
Software Engineering for Service-Oriented MAS

Emilia Garcia, Adriana Giret, and Vicente Botti

Department of Information Systems and Computation, Technical University of
Valencia, Camino de Vera, Valencia, Spain
{mgarcia,agiret,vbotti}@dsic.upv.es

Abstract. Nowadays, service-oriented architectures (SOA) and multia-
gent systems (MAS) are two increasingly important technologies. Despite
the differences in technology, SOA and MAS have some similar objectives
and their integration produces systems with more flexibility, functional-
ity and interoperability. Their integration creates new requirements and
special methods and tools are necessary to develop systems that inte-
grate both technologies. This paper analyzes the most important issues
for developing Service-oriented MAS. Furthermore, some methods and
tools to develop this kind of systems are analyzed to show how cur-
rent approaches solve the problem of the integration between agents and
services.

Keywords: Multiagent systems, service-oriented architectures, software
engineering, development tools.

1 Introduction

Nowadays, SOA and MAS are two increasingly important technologies. The
objectives of both architectures share some similarities, i.e., both of them try
to create distributed and flexible systems that are composed of loosely-coupled
entities which interact with each other.

Despite these similarities, there are major differences in their technology. Ser-
vices have interface standards and exchange protocols that are completely differ-
ent from agent communication languages and protocols. This is why they cannot
interact with each other directly.

This is a problem which needs to be solved, but some studies [15] have inves-
tigated this issue and show that the integration of agents and services produces
attractive benefits. Services have a well-defined infrastructure and interoperabil-
ity whereas agent technology aims to provide intelligent and social capabilities
(trust, reputation, engagement, etc) for applications. Therefore, the integration
of agents and services improves the flexibility, interoperability and functionality
of the system.

Nevertheless, most agent software engineering techniques do not consider in-
tegration with services, nor do service software engineering techniques consider
integration with agents.

There are some works that address the integration between agents and ser-
vices [8]. They define frameworks and provide tools for developing systems in

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 86–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Software Engineering for Service-Oriented MAS 87

which agents and services are integrated. Each of them has its own integra-
tion mechanism, communication language, and even its own service and agent
concepts.

In order to define the software engineering issues for developing Service-
oriented MAS, a detailed study of the state of the art of software engineering for
agents, services and service-oriented agent systems is made and briefly summa-
rized in Section 2. Section 3 defines a list of the most important software engi-
neering requirements for developing Service-oriented MAS. Furthermore, some
software engineering tools for developing systems that integrate agents and ser-
vices have been analyzed to define how current approaches and tools solve the
problem of the integration between agents and services. A description and a brief
analysis of some selected tools and frameworks is presented in Section 4. Finally,
Section 5 presents some conclusions and future work.

2 Background

This section is divided in three parts. Firstly, the state of the art of software en-
gineering for MAS is briefly described. Secondly, the state of the art of software
engineering for SOA is summarized. Finally, the state of the art of software engi-
neering for service-oriented agent systems is analyzed.

2.1 Agent-Oriented Software Engineering

MAS are complex systems with a distributed nature, where each element is au-
tonomous, reactive, proactive and social. This complexity makes the use of tech-
niques and tools to support the development process necessary. Agent-oriented
software engineering is based on traditional software engineering, but it takes
into account the specific features of the agent technology. On the market today
there are a great number of methodologies, development environments, model-
ing languages, debugging tools and platforms that deal with the development
process of a multiagent system [16].

Some well-known tools and methodologies include AUML [21], Jade [1] ,
JACK [9], Gaia [23], Tropos [7].

The two main drawbacks to software engineering tools of this kind are the
gap between modeling and platforms, and the lack of automatic and complete
translation between the models and the executable code [18].

Agents usually use specific technology to represent ontologies, protocols and
content languages. This makes the interaction with other types of systems diffi-
cult and sometimes necessitates the use of intermediary elements.

2.2 Service-Oriented System Engineering

It is based on traditional system engineering, but it must take into account
specific characteristics of SOA systems. System engineering needs to be collab-
orative because SOA applications are often collaborative. Service consumers,

88 E. Garcia, A. Giret, and V. Botti

service brokers and service providers collaborate to invoke, search, register and
provide services. Systems may be composed at runtime using existing services
so many SOA engineering tasks need to be done on the fly at runtime.

Services are oriented to being reused, so it is very interesting for them to have
platform-independent modeling techniques.

Recently some initial results have been proposed [20,12]. These works have
mainly concentrated on developing a methodology for service-oriented engineer-
ing and design-time models. In the first line of research, works have concentrated
on how to provide sufficient principles and guidelines to specify, construct, re-
fine, and customize highly volatile business processes choreographed from a set
of internal and external Web services [22,13]. In the second line of research, some
works have concentrated on developing design-time models using goal-oriented
requirement analysis techniques [17,14].

2.3 Service-Oriented MAS Engineering

Agents and services have clear differences, such as the different representational
encodings and technologies, for example. Despite these differences though, they
have similar goals. Both technologies build flexible and distributed systems. Some
researchers have studied the benefits of mixing these technologies [15]. They state
that using agents and services can provide systems with more flexibility, func-
tionality and interoperability. Many works on this subject are focused on the
interaction mechanism between agents and services [11], but there is no work
that provides a complete description of which are the software engineering re-
quirements for developing this kind of systems. A detailed list of the software en-
gineering features to take into account in the Service-oriented MAS development
is presented in Section 3. Furthermore, there are few development environments
and tools that actually offer facilities for developing agents that interact with
services. Some of these tools are described and analyzed in Section 4.

3 Software Engineering Requirements

The aim of this section is to make an overall analysis of the needs that arise
when developing Service-oriented MAS, relying more on the concepts than in a
specific terminology. In the specialized literature, there are a great number of
different perspectives about the integration between agents and services; there
are even different conceptions of what an agent and a service are. Because of this,
the identification of a set of independent, orthogonal features which completely
characterize the Service-oriented MAS development process seems unfeasible.

The selection of these issues is based on the background briefly described
in Section 2 and the study of current frameworks and techniques for Service-
oriented MAS engineering that is summarized in Section 4.

These issues are classified into four categories: (1) Integration between agents
and services; (2) Development issues; (3) Multiagent systems; (4) Service-
oriented architectures.

Software Engineering for Service-Oriented MAS 89

3.1 Integration between Agents and Services

Firstly, it is important to analyze the way in which the relationship between
agents and services is considered. Drawing from the published literature and, as
described in [5], there are three different ways: (1) Some approaches hold that
there is no conceptual distinction between agents and services. For them, both
are active building blocks in a loosely-coupled architecture, and there is only an
engineering problem of creating overall systems behaviors from active compo-
nents [24]. (2) Other approaches hold that agents and services can communicate
in a bidirectional way. They have to provide a mapping between the language
protocol used in the multiagent system and the service language protocol and
vice versa [2,25]. (3) Finally, other approaches hold that the communication is
only useful in one direction, i.e., agents invoke services but not vice versa. In
this view, agents are responsible for the application, and they use services or
composite services as resources to achieve their objectives [4].

Furthermore, agents and services have different communication standards.
Agents usually use FIPA ACL messages. Services are described with WSDL de-
scriptions and use SOAP as the communication mechanism. However, not all the
approaches follow the standards. The use of different technologies in services and
agents and the mechanism to match them should be evaluated. Another point
to consider is if the approach offers the possibility of dynamically publishing and
discovering services. Some approaches even discuss the possibility of interact-
ing with external services that may or may not be registered in the system.

3.2 Development Issues

This section analyzes the general features that a method and a development
environment for developing Service-oriented MAS should have. These features
are extracted from traditional software engineering and are grouped into three
categories:

3.2.1 Software Engineering Support
As described in Section 2, the development of a system that integrates agents and
services is a complex task which greatly benefits from the adoption of software
engineering techniques. Firstly, the application domain should be considered.
Some approaches are supposed to address systems from any domain and other
are oriented to specific domains. The model-central element is another key
feature; it defines the initial point and the perspective of the modeling process.
Offering a methodology that involves agents and services and that also take
into account their interaction greatly helps the developer to go from the initial
information to the final implementation. There are lots of methodology features
that can be analyzed, but the most important are which parts of the devel-
opment process are covered and whether development guidelines are provided.
Furthermore, a methodology component that can process a user behavioral de-
scription of desired functionality and recommends that the behaviour should be
implemented via a service or an agent, is a very useful feature for developing

90 E. Garcia, A. Giret, and V. Botti

this kind of systems. The modeling language specifies the type of notation
used for modeling. It can be formal or informal and may or may not use graph-
ical elements. The notation should be precise, complete and clear. The systems
are usually very complex, so it is very useful if the language modeling allows to
model at different abstraction level. A very interesting feature is to offer mech-
anisms to specify semantics of model element extensions using formal methods,
such as OCL.

3.2.2 Technical Issues
There are many approaches that only analyze the development process in a the-
oretical way. They define methods, but they do not offer tools or development
environments to model, design and implement systems. Thus, one evaluation
criterion is whether the approach offers tools and which parts of the develop-
ment process are covered by them. These tools can be evaluated based on
many criteria, but the most important are the requirements to set up and run
it, the functionality offered, the ease of use and their scalability.

3.2.3 Implementation Issues
The most advanced development environments integrate the modeling, design
and implementation processes in the same tool. They even offer tools that auto-
matically generate parts of the code from the models. These characteristics
are very desirable because they reduce the implementation time and the number
of implementation errors. In the development process of systems that integrate
agents and services, the translation from one descriptive language to another
is very useful. This requires that the development environment has to offer a
mechanism to automatically translate from one standard to another.

3.3 Multiagent Systems

There are many works that analyze the features that should provide the method-
ologies and the development environments for multiagent systems [6,18]. They
describe a great number of criteria, but, in this paper, only the most important
criteria for the specific case where agents interact with services are considered.

The multiagent system approach should have an agent architecture that
carry out the fundamental properties of agents (autonomy, reactivity, sociality
and proactiveness). The content language used for the communication mecha-
nism and whether or not the architecture is FIPA compliant are very important
features because they are strongly related with the necessary mechanism to in-
teract with and to integrate services and agents.

3.4 Service-Oriented Architectures

As explained in Section 2.2, there are some features that should be taken into
account for developing systems that use service-oriented technology.

The service architecture should be modeled independently of a specific
platform to obtain more flexibility and reusability. The platform-dependent

Software Engineering for Service-Oriented MAS 91

characteristic also need to be specified to implement the system. Service-
oriented systems are usually composed of many standards (See 2.2). Therefore,
the development environment should provide facilities to implement and check
the correctness of these standards. Another feature to take into account is the
way service descriptions are implemented. Service specification provides a
means for defining complete service specifications that include behavioral rules
in addition to static interfaces, operations, preconditions, post conditions, and
constraints. Service specifications are not architecturally neutral. Services can
be composed to achieve more complex functionality. The mechanism to spec-
ify how services are composed from other services in the models and how the
composition is translated to an executable code is another important feature.

4 Frameworks and Techniques

A brief description and analysis of some frameworks and techniques for modeling,
designing and implementing systems of this kind is given below. This selection
was made due to the relevance of the researchers and companies responsible for
these tools and the fact that they cover a range of pertinent issues and supporting
technologies that are primarily focused on the integration of agents and services.

– The Nuin agent platform. Nuin [4][5] is an open-source Java implementa-
tion which is a combination of a belief-desire-intention (BDI) agent platform
and semantic web techniques. It provides an abstract service boundary to
add custom behaviours to the agent. This abstract service boundary also
provides a natural basis for extending the internal agent services in order to
include external web services.

– JASE. It [3] is a Java-based Agent-oriented and Service-oriented Environ-
ment for deploying dynamic distributed systems. It defines a service-agent
programming model, which is a combination of two concepts in the field of
distributed computing: the concept of services and the concept of mobile
agents. In JASE, mobile agents are used to support applications, and service
interface agents are used to wrap services.

– The Agent Modeling Language (AML). AML [19] is a semi-formal
visual modeling language for specifying, modeling and documenting systems
that incorporate features drawn from multiagent systems theory. AML also
supports the modeling of services and their interaction with agents.

– The framework for Rapid Prototyping of SOA. This framework is pro-
posed by Zinnikus in [25]. It is built around a Model-Driven Development
methodology that is used for transforming high-level specifications of SOA
into executable artefacts, both for Web Services (WSDL files) and for BDI
agents. It follows the OMG Model-Driven Architecture (MDA) approach
and defines a Platform-Independent Model (PIM) for SOA (PIM4SOA) and
Platform-Specific Models (PSMs) for describing Web services (XSD and
WSDL), JACK BDI agents and BPEL processes. This framework is com-
posed of three parts: a modeling part, a service part and an autonomous

92 E. Garcia, A. Giret, and V. Botti

agent part. The modeling part is concerned with applying Model-Driven
Development (MDD) techniques and tools to the design of SOAs. It defines
models and transformations that are specific to the concepts used for SOAs,
such as Web Service descriptions and plans for autonomous agents. The
service part provides a highly flexible communication platform for Web ser-
vices. The autonomous agent part deals with designing and enacting service
compositions as well as performing mediation, negotiation and brokering in
both SOAs.

– Jade web services integration gateway (WSIG). WSIG [2] is a Jade
add-on that provides support for bidirectional invocation of Web services
from Jade agents, and Jade agent services from Web services clients.

4.1 Tools Analysis

In this section, some of the features of these frameworks are related to show how
current approaches develop this kind of systems, but the goal of this section is
not to make an extensive and complete analysis of these approaches. Figures 1,
2 and 3 summarize this analysis highlighting the parts that are not covered by
the analyzed tool.

4.2 Integration between Agents and Services

The Nuin approach considers that interaction between agents and services is
only useful in one direction. Agents primarily are responsible for mediating be-
tween user goals and the available strategies and plans. Agents invoke atomic or
composite external web services as necessary. An initial approach at integration
of semantic web capabilities is to include the use of RDF/OWL as a knowledge
representation, and the ability to use RDQL to query RDF-based knowledge
stores. A future goal for the Nuin approach is to add support for the direct use
of semantic web service descriptions in OWL-S. Nuin assumes that an appropri-
ate binding to the abstract service is defined, but the interaction between Nuin
agents and web services has not yet been implemented (see Figure 1).

In JASE, the general idea of service is that the application is separate from the
resources needed to fulfill a task; these resources are modeled by services, which
are independent of the application. JASE models services as agents. A service
interface agent encapsulates a local resource. Each service interface agent consists
of two parts: a service agent and a service interface. A service interface acts as a
front-end interface for the other agents in the system to communicate with the
service agent it represents. A service agent is a specialized service, which can be
realized in the form of software or hardware. JASE uses XML to describe both
service descriptions and agent queries, so no gateway is necessary.

In AML, services are encapsulated blocks of functionality that the entities
can offer to perform upon request. AML is only a modeling language, so it
represents a bidirectional interaction between agents and services. However it
does not consider the technological differences between agents and services. The
services publication and their discovery are not considered, either.

Software Engineering for Service-Oriented MAS 93

Integration between agents and services

Standards Integration
type Agents Services

Interaction mechanism Publish services
External
Services

Nuin Agents invoke
services

Nuinscript ,
OWL, RDF

WSDL not implemented yet
use external UDDI

registers
can use them

Jase
Model

services as
agents

XML XML
not need (use the same
standards and protocols)

provide Service
Server

can not use

AML not covered not covered
not

covered
not covered not covered

only internal
services

WSIG Bidirectional ACL WSU stack covered completely not covered not covered

Zinnikus Bidirectional not specified WSDL covered completely yes can use them

Fig. 1. Integration issues

WSIG is a gateway that offers automatic, bidirectional operation allowing
both FIPA compliant agent services and Web services to be registered with it.
Agent services and web services can thereby publish their service descriptions
to consumers outside their normal operational domain. The gateway can then
intercept calls to these registered services allowing agents to invoke Web ser-
vices and vice versa by transforming message encodings and creating service
access endpoints. All invocation-related interactions between the gateway and
agents use ACL encoded FIPA-Request and FIPAInform performatives. All Web
services use the standard WSU stack (WSDL, SOAP and UDDI).

The Zinnikus approach extends the JACK agent framework for Web Services
in order to provide a goal-oriented service composition and execution module
within a SOA. Following the MDA approach, at design time a modeller specifies
a set of plans (PSM level) that constitute the workflow library of the agents. Web
service calls are integrated as steps into plans. Service providers are mapped to
JACK agents/teams. The parts of the PIM that define the processes involved
are mapped to agent/team plans and correlated events, whereas the parts that
define the interfaces are mapped to the modules that provide the client- and
server-side code for the JACK agent platform. Johnson and Lyndon are tools of
the service part of the framework and allow the communication between external
and internal web services and agents. The Johnson tool is responsible for invoking
web services and receiving calls issued by Web service clients. The Lyndon tool
takes WSDL files as input and configures Johnson tool to play either the role of
service provider, service consumer or service proxy for the service described by
the WSDL file analyzed.

4.3 Development Issues

4.3.1 Software Engineering Support
In all the studied tools, the application domain is general as shown in Figure 2.
Even though JASE models can describe any kinds of open and global dynamic
distributed systems, it is specialized in mobile agents.

The central element of the model in all cases is the agent, except for the
Zinnikus approach. This approach defines first a platform-independent model
for services (PIM4SOA) and later platform-specific models that have agents as
central elements.

94 E. Garcia, A. Giret, and V. Botti

Nuin and JASE do not provide or use any methodology, nor any modeling
language.

AML is a modeling language that is specified as an extension to UML 2.0
in accordance with major OMG modeling frameworks (MDA, MOF, UML, and
OCL). It proposes 11 diagrams that extend UML 2.0, to model all the MAS fea-
tures and interactions with services graphically. The notation is clear, complete,
precise and understandable. AML offers the possibility to model at different ab-
straction level. ADEM is the agent methodology proposed for AML researchers
but there is no public available detailed documentation of ADEM.

WSIG is a transparent gateway to translate communication standards, so it
cannot be analyzed with these features.

As explained in Section 4, the Zinnikus approach is built around a Model-
Driven Development methodology that transforms high-level specifications of
a SOA into executable artefacts, both for web services (WSDL files) and for
BDI agents. The modeling part of the framework and more specifically, the
MDD framework defines the metamodels used to specify SOAs. It also provides
modeling guidelines, model transformation and generation support for execution
artefacts such as WSDL files and BDI plans. It also supports importing existing
WSDL files into the SOA models. All these models are represented graphically.

4.3.2 Technical Issues
Nuin and JASE do not provide any development environment to implement
applications. Nuin models core BDI agent architectures on AgentSpeak(L) and
PRS, allowing agent designers to specify and implement agents using program-
ming abstractions that correspond closely with the terms commonly used in
intelligent agent theories. It is written in Java, and requires JDK 1.4 or later.
Jade and Jena libraries are also necessary for a full functionality.

JASE is also implemented in Java. Similar to Nuin, JASE provides program-
ming abstraction libraries.

AML is supported by tree case tools: Rational Rose 2003, Enterprise Architect
4.0 and StarUML. The AML implementation consists of UML profile support
for AML, a set of modeling utilities (specialized element specification dialogs,
model consistency checker, etc.), and forward-engineering tools for TAPI, the
commercial-agent platform of Whitestein Technologies AG.
The WSIG requires JADE v3.3 platform to run, and the following third party

technologies are available on the system: JakartaTomcat, Apache jUDDI, mySQL,
MySQL Conector/J.

The Zinnikus approach provides tool support for the MDD framework. It
has been developed as a set of plugins for Rational Software Modeller (RSM)
(IBM Rational Software). RSM is a UML 2.0 compliant modeling tool from
IBM based on the Eclipse modeling environment. All models and metamodels
were implemented using the EMF Core (Ecore) metamodel. Model transforma-
tions have been implemented using the model transformation capabilities of the
RSM/Eclipse platform. Also [25] provides Johnson tool, Lyndon tool, WSDL
Analyzer (a tool for detecting similarities at a structural level between WSDL

Software Engineering for Service-Oriented MAS 95

Development issues

Software Engineering Support Implementation issues

Technical issues
Automatic generation code for:

 Applica
tion
domain

Model-
central
element

Methodology
Modeling
language

Offer tools
Development

process covered
Agents Services

Standards
translation

Nuin General Agents not covered
not

covered

Programming
abstraction
libraries

Implementation
(only programming

help)
api

not
covered

not
implemented

yet

Jase General
Mobile
agents

not covered
not

covered

Programming
abstraction
libraries

Implementation
(only programming

help)
api api no needs

AML General Agents
ADEM no
public

available

Yes,
Informal

,
Graphic

yes
model, design,
implementation
(not tested)

Jade
generation

(not
tested)

no no

WSIG not
covered

not
covered

not covered
not

covered
not covered not covered

not
covered

not
covered

complete
and

transparent

Zinnikus General
Services
/Agents

Services
/Agents

Yes,
Informal

,
Graphic

yes
complete but poor
at implementation

no no no

Fig. 2. Analysis of the development issues

descriptions of Web services and generating the corresponding mappings) and
RDF store (which stores both design-time information and runtime information
as RDF files for the purpose of monitoring).

4.3.3 Implementation Issues
As explained in the above sections, JASE and Nuin do not offer any modeling
mechanism, so the translation between models and code is not considered.

The CASE tools provided by AML are supposed to be able to translate agent
models into Jade code [10], but these plugins are not publicly available.

The WSIG v0.4 supports the standard WSU stack and FIPA acl/sl0 commu-
nication. The functionality of WSIG is translated between these two standards.
WSIG automatically registers UDDI web service registers in the Jade platform
DF and viceversa, i.e., WSIG registers all agent services of the DF in the WSIG
UDDI repository. WSIG is transparent, so the programmer does not need to add
any code in agents or services. An agent calls a web service as to another agent
and viceversa.

The Zinnikus approach provides model-to-model transformation services that
allows the transformation of PIM4SOA models into underlying PSMs such as
XSD, WSDL, JACK BDI agents or BPEL. However, it does not specify if JACK
agents code is generated automatically from these models.

4.4 Multiagent Systems

Nuin agents are BDI agents that are reactive, autonomous, proactive and social.
JASE is not a BDI architecture. It provides a mechanism for developing agents

with all the basic properties described in Section 3 as well as with the ability to
migrate.

AML allows agents to be modeled with all the basic properties.
WSIG is a transparent gateway to translate communication standards, so it

cannot be analyzed with these features (see Figure 3).

96 E. Garcia, A. Giret, and V. Botti

Multiagent systems Service-oriented architectures

 Agent
Architect

ure

FIPA
compliant

Basic
properties

Platform
independent

Platform
dependent

Service
specification

Service
composition

Nuin BDI yes yes not covered not covered not covered not covered

Jase no BDI no yes not covered not covered yes no

AML not
covered

not covered yes yes no yes yes (model)

WSIG not
covered

not covered not covered not covered not covered not covered not covered

Zinnikus BDI no yes yes yes yes yes

Fig. 3. Agents and services issues

The Zinnikus approach extends the JACK agent framework for Web Services
(JACK4WS) following the BDI model. The agents have all the basic properties.
JACK is not FIPA compliant. JACK agents are not bound to any specific agent
communications language. Nothing prevents the adoption of high-level symbolic
protocols such as KQML or FIPA Agent Communication Language (ACL).

4.5 Service-Oriented Architectures

The objective of Nuin is not to implement services but to implement agents that
can invoke services. Therefore, it cannot be analyzed with these features (see
Figure 3).

JASE uses XML to describe both service descriptions and the mobile agent’s
queries. A service in JASE is a mechanism to encapsulate a local resource. JASE
does not consider service composition.

AML does not cover most operational semantics, which is often dependent on
a specific execution model given by an applied theory or deployment; it offers
platform-independent models. The AML support for modeling services comprises
(1) the means for the specification of the functionality of a service and the way
a service can be accessed (service specification and service protocol), (2) the
means for the specification of what entities provide/use services (service provi-
sion, service usage, and serviced property), and (if applicable) by what means
(serviced port). They are modeled in AML in terms of service specifications,
service provisionings and service usages. AML supports OCL.

WSIG is a transparent gateway to translate communication standards, so it
cannot be analyzed with these features.

In the Zinnikus approach, service providers are mapped to JACK agents/
teams; the processes involved are mapped to agent/team plans, and interfaces
are mapped to the modules that provide the client- and server-side code for the
JACK agent platform. Thus service specification and interaction points are well-
defined. The service composition is analyzed and implemented at the agent level,
i.e., a composition is a collaboration between agents that are service providers.

4.6 Discussion

Some authors [5] say that if services are able to invoke agents, this would vi-
olate the autonomy of the invoked agent, thereby turning the agent into just

Software Engineering for Service-Oriented MAS 97

another service. From our perspective, it is important to differentiate between
agents and services. We agree that it is useful for agents to be able to in-
voke services. However, we disagree with the idea that if a service can invoke
an agent, the agent must expose pre-determined or deterministic behaviours.
Nowadays, service technology offers the possibility to register and deregister
services dynamically and there is no reason why an agent cannot change the
behavior of its published services depending on its own goals and situation.
For this reason, we think that bidirectional integration is more complete and
useful.

Organizations like FIPA or OMG are working to establish standards, and
most approaches follow them. It is very important to obtain open environments
where services and agents implemented by different companies with different
technologies can interact.

As discussed in Section 2, developing systems that integrate agents and ser-
vices is a complex task and the use of methodologies is useful. Nonetheless, there
are few methodologies that take into account both technologies. The Zinnikus
approach presents a methodology in [25] which states that the methodology is
complete and that guidelines are offered. However there is no more documenta-
tion and they do not offer public downloads.

Figure 2 shows that these approaches do not offer tools that cover the entire
development process. Also, there are few techniques for automatic code gener-
ation and they are not sufficient. These are very important research lines that
are still open.

The possibility of offering platform-independent model services is very useful
for develop service-oriented multiagent systems. It allows high-level modeling
where the technology used is not specified. Complete approaches for developing
systems that integrate services and agents should offer this possibility as well as
automatic transformations to platform-dependent models.

From the list of features presented in Section 3 and the analysis of the results
of Section 4.1 we can summarize the most important requirements for develop-
ing Service-oriented MAS in the following list: (1) a methodology that involves
agents and services, and takes into account their integration; (2) a modeling
language that allows the definition of the specific characteristics of agents, and
services as well as the specification of their integration; (3) a tool that covers
the entire development process, i.e., one that supports the methodology and the
modeling language used and offers implementation facilities such as automatic
code generation; (4) a gateway that allows the interaction between agents and
services despite the differences in their technology and standards, which should
provide mechanisms for publishing and invoking services; (5) an agent platform
that integrate both technologies transparently.

After this analysis it can be observed that there is currently no complete
tool or framework that covers the entire development process of service-oriented
multiagent systems. In order to develop systems of this kind, a software engineer
has to merge a set of different methods, modeling language, tools, etc.

98 E. Garcia, A. Giret, and V. Botti

5 Conclusions and Future Work

Multiagent systems and service-oriented architectures are two approaches with
similar goals but major differences in their technology. Both are hot research and
industrial topics, and integration between agents and services is very beneficial
as it generates more complete, flexible and interoperable systems with greater
functionality.

The use of software engineering principles, methods and techniques in the en-
tire development cycle of multiagent systems and service-oriented architectures
is both interesting and necessary in many cases. In the same way, the develop-
ment of systems that integrate the two technologies requires methodologies and
development environments that take into account the specific characteristics of
agents, services and their integration.

In this paper we have put forward a comprehensive list of the most important
software engineering issues in the development of service-oriented MAS systems.
These issues were defined, based on a detailed study of state of the art develop-
ment methods and taking into account the new characteristics which arise when
agents and services are integrated.

These issues are used to analyze several approaches. From this study we can
conclude that in order to develop systems of this kind, it is currently necessary
to merge a set of different methods and tools. There is no software engineering
tool that covers the entire development process of these systems, and so this is
an open line of research.

The highlighting of the fundamental development issues put forward in this
study is an attempt to identify the new requirements imposed to the development
process of Service-oriented MAS. Moreover, this requirement list can help to
improve current state of the art methods, tools and platforms in order to develop
these kinds of systems correctly.

At the same time, the ideas presented in this study can be used as a starting
point from which to develop a complete framework for service-oriented MAS, in
which agents and services are smoothly integrated, drawing on the advantages
of both approaches.

We plan to continue along this line of work in the future, completing the list
of requirement, evaluating state of the art methods, tools and platforms in order
to define a ranking list of development tools for these kinds of systems.

Acknowledgements

This work is partially supported by the TIN2006-14630-C03-01,PAID-06-07/3191
projects and CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE (Wiley Series in Agent Technology). John Wiley & Sons, Chichester (2007)

2. Board, J.: Jade web services integration gateway (wsig) guide (2005)

Software Engineering for Service-Oriented MAS 99

3. Chunlin, L., Layuan, L.: An agent-oriented and service-oriented environment for
deploying dynamic distributed systems. Computer Standards and Interfaces 24,
323–336 (2002)

4. Dickinson, I.: Nuin: the jena agent framework (2004), http://www.nuin.org
5. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: investigating bdi

agents and web services. In: Proc. SOCABE 2005 (2005)
6. Eiter, T., Mascardi, V.: Comparing environments for developing software agents.

AI Commun. 15(4), 169–197 (2002)
7. Giorgini, P., Mylopoulos, J., Perini, A., Susi, A.: The tropos metamodel and its

use. Informatical journal (2005)
8. Greenwood, D., Lyell, M., Mallya, A., Suguri, H.: The ieee fipa approach to in-

tegrating software agents and web services. In: Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Indus-
trial Track (2007)

9. Jack agent platform (2008),
http://www.agent-software.com/shared/products/index.html

10. Kostic, M.: Code generation from AML Implementation into CASE tools and sup-
port for existing agent platforms. PhD thesis (2006)

11. Marco Mari, M.T., Poggi, A., Turci, P.: Enhancing multi-agent systems with peer-
to-peer and service-oriented technologies. In: Sixth International Workshop From
Agent Theory to Agent Implementation (AT2AI-6) (2008)

12. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: 05462
service-oriented computing: A research roadmap. In: Service Oriented Computing
(SOC) (2006)

13. Papazoglou, M.P., van den Heuvel, W.: Business process development lifecycle
methodology. Communications of ACM (to appear, 2006)

14. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder needs to ser-
vice requirements specifications. Technical report, itc-irst, Automated Reasoning
Systems (2006)

15. Singh, M.P., Huhns, M.N.: Service-Oriented Computing Semantics, Processes,
Agents. John Wisley and Sons Ltd. (2005)

16. Rafael, M.D., Bordini, H., Winikoff, M.: Current issues in multi-agent systems
development (invited paper). In: Post-proceedings of the Seventh Annual Interna-
tional Workshop on Engineering Societies in the Agents World, pp. 38–61 (2007)

17. Rolland, C., Souveyet, C., Kraeim, N.: An intentional view of service-oriented com-
puting. Revue Ingnierie des Systmes dÍnformation (ISI),RSTI (Revue des Sciences
et Technologies de ĺInformation)- ISI 13(1), 107–137 (2008)

18. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of agent-
oriented software methodologies examination of the gap between modeling and
platform (revised selected papers). AOSE-2004 at AAMAS 2004 (2005)

19. Trencansky, I., Cervenka, R.: Agent modelling language (AML): A comprehensive
approach to modelling mas. Informatica 29(4), 391–400 (2005)

20. Tsai, W.-T., Wei, X., Paul, R., Chung, J.-Y., Huang, Q., Chen, Y.: Service-oriented
system engineering (SOSE) and its applications to embedded system development.
In: AOSE 2002 (2007); Revised Papers and Invited Contributions

21. A. UML. Agent uml (2008), http://www.auml.org
22. Witwicki, S.J., Durfee, E.H.: Commitment-based service coordination. In: Kowal-

czyk, R., Huhns, M., Klusch, M., Maamar, Z., Vo, Q.B. (eds.) Service-Oriented
Computing: Agents, Semantics, and Engineering. LNCS, vol. 5006. Springer, Hei-
delberg (2008)

http://www.nuin.org
http://www.agent-software.com/shared/products/index.html
http://www.auml.org

100 E. Garcia, A. Giret, and V. Botti

23. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

24. Zhu, H., Shan, L.: Agent-oriented modelling and specification of web services. In:
Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, vol. 00, pp. 152–159 (2005) (ISBN-ISSN:1530-1443 ,
0-7695-2347-1)

25. Zinnikus, I., Benguria, G., Elvester, B., Fischer, K., Vayssire, J.: A model driven
approach to agent-based service-oriented architectures. In: Fischer, K., Timm, I.J.,
André, E., Zhong, N. (eds.) MATES 2005. LNCS (LNAI), vol. 4196, pp. 110–122.
Springer, Heidelberg (2006)

	Software Engineering for Service-Oriented MAS
	Introduction
	Background
	Agent-Oriented Software Engineering
	Service-Oriented System Engineering
	Service-Oriented MAS Engineering

	Software Engineering Requirements
	Integration between Agents and Services
	Development Issues
	Multiagent Systems
	Service-Oriented Architectures

	Frameworks and Techniques
	Tools Analysis
	Integration between Agents and Services
	Development Issues
	Multiagent Systems
	Service-Oriented Architectures
	Discussion

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

