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Abstract. We exploit the parallel architecture of the Graphics Processing Unit 
(GPU) used in desktops to efficiently implement the traditional K-means algo-
rithm. Our approach in clustering avoids the need for data and cluster informa-
tion transfer between the GPU and CPU in between the iterations. In this paper 
we present the novelties in our approach and techniques employed to represent 
data, compute distances, centroids and identify the cluster elements using the 
GPU. We measure performance using the metric: computational time per itera-
tion. Our implementation of k-means clustering on an Nvidia 5900 graphics 
processor is 4 to 12 times faster than the CPU and 7 to 22 times faster on the 
Nvidia 8500 graphics processor for various data sizes. We also achieved 12 to 
64 times speed gain on the 5900 and 20 to 140 times speed gains on the 8500 
graphics processor in computational time per iteration for evaluations with 
various cluster sizes. 
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1   Introduction 

Commodity Graphics Processors in today’s PC world are highly parallel with extreme 
computational powers. Modern GPU is capable of processing tens of millions of ver-
tices per second and rasterize hundreds of millions of fragments per second. The 
schematic in Figure 1 shows the vertex transformation and fragment texturing and 
coloring stages in a typical graphics pipeline. Due to the fact that these processors are 
economically affordable and programmable for implementing iterative algorithms 
there is high possibility that desktop computers with such GPUs will soon be capable 
of performing fast and efficient computing. 

1.1   Graphics Processors for General Purpose Computations 

The factors that enable the processing power of GPUs are the inherent parallel archi-
tecture, peak memory bandwidth, high floating-point operations and the various 
hardware stages with programmable processors.  High-end graphics processors such 
as Nvidia GeForce7900 GTX and GeForce8800 Ultra have peak memory bandwidth 
of about 51.2GB/sec and 103.68GB/sec respectively. The floating-point operations 
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Fig. 1. The Graphics Hardware Pipeline 

possible are over 200 GFlops in Nvidia GeForce7900 GTX and 345 GFlops in Nvidia 
GeForce8800 Ultra. The performance of the GPU in computing general-purpose algo-
rithms depends heavily on how the algorithms are arranged so as to exploit the paral-
lel data processing power of the GPU. In our study, we have used Nvidia’s GeForce 
FX 5900 XT processor and a GeForce 8500 GT processor. In graphics processing, the 
GPU receives commands for display in the form of vertices and connectivity details 
from the CPU. Today’s GPUs have very high memory bandwidth and parallel internal 
processors, which are capable to process streams of incoming data.  These processing 
is performed in either the vertex or the fragment processor in the GPU using specific 
shader programs. Computations in the GPU processors are data independent, which 
means that the processing that occurs in each processor, is independent of the data 
used by other processors. Currently, there is lot of research focus in the arena of im-
plementing general-purpose computations in the GPU (GPGPU) to leverage on speed 
w.r.t unit cost function [9]. Within the GPU, the fragment processors support parallel 
texture operations and are able to process floating-point vectors. Implementations of 
GPGPU are challenging and mostly utilize the texture processing abilities of the 
fragment processor of the GPU.  

1.2   An Approach to Implement K-Means Algorithm in GPU 

In this paper we present an efficient implementation of the k-means clustering algo-
rithm completely in the GPU. We realize this by using the multi-pass rendering and 
multi-shader capabilities of the GPU. This is done by maximizing the use of textures 
and minimizing the use of shader program constants [3]. In this implementation we 
have minimized the use of GPU shader constants thus improving the performance as 
well as reducing the data transactions between the CPU and the GPU. Handling data 
transfers between the necessary textures within the GPU is much more efficient than 
using shader constants. This is mainly due to the high memory bandwidth available in 
the GPU pipeline. Since all the steps of k-means clustering could be implemented in 
the GPU, the transferring of data back to the CPU during the iterations is avoided 
[13]. The programmable capabilities of the GPU have been thus exploited to effi-
ciently implement k-means clustering in the GPU. 
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2   Existing K-Means Clustering Methods Using Graphics 
Processors 

Two existing k-means implementations are analyzed in this section [2, 3]. We find out 
how the current GPU hardware architecture could be further exploited to overcome 
some of the limitations faced in these implementations [2, 3, 13]. 

2.1   The K-Means Implementation with Textures and Shader Constants  

The k-means iterative clustering method and few of its variants have been imple-
mented in the GPU [3]. The result is a speed-up in clustering between 1.5 to 3 times 
compared to the CPU implementation. In this implementation each input point is 
stored in a single texel of a texture as a float and mapped over several textures. The 
cluster data is stored in fragment shader constants. The fragment processor accesses 
the textures to obtain the data points and the fragment constant to obtain the cluster 
information. The fragment processors and depth tests are used in this implementation. 
The functioning of the depth buffer is programmed in such a way that the resultant 
distance is written into the depth buffer and the cluster ID (label) of the cluster that is 
closest to the data point is written into the color value. The cluster data in the frag-
ment shader constants are updated after the iteration. After all the iterations are  
complete the cluster IDs are read back to the CPU. In the above implementation it is 
notable that it is faster to read and to write the cluster data in the fragment shader 
constants than accessing the data in the textures. But this limits the performance when 
there are many clusters. Moreover, in this implementation only one clusters’ data is 
stored in the fragment shader constants at any one time. This leads to the fact that the 
fragment shader constants are to be accessed very frequently for distance computa-
tions, comparisons and centroid updating during the iterations, which restrains the 
possible parallelism in updating clusters. The use of the depth buffer is limited to 
fixed-point values; which requires the distance metric to be scaled in a range of 0 to 1.  

2.2   The K-Means Implementation Using Stencil and Depth Buffers 

The implementation of k-means clustering on commodity GPUs has been presented in 
[2]. The motivation is to reduce the number of operations in the fragment processor. 
Data points to be clustered are stored in textures. The distance of each data point to 
every centroid is computed in parallel. The cluster label of each data point is identi-
fied after the computation of distances of each data point to all centroids is done. The 
computed distances are assigned to the depth buffer by the fragment program. The 
current distance in the depth buffer is compared with the distance that arrives from the 
fragment program. Writing the distances into the depth buffer continues until the 
distance computations to all the centroids are completed. Stencil buffers are defined 
and maintained for each cluster to keep track of the nearest label. The fragment pro-
gram is written in such a way that the stencil buffer of each centroid contains the label 
of the nearest data points and the depth buffer has the corresponding distance values. 
In this implementation multiple depth buffers and stencil buffers are required to 
match the number of initial cluster centroids. This becomes a bottleneck when the 
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number of clusters is high. Moreover the use of the depth buffer is limited to fixed-
point values; thus the distance metric needs to be scaled and rescaled back for the 
iterations. 

3   Harnessing the Power of GPU in Clustering 

Our implementation is done using OpenGL as the Application Programming Interface 
(API) [4], and the operational kernels are invoked via shader programs, using the 
Graphics Library Shading Language (GLSL) [11]. The Single Instruction Multiple 
Data (SMID) technique is employed to achieve data or vector level parallelism in the 
fragment processor. 

Few technical concepts that harness the GPU into a usable parallel processor are:  
 

 Independence of texture elements (texels) that can be accessed by frag-
ment shaders 

 Mapping of the texture into a required geometric shape 
 Shader as a set of instructions (kernels) that modify mapped texels 
 Shader execution with draw command to output to the memory buffer. 

3.1   Efficient Use of GPU Hardware for Parallel Computation 

The input data sets are stored in 2 dimensional (2D) textures of size √N x √N, where N 
is the total number of observations. In this approach we use the Luminance format of 
the texture elements. Luminance texture format allows the texture to store a single 
floating-point value per texel. The initial centroids, the distances and the other rele-
vant information are stored in the textures. The new cluster centroids are transferred 
back to the CPU and the stop condition is checked after the iteration. 

An important concept in GPGPU is stream programming or parallel pro-
gramming model. In this model, all data is represented as a stream or “an ordered set 
of data of the same data type” [10]. The key to maximize parallel processing is to 
allow multiple computation units to operate on the data simultaneously and to ensure 
 

Table 1. GLSL codes for distance computations 

char* shader3 = \ 
"#extension GL_ARB_texture_rectangle : enable\n" \ 
 "uniform sampler2DRect textureX;" \ 
 "uniform sampler2DRect textureY;" \ 
 "uniform float cx;" \ 
 "uniform float cy;" \ 
 "void main(void) { " \ 
"  float x = texture2DRect(textureX, 
gl_TexCoord[0].st).x;" \ 
"  float y = texture2DRect(textureY, 
gl_TexCoord[0].st).x;" \ 
"  gl_FragColor.x = sqrt((x-cx)*(x-cx)+(y-cy)*(y-
cy));"\ 
 "}"; 
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that each unit operates efficiently. This model of parallelism can be achieved easily in 
the GPU hardware data path [10]. A kernel is defined as an instruction or computation 
that operates on the entire stream. The kernel is applied to each element of data in the 
hardware path. The result is dependent only on that particular element and independ-
ent of the rest of the stream. We implement the distance metric calculations in parallel 
and the GLSL fragment codes are listed in Table 1. 

The code listing in Table 1 works as follows: The first line is an OpenGL extension 
that allows the 2 dimensional (2D) texture targets to support data sizes, which are 
“non-power-of-twos” (NPOT). The next two lines are used in GLSL to access the 
NPOT 2D rectangular texture sources in parallel. The codes within the main are used 
to read the data from each texel in the textures and the code line with gl_FragColor 
performs the actual computation simultaneously on data that is read from each of the 
texel. The resultant parameter is stored in the target textures. 

4   Efficient Implementation of K-Means Clustering in the GPU 

In our implementation of k-means clustering we have kept the use of fragment shader 
constants to a very minimum. Identifying the data point that belongs to each cluster 
and maintaining the identity of that cluster is achieved by using individual textures. 
These textures are labeled so as to know the data points that belong to the cluster. In 
this way, we are able to keep track of the cluster elements, execute cluster operations 
in parallel and minimize use of shader constants. No practical issues were noticed by 
defining sufficient textures to handle a large number of textures, say up to 32 clusters. 
No programmable limitation is foreseen to extend the implementation to handle large 
number of clusters. 

4.1   Distance Computation in GPU 

The data that needs to be clustered are stored in 2D textures of size √N x √N.  
The kernels are applied to all the elements in the textures using fragment programs. 
Figure 2 shows that the distances of each data point to the clusters are stored in indi-
vidual textures. The Euclidean distances of the k-clusters to each of the data point is 
calculated and is stored in k distance textures. Every corresponding texel coordinate 
in each of these distance textures has the distance from the same point to the kth clus-
ter. To compute the minimum distance, all the distance textures are simultaneously 
loaded as read textures. The Dmin texture (minimum distance texture) is defined and 
initiated as the write texture. The minimum of each corresponding texel is executed 
via a fragment shader program and the resultant is written into the Dmin texture. The 
Dmin texture has the distance of each data point to its nearest centroid. 

4.2   Clusters Identification, Labeling, Centroid Computations, Updating in GPU 

To identify and label the data point, which is closest to the cluster centroid, each kth 
cluster distance texture is compared with the Dmin texture. The kernel, which is exe-
cuted as a fragment shader program, compares the value in the cluster distance texture 
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Fig. 2. Cluster Distance Textures and Minimum Distance Texture 

 

Fig. 3. Identification of Cluster Groups from the Distance Textures 

to the corresponding texel value in the Dmin texture. Figure 3 shows kernel opera-
tions on the textures. If the distance values in both the textures are same, the output 
buffer is written with a value of “1” if not, “0”. This kernel is repeated for all the k-
cluster distance textures and that results in k-group textures. The new cluster centroids 
are computed based on the elements in each of the cluster group textures. In order to 
compute the new centroid the number of elements in the group is counted followed by 
the sum of the data values of the coordinates and subsequently the average is com-
puted. Figure 4 shows the kernel operation on the cluster group textures and the tex-
ture with the input data points. 

These operations are accomplished by executing a kernel, which effectively per-
forms reduction operation on the textures. As a result each cluster has its own output 
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Fig. 4. Labeling of Data Points using a Texture for each Cluster 

texture and the data points in that texture belong to the corresponding cluster. The 
number of passes required to compute each new centroid is given as the Log2√N, 
where N is the number of data points. To make these computations efficient the read 
and write textures are swapped after every execution of the kernel.  

The new centroids are computed in three steps using the texture reduction tech-
nique [5, 6]. The centroid for each cluster is then calculated. At the end of the kernel 
operation, each new centroid will be stored in a texture. After all the iterations are 
complete the centroids and the final data points of each cluster are transferred to the 
CPU. 

5   Experimentations and Evaluations 

5.1   The Experimental Setup for GPU Computations 

A set of clustering data from the “Intelligent data storage for data-intensive analytical 
systems” [12] was used to test the efficiency of the implementation. The timings 
taken by the CPU and GPU were measured for every run. A 1.5 GHz Pentium IV 
CPU with a nVIDIA GeForce FX 5900 XT processor and a 3 GHz Pentium IV CPU 
with a nVIDIA GeForce 8500 GT processor were used in the experiment. The 8500 
GT GPU has 16 textures processing texels to pixels at a memory clock rate of 800 
MHz and 512MB of video memory. The peak memory bandwidth is 12.8 GB/sec. 
The 5900 XT is the older version of the 7900 GTX GPU. The 5900 engine has only 8 
textures processing texels to pixels at a memory clock rate of 700 MHz and 256MB of 
video memory. The peak memory bandwidth is 22.4 GB/sec. The 8500 processor has 
a PCI E -16x interface with the CPU for data transfer whereas the 5900 have an AGP 
8X communication slot. The clustering algorithms were implemented using the 
OpenGL API with embedded shader programs. The shader programs were developed 
using GLSL.  
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5.2   The Analysis of Results: CPU w.r.t GPU Computational Execution Time 

The CPU and the GPU computational execution time were measured to compare the 
speed. The GPU execution time included the steps such as loading the data into the 
GPU textures, complete computations, assigning data observations to the cluster tex-
tures and transferring back the cluster information and centroids to the CPU. Using 
the “covtype” [12] dataset, we varied the number of clusters and the data size. We 
discuss the computational time in seconds / iteration as a performance metric for 
comparison, computed based on measured computational time and the number of 
iterations. Figure 5 shows the performance w.r.t the number of data points for the 
various processors used. 

Tremendous gain in performance (time per iteration) is noticed while using the 
GPU over the CPU. It is quite evident that the CPU performance is affected by the 
data size whereas GPU shows little or no drop in performance with increased data 
size. The implementation in the 5900 GPU gains about 4 to 12 times in speed than its 
CPU counterpart. This is at least 3 times faster than the previous implementation [3]. 
The implementation of the same algorithm in the 8500 GPU gains speed by about 30 
times than its CPU counterpart. 

 

Fig. 5. Performance of K-means Clustering based on Data Size 

 

Fig. 6. Performance of K-means Clustering based on number of Clusters 
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Figure 6 shows the performance w.r.t the number of clusters. It is obvious that 
when the number of clusters increases the performance of the implementation in the 
GPU shows no or very little drop. For number of clusters less than 20, the implemen-
tation in the 5900 GPU gains about 10 to 20 times in computational speed than its 
CPU counterpart. The gain in computational time is more than 50 times when there 
are more than 20 clusters. When there are 32 clusters in the data ser, the 8500 GPU is 
faster about 130 times than its CPU counterpart.   

6   Conclusions and Future Work 

In this paper, we have presented an effective implementation of k-means algorithm in 
the GPU. The performance of this implementation has surpassed the CPU implemen-
tations by few tens to about a hundred. It has also succeeded the previous implemen-
tation of the k-means clustering in the GPU with significant gains in computational 
resources. By efficient use of textures in the fragment processor, the use of constants 
to update cluster data has been eliminated. Moreover all cluster centroids can be up-
dated in parallel using textures after the iterations.  Thus the necessity to transfer data 
and results between the GPU and CPU during the computations has been avoided. 
The results are encouraging and have made the k-means clustering algorithm much 
more efficient. 

The parallel processing capabilities of the GPU will be further exploited to imple-
ment clustering of Gene expressions. This will involve the scaling of the k-means 
implementation to accommodate more dimensions. Similar approach in identification 
of data points in the clusters and computing cluster centroids using fragment shader 
and textures will be applied to Hierarchical clustering methods. Clustering techniques 
such as Fuzzy c-Means and variants of Hierarchical agglomerative clustering algo-
rithm will be implemented to show higher computational efficiencies. There is a 
physical limitation in the size of the texture and the maximum number of textures 
available for simultaneous computation. These hardware limitations will have to be 
considered in future implementations of computational algorithms in GPU. 

Recently, NVIDIA has released CUDA (Compute Unified Device Architecture), 
which is a technology that allows programmers to code algorithm into the 8000 series 
of GeForce graphics processors directly; an advantage for non-graphics programmers. 
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