
A Web-Based Virtual Machine for Developing

Computational Societies�

Sergio Saugar and Juan M. Serrano

Department of Computing
University Rey Juan Carlos

{Sergio.Saugar,JuanManuel.Serrano}@urjc.es

Abstract. Different theoretical and practical insights into the field of
computational organisations and electronic institutions has led to a clear
separation of concerns between societal and agent-based features in the
implementation of multiagent systems. From a theoretical perspective,
this separation of concerns is also at the core of recent proposals towards
a societal programming language. Building on the operational model of
one of these proposals, this paper addresses the practical issue of imple-
menting a web-based virtual machine for that language. The resulting
framework is intended to be used in a wide range of applications, all
of them related to the implementation of social processes (business pro-
cesses, social networks, etc.).

1 Introduction

Different theoretical and practical insights into the field of computational or-
ganisations and electronic institutions [1, 2, 3, 4] has led to a clear separation
of concerns between societal and agent-based features in the implementation of
multiagent systems. For instance, the institutional platform AMELI [5] makes a
precise distinction between programming the e-institution (using the language
of the ISLANDER tool) and programming the agents which participate in the
e-institution (e.g. using the AgentBuilder tool). From a theoretical perspective,
this separation of concerns is also at the core of recent proposals towards a so-
cietal programming language [3], which complements the myriads of agent pro-
gramming languages that can be found in the literature (e.g. Jason [6], 3APL [7],
etc.). The former kind of languages are aimed at programming socially-enable
middlewares, whereas the later are aimed at programming agentified software
components.

The design of a language for programming computational societies involves
two major tasks: specifying the abstract social middleware – i.e. the abstract
machine to be programmed, and specifying its type system. In [3], some prelim-
inary steps towards the first goal are taken. Particularly, the proposed opera-
tional model of social interactions precisely states the structure and dynamics
� Research sponsored by the Spanish Ministry of Science and Education (MEC),

project TIN2006-15455-C03-03, and the Regional Government of Madrid and Uni-
versity Rey Juan Carlos, project URJC-CM-2006-CET-0300.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 162–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Web-Based Virtual Machine for Developing Computational Societies 163

of computational societies. Put in another way, it provides the structure and
programmable behaviour of an abstract social middleware. Building on this the-
oretical results, this paper addresses the practical issue of implementing the
language. The chosen middleware technology for implementing its virtual ma-
chine, i.e. the virtual middleware infrastructure, is the World Wide Web. This
paper purports to present the architecture of a web-based social middleware in-
frastructure, namely the major design choices on its structure and dynamics. In
order to attain this goal, the REST architectural style [8] and guidelines will be
exploited.

The rest of the paper is structured as follows. Section 2 reviews from a middle-
ware perspective the major concepts on the structure and dynamics of computa-
tional societies presented in [3]. Then, sections 3 and 4 address the architectural
decisions on the structure and dynamics of a web-based social middleware in-
frastructure. The last section briefly summarises the major results and discusses
current and future lines of work.

2 Computational Societies as Social Middleware
Infrastructures

This section briefly reviews the operational model of computational societies put
forward in [3] and introduces the example that will be used throughout the pa-
per. Moreover, this operational model shall be interpreted as the abstract (i.e.
technology-neutral) specification of a social middleware infrastructure. From this
perspective, the major function of a computational society is to mediate the in-
teractions among heterogeneous, distributed software components. In the next
sub-sections, the kinds of roles played by software components attached to the
social middleware as well as the primitive interaction mechanisms enabled by
the middleware infrastructure will be considered. Moreover, the different types
of external actions performed by software components over the middleware will
be summarised. The last sub-sections introduce the abstract identifiers of mid-
dleware entities and an example within the university domain.

Roles. Software components interacting through an object-oriented middleware
are published as objects; if the web is considered as the middleware infrastruc-
ture, software components play the role of resources; in a publish/subscribe
infrastructure, components are attached to the middleware as producers and/or
consumers; and so on. In regard with this feature, two kinds of roles are sup-
ported by a social middleware: agents and resources. On the one hand, resources
represent those non-autonomous software components which store information
and/or provide different computational services to the society. On the other
hand, agents represent those autonomous software components which purport to
achieve some goal within the society. In order to attain that goal, agents are able
to perform different kinds of social actions, namely to say things to other agents
(i.e. to perform communicative actions) and manipulate the environmental re-
sources. The whole activity of some agent may be structured in a role-playing
hierarchy of further agents (e.g. if its purpose is too complex).

164 S. Saugar and J.M. Serrano

Social Interactions. The interaction space of an object-oriented middleware is
made up of remote method calls; the interactions through the web are handled in
terms of HTTP requests; in the case of a publish/subscribe infrastructure, event
channels are the primitive interaction mechanism. Concerning a social middle-
ware infrastructure, its interaction space is hierarchically structured in terms of
a tree of nested social interactions. In this way, the computational society itself
is represented by the root, or top-level interaction. Social interactions provide
the context within which agents and resources are deployed. Thus, a social in-
teraction features a set of member agents, a set of environmental resources and
a set of sub-interactions.

External Actions. External actions represent the interface between the ab-
stract middleware and the external software components. Thus, a software com-
ponent attached as an agent to the social middleware directs the behaviour of its
agent through different kinds of external actions. For instance, the component
may play/suspend its agent, thereby making public that the component is logged
in/off the computational society. When the software component is logged in, it
may attempt its agent to perform different kinds of social actions, e.g. setting up
a new sub-interaction within a given context.

The social middleware deals with attempts in a three-stage process: firstly,
it is checked whether the agent is empowered to do the specified social action (if
it is not, the attempt is simply ignored); secondly, it is checked whether the agent
is permitted to do the specified action under the current circumstances (if it is
not, an event signalling the forbidden attempt is generated); last, if the agent
is both empowered and permitted, the action is executed and the corresponding
events signalling the updates in the social state are generated. These events may
be notified to different agents according to their monitoring rules. In turn, these
events may be pulled out by software components through the external action
observe, which allows components to inspect the state of any social middleware
entity1.

Social Actions. The set up social action, mentioned above, is a communicative
action (particularly, a declarative speech act) which is part of a predefined cat-
alogue of standard social actions. This catalogue includes other actions, e.g., to
prematurely finish a given sub-interaction (close); playing a new agent role within
a given interaction context (join); and abandoning some played role (leave). Any
kind of social action is targeted at some interaction whose state is intended to
be modified (e.g. the target of a join action is the interaction context to which
the performer intends to join). The protocol of the target interaction determines
which agents are empowered and permitted to do that action.

Abstract Identifiers. Social middleware entities (agents, interactions,
resources, etc.) have a unique abstract identifier. The abstract identifier of the
1 The set of external actions mentioned above (play, suspend, attempt and observe)

is complemented with other actions such as enter and exit, which deal with the
registration of components to the middleware as software agents.

A Web-Based Virtual Machine for Developing Computational Societies 165

top-level interaction simply consists of a given name. Any other entity which
is deployed within some interaction context is identified by a local name which
identifies the entity within its interaction context, plus the identifier of its inter-
action context. Interaction identifiers are conventionally represented as a dot-
separated sequence of local names, n.nc. . . . nt, which starts with its local name
n and is followed by the context identifier nc. . . . nt; the sequence ends with the
name nt of the top-level interaction. Agent, resource, event and action identifiers
are similarly represented. The only difference is that the name of the entity is
separated from the context’s identifier using the at sign (“@”).

Example. Let’s consider a social middleware to support the different social pro-
cesses around the management of university courses. A given course, e.g. on data
structures, is represented by a particular social interaction. On the one hand,
this interaction is actually a complex one, made up of lower-level interactions.
For instance, within the scope of a course agents will participate in programming
assignment groups, examinations, lectures, and so on. On the other hand, courses
are run within the scope of a particular degree (e.g. computer science), a higher-
level interaction. Traversing upwards from a degree to its ancestors, we find its
school, and finally the university (the top-level interaction). Besides schools, de-
partments are also sub-interactions of the university. Taking into account the
above structure of the interaction space, the identifier ds.cs.si.urjc stands for
a course on data structures (ds) taught as part of the computer science degree
(cs), managed by the school of informatics (si) at the University Rey Juan Carlos
(urjc).

The agents within this computational society directly correspond to the dif-
ferent roles played by human users2. Thus, a student is represented by a role-
playing hierarchy whose root is the student agent deployed within the degree;
this student agent plays different student agent roles within the courses in which
it has enrolled; in turn, students of courses may play corresponding roles within
the programming assignment groups set up within their courses. Other agent
roles, deployed within departments, include associate professors and PhD can-
didates, which play the roles of teachers and teaching assistants within courses,
respectively. Concerning resources, we may consider different kinds of informa-
tional resources such as programs and test cases, generated by students within
the context of working groups.

In the scenario that will be considered in the next sections, the agent john@ds.
cs.si.urjc is a student of the course on data structures within the University Rey
Juan Carlos. In order to pass the course (the purpose of course students), stu-
dents have to pass several assignments in collaboration with another student.
When the first assignment is published, john’s colleague sets up the working
group wg1.ds.cs.si.urjc, which specifies john as an allowed partner. Then, an
event representing this change is published and notified to john. When john’s
human user observes these events, it attempts its agent john to join the as-
signment group. Then, since course’s students are empowered to join working
2 In this particular application, software components running the software agents are

simply user interfaces, e.g. web browsers.

166 S. Saugar and J.M. Serrano

groups and john has been explicitly given permission, the action is executed
by the middleware and a new agent john@wg1.ds.cs.si.urjc, played by john, is
created within the assignment group.

3 Structure of a Web-Based Social Middleware
Infrastructure

This section addresses the major design decisions concerning the structure of
a web-based social middleware infrastructure, in accordance with the abstract
specification introduced in the last section. The use of the web as the underlying
distributed technology involves two major structural design problems:

– Firstly, computational societies must be published as web resources. These
resources will represent the entry points to the social middleware for external
software components.

– Secondly, different policies may be considered for the distribution of the
interaction space through the network of web servers. Communication among
socially-enabled web servers will rely on the previous entry points as well.

3.1 Publishing Social Entities as Web-Resources

There are several alternatives in order to expose a computational society through
a web server. On the one hand, we may simply publish a single resource repre-
senting the whole computational society maintained by the web server. On the
other, we may follow a fine-grained strategy and publish every major kind of
social entity as a web resource. In order to leverage the HTTP protocol [9] to its
full potential we follow the second approach. Thus, social interactions, agents,
resources, actions and events are published as web resources. This allows, for
instance, to implement the attempts of software components as HTTP POST
requests over the agent resource, as described in the next section.

The URLs assigned to social entities follow general patterns which are de-
signed after the structure of their corresponding abstract identifiers. Being ex-
clusively based upon the data hold by abstract identifiers, the URLs resulting
from these patterns are not expected to change very likely. Moreover, the URLs
borrow the hierarchical and meaningfulness features of abstract identifiers as
well. Table 1 shows the URL patterns assigned to the different kinds of social
entities. Columns Host:Port and Path represent the corresponding parts of the
URL. For every social entity, the host and port section of its URL represent the
web server which manages that social entity. As will be described in the next
subsection, with the possible exception of interactions, every entity is managed
by the web server to which its interaction context belongs. The two rows of table
1 represent the two possible URL patterns:

– The first one is used for those interactions that are managed by a server
different from its context’s server. The URL for this kind of interactions is
constructed by adding the name of the interaction to the root URL (’/’)

A Web-Based Virtual Machine for Developing Computational Societies 167

Table 1. Generic Patterns of URLs

Entity Name Context Host:Port Path

Interaction name null server.com:port /name

Interaction, Event,
name interaction server.com:port /path/to/interaction/nameResource, Agent,

Action

of the server (note that the top-level interaction, whose context is empty, is
a special case of this pattern).

– The second pattern applies to the entities that are published in the web
server of its context interaction (i.e. events, actions, resources, agents and
sub-interactions). The URLs of these entities are formed by appending the
name of the entity to the URL of its interaction context (separated by ’/’).

3.2 Distributing the Interaction Space through Web Servers

We may consider two alternative stances on the distribution of the interaction
space. The first one consists of ignoring this possibility so that the whole compu-
tational society is published through a single server. This means that this server
processes all the HTTP requests over every social entity. In our scenario, this
alternative forces a single host to process all the HTTP requests over the whole
population of agents (students, teachers, etc.) and resources (assignments, solu-
tions, plans of studies, etc.) of the university, as well as over its whole catalogue
of social processes (courses, departments, schools, etc.). This alternative is only
valid for applications with low demands for scalability, where the population of
agents and resources as well as their interactions are kept under strict limits.

The second alternative, advocated by this paper, consists of allowing the dis-
tribution of the interaction space through multiple servers. The use of URL-
addressable resources allows the distribution of the computational society over
the Web, thereby exploiting its potential for scalability. The only constraint
imposed on the distribution is that every social entity, but interactions, must
be deployed within the web server which manages its interaction context. Sub-
interactions may be deployed within the web server which manages its interac-
tion context, but this is not mandatory. On the contrary, the URLs of agents,
resources, actions and events always share the host:port part with the URL of
their interaction context. Without any further restriction, and with the inten-
tion of guaranteeing the maximum deployment flexibility, every socially-enabled
web server is allowed to manage a forest of interaction trees. Each of them may
belong or not to the same computational society.

For instance, figure 1 shows a possible deployment of the interaction space
corresponding to the scenario described in section 2. Particularly, it depicts the
distribution of the major interactions throughout four hosts, each of them run-
ning a single web server. The first host, www.univhost.com, manages the top-level
interaction urjc, representing the university itself. According to the patterns de-
scribed in section 3.1, its URL is http://www.univhost.com/urjc. The second

168 S. Saugar and J.M. Serrano

host, www.schoolhost.com, manages that part of the interaction space which is
under the primary responsibility of the school of informatics, namely the so-
cial interaction representing the school itself si.urjc and its different degrees.
Besides the computer science degree cs.si.urjc, shown in the figure, other de-
grees such as software and computer engineering may be published through this
host as well. The URLs of the school of informatics and the computer science
degree are http://www.schoolhost.com/si and http://www.schoolhost.com/si/cs,
respectively. The third host, www.depthost.com, is associated to the computer
science department of the university, csd.urjc, published under the root URL of
the host http://www.depthost.com/csd. In accordance with the statutes of the
university, departments are in charge of the management of courses on the dif-
ferent subjects which are assigned to them. Thus, the course on data structures
ds.cs.si.urjc is published through the computer science department under the
URL http://www.depthost.com/ds. In this case, the web server of the department
host manages two sub-interaction trees. The last host, www.studenthost.com,
manages the working group set up by one of the students enrolled in the data
structure course. The web server of the student’s host may manage different
sub-interaction trees from other computational societies as well (e.g. a discus-
sion forum set up by the student within a social network).

4 Dynamics of a Web-Based Social Middleware
Infrastructure

The dynamics of a computational society is primarily influenced by the external
actions which software components execute over the social middleware which
manages that society. Since the social middleware is implemented as a network of
socially-enabled web servers, external actions are implemented as different kinds
of HTTP requests. Moreover, the activity carried out by the middleware in order
to process the different external actions heavily relies in the HTTP protocol as
well. This is a direct consequence of the distribution of the computational society
across the network of web servers. Therefore, HTTP requests may represent
either an external action or some internal action executed by the middleware as
part of the external action processing. Both kinds of HTTP request are handled
through a pool of conceptual execution threads. These threads have a one-to-
one correspondence to the different kinds of social entities. Thus, the agent
execution thread processes every HTTP request whose target URL denotes an
agent resource. Similarly, the interaction, resource, action and event execution
threads manage the HTTP requests addressed to the corresponding kinds of
social entities.

The remainder of this section proceeds to describe the implementation of the
external actions mentioned in section 2. Particularly, it will be described both
the way in which a given external action is represented as an HTTP request and
the roles played by the different conceptual threads involved in its processing.
The external actions play and suspend, related with login features, are taken into
account first. Next, the mapping and internal processing of observation actions is

A Web-Based Virtual Machine for Developing Computational Societies 169

wg1:AssignmentGroup

csd:Department

ds:Coursecs:Degree

si:School

urjc:University
Server:
www.univhost.com

Server:
www.schoolhost.com

Server:
www.studenthost.com

Server:
www.depthost.com

Id: urjc
Path: /urjc

Id: cs.si.urjc
Path: /si/cs

Id: si.urjc
Path: /si

Id: wg1.ds.cs.si.urjc
Path: /wg1

Id: csd.urjc
Path: /csd

Id: ds.cs.si.urjc
Path: /ds

Fig. 1. Distribution of the example’s interaction space

considered. Finally, we present the attempt processing cycle. Before delving into
the different external actions, however, the major HTTP methods and response
status are briefly summarised.

Review of HTTP. HTTP is a client-server protocol: a client sends a request
message to a server, which does some processing and returns afterwards a re-
sponse message containing a status code and the result of the request (or in-
formation about the status code). The format of a request message consist of a
request line, zero or more header lines, and an optional message body. Both the
standard semantics of status codes and HTTP headers are explained in [9]. A
request line has three parts, separated by spaces: a method name, the local path
of the requested resource (Request-URI), and the version of HTTP being used.
A typical request is:

METHOD /path/to/resource HTTP/1.1
Header: value
...
Message-Body

HTTP Methods. The semantics of the request rely on the chosen HTTP method.
We restrict our review to the four basic HTTP methods: GET, POST, PUT and
DELETE.

– GET: This method is intended to obtain a representation of the resource
identified by the Request-URI. It can be parameterized in order to constrain
or restrict the desired representation.

– POST: This method is used both to create new resources and to append
data to an existing resource. If the method is used to create new resources
the body of the request will contain an entity. This entity must be created

170 S. Saugar and J.M. Serrano

by the resource identified by the Request-URI and the decision about the
URL of the new entity is left to the server. On the contrary, if it is used to
append data, the body of the request will represent data that must be added
or processed by the Request-URI.

– PUT: The PUT method is used for creating a new resource (or updating
the state of an existing one) under the supplied Request-URI. The message
body of the request encodes the entity that will be published. If an entity
already exists on the Request-URI, then the message body encapsulates an
update of the entity (either full, affecting to the totality of their attributes,
or partial).

– DELETE: This method unbinds a resource from the specified Request-URI.
Note that this method does not imply the deletion of the actual data held
by the resource or the software component behind it.

Headers. HTTP defines 47 headers which add optional meta-information about
the Message-Body or, if no body is present, about the resource identified by the
request. The most relevant header from the point of view of this paper are the
following: Authorization, Host, Location, Referer and WWW-Authenticate.

Status Codes. Response messages to HTTP requests consists of a Status-Code
element, some headers and a message body. The Status-Code is a 3-digit integer
code which represents the result of the attempt made by the server to understand
and satisfy the request. The first digit of the Status-Code defines the class of
response (1xx informational, 2xx success, 3xx redirection, 4xx client error, 5xx
server error). The body of response messages may give a short textual description
of the Status-Code. Some of the codes we use in this paper are: 200 (“OK”), 201
(”Created”), 202 (”Accepted”), 204 (”No Content”), 400 (”Bad Request”),401
(”Unauthorized”), 403 (”Forbidden”).

Play Processing. The external action play is used by a software component to
initiate a logging session with a given agent, thereby obtaining the corresponding
credentials to manipulate it. To log in is a mandatory requirement for performing
some external actions such as attempts. Other actions, however, can be executed
by non-logged components (e.g. enter, observe, the play action itself, etc.).

A digest access authentication scheme is proposed for dealing with credentials
[10]. This scheme assumes that component credentials consist of the top-level
agent name, a password defined when the agent was registered, a unique value
shared between server and client and the MD5 algorithm. Once the component
has got credentials, it may include them in every subsequent request using the
Authorization header. The play external action is implemented as a GET request
about the credentials of the agent, targeted over the URL of the agent.

GET /path/to/agent/credentials HTTP/1.1
Host: www.server.com

This action is processed by the agent execution thread. If some component has
already initiated a session with the agent, the request is ignored and a response

A Web-Based Virtual Machine for Developing Computational Societies 171

with status code 400 is sent back. Otherwise, a response with status code 401 is
returned. In this response, a WWW-Authenticate header includes the protected
realm (the top-level agent), a unique value named nonce and a digest algorithm.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="top-agent’s name",

nonce="84e0a095cfd25153b2e4014ea87a0980",
algorithm=MD5

In subsequent requests, the component composes a valid credential applying
the MD5 algorithm to a combination of the top-agent’s name, the nonce value
and the password, among other parameters. The server does the same compu-
tation and if it yields the same credentials, it can be sure that the component is
in possession of the correct password.

Suspend Processing. Components can finalise its session with some agent
with the suspend external action. This action deletes the nonce value associated
with the component. Afterwards, the credentials of the server and the client
won’t match and the component’s authorization credentials will be invalid. This
external action is translated as a PUT action over the agent’s credentials URL
with a null message body.

PUT /path/to/agent/credentials HTTP/1.1
Host: www.server.com

This request is processed by the agent execution thread. This thread deletes
the current nonce value, invalidating the following requests of the component.
The response’s status code is 204, because the server executes the action but
declines to send back any representation. At a later time, a component may play
again its agent, thus renewing its agent credentials.

Observe Processing. Components can get representations of the different pub-
lished entities (interactions, agents, resources, etc.) through the observe external
action. This action returns a representation of the requested entity, restricted
according to the visibility rules of the society. This external action is translated
as a GET query over the URL of the entity. This query can be parameterized to
select some parts of the resource instead of its full representation.

GET /path/to/entity HTTP/1.1
Accept:
Host: www.server.com

This request is processed by the execution thread corresponding to the kind of
entity to be inspected. This thread checks the protocol for visibility restrictions
and returns a response with status code 200. The message body of the response

172 S. Saugar and J.M. Serrano

contains the representation of the resource (maybe restricted according to its
visibility permissions). This method can be executed by any component. If the
component has initiated a session with an agent, the obtained representation
will be tailored to the visibility permissions corresponding to agents of that
type; otherwise, if the component hasn’t got any agent credentials the obtained
representation is the one associated by the protocol to agents of any type.

For instance, figure 2 shows a sequence diagram depicting the activity of
the middleware in response to the scenario introduced in section 2. The roles
displayed in the sequence diagram represent the different published resources;
their lifelines describe the activity of the threads that manage those kinds of
entities. The sequence diagram assumes that the student John has previously
initiated a session as a student of the course on data structures (ds) with the
web server http://www.depthost.com of the department of computer science,
using a web Browser. The first message shows John observing the event queue
of its agent http://www.depthost.com/ds/john, i.e. John’s client producing the
HTTP request GET /ds/john?show=events (message 1)3. Then, the response
includes a representation of the event queue including the URLs of the events
received by the agent (message 2). One of them refers to the new assignment
group http://www.studenthost.com/wg1 set up by its colleague. The remain-
ing messages pertain to the processing of the attempt made by John to make its
student join this assignment group.

AttemptProcessing. The external action attempt aims at adding a new pending
action to the specified performer agent. According to this specification, this kind of
external action is translated as a POST request over the agent URL. The attempt
data (the action as well as other attributes) is included in the message body:

POST /path/to/agent HTTP/1.1
Host: www.server.com

<attempt>
<action>...</action>
...

</attempt>

Message 3 of figure 2 represents an instance of the previous HTTP pattern.
Particularly, it refers to the HTTP request corresponding to the attempt of John
to make its student agent join the assignment group set up by its colleague.

An attempt HTTP request may refer to an action which is not targeted at some
interaction managed by the same web server of the performer agent. Since the
protocol of the target interaction must be consulted to check the empowerments
of the agent, the agent execution thread processes an attempt HTTP request by
requesting the target interaction to create it. Particularly, the request is actually

3 Commonly, the request will actually be generated by the user interface components
of the web browser, e.g. Java script code.

A Web-Based Virtual Machine for Developing Computational Societies 173

issued through a POST method over the target interaction URL4. The request
includes the referrer header that indicates the performer agent of the action.
The message body of this request is the action; the name of the action is set by
the agent execution thread based on the reserved word “act”, the performer’s
name and an incremental counter. Message 4 of figure 2 shows an instance of
the following request pattern:

POST /path/to/target/interaction HTTP/1.1
Host: www.server.com
Referer: http://www.maybeotherserver.com/path/to/performer

<action name="act_performer_1">...</action>

If the performer is not empowered to do the action then a request with status
code 400 is returned. Otherwise, the interaction execution thread creates the
action for the specified performer agent – in the referrer’s server. This is encoded
using a PUT action over the interaction context’s URL. The content of the
message body is the action as shown in the following scheme:

PUT /path/to/referrer/interaction/act_performer_1 HTTP/1.1
Host: www.server.com

<action name="act_performer_1">...</action>

For instance, message 5 of figure 2 shows the creation of a new action resource
in the server of the computer science department, in accordance with the pro-
tocol’s empowerment rules of assignment group interactions. Then, the action
execution thread of the computing department server processes this request, cre-
ates the action, and sent back a response with a status code 201 with the action
URL in the Location header (message 6). This response is forwarded by the in-
teraction execution thread of the student server to the agent execution thread
of the computing department server (message 7), which finishes the processing
of message 4. Then, the student’s execution thread sends a response back to the
browser with a status code 202 and the corresponding Location header (mes-
sage 8), which finishes the processing of the attempt HTTP request (message 3).
This status code indicates that the action has been just accepted for execution.
The Location header refers to the action resource as the monitor to check the
processing state.

The action execution thread is responsible for the execution of the social
action as soon as it is created. The way in which the action is executed depends
on its semantics. Nevertheless, an HTTP request will be involved which must
contain a Referer header with the URL of the action performer. For instance,
the execution of a join action involves the creation of a new agent resource in

4 Thus, the target interaction is acting here as an action factory.

174 S. Saugar and J.M. Serrano

the target interaction. Therefore, the corresponding HTTP request will be a
PUT request which attempts to create a new agent resource. The message body
contains the description of the new agent instance:

PUT /path/to/new/agent HTTP/1.1
Host: www.server.com
Referer: http://www.maybeotherserver.com/path/to/performer

<agent>...</agent>

/ds/act_john_1 : Action

/wg1/john : Agent

/wg1 : Interaction/ds/john : Agent : browser

 Department of Computer Science −− http://www.depthost.com Student Computer −− http://www.studenthost.com

201 Created
Location:http://www.depthost.com/ds/act_john_1

6:

PUT /wg1/john
Referer: http://www.depthost.com/ds/john
<agent>...</agent>

9:

200 OK
<join state="executed">...</join>

12:

201 Created
Location:http://www.studenthost.com/wg1/john

10:

201 Created
Location:http://www.depthost.com/ds/act_john_1

7:

PUT /ds/act_john_1
<join>...</join>

5:

200 OK
<events>...</events>

2:

202 Acepted
Location:http://www.depthost.com/ds/act_john_1

8:

POST /wg1
Referer: http://www.depthost.com/ds/john
<join name="act_john_1">...</join>

4:

GET /ds/john?show=events1:

POST /ds/john
<attempt>...</attempt>

3:

GET /ds/act_john_111:

Fig. 2. Join to an Assignment Group

For instance, message 9 of figure 2 shows the PUT request issued by the action
execution thread of the computing department server. This request aims at cre-
ating the agent /wg1/john within the assignment group of the student’s server.
The request is processed by the agent execution thread5, which checks if the refer-
rer agent (i.e. the performer of the action) has permissions to execute the action.
5 Requests corresponding to other actions, such as leave, set up, close, etc. would be

processed by other threads. For instance, set up and close involves PUT and DELETE
requests over web interaction resources. Therefore, these methods would be processed
by the interaction execution thread.

A Web-Based Virtual Machine for Developing Computational Societies 175

If it is not permitted then a response with a status code 403 is returned. Other-
wise, the action is executed and a suitable response is generated. Message 10 of
figure 2 shows the successful creation of the agent, which means that John’s agent
was permitted to join the assignment group. Then, the action execution thread
changes the state of the action accordingly. The scenario is finished when John
(actually, the web browser) observes the state of the action execution (using the
URL monitor sent back in message 8), through messages 11 and 12.

5 Conclusion

This paper has put forward some of the major architectural decisions in the
development of a web-based middleware infrastructure for the implementation
of multiagent societies. Firstly, a computational society is published in the web
through the refinement of web resources into three major sub-kinds: web agents,
web (institutional) resources and web interactions (i.e. processes). Social actions
and events are also published as web resources. Secondly, to account for scalabil-
ity, privacy, and flexibility of deployment requirements, computational societies
are allowed to be distributed across different socially-enabled web servers, each
of them managing a forest of subinteraction trees. Last, in order to exploit the
HTTP protocol in its full potential, the major HTTP methods (GET, PUT,
POST and DELETE) are used to implement the external actions performed by
software components towards the computational society, and the internal pro-
cessing of the socially-enabled web servers.

One of the distinctive features of the proposed agent-based middleware in-
frastructure is the use of the web as the underlying middleware technology. On
the contrary, other approaches face the web as a complementary – not funda-
mental – distributed infrastructure. In these contexts, the web appears in the
issue of interoperability between agents and web service components (e.g. [11]).
In our view, using the web as the underlying distributed infrastructure presents
two major advantages: firstly, software components acting as agents within the
society can be entirely de-coupled from the middleware server, which fits well
with the autonomy requirement of agents; secondly, the web is one of the largest
deployed distributed infrastructures, so that the network of social servers have
not to be built from scratch.

Current work focuses on the implementation of the proposed architecture us-
ing the Restlet framework [12]. The resulting framework is intended to be used
in a wide range of applications, all of them related to the implementation of so-
cial processes: business processes, e-government, e-democracy, etc. Particularly,
we intend to demonstrate the feasibility and potential of the social stance of
multiagent technologies on distributed computing, as well as the web-based ap-
proach to their implementation proposed in this paper, in the programming of
social networks. Social networks like Facebook, Myspace, LastFM, etc., provides
its users with different interaction mechanisms (chats, discussion groups, etc.).
The modification and extension of these social networks essentially involves pro-
gramming new social interactions. A web-based, social-oriented approach to the
implementation of social networks would make this task much easier.

176 S. Saugar and J.M. Serrano

References

1. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

2. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12(3), 317–370 (2003)

3. Serrano, J.M., Saugar, S.: Operational semantics of multiagent interactions. In:
Proceedings of the Sixth Intl. Joint Conf. on Autonomous Agents and Multiagent
Systems, Honolulu, Hawai’i, 14-18 May 2007, pp. 884–891. ACM Press, New York
(2007)

4. Esteva, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal spec-
ifications of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) Agent-
mediated Electronic Commerce (The European AgentLink Perspective). LNCS
(LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

5. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Proc. 3rd. Int. Joint Conf. on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 236–243 (2004)

6. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah
Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and Ap-
plications, Springer, Heidelberg (2005)

7. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

8. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Inter. Tech. 2(2), 115–150 (2002)

9. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – HTTP 1.1 (1999)

10. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
Stewart, L.: Http authentication: Basic and digest access authentication (1999)

11. JADE: Jade web services integration gateway (2007), http://jade.cselt.it
12. Consulting, N.: Restlet - lightweight rest framework for java (2007),

http://www.restlet.org

http://jade.cselt.it
http://www.restlet.org

	A Web-Based Virtual Machine for Developing Computational Societies
	Introduction
	Computational Societies as Social Middleware Infrastructures
	Structure of a Web-Based Social Middleware Infrastructure
	Publishing Social Entities as Web-Resources
	Distributing the Interaction Space through Web Servers

	Dynamics of a Web-Based Social Middleware Infrastructure
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

