAC.Sign, MAC.Ver) be a MAC
(Message Authentication Code) scheme whose key space Sκ is defined by the
security parameter λ. On input (κ, m), where κ(∈ Sκ) and m denote a MAC
key and a message resp., MAC.Sign produces a MAC (tag) σ. On input (κ, σ, m),
MAC.Ver outputs 1 if (σ, m) is valid with respect to κ, or outputs 0, otherwise.

In the literature, there exist several unforgeability notions for MAC. The
one we need in this paper is “strong unforgeability under chosen message at-
tack (SUF-CMA)” [5], which can be defined as follows. Given access to the
oracle MAC.Sign(κ, ·) where κ is chosen uniformly at random from Sκ, an at-
tacker A outputs (m, σ) such that MAC.Ver(κ, σ, m) = 1 and σ was never re-
turned by MAC.Sign(κ, ·). We define the attacker A’s success probability by
AdvSUF-CMA

A,MAC (λ). As usual, we say that MAC is SUF-CMA secure if
AdvSUF-CMA

MAC (λ) = maxA
{
AdvSUF-CMA

A,MAC (λ)
}

is negligible for any admissible at-
tacker A.

Though this notion seems stronger than usual UF-CMA notion for MAC, as
pointed out in [5], any pseudorandom function (PRF) is a SUF-CMA secure
MAC, and many practical MAC schemes, e.g., HMAC and CBC-MAC are actu-
ally SUF-CMA secure.
Key Derivation Function. Also, we will need the key derivation function [9,13],
denoted KDF, for our construction of the KEM scheme. KDF satisfies the fol-
lowing security requirement, called “real or random (ROR)”. Assume that KDF
takes an element a chosen uniformly at random from the appropriate domain
Sa. Let l be the length of the output of KDF, which depends on the security
parameter λ. We define the security of KDF in the ROR sense, with respect to
an attacker A, as follows.

AdvROR
A,KDF(λ) = |Pr[a $← Sa : 1 ← A(1λ, KDF(a))]

− Pr[a $← Sa; μ R← {0, 1}l : 1← A(1λ, μ)]|.

We say that KDF is ROR-secure if AdvROR
KDF (λ) = maxA

{
AdvROR

A,KDF(λ)
}

is
negligible for any admissible attacker A.

364 J. Baek et al.

3 Our Construction of CCA-Secure KEM from
CCCA-Secure KEM

Description. Let KEM′ = (KEM′.Gen, KEM′.Encap, KEM′.Decap) be a KEM
scheme. Let MAC = (MAC.Sign, MAC.Ver) be a MAC scheme; and let KDF :
SK̃ → SK × Sκ be a key derivation function, where SK̃ denotes the key space
of KEM′; SK denotes the key space of the resulting KEM scheme KEM (i.e.,
the key space of a given DEM scheme); and Sκ denotes the key space of the
MAC scheme MAC. Based on these primitives, we construct a new KEM scheme
KEM = (KEM.Gen, KEM.Encap, KEM.Decap) as described in Figure 1.

KEM.Gen(1λ) KEM.Encap(pk) KEM.Decap(sk, φ)

(pk′, sk′) ← KEM′.Gen(1λ)
Select KDF and MAC
pk ← (pk′, KDF, MAC)
sk ← sk′

Return (pk, sk)

pk
par→ (pk′, KDF, MAC)

(θ, K̃) ← KEM′.Encap(pk′)
(K, κ) ← KDF(K̃)
σ ← MAC.Sign(κ, θ)
φ ← (θ, σ)
Return (φ, K)

sk
par→ sk′

φ
par→ (θ, σ)

K̃ ← KEM′.Decap(sk′, θ)
(K, κ) ← KDF(K̃)
If MAC.Ver(κ, σ, θ) = 1
then return K
Else return ⊥

Fig. 1. Our Generic Construction of CCA-Secure KEM from CCCA-Secure KEM

We note that the above technique of applying a MAC to a ciphertext has widely
been used in the literature. For example, Boneh and Katz [7] used a similar tech-
nique to convert an identity-based encryption scheme to a CCA-secure (normal)
publickey encryption scheme.Another example is“Encrypt-then-MAC” construc-
tion of authenticated encryption given in [5].Our construction shows that this pow-
erful technique also canyield a conversion from CCCA-secureKEM to CCA-secure
KEM.

Security Analysis. We show that the generic construction of KEM presented in
Figure 1 is CCA-secure assuming that the underlying KEM′, MAC and KDF
schemes are secure in the sense defined in the previous section. More precisely,
we prove the following theorem.

Theorem 1. If KEM′ is CCCA-secure; MAC is SUF-CMA secure; and KDF is
ROR-secure, the scheme KEM described in Figure 1 is CCA-secure. That is, we
obtain the following bounds:

AdvCCA
KEM (λ) ≤ 4AdvCCCA

KEM′ (λ) + 5AdvROR
KDF (λ) + qDAdvSUF-CMA

MAC (λ),

where λ denotes the security parameter and qD denotes the number of decapsu-
lation queries.

The proof is given in Appendix A.

Constructing Strong KEM from Weak KEM 365

4 Applications of Our KEM Construction

4.1 New CCA-Secure KEMs from Well-Known CCCA-Secure
KEMs

Using our method that transforms CCCA-secure KEM to CCA-secure KEM, one
obtains new CCA-secure KEM schemes from the well-known CCCA-secure KEM
schemes in the literature, the Kurosawa-Desmedt KEM [17] and the Hofheinz-
Kiltz KEM [15] schemes.

First we describe the new KEM scheme KDKEM, which is constructed using
the Kurosawa-Desmedt KEM scheme. Let G be a finite group, generated by g1

and g2. Assume that the order of this group is p, a prime, and that DDH problem
is hard in this group. (The formal definition of the DDH problem can be found in
Appendix B.) Also, assume that the key derivation function KDF and the MAC
scheme MAC satisfy the security requirements described in Section 2.2. Let TCR
denote a target collision resistant hash function as defined in [17]. In Figure 2,
we describe each sub-algorithm of KDKEM.

KDKEM.Gen(1λ) KDKEM.Encap(pk) KDKEM.Decap(sk, φ)

Select KDF, MAC, TCR

x1, x2, y1, y2
$← Z∗

p

c ← gx1
1 gx2

2 ; d ← gy1
1 gy2

2
pk′ ← (λ, p, g1, g2, c, d)
sk′ ← (x1, x2, y1, y2)
pk ← (pk′, KDF, MAC)
sk ← sk′

Return (sk, pk)

r
$← Z∗

p; u1 ← gr
1 ; u2 ← gr

2

α ← TCR(u1, u2)
θ ← (u1, u2) ∈ G2

K̃ ← crdrα ∈ G
(K, κ) ← KDF(K̃)
σ ← MAC.Sign(κ, θ)
φ ← (θ, σ)
Return (φ, K)

φ
par→ (u1, u2, σ)

α ← TCR(u1, u2)
K̃ ← ux1+y1α

1 ux2+y2α
2

(K, κ) ← KDF(K̃)
If MAC.Ver(κ, σ, (u1, u2)) = 1
return K
Else return ⊥

Fig. 2. CCA-Secure KEM from Kurosawa-Desmedt CCCA-Secure KEM [17]

Recall that according to Theorem 1, if the Kurosawa-Desmedt KEM scheme is
CCCA-secure, the above KDKEM scheme is CCA-secure. In [15], the Kurosawa-
Desmedt KEM scheme is shown to be CCCA-secure assuming that the DDH
problem is hard. Thus the KDKEM scheme is CCA-secure.

Another KEM scheme HKKME which is constructed using the Hofheinz-Kiltz
KEM scheme [15] can be described as follows. Let G be a finite group as defined
previously. Let g be a generator of G. Assume that KDF and MAC are as defined
in Section 2.2. Figure 3 describes each sub-algorithm of the scheme HKKEM.

Since the the Hofheinz-Kiltz KEM scheme is shown to be CCCA-secure as-
suming that the DDH problem is hard, the HKKEM scheme presented in Table
3 is CCA-secure.

We remark that the random oracle model is not required to analyze the two
KEM schemes presented above.

366 J. Baek et al.

HKKEM.Gen(1λ) HKKEM.Encap(pk) HKKEM.Decap(sk, φ)

Select KDF, TCR, MAC

x1, y1, y2, w
$← Z∗

p

h ← gw; u ← g−x1/y2

v ← g−y1/y2h1/y2

pk′ ← (u, v) ∈ G2

sk′ ← (x1, y1, y2) ∈ Z3
p

pk ← (pk′, KDF, MAC)
sk ← sk′

Return (sk, pk)

r
$← Z∗

p; c
$← gr

t ← TCR(c); π ← (utv)r

θ ← (c, π) ∈ G2

K̃ ← hr ∈ G
(K, κ) ← KDF(K̃)
σ ← MAC.Sign(κ, θ)
φ ← (θ, σ)
Return (φ, K)

φ
par→ (c, π, σ)

If c /∈ G or π /∈ G return ⊥
t ← TCR(c)
If cxt+y
= π return ⊥
K̃ ← cx1t+y1πy2

(K, κ) ← KDF(K̃)
If MAC.Ver(κ, σ, (c, π)) = 1
return K
Else return ⊥

Fig. 3. CCA-Secure KEM Constructed from Hofheinz-Kiltz CCCA-Secure KEM [15]

4.2 Efficiency Comparisons with Other Schemes

We now compare the KDKEM and HKKEM schemes with other well-known KEM
schemes.

First, we compare the length of ciphertext, the cost for encapsulation and
decapsulation in KDKEM and HKKEM with those of the KEM schemes con-
structed by choosing a key K uniformly at random (from an appropriate DEM-
key space) and encrypting it with CCA-secure hybrid encryption schemes by
Kurosawa and Desmedt [13] and Hofheinz and Kiltz [15]. We denote the two
KEM schemes constructed in this way by KDHE2KEM and HKHE2KEM respec-
tively. (In [2], it is shown that these KEM schemes are CCA-secure.) We also
compare the length of ciphertext and the cost for encapsulation/decapsulation of
our schemes with those of Cramer and Shoup’s [9] KEM scheme, named “CS3”.
Note that the security of all the schemes is based on the DDH problem and does
not depend on random oracles. In Table, 1, we summarize the comparisons.

Next, we compare the length of ciphertext and the cost for encryption and
decryption of the hybrid encryption schemes constructed by combining our
two CCA-secure KEM schemes with length-preserving one-time CCA-secure
DEMs [21] (following the KEM/DEM framework) with those of Kurosawa and
Desmedt’s [13] CCA-secure hybrid encryption scheme; Hofheinz and Kiltz’s [15]
CCA-secure hybrid encryption scheme; and the hybrid encryption schemes con-
structed by combining length-preserving CCA-secure DEMs with Cramer and
Shoup’s [9] KEM scheme. We assume that the length of the plaintext to be en-
crypted is the same for all the schemes. We assume that the same MAC algorithm
is used. In Table 2, we summarize the comparisons.

We observe that compared to the previous CCA-secure KEM schemes based
on the DDH problem, the KEM schemes obtained by our proposed transforma-
tion (Figures 2 and 3) satisfy that either:

– are more computationally efficient (saving one exponentiation in encapsula-
tion/decapsulation) or

– have shorter ciphertext (about 80 bits).

Constructing Strong KEM from Weak KEM 367

Table 1. Efficiency comparison for DDH-based CCA-secure KEMs in the standard
model. KDHE2KEM and HKHE2KEM are the KEM schemes constructed by choosing
a key K uniformly at random and encrypting it with CCA-secure hybrid encryption
schemes by Kurosawa and Desmedt [13], and Hofheinz and Kiltz [15] resp. CS3 is
the CCA-secure KEM proposed by Cramer& Shoup in [9]. |p| is the bit-length of
the representation of an element in G. |enc| denotes the output bit-length of a block
cipher used to encrypt a random key K, and |σ| denotes the length of the output of
a MAC. macG denotes the MAC generation operation, and macV denotes the MAC
verification operation. In practice, |enc| = 128 (cf. [10]), and for the current security
level (i.e. λ = 280), |σ| = 80 and |p| = 160, and the relative timing for the operations
are multi-exponentiation ≈ 1.5, regular exponentiation = 1.

Scheme Ciphertext Encapsulation Decapsulation
Size #[multi,regular]-exp + extra operation

KDKEM (Figure 2) 2|p| + |σ| [1, 2] + macG [1, 0] + macV
HKKEM (Figure 3) 2|p| + |σ| [1, 2] + macG [1, 0] + macV
KDHE2KEM 2|p| + |enc| + |σ| [1, 2] + macG [1, 0] + macV
HKHE2KEM 2|p| + |enc| + |σ| [1, 2] + macG [1, 0] + macV
CS3 3|p| [1, 3] [1, 1]

Table 2. Efficiency comparison for DDH-based CCA-secure hybrid encryption schemes
in the standard model. lpDEM denotes a length-preserving CCA-secure DEM [21].
KDHE and HKHE denote the hybrid encryption schemes proposed by Kurosawa &
Desmedt [13] and Hofheinz & Kiltz [15] resp. |p| is the bit-length of the representation
of an element in G. |σ| is the bit-length of the output of a MAC. |σ| is the bit-length of
the output of a MAC. |m| is the bit-length of the plaintext message m. macG denotes
the MAC generation operation, and macV denotes the MAC verification operation.
enc and dec denote the block cipher encryption and decryption operations resp. For
comparison and for the current security level (i.e. λ = 280), tag = 80 and |p| = 160,
and the relative timing for the operations are multi-exponentiation ≈ 1.5, regular
exponentiation = 1.

Scheme Ciphertext Encryption Decryption
Size #[multi,regular]-exp + extra operations

KDKEM + lpDEM 2|p| + |σ| + |m| [1, 2] + macG + enc [1, 0] + macV + dec
HKKEM + lpDEM 2|p| + |σ| + |m| [1, 2] + macG + enc [1, 0] + macV + dec
KDHE [13] 2|p| + |σ| + |m| [1, 2] + macG + enc [1, 0] + macV + dec
HKHE [15] 2|p| + |σ| + |m| [1, 2] + macG + enc [1, 0] + macV + dec
CS3 + lpDEM 3|p| + |m| [1, 3] + enc [1, 1] + dec

Interestingly, by plugging the KEMs KDKEM and HKKEM using into the
KEM/DEM framework, one obtains hybrid encryption schemes which are as
efficient as the Kurosawa&Desmedt and Hofheinz&Kiltz encryption schemes.
This shows it is possible to transfer the efficiency of the latter schemes to the
original KEM/DEM framework.

368 J. Baek et al.

5 Concluding Remarks

In this paper, we presented a construction of CCA-secure (strongly secure) KEM
from CCCA-secure (weakly secure) KEM. Using our construction, we built
concrete CCA-secure KEM schemes from Kurosawa and Desmedt’s [17], and
Hofheinz and Kilt’s [15] CCCA-secure KEM schemes. We showed that when
our CCA-secure KEM schemes are combined with length-preserving one-time
CCA-secure DEMs, one can obtain hybrid encryption schemes as efficient as
the hybrid encryption schemes proposed in [13,15]. Compared with the schemes
in [13,15], a very interesting feature of our schemes is that their CCA-security
can be explained using the original KEM/DEM framework (while the security
of the aforementioned schemes falls outside the KEM/DEM framework.)

Acknowledgements

The authors are grateful to the anonymous referees of SCN ’08 for their helpful
comments. The first and fourth authors are partially supported by the European
Union project SMEPP-033563. The second author acknowledges the support of
the Spanish Ministerio de Educación y Ciencia under the project ARES (Con-
solider Ingenio 2010 CSD2007-00004). The third author is partially supported
by ARC Discovery Grant DP0877123.

References

1. Abe, M., Genaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Frame-
work for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer,
Heidelberg (2005)

2. Abe, M., Genaro, R., Kurosawa, K.: Tag-KEM/DEM: A New Framework for Hy-
brid Encryption and A New Analysis of Kurosawa-Desmedt KEM, Cryptology
ePrint Archive, Report 2005/027 (2005) (Last update: 11 October 2006)

3. Bellare, M., Canetti, R., Krawczyk, H.: Keying Hash Functions for Message Au-
thentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.
Springer, Heidelberg (1996)

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations Among Notions
of Security for Public-Key Encryption Schemes. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)

5. Bellare, M., Namprepre, C.: Authenticated Encryption: Relations among Notions
and Analysis of the Generic Composition Paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000)

6. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In: ACM-CCS 1993, pp. 62–73. ACM, New York (1993)

7. Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 87–103. Springer, Heidelberg (2005)

8. Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure
against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO
1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)

Constructing Strong KEM from Weak KEM 369

9. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal of
Computing 33, 167–226 (2003)

10. Cramer, R., Shoup, V.: Signature Schemes Based on the Strong RSA Assumption.
ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)

11. Dent, A.: Hybrid Cryptography,Cryptology ePrint Archive, Report 2004/210 (2004)
12. Dolev, D., Dwork, C., Naor, M.: Non-malleable Cryptography. In: STOC 1991, pp.

542–552. ACM, New York (1991)
13. Gennaro, R., Shoup, V.: A Note on An Encryption Scheme of Kurosawa and

Desmedt, Cryptology ePrint Archive, Report 2004/294 (2004)
14. Herranz, J., Hofheinz, D., Kiltz, E.: The Kurosawa-Desmedt Key Encapsulation is

not Chosen-Ciphertext Secure,Cryptology ePrint Archive, Report 2006/207 (2006)
15. Hofheinz, D., Kiltz, E.: Secure Hybrid Encryption from Weakened Key Encapsula-

tion. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer,
Heidelberg (2007)

16. ISO 18033-2, An Emerging Standard for Public-Key Encryption (2004)
17. Kurosawa, K., Desmedt, Y.: A New Paradigm of Hybrid Encryption Scheme. In:

Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004)

18. Luby, M., Rackoff, C.: How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions. SIAM J. Comput. 17(2), 373–386 (1988)

19. Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen
Ciphertext Attacks. In: STOC 1990, pp. 427–437. ACM, New York (1990)

20. Okamoto, T.: Authenticated Key Exchange and Key Encapsulation in the Standard
Model. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 474–484.
Springer, Heidelberg (2007)

21. Phan, D., Pointcheval, D.: About the security of ciphers (semantic security and
pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004.
LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)

22. V. Shoup, A Proposal for an ISO Standard for Public Key Encryption (version
2.1), ISO/IEC JTC 1/SC 27 (2001)

A Proof of Theorem 1

Proof. The proof essentially follows the logic of the proof for the Tag-KEM
construction given in Section 4.3 of [2]. However, a sizable difference is that 1)
since the “Tag” τ in the Tag-KEM construction of [2] is not used any more, the
MAC scheme in our KEM construction should be treated differently (Indeed,
our construction requires the MAC to be SUF-CMA secure, which is different
from the security requirement of the MAC in [2].); and 2) we need to handle
CCCA-security of KEM as the underlying primitive.

– Game G0: This game is identical to the IND-CCA game described in Section 2.
We repeat this game to clear up the notations. LetA be an IND-CCA attacker
for the scheme KEM. Suppose that pk and sk be the public and private keys
resp., to whichA has access. We denote the ith ciphertext under consideration
by φi = (θi, σi), where i ∈ {1, . . . , qD}. We denote a challenge ciphertext by
φ∗ = (θ∗, σ∗), which satisfies the following implicit relations:

(K∗
1 , κ∗

1) = KDF(K̃∗
1); σ∗ = MAC(κ∗

1, θ
∗) where K̃∗

1 = KEM′.Decap(sk, θ∗).

370 J. Baek et al.

We denote a key chosen randomly from SK by K∗
0 . Note here that the

challenger picks β ∈ {0, 1} at random and returns (φ∗, K∗
β) to A.

We denote by S0 the event β′ = β, where β′ is a bit output by A at the end
of the game. (We use a similar notation S1, S2, . . . for all modified games
G1, G2, . . . respectively).

– Game G1: In this game, we modify the generation of the challenge ciphertext
in such a way that when β = 0, we choose K̃∗

0 at random from SK̃ and
compute (K∗

0 , μ)← KDF(K̃∗
0), where μ ∈ Sκ is an arbitrary string.

Hence we get

|Pr[S0]− Pr[S1]| =
1
2
|Pr[S0|β = 0]− Pr[S1|β = 0]| ≤ AdvROR

B,KDF(λ),

for some B that breaks the ROR-security of KDF.
– Game G2: In this game, we add another special rejection rule called SR2 to

the decapsulation algorithm of the previous game.
SR2 If a ciphertext φi = (θi, σi) such that θi = θ∗ is submitted in Phase 2

of the IND-CCA game then immediately output ⊥.
Let F2 be an event that a ciphertext (submitted to the decapsulation oracle)
is rejected under the rule of SR2 but would have been accepted under the
rule of Game G2. Since Game G1 and Game G2 proceed identically until this
event happens and in particular, S1 ∧ ¬F2 and S2 ∧ ¬F2 are identical. Thus
we have

|Pr[S1]− Pr[S2]| ≤ Pr[F2].

Now, we construct an attacker C that breaks IND-CCCA of the scheme KEM′

usingA as subroutine as follows. Assume that C is provided with (pk′, θ∗, K̃∗
b)

where b is a random bit and that C defines the function predicate pred as

pred(K̃) =
{

1 : if MAC.Ver(κ, σ, θ) = 1
0 : otherwise

where K̃ = KEM′.Decap(sk, θ) and (K, κ) = KDF(K̃). Note here that σ ∈
RMAC, where RMAC denotes the range of the MACs, is hard-coded into
pred(·). Below, we describe a complete specification of C.
Algorithm C(pk′, θ∗, K̃∗

b)
pk ← (pk′, KDF, MAC); Send pk to A
(K∗, κ∗)← KDF(K̃∗

b); σ∗ ← MAC(κ∗, θ∗)
φ∗ ← (θ∗, σ∗); Send (φ∗, K∗) to A
If A submits φi = (θi, σi) to the decapsulation oracle

Submit (θi, predi) to its CDecap oracle
If θi = θ∗ then

If CDecap does not reject5 then return b′ = 1 and halt
5 Note that σi must be different from σ∗ because by definition A is not allowed to

issue the challenge ciphertext (θ∗, σ∗) as a decapsulation query.

Constructing Strong KEM from Weak KEM 371

Else send ⊥ to A and continue
Else

Get K̃i or ⊥ from CDecap and simulate the decapsulation
oracle of A if K̃i is returned or send ⊥ to A

If A stops, output b′ = 0

First, assume that b = 1 in the above construction. In this case, K∗ and
κ∗ are generated from K̃∗

1 , i.e., K∗ = K∗
β and κ∗ = κ∗

β when β = 1. Now
consider the event b′ = 1. By the construction of C given above, b′ = 1
happens when the decapsulation query (θ∗, σi) (such that σi �= σ∗) is not
rejected. But according to SR2, this query should be rejected straight away.
That is, the event b′ = 1 when b = 1 is equivalent to the event F2 when
β = 1. Hence, we have Pr[F2|β = 1] = Pr[b′ = 1|b = 1].

Now, assume that b = 0 in the above construction. Let F ′
2 represent

the event that b′ = 1 when b = 0. We then modify the above construction
of C so that (K∗, κ∗) is selected independently and uniformly at random
from SK × Sκ. Let F ′′

2 be an event that b′ = 1 under this modification. It
is easy to see that |Pr[F ′

2] − Pr[F ′′
2]| ≤ 2AdvROR

B,KDF(λ) for some attacker B
that breaks the ROR-security of KDF. Now, pick j ∈ {1, . . . , qD} at random
and define F ′′′

2 be an event that for the jth ciphertext ψj (submitted to the
decapsulation oracle), b′ = 1. Note that we have Pr[F ′′

2] ≤ qD Pr[F ′′′
2]. We

now prove the following claim.

Claim. Pr[F ′′′
2] ≤ AdvSUF-CMA

D,MAC (λ).

Proof. Let D be a SUF-CMA attacker for MAC. Assume that D is given
access to the MAC-generation oracle MAC.Sign(κ∗, ·), where κ∗ is chosen
uniformly at random from Sκ. First, D generates (sk, pk) and gives pk to A.
D then parses pk as (pk′, KDF, MAC), computes (θ∗, K̃) ← KEM′.Encap(pk′).
D queries θ∗ to its MAC-generation oracle to get σ∗ = MAC.Sign(κ∗, θ∗). D
gives (θ∗, σ∗) as a challenge ciphertext to A. (Note that (θ∗, σ∗) is identi-
cally distributed as the challenge ciphertext that A is given from the above
modified C where κ∗ is chosen independently and uniformly at random.) D
responds to A’s decapsulation queries using sk. When A submits (θ∗, σi)
such that MAC.Ver(κ∗, σi, θ

∗) = 1, D outputs σi as a forgery. (Note that σi

was never returned by D’s MAC-generation oracle.) Since the event b′ = 1
occurs when (θ∗, σi) is not rejected, i.e. MAC.Ver(κ∗, σi, θ

∗) = 1, we have
Pr[F ′′′

2] ≤ AdvSUF-CMA
D,MAC (λ).

Consequently, we obtain

Pr[F ′
2] = Pr[b′ = 1|b = 0] ≤ 2AdvROR

B,KDF(λ) + qDAdvSUF-CMA
D,MAC (λ).

Note that by definition 1
2 |Pr[b′=1|b=1]−Pr[b′=1|b=0]|=AdvIND-CCCA

C,KEM′ (λ).
Thus, we get

Pr[F2|β = 1] ≤ 2AdvROR
B,KDF(λ) + 2AdvIND-CCCA

C,KEM′ (λ) + qDAdvSUF-CMA
D,MAC (λ).

372 J. Baek et al.

Next, consider the case β = 0. Recall that by the rule set in Game G1, when
β = 0, K̃∗

0 is chosen at random from SK̃ and K∗
0 is obtained by computing

(K∗
0 , μ) ← KDF(K̃∗

0) for some arbitrary string μ ∈ Sκ. We now slightly
modify the above algorithm C in such a way that K∗ is (always) obtained by
computing (K∗, μ) ← KDF(K̃∗

0), where K̃∗
0 is chosen uniformly at random

from SK̃ . That is, K∗ is distributed independently from other variables.
Hence, we have Pr[F2|β = 0] = Pr[b′ = 1|b = 1].

Also, we can show in exactly the same way as done before that

Pr[b′ = 1|b = 0] ≤ 2AdvROR
B,KDF(λ) + qDAdvSUF-CMA

D,MAC (λ)

Consequently, we have

Pr[F2] ≤ 2AdvROR
B,KDF(λ) + 2AdvIND-CCCA

C,KEM′ (λ) + qDAdvSUF-CMA
D,MAC (λ).

– Game G3: In this game, we modify the generation of the challenge ciphertext
in such a way that κ∗

1 is obtained by computing (ν, κ∗
1) ← KDF(K̃∗

β) for
arbitrary ν ∈ SK . Hence, when β = 1, the views of A in Game G3 and Game
G2 are identically distributed. Thus we get

|Pr[S2]−Pr[S3]| =
1
2
|Pr[S2|β =1]+Pr[S2|β =0]−Pr[S3|β =1]−Pr[S3|β = 0]|

=
1
2
|Pr[S2|β = 0]− Pr[S3|β = 0]|.

The above equality implies that we only need to consider the case β = 0.
Now we construct again attacker C that breaks IND-CCCA of KEM′ using

A as subroutine: As with the case of C, we assume that C is provided with
(pk′, θ∗, K̃∗

b) where b is a random bit and that C defines the function predicate
pred as

pred(K̃) =
{

1 : if MAC.Ver(κ, σ, θ) = 1
0 : otherwise

where K̃ = KEM′.Decap(sk, θ) and (K, κ) = KDF(K̃). Note here that σ ∈
RMAC, where RMAC denotes the range of the MACs, is hard-coded into
pred(·).
Algorithm C(pk′, θ∗, K̃∗

b)

pk ← (pk′, KDF, MAC); Send pk to A; K̃ ′∗
0

$← SK̃

(K∗, μ)← KDF(K̃ ′∗
0); (ν, κ∗) ← KDF(K̃∗

b); σ∗ ← MAC(κ∗, θ∗)
φ∗ ← (θ∗, σ∗); Send (φ∗, K∗) to A
If A submits φi = (θi, σi) to the decapsulation oracle

Submit (θi, predi) to its CDecap oracle
If θi = θ∗ then return ⊥
Else

Get K̃i or ⊥ from CDecap and simulate the decapsulation
oracle of A if K̃i is returned or send ⊥ to A

If A outputs β′, output it as b′

Constructing Strong KEM from Weak KEM 373

First, assume that b = 1 in the above construction. In this case, σ∗ is gen-
erated from the correct key K̃∗

1 while K∗ is computed from the key K̃ ′∗
0

chosen randomly from SK̃ . Hence the view of A simulated by the algo-
rithm B4 is the same as that of A in Game G2 at β = 0. Thus, we have
Pr[S2|β = 0] = Pr[b′ = 0|b = 1].

Now, assume that b = 0 in the above construction. In this case, σ∗ is
generated using K̃∗

0 chosen randomly from SK̃ . Notice that the view of A
in the above simulation is almost the same as that in this game (Game G3)
when β = 0 except that in this game, σ∗ and K∗ are generated from the
single input to KDF while they are independently generated in the above
simulation. However, by the result of [2], we get |Pr[S3|β = 0] − Pr[b′ =
0|b = 0]| ≤ 4AdvROR

B,KDF(λ).
Putting all the bounds together, we get

|Pr[S2]− Pr[S3]| =
1
2
|Pr[S2|β = 0]− Pr[S3|β = 0]|

≤ 1
2
|Pr[b′ = 0|b = 1]− Pr[b′ = 0|b = 0]− 4AdvROR

B,KDF(λ)|

≤ AdvIND-CCCA
C,KEM′ (λ) + 2AdvROR

B,KDF(λ).

Observe that we can build up C again using A in this game (Game G3).

Algorithm C(pk′, θ∗, K̃∗
b)

pk ← (pk′, KDF, MAC); Send pk to A
(K∗, κ∗)← KDF(K̃∗

b); σ∗ ← MAC(κ∗, θ∗)
φ∗ ← (θ∗, σ∗); Send (φ∗, K∗) to A
If A submits (θi, σi) to the decapsulation oracle

submit (θi, predi) to its CDecap oracle
to get K̃i or ⊥. Simulate the decapsulation oracle
of A if K̃i is returned or send ⊥ to A

If A outputs β′, output it as b′

Note that the above C perfectly simulates the environment of A in Game
G3. Consequently, we have

|Pr[S3]−
1
2
| ≤ AdvIND-CCCA

C,KEM′ (λ).

It remains to show that the attackers C’s against the IND-CCCA security of the
KEM′ are admissible, i.e. the corresponding plaintext uncertainty

uncertC(λ) =
1

QC

∑
1≤i≤QC

Pr[predi(K̃) = 1 | K̃ $← SK̃]

is negligible for all PPT attackers C’s constructed in the above games. We proceed
to show the result for the attacker C in Game G2, the result for C’s in Game G3 is
obtained identically. To this end, we build an attackerD against the SUF-CMA se-
curity of the MAC scheme MAC.D gets as input the security parameter λ, the de-
scription of MAC and access to the MAC generation oracle MAC.Sign(κ∗, ·), where

374 J. Baek et al.

κ∗ is chosen uniformly at random from Sκ.D plays the role of the challenger for C.
D first runs (pk′, sk′) ← KEM′.Gen(λ) and computes (θ∗, K̃) ← KEM′.Encap(pk′).
D then queries θ∗ to its MAC-generation oracle to get σ∗ = MAC.Sign(κ∗, θ∗). D
then gives (θ∗, σ∗) as a challenge ciphertext to C. Since D knows the secret key
sk′, it can faithfully answer all of C’s queries to the constrained decapsulation or-
acle. In the beginning, D picks a random index j ← {1, . . . , QC}, where QC is the
number of queries to the constrained decapsulation oracle CDecap made by C. On
C’s j-th decapsulation query (θj , predσj

), D sets a fake predicate

pred′
σj

(K̃) :=

⎧
⎨
⎩

1 : if MAC.Ver(κ∗, σj , θj) = 1 ∧ θj = θ∗ ∧
σj was never returned by MAC.Sign(κ∗, ·)

0 : otherwise

where K||κ ← KDF(K̃) and outputs K if pred′
σj

(K̃) = 1. Note here that

pred′
σj

(K̃) is defined in terms of κ∗ $← Sκ, while for the real predicate predσj
(K),

(ν, κ∗)← KDF(K̃) with K̃ being chosen uniformly at random from SK̃ . Now let
F4 denote the event that predσj

(K̃) �= pred′
σj

(K̃). Then,∣∣∣Pr[predσj
(K̃) = 1 | K̃ $← SK̃]− Pr[pred′

σj
(K̃) = 1 | K̃ $← SK̃]

∣∣∣ ≤ Pr[F4]

It is easy to see that Pr[F4] ≤ AdvROR
B,KDF(λ), for a suitable adversary B.

Therefore,

AdvSUF-CMA
D,MAC (λ) = Pr[MAC.Ver(κ∗, σj , θ

∗) = 1 ∧ σj was never returned by
MAC.Sign(κ∗, ·)]

=
1

QC

∑
1≤j≤QC

Pr[pred′
j(K̃) = 1] ≥

≥ 1
QC

∑
1≤j≤QC

(
Pr[predj(K̃) = 1]−AdvROR

B4,KDF(λ)
)

=

= uncertC(λ)−AdvROR
B,KDF(λ)

and thus uncertC(λ) ≤ AdvROR
B,KDF(λ) + AdvSUF-CMA

D,MAC (λ).

B Decisional Diffie-Hellman (DDH) Problem

We review the definition of the Decisional Diffie-Hellman (DDH) problem. Let A
be an attacker. Let G be a finite cyclic group generated by g ∈ G. Let p be a prime
order of G, whose size depends on the security parameter λ. We define the DDH
problem using the attacker A’s advantage in distinguishing two distributions:

AdvDDH
A,G (λ) = |Pr[a R← Zp; b

R← Zp : 1 ← A(1λ, ga, gb, gab)]

− Pr[a R← Zp; b
R← Zp; r

R← Zp : 1 ← A(1λ, ga, gb, gr)]|.

We say that the DDH problem is hard if AdvDDH
G (λ) = maxA

{
AdvDDH

A,G (λ)
}

is
negligible for any attacker A.

New Anonymity Notions for

Identity-Based Encryption

Malika Izabachène and David Pointcheval

Ecole Normale Supérieure – LIENS/CNRS/INRIA, France
{Malika.Izabachene,David.Pointcheval}@ens.fr

Abstract. Identity-based encryption is a very convenient tool to avoid
key management. Recipient-privacy is also a major concern nowadays. To
combine both, anonymous identity-based encryption has been proposed.
This paper extends this notion to stronger adversaries (the authority
itself). We discuss this new notion, together with a new kind of non-
malleability with respect to the identity, for several existing schemes.
Interestingly enough, such a new anonymity property has an independent
application to password-authenticated key exchange. We thus come up
with a new generic framework for password-authenticated key exchange,
and a concrete construction based on pairings.

1 Introduction

Motivation. The idea of using identities instead of public keys in order to
avoid the (costly) use of certificates comes from Shamir [20]. He indeed suggested
Identity-based Encryption (IBE), that would allow a user to encrypt a message
using any string, that would specify the recipient, as encryption parameter, such
that this recipient only can decrypt the ciphertext.

Identity-based cryptography thus provides this interesting feature that one
does not need authenticated public keys. Key managament is made simpler.
Note however that a drawback is an authority that is required to generate the
private keys for the users, according to their identities. This authority thus has
the ability to decrypt any ciphertext. Privacy cannot be achieved with respect
to this authority. Nevertheless, privacy of the plaintext is not the unique goal
in cryptography, with encryption schemes. Privacy of the recipient may also
be a requirement. Such a key-privacy notion has already been defined in the
public-key setting in [3]. It has more recently been extended to the identity-
based setting in [1], under the notion of anonymity. However, the security model
in this IBE setting still trusts the authority. Whereas trusting the authority is
intrinsic for privacy of the plaintext, it is not for the privacy of the recipient:
a stronger anonymity notion is possible, with respect to the authority, but is it
achievable for practical IBE?

For efficiency reasons, the use of Key Encapsulation Mechanisms KEM have
been shown as a preferable approach [22]. It consists in generating an ephemeral
key and an encrypted version of the latter. The ephemeral key is thereafter
used with a Data Encryption Method DEM to encrypt the message. In such

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 375–391, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

376 M. Izabachène and D. Pointcheval

a context, we are interested in the semantic security of the ephemeral key,
and the anonymity of the recipient. In the identity-based context, Bentahar
et al. [7] defined Identity-based Key Encapsulation Mechanisms IB-KEM. An
anonymity notion with respect to the authority would then be an interesting
feature.

Interestingly enough, this notion of anonymity with respect to the authority
might have side applications. One of them is password-authenticated key ex-
change [6]. Such a protocol allows two players to establish a private channel,
using a short secret as a sole authentication means. The latter is thus sub-
ject to exhaustive search, but such a short secret is very convenient for human
beings.

Related Work. The idea of identity-based encryption is due to Shamir [20],
in 1984. The first goal was to simplify public key management. However, the
first practical solutions appeared in 2001 only [10,15]. Thereafter, many schemes
have been proposed, based on pairing, factoring and lattices. Since such schemes
were dealing with encryption, the main security notion was the semantic
security [17].

Even if recipient-anonymity had already been addressed for public-key en-
cryption [3] in 2001, anonymity for IBE has been proposed recently by Abdalla
et al. [1], but as a simple extension of the previous public-key setting definition.
In 2006, Gentry [16] and Boyen and Waters [12] presented the first anonymous
IBE schemes without random oracles.

Our contributions. As already noticed in [1], anonymity might have some
side applications to searchable encryption. In this paper, we deal with anonymity
for IB-KEM, even with respect to the authority, the so-called Key Anonymity
with respect to the Authority and denoted KwrtA-Anonymity: we first provide a
formal security model, and then we discuss this security notion with existing
schemes. We also consider a new non-malleability notion for the identity, that
we call identity-based non-malleability: if one encrypts a message (or a key) for
user U , one has no idea about the value obtained by another user U ′, whatever
the relation between U and U ′ (or the identities) is.

Thereafter, we show that these security notions can also have side applica-
tions to password-authenticated key exchange. Such a KwrtA-anonymous and
identity-based non-malleability IB-KEM scheme can indeed be plugged into a
password-authenticated two-party key exchange protocol, in the same vein as the
IPAKE construction [14] did with trapdoor hard-to-invert group isomorphisms.
Our security result holds in a stronger security model than usual (with an adap-
tive selection of passive and active attacks, as in [19]), but the construction still
assumes the random-oracle model [5], as in [14].

Eventually, we provide an IB-KEM, that is both KwrtA-anonymous and
identity-based non-malleable, in addition to the full-identity semantic security,
against chosen-plaintext adversaries. This thus leads to a new password-authent-
icated two-party key exchange protocol.

New Anonymity Notions for Identity-Based Encryption 377

2 Anonymous Identity-Based Encryption

Anonymity for public-key encryption schemes has first been introduced by Bel-
lare et al. [3], under the key privacy security notion, and has been extended to
identity-based encryption by Abdalla et al. [1].

In these papers, anonymity meant that even if the adversary chooses a message
and two identities (or two public keys), and the challenger encrypts the message
with one of the identities (or keys), the adversary cannot guess which one has
actually been involved in the computation. This notion is quite strong for public-
key encryption, but not that strong in the identity-based setting since it does not
capture anonymity with respect to the authority that knows the master secret
key, and even chooses the public parameters PK.

Unfortunately, the previous definitions cannot be trivially extended: the ad-
versary can easily break anonymity if he knows the expected plaintext, and just
hesitates between two identities, since he can decrypt any ciphertext. Anonymity
can only be expected against the server if the plaintexts follow a non-trivial dis-
tribution. Since we will deal with key-encapsulation mechanisms, this non-trivial
distribution is already implicit for the ephemeral keys.

This enhanced security notion will be called Key Anonymity with respect to
the Authority and denoted KwrtA-Anonymity. This section defines precisely this
notion for identity-based key encapsulation mechanisms.

2.1 Identity-Based Encryption and Key Encapsulation Mechanisms

We first review the definitions of identity-based encryption, and more specifically
of identity-based key encapsulation mechanisms [7]. In the following, we assume
that identities are bit strings in a dictionary Dic.

Definition 1 (Identity-Based Encryption). An IBE scheme is specified by
four algorithms:

SetupIBE(1λ). Takes as input a security parameter λ. It outputs the public pa-
rameters PK, as well as a master secret key MK.

ExtractIBE(MK, ID). Takes as input the master secret key MK, and the identity
ID of the user. It outputs the user’s decryption key usk.

EncryptIBE(PK, ID, M). Takes as input the public parameter PK, the identity of
the recipient, and a message M to be encrypted. It outputs a ciphertext.

DecryptIBE(usk, c). Takes as input the user’s decryption key and a ciphertext c.
It outputs the decryption or ⊥, if the ciphertext is not valid.

In [21], Shoup proposed a more efficient framework for public-key encryption,
the so-called KEM/DEM, for key encapsulation mechanism/data encapsulation
method. More recently, Bentahar et al. [7] extended this concept to the identity-
based setting, and therefore proposed some constructions of IB-KEM semanti-
cally secure. We will use the following formalism:

378 M. Izabachène and D. Pointcheval

Definition 2 (Identity-Based Key Encapsulation Mechanism)
An IB-KEM scheme is specified by the following four algorithms:

SetupIBK(1λ). Takes as input a security parameter λ. It outputs the public pa-
rameters PK, as well as a master secret key MK.

ExtractIBK(MK, ID). Takes as input the master secret key MK and an identity ID
of the user. It outputs the user’s decryption key usk.

EncapsIBK(PK, ID). Takes as input the public parameters PK and the identity of
the recipient. It outputs a pair (K, c), where K is the ephemeral session key
and c is the encapsulation of that key.

DecapsIBK(usk, c). Takes as input the user’s decryption key usk and a ciphertext
c. It outputs the key K encapsulated in c or ⊥, if the ciphertext is not valid.
We also formally define the function DecapsIBK(ID, c), which takes as input
a user identity and a ciphertext c. It first extracts the decryption key usk
associated to ID, and then decapsulates c under usk.

We first review the notion of semantic security for IB-KEM, then we deal with
anonymity, and an additional security notion, that we call identity-based non-
malleability.

2.2 Security Notions

We directly describe the security notions for identity-based key encapsulation
mechanisms, but one can easily derive them for identity-based encryption.

Semantic Security. The semantic security formalizes the privacy of the key.
The security game, in the strongest security model (i.e. chosen-ciphertext and
full-identity attacks) is the following one:

Setup : The challenger runs the SetupIBK algorithm on input 1λ to obtain the
public parameters PK, and the master secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues the following queries:
– Extract query on input an ID: The challenger runs the Extract algorithm

on input (MK, ID), and provides the associated decryption key usk.
– Decaps query on input an ID and a ciphertext c: The challenger first

extracts the decryption key for ID, and then decrypts the ciphertext c
with this key. It outputs the resulting ephemeral key, or ⊥.

A outputs a target identity ID∗, on which no Extract-query has been asked.
Challenge: The challenger randomly gets (K0, c

∗) ← EncapsIBK(PK, ID∗) and
(K1, c

′) ← EncapsIBK(PK, ID∗). It flips a bit b and outputs (Kb, c
∗).

Guess stage: The adversary can issue the same queries as in the Find stage,
with the restriction that no Extract-query on input ID∗ and no Decaps-query
on input (ID∗, c∗) can be asked. The adversary finally outputs its guess b′ ∈
{0, 1} for b.

We then define the advantage of A in breaking the Semantic Security of an
IB-KEM scheme with its ability in deciding whether it actually received the
real ephemeral key associated to c or a random one. We denote this security

New Anonymity Notions for Identity-Based Encryption 379

notion by IND, which can thereafter be combined with various oracle accesses,
in order to define selective/full-identity and chosen plaintext/ciphertext attacks.
More formally, we want the advantage below, to be negligible:

Advind
IBK(A) = 2× Pr

b

⎡
⎢⎢⎣

(PK, MK) ← SetupIBK(1λ); (ID∗, s) ← A1(PK)
(K0, c0) ← EncapsIBK(PK, ID∗);
(K1, c1) ← EncapsIBK(PK, ID∗)

b′ ← A2(Kb, c0, s) : b = b′

⎤
⎥⎥⎦− 1.

In the following, we will need a very weak notion, that we call weak semantic
security, during which attack that adversary has to choose in advance the target
identity ID∗ (selective-ID), and has no oracle access at all: no Decaps queries,
and no Extract queries.

Anonymity. Anonymity against IBE means that for a chosen plaintext, and
given a ciphertext c encrypted under ID0 or ID1 of adversary’s choice, the ad-
versary should not be able to decide which identity has been involved. With an
appropriate DEM encryption scheme, the key encapsulation anonymity version
can be defined as follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public param-
eters PK, and the master secret key MK. It publishes PK.

Find stage: The adversary A adaptively issues Extract and Decaps queries. A
outputs two identities ID0, ID1, on which no Extract-query has been asked
before.

Challenge: The challenger randomly selects b ∈ {0, 1} and gets an encapsu-
lated pair (K∗, c∗) under IDb. It returns (K∗, c∗).

Guess stage: The adversary can issue the same queries as in the Find stage,
subject to the restriction that no Extract-query is allowed to be asked on ID0

or ID1, and no Decaps-query can be asked on input (ID0, c
∗), or (ID1, c

∗). It
finally outputs its guess b′ ∈ {0, 1} for b.

We say that an IB-KEM scheme provides key-anonymity if the advantage of
A in deciding which identity is actually involved in the above experiment is
negligible:

Advanon
IBK (A) = 2× Pr

b

⎡
⎢⎢⎣

(PK, MK) ← SetupIBK(1λ);
(ID0, ID1, s) ← A1(PK)

(K∗, c∗) ← EncapsIBK(PK, IDb);
b′ ← A2(K∗, c∗, s) : b = b′

⎤
⎥⎥⎦− 1.

As already noticed, this anonymity notion does not provide any security with
respect to the authority, since the above security notion assumes that the ad-
versary has no idea about MK.

KwrtA-Anonymity. We therefore enhance the previous security model, in
order to consider the authority as a possible adversary. However, it is clear that
given (K∗, c∗), the authority can check the involved ID. We thus truncate the
input to c∗ only:

380 M. Izabachène and D. Pointcheval

Find stage: The adversary generates (valid, see below) public parameters PK.
A outputs PK and two identities ID0, ID1.

Challenge : The challenger randomly selects b ∈ {0, 1}, and generates a ci-
phertext for IDb, (K∗, c∗) ← EncapsIBK(PK, IDb). It outputs c∗.

Guess stage: The adversary finally outputs its guess b′ ∈ {0, 1}.
We say that an IB-KEM scheme provides Key Anonymity with respect to the
Authority (denoted KwrtA-Anonymity) if the advantage of A in deciding which
identity is involved in the experiment above is negligible:

Advkwrta−anon
IBK (A) = 2× Pr

b

⎡
⎣

(PK, ID0, ID1, s) ← A1(1λ) s.t. ValidIBK(PK)
(K∗, c∗) ← EncapsIBK(PK, IDb);

b′ ← A2(c∗, s) : b = b′

⎤
⎦− 1.

We emphasis that in the above experiment, the adversary has to generate valid
public parameters PK. Note that against KwrtA-Anonymity (vs. anonymity), on
the one hand, the new adversary may know the master key MK, but on the
other hand, it must make its decision from c∗ only. Therefore, these two security
notions are not really comparable. Furthermore, since the adversary generates
PK, one has to be able to check the honest generation. In some cases, PK is
a truly random value, without redundancy; in some other cases, appropriate
redundancy should be proven. We thus define an additional algorithm:

ValidIBK(PK). Takes as input the public parameters PK, and checks whether they
satisfy the required properties.

Identity-based Non-Malleability. In the application we will study later, a
new security notion for identity-based encryption will appear. It basically states
that when one sends a ciphertext to a user ID, one has no idea how user ID′

will decrypt it, even for identities chosen by the adversary. This means that
when one computes an encapsulation, it provides an ephemeral session key with
a unique recipient, and not several secret keys with several partners. We define
the identity-based non-malleability game as follows:

Setup: The challenger runs SetupIBK on input 1λ to obtain the public param-
eters PK, and the master secret key MK. It publishes PK.

Attack: The adversary A adaptively issues Extract and Decaps queries, and
outputs a ciphertext c, and two pairs (K0, ID0), and (K1, ID1).

The adversary wins this game if the two formal equalities hold:

K0 = DecapsIBK(ID0, c) and K1 = DecapsIBK(ID1, c).

We thus define the success of A in breaking the Identity-based Non-Malleability
of an IB-KEM scheme by:

Succid-nm
IBK (A) = Pr

⎡
⎣

(PK, MK) ← SetupIBK(1λ);
(c, (K0, ID0), (K1, ID1)) ← A(PK) :

K0 = DecapsIBK(ID0, c) ∧K1 = DecapsIBK(ID1, c)

⎤
⎦ .

Note that this security notion is for a normal user, and not for the authority
itself. Indeed, it would clearly be incompatible with KwrtA-Anonymity.

New Anonymity Notions for Identity-Based Encryption 381

3 Anonymous and Non-malleable IB-KEM
Since the first practical IBE schemes, new features, and new efficient/security
criteria have been defined. An efficient anonymous IBE with a tight security
proof in the standard model is one of the open problems. In this section, we first
review some candidates, and then propose a new scheme that satisfies all the
above requirements: semantic security, various anonymity notions and identity-
based non-malleability.

3.1 Backgrounds on Pairings

Let G1 and G2 be two cyclic groups of large prime order p. We suppose that
these two groups are equipped with a pairing, i.e. a non-degenerated and effi-
ciently computable bilinear map ê : G1 × G2 → GT . In the following, we use
multiplicative notation for G1 and G2: ê(ga

1 , gb
2) = ê(g1, g2)ab, for all a, b ∈ Zp,

and any g1 ∈ G1 and g ∈ G2.
For the sake of generality, we consider the asymmetric case, where G1 �=

G2, but most of the schemes below also apply in the symmetric setting, where
G1 = G2.

3.2 Diffie-Hellman Assumptions

The co-CDH-Problem. Let g1 and g2 two generators of G1 and G2 respectively.
We define the co-Diffie-Hellman value co-CDHg1,g2(u), for u = gx

1 ∈ G1, the
element v = gx

2 ∈ G2.
The co-CDHG1,G2 problem can be formalized as follows: given g1, u ∈ G1 and

g2 ∈ G2, output v = co-CDHg1,g2(u). We define the success probability of A in
breaking the co-CDHG1,G2-problem as:

Succco−cdh
G1,G2

(A) = Pr
[
g1

R← G1; g2
R← G2, x

R← Zp; v ← A(g1, g2, g
x
1) : v = gx

2

]
.

Note that when G1 = G2 = G, the co-CDHG,G-problem is exactly the usual Com-
putational Diffie-Hellman Problem in G, which can still be difficult. However,
the decisional version is easy, granted the pairing.

We can indeed define the co-DHG1,G2-language of the quadruples (a, b, c, d) ∈
G1 ×G2 ×G1 ×G2, such that d = co-CDHa,b(c).

The Common co-CDH-Problem. Given two elements, it is simple to complete a
co-CDH-quadruple (g1, g2, u, v). However, finding two such quadruples with con-
straints may not be simple. We thus define a new problem, called the Common
co-CDH-Problem, as follows: Given g, h ∈ G, and V ∈ GT , output k0 �= k1 ∈ Zp,
K0, K1 ∈ GT and a common c ∈ G, such that:

(ghk0 , V, c, K0), (ghk1 , V, c, K1) ∈ co-DHG,GT .

382 M. Izabachène and D. Pointcheval

We define the success of A in breaking the Common-co-CDHG,ê-Problem as:

Succcommon-co-cdh
G,ê (A) = Pr

⎡
⎣

g, h ∈ G; V ∈ GT ; (c, k0, k1, K0, K1) ← A(g, h, V) :
k0 �= k1 ∧ (ghk0 , V, c, K0) ∈ co-DHG,GT

∧(ghk1 , V, c, K1) ∈ co-DHG,GT

⎤
⎦

The CBDH-Problem. Diffie-Hellman variants have been proposed in groups
equipped with pairings, and namely in the symmetric case: let g be a generator
of G. We define the Bilinear Diffie-Hellman value of gx, gy, gz, for x, y, z ∈ Zp,
in base g, the element V = ê(g, g)xyz ∈ GT .

The CBDHG,ê problem can be formalized as follows: given g, X = gx, Y =
gy, Z = gz ∈ G, output V = ê(g, g)xyz. We define the success probability of A
in breaking the CBDHG,ê-problem as:

Succcbdh
G,ê (A) = Pr

[
g

R← G; x, y, z
R← Zp; V ← A(g, gx, gy, gz) : v = ê(g, g)xyz

]
.

The DBDH-Problem. The decisional version can then be intractable too: given
g, X = gx, Y = gy, Z = gz ∈ G, and V ∈ GT , decide whether V = ê(g, g)xyz, or
not. We define the advantage of A in breaking the DBDHG,ê-problem as:

Advdbdh
G,ê (A) = Pr

[
g

R← G; x, y, z
R← Zp; V = ê(g, g)xyz : 1 ← A(g, gx, gy, gz, V)

]

− Pr
[
g

R← G; x, y, z
R← Zp; V

R← GT : 1 ← A(g, gx, gy, gz, V)
]
.

The Successive-Power Version. For our scheme to be semantically secure,
we will need a stronger variant of the above DBDH problem, given access to
a sequence of powers, similarly to the Strong Diffie-Hellman problem [9]: More
precisely, given g, gx, gy, gz, and gz/x, gz/x2

, . . . , gz/xq

, as well as V , from some
V ∈ GT , where q is a parameter, decide whether V = ê(g, g)xyz, or a random el-
ement. We define the advantage of A in breaking the q-SP-DBDHG,ê-assumption
as:

Advq-spdbdh
G,ê (A) = Pr

[
g

R← G; x, y, z
R← Zp; V = ê(g, g)xyz :

1 ← A(g, gx, gy, gz, gz/x, · · · , gz/xq

, V)

]

− Pr

[
g

R← G; x, y, z
R← Zp; V

R← GT :
1 ← A(g, gx, gy, gz, gz/x, · · · , gz/xq

, V)

]
.

It is clear that such a sequence of powers should not provide much information
to the adversary. And thus, for any polynomial-time adversary A, the above
advantage is negligible. In the full version of this paper [18], we provide the
proofs that our two new problems are intractable for generic adversaries.

3.3 Previous IBE Schemes

Let us review several IBE, and see which properties they satisfy. For the sake
of simplicity, for all of them, we review the key encapsulation mechanisms. In

New Anonymity Notions for Identity-Based Encryption 383

several schemes, we will need a deterministic map F from identities onto the
group G, possibly with parameter PK.

The Boneh-Franklin Scheme [10]. In this scheme, MK = s
R← Zp and

PK = gs. The map F (ID) is independent of PK. This is a function onto G,
modeled as a random oracle in the security analysis. The ciphertext c = gr ∈ G
corresponds to the key K = ê(F (ID), PK)r = BDHg(PK, c, F (ID)) = ê(uskID, c),
where uskID = F (ID)s = co-CDHg,F (ID)(PK) ∈ G.

It is quite similar to the ElGamal encryption, and thus the semantic security
relies on the DBDHG,ê, but against chosen-plaintext attacks only, in the random
oracle model, even with access to the Extract-query, which is similar to the Boneh-
Lynn-Shacham signature [11] (secure against chosen-message attacks under the
CDHG problem).

Since the ciphertext is totally independent of the identity, this scheme is
KwrtA-anonymous, in the information-theoretical sense. Nevertheless, the ba-
sic anonymity is similar to the semantic security, and relies on the DBDHG,ê.
However, since the ciphertext does not involve the identity, it is easy to break
the identity-based non-malleability: knowing r and c = gr, one easily computes
K = BDHg(PK, c, F (ID)) = ê(F (ID), PK)r, for any ID of ones choice.

The Boneh-Boyen Scheme [8]. In this scheme, α
R← Zp, g, g2, h

R← G, and
PK = (g, g1 = gα, g2, h), while MK = gα

2 . The map FPK is defined by FPK(ID) =
gID
1 · h. The ciphertext c = (gs, FPK(ID)s) corresponds to the key

K = ê(g1, g2)s = ê(c1, usk2)/ê(usk1, c2),

if one gets uskID = (gr, MK · FPK(ID)r), for any r
R← Zp.

As above, the semantic security relies on the DBDHG,ê assumption, in the
standard model, but against selective-ID chosen-plaintext attacks, even with
access to the Extract-query (the underlying signature scheme is selective-forgery
secure against chosen-message attacks under the CBDH assumption).

However, because of the redundancy in the ciphertext, which matches with
one identity only, this scheme is not anonymous : one just has to check, for
a candidate ID, and a ciphertext c = (c1, c2), whether (g, FPK(ID), c1, c2) is a
Diffie-Hellman tuple, by ê(c1, FPK(ID)) ?= ê(c2, g). Since this attack did not need
a candidate key K, a fortiori, this scheme is not KwrtA-anonymous.

On the other hand, since the ciphertext focuses to a specific recipient, one
has no idea how another ID′ would decrypt it, because of its randomness r′ in
the decryption key: for wrong user, with usk′ = (gr′

, gα
2 FPK(ID′)r′

), and c =
(gs, FPK(ID′)s′

) (s′ �= s since ID′ is not the intended recipient), K ′ = K ×Hr′
,

for H �= 1, and r′ totally random. Therefore, it is identity-based non-malleable
in the information-theoretical sense.

The Gentry Scheme [16]. In 2006, two schemes have been proposed, with
provable anonymity. Gentry’s scheme is one of them: g, h

R← G and α
R← Zp. The

public parameters are PK = (g, g1 = gα, h) and MK = α. The map FPK is defined

384 M. Izabachène and D. Pointcheval

by FPK(ID) = g1 ·g−ID = gα−ID. The ciphertext c = (FPK(ID)s, ê(g, g)s) is the en-
capsulation of K = ê(g, h)s, and thus, setting (usk1, usk2) = (r, (hg−r)1/(α−ID)),
for any r

R← Zp, K = ê(c1, usk2) · c2
usk1 .

The scheme is semantically secure and anonymous against chosen plaintext
attacks, even with access to the Extract-query, under the truncated decisional
augmented bilinear Diffie-Hellman exponent assumption (see [16] for details).

However, the scheme is not KwrtA-anonymous, since using bilinear maps com-
bined with the redundancy inside the ciphertext provides a test for any target
identity ID′, since knowing α, A can test whether

c2
α−ID′

= e(g, g)s(α−ID′) ?= e(c1, g) = e(gs(α−ID′), g).

Since the ciphertext is specific to the recipient, A has no idea how an other ID′

decrypts c = (c1, c2), c = (FPK(ID′)s′
, e(g, g)s), since

K ′ = ê(c1, usk′2) · c2
usk′1 = K · (ê(g, g)usk′1/ê(g, h))s−s′

,

is a random element in GT . Thus, the scheme is identity-based non-malleable in
the information-theoretical sense.

The Boyen-Waters scheme [13]. Boyen and Waters proposed another prov-
ably anonymous scheme: ω, t1, t2, t3 and t4

R← Zp are set to be the master secret
key and Ω = ê(g, g)t1·t2·ω, g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 are the public pa-
rameters PK, with g a random generator of G and g0, g1

R← G. The map FPK is
defined by FPK(ID) = g0 · ID. To encrypt a key, one chooses a random s ∈ Zp and
sets K = Ωs, its encapsulation has the following form: c = (c0, c1, c2, c3, c4), with
c0 = FPK(ID)s, c1 = vs−s1

1 , c2 = vs1
2 , c3 = vs−s2

3 , and c4 = vs2
4 . To decapsulate

the key, one has to compute

K−1 = Ω−s = ê(g, g)−ωt1t2s

= ê(c0, usk0)× ê(c1, usk1)× ê(c2, usk2)× ê(c3, usk3)× ê(c4, usk4)

with uskID = (usk0, usk1, usk2, usk3, usk4), where:

usk0 = gr1t1t2+r2t3t4

usk1 = g−ωt2FPK(ID)−r1t2 usk2 = g−ωt1FPK(ID)−r1t1

usk3 = FPK(ID)−r2t4 usk4 = FPK(ID)−r2t3

for any r1, r2
R← Zp. This scheme is semantically secure under DBDHG,ê, and

anonymous under the decision linear assumption (we do not give more details
since this scheme is totally different from ours below. The reader is refereed
to [13]). However, it is not KwrtA-anonymous : since knowing the master key
and given a ciphertext c = (c0, c1, c2, c3, c4), one can decide for a target identity
whether c0, c1, c2 or/and c0, c3, c4 is a linear tuple in basis v0, v1, v2 and v0, v3, v4

respectively.
Since the key is completely independent of the identity and c0 is determined

by the identity (among other elements), the same argument than for the two

New Anonymity Notions for Identity-Based Encryption 385

previous schemes holds: it is identity-based non-malleable in an information-
theoretically sense.

Note that for all the above schemes, the public parameters consist of inde-
pendent elements in appropriate groups. The validity check ValidIBK(PK) is thus
trivial.

3.4 Our Scheme

None of the previous schemes satisfies both KwrtA-anonymity and identity-
based non-malleability. In this section, we describe our scheme, and show that
it achieves all the security properties: semantic security, anonymity, KwrtA-
anonymity and identity-based non-malleability. For the sake of simplicity, we use
a symmetric pairing:

SetupIBK. The setup algorithm chooses two random generators g, h ∈ G, and a
random exponent ω ∈ Zp. It keeps this exponent as the master key MK = ω.
The corresponding system parameters are: PK = (g, g1 = gω, h). It defines
the identity-function: F (ID) = g1 · gID = gω+ID.
Note that, as above, the public parameters consist of independent elements
in appropriate groups. The validity check ValidIBK(PK) is thus trivial.

ExtractIBK(MK, ID). To issue a private key for identity ID, the key extraction
authority computes the private key, uskID = h1/(ω+ID).

EncapsIBK(PK, ID). In order to generate an ephemeral key with an identity ID,
the algorithm chooses a random exponent r ∈ Zp, and creates the ciphertext
as: c = F (ID)r, that corresponds to the key K = ê(g, h)r.

DecapsIBK(uskID, c). The decryption algorithm extracts the ephemeral key K
from a ciphertext c by computing: K = ê(uskID, c).

Correctness. Let us check the decryption process:

K = ê(uskID, c) = ê(h1/(ω+ID), gr(ω+ID)) = ê(h, g)r.

Semantic Security. It is worth to precise that we do not require to be able
to simulate any oracle for making use of IB-KEM schemes in the next section.
The weak semantic security will be enough:

Theorem 3. The weak semantic security of our scheme (under selective-ID,
chosen-plaintext and no-identity attacks) relies on the DBDHG,ê-problem, in the
standard model.

Proof. Given u, A = ua, B = ub, C = uc, and V ∈ GT the input to the DBDHG,ê-
Problem, and the target identity ID∗, we set g = A = ua, h = C = uc = gc/a,
g1 = ut ·A−ID∗

= ut−aID∗
, and c = B. This implicitly defines MK = t/a− ID∗, for

a randomly chosen t
R← Zp. Therefore, FPK(ID∗) = g1g

ID∗
= ut ·A−ID∗ ·AID∗

= ut,
and the randomness r of the challenge ciphertext c = FPK(ID∗)r = utr = ub = B
is r = b/t. The corresponding encapsulated key should thus be

K = ê(h, g)r = ê(uc, ua)b/t = ê(u, u)abc/t.

386 M. Izabachène and D. Pointcheval

By letting (V 1/t, c) be the output of the challenger, an adversary able to break
the semantic security (without Extract-queries) helps us to decide whether V is
the Bilinear Diffie-Hellman value or not. ��

In order to show the usual semantic security (under full-ID, but chosen-plaintext
attacks), we have to be able to simulate the Extract-oracle, which thus requires
additional inputs. But first, we modify a little bit the scheme, by using H(ID),
instead of ID in the above description, where H is a random oracle [5] onto Zp.

Theorem 4. The semantic security of our scheme (by using H(ID), instead
of ID) under full-ID and chosen-plaintext (no Decaps queries) relies on the
successive-power version, in the random oracle model.

Proof. Given u, A = ua, B = ub, C = uc, Ci = C1/ai

, for i = 1, . . . , q, and
V ∈ GT the input to the q-SP-DBDHG,ê-problem, we first compute {Vi =
ê(u, u)bc/ai}i=0...q, since V0 = ê(B, C), and Vi = ê(B, Ci), for i = 1, . . . , q. Then,

we set g = A = ua and g1 = ut ·A−x∗
, for randomly chosen t, x∗ R← Zp. This im-

plicitly defines MK = t/a−x∗. We also choose random elements x1, . . . , xq
R← Z∗

p,
and set P (X) =

∏
(tX + xi), a polynomial of degree q, where the number of

random oracle queries is q + 1. We then set h = CP (1/a) = gcP (1/a), which can
be easily computed granted C, C1, . . . , Cq.

First, all the random oracle queries will be answered by an x∗ + xi, or x∗ (for
a unique randomly chosen query): we hope to assign x∗ to H(ID∗), the target
identity, which happens with probability 1/q. Let us assume this situation:

– By definition, as above, FPK(ID∗) = g1g
H(ID∗) = ut ·A−x∗ · Ax∗

= ut;
– For all the other identities, H(IDj) = xj , and then uskj can be computed as

h1/(MK+x∗+xj) = CP (1/a)/(MK+x∗+xj) = CP (1/a)/(t/a+xj) = CPj(1/a),

where Pj is a polynomial of degree q− 1. Then uskj can be easily computed
granted C, C1, . . . , Cq−1. Hence the simulation of the Extract-oracle.

As above, the challenge ciphertext is set c = B = ub = FPK(ID∗)r for r = b/t.
The corresponding encapsulated key should thus be

K = ê(g, h)r = ê(ua, ucP (1/a))b/t = (ê(u, u)abc)P (1/a)/t.

Let us expand P (X) =
∑i=q

i=0 piX
i, and then

K = ê(u, u)abc·p0/t ×
i=q∏
i=1

ê(u, u)bc/ai−1·pi/t =
(
ê(u, u)abc

)p0/t ×
i=q∏
i=1

V
pi/t
i−1 .

If V = ê(u, u)abc, the correct key is V p0/t ×
∏i=q

i=1 V
pi/t
i−1 . In the random case,

the same computation leads to a totally random key (note that p0 =
∏

xi �=
0 mod p). Then, by letting (V p0/t×

∏i=q
i=1 V

pi/t
i−1 , c) be the output of the challenger,

an adversary able to break the semantic security helps us to decide whether V
is the Bilinear Diffie-Hellman value or not. We thus break the q-SP-DBDHG,ê-
problem. ��

New Anonymity Notions for Identity-Based Encryption 387

Anonymity. The usual anonymity notion relies on the same assumption as
the semantic security. Since the ciphertext consists of c = F (ID)r, a random
element in G, whatever the identity ID. It is thus clearly KwrtA-anonymous, in
the information-theoretical sense.

Theorem 5. Our scheme is unconditionally KwrtA-anonymous.

Idendity-based Non-Malleability. Let us consider the ciphertext c, and
its decryption with respect to IDi for i ∈ {0, 1}. In the following, ri is formally
defined by c = F (IDi)ri , and Ki = ê(g, h)ri . Thus, the identity-based non-
malleability relies on the intractability of finding c, {IDi, Ki}, with ID0 �= ID1

such that ri = logê(g,h)(Ki) = logF (IDi)(c). This thus leads to a solution of the
Common co-CDH-Problem.

Theorem 6. The identity-based non-malleability of our scheme relies on the
Common co-CDH-Problem in groups G and GT .

4 IBK − PAKE: Our Password-Authenticated Key
Exchange Protocol

The previous sections focused on identity-based key encapsulation mechanisms,
and new anonymity properties. We now show how a weakly semantically secure
IB-KEM, that is both KwrtA-anonymous and identity-based non-malleable, can
be used to build a password-authenticated key exchange.

4.1 Description of Our Scheme

Our new scheme is generic. It basically consists in generating the session key
using this IB-KEM, under the common password as the identity, see Figure 1.
The other party can easily recover the session key. Security notions for semantic
security and perfect forward secrecy follow from the (weak) semantic security
and anonymity properties of the IB-KEM scheme.

4.2 Security Analysis

Communication Model. We assume to have a fixed set of protocol partic-
ipants, and each of them can be either a client or a server. They are all al-
lowed to participate to several different, possibly concurrent, executions of the
key exchange protocol. We model this by allowing each participant an unlim-
ited number of instances able to initiate or participate to an execution of the
protocol.

In the password-based scenario, the two parties share a low-entropy secret pw
which is drawn from a small dictionary Dic. In the following, we assume that
the distribution is uniform. More complex distributions could be considered.

We use the security model introduced by Bellare et al. [4], improved by Ab-
dalla et al. [2] to consider the Real-or-Random security notion instead of the

388 M. Izabachène and D. Pointcheval

Client C Server S

pw ∈ Dic pw ∈ Dic

accept ← false accept ← false

Valid(PK)?
S, PK←−−−−−− (PK, MK) ← Setup(λ)

(K, c) ← Encaps(PK, pw)
C, c−−−−−−→ usk ← Extract(MK, pw)

K′ ← Decrypt(usk, c)

AuthS′ = H1(S, C, PK, c, pw, K)
S, AuthS←−−−−−− AuthS = H1(S, C, PK, c, pw, K′)

AuthS
?
= AuthS′

If no error/reject
accept ← true

AuthC = H2(S, C, PK, c, pw, K)

sk = H0(S, C, PK, c, pw, K)
C, AuthC−−−−−−→ AuthC′ = H2(S, C, PK, c, pw, K′)

AuthC
?
= AuthC′

If no error/reject
accept ← true

sk = H0(S,C, PK, c, pw, K)

Fig. 1. IBK-PAKE: a Password-Authenticated Key-Exchange Protocol

Find-then-Guess. In this model, the adversaryA has the entire control of the net-
work, which is formalized by allowing A to ask the following query, Send(U, m),
that models A sending the message m to instance U . The adversary A gets back
the response U generates in processing the message m according to the protocol.
A query Send(U, INIT) initializes the key exchange algorithm, by activating the
first player in the protocol.

From the original security model, we suppress the Execute-queries. Even if they
were important to model passive attacks vs. active attacks, we consider a stronger
security model where the adversary always uses Send-queries, either for simply
forwarding a flow generated by a honest user, or for modifying/manufacturing a
flow. Thereafter, if the whole transcript of an execution of the protocol turns out
to consist of forwarded flows only, this execution is then considered as a passive
attack: it is similar to an Execute-query in previous models [4]. If one flow has
been modified or manufactured, the session corresponds to an active attack.

As a consequence, in addition to the usual security model with Execute-
queries, the adversary can adaptively decide, during an execution of the pro-
tocol, whether the session will correspond to a passive attack, or to an active
one, and not from the beginning of the session only (as in [19]). An attack game
will consist of a mix of passive and active attacks, in a concurrent manner.

However, as usual, we will be essentially interested in active attacks: qactiveC

and qactiveS will, respectively, denote the number of active attacks in which the
adversary played against the client and the server, respectively. We want to show

New Anonymity Notions for Identity-Based Encryption 389

that qactiveC+qactiveS is an upper-bound on the number of passwords the adversary
may have tried.

Security Notions. Two main security notions have been defined for key ex-
change protocols. The first is the semantic security of the key, which means
that the exchanged key is unknown to anybody other than the players. The sec-
ond one is unilateral or mutual authentication, which means that either one, or
both, of the participants actually know the key. In the following, we focus on
the semantic security, also known as AKE Security.

The semantic security of the session key is modeled by an additional query
Test(U). Since we are working in the Real-or-Random scenario, this Test-query
can be asked as many times as the adversary A wants, but to fresh instances
only. The freshness notion captures the intuitive fact that a session key is not
“obviously” known to the adversary. More formally an instance is said to be
fresh if it has successfully completed execution and

1. Neither it nor its partner was corrupted before the session started
2. or, the attack, on this session, was passive.

Two instances are partners if they run a key exchange protocol together. This is
formally modeled by the notion of session ID: the session ID is a string defined
from the transcript (usually, it consists of the first flows, sent and received), and
two instances are partners if they share the same session IDs.

The Test-query is answered as follows: a (private) coin b has been flipped
once for all at the beginning of the attack game, if b = 1 (Real), then the actual
session key sk is sent back, if b = 0 (Random), or a random value is returned.
Note that for consistency reasons, in the random case, the same random value
is sent to partners.

We denote the AKE advantage as the probability that A correctly guesses the
value of b with its output b′: Advake(A) = 2 Pr[b = b′]− 1.

The adversary will also have access to the Corrupt-query that leaks the pass-
word: it is useful to model the perfect forward secrecy. The latter notion means
that a session key remains secret even after the leakage of the long-term secret.

Security Result. For our protocol, we can state the following security result,
which proof can be found in the full version [18].

Theorem 7 (AKE Security). Let us consider an Identity-Based Key Encap-
sulation Mechanism IBK = (Setup, Extract, Encaps, Decaps) that is weakly se-
mantically secure (selective-ID, chosen-plaintext attacks and no Extract-queries),
KwrtA-anonymous, and identity-based non-malleable, then our protocol IBK-
PAKE, provides semantic security and perfect forward secrecy:

Advake
ibk−pake(A) ≤ 4× qactive

N
+ negl(),

where qactive = qactiveC + qactiveS is the number of active attacks and N is the size
of the dictionary.

390 M. Izabachène and D. Pointcheval

5 Conclusion

In this paper, we have first introduced two new security notions for identity-
based key encapsulation mechanisms: the first one is an enhancement of the
usual anonymity, the second one formalizes a kind on non-malleability, with
respect to the recipient identity.

Then, we proposed the first scheme that is full-ID semantically secure against
chosen-message attacks, and that achieves our new security notions.

We furthermore showed that these new security notions could be useful for
identity-based schemes as a tool: we provided a new framework for password-
authenticated key exchange, with an identity-based key encapsulation mecha-
nism as a core sub-routine.

Acknowledgment

We would like to thank the anonymous referees for their fruitful comments. This
work has been partially supported by the French ANR PAMPA Project, and
the European Commission through the IST Program under Contract IST-2002-
507932 ECRYPT.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005)

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS,
vol. 3386, pp. 65–84. Springer, Heidelberg (2005)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 139–155. Springer, Heidelberg (2000)

5. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)

6. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocols se-
cure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy,
pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)

7. Bentaha, K., Farshim, P., Malone-Lee, J., Smart, N.P.: Generic constructions of
identity-based and certificateless KEMs. Journal of Cryptology 21(2), 178–199
(2008)

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

New Anonymity Notions for Identity-Based Encryption 391

9. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

10. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

12. Boneh, D., Waters, B.R.: Conjunctive, subset, and range queries on encrypted data.
Cryptology ePrint Archive (2006)

13. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

14. Catalano, D., Pointcheval, D., Pornin, T.: IPAKE: Isomorphisms for password-
based authenticated key exchange. Journal of Cryptology 20(1), 115–149 (2007)

15. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

16. Gentry, C.: Practical identity-based encryption without random oracles. In: Vau-
denay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Hei-
delberg (2006)

17. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

18. Izabachène, M., Pointcheval, D.: New anonymity notions for identity-based encryp-
tion. In: SCN 2008. LNCS. Springer, Heidelberg (2008),
http://www.di.ens.fr/users/pointche

19. Pointcheval, D., Zimmer, S.: Multi-factor authenticated key exchange. In: Bellovin,
S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037,
pp. 277–295. Springer, Heidelberg (2008)

20. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

21. Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer,
Heidelberg (2000)

22. Shoup, V.: ISO 18033-2: An emerging standard for public-key encryption, Final
Committee Draft (December 2004)

http://www.di.ens.fr/users/pointche

A Universally Composable Group Key Exchange
Protocol with Minimum Communication Effort

Jun Furukawa1, Frederik Armknecht2, and Kaoru Kurosawa3

1 NEC Corporation, Japan
j-furukawa@ay.jp.nec.com

2 Ruhr-Universität, Germany
frederik.armknecht@trust.rub.de

3 Ibaraki University, Japan
kurosawa@mx.ibaraki.ac.jp

Abstract. The universal composability (UC) framework by Canetti [15] is a
general-purpose framework for designing secure protocols. It ensures the security
of UC-secure protocols under arbitrary compositions. As key exchange protocols
(KEs) belong to the most used cryptographic mechanisms, some research has
been done on UC-secure 2-party KEs. However, the only result regarding UC-
secure group key exchange protocols (GKEs) is a generic method presented by
Katz and Shin [35]. It allows to turn any GKE protocol that fulfills certain security
requirements into a UC-secure variant. This yields GKE protocols which require
at least five communication rounds in practice when no session identities are pro-
vided by external mechanisms. Up to now, no effort has been taken to design
dedicated UC-secure GKE protocols with a lower communication complexity.

In this paper, we propose a new UC-secure GKE which needs only two rounds.
We show that two is the minimum possible number of rounds and that any 2-round
UC-secure GKE requires at least as many messages as our protocol. The proof
of security relies on a new assumption which is a combination of the decision
bilinear Diffie-Hellman assumption and the linear Diffie-Hellman assumption.

Keywords: Group key exchange, universal composability, session ID generation.

1 Introduction

A preferable goal in provable security is to have security proofs which do not only show
the security of protocols in an isolated environment but as well in composition with
other protocol instances. Universally Composable (UC) security, introduced by Canetti
in [15], provides this guarantee in a strong sense: A UC-secure protocol maintains its
security properties even when composed concurrently with an unbounded number of
instances of arbitrary protocols. Observe that UC supports a strong attacker model. Ad-
versaries can control the whole communication, can control the schedules of all parties
(e.g., delay messages) and can adaptively corrupt parties even during protocol runs. Not
surprising, UC attracted a lot of attention and initiated a new research direction. For a
variety of different types of protocols, e.g., signatures of different types (Canetti [16],
Fischlin [28], Kurosawa et al. [37]), multi-party computation (Canetti et al. [23,22]),

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 392–408, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Universally Composable Group Key Exchange Protocol 393

commitment schemes (Canetti et al. [18]), oblivious transfer (Fischlin [29]), mix-nets
(Wikström [39]), etc., it has been examined if and how UC-secure instantiations can
be designed. As key exchange protocols (KEs) belong to the most widely needed and
used type of cryptographic protocols, the design of UC-secure KEs has been the topic
of several works, e.g., Canetti et al. [21,19], Hofheinz et. al. [32], Le et al. [38].

However, the focus was mostly put on 2-party KEs whereas less is known about
group key exchange protocols. The only result concerning UC-secure group key ex-
change protocols (GKEs) published so far was presented by Katz and Shin in [35].
Firstly, they gave a definition for the UC-security of GKEs. Capturing the right secu-
rity notions for GKEs is a challenging task. Bresson et al. gave in [10,8,9] the first
formal model of GKEs security, based on the formalization of two-party KEs given
in [5,6,4] by Bresson et. al. They considered authenticated key exchange (AKE) (ex-
changed keys are indistinguishable from randomly chosen keys) and mutual authentica-
tion (MA) (each party is assured that its partners have generated the same key). The at-
tacker model assumes that the participating parties are uncorrupted, but outsiders might
control the communication (outsider attacks). Later on, several definitions to cover se-
curity in presence of malicious parties which participate to the GKE (insider attacks)
have been presented [35,11,13,26].

The second result in [35] is a compiler that transforms any AKE-secure GKE into a
UC-secure GKE. For example, the compiler could be applied to the modified version of
the Burmester-Desmedt GKE [12] presented by Katz and Yung [36]. It is noteworthy
that the Katz-Shin-compiler appends one extra communication round1 to the underlying
GKE in order to achieve UC-security which means an increase in the communication
effort. To the best of our knowledge, all published AKE-secure GKEs have at least two
rounds. Hence, according to current state of knowledge, the compiler can be used to gen-
erate UC-secure GKEs with a minimum number of three communication rounds. Note
that this bound only holds within the UC framework where it is assumed that each proto-
col run is indexed by a unique session identifier (SID). This assumption is obviously not
true in most practical environments so that the SID has to be generated during the pro-
tocol run. Barak et al. in [1] described a general protocol for this purpose , is to prepend
two additional rounds in which nonces are exchanged. Summing up, generic methods
are known to construct UC-secure GKEs which require five communication rounds.

However, for the sake of efficiency, the number of communication rounds and the
number of exchanged messages should be as small as possible. Indeed, one can show
(we give a proof in Appendix A) that any UC-secure GKE requires at least two rounds.
Thus, the above mentioned results only prove the general feasibility of designing UC-
secure GKEs but do not yield optimal results regarding the number of rounds and ex-
changed messages. Up to now, no dedicated UC-secure GKEs have been published
which aim for a better communication effort. Observe that in this paper, we consider
only group key exchange protocols where no pre-existing trust exists. In the case that
one party is trusted by the others, this party could act as a kind of group leader who
simply chooses the group key. This would make more efficient protocols are possible.

1 Protocol runs are usually divided into communication rounds where each party sends within
one round only messages which depend on its present state and the messages exchanged in
previous rounds.

394 J. Furukawa, F. Armknecht, and K. Kurosawa

In this paper, we present the first UC-secure GKE which requires only two rounds,
that is with the minimum number of rounds. Furthermore, we show that no two round
UC-secure GKE can exist which requires less messages. We achieve this result by in-
tegrating the additional round from the Katz-Shin-compiler into the protocol and by
generating the SID during the protocol. Each of these measurements saves one round
but requires new concepts and dedicated security proofs.

The paper is organized as follows: Section 2 shortly explains the UC framework and
introduces our security definitions for UC-secure GKE where the SIDs are not provided
externally. Section 3 proposes our 2-round GKE while Section 4 proves its security
within the UC framework. Section 5 concludes the paper.

2 Init-GKEs within the Universally Composable Framework

2.1 The Universally Composable Framework

We shortly recapitulate the basic ideas of the universally composable framework (UC
framework) [15]. Informally, a protocol π realizes a cryptographic task in an UC-secure
way if no pair of any environmentZ and attacker A, can distinguish the protocol’s ex-
ecution, called real execution, from the execution of an ideal functionality F , called
ideal execution. F can be seen as a kind of black box that ideally realizes the con-
sidered cryptographic task. For example in our case, this task would be to distribute
keys between members of a group. The attacker can control the whole communication,
can control the schedules of all parties, can adaptively corrupt any parties even during
protocol runs, and can concurrently run arbitrary protocols for each party.

The real execution, denoted with EXECπ,A,Z(k, z), is initiated by the environment
Z on some input z and security parameter k. More precisely, Z activates an attackerA
and multiple parties Π1, . . . , Πn running π. A is assumed to have total control over the
content and the schedule of the communication between the parties {Πi}. Furthermore,
it can corrupt parties. At the end, Z outputs a value 0 or 1.

In contrast to the real execution exists the ideal execution EXECF ,S,Z(k, z) which
differs in several points. The real parties Π1, . . . , Πn are ”replaced” by dummy parties
Φ1, . . . , Φn which have the same input interface but interact with the ideal functional-
ity F instead of running π. When a dummy party is invoked by a message it simply
forwards it to F while a real party would start the protocol π. The output of a dummy
party Φ is the output provided by F to Φ while the output of a real party would be its
result from the execution of π. In a similar manner, the real adversary A is ”replaced”
by an ideal adversary S. Again, if Z halts at some point in time, it outputs 0 or 1.

Now, π is defined to be UC-secure i.e., UC-realizes F , if for any real adversary A
exists an ideal adversary S such that no environment Z can distinguish EXECπ,A,Z
from EXECF ,S,Z . The notion of indistinguishability is formalized by the following
definition:

Definition 1. [15] A function f is negligible in a (security) parameter k (denoted by
f ≈ 0) if for any c ∈ N there exists k0 ∈ N such that for all k > k0 we have
|f(k)| < k−c).

A Universally Composable Group Key Exchange Protocol 395

Two executions Exec1 and Exec2 are indistinguishable (written Exec1 ≈ Exec2)
if

|Pr[Exec1(k, z) = 1]− |Pr[Exec2(k, z) = 1]| ≈ 0.

2.2 An Ideal Functionality for SID-Generating Group Key Exchange Protocols

As already pointed out, one basic assumption within the UC framework is that protocol
executions are labeled with unique session identifiers (SID). If these are not provided by
some external mechanism, the participants in the protocol are required to generate them.
This might be accomplished by an initialization protocol which, of course, has to be UC-
secure as well. such as the one proposed in Barak et al. [1] described an appropriate ideal
functionality Finit and proposed a two-round protocol which UC-realizes it. Thus, a
naive approach would be to construct an UC-secure GKE which relies on the existence of
SIDs and to prepend the Barak-et-al.-protocol. Obviously, it would be more efficient if we
could integrate protocol initialization and group key exchange within one protocol (init-
GKE). Therefore, we consider a functionality that realizes both tasks and consequently
term it Finit−GKE . Observe that the concept of init-GKEs has been considered before,
e.g., [27,10,8,9,11], but never within the UC-framework.

Next, we introduce an ideal functionalityFinit-gke for init-GKE protocols. According
to the UC framework, whenever a party Φ wants to participate in a protocol execution,
it invokes an instance (or copy) of itself and chooses a party instance identifier piid for
it. Honest parties are expected to choose always a different party instance identifier for
each party instance. In the following, we refer to a party by Φ and to one of its instances
by (Φ, piid). While a party Φ might possess some long-term secrets, e.g., a signature key,
party instances (Φ, piid) are invoked with an empty state. Because of this, a party instance
reveals no long-term secret when it is corrupted. Long-term secrets are only revealed
when parties (but not party instances) are corrupted. However (Φ, piid) might make use
of Φ’s long-term secret, e.g., by letting Φ sign the messages of (Φ, piid). This modeling
is in compliance with the such model fits to the well accepted model of KEs [20].

Different protocol executions are referred to by session identifiers sid. As the gen-
eration of a sid will be part of the protocol, our functionality accepts requests from
party instances which are not connected a-priori to some sid (in contrast to the GKE-
functionality from [35]). For this purpose, we define the following sets which are man-
aged by F :

– READY(PID) is the set of all requests for participation in a group key exchange
protocol where the group is specified by a set of party identifiers PID.

– CORR contains all sessions where at least one party is corrupted and no key has
been generated yet

– KEYS is composed of all keys that have been generated so far

The ideal functionality Finit-gke is defined as in the following.

Definition 2. The ideal functionality Finit-gke communicates with some party-
instances and an ideal adversary S. Finit-gke runs on a security parameter k and on
a set D with |D| ∈ O(2k). Finit-gke stores the sets READY(PID), CORR, and KEYS as
internal state. Here, a set READY(PID) is prepared for every (PID) when required.

396 J. Furukawa, F. Armknecht, and K. Kurosawa

Participation Request: Upon receiving a request (PID, (Φ, piid), new-session) from
a party Φ, Finit-gke checks that Φ ∈ PID. If (and only if) this is the case, it adds
(Φ, piid) to the set READY(PID). Afterwards, Finit-gke sends (PID, (Φ, piid)) to S.

Key Generation: Whenever Finit-gke receives a message (PID, sid, ok) from S, it
checks if sid = {(Φi, piidi)}i=1,...,n, and sid ⊂ READY(PID). If this is the case,
Finit-gke removes sid from READY(PID). If this is not the case Finit-gke skips the
rest of the process.

If all party-instances (Φi, piidi) ∈ sid are uncorrupted, Finit-gke randomly
chooses a key κ ∈ D and adds (PID, sid, κ) to KEYS. If any of the party-instances
(Φi, piidi) ∈ sid is corrupted,Finit-gke adds (PID, sid) to CORR but stores no entry
in KEYS.

Corrupted Key Generation: Upon receiving a message (PID, sid, key, κ) from S,
Finit-gke checks if (PID, sid) ∈ CORR. If it is, it deletes this entry from CORR and
adds (PID, sid, κ) to KEYS.

Key Delivery: If S sends a message (PID, sid, deliver, (Φ, piid)) where there is a
recorded tuple (PID, sid, κ) ∈ KEYS and (Φ, piid) ∈ sid, then Finit-gke sends
((Φ, piid), PID, sid, κ) to the party Φ.

Party Instance Corruption: S can request to corrupt any party instance (Φi, piidi) ∈
sid which is marked as corrupted from this point on. In addition, if there is a
recorded tuple (PID, sid, κ) ∈ KEYS and a message ((Φi, piidi), PID, sid, κ) has
not yet been sent to Φi, then S is given κ, otherwise nothing.2

Observe that the functionality allows the parties to freely choose sets of possible group
partners, hence giving them full flexibility.

As opposed to the definition given in [35], the keys are randomly chosen from a set
D instead of {0, 1}k. This choice was made to makeFinit-gke compliant to the proposed
protocol π where keys come from a group G̃. This yields no limitation of the model.
Once a group of parties succeeds to share a key with a large enough entropy, one can
smooth this entropy by applying a 2-universal hash function on it with a uniformly
chosen public string. This does not require any further interaction between the parties
and has therefore no impact on the round complexity. The leftover hash lemma [33,34]
guarantees that the obtained key is indistinguishable from random string in {0, 1}k.
For this purpose, the system should additionally provide a randomly chosen 2-universal
hash function and a uniformly chosen public string. The same string can be used for
every key exchange.

In [35], key exchange functionality is defined so as to be invoked for a single ses-
sion. To capture the execution of multiple session, the multi-session extension of each
functionality is considered. Then, according to the joint-state theorem [24], any GKE

2 This is necessary to deal with the situation that the corrupted party instance is in the last
round and the adversary withholds the final messages from this party instance. In this case, the
adversary who learned the internal state (by corruption), can compute the key by himself while
the corrupted party is unable to do so as it is still waiting for the final messages. On the other
hand, if the corrupted party instance did already finish the key generation, the key is handed in
the real world to the invoking party and the internal state is deleted. Hence, the adversary does
learn nothing then.

A Universally Composable Group Key Exchange Protocol 397

protocol that UC-realizes the GKE functionality from [35] UC-realizes its multiple ses-
sion extension as well. In Finit-gke , whenever a party-instance (Φ, piid) is invoked, the
session in which it will participate is not determined. Furthermore, each party may be
invoked several times and the attacker has the full control over forming and scheduling
sessions. Hence, our ideal functionality is intrinsically multi-session without the need
for additional mechanisms.

Observe that for the case of a single execution with a fixed (possibly externally given)
sid, Finit-gke behaves exactly like FGKE from [35]. Hence, any combination of the
initialization protocol from [1] and a protocol constructed with the Katz-Shin-compiler
UC-realizes Finit-gke . In the next Section, we start from such a construction and explain
how the number of rounds can be reduced.

3 The Protocol

3.1 Problems and Our Approach

Before we describe our protocol in the next (sub-)section, we first sketch our approach
and which challenges need to be overcome. In principle, we follow the ideas from the
Katz-Shin compiler [35] and the initialization protocol from Barak et al. [1]. To ex-
plain these, let π̂ be a GKE that UC-realizes Finit-gke and that has been compiled by
applying the Katz-Shin compiler to an AKE-secure GKE and by prepending the ini-
tialization protocol from Barak et. al. For example, if one applies these modifications
to the Burmester-Desmedt protocol [12] (in its AKE-secure variant given in [36]), one
obtains a 5-round GKE π̂. Our approach for reducing the number of rounds are the two
following independent methods:

1. In the first two rounds of π̂, that is the initialization protocol, each party sends a
value piid to an initializer. When he received values from each party, he distributes
their concatenation within the group. 3 We integrate this procedure into the third
round by letting each party sends its piid directly to the others and by taking care
that these values are inseparable from the remainder of the protocol.

2. In the last round of π̂, each party broadcasts an acknowledgment. This has two pur-
poses. Firstly, each party can check that all parties obtained the same key. Secondly,
it allows straight-line simulatability for the case that one party has already output a
group key when another party gets corrupted. We use a non-interactive proof in the
penultimate round instead.

As these modifications render the first, second, and last round obsolete, the number of
rounds can be reduced by three. Although the approaches might sound quite straight-
forward, the problems lie (as often) in the security proof.

1. For a proof of security, one has to show that a successful attacker can be used to
solve a presumably hard problem. In the case of GKEs, this usually means that a
given instance of the problem, for which a solution is sought, is embedded in the

3 Using randomly generated nonces of the length of the security parameter is one way for choos-
ing unique piids.

398 J. Furukawa, F. Armknecht, and K. Kurosawa

messages of the participating parties. But in the case considered here, it is unknown
at the beginning which set of parties will eventually participate into a protocol run.
Indeed, the number of possible sets of parties (or groups) which might execute a
protocol run increases exponentially as the number of parties increases. Thus, new
and more sophisticated methods are necessary to embed the problem instance such
that the reduction can be shown.

2. While several efficient non-interactive proofs within the random oracle model exist,
we aim (to follow the path toward more practicability) for a proof without random
oracles.

3. A dedicated simulator which achieves straight-line simulatability is required as the
general simulator given by Katz and Shin does not hold anymore.

The idea to solve the first problem deploys a commitment scheme. At the beginning
of the protocol execution, each party generates two possible messages m and m′ for the
first round, together with corresponding internal states s and s′. From these, it chooses
one internal state, say s, and deletes the other. Then, both messages (m and m′) are
send in the first round together with a commitment to which message is going to be
used later (in this example, m). The commitment is assumed to be a perfectly hiding
trapdoor bit commitment and its trapdoor is kept secret to everyone. But in the security
proof, the ideal adversary S, who chooses the parameters, knows the trapdoor of the
commitment scheme and can decommit in such a way that it is appropriate for him.

For the second problem, we make use of pairings on elliptic curves. More precisely,
we extend the Burmester-Desmedt protocol over bilinear groups where the validity of
messages can be checked by using pairings.

The idea to solve the third problem is to update the internal state in such a way that
the key can still be generated but that the initially chosen secret is deleted. This allows
to simulate the internal state of the corrupted party instance such that it is in compliance
with the revealed group key.

3.2 Protocol Description

In the following, we describe a 2-round GKE π which UC-realizes Finit-gke . Although
we prove in Section 4 the security of the protocol is only for the case of an even number
of parties, the protocol can easily be extended for an odd number of parties if one or
every party plays the role of two parties. The protocol is an extension of the Burmester-
Desmedt protocol [12] which additionally uses a bilinear pairing, a perfect hiding trap-
door bit commitment scheme, and a digital signature scheme as further building blocks.
We assume that the parties can completely erase their state. This ability is indispens-
able to ensure forward secrecy, that is corrupting parties does not compromise keys
from earlier sessions.

Definition 3. Let G and G̃ denote two cyclic groups of prime order p. A bilinear pairing
is an efficient mapping e : G ×G → G̃ such that e(uα, vβ) = e(u, v)αβ for all u, v ∈ G
and α, β ∈ Z/pZ and there exists g ∈ G such that e(g, g) generates G̃. We will refer to
such a tuple (G, G̃, e, g) as a bilinear pairing quadruple.

A Universally Composable Group Key Exchange Protocol 399

Definition 4. A trapdoor bit commitment scheme is a tuple of algorithms TGen,
TCom, TVer, and TOpen. Given a value 1k, TGen outputs a public parameter tparam
and the corresponding trapdoor tdr. Given tparam, b ∈ {0, 1}, and a random tape,
Tcom outputs com and dec. Given tparam, com, and dec, TVer outputs b ∈ {0, 1}
or ⊥. Given tparam, com, dec, tdr, b′ ∈ {0, 1}, TOpen outputs dec′ such that b′ =
TVer(tparam, com, dec′).

Roughly, a trapdoor bit commitment scheme is hiding/perfect-hiding if distributions
of commitments of 0 and 1 are indistinguishable/identical. A trapdoor bit commit-
ment scheme is binding, if given a randomly generated parameter tparam, to out-
put com, dec, dec′ such that 0 = TVer(tparam, com, dec) and 1 = TVer(tparam,
com, dec′) is hard. A trapdoor bit commitment scheme is equivocal if for any (com,
dec) = Tcom(tparam, b, r) with b ∈ {0, 1}, the distributions of (com, dec′ =
TOpen(tparam, com, dec, tdr, b′)), b′ ∈ {0, 1}, and (com, dec) = Tcom(tparam,
b′, r′) are indistinguishable. Here, r and r′ are random tapes. See [25,30] for more
details and possible schemes. The trapdoor bit commitment we use here is perfectly
hiding, binding, and equivocal.

Definition 5. (GKE protocol π) Let n denote the size of PID. If we need to distinguish
between the sizes of different sets PID, we write nPID instead. We index each party
in PID by i ∈ {1, . . . , n} in some order and let Πi denote the i-th party. For � ≥ n,
we define Π� := Π(� mod n). Let b denote 1 − b for b ∈ {0, 1}. Each party Πi has
its public/private key pair (PKi, SKi) which can be used to sign messages. We assume
the deployed digital signature scheme to be existentially unforgeable against chosen
message attacks. The public keys are known to all parties. The system parameters are a
bilinear pairing quadruple, a randomly chosen element v ∈ G, and parameters tparam
for a perfect hiding trapdoor commitment scheme. The trapdoor tdr that corresponds
to tparam is kept secret to everyone. The protocol is divided into two communication
rounds where each party can send one message to each party per round, and a key
generation step at the end. The protocol works as follows:

Round 1: When Πi receives a message (PID, (Π, piid), new-session), it generates a
new party instance (Πi, piidi), randomly chooses bi ∈ {0, 1}, and generates

yi,bi := gri with ri ∈R Z/pZ

ybi
∈R G, and

(comi, deci) := TCom(tparam, bi).

We abbreviate Yi := (yi,0, yi,1). Remark that yi,0 and yi,1 play the role of the
two messages we mentioned in the solution approach for problem 1 in the previous
sub-section. (Πi, piidi) creates the internal state

st1i := (PID, (Πi, piidi), Yi, comi, deci, bi, ri) (1)

and broadcasts
(Π ; PID, (Π, piid), Yi, comi). (2)

400 J. Furukawa, F. Armknecht, and K. Kurosawa

Round 2: Each instance (Πi, piidi) receives messages (Πj ; PID, (Πj , piidj), Yj ,
comj) for j �= i. Then it generates

sid := {(Πi, piidi)}i=1,...,n,

cont = (PID, sid, Y1, com1, . . . , Yn, comn),

creates a signature sigi on cont, and computes for α, β, γ ∈ {0, 1}

xi,α,β =
(

yi−1,α

yi+1,β

)ri

, zi,γ = e(yi+1,γ , v)ri . (3)

We define Xi := (xi,0,0, xi,0,1, xi,1,0, xi,1,1) and Zi := (zi,0, zi,1). The internal
state is updated to

st2i := ((Πi, piidi), cont, bi, Xi, Zi)

and broadcasts

(Πi; (Πi, piidi), PID, sid, sigi, bi, deci, Xi)

to all parties. Remark that the initial secret ri has been deleted and been ”re-
placed” by Xi and Zi. While this still allows to compute the key, this step makes
the straight-line simulatability feasible (see next section).

Key generation: Given an internal state st2i and messages

(Πj ; Πj, piidj , PID, sid, sigj , bj, decj , xj)

for j �= i from the second round, (Πi, piidi) generates the group key as follows.
First, it verifies that the following conditions hold for all j = 1, . . . , n:
1. sigj is valid signature of Πj on cont,
2. bj = TVer(comj , decj),
3. the values yj,bj , xj,bj−1,bj+1 are elements in G,
4. e(xj,bj−1,bj+1 , g) = e(yj−1,bj−1/yj+1,bj+1 , yj,bj). Remark that this equation

holds only when the parties generated their second messages honestly. This
solves the problem 2 we mentioned in the previous sub-section.

In the positive case (and only then), it generates a group key by

κ := (zi,bi+1)
ne(

n∏
j=1

(xi+j,bi+j−1 ,bi+j+1)
n+1−j , v) = e(

n∏
j=1

grj,bj
rj+1,bj+1 , v),

(4)
outputs (Πi, piidi, PID, sid, κ) and deletes the party instance, i.e., clears the inter-
nal state of the party instance (Πi, piidi).

In the above protocol, messages whose length depend on the number n of participants,
e.g, PID and sid, can be shortened to constant size by taking their hash values or com-
monly agreed alias when possible.

In the next section, we will prove that our protocol UC-realizesFinit-gke . In Appendix
A, we will show that any protocol that UC-realizes Finit-gke needs at least two com-
munication rounds. Hence, our protocol has the minimum possible number of rounds.
Furthermore, this shows that the derived bound is tight.

A Universally Composable Group Key Exchange Protocol 401

4 Proof of Security

In this section, we prove that the 2-round GKE π proposed in Section 3 UC-realizes
Finit-gke . The proof of security relies on a new hardness assumption which we call the
linear oracle bilinear Diffie-Hellman (LO-BDH) assumption. Observe that the main
reason for introducing the new assumption is not to capture any new security properties
but to show that it is indeed possible to construct protocols which achieve the minimum
number of rounds and the according minimal number of messages. This assumption is
a combination of the decision bilinear Diffie-Hellman assumption and the linear Diffie-
Hellman assumption [7].

Definition 6. We say that the linear oracle bilinear decision Diffie-Hellman (LO-BDH)
assumption holds for a bilinear pairing quadruple (G, G̃, e, g), if for every polynomial-
time adversary A and for every polynomial-size q, the advantage of A to win the fol-
lowing game is negligible.

Setup: Challenger C randomly chooses α, β, γ, δ ∈ Z/pZ, and b ∈ {0, 1}. Then, C
generates χ = e(g, g)αβγ if b = 0, otherwise χ = e(g, g)δ. C also randomly
chooses μi ∈ Z/pZ and generates mi = gμi for i = 1, . . . , q.

Input At the beginning of the game, C gives A the tuple
(g, g1, g2, g3, χ) = (g, gα, gβ, gγ , χ) and {mi}i=1,...,q

LDH Oracle query The game consists of q rounds. In each round,A can send a query
(i, bi) for some i ∈ {1, . . . , q} (but for each i only once) and bi ∈ {0, 1}.

– If bi = 0, C gives gα(μi+β) to A.
– If bi = 1, C gives μi to A.

Answer: At the end of the game,A outputs b′ ∈ {0, 1}. The advantage ofA is |Pr[b =
b′]− 1/2|.

In short, an adversary is required to solve the bilinear Diffie-Hellman problem while
it is helped by asking the LDH oracle either to solve a linear Diffie-Hellman problem
with respect to given random elements mi, g1 and g2 or to reveal logg mi. Although the
assumption that an adversary has an access to oracles might appear to be quite strong,
several assumptions have been proposed before that allow such queries, e.g., one-more-
discrete-log assumption [3], one-more-RSA-inversion assumption [2], LRSW assump-
tion in [14], etc. Furthermore, one can show that LO-BDH assumption assumption holds
in the generic bilinear group model (see the full version for a proof).

In [17], the notion of generalized UC (GUC) is proposed which overcomes a weak-
ness of the conventional UC framework. The major motivation for introducing GUC
was that UC does not provide deniability and adaptive soundness when a global setup
is assumed. A deniable protocol allows a party A to interact with party B in a way
that prevents B from later convincing party C that the interaction took place. Adaptive
sound arguments maintain the soundness even when party a A proves to a party B that
x is in some language L that is related to the global setup. Our scheme assumes the exis-
tence of a PKI and a trapdoor commitment scheme for which no one knows its trapdoor.
These are global setups that GUC concerns. However, neither deniability nor adaptive
soundness play a role in the security requirements for GKEs. We consider GKE to be
secure even if a party A can prove to others that A has exchanged a key. We do not

402 J. Furukawa, F. Armknecht, and K. Kurosawa

need to concern adaptive soundness since nothing related to globally setup parameter is
proved in our protocol. Therefore, we analyze our protocol within the conventional UC
framework and consider the GUC framework to be out of scope.

To prove the security of π within the UC framework, we have to describe for any
pair of environment Z and adversary A an ideal adversary S such that the real and
ideal executions are indistinguishable. Next, we give first a description of S. After that,
we sketch the proof which shows that the existence of a successful pair of environment
and adversary would contradict the LO-BDH assumption. Due to space limitations, the
full proof is can be found in the full version.

Definition 7. The ideal adversary S is assumed to have black box access to the ad-
versary A. Messages from Z to S (Z believes it is sending to A) are forwarded to A,
and messages from A to S (A believes it is sending to Z) are forwarded to Z . Addi-
tionally, S simulates the real parties. At the beginning, it generates public/private key
pairs (PKΦ, SKΦ) for each party Φ and gives the public keys to A. Furthermore, it
runs TGen to create pairs (tparam, tdr) and hands the public parameter tparam toA.
When S receives a message (PID, (Φ, piid), new-session) from A for an uncorrupted
party Φ, it begins simulating for A a party instance with party instance ID piid being
run for Φ. More precisely, it executes on behalf of (Φ, piid) the computations for the
first round. Any messages sent byA to Φ are processed by a party instance (Φ, piid) for
suitable piid and any messages output by a party instance (Φ, piid) are given to A.

In addition to the above, the ideal adversary S proceeds as follows:

SKG: (Session Key Generation) Assume that a simulated party instance (Φ, piid) out-
puts a session key ((Φ, piid), PID, sid, κ). If S has sent before (PID, sid′, ok) to
Finit-gke for sid′ �= sid and if there exists an uncorrupted party instance (Φ′, piid′) ∈
sid ∩ sid′, then S aborts. If not, S checks whether any of the party instances
(Φ′, piid′) ∈ sid have been corrupted.
SKG.¬cor.: If no party instance (Φ′, piid′) ∈ sid has been corrupted, then:

SKG.¬cor.¬ok: If S has not yet sent (PID, sid, ok) to Finit-gke , then S checks
that it has received all pairs (Φ, piid) ∈ sid from Finit-gke . If not, S aborts.
Otherwise, it sends (PID, sid, ok) to Finit-gke , followed by
(PID, sid, deliver, (Φ, piid)).

SKG.¬cor.ok: If S has already sent the message (PID, sid, ok) to Finit-gke ,
this means that another party instance (Φ′, piid′) has generated a session
key κ′ before. If κ �= κ′, S aborts. Otherwise, S sends
(PID, sid, deliver, (Φ, piid)) to Finit-gke .

SKG.cor.: If some party instances C ⊆ sid \ {(Φ, piid)} are corrupted, then:
SKG.cor.¬ok: If S has not yet sent (PID, sid, ok) toFinit-gke , it sends the mes-

sage (PID, (Φ′, piid′), new-session) to Finit-gke on behalf of all corrupted
party instances (Φ′, piid′) ∈ C who have not done so already. If S does
not receive (PID, (Φ′, piid′)) for all pairs (Φ′, piid′) ∈ sid after execut-
ing the above, it aborts. Otherwise, it sends the messages (PID, sid, ok),
(PID, sid, key, κ), and (PID, sid, deliver, (Φ, piid)) to Finit-gke .

SKG.cor.ok: If S has already sent (PID, sid, ok) to Finit-gke , then S has sent
immediately after (PID, sid, κ′, set) to Finit-gke . If κ′ �= κ then S aborts.
Otherwise, S sends (PID, sid, deliver, (Φ, piid)) to Finit-gke .

A Universally Composable Group Key Exchange Protocol 403

COR: When A intends to corrupt a party instance (Φ, piid), S provides A with the
current internal state as follows:
COR.¬ok: If S has not yet sent to Finit-gke the message (PID, sid, ok) for some

(PID, sid) with (Φ, piid) ∈ sid, then S simply gives A the current internal
state of (Φ, piid). Such a state is guaranteed to exist unless some message
(PID, sid, ok) has been sent followed by (PID, sid, deliver, Φ, piid). This state
can be either one of the two internal states sti

Φ,piid for i = 1, 2, or the empty

state, depending on the current round of the protocol execution sid.
COR.ok: Consider now the case that S has already sent (PID, sid, ok) toFinit-gke .

COR.ok.¬del: If S has not yet sent (PID, sid, deliver, (Φ, piid))
(with (Φ, piid) ∈ sid), then it checks if (Φ, piid) does have a internal state
st2

(Φ,piid)
, i.e., the second round is completed. If this is not the case, then

S aborts.
Otherwise, let the party instances be ordered as explained in the protocol
description in Section 3, that is sid = {(Φ1, piid1), . . . , (Φn, piidn)}, and
let (Φi, piidi) denote the party instance that is corrupted by S to obtain a
key (PID, sid, κ) from Finit-gke . This might either be provided by S before
or be generated byFinit-gke . In the first case, S simply forwards the internal
state of (Φi, piidi) toA. For the second case, we make use of the fact that as
S has already sent (PID, sid, ok). This implies that at least one simulated
copy (Φj , piidj) ∈ sid has already distributed values (bj , Xj) and has
received n− 1 tuples (b�, X�) before. S uses these values and κ, which it
obtains by corrupting a party instance via Finit-gke , to replace the value of
zi,bi+1 in the internal state of (Φi, piidi) to

z′i,bi+1
:=

⎛
⎝κ/e(

n∏
j=1

((xi+j,bi+j−1 ,bi+j+1)
n+1−j

, v)

⎞
⎠

1/n

,

sets z′i,1−bi+1
:= zi,1−bi+1 , and hands to A the internal state

(PID, sid, (Φi, piidi), conti, deci, bi, Xi, Z
′
i).

COR.ok.del: If S has already sent (PID, sid, deliver, Φ, piid) toFinit-gke , then
S returns nothing (i.e., an empty internal state) to A.

Theorem 1. The GKE π UC-realizesFinit-gke under the LO-BDH assumption when the
number n of participants is even.

Proof
(Sketch) We sketch only the proof ideas here. A detailed proof can be found in the full
version. The description of S contains several cases in which S aborts. Using a hybrid
argument, one can prove that these abortions never occur unless the used signature
scheme or commitment scheme are broken.

With respect to the straight-line simulatability, an ideal adversary can easily simu-
late the internal state of the (simulated) party instances in the case of corruption if no

404 J. Furukawa, F. Armknecht, and K. Kurosawa

party instance has output a key. However, if the adversary A requests the corruption
of a party instance when some other party instances have output keys before, the ideal
adversary S is forced to present an internal state to A for the corrupted party instance
that fits to the key that has been randomly chosen by the ideal functionality Finit-gke .
The simulator description tells how this can be achieved and in the full proof, we show
that this reconstructed internal state cannot be distinguished from a honestly generated
state if the LO-BDH assumption holds.

Finally, we prove that if real and ideal executions are distinguishable, then the LO-
BDH assumption is violated. For this purpose, we embed a corresponding problem into
the executions. For this embedding, we make use of the fact that although the number
of possible sets sid is superpolynomial in the number of invoked party instances, the
number of sets sid that actually appear during the execution is only polynomial in the
security parameter. For this purpose, we make use of the trapdoor in the commitment
scheme.

5 Conclusions and Open Questions

In this paper, we followed the path initiated by Katz and Shin in [35] and presented a
group key exchange protocol that is secure within the universal composability frame-
work. However, while Katz and Shin demonstrated merely the general feasibility of
constructing UC-secure GKEs, we aimed for improved solutions. Our protocol requires
only two communication rounds (which we show to be minimal) and includes ses-
sion identifier generation (which is a prerequisite within the UC-framework but is only
rarely provided in practice). In the protocol, every party send to every other party in
each round one message, which yields a total number of 2n(n− 1) messages. We show
that the number of messages cannot be further reduced in two-round protocols.

Although our protocol improves over existing results, there is still room for further
improvements or extensions. An important question is if a two-round UC-realization
of Finit-gke exists where the security can be reduced to a more standard assumption.
Furthermore, we imagine that the basic idea on how to integrate protocol initialization
into the protocol (using a trapdoor commitment scheme) might be transferred to other
types of protocols as well.

References

1. Barak, B., Lindell, Y., Rabin, T.: Protocol initialization for the framework of universal com-
posability. Cryptology ePrint Archive, Report2004/006 (2004),
http://eprint.iacr.org/

2. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-rsa-inversion
problems and the security of chaum’s blind signature scheme. J. Cryptology 16(3), 185–215
(2003)

3. Bellare, M., Palacio, A.: Gq and schnorr identification schemes: Proofs of security against
impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)

4. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dic-
tionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155.
Springer, Heidelberg (2000)

http://eprint.iacr.org/

A Universally Composable Group Key Exchange Protocol 405

5. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.)
CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)

6. Bellare, M., Rogaway, P.: Provably secure session key distribution: the three party case. In:
STOC, pp. 57–66. ACM, New York (1995)

7. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin [13], pp. 41–55
8. Bresson, E., Chevassut, O., Pointcheval, D.: Provably authenticated group diffie-hellman

key exchange - the dynamic case. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248,
pp. 290–309. Springer, Heidelberg (2001)

9. Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic group diffie-hellman key exchange
under standard assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 321–336. Springer, Heidelberg (2002)

10. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenticated group
diffie-hellman key exchange. In: CCS 2001: Proceedings of the 8th ACM conference on
Computer and Communications Security, pp. 255–264. ACM Press, New York (2001)

11. Bresson, E., Manulis, M., Schwenk, J.: On Security Models and Compilers for Group
Key Exchange Protocols. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007.
LNCS, vol. 4752, pp. 292–307. Springer, Heidelberg (2007)

12. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution system (ex-
tended abstract). In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

13. Cachin, C., Strobl, R.: Asynchronous Group Key Exchange with Failures. In: Proceed-
ings of the 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC
2004), pp. 357–366. ACM Press, New York (2004)

14. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilin-
ear maps. In: Franklin [31], pp. 56–72

15. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067 (revised in 2005) (2000),
http://eprint.iacr.org/

16. Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW,
p. 219. IEEE Computer Society, Los Alamitos (2004)

17. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global
setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg
(2007)

18. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

19. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 404–421. Springer, Heidelberg (2005)

20. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building
secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–
474. Springer, Heidelberg (2001)

21. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure
channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351.
Springer, Heidelberg (2002)

22. Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-
party computation without set-up assumptions. J. Cryptology 19(2), 135–167 (2006)

23. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and
multi-party secure computation. In: STOC, pp. 494–503 (2002)

24. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO
2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

http://eprint.iacr.org/

406 J. Furukawa, F. Armknecht, and K. Kurosawa

25. Crescenzo, G.D., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-
malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp.
40–59. Springer, Heidelberg (2001)

26. Desmedt, Y.G., Pieprzyk, J., Steinfeld, R., Wang, H.: A Non-Malleable Group Key Ex-
change Protocol Robust Against Active Insiders. In: Katsikas, S.K., López, J., Backes, M.,
Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–475. Springer, Heidel-
berg (2006)

27. Dutta, R., Barua, R., Sarkar, P.: Provably secure authenticated tree based group key agree-
ment. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 92–104.
Springer, Heidelberg (2004)

28. Fischlin, M.: Round-optimal composable blind signatures in the common reference string
model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidel-
berg (2006)

29. Fischlin, M.: Universally composable oblivious transfer in the multi-party setting. In:
Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 332–349. Springer, Heidelberg
(2006)

30. Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In: Bellare, M.
(ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 413–431. Springer, Heidelberg (2000)

31. Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)
32. Hofheinz, D., Müller-Quade, J., Steinwandt, R.: Initiator-resilient universally composable

key exchange. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808,
pp. 61–84. Springer, Heidelberg (2003)

33. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way func-
tions. In: STOC 1989: Proceedings of the twenty-first annual ACM symposium on Theory
of computing, pp. 12–24. ACM Press, New York (1989)

34. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: FOCS, pp. 248–253.
IEEE, Los Alamitos (1989)

35. Katz, J., Shin, J.S.: Modeling insider attacks on group key-exchange protocols. In: CCS
2005: Proceedings of the 12th ACM conference on Computer and communications security,
pp. 180–189. ACM Press, New York (2005)

36. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. J. Cryp-
tol. 20(1), 85–113 (2007)

37. Kurosawa, K., Furukawa, J.: Universally composable undeniable signature. Cryptology
ePrint Archive, Report 2008/094 (2008), http://eprint.iacr.org/

38. Le, T.V., Burmester, M., de Medeiros, B.: Universally composable and forward-secure rfid
authentication and authenticated key exchange. In: Bao, F., Miller, S. (eds.) ASIACCS, pp.
242–252. ACM, New York (2007)

39. Wikström, D.: A universally composable mix-net. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 317–335. Springer, Heidelberg (2004)

A Lower Bounds on the Communication

In this section, we prove that any GKE that UC-realizes Finit-gke (short: a INIT-GKE)
needs at least two communication rounds and that any two-round GKE that UC-realizes
Finit-gke requires at least 2n(n − 1) messages.4 As the protocol proposed in Section 3

4 We count messages which are send to different parties separately. That is a broadcast message
would count as n − 1 messages as it is received by n − 1 parties.

http://eprint.iacr.org/

A Universally Composable Group Key Exchange Protocol 407

meets these lower bounds, the bound derived on the number of rounds are tight and the
protocol has minimum communication effort.

As said before, we assume that the parties are inter-session memoryless, that is no
information from one session can be used for further sessions. A party who has an
inter-session memory can memorize all SID of protocols in which it was involved and
can deny to take part in a protocol of the same SID even when those SIDs are given
by others. The reason for this assumption is that we would like to model the parties
as relaxed as possible. That is we would not like to demand from parties for example
to keep track of all used sids and so on. Of course, stronger parties which might have
inter-session memory might run more efficient protocols.

Theorem 2. If a 2-round protocol UC-realizes the INIT-GKE functionalityFinit-gke and
if all participating parties are inter-session memoryless, then in each round every party
sends a messages to every other party of the same group.

The theorem follows from the following two lemmas 1 and 2. Both lemmas use the
fact that in the case of the ideal executions, it can never happen that a party instance
of a honest party will take part in two different protocol executions (or sessions) which
eventually generate a key. The reason is that we assumed that party instances of honest
parties always choose a unique piid. Once a protocol execution starts (more precisely:
Finit-gke starts the key generation), the identity of the party instance is deleted from the
list of ready instances. As we suppose authenticated channels, an attacker can not re-
request a protocol execution on behalf of the same party instance as long as the party is
uncorrupted. Hence, there is now way to put this party instance back on the list of ready
instances.

Lemma 1. An INIT-GKE π does not UC-realize Finit-gke if there exist parties Φ and Φ′

such that with non negligible probability Φ does not send a message to Φ′ in the second
round.

Proof. Let π be a INIT-GKE for which the mentioned condition holds. The following
adversaryA is able to distinguish the real and the ideal executions which shows that π
cannot UC-realize Finit-gke .

1. Consider a protocol execution where sid denotes the set of participating party in-
stances with a least two uncorrupted instances. Adversary A randomly selects two
uncorrupted party instances (Φ, piid), (Φ′, piid′) and corrupts the remaining party
instances cpid := sid \ {(Φ, piid), (Φ′, piid′)}.

2. A honestly takes part in the protocol execution on behalf of the corrupted par-
ties in cpid. Let m(1, (Φ, piid), (Φ′, piid′)) denote the message (Φ, piid) sends to
(Φ′, piid′) and m(1, (Φ, piid), cpid) denote the collection of all messages (Φ, piid)
sends to cpid in the first round. These messages might be empty if no messages
have been send. The adversary completes the protocol and checks if (Φ, piid) does
have to send a message to (Φ′, piid′) in the second round. If this is the case, it
repeats this procedure again. In the other case, what happens with non-negligible
probability by assumption, it proceeds to the next step and (Φ′, piid′) outputs a key
as usual.

408 J. Furukawa, F. Armknecht, and K. Kurosawa

3. Once the adversary obtained m(1, (Φ, piid), (Φ′, piid′)) and m(1, (Φ, piid), cpid),
we show in the following that he can start a second protocol execution in which
(Φ, piid) participates again. As described above, this cannot happen in ideal execu-
tions.
(a) The adversaryA starts a new protocol with the same group of parties. WhileA

lets Φ′ create a new party instance (Φ′, piid′′), it re-uses for the party instances
in cpid and (Φ, piid) the messages from the previous protocol executions. Ob-
serve that (Φ, piid) takes part at two protocol executions while Φ is assumed to
be honest. We will show now that this second execution will eventually lead to a
key generation as well. Since (Φ′) is inter-session memoryless, it cannot detect
that the party instances cpid and (Φ, piid) have used exactly the same messages
before. Hence, (Φ′, piid′′) completes the first round without any problem.

(b) From the messages (Φ′, piid′′) has sent to cpid in the first round, m(1,
(Φ, piid), cpid), and the random tapes inputs to cpid, the adversary can gen-
erate all messages the parties in cpid have to send to (Φ′, piid′′) in the second
round. By assumption, with non negligible probability (Φ, piid) is not required
to send any message to (Φ′, piid′′) in the second round. In this case, everything
is alright from the point of view of (Φ′, piid′′) which outputs a group key.

Concluding, this leads to a second protocol execution which eventually leads to a group
key although the same party instance (Φ, piid) participated in both runs. As explained
above, this is not possible in ideal executions. Therefore, the protocol does not UC-
realize Finit-gke . ��

Lemma 2. An INIT-GKE protocol does not UC-realizes Finit-gke if there exist partici-
pants (Φ, piid) and (Φ′, piid′) such that with non negligible probability they may send
messages to each other in the second round but (Φ′, piid′) does not send a message to
(Φ, piid) in the first round

Proof. The proof is very similar to the proof of Lemma 2 and can be found in the full
version.

Corollary 1. Every universally composable INIT-GKE protocol requires at least two
round.

Corollary 2. The most efficient case in two round protocols is when every party broad-
casts one message in each round.

An Identity-Based Key Agreement Protocol
for the Network Layer

Christian Schridde, Matthew Smith, and Bernd Freisleben

Department of Mathematics and Computer Science, University of Marburg
Hans-Meerwein-Str. 3, D-35032 Marburg, Germany

{schriddc,matthew,freisleb}@informatik.uni-marburg.de

Abstract. A new identity-based key agreement protocol designed to operate on
the network layer is presented. Endpoint addresses, namely IP and MAC addresses,
are used as public keys to authenticate the communication devices involved in a key
agreement, which allows us to piggyback much of the security overhead for key
management to the existing network infrastructure. The proposed approach offers
solutions to some of the open problems of identity-based key agreement schemes
when applied to the network layer, namely multi-domain key generation, key dis-
tribution, multi-domain public parameter distribution, inter-domain key agreement
and network address translation traversal.

1 Introduction

Current network security protocols like IPsec use either pre-shared keys or a Public
Key Infrastructure (PKI) to secure the communication channel. The pre-shared keys ap-
proach is suitable for small networks but does not scale well. The PKI approach scales
better but has a high management overhead [27],[2]. To avoid the complexity of authen-
ticated public key distribution, Shamir [25] in 1984 proposed the concept of identity-
based cryptography (IBC) which allows an arbitrary string to be used as a public key.
Since then, several identity-based encryption (IBE) schemes [16] and identity-based
key agreement protocols [14] have been suggested, but it was not until 2001 when the
first practical IBE systems were introduced by Boneh and Franklin using Weil pairings
[6] and Cocks using quadratic residues [10].

IBC has been applied to several application layer protocols, with the main focus ly-
ing on e-mail protection. Some attempts have been made to apply IBC to lower layers
like the network layer to offer lightweight alternatives to PKI based security solutions,
but a number of problems have hindered the adoption of IBC at this level. Unlike the
application layer where identifiers are usually unique (like e-mail or SIP addresses) and
do not change owners, IP addresses can both change owners on a regular basis and are
not necessarily unique. For both scarcity and security reasons, many devices have pri-
vate IP addresses and access the Internet using the Network Address Translation (NAT)
protocol. This creates problems for IBC, since outside the private network the device
behind the NAT router has a different identifier, namely that of the NAT router. Further-
more, the private identifier of the ”NATed” device is most likely used by other resources
in other private networks and thus is not unique. Another practical issue when deploying

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 409–422, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

410 C. Schridde, M. Smith, and B. Freisleben

an IBC system on the network layer is that many different organizations are responsible
for different parts of the Internet and thus it is unlikely that a single trusted authority can
be found to operate the identity private key generator (ID-PKG). Several solutions have
been proposed which allow multiple ID-PKGs to interoperate [15,17,7,5], but these sys-
tems require either cooperation between the ID-PKGs or a hierarchical approach with a
trusted party at the top. Both approaches are difficult to use in the Internet due to organi-
zational difficulties and conflicting business interests. As demonstrated by approaches
based on a Certificate Authority (CA), there will always be competing organizations
offering the same service for the same protocol (e.g. signing RSA public keys) with-
out wanting to cooperate on the corporate level. Thus, to successfully deploy IBC on
the network layer, the IBC system must be able to cope with NAT, address reuse (and
consequently dynamic identity key deployment), and it must allow competing organi-
zations to operate their ID-PKG independently of other ID-PKGs while still enabling
cross-domain execution of the IBC protocols for their customers.

In this paper, a new identity-based key agreement protocol is introduced which fo-
cuses on the issues to be solved when implementing IBC on the network layer. The pro-
posed approach is realized using IP addresses on the network layer and optionally MAC
addresses on the data link layer for bootstrapping purposes. It utilizes the mathemat-
ics also used in the traditional Diffie-Hellman [12] key agreement and Rivest-Shamir-
Adleman (RSA) [23] public key cryptography approaches, and in the key distribution
system proposed by Okamoto [19]. Solutions to the problems of multi-domain key gen-
eration, key distribution, multi-domain public parameter distribution, cross-domain key
agreement and NAT are presented.

The paper is organized as follows. Section 2 discusses related work. In Section 3, the
new identity-based key agreement scheme is presented. Section 4 discusses implemen-
tation issues. Section 5 concludes the paper and outlines areas for future research.

2 Related Work

Since Shamir’s pioneering IBC proposal in 1984, various IBE systems have been pro-
posed. In 2001, Boneh and Franklin [6] introduced an operational IBE system based on
bilinear pairings on elliptic curves. By using efficient algorithms to compute the pairing
function, the system can be used in real world applications. Its main application focus
is e-mail, dealing with key distribution and expiration in this domain. Several optimiza-
tions and extensions of Boneh and Franklin’s IBE approach have been suggested (e.g.
[17], [8], [9], [26]), all based on the Weil pairings [6] originally used by Boneh and
Franklin. These extensions include hierarchical IBE systems [15] and public parameter
distribution systems [27]. However, the main focus of all proposals is on application
level security, and e-mail is the main application.

Apart from the full IBE systems, several identity based key agreement schemes have
been proposed, such as [14], [19], [17], [24], [9], [26] and [8]. For example, the key dis-
tribution system proposed by Okamoto [19] extracts identity information and combines
it into a session initiation key in a similar manner as in our scheme, but does not address
the problem of key agreement between different domains. Other of these approaches
offer solutions to combine a number of ID-PKGs, but not in an independent manner.

An Identity-Based Key Agreement Protocol for the Network Layer 411

Appenzeller and Lynn [2] have introduced a network layer security protocol using
IBC. The protocol does not deal with the setup phase, i.e. public parameter distribution,
identity key distribution, and is not compatible with NAT routers. In [27], a working
solution for the problem of public parameter distribution on an Internet scale using the
Domain Name System (DNS) has been presented. However, the paper does not deal
with the critical issues of identity key distribution or NAT traversal.

In all of the above proposals, an arbitrary string can be used as an identifier and
thus also as a public key. However, since the main application focus of most of these
proposals is e-mail, e-mail addresses are the only identifiers for which problems and
solutions are discussed in depth. Problems occurring in other areas, such as IP, Voice-
over-IP, NAT traversal, multi-provider networks and dynamic IP redistribution, are not
discussed. Furthermore, although hierarchical Identity Private Key Generator (ID-PKG)
systems have been introduced [15,17,7,5], they usually require either a root authority
trusted by all ID-PKGs, or that the different ID-PKGs cooperate during their setup. This
is problematic both in the Internet and in telecommunication networks, since no single
trusted authority exists, and service providers are typically competitors.

Two other approaches have been suggested in the context of secure IPv6 network
protocols that are relevant to this paper. The Host Identity Protocol (HIP) [18] removes
the need for binding IP addresses to public keys using certificates by creating a com-
pletely new form of addresses, namely HIP addresses which are constructed by hashing
the public key of a device. This creates two requirements which a HIP system must
meet: (a) the public keys must be created before the address allocation can be performed
and (b) a new protocol layer must be implemented between the transport and network
layer which maps HIP identifiers to the routable IPv6 addresses and provides authenti-
cation. To address the last critical issue, Cryptographically Generated Addresses (CGA)
[4] have been propsed to encode a public key into the 64-bit identifier of the IPv6 ad-
dress, thus avoiding the need to change the protocol stack. However, CGA still requires
the public key to be created before the IPv6 address and restricts the choice of addresses
which can be used. Obviously, getting ISPs to issue particular IPv6 addresses based on
user keys is a difficult task.

3 A New Identity-Based Key Agreement Scheme

3.1 Requirements

The requirements that should be met by the proposed key agreement protocol for the
network layer are as follows:

– Complexity reduction: Contemporary networks are already complex environments
with thousands of network enabled devices coming and going, roaming in foreign
networks and changing providers on a continuous basis. A security infrastructure
should not double the administrative effort by creating one or more mirrors of the
administrative infrastructure for public key certification or storage. At some point,
keys or public parameters must be distributed if authentication is required, but these
key management issues should be kept as local as possible while offering global
interaction.

412 C. Schridde, M. Smith, and B. Freisleben

– Multi-provider operation: The Internet is driven by multi-organizational entities
which will not adopt a single trusted third party or a single trust hierarchy. There-
fore, a cryptographic system must allow multiple security providers to inter-operate
with minimal requirements.

– NAT traversal: NAT is a common occurrence in the Internet, and even with the
adoption of IPv6 it will not disappear completely, since many organizations use
NAT to protect networked resources as well as to conserve public IP addresses.

– Dynamic/transient endpoint addresses: Due to the relatively small number of IPv4
addresses, these endpoint addresses are shared or reused after a certain amount
of time. A cryptographic system must be able to deal with changing owners of
endpoint addresses.

To combine the ease of use of a Diffie-Hellman key agreement protocol with the se-
curity of an authenticated RSA key exchange, we present an identity-based key agree-
ment protocol in which the endpoint addresses of the communication devices are used
to authenticate the devices involved in a key agreement. The use of IBC allows us
to both reduce and spread the administrative burden of key management by seam-
lessly integrating the cryptographic solution into the existing network infrastructure.
Our scheme allows multiple organizations to operate ID-PKGs autonomously, while al-
lowing their customers to operate across organizational borders. This greatly simplifies
the otherwise thorny issue of private key distribution present in global IBE or PKI so-
lutions. Furthermore, the choice of coupling the cryptographic system to the network
layer allows us to piggyback much of the security overhead to the existing network
infrastructure. The proposed system is capable of coping with NAT traversal, and us-
ing key expiration coupled with dynamic key deployment allows for dynamic endpoint
allocation.

In the following, our identity-based key agreement system called Secure Session
Framework (SSF) is presented. First, the four basic steps of the system are described
for the single ID-PKG scenario. Then, the scheme is extended to incorporate multiple
autonomous ID-PKGs which use different public parameters without requiring entities
from one ID-PKG’s domain to contact the ID-PKGs of other domains.

3.2 Algorithmic Overview

The proposed identity-based key agreement protocol SSF consists of four main algo-
rithms: Setup, Extract, Build SIK, and Compute. The first two are executed by the
private key generator and the last two are executed by a participating device. Their
description follows below.

3.3 Key Agreement

The Setup algorithm is executed by the ID-PKG. This part of the key agreement proto-
col is only performed once and creates both the master secrets P and Q as well as the
public parameters.

An Identity-Based Key Agreement Protocol for the Network Layer 413

Setup - The Setup algorithm is executed by the ID-PKG.
Input: k ∈ N
Step 1: Choose an arbitrary integer R > 1 from Z+.
Step 2: Generate two primes, P and Q, of bit length k with the following properties:
1. The prime factorization of (P−1) contains a large prime P′

2. The prime factorization of (Q−1) contains a large prime Q′

3. (ϕ(PQ),R) = 1, where ϕ(·) is the Totient Function.
4. The computation of discr. log. must be infeasible in ZP and ZQ.
Step 3: Compute the product N = PQ
Step 4: Choose a generator G of a subgroup G of ZN whose order contains at least
one of the primes P′ or Q′.
Step 5: Choose a cryptographic collision-resistant hash function H : {0,1}∗→ ZN.
Output: PSP = (N,G,R,H(·)), SP = {P,Q}

Definition 1 (Public, Shared Parameters). The public, shared parameters (PSP) of a
domain D of the key agreement scheme SSF is the quadruple PSP = (N,G,R,H(·))

The Extract algorithm creates the identity key (i.e. the private key) for a given identity.
This algorithm is executed by the ID-PKG. If all IDs are known and the range is not too
big (e.g. a Class B or C subnet of the Internet), it is possible to execute this step for all
IDs offline, and the master secrets can then be destroyed, if required.

Extract - The Extract algorithm is executed by the ID-PKG.
Input: PSP, SP, ID
Let ID be a given identity. The algorithm computes dID ≡ H(ID)1/R mod N. The
integer dID is called the identity key and is given to the entity EID.
Note: Due to the requirement (ϕ(N),R) = 1, the R-th residues form a permutation in
ZN.
Ouput: dID

The Build SIK algorithm is executed by the devices taking part in the key agreement.

Build SIK - The Build SIK algorithm is executed by the entity EID

Input: PSP, dID, k1,k2

Step 1: Choose a random integer rID in the interval [2k1 ,2k2].
Step 2: Compute SIKID ≡ GrID ·dID mod N.
SIKID is the SIK (session initiation key) for the identity string ID which belongs to
entity EID.
Output: SIKID

The random integer rID is generated with a secure number generator to make rID un-
predictable. The private identity key is used in combination with this randomly chosen
integer and the generator in such a way that it is not possible to extract the identity key
from the SIK. This is due to the fact that the multiplications are performed in the ring
ZN and the result set of a division in the ring ZN is so large that the extraction of the

414 C. Schridde, M. Smith, and B. Freisleben

identity key is infeasible. The SIK is then sent over an unsecured channel to the other
party and vice versa. The SIK must be greater than zero to prevent a trivial replacement
attack where an attacker replaces the SIKs with zero which in turn would make the
session key zero as well. Any other replacement attacks lead to invalid session keys.

The final step of the key agreement process is the computation of the session key
using the Compute algorithm which is executed by the devices taking part in the key
agreement. By applying the inverse of the hash value of the opposite’s identity, the in-
volved identity key is canceled out. Only if both endpoint addresses match their identity
keys, a valid session key is created.

Compute - The Compute algorithm is computed when two entities are performing a
key agreement.
Input for EIDA : PSP, SIKIDB > 0, IDB, rIDA

Input for EIDB : PSP, SIKIDA > 0, IDA, rIDB

When EIDA receives the session initiation key from EIDB , it calculates
(SIKR

B H(IDB)−1)rIDA ≡ ((GrIDB dIDB)RH(IDB)−1)rIDA ≡ GRrIDArIDB ≡ S mod N
When EIDB receives the session initiation key from EIDA ,it calculates
(SIKR

A H(IDA)−1)rIDB ≡ ((GrIDA dIDA)RH(IDA)−1)rIDB ≡ GRrIDArIDB ≡ S mod N
Output: S

3.4 Key Agreement between Different Domains

The ID-PKG determines the public, shared parameters, and all entities which receive
their identity key for their IDs from this generator can establish a key agreement among
each other. In practice, it is unlikely that all devices will receive their identity key
from the same security domain, since this would imply the existence of a third party
trusted by all with a secure communication link to all devices. The Internet is di-
vided into many Autonomous Systems (AS) each with its own IP range and respon-
sible for the management of its users. Thus, it is desirable that each AS can operate its
own ID-PKG.

In this section, we show how cross-domain key agreement can be achieved such that
only the public parameters must be distributed (which will be discussed in section 4).
Each device only needs a single identity key, and the ID-PKGs do not need to agree
on common parameters or participate in any form of hierarchy. In the following, we
assume without loss of generality, that there are two domains D1 and D2. Their public
parameters are (N1,G1,R1,H1(·)) and (N2,G2,R2,H2(·)), respectively. Every parameter
can be chosen independently. The case that (R2,ϕ(N1)) > 1 or (R1,ϕ(N2)) > 1 is not
critical, since no R-th roots must be computed regarding the other domain’s modulus.
The two moduli N1 and N2 were chosen according to the requirements stated in the
Setup algorithm, i.e. the computation of discrete logarithms is infeasible in ZN1 and
ZN2 , respectively. Consequently, an algorithm such as the Pohlig-Hellman algorithm
[20] cannot be applied and Pollard’s P−1 factoring algorithm [21] will not be a threat.
Thus, a random non-trivial integer has a large order in ZN1N2 with an overwhelming
probability, and the computation of discrete logarithms is infeasible in ZN1N2 . In the
following, an entity EIDA from D1 wants to communicate with EIDB from D2.

An Identity-Based Key Agreement Protocol for the Network Layer 415

Cross-Domain Extension (from the view of entity EID)
Input: PSP1, PSP2, dID

Step 1: Calculate the common, shared, public parameters: PSP1,2 = (N1 · N2,G1 ·
G2,R1 ·R2,H2(·)).
Step 2: Use the Chinese-Remainder Theorem to calculate the integer d̃ID: d̃ID ≡
dID mod N1 and d̃ID ≡ 1 mod N2

Step 3: Use the Chinese-Remainder Theorem to calculate the integer H̃1(ID):
H̃1(ID)≡ H1(ID)R2 mod N1 and H̃1(ID)≡ 1 mod N2

Output: SIK(1,2)
ID

In step 1 of the cross-domain extension algorithm, the common shared public param-
eters are the element-wise product of both sets of domain parameters. In step 2, entity
EIDA extends its identity key using the Chinese-Remainder Theorem. In step 3, entity
EIDA extends its hash identifier also using the Chinese-Remainder Theorem.

The procedure for entity EIDB is analog, only the indices change from A to B. Key
agreement is then performed using the following extension of the original algorithm.

Cross-Domain: Compute algorithm
Input for EIDA : PSP(1,2), SIK(1,2)

IDB
> 0, IDB, rIDA

Input for EIDB : PSP(1,2), SIK(1,2)
IDA

> 0, IDA, rIDB

When EIDA receives the session initiation key from EIDB , it calculates(
((G1G2)rIDB d̃IDB)R1R2H̃2(IDB)−1

)rIDA ≡ (G1G2)R1R2rIDA
rIDB ≡ S mod (N1N2)

When EIDB receives the session initiation key from EIDA ,it calculates(
((G1G2)rIDA d̃IDA)R1R2H̃1(IDA)−1

)rIDB ≡ (G1G2)R1R2rIDArIDB ≡ S mod (N1N2)
Output: S

A security analysis, correctness proofs and further details on the algorithms can be
found in [3].

4 Implementation Issues

In the following, several issues for deploying the proposed system in practice are dis-
cussed. It will be shown how the public parameters and the identity keys are distributed
in multi-provider scenarios and how dynamic IP addresses are handled. Furthermore, a
detailed description of how our system deals with the NAT problem will be given. One
of the important issues of any multi-organizational cryptographic system is the distri-
bution of the public parameters and keys. It should be noted that a main requirement is
to try to minimize the number of global distribution steps in favor of local distribution
steps, since this distributes the workload and reduces the risk of a global compromise.
In a scenario with N providers, each with M customers where M >> N, we have N ·M
customers in total. This means that N ·M private/identity keys need to be distributed.
In a PKI, in the worst case in which everybody wants to communicate with everybody
else, (N ·M−1) ·(N ·M) public keys need to be exchanged and managed. In our system,

416 C. Schridde, M. Smith, and B. Freisleben

only the public parameters of the N providers need to be exchanged. This reduces the
number of transfers from N ·M local and (N ·M−1) · (N ·M) global transfers to N ·M
local transfers and only N global transfers, and since M >> N, this is a large saving.
Even using traditional key distribution mechanisms, our system offers a significant sav-
ing compared to a PKI in key escrow mode. In the following, further optimizations of
the distribution process which are possible due to the network centric approach of our
solution will be suggested.

4.1 Distribution of Shared, Public Parameters

Like most other IBC approaches, our system also uses shared public parameters. In
a single domain scenario, the distribution of the public parameters is straightforward.
However, if each AS runs its own ID-PKG, the number of public parameters and the
binding between public parameters and identity keys becomes more complex. As stated
above, this distribution problem is still much smaller than the distribution problem for
traditional public keys where each entity has its own public key which needs to be
distributed. Of course, traditional PKI technology can be used to distribute the public
parameters, but a more suitable solution is to integrate the public parameters into the
DNS lookup messages. In this way, the fact that a DNS lookup is made anyway to
resolve a host IP is utilized, and the public parameter transfer can be piggybacked to the
DNS reply. The technical details of the integration of IBC public parameter information
into DNS records were evaluated by Smetters and Durfee [27]. Their positive evaluation
lead us to adopt the public parameter distribution technique for our system. For more
information on the details of how to incorporate this kind of information into the DNS
system, the reader is referred to [27], [1] or [13]. To secure the transport, either DNSsec
can be used or the public parameters can be signed and transferred with standard DNS,
or a key agreement can be executed between the requesting party and the DNS server
if the public parameters of the DNS server are known. Since the DNS server is usually
in the same AS as the requesting customer, this is not a problematic issue, because the
public parameters are the same as the customer’s public parameters. As stated above,
this part of the system has been tried and validated by several research groups.

4.2 Distribution of the Identity Keys

The most critical element in all IBEs or PKIs in key escrow mode is the distribution of
identity keys (private keys) and the prevention of identity misbinding. In traditional PKI
and IBE systems, this is usually done manually and out-of-band and thus creates a lot
of work. While it can be argued that due to the fact that on the AS level most customers
receive an out-of-band message when they receive their endpoint address, adding a
fingerprint to the identity key would not put much extra burden on the system. However,
a more elegant solution for the long term is to integrate the key distribution into the IP
distribution system. For most networks, this means integration into the DHCP server.
This, however, is not trivial since DHCP on its own is an unsecured protocol not suitable
for transferring private information. The two main threats are packet sniffing and MAC
spoofing. If the identity key is sent in the clear via the DHCP protocol in an unswitched
network, an attacker can sniff the identity key, leading to key compromise. With MAC

An Identity-Based Key Agreement Protocol for the Network Layer 417

spoofing, an attacker pretends to be the legitimate owner of a foreign MAC address, and
the DHCP server sends the identity key to the attacker. Both forms of attacks make the
plain use of DHCP for key distribution infeasible.

In the following, we present several solutions geared towards different scenarios of
how the distribution of identity keys can be integrated into DCHP securely. In a fixed
corporate network environment using a switched infrastructure, the easiest solution is to
use the MAC lockdown function of modern switches. Using MAC lockdown, each port
gets a MAC address and will only serve that MAC address. Thus, if an attacker wishes
to spoof a MAC address to gain the key, physical access to the correct port must be
acquired, significantly increasing the risk and effort of the attack. This scenario works
in a corporate network where each MAC address is registered and assigned to a port
anyway. In a student dormitory, for example, it is less feasible since managing the ever
changing MAC addresses of the private devices used by students would be very time
consuming and error prone. Here, an IEEE 802.1X + Radius [11,22] solution is more
practical. The authorization is usually done in the form of a user-name password check.
The IP address and the corresponding identity key can either be fixed (as set by the
Radius and DHCP server) or dynamic and transient (more on transient IP addresses in
section 4.3 and 4.4). Either way, only the legitimate user receives the identity key, and it
is not possible to spoof the MAC address to receive a copy in the same key lifetime. If
packet sniffing is an issue, the DHCP request needs to be extended to include a protected
session key with which the identity can be protected from sniffing attacks. The client
creates a session key which is encrypted using the public parameter N (N can be used
in the same way as an RSA public key) of the key generator of the DCHP server and
broadcasts the DHCP request. The session key can only be decrypted by the DHCP
server which then uses the session key to encrypt the identity key of the client, using e.g.
the Advanced Encryption Standard AES, which is then broadcasted. Thus, the identity
key can only be decrypted by the client.

Apart from these two practical solutions based on an extension of existing security
mechanisms which can be used in the short term, we also present a more speculative
long term solution which does not rely on other security mechanisms. In this case,
we bootstrap the network layer key agreement scheme on the data link layer by us-
ing MAC addresses as public keys. As with IP addresses, we cannot assume that there
will be a single authority to generate the MAC identity keys, but since our system does
not require cooperation between the ID-PKGs, this can be handled. Each organization
with the authority to distribute MAC addresses runs its own ID-PKG and writes the
identity key onto the networking card at the same time as the MAC address. Since the
MAC addresses are globally unique and should not change over the lifetime of the net-
working card, a fixed identity key is not a problem. On the contrary, a hardware based
protection of the key creates an added layer of security. Organizations with the right
to distribute MAC addresses have their own Organizationally Unique Identifier (OUI)
which is encoded in the first three octets of all MAC addresses distributed by this or-
ganization. Using this OUI, the public parameters needed for the MAC address can be
found. This entails a very small and lightweight public parameter lookup mechanism
matching OUIs to public parameters. This is the only step where some form of cooper-
ation is needed on the organizational level, since all OUIs must be publicly available.

418 C. Schridde, M. Smith, and B. Freisleben

However, since the number of OUIs is small and does not change frequently, it is easy
to solve this part of the distribution. The huge benefit of this structure is that the iden-
tity key distribution can now be automated in-band in a secure fashion without relying
on extensive existing security mechanisms. Using this approach, it is possible for the
requesting entity to add a proof of legitimate MAC address possession using the iden-
tity key of the MAC address when requesting its IP address. This not only prevents the
problem of MAC spoofing, but also allows the DCHP server to send the identity key for
the IP address to the requesting entity protected with the MAC based identity encryp-
tion. Since this mechanism is only used for requesting the identity key, which is done
in an Intranet, the proposed solution does not open a backdoor to the Network Interface
Card producers to decrypt the Internet traffic.

4.3 Key Expiration

Another practical issue of network layer encryption is the fact that especially in IPv4
networks, IP addresses are reused. In a PKI or CA based IPsec solution, this creates
several problems, since the central PKI must be updated or the CA must be contacted to
resign public keys as the users swap IP addresses. Certificate Revocation Lists can be
used to accomplish this, but the response time until a change is propagated is quite long
and creates a fair amount of effort. In particular, public key caching mechanisms can
lead to problems. In our identity-based solution, natural key expiration techniques can
be used to cope with dynamic IP addresses. Boneh et al. [6] showed how keys can be
given a lifetime, which allows natural expiration of the identity key. This is done by the
concatenation of the ID, in our case the IP address, with a date. The same technique can
be used in our solution. In the scenario where ISPs have a pool of IP addresses which
are allocated to customers on demand and reused at will, this technique can be used
such that no two customers ever receive the same identity key. Since IP address reuse
is time-delayed in any case1, this time frame can be used as the key lifetime to ensure
that each successive owner lies in a new lifetime slot. With the techniques introduced
in this paper, a frequent automatic in-band key distribution can be safely executed and
thus key renewal is far less of a problem. Additionally, key expiration also reduces the
risk of identity key theft, since the attack window is restricted to a small time interval.

4.4 Transient Key Generation

If a large network requires the uses of transient keys, the key generator can be required
to generate a large number of identity keys. To ease the computational load of the key
generator, we implemented an extension to the generation protocol which makes the
generation of identity keys less computationally expensive, at the cost of making the
session key calculation more expensive. This distributes the load from a single point
(the key generator) to a large number of resources (the clients). The extension makes
uses of the fact that exponentiation using repeated squaring is faster when the binary
representation of the exponent is a sparse-one integer. A sparse-one integer D of order

1 Before an IP address is allocated to a new user, a certain amount of time must pass to prevent
attackers from impersonating the previous entity.

An Identity-Based Key Agreement Protocol for the Network Layer 419

δ is an integer whose binary representation has exactly δ 1’s. The extended algorithm
is presented below.

Extract - The Extract algorithm is executed by the ID-PKG.
Input: PSP, SP, ID
Let ID be a given identity. The algorithm computes dID ≡ H(ID)D mod N.
Choose D as a sparse-one integer. The PSP are increased by the value E from D ·R≡
E mod ϕ(N).
Output: dID

There are exactly
(k

δ
)

sparse-one integers of order δ with bit-length k. Thus, δ should
be selected to be sufficiently large to make exhaustive search infeasible.

4.5 NAT Traversal

The final practical issue is the NAT problem. While this mainly is a problem in IPv4
networks, there are also scenarios in IPv6 networks in which NAT is an issue. The main
problem when dealing with network layer encryption when NAT is involved is that the
NAT server substitutes its public IP address for the private IP address of the entity being
NATed. As such, the original identity key for the private IP address is no longer valid,
since it does not match the public IP address of the NAT router, hence any key agree-
ment would fail. This problem is also faced by IPsec which has problems with NATed
resources. When working in a NAT environment, a certain level of trust must exist be-
tween the NAT router and the NATed device. The NAT router substitutes its public IP
address for the private IP address of the NATed device. The NATed device must trust
the NAT router to substitute the right address, and the NAT router must be willing to
forward the packets on behalf of the NATed device. However, when using encryption,
the NATed device does not trust the NAT router with the plain text version of its com-
munication. Communication between the NATed device and the outside world should
still be private. Considering that the NAT router shares its public IP address with the
NATed devices, our solution also lets the NAT router share the identity key of its public
IP address with the NATed devices (we will show later that this does not compromise
the security of either the NAT router or the NATed devices). The identity key of its In-
tranet IP address is, however, kept private. Also, a private identity key is given to each
NATed device, corresponding to its Intranet IP address. When a NATed device A in the
Intranet establishes a connection to an external device B, it creates a SIK packet using
its private value GrA in combination with the identity key of the NAT router’s public
IP address. This is, in essence, an extension of the normal NAT procedure to include
an authenticated key exchange, and the trust relationship between the NAT router and
the NATed device is not changed. The sharing of an identity key belonging to an IP
address is not usual and should be avoided under normal circumstances, since anyone
in possession of the identity key can pose as the legitimate owner of the corresponding
IP address and thus can spoof the address or act as a man-in-the-middle attacker. How-
ever, in the NAT scenario this is exactly the desired outcome, since the NATed devices
pretend to be the NAT router to the outside world, since as far as the outside world is

420 C. Schridde, M. Smith, and B. Freisleben

concerned, the packets originate from the NAT router. It is important to note that al-
though the identity key of the NAT routers’ public IP address is used by the NATed
device, the NAT router is not able to subvert the communication. To successfully attack
the communication as a man-in-the-middle, the NAT router would also need to be in the
possession of the private identity key of B, which is not the case. It is also not critical if
more than one device is behind the same NAT router, since communication between the
NATed devices and the NAT router is protected by the private identity key of the NAT
router’s Intranet IP address and the identity key of the NATed device, which is different
for each device. Thus, the NATed devices are not able to subvert the communication of
other devices in the Intranet nor are they able to spoof the internal identity of the NAT
router or other NATed devices. Should the Intranet devices be connected to the NAT
router with a pre-configured switch, the Intranet identity keys are not necessary, since
the private value GrA of the key agreement is sufficient to protect the key exchange if
there is a direct connection to the NAT router.

Fig. 1. Proposed solution for the NAT problem with endpoint keys

Figure 1 shows the solution for the NAT problem. The internal user A sends a SIK
using its own private value GrA in combination with the private key of the NAT router’s
IP address. When the NAT router substitutes the IP address with its own, it creates a
valid packet, since the value dNAT now belongs to the correct source address of the
packet.

5 Conclusions

In this paper, a new identity-based key agreement protocol has been presented to se-
cure the communication channel between two devices using their endpoint addresses
as public keys for authentication. The proposed approach has been demonstrated using
IP addresses on the network layer and MAC addresses on the data link layer to boot-
strap the system, which has allowed us to piggyback much of the security overhead for

An Identity-Based Key Agreement Protocol for the Network Layer 421

key management to the existing network infrastructure. Unlike other identity-based en-
cryption solutions, the presented approach is based on the well tested mathematics also
used in the traditional Diffie-Hellman key agreement and Rivest-Shamir-Adleman pub-
lic key cryptography approaches instead of elliptic curves or quadratic residues. It has
been shown how our identity-based key agreement protocol can be used as a generic low
level security mechanism and how it can deal with the implementation issues of multi-
domain key generation, key distribution, multi-domain public parameter distribution,
key expiration, inter-domain key agreement and network address translation traversal.

There are several areas of future work. For example, a more detailed description of
the integration of the proposed identity-based approach into existing network manage-
ment protocols and tools, in particular the integration into the DHCP protocol, should be
provided. Furthermore, the large-scale practical deployment of the proposed approach
in IP, Voice-over-IP, or mobile telephone communication scenarios is an interesting area
for future work.

References

1. Adida, B., Chau, D., Hohenberger, S., Rivest, R.L.: Lightweight Email Signatures (Extended
Abstract). In: 5th International Conference on Security and Cryptography for Networks, pp.
288–302 (2006)

2. Appenzeller, G., Lynn, B.: Minimal-Overhead IP Security Using Identity Based Encryption,
Technical Report, Voltage Inc. (2002)

3. Schridde, C., Smith, M., Freisleben, B.: An Identity-Based Key Agreement and Signature
Protocol with Independent Private Key Generators. Technical Report, Dept. of Mathematics
and Computer Science, University of Marburg, Germany (2008)

4. Aura, T.: Cryptographically Generated Addresses, RFC 3972 (2005)
5. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with Constant

Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456.
Springer, Heidelberg (2005)

6. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM Journal of
Computation 32(3), 586–615 (2003)

7. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (Without Ran-
dom Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307. Springer,
Heidelberg (2006)

8. Chen, L., Cheng, Z., Smart, N.P.: Identity-based Key Agreement Protocols from Pairings.
International Journal of Information Security 6(4), 213–241 (2007)

9. Chen, L., Kudla, C.: Identity Based Authenticated Key Agreement Protocols from Pairings.
In: 16th IEEE Computer Security Foundations Workshop (CSFW 2003), p. 219 (2003)

10. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary,
B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidel-
berg (2001)

11. Congdon, P., Aboba, B., Smith, A., Zorn, G., Roese, J.: IEEE 802.1X Remote Authentication
Dial. In: User Service (RADIUS) Usage Guidelines, RFC 3580 (September 2003)

12. Diffie, W., Hellman, M.E.: New Directions In Cryptography. IEEE Transactions On Infor-
mation Theory (6), 644–654 (1976)

13. Fenton, J., Allman, E., Libbey, M., Thomas, M., Delany, M., Callas, J.: DomainKeys Identi-
fied Mail (DKIM) Signatures, RFC 4870 (2007)

422 C. Schridde, M. Smith, and B. Freisleben

14. Günther, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29–37. Springer, Heidelberg (1990)

15. Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knudsen, L.R.
(ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)

16. Maurer, U.M., Yacobi, Y.: A Non-Interactive Public-Key Distribution System. Designs,
Codes and Cryptography 9(3), 305–316 (1996)

17. McCullagh, N., Barreto, P.: A New Two-Party Identity-Based Authenticated Key Agreement.
In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 262–274. Springer, Heidelberg
(2005)

18. Moskowitz, R., Nikander, P., Jokela, P., Henderson, T.: Host Identity Protocol, RFC 4423
(October 2003)

19. Okamoto, E.: Key Distribution Systems Based on Identification Information. In: Pomerance,
C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 194–202. Springer, Heidelberg (1988)

20. Pohlig, S.C., Hellman, M.E.: An Improved Algorithm for Computing Logarithms over GF(p)
and its Cryptographic Significance. IEEE Trans.on Info. Theory IT-24, 106–110 (1984)

21. Pollard, J.: Theorems of Factorization and Primality Testing. Mathematical Proceedings of
the Cambridge Philosophical Society 76, 521–528 (1974)

22. Rigney, C., Rubens, A., Simpson, W., Willens, S.: Remote Authentication Dial In User Ser-
vice (RADIUS), RFC 2138 (April 1997)

23. Rivest, R.L., Shamir, A., Adleman, L.: A Method For Obtaining Digital Signatures And
Public-Key Cryptosystems. Communications Of ACM 1(2), 120–126 (1978)

24. Sakai, R., Kasahara, M.: ID based Cryptosystems with Pairing on Elliptic Curve. In: Sympo-
sium on Cryptography and Information Security (2003)

25. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

26. Smart, N.P.: Identity-based Authenticated Key Agreement Protocol based on Weil Pairing.
Electronics Letters 38(13), 630–632 (2002)

27. Smetters, D.K., Durfee, G.: Domain-based Administration of Identity-Based Cryptosystems
for Secure E-Mail and IPSEC. In: SSYM 2003: Proceedings of the 12th Conference on
USENIX Security Symposium, Berkeley, CA, USA, p. 15. USENIX Association (2003)

Author Index

Armknecht, Frederik 392

Baek, Joonsang 358
Bagherzandi, Ali 218
Baldi, Marco 246
Beimel, Amos 172
Bodrato, Marco 246
Boyen, Xavier 185
Bringer, Julien 77

Castagnos, Guilhem 92
Chabanne, Hervé 77
Chevallier-Mames, Benôıt 327
Chiaraluce, Franco 246
Choudhary, Ashish 309
Chow, Sherman S.M. 126
Coron, Jean-Sébastien 278

Delerablée, Cécile 185

Freisleben, Bernd 409
Fuchsbauer, Georg 201
Furukawa, Jun 392

Galindo, David 358

Halevi, Shai 1

Icart, Thomas 77
Izabachène, Malika 375

Jarecki, Stanis�law 218
Jerschow, Yves Igor 21

Kanukurthi, Bhavana 156
Kiayias, Aggelos 57
Kurosawa, Kaoru 392

Lauter, Kristin 263
Lindell, Yehuda 2
Liu, Joseph K. 144
Lochert, Christian 21

Mauve, Martin 21
Möller, Bodo 39

Naccache, David 327
Nikova, Svetla 236

Ogata, Wakaha 109

Paskin, Anat 172
Paterson, Kenneth G. 340
Patra, Arpita 309
Petit, Christophe 263
Pinkas, Benny 2
Pointcheval, David 201, 375

Quisquater, Jean-Jacques 263

Rangan, C. Pandu 309
Reyzin, Leonid 156
Rieffel, Eleanor G. 126
Rijmen, Vincent 236
Roth, Volker 126
Rupp, Andy 39

Scheuermann, Björn 21
Schläffer, Martin 236
Schridde, Christian 409
Smart, Nigel P. 2
Smith, Matthew 409
Stern, Jacques 327
Susilo, Willy 358

Teranishi, Isamu 109

Watson, Gaven J. 340
Wikström, Douglas 293

Xu, Shouhuai 57

Yung, Moti 57

Zhou, Jianying 144, 358

	Title Page
	Preface
	Organization
	Table of Contents
	Storage Encryption: A Cryptographer’s View
	Introduction
	Related Work
	Paper Structure

	Yao’s Garbled Circuit
	The Lindell-Pinkas Protocol
	The Protocol in Detail
	The Statistical Security Parameters
	Optimizing the Protocol Components

	Subprotocols
	Encryption Scheme for Garbled Circuits
	Commitment Schemes
	Oblivious Transfer

	Timings
	Future Work
	References

	CLL: A Cryptographic Link Layer for Local Area Networks
	Introduction
	Related Work
	Protocol Overview
	Cryptographic Design Decisions
	Operation of CLL in Detail
	Basic Packet Format
	ARP Handshake and SA Setup
	Unicast IP Packets
	Periodical Key Rollover
	Broadcast Packets

	Integrating and Securing DHCP
	Basic Concept
	Authenticating the Packets
	Further Security Measures

	Implementation and Evaluation
	CLL as a Cross-Platform Service
	Performance Evaluation

	Conclusion
	References

	Faster Multi-exponentiation through Caching: Accelerating (EC)DSA Signature Verification
	Introduction
	Multi-exponentiation
	Interleaved Multi-exponentiation
	Radix-2 Exponent Splitting

	Faster Multi-exponentiation by Caching Intermediate Results
	Multi-exponentiation for a New Base g_1
	Multi-exponentiation for an Old Base g_1

	Performance
	References

	Privacy Preserving Data Mining within Anonymous Credential Systems
	Introduction
	Our Results

	MultiServer Protocols and Their Composition
	Data Mining Group Signatures (DMGS): Model
	Data Mining Group Signatures: Efficient Construction
	Conclusion
	References

	Improved Privacy of the Tree-Based Hash Protocols Using Physically Unclonable Function
	Introduction
	Preliminaries
	The Protocol [11] in a Nutshell
	Physical Unclonable Function and Physically Obfuscated Key
	How We Use {\tt POKs}

	Security Model
	Adversary Model
	Completeness

	PrivacyModel
	A New Privacy Leakage Against Tree-Based Hash .Protocols
	Our Proposition
	System Parameters
	The Protocol

	Security Analysis
	Restriction on the Corrupt Query Due to {\tt POKs}
	Completeness and Soundness

	PrivacyAnalysis
	Conclusion
	References

	Two Generic Constructions of Probabilistic Cryptosystems and Their Applications
	Introduction
	Additively Homomorphic Trapdoor Function
	Non-homomorphic Trapdoor Function
	Applications
	Schemes in Quotients of {\mathbf{Z}}
	Schemes in Elliptic Curves over ${{\mathbf{Z}}/n^{s+1}{\mathbf{Z}}}$
	Additively Homomorphic Scheme in Quadratic Fields Quotients

	Conclusion
	References

	Cramer-Shoup Satisfies a Stronger Plaintext Awareness under a Weaker Assumption
	Introduction
	Background
	Our Results

	Preliminary
	Sufficient Condition for Statistical PA2-ness
	Our Sufficient Condition
	Randomness Oracle
	Proof of Theorem 11

	Statistical PA2-ness of Cramer-Shoup Scheme
	Our Assumption Is Weaker Than Dent’s One[D06]
	Proof of Main Theorem
	The Reason We Succeed in Showing the Statistical PA-ness

	References

	General Certificateless Encryption and Timed-Release Encryption
	Introduction
	The Difficulty of Converting between CLE and TRE
	Our Contributions

	Related Work
	Timed-Release Encryption
	Certificateless Encryption

	General Security-Mediated Certificateless Encryption
	Notation
	Syntax
	Security
	Discussions on Our Choices for Definition

	Our Proposed Construction
	Preliminaries
	Proposed Construction
	Analysis

	Applying General Certificateless Encryption to TRE
	Syntax of Timed-Release Encryption
	Timed-Release Encryption from Certificateless Encryption
	Certificateless Encryption from Timed-Release Encryption
	Security-Mediator in Timed-Release Encryption
	Time Hierarchy

	Conclusions
	References

	Efficient Certificate-Based Encryption in the Standard Model
	Introduction
	Related Works
	Contribution

	Preliminaries
	Notations
	Mathematical Assumptions

	Security Model
	The Proposed Scheme
	Construction
	Security Analysis
	Efficiency Analysis

	Concluding Remarks
	References

	An Improved Robust Fuzzy Extractor
	Introduction
	Preliminaries
	The New Robust Extractor
	Getting Closer to Uniform
	Improving the Construction of [DKRS06] When the Uniformity Constraint Dominates

	Comparison with the Construction of [DKRS06]
	When the Robustness Constraint Dominates
	When the Uniformity Constraint Dominates
	Why the Construction of [DKRS06] Cannot Extract More Bits

	Tolerating Binary Hamming Errors
	Getting Closer to Uniform

	References

	On Linear Secret Sharing for Connectivity in Directed Graphs
	Introduction
	Previous Results
	Our Results
	Organization

	Preliminaries
	Monotone Span Programs
	The st-con Function

	FirstProof
	Proof Outline
	Details

	Second Proof
	References

	Expressive Subgroup Signatures
	Introduction
	Related Work

	Preliminaries
	Composite-Order Pairings
	Group Signatures
	Mesh Signatures
	Security of Expressive Subgroup Signatures
	Formal Security Models

	Construction
	User Credentials
	Atomic Signatures
	Ring Signatures
	Mesh Signatures
	Tracing Trapdoor
	Tracing Procedure
	Concurrent Join Protocol
	The Full ESS Construction

	Security
	Conclusion
	References

	Anonymous Proxy Signatures
	Introduction
	Algorithm Specification
	Security Definitions
	Anonymity
	Traceability
	Non-frameability

	An Instantiation of the Scheme
	Building Blocks
	Algorithms
	Security Results

	References

	Multisignatures Using Proofs of Secret Key Possession, as Secure as the Diffie-Hellman Problem
	Introduction
	Preliminaries: Notation and Assumptions
	Multisignature Schemes
	Three-Round DDH-Based Multisignature Scheme
	Three-Round CDH-Based Multisignature Scheme
	References

	Using Normal Bases for Compact Hardware Implementations of the AES S-Box
	Introduction
	NormalBases
	Construction
	Multiplication
	Inversion

	Implementing the AES Inverse Using Normal Bases
	Inversion in GF(256)
	Normal Bases in GF(16)
	Inversion in GF(16)

	Hardware Considerations
	Optimizing the Implementation
	Counting Gate Equivalents

	Conclusion
	References

	A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes
	Introduction
	Notation
	Improved McEliece Cryptosystem Based on QC-LDPC Codes
	The OTD Attack
	First Variant of the Cryptosystem
	Second Variant of the Cryptosystem
	Other Attacks

	Fast Computations with Circulant Matrices
	Vector-Matrix Product

	Fast Polynomial Product
	General Toom-Cook Approach
	Toom-2, also Known as Karatsuba
	Cost of Exact Divisions
	Toom-3 and Toom-4
	Numerical Examples

	Vector-Toeplitz Convolution
	Numerical Examples

	Cryptosystem Complexity Assessment
	Conclusions
	References

	Full Cryptanalysis of LPS and Morgenstern Hash Functions
	Introduction
	LPS and Morgenstern Hash Functions
	Z\'{e}mor and Tillich Algorithm
	Finding Preimages for LPS Hashes
	Collisions for the Morgenstern Hash Function
	Discussion and Further Work
	References

	A New DPA Countermeasure Based on Permutation Tables
	Introduction
	The AES Encryption Algorithm
	The Permutation Table Countermeasure
	Generation of Permutation Tables p_1 and p_2
	AddRoundKey
	SubBytes
	ShiftRows
	MixColumns
	InvShiftRows
	InvSubBytes
	InvMixColumns
	SubWord
	RotWord
	Xor with Rcon

	Security
	A Compression Scheme
	TimeMemoryTrade-Offs
	Compressed SBOX
	Single XOR Table
	Double and Add for InvMixColumns
	Security

	Implementation
	Conclusion
	References

	Simplified Submission of Inputs to Protocols
	Introduction
	Previous Work
	Our Contribution
	Notation

	Augmented Cryptosystems
	Submission Security of Augmented Cryptosystems

	Generic Cramer-Shoup Is Submission Secure
	Preliminaries
	Generic Scheme of Cramer and Shoup
	Proof of Proposition 1

	Applications of Submission Security
	Informal Description of Application to a Mix-Net

	Future Work
	References

	Unconditionally Reliable and Secure Message Transmission in Directed Networks Revisited
	Introduction
	Three Phase USMT Protocol of Desmedt et al. [4,12]
	Unconditionally Secure Pad Establishment Protocol
	URMT with Constant Factor Overhead
	Communication Optimal USMT Protocol
	Lower Bound on the Communication Complexity
	Conclusion and Open Problems
	References

	Linear Bandwidth Naccache-Stern Encryption
	Introduction
	Fractional Message Encoding
	Small Prime Packing
	A Small Example
	Bandwidth Considerations
	Linear Bandwidth
	Optimizing the Encoding of Zeros

	UsingPowersofPrimes
	A Small Example
	Formal Description
	Bandwidth Considerations

	Security Considerations
	What Security Can Be Attained?
	Security Arguments

	FurtherResearch
	References

	Immunising CBC Mode Against Padding Oracle Attacks: A Formal Security Treatment
	Introduction
	Our Contribution
	Related Work

	Definitions and Models for Chosen Plaintext Security
	CBC Mode for Arbitrary Length Messages
	Padding Oracles
	Security Models
	One-Way Security
	Relations between Models

	Padding Methods for Chosen Plaintext Security
	Padding Methods with Invalid Paddings
	Padding Methods With No Invalid Paddings

	Conclusion
	References

	Constructing Strong KEM from Weak KEM (or How to Revive the KEM/DEM Framework)
	Introduction
	Motivation
	Our Contributions
	Further Discussion on Related Work

	Preliminaries
	Key Encapsulation Mechanism (KEM) and Its Security Notions
	Message Authentication Code and Key Derivation Function

	Our Construction of CCA-Secure KEM from CCCA-Secure KEM
	Applications of Our KEM Construction
	New CCA-Secure KEMs from Well-Known CCCA-Secure KEMs
	Efficiency Comparisons with Other Schemes

	Concluding Remarks
	References

	New Anonymity Notions forI dentity-Based Encryption
	Introduction
	Anonymous Identity-Based Encryption
	Identity-Based Encryption and Key Encapsulation Mechanisms
	Security Notions

	Anonymous and Non-malleable {\mathcal{IB\text{-}KEM}}
	Backgrounds on Pairings
	Diffie-Hellman Assumptions
	Previous IBE Schemes
	Our Scheme

	${\mathcal IBK − PAKE}: Our Password-Authenticated KeyExchange Protocol
	Description of Our Scheme
	Security Analysis

	Conclusion
	References

	A Universally Composable Group Key Exchange Protocol with Minimum Communication Effort
	Introduction
	Init-GKEs within the Universally Composable Framework
	The Universally Composable Framework
	An Ideal Functionality for SID-Generating Group Key Exchange Protocols

	The Protocol
	Problems and Our Approach
	Protocol Description

	Proof of Security
	Conclusions and Open Questions
	References

	An Identity-Based Key Agreement Protocol for the Network Layer
	Introduction
	Related Work
	A New Identity-Based Key Agreement Scheme
	Requirements
	Algorithmic Overview
	Key Agreement
	Key Agreement between Different Domains

	Implementation Issues
	Distribution of Shared, Public Parameters
	Distribution of the Identity Keys
	Key Expiration
	Transient Key Generation
	NAT Traversal

	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

