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Abstract. We present a domain-independent approach to plan repair in a formal
framework for hybrid planning. It exploits the generation process of the failed plan
by retracting decisions that led to the failed plan fragments. They are selectively
replaced by suitable alternatives, and the repaired plan is completed by following
the previous generation process as close as possible. This way, a stable solution
is obtained, i.e. a repair of the failed plan that causes minimal perturbation.

1 Introduction

For many real-world domains, hybrid approaches that integrate hierarchical task decom-
position with action-based planning turned out to be most appropriate [1]. On the one
hand, human expert knowledge can be represented and exploited by means of tasks and
methods, which describe how abstract tasks can be decomposed into pre-defined plans
that accomplish them. On the other hand, flexibility to come up with non-standard so-
lutions, to overcome incompleteness of the explicitly defined solution space, or to deal
with unexpected changes in the environment results from the option to insert tasks and
primitive actions like in partial-order-causal-link planning (POCL). Furthermore, hybrid
planning enables the generation of abstract solutions as well as of plans whose prefixes
provide courses of primitive actions for execution, while other parts remain still ab-
stract, ready for a refinement in later stages. With these capabilities hybrid approaches
meet essential requirements complex real-world applications, such as mission or project
planning, impose on AI planning technology. However, the problem of how to deal with
execution failures in this context has not been considered in detail yet. In general, there
are various alternatives for achieving this including contingency planning, replanning,
and repair.

In this paper, we introduce an approach to plan repair in hybrid planning. The mo-
tivation is twofold. Firstly, real-world planning problems often result in complex plans
(task networks) with a large number of causal, temporal, and hierarchical dependen-
cies among the tasks involved. In order to keep the plans manageable, constructs such
as conditionals can therefore only sparingly be used and need to be left for those plan
sections which are most likely affected by uncertainty during execution. Replanning is
not appropriate in this context either. Given the complexity of the planning domain, it
is not reasonable to build a new plan from scratch in order to address just a single and
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exceptional execution failure. Secondly, plan stability is essential in this context. This
means, the modified plan should be as similar to the failed plan as possible and should
only differ at positions that definitely need to be altered to compensate for the failure.
The reason is that large parts of the plan may be unaffected by the failure, some parts
may have been executed already, others may require commitments in terms of resource
allocations or activities from third parties that have already been requested or even car-
ried out. In a word, perturbation of the plan at hand should be minimized in order to
avoid any amount of unnecessary cancellation actions and confusion.

Most plan repair methods known from the literature (cf. Section 5) take aim at non-
hierarchical plans and use local search techniques to modify a failed plan by removing
and inserting plan steps. In contrast to these approaches, our plan repair method covers
hierarchical task decomposition and relies on the plan generation process instead of
operating on the failed plan itself.

We present a general refinement-retraction-and-repair algorithm that revises the plan
generation process of the failed plan by first retracting those development steps that led
to the failed plan fragments. In a second step, the repaired plan is produced by following
the previous generation process as close as possible. This means to replace the failure-
critical development steps by alternatives and redo the uncritical ones. The rationale
behind this procedure is as follows: it is realistic to assume that all initial goals persist
and that the underlying domain model is adequate and stable. Thus, an execution fail-
ure is taken as caused by exceptional conditions in the environment. Nevertheless, such
a failure can disturb several dependencies within the complex plan structure and may
require revisions that go beyond adding and removing plan steps and include even the
decomposition of abstract tasks. Information gathered during the original plan genera-
tion process is reused to avoid decisions that inserted the failure-critical plan elements
and explore the possible alternatives instead, thereby enabling an efficient and mini-
mally invasive plan repair.

In the following, we first describe the hybrid planning framework. We then introduce
the plan repair problem and provide some extensions to the formal framework that allow
us to explicitly address failure-affected plan elements. After that, the generic plan repair
algorithm is presented. It is based on a hybrid planning system that records information
about plan generation processes. The plan repair algorithm exploits information about
the generation of the original plan and uses least-discrepancy heuristics to efficiently
search for stable repair plans. Finally, we review related work and conclude with some
remarks.

2 A Hybrid-Planning Framework

The hybrid planning framework is based on an ADL-like representation of states and
primitive tasks, which correspond to executable basic actions. States as well as precon-
ditions and effects of tasks are specified through formulae of a fragment of first-order
logic. Abstract tasks, which show preconditions and effects as well, and decomposition
methods are the means to represent human expert knowledge in the planning domain
model. Methods provide task networks, also called partial plans that describe how the
corresponding task can be solved. Partial plans may contain abstract and primitive tasks.
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With that, hierarchies of tasks and associated methods can be used to encode the various
ways a complex abstract task can be accomplished. Besides the option to define and ex-
ploit a reservoir of pre-defined solutions this way, hybrid planning offers first-principles
planning based on both primitive and abstract actions.

Formally, a domain model D = 〈T, M〉 consists of a set of task schemata T and a
set M of decomposition methods. A partial plan is a tuple P = 〈TE,≺, VC, CL〉 where
TE is a set of task expressions (plan steps) te = l:t(τ ) with t being the task name
and τ = τ1, . . . , τn the task parameters; the label l serves to uniquely identify the
steps in a plan. ≺ is a set of ordering constraints that impose a partial order on plan
steps in TE. VC are variable constraints, i.e. co-designation and non-co-designation
constraints v=̇τ resp. v ˙�=τ on task parameters. Finally, CL is a set of causal links
〈tei, φ, tej〉 indicating that formula φ, which is an effect of tei establishes (a part of) the
precondition of tej . Like in POCL, causal links are the means to establish and maintain
causal relationships among the tasks in a partial plan.

A planning problem π = 〈D, Pinit〉 consists of a domain model D and an initial
task network Pinit. Please note that purely action-based planning problems given by
state descriptions sinit and sgoal, like in POCL planning are represented by using distin-
guished task expressions teinit and tegoal, where sinit are the effects of teinit and tegoal

has preconditions sgoal. The solution of a planning problem is obtained by transforming
the initial task stepwise into a partial plan P that meets the following solution criteria:
(1) all preconditions of the tasks in P are supported by a causal link, i.e. for each pre-
condition φ of a task tej there exists a task tei and a causal link 〈tei, φ, tej〉 in P; (2)
the ordering and variable constraints of P are consistent; (3) the ordering and variable
constraints ensure that none of the causal links is threatened, i.e. for each causal link
〈tei, φ, tej〉 and each plan step tek that destroys the precondition φ of tej , the order-
ing constraints tei ≺ tek and tek ≺ tej are inconsistent with the ordering constraints
≺. If all task expressions of P are primitive in addition, P is called an executable solu-
tion. The transformation of partial plans is done using so-called plan modifications, also
called refinements. Given a partial plan P = 〈TE,≺, VC, CL〉 and domain model D, a
plan modification is defined as m = 〈E⊕, E�〉, where E⊕ and E� are disjoint sets of
elementary additions and deletions of so-called plan elements over P and D. The mem-
bers of E� are elements of P, i.e. elements of TE, ≺, VC or CL, respectively. E⊕

consists of new plan elements, i.e. task expressions, causal links, ordering or variable
constraints that have to be inserted in order to refine P towards a solution. This generic
definition makes the changes explicit that a modification imposes on a plan. With that,
a planning strategy, which has to choose among all applicable modifications, is able to
compare the available options qualitatively and quantitatively [1,2]. The application of
a modification m = 〈E⊕, E�〉 to a plan P returns a plan P ′ that is obtained from P
by adding all elements in E⊕ to P and removing those of E�. We distinguish various
classes of plan modifications.

For a partial plan P that has been developed from the initial task network of a plan-
ning problem, but is not yet a solution, so-called flaws are used to make the violations of
the solution criteria explicit. Flaws list those plan elements that constitute deficiencies
of the partial plan. We distinguish various flaw classes including the ones for unsup-
ported preconditions of tasks and inconsistencies of variable and ordering constraints.
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It is obvious that particular classes of modifications are appropriate to address par-
ticular classes of flaws while others are not. This relationship is explicitly represented
by a modification trigger function α, which is used in the algorithm presented in [3],
that relates flaw classes to suitable modification classes.

The resolution procedure is as follows: 1) the flaws of the current plan are collected;
2) relevant modifications are applied (generation of new plans); 3) the next plan to refine
is selected, and we go to 1. This loop repeats, until a flawless plan is found and returned.

3 Formal Representation of the Plan-Repair Problem

After a (partly) executable solution for a planning problem has been obtained, it is sup-
posed to be given to an execution agent that carries out the specified plan. We assume
that a dedicated monitoring component keeps track of the agent’s and the world’s state
and notices deviations from the plan as well as unexpected behaviour of the environ-
ment. It is capable of recognizing failure situations that cause the plan to be no longer
executable: actions have not been executed, properties that are required by future ac-
tions do not hold as expected, etc. The monitor maps the observation onto the plan data
structure, thereby identifying the failure-affected elements in the plan. This includes the
break-down of causal links, variable constraints that cannot be satisfied, and the like.
Note that this failure assessment is not limited to the immediately following actions
in the executed plan fragments, as the plan’s causal structure allows us to infer and
anticipate causal complications for actions to be executed far in the future.

With such a failure description at hand, the system tries to find an alternative fail-safe
plan for the previously solved problem, taking into account what has already been exe-
cuted and is, therefore, viewed as non-retractable decisions. Remember that we assume
the planning domain model to be valid and the failure event to be an exceptional inci-
dent. We hence translate the execution failure episode into a plan-repair problem that
we will solve relying on the same domain model that we used for the previous problem.

As a prerequisite, we define the notions of failure descriptions and non-retractable
decisions. In order to express exceptional incidents we augment a domain model with a
set of particular primitive task schemata that represent non-controllable environmental
processes: for every fluent, i.e. for every property that occurs in the effects of a task, we
introduce two process schemata that invert the truth value of the respective fluent. Every
failure-affected causal link will impose the plan-repair problem to contain a process,
the effect of which falsifies the annotated condition. We assume that failures can be
unambiguously described this way – if a disjunctive failure cause is monitored, the
problem has to be translated into a set of alternative plan-repair problems, which is
beyond the scope of this paper.

Regarding the representation of non-retractable decisions, every executed plan el-
ement, i.e. either an executed task or a constraint referring to such, has to occur in
the repair plan. To this end, we make use of meta-variables of plan elements such
as task expressions over given schemata in D, causal links between two task expres-
sion meta-variables, and ordering or variable constraints on appropriate meta-variables.
Meta-variables are related with actual plan elements by obligation constraints, which
serve in this way as a structural plan specification. We thereby distinguish two types
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of constraints: existence obligations, which introduce meta-variables, and assignment
obligations, which are equations on meta-variables and plan elements. A set of obli-
gation constraints OC is satisfied w.r.t. a plan P, if (1) for every existence obligation
in OC, a respective assignment obligation is included as well and (2) the assignment
obligations instantiate a plan schema that is consistent with P.

Given a planning problem π = 〈D, Pinit〉 and a plan Pfail = 〈TEfail,≺fail, VCfail,
CLfail〉 that is a partially executed solution to π that failed during execution, a plan-
repair problem is given by πr = 〈Dr, P r

init〉 that consists of the following components:
Dr is an extended domain model specification 〈T, M, P〉 that concurs with D on the task
schemata and method definitions and provides a set of process schemata P in addition.
The initial plan P r

init = 〈TEinit,≺init, VCinit, CLinit, OCinit〉 of the plan-repair prob-
lem is an obligation-extended plan data structure that is obtained from Pinit and Pfail

as follows. The task expressions (incl. teinit and tegoal), ordering constraints, variable
constraints, and causal links are replicated in P r

init. The obligation constraints OCinit

contain an existence obligation for every executed plan element in Pfail. Finally, if bro-
ken causal links have been monitored, appropriate existence obligations for process
meta-variables are added to OCinit and causally linked to the intended link producers.
E.g., let 〈tea, ϕ, teb〉 be a broken causal link, then OCinit contains existence obligations
for the following meta-variables: va stands for a task expression of the same schema as
tea, vϕ represents a process that has a precondition ϕ and an effect ¬ϕ, and finally
vCL = 〈tea, ϕ, teϕ〉.

An obligation-extended plan P r = 〈TE,≺, VC, CL, OC〉 is a solution to a plan-
repair problem πr = 〈Dr, P r

init〉, if and only if the following conditions hold: (1)
〈TE,≺, VC, CL〉 is a solution to the problem 〈Dr, Pinit〉 where Pinit is obtained from
P r

init by removing the obligations. (2) The obligations in P r are satisfied. (3) For every
ordering constraint tea ≺ teb in ≺, either OC contains an assignment obligation for
tea or none for teb.

Solution criterion (1) requires the repaired plan to be a solution in the sense of
Section 2, and in particular implies that P r is an executable solution to the original
problem as well. (2) ensures that the non-retractable decisions of the failed plan are re-
spected and that the environment’s anomaly is considered. Criterion (3) finally verifies
that the repair plan stays consistent w.r.t. execution; i.e., in the partial order, not yet
executed tasks do not occur before executed ones.

The problem specification and solution criteria imply appropriate flaw and plan
modification classes for announcing unsatisfied obligations and documenting obligation
decisions. A specific modification generation function is used for introducing the ap-
propriate processes. With these definitions, the repair mechanism is properly integrated
into the general hybrid planning framework and a simple replanning procedure can eas-
ily be realized: The obligation-aware functions are added to the respective function sets
in the algorithm presented in [3], which in turn is called by simplePlan(P r

init, π
r).

Note that the obligation extension of the plans is transparent to the framework. With
the appropriate flaw and modification generators, the algorithm will return a solution
to the repair problem, and while the new plan is developed, the obligation assignments
will be introduced opportunistically. Apparently, the solution obtained by replanning
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Require: Planning problem πr = 〈Dr, P r
init〉 and plan Pfail

1: planRepair(Pfail, π
r, M):

2: Prh ← retract(Pfail, M) {Retract modifications}
3: while Prh �= fail do
4: Psafe ← autoRefine(Prh, M) {Remake modifications}
5: Pnew ← simplePlan(Psafe, π

r) {Call the algorithm of [3]}
6: if Pnew �= fail then
7: return Pnew

8: else
9: Prh ← retract(Pnew, M) {Retract modifications}

10: return fail

Algorithm 1. The refinement-retraction-and-repair algorithm

cannot be expected to be close to the previous solution. Furthermore, all knowledge of
the previous successfull plan generation episode and in particular that concerning the
un-affected portions of the plan, is lost. The following section will address these issues.

4 The Plan-Repair Algorithm

In this section, we describe a repair algorithm that allows us to find efficiently an ex-
ecutable solution plan to πr, which is as close to a failed one (Pfail) as possible, by
reusing the search space already explored to find Pfail.

In contrast to replanning, our plan-repair procedure starts from Pfail. Our objective
w.r.t. search is to minimize the number of modifications to retract, remake, and newly
add (minimal invasiveness). To achieve this efficiently we focus on the modifications M
that our planning system applied to obtain Pfail from the initial planning problem. We
thus partition the modifications M into the following two subsequences: Mfail is the
sequence of plan modifications that are related to the failure-affected elements of Pfail;
Mrest = M \Mfail is the sequence of plan modifications that are not related to the failure-
affected elements of Pfail. During our refinement-retraction-and-repair procedure, all
modifications of Mfail have to be retracted from Pfail.

Once an execution-time failure is detected by our monitoring system, we repair the
current failed plan as described by Algorithm 1. It first retracts hybrid planning mod-
ifications within the retraction horizon (line 2). The retraction horizon corresponds to
the first partial plan Prh that is encountered during retraction of modifications in M in
which no failure-affected elements occur. The retraction step chooses the modifications
to retract given M. At this step of the algorithm the retraction horizon comprises all the
modifications made from the last one inserted in M until the first modification in M that is
related to one or more failure-affected plan elements. In line 3, we have a consistent par-
tial plan, which we name Prh. The next step of Algorithm 1 consists in refining the cur-
rent partial plan (Prh) automatically by remaking every possible modifications in Mrest

(line 4); we have then a consistent partial plan that we name Psafe. We then call line 5 al-
gorithmsimplePlan presented in [3] to refine Psafe into an executable solution Pnew.
If no consistent plan is found, then the algorithm retracts modifications (line 9). Each
time function retract is called (line 9) after backtrackings of simplePlan, the
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retraction horizon includes one more modification included in Mrest. Each time func-
tion autoRefine is called after backtrackings of simplePlan (line 4), we remake
one less modification of Mrest; i.e., we do not remake the modifications of Mrest that
are beyond the original retraction horizon. This algorithm runs iteratively until a plan
(Pnew) without flaws is found (line 7), or when no modification can be retracted any
longer (line 9). The retraction step (lines 2 and 9) has a linear cost, which depends on
the number of modifications to retract. Note that Pfail, Prh, Psafe, and Pnew represent
each a repair plan P r, i.e. a partial plan with obligation constraints.

During the retraction of modifications related to committed plan elements, the corre-
sponding assignment obligations are no longer satisfied. During the refinement phase of
Algorithm 1 (line 4), obligation flaws related to execution-time failures are addressed
by automatically inserting environment processes.

There is no combinatorial search from Pfail to Psafe (Algorithm 1, lines 2-4).
Our retraction-refinement search algorithm can be extended to find a new plan Pnew

that is similar to Pfail. For achieving this, our procedure uses least-discrepancy heuris-
tics when refining Psafe (Algorithm 1, line 5). The heuristics guide search with respect
to the modifications that have led to plan Pfail: function fselect prefers the modifications
that are similar to the modifications in Mrest; i.e., the modification-selection strategy
prefers modifications that belong to the same class and that correspond to the same flaw
class.

5 Related Work

Plan repair is rarely addressed in the context of hierarchical planning. However, there
is a number of studies in the field that are relevant to this objective.

Fox et al. [4] demonstrate with an empirical study that a plan-repair strategy can pro-
duce more stable plans than those produced by replanning, and their system can produce
repaired plans more efficiently than replanning. Their implementation uses local-search
techniques and plan-oriented stability metrics to guide search. To what extent our ap-
proach may benefit from using such metrics is subject to future work.

The planning system of Yoon et al. [5] computes a totally-ordered plan before execu-
tion; each time it is confronted with an unexpected state, it replans from scratch without
reusing previous planning effort.

Nebel and Köhler [6] report a theoretic and practical study about plan reuse and
plan generation in a general situation. Using the non-hierarchical propositional STRIPS
planning framework, the authors show that modifying a plan is not easier than planning
from scratch. Recent work in hierarchical case-based planning includes the approach
based on SHOP presented by Warfield et al. [7].

Kambhampati and Hendler [8] present some techniques for reusing old plans. To
reuse an old plan in solving a new problem, the old plan, along with its annotations, has
to be found in a library of plans and is then mapped into the new problem. A process of
annotation verification is used to locate applicability failures and suggest refitting tasks.

Drabble et al. [9] propose plan-repair mechanisms to integrate several pre-assembled
repair plans into an ongoing and executing plan when action effects fail for a limited
number of reasons.
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Van der Krogt and de Weerdt [10] endow a partial-order causal link planning system
with capabilities of repairing plans. In this context, plan repair consists of adding and
removing actions. During the execution of a plan, their monitoring system may observe
uncontrollable changes in the set of facts describing a state, which makes the plan fail.

6 Conclusion

We presented a novel approach to plan repair that is capable of dealing with hierarchical
and partial-order plans. Embedded in a well-founded hybrid planning framework, it
uses the plan generation process of the failed plan to construct a repair. In a first phase,
all plan refinements that introduced failure-affected plan elements – possibly including
even task decompositions – are retracted from the failed plan. After that, additional
obligation constraints are inserted into the resulting partial plan in order to ensure that
already executed plan steps will be respected by the repair plan. The repair procedure
constructs a solution by replacing the failure-critical plan modifications and replaying
as many of the uncritical ones as possible, thereby achieving stability of the repair
plan. The flexibility of our hybrid planning framework, where plan deficiencies and
modifications are explicitly defined, enables the repair of various plan and execution
failures including both the removal of plan steps or entire plan fragments that became
obsolete and the insertion of extra tasks coming up.
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