
Agents and Databases: A Symbiosis?

Heiko Schuldt

Database and Information Systems Group
Department of Computer Science
University of Basel, Switzerland

heiko.schuldt@unibas.ch

Abstract. Over the last decades, data and information management
has been subject to significant changes. Access to data and information is
no longer provided by monolithic database systems. Rather, applications
need to cope with an increasing number of heterogeneous and distributed
data and information sources, ranging from traditional databases, large
document collections and information sources on the Internet and the Se-
mantic Web. This also affects the way data and information is searched,
accessed, and processed. In particular, the agent community has ad-
dressed this change and has spawned the field of information agents. An
information agent pro-actively searches, retrieves, accesses and maybe
even processes information on behalf of its user. Also the database com-
munity has faced the challenges stemming from this change by making
database functionality available even outside of database systems.

In this paper, we review the recent developments in both fields and
show examples of activities which lead to synergies in both communities
and which emphasize on the potential for symbiotic co-existence.

Keywords: Cooperative Information Agents, Databases, Hyperdatabase
Systems, Agents and Transactions.

1 Introduction

Over the last decades, data and information management has undergone consider-
able changes. From rather monolithic, database-centric applications where access
to data was directly provided by (mostly relational) database management sys-
tems (DBMSs), the evolution first led to an increasing number of heterogeneous
and distributed data and information sources, ranging from traditional databases
and large (multimedia) document collections to information sources on the Inter-
net, and finally to information in the Semantic Web and even to embedded infor-
mation sources in mobile “smart” objects as they occur in a pervasive computing
environment. This development significantly affects the way data and information
is searched, accessed, and processed.Both the immense amount of information and
the number of different information sources poses a great challenge for appropri-
ate infrastructures for dealing with search, access, management, and processing.
In particular, the agent community has addressed this change and has spawned

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 24–34, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Agents and Databases: A Symbiosis? 25

the field of information agents [13,9]. A cooperative information agent is a com-
putational software entity that has access to one or multiple, potentially heteroge-
neous, and geographically and logically distributed data and information sources,
pro-actively acquires, mediates, and maintains relevant information on behalf of
its human users or other agents, preferably just-in-time [4]. Several workshop and
conference series have provided the fora necessary for creating a pertinent com-
munity and have helped the field in coming of age.

At the same time, database systems have evolved and the database commu-
nity has also faced the challenges stemming from this change. In particular,
databases are more and more hidden behind service interfaces. At the same
time, database concepts such as query processing and transactions are provided
outside of database systems, at the level of service invocations.

In this paper, we review the recent developments in both fields. In particular,
we aim at answering the rather rhetorical question raised in the title of this pa-
per by identifying areas of mutual interest and activities which hopefully lead to
synergies in both communities. The hyperdatabase vision [16] will be presented as
one example for activities in the intersection between both areas and we describe
in more detail two concrete realizatons of this vision to exemplify the relationship
between both fields and to stress the possibility for symbiotic co-existence.

The paper is organized as follows: Section 2 briefly introduces the two different
fields and identifies the potential for cross-fertilizations. In Section 3, we illustrate
the possible symbiosis between information agents and databases by presenting
the hyperdatabase vision. In particular, we present two selected hyperdatabase
implementations, namely OSIRIS which provides optimized routing of service
requests for distributed processes orchestrated by means of cooperating agents
and AMOR which provides transactional execution guarantees for cooperating
agents. Finally, Section 4 concludes.

2 Information Agents and Databases

In what follows, we first give a brief introduction on information agents and
databases, review their development and analyze the relationship between both
fields.

2.1 Information Agents

In short, the main task of information agents can be summarized as providing in-
tegrated access to information from potentially heterogeneous information sources
hosted at several locations. The activities of information agents include the discov-
ery of information sources, the integrationof information fromdifferent sources and
possibly also the processing of information, e.g., to derive new information [13,9].

In more detail, according to the terminology defined by the AgentLink Spe-
cial Interest Group on Intelligent Information Agents [2], an information agent
is a computational software entity that may access one or multiple, distributed
and heterogeneous information sources, and pro-actively acquires, mediates, and

26 H. Schuldt

maintains relevant information on behalf of its user(s) or other agents preferably
just-in-time. This includes their ability to semantically broker information by pro-
viding a pro-active resource discovery, by mediating between information con-
sumers and providers and finally by offering value-added information services and
products to the user or other agents. The latter implies that information agents
also act as producers of information and not just facilitators for accessing infor-
mation, and thus have to take care of the quality of their services. Information
agents take over the role of brokers between information sources (e.g., by access-
ing databases), other agents (or their services, respectively), and human users.

Different information agents may cooperate in order to jointly achieve a com-
mon task. Furthermore, they may be subject to dynamic re-configurations, e.g.,
to react to changes in their environment react or to increase the quality of their
service (load balancing, reduction of data transfer, etc.).

2.2 Databases

Relational database systems have been introduced more than thirty years ago.
They have been considered as infrastructure and main platform for develop-
ment of data-intensive applications. The notion of “data independence”, part
of Codd’s rules [5], was a breakthrough because programmers were freed from
low-level details, e.g., how to access shared data efficiently and correctly, given
concurrent access. But already in the late nineties, the prerequisites for appli-
cation development have changed dramatically. Storage and communication has
become fairly cheap, and the internet has started to dominate modern infor-
mation infrastructures. Consequently, the role of database concepts had to be
re-visited and newly determined. Undoubtedly, the database system has played
and still plays an important role. However, it has more and more degenerated
to a storage manager, far away from the applications. In this situation, about a
decade ago, researchers started to question the role of databases for future dis-
tributed information systems engineering (“Databases Breaking out of the Box”
[25] and the Lowell Database Research Self-Assessment Report [1]).

One of the consequences of this development is that databases are increas-
ingly becoming invisible, although they still constitute the backend-tier of data-
intensive applications. Rather, data management and thus databases are hidden
behind service interfaces. Thus, data-intensive applications have to deal with
services description and registration instead of relational schema definition, ser-
vice instances instead of relations, or service invocations instead of relational
operators for accessing or manipulating data. Database research thus more and
more needs to cope with database functionality at higher levels of semantics,
e.g., optimal routing of service requests as opposed to query optimization, or
transactional execution guarantees for composite services to just name a few.

2.3 Symbionts or Predators, Peaceful Coexistence or Mutual
Indifference?

In light of these developments, it is obvious that the relationship between infor-
mation agents and databases cannot be characterized by just mutual indifference.

Agents and Databases: A Symbiosis? 27

It even significantly goes beyond a peaceful coexistence since information agents
are more than only clients to databases.

From the point of view of information agents, databases are still the resource
managers which persistently store information. But even more, the broader no-
tion of databases provides the necessary protocols and mechanisms for coordi-
nating agent interactions, e.g., for providing provably correct and transactionally
safe multi-agent executions or for routing service requests in an optimal way.

At the same time, higher level database functionality can significantly benefit
from advances in the area of information agents. This includes the ability to
semantically integrate information from different sources, to negotiate quality
of service for interactions, to proactively discover resources, or to dynamically
adapt to changing environments.

Apparently, there are many potential synergies between both fields. Some
of them are addressed in recent initiatives and projects which are stemming
from the database community and which aim at making database functional-
ity available outside of databases. Thus, these projects implicitly address issues
which are of high practical impact also for information agent interactions. Hyper-
databases [15,16,17], InfoSphere [14], or AutoGlobe/ServiceGlobe [6] are some
examples out of a longer list of similar initiatives which hopefully lead to a
sustainably symbiotic relationship between both fields.

In what follows, we will present in detail the hyperdatabase project which has
originated at ETH Zurich and which is now being continued at the University
of Basel. In particular, we briefly present the underlying hyperdatabase vision
for the management of future information spaces and we will present two im-
plementations of the hyperdatabase vision which provide database functionality
at higher level of abstractions, outside of a database, which is supposed to also
facilitate and ameliorate distributed agent-based applications.

3 Hyperdatabases

This section first briefly introduces the hyperdatabase vision and then presents
two implementations of this vision for which we believe they will have a strong
impact on the way distributed information agents interact. A more detailed
summary of the hyperdatabase vision and its realizations can be found in a
recent survey paper [16].

3.1 The Hyperdatabase Vision

The driving forces behind the hyperdatabase vision are mainly based on two
observations. First, that the volume of data and information is significantly
increasing and undergoes continuous changes while being inherently distributed
and heterogeneous. Second, non-relational data sources such as, for instance, im-
age, video, audio collections are increasingly gaining importance. Thus, a holistic
approach to managing the “information space” of the future, i.e., the universe of
all information sources, needs a radical departure from the traditional database

28 H. Schuldt

thinking by moving up to a much higher level of abstraction. In short, a hyper-
database administers objects that are composed of objects and transactions that
are composed of transactions. Thus, it provides database functionality not only
over many distributed databases but in a more general way on top of distributed
components and services with various functionality in a networked environment.

With hyperdatabases, the notion of data independence is generalized in the
form of “higher order data independence”. This includes the immunity of appli-
cation programs not only against changes in storage and access structure, but
also against changes in location, implementation, workload, the number of replica
of software components and their services. The relation between databases and
hyperdatabases can be briefly characterized as follows: a database is a platform
for clients concurrently accessing shared data which needs data definition, data
manipulation, and transactions at the interface. Internally, the database man-
agement system performs query optimization, provides correctness for parallel
access, recovery, persistence, load balancing, and guarantees a high degree of
availability. Similarly, a hyperdatabase is a platform for clients, concurrently ac-
cessing shared application services; thus, as opposed to shared data in a database,
it has to deal with shared components and services. At the interface, a hy-
perdatabase has to provide component and service definition and description,
service customization, transactional processes encompassing multiple service in-
vocations. Internally, the hyperdatabase performs optimization of client requests,
routing, scheduling, and parallelization, correctness of concurrent accesses, flexi-
ble failure treatment, providing guaranteed termination (i.e., a generalized form
of atomicity), availability, flexible recovery, and scalability. Table 1 summarizes
the analogy.

Most importantly and in contrast to traditional database technology, a hy-
perdatabase infrastructure must not follow monolithic system architecture but
must be fully distributed over all participating nodes in a network. Every node
is equipped with an additional thin software layer, a so-called hyperdatabase
layer (which, in the terminology of the agent community, is actually an informa-
tion agent). Each deployment of the hyperdatabase layer can be considered as
an agent which offers dedicated services and/or provides access to information.
Thus, one of the main challenges of hyperdatabases is the communication and
coordination of these hyperdatabase layers.

3.2 Hyperdatabase Projects

The following two sections present in more detail two concrete implementations
which arose from the hyperdatabase vision. Both address the distributed retrieval
and/or processing of information by a set of cooperating hyperdatabase layers
(agents). The first focuses on distributed, process-based applications while the
second addresses transactional semantics in these distributed settings.

OSIRIS: A Hyperdatabase Implementation for Distributed Process-
based Applications. The proliferation of service-oriented computing and in
particular of (Web) services had a strong impact on information systems. System

Agents and Databases: A Symbiosis? 29

Table 1. Analogy between DBMSs and the Hyperdatabases (from [16])

Database Management Hyperdatabase Infrastructure

Relational schema definition Service definition and registration

Relational schema extension New service registration

Relation Service instance

Access to relation Service invocation

Query and update language Process definition language

Transaction Transactional process

ACID Guarantees Correct execution and guaranteed termination
of process

Undo operation Inverse service invocation

Redo operation Repeatable service invocation

Indexing Feature extraction and feature space organization

Query Optimization Optimal process routing

Physical Database Design Configuration Design by service allocation
and replication

support for the invocation of single services is widely available, due to standard-
ized protocols and formats (e.g., WSDL and SOAP). Beyond these basics, the most
important challenges are the management of existing services and their evolution,
the composition of existing services into a coherent whole by means of processes,
and the optimization of service requests to guarantee a high degree of scalability
in order to deal with an increasing number of services, processes, and users.

OSIRIS (Open Service Infrastructure for Reliable and Integrated process Sup-
port) [22,23] is a novel infrastructure for distributed service-oriented applica-
tions. It primarily focuses on the scalable and reliable execution of composite
services, also called processes. OSIRIS provides basic mechanisms which can also
be applied to distributed, cooperating information agents in jointly achieving a
common task. Process-based applications are either explicitly specified, accord-
ing to the paradigm of programming in the large [26], or are individually and
automatically created by a dedicated planner (e.g., [10,11,24]).

OSIRIS consists of a set of agents (so-called hyperdatabase layers). These
agents interact in a decentralized, peer-to-peer style for executing processes [20].
In addition, OSIRIS considers several global repositories. While only the agents
are responsible for process execution, the global repositories collect metadata
on the overall system and apply sophisticated replication mechanisms (based
on publish/subscribe techniques) for control flow dependencies from the global
repositories to the agents. At run-time, this guarantees that no single point of
failure is involved in the execution of processes and allows to provide sophisti-
cated load balancing strategies (selection of the least loaded peer which provides
a dedicated service). For this, the concrete service binding is determined at run-
time depending on the load of agents and costs of invoking a particular service
instance [21].

In order to minimize information exchange between repositories and agents,
only a minimal set of information is replicated, i.e., only the information an

30 H. Schuldt

agent needs to drive the execution of those process instances that it might po-
tentially be responsible for (for which it provides services). Among all global
OSIRIS services, the most important ones for distributed and decentralized pro-
cess execution are the the process repository which holds the global definitions
of all processes types, the service registry which is a directory of all available
services in the system provided by OSIRIS agents, and the load repository which
manages information on the load of all agents in the system.

OSIRIS’ decentralized and distributed approach to process execution is illus-
trated in Figure 1. Different service types are depicted with different shapes,
execution orders are illustrated by directed edges. Agents (OSIRIS layers) are
sitting on top of all service providers and allow them to make available their ser-
vices to OSIRIS processes. In the center, some of the core OSIRIS services are
displayed. Figure 1 also shows how a process description is replicated in small
pieces to the OSIRIS agents (dotted lines). Finally, after replication, enough pro-
cess and service meta information is locally available to allow for peer-to-peer
process execution. In particular, when a process is instantiated and executed, the
OSIRIS agents can decide on their own, based on locally replicated information,
where to route a request to (solid lines between OSIRIS agents). This makes
sure that process execution takes place in a decentralized and distributed way
and guarantees a high degree of scalability.

Distributed Concurrency Control for Processes. In databases, transac-
tional execution guarantees are of high importance and have strong practical
impact in a large number of applications. In general, this is also true for hy-

Process
Repository

Load
Repository

Service Registry
RP

FEC

Services

Services

Se
rv

ic
es

Services

Agent
(O

SIR
IS layer)

Ag
en

t
(O

SI
R
IS

 la
ye

r)

Agent
(OSIRIS layer)

Process Invocation Process Execution
Service Invocation
Metadata Replication

…

…

…

Core OSIRIS Services

Service
Provider

P

R

Agent
(OSIRIS layer)

Fig. 1. Distributed Agent-based Execution of OSIRIS Processes

Agents and Databases: A Symbiosis? 31

perdatabases. However, isolated and atomic behavior for concurrent distributed,
service-based applications needs to take into account the higher level seman-
tics of services (compared to rather low-level database operations). Transac-
tional processes [19] consider these constraints and provide process support with
transactional guarantees over distributed components using existing services as
a generalization of traditional database transactions. Essentially, transactional
processes exploit the termination semantics of the individual services they con-
tain. Each service is either compensatable, retriable, or pivot, following the model
of flexible transactions [27]. The effects of compensatable services can be seman-
tically undone after the invocation has successfully returned. Retriable services
are guaranteed to terminate correctly, even if they have to be invoked repeat-
edly. In this case, the last invocation succeeds while all previous invocations of
this service do not leave any effects. [18] presents a more advanced distinction
between termination classes, based on execution costs of services. Pivot services
are those that cannot be compensated, due to the lack of an inverse service, or
which are not appropriate for compensation due to their high costs.

On the basis of the transactional process model, the AMOR (Agents, MObility
and tRansactions) approach [8,7] allows to provide global transactional guaran-
tees, i.e., atomicity and isolation applied at the level of processes without any
global component involved. Conventionally, isolation and atomicity are enforced
using a locking protocol like the strict two-phase locking (2PL) in combination
with a global commit protocol like the two-phase commit (2PC) [12] and require
a centralized coordinator. These protocols are not applicable in completely dis-
tributed agent-based applications. AMOR uses a novel protocol which is based
on decentralized serialization graph testing to ensure global correctness (con-
currency control and recovery) in peer-to-peer environments without a global
coordinator. Essentially, each agent is equipped with partial knowledge (local
serialization graph containing information on conflicts with other agents) that
allows them to coordinate. Globally correct execution is achieved by communi-
cation among dependent agents and can even be enforced in case of incomplete
local knowledge. It can be guaranteed that each agent can decide at commit time
whether it is able to safely commit its work or whether it has to wait on other
agents to commit their work first before they can proceed.

Thus, AMOR provides the basic protocol that can be used to add transac-
tional semantics to any kind of agent cooperation without imposing a dedicated
infrastructure for this coordination, similarly to the way it has brought forward
P2P systems with transactional semantics [3].

4 Conclusion

The significant growth of information over the last years has led to an increas-
ingly large number of information sources in various formats and at different lo-
cations. This information might even be subject to frequent changes and complex
interdependencies. In order to support applications in dealing with this wealth of
heterogeneous information, novel approaches are required to access these informa-
tion sources, to mediate between them and to provide value-added services. These

32 H. Schuldt

problems are in the focus of information agents, which take over these tasks on be-
half of their users or other agents. Most importantly, tasks are usually delegated
to groups of (possibly specialized) agents which solve them in a collaborative way.

At the same time, this evolution has also led to a re-thinking of database
research. Databases are no longer in the center of applications but are hidden to
the applications behind service interfaces. Nevertheless, well known guarantees
from databases like optimized access and transactional execution are still needed,
but at a higher level of semantics, namely the invocation of services.

The activities of the information agent and database communities have led to
highly complementary results and research activities are more and more directed
towards bringing both fields closer together. So the rather rhetorical question
from the title of this paper can be clearly answered: there is indeed a high po-
tential for synergies and cross-fertilization between both fields which is visible in
the promising results of some initiatives, and the research agendas will hopefully
be much closer aligned in the near future.

In this paper, we have reported on some activities which originated from the
database community and which, as we believe, will also have a strong impact
also on cooperative information agents. In particular, we have summarized the
hyperdatabase vision which aims at applying database system concepts outside
of databases. In addition, with OSIRIS and AMOR, we have presented two hy-
perdatabase implementations. The first aims at providing optimized routing of
service requests, as a generalization of query optimization in databases, while
the latter focuses on providing transactional execution guarantees for compos-
ite services, as a generalization and extension of ACID guarantees known from
database transactions.

Over the last ten years, the hyperdatabase vision has been implemented, ex-
ploited, and evaluated in a large variety of applications. However, the hyper-
database vision is not static but needs to evolve with the ongoing advancements
and new trends in large-scale, distributed and heterogeneous information spaces.
Current activities in the context of the hyperdatabase vision, for instance, con-
sider additional support for context-aware service composition and semantic fail-
ure handling. Essentially, when considering the current context (e.g., location)
of a user or her individual preferences, personalized process-based applications
can be either newly created or existing ones can be automatically adapted. This
includes the customizaiton and generation of processes using semantic Web ser-
vices, their reliable distributed execution, and finally the exploitation of seman-
tics for failure handling purposes – the latter will significantly benefit from recent
work done in the context of cooperative information agents.

References

1. Abiteboul, S., Agrawal, R., Bernstein, P.A., et al.: The Lowell Database Research
Self-Assessment. Communications of the ACM 48(5), 111–118 (2005)

2. AgentLink. Special Interest Group on Intelligent Information Agents,
http://www.dbgroup.unimo.it/IIA/

http://www.dbgroup.unimo.it/IIA/

Agents and Databases: A Symbiosis? 33

3. Antony, S., Agrawal, D., Abbadi, A.E.: P2P Systems with Transactional Seman-
tics. In: Proceedings of the 11th International Conference on Extending Database
Technology (EDBT 2008), Nantes, France, March 2008, pp. 4–15. ACM Press, New
York (2008)

4. CIA. International Workshop Series on Cooperative Information Agents,
http://www-ags.dfki.uni-sb.de/∼klusch/IWS-CIA-home.html

5. Codd, E.F.: The Capabilities of Relational Database Management Systems. IBM
Research Report, San Jose, California, RJ3132 (1981)

6. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive Quality
of Service Management for Enterprise Services. ACM Transactions on the Web
(TWEB) 2(1) (Febuary 2008)

7. Haller, K., Schuldt, H., Schek, H.-J.: Transactional Peer-to-Peer Information Pro-
cessing: The AMOR Approach. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M.,
Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 356–361. Springer, Heidel-
berg (2003)

8. Haller, K., Schuldt, H., Türker, C.: Decentralized Coordination of Transactional
Processes in Peer-to-Peer Environments. In: Proceedings of the 2005 ACM CIKM
International Conference on Information and Knowledge Management, Bremen,
Germany, pp. 28–35. ACM Press, New York (2005)

9. Klusch, M. (ed.): Intelligent Information Agents. Springer, Heidelberg (1999)
10. Lopes, A., Costa, P., Bergenti, F., Klusch, M., Blankenburg, B., Möller, T., Schuldt,

H.: Context-aware Secure Service Composition Planning and Execution on E-
Health Environments. In: Proceedings of the European Conference on eHealth
(ECEH 2006), Fribourg, Switzerland, pp. 179–190 (October 2006)

11. Möller, T., Schuldt, H., Gerber, A., Klusch, M.: Next Generation Applications
in Healthcare Digital Libraries using Semantic Service Composition and Coordina-
tion. Health Informatics Journal (HIJ), Special Issue on Health Digital Libraries 12,
107–119 (2006)

12. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice Hall, Englewood Cliffs (1999)

13. Papazoglou, M.P., Laufmann, S.C., Sellis, T.K.: An Organizational Framework for
Cooperating Intelligent Information Systems. International Journal on Cooperative
Information Systems 1(1), 169–202 (1992)

14. Pu, C., Schwan, K., Walpole, J.: Infosphere Project: System Support for Informa-
tion Flow Applications. SIGMOD Record 30(1), 25–34 (2001)

15. Schek, H.-J., Böhm, K., Grabs, T., Röhm, U., Schuldt, H., Weber, R.: Hyper-
databases. In: Proceedings of the First International Conference on Web Informa-
tion Systems Engineering (WISE 2000), Hong Kong, China, June 2000, pp. 14–25.
IEEE Computer Society, Los Alamitos (2000)

16. Schek, H.-J., Schuldt, H.: The Hyperdatabase Project – From the Vision to Re-
alizations. In: Proceedings of the 25th British National Conference on Databases
(BNCOD 25), Cardiff, UK, July 2008. LNCS, vol. 5071. Springer, Heidelberg (2008)

17. Schek, H.-J., Schuldt, H., Weber, R.: Hyperdatabases: Infrastructure for the In-
formation Space. In: Proceedings of the Sixth IFIP Working Conference on Visual
Database Systems (VDB 2002), Bisbane, Australia, May 2002, pp. 1–15. Kluwer
Academic Publishers, Dordrecht (2002)

18. Schuldt, H.: Process Locking: A Protocol based on Ordered Shared Locks for the
Execution of Transactional Processes. In: Proceedings of the 20th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2001),
Santa Barbara, CA, USA, May 2001, ACM Press, New York (2001)

http://www-ags.dfki.uni-sb.de/~klusch/IWS-CIA-home.html

34 H. Schuldt

19. Schuldt, H., Alonso, G., Beeri, C., Schek, H.-J.: Atomicity and Isolation for Trans-
actional Processes. ACM Transactions of Database Systems (TODS) 27(1), 63–116
(2002)

20. Schuler, C., Schuldt, H., Türker, C., Weber, R., Schek, H.-J.: Peer-to-peer Execu-
tion of (Transactional) Processes. International Journal on Cooperative Informa-
tion Systems 14(4), 377–406 (2005)

21. Schuler, C., Türker, C., Schek, H.-J., Weber, R., S.H.: Scalable Peer-to-Peer Process
Management. International Journal of Business Process Integration and Manage-
ment (IJBPIM) 1(2), 129–142 (2006)

22. Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Peer-to-Peer Process Execution
with OSIRIS. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J.
(eds.) ICSOC 2003. LNCS, vol. 2910, pp. 483–498. Springer, Heidelberg (2003)

23. Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Scalable Peer-to-Peer Process
Management – The OSIRIS Approach. In: Proceedings of the IEEE International
Conference on Web Services (ICWS 2004), San Diego, CA, USA, June 2004, pp.
26–34. IEEE Computer Society Press, Los Alamitos (2004)

24. Schumacher, M., Helin, H., Schuldt, H. (eds.): CASCOM: Intelligent Service Co-
ordination in the Semantic Web. Whitestein (2008)

25. Silberschatz, A., Zdonik, S.B.: Database Systems - Breaking Out of the Box. SIG-
MOD Record 26(3), 36–50 (1997)

26. Wiederhold, G., Wegner, P., Ceri, S.: Toward Megaprogramming. Commununica-
tions of the ACM 35(11) (1992)

27. Zhang, A., Nodine, M.H., Bhargava, B.K.: Global Scheduling for Flexible Trans-
actions in Heterogeneous Distributed Database Systems. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 13(3), 439–450 (2001)

	Agents and Databases: A Symbiosis?
	Introduction
	Information Agents and Databases
	Information Agents
	Databases
	Symbionts or Predators, Peaceful Coexistence or Mutual Indifference?

	Hyperdatabases
	The Hyperdatabase Vision
	Hyperdatabase Projects

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

