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Abstract. Modal logics see a wide variety of applications in artificial intelli-
gence, e.g. in reasoning about knowledge, belief, uncertainty, agency, defaults,
and relevance. From the perspective of applications, the attractivity of modal log-
ics stems from a combination of expressive power and comparatively low com-
putational complexity. Compared to the classical treatment of modal logics with
relational semantics, the use of modal logics in AI has two characteristic traits:
Firstly, a large and growing variety of logics is used, adapted to the concrete situ-
ation at hand, and secondly, these logics are often non-normal. Here, we present
a shallow model construction that witnesses PSPACE bounds for a broad class
of mostly non-normal modal logics. Our approach is uniform and generic: we
present general criteria that uniformly apply to and are easily checked in large
numbers of examples. Thus, we not only re-prove known complexity bounds
for a wide variety of structurally different logics and obtain previously unknown
PSPACE-bounds, e.g. for Elgesem’s logic of agency, but also lay the foundations
upon which the complexity of newly emerging logics can be determined.

Special purpose modal logics abound in applied logic, and in particular in artificial
intelligence, where new logics emerge at a steady rate. They often combine expressive-
ness and decidability, and indeed many modal logics are decidable in PSPACE, i.e. not
dramatically worse than propositional logic. While lower PSPACE bounds can typically
be obtained directly from seminal results of Ladner [12] by embedding a PSPACE-hard
logic such as K or KD, upper bounds are often non-trivial to establish. In this re-
spect, non-normal logics have received much attention in recent research, which has
lead e.g. to PSPACE upper bounds for graded modal logic [20] (correcting a previously
published incorrect algorithm and refuting a previous EXPTIME hardness conjecture),
Presburger modal logic [4], coalition logic [17], and various conditional logics [14].

The methods used to obtain these results can be broadly grouped into two classes.
Syntactic approaches presuppose a complete tableaux or sequent system and establish
that proof search can be performed efficiently. Semantics-driven approaches, on the
other hand, directly construct shallow tree models. Both approaches are intimately con-
nected in the case of normal modal logics with relational semantics: counter models
can usually be derived directly from search trees [10]. However, the situation is quite
different in the non-normal case, where the structure of models often goes far beyond
mere graphs. We have previously shown [19] that the syntactic approach uniformly
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generalises to a large class of modal logics. Here, we present a generic semantic set of
methods to establish uniform PSPACE bounds using a direct shallow model construc-
tion which in particular does not need to rely on an axiomatisation of the logic at hand.
Apart from the fact that both methods use substantially different techniques, they apply
to different classes of examples. Examples not easily amenable to the syntactic ap-
proach, because either no axiomatisation has been given or known axiomatisations are
hard to harness, include probabilistic modal logic [6] and Presburger modal logic [4].

We emphasise that our methods go far beyond establishing the complexity of a par-
ticular logic: they employ the semantic framework of coalgebraic modal logic [16] to
obtain results that are parametric in the underlying semantics of particular logics. In this
paradigm, the role of models is played by coalgebras, which associate a structured col-
lection of successor states to every state of the model: a coalgebra with state set C is a
function C → TC where the parametrised datatype (technically: functor) T represents
the structuring of successors, e.g. relational, probabilistic [6], game-oriented [17], or
non-monotonically conditional [1]. Our approach is now best described as investigat-
ing coherence conditions between the syntax and the semantics, parametric in both, that
guarantee the announced complexity bounds. While these methods have so far been lim-
ited to logics of rank 1, given by axioms whose modal nesting depth is uniformly equal
to one, the present results apply to non-iterative logics [13], i.e. logics axiomatised
without nested modalities (rank-1 logics additionally exclude top-level propositional
variables). This increase in generality, achieved by working with copointed functors in
the semantics, substantially extends the scope of the coalgebraic method, in particular
where relevant to AI. E.g. all conditional logics covered in [14], Elgesem’s logic of
agency [5], and the graded version Tn of T [7] are non-iterative logics.

Our main technical tool is to cut model constructions for modal logics down to the
level of one-step logics which semantically do not involve state transitions, and then
amalgamate the corresponding one-step models into shallow models for the full modal
logic. This requires the logic at hand to support a small model property for its one-
step fragment, the one-step polysize model property (OSPMP), which is much easier
to establish than a shallow model property for the logic itself (e.g. to reprove Ladner’s
PSPACE upper bound for K , one just observes that to construct a set that intersects
n given sets, one needs at most n elements). As a by-product of our construction, we
obtain NP-bounds for bounded rank fragments, generalizing corresponding results for
the logics K and T from [8]. We illustrate our method by concise new proofs of known
PSPACE upper bounds for various conditional logics, probabilistic modal logic, and
Presburger modal logic. As a new result, we prove e.g. that Elgesem’s logic of agency
is in PSPACE. Despite the emphasis we place on examples, we stress that the main
intention of this work is to provide a standard method that goes beyond mere informal
recipes, being based on formal theorems with easily verified and well-structured appli-
cation conditions. A full version of this work is available as e-print arXiv:0802.0116.

1 Preliminaries: Coalgebraic Modal Logic

We give a self-contained introduction to the syntax and coalgebraic semantics of modal
logics. A (modal) similarity type Λ is a set of modal operators with associated finite
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arity. The similarity type Λ determines two languages: firstly, the modal logic of Λ,
whose set F(Λ) of Λ-formulas ψ, . . . is defined by the grammar

ψ ::= ⊥ | ψ1 ∧ ψ2 | ¬ψ | L(ψ1, . . . , ψn) (L ∈ Λ n-ary).

Propositional atoms are treated as nullary modalities and therefore do not explicitly ap-
pear in the syntax. Secondly, the signature Λ determines the one-step logic of Λ, whose
formlas may be represented as one-step pairs (φ, ψ) where φ is a propositional formula
over a set V of variables and ψ is a propositional combination of atoms L(a1, . . . , an),
with a1, . . . , an ∈ V and L ∈ Λ n-ary. Equivalently, one may use one-step formulas,
i.e. propositional combinations of formulas L(φ1, . . . , φn), where the φi are proposi-
tional formulas over V [18]; i.e. the modal logic of Λ is distinguished from the one-step
logic in that it admits nested modalities. The rank rank(φ) of φ ∈ F(Λ) is the maxi-
mal nesting depth of modalities in φ. The bounded-rank fragments of F(Λ) are the sets
Fn(Λ) = {φ ∈ F(Λ) | rank(φ) ≤ n}.

The semantics of both the one-step logic and the modal logic of Λ are parametrized
coalgebraically by the choice of a set functor, i.e. an operation T : Set → Set taking
sets to sets (w.l.o.g. preserving the subset relation) and maps f : X → Y to maps Tf :
TX → TY , preserving identities and composition. The standard setup of coalgebraic
modal logic using all coalgebras for a set functor covers only rank-1 logics, i.e. logics
axiomatised by one-step formulas [18] (a typical example is theK-axiom �(a→ b) →
�a→ �b). Here, we improve on this by considering the class of coalgebras for a given
copointed set functor (in a slightly restricted sense), which enables us to cover the more
general class of non-iterative logics, axiomatised by arbitrary formulas without nested
modalities (such as the T -axiom �a→ a).

Definition 1. A copointed functor S with signature functor S0 : Set → Set is a sub-
functor of S0×Id (where (S0×Id)X = S0X×X). We say that S is trivially copointed
if S = S0×Id . An S-coalgebraA = (X, ξ) consists of a setX of states and a transition
function ξ : X → S0X such that (ξ(x), x) ∈ SX for all x.

We view coalgebras as generalised transition systems: the transition function maps a
state to a structured collection of successors, with the structure prescribed by the sig-
nature functor, which thus encapsulates the branching type of the transition systems
employed. Copointed functors additionally impose local frame conditions that relate a
state to the collection of its successors. We refer to elements of sets SX as successor
structures. Generalising earlier work, coalgebraic modal logic [16] abstractly captures
the interpretation of modal operators using predicate liftings:

Definition 2. An n-ary predicate lifting (n ∈ N) for S0 is a family (λX : P(X)n →
P(S0X))X∈Set of maps satisfying naturality, i.e. λX(f−1[A1], . . . , f−1[An]) =
(S0f)−1[λY (A1, . . . , An)] for all f : X → Y , A1, . . . , An ∈ P(Y ).

A coalgebraic semantics for Λ, i.e. a coalgebraic modal logic L, consists of a copointed
functor S with signature functor S0 and an assignment of an n-ary predicate lifting
[[L]] for S0 to every n-ary modal operator L ∈ Λ. When S is trivially copointed, we
will mention only S0. We fix L, Λ, S, S0 throughout. The semantics of the modal
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language F(Λ) is defined inductively as a satisfaction relation |=C between states x of
S-coalgebrasC = (X, ξ) and Λ-formulas. The clause for an n-ary modal operator L is

x |=C L(φ1, . . . , φn) ⇔ ξ(x) ∈ [[L]]X([[φ1]], . . . , [[φn]])

where [[φ]] = {x ∈ X | x |=C φ}. Our interest is in the satisfiability problem of L,
which asks whether for a given formula φ, there exist an S-coalgebraC and a state x in
C such that x |=C φ.

In contrast, the semantics of the one-step logic is defined over single successor struc-
tures, in particular does not involve a notion of state transition:

Definition 3. A one-step model (X, τ, t, x) over V consists of a set X , a P(X)-
valuation τ for V , t ∈ S0X , and x ∈ X such that (t, x) ∈ SX . We omit the mention
of x if S is trivially copointed. For a one-step pair (φ, ψ), τ induces interpretations
[[φ]]τ ⊆ X and, using the given predicate liftings, [[ψ]]τ ⊆ S0X . We say that (X, τ, t, x)
is a one-step model of (φ, ψ) if [[φ]]τ = X and t ∈ [[ψ]]τ .

Example 4. 1. The modal logicsK and T [1] have a single unary modal operator �.
The standard Kripke semantics of K is modelled coalgebraically over the powerset
functor P , whose coalgabras are just Kripke frames, by [[�]]X(A) = {B ∈ PX | B ⊆
A}. The logic T (i.e. K extended with the non-iterative axiom �a → a) is modelled
by moving to the copointed functor R given by RX = {(A, x) ∈ PX ×X | x ∈ A}.
R-coalgebras are reflexive Kripke frames.

2. Conditional logics have a single binary infix modal operator ⇒, read as a non-
monotonic conditional (default, relevance, . . . ). The standard semantics of the condi-
tional logic CK is modelled coalgebraically over the functor Cf given by Cf (X) =
P(X) → P(X), with → denoting function space, by

[[⇒]]X(A,B) = {f : P(X) → P(X) | f(A) ⊆ B}.
Cf -coalgebras are conditional frames [1]. The conditional logic CK +ID extends CK
with the rank-1 axiom a ⇒ a. Its semantics is modelled by passing to the subfunctor
CfID of Cf defined by CfID (X) = {f ∈ Cf (X) | ∀A ∈ P(X). f(A) ⊆ A}. Similarly,
the logic CK +MP extends CK with the non-iterative axiom (a ⇒ b) → (a → b).
(This axiom is undesirable in default logics, but often considered in relevance logics.)
Semantically, this amounts to passing to the copointed functor CfMP defined by

CfMP (X) = {(f, x) ∈ Cf (X) ×X | ∀A ∈ P(X). x ∈ A⇒ x ∈ f(A)}.
3. Modal logics of quantitative uncertainty: The similarity type of likelihood has

polyadic modal operators expressing linear inequalities between likelihoods l(φ), var-
iously interpreted as probabilities [6], upper probabilities, Dempster-Shafer degrees of
belief, or Dubois-Prade degrees of possibility [9]. Extensions generalise likelihood to
expectations [9] for linear combinations of formulas. These logics are captured coal-
gebraically by suitable distribution functors. E.g. the case of probabilities is modelled
by the probability distribution functor Dω, where DωX is the set of finitely supported
probability distributions on X , with Dω-coalgebras corresponding to Markov chains;
and the case of upper probabilities is modelled by the sets-of-distributions functor
P ◦ Dω. In the literature, one-step logics of quantitative uncertainty are often intro-
duced independently and only later extended to full modal logics [6].
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4. Graded and Presburger modal logic: Graded modal logic [7] has operators ♦k

read ‘in more than k successor states, it holds that . . . ’. Variants of these operators have
found their way into modern description logics as qualified number restrictions. More
generally, Presburger modal logic [4] has n-ary modal operators

∑n
i=1 ai#( ) ∼ b,

where b and the ai are integers and ∼∈ {<,>,=} ∪ {≡k| k ∈ N}, with ≡k read as
equality modulo k. The original Kripke semantics is equivalent to a coalgebraic seman-
tics over the finite multiset functorB, which maps a setX to the set of mapsB : X → N

with finite support, understood as multisets containing x ∈ X with multiplicity B(x).
B-coalgebras are graphs with N-weighted edges, over which the given modal operators
are interpreted as suggested by the notation, adding up multiplicities [3].

5. Agency: Logics of agency, concerned with agents bringing about states of affairs,
play a role in planning and task assignment in multi-agent systems [2,11]. A standard
approach due to Elgesem [5], intended as an abstraction of pure agency to be used as a
building block in more complex logics, has modalities E and C, read ‘the agent brings
about’ and ‘the agent is capable of realising’, respectively. Their semantics is defined
over a certain restricted class of conditional frames (X, f : X → (P(X) → P(X)))
(see above) by x |= Eφ iff x ∈ f(x)([[φ]]) and x |= Cφ iff f(x)([[φ]]) �= ∅. Most
of the information in such models is disregarded: one only needs to know whether
f(x)(A) is non-empty and contains x. We may thus equivalently use the following
coalgebraic semantics: put 3 = {⊥, ∗,�}, ordered ⊥ < ∗ < � (to code the cases
f(x)(A) = ∅, x /∈ f(x)(A) �= ∅, and x ∈ f(x)(A)), and take as signature functor the
3-valued neighbourhood functor N3 given by N3(X) = (P(X) → 3). The restrictions
on conditional frames imposed by Elgesem translate into using the copointed functor A
over N3 where (f, x) ∈ A(X) iff for all A,B ⊆ X , f(∅) = ⊥, f(X) = ⊥ (‘the agent
cannot bring about logical truths’), f(A)∧f(B) ≤ f(A∩B), and f(A) = � ⇒ x ∈ A
(‘what the agent brings about is actually the case’). The operators E,C are interpreted
by [[E]]XA = {f ∈ N3(X) | f(A) = �} and [[C]]XA = {f ∈ N3(X) | f(A) �= ⊥}.
Notably, the logic is non-monotone, i.e. Ea does not imply E(a ∨ b), which makes
typical approaches to proving PSPACE bounds hard to apply.

2 A Generic Shallow Model Construction

We now turn to the announced construction of polynomially branching shallow models
for modal logics whose one-step logic has a small model property; this construction
leads to a PSPACE decision procedure. For finite X , we assume given a representation
of elements (t, x) ∈ SX as strings of size size(t, x) over some finite alphabet, where
crucially do not require that all elements of SX are representable.

Definition 5. The logic L has the one-step polysize model property (OSPMP) if there
exist polynomials p and q such that, whenever a one-step pair (φ, ψ) over V has a one-
step model (X, τ, t, x), then it has a one-step model (Y, κ, s, y) such that |Y | ≤ p(|ψ|),
(s, y) is representable with size(s, y) ≤ q(|ψ|), and y ∈ κ(a) iff x ∈ τ(a) for all a ∈ V .

It is crucial that the polynomial bound depends only on ψ, as the proof of Thm. 7 below
uses one-step pairs (φ, ψ) with exponential-size φ. In terms of one-step formulas, this
amounts to discounting the potentially exponential-sized inner propositional layer.
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Definition 6. A supporting Kripke frame of an S-coalgebra (X, ξ) is a Kripke frame
(X,R) such that for each x ∈ X , ξ(x) ∈ S0{y | xRy} ⊆ S0X.

Theorem 7 (Shallow model property). The OSPMP implies the polynomially branch-
ing shallow model property: There exist polynomials p, q such that every satisfiable
Λ-formula ψ is satisfiable in an S-coalgebra (X, ξ) which has a supporting Kripke
frame (X,R) such that removing all loops xRx from (X,R) yields a tree of depth at
most rank(ψ) and branching degree at most p(|ψ|), and (ξ(x), x) ∈ S{y | xRy} is
representable with size(ξ(x), x) ≤ q(|ψ|).
This theorem leads to a nondeterministic decision procedure for satisfiability that re-
cursively traverses shallow models in a depth-first fashion, guessing at each level a
polynomial-size successor structure. Checking whether such a structure satisfies the
local requirements imposed by the input formula is encapsulated as follows:

Definition 8. The one-step model checking problem of L is to check, given a string
s, a finite set X , A1, . . . , An ⊆ X , and L ∈ Λ n-ary, whether s represents some
(t, x) ∈ SX and whether t ∈ [[L]]X(A1, . . . , An).

Theorem 9. Let L have the OSPMP.

1. If the one-step model checking problem of L is in PSPACE, then the satisfiability
problem of L is in PSPACE.

2. If the one-step model checking problem of L is in P , then the restriction of the
satisfiability problem of L to the bounded-rank fragment Fn(Λ) is in NP for every
n ∈ N.

Theorem 9.2, which generalises known results for K and T [8], follows from the fact
that Thm. 7 implies a polynomial-size model property for bounded-rank fragments.

In cases where the OSPMP fails, one can often use a relaxed criterion, the one-
step pointwise polysize model property (OSPPMP), provided that S0 is pointwise κ-
bounded, i.e. |S0X | ≤ κ|X|, for some cardinal κ; we then assume S0X ⊆ κX . E.g.
the functors P and Dω, but not Cf and P ◦ Dω, are pointwise bounded. Assuming a
(partial) representation of elements of κ, we put maxsize(t) = maxx∈X size t(x) for
t ∈ S0X ⊆ κX . The OSPPMP essentially requires the existence of one-step models
(X, τ, t, x) such that maxsize(t) is polynomially bounded. Then we have

Theorem 10. If L has the OSPPMP and one-step model checking of (X, τ, t, x) is de-
cidable on a non-deterministic Turing machine with input tape that uses space polyno-
mial in maxsize(t) and accesses each input symbol at most once, then the satisfiability
problem of F(Λ) is in PSPACE.

The crucial point in the proof is that if input symbols are read at most once, they can be
guessed without having to be stored.

Example 11. In all example applications, tractability of one-step model checking is
straightforward, so that we concentrate on small one-step models.

1. Modal logics K and T : To verify the OSPMP for K , let (X, τ,A) be a one-step
model of a one-step pair (φ, ψ) over V ; w.l.o.g. ψ is a conjunctive clause over atoms
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�a, where a ∈ V . For ¬�a in ψ, there exists xa ∈ A such that xa /∈ τ(a). Taking
Y to be the set of these xa, we obtain a polynomial-size one-step model (Y, τY , Y ) of
(φ, ψ), where τY (a) = τ(a) ∩ Y for all a. The construction for T is the same, except
that the point x of the original one-step model (X, τ,A, x) is retained in Y . By Thm. 9,
this reproves Ladner’s PSPACE upper bounds for K and T [12], as well as Halpern’s
NP upper bounds for bounded-rank fragments [8].

2. Conditional logic: To avoid exponential blowup, we represent elements of
Cf (X) = P(X) → P(X) as partial maps, extended to total maps using default
value ∅. The OSPMP for CK is proved as follows: given a one-step model (X, τ, f)
of a one-step pair (φ, ψ), where ψ is w.l.o.g. a conjunctive clause, retain values of f
only at the sets τ(ai) and cut down to a polynomial-size set Y containing elements yij

of the symmetric difference of τ(ai) and τ(aj) whenever τ(ai) �= τ(aj) and elements
zi ∈ f(τ(ai)) \ τ(bi) whenever ψ contains ¬(ai ⇒ bi). The proofs for CK +ID and
CK+MP are the same, up to changing the default value for f(A) in the representation
of (f, x) ∈ CfMP (X) to A∩ {x}. Thus, we reprove that CK , CK+ID , and CK+MP
are in PSPACE [14] (hence PSPACE-complete, as they contain known PSPACE-hard
sublogics) and obtain a new NP upper bound for their bounded-rank fragments.

3. Modal logics of quantitative uncertainty: Polynomial size model properties for
one-step logics and complexity estimates for one-step model checking have been proved
for various logics of quantitative uncertainty [6,9]. The polynomial bounds are stated
in the cited work as depending on the size of an entire one-step formula ψ; however,
inspection of the given proofs shows that the bounds are in fact independent of the inner
propositional layer, and hence actually establish the OSPMP, with ensuing (tight) upper
complexity bounds as in Thm 9. A proof of the PSPACE upper bound for the modal
logic of probability is sketched in [6]; the NP upper bound for bounded-rank fragments
is new. In the remaining cases, also the PSPACE upper bounds are new, if only because
just the one-step versions of these logics appear in the literature so far.

4. Elgesem’s logic of agency: For X finite, we let a partial map f0 : P(X) ⇀ 3
represent the element f ∈ N3(X) = P(X) → 3 that maps B ⊆ X to the maximum of∧n

i=1 f0(Ai), taken over all sets A1, . . . , An ⊆ X such that
⋂
Ai = B and f0(Ai) is

defined for all i. In the proof of the OSPMP, a one-step model (X, τ, f : P(X) → 3, x)
of a one-step pair over V is reduced to polynomial size by restricting f to the τ(a),
a ∈ V , and cutting down to a set Y containing: the point x; an element yab ∈ τ(a)\τ(b)
whenever τ(a) �⊆ τ(b); an element za ∈ ⋂ {τ(b) | b ∈ V, τ(a) ⊆ τ(b), f(τ(b)) >
f(τ(a))} \ τ(a) for each a ∈ V ; and an element w0 ∈ ⋂{τ(b) | f(τ(b)) > ⊥},
where w0 and the za exist by the definition of A. Thus, the modal logic of agency is in
PSPACE, and its bounded-rank fragments are in NP. Both results (and even decidabil-
ity) seem to be new. We conjecture that the PSPACE upper bound is tight.

5. Presburger Modal Logic: The functor B is pointwise ω-bounded. It follows eas-
ily from estimates on solution sizes of integer linear equalities [15] that Presburger
modal logic has the OSPPMP, and hence is in PSPACE [4]. One easily incorporates
non-iterative frame conditions such as reflexivity (modelled by the copointed func-
tor SX = {(B, x) ∈ BX × X | B(x) > 0}) or e.g. the condition that at least
half of all transitions from a given state are loops (modelled by the copointed func-
tor SX = {(B, x) ∈ BX ×X | B(x) ≥ B(X − {x}}). In particular, this implies that
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graded modal logic over reflexive frames (i.e. the logic Tn of [7]) is in PSPACE, to our
knowledge a new result. This extends straightforwardly to show that the concept satisfi-
ability problem in description logics with role hierarchies, reflexive roles, and qualified
number restrictions is in PSPACE over the empty TBox.
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