

Lecture Notes in Artificial Intelligence 5180
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Matthias Klusch Michal Pechoucek
Axel Polleres (Eds.)

Cooperative
Information
Agents XII

12th International Workshop, CIA 2008
Prague, Czech Republic, September 10-12, 2008
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Matthias Klusch
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany
E-mail: klusch@dfki.de

Michal Pechoucek
Czech Technical University
Agent Technology Group
Karlovo namesti 13, 121 35 Prague 2, Czech Republic
E-mail: pechouc@labe.felk.cvut.cz

Axel Polleres
National University of Ireland
Digital Enterprise Research Institute
IDA Business Park, Lower Dangan, Galway, Ireland
E-mail: axel.polleres@deri.org

Library of Congress Control Number: 2008934044

CR Subject Classification (1998): I.2.11, I.2, H.4, H.2.8, H.3.3, C.2.4

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-85833-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85833-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12512379 06/3180 5 4 3 2 1 0

Preface

These are the proceedings of the 12th international workshop on cooperative
information agents (CIA 2008), held at the Czech Technical University in Prague,
Czech Republic, on September 10–12, 2008.

In today’s world of ubiquitously connected heterogeneous information sys-
tems, business services and computing devices, the intelligent coordination and
provision of relevant added-value information or services to the user at any time,
anywhere is of key importance to a variety of applications. This challenge is en-
visioned to be coped with by means of appropriate intelligent and cooperative
information agents.

An intelligent information agent is a computational software entity that is
capable of accessing one or multiple, potentially heterogeneous and distributed
information sources, proactively acquiring, mediating, and maintaining relevant
information or services on behalf of its human users, or other agents, preferably
just in time and anywhere. One key challenge of developing intelligent and co-
operative information systems is to balance the autonomy of networked data,
information, and knowledge sources with the potential payoff of leveraging them
by the appropriate use of such agents.

Research on intelligent information agents and systems is inherently cross dis-
ciplinary covering themes from domains such as AI, Multiagent Systems, HCI,
Semantic Web Technologies, Web Services, Information Systems, Knowledge Dis-
covery, Information Retrieval, and P2P Computing.

The objective of the international workshop series on cooperative informa-
tion agents (CIA), since its establishment in 1997, has been to provide a distin-
guished, interdisciplinary forum for researchers, programmers, and managers to
get informed about, present, and discuss the latest high-quality results in the
research and development of agent-based intelligent and cooperative information
systems, and applications for the Internet, Web and Semantic Web. Each event
in the series offers regular and invited talks of excellence, given by renowned
experts in the field, a selected set of system demonstrations, and honors innova-
tive research and development of information agents by means of a best paper
award and a system innovation award, respectively. The proceedings of the se-
ries are regularly published as volumes of Springer’s Lecture Notes in Artificial
Intelligence (LNAI) series.

In keeping with its tradition, this year’s workshop featured a number of ex-
cellent regular and invited talks given by leading researchers covering a broad
area of interest. In particular, CIA 2008 featured 5 invited and 19 regular pa-
pers selected from 38 submissions. The papers selected during the peer-review
evaluation process are all included in this volume, which contains interesting,
inspiring, and advanced work on the research and development of intelligent in-
formation agents worldwide. All workshop proceedings have been published by

VI Preface

Springer-Verlag as Lecture Notes in Artificial Intelligence volumes: 1202 (1997),
1435 (1998), 1652 (1999), 1860 (2000), 2182 (2001), 2446 (2002), 2782 (2003),
3191 (2004), 3550 (2005), 4149 (2006), 4676 (2007).

The CIA 2008 workshop issued a best paper award and a system innovation
award to acknowledge and honor highly-innovative research and development,
respectively, in the area of intelligent and cooperative information agents for the
Internet and the Web. The system award was sponsored by Whitestein Tech-
nologies, the best paper award was sponsored by the workshop series. There has
also been some financial support available to a limited number of students as
(co-)authors of accepted papers to present their work at the CIA 2008 work-
shop; these grants were sponsored by IEEE FIPA standard committee, and the
workshop series.

The CIA 2008 workshop was organized in cooperation with the Associa-
tion for Computing Machinery (ACM), in particular the ACM special interest
groups on Artificial Intelligence (SIGART), on Hypertext, Hypermedia and Web
(SIGWEB), and on Knowledge Discovery in Data (SIGKDD). We are very grate-
ful and indebted to our sponsors for the financial support that made this event
possible. The sponsors of CIA 2008 were:

– Czech Technical University in Prague, Czech Republic

– IEEE Computer Society Standards Organisation Committee on

Intelligent and Physical Agents (FIPA)

– Air Force Research Laboratory (AFRL), USA

– Whitestein Technologies, Switzerland

– Rockwell Automation, Czech Republic

– Digital Enterprise Research Institute (DERI) at the National

University of Ireland, Galway

– Certicon, Czech Republic

We are also very grateful to the authors, the invited speakers, and atten-
dees for contributing and discussing the latest results in relevant areas of this
workshop, as well as to all members of the program committee, and the external
reviewers for their critical reviews of submissions. Finally, a particularly cordial
thanks goes to the local organization team from the Czech Technical University
for providing an excellent venue and facilities and a very nice social program in
the beautiful city of Prague.

We hope you enjoyed CIA 2008 and were inspired for your own work!

September 2008 Matthias Klusch
Michal Pechoucek

Axel Polleres

Organization

Co-chairs

Matthias Klusch DFKI, Germany, Workshop Chair
Michal Pechoucek CTU Prague, Czech Republic
Axel Polleres DERI Galway, Ireland

Program Committee

Wolfgang Benn TU Chemnitz, Germany
Felix Brandt LMU Munich, Germany
Monique Calisti Whitestein Technologies, Switzerland
Jorge Cardoso U Madeira, Portugal
William Cheung BU Hong Kong, Hong Kong
Philippe Cudre-Mauroux MIT, USA
Frank Dignum U Utrecht, The Netherlands
John Domingue Open University, UK
Boi Faltings EPF Lausanne, Switzerland
Michael Fink TU Vienna, Austria
Vladimir Gorodetsky SPIIRAS, Russia
Francesco Guerra U Modena e Reggio Emilia, Italy
Manfred Hauswirth DERI Galway, Ireland
Michael Huhns U South Carolina, USA
Toru Ishida U Kyoto, Japan
Catholijn Jonker TU Delft, The Netherlands
Manolis Koubarakis TU Crete, Greece
Ryszard Kowalczyk Swinburne UT, Melbourne, Australia
Sarit Kraus Bar-Ilan U, Israel
Victor Lesser U Massachusetts, USA
Stefano Lodi U Bologna, Italy
Werner Nutt FU Bozen-Bolzano, Italy
Sascha Ossowski U Rey Juan Carlos, Spain
Aris Ouksel U Illinois at Chicago, USA
Massimo Paolucci DoCoMo Euro Labs, Germany
Jeffrey Rosenschein HU Jerusalem, Israel
Michael Rovatsos U Edinburgh, UK
Heiko Schuldt U Basel, Switzerland
Onn Shehory IBM Haifa Research Lab, Israel
Katia Sycara Carnegie Mellon U, USA
Walt Truszkowski NASA Goddard Space Flight Center, USA

VIII Organization

Rainer Unland U Duisburg-Essen, Germany
Gottfried Vossen U Muenster, Germany
Gerhard Weiss SCCH, Austria
Frank van Harmelen VU Amsterdam, The Netherlands

External Reviewers

Holger Billhardt
Stefan Dietze
Felix Fischer
Stefania Galizia
Paul Harrenstein
Thomas Krennwallner
Sebastian Leuoth
Raz Lin
Magdalena Ortiz
Annett Priemel
Martin Rehak
Joachim Schwieren
Frank Seifert
Vlad Tanasescu
Dmytro Tykhonov
Jiri Vokrinek
Inon Zukerman

Table of Contents

Invited Contributions

Enabling Networked Knowledge . 1
Stefan Decker and Manfred Hauswirth

Coordination and Agreement in Multi-Agent Systems 16
Sascha Ossowski

Agents and Databases: A Symbiosis? . 24
Heiko Schuldt

Agents and Semantic Services: A Critical Review (Abstract) 35
Katia P. Sycara

Agent-Supported Planning in Distributed Command and Control
Environments . 36

James H. Lawton

Trust

Towards Trust-Based Acquisition of Unverifiable Information 41
Eugen Staab, Volker Fusenig, and Thomas Engel

Modeling Dynamics of Relative Trust of Competitive Information
Agents . 55

Mark Hoogendoorn, S. Waqar Jaffry, and Jan Treur

A Formal Approach to Aggregated Belief Formation 71
Annerieke Heuvelink, Michel C.A. Klein, and Jan Treur

Applications

Software Engineering for Service-Oriented MAS . 86
Emilia Garcia, Adriana Giret, and Vicente Botti

A Service-Oriented MultiAgent Architecture for Cognitive
Surveillance . 101

David Vallejo, Javier Albusac, Carlos Gonzalez-Morcillo, and
Luis Jiménez

Trust-Based Classifier Combination for Network Anomaly Detection 116
Martin Rehák, Michal Pěchouček, Martin Grill, and Karel Bartos

X Table of Contents

A Distributed Generative CSP Framework for Multi-site Product
Configuration . 131

Markus Zanker, Dietmar Jannach, Marius C. Silaghi, and
Gerhard Friedrich

MobiSoft: Networked Personal Assistants for Mobile Users in Everyday
Life . 147

Christian Erfurth, Steffen Kern, Wilhelm Rossak, Peter Braun, and
Antje Leßmann

A Web-Based Virtual Machine for Developing Computational
Societies . 162

Sergio Saugar and Juan M. Serrano

Using the Wizard of Oz Method to Train Persuasive Agents 177
Maiko Kawasoe, Tatsuya Narita, and Yasuhiko Kitamura

ASBO: Argumentation System Based on Ontologies 191
Andrés Muñoz and Juan A. Bot́ıa

Coordination and Communication

Controling Contract Net Protocol by Local Observation for Large-Scale
Multi-Agent Systems . 206

Toshiharu Sugawara, Toshio Hirotsu, Satoshi Kurihara, and
Kensuke Fukuda

Filter Allocation Using Iterative ECNP . 221
Jan Tožička, Štěpán Urban, Magdalena Prokopová, and
Michal Pěchouček

On the Use of Symbolic Data Analysis to Model Communication
Environments . 234

Flavien Balbo and Julien Saunier

Commitment-Based Multiagent Decision Making . 249
Viji R. Avali and Michael N. Huhns

Negotiation

Towards an Open Negotiation Architecture for Heterogeneous Agents . . . 264
Koen V. Hindriks, Catholijn Jonker, and Dmytro Tykhonov

Incrementally Refined Acquaintance Model for Consortia
Composition . 280

Jan Doubek, Jǐŕı Vokř́ınek, Michal Pěchouček, and Martin Rehák

Table of Contents XI

Towards a Monitoring Framework for Agent-Based Contract Systems . . . 292
Noura Faci, Sanjay Modgil, Nir Oren, Felipe Meneguzzi,
Simon Miles, and Michael Luck

Collaborative Load-Balancing in Storage Networks Using Agent
Negotiation . 306

Shay Raz, Raz Lin, and Onn Shehory

Author Index . 321

Enabling Networked Knowledge�

Stefan Decker and Manfred Hauswirth

Digital Enterprise Research Institute (DERI)
National University of Ireland, Galway

IDA Business Park, Lower Dangan, Galway, Ireland

Abstract. Despite the enormous amounts of information the Web has made
accessible, we still lack means to interconnect and link this information in a
meaningful way to lift it from the level of information to the level of knowl-
edge. Additionally, new sources of information about the physical world become
available through the emerging sensor technologies. This information needs to be
integrated with the existing information on the Web and in information systems
which requires (light-weight) semantics as a core building block. In this position
paper we discuss the potential of a global knowledge space and which research
and technologies are required to enable our vision of networked knowledge.

1 What Is Networked Knowledge?

The wealth of information and services on today’s information infrastructures like the
Internet and the Web has significantly changed everyday life and has substantially trans-
formed the way in which business, public and private interactions are performed. The
economic and social influence of the Web is enormous, enabling new business models
and social change, and creating wealth. However, we have barely scratched the surface
of what information technology can do for society. The Web has enabled information
creation and dissemination, but has also opened the information floodgates. The enor-
mous amount of information available has made it increasingly difficult to find, access,
present and maintain information. As a consequence, we are literally drowning in infor-
mation and starving for knowledge. However, systematic access to knowledge is critical
for solving today’s problems – on individual and organisational as well as global levels.

Although knowledge is inherently strongly interconnected and related to people, this
interconnectedness is not reflected or supported by current information infrastructures.
The lack of interconnectedness hampers basic information management and problem-
solving and collaboration capabilities, like finding, creating and deploying the right
knowledge at the right time. Unfortunately, this is happening at a time when the prob-
lems humanity has to face are more difficult than ever (e.g., climate change, energy and
resource shortages, or globalisation).

New methods are required to manage and provide access to the world’s knowledge,
for individual as well as collective problem solving. The right methods and tools for

� The work presented in this paper was supported (in part) by the Lı́on project supported by
Science Foundation Ireland under Grant No. SFI/02/CE1/I131.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 S. Decker and M. Hauswirth

interconnecting people and accessing knowledge will contribute to solving these prob-
lems by making businesses more effective, scientists more productive and bringing gov-
ernments closer to their citizens. Thus, the focus on Enabling Networked Knowledge
is essential.

�

�

�

�

What is Networked Knowledge and why is it important?

Besides the creation of knowledge through observation, networking of knowl-
edge is the basic process to generate new knowledge. Networking knowledge,
can produce a piece of knowledge whose information value is far beyond the
mere sum of the individual pieces, i.e., it creates new knowledge. With the Web
we now have a foundational infrastructure in place enabling the linking of in-
formation on a global scale. Adding meaning moves the interlinked information
to the knowledge level: Web + Semantics = Networked Knowledge. Knowledge
is the fuel of our increasingly digital service economy (versus manufacturing
economy); linking information is the basis of economic productivity.

Fortunately, current developments are helping to achieve these goals. Originating
from the Semantic Web effort, more and more interlinked information sources are
becoming available online, leading to islands of networked knowledge resources and
follow-up industrial interest. Due to its forward-looking investment of the European
Commission, Europe is playing a central and internationally recognised role in this de-
velopment. Since more and more and different kinds of information sources become
available, the main goal for the future is to build up on this leadership position.

As an example of a rapidly growing information space, Gartner predicts that “By
2015, wirelessly networked sensors in everything we own will form a new Web. But
it will only be of value if the ‘terabyte torrent’ of data it generates can be collected,
analyzed and interpreted.” [1] Making sensor-generated information usable as a new
and key source of knowledge will require its integration into the existing information
space of the Web. Now is the time to tackle the next step: exploiting semantics to create
an overall knowledge network bridging the islands enabling people, organisations and
systems to collaborate and interoperate on a global scale, and bridging the gap between
the physical world and the virtual world so that the information on the Web (the virtual
world) can directly influence activities in the real world and vice versa. This integrated
information space of networked knowledge will impact all parts of people’s lives.

�

�

�

�

Hypothesis

It is our central hypothesis that collaborative access to networked knowledge as-
sists humans, organisations and systems with their individual as well as collec-
tive problem solving, creating solutions to problems that were previously thought
insolvable, and enabling innovation and increased productivity on individual,
organisational and global levels.
In our opinion research needs to aim to:

↪→

Enabling Networked Knowledge 3

�

�

�

�

↪→

1. develop the tools and techniques for creating, managing and exploiting net-
works of knowledge;

2. produce real-world networks of knowledge that provide maximum gains
over the coming years for human, organisational and systems problem solv-
ing;

3. validate the hypothesis; and
4. create standards supporting industrial adaptation.

This overall research vision is broken down into three overall complementary re-
search strands, which form the Networked Knowledge House (see Figure 1).

Fig. 1. Networked Knowledge House

Social Semantic Information Spaces deal with organization, linking, and manage-
ment of knowledge on the Web. Semantic Reality addresses the integration of infor-
mation from the physical world with knowledge in the virtual world (Social Semantic
Information Spaces), the creation of knowledge out of information about the physical
world, and efficient mechanisms to access this information at large scale via sensors.
The technologies created by these basic research strands are then applied in and cus-
tomized to a set of application domains, which we identified as most relevant to our
work. This in turn requires research due to the specific requirements of the domains. Of
course, the given list of application-oriented research domains is not comprehensive.
A number of important domains are not listed, for example, environmental monitoring,

4 S. Decker and M. Hauswirth

traffic management and intelligent driving, logistics and tracking, or building manage-
ment, to name a few, as they are beyond the scope of DERI at the moment.

In the following sections we explain the Networked Knowledge House in more detail.

2 Why Enabling Networked Knowledge?

The World Wide Web has dramatically altered the global communications and infor-
mation exchange landscape, removing barriers of access, space and time from business
and social transactions. The Web has created new forms of interaction and collabo-
ration between systems, individuals and organisations. The dramatic development of
the Web and the changes it has made to society are only a glimpse of the potential
of a next-generation information infrastructure connecting knowledge and people. By
interlinking the world’s knowledge and providing an infrastructure that enables collab-
oration and focused exploitation of worldwide knowledge, Social Semantic Information
Spaces and Semantic Reality, which will be explained in detail in the following sections,
enable individuals, organisations and humanity as a whole to socialise, access services
and solve problems much more effectively than we are able to today. The Web is al-
ready able to provide us with information, but lacks support for collaboration, knowl-
edge sharing and social interaction. An information infrastructure supporting effective
collaboration and augmented with interlinked and networked knowledge will support
human capabilities and enable human-centric access to services and knowledge. We
can already see the first glimpses of this in current online social networking sites (cur-
rently serving hundreds of millions of users), even though these sites are just data silos
and do not interconnect knowledge efficiently.

Social Semantic Information Spaces and Semantic Reality as a networked knowledge
infrastructure also make businesses more effective and scientists more productive by
connecting them to the right people and to the right information at the right time and
enabling them to recognise, collect, and exploit the relationships that exist between the
knowledge entities in the world.

Vannevar Bush [2] and Doug Engelbart [3] were proposing similar infrastructures in
1945 and 1962. However, the technology available then was not advanced enough to
realise their visions. Figuratively speaking, their ideas were proposing jet planes when
the rest of the world had just invented the parts to build a bicycle. With the Seman-
tic Web effort delivering standards to interconnect information globally and the Social
Web showing how to collaborate on a global scale, now a window of opportunity has
opened up to make these visions a reality and build a truly global networked knowledge
infrastructure.

3 Social Semantic Information Spaces

One of the most visible trends on the Web is the emergence of “Social Web” (or Web
2.0) sites which facilitate the creation and gathering of knowledge through the simpli-
fication of user contributions via blogs, tagging and folksonomies, wikis, podcasts and
the deployment of online social networks. The Social Web has enabled community-
based knowledge acquisition, with efforts like Wikipedia demonstrating the “wisdom

Enabling Networked Knowledge 5

of the crowds” in creating the largest encyclopedia in the world. Although it is difficult
to define the exact boundaries of what structures or abstractions belong to the Social
Web, a common property of such sites is that they facilitate collaboration and sharing
between millions of users. However, as more and more Social Web sites, communities
and services come online, the lack of interoperation among them becomes obvious: the
Social Web platforms create a set of isolated data silos – sites, communities and services
that cannot interoperate with each other, synergies are expensive to exploit, and reuse
and interlinking of data is difficult and cumbersome. The entities in the Social Web are
not only data artefacts. Instead, it is a network of interrelated users and their concerns
as well as content that the users are related to as producers, consumers or commentors.
To enable machines to assist us with the detection and filtering of knowledge, many of
these often implicit links have to be made explicit.

Social Semantic Information Spaces are a combination of the Semantic Web, the
Social Web, collaborative working environments and other collaboration technologies.
The goal behind Social Semantic Information Spaces is to create a universal collabora-
tion and networked knowledge infrastructure, which interlinks all available knowledge
and their creators. The resulting infrastructure would finally enable knowledge manage-
ment capabilities as expressed by visionaries like Vannevar Bush and Doug Engelbart.

Figure 2 shows how Social Semantic Information Spaces fit into the current land-
scape: Communication and collaboration tools are augmented and made interopera-
ble with Semantic Web technologies. The result is a network of accessible interlinked
knowledge, enabling productive collaboration and knowledge management.

Fig. 2. Social Semantic Information Spaces

In the following we list a couple of specific examples of enabling technologies and
describe where and how they fit in the idea of a Social Semantic Information Space. All
these technologies are just starting up and further research is necessary to ensure their
development into broadly adopted technologies. However, convergence between some
of the different efforts are already recognisable today.

6 S. Decker and M. Hauswirth

3.1 Semantic Social Networks

From the beginning, the Internet was a medium for connecting not only machines but
people. Email, mailing lists, the Usenet, and bulletin boards allowed people to con-
nect and form online social networks, typically around specific topics. Although these
groups did not explicitly define social networks, the ways people acted and reacted did
so implicitly. The early Web continued this trend. More recently, sites such as Friend-
ster and LinkedIn have brought a different notion of online communities by explicitly
facilitating connections based on information gathered and stored in user profiles. How-
ever, all these sites are stovepipes and lock the information in: using the social network
information for other purposes, e.g., for prioritising email as discussed in [4], requires
standardised data exchange mechanisms. Initial crystallization points to remedy this sit-
uation are efforts like the Friend-of-a-Friend vocabulary (FOAF1) or the Semantically-
Interlinked Online Communities initiative (SIOC2 [5]). The SIOC initiative may serve
as an example how social networking information can be interlinked with content such
as online discussions taking place on blogs, message boards, mailing lists, etc. In com-
bination with the FOAF vocabulary for describing people and their friends, and the Sim-
ple Knowledge Organization Systems (SKOS) model for organizing knowledge, SIOC
enables the linkage of discussion postings to other related discussions, people (via their
associated user accounts), and topics (using specific “tags” or hierarchical categories).
As discussions begin to move beyond simple text-based conversations to include au-
dio and video content, SIOC is evolving to describe not only conventional discussion
platforms but also new Web-based communication and content-sharing mechanisms.

Some social networking sites, such as Facebook, are also starting to provide query
interfaces to their data, which others can reuse and link to via the Semantic Web. Thus
this information becomes part of the Web of information, which may be used or reused
for a variety of purposes, providing crystallisation points for a network of knowledge.

3.2 Semantic Collaborative Technologies

Apart from the specific data representation mechanisms outlined above, other mech-
anisms and technologies contribute to the emergence of Social Semantic Information
Spaces on the Web. The Social Semantic Desktop (SSD) [6] effort (materialised in the
EU IP project NEPOMUK [7]) is aiming at organising information on the desktop by
using Semantic Web metadata standards. Ontologies capture both a shared conceptu-
alisation of desktop data and personal mental models. RDF serves as a common data
representation format. As Web services can describe their capabilities and interfaces in
a standardized way and become Semantic Web Services, on the desktop, applications,
or rather their interfaces, can be modelled in a similar fashion. Together, these tech-
nologies provide a means to build the semantic bridges necessary for data exchange
and application integration. The Social Semantic Desktop has the potential to trans-
form the conventional desktop into a seamless, networked working environment, by
obliterating the borders between individual applications and the physical workspace of
different users.

1 http://www.foaf-project.org
2 http://www.sioc-project.org

http://www.foaf-project.org
http://www.sioc-project.org

Enabling Networked Knowledge 7

In contrast to desktop applications Wikis have become popular Web-based collabo-
ration tools and are widely deployed to enable organizing and sharing of knowledge.
Wikis gained popularity since they enable the management of online content in a quick
and easy way by “group-editing” using a simple syntax. However, typically knowl-
edge collected in Wikis cannot be reused easily automatically and is only usable for
human consumption. Semantic Web techniques applied to Wikis [8] leverage semantic
technologies to address this challenge. They provide means to rapidly acquire formal
knowledge also by non-knowledge engineers, and to create a network of this knowledge
linked with other information sources. A typical example is the Semantic MediaWiki3,
which enables the evolution of Wikipedia into a reusable knowledge source enabling
automatic processing and human support.

4 Semantic Reality

Until now the virtual world of information sources on the World Wide Web and activ-
ities in the real world have always been separated. However, knowledge accessible on
the Web (the virtual world) may influence activities in the real world and vice versa,
but these influences are usually indirect and not immediate. In contrast to this, imagine
a world where:

– Cars know where the traffic jams are and traffic can be managed based on real-time
input about the traffic situation.

– Medical data monitored through body sensor networks is automatically included
into a patient’s electronic healthcare record. Should a critical condition be detected
by these sensors, the patient can be physically located and the closest doctor on
duty can be guided to the patient, whilst preparing the necessary resources in the
hospital the patient is to be transferred to.

– Your calendar knows how long the queue is at your physician.
– Your travel planner knows that the train is delayed before you go to the train station.
– Or generally, scarce resources can be managed efficiently and in-time.

The advent of sensor technologies in conjunction with the Semantic Web now pro-
vides the unique opportunity to unify the real and the virtual worlds as for the first time
we have the necessary infrastructures in place or large-scale deployment will happen in
the short term. Their combination will enable us to build very large information spaces
and infrastructures which for the first time facilitate the information-driven online inte-
gration of the physical world and computers. Similarly, as the Internet has changed the
way people communicate in the virtual world, Semantic Reality extends this vision to
the physical world, enabling novel ways for humans to interact with their environment
and facilitating interactions among entities of the physical world (Internet of Things).
The physical world will be represented in cyberspace and information on our environ-
ment will become ubiquitously available on the Internet. This integrated information
space has a wide range of applications in monitoring, manufacturing, health, tracking
and planning.

3 http://meta.wikimedia.org/wiki/Semantic MediaWiki

http://meta.wikimedia.org/wiki/Semantic_MediaWiki

8 S. Decker and M. Hauswirth

We call it Semantic Reality because due to the possible scale and the overall goal
of creating networked knowledge, understanding of information, i.e., semantics, plays
a central role. Whether semantics is based on statistics, logical descriptions, or hybrid
approaches does not matter. In fact, we believe that a wide spectrum of approaches and
their combinations will be necessary to cover the diverse requirements. Semantic Real-
ity aims at an integrated information space very much in line with the design philosophy
of the original Internet, which embraces community-driven agreement processes, emer-
gent behaviour and self-organisation, but adding semantics as a key enabling ingredi-
ent. Without machine-processable semantics such a large-scale system cannot work to
its fullest extent. Yet, semantics must be light-weight, fault-tolerant, must support dy-
namic change, and has to be able to deal with incomplete, wrong, and noisy information
in order to be applicable and useful in a global-scale heterogeneous environment. The
rationale for success could be along the lines of “a little bit of semantics gets you a
long way.”

Figure 3 shows how Semantic Reality fits into the overall picture: Sensors connect
the physical world to the computer, Social Semantic Information Spaces create and con-
nect virtual worlds, and Semantic Reality integrates these two into one uniform infor-
mation space which will provide novel ways of monitoring, controlling and influencing
the environment, and how people and enterprises collaborate.

Fig. 3. Semantic Reality

The ultimate goal of Semantic Reality is “to deliver the right knowledge to the right
people at the right time.” This requires the adequate description of information, people
and their requirements, and a temporal view on data sources, be they “real” or “virtual”,
i.e., a unified model of evolution of (integrated) information sources, thus moving from
a static to a dynamic model of the Web and the physical world. This is currently taken
into account only to a limited extent on the Web and only for “closed” applications,
e.g., RSS feeds or blogs.

Enabling Networked Knowledge 9

Semantic Reality shares several goals and properties with ubiquitous and perva-
sive computing and ambient intelligence. Though drawing on a large body of work
in sensor networks, embedded systems, ubiquitous and pervasive computing, ambient
intelligence, networking, distributed systems, distributed information systems, artificial
intelligence, software engineering, social networking and collaboration, and Seman-
tic Web, Semantic Reality is different from these research domains as it pushes the
boundaries further by aiming at large-scale integration of (possibly isolated) informa-
tion islands and the integration of systems, which requires the central use of semantics
for information-driven integration and a uniform/universal, but light-weight semantic
model of information sources and information.

The sheer size of the possible systems poses quite novel and unique challenges. Se-
mantic Reality systems can only be built, deployed, and maintained if a large degree of
self-organization and automatization capabilities are being built into the infrastructures
and their constituents, enabling automated deployment (plug-and-play), automated (re-)
configuration, automated component and information integration, and tailored informa-
tion delivery based on user context and needs in a service-oriented way. The previous
characteristics require semantic descriptions as a central ingredient: User requirements
and contexts, the constituents of the system, the dynamic data (streams) they produce,
their functionalities, and requirements – all need to be described using light-weight
semantic mechanisms to enable a machine-understandable information space of real-
world entities and their dynamic communication processes on a scale which is beyond
the current size of the Internet.

In the following, we briefly discuss some of the core challenges and hint at possible
strategies to address them.

Large-Scale and Open Semantic Infrastructures and Flexible Abstractions are re-
quired to enable the large-scale design, deployment and integration of sensor/actuator
networks and their data. The integration has to happen on both the technical (data and
network access) as well as on the semantic level (“What does the (stream) data provided
actually mean?”). The infrastructure has to be open and easily extensible to address the
heterogeneity issues which go far beyond those seen to date on the Internet. The infras-
tructure will draw on key enabling technologies such as (semantic) overlay networks
using P2P technology to achieve scalability and light-weight semantic formats based
on RDF and microformats. Middleware systems such as the Global Sensor Network
(GSN) platform [9] are examples aiming at the development of a general-purpose mid-
dleware supporting these requirements. GSN is work-in-progress and provides a flexible
middleware layer which abstracts from the underlying, heterogeneous sensor network
technologies, supports fast and simple deployment and addition of new platforms, fa-
cilitates efficient distributed query processing and combination of sensor data, provides
support for sensor mobility, and enables the dynamic adaption of the system configura-
tion during runtime with minimal (zeroprogramming) effort. The GSN implementation
is available from http://gsn.sourceforge.net/.

Query Processing, Reasoning, and Planning based on real-world sensor information
will be core functionalities to exploit the full potential of Semantic Reality. The key
research problems to overcome are the very large scale, the number of distributed infor-
mation sources, the time-dependency of the produced data (streams), and the fact that

http://gsn.sourceforge.net/

10 S. Decker and M. Hauswirth

the data is unreliable and noisy. For query processing this means to support distributed
query processing and load-balancing at large scales with only incomplete views on the
state of the overall system. In this context, distributed event-based infrastructures are of
specific interest (“reactive” queries). Users should be able to register expressive, seman-
tic “patterns” of interest and be notified by the system as soon as information satisfying
their interests becomes available.

Also, new approaches for distributed reasoning and reasoning on time-dependant
information, taking into account modalities and being based on an open-world assump-
tion will be necessary. The size and the physical distribution of data will require new
approaches combing logical and statistical approaches which will have to trade logi-
cal correctness with statistical guarantees and expressivity with scalability. Essentially,
the goal is to enable “The World is the Database” scenarios with support for structured
querying, integrated views (real-world information with virtual information), aggrega-
tion and analyses, and open, distributed reasoning over large, incomplete, and approxi-
mate data sets.

Cross-Layer Integration and Optimization will play a central role due to the
extremely heterogeneous environment – a wide range of sensing devices with very het-
erogeneous hardware and processing characteristics; information systems and architec-
tures along with virtual information streams which considerably increase complexity –
and the various and often contradicting requirements on the different system levels. For
example, sensor networks are optimized for life-time and offer only primitive program-
ming and query models. If this is combined with the “wrong” distribution approach,
e.g., a distributed hash table for discovery and the “wrong” distributed query process-
ing approach which does not limit expressivity of queries, this will lead to an inefficient
system design and limit the life-time of sensors by draining their power sources because
of incompatible processing strategies at the different levels.

Semantic Description and Annotation of sensors, sensor data and other data streams
will enable the flexible integration of information and (distributed) discovery of in-
formation. For scalability, integrity, and privacy reasons this has to be supported in a
distributed fashion, for example, through semantic peer-to-peer systems. A prerequisite
for discovery is the meaningful semantic description of sensors and sensor data by the
manufacturer and by the user; for example, by the manufacturer through IEEE 1451
standard compliant Transducer Electronic Data Sheet (TEDS) [10], which essentially
give a (non-semantic) description of the sensor that can very easily be ontologized, or
via an ontologized subset of SensorML [11] which provides standard models and an
XML encoding for describing sensors and measurement processes, and by the user by
extending these basic descriptions with annotations adding more information, meaning,
and links to other information.

Especially the annotation of sensor data itself will be highly relevant to understand
the meaning of the produced data and share this knowledge. Visualization environments
to support the annotation process will be of high importance. Such environments may
support simple graphical annotation up to annotation with claims and findings in the
case of scientific data. This derived knowledge then can be used again in the discovery
process and will help to prevent “data graveyards” where interesting (measurement)

Enabling Networked Knowledge 11

information is available but cannot be used because the knowledge about its existence
and meaning has been lost (the typical “PhD student finishes” syndrome). Due to the
possibly large sizes of the produced data this poses additional scalability problems. As
discovery, semantic annotation has to be supported in a distributed fashion, for example,
by distributed semantic Wikis.

Emergent Semantics, Self-Organization, and Plug-and-Play are required to build
working systems at the envisioned large scales where top-down system control, config-
uration, and enforcement of standards will be a very hard problem or even impossible.
As we can see from the current community processes on the Web, a lot of successful de-
facto standards develop bottom-up. Conversely, these processes support the incremental
development of standards and knowledge. The system must be able to self-organize and
adopt its behavior in a plug-and-play fashion within organizational boundaries based on
semantic understanding and agreement. Semantic understanding and agreements in turn
will depend on dynamic processes which support (semi-)automatic assessment of the
levels of agreement and their correctness. Such emergent semantic agreements can then
be used as the basis for standardization (ontologies). Conversely, semantic formats can
be advanced through such processes.

Semantically Enriched Social Network and Collaboration Infrastructures enable
the targeted delivery of knowledge and information based on context description and
actual user needs. The ubiquity of information requires means to filter and direct data
streams on a need-to-know basis. The definition of user profiles, needs and contexts
are key features enabling targeted information delivery and avoiding overload. Social
networking information enables both – information sharing and information filtering
based on interests and information needs.

Development Support and Tools along with experimental platforms and simulation
tools will be necessary for efficient application development and testing. This means
the availability of visual programming tools which support the developer in designing
the acquisition, combination and integration of data. These designs then can be com-
piled down to the required target platforms (both sensor and back-end platforms, e.g.,
for business processes). To test applications, experimental testbeds along the lines of
PlanetLab (http://www.planet-lab.org/) are essential as many of the charac-
teristics of Semantic Reality systems require experimental evaluation under real-world
conditions especially in terms of scale and distribution. To further evaluate applications,
the integration of experiments and simulations should be supported in a seamless way,
i.e., a test of an application in an experimental testbed should support the inclusion of
simulation without changes to the application code. This means that parts of an appli-
cation (or the complete application) should be able to run on an experimental testbed or
on a simulator or any combination of those. On the application level modern paradigms
such as service-oriented architectures, service mash-ups and Web 2.0-like functionali-
ties should be available and be supported.

Integrity, Confidentiality, Reputation, and Privacy are the key security require-
ments for business users and consumers. The provided information has to be resistant
against technical errors and attacks, has to be stored and transported in a secure way,

http://www.planet-lab.org/

12 S. Decker and M. Hauswirth

has to come from authentic and trustworthy sources and must ensure the privacy of its
providers and users. Physical distribution can be beneficial here as it helps to avoid the
creation of “Big Brother” scenarios which consumers and legislators would not tolerate.

Vertical Integration of business processes ⇔ middleware ⇔ sensor/actuator networks
relying on the above technologies and functionalities will then unleash the full poten-
tial of Semantic Reality. Sensor information, coming both from virtual and physical
sources, are a key requirement for agile business processes requiring minimal human
intervention.

5 Application-Oriented Research Domains

The Web has already influenced many different areas of society. The introduction of
Social Semantic Information Spaces and Semantic Reality may have a similar influ-
ence, but like the Web, the transition of these new technologies into application areas
is usually slow. To ensure rapid uptake and to provide maximum benefit to society,
dissemination of research should focus on a number of carefully selected application
research domains. These research domains investigate the adoption and uses of So-
cial Semantic Information Spaces and Semantic Reality, combining a critical mass of
technology-oriented research with the research on needs in specific application envi-
ronments to initiate ground-breaking innovation. Example research domains are:

eHealth and Life Sciences: The objective of the eHealth and Life Sciences domain is
to reduce the cost associated with the drug research and delivery process, making
clinical research more efficient through data integration, and enabling patients’ self-
management of disease through telehealth, e.g., remote patient monitoring. Due
to the heterogeneity of the eHealth domain, semantics is a crucial ingredient in
achieving this objective.

eScience: The objective of the eScience domain is to improve collaboration among
scientists working on computationally intensive problems, carried out in highly
distributed network environments. Semantic support for distributed collaboration
and annotation of scientific data and publications are of particular interest in our
opinion.

Telecommunications: The objective of the telecommunications domain is to exploit
semantic technologies for enabling telecoms to develop value-added communica-
tion services that will interface humans and machines, exploit machine-readable
data, and improve intra-enterprise human communication and knowledge manage-
ment. Context-information generated by sensors in conjunction with virtual infor-
mation and unified communication profiles is of particular interest to enable new
technology-supported communication paradigms.

eBusiness and Financial Services: The objective of the eBusiness and Financial Ser-
vices domain is to apply new technology in the key areas of extracting business
meaning from unstructured information, uncovering meaning within a business
context, smarter Business Information Systems that can add meaning as they oper-
ate and communicate business information.

Enabling Networked Knowledge 13

6 An Example Application Scenario

To illustrate the possibilities of “Networked Knowledge” we present a simple applica-
tion scenario: Siobhan Hegarty who lives in Galway is pregnant with her second child.
During her first pregnancy Siobhan has suffered from elevated blood sugar levels which
can endanger the unborn child and the mother. The problem with elevated blood sugar
levels in pregnant women is that the important characteristic which requires fast reac-
tion is the change in the blood sugar level. Thus measuring it a few times a day is not
sufficient but constant monitoring is required. Fortunately, mobile sensors are available
which enable Siobhan to leave the hospital while her general practitioner (GP) stills get
the relevant information. Siobhan is being equipped with a mobile blood sugar sensor
which can transmit readings via Bluetooth. The device is paired with Siobhan’s mobile
telephone which transmits the sensor readings via GSM. Additionally she gets a GPS
device which records her position and sends it via her mobile.

Siobhan’s GP, Dr. James Mooney, enters the necessary monitoring requirements into
his Care2X healthcare information system (http://www.care2x.org/) along
with rules when to raise an alarm and to whom. For example, the system will call
Siobhan and warn her via a synthesized message, while James is informed via a text
message on his beeper which he wears all the time. The sensor readings from Siobhan’s
blood sugar and GPS sensors are directly fed back into James’s Care2X system.

Let us assume that after some time, Siobhan’s blood sugar levels change dramatically
and the alarm rules are set off. Now it is important to get Siobhan to a doctor as fast as
possible, or vice versa – a doctor to Siobhan. Besides notifying Siobhan and James, the
Care2X system accesses the information system of the hospital and requests a proposal,
whether it is better to bring Siobhan into the hospital via an ambulance or bring a doc-
tor to Siobhan. The hospital information system which knows the GPS position of all
doctors with matching skills to help Siobhan and of all ambulances produces an optimal
plan based on real-time sensor input from the traffic control system of the city. Given
the current positions of available ambulances and doctors with the necessary skills, the
optimal strategy is to pick up the endocrinologist Dr. Sarah O’Connor from her home
with a nearby ambulance and bring her to Siobhan.

Unfortunately, while this plan was calculated two important changes to the scenario
have happened: (1) No more readings from Siobhan’s GPS are received, probably be-
cause she has entered a building or because the device ran out of battery and Siobhan
does not respond to calls on her mobile and (2) the last blood sugar readings show some
strange and unknown pattern which neither James nor Sarah can interpret. As a reaction,
the system now tries to locate Siobhan via other means: The system tries to determine
her position via triangulation of her mobile and additionally informs all Bluetooth ac-
cess points in the vicinity of her last position to send a message if they recognize any of
her Bluetooth devices.

The strange patterns in the blood sugar readings worry James and Sarah and they
decide to use their country-wide social network of clinical specialists to look for doctors
who probably have already seen similar patterns. Additionally, they search medical
databases on the Web for annotations describing such patterns. As a result of their search
they find information which looks similar to the pattern they have seen but the result is
inconclusive. In parallel, a colleague of them from Dublin who also participates in the

http://www.care2x.org/

14 S. Decker and M. Hauswirth

social network they sent the symptoms to, informs them that the pattern may indicate a
malfunction of the blood sugar sensor and describes his experiences.

In the meantime, Siobhan could be located by a Bluetooth access point. To be on
the safe side the ambulance with Sarah on board is sent to her location and finds her in
good condition. However, an examination reveals that indeed her blood sugar levels had
changed dangerously and Siobhan is treated on the spot. After this successful interven-
tion James and Sarah annotate the sensor readings to permanently store their findings.
Their findings are stored in James’s Care2X system, the hospital’s information system
and also made accessible to other doctors in the national infrastructure along with the
actual sensor readings in a secure and anonymized way.

7 Core Research Topics for the Next Years

Core research objectives for the next years include the foundation for the creation of
knowledge networks and collaboration infrastructures, which will support human ca-
pabilities and enable the human-centric access to services and knowledge on a global
scale, opening up new opportunities for individuals and organisations. Example topics
include:

Foundations for semantic collaboration: the development of technologies support-
ing distributed collaboration with a focus on the Semantic Desktop and the Web.
Examples include APIs and ontologies that reuse existing social networking infor-
mation from sites to assess the identity and relevance of information.

Scalable reasoning and querying facilities for knowledge: Current knowledge bases
are not able to exploit and analyse knowledge, which would be necessary in order to
learn from it. To exploit the available knowledge, scalable querying and data mining
mechanisms need to be developed. Additionally, dynamic data sources (streams),
modalities (time, space) and noise in the data, need to be taken into account and be
supported.

Frameworks for semantic sensor networks: Currently sensor networks and the data
they produce lack semantic description, making it difficult to integrate data coming
from large-scale, dynamic sensor networks with existing information. It is nec-
essary to develop practical semantic description methods for sensors and mobile
device middleware, enabling the integration of sensor data with knowledge from
knowledge networks. This will be part of a more general practical and deployable
semantic service-oriented architecture.

8 Creating Impact

Knowledge networks are not created in a vacuum, but inside a highly dynamic informa-
tion infrastructure – the Web, which provides us with a living laboratory enabling us to
validate our approaches and hypothesis, and to improve our ideas.

The first way to validate the hypothesis is to study the usage of emerging networks of
knowledge on the Web. Many application areas are dealing with the challenges of large,

Enabling Networked Knowledge 15

open, heterogeneous, dynamic and distributed environments. Semantics is an impor-
tant cornerstone for achieving scalability of knowledge interchange and interoperabil-
ity. Projects should validate this hypothesis by investigating the required research and
approaches in application domains, ranging from eHealth to eGovernment to eLearning.

References

1. Raskino, M., Fenn, J., Linden, A.: Extracting Value From the Massively Connected World
of 2015. Gartner Research (1 April 2005), http://www.gartner.com/resources/
125900/125949/extracting valu.pdf

2. Bush, V.: As We May Think. The Atlantic Monthly 176, 101–108 (1945)
3. Engelbart, D.C.: Augmenting Human Intellect: A Conceptual Framework. Stanford Research

Institute, Menlo Park, CA, USA, Summary Report AFOSR-3233 (1962)
4. Golbeck, J., Hendler, J.: Reputation Network Analysis for Email Filtering. In: Conference

on Email and Anti-Spam (CEAS), Mountain View, CA, USA (2004)
5. Breslin, J.G., Harth, A., Bojars, U., Decker, S.: Towards Semantically-Interlinked Online

Communities. In: European Semantic Web Conference. Springer, Heidelberg (2005)
6. Decker, S., Frank, M.: The Social Semantic Desktop. Technical report, Digital Enterprise

Research Institute (2004)
7. Groza, T., Handschuh, S., Moeller, K., Grimnes, G., Sauermann, L., Minack, E., Mesnage,

C., Jazayeri, M., Reif, G., Gudjonsdottir, R.: The NEPOMUK Project - On the way to the
Social Semantic Desktop. I-Semantics 2007, Journal of Universal Computer Science (2007)

8. Krötzsch, M., Vrandecic, D., Völkel, M.: Semantic MediaWiki. In: International Semantic
Web Conference. Springer, Heidelberg (2006)

9. Aberer, K., Hauswirth, M., Salehi, A.: Infrastructure for data processing in large-scale inter-
connected sensor networks. In: 8th International Conference on Mobile Data Management
(2007)

10. NIST: IEEE1451 (2006), http://ieee1451.nist.gov/
11. Open Geospatial Consortium: Sensor Model Language (SensorML) (2008),

http://vast.uah.edu/SensorML/

http://www.gartner.com/resources/125900/125949/extracting_valu.pdf
http://www.gartner.com/resources/125900/125949/extracting_valu.pdf
http://ieee1451.nist.gov/
http://vast.uah.edu/SensorML/

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 16–23, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Coordination and Agreement in Multi-Agent Systems

Sascha Ossowski

Centre for Intelligent Information Technologies (CETINIA),
Universidad Rey Juan Carlos,

Calle Tulipán s/n,
28933 Móstoles (Madrid), Spain
sascha.ossowski@urjc.es

Abstract. It is commonly accepted that coordination is a key characteristic of
multi-agent systems and that, in turn, the capability of coordinating with others
constitutes a centrepiece of agenthood. However, the key elements of coordina-
tion models, mechanisms, and languages for multi-agent systems are still sub-
ject to considerable debate. This paper provides a brief overview of different
approaches to coordination in multi-agent systems. It will then show how these
approaches relate to current efforts working towards a paradigm for smart, next-
generation distributed systems, where coordination is based on the concept of
agreement between computational agents.

1 Introduction

Most current transactions and interactions at business level, but also at leisure level,
are mediated by computers and computer networks. From email, over social net-
works, to virtual worlds, the way people work and enjoy their free time has changed
dramatically in less than a generation time. This change has made that IT research and
development focuses on aspects like new Human-Computer Interfaces or enhanced
routing and network management tools. However, the biggest impact has been on the
way applications are thought and developed. These applications require components
to which more and more complex tasks can be delegated, components that show
higher levels of intelligence, components that are capable of sophisticated ways of
interacting, as they are massively distributed, sometimes embedded in all sort of ap-
pliances and sensors. In order to allow for an efficient design and implementation of
systems of these characteristics, it is necessary to effectively enable, structure, and
regulate their communications in different contexts.

Such an enterprise raises a number of technological challenges. Firstly, the open
distributed nature of such systems adds to the heterogeneity of its components. The
system structure may evolve at runtime, as new nodes may appear or disappear at
will. There is also a need for on-the-fly alignment of certain concepts that interactions
relate to, as the basic ontological conventions in such systems will be very limited.
The dynamicity of the environment calls for a continuous adaptation of the structures
that regulate the components’ interactions, so as to achieve and sustain desired func-
tional properties. But also non-functional issues related to scalability, security, and
usability need to be taken into account. When designing mechanisms that address
these challenges, the notion of autonomy becomes central: components may show

 Coordination and Agreement in Multi-Agent Systems 17

complex patterns of activity aligned with the different goals of their designers, while
it is usually impossible to directly influence their behaviour from the outside.

Coordination in multi-agent system (MAS) aims at harmonising the interactions of
multiple autonomous components or agents. Therefore, it appears promising to review
different conceptual frameworks for MAS coordination, and to analyse the potential
and limitations of the work done in that field with regard to some of the aforemen-
tioned challenges.

This paper is organised as follows. Section 2 provides brief overview of coordina-
tion in MAS. Section 3 proposes the notion of agreement as a centrepiece of an inte-
grated approach to coordination in open distributed systems, and outlines some
research topics related to the vision of a technology of agreement. Some conclusions
are drawn in Section 4.

2 Coordination in Multi-Agent Systems

Maybe the most widely accepted conceptualisation of coordination in the MAS field
originates from Organisational Science. It defines coordination the management of
dependencies between organisational activities [21]. One of the many workflows in
an organisation, for instance, may involve a secretary writing a letter, an official sign-
ing it, and another employee sending it to its final destination. The interrelation
among these activities is modelled as a producer/consumer dependency, which can be
managed by inserting additional notification and transportation actions into the
workflow.

It is straightforward to generalise this approach to coordination problems in multi-
agent systems. The subjects whose activities need to be coordinated are the agents,
while the entities between which dependencies are usually goals, actions or plans.
Depending on the characteristics of the MAS environment, a taxonomy of dependen-
cies can be established, and a set of potential coordination actions assigned to each of
them (e.g.[36], [26]). Within this model, the process of coordination is to accomplish
two major tasks: first, a detection of dependencies needs to be performed, and second,
a decision respecting which coordination action to apply must be taken. A coordina-
tion mechanism shapes the way that agents perform these tasks [24].

The result of coordination, and its quality, is conceived differently at different
levels of granularity. Understanding coordination as a way of adapting to the envi-
ronment [36] is quite well suited to address this question from a micro-level
(agent-centric) perspective. This is particularly true for multi-agent settings. If new
acquaintances enter an agent’s environment, coordination amounts to re-assessing its
former goals, plans and actions, so as to account for the new (potential) dependencies
between itself and other agents. If a STRIPS-like planning agent, for instance, is put
into a multi-agent environment, it will definitely have to accommodate its individual
plans to the new dependencies between its own prospective actions and potential
actions of others, trying to exploit possible synergies (others may free certain relevant
blocks for it), and avoiding harmful dependencies (making sure that others do not
unstack intentionally constructed stacks etc). At this level, the result of coordination,
the agent’s adapted individual plan, is the better the closer it takes the agent to the
achievement of its goals in the multi-agent environment.

18 S. Ossowski

From a macro-level (MAS-centric) perspective, the outcome of coordination can be
conceived a “global” plan (or decision, action etc.). This may be a “joint plan” [29] if
the agents reach an explicit agreement on it during the coordination process, or just
the sum of the agents' individual plans (or decisions, actions etc. − sometimes called
“multi-plan” [27]) as perceived by an external observer. Roughly speaking, the qual-
ity of the outcome of coordination at the macro-level can be evaluated with respect to
the agents’ joint goals or the desired functionality of the MAS as a whole. If no such
notion can be ascribed to the MAS, other, more basic features can be used instead. A
good result of coordination, for instance, often relates to efficiency, which frequently
comes down to the notion of Pareto-optimality. The amount of resources necessary
for coordination (e.g. the number of messages necessary) is also sometimes used as a
measure of efficiency.

The dependency model of coordination appears to be particularly well suited to
represent relevant features of a coordination problem in MAS. The TAEMS frame-
work [11], for instance, has been used to model coordination requirements in a variety
of interesting MAS domains. It is also useful to rationalise observed coordination
behaviour in line with a knowledge-level perspective [22]. Still, dependency detection
may come to be a rather knowledge intensive task, which is further complicated by
incomplete and potentially inconsistent local views of the agents. Moreover, making
timely decisions that lead to efficient coordination actions is also everything but triv-
ial. The problem becomes even more difficult when agents pursuing partially con-
flicting goals come into play [26]. In all but the simplest MAS, the instrumentation of
these tasks gives rise to complex patterns of interactions among agents.

From a design perspective, coordination is probably best conceived as the effort of
governing the space of interaction [6] of a MAS, as the basic challenge amounts to
how to make agents converge on interaction patterns that adequately (i.e. instrumen-
tally with respect to desired MAS features) solve the dependency detection and deci-
sion tasks. A variety of approaches that tackle this problem can be found in the
literature, shaping the interaction space either directly, by making assumptions on agent
behaviours and/or knowledge, or indirectly, by modifying the context of the agents in
the MAS environment. The applicability of these mechanisms depends largely on the
number and type of assumptions that one may make regarding the possibility of ma-
nipulating agent programs, agent populations, or the agents’ environment. This, in turn,
is dependent on the characteristics of the coordination problem at hand.

The RICA-J framework [31], for instance, provides an ontology of interaction
types, together with their associated protocols. Agents can freely choose to play or
abandon certain roles within an interaction but, when using the framework, an agent
programmer is limited to using protocol compliant actions.

Governing coordination infrastructures make a clear separation between the ena-
bling services that they provide (e.g. communication channel or blackboard-based
communication primitives) and the governing aspects of interaction, which are usu-
ally described within a declarative language (e.g. programmable tuple spaces) [25].
The access regulations for the elements of the MAS environment (resources, services,
etc) expressed in such a language are sometimes called environment laws [30].

Electronic Institutions (EI) [23] use organisational abstractions to shape the interac-
tions of the agents participating in them. Agents play different roles in the (sub-) proto-
cols that, together with additional rules of behaviour, determine the legal sequences of

 Coordination and Agreement in Multi-Agent Systems 19

illocutions that may arise within a particular instance of a scene. Scenes, in turn, are
interconnected and synchronised by means of transitions within a performative struc-
ture. Norms, as additional institutional abstractions, express further behaviour restric-
tions for agents. In the EI framework, agents can only interact with each other through
specific institutional agents, called governors [13], which assure that all behaviour
complies with the norms and that it obeys the performative structure. So, different
from the aforementioned approaches, the governing or regulating responsibility is
transferred from the infrastructure to specialized middle agents.

From the point of view of an individual agent, the problem of coordination essen-
tially boils down to finding the sequence of actions that, given the regulations within
the system (or, if possible in a certain environment, the expected cost of transgressing
them), best achieves its goals. In practice, this implies a series of non-trivial problems.
Models of coalition formation determine when and with whom to form a team for the
achievement of some common (sub-) goal, and how to distribute the benefits of syn-
ergies that arise from this cooperation [32]. Distributed planning approaches [12] may
determine how to (re-)distribute tasks among team members and how to integrate
results. From an individual agent’s perspective, the level of trustworthiness of others
is central to almost every stage of these processes, so as to determine whether other
agents are likely to honour the commitments that have been generated [33].

An appealing way to tackle both the system-level and the agent-level requirements
is to take an organisation-oriented tack towards the problem of MAS coordination.
Organisational models underlying approaches such as Agent-Group-Role [14],
MOISE [18], EI [23], or RICA [31] provide a rich set of concepts to specify and
structure mechanisms that govern agent interactions through the corresponding
infrastructures or middleware. But they can also facilitate the agents’ local decision-
making tasks. For instance, role and interaction taxonomies can be used to find suit-
able interactions partners, by providing additional information regarding the usability
of services in a certain interaction context [15]. Structural information about roles can
also be used for the bootstrapping of reputation mechanism, when only very limited
information about past interactions is available in the system [5]. Role hierarchies,
and other types of structural information, can also be extended on-the-fly to improve
system performance [17]. In general, the fact that organisational structures may dy-
namically evolve, shifts the attention from their traditional use as a design-time coor-
dination mechanism for mainly closed distributed problem-solving systems, to an
adaptive run-time coordination mechanism also applicable to open MAS [24].

3 Towards a Technology of Agreement

The previous section has given a brief overview of work on coordination mechanisms
that has been carried in the MAS field. Even though an attempt has been made to
structure and present it in some coherent manner, the reader will have noticed that
several quite different approaches and mechanisms coexist under the “umbrella” of
the term coordination. Not all of them are relevant to the challenges for the design
of open distributed systems outlined in the introduction. For instance, the whole set of
coupled coordination mechanisms [35] are effectively useless for the purpose of this
paper, as they require having a direct influence on the agent programs. On the other

20 S. Ossowski

hand, the problem of semantic interoperability is usually outside the scope of MAS
coordination models and languages.

The notion of agreement among computational agents appears to be better suited as
the fundamental notion for the proposal outlined in this paper. Until recently, the
concept of agreement was a domain of study mainly for philosophers, sociologists and
was only applicable to human societies. In recent years, the growth of disciplines such
as social psychology, socio-biology, social neuroscience, together with the spectacu-
lar emergence of the information society technologies, have changed this situation.
Presently, agreement and all the processes and mechanisms implicated in reaching
agreements between different kinds of agents are a subject of research and analysis
also from technology-oriented perspectives.

The process of agreement-based coordination can be designed based on two main
elements:

(1) a normative context, that determines the rules of the game, i.e. interaction patterns
and additional restrictions on agent behaviour; and

(2) a call-by-agreement interaction method, where an agreement for action between
the agents that respects the normative context is established first; then actual
enactment of the action is requested.

The techniques based on organizational structures discussed in the previous section
will be useful to specify and design such systems. In addition, semantic alignment,
norms, argumentation and negotiation, as well as trust and reputation mechanisms
will be in the “agreement technology sandbox”.

Semantic technologies constitute a centrepiece of the approach as semantic prob-
lems pervade all the others. Solutions to semantic mismatches and alignment of on-
tologies [4] are needed to have a common understanding of norms or of deals, just to
put two examples. The use of semantics-based approaches to service discovery and
composition will allow exploring the space of possible interactions and, consequently,
shaping the set of possible agreements [15].

At system-level, norms are needed to determine constraints that the agreements,
and the processes to reach them, have to satisfy. Reasoning about a system’s norms is
necessary at design-time to assure that the system has adequate properties, but it may
also be necessary at run-time, as complex systems usually need dynamic regulations
[16]. Organisational structures further restrict the way agreements are reached by
fixing the social structure of the agents: the capabilities of their roles and the relation-
ships among them (e.g. power, authority) [3].

Moving further towards the agent-level, negotiation methods are essential to make
agents reach agreements that respect the constraints imposed by norms and organisa-
tions. These methods need to be complemented by an argumentation-based approach:
by exchanging arguments, the agents’ mental states may evolve and, consequently,
the status of offers may change [2] [7]. Finally, agents will need to use trust mecha-
nisms that summarise the history of agreements and subsequent agreement executions
in order to build long-term relationships between the agents. Trust is the technology
that complements traditional security mechanisms by relying on social mechanisms
that interpret the behaviour of agents [34].

One may conceive the aforementioned topics in a “tower structure”, with semantic
technologies at the bottom layer and trust mechanisms at the top, where each level pro-
vides functionality to the levels above [1]. Notice, however, that there is also a certain

 Coordination and Agreement in Multi-Agent Systems 21

feedback from higher to lower layers as, for instance, reputation mechanisms may influ-
ence organisational structures such as role and interaction hierarchies [17]; and this
information can as well be used for semantic alignment [4] and discovery [15].

4 Discussion

This paper has presented an overview of different approaches to coordination in the
MAS field. It has been argued that the notion of agreement is essential to instil coordi-
nation in open distributed systems. Some existing technologies from the field of MAS
coordination can be applied to this respect, but others − and in particular semantic tech-
nologies − need to be added. Several research efforts are currently ongoing that may
contribute to the development of a “technology of agreement” in one or another way.
The attempt to harmonise these efforts, which is currently being carried out at European
level, promotes the emergence of a new paradigm for next generation distributed sys-
tems based on the notion of agreement between computational agents [9].

Acknowledgements

Many ideas reported in this paper draw upon joint work with Carles Sierra, Vicent Botti,
and others, in the framework of a Spanish national project on “Agreement Technology”.
This term was first mentioned by Mike Wooldridge in internal discussions at the
AAMAS conference in 2004. It has also been used as a title for a conference by Nick
Jennings. I am also thankful to Axel Polleres, Cristiano Castelfranchi and Leila Amgoud
for their comments regarding the different technological challenges related to a compu-
tational notion of agreement, as well as Andrea Omicini for our discussions on the
different stances on coordination in multi-agent systems. This work was partially sup-
ported by the Spanish Ministry of Science and Innovation, grants TIN2006-14630-C03-
02 and CSD2007-00022 (CONSOLIDER-INGENIO 2010).

References

[1] Agreement Technologies project homepage,
http://www.agreement-technologies.org/

[2] Amgoud, L., Dimopolous, Y., Moraitis, P.: A unified and general framework for argu-
mentation-based negotiation. In: Proc. 6th Int. Joint Conference on Autonomous Agents
and Multi-Agents Systems (AAMAS 2007), pp. 963–970. IFAAMAS (2007)

[3] Argente, E., Julian, V., Botti, V.: Multi-Agent System Development based on Organiza-
tions. Electronic Notes in Theoretical Computer Science 150(3), 55–71 (2006)

[4] Atienza, M., Schorlemmer, M.: I-SSA - Interaction-situated Semantic Alignment. In:
Proc Int. Conf. on Cooperative Information Systems (CoopIS 2008) (to appear, 2008)

[5] Billhardt, H., Hermoso, R., Ossowski, S., Centeno, R.: Trust-based Service Provider Se-
lection in Open Environments. In: Proc. ACM Symposium on Applied Computing (SAC-
2007), pp. 1375–1380. ACM Press, New York (2007)

22 S. Ossowski

[6] Busi, N., Ciancarini, P., Gorrieri, R., Zavattaro, G.: Coordination Models - A Guided
Tour. In: Omicini, et al. (eds.) Coordination of Internet Agents: Models, Technologies,
and Applications, pp. 6–24. Springer, Heidelberg (2001)

[7] Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artificial
Intelligence Journal 171(5-6), 286–310 (2007)

[8] Castelfranchi, C., Dignum, F., Jonker, C., Treur, J.: Deliberative Normative Agents -
Principles and Architecture. In: Jennings, Lespérance (eds.) Intelligent Agents VI. LNCS,
vol. 1757, pp. 364–378. Springer, Heidelberg (2000)

[9] COST Act. IC0801, http://www.cost.esf.org/index.php?id=110&action_number=IC0801
[10] Debenham, J., Sierra, C.: Merging intelligent agency and the Semantic Web. Knowledge-

Based Systems 21(3), 184–191 (2008)
[11] Decker, K.: TAEMS: A Framework for Environment Centered Analysis and Design of

Coordination Mechanisms. In: O’Hare, Jennings (eds.) Foundations of Distributed Artifi-
cial Intelligence. John Wiley and Sons, Chichester (1996)

[12] Durfee, E.: Distributed Problem Solving and Planning. In: Luck, M., Mařík, V., Štěpánk-
ová, O., Trappl, R. (eds.) ACAI 2001 and EASSS 2001. LNCS (LNAI), vol. 2086, pp.
118–149. Springer, Heidelberg (2001)

[13] Esteva, M., Rosell, B., Rodríguez-Aguilar, J.A., Arcos, J.L.: AMELI - An agent-based
middleware for electronic institutions. In: Proc. of the Third Int. Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2004), pp. 236–243. ACM Press,
New York (2004)

[14] Ferber, J., Gutknecht, O., Fabien, M.: From Agents to Organizations - An Organizational
View of Multi-agent Systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.) AOSE 2003.
LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

[15] Fernández, A., Ossowski, S.: Exploiting Organisational Information for Service Coordi-
nation in Multiagent Systems. In: Proc. of the Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS-2008), pp. 257–264. IFAAMAS (2008)

[16] Gaertner, D., García-Camino, A., Noriega, P.,Rodríguez-Aguilar, J.A., Vasconcelos, W.:
Distributed norm management in regulated multiagent systems. In: Proc. Int. Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS-2007), pp. 624–631.
IFAAMAS (2007)

[17] Hermoso, R., Centeno, R., Billhardt, H., Ossowski, S.: Extending Virtual Organizations
to improve trust mechanisms (Short Paper). In: Proc. of the Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS-2008), pp. 1489–1492. IFAAMAS (2008)

[18] Hubner, J., Sichman, J., Boissier, O.: Developing organised multiagent systems using the
MOISE+ model: programming issues at the system and agent levels. Int. Journal of
Agent-Oriented Software Engineering 1(3/4), 370–395 (2006)

[19] Klusch, M., Sycara, K.: Brokering and matchmaking for coordination of agent societies: a
survey. In: Coordination of Internet Agents: Models, Technologies, and Applications
(Omicini y otros), pp. 197–224. Springer, Heidelberg (2001)

[20] Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. In: Proceedings of 5th International Conference on Autonomous Agents and
Multi- Agent Systems (AAMAS-2006), pp. 915–922. ACM Press, New York (2006)

[21] Malone, T., Crowston, K.: The Interdisciplinary Study of Co-ordination. Computing Sur-
veys 26(1), 87–119 (1994)

[22] Newell, A.: Reflections on the Knowledge Level. Artificial Intelligence 59, 31–38 (1993)
[23] Noriega, P., Sierra, C.: Electronic Institutions – Future Trends and Challenges. In:

Klusch, M., Ossowski, S., Shehory, O. (eds.) CIA 2002. LNCS (LNAI), vol. 2446, pp.
14–17. Springer, Heidelberg (2002)

 Coordination and Agreement in Multi-Agent Systems 23

[24] Omicini, A., Ossowski, S.: Objective versus Subjective Coordination in the Engineering
of Agent Systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelli-
gent Information Agents. LNCS (LNAI), vol. 2586, pp. 179–202. Springer, Heidelberg
(2003)

[25] Omicini, A., Ossowski, S., Ricci, A.: Coordination Infrastructures in the Engineering of
Multiagent Systems. In: Bergenti, Gleizes, Zambonelli (eds.) Methodologies and software
engineering for agent systems – The Agent-Oriented Software Engineering Handbook,
pp. 273–296. Kluwer, Dordrecht (2004)

[26] Ossowski, S.: Co-ordination in Artificial Agent Societies. LNCS (LNAI), vol. 1535.
Springer, Heidelberg (1998)

[27] Ossowski, S.: Constraint Based Coordination of Autonomous Agents. Electronic Notes in
Theoretical Computer Science 48, 211–226 (2001)

[28] Ossowski, S., Menezes, R.: On Coordination and its Significance to Distributed and
Multi-Agent Systems. Journal of Concurrency and Computation - Practice and Experi-
ence 18(4), 359–370 (2006)

[29] Rosenschein, J., Zlotkin, G.: Designing Conventions for Automated Negotiation. AI
Magazine 15(3), 29–46 (1995)

[30] Schumacher, M., Ossowski, S.: The governing environment. In: Weyns, D., Van Dyke
Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 88–104.
Springer, Heidelberg (2006)

[31] Serrano, J.M., Ossowski, S.: On the Impact of Agent Communication Languages on the
Implementation of Agent Systems. In: Klusch, et al. (eds.) Cooperative Information
Agents VIII. LNCS, vol. 2782, pp. 92–106. Springer, Heidelberg (2004)

[32] Shehory, O., Sycara, K., Somesh, J.: Multi-agent Coordination through Coalition Forma-
tion. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365,
pp. 143–154. Springer, Heidelberg (1998)

[33] Sabater, J., Sierra, C.: Review on Computational Trust and Reputation Models. Artificial.
Intelligence Review 24(1), 33–60 (2005)

[34] Sierra, C., Debenham, J.: Information-Based Agency. In: Proc Int. Joint Conference on
AI (IJCAI-2007), pp. 1513–1518. AAAI Press, Menlo Park (2007)

[35] Tolksdorf, R.: Models of Coordination. In: Omicini, A., Tolksdorf, R., Zambonelli, F.
(eds.) ESAW 2000. LNCS (LNAI), vol. 1972. Springer, Heidelberg (2000)

[36] von Martial, F.: Coordinating Plans of Autonomous Agents. LNCS (LNAI), vol. 610.
Springer, Heidelberg (1992)

Agents and Databases: A Symbiosis?

Heiko Schuldt

Database and Information Systems Group
Department of Computer Science
University of Basel, Switzerland

heiko.schuldt@unibas.ch

Abstract. Over the last decades, data and information management
has been subject to significant changes. Access to data and information is
no longer provided by monolithic database systems. Rather, applications
need to cope with an increasing number of heterogeneous and distributed
data and information sources, ranging from traditional databases, large
document collections and information sources on the Internet and the Se-
mantic Web. This also affects the way data and information is searched,
accessed, and processed. In particular, the agent community has ad-
dressed this change and has spawned the field of information agents. An
information agent pro-actively searches, retrieves, accesses and maybe
even processes information on behalf of its user. Also the database com-
munity has faced the challenges stemming from this change by making
database functionality available even outside of database systems.

In this paper, we review the recent developments in both fields and
show examples of activities which lead to synergies in both communities
and which emphasize on the potential for symbiotic co-existence.

Keywords: Cooperative Information Agents, Databases, Hyperdatabase
Systems, Agents and Transactions.

1 Introduction

Over the last decades, data and information management has undergone consider-
able changes. From rather monolithic, database-centric applications where access
to data was directly provided by (mostly relational) database management sys-
tems (DBMSs), the evolution first led to an increasing number of heterogeneous
and distributed data and information sources, ranging from traditional databases
and large (multimedia) document collections to information sources on the Inter-
net, and finally to information in the Semantic Web and even to embedded infor-
mation sources in mobile “smart” objects as they occur in a pervasive computing
environment. This development significantly affects the way data and information
is searched, accessed, and processed.Both the immense amount of information and
the number of different information sources poses a great challenge for appropri-
ate infrastructures for dealing with search, access, management, and processing.
In particular, the agent community has addressed this change and has spawned

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 24–34, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Agents and Databases: A Symbiosis? 25

the field of information agents [13,9]. A cooperative information agent is a com-
putational software entity that has access to one or multiple, potentially heteroge-
neous, and geographically and logically distributed data and information sources,
pro-actively acquires, mediates, and maintains relevant information on behalf of
its human users or other agents, preferably just-in-time [4]. Several workshop and
conference series have provided the fora necessary for creating a pertinent com-
munity and have helped the field in coming of age.

At the same time, database systems have evolved and the database commu-
nity has also faced the challenges stemming from this change. In particular,
databases are more and more hidden behind service interfaces. At the same
time, database concepts such as query processing and transactions are provided
outside of database systems, at the level of service invocations.

In this paper, we review the recent developments in both fields. In particular,
we aim at answering the rather rhetorical question raised in the title of this pa-
per by identifying areas of mutual interest and activities which hopefully lead to
synergies in both communities. The hyperdatabase vision [16] will be presented as
one example for activities in the intersection between both areas and we describe
in more detail two concrete realizatons of this vision to exemplify the relationship
between both fields and to stress the possibility for symbiotic co-existence.

The paper is organized as follows: Section 2 briefly introduces the two different
fields and identifies the potential for cross-fertilizations. In Section 3, we illustrate
the possible symbiosis between information agents and databases by presenting
the hyperdatabase vision. In particular, we present two selected hyperdatabase
implementations, namely OSIRIS which provides optimized routing of service
requests for distributed processes orchestrated by means of cooperating agents
and AMOR which provides transactional execution guarantees for cooperating
agents. Finally, Section 4 concludes.

2 Information Agents and Databases

In what follows, we first give a brief introduction on information agents and
databases, review their development and analyze the relationship between both
fields.

2.1 Information Agents

In short, the main task of information agents can be summarized as providing in-
tegrated access to information from potentially heterogeneous information sources
hosted at several locations. The activities of information agents include the discov-
ery of information sources, the integrationof information fromdifferent sources and
possibly also the processing of information, e.g., to derive new information [13,9].

In more detail, according to the terminology defined by the AgentLink Spe-
cial Interest Group on Intelligent Information Agents [2], an information agent
is a computational software entity that may access one or multiple, distributed
and heterogeneous information sources, and pro-actively acquires, mediates, and

26 H. Schuldt

maintains relevant information on behalf of its user(s) or other agents preferably
just-in-time. This includes their ability to semantically broker information by pro-
viding a pro-active resource discovery, by mediating between information con-
sumers and providers and finally by offering value-added information services and
products to the user or other agents. The latter implies that information agents
also act as producers of information and not just facilitators for accessing infor-
mation, and thus have to take care of the quality of their services. Information
agents take over the role of brokers between information sources (e.g., by access-
ing databases), other agents (or their services, respectively), and human users.

Different information agents may cooperate in order to jointly achieve a com-
mon task. Furthermore, they may be subject to dynamic re-configurations, e.g.,
to react to changes in their environment react or to increase the quality of their
service (load balancing, reduction of data transfer, etc.).

2.2 Databases

Relational database systems have been introduced more than thirty years ago.
They have been considered as infrastructure and main platform for develop-
ment of data-intensive applications. The notion of “data independence”, part
of Codd’s rules [5], was a breakthrough because programmers were freed from
low-level details, e.g., how to access shared data efficiently and correctly, given
concurrent access. But already in the late nineties, the prerequisites for appli-
cation development have changed dramatically. Storage and communication has
become fairly cheap, and the internet has started to dominate modern infor-
mation infrastructures. Consequently, the role of database concepts had to be
re-visited and newly determined. Undoubtedly, the database system has played
and still plays an important role. However, it has more and more degenerated
to a storage manager, far away from the applications. In this situation, about a
decade ago, researchers started to question the role of databases for future dis-
tributed information systems engineering (“Databases Breaking out of the Box”
[25] and the Lowell Database Research Self-Assessment Report [1]).

One of the consequences of this development is that databases are increas-
ingly becoming invisible, although they still constitute the backend-tier of data-
intensive applications. Rather, data management and thus databases are hidden
behind service interfaces. Thus, data-intensive applications have to deal with
services description and registration instead of relational schema definition, ser-
vice instances instead of relations, or service invocations instead of relational
operators for accessing or manipulating data. Database research thus more and
more needs to cope with database functionality at higher levels of semantics,
e.g., optimal routing of service requests as opposed to query optimization, or
transactional execution guarantees for composite services to just name a few.

2.3 Symbionts or Predators, Peaceful Coexistence or Mutual
Indifference?

In light of these developments, it is obvious that the relationship between infor-
mation agents and databases cannot be characterized by just mutual indifference.

Agents and Databases: A Symbiosis? 27

It even significantly goes beyond a peaceful coexistence since information agents
are more than only clients to databases.

From the point of view of information agents, databases are still the resource
managers which persistently store information. But even more, the broader no-
tion of databases provides the necessary protocols and mechanisms for coordi-
nating agent interactions, e.g., for providing provably correct and transactionally
safe multi-agent executions or for routing service requests in an optimal way.

At the same time, higher level database functionality can significantly benefit
from advances in the area of information agents. This includes the ability to
semantically integrate information from different sources, to negotiate quality
of service for interactions, to proactively discover resources, or to dynamically
adapt to changing environments.

Apparently, there are many potential synergies between both fields. Some
of them are addressed in recent initiatives and projects which are stemming
from the database community and which aim at making database functional-
ity available outside of databases. Thus, these projects implicitly address issues
which are of high practical impact also for information agent interactions. Hyper-
databases [15,16,17], InfoSphere [14], or AutoGlobe/ServiceGlobe [6] are some
examples out of a longer list of similar initiatives which hopefully lead to a
sustainably symbiotic relationship between both fields.

In what follows, we will present in detail the hyperdatabase project which has
originated at ETH Zurich and which is now being continued at the University
of Basel. In particular, we briefly present the underlying hyperdatabase vision
for the management of future information spaces and we will present two im-
plementations of the hyperdatabase vision which provide database functionality
at higher level of abstractions, outside of a database, which is supposed to also
facilitate and ameliorate distributed agent-based applications.

3 Hyperdatabases

This section first briefly introduces the hyperdatabase vision and then presents
two implementations of this vision for which we believe they will have a strong
impact on the way distributed information agents interact. A more detailed
summary of the hyperdatabase vision and its realizations can be found in a
recent survey paper [16].

3.1 The Hyperdatabase Vision

The driving forces behind the hyperdatabase vision are mainly based on two
observations. First, that the volume of data and information is significantly
increasing and undergoes continuous changes while being inherently distributed
and heterogeneous. Second, non-relational data sources such as, for instance, im-
age, video, audio collections are increasingly gaining importance. Thus, a holistic
approach to managing the “information space” of the future, i.e., the universe of
all information sources, needs a radical departure from the traditional database

28 H. Schuldt

thinking by moving up to a much higher level of abstraction. In short, a hyper-
database administers objects that are composed of objects and transactions that
are composed of transactions. Thus, it provides database functionality not only
over many distributed databases but in a more general way on top of distributed
components and services with various functionality in a networked environment.

With hyperdatabases, the notion of data independence is generalized in the
form of “higher order data independence”. This includes the immunity of appli-
cation programs not only against changes in storage and access structure, but
also against changes in location, implementation, workload, the number of replica
of software components and their services. The relation between databases and
hyperdatabases can be briefly characterized as follows: a database is a platform
for clients concurrently accessing shared data which needs data definition, data
manipulation, and transactions at the interface. Internally, the database man-
agement system performs query optimization, provides correctness for parallel
access, recovery, persistence, load balancing, and guarantees a high degree of
availability. Similarly, a hyperdatabase is a platform for clients, concurrently ac-
cessing shared application services; thus, as opposed to shared data in a database,
it has to deal with shared components and services. At the interface, a hy-
perdatabase has to provide component and service definition and description,
service customization, transactional processes encompassing multiple service in-
vocations. Internally, the hyperdatabase performs optimization of client requests,
routing, scheduling, and parallelization, correctness of concurrent accesses, flexi-
ble failure treatment, providing guaranteed termination (i.e., a generalized form
of atomicity), availability, flexible recovery, and scalability. Table 1 summarizes
the analogy.

Most importantly and in contrast to traditional database technology, a hy-
perdatabase infrastructure must not follow monolithic system architecture but
must be fully distributed over all participating nodes in a network. Every node
is equipped with an additional thin software layer, a so-called hyperdatabase
layer (which, in the terminology of the agent community, is actually an informa-
tion agent). Each deployment of the hyperdatabase layer can be considered as
an agent which offers dedicated services and/or provides access to information.
Thus, one of the main challenges of hyperdatabases is the communication and
coordination of these hyperdatabase layers.

3.2 Hyperdatabase Projects

The following two sections present in more detail two concrete implementations
which arose from the hyperdatabase vision. Both address the distributed retrieval
and/or processing of information by a set of cooperating hyperdatabase layers
(agents). The first focuses on distributed, process-based applications while the
second addresses transactional semantics in these distributed settings.

OSIRIS: A Hyperdatabase Implementation for Distributed Process-
based Applications. The proliferation of service-oriented computing and in
particular of (Web) services had a strong impact on information systems. System

Agents and Databases: A Symbiosis? 29

Table 1. Analogy between DBMSs and the Hyperdatabases (from [16])

Database Management Hyperdatabase Infrastructure

Relational schema definition Service definition and registration

Relational schema extension New service registration

Relation Service instance

Access to relation Service invocation

Query and update language Process definition language

Transaction Transactional process

ACID Guarantees Correct execution and guaranteed termination
of process

Undo operation Inverse service invocation

Redo operation Repeatable service invocation

Indexing Feature extraction and feature space organization

Query Optimization Optimal process routing

Physical Database Design Configuration Design by service allocation
and replication

support for the invocation of single services is widely available, due to standard-
ized protocols and formats (e.g., WSDL and SOAP). Beyond these basics, the most
important challenges are the management of existing services and their evolution,
the composition of existing services into a coherent whole by means of processes,
and the optimization of service requests to guarantee a high degree of scalability
in order to deal with an increasing number of services, processes, and users.

OSIRIS (Open Service Infrastructure for Reliable and Integrated process Sup-
port) [22,23] is a novel infrastructure for distributed service-oriented applica-
tions. It primarily focuses on the scalable and reliable execution of composite
services, also called processes. OSIRIS provides basic mechanisms which can also
be applied to distributed, cooperating information agents in jointly achieving a
common task. Process-based applications are either explicitly specified, accord-
ing to the paradigm of programming in the large [26], or are individually and
automatically created by a dedicated planner (e.g., [10,11,24]).

OSIRIS consists of a set of agents (so-called hyperdatabase layers). These
agents interact in a decentralized, peer-to-peer style for executing processes [20].
In addition, OSIRIS considers several global repositories. While only the agents
are responsible for process execution, the global repositories collect metadata
on the overall system and apply sophisticated replication mechanisms (based
on publish/subscribe techniques) for control flow dependencies from the global
repositories to the agents. At run-time, this guarantees that no single point of
failure is involved in the execution of processes and allows to provide sophisti-
cated load balancing strategies (selection of the least loaded peer which provides
a dedicated service). For this, the concrete service binding is determined at run-
time depending on the load of agents and costs of invoking a particular service
instance [21].

In order to minimize information exchange between repositories and agents,
only a minimal set of information is replicated, i.e., only the information an

30 H. Schuldt

agent needs to drive the execution of those process instances that it might po-
tentially be responsible for (for which it provides services). Among all global
OSIRIS services, the most important ones for distributed and decentralized pro-
cess execution are the the process repository which holds the global definitions
of all processes types, the service registry which is a directory of all available
services in the system provided by OSIRIS agents, and the load repository which
manages information on the load of all agents in the system.

OSIRIS’ decentralized and distributed approach to process execution is illus-
trated in Figure 1. Different service types are depicted with different shapes,
execution orders are illustrated by directed edges. Agents (OSIRIS layers) are
sitting on top of all service providers and allow them to make available their ser-
vices to OSIRIS processes. In the center, some of the core OSIRIS services are
displayed. Figure 1 also shows how a process description is replicated in small
pieces to the OSIRIS agents (dotted lines). Finally, after replication, enough pro-
cess and service meta information is locally available to allow for peer-to-peer
process execution. In particular, when a process is instantiated and executed, the
OSIRIS agents can decide on their own, based on locally replicated information,
where to route a request to (solid lines between OSIRIS agents). This makes
sure that process execution takes place in a decentralized and distributed way
and guarantees a high degree of scalability.

Distributed Concurrency Control for Processes. In databases, transac-
tional execution guarantees are of high importance and have strong practical
impact in a large number of applications. In general, this is also true for hy-

Process
Repository

Load
Repository

Service Registry
RP

FEC

Services

Services

Se
rv

ic
es

Services

Agent
(O

SIR
IS layer)

Ag
en

t
(O

SI
R
IS

 la
ye

r)

Agent
(OSIRIS layer)

Process Invocation Process Execution
Service Invocation
Metadata Replication

…

…

…

Core OSIRIS Services

Service
Provider

P

R

Agent
(OSIRIS layer)

Fig. 1. Distributed Agent-based Execution of OSIRIS Processes

Agents and Databases: A Symbiosis? 31

perdatabases. However, isolated and atomic behavior for concurrent distributed,
service-based applications needs to take into account the higher level seman-
tics of services (compared to rather low-level database operations). Transac-
tional processes [19] consider these constraints and provide process support with
transactional guarantees over distributed components using existing services as
a generalization of traditional database transactions. Essentially, transactional
processes exploit the termination semantics of the individual services they con-
tain. Each service is either compensatable, retriable, or pivot, following the model
of flexible transactions [27]. The effects of compensatable services can be seman-
tically undone after the invocation has successfully returned. Retriable services
are guaranteed to terminate correctly, even if they have to be invoked repeat-
edly. In this case, the last invocation succeeds while all previous invocations of
this service do not leave any effects. [18] presents a more advanced distinction
between termination classes, based on execution costs of services. Pivot services
are those that cannot be compensated, due to the lack of an inverse service, or
which are not appropriate for compensation due to their high costs.

On the basis of the transactional process model, the AMOR (Agents, MObility
and tRansactions) approach [8,7] allows to provide global transactional guaran-
tees, i.e., atomicity and isolation applied at the level of processes without any
global component involved. Conventionally, isolation and atomicity are enforced
using a locking protocol like the strict two-phase locking (2PL) in combination
with a global commit protocol like the two-phase commit (2PC) [12] and require
a centralized coordinator. These protocols are not applicable in completely dis-
tributed agent-based applications. AMOR uses a novel protocol which is based
on decentralized serialization graph testing to ensure global correctness (con-
currency control and recovery) in peer-to-peer environments without a global
coordinator. Essentially, each agent is equipped with partial knowledge (local
serialization graph containing information on conflicts with other agents) that
allows them to coordinate. Globally correct execution is achieved by communi-
cation among dependent agents and can even be enforced in case of incomplete
local knowledge. It can be guaranteed that each agent can decide at commit time
whether it is able to safely commit its work or whether it has to wait on other
agents to commit their work first before they can proceed.

Thus, AMOR provides the basic protocol that can be used to add transac-
tional semantics to any kind of agent cooperation without imposing a dedicated
infrastructure for this coordination, similarly to the way it has brought forward
P2P systems with transactional semantics [3].

4 Conclusion

The significant growth of information over the last years has led to an increas-
ingly large number of information sources in various formats and at different lo-
cations. This information might even be subject to frequent changes and complex
interdependencies. In order to support applications in dealing with this wealth of
heterogeneous information, novel approaches are required to access these informa-
tion sources, to mediate between them and to provide value-added services. These

32 H. Schuldt

problems are in the focus of information agents, which take over these tasks on be-
half of their users or other agents. Most importantly, tasks are usually delegated
to groups of (possibly specialized) agents which solve them in a collaborative way.

At the same time, this evolution has also led to a re-thinking of database
research. Databases are no longer in the center of applications but are hidden to
the applications behind service interfaces. Nevertheless, well known guarantees
from databases like optimized access and transactional execution are still needed,
but at a higher level of semantics, namely the invocation of services.

The activities of the information agent and database communities have led to
highly complementary results and research activities are more and more directed
towards bringing both fields closer together. So the rather rhetorical question
from the title of this paper can be clearly answered: there is indeed a high po-
tential for synergies and cross-fertilization between both fields which is visible in
the promising results of some initiatives, and the research agendas will hopefully
be much closer aligned in the near future.

In this paper, we have reported on some activities which originated from the
database community and which, as we believe, will also have a strong impact
also on cooperative information agents. In particular, we have summarized the
hyperdatabase vision which aims at applying database system concepts outside
of databases. In addition, with OSIRIS and AMOR, we have presented two hy-
perdatabase implementations. The first aims at providing optimized routing of
service requests, as a generalization of query optimization in databases, while
the latter focuses on providing transactional execution guarantees for compos-
ite services, as a generalization and extension of ACID guarantees known from
database transactions.

Over the last ten years, the hyperdatabase vision has been implemented, ex-
ploited, and evaluated in a large variety of applications. However, the hyper-
database vision is not static but needs to evolve with the ongoing advancements
and new trends in large-scale, distributed and heterogeneous information spaces.
Current activities in the context of the hyperdatabase vision, for instance, con-
sider additional support for context-aware service composition and semantic fail-
ure handling. Essentially, when considering the current context (e.g., location)
of a user or her individual preferences, personalized process-based applications
can be either newly created or existing ones can be automatically adapted. This
includes the customizaiton and generation of processes using semantic Web ser-
vices, their reliable distributed execution, and finally the exploitation of seman-
tics for failure handling purposes – the latter will significantly benefit from recent
work done in the context of cooperative information agents.

References

1. Abiteboul, S., Agrawal, R., Bernstein, P.A., et al.: The Lowell Database Research
Self-Assessment. Communications of the ACM 48(5), 111–118 (2005)

2. AgentLink. Special Interest Group on Intelligent Information Agents,
http://www.dbgroup.unimo.it/IIA/

http://www.dbgroup.unimo.it/IIA/

Agents and Databases: A Symbiosis? 33

3. Antony, S., Agrawal, D., Abbadi, A.E.: P2P Systems with Transactional Seman-
tics. In: Proceedings of the 11th International Conference on Extending Database
Technology (EDBT 2008), Nantes, France, March 2008, pp. 4–15. ACM Press, New
York (2008)

4. CIA. International Workshop Series on Cooperative Information Agents,
http://www-ags.dfki.uni-sb.de/∼klusch/IWS-CIA-home.html

5. Codd, E.F.: The Capabilities of Relational Database Management Systems. IBM
Research Report, San Jose, California, RJ3132 (1981)

6. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper, A.: Adaptive Quality
of Service Management for Enterprise Services. ACM Transactions on the Web
(TWEB) 2(1) (Febuary 2008)

7. Haller, K., Schuldt, H., Schek, H.-J.: Transactional Peer-to-Peer Information Pro-
cessing: The AMOR Approach. In: Chen, M.-S., Chrysanthis, P.K., Sloman, M.,
Zaslavsky, A. (eds.) MDM 2003. LNCS, vol. 2574, pp. 356–361. Springer, Heidel-
berg (2003)

8. Haller, K., Schuldt, H., Türker, C.: Decentralized Coordination of Transactional
Processes in Peer-to-Peer Environments. In: Proceedings of the 2005 ACM CIKM
International Conference on Information and Knowledge Management, Bremen,
Germany, pp. 28–35. ACM Press, New York (2005)

9. Klusch, M. (ed.): Intelligent Information Agents. Springer, Heidelberg (1999)
10. Lopes, A., Costa, P., Bergenti, F., Klusch, M., Blankenburg, B., Möller, T., Schuldt,

H.: Context-aware Secure Service Composition Planning and Execution on E-
Health Environments. In: Proceedings of the European Conference on eHealth
(ECEH 2006), Fribourg, Switzerland, pp. 179–190 (October 2006)

11. Möller, T., Schuldt, H., Gerber, A., Klusch, M.: Next Generation Applications
in Healthcare Digital Libraries using Semantic Service Composition and Coordina-
tion. Health Informatics Journal (HIJ), Special Issue on Health Digital Libraries 12,
107–119 (2006)

12. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn.
Prentice Hall, Englewood Cliffs (1999)

13. Papazoglou, M.P., Laufmann, S.C., Sellis, T.K.: An Organizational Framework for
Cooperating Intelligent Information Systems. International Journal on Cooperative
Information Systems 1(1), 169–202 (1992)

14. Pu, C., Schwan, K., Walpole, J.: Infosphere Project: System Support for Informa-
tion Flow Applications. SIGMOD Record 30(1), 25–34 (2001)

15. Schek, H.-J., Böhm, K., Grabs, T., Röhm, U., Schuldt, H., Weber, R.: Hyper-
databases. In: Proceedings of the First International Conference on Web Informa-
tion Systems Engineering (WISE 2000), Hong Kong, China, June 2000, pp. 14–25.
IEEE Computer Society, Los Alamitos (2000)

16. Schek, H.-J., Schuldt, H.: The Hyperdatabase Project – From the Vision to Re-
alizations. In: Proceedings of the 25th British National Conference on Databases
(BNCOD 25), Cardiff, UK, July 2008. LNCS, vol. 5071. Springer, Heidelberg (2008)

17. Schek, H.-J., Schuldt, H., Weber, R.: Hyperdatabases: Infrastructure for the In-
formation Space. In: Proceedings of the Sixth IFIP Working Conference on Visual
Database Systems (VDB 2002), Bisbane, Australia, May 2002, pp. 1–15. Kluwer
Academic Publishers, Dordrecht (2002)

18. Schuldt, H.: Process Locking: A Protocol based on Ordered Shared Locks for the
Execution of Transactional Processes. In: Proceedings of the 20th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2001),
Santa Barbara, CA, USA, May 2001, ACM Press, New York (2001)

http://www-ags.dfki.uni-sb.de/~klusch/IWS-CIA-home.html

34 H. Schuldt

19. Schuldt, H., Alonso, G., Beeri, C., Schek, H.-J.: Atomicity and Isolation for Trans-
actional Processes. ACM Transactions of Database Systems (TODS) 27(1), 63–116
(2002)

20. Schuler, C., Schuldt, H., Türker, C., Weber, R., Schek, H.-J.: Peer-to-peer Execu-
tion of (Transactional) Processes. International Journal on Cooperative Informa-
tion Systems 14(4), 377–406 (2005)

21. Schuler, C., Türker, C., Schek, H.-J., Weber, R., S.H.: Scalable Peer-to-Peer Process
Management. International Journal of Business Process Integration and Manage-
ment (IJBPIM) 1(2), 129–142 (2006)

22. Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Peer-to-Peer Process Execution
with OSIRIS. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J.
(eds.) ICSOC 2003. LNCS, vol. 2910, pp. 483–498. Springer, Heidelberg (2003)

23. Schuler, C., Weber, R., Schuldt, H., Schek, H.-J.: Scalable Peer-to-Peer Process
Management – The OSIRIS Approach. In: Proceedings of the IEEE International
Conference on Web Services (ICWS 2004), San Diego, CA, USA, June 2004, pp.
26–34. IEEE Computer Society Press, Los Alamitos (2004)

24. Schumacher, M., Helin, H., Schuldt, H. (eds.): CASCOM: Intelligent Service Co-
ordination in the Semantic Web. Whitestein (2008)

25. Silberschatz, A., Zdonik, S.B.: Database Systems - Breaking Out of the Box. SIG-
MOD Record 26(3), 36–50 (1997)

26. Wiederhold, G., Wegner, P., Ceri, S.: Toward Megaprogramming. Commununica-
tions of the ACM 35(11) (1992)

27. Zhang, A., Nodine, M.H., Bhargava, B.K.: Global Scheduling for Flexible Trans-
actions in Heterogeneous Distributed Database Systems. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 13(3), 439–450 (2001)

Agents and Semantic Services: A Critical Review

Katia P. Sycara

School of Computer Science
Carnegie Mellon University

katia@cs.cmu.edu

http://www.cs.cmu.edu/∼softagents

Abstract. Web Services have been hailed as the latest silver bullet for
enabling business process representation and integration. In recent years,
industry has developed a variety of standards, e.g. SOAP, WSDL, UDDI,
BPEL for web services discovery, description, and distributed execution
over the Web. These industry standards have emphasized description
of service interfaces. However, they have many limitations with respect
to flexible interaction and interoperability among heterogeneous services.
For example, WSDL does not give any indication on the order of message
exchange between a service and its client.

On the other hand, Multi-Agents Systems research over the years has
developed techniques for autonomous and goal-directed agent interac-
tions, agent communication languages that support extended conversa-
tions, flexible automated agent discovery in open environments, agent
negotiation and methods for peer to peer reactive and proactive agent
behaviors in dynamic environments.

In this talk, I will present requirements and extensions on web ser-
vices functionality for supporting business processes. Some of these ex-
tensions include peer to peer and multi-party interactions, dynamic on
the fly-composition of web services, message patterns that go beyond
request-response, contracts and service level agreements. In addition, I
will present characteristics of agents and web services that encourage
fruitful application of techniques from agents to services and vice versa.
In particular, I will articulate the importance of formally specified, unam-
biguous semantics for increasing service interoperability and flexibility of
interactions, thus bringing the services and agents paradigms and tech-
nologies closer to one another. A first step towards this rapprochement
is the development of formal languages and inference mechanisms for
representing and reasoning with core concepts of Web Services.

In closing, I present my vision of Web services as autonomous goal-
directed agents which select other agents to interact with, and flexibly
negotiate their interaction model, acting in peer to peer fashion. The
resulting Web services, that I call Autonomous Semantic Web services,
utilize ontologies and semantically annotated Web pages to automate
the fulfillment of tasks and transactions with other Web agents. In cross-
fertilizing each other, both agent technology and web services technology
can discover new synergies that will make the combination and subse-
quent adoption much stronger, vital and useful than either of the two
technologies separately.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, p. 35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.cmu.edu/~softagents

Agent-Supported Planning in Distributed

Command and Control Environments

James H. Lawton

US Air Force Research Laboratory
Information Directorate, Rome Research Site

Rome, NY, 13441, USA
James.Lawton@rl.af.mil

Abstract. To be able to meet the future challenge of employing forces
anywhere in the world in support of national security objectives, modern
military forces require highly synchronized, distributed planning and re-
planning capabilities that are sufficiently flexible to adapt to any level
of conflict. This talk will present a research program underway at the
USAF Research Laboratory’s Information Directorate known as DEEP
(Distributed Episodic Exploratory Planning). DEEP is an agent-based
distributed planning system that has been designed to support future
military command and control (C2) operations. The talk will discuss the
motivation for moving from a centralized planning model to a distributed
mixed-initiative approach, along with the DEEP architecture and the
key research challenges for achieving this vision. The distributed agent-
supported planning capabilities, which utilize past experience to solve
current problems, will be emphasized1.

1 Introduction

The U.S. and other highly industrialized nations have developed military capa-
bilities that excel in conventional force-on-force warfare, especially where tactics
are well developed and known. However, modern adversaries have devised the
strategy of not going head-to-head with these capabilities and instead combat
modern conventional forces with unconventional tactics. One example of the re-
sult of a weapon system being vastly superior is the case of the air superiority
fighter which modern adversaries totally avoid putting themselves in a position
to contest them.

To meet these future challenges, U.S. forces are in the midst of a transfor-
mation to not only support traditional high-tempo, large force-on-force engage-
ments, but also smaller-scale conflicts characterized by insurgency tactics and
time-sensitive targets of opportunity. This transformation requires a vastly new
Command and Control (C2) process that can adapt to the any level of conflict,
provides a full-spectrum joint warfighting capability, and can rapidly handle any
level of complexity and uncertainty.
1 For a more complete description of the DEEP project, see [AFRL-08a], [AFRL-08b]

and [AFRL-08c].

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 36–40, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Agent-Supported Planning in Distributed Command 37

To meet future challenges, the U.S. Air Force (USAF) is moving towards
a model of continuous air operations not bounded by the traditional 24-hour
Air Tasking Order (ATO) cycle. Meeting these objectives will require a highly
synchronized, distributed planning and replanning capability. As a potential way
ahead, in May 2006 the USAF released a revolutionary vision paper [Braun-06]
depicting what a potential future C2 environment could be. Four key concepts
emerged as being critical to the success of this vision of a future Air Operations
Center (AOC):

– Distributed/Reachback planning
– Redundant/Backup planning
– Continuous planning
– Flexible, scalable, tailorable C2

Experience with recent operations also reveals that the C2 process must transi-
tion from a process of observation and reaction to one of prediction and preemp-
tion. To achieve this, we will need to go beyond the focus of military operations,
and instead address the entire spectrum of Political, Military, Economics, Social,
Infrastructure, and Information (PMESII).

To that end, the focus of the research discussed in this talk has focused on
developing a C2 environment that supports the vision of Network Centric Op-
erations (NCO). The tenets of NCO are:

– Information sharing
– Shared situational awareness
– Knowledge of commanders intent.

2 DEEP: Distributed Episodic Exploratory Planning

In response to the need to support these key NCO tenets, the long-term goal
of the Distributed Episodic Exploratory Planning (DEEP) project is to develop
in-house a prototype system for distributed, mixed-initiative planning that im-
proves decision-making by applying analogical reasoning over an experience base.
The two key objectives of DEEP are:

– Provide a mixed-initiative planning environment where human expertise is
captured and developed, then adapted and provided by a machine to aug-
ment human intuition and creativity.

– Support distributed planners in multiple cooperating command centers to
conduct distributed and collaborative planning.

That is, the architecture of DEEP was explicitly designed to support the key
tenets of NCO in a true distributed manner. Because DEEP is not based on any
current C2 system, we are able to explore concepts such as combining planning
and execution to support dynamic replanning, to examine machine-mediated
self-synchronization of distributed planners, and to experiment with the impact

38 J.H. Lawton

of trust in an NCO environment (e.g., Good ideas are more important than their
source).

Alberts and Hayes [Alberts-07] advocate bold new approaches beyond current
organizational process, focusing on what is possible for NCO. High priority basic
research topics recommended as areas to systematically explore are:

1. Taxonomy for planning and plans
2. Quality metrics for planning and plans
3. Factors that influence planning quality
4. Factors that influence plan quality
5. Impact of planning and plan quality on operations;
6. Methods and tools for planning
7. Plan visualization

This talk describes our approach to achieving this vision of NCO by presenting
the progress to date on the development of the DEEP prototype, especially as
it relates to these priorities.

2.1 High Level Architecture

The DEEP architecture, shown in Figure 1, is a systems-of-systems design com-
prised of the following sub-systems:

– Distributed Blackboard for multi-agent, non-deterministic, opportunistic
reasoning

– Case-Based Reasoning system to capture experiences (successes and/or fail-
ures)

– Episodic Memory for powerful analogical reasoning
– Multi-Agent System for mixed initiative planning
– ARPI Core Plan Representation [Pease-98] for human-to-machine common

dialog
– Constructive Simulation for exploration of plausible future states

The key components of the DEEP architecture include a messaging system, var-
ious knowledge objects, a shared data storage system, and a variety of agents
for manipulating plans. For convenience, we will describe the pieces in the archi-
tecture in the order in which might be typically used. One should bear in mind,
however, that in this type of mixed-initiative system, there will rarely be a clean
path from the initial planning problem to the final solution.

Consider the system-of-systems given in Figure 1. The starting point for entry
into the system occurs when a commander describes a new mission using a
planning agent (1). The planning agent allows a commander to input information
into the system which defines their current objectives. These objectives, along
with other information, such as resources, locations, and time constraints, are
collectively known as the situation. This situation is then placed on the shared
blackboard (2). The blackboard would in turn notify all registered components
of the existence of the new situation. The other planning agents, with their

Agent-Supported Planning in Distributed Command 39

Fig. 1. DEEP High Level Architecture

associated case bases and cased-based reasoning capabilities, each search their
case base using the situation given for relevant past experiences (3). These results
are then modified to fit the current situation (4) and are posted to the blackboard
as candidate plans (5). Once the candidate plans are on the blackboard, they are
adapted by specialized adaptation agents to further refine these plans to meet
the current situation (6). These plans are now ready to be critiqued by the critic
agents. These agents concurrently scrutinize the candidate plans and score them
based on their individual expertise (7). Once the plans are scored, the execution
selection critic gathers the adapted plans along with their scores, determines
their overall scores, and selects a number of top rated plans to be executed (8).
The top rated plans are now executed (currently in a simulated environment)
(9). Once a plan completes execution, the results are combined with the plan
and assimilated back into the original planning agent’s case base (10).

Although we have described this planning and execution as a single flow through
the system, in reality few plans will execute without changes. The DEEP architec-
ture supports the modification of currently executing plans through feedback of
partial results of plan execution into the blackboard. This allows the plans to be
run through the adaptation and critique processes as many times as needed (10).

References

[Alberts-07] Alberts, D., Hayes, R.: Planning: Complex Endeavors. Command and
Control Research Program Press (2007)

[AFRL-08a] DeStefano, C., Lachevet, K.K., Carozzoni, J.A.: Distributed Planning in
a Mixed-Initiative Environment. In: Proceedings of the 13th International
Command and Control Research and Technology Symposium (2008)

40 J.H. Lawton

[AFRL-08b] Staskevich, G.R., Lawton, J.H., Carozzoni, J.A.: Semantic Interoperabil-
ity in Distributed Planning. In: Proceedings of the 13th International
Command and Control Research and Technology Symposium (2008)

[AFRL-08c] Ford, A.J., Lawton, J.H.: Synthesizing Disparate Experiences in Episodic
Planning. In: Proceedings of the 13th International Command and Con-
trol Research and Technology Symposium (2008)

[Braun-06] Braun, G.: AFFOR Command and Control Enabling Concept–Change
2. AF/A5XS Internal Report (May 25, 2006)

[Pease-98] Pease, A.: Core Plan Representation. Version 4 (November 6, 1998)

Towards Trust-Based Acquisition of

Unverifiable Information

Eugen Staab, Volker Fusenig, and Thomas Engel

Faculté des Sciences, de la Technologie et de la Communication,
Université du Luxembourg,

Campus Kirchberg, 6, rue R. Coudenhove-Kalergi, L-1359 Luxembourg
{eugen.staab,volker.fusenig,thomas.engel}@uni.lu

Abstract. We present a trust-based mechanism for the acquisition of
information from possibly unreliable sources. Our mechanism addresses
the case where the acquired information cannot be verified. The idea
is to intersperse questions (“challenges”) for which the correct answers
are known. By evaluating the answers to these challenges, probabilistic
conclusions about the correctness of the unverifiable information can be
drawn. Less challenges need to be used if an information provider has
shown to be trustworthy. This work focuses on three major issues of such
a mechanism. First, how to estimate the correctness of the unverifiable
information. Second, how to determine an optimal number of challenges.
And finally, how to establish trust and use it to reduce the number of
challenges. Our approach can resist collusion and shows great promise
for various application areas such as distributed computing or peer-to-peer
networks.

Keywords: Information acquisition, trust.

1 Introduction

A lot of research addresses trust that is based on direct experiences [1,2]. These
direct experiences result from evaluating the outcomes of interactions with other
agents. Such an evaluation however is not possible when the outcome of an
interaction is information that cannot be verified, or the verification would be
too costly. An example illustrates this situation:

Example 1. Agent Alice wants to know the result of 15 + 8. However, Alice
cannot compute the result because she is out of resources at the time. So Alice
asks another agent Bob to do it for her. Although Bob knows how to calculate
the result, he returns the wrong result 26 because he is malicious and wants to
harm Alice. Consequently, Alice, who does not want to verify the result because
she wanted to save resources, uses the wrong result in her further work. This
will cause additional costs for her, and if she is not aware of them, she even does
not classify the experience with Bob as a negative experience.

An attempt to solve this problem is to ask several agents for the desired in-
formation, to compare their answers, and to discard these if they are not the

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 41–54, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

42 E. Staab, V. Fusenig, and T. Engel

same (see e.g. [3]). However, this approach is sensitive to collusion [2], especially
in settings with only few information providers, and its efficiency ought to be
improved. Therefore, we propose an alternative approach. The main idea is to
merge requests for information with so called “challenges” for which the correct
answers are already known. The requesting agent evaluates the responses to the
challenges and draws conclusions about the responses to the “real” requests.
This leads to an estimation of another agent’s trustworthiness which in turn can
be used to reduce the number of challenges that need to be used. However, a
minimal number of challenges is always retained to account for the first-time
offender problem [4].

The remainder of the paper is organized as follows. In Section 2, we outline
several application scenarios for the mechanism and show how challenges can
be generated in each scenario. The mechanism for information acquisition is
presented in Section 3. We discuss several issues concerning the practical use
of the mechanism in Section 4. Section 5 is used to refer to related work. We
conclude our paper and give an outlook on future work in Section 6.

2 Application Scenarios

This section outlines some application areas for which the mechanism shows
great promise.

The mechanism can be used in cases where calculations are outsourced and the
results shall not be verified. As it was motivated in Ex. 1, our mechanism can be
applied to the scenario of distributed computing, more specifically grid-computing
[5] or cloud-computing [6]. In these cases, challenges can either be provided by
trusted nodes or be computed whenever the system of the requesting agent is idle.

Another application scenario is the exchange of routing information in Wire-
less Ad Hoc Networks [7]. As new routing information cannot be verified, the
trust-based mechanism would help to enforce the provision of reliable informa-
tion. The challenges can be chosen to be questions about routes that are known
to exist (e.g. because packets have been sent over these routes in the recent past).

In peer-to-peer networks, our trust-based mechanism can be used against pol-
lution and poisoning attacks (see [8]). Challenges would consist of requests for
files that already have been verified by a human to match their description and
to be free of “bad chunks”. Note that in these settings, a small number of chal-
lenges for a given number of real requests would be essential for the practicability
of the mechanism. Also, the verification of a partly downloaded response to the
challenge should start as soon as a certain amount of packets is received.

The mechanism can also be useful for the purpose of exchanging reputation
information such that it implements the concept of “semantic distance” which
was introduced by Abdul-Rahman and Hailes [9]. The answers to challenges
would be used to determine the semantic distance, which in turn could be used
to weight the answers to the real requests. Related to that, the trust-based
mechanism can be used in Multi-Agent Systems, in which beliefs about the world
(which cannot easily be verified) are exchanged. The mechanism would prevent

Towards Trust-Based Acquisition of Unverifiable Information 43

the acquisition and the spread of wrong or outdated beliefs as well as it would
filter out “incompatible” beliefs. In this case, challenges would be based on the
knowledge of an agent.

3 Trust-Based Mechanism for Information Acquisition

In the following, we describe one run of the mechanism. An agent wants to
get answers to m questions. We will call these questions “real requests”. In
our particular case, the agent will not be able to verify the correctness of the
answers which he will get to the real requests (because, as mentioned earlier, he is
incapable or does not want to spend resources on it). Therefore, before sending
the request, the agent adds n challenges for which the answers are known to
him. These challenges must be chosen in a way such that another agent is not
able to easily distinguish them from real requests; how this choice can be made
depends on the concrete setting (see Sect. 2 for examples). The agent merges
the m requests and the n challenges into a vector of size m + n, in an equally
distributed manner. This request-vector is then transferred to the information
provider which is expected to reply with a response-vector of the same size. After
reception, the response-vector is evaluated, i.e. the answers to the challenges are
verified. The resulting error rate is used for two things. First, to estimate the
error rate of the answers to the real requests (see Sect. 3.1) and second, as
input for a trust-update algorithm (see Sect. 3.2). It is shown how an optimal
number of challenges can be computed when an information provider is not
known (see Sect. 3.3) and how the established trust can be used to reduce this
number of (costly) challenges (see Sect. 3.4). Finally, a decision needs to be
made whether the obtained response-vector is accurate enough or a new request
to other information providers should be done. This decision-making process
however is not part of this work (see Sect. 4 for a discussion).

3.1 Evaluation of a Response

An agent A sends a request-vector with m + n questions to an information
provider who is expected to reply with a response-vector of the same size. Agent
A evaluates the answers to the n challenges in such a response-vector, and finds r
correct and s incorrect answers, with r+s = n. We will call the rate of incorrect
answers s

s+r the error rate. As the challenges and real requests in the request-
vector were equally distributed, r and s can be used to estimate a probability
distribution for the error rate in the remaining part of the response-vector (the
part with the real requests). In this work we will assume that the information
provider can be described by an error-probability pw: with probability pw he
answers independently each question incorrectly (see Sect. 4 for a discussion of
this assumption). Let {xi}n

i=1 denote the evaluated answers to the challenges,
so each xi is in {correct, incorrect}. We can use Bayes’ theorem to get the
probability of each error-probability pw:

P (pw|{xi}n
i=1) =

P ({xi}n
i=1|pw)P (pw)

P ({xi}n
i=1)

(1)

44 E. Staab, V. Fusenig, and T. Engel

We can simplify this formula in the following way. First, the denominator can be
calculated by marginalization over all rates that could have produced the given
observations. Second, no prior information on pw is given, so we have to assume
all pw to be equally probable, and so it can be left out (it’s probability density
function is 1 in [0, 1]). Third, from statistical independence between all single
answers it follows that P ({xi}n

i=1|pw) = ps
w(1 − pw)r. As a result, we get the

probability density function of the beta distribution with parameters α = s + 1
and β = r + 1:

f(pw; s + 1, r + 1) =
ps

w(1 − pw)r∫ 1

0
xs(1 − x)rdx

(2)

Note that this probability distribution estimates the error probability pw of the
information provider and hence estimates also the error rate of the answers to
the real requests.

The mean of the beta distribution is given by α
α+β [10]. So, having costs cw for

one wrong answer, the expected costs for using the answers to the real requests
can be computed as follows:

E[m ∗ cw ∗ f(pw; s + 1, r + 1)] = m ∗ cw ∗ E(f(pw; s + 1, r + 1)) (3)

=
m ∗ cw ∗ (s + 1)

s + r + 2
. (4)

3.2 Bayesian Trust-Model

In this section, we present a formal trust-model which represents an agent’s
trust in another agent by a trust-value t and the corresponding uncertainty u.
These values will be used in Sect. 3.4 to reduce the number of challenges that
are needed for a request. We describe and justify how t and u are computed and
define initial values.

Let (tAB, uAB) denote the trust that an agent A has in an information pro-
viding agent B. In our model, a trust-value tAB ∈ (0, 1) is A’s estimation of the
rate of correct answers in a response-vector that will eventually be received from
B. The corresponding uncertainty uAB ∈ (0, 1] describes how certain A is about
this trustworthiness estimation tAB. Having no experience with B, an agent A
trusts always with (tAB, uAB) = (0.5, 1), i.e. the initially expected error proba-
bility is 0.5 but this is believed with the highest possible uncertainty. This seems
intuitive but also results from the formulas (which are defined below) when no
information is given.

Several forms of representation for trust have been proposed in literature (for
an overview see [11]). While uncertainty is usually represented as in our case,
there are several different representations of trust-values. To us, it seems to be
a mere issue of convention. However we want to justify our choice for (0, 1)
because, based on experiences, full trust (t = 1) or distrust (t = 0) seem not
to be reasonable – even though full trustworthiness and untrustworthiness are
possible.

Towards Trust-Based Acquisition of Unverifiable Information 45

Trust-Values. Let rB
old and sB

old denote the amount of respectively correct and
incorrect answers from past response-vectors received from an agent B. More
precisely, to give recent experiences a higher importance than older ones, each
single experience in rB

old and sB
old has been weighted with a so called “aging

factor” λ (q.v. [11]). The trust-value tAB is defined to be the expected value
of a beta distributed random variable X with parameters α = sB

old + 1 and
β = rB

old + 1:

tAB
def
= E(X) =

rB
old + 1

rB
old + sB

old + 2
(5)

The probabilistic justification for this calculation follows directly from Section
3.1: the trust-value is the most probable error probability pw based on past ob-
servations. Formula (5) constitutes the core part of the trust-value computation
in the proposed mechanism. We want to emphasize the possibility to extend this
computation with other approaches for trust-value computation that have been
proposed numerously in literature (e.g. see [1,2]).

Uncertainty. The uncertainty uAB in our model is based on the variance σ2

of the beta distribution, i.e. the lower the expected variance, the lower the un-
certainty. We will show that for parameters α ≥ 1 and β ≥ 1, the variance of
the beta distribution has the two properties that Wang and Singh [12] claim for
certainty measures. However, in comparison to their approach and the one used
in TRAVOS [13] that both compute integrals over a beta distribution, the vari-
ance of the beta distribution is much easier to compute. For a beta distributed
random variable X with parameters α and β, the variance σ2 is given by ([10]):

σ2 =
αβ

(α + β)2(α + β + 1)
(6)

As parameters for σ2 we have again α = rB
old + 1 and β = sB

old + 1, so α, β ≥ 1
because rB

old, sB
old ≥ 0. The highest value the variance can take in this case is

1/12 at point α = β = 1 (which will follow directly from Theorems 1 and 2). We
normalize σ2 accordingly and get uAB:

uAB
def
= 12σ2 (7)

It remains to show that the variance has the properties demanded by Wang
and Singh [12] – or rather the inverse properties, because we are addressing
uncertainty (they addressed certainty). First, we show that for fixed conflict χ
between α and β, σ2 decreases. Conflict refers to the similarity of α and β: Many
positive and negative experiences give reason for a higher uncertainty about an
agents trustworthiness. Without loss of generality we assume α ≤ β such that
the conflict can be expressed as α

β . Second, we show that for increasing conflict
and increasing α, σ2 decreases to α+β

2 .

Theorem 1. For α ≤ β and fixed conflict χ := α
β , σ2 decreases for increasing

α + β.

46 E. Staab, V. Fusenig, and T. Engel

Proof. We have to show that for any χ > 0 the first derivative of σ2 is negative
for all possible α, β. In (6) we substitute β by (α/χ) and differentiate with
respect to α:

dσ2

dα
=

d

dα

(
α2/χ

(α/χ + α)2(α/χ + α + 1)

)
(8)

= · · · = − χ2

(1 + χ)(χ + α + χα)2
< 0, ∀β ≥ α ≥ 1. (9)

�
Theorem 2. Assuming fixed γ := α + β. For increasing conflict, σ2 increases.

Proof. We have to look at the “slices” of σ2 where γ := α + β is fixed. The
function at the respective “slice” should increase when the conflict increases and
decrease again when the conflict decreases. In σ2 we substitute β by (γ − α):

g(α) :=
α(γ − α)

γ2 ∗ (γ + 1))
(10)

The maximum of g(α) is to be shown to be at the point where the conflict is
maximal, i.e. α = β which is α = γ/2. If additionally g(α) is concave down, i.e.
the second derivation is negative for all possible α and γ, we’re done. We find:

d2g(α)
dα2

= · · · =
dg(α)
dα

(
γ − 2α

γ2 + γ3

)
= − 2

γ2 + γ3
(11)

For γ > 0 the first derivation has its only root (and so its maximum) clearly at
α = γ/2. The second derivation is negative for all γ > 0. �
Depending on the scenario, it might be necessary to control the speed with which
the uncertainty decreases; however this is done (e.g. taking the nth root of the
variance), it has to be guaranteed that the properties of the variance described
in Theorems 1 and 2 are still fulfilled.

3.3 Optimizing the Number of Challenges

In this section, we show how to find an optimal number of challenges n when given
a number of real requests m. With “optimal” we refer to a number of challenges
that minimizes the expected costs that arise when the error rate for the challenges
and the one for the real requests differs. For example, an agent gets many correct
answers to the verifiable challenges but not a single correct answer to the real re-
quests. Then, the agent would underestimate the error rate for the real requests
and work with incorrect information. Therefore, we find the number of challenges
for which the expected difference between errors to the challenges and errors to the
real requests is minimized. Note that a malicious information provider could try
to answer all challenges correctly while giving wrong answers to all real requests.
However, such situation could only be reached by guessing the number and the
positions of the challenges – because real requests and challenges are randomly

Towards Trust-Based Acquisition of Unverifiable Information 47

merged. We proceed as follows. We first calculate the probabilities for all possi-
ble differences in the error rates. These probabilities are used to determine the
expected costs. The resulting cost-function is minimized in respect to n.

First, let us virtually separate challenges from real requests and denote the
vector that contains the answers to the challenges with 	n and accordingly the
vector that contains the answers to the real requests with 	m. Let 	m be of size
m and 	n be of size n. Further let w(x) be a function returning the error rate in
some vector 	x. What we want to know first is the probability of having an error
rate j in 	m given an error rate i in 	n:

P (w(m) = j|w(n) = i) (12)

The error rates w(m) and w(n) seem to be statistically independent. That is
however not the case because they both depend on the same error probability pw,
according to which the answers were answered incorrectly (see also Sect. 3.1).
Therefore, we have to consider P (m, pw|	n) (for the moment ignore the function
w(·)). We use the basic product rule (see [14], p. 51) and get:

P (m, pw|	n) = P (m|pw, 	n)P (pw|	n) (13)
= P (m|pw)P (pw|	n) (14)

The last step leading to (14) is allowed because 	m is independent of 	n for given
pw. The probability P (w(m) = j|pw) is the probability for k failures in m in-
dependent Bernoulli trials with error probability pw, where k = j ∗ m. So, we
have a binomial distribution with parameters m and pw; we will write Ppw (k|m).
The probability P (pw|w(n) = i) follows the beta distribution f with parameters
α = i ∗ n + 1 and β = (1 − i) ∗ n + 1 (as derived in Section 3.1). In order to get
(12) we can integrate over all mutually exclusive pw:

P (w(m) = j|w(n) = i) =
∫ 1

0

Ppw (j ∗ m|m) (15)

∗ f(pw; i ∗ n + 1, (1 − i) ∗ n + 1)dpw (16)

Now, we can calculate the probability that the error rate in 	m differs from the
error rate in 	n by some x. This is done by marginalization over all τ ∈ T , where
T is the set that contains all possible error rates in 	n, i.e. T = { a

n |a ∈ N0, a ≤ n}:
P (w(m) − w(n) = x) =

∑
τ∈T

P (w(m) = τ + x, w(n) = τ) (17)

=
∑
τ∈T

P (w(m) = τ + x|w(n) = τ)P (w(n) = τ) (18)

Note that a priori all 	n are equiprobable and so we can compute P (w(n)) in
a combinatorial fashion; i.e. for w(n) = a/n, we have to divide the number
of possibilities to have a incorrect answers in 	n, by the number of all possible
vectors 	n:

P (w(n) = a/n) =

(
n
a

)
2n

(19)

48 E. Staab, V. Fusenig, and T. Engel

Formula (18) will be calculated for all those differences x that are “possible”,
i.e. those contained in the set X := { a

m − b
n |a, b ∈ N0, a ≤ m, b ≤ n}. Note that

X contains both positive and negative x. For positive x, we have a higher error
rate in 	m, for negative x we have a higher error rate in 	n.

We are now ready to define a cost-function that calculates the expected costs
for a specific number of challenges n. Let the following parameters be given:

m – number of real requests,
cc – costs for generating one challenge + costs for requesting the answer (the

information provider may get some payment) + costs for evaluating the
answer (which is a simple comparison to the already known answer),

cd – costs for a difference between w(n) and w(m) of 1. So, a high cd aims at a
high accuracy in the estimation of w(m).

Then, for a chosen number of challenges n ≥ 1 the cost function is given by:

c(m, n, cc, cd) = n ∗ cc +
∑
x∈X

|x| ∗ cd ∗ P (w(m) − w(n) = x) (20)

This cost function (20) adds the costs for using n challenges, to the expected
costs when using n challenges for m requests. To find an optimal n, the func-
tion (20) needs to be minimized in respect to n. As an optimization of this cost
function at runtime would be a too costly computation, we propose to use pre-
computed values for various m, cc and cd. In (20) we can take cd out of the sum
and rewrite the cost function as

c(m, n, cc, cd) = n ∗ cc + cd ∗ d(m, n) , (21)

where d(m, n) stands for the remaining part in (20). This allows for computing
d(m, n) before actually running the mechanism and minimizing c(·) once cc and
cd are determined.

Figure 1 shows d(m, n) for specific m and n. Note that interestingly for fixed
m and increasing n, the function d(m, n) does not necessarily decrease. For
example for m = 7, the expected difference is smaller for n = 7 than for n = 8
and smaller for n = 14 than for n = 15. The reason is that for n = 7, each error
rate in 	n has an exact matching error rate in 	m; but for n = 8, most error rates
in 	n differ from all error rates in 	m what increases the expected difference of
error rates. Apparently, this fact has an impact on d(m, n) in all cases where n
is a multiple of m or where n divides m (e.g. see m = 10 and n = 5).

3.4 Weighting the Number of Challenges with Trust

Up to now, we estimated the optimal number of challenges for a given number
of real requests. For this calculation, we assumed that the information providing
agent has not yet shown to be trustworthy. Looking at the case in which an agent
would fully trust in an information provider, he would not need to use challenges
any more. This justifies the consideration that the more trustworthy the opponent

Towards Trust-Based Acquisition of Unverifiable Information 49

Fig. 1. Expected differences d(m, n) between the error rates in �m and �n

has shown to be, the smaller the number of challenges can be. In the following, we
will integrate this notion of trust-based information acquisition into our model.

Basically, we want to weight the number of challenges that is optimal for the
general case with the trust A has in the actual information provider B. As in-
troduced in Section 3.2, A’s trust in B is represented by a tuple (tAB, uAB) ∈
(0, 1)×(0, 1] with tAB being the trust-value and uAB the attached uncertainty (for
simplicity we write t and u instead of tAB and uAB respectively). In this paper, we
exclusively used probability theory to compute trust, as this can be formally justi-
fied. At this point however it seems appropriate to make use of our intuition and try
to find the simplest formula that matches this intuition. The higher the trust-value
t is, the smaller the number of challenges should be; the higher the attached uncer-
tainty u is, the smaller the impact should be that the trust-value has on the number
of challenges. This is met by (1 − (1 − u)t), because for low trust-values or high
uncertainty we take the full number of challenges (limt↓0 1− t+ tu = 1 and we get
1 for u = 1), for low uncertainty the trust-value weights (limu↓0 1− t+ tu = 1− t)
and for high trust-values the uncertainty weights (limt↑1 1 − t + tu = u). So we
get a number of challenges n that is weighted with trust by:

n = (1 − t + tu) argmin
n′

c(m, n′, cc, cd) (22)

As desired, for initial trust (t, u) = (0.5, 1) (see Sect. 3.2), the number of chal-
lenges is not reduced.

To account for changes in an agent’s character or strategy and to prevent the
unawareness towards the first-time offender problem [4], the number of challenges

50 E. Staab, V. Fusenig, and T. Engel

should never become zero. For that purpose, we introduce a minimum number
of challenges minn > 0. Finally, an agent determines the number of challenges
he will use by max (n, minn).

4 Discussion

Several aspects for the use of the presented mechanism in practice have not yet
been addressed and shall be discussed in this section.

Collusion. For the choice of challenges, two important rules have to be respected
in order to avoid the possibility of collusion:

1. For requests that were not answered satisfactory and are therefore requested
again from other agents, the same challenges are to be used.

2. For requests for differing information, different challenges are to be used.

The reader can easily verify that otherwise colluding agents would be able to
identify real requests and challenges only by comparing the different request-
vectors and checking what has changed.

Distributing questions over time. Depending on the setting, it might be imprac-
tical to send requests together with challenges bundled in a vector. If an agent
wants to send only one question at a time, he can distribute challenges and
real requests over time. In this case, he has to be careful to give an attacker no
opportunity to deduce information from the points in time when questions are
sent about whether a question is a challenge or a real request (similar attacks
are called timing attack in cryptology).

Lack of resources. In specific cases where a lack of resources is the only reason
for not being able to verify a whole response, real requests can be declared to
be challenges after a response has been received. This has the advantage that
challenges cannot be disclosed (there are no challenges beforehand) and do not
cause additional costs. Then, an optimal number of challenges can be determined
during verification by using statistical considerations. Analogous problems can
be found in the area of Statistical Quality Control ([15]), where a fraction of the
output of a system is selected randomly and tested.

Delayed verification. Assume the case where the verification of information is
impossible because some knowledge is not given that would be needed for the
verification. To give an example, let agent A have requested the circumference c
of a circle given its diameter d (with c = π ∗ d). Let us also assume that A did
not know π at request-time and could not verify the response. When A obtains
π at a later point in time, he can verify the response by hindsight. The same
holds, if A did not verify the answer because he was too busy at the time but
gets round to verify the data at a later point in time. In our mechanism, such
delayed verifications can be easily integrated by just recalculating the trust in
the information provider and rechecking the need for further requests.

Towards Trust-Based Acquisition of Unverifiable Information 51

Context-sensitivity. The context-sensitivity of trust is important in the field of
information acquisition. Agents may be competent in some domains (“what is
the prime factorization of 12345?”) and incompetent in others (“will it rain
today in Prague?”). In order to account for the assumption that an information
provider can be described by an error-probability pw (see Sect. 3.1), all questions
in one request vector must belong to the same domain. Still, different request-
vectors can belong to different domains. The approach by Rehák and Pechoucek
[4] seems suitable to account for the latter issue. Alternatively, techniques such
as Latent Semantic Indexing (LSI) [16], PLSI [17] or Concept Indexing [18] can
be used. These techniques would allow for defining the context-space on the basis
of acquired natural-language text.

Selection of information providers. How to decide whether a response-vector
is accurate enough was not part of this work. However, the general idea is
that an agent should discard acquired information and request it from other
agents if he can expect that the improvement will be worth the investment.
In case he decides to discard the information and request it again, he has to
choose an information provider from which to request. Solutions to this prob-
lem, known as the exploitation vs. exploration problem, can be found in literature
[19,20].

Efficiency. In the approach of redundant computation (see Sect. 1), the re-
questing agent needs to choose a positive integer ρ > 1 as redundancy level
(usually ρ = 2 or ρ = 3 [3]). Opposed to this, in our approach, the requesting
agent can adjust continuously the amount of resources used for verification. To
give an example, if the ratio of challenges n to real requests m is chosen to
be 2/4, then this would amount to a redundancy level of ρ = 0.5 if that was
possible.

However, the generation of challenges has also to be taken into account. As this
generation is domain dependent, we will analyze an approach that is generally
possible1: the results from redundant requests are used to fill a pool that contains
the answers for future challenges; as soon as the pool contains n answers, these
are used for a request-vector of size m+n with m real requests and n challenges.
A mechanism that only uses redundancy gives n results for ρ∗n requests, i.e. an
efficiency of 1

ρ . By additionally using challenges from the pool one gets overall
n + m results for (ρ ∗ n) + (m + n) requests, i.e. an efficiency of n+m

ρ∗n+m+n . To
illustrate the potential difference in efficiencies, we give the following example.
In the approach without challenges, for ρ = 3 one gets an efficiency of 1

3 ≈ 0.333.
In the “hybrid” approach with redundancy and challenges, using ρ = 3, one can
get an efficiency of 6

15 = 0.4 (for m = n = 3) or 8
14 ≈ 0.571 (for m = 6, n = 2).

The more an agent trusts a provider, the less challenges he can use and so the
higher the efficiency will be.

1 This approach would mainly improve the use of redundant requests in terms of
efficiency, but still would be partially sensitive to collusion.

52 E. Staab, V. Fusenig, and T. Engel

5 Related Work

Several trust and reputation models base their computations on a beta distribu-
tion [13,12,21,22]. However, they all assume that the assessing agent is able to
verify what we call the “real requests”. Our mechanism addresses the cases in
which this verification is undesirable or not possible. These cases are numerous
which was illustrated in Section 2.

Fullam et al. [23] propose a method for information acquisition from possibly
malicious or incompetent sources. Also, they show how to manage the trade-off
between costs for information acquisition, quality of the acquired information
and the coverage of an agent’s goals. In their model, the reliability of an in-
formation provider is assessed by checking whether some acquired information
fits the agent’s beliefs. In contrast to our mechanism, their approach does not
allow to handle acquired information that is not related to an agent’s beliefs
(e.g. mathematical calculations, music data, etc.).

Liau[24] models the relationship among belief, trust and information acquisi-
tion by use of modal logics. They formally study the role that trust can play
when uncertain information is assimilated in an agent’s beliefs.

In network security, a family of authentication protocols uses the principle of
challenge-response (e.g. [25,26]). Here, an entity proves its identity by answering
to a challenge posed by the opponent – this challenge can only be answered, if
the entity is in possession of a certain secret, and this secret is only given to
the entity with the identity in claim. However, our mechanism is not related to
this class of protocols: We do not use secrets and moreover, in our case it is not
about authentication.

6 Conclusion and Future Work

In this paper, a trust-based mechanism was presented which uses challenges to
estimate the correctness of acquired information that cannot be verified. We
showed how to choose an optimal number of challenges for a given number of
real requests and found that it is advantageous if the number of challenges is
a multiple of the number of real requests, or divides it. A way to reduce this
optimal number of challenges was proposed that makes use of trust. For these
purposes, a formal trust-model was introduced that computes trust-values and
uncertainty based on the beta distribution. It was proven that our uncertainty
measure preserves the properties demanded by Wang and Singh [12] but is easier
to compute.

Currently, we are working on a bootstrapping procedure for the mechanism.
Besides, we develop a procedure for deciding whether some acquired information
is accurate enough or should be requested again from other agents. Finally, the
mechanism is planned to be implemented and tested.

Acknowledgments. We would like to thank Ulrich Sorger for many valuable
discussions and Uwe Roth and Daniel Fischer for their constructive feedbacks.

Towards Trust-Based Acquisition of Unverifiable Information 53

References

1. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

2. Ramchurn, S.D., Huynh, T.D., Jennings, N.R.: Trust in multi-agent systems.
Knowl. Eng. Rev. 19(1), 1–25 (2004)

3. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
An experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

4. Rehák, M., Pechoucek, M.: Trust modeling with context representation and gen-
eralized identities. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L.
(eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 298–312. Springer, Heidelberg (2007)

5. Berman, F., Fox, G., Hey, A.J.G.: Grid Computing: Making the Global Infrastruc-
ture a Reality. John Wiley & Sons, Inc., New York (2003)

6. Weiss, A.: Computing in the clouds. netWorker 11(4), 16–25 (2007)
7. Toh, C.K.: Ad Hoc Wireless Networks: Protocols and Systems. Prentice Hall PTR,

Upper Saddle River (2001)
8. Christin, N., Weigend, A.S., Chuang, J.: Content availability, pollution and poi-

soning in file sharing peer-to-peer networks. In: EC 2005: Proc. of the 6th ACM
Conf. on Electronic commerce, pp. 68–77. ACM Press, New York (2005)

9. Abdul-Rahman, A., Hailes, S.: Supporting trust in virtual communities. In: HICSS
2000: Proc. of the 33rd Hawaii Int. Conf. on System Sciences. IEEE Computer
Society Press, Los Alamitos (2000)

10. Rohatgi, V.K.: Statistical Inference. Dover Publications, Incorporated, Mineola
(2003)

11. Kinateder, M., Baschny, E., Rothermel, K.: Towards a generic trust model - com-
parison of various trust update algorithms. In: Herrmann, P., Issarny, V., Shiu,
S.C.K. (eds.) Trust 2005. LNCS, vol. 3477, pp. 177–192. Springer, Heidelberg
(2005)

12. Wang, Y., Singh, M.P.: Formal trust model for multiagent systems. In: IJCAI 2007:
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, pp. 1551–1556 (2007)

13. Teacy, W.T.L., Patel, J., Jennings, N.R., Luck, M.: Travos: Trust and reputa-
tion in the context of inaccurate information sources. Auton. Agents Multi-Agent
Syst. 12(2), 183–198 (2006)

14. Jaynes, E.T.: Probability Theory: The Logic of Science. Cambridge University
Press, Cambridge (2003)

15. Montgomery, D.C.: Introduction to Statistical Quality Control, 5th edn. John Wi-
ley, Chichester (2004)

16. Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S., Harshman, R.: Using
latent semantic analysis to improve access to textual information. In: CHI 1988:
Proc. of the SIGCHI Conf. on Human Factors in Computing Systems, pp. 281–285.
ACM, New York (1988)

17. Hofmann, T.: Probabilistic latent semantic indexing. In: SIGIR 1999: Proc. of the
22nd annual Int. ACM SIGIR Conf. on Research and Development in Information
Retrieval, pp. 50–57. ACM, New York (1999)

18. Karypis, G., Han, E.: Concept indexing: A fast dimensionality reduction algorithm
with applications to document retrieval and categorization. Technical Report TR-
00-0016, University of Minnesota (2000)

19. Dearden, R., Friedman, N., Andre, D.: Model based bayesian exploration. In: UAI
1999: Proc. of the 15th Conf. on Uncertainty in Artificial Intelligence, pp. 150–159
(1999)

54 E. Staab, V. Fusenig, and T. Engel

20. Chalkiadakis, G., Boutilier, C.: Coordination in multiagent reinforcement learn-
ing: a bayesian approach. In: AAMAS 2003: Proc. of the 2nd Int. Joint Conf. on
Autonomous Agents and Multiagent Systems, pp. 709–716. ACM Press, New York
(2003)

21. Buchegger, S., Boudec, J.Y.L.: A robust reputation system for mobile ad hoc net-
works. Technical Report IC/2003/50, EPFL-IC-LCA, CH-1015 Lausanne (July
2003)

22. Jøsang, A., Ismail, R.: The beta reputation system. In: Proc. of the 15th Bled
Conf. on Electronic Commerce, pp. 324–337 (2002)

23. Fullam, K.K., Park, J., Barber, K.S.: Trust-driven information acquisition for se-
cure and quality decision-making. In: KIMAS 2005: Proc. of Int. Conf. on Integra-
tion of Knowledge Intensive Multi-Agent Systems, pp. 303–310 (2005)

24. Liau, C.J.: Belief, information acquisition, and trust in multi-agent systems: a
modal logic formulation. Artif. Intell. 149(1), 31–60 (2003)

25. Otway, D., Rees, O.: Efficient and timely mutual authentication. SIGOPS Oper.
Syst. Rev. 21(1), 8–10 (1987)

26. Steiner, J.G., Neuman, C., Schiller, J.I.: Kerberos: An authentication service for
open network systems. In: Proc. of the Winter 1988 Usenix Conference, pp. 191–
2024 (1988)

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 55–70, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Modeling Dynamics of Relative Trust
of Competitive Information Agents

Mark Hoogendoorn, S. Waqar Jaffry, and Jan Treur

Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{mhoogen,swjaffry,treur}@few.vu.nl

Abstract. In order for personal assistant agents in an ambient intelligence con-
text to provide good recommendations, or pro-actively support humans in task
allocation, a good model of what the human prefers is essential. One aspect that
can be considered to tailor this support to the preferences of humans is trust.
This measurement of trust should incorporate the notion of relativeness since a
personal assistant agent typically has a choice of advising substitutable options.
In this paper such a model for relative trust is presented, whereby a number of
parameters can be set that represent characteristics of a human.

1 Introduction

Nowadays, more and more ambient systems are being deployed to support humans in
an effective way [1], [2] and [3]. An example of such an ambient system is a personal
agent that monitors the behaviour of a human executing certain complex tasks, and
gives dedicated support for this. Such support could include advising the use of a
particular information source, system or agent to enable proper execution of the task,
or even involving such a system or agent pro-actively. In order for these personal
agents to be accepted and useful, the personal agent should be well aware of the hab-
its and preferences of the human it is supporting. If a human for example dislikes
using a particular system or agent, and there are several alternatives available that are
more preferred, the personal agent would not be supporting effectively if it would
advise, or even pro-actively initiate, the disliked option.

An aspect that plays a crucial role in giving such tailored advice is to represent the
trust levels the human has for certain options. Knowing these trust values allows the
personal assistant to reason about these levels, and give the best possible support that
is in accordance with the habits and preferences of the human. Since there would be
no problem in case there is only one way of supporting the human, the problem of
selecting the right support method only occurs in case of substitutable options. There-
fore, a notion of relative trust in these options seems more realistic than having a
separate independent trust value for each of these options. For instance, if three sys-
tems or agents can contribute X, and two of them perform bad, whereas the third
performs pretty bad as well, but somewhat better in than the others, your trust in that
third option may still be a bit high since in the context of the other options it is the
best alternative. The existing trust models do however not explicitly handle such
relative trust notions [4] and [5].

56 M. Hoogendoorn, S.W. Jaffry, and J. Treur

This paper introduces an approach to model relative trust. In this model, a variety
of different parameters can be set to fully tailor this trust model towards the human
being supported. These aspects include initial trust and distrust, the weighing of posi-
tive and negative experiences, and the weight of past experiences. The model is repre-
sented by means of differential equations to also enable a formal analysis of the
proposed model. Experiments have been conducted with a variety of settings to show
what the influence of the various parameters is upon the trust levels.

This paper is organised as follows. First, in Section 2 the model is explained. Next,
Section 3 presents a number of simulation results. In Section 4 the model is used to
compare different cultures with each other. Section 5 presents a formal analysis of the
model. Finally, Section 6 is a discussion.

2 Modelling Dynamics of Trust of Competitive Trustees

This section proposes a model that caters the dynamics of a human’s trust on comp-
etitive trustees. In this model trust of the human on a trustee depends on the relative
experiences with the trustee in comparison to the experiences from all of the
competitive trustees. The model defines the total trust of the human as the difference
between positive trust and negative trust (distrust) on the trustee. It includes personal
human characteristics like trust decay, flexibility, and degree of autonomy (context-
independence) of the trust. Figure 1 shows the dynamic relationships in the proposed
model.

Trust Decay

Trust Autonomy

Human

CT1

CT2

CTn

Trust Flexibility

Fig. 1. Trust-based interaction with n competitive trustees (information agents IA)

In this model it is assumed that the human is bound to request one of the available
competitive trustees at each time step. The probability of the human’s decision to
request one of the trustees {CT1, CT2, . . . CTn} at time t is based on the trust value
{T1, T2, . . . Tn} for each CTi respectively at time t. In the response of the human’s
request CTi gives experience value (Ei(t)) from the set {-1, 1} which means a negative
and positive experience respectively. This experience is used to update the trust value
for the next time point. Besides {-1, 1} the experience value can also be 0, indicating
that CTi gives no experience to the human at time point t.

 Modeling Dynamics of Relative Trust of Competitive Information Agents 57

2.1 Parameters Characterising Individual Differences between Humans

To tune the model to specific personal human characteristics a number of parameters
are used.

Flexibility β. The personality attribute called trust flexibility (β) is a number between
[0, 1] that represents in how far the trust level at time point t will be adapted when
human has a (positive or negative) experience with a trustee. If this factor is high then
the human will give more weight to the experience at t+Δ t than the already available
trust at t to determine the new trust level for t+Δ t and vice versa.

Trust Decay γ . The human personality attribute called trust decay (γ) is a number
between [0, 1] that represents the rate of trust decay of the human on the trustee when
there is no experience. If this factor is high then the human will forget soon about past
experiences with the trustee and vice versa.

Autonomy η. The human personality attribute called autonomy (η) is a number
between [0, 1] that indicates in how far trust is determined independent of trust in
other options. If the number is high, trust is (almost) independent of other options.

Initial Trust. The human personality attribute called initial trust indicates the level of
trust assigned initially to a trustee.

2.2 Dynamical Models for Relative Trust and Distrust

The model is composed from two models: one for the positive trust, accumulating
positive experiences, and one for negative trust, accumulating negative experiences.
The approach of taking positive and negative trust separately at the same time to
measure total trust is similar to the approaches taken in literature for degree of belief
and disbelief [6] and [7]. Both negative and positive trusts are a number between
[0, 1]. While human total trust at CTi on any time point t is the difference of positive
and negative trust at CTi at time t.

Here first the positive trust is addressed. The human’s relative positive trust of CTi
at time point t is based on a combination of two parts: the autonomous part, and the
context-dependent part. For the latter part an important indicator is the human’s rela-
tive positive trust of CTi at time point t (denoted by τi+(t)): the ratio of the human’s
trust of CTi to the average human’s trust on all options at time point t. Similarly an
indicator for the human’s relative negative trust of CTi at time point t (denoted by τi-
(t)) is the ratio between human’s negative trust of the option CTi and the average
human’s negative trust on all options at time point t. These are calculated as follows:

n

tT

i
i n

j j

tT
t

∑
=

=
+

+
+

1
)(

)(
)(τ and

n

tT

i
i n

j j

tT
t

∑
=

=
−

−
−

1
)(

)(
)(τ

Here the denominators n

tT
n

j j∑ =
+

1
)(

and n

tT
n

j j∑ =
−

1
)(

express the average positive and

negative trust over all options at time point t respectively. The context-dependent part
was designed in such a way that when the positive trust is above the average, then upon
each positive experience it gets an extra increase, and when it is below average it gets a

58 M. Hoogendoorn, S.W. Jaffry, and J. Treur

decrease. This models a form of competition between the different information agents.
The principle used is a variant of a ‘winner takes it all’ principle, which for example is
sometimes modelled by mutually inhibiting neurons representing the different options.
This principle has been modelled by basing the change of trust upon a positive experi-
ence on τi+(t) – 1, which is positive when the positive trust is above average and negative
when it is below average. To normalise, this is multiplied by a factor Ti

+(t)*(1 – Ti
+(t)).

For the autonomous part the change upon a positive experience is modelled by 1 – Ti
+(t).

As η indicates in how far the human is autonomous or context-dependent in trust attribu-
tion, a weighted sum is taken with weights η and 1-η respectively. Therefore, using the
parameters defined in above Ti

+(t+Δt) is calculated using the following equations. Note
that here the competition mechanism is incorporated in a dynamical systems approach
where the values of τi+(t) have impact on the change of positive trust over time. Follow-
ings are the equations when Ei(t) is 1, 0 and -1 respectively.

() () () ()()

)()(

)()()(

)(1)(*1)(*1)(1**)()(

tTttT

ttTtTttT

ttTtTttTtTttT

ii

iii

iiiiii

++

+++

++++++

=Δ+

Δ−=Δ+

Δ−−−+−+=Δ+

γ
τηηβ

Notice that here in the case of negative experience positive trust is kept constant to
avoid doubling the effect over all trust calculation as negative experience is accom-
modated fully in the negative trust calculation. In one formula this is expressed by:

() () () ()()
() () ()

t
tEtEtTtE

tEtTtTttT
tTttT

iiii

iiiii
ii Δ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+−+

−−−+−
+=Δ+

+

++++
++ *

)(1*)(1*)(*21)(*

)(*)(1*)(*1)(*1)(1**
)()(

γ
τηηβ

In differential equation form this can be reformulated as:

() () () ()() ()

() ())(1*)(1*)(*

21)(*)(*)(1*)(*1)(*1)(1**
)(

tEtEtT

tEtEtTtTttT
dt

tdT

iii

iiiiii
i

−+−

+−−−+−=

+

++++
+

γ

τηηβ

Notice that this is a system of n coupled differential equations; the coupling is realised
by τi+(t) which includes the sum of the different trust values for all j. Similarly, for
negative trust followings are the equations when Ei(t) is -1, 0 and 1 respectively.

() () () ()()

)()(

)()()(

)(1)(*1)(*1)(1**)()(

tTttT

ttTtTttT

ttTtTttTtTttT

ii

iii

iiiiii

−−

−−−

−−−−−−

=Δ+

Δ−=Δ+

Δ−−−+−+=Δ+

γ
τηηβ

In one formula this is expressed as:

() () () ()()
() () ()

t
tEtEtTtE

tEtTtTttT
tTttT

iiii

iiiii
ii Δ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+−−

−−−+−
+=Δ+

−

−−−−
−− *

)(1*)(1*)(*21)(*

)(*)(1*)(*1)(*1)(1**
)()(

γ
τηηβ

In differential equation form this can be reformulated as:

() () () ()() ()

() ())(1*)(1*)(*

21)(*)(*)(1*)(*1)(*1)(1**
)(

tEtEtT

tEtEtTtTttT
dt

tdT

iii

iiiiii
i

−+−

−−−−+−=

−

−−−−
−

γ

τηηβ

 Modeling Dynamics of Relative Trust of Competitive Information Agents 59

Notice that this again is a system of n coupled differential equations but not coupled
to the system for the positive case described above.

2.3 Combining Positive and Negative Trust in Overall Relative Trust

The human’s total trust Ti(t) of CTi at time point t is a number between [-1, 1] where -
1 and 1 represent minimum and maximum values of the trust respectively. It is the
difference of the human’s positive and negative trust of CTi at time point t:

)()()(tTtTtT iii
−+ −=

In particular, also the human’s initial total trust of CTi at time point 0 is Ti(0) which is
the difference of human’s initial trust Ti

+(0)and distrust Ti
–(0) in CTi at time point 0.

2.4 Decision Model for Selection of a Trustee

As the human’s total trust is a number in the interval [-1, 1], to calculate the request
probability to request CTi at time point t (RPi(t)) the human’s total trust Ti(t) is first
projected at the interval [0, 2] and then normalized as follows;

()∑ =
+

+
=

n

j j

i
i

tT

tT
tRP

1
1)(

1)(
)(.

3 Simulation Results

This section describes a case study to analyze the behavior of the model described in Sec-
tion 2. This case study analyzes the dynamics of a human’s total trust on the three com-
petitive Information Agents (IA’s). Several simulations were conducted in this case study.
Few of the simulation results are presented in this and the next section. Other variations
could be found in appendix A1. In this case study it is assumed that the human is bound to
request one of the available competitive information agents at each time step. The prob-
ability of the human’s decision to request one of the information agents {IA1, IA2, IA3} at
time t is based on the human’s total trust with each information agent respectively at time t
{T1(t), T2(t), T3(t)} (i.e. the equation shown in Section 2.4). In response of the human’s
request for information the agent gives an experience value Ei(t).

3.1 Relativeness

The first experiment described was conducted to observe the relativeness attribute of
the model (see Figure 2). In the Figure, the x-axis represents time, whereas the y-axis
represents the trust value for the various information providers. The configurations
taken into the account are as shown in Table 1.

It is evident from above graphs that the information agent who gives more positive
experience gets more relative trust than the others, which can be considered a basic
property of trust dynamics (trust monotonicity) [5] and [8].

1 http://www.cs.vu.nl/~mhoogen/trust/appendix-CIA-2008.pdf

60 M. Hoogendoorn, S.W. Jaffry, and J. Treur

 a)

 b)

 c)

Fig. 2. Model Dependence on Amount of Positive Response from IAs: a) Information Agents
IA1, IA2, IA3 give experience positive, random (equal probability to give a positive or negative
experience), negative respectively on each request by the Human respectively. b) Information
Agents IA1, IA2, IA3 give experience positive, positive, negative on each request by the Human
respectively. c) Information Agents IA1, IA2, IA3 give experience positive, negative, negative
on each request by the Human respectively.

Table 1. Parameter values to analyze the dynamics of relative trust with the change in IAs
responses

Attribute Symbol Value
Trust Decay γ 0.01
Autonomy η 0.25
Flexibility β 0.75
Time Step ∆t 0.10
Initial Trust and Distrust of
{IA1,IA2,IA3}

T1
+(0), T2

+(0), T3
+(0),

T1
–(0), T2

–(0), T3
–(0)

0.50, 0.50, 0.50,
0.50, 0.50, 0.50

 Modeling Dynamics of Relative Trust of Competitive Information Agents 61

3.2 Trust Decay

This second experiment, shown in Figure 3, was configured to observe the change in
the total trust in relation to change in the trust decay attribute γ of the human. The
configurations taken into the account are as shown in Table 2.

 a)

 b)

 c)

Fig. 3. Model Dependence on Trust Decay: a) γ = 0.01. b) γ = 0.05. c) γ = 0.10.

Table 2. Parameter values to analyze the dynamics of relative trust with the change in trust
decay (γ)

Attribute Symbol Value
Experience {IA1, IA2, IA3} E1, E2, E3 1, random, -1
Autonomy η 0.25
Flexibility β 0.75
Time Step ∆t 0.10
Initial Trust and Distrust of
{IA1,IA2,IA3}

T1
+(0), T2

+(0), T3
+(0),

T1
–(0), T2

–(0), T3
–(0)

0.50,0.50,0.50,
0.50,0.50,0.50

62 M. Hoogendoorn, S.W. Jaffry, and J. Treur

In these cases also the information agent who gives more positive experience gets more
relative trust than the others. Furthermore, if the trust decay is higher, then the trust value
drops rapidly on no experience (see Figure 3c; more unsmooth fringes of the curve).

3.3 Flexibility of Trust

This experiment is configured to observe the change in the total trust with the change
in the human’s flexibility of the trust (see Figure 4). Configurations taken into the
account are shown in Table 3.

 a)

 b)

 c)

 d)

Fig. 4. Model Dependence on Trust Flexibility: a) β = 1, b) β = 0.01, c) β = 0.00, d) β = 0.00
and T1(0)=1, T2(0)=0, T3(0)=-1

 Modeling Dynamics of Relative Trust of Competitive Information Agents 63

Table 3. Parameter values to analyze the dynamics of relative trust with the change in
flexibility (β)

Attribute Symbol Value
Experience {IA1, IA2, IA3} E1, E2, E3 1, random, -1
Trust Decay γ 0.01
Autonomy η 0.25
Time Step ∆t 0.10
Initial Trust and Distrust of
{IA1,IA2,IA3}

T1
+(0), T2

+(0), T3
+(0),

T1
–(0), T2

–(0), T3
–(0)

0.50, 0.50, 0.50,
0.50, 0.50, 0.50

 a)

 b)

 c)

Fig. 5. Model Dependence on Trust Autonomy: a) η=1.0, b) η=0.50, c) η=0.00

In these cases again the information agent who gives more positive experience gets
more human’s relative trust then the others. Furthermore as the values of the β de-
crease the rate of change of the trust also decrease. In Figure 4c, β=0 which means
that trust does not change on experiences at all, so the initial values retain for

64 M. Hoogendoorn, S.W. Jaffry, and J. Treur

experiences from the information agents hence trust value remains stable. Finally in the
Figure 4d as initial values of the total trust are taken T1(0)=1, T2(0)=0 and T3(0)=-1
instead of T1(0)=0, T2(0)=0 and T3(0)=0, so the total trust decays due to the trust
decay factor and becomes stable after a specific time span.

3.4 Autonomy of Trust

This experiment (see Figure 5) is configured to observe the change in the human trust
with the change in the human’s autonomy for the total trust calculation. Configura-
tions taken into the account are shown in Table 4.

In these cases also the information agent who gives more positive experience gets more
relative trust then the others. Further more as the values of the η decrease the human
weights the relative part of the trust more than the autonomous trust. In Figure 5c, η=0
which means that the human does not take into account the autonomous trust. This
gives unstable patterns that are extremely sensitive to the initial conditions of the
system. The example graph shown is just one of these patterns.

Table 4. Parameter values to analyze the dynamics of relative trust with the change in
autonomy (η)

Attribute Symbol Value
Experience {IA1, IA2, IA3} E1, E2, E3 1, random, -1
Trust Decay γ 0.01
Flexibility β 0.75
Time Step ∆t 0.10
Initial Trust and Distrust of
{IA1,IA2,IA3}

T1
+(0), T2

+(0), T3
+(0),

T1
–(0), T2

–(0), T3
–(0)

0.50, 0.50, 0.50,
0.50, 0.50, 0.50

3.5 Initial Trust and Distrust

This experiment is configured to observe the change in the total trust with the change
in the human’s initial trust and distrust (T+

i(0), T-
i(0)) on information agents (see

Figure 6). Configurations taken into the account are shown in Table 5.

Table 5. Parameter values to analyze the dynamics of relative trust with the change in initial
trust

Attribute Symbol Value
Experience {IA1, IA2, IA3} E1, E2, E3 1, random, -1
Trust Decay γ 0.01
Autonomy η 0.25
Flexibility β 0.75
Time Step ∆t 0.10

It is observed from the above graphs that the final outcome of the trust is not very

sensitive for the initial values.

 Modeling Dynamics of Relative Trust of Competitive Information Agents 65

 a)

 b)

 c)

Fig. 6. Model Dependence on Initial Trust {T1(0), T2(0), T3(0)}: a) 1, 1, -1. b) -1, 0, 1. c) 0, -1, 0

4 Dynamics of Relative Trust in Different Cultures

The degree of reliability of available information sources may strongly differ in different
types of societies or cultures. In some types of societies it may be exceptional when an
information source provides 10% or more false information, whereas in other types of
societies it is more or less normal that around 50% of the outcomes of information
sources is false. If the positive experiences percentage given by the information

Table 6. Classification of Human Cultures with respect to the Positive Experiences given by
the IAs

Culture Name Percentage of the positive experiences by the
information agents {IA1, IA2, IA3}

A 100, 99, 95
B 50, 40, 30
C 10, 0, 0
D 0,0,0

66 M. Hoogendoorn, S.W. Jaffry, and J. Treur

Table 7. Parameter values to analyze the Relative Trust Dynamics in different Cultures

Attribute Symbol Value
Trust Decay γ 0.01
Autonomy η 0.25
Flexibility β 0.75
Time Step ∆t 0.10
Initial Trust and Distrust of
{IA1,IA2,IA3}

T1
+(0), T2

+(0), T3
+(0),

T1
–(0), T2

–(0), T3
–(0)

0.50,0.50,0.50,
0.50,0.50,0.50

 a)

 b)

 c)

 d)
Fig. 7. Dynamics of Relative Trust in Different Cultures. a) Culture A, b) Culture B, c) Culture
C, d) Culture D.

 Modeling Dynamics of Relative Trust of Competitive Information Agents 67

agents varies significantly, then the total relative trust of the human on the these in-
formation agents may differ as well. This case study was designed to study dynamics
of the human’s trust on information agents in different cultures with respect to the
percentages of the positive experiences they provide to the human. A main question is
whether in a culture where most information sources are not very reliable, the trust in
a given information source is higher than in a culture where the competitive informa-
tion sources are more reliable. Cultures are named with respect to percentage of the
positive experiences provided by the information agents to the human as shown in
Table 6 and other experimental configurations in Table 7.

Simulation results for the dynamics of the relative trust for the cultures mentioned
in Table 6 are shown in Figure 7.

From Figure 7 it can be concluded that in every culture whatever relative percentage
of the positive experiences may be (except when all information agent give negative
experiences all of the time (see Figure 7d), the information agent that gives more posi-
tive experiences to the human gains more trust. Furthermore, the information agent that
gives more positive experiences at least secure neutral trust (T(t)=0) in the long run,
even the percentage of positive experiences is very low (see Figure 7c).

5 Formal Analysis of the Model

In this section a mathematical analysis is made of the change in trust upon positive
(resp. negative) experiences. In Section 2 the differential equation form of the model
for positive trust was formulated as:

() () () ()[] ()

() ())(1*)(1*)(*

21)(*)(*)(1*)(*1)(*1)(1**
)(

tEtEtT

tEtEtTtTttT
dt

tdT

iii

iiiiii
i

−+−

+−−−+−=

+

++++
+

γ

τηηβ

where τi+(t) is

n

tT

i
i n

j j

tT
t

∑
=

=
+

+
+

1
)(

)(
)(τ

One question that can be addressed is when for a given time point t an equilibrium oc-
curs, i.e. under which conditions trust does not change at time point t. Another question
is under which circumstances trust will increase at t, and under which it will decrease.
As the experience function Ei(t) is given by an external scenario, these questions have to
be answered for a given value of this function. So, three cases are considered:

Case 1: Ei(t) = 1
In this case the differential equation can be simplified to

() () () ()())(1*)(*)(1*1)(1**
)(

tTtTttT
dt

tdT
iiii

i ++++
+

−−−−−= τηηβ

() ())(1*)(*
)(

1*1*
)(

1
)(

tTtT
tT

dt

tdT
ii

n

tT

ii
n

j j

++
++

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∑
−−−=

=
+

ηηβ

68 M. Hoogendoorn, S.W. Jaffry, and J. Treur

It follows that 0
)(≥

+

dt

tdTi if and only if

() 0)(*
)(

1*1
1

)(
≥⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

∑
−−− +

+

=
+

tT
tT

i

n

tT

i
n

j j

ηη

or
1)(=+ tTi

For Ti
+(t) < 1 this is equivalent to (with: ∑= =

+n
j j tTtS 1)()()

 () ηη ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−− +

+

)(*
)(

1*1
)(

tT
tT

i
n

tS
i

() ())(*)(*)(*)(*1 tStTtTntS ii ηη ≤−− ++

() ()ηη −≤− ++ 1)(*)(*)(*)(2 tStTntTtS ii

() 01)(*)(*)()(* 2 ≥−+− ++ ηη tStTtStTn ii

This quadratic expression in Ti
+(t) has no zeros when the discriminant

()η
η

−
−

1

*)(*4
)(2 tSn

tS is negative:

() () η
η

η
η

η
η

−
<<⇔<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−⇔<
−

−
1

4
)(00

1

*4
)()(0

1

*)(*4
)(2 ntS

n
tStS

tSn
tS

When η > 0.2 then 1/η < 5 and therefore 1/η - 1< 4, hence (1-η) /η < 4 which can
be reformulated as 4η /(1-η)> 1. As S(t)/n ≤ 1, this shows that for η > 0.2 as long as
S(t) is positive, the discriminant is always negative, and therefore upon a positive
experience there will always be an increase. When S(t) = 0, which means all trust
values are 0, no change occurs. For the case the discriminant is ≥0, i.e., S(t)/n ≥ 4η
/(1-η) then the quadratic equation Ti

+(t) for has two zeros symmetric in S(t):

n
tSn

tStStTi 2
1

*)(*4
)(/)()(2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−−+=+

η
η

In this case increase upon a positive experience will take place for Ti
+(t) less than the

smaller zero or higher than the larger zero, and not between the zeros. An equilibrium
occurs upon a positive experience when Ti

+(t) = 1 or when equality holds:

() 01)(*)(*)()(* 2 =−−− ++ ηη tStTtStTn ii

This only can happen when the discriminant is not negative, in which case equilibria
occur for Ti

+(t) equal to one of the zeros.

Case 2: Ei(t) = 0
In this case the differential equation can be simplified to

)(*
)(

tT
dt

tdT
i

i +
+

−= γ

So, in this case positive trust is decreasing or has in equilibrium with positive trust 0.

 Modeling Dynamics of Relative Trust of Competitive Information Agents 69

Case 3: Ei(t) = -1
In this case the differential equation can be simplified to

0
)(=

+

dt

tdTi

So, for this case always an equilibrium occurs in t for positive trust.
For negative trust, the situation is a mirror image of the case for positive trust, and

by combining the positive and negative trust, the patterns for overall trust can be
analysed.

6 Discussion

This paper has introduced a model for relative trust to enable personal assistant agents
to give the appropriate support to humans. Within the model several parameters have
been introduced to tailor it towards a particular human. The influence of these pa-
rameters upon the trust has been extensively shown in this paper by means of simula-
tions, even including different cultural settings. Finally, a mathematical analysis has
been conducted to formally derive what the change of the trust functions is in case of
positive and negative experiences.

A variety of trust models have been proposed in the literature [4] and [5]. These
trust models attempt to determine the level of trust in certain agents based upon ex-
periences. They do however not take into account the notion of relativeness of this
trust. Models have been proposed for relative trust as well. In [9] a model is presented
that allows an agent to combine multiple sources for deriving a trust value. This no-
tion of relativeness differs from the notion used in this paper. [10] extends an existing
trust model of [11] with the notion of relative trust. They take as a basis certain trust
values determined by the model [11], and compare these values in order to make
statements about different trust values for different agents. In determining the trust
itself, they do not incorporate the experiences with other agents that can perform
similar tasks, which is done in this paper. In [12] a trust model is utilized to allocate
decision support tasks. In the model, relative trust is addressed as well but again not
incorporated in the calculation of the trust value itself.

For future work, an interesting option is to see how well the parameters of the model
can be derived by a personal assistant (based upon the requests outputted by the human).

References

1. Aarts, E., Harwig, R., Schuurmans, M.: Ambient Intelligence. In: Denning, P. (ed.) The
Invisible Future, pp. 235–250. McGraw Hill, New York (2001)

2. Aarts, E., Collier, R., van Loenen, E., de Ruyter, B.: Ambient Intelligence. Proc. of the
First European Symposium, EUSAI 2003. LNCS, vol. 2875, p. 432. Springer, Heidelberg
(2003)

3. Riva, G., Vatalaro, F., Davide, F., Alcañiz, M. (eds.): Ambient Intelligence. IOS Press,
Amsterdam (2005)

4. Falcone, R., Castelfranchi, C.: Trust dynamics: How trust is influenced by direct experi-
ences and by trust itself. In: Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2004), pp. 740–747 (2004)

70 M. Hoogendoorn, S.W. Jaffry, and J. Treur

5. Marx, M., Treur, J.: Trust Dynamics Formalised in Temporal Logic. In: Chen, L., Zhuo,
Y. (eds.) Proc. of the Third International Conference on Cognitive Science, ICCS 2001,
pp. 359–363. USTC Press, Beijing (2001)

6. Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Mathematical
Biosciences 23(3-4), 351–379 (1975)

7. Luger, G.F., Stubblefield, W.A.: Artificial Intelligence: Structures and Strategies for Com-
plex Problem Solving, 4th edn., pp. 320–321. Addison-Wesley, Reading (1998)

8. Jonker, C.M., Treur, J.: Formal Analysis of Models for the Dynamics of Trust based on
Experiences. In: Garijo, F.J., Boman, M. (eds.) MAAMAW 1999. LNCS, vol. 1647, pp.
221–232. Springer, Heidelberg (1999)

9. Beth, T., Borcherding, M., Klein, B.: Valuation of trust in open networks. In: Gollmann,
D. (ed.) ESORICS 1994. LNCS, vol. 875, pp. 3–18. Springer, Heidelberg (1994)

10. Kluwer, J., Waaler, A.: Relative Trustworthiness. In: Dimitrakos, T., Martinelli, F., Ryan,
P.Y.A., Schneider, S. (eds.) FAST 2005. LNCS, vol. 3866, pp. 158–170. Springer, Heidel-
berg (2006)

11. Jones, A.: On the concept of trust. Decision Support Systems 33, 225–232 (2002)
12. van Maanen, P.-P., van Dongen, K.: Towards Task Allocation Decision Support by means

of Cognitive Modeling of Trust. In: Castelfranchi, C., Barber, S., Sabater, J., Singh, M.
(eds.) Proceedings of the Eighth International Workshop on Trust in Agent Societies
(Trust 2005), pp. 168–177 (2005)

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 71–85, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Formal Approach to Aggregated Belief Formation

Annerieke Heuvelink1,2, Michel C.A. Klein1, and Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

2 TNO Defence, Security, and Safety, Department of Training and Instruction,
P.O. Box 23, 3769 ZG Soesterberg, The Netherlands

{a.heuvelink,michel.klein,treur}@few.vu.nl

Abstract. This paper introduces a formal method to aggregate over basic be-
liefs, in order to deduce aggregated or complex beliefs as often used in applica-
tions. Complex beliefs can represent several things, such as a belief about a
period in which other beliefs held or the minimal or maximal certainty with
which a belief held. As such they contain richer information than the basic be-
liefs they are aggregated from and can be used to optimize an agent’s search
through its memory and its reasoning processes. The developed method can also
aggregate over aggregated beliefs, hence nested aggregations are possible. An
implementation in Prolog demonstrates its operationality.

Keywords: Belief Aggregation, Term Algebra, Memory.

1 Introduction

Agents in applications commonly store beliefs about the state of the world in what is
often called a world model or belief base. This belief base is usually a set of atomic
beliefs that grows over time. There are several potential problematic issues related to
such a belief base. First, after some time the size of the belief base can result in the
practical problem that retrieval and inferences will become time expensive: the time
needed will grow with the size of the belief base. Second, some inferences result in
intermediate results that might be useful again at a later point in time. When the in-
termediate results are not stored, they have to be recalculated, while when they are
stored, they will add to the size problem. Third, this way of storing beliefs seems not
very similar to the human way of using memory. For example, humans often forget
specific details, but still remember aggregated abstractions or consequences of spe-
cific facts. Taking this as a point of departure, it may be explored how aggregated
beliefs can be formed and stored within an agent as new entities.

Fact is that aggregations can be formed from many different perspectives and at
multiple levels. Which perspectives are chosen and which level of aggregation is
needed, is application and task depended. Therefore a general approach that distin-
guishes all possible types of aggregations one by one, may become quite complex; for
example, if m different aggregation types are possible, and n levels of aggregation,
then the number of aggregation types is mn, which already for relatively low numbers
such as m = 10 and n = 5 leads to a high number (100.000) of aggregated beliefs. To

72 A. Heuvelink, M.C.A. Klein, and J. Treur

avoid this explosion, in this paper an algebraic approach is adopted that distinguishes
a general notion of aggregation operator that (1) is parameterised by the specific
constraint that is used in an aggregation process, and (2) can be used in a recursive
manner. Thus the combinatorics induced by different levels is replaced by term ex-
pressions that can be formed by nesting a number of (parameterised) variants of the
aggregation operator.

The presented formalism allows for the specification of complex beliefs at a higher
level of aggregation than the basic atomic beliefs. Such aggregated belief representa-
tions have the advantage that they are often closer to the level of aggregation that is
used in specification of reasoning steps, and are therefore often more useful. For ex-
ample, it is more convenient to specify reasoning steps based on an aggregated belief
such as the “last most certain belief”, than based on a long list of atomic beliefs at
different time points and with different certainties. Moreover, some aggregations are
used several times. In this case, the aggregation functions as a reasoning template that
specifies how a new belief can be deduced from other beliefs. This template only has
to be specified once and can be reused later on.

The remainder of the paper is structured as follows. First, section 2 introduces an
application domain and the basic belief formalism that is used. In the subsequent
section, the algebraic approach to belief aggregation is described, which is formalised
as a term algebra in section 4. Section 5 and 6 demonstrate the operationality of the
approach, by presenting a Prolog implementation and showing how the algebra allows
the formation of several useful complex beliefs, which are defined as specific aggre-
gations. Section 7 relates the work to other research, both in the area of knowledge
compilation and temporal abstraction. Finally, in section 8 the research is summarised
and future research plans exposed.

2 Belief Formalism

In [1] a software agent was developed that compiles a tactical picture of its environ-
ment, which entails the classification and identification of surface radar contacts. For
modelling its behaviour the need was identified to explicitly represent the time at
which a belief was held by the agent in its short term memory (STM). In other words:
when it believed it. The main reason to represent this, was to enable the (biased) rea-
soning over (possible inconsistent) beliefs over time [1]. For example, when at time t
it is believed that the position of a contact is [x1, y1], while at time t + n it is believed
to be position [x2, y2], the average speed of the contact can be inferred. This is useful
because the speed on a contact might contain information concerning its identity, e.g.,
large ships that are neutral usually do not sail faster than 20 knots. In the same way a
contact’s manoeuvring pattern can be inferred, which is relevant as it gives away
much information concerning a contact’s intent.

In order to logically represent other aspects, namely uncertainty of information,
and the fact that information can come from various sources, every belief also re-
ceived a source and a certainty label. As a result, the basic knowledge entity of the
agent is represented by belief(P, O, V, T, S, C), which denotes the belief that the inde-
terminable property P holds for object O with the value V at time T, based on source
S and with certainty C. An example belief denoting that it is believed at time 8 with

 A Formal Approach to Aggregated Belief Formation 73

high certainty that the identity of the radar contact1 is friendly because of radio con-
servation is: belief (identity, contact1, friendly, 8, radio, 0.9).

The value, time, and certainty label of beliefs about a specific property and object
are often used to reason about trends in those beliefs, which can lead to new beliefs.
For example, a new belief can be formed about a contact being a merchant, and there-
fore neutral, due to beliefs about it sailing in a straight line. The certainty of the belief
that the contact is a merchant is determined by the period, as by the certainty, with
which it is believed that it does this. For the deduction of other beliefs it is often im-
portant to deduce what the last, or most (un)certain belief about a specific something
was. For example, the highest certainty with which it was once believed that a contact
fired is relevant for deducing whether it might be hostile.

The beliefs formed by the agent over time are stored in the agent’s belief base, rep-
resenting long term memory (LTM). When storing beliefs in LTM, it is important to
denote when they were formed or retrieved in STM. For this a new reference to time
is introduced, the two-place predicate holds_at. When the basic belief predicate of the
object language is reified to a term b, the time at which the belief is held in STM can
be expressed by holds_at(b, t). For every belief(p, o, v, t, s, c) that is found in the
agent's belief base it holds that holds_at(belief(p,o,v,t,s,c), t), since the t of the belief
denotes the time it was formed (was present in STM).

3 Belief Aggregation

Unfortunately, the storage of time-stamped beliefs led to the problematic issues men-
tion in section 1 [2]. Therefore, this paper focuses on the development of a generic,
formal approach to the formation of arbitrary aggregations over these basic beliefs, to
form all kinds of so-called aggregated or complex beliefs. Complex beliefs abstract or
cluster information of the lower level. They form a solution for keeping the amount of
time required to search through the agent’s belief base within limits. Furthermore,
they can be used to model specific properties of human memory, like the forgetting of
specific details.

3.1 Aggregation Examples

An example of a complex belief that an agent can form was mentioned in section 2,
namely a belief about the period during which a certain belief held. That complex
belief, about the duration of the straight manoeuvre of a contact, can be used directly
to infer a new belief, e.g., that that contact might be a merchant.

While specifying the formal model underlying the reasoning and behaviour of the
cognitive agent described in [1], it was found that often specific types of information
are required to deduce new beliefs. To be precise, often the last, earliest, most certain
or uncertain, increasing in certainty, or longest held belief was required. In addition, it
was noticed that the deduction processes of several of these beliefs are very similar,
e.g. the deduction of a last belief (belief with highest T) is very similar to the deduc-
tion of a most-certain belief (belief with highest C).

These observations spurred the development of an generic approach to belief aggre-
gation in which a complex belief is defined as an aggregation that takes the form of a
constraint (e.g., highest) that must hold for a certain variable (e.g., T) of a certain more

74 A. Heuvelink, M.C.A. Klein, and J. Treur

of less specified belief (e.g., belief(identity, contact1, friendly, T, S, C) in which the P,
O, and V are specified while the T, S, and C are left variable). The term algebra formal-
izing this approach to the formation of aggregated beliefs is introduced in the section 4,
while the section after that discusses an implementation of the approach in Prolog.

3.2 Complex Belief of Type Integrated Sources

The integrated_sources belief was the most important complex belief the developed
agent in [1] reasoned with instead of with its basic beliefs. This complex belief repre-
sents which value is currently believed by the agent to hold for a certain property and
object, and with which certainty. To determine this, inconsistencies formed by beliefs
from different sources, with different certainties, and held at different times, have to
be resolved. Much research has been done on how to deal with such inconsistencies,
see e.g. [3, 4].

In [1] a relative simple procedure was introduced to determine which value V was
currently believed to held with certainty C by an agent for a given P and O. This pro-
cedure takes into account that a belief’s validity over time is strongly influenced by its
predicate type (property) P. Values of some predicates are much more persistent than
others; consider the chance that a contact’s position, speed, or intent changes over
time. The following logical expression denotes the meaning of the complex belief
called integrated_sources:

given (p, o)
∀v1 ∀t1 ∀s1 ∀c1 ∀t ∀pd [

holds_at(complex_belief(
 integrated_sources, for(p, o), has_values(v1, c1 – pd * (t – t1))), t)

↔
holds_at(complex_belief(last, for(p, o, s1), has_values(v1, t1, c1)), t) ∧
persistence_decay(p, pd) ∧
¬∃s2 ∃ v2 ∃t2 ∃c2 [
 holds_at(complex_belief(last, for(p, o, s2), has_values(v2, t2, c2)), t) ∧
 c2 – pd * (t – t2) > c1 – pd * (t – t1)]] (1)

This expression specifies that the agent believes at time t that for a given P and O,
for(p, o), the value v1 holds, which is the value of the belief about P and O whose
certainty is the greatest after taking into account the time passed since it was formed
and the persistence of the property; c1 – pd * (t – t1). This might entail that the value
of an older belief with a certain certainty is believed over the value of a newer belief
that has a lower certainty. It might also be the other way around; it depends on the
nature (persistence) of the property. In this expression another complex belief was
used of the type last, which has as exact definition:

∀p ∀o ∀v ∀t ∀s ∀c ∀n [
holds_at(complex_belief(last, for(p, o, s), has_values(v, t, c)), n)

↔
holds_at(belief(p, o, v ,t ,s ,c), t) ∧ t ≤ n ∧
¬∃t’ ∃v’ ∃c’ [

holds_at(belief(p, o, v’, t', s, c’), t') ∧ t’ ≥ t ∧ t’ ≤ n]] (2)

 A Formal Approach to Aggregated Belief Formation 75

Expression 2 specifies that the agent believes at time n that t is the last time at
which a belief incorporating the given P, O, and S, for(p, o, s), held. This is the case
since t is the time label of a belief with that given P, O, and S, for which it holds that
no other belief exists with the same P, O, and S, but a higher T (t’). This complex
belief of type last is defined as an aggregation of all the beliefs with the given P, O,
and S, and the constraint Highest for their time label T. Besides a specification for T,
this aggregation also specifies the free variables V and C. This is a quite standard
aggregation, considering the limited complexity of the constraint that it takes into
account. The aggregation as which the complex belief of type integrated_sources is
defined, is much less standard. The constraint that has to be taken into account in that
aggregation is much more specific and not likely to be reusable, see section 5.

The current paper focuses on the development of an algebraic approach to have an
efficient representation of aggregated beliefs. For demonstration purposes it elabo-
rates on several possible types of these aggregated beliefs, which are defined as spe-
cific aggregations. Notice that the introduced aggregations simply serve as examples,
and that many more are possible. The approach is set up in such a generic way that all
kinds of constraints that lead to all kinds of complex beliefs can be expressed with it.

4 Algebraic Formalization

The algebra specification of the aggregation functions on beliefs is defined by a
basic ontology, by means of which its objects and relations can be expressed. The
primitive terms used in the algebra are defined by a many-sorted signature. The signa-
ture takes into account symbols for sorts, constants, functions and relations. Exam-
ples of sorts are: LABEL, CONSTRAINT, TIME, TYPE, AGGREGATIONBASE,
AGGREGATEDBELIEF, ARGUMENTLIST, BASICBELIEFBASE, PROPERTY,
or OBJECT. Constants are names of objects within sorts; examples are ‘speed’, ‘20’,
or ‘fast’. Functions denote mappings from a (combination of) sort(s) to another sort;
examples of function symbols are agg, holdsat, + and *. Relations symbols (relating
different sorts) used are, for example = and <. Logical relationships involve condi-
tional statements involving relations. Figure 1 depicts a large part or the algebra
specification with the definitions used listed below. Arrows with no label are defined
by ‘e’ which denotes (injective) embedding.

agg: LABEL x CONSTRAINT x AGGREGATEDBELIEF →
AGGREGATIONNAME

e: AGGREGATIONBASE → AGGREGATEDBELIEF
e: BASICBELIEFBASE → AGGREGATEDBELIEF
e: COMPLEXBELIEFBASE → AGGREGATEDBELIEF
holdsat: AGGREGATIONNAME x TIME → AGGREGATIONBASE
definedas: COMPLEXBELIEFBASE x AGGREGATIONBASE
holdsat: COMPLEXBELIEF x TIME → COMPLEXBELIEFBASE
complexbelief: TYPE x ARGUMENTLIST x RANGELIST →

 COMPLEXBELIEF
e: PROPERTY → ARGUMENTLIST
e: OBJECT → ARGUMENTLIST
e: VALUE → ARGUMENTLIST
e: TIME → ARGUMENTLIST
e: SOURCE → ARGUMENTLIST

76 A. Heuvelink, M.C.A. Klein, and J. Treur

e: CERTAINTY → ARGUMENTLIST
e: RANGE → RANGELIST
holdsat: BASICBELIEF x TIME → BASICBELIEFBASE
belief: PROPERTY x OBJECT x VALUE x TIME x SOURCE x CERTAINTY →

BASICBELIEF
abstraction1: LABELTYPE x VAR → LABEL
abstraction2: LABELTYPE x LABELTYPE x VAR x VAR → LABEL
constraint: NAME x VARIABLE x AGGREGATEDBELIEF → CONSTRAINT
forall, exists: VAR x FORMULA → FORMULA
definedas: CONSTRAINT x FORMULA
not: FORMULA → FORMULA
and, or, implies: FORMULA x FORMULA → FORMULA
e: ATOM → FORMULA
<, >, ≤, ≥ : TERM x TERM → ATOM

Fig. 1. Overview of the algebra for belief aggregation

A number of sorts are considered primitive; they only contain constants such as
names and values: LABELTYPE, VARIABLE, PROPERTY, OBJECT, VALUE,
TIME, SOURCE, CERTAINTY, RANGE, and TYPE. Some other sorts are more or
less standard, and/or may depend on application dependent functions: ATOM, TERM,
FORMULA.

Sort ARGUMENTLIST 1 contains terms listing 6 arguments with at each of the 6
positions instances. Two special instances exist; free and range, which denote that the
argument of that position is variable. The sort RANGELIST contains terms listing the
6 ranges for the 6 arguments of ARGUMENTLIST 1. The range is only relevant for
the arguments with the special instance range. In the case of a normal instance the
corresponding range is nr (not relevant) while in the case of the special instance free,
the corresponding term is any. Sort ARGUMENTLIST 2 contains terms listing 6
arguments with at each of the 6 positions instances. Two special instances exist; given
and nr, which denote respectively that the argument of that position was already
specified in ARGUMENTLIST 1, or is no longer relevant given the TYPE.

 A Formal Approach to Aggregated Belief Formation 77

Note that the function agg can be used in a recursive manner together with the func-
tion holdsat. The nested term structures that result, represent beliefs at different levels of
aggregation: the level is the number of nested agg functions occurring in the term.

The area of algebraic specification has a long history. From the extensive literature
techniques can be borrowed to obtain an implementation of calculations in the
algebra, for example in a functional or logic programming language. If relations are
involved, an implementation has to take into account both functional and logical as-
pects; e.g., [5, 6]. Following this tradition, the next section introduces an implementa-
tion of the developed algebra in the logic programming language Prolog.

The algebra is considered a term algebra, which specifies the different variations of
aggregated belief expressions that can be formed. The current Prolog implementation
generates such expressions, but does not perform evaluations of whether two different
expressions should be considered as having the same content or meaning. In future
work it is planned to extend this approach to an algebra for which also equations are
specified, and an implementation where such equations are incorporated.

5 Implementation

The algebra of section 4 is implemented in SWI-Prolog [7]. In this section, the im-
plementation choices are explained. For the readability of this section, only parts of
the Prolog program are shown. The complete source code can be downloaded from:
http://www.few.vu.nl/~heuvel/CIA-AggregationAlgebra.pl

5.1 Controlling Aggregations

The current implementation does not incorporate automatic control of aggregations.
Instead two ‘programs’ are implemented that can be called from the Prolog-shell:
holds and post. The holds program is shown below and can be used to request the
results of a specific aggregation, or to request the values for which a specific complex
belief holds. Notice that complex beliefs are defined as aggregations and are as such
interchangeable. When no holds_at attribute is included in the query, it is assumed
that the query requests the result of the aggregation or complex belief at the current
time. When a holds_at is included, the query requests the result of the aggregation or
complex belief that holds at the specified time.

holds(B):-
 B = complex_belief(_, _, _, _),
 current_time(N),
 complex_belief_is_defined_as(
 holds_at(B,N),
 holds_at(agg(L,C,A),N)),
 holds_at(agg(L,C,A),N).

Query about B,
B is a complex belief, and is
checked for the current time N.
The definition of the
 complex belief B is
 the aggregation agg(L, C, A),
which is requested for time N.

holds(B):-
 B = holds_at(X,N),
 X = complex_belief(_, _, _, _),
 complex_belief_is_defined_as(
 B, holds_at(agg(L,C,A),N)),

Query about B,
B is whether X holds at time N,
with X being a complex belief.
The complex belief X within B is
defined as an aggregation.

78 A. Heuvelink, M.C.A. Klein, and J. Treur

 is_time(N),
 holds_at(agg(L,C,A),N).

When N is an actual time, that
aggregation is requested for N.

holds(B):-
 B = agg(L,C,A),
 current_time(N),
 holds_at(agg(L,C,A),N).

Query about B,
B is an aggregation, and is
checked for the current time N,
and therefore requested at N.

holds(B):-
 B = holds_at(agg(L,C,A),N),
 is_time(N),
 holds_at(agg(L,C,A),N).

Query about B,
B is whether agg(L,C,A) holds at
N, when this is an actual time
agg(L,C,A) is requested at N.

The holds program does not alter the belief-base and as such can be used to inves-
tigate ‘what-if’ questions. Besides the holds program also a post program exists
whose procedure is almost identical, except each of its rules is extended with the extra
condition assert(_). This adds the complex belief, defined as the aggregation that is
checked to hold at N, to the belief base.

5.2 Free and Bounded Variables

Complex beliefs do not have 6 atomic arguments like basic beliefs, but are made
up of four arguments. The first of these is atomic and specifies a name for the com-
plex belief, which is also referred to as its type. The latter three arguments are predi-
cates; each embeds 6 arguments whose positions respectively represent the P, O, V, T,
S, and C. So a complex belief is represented by complex_belief(Type, For(…),
With_Ranges(…), Has_Values(…)), which denotes that it is believed by the agent that
for that complex_belief Type and for the given constants in For, taken into account
the With_Ranges in which the free variables in For have to lie, the constants in
Has_Values count.

An example complex belief denoting that it is believed that the last time at which a
belief was held about the hostile identity of contact1 is 7, and that was with a certainty
0.6 and based on radio contact is: complex_belief (last, for(identity, contact1, hostile,
free, free, free), with_ranges(nr, nr, nr, any, any, any), counts(given, given, given, 7,
radio, 0.6)). Such a complex belief is the result of the agent reasoning about what the
last time, i.e. highest T, was that it believed that the identity of contact1 was hostile.
When it would have reasoned about what the last time was that it believed with less than
0.5 certainty that that was the case, the following complex belief might have hold: com-
plex_belief (last, for(identity, contact1, hostile, free, free, range), with_ranges(nr, nr, nr,
any, any, [0, 0.5]), has_values(given, given, given, 4, vision, 0.4)).

Given this representation of complex beliefs, an example of a complex_belief_
is_defined_as relation which defines a complex belief as a specific aggregation is:

complex_belief_is_defined_as(
 holds_at(complex_belief(
 last,

for(P,O,V,free,S,C),
with_ranges(nr,nr,nr,any,nr,nr),
has_values(given,given,given,X,given,given)),N),

 A Formal Approach to Aggregated Belief Formation 79

 holds_at(agg(temporal_aggregation(T),
 highest_free(X,any,P,O,V,S,C),
 holds_at(belief(P,O,V,T,S,C),N)),N)).

The aggregation shown here will return the highest T that it can find for the given
P, O, V, S, and C. When it does not matter what the S and C are, but it is required to
find the highest (last) T that is now restrained to a certain time range [Tb, Te] for a
given P, O, and V, the following aggregation is applicable:

complex_belief_is_defined_as(
 holds_at(complex_belief(
 last,
 for(P,O,V,range,free,free),

with_ranges(nr,nr,nr,[Tb,Te],any, any),
has_values(given,given,given,X,Y,Z)),N),

 holds_at(agg(
 temporal_source_certainty_aggregation(T,S,C),
 highest_range_free_free
 (X,[Tb,Te],Y,any,Z,any,P,O,V),
 holds_at(belief(P,O,V,T,S,C),N)),N)).

This aggregation will return the highest T that it can find for the given P, O, and V.
The S and C that it returns are those of the belief with that highest T. This aggregation
example demonstrates that variables can be free or that they can be restricted to a
specific range. When it is checked whether a certain aggregation holds at a certain
time the following clause executes:

holds_at(agg(L,C,A),_):-
 term_variables(L,V),
 constraint_is_defined_as
 (constraint(C,A,V),F),
 F.

To determine the agg(L, C, A) at time _,
the variables in L are listed in V.
The definition of the constraint C for
the subject A and the variables in V is F,
which is consequently requested.

The first condition term_variables(L,V) is a built-in Prolog predicate that unifies V
with a list of variables, each corresponding with a unique variable of L and ordered in
order of appearance in L. So for the example above it holds:

?- term_variables(temporal_certainty_source_aggregation(T,C,S),V).
V=[G34,G35,G27], T=G34, C=G35, S=G27.

The second condition is a user-defined predicate that defines what the constraint C
entails for the aggregated belief A with its free variables listed in V; namely F, which
forms the last condition. On the next page, an example constraint_is_defined_as is
shown for the constraint that is required to deduce the first complex belief of type last
introduced in this section. Notice that this highest_free constraint can be reused, e.g.,
to deduce a complex belief of type surest when it is combined with a cer-
tainty_aggregation. Its logical expression is:

given A,
∀x [highest_free (x, any) ↔ A(x) ∧ ∀x1 [A(x1) → x1 ≤ x]] (3)

80 A. Heuvelink, M.C.A. Klein, and J. Treur

constraint_is_defined_as(
constraint(
 highest_free(X,any,F1,F2,F3,F4,F5),
A1, [X1]),

and(copy_term((A1, X1, F1, F2, F3, F4, F5),
 (A, X, F1, F2, F3, F4, F5)),

 and(A, forall(A1, X1 =< X)))).

Definition (
constraint (
 C,
 A, V),

F).

The constraint that was required to deduce the second complex belief of type last
introduced in this section, is shown next. It can be seen that this constraint only con-
siders options A1 whose values X1 for the variable X lies within the range [Xb, Xe]
specified for it.

constraint_is_defined_as(
constraint(
 highest_range_free_free(
 X,[Xb,Xe],Y,any,Z,any,F1,F2,F3),
A1, [X1, Y1, Z1]),

and(copy_term((A1,X1,Y1,Z1,F1,F2,F3),
 (A,X,Y,Z,F1,F2,F3)),

 and(A, and(X>=Xb, and(X<Xe,
 forall(and(A1, and(X1>=Xb, X1<Xe))
 X1 =< X)))))).

Definition (
constraint (

 C,
 A, V),

F

).

5.3 Nested Aggregations

The reason that in the constraint_is_defined_as Prolog clauses the values F1, ..., Fn
are embedded is that although they are usually instantiated, they do not have to be.
When they are not, and are left out of the query, they do get instantiated when Prolog
requests A. However, when next is asked whether for all X1 in A1 X1 ≤ X holds, this
probably fails. This is because the left-out variable that now is instantiated in A, is
still free in A1, so much more A1’s are checked than there should be.

The reason why variables are allowed to exist in places where atoms are expected
is because this freedom enables nested aggregations. An example of a nested aggrega-
tion is the complex belief integrated_sources introduced in section 3:

complex_belief_is_defined_as(
 holds_at(complex_belief(
 integrated_sources,
 for(P,O,free,free,free,free),
 with_ranges(nr,nr,any,any,any,any),
 has_values(given,given,X,nr,nr,Y)),N),
 holds_at(agg(
 certainty_temporal_source_value_
 aggregation(C,T,S,V),
 highest_free_after_free_for_free_
 free_for_predicate_and_time
 Y,any,_,any,_,any,X,any,P,O,N),
 holds_at(complex_belief(
 last,

 A Formal Approach to Aggregated Belief Formation 81

 for(P,O,free,free,S,free),
 with_ranges(nr,nr,any,any,nr,any),
 has_values(given,given,V,T,given,C)),N))

 ,N))

In this clause a complex belief of type last functions as aggregated belief for the
aggregation that deduces the complex belief of type integrated_sources. This latter
aggregation aggregates over values, times, sources, and certainties of beliefs about a
given property and object, in order to retrieve a specific value and certainty. The ag-
gregation belief it needs as input is a complex belief of type last that aggregates over
values, times and certainties for a given property, object and source. However, the
latter (S) is not given but variable, because the top-aggregation needs this last type for
all possible sources. Note that instead of the complex belief of type last also the ag-
gregation as which it is defined could have been used as input.

The constraint used within the aggregation to deduce the complex belief inte-
grated_sources is much more specific and therefore less reusable than, e.g., the high-
est_free constraint. These two examples nicely illustrate the reach of the proposed
aggregation mechanism. In principle all possible constraints can be added and used to
form new types of complex beliefs that in turn can be used in other aggregations.

6 Example Scenarios

From http://www.few.vu.nl/~heuvel/CIA-AggregationAlgebra.pl the source code of
our Prolog program can be downloaded. In the case presented, an agent attempts to
infer the identity of a radar contact. Information about this contact can be gathered by
the radar as by the agent’s own vision. Furthermore, the agent can generate new be-
liefs by reasoning over other beliefs. Over time the following basic beliefs have held
in STM and are now stored in LTM:

holds_at(belief(identity, contact1, neutral, 2,
 vision, 0.5), 2).
holds_at(belief(identity, contact1, neutral, 3,
 radar, 0.3), 3).
holds_at(belief(speed, contact1, 20, 3,
 radar, 0.9), 3).
holds_at(belief(identity, contact1, hostile, 4,
 vision, 0.9), 4).
holds_at(belief(identity, contact1, hostile, 4,
 id_from_speed, 0.4), 4).
holds_at(belief(speed, contact1, 28, 6,
 radar, 0.9), 6).
holds_at(belief(speed, contact1, 30, 7,
 vision, 0.5), 7).
holds_at(belief(identity, contact1, hostile, 8,
 vision, 0.7), 8).
holds_at(belief(identity, contact1, hostile, 8,
 id_from_speed, 0.8), 8).

82 A. Heuvelink, M.C.A. Klein, and J. Treur

At current_time 10, two of the nine beliefs stored in the agent’s LTM are formed
by the agent’s reasoning rule id_from_speed, which forms the source of those beliefs.
At this moment the agent might start another reasoning process for which it requires
the last belief about a hostile identity of contact1. This query results in:

By chance, two sets of atoms are found that both adhere to this query. In such case
the agent might be interested in the surest one of these two last beliefs. This complex
belief of type surest_last is formed by aggregating the label certainty_temporal_
source_aggregation and the highest_free_free_free constraint with that complex belief
of type last as aggregated belief. The query for complex belief of type last_surest
yields a totally different result: it is an aggregation of the same constraint but in combi-
nation with a temporal_certainty_source_aggregation and on complex beliefs of the type
surest.

Another possibility would be that the agent’s superior asks the agent what it be-
lieves that contact1’s identity is. At that moment the agent will retrieve its last beliefs
about the identity of that contact and form an answer. In the current case the agent
believes contact1 might be neutral based on what it saw of the vessel, as on the radar-
emission-pattern it received from the contact. However, it also believes it might be
hostile, due to its high speed. In order to give its superior an answer the agent has to
form a belief about the contact’s identity by integrating the retrieved last information
about its identity from the different sources. Given that the persistence-decay of a
contact’s identity (see section 3) is 0, the agent reports it believes the contact to be
hostile since it was most sure of that.

 A Formal Approach to Aggregated Belief Formation 83

The agent’s superior could also have asked what the agent believes that the speed
of contact1 is. Again the agent needs to integrate information from different sources
and times. However, because the persistence-decay of speed is larger than 0, say 0.05,
it also has to take into account how long ago it was that it believed that information.
The answer it will give is 28, see below. This knowledge is deduced from the basic
belief at time 6 that its speed was 28, but notice that the certainty with which it is
believed has decayed; from 0.9 to 0.7. Moreover, a newer belief concerning the con-
tact’s speed existed. However, even though the predicate’s certainty decreases over
time, still the value of the older belief is believed because the certainty of the new
belief was very low.

7 Related Research

The technique for pre-processing a knowledge base to derive intermediate conclu-
sions that is presented in this paper is related to the area of knowledge compilation.
Knowledge compilation is defined in [8] as “methods of processing off-line a knowl-
edge base in such a way that the output of such a pre-processing can be used to speed
up on-line answering for a class of queries, where the pre-processing should take an
finite amount of time”. Within the area of knowledge compilation a distinction is
made between exact methods (which are sound and complete) and approximate meth-
ods, which either reduce the complexity by expressing the knowledge or query in a
simpler language or by leaving out some (complex) parts of the knowledge base.

Our approach is an exact technique, as it only results in sound intermediate results.
However, a difference with common techniques for knowledge compilation is that our
method does not strive to derive all intermediate results, whereas knowledge compila-
tion techniques usually try to find a representation of all theorems of the initial
knowledge base. For example, they transform a knowledge base to normal form and
compute all implicants or implicates. In contrast, our approach is driven by specific
queries whose results are likely to be useful for the task execution. In that sense, our
method is not complete, as it does not aim to represent all knowledge in a different
representation. Moreover, our aggregations are usually more complex (and thus richer
in information), whereas knowledge compilation techniques often result in simpler
representations. Last, our aim is to compile new knowledge on-line instead of off-line.

84 A. Heuvelink, M.C.A. Klein, and J. Treur

Shahar [9] presents a framework for knowledge based temporal abstraction from
time-stamped data. His formal specification of a domain’s temporal-abstraction
knowledge supports acquisition, maintenance, reuse, and sharing of that knowledge.
His aim is partly the same as our, however, his framework allows for temporal ab-
stractions only, whereas our algebra allows for arbitrary abstractions.

The area of belief revision is also related to our work. In belief revision, the ques-
tion is how existing beliefs are influenced when new pieces of information are taken
into account, for example when information is added, removed or changed. The
dominant theory on belief revision, the so-called AGM model [10], formulates prop-
erties that an operator that performs revision should satisfy in order for being consid-
ered rational. Similarly, related work on belief merging focuses on the consequences
of combining belief bases for the integrity of a belief base, for example, see [11]. In
our work the logical consequences of the aggregations are not relevant, as no new
knowledge is added. There is no inconsistent information that is merged and it does
not happen that old information changes because all information is time-stamped.
This is comparable to what Sripada [12] describes, who also uses time-stamped be-
liefs. He proposes a technique for the efficient revision of beliefs in knowledge bases
for real-time applications, but only looked at binary beliefs.

Another type of related work is formed by approaches for memory storage in exist-
ing (cognitive) agent architectures. In a recent review study on computer-based hu-
man behaviour representations [13] it was generalized that “all the (human behaviour)
models can represent either short term memory (STM) or long term memory (LTM).”
However, the ways in which these memories function differ greatly. For example,
ACT-R’s STM is formed by a retrieval buffer that can hold one chunk, which it re-
trieves using an activation function from its declarative memory module (LTM) [14],
while Soar’s STM is formed by its working memory that is not limited in the number
of elements it can hold [15]. Related to the differences in memories, differences exist
in the representation of the declarative information entities stored in such modules.
These representations range from nodes in a network with an activation value to first-
order propositions.

The functioning of the various memories are in general fixed and tuned to bring
about the behaviour for which the architecture was developed. No existing architec-
ture is build to specifically deal with time-labelled constructs, let alone in the alge-
braic approach as introduced in this paper. Despite this, it might be possible to map
the specific belief construct to the memory construct of an architecture, prohibited the
form of the latter has a certain degree of freedom [2, 16]. Moreover, the constraints
that are needed to infer required (possibly domain-specific) aggregations have to be
implemented in the architecture as well, as the aggregation algebra.

8 Summary and Future Research

In this paper a method and a term algebra is presented to form arbitrary aggregations
of beliefs in a knowledge base. The aggregations can be formed at different levels and
from different perspectives, i.e. time aggregations, source aggregations, certainty
aggregations, etc. A Prolog program is used to illustrate the feasibility of the ap-
proach. The motivation of this work is twofold: it should help to improve the compu-
tational problems when reasoning over a knowledge base, and it should reflect a more
human way of storing information in memory. As such, the goal is to 'validly'

 A Formal Approach to Aggregated Belief Formation 85

represent aggregations of humans over beliefs, both conscious as subconscious, which
can be used in agent applications where agents should behave in a human-like way.

Up to now, the control of the formation of aggregations is not yet implemented.
Future research will investigate the control of aggregations from two perspectives.
The first will be inspired by the human processes of forgetting and remembering, the
second by the human processes of attention and focusing in task execution.

References

1. Heuvelink, A., Both, F.B.: A Cognitive Tactical Picture Compilation Agent. In: Proceed-
ings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy (IAT 2007), pp. 175–181. IEEE Computer Society Press, Los Alamitos (2007)

2. Both, F., Heuvelink, A.: From a Formal Cognitive Task Model to an Implemented ACT-R
Model. In: Proceedings of the 8th International Conference on Cognitive Modeling (ICCM
2007), pp. 199–204. Psychology Press (2007)

3. Castelfranchi, C.: Representation and Integration of Multiple Knowledge Sources: Issue
and Questions. In: Cantoni, V., Di Gesù, V., Setti, A., Tegolo, D. (eds.) Human & Ma-
chine Perception: Information Fusion, pp. 235–254. Plenum Press (1997)

4. Bloch, I., Hunter, A., et al.: Fusion: General Concepts and Characteristics. International
Journal of Intelligent Systems 16(10), 1107–1134 (2001)

5. Drosten, K.: Translating Algebraic Specifications to Prolog Programs: a Comparative
Study. In: Algebraic and Logic Programming. LNCS, vol. 343, pp. 137–146. Springer,
Heidelberg (1988)

6. Hanus, M.: The Integration of Functions into Logic Programming: From Theory to Prac-
tice. Journal of Logic Programming 19, 20, 583–628 (1994)

7. Wielemaker, J.: An Overview of the {SWI-Prolog} Programming Environment. In: Pro-
ceedings of the 13th International Workshop on Logic Programming Environments, pp. 1–
16 (2003)

8. Cadoli, M., Donini, F.M.: A Survey on Knowledge Compilation. AI Communica-
tions 10(3-4), 137–150 (1997)

9. Shahar, Y.: A Framework for Knowledge-based Temporal Abstraction. Artificial Intelli-
gence 90(11), 79–133 (1997)

10. Konieczny, S., Pino Pérez, R.: Merging Information Under Constraints: A Logical Frame-
work. Journal of Logic and Computation 12(5), 773–808 (2002)

11. Alchourròn, C.E., Gärdenfors, P., Makinson, D.: On the Logic of Theory Change: Partial
Meet Contraction and Revision Functions. Journal of Symbolic Logic 50, 510–530 (1985)

12. Sripada, S.M.: A Temporal Approach to Belief Revision in Knowledge Bases. In: Proceed-
ings of the Ninth Conference on Artificial Intelligence for Applications, pp. 56–62. IEEE
Computer Society Press, Los Alamitos (1993)

13. Morrison, J.E.: A Review of Computer-Based Human Behavior Representations and Their
Relation to Military Simulations. Institute for Defense Analyses, Paper P-3845 (2003)

14. Anderson, J.R., Lebiere, C.: The Atomic Components of Thought. Lawrence Erlbaum As-
sociates, Mahwah (1998)

15. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: An Architecture for General Intelli-
gence. Artificial Intelligence 33(1), 1–64 (1987)

16. Muller, T.J., Heuvelink, A., Both, F.: Comparison of Implementations of a Cognitive
Model in Soar and ACT-R. In: Proceedings of the 6th International Workshop on From
Agent Theory to Agent Implementation (AT2AI-6) (2008)

Software Engineering for Service-Oriented MAS

Emilia Garcia, Adriana Giret, and Vicente Botti

Department of Information Systems and Computation, Technical University of
Valencia, Camino de Vera, Valencia, Spain
{mgarcia,agiret,vbotti}@dsic.upv.es

Abstract. Nowadays, service-oriented architectures (SOA) and multia-
gent systems (MAS) are two increasingly important technologies. Despite
the differences in technology, SOA and MAS have some similar objectives
and their integration produces systems with more flexibility, functional-
ity and interoperability. Their integration creates new requirements and
special methods and tools are necessary to develop systems that inte-
grate both technologies. This paper analyzes the most important issues
for developing Service-oriented MAS. Furthermore, some methods and
tools to develop this kind of systems are analyzed to show how cur-
rent approaches solve the problem of the integration between agents and
services.

Keywords: Multiagent systems, service-oriented architectures, software
engineering, development tools.

1 Introduction

Nowadays, SOA and MAS are two increasingly important technologies. The
objectives of both architectures share some similarities, i.e., both of them try
to create distributed and flexible systems that are composed of loosely-coupled
entities which interact with each other.

Despite these similarities, there are major differences in their technology. Ser-
vices have interface standards and exchange protocols that are completely differ-
ent from agent communication languages and protocols. This is why they cannot
interact with each other directly.

This is a problem which needs to be solved, but some studies [15] have inves-
tigated this issue and show that the integration of agents and services produces
attractive benefits. Services have a well-defined infrastructure and interoperabil-
ity whereas agent technology aims to provide intelligent and social capabilities
(trust, reputation, engagement, etc) for applications. Therefore, the integration
of agents and services improves the flexibility, interoperability and functionality
of the system.

Nevertheless, most agent software engineering techniques do not consider in-
tegration with services, nor do service software engineering techniques consider
integration with agents.

There are some works that address the integration between agents and ser-
vices [8]. They define frameworks and provide tools for developing systems in

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 86–100, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Software Engineering for Service-Oriented MAS 87

which agents and services are integrated. Each of them has its own integra-
tion mechanism, communication language, and even its own service and agent
concepts.

In order to define the software engineering issues for developing Service-
oriented MAS, a detailed study of the state of the art of software engineering for
agents, services and service-oriented agent systems is made and briefly summa-
rized in Section 2. Section 3 defines a list of the most important software engi-
neering requirements for developing Service-oriented MAS. Furthermore, some
software engineering tools for developing systems that integrate agents and ser-
vices have been analyzed to define how current approaches and tools solve the
problem of the integration between agents and services. A description and a brief
analysis of some selected tools and frameworks is presented in Section 4. Finally,
Section 5 presents some conclusions and future work.

2 Background

This section is divided in three parts. Firstly, the state of the art of software en-
gineering for MAS is briefly described. Secondly, the state of the art of software
engineering for SOA is summarized. Finally, the state of the art of software engi-
neering for service-oriented agent systems is analyzed.

2.1 Agent-Oriented Software Engineering

MAS are complex systems with a distributed nature, where each element is au-
tonomous, reactive, proactive and social. This complexity makes the use of tech-
niques and tools to support the development process necessary. Agent-oriented
software engineering is based on traditional software engineering, but it takes
into account the specific features of the agent technology. On the market today
there are a great number of methodologies, development environments, model-
ing languages, debugging tools and platforms that deal with the development
process of a multiagent system [16].

Some well-known tools and methodologies include AUML [21], Jade [1] ,
JACK [9], Gaia [23], Tropos [7].

The two main drawbacks to software engineering tools of this kind are the
gap between modeling and platforms, and the lack of automatic and complete
translation between the models and the executable code [18].

Agents usually use specific technology to represent ontologies, protocols and
content languages. This makes the interaction with other types of systems diffi-
cult and sometimes necessitates the use of intermediary elements.

2.2 Service-Oriented System Engineering

It is based on traditional system engineering, but it must take into account
specific characteristics of SOA systems. System engineering needs to be collab-
orative because SOA applications are often collaborative. Service consumers,

88 E. Garcia, A. Giret, and V. Botti

service brokers and service providers collaborate to invoke, search, register and
provide services. Systems may be composed at runtime using existing services
so many SOA engineering tasks need to be done on the fly at runtime.

Services are oriented to being reused, so it is very interesting for them to have
platform-independent modeling techniques.

Recently some initial results have been proposed [20,12]. These works have
mainly concentrated on developing a methodology for service-oriented engineer-
ing and design-time models. In the first line of research, works have concentrated
on how to provide sufficient principles and guidelines to specify, construct, re-
fine, and customize highly volatile business processes choreographed from a set
of internal and external Web services [22,13]. In the second line of research, some
works have concentrated on developing design-time models using goal-oriented
requirement analysis techniques [17,14].

2.3 Service-Oriented MAS Engineering

Agents and services have clear differences, such as the different representational
encodings and technologies, for example. Despite these differences though, they
have similar goals. Both technologies build flexible and distributed systems. Some
researchers have studied the benefits of mixing these technologies [15]. They state
that using agents and services can provide systems with more flexibility, func-
tionality and interoperability. Many works on this subject are focused on the
interaction mechanism between agents and services [11], but there is no work
that provides a complete description of which are the software engineering re-
quirements for developing this kind of systems. A detailed list of the software en-
gineering features to take into account in the Service-oriented MAS development
is presented in Section 3. Furthermore, there are few development environments
and tools that actually offer facilities for developing agents that interact with
services. Some of these tools are described and analyzed in Section 4.

3 Software Engineering Requirements

The aim of this section is to make an overall analysis of the needs that arise
when developing Service-oriented MAS, relying more on the concepts than in a
specific terminology. In the specialized literature, there are a great number of
different perspectives about the integration between agents and services; there
are even different conceptions of what an agent and a service are. Because of this,
the identification of a set of independent, orthogonal features which completely
characterize the Service-oriented MAS development process seems unfeasible.

The selection of these issues is based on the background briefly described
in Section 2 and the study of current frameworks and techniques for Service-
oriented MAS engineering that is summarized in Section 4.

These issues are classified into four categories: (1) Integration between agents
and services; (2) Development issues; (3) Multiagent systems; (4) Service-
oriented architectures.

Software Engineering for Service-Oriented MAS 89

3.1 Integration between Agents and Services

Firstly, it is important to analyze the way in which the relationship between
agents and services is considered. Drawing from the published literature and, as
described in [5], there are three different ways: (1) Some approaches hold that
there is no conceptual distinction between agents and services. For them, both
are active building blocks in a loosely-coupled architecture, and there is only an
engineering problem of creating overall systems behaviors from active compo-
nents [24]. (2) Other approaches hold that agents and services can communicate
in a bidirectional way. They have to provide a mapping between the language
protocol used in the multiagent system and the service language protocol and
vice versa [2,25]. (3) Finally, other approaches hold that the communication is
only useful in one direction, i.e., agents invoke services but not vice versa. In
this view, agents are responsible for the application, and they use services or
composite services as resources to achieve their objectives [4].

Furthermore, agents and services have different communication standards.
Agents usually use FIPA ACL messages. Services are described with WSDL de-
scriptions and use SOAP as the communication mechanism. However, not all the
approaches follow the standards. The use of different technologies in services and
agents and the mechanism to match them should be evaluated. Another point
to consider is if the approach offers the possibility of dynamically publishing and
discovering services. Some approaches even discuss the possibility of interact-
ing with external services that may or may not be registered in the system.

3.2 Development Issues

This section analyzes the general features that a method and a development
environment for developing Service-oriented MAS should have. These features
are extracted from traditional software engineering and are grouped into three
categories:

3.2.1 Software Engineering Support
As described in Section 2, the development of a system that integrates agents and
services is a complex task which greatly benefits from the adoption of software
engineering techniques. Firstly, the application domain should be considered.
Some approaches are supposed to address systems from any domain and other
are oriented to specific domains. The model-central element is another key
feature; it defines the initial point and the perspective of the modeling process.
Offering a methodology that involves agents and services and that also take
into account their interaction greatly helps the developer to go from the initial
information to the final implementation. There are lots of methodology features
that can be analyzed, but the most important are which parts of the devel-
opment process are covered and whether development guidelines are provided.
Furthermore, a methodology component that can process a user behavioral de-
scription of desired functionality and recommends that the behaviour should be
implemented via a service or an agent, is a very useful feature for developing

90 E. Garcia, A. Giret, and V. Botti

this kind of systems. The modeling language specifies the type of notation
used for modeling. It can be formal or informal and may or may not use graph-
ical elements. The notation should be precise, complete and clear. The systems
are usually very complex, so it is very useful if the language modeling allows to
model at different abstraction level. A very interesting feature is to offer mech-
anisms to specify semantics of model element extensions using formal methods,
such as OCL.

3.2.2 Technical Issues
There are many approaches that only analyze the development process in a the-
oretical way. They define methods, but they do not offer tools or development
environments to model, design and implement systems. Thus, one evaluation
criterion is whether the approach offers tools and which parts of the develop-
ment process are covered by them. These tools can be evaluated based on
many criteria, but the most important are the requirements to set up and run
it, the functionality offered, the ease of use and their scalability.

3.2.3 Implementation Issues
The most advanced development environments integrate the modeling, design
and implementation processes in the same tool. They even offer tools that auto-
matically generate parts of the code from the models. These characteristics
are very desirable because they reduce the implementation time and the number
of implementation errors. In the development process of systems that integrate
agents and services, the translation from one descriptive language to another
is very useful. This requires that the development environment has to offer a
mechanism to automatically translate from one standard to another.

3.3 Multiagent Systems

There are many works that analyze the features that should provide the method-
ologies and the development environments for multiagent systems [6,18]. They
describe a great number of criteria, but, in this paper, only the most important
criteria for the specific case where agents interact with services are considered.

The multiagent system approach should have an agent architecture that
carry out the fundamental properties of agents (autonomy, reactivity, sociality
and proactiveness). The content language used for the communication mecha-
nism and whether or not the architecture is FIPA compliant are very important
features because they are strongly related with the necessary mechanism to in-
teract with and to integrate services and agents.

3.4 Service-Oriented Architectures

As explained in Section 2.2, there are some features that should be taken into
account for developing systems that use service-oriented technology.

The service architecture should be modeled independently of a specific
platform to obtain more flexibility and reusability. The platform-dependent

Software Engineering for Service-Oriented MAS 91

characteristic also need to be specified to implement the system. Service-
oriented systems are usually composed of many standards (See 2.2). Therefore,
the development environment should provide facilities to implement and check
the correctness of these standards. Another feature to take into account is the
way service descriptions are implemented. Service specification provides a
means for defining complete service specifications that include behavioral rules
in addition to static interfaces, operations, preconditions, post conditions, and
constraints. Service specifications are not architecturally neutral. Services can
be composed to achieve more complex functionality. The mechanism to spec-
ify how services are composed from other services in the models and how the
composition is translated to an executable code is another important feature.

4 Frameworks and Techniques

A brief description and analysis of some frameworks and techniques for modeling,
designing and implementing systems of this kind is given below. This selection
was made due to the relevance of the researchers and companies responsible for
these tools and the fact that they cover a range of pertinent issues and supporting
technologies that are primarily focused on the integration of agents and services.

– The Nuin agent platform. Nuin [4][5] is an open-source Java implementa-
tion which is a combination of a belief-desire-intention (BDI) agent platform
and semantic web techniques. It provides an abstract service boundary to
add custom behaviours to the agent. This abstract service boundary also
provides a natural basis for extending the internal agent services in order to
include external web services.

– JASE. It [3] is a Java-based Agent-oriented and Service-oriented Environ-
ment for deploying dynamic distributed systems. It defines a service-agent
programming model, which is a combination of two concepts in the field of
distributed computing: the concept of services and the concept of mobile
agents. In JASE, mobile agents are used to support applications, and service
interface agents are used to wrap services.

– The Agent Modeling Language (AML). AML [19] is a semi-formal
visual modeling language for specifying, modeling and documenting systems
that incorporate features drawn from multiagent systems theory. AML also
supports the modeling of services and their interaction with agents.

– The framework for Rapid Prototyping of SOA. This framework is pro-
posed by Zinnikus in [25]. It is built around a Model-Driven Development
methodology that is used for transforming high-level specifications of SOA
into executable artefacts, both for Web Services (WSDL files) and for BDI
agents. It follows the OMG Model-Driven Architecture (MDA) approach
and defines a Platform-Independent Model (PIM) for SOA (PIM4SOA) and
Platform-Specific Models (PSMs) for describing Web services (XSD and
WSDL), JACK BDI agents and BPEL processes. This framework is com-
posed of three parts: a modeling part, a service part and an autonomous

92 E. Garcia, A. Giret, and V. Botti

agent part. The modeling part is concerned with applying Model-Driven
Development (MDD) techniques and tools to the design of SOAs. It defines
models and transformations that are specific to the concepts used for SOAs,
such as Web Service descriptions and plans for autonomous agents. The
service part provides a highly flexible communication platform for Web ser-
vices. The autonomous agent part deals with designing and enacting service
compositions as well as performing mediation, negotiation and brokering in
both SOAs.

– Jade web services integration gateway (WSIG). WSIG [2] is a Jade
add-on that provides support for bidirectional invocation of Web services
from Jade agents, and Jade agent services from Web services clients.

4.1 Tools Analysis

In this section, some of the features of these frameworks are related to show how
current approaches develop this kind of systems, but the goal of this section is
not to make an extensive and complete analysis of these approaches. Figures 1,
2 and 3 summarize this analysis highlighting the parts that are not covered by
the analyzed tool.

4.2 Integration between Agents and Services

The Nuin approach considers that interaction between agents and services is
only useful in one direction. Agents primarily are responsible for mediating be-
tween user goals and the available strategies and plans. Agents invoke atomic or
composite external web services as necessary. An initial approach at integration
of semantic web capabilities is to include the use of RDF/OWL as a knowledge
representation, and the ability to use RDQL to query RDF-based knowledge
stores. A future goal for the Nuin approach is to add support for the direct use
of semantic web service descriptions in OWL-S. Nuin assumes that an appropri-
ate binding to the abstract service is defined, but the interaction between Nuin
agents and web services has not yet been implemented (see Figure 1).

In JASE, the general idea of service is that the application is separate from the
resources needed to fulfill a task; these resources are modeled by services, which
are independent of the application. JASE models services as agents. A service
interface agent encapsulates a local resource. Each service interface agent consists
of two parts: a service agent and a service interface. A service interface acts as a
front-end interface for the other agents in the system to communicate with the
service agent it represents. A service agent is a specialized service, which can be
realized in the form of software or hardware. JASE uses XML to describe both
service descriptions and agent queries, so no gateway is necessary.

In AML, services are encapsulated blocks of functionality that the entities
can offer to perform upon request. AML is only a modeling language, so it
represents a bidirectional interaction between agents and services. However it
does not consider the technological differences between agents and services. The
services publication and their discovery are not considered, either.

Software Engineering for Service-Oriented MAS 93

Integration between agents and services

Standards Integration
type Agents Services

Interaction mechanism Publish services
External
Services

Nuin Agents invoke
services

Nuinscript ,
OWL, RDF

WSDL not implemented yet
use external UDDI

registers
can use them

Jase
Model

services as
agents

XML XML
not need (use the same
standards and protocols)

provide Service
Server

can not use

AML not covered not covered
not

covered
not covered not covered

only internal
services

WSIG Bidirectional ACL WSU stack covered completely not covered not covered

Zinnikus Bidirectional not specified WSDL covered completely yes can use them

Fig. 1. Integration issues

WSIG is a gateway that offers automatic, bidirectional operation allowing
both FIPA compliant agent services and Web services to be registered with it.
Agent services and web services can thereby publish their service descriptions
to consumers outside their normal operational domain. The gateway can then
intercept calls to these registered services allowing agents to invoke Web ser-
vices and vice versa by transforming message encodings and creating service
access endpoints. All invocation-related interactions between the gateway and
agents use ACL encoded FIPA-Request and FIPAInform performatives. All Web
services use the standard WSU stack (WSDL, SOAP and UDDI).

The Zinnikus approach extends the JACK agent framework for Web Services
in order to provide a goal-oriented service composition and execution module
within a SOA. Following the MDA approach, at design time a modeller specifies
a set of plans (PSM level) that constitute the workflow library of the agents. Web
service calls are integrated as steps into plans. Service providers are mapped to
JACK agents/teams. The parts of the PIM that define the processes involved
are mapped to agent/team plans and correlated events, whereas the parts that
define the interfaces are mapped to the modules that provide the client- and
server-side code for the JACK agent platform. Johnson and Lyndon are tools of
the service part of the framework and allow the communication between external
and internal web services and agents. The Johnson tool is responsible for invoking
web services and receiving calls issued by Web service clients. The Lyndon tool
takes WSDL files as input and configures Johnson tool to play either the role of
service provider, service consumer or service proxy for the service described by
the WSDL file analyzed.

4.3 Development Issues

4.3.1 Software Engineering Support
In all the studied tools, the application domain is general as shown in Figure 2.
Even though JASE models can describe any kinds of open and global dynamic
distributed systems, it is specialized in mobile agents.

The central element of the model in all cases is the agent, except for the
Zinnikus approach. This approach defines first a platform-independent model
for services (PIM4SOA) and later platform-specific models that have agents as
central elements.

94 E. Garcia, A. Giret, and V. Botti

Nuin and JASE do not provide or use any methodology, nor any modeling
language.

AML is a modeling language that is specified as an extension to UML 2.0
in accordance with major OMG modeling frameworks (MDA, MOF, UML, and
OCL). It proposes 11 diagrams that extend UML 2.0, to model all the MAS fea-
tures and interactions with services graphically. The notation is clear, complete,
precise and understandable. AML offers the possibility to model at different ab-
straction level. ADEM is the agent methodology proposed for AML researchers
but there is no public available detailed documentation of ADEM.

WSIG is a transparent gateway to translate communication standards, so it
cannot be analyzed with these features.

As explained in Section 4, the Zinnikus approach is built around a Model-
Driven Development methodology that transforms high-level specifications of
a SOA into executable artefacts, both for web services (WSDL files) and for
BDI agents. The modeling part of the framework and more specifically, the
MDD framework defines the metamodels used to specify SOAs. It also provides
modeling guidelines, model transformation and generation support for execution
artefacts such as WSDL files and BDI plans. It also supports importing existing
WSDL files into the SOA models. All these models are represented graphically.

4.3.2 Technical Issues
Nuin and JASE do not provide any development environment to implement
applications. Nuin models core BDI agent architectures on AgentSpeak(L) and
PRS, allowing agent designers to specify and implement agents using program-
ming abstractions that correspond closely with the terms commonly used in
intelligent agent theories. It is written in Java, and requires JDK 1.4 or later.
Jade and Jena libraries are also necessary for a full functionality.

JASE is also implemented in Java. Similar to Nuin, JASE provides program-
ming abstraction libraries.

AML is supported by tree case tools: Rational Rose 2003, Enterprise Architect
4.0 and StarUML. The AML implementation consists of UML profile support
for AML, a set of modeling utilities (specialized element specification dialogs,
model consistency checker, etc.), and forward-engineering tools for TAPI, the
commercial-agent platform of Whitestein Technologies AG.
The WSIG requires JADE v3.3 platform to run, and the following third party

technologies are available on the system: JakartaTomcat, Apache jUDDI, mySQL,
MySQL Conector/J.

The Zinnikus approach provides tool support for the MDD framework. It
has been developed as a set of plugins for Rational Software Modeller (RSM)
(IBM Rational Software). RSM is a UML 2.0 compliant modeling tool from
IBM based on the Eclipse modeling environment. All models and metamodels
were implemented using the EMF Core (Ecore) metamodel. Model transforma-
tions have been implemented using the model transformation capabilities of the
RSM/Eclipse platform. Also [25] provides Johnson tool, Lyndon tool, WSDL
Analyzer (a tool for detecting similarities at a structural level between WSDL

Software Engineering for Service-Oriented MAS 95

Development issues

Software Engineering Support Implementation issues

Technical issues
Automatic generation code for:

 Applica
tion
domain

Model-
central
element

Methodology
Modeling
language

Offer tools
Development

process covered
Agents Services

Standards
translation

Nuin General Agents not covered
not

covered

Programming
abstraction
libraries

Implementation
(only programming

help)
api

not
covered

not
implemented

yet

Jase General
Mobile
agents

not covered
not

covered

Programming
abstraction
libraries

Implementation
(only programming

help)
api api no needs

AML General Agents
ADEM no
public

available

Yes,
Informal

,
Graphic

yes
model, design,
implementation
(not tested)

Jade
generation

(not
tested)

no no

WSIG not
covered

not
covered

not covered
not

covered
not covered not covered

not
covered

not
covered

complete
and

transparent

Zinnikus General
Services
/Agents

Services
/Agents

Yes,
Informal

,
Graphic

yes
complete but poor
at implementation

no no no

Fig. 2. Analysis of the development issues

descriptions of Web services and generating the corresponding mappings) and
RDF store (which stores both design-time information and runtime information
as RDF files for the purpose of monitoring).

4.3.3 Implementation Issues
As explained in the above sections, JASE and Nuin do not offer any modeling
mechanism, so the translation between models and code is not considered.

The CASE tools provided by AML are supposed to be able to translate agent
models into Jade code [10], but these plugins are not publicly available.

The WSIG v0.4 supports the standard WSU stack and FIPA acl/sl0 commu-
nication. The functionality of WSIG is translated between these two standards.
WSIG automatically registers UDDI web service registers in the Jade platform
DF and viceversa, i.e., WSIG registers all agent services of the DF in the WSIG
UDDI repository. WSIG is transparent, so the programmer does not need to add
any code in agents or services. An agent calls a web service as to another agent
and viceversa.

The Zinnikus approach provides model-to-model transformation services that
allows the transformation of PIM4SOA models into underlying PSMs such as
XSD, WSDL, JACK BDI agents or BPEL. However, it does not specify if JACK
agents code is generated automatically from these models.

4.4 Multiagent Systems

Nuin agents are BDI agents that are reactive, autonomous, proactive and social.
JASE is not a BDI architecture. It provides a mechanism for developing agents

with all the basic properties described in Section 3 as well as with the ability to
migrate.

AML allows agents to be modeled with all the basic properties.
WSIG is a transparent gateway to translate communication standards, so it

cannot be analyzed with these features (see Figure 3).

96 E. Garcia, A. Giret, and V. Botti

Multiagent systems Service-oriented architectures

 Agent
Architect

ure

FIPA
compliant

Basic
properties

Platform
independent

Platform
dependent

Service
specification

Service
composition

Nuin BDI yes yes not covered not covered not covered not covered

Jase no BDI no yes not covered not covered yes no

AML not
covered

not covered yes yes no yes yes (model)

WSIG not
covered

not covered not covered not covered not covered not covered not covered

Zinnikus BDI no yes yes yes yes yes

Fig. 3. Agents and services issues

The Zinnikus approach extends the JACK agent framework for Web Services
(JACK4WS) following the BDI model. The agents have all the basic properties.
JACK is not FIPA compliant. JACK agents are not bound to any specific agent
communications language. Nothing prevents the adoption of high-level symbolic
protocols such as KQML or FIPA Agent Communication Language (ACL).

4.5 Service-Oriented Architectures

The objective of Nuin is not to implement services but to implement agents that
can invoke services. Therefore, it cannot be analyzed with these features (see
Figure 3).

JASE uses XML to describe both service descriptions and the mobile agent’s
queries. A service in JASE is a mechanism to encapsulate a local resource. JASE
does not consider service composition.

AML does not cover most operational semantics, which is often dependent on
a specific execution model given by an applied theory or deployment; it offers
platform-independent models. The AML support for modeling services comprises
(1) the means for the specification of the functionality of a service and the way
a service can be accessed (service specification and service protocol), (2) the
means for the specification of what entities provide/use services (service provi-
sion, service usage, and serviced property), and (if applicable) by what means
(serviced port). They are modeled in AML in terms of service specifications,
service provisionings and service usages. AML supports OCL.

WSIG is a transparent gateway to translate communication standards, so it
cannot be analyzed with these features.

In the Zinnikus approach, service providers are mapped to JACK agents/
teams; the processes involved are mapped to agent/team plans, and interfaces
are mapped to the modules that provide the client- and server-side code for the
JACK agent platform. Thus service specification and interaction points are well-
defined. The service composition is analyzed and implemented at the agent level,
i.e., a composition is a collaboration between agents that are service providers.

4.6 Discussion

Some authors [5] say that if services are able to invoke agents, this would vi-
olate the autonomy of the invoked agent, thereby turning the agent into just

Software Engineering for Service-Oriented MAS 97

another service. From our perspective, it is important to differentiate between
agents and services. We agree that it is useful for agents to be able to in-
voke services. However, we disagree with the idea that if a service can invoke
an agent, the agent must expose pre-determined or deterministic behaviours.
Nowadays, service technology offers the possibility to register and deregister
services dynamically and there is no reason why an agent cannot change the
behavior of its published services depending on its own goals and situation.
For this reason, we think that bidirectional integration is more complete and
useful.

Organizations like FIPA or OMG are working to establish standards, and
most approaches follow them. It is very important to obtain open environments
where services and agents implemented by different companies with different
technologies can interact.

As discussed in Section 2, developing systems that integrate agents and ser-
vices is a complex task and the use of methodologies is useful. Nonetheless, there
are few methodologies that take into account both technologies. The Zinnikus
approach presents a methodology in [25] which states that the methodology is
complete and that guidelines are offered. However there is no more documenta-
tion and they do not offer public downloads.

Figure 2 shows that these approaches do not offer tools that cover the entire
development process. Also, there are few techniques for automatic code gener-
ation and they are not sufficient. These are very important research lines that
are still open.

The possibility of offering platform-independent model services is very useful
for develop service-oriented multiagent systems. It allows high-level modeling
where the technology used is not specified. Complete approaches for developing
systems that integrate services and agents should offer this possibility as well as
automatic transformations to platform-dependent models.

From the list of features presented in Section 3 and the analysis of the results
of Section 4.1 we can summarize the most important requirements for develop-
ing Service-oriented MAS in the following list: (1) a methodology that involves
agents and services, and takes into account their integration; (2) a modeling
language that allows the definition of the specific characteristics of agents, and
services as well as the specification of their integration; (3) a tool that covers
the entire development process, i.e., one that supports the methodology and the
modeling language used and offers implementation facilities such as automatic
code generation; (4) a gateway that allows the interaction between agents and
services despite the differences in their technology and standards, which should
provide mechanisms for publishing and invoking services; (5) an agent platform
that integrate both technologies transparently.

After this analysis it can be observed that there is currently no complete
tool or framework that covers the entire development process of service-oriented
multiagent systems. In order to develop systems of this kind, a software engineer
has to merge a set of different methods, modeling language, tools, etc.

98 E. Garcia, A. Giret, and V. Botti

5 Conclusions and Future Work

Multiagent systems and service-oriented architectures are two approaches with
similar goals but major differences in their technology. Both are hot research and
industrial topics, and integration between agents and services is very beneficial
as it generates more complete, flexible and interoperable systems with greater
functionality.

The use of software engineering principles, methods and techniques in the en-
tire development cycle of multiagent systems and service-oriented architectures
is both interesting and necessary in many cases. In the same way, the develop-
ment of systems that integrate the two technologies requires methodologies and
development environments that take into account the specific characteristics of
agents, services and their integration.

In this paper we have put forward a comprehensive list of the most important
software engineering issues in the development of service-oriented MAS systems.
These issues were defined, based on a detailed study of state of the art develop-
ment methods and taking into account the new characteristics which arise when
agents and services are integrated.

These issues are used to analyze several approaches. From this study we can
conclude that in order to develop systems of this kind, it is currently necessary
to merge a set of different methods and tools. There is no software engineering
tool that covers the entire development process of these systems, and so this is
an open line of research.

The highlighting of the fundamental development issues put forward in this
study is an attempt to identify the new requirements imposed to the development
process of Service-oriented MAS. Moreover, this requirement list can help to
improve current state of the art methods, tools and platforms in order to develop
these kinds of systems correctly.

At the same time, the ideas presented in this study can be used as a starting
point from which to develop a complete framework for service-oriented MAS, in
which agents and services are smoothly integrated, drawing on the advantages
of both approaches.

We plan to continue along this line of work in the future, completing the list
of requirement, evaluating state of the art methods, tools and platforms in order
to define a ranking list of development tools for these kinds of systems.

Acknowledgements

This work is partially supported by the TIN2006-14630-C03-01,PAID-06-07/3191
projects and CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE (Wiley Series in Agent Technology). John Wiley & Sons, Chichester (2007)

2. Board, J.: Jade web services integration gateway (wsig) guide (2005)

Software Engineering for Service-Oriented MAS 99

3. Chunlin, L., Layuan, L.: An agent-oriented and service-oriented environment for
deploying dynamic distributed systems. Computer Standards and Interfaces 24,
323–336 (2002)

4. Dickinson, I.: Nuin: the jena agent framework (2004), http://www.nuin.org
5. Dickinson, I., Wooldridge, M.: Agents are not (just) web services: investigating bdi

agents and web services. In: Proc. SOCABE 2005 (2005)
6. Eiter, T., Mascardi, V.: Comparing environments for developing software agents.

AI Commun. 15(4), 169–197 (2002)
7. Giorgini, P., Mylopoulos, J., Perini, A., Susi, A.: The tropos metamodel and its

use. Informatical journal (2005)
8. Greenwood, D., Lyell, M., Mallya, A., Suguri, H.: The ieee fipa approach to in-

tegrating software agents and web services. In: Proceedings of the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Indus-
trial Track (2007)

9. Jack agent platform (2008),
http://www.agent-software.com/shared/products/index.html

10. Kostic, M.: Code generation from AML Implementation into CASE tools and sup-
port for existing agent platforms. PhD thesis (2006)

11. Marco Mari, M.T., Poggi, A., Turci, P.: Enhancing multi-agent systems with peer-
to-peer and service-oriented technologies. In: Sixth International Workshop From
Agent Theory to Agent Implementation (AT2AI-6) (2008)

12. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krämer, B.J.: 05462
service-oriented computing: A research roadmap. In: Service Oriented Computing
(SOC) (2006)

13. Papazoglou, M.P., van den Heuvel, W.: Business process development lifecycle
methodology. Communications of ACM (to appear, 2006)

14. Penserini, L., Perini, A., Susi, A., Mylopoulos, J.: From stakeholder needs to ser-
vice requirements specifications. Technical report, itc-irst, Automated Reasoning
Systems (2006)

15. Singh, M.P., Huhns, M.N.: Service-Oriented Computing Semantics, Processes,
Agents. John Wisley and Sons Ltd. (2005)

16. Rafael, M.D., Bordini, H., Winikoff, M.: Current issues in multi-agent systems
development (invited paper). In: Post-proceedings of the Seventh Annual Interna-
tional Workshop on Engineering Societies in the Agents World, pp. 38–61 (2007)

17. Rolland, C., Souveyet, C., Kraeim, N.: An intentional view of service-oriented com-
puting. Revue Ingnierie des Systmes dÍnformation (ISI),RSTI (Revue des Sciences
et Technologies de ĺInformation)- ISI 13(1), 107–137 (2008)

18. Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W.: Evaluation of agent-
oriented software methodologies examination of the gap between modeling and
platform (revised selected papers). AOSE-2004 at AAMAS 2004 (2005)

19. Trencansky, I., Cervenka, R.: Agent modelling language (AML): A comprehensive
approach to modelling mas. Informatica 29(4), 391–400 (2005)

20. Tsai, W.-T., Wei, X., Paul, R., Chung, J.-Y., Huang, Q., Chen, Y.: Service-oriented
system engineering (SOSE) and its applications to embedded system development.
In: AOSE 2002 (2007); Revised Papers and Invited Contributions

21. A. UML. Agent uml (2008), http://www.auml.org
22. Witwicki, S.J., Durfee, E.H.: Commitment-based service coordination. In: Kowal-

czyk, R., Huhns, M., Klusch, M., Maamar, Z., Vo, Q.B. (eds.) Service-Oriented
Computing: Agents, Semantics, and Engineering. LNCS, vol. 5006. Springer, Hei-
delberg (2008)

http://www.nuin.org
http://www.agent-software.com/shared/products/index.html
http://www.auml.org

100 E. Garcia, A. Giret, and V. Botti

23. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

24. Zhu, H., Shan, L.: Agent-oriented modelling and specification of web services. In:
Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, vol. 00, pp. 152–159 (2005) (ISBN-ISSN:1530-1443 ,
0-7695-2347-1)

25. Zinnikus, I., Benguria, G., Elvester, B., Fischer, K., Vayssire, J.: A model driven
approach to agent-based service-oriented architectures. In: Fischer, K., Timm, I.J.,
André, E., Zhong, N. (eds.) MATES 2005. LNCS (LNAI), vol. 4196, pp. 110–122.
Springer, Heidelberg (2006)

A Service-Oriented MultiAgent Architecture for

Cognitive Surveillance

David Vallejo, Javier Albusac, Carlos Gonzalez-Morcillo, and Luis Jimenez

Escuela Superior de Informatica,
University of Castilla-La Mancha, Spain

{David.Vallejo,JavierAlonso.Albusac,Carlos.Gonzalez,Luis.Jimenez}@uclm.es
http://oreto.inf-cr.ulcm.es

Abstract. Surveillance systems are being more and more important in
a wide variety of environments. In order to obtain better results when
analyzing an environment, advanced techniques based on Artificial Intel-
ligence that go beyond segmentation, tracking, and pattern matching are
being used. That is, a knowledge layer is needed for improving surveil-
lance. This work describes the architecture of a cognitive surveillance
system based on Service-Oriented Principles and Multi-Agent Systems
to improve scalability, robustness, and security. Guidelines to expand the
surveillance system are covered and the deployment of the architecture
in a traffic scenario together with the results obtained are studied.

Keywords: Surveillance, MultiAgent, Service-Oriented.

1 Introduction

Surveillance systems are gradually being introduced in a wide variety of envi-
ronments. Both the low price and the high performance of hardware and the
evolution of the technologies used for carrying out the analysis are contributing
to their expansion. Some authors make this evolution explicit by means of differ-
ent generations of surveillance systems [12]. Currently, the term third generation
surveillance systems refers to systems designed for dealing with a high number
of surveillance resources. Besides, such elements are often geographically dis-
tributed over a specific environment. Thus, this type of systems are inherently
distributed, not only in the information distribution, but also in the services
distribution. Moreover, the notion of distribution goes beyond the physical field,
that is, it also covers the semantic one, to create an environment in which dif-
ferent surveillance resources coexist and the information is scattered.

A complex surveillance system should be able to manage a high number of
physical devices in a network, with the main goal of providing the user with useful
services. In other words, the system should swap the traditional roles assigned
to surveillance systems by taking the most active possible role. For example, a
security guard may be interested in being warned of a crowd detected by the
surveillance system, which may generate a dangerous situation if not detected on
time (for example at the end of an escalator). On the other hand, inferring new

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 101–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://oreto.inf-cr.ulcm.es

102 D. Vallejo et al.

knowledge may be very interesting. This way, the surveillance system may detect
anomalous situations or, particularly, may act accordingly in case of detecting
such anomalous situation. These thoughts on surveillance lead us to integrate
Artificial Intelligence techniques for surveillance systems being able to behave
in an autonomous and active way, increasing the efficiency of such systems. In
short, the underlying idea consists of designing high-scalable surveillance systems
which adjust to the dynamic nature of surveillance.

To obtain a system which efficiently carries out these functions, it is essential
to design it through an approach which assures the interoperability and the adap-
tation to the different types of services integrated into the environment. However,
this approach is not sufficient and it must be supported by an architecture that
guarantees the autonomy of such services and the communication needed for the
different components which compose the global system to cooperate to obtain
good results. Given these premises, we propose the use of Service-Oriented Com-
puting [8] within the context of a Multi-Agent system for dealing with the design
of a cognitive surveillance system architecture. The goal pursued is to obtain an
architecture that manages the distribution of knowledge from a service-oriented
point of view by emphasizing scalability. This way, the architecture allows agents
to add services with different features to the surveillance system.

On the other hand, and considering the conceptual perspective of the archi-
tecture, it is also very important to take into account several features desired
in a surveillance system. For example, the architecture should be robust against
failures and secure against attacks and it should facilitate the deployment of
services independently of the surveillance environment.

This paper is structured as follows. The following section studies the state of
the art and the current research lines in cognitive surveillance systems. Section
3 describes the architecture proposed in this work in depth, studying the dif-
ferent layers of the architecture and analyzing the agents which compose them.
Section 4 shows the results obtained in a concrete traffic environment. Finally,
Section 5 discusses about concluding remarks and future research lines.

2 Related Work

The union of the service concept and the agent entity as a provider of services
involves an interesting approach when dealing with the design of a surveillance
system. On the one hand, the service provides the independence and interop-
erability levels needed for tackling such design from a general point of view,
whereas the agent contributes to the autonomy required for the service manage-
ment. In order to understand the advantages of this union, it is important to
study the existing approaches in the state of the art. From an abstract point
of view, the system is made up of a number of services. However, the unknown
variable of the equation lies in the mechanisms used to support these services
and the theoric framework that completes the system architecture.

One of these approaches is centred around the use of a framework which
makes easy the deployment of service-oriented systems. The main idea consists of

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 103

providing tools for creating global perspective service-oriented systems. Within
this context, M. Settings presents the SOCAM (Service-Oriented Context-Aware
Middleware) architecture for developing an architecture based on context-aware
services [11]. In this work, the context concept is used to manage the acquisi-
tion, the discovery, the interpretation, and the access to the platform services.
Within this type of systems, the use of intelligent agents involves a step forward
when designing service-oriented systems. Under this approach, L. Chunlin and L.
Layuan have developed JASE (Java-based Agent-oriented and Service-oriented
Environment) with the aim of creating an environment for deploying dynamic
distributed systems [4]. Mobile agents are used to support applications, whereas
service interface agents are used to wrap services.

The other important approach is related to the term new generation of grids
[2], also known as semantic or cognitive grids. This generation is based on a high-
level system to create knowledge discovery service-based grids. The architecture
of this system is composed of two layers: i) basic services and middleware and
ii) services for designing and running knowledge discovery applications. As in
the previous approach, there are different works which provide an environment
to place such services. M. Cannataro and D. Talia propose the use of a P2P
architecture to ensure the grid scalability and decentralize its features to avoid
bottlenecks [3]. Another point of view is based on the combination of grids
and agents, as considered by Y. Gil [6]. In this work, the author describes the
benefits obtained when combining such elements and justifies why grid and agent
technologies complement each other.

Until now, the related works perceive the system from a global perspective
(making specific instances to meet a particular purpose). On the contrary, this
goal can also be derived from the idea of designing a surveillance system with
an architecture which facilitates the deployment and the management. Within
this context, P. Remagnino et al.’s work stands out [10]. The authors propose a
multi-agent architecture to obtain relevant information of scenes from multiple
cameras. One of the main ideas is to offer different types of services to a wide
variety of users so that they impose restrictions: number, location, and orien-
tation of the cameras, events to identify, and so on. The theoretical framework
is based on probability and the authors justify its use due to the uncertain na-
ture of image processing. However, there is no a well-defined architecture which
manages special services, such as a service discovery service.

Another important work is developed by B. Abreu et al. [1], in which a layered
multi-agent architecture is proposed. The lowest level layer covers sensors and
actuators, and a proxy agent exists for each camera. Next, and over the previous
layer, the object description layer deals with high-level semantic information.
In this layer, different agents provide repository, tracking, and classification ser-
vices. Within this research line, M. Patricio et al. present a more recent work
related to third generation surveillance systems [9]. The authors make use of the
BDI model to analyze camera images and JADEX to implement the software
agents. As in other referred works [10] [1], the authors define camera agents

104 D. Vallejo et al.

for making decisions depending on a simbolic model that represents identified
situations and mental states in the form of beliefs, desires, and intentions.

Although the service concept is inherent to surveillance systems, these re-
ferred works are not service-oriented and do not provide mechanisms to facili-
tate the scalability, the discovery, and the composition of services. Faced with
this problem, R. Enficiaud et al. propose a generic framework for general purpose
surveillance applications against centralized frameworks [5]. The authors suggest
an architecture to store video surveillance software with the aim of integrating
surveillance algorithms through modules which use the framework interfaces.

2.1 Comparison to the Proposed Architecture

The architecture of the surveillance system proposed in this work differs from the
related work in three fundamental ideas: i) it is based on surveillance ontologies,
ii) it provides explicit mechanisms to add and manage surveillance services, and
iii) it combines the multi-agent paradigm with a service-oriented architecture.
Firstly, the use of ontologies allows to transparently include surveillance compo-
nents, that is, the architecture proposed does not change when new surveillance
components are needed. This feature is very important because it assures a key
concept when designing surveillance architectures: scalability. Secondly, the de-
sign of specific services to search, manage, and contact with services provided
by intelligent agents not only guarantees scalability, but also provides flexibil-
ity. Finally, the idea of combining multi-agent and service-oriented architectures
allows us to deal with the design of a surveillance architecture in a more nat-
ural way for two main reasons: i) services captured surveillance demands and
made them explicit through contracts between service providers and service re-
questors, and ii) agents involve the intelligent component needed for creating
cognitive surveillance systems.

3 Architecture

3.1 Architectural Overview

The architecture of the intelligent surveillance system consists of a multi-agent
system in which different agents are responsible for managing the services pro-
vided by the system from a global perspective, as shown in Figure 1. This section
will describe in depth each one of such services and the interactions existing be-
tween the agents which provide support to these features.

There are several requirements to assure the efficiency in a service-oriented
architecture [8]. Firstly, interoperability between different hardware platforms,
operating systems, and programming languages (especially in a surveillance sys-
tem) should be provided. In this work, ZeroC Ice [7], a modern object-oriented
middleware, is used to manage the communication between agents and facili-
tate the surveillance system deployment. Secondly, a clear, unambiguous, and
platform-independent description language should be used for describing the
contracts related to the system services. Slice, the interface description language

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 105

Fig. 1. Architecture of the surveillance system

of Ice, has been chosen for three main reasons: i) independence regards to the
type system and the communication protocol, ii) simplicity when defining inter-
faces, and iii) object-oriented notions. Thirdly, a servide discovery mechanism
should be adopted. Fortunatly, the middleware provides us with a native service
location mechanism, IceGrid, that can be used to transparently discover services.

Security is another crucial topic when designing surveillance applications to
assure privacy, authorization, and authentication. For this reason, the commu-
nication carried out by all the components will be done via SSL. In order to
manage authorization and authentication, digital certificates will be used to ver-
ify the identity of each platform component. In addition, fault tolerance and
robustness are covered by transparent replication and load-balancing policies.

The general architecture of the surveillance system is shown in Figure 1. The
kernel is represented by the conceptual layer, in which different intelligent agents
are responsible for processing the information sent by the perceptual layer. On
the other hand, the perceptual layer refers to the information entry point, that
is, to the capture of information from the environment. Finally, the decision
making layer, of which design goes beyond this work, is fed by the conclusions
obtained from the conceptual layer. Both the perceptual and conceptual layers
will be covered in depth in the following subsections.

The Perceptual Layer is composed of the surveillance equipment which cap-
tures or gets information from the surveillance environment. In this context, the
main concept is the event channel, which refers to a one-way communication
channel that allows event publishers and subscribers to communicate. An event
is considered as a state change in the perception of the scene to be watched. As

106 D. Vallejo et al.

will be studied in Section 3.2, the architecture has been designed independently
of the number of event channels, publishers, and subscribers.

The Conceptual Layer shows the real features of the system through the set of
services offered to analyze the surveillance environment. As previously described,
each one of the services will be held by an agent that provides the communication
and cooperation mechanisms needed. The interface of this conceptual layer is
represented by the Register Agent, which implements the registry service to
make persistent the information obtained from the perceptual layer. The design
of this layer is based on scalability and, in particular, on the Reasoning Agent
Factory. Through this component, the system enables to add Reasoning Agents
when needed. Both components and the Security Guard compose the Reasoning
Kernel. This last agent (the Security Guard) reasons from a global perspective,
that is, from the conclusions obtained by the different reasoning agents. In other
words, the main service provided by this agent consists of reasoning on the global
normality of the scene. The system design also allows different reasoning agents
to use different knowledge representation languages thanks two main reasons: i)
the use of event channels and ii) the use of a neutral description language.

3.2 Perceptual Layer

The perceptual layer is composed of all the surveillance equipment which gets
information from the environment and notifies it to the system. Such devices are
classified into video capture, e.g. a camera, audio capture, e.g. a microphone, and
sensors, such as a scanner. In this architecture the abstraction of event generator
will be used to refer to any surveillance device. In this context, the event channel
is considered as a one-way communication channel that allows event generators
to send information to those elements interesting in processing it. Therefore, two
roles are identified: the publisher and the subscriber. The system architecture
has been designed independently of the number of publishers, subscribers, and
event channels to assure scalability thanks to these last channels, as they provide
the logical separation between publishers and subscribers.

As introduced in Section 3.1, an event is defined as a state change of the
surveillance environment. Events are assumed to be independent and they are
provided by vigilance devices. Examples of events are a sound captured by a
microphone, a car on a parking, or the information sent by a scanner used
by a person. In order to represent and send events homogeneously, a language
that makes easy descriptions should be adopted. Slice, the interface description
language of Ice, has been chosen for two main reasons: simplicity and efficiency.
Simplicity refers to use a fast, clear, and simple mechanism for defining interfaces
and data types. Efficiency refers to use the inherent language of the middleware
to avoid conversions to other languages. For example, the information of a video
event is structured in different elements:

– id : the object identifier.
– roles : the possible roles of the object, that is, a sequence of class-belief pairs.

For example, a certain object can be classified into a car with a belief of 0.8
and into a motorbike with a belief of 0.2.

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 107

– pos : the 2D position of an object in a concrete moment retrieved from a
camera frame.

– t : the moment in which the object information was retrieved.
– r1-r2 : the object size defined by the radiuses of the ellipsis in which the

object is allocated.
– speed : the object vector speed measured in pixels per second.

3.3 Conceptual Layer

The conceptual layer represents the kernel of the architecture because it is re-
sponsible for processing information to obtain knowledge, that is, to transform
the surveillance system from a passive component to an active one. Under this
approach, the system will be able to activate alarms when detecting anomalous
situations. There are different agents which provide and request services when
needed. Besides, the communication model remains consistent thanks to the use
of event channels to sent information. The basic workflow of the surveillance sys-
tem (see Figure 2) consists of several steps: i) a new event is received from the
perceptual layer; ii) the Register Agent stores the event content in the System
Registry; iii) the Reasoning Agents subscribed to the event channel in which the
event was published process the information, obtain new knowledge, and acti-
vate possible alarms; iv) the Security Guard studies the conclusions generated
by the reasoning agents. Next, the interfaces, services, and interactions of each
agent will be covered in depth.

The Register Agent represents the entry point of the conceptual layer and acts
as a subscriber for all the events published by the devices of the perceptual layer.
The interface of the Register Agent is defined by the notifyEvent operation,
which is used to receive events. Currently, we are dealing with video events
because they provide us more information than other types of events. The main
service offered by this agent consists of making persistent all the events. In
other words, the Register Agent provides a storage service through the System
Registry. This component represents the database of the surveillance system
which will be used to add a query service to the Register Agent.

The Reasoning Kernel is composed of two types of reasoning agents, the Rea-
soning Agent and the Security Guard, and one component responsible for the
management of the reasoning agents. This last component, named Reasoning
Agent Factory, implements the abstract factory pattern and provides operations
for creating, searching, and listing reasoning agents. When a reasoning agent
is instantiated through the Reasoning Agent Factory, it automatically obtains
references to the event channels known by the Reasoning Agent Factory. This
way, the reasoning agents are able to process events as soon as they are born.
The factory has also been designed after carefully thinking about concurrency by
interlocking the create, find, and list operations. In relation to the deployment,
this service has been implementing through the IceBox service of the middleware
ZeroC Ice, which facilitates its administration and configuration. The reasoning
agents created by the Reasoning Agent Factory are distinguished for the identi-
fiers specified when invoking the create operation.

108 D. Vallejo et al.

Fig. 2. Interactions between the system components

The Reasoning Agent has been designed for reasoning on a certain normality
concept. This way, different reasoning agents which reason on different concepts
or topics can coexist in a concrete moment. The entity responsible for integrating
all the knowledge obtained from these agents is represented by the Security
Guard. The reasoning mechanism is a two-level mechanism in which the Security
Guard receives information from the reasoning agents and these agents process
the events generated by the perceptual layer. For example, a reasoning agent
may deal with the normality about object movements. Thus, this agent may
detect an anomalous behaviour if an object has not associated movements, that
is, if such object is making an unrecognized movement (e.g. a car driving along
a pedestrian street). When a reasoning agent is instantiated, it requests the
ontologies needed for reasoning on a concept to the Loader Agent. Depending
on such concept, this agent will send one or another domain ontology. This
Loader Agent also represents the interface between the human expert and the
surveillance system. Currently, we are using CLIPS both for representing the
knowledge and for reasoning on the defined knowledge.

We are dealing with knowledge at two levels: environment level and normality
concept level. On the one hand, the environment level refers to general knowledge
about surveillance. This knowledge covers concepts such as positions, zones, inter-
vals, or actors. On the other hand, the normality concept level refers to knowledge
about normality concepts. In order to assure scalability, each agent will reason on
a normality concept by using the general knowledge about surveillance and the
particular knowledge about the normality concept in which it is specialized. For
example, a reasoning agent specialized in movements may deal with spatial re-
strictions, associated movements, recognized movements, and so on.

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 109

As previously mentioned, a reasoning agent is specialized in a normality con-
cept. It is necessary to specify or notify the information related to the surveillance
environment before starting the analysis. First, the general information is sent to
the reasoning agent, that is, the scene description. A scene is divided into three
components: i) the set of zones which composes the scene, ii) the movements
which can be carried out by the objects in such scene, iii) and the time intervals
related to the scene (e.g. the working day). The next step consists of defining
the restrictions associated to the scene. These restrictions are spatial restrictions,
temporal restrictions, and actor restrictions. Such general restrictions are spe-
cialized for each normality concept, that is, there are spatial, temporal, and actor
restrictions for the normality about movements, for instance, which are (or not)
different from other concept to be analized (the normality about velocity, for
example). Finally, and knowing the scene description and the restrictions about
a normality concept, a reasoning agent is able to analyze the normal behaviours
about a certain concept. The Reasoning Agent also implements a query service
which can be used to know if the normality of a concept is being carried out by
the objects and with which belief. This query information is similarly related to
the normality concept linked to the reasoning agent.

Finally, and at a higher abstraction level, the Security Guard will process all
the information sent by the other reasoning agents. This information is received
through an internal event channel. The main idea will consist of analyzing more
complex behaviours which take into account various normality concepts. Besides
reasoning at a higher abstraction level, this agent will communicate with the
decision making layer to act against anomalous behaviours.

Until now, fault tolerance and robustness are topics that have not been cov-
ered. Both concepts are essential in a surveillance systems because if the system
goes down, then surveillance disappears. To overcome this potencial problem, we
have adopted a mechanism based on transparent replication which also supports
load balancing policies. In other words, different instances of the same agent
(Register Agent, Reasoning Agent, or Security Guard) may coexist in different
computers (or in the same). Moreover, there are various load balancing types
that can be used by defining a configuration parameter: random, adaptive, round
robin, and order. We are currently using the adaptive one, which transparently
chooses the least-loaded agent in terms of system load. Security, authorization,
and authentication are covered by SSL and a PAM-based permissions verifier.

3.4 Scaling the Surveillance System

This subsection resumes the design solutions applied in the proposed architecture
when scaling the surveillance system, in particular by taking into account three
topics: i) surveillance infrastructure, ii) new normality concepts for reasoning,
and iii) applications demands.

New hardware is often added to a surveillance system when its deployment
has been done. For example, a new camera may be added to a critical point of
security when the system is running. In the proposed architecture, the solution
simply consists of making that the new hardware acts as a event publisher in

110 D. Vallejo et al.

one or more desired event channels. This way, the subscribers will be notified
with the information captured by the new surveillance equipment.

The second important question lies in adding a new reasoning agent. In this
case, various tasks must be done: to specify the data types needed for communi-
cating the information of the new normality concept (restrictions and queries),
to define the knowledge related to the new concept (e.g. about the working hours
of different workers) and load it into the Loader Agent, and to instantiate the
new reasoning agent through the Reasoning Agent Factory.

Finally, the increase of the number of surveillance devices and normality con-
cepts related to the reasoning layer may require more computation, that is, more
powerful servers or a higher number of servers. In the last case, the architecture
solves this constraint thanks to the transparent replication provided by the mid-
dleware. In both cases, the proposed solution also consists of using the service
of the middleware that provides the distribution of server executables and de-
pendent files.

4 Deployment and Results

This section describes the deployment of the proposed surveillance architecture
in the traffic scenario shown in Figure 4. Within this context, we have carried
out the analysis depending on the normality about vehicle and pedestrian move-
ments. In other words, the main goal of this deployment consists of studying
if both pedestrians and vehicles behave correctly when doing their movements.
With this purpose, we have developed a Movement Reasoning Agent and de-
fined a movement ontology in CLIPS. This agent’s behaviour is summarized in
Algorithm 1.

Most of the concepts of the ontology are heavily based on uncertainty. This
is due to the dependence on the perceptual layer. Currently, recognition and
identification techniques cannot assure a precise classification due to internal
(algorithms) and external (e.g. adverse weather conditions) questions. For these
reasons, we associate beliefs to concepts such as the own objects, the zones
covered, or the fulfilment of a spatial restriction. These topics are seen in Algo-
rithm 1 when a global belief is related to an associated movement and calculated
from the belief of its restrictions (see line 14 of Algorithm 1).

In order to test the proposed architecture and debug the results obtained in
a concrete environment, we have developed two tools that make easy to define
knowledge related to a certain domain and to debug the surveillance results.
After briefly describing such tools, the experimental results obtained in the traffic
environment and the evaluation of such results will be studied.

Figure 3 (left) shows the interface of a knowledge acquisicion tool to help the
human expert to define the knowledge domain. This tool allows to specify zones,
movements, and restrictions over these movements. Figure 3 (right) also shows
the interface of a second tool in which the video stream and the tracking of the
mobile objects of the environment are monitored. In fact, the tool allows us to
check if the reasoning is correct. This way, the user can make use of two buttons

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 111

Fig. 3. Left: Knowledge acquisition tool. Right: Debugging tool.

Algorithm 1. Movement Reasoning Agent’s Behaviour

1: objects ⇐ objects whose position has changed
2: for obj in objects do
3: current-zones ⇐ get-zones-object(obj)
4: obj.update(current-zones)
5: for mov in defined-movements do
6: if mov.beginning in current-zones and mov not associated then
7: obj.associated-movements ⇐ mov
8: end if
9: end for

10: for mov in actor.associated-movements do
11: mov.belief-act ⇐ check-actor-restrictions(mov)
12: mov.belief-spa ⇐ check-spatial-restrictions(mov)
13: mov.belief-tmp ⇐ check-temporal-restrictions(mov)
14: mov.belief ⇐ update-belief(mov.belief-act, mov.belief-spa, mov.belief-tmp)
15: if mov.finish() then
16: obj.recognized-movements ⇐ mov
17: obj.associated-movements.delete(mov)
18: end if
19: end for
20: end for

to move over time. The left arrow button permits the user to study past frames
while the righ arrow button refers to the next frames. Besides, the interface
shows tables which resume the information of the scene objects, the associated
and recognized movements, and the beliefs of each movement. Such beliefs are
obtained in relation to the fulfilment of the restrictions. This tool also allows the
user to explicitly query the reasoning kernel.

In order to test the architecture, we have chosen a traffic scenario familiar
with us. This scenario refers to the exterior of the Superior School of Com-
puter Science at the University of Castilla-La Mancha (Spain) and the images
have been captured from the second floor. As shown in Figure 4, the scenario is
mainly composed of two pavements in which pedestrian walk, landscaped areas

112 D. Vallejo et al.

Fig. 4. Key frames of the traffic scenario

Fig. 5. Frames 1 and 2 of the traffic surveillance test

which separate the two one-way lanes in which vehicles drive, and a roundabout
that both vehicles and pedestrian cannot invade. The definitions of vehicle nor-
mal movements exclude vehicles driving in the opposite direction or invading
landscaped areas. In the case of pedestrian, the normal movements are related
to walk along the pavement or to cross over the pedestrian crossing. Figures 5
and 6 resumes the scene configuration in each one of the key frames shown in
Figure 4. These tables expose object and movement information in each frame.

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 113

Fig. 6. Frames 3 and 4 of the traffic surveillance test

Object information refers to the object ID and the set of classes associated to
the object. The belief represents the certainty of the object belonging to a class.
Movements also have a belief that is calculated from the set of restrictions linked
to a concrete movement. If the belief of a movement does not overcome a prede-
fined threshold, then the movement is not considered normal. Higher values of
this threshold refers to a stricter surveillance.

Table 1. 60-second tests related to the scenario of Figure 4

Test Situations Normal sit. Anomalous sit. Errors Efficiency

1 24 24 0 0 100%

2 72 72 0 0 100%

3 154 129 0 25 0.83%

4 61 61 0 5 0.91%

5 80 73 7 0 100%

Table 1 shows 5 tests of the traffic environment. Some of them are related to
uncommon situations. For example, test number 5 simulates a car going onto
the roundabout. As this movement has not been defined, the system infers that
the situation is not normal. Tests 3 and 4 generate errors because there are
some people who walk along the nortern pavement and this movement was not
previously defined. Therefore, the system identifies anomalous situations which
should be normal. Test 3 generates more situations due to a high number of
people. As these people move slow, the number of potential movements is greater
than in the other tests.

5 Discussion and Conclusion

The evolution of surveillance systems is demanding for architectures that as-
sure scalability, flexibility, and robustness. Besides, such evolution tends to be
knowledge-oriented, that is, more recent surveillance systems are making use

114 D. Vallejo et al.

of Artificial Intelligence methods to improve results or to add new ones. The
proposed architecture in this paper offers a new perspective when designing cog-
nitive surveillance systems due to the use of Service-Oriented Principles and
Multi-Agent Systems. In addition, key features of surveillance, such as scalabil-
ity, fault tolerance, robustness, and security are covered by making use of the
middleware services.

Experimental results are based on analyzing the movements done by the dif-
ferent objects that appear in a traffic scene. These results prove that the con-
ceptual layer allows to obtain new information when analyzing the environment,
that is, if a concrete object is doing a correct movement with a certain belief.
On the other hand, the architecture design offers several desirable features in a
surveillance system:

– On-demand service discovery thanks to the use of a explicit service manager.
– Scalability to other reasoning concepts thanks to the Reasoning Agent Fac-

tory.
– Transparency related to the number of surveillance devices due to the use of

event channels.
– Fault tolerance, robustness, authorization, authentication, and security as

a consequence of using advanced middleware services such as transparent
replication, load balancing, digital certificates, and SSL.

The use of human expert knowledge in a explicit layer of the surveillance ar-
chitecture opens numerous research lines. Our current work is focused on adding
more normality concepts to reason in real time and expanding the system to other
domains. Within this context, different reasoning agents will coexist in the pro-
posed architecture. We are also planning to optimize some critical parts related to
geometric calculus by using graphic processing units. On the other hand, another
important research line is related to migrate a reasoning agent from the server to
the camera itself. This way, the network latency will be removed and the light rea-
soning agents instantiated in the cameras will make the surveillance more efficient.
Another relevant question is reusability, that is, adapting the architecture to other
domains than surveillance. In this context, we are considering certain models such
as those proposed by the FIPA Nomadic Agent Working Group.

Acknowledgments

This work has been funded by the Regional Government of Castilla-La Mancha
under the Research Projects PBC-06-0064 and PAC-06-0141 and by the Spanish
Ministry of Education and Science (TIN2007-62568).

References

1. Abreu, B., Botelho, L., Cavallaro, A., et al.: Video-based multi-agent traffic surveil-
lance system. In: IEEE Intelligent Vehicles Symposium, pp. 457–462 (2000)

2. Cannataro, M., Talia, D.: Knowledge grid: An architecture for distributed knowl-
edge discovery. Communications of the ACM 46(1), 89–93 (2003)

A Service-Oriented MultiAgent Architecture for Cognitive Surveillance 115

3. Cannataro, M., Talia, D.: Semantics and knowledge grids: building the next-
generation grid. IEEE Intelligent Systems 19(1), 56–63 (2004)

4. Chunlin, L., Layuan, L.: An agent-oriented and service-oriented environment for
deploying dynamic distributed systems. Computer Standards & Interfaces 24(4),
323–336 (2002)

5. Enficiaud, R., Lienard, B., Allezard, N., Sebbe, R., Beucher, S., Desurmont, X.,
Sayd, P., Delaigl, J.: Clovis-a generic framework for general purpose visual surveil-
lance applications. In: IEEE Workshop on Visual Surveillance, pp. 177–184 (2006)

6. Gil, Y.: On agents and grids: Creating the fabric for a new generation of distributed
intelligent systems. Web Semantics: Science, Services and Agents on the World
Wide Web 4(2), 116–123 (2006)

7. Henning, M.: A new approach to object-oriented middleware. Internet Computing,
IEEE 8(1), 66–75 (2004)

8. Huhns, M.N., Singh, M.P.: Service-oriented computing: key concepts and princi-
ples. IEEE Internet Computing 9(1), 75–81 (2005)

9. Patricio, M.A., Carb, J., Prez, O., Garca, J., Molina, J.M.: Multi-Agent Framework
in Visual Sensor Networks. EURASIP Journal on Advances in Signal Processing,
1–21 (2007)

10. Remagnino, P., Shihab, A.I., Jones, G.A.: Distributed intelligence for multi-camera
visual surveillance. Pattern Recognition 37(4), 675–689 (2004)

11. Settings, M.: A service-oriented middleware for building context-aware services.
Journal of Network and Computer Applications 28(1), 1–18 (2005)

12. Valera, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review.
IEE Proceedings Vision, Image and Signal Processing 152(2), 192–204 (2005)

13. Wooldridge, M., Jennings, N.R.: Intelligent Agents: Theory and Practice. Knowl-
edge Engineering Review 10(2), 115–152 (1995)

Trust-Based Classifier Combination for Network

Anomaly Detection

Martin Rehák1, Michal Pěchouček1, Martin Grill1,2, and Karel Bartos1,2

1 Department of Cybernetics and Center for Applied Cybernetics, Faculty of
Electrical Engineering, Czech Technical University in Prague

Technická 2, 166 27 Prague, Czech Republic
{mrehak,pechouc}@labe.felk.cvut.cz

2 CESNET, z. s. p. o.
Zikova 4, 160 00 Prague, Czech Republic
{bartosk,grillm}@labe.felk.cvut.cz

Abstract. We present a method that improves the results of network
intrusion detection by integrating several anomaly detection algorithms
through trust and reputation models. Our algorithm is based on exist-
ing network behavior analysis approaches that are embodied into several
detection agents. We divide the processing into three distinct phases:
anomaly detection, trust model update and collective trusting decision.
Each of these phases contributes to the reduction of classification er-
ror rate, by the aggregation of anomaly values provided by individual
algorithms, individual update of each agent’s trust model based on dis-
tinct traffic representation features (derived from its anomaly detection
model), and re-aggregation of the trustfulness data provided by individ-
ual agents. The result is a trustfulness score for each network flow, which
can be used to guide the manual inspection, thus significantly reduc-
ing the amount of traffic to analyze. To evaluate the effectiveness of the
method, we present a set of experiments performed on real network data.

1 Introduction

This paper presents a specific application of techniques from agent trust mod-
eling in the domain of Network Intrusion Detection and shows how to apply
these techniques to combine several intrusion detection methods and improve
the quality of their decisions.

The purpose of the Network Behavior Analysis (NBA) systems [1] is to iden-
tify the attacks against the network infrastructure and hosts by observing the
significant events in the structure and volume of network traffic. Most of the NBA
systems are based on anomaly detection [2] principles – they build the model of
the traffic in the network from the past observations, predict the properties of
current traffic and identify the potentially malicious actions by comparing the
prediction with the observed traffic.

The proposed method is based on network observation using the NetFlow or
IPFIX data that may be provided by routers (the NetFlow protocol was orig-
inally defined by Cisco [3]) or specialized devices [4]. Each flow corresponds

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 116–130, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Trust-Based Classifier Combination for Network Anomaly Detection 117

to one direction of TCP connection (or UDP/ICMP equivalent); all observed
packets with the same source IP address (srcIP), source port (srcPrt), destina-
tion address (dstIP), destination port (dstPrt) and protocol (TCP/UDP/ICMP)
constitute the flow. In addition to these definition parameters, we can observe
supplementary data, such as number of bytes and packets, duration of the flow
and other parameters. The NetFlow data is aggregated over an observation pe-
riod, typically a 5 minute interval. Once aggregated, the NBA system extracts
relevant features of the data and concludes which flows are malicious, and which
are part of the legitimate network traffic.

The usefulness of current NBA systems is severely impacted by two major
shortcomings: their limited effectiveness, i.e. high error rate [5,6], and relatively
low efficiency, which does not allow their deployment on high bandwidth network
links. The effectiveness of a particular IDS system is described by two values,
the ratios of false positives and false negatives. The false positives are the
legitimate, non-malicious flows that are classified as malicious, while the false
negatives are the malicious flows classified by the system as legitimate. We will
describe the efficiency of the IDS system in terms of the number of network
flows per second it can process, as this value is directly linked with network
bandwidth.

Our work uses the techniques developed in the field of agent-based trust and
reputation modeling to improve the effectiveness of the system. Furthermore, the
deployment within an efficient agent platform supports natural parallelization
of tasks and thus easy distribution across multiple processor cores. Specifically,
we improve the error rate of the collective detection system by:

– separation of short term anomaly detection and long-term trust modeling
– collaboration between heterogeneous trusting agents, with following processes

performed on the top of the original anomaly detection methods:
• anomalies are considered by individuals only if they are consistently

identified by anomaly detection models of majority of agents
• anomalies are considered only if the flows that constitute them fall into

one or few traffic classes in the trust models of individual agents
• reputation mechanism integrates the trustfulness data from several agents

In Section 2, we will discuss the necessary extension of trust modeling tech-
niques, before presenting the anomaly detection algorithms in Section 3.1 and
the core contribution of this work in the remainder of the Section 3. We evaluate
our solution on real data in the experiments described in Section 4, and discuss
the related work before concluding.

2 Extended Trust Modeling

Trust models [7,8,9,10] are specialized knowledge structures designed to main-
tain information about the trustworthiness of the partners, either acquired from
agent’s own interactions, observed from the interactions of others, or received
from other agents by means of reputation mechanism [11]. The design of trust

118 M. Rehák et al.

models emphasizes features such as fast learning, robustness in response to false
reputation information [12] and robustness with respect to environmental noise.
Extended trust models [13,14] are used to address several important assump-
tions of trust models and to make them more relevant for practical deployment,
as they are able to:

– include the context of the trusting situation into the reasoning, making the
trust model situational,

– use the similarities between trustees and situations to infer their trustfulness
during the first encounter, and

– protect the model against trustee identity changes.

Extended trust models are inspired by machine learning [14] and pattern
recognition [13] approaches. The models achieve the above-listed goals by rea-
soning not about the performance of specific agents, but about the trustfulness of
more general identities situated in a specific context, which describes the trust-
ing situation. More specifically, each trustee and trusting situation are described
by a set of relevant observable features (feature vector). The features included
in the feature vector define the feature space, a metric space on which the trust
model of each agent operates. Trustfulness is determined for significant clusters
in this space (i.e. reflects the behavior of a class of similar agents in a similar
situation), and Section 3 describes the update and query operations in more
detail.

In the network security domain, low trustfulness of the flow means that the
flow is assumed to be malicious, i.e. a part of an attack. Trustfulness is deter-
mined in the [0, 1] interval, where 0 corresponds to complete distrust and 1 to
complete trust. The identity of each flow is defined by the features we can observe
directly on the flow: srcIP, dstIP, srcPrt, dstPrt, protocol, number of bytes and
packets. If two flows in a data set share the same values of these parameters, they
are assumed to be identical. The context of each flow is defined by the features
that are observed on the other flows in the same data set, such as the number of
similar flows from the same srcIP [15], or entropy of the dstPrt of all requests
from the same host as the evaluated flow [16]. Identity and context features are
used to define the feature space for each specific type of agent introduced below.

3 Detection Process

The detection functionality is distributed among the detection agents that
cooperate to improve their classification performance. Each agent is based on a
specific anomaly detection method (detailed below), and each agent’s method
also defines the features used to represent the context of the flow in its trust
model. Therefore, the models differ between the agents, and we can not perform
direct translation between them. Specificity of the trust model and anomaly de-
tection method improves anomaly detection results, reduces the dimensionality
of the problem and reduces the computational requirements of the trust model
(for each agent). It also directly contributes to elimination of false positives,

Trust-Based Classifier Combination for Network Anomaly Detection 119

as we will discuss in Section 3.3. On the downside, model specificity limits the
collaboration to those stages in the process when the agents can use a com-
mon language to share the anomalies or reputation values relative to individual
flows.

In the presented system configuration, all agents process the same network
data. At the end of each observation interval j, all detection agents X ∈ Ags
receive the same input set Φj of network flows ϕi,j , and this data is the only
algorithm input for each observation period j. The processing is performed in
three stages (Fig. 1):

– anomaly detection,
– trust model update, and
– flow classification by individual and collective trustfulness determination

Fig. 1. Detection process overview

Before the detailed discussion of these stages, we will introduce the most
important terms:

Anomaly AX(ϕi,j) is a number in the [0, 1] interval describing agent’s X
opinion about the anomaly of the flow ϕi,j in the current set Φj . One represents
the maximal anomaly, and zero no anomaly at all. It is provided by the anomaly
detection method embedded in the detection agent X .

Trustfulness ΘX(ϕi,j) value can be determined for any feature vector in the
feature space of agent X . It falls into the [0, 1] interval as well, and it indicates the
estimated level of maliciousness. Flows with trustfulness close to 0 are considered
to be malicious, while the flows with high trustfulness are classified as legitimate
(trusted).

Feature vector ixX(ϕi,j) represents the identity and context features deter-
mined for the flow ϕi,j by agent X in the feature space. We use the term centroid
to denote the permanent feature vectors rk that are positioned in the feature
spaces of trusting agents. The centroids act as trustees of the model, and the
trustfulness value Θ(rk) of each centroid is updated with relevant observations,
and used to deduce the trustfulness of feature vectors in its vicinity.

Metrics distX(ixX(ϕi,j), ixX(ϕk,l)) determines the distance of two feature
vectors in the feature space of agent X . As mentioned above, each agent type has
a metrics defined by its context representation (and the shared identity part), and
we shall emphasize that: distX(ixX(ϕi,j), ixX(ϕk,l))=distY (ixY (ϕi,j), ixY (ϕk,l))
almost never holds for X
= Y .

120 M. Rehák et al.

3.1 Detection Agent Types

This section briefly presents the anomaly detection techniques and traffic features
used by most important types of detection agents in the system. All agents use
the same representation of flow identity, but differ in the context dimensions of
the feature space, as we will describe below. The feature space distance function
(metrics) is a sum of two components, one covering the identity subspace, the
other context subspace dimensions. The identity component is identical for all
agent types, and type-dependent context distance is described with each agent
type below:

MINDS algorithm [15] builds the context information for each flow using the:
number of flows from the same source as the evaluated flow, number of flows
towards the same destination host, number of flows towards the same destination
from the same source port, and number of flows from the same source towards
the same destination port. This makes the context space four dimensional, with
logarithmic distance scale in each dimension, combined into the global distance
as a sum of their squares. Contrary to the original work, we judge the anomaly
from the difference between the floating average of past values and observation
in each of the four context dimensions.

Xu et al. [16] actually classifies the traffic sources, which imposes the same
context for all flows from the same srcIP. For each source, we determine the
normalized entropy of the set of source ports, destination ports and destination
IPs of all the flows from this source, thus defining a 3D context. Anomalies are
then determined by application of static classification rules that divide the traffic
into normal and anomalous classes. Distance between the contexts of two flows
is computed as a difference between the 3 normalized entropies of each flow,
combined as sum of squares.

Volume prediction algorithm [17] uses the Principal Components Analysis to
build the model of traffic volumes from individual sources in number of bytes,
packets and flows. Then, it identifies the difference between the predicted and
real traffic for each source IP and all flows from the source are assigned this value
transformed into the [0, 1] interval as anomaly. Again, the context is identical
for all flows from the same source, and is defined by the difference between the
predicted and real number of flows, packets and bytes from the srcIP of the flow.
Distance in each of the 3 context dimensions is logarithmic, combined as a sum
of squares.

Entropy prediction algorithm [18] works in exactly the same manner as the
previous type, but predicts the entropies of dstIP, dstPrt and srcPrt instead of
traffic volumes. To aggregate the distance in the context subspace, we deter-
mine the distance between the residual entropies as an absolute value of their
difference, and add their squares. For detailed discussion of agent types and mod-
ifications of original algorithms, please refer to our previous publication [19].

Trust-Based Classifier Combination for Network Anomaly Detection 121

3.2 Collective Trust Modeling

After the introduction of terms and brief description of anomaly detection and
traffic representation techniques, we will describe the stages of the algorithm:

Anomaly detection. During the anomaly detection stage, each individual
agent A uses its embedded anomaly detection method to determine the anomaly
AA(ϕi,j) of each flow of the set Φj . As the features (dimensions) of the feature
space of agent A are identical to those used by its anomaly detection method,
we can (informally) write AA(ϕi,j) = AA(ixA(ϕi,j)) to emphasize that the in-
formation in the feature vector ixA(ϕi,j) of the flow is sufficient to determine
its anomaly. The anomaly values are shared with other detection agents, and
used as an input in the second phase of the processing – all agents thus have the
same aggregated anomaly value AAgs(ϕi,j) for each flow, shown in Eq. 1, and
this value averages the anomaly opinions of all detection agents:

AAgs(ϕi,j) =
1

|Ags|
∑

X∈Ags
AX(ixX(ϕi,j)) (1)

Trust update. During the trust update, the agents integrate the anomaly val-
ues of individual flows from the set Φj into their trust models. As the reasoning
about the trustfulness of each individual flow is computationally infeasible and
unpractical (the flows are single shot events by definition), the extended model
holds the trustfulness Θ(rk) of centroids rk (significant flow samples, e.g. cen-
troids of fuzzy clusters) in the feature space, and the anomaly AAgs(ϕi,j) of
each flow ϕi,j is used to update the trustfulness of centroids in its vicinity. Eq. 2
specifies the operation performed for each flow:

Θ′
A(rk) = trust((ΘA(rk), Wk), (1 − AAgs(ϕi,j), wk)) (2)

wk is the weight of the update for the trustfulness associated with rk, decreasing
with the distance between ixA(ϕi,j) and rk:

wk = e−distA(ixA(ϕi,j),rk) (3)

and Wk is the aggregated weight of all past updates to Θ(rk). The operation
trust denotes the weighted update of trustfulness, and depends on the trust
model used in the mechanism. The trust model we use represents the trustfulness
with triangular fuzzy numbers [20], with the core defined as average value of the
trust observations (i.e. 1 − AAgs(ϕi,j)), and the width of the fuzzy number
representing the uncertainty or inconsistence of the past observations. The core
of the fuzzy number (also denoted ΘA in this paper, as it is used as a defuzzyfied
value in the subsequent parts of the processing) is thus updated as:

Θ′
A(rk) =

Wk · ΘA(rk) + wk · (1 − AAgs(ϕi,j))

Wk + wk
(4)

When we update the trust models with the first flow ϕ1,1 of the first data set
Φ1, there are no centroids present yet, and the centroids are created progressively

122 M. Rehák et al.

as the model processes the input data. Creation is based on a simplified Leader-
Follower clustering algorithm [21], which always creates a new centroid with the
same position as ixA(ϕi,j) if a distance to the closest existing centroid is greater
than predefined cutoff distance1.

Collective trust estimation. In the last stage of processing, each agent de-
termines the trustfulness ΘA(ϕi,j Φj) of each flow ϕi,j from the current set Φj .
To determine the trustfulness of individual flow ϕi,j , we aggregate the trustful-
ness ΘA(rk) associated with the centroids in the vicinity of flow’s feature vector
ixA(ϕi,j). This operation is shown in Eq. 5.

ΘA(ϕi,j) = weaggrk
(ΘA(rk), wk) (5)

The operation weagg is a suitable weighted aggregation mechanism, and is de-
termined by the trust model used for trustfulness representation. When we con-
cretize the weagg operation as a weighted average, we obtain:

ΘA(ϕi,j) =
∑

(ΘA(rk) · wk)∑
wk

(6)

with both sums over the set of centroids in agent’s trust model.
All agents provide their trustfulness assessment (which is conceptually a repu-

tation opinion) for all flows to the aggregation and visualization agents, and the
aggregated values are then used for traffic filtering. To perform the aggregation,
we average the trustfulness opinions for each flow, as shown in Eq. 7. Aggregated
trustfulness values for each flow constitute the output of the algorithm:

ΘAgs(ϕi,j) =
1

|Ags|
∑

X∈Ags
ΘX(ϕi,j). (7)

3.3 Algorithm Properties

All three stages of the processing as listed above are designed to reach a joint
conclusion between several anomaly detection method. We argue (and also show
in the experiments on real networks) that the quality of joint conclusion is higher
than the quality of the estimation provided by any single method, and that each
of the algorithm stages contributes to quality improvement. In the following, we
will discuss the elements that improve the quality of the conclusions reached by
the proposed system.

1 Cutoff distance thus determines the density of centroids in the feature space, and
consequently the computational cost of the model. When the ixA(ϕi,j) falls into
the proximity of an existing centroid, the L-F algorithm specifies that the position
of the closest centroid shall move in the feature space towards the last sample. In
our implementation, such behavior would be highly undesirable (and thus is not
implemented), as the values ΘA(rk) are relative to their positions, and any shift
could impact their relevance.

Trust-Based Classifier Combination for Network Anomaly Detection 123

Anomaly detection method integration. In Eq. 1, the algorithm integrates
the anomaly values for each flow, and therefore minimizes the impact of traffic
irregularities reported by a single method. This approach is not novel per se,
but it already minimizes the impact of possible false positives using only the
anomaly data, before the start of trust update process (see Fig. 2).

Trustfulness aggregation. During the update of the trust model, each agent
creates the centroids rk in its own feature space, and updates their trustfulness
ΘA(rk) with the anomaly of flows in their vicinity. If there is only a single agent
in the system (thus AAgs(ϕi,j) = AA(ϕi,j)), this aggregation of anomalies into
trustfulness has only limited impact. This is due to the fact that the features
of the flow determine its feature vector ixA(ϕi,j), and the anomaly AA(ϕi,j) is
determined from the vector values and status of the anomaly detection model.
Therefore, we only aggregate the anomalies with the anomalies determined for
similar flows in the past. However, even this aggregation helps to eliminate the
effects of non-systematic irregularities in the traffic model.

When we combine multiple agents in the system, the situation becomes
more interesting as each agents updates the anomaly value AAgs(ϕi,j) over the
centroids in their trust models. As each agent uses a distinct feature space and
metrics, it has a different insight into the problem – the flows are positioned
(clustered) according to the different criteria, and the cross correlation imple-
mented by sharing of the anomaly values used to update the trustfulness helps
to eliminate random anomalies. Let’s assume that some of the flows constitute
one anomaly, this anomaly was identified by a majority of agents and that the
anomaly AAgs(ϕi,j) of these flows is high. This implies that the flows are ad-
jacent in the feature space of the agents that have identified them (because
they are part of one anomaly identified by the anomaly detection model), and
that during the trust update phase, their anomaly will significantly influence the
trustfulness of one or few centroids rk (see left segment of Fig. 3). On the other
hand, when another agent does not detect these flows as anomalous, they will get
dispersed among the clusters (not being recognized by agent’s methods neither
as anomalous, nor as similar to each other), and they will have only limited in-
fluence on the trustfulness of the centroids in their neighborhood (right segment
of Fig. 3). This effect further eliminates the false positives, as it requires the
untrusted flows to have previously unknown features, therefore creating a new
centroid and pushing its trustfulness to low values, or to be similar to existing
untrusted cluster(s).

From the computational complexity perspective, the trust update (and query)
phases of the presented algorithm are characterized as |Φj | · |{rk}| for each agent
[13], thus |Ags| · |Φj | · |{rk}| for the whole system. It is linear in Φj , enabling
the deployment of the system on the gigabit grade links using single multi-core
PC. Memory requirements of each agent’s model are linear in the number of
centroids |{rk}|. Complexity of individual anomaly detection algorithms is not
considered in the estimation, but has not been a concern on real data.

124 M. Rehák et al.

4 Experimental Evaluation

In order to evaluate the effectiveness of our approach and to illustrate the prop-
erties discussed in Section 3.3, we have used the data acquired during the tests
of our system on a live university network. We have performed two types of
tests: in the first series, we have launched a series of scanning and profiling at-
tacks against a selected host inside the surveyed network, and observed whether
these attacks (using standard nmap scanner [22]) can be discovered on the back-
ground of the real traffic. In the second type of tests, we have tried to detect
the third party attacks that were independently manually identified by network
administrators.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Trustfulness

N
um

be
r

of
 F

lo
w

s

Trustfulness Histogram - Flows

θ
X
 XuDstIP of all flows

θ
X
 XuDstIP of malicious flows

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

Trustfulness

N
um

be
r

of
 F

lo
w

s

Trustfulness Histogram - Flows

θ
X
 XuDstIP of all flows

θ
X
 XuDstIP of malicious flows

Fig. 2. Histogram of flow number over trustfulness from the results provided by iso-
lated run of XuDstIP detection agent. (left) and the same agent when running with
the others (right).

Before the presentation of aggregated results, we will present several situa-
tions that illustrate the algorithm behavior discussed in Section 3.3. In Figure 2,
we can see the importance of anomaly aggregation as specified in Eq. 1 – when
running alone, the agent is not able to detect the attack traffic (horizontal scan,
1000 flows, represented as surface in the graphs) as anomalous, and most of the
attack flows are then classified with trustfulness close to 1. On the other hand,
when the agent cooperates with the others and uses the common anomaly value
AAgs(ϕi,j), it is able to classify the traffic as untrusted. However, the classifi-
cation is not perfect, as we can see from lower peaks of attack flow trustfulness
distribution in the right segment of Fig. 2, between 0.3 and 0.5.

Perhaps the most important cooperative filtering effect is that the flows that
are similar for one agent (and fall into the same feature space region) can be
dispersed in the feature space of another agent – when they are coherent there
as well, and are consistently untrusted by all agents, they are classified as an
attack. We can illustrate these two situations in Fig. 3, where we project the
attack and false positive flows respectively over the 3D projections of MINDS
agent’s centroids organized into the tree by similarity. We can see that the attack
flows (from a vertical TCP SYN scan) are concentrated in a single centroid, and

Trust-Based Classifier Combination for Network Anomaly Detection 125

Fig. 3. 3D projection of agent’s MINDS trust model. Centroids are organized in a
tree, and each flow is attached to the closest centroid and colored by the centroid’s
trustfulness. The attack flows (left) tend to be concentrated around single centroid,
while the false positives identified by another agent are spread over the whole model
(right).

their high anomaly makes this newly created centroid untrusted. In the false
positive case, the flows that were reported by another agent as a possible attack
are dispersed over several existing centroids, and their higher anomaly value
can not significantly influence the trustfulness of the centroids in their vicinity.
Therefore, these flows will be reported with higher trustfulness.

In the experiments presented so far, we have seen the effects of the anomaly
aggregation (Fig. 2) and projection on various feature spaces (Fig. 3). However,
we should establish whether we need to perform the trust model update and
query operations, instead of simply using the aggregated anomaly values directly.
In a specific case of a small size vertical scan (300 UDP flows over 5 minutes),
we can see that the aggregated anomaly of attack flows (red solid surface in the
left segment of Fig. 4) is low, and they are not identified as malicious. On the
other hand, the results of trustfulness aggregation provide much better results
(Fig. 4, right), as they clearly classify the same traffic as untrusted. This is the
effect of a priori low trustfulness associated with centroids around the attack
flows in feature spaces of detection agents.

In Fig. 5, we can see the trustfulness assigned by individual agents and the
whole system to the series of vertical scans that we have launched, in function of
the number of flows during the observation period. The scans vary by approach
(TCP SYN scan, UDP scan, profiling), port ordering and other parameters, but
the results are relatively consistent. Larger scans are reliably detected, opinions
of individual agents are relatively consistent, and the aggregation results detect
all scans with the with more than 1 flow per second (averaged during the whole

126 M. Rehák et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

Degree of Anomaly

N
um

be
r

of
 F

lo
w

s

Degree of Anomaly Histogram - Flows

 A
Ags

 of all flows

 A
Ags

 of malicious flows

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

Trustfulness

N
um

be
r

of
 F

lo
w

s

Trustfulness Histogram - Flows

θ
 Ags

 of all flows

θ
 Ags

 of malicious flows

Fig. 4. Histogram of flow number by aggregated anomaly AAgs(ϕi,j) (left). The at-

tack (slow vertical scan, 300 flows, red surface) flows are not classified as anomalous.
Histogram of flow number by aggregated trustfulness ΘAgs(ϕi,j Φj) (right) correctly

classifies the attack as untrusted.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Malicious Flows per Second

T
ru

st
fu

ln
es

s

Trustfulness of Malicious Flows.

θ
M

 MINDS
θ

X
 Xu

θ
V
 Entropy pred

θ
E
 Volume pred

θ
A
 Aggreg found

θ
A
 Aggreg not found

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

Trustfulness

N
um

be
r

of
 F

lo
w

s

Trustfulness Histogram - Flows

θ
A
 Aggregator

TCP vertical scan

avg avg - σavg - 1.5σ

Fig. 5. Trustfulness assigned to vertical scans in function of attack intensity in the
set Φj (left), with a specific example of one attack’s classification in the trustfulness
histogram (right)

period). In this experiment, we say that the attack was detected if the scan flows
are classified between the avg-σ threshold, as shown in the right section of Fig. 5.

Once we have determined the system performance limits, we have also eval-
uated the system on a 30-minute snapshot of real-world traffic, including the
activity of two zombie network nodes and one buffer overflow attack. Table 1
presents the performance of the system in terms of false positives/false negatives,
evaluated for flows and distinct incident source IP addresses. We present the re-
sults for individual anomaly detection agents (MINDS: AM, Xu: AX , Entropy:
AE and Volume: AV , as defined in Section 3.1), aggregated anomalies AM as
defined by Eq. 1, trustfulness opinions of individual agents (ΘM , ΘX , ΘV , ΘE)
and the final system output ΘAgs defined by Eq. 7. We can see that even a sim-
ple aggregation of anomaly models provides far better results than any separate

Trust-Based Classifier Combination for Network Anomaly Detection 127

Table 1. Benchmark of anomaly models, aggregated anomaly and partial and final
trustfulness. Averaged over 6 data sets, each with 5 minutes of traffic with about 40
000 flows in each dataset.

Anomalous Untrusted
AM AX AE AV AAgs ΘM ΘX ΘE ΘV ΘAgs

detected 6653 3246 13541 12375 9911 9149 9975 10704 9518 9741
flows TP 35 168 5841 5868 4709 5242 5712 5833 5864 5769

FP 6618 3078 7700 6507 5202 3907 4263 4872 3654 3972
FP[%] all 15.9% 7.4% 18.5% 15.6% 12.5 % 9.4% 10.2% 11.7% 8.8% 9.5%

detected 72.5 322.3 17.2 16.7 12.5 7.8 11.3 13.5 10.8 6.7
srcIP TP 1.7 0.2 2.5 2.7 2.3 2.7 2.7 2.3 2.7 2.7

FP 70.8 322.1 14.7 14.0 10.2 5.1 8.6 11.2 8.1 4.0
FP[%] all 1.52% 6.94% 0.31% 0.30% 0.22 % 0.11% 0.19% 0.24% 0.18% 0.09%

model (low FP values for AE and AV are caused by the fact that both models
only consider significant sources of traffic ∼ 10% of hosts). The use of trust
modeling further improves the results by wide margin – we detect more attacks,
with far less false positives. The difference is significant especially in number of
detected traffic sources, where we have reduced the rate of false positives more
than two fold compared to AM, while detecting the actual attacks more reliably.
It shall be noted that the number of suspicious sources is a far better estimator
of analysis effort, because of significant variability in incident size.

5 Related Work

The ideas presented in this paper are relevant to three artificial intelligence and
computer science domains: trust modeling, pattern recognition and classifica-
tion, and network intrusion detection. As we have already stated in Section 2,
the trust models [10,7] are specialized knowledge structures that excel in their
area of specialization: learning from past observations of trustees behavior, inte-
grating the reputation opinion (and knowledge about social structures) received
from other agents and inferring reliable trust value, which can be then used for
trusting decisions. In the field of network intrusion detection, they provide a
very compelling set of features: they consider trustfulness of reputation [12,23]
or information sources [24], and integrate these methods with robust approaches
to reputation integration [11,8]. Recent models also concentrate on context rep-
resentation [14,13] or multidimensionality of trust [25].We currently use the trust
model described in [20], which has an advantage of being iterative (i.e. does not
hold the history of observations 1 - AAgs(ϕi,j) for each rk), and thus reduces
the computational complexity of the solution.

The field of pattern recognition and classification [21] provides us not only
with the formalism used to represent the traffic in the extended trust models, but
directly addresses the problem of cooperative classification as such. In [26], the
authors introduce a general framework that integrates a major part of previous

128 M. Rehák et al.

work on classifier integration strategies, and this work is directly relevant to
the last step of the algorithm introduced in Section 3. The integration of key
concepts from the classification work into the trustfulness aggregation shall help
us to further improve the system. Agent methods have already been suggested
for similar purpose, in a cooperative person tracking domain [27].

The multi-agent approaches to intrusion detection problems are mostly used
in host-based or hybrid host and network based IDS [28,29], which perform part
of their sensing on the protected hosts. This allows them to detect several types
of local malicious actions, such as suspicious API calls or anomalous application
activity. In [28], Valeur et al. propose a general framework for alert correlation,
which is able to integrate the data from several sensors, associate the activities
that are part of single attack and distinguish typical sequences of attack actions.
While our approach fits the general theoretical framework introduced in [28],
it differs in many crucial aspects. All the sensors use different input data, inte-
grated detection methods use XML-based IDMEF [30] as a common ontology,
the events detected by individual methods are associated with each other using
time windows, and the system puts a lot of emphasis on the detection of attack
sequences specific to composite attacks. The method introduced in our work is
based on the fact that all the agents use the same input data Φj and collab-
orate actively (by sharing anomalies) even before submitting their individual
trustfulness values, which are subsequently combined.

6 Conclusion

This paper presents a very specific application of collaborative trust modeling
in a highly competitive domain of network intrusion detection. The goal of our
work is to improve the results provided by state-of-the-art, but still imperfect
anomaly detection algorithms by an addition of overlay layer based on extended
trust modeling and simple reputation mechanism. The method is able to ro-
bustly identify the significant network-level events (scans, Denial of Service at-
tacks, worms, peer-to-peer networks) in the traffic and present them to human
supervisor for inspection in a dedicated visualization agent [31].

The application of agent techniques to the problem of network behavior analy-
sis showed that trust modeling techniques distributed over a dynamic community
of detection agents can significantly improve the quality of results. Simple inte-
gration of anomaly detection algorithms reduces the error rate significantly, but
most of the benefit is in the overlay trusting layer, which reduces the rate of false
positives and false negatives simultaneously and therefore shows the added value
that the trust modeling techniques can bring to the highly competitive field of
network intrusion detection.

Acknowledgment. This material is based upon work supported by the Eu-
ropean Research Office of the US Army under Contract No. N62558-07-C-0001
and W911NF-08-1-0250. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily

Trust-Based Classifier Combination for Network Anomaly Detection 129

reflect the views of the European Research Office of the US Army. Also sup-
ported by Czech Ministry of Education grants 1M0567, 6840770038 (CTU) and
6383917201 (CESNET).

References

1. Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (idps).
Technical Report 800-94, NIST, US Dept. of Commerce (2007)

2. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 222–232
(1987)

3. Cisco Systems: Cisco IOS NetFlow (2007), http://www.cisco.com/go/netflow

4. Čeleda, P., Kováčik, M., Końı̌r, T., Krmı́ček, V., Špringl, P., Žádńık, M.: FlowMon
Probe. Technical Report 31/2006, CESNET, z. s. p. o (2006),
http://www.cesnet.cz/doc/techzpravy/2006/flowmon-probe/

5. Lazarevic, A., Ertöz, L., Kumar, V., Ozgur, A., Srivastava, J.: A comparative study
of anomaly detection schemes in network intrusion detection. In: Proceedings of
the Third SIAM International Conference on Data Mining (2003)

6. Bragg, R., Rhodes-Ousley, M., Strassberg, K.: Network Security; The Complete
Reference. McGraw-Hill, New York (2004)

7. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24, 33–60 (2005)

8. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: Proceedings of AAMAS 2002, Bologna, Italy, pp. 475–482 (2002)

9. Ramchurn, S., Jennings, N., Sierra, C., Godo, L.: Devising a trust model for
multi-agent interactions using confidence and reputation. Applied Artificial In-
telligence 18, 833–852 (2004)

10. Castelfranchi, C., Falcone, R.: Principles of trust for mas: Cognitive anatomy, social
importance, and quantification. In: Proceedings of the 3rd International Conference
on Multi Agent Systems, p. 72. IEEE Computer Society Press, Los Alamitos (1998)

11. Josang, A., Gray, E., Kinateder, M.: Simplification and analysis of transitive trust
networks. Web Intelligence and Agent Systems 4, 139–162 (2006)

12. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. Journal of Autonomous Agents and Multi-
Agent Systems 13, 119–154 (2006)

13. Rehak, M., Pechoucek, M.: Trust modeling with context representation and gen-
eralized identities. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L.
(eds.) CIA 2007. LNCS (LNAI), vol. 4676. Springer, Heidelberg (2007)

14. Rettinger, A., Nickles, M., Tresp, V.: Learning initial trust among interacting
agents. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA
2007. LNCS (LNAI), vol. 4676, pp. 313–327. Springer, Heidelberg (2007)

15. Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.N., Kumar, V., Srivastava, J., Dokas,
P.: MINDS - Minnesota Intrusion Detection System. In: Next Generation Data
Mining. MIT Press, Cambridge (2004)

16. Xu, K., Zhang, Z.L., Bhattacharrya, S.: Reducing Unwanted Traffic in a Back-
bone Network. In: USENIX Workshop on Steps to Reduce Unwanted Traffic in the
Internet (SRUTI), Boston, MA (2005)

17. Lakhina, A., Crovella, M., Diot, C.: Diagnosis Network-Wide Traffic Anomalies.
In: ACM SIGCOMM 2004, pp. 219–230. ACM Press, New York (2004)

http://www.cisco.com/go/netflow
http://www.cesnet.cz/doc/techzpravy/2006/flowmon-probe/

130 M. Rehák et al.

18. Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies using Traffic Feature Distri-
butions. In: ACM SIGCOMM, August 2005, pp. 217–228. ACM Press, New York
(2005)

19. Rehak, M., Pechoucek, M., Bartos, K., Grill, M., Celeda, P.: Network intrusion
detection by means of community of trusting agents. In: IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT 2007 Main Conference
Proceedings) (IAT 2007). IEEE Computer Society Press, Los Alamitos (2007)

20. Rehák, M., Foltýn, L., Pěchouček, M., Benda, P.: Trust Model for Open Ubiq-
uitous Agent Systems. In: Intelligent Agent Technology, 2005 IEEE/WIC/ACM
International Conference (2005); Number PR2416 in IEEE

21. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley
& Sons, New York (2001)

22. Lyon, G.: Nmap, http://insecure.org/nmap/
23. Yu, B., Singh, M.P.: Detecting deception in reputation management. In: AAMAS

2003, pp. 73–80. ACM Press, New York (2003)
24. Barber, K.S., Kim, J.: Belief revision process based on trust: Agents evaluating

reputation of information sources. In: Falcone, R., Singh, M., Tan, Y.-H. (eds.)
AA-WS 2000. LNCS (LNAI), vol. 2246, pp. 73–82. Springer, Heidelberg (2001)

25. Vu, L.-H., Aberer, K.: A probabilistic framework for decentralized management
of trust and quality. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling,
L. (eds.) CIA 2007. LNCS (LNAI), vol. 4676, pp. 328–342. Springer, Heidelberg
(2007)

26. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE
Trans. Pattern Anal. Mach. Intell. 20, 226–239 (1998)

27. Meshulam, R., Reches, S., Yarden, A., Kraus, S.: Mlbp: Mas for large-scale bio-
metric pattern recognition. In: AAMAS 2006: Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems, pp. 1095–1097.
ACM Press, New York (2006)

28. Valeur, F., Vigna, G., Kruegel, C., Kemmerer, R.A.: A comprehensive approach to
intrusion detection alert correlation. IEEE Transactions on Dependable and Secure
Computing 01, 146–169 (2004)

29. Shyu, M.L., Quirino, T., Xie, Z., Chen, S.C., Chang, L.: Network intrusion detec-
tion through adaptive sub-eigenspace modeling in multiagent systems. ACM Trans.
Auton. Adapt. Syst. 2, 9 (2007)

30. IETF: RFC 4765:The Intrusion Detection Message Exchange Format (IDMEF),
http://tools.ietf.org/rfc/rfc4765.txt

31. Rehak, M., Pechoucek, M., Celeda, P., Krmicek, V., Moninec, J., Dymacek, T.,
Medvigy, D.: High-performance agent system for intrusion detection in backbone
networks. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA
2007. LNCS (LNAI), vol. 4676. Springer, Heidelberg (2007)

http://insecure.org/nmap/
http://tools.ietf.org/rfc/rfc4765.txt

A Distributed Generative CSP Framework for

Multi-site Product Configuration

Markus Zanker1, Dietmar Jannach2, Marius C. Silaghi3,
and Gerhard Friedrich1

1 University Klagenfurt, Austria
{markus.zanker,gerhard.friedrich}@uni-klu.ac.at

2 Technical University Dortmund, Germany
dietmar.jannach@cs.uni-dortmund.de

3 Florida Institute of Technology (FIT), Melbourne, US
Marius.Silaghi@fit.edu

Abstract. Today’s configuration systems are centralized and do not
allow manufacturers to collaborate online for offer-generation or sales-
configuration activities. However, the integration of configurable prod-
ucts into the supply-chain of a business requires the cooperation of the
various manufacturers’ configuration systems to jointly offer valuable so-
lutions to customers. As a consequence, there is a need for methods that
enable independent specialized agents to compute such configurations.
Several approaches to centralized configuration are based on constraint
satisfaction problem (CSP) solving. Most of them extend traditional CSP
approaches in order to comply to the specific expressivity and dynamism
requirements of configuration and similar synthesis tasks.

The distributed generative CSP (DisGCSP) framework proposed here
builds on a CSP formalism that encompasses the generative aspect of
variable creation and extensible domains of problem variables. It also
builds on the distributed CSP (DisCSP) framework, supporting configu-
ration tasks where knowledge is distributed over a set of agents. Notably,
the notions of constraint and nogood are further generalized, adding an
additional level of abstraction and extending inferences to types of vari-
ables. An example application of the new framework describes modifica-
tions to the ABT algorithms and furthermore our evaluation indicates
that the DisGCSP framework is superior to classic DisCSP for typical
configuration task problem encoding.

1 Introduction/Background

The paradigm of mass-customization allows customers to tailor (configure) a
product or service according to their specific needs, i.e. the customer can select
between several features that should be included in the configured product and
can determine the physical component structure of the personalized product
variant. Typically, there are technical and marketing restrictions on the valid
parameter constellations and the physical layout. This has led manufacturers to

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 131–146, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

132 M. Zanker et al.

develop methods for checking the feasibility of user requirements and for com-
puting consistent solutions. Typically, this functionality is provided by product
configuration systems (configurators), which have proven to be a successful ap-
plication area for different AI techniques [18] such as description logics [11],
or rule-based [2] and constraint-based solving algorithms. [5] describes the in-
dustrial use of constraint techniques for the configuration of large and complex
systems such as telecommunication switches and [10] is an example of a powerful
commercialised tool based on constraint satisfaction.

However, companies find themselves having to cooperate with other highly spe-
cialized solution providers as part of a dynamic coalition to offer customized so-
lutions. The level of integration present in today’s digital markets implies that
software systems supporting selling and configuration tasks may no longer be con-
ceived as standalone systems. A product configurator can be therefore seen as an
agent with private knowledge that acts on behalf of its company and cooperates
with other agents to solve a configuration task. This paper abstracts the centralized
definition of a configuration task in [19] to a more general definition of a generative
CSP that is also applicable to the wider range of synthesis problems. Furthermore,
we propose a framework that allows us to extend DisCSPs to handle distributed
configuration tasks by integrating the innovative aspects of local generative CSPs:

1. The constraints (and nogoods) are generalized such that they depend on
the types rather than on the identities of variables. This also enables the
following aspects to be treated more elegantly.

2. The number of variables of certain types that are active in the local CSP of
an agent may vary depending on the state of the search process and is hence
dynamic. In the DisCSP framework, the external variables existing within
the system are predetermined.

3. The domain of the variables may vary dynamically. Some variables model
possible connections and depend on the existence of components that could
later be connected.

Importantly, we also describe the impact of the previously mentioned changes
on asynchronous algorithms. In the following we motivate our approach with
an example, Section 3 defines a generative CSP and in Section 4 a distributed
generative CSP is formalized and presented together with extensions to current
DisCSP frameworks. Finally, Section 5 evaluates DisGCSP encoding against
classic DisCSP problem representation for typical configuration problems.

2 Motivating Example

The following presents a typical example problem from the domain of product
configuration ([5]) where interconnected systems support plug-in modules and
problem specific constraints describe the legal combinations of module types
and their capacity as well as their associated parameters. Figure 1 depicts a
problem where systems consist of modules of different types, namely A-, B-, and
C-modules, and have optional connection points for these modules (denoted as

A Distributed Generative CSP Framework 133

ports). For reasons of presentation the example focuses only on a small subset of
a larger configuration problem of a technical system (see dotted lines). System 1
consists of A- and B-modules where system 2 may have only A- and C-modules
plugged in. The A-modules also act as an interface between the two systems,
i.e. they are shared by them. In addition, a module of any type can be either
set as active or inactive. The initial situation in Figure 1 depicts the customer
specific requirement that the configuration result contains at least one A-module
that is connected via a port to the sub-system. According to the compatibility
restrictions that will be described in the following, the found solution includes
two additional modules of type B and C, where all A- and C modules are set to
active and all B-modules to inactive.

Fig. 1. Example problem

The distribution aspect is inherent in this scenario, as the overall solution
consists of sub-systems that are to be configured by different agents. We for-
malize this configuration problem as a CSP, where each port and each module
is represented by a variable1. Since the exact number of problem variables is
not known from the beginning, constraints cannot be directly formulated on
concrete variables. Instead, comparable to programming languages, variable
types exist that allow to associate a newly created variable with a domain and
we can specify relationships in terms of generic constraints. [19] define a generic
constraint γ as a constraint schema, where meta-variables Mi act as placeholders
for concrete variables of a specific type t, denoted by the predicate type(Mi) = t.
The subscript i allows to distinguish between different meta-variables in one
constraint2. In our example seven different types of problem variables exist,
1 Note, that the sub-system components themselves are not explicitly modeled, but

only via their characterizing port variables.
2 The exact semantics of generic constraints is given in Definition 2 in Section 3.

134 M. Zanker et al.

representing the ports for the three different module types (tpa, tpb, tpc) and the
activation status for each type of the modules (ta, tb, tc) as well as a type (tct)
of counter variables (xtype) for the number of instantiations of each type. The
configuration constraints are distributed between the agents, i.e., each agent
Si posesses a set of local constraints3 Γ Si , i.e., Γ S1 = {γ1, γ2, γ5, γ7, γ9} and
Γ S2 = {γ3, γ4, γ6, γ8, γ10}, that are defined as follows:

Agent S1 ensures, that the amount of B-modules and its associated port variables
must not be above 3.
γ1 : val(xpb) ≤ 3. and γ2 : val(xb) ≤ 3. where val(x) is a predicate that gives
the assigned value of variable x.
Similarly for agent S2, the amount of C-modules and its associated port variables
must not be above 3.
γ3 : val(xpc) ≤ 3. and γ4 : val(xc) ≤ 3.
Agent S1 resp. S2 check that there are more B- as well as C-modules than
A-modules in a configured system.
γ5 : val(xb) > val(xa). and γ6 : val(xc) > val(xa).
Agent S1 resp. S2 ensure that all B- resp. all C-modules have set the same
activation status.
γ7 : type(M1) = tb ∧ type(M2) = tb ∧ val(M1) = val(M2). and
γ8 : type(M1) = tc ∧ type(M2) = tc ∧ val(M1) = val(M2).
For agent S1 A- and B-modules must not have the same activation status.
γ9 : type(M1) = ta ∧ type(M2) = tb ∧ val(M1)
= val(M2).
For agent S2 A- and C-modules must have the same activation status.
γ10 : type(M1) = ta ∧ type(M2) = tc ∧ val(M1) = val(M2).

During the search process the search space is continuously extended by the in-
stantiation of additional problem variables, until a solution is found that satisfies
all the constraints of each agent. The Agent view contains the problem variables
shared between agents in order to assure the evaluation of local constraints. In
our case γ6 and γ10 are so-called inter-agent constraints, that require agent S2

to have access to all A-modules and its associated port variables.
Consequently, a solution to a generative constraint satisfaction problem re-

quires not only finding valid assignments to variables, but also determining the
exact size of the problem itself. In the sequel of the paper we define a model for
the local configurators and we detail extensions to DisCSP algorithms.

3 Generative Constraint Satisfaction

In many applications, solving is a generative process, where the number of in-
volved components (i.e., variables) is not known from the beginning. To represent
these problems we employ an extended formalism that complies to the specifics
of configuration and other synthesis tasks where problem variables representing
3 In the example we omit those constraints that ensure that once a port variable is

assigned a value, the corresponding connected component variable must exist.

A Distributed Generative CSP Framework 135

components of the final system are generated dynamically as part of the solution
process because their total number cannot be determined beforehand. The frame-
work is called generative CSP (GCSP) [6,19]. This kind of dynamicity extends the
approach of dynamic CSP (DCSP) formalized by Mittal and Falkenhainer [12],
where all possibly involved variables are known from the beginning. This is needed
because the activation constraints reason on the variable’s activity state. [13] pro-
pose a conditional CSP to model a configuration task, where structural dependen-
cies in the configuration model are exploited to trigger the activation of subprob-
lems. Another class of DCSP was first introduced by [4] where constraints can be
added or removed independently of the initial problem statement. The dynamicity
occuring in a GCSP differentiates from the one described in [4] in the sense that a
GCSP is extended in order to find a consistent solution and the latter has already
a solution and is extended due to influence from the outside world (e.g., additional
constraints) that necessitates finding a new solution. Here we give a definition of a
GCSP that abstracts from the configuration task specific formulation in [19] and
applies to the wider range of synthesis problems.

Definition 1 (Generative constraint satisfaction problem (GCSP)). A
generative constraint satisfaction problem is a tuple GCSP(X, Γ , T , Δ), where:

– X is the set of problem variables of the GCSP and X0 ⊆ X is the set of
initially given variables.

– Γ is the set of generic constraints.
– T = {t1, . . . , tn} is the set of variable types ti, where dom(ti) associates the

same domain to each variable of type ti, where the domain is a set of atomic
values.

– For every type ti ∈ T exists a counter variable xti ∈ X0 that holds the number
of variable instantiations for type ti. Thus, explicit constraints involving the
total number of variables of specific types and reasoning on the size of the
CSP becomes possible.

– Δ is a total relation on X × (T, N), where N is the set of positive integer
numbers. Each tuple (x, (t, i)) associates a variable x ∈ X with a unique
type t ∈ T and an index i, that indicates x is the ith variable of type t.
The function type(x) accesses Δ and returns the type t ∈ T for x and the
function index(x) returns the index of x.

By generating additional variables, a previously unsolvable CSP can become
solvable, which is explained by the existence of variables that hold the number
of variables.

When modeling a configuration problem, variables representing named con-
nection points between components, i.e., ports, will have references to other com-
ponents as their domain. Consequently, we need variables whose domain varies
depending on the size of a set of specific variables [19].

Example. Given ta as the type of variables representing A-modules and tpa as
the type of port variables that are allowed to connect to A-modules, then the
domain of the pa variables dom(tpa) must contain references to A-modules. This
is specified by defining dom(tpa) = {1, . . . , ub}, where ub is an upperbound on

136 M. Zanker et al.

the number of variables of type ta, and formulating an additional generic con-
straint that restricts all variables of type tpa using the counter variable for the
total number of variables having type ta, i.e., type(M1) = tpa ∧ val(M1) ≤ xta .
With the help of the index() function concrete variables can then be referenced.
Referring to our introductory example we can formalize the local GCSP of agent
S1 in the initial situation (see Figure 1) as XS1 = {xa,xpa,xb,xpb,xct,a1,pa1},
Γ S1 = {γ1,γ2,γ5,γ7,γ9}, T S1 = {tct,ta,tpa,tb,tpb} and ΔS1= {(xa,(tct, 1)),(xpa,
(tct, 2)), (xb, (tct, 3))(xpb,(tct, 4)), (xct,(tct, 5)),(a1, (ta, 1)) (pa1,(tpa, 1))}. The
index(S1) function returns 1, which indicates that a1 is the first A-module in-
stance. The domains of variables are consequently defined as dom(ta) = dom(tpa)
= dom(tb) = dom(tpb) = dom(tct) = {1, . . . , ub}, where the domains for the port
variables are additionally limited by domain constraints (e.g., γ1).

Definition 2 (Generic constraint). A generic constraint γ ∈ Γ formulates a
restriction on the meta-variables Ma, . . . , Mk. A meta-variable Mi is associated
a variable type type(Mi) ∈ T and must be interpreted as a placeholder for all
concrete variables xj , where type(xj) = type(Mi).

Note, that generic constraints can also formulate restrictions on specific initial
variables from X0 by employing the index() function.

Consider the GCSP(X , Γ , T , Δ) and let γ ∈ Γ restrict the meta-variables
Ma, . . . , Mk, where type(Mi) ∈ T is the defined variable type of the meta variable
Mi, then the consistency of generic constraints is defined as follows:

Definition 3 (Consistency of generic constraints). Given an assignment tu-
ple θ for the variables X, then γ is said to be satisfied under θ, iff ∀xa, . . . , xk ∈ X :
type(xa) = type(Ma) ∧ . . . ∧ type(xk) = type(Mk) → γ[Ma|xa , . . . , Mk|xk

] is sat-
isfied unter θ, where Mi|xi indicates that the meta-variable Mi is substituted by the
concrete variable xi.

Thus a generic constraint must be seen as a constraint scheme that is expanded
into a set of constraints after a preprocessing step, where meta-variables are
replaced by all possible combinations of concrete variables having the same
type, e.g., given a fragment of a GCSP of agent S1 (excluding counter and port
variables) with XS1 = {a1,b1,b2}, T S1 = {ta, tb} and ΔS1 = {(a1, (ta, 1)), (b1,
(tb, 1)), (b2, (tb, 2))}, the satisfiability of the generic constraint γ9 is checked by
testing the following conditions: val(a1)
= val(b1), val(a1)
= val(b2).

Definition 4 (Solution for a generative CSP). Given a generative con-
straint satisfaction problem GCSP(X0, Γ , T , Δ0), then its solution encompasses
the finding of a set of variables X, type and index assignments Δ and an assign-
ment tuple θ for the variables in X, s.t.

1. for every variable x ∈ X an assignment x = v is contained in θ, s.t. v ∈
dom(type(x)) and

2. every constraint γ ∈ Γ is satisfied under θ and
3. X0 ⊆ X ∧ Δ0 ⊆ Δ.

A Distributed Generative CSP Framework 137

Note, that we do not impose a minimality criterium on the number of variables
in our solution, because in practical applications different optimization criteria
exist, such as total cost or flexibility of the solution, thus non-minimal solutions
can be preferred over minimal ones.

The calculated solution (excluding counter variables) for the local GCSP of
agent a1 consists of XS1 = {a1, pa1, b1, b2, pb1, pb2}, ΔS1 = {(a1, (ta, 1)),
(pa1, (tpa, 1)), (b1, (tb, 1)), (b2, (tb, 2)),(pb1, (tpb, 1)),(pb2, (tpb, 2))} and the assign-
ment tuple a1 = 1, pa1 = 1, b1 = 0, b2 = 0, pb1 = 1 and pb2 = 2. Thus, b1, . . . , b2

and pb1, . . . , pb2 are the names of generated variables.
Note, that names for generated variables are unique and can be randomly cho-

sen by the GCSP solver implementation and therefore constraints must not for-
mulate restrictions on the variable names of generated variables. Consequently,
substitution of any generated variable (i.e., x ∈ X \ X0) by a newly generated
variable with equal type, index and value assignment has no effect on the con-
sistency of generic constraints. Our GCSP definition extends the definition from
[19] in the sense that a finite set of variable types T is given and during problem
solving variables having any of these types can be generated, whereas in [19] only
variables of a single type, i.e., component variables, can be created. Current CSP
implementations of configuration systems (e.g., [10] [5]) use a type system for
problem variables, where new variable instances, having one of the predefined
types, are dynamically created. This is only indirectly reflected in the definition
of [19] by the domain definition of component variables, which we explicity rep-
resent here as a set of types. Furthermore, the definition of generic constraints
does not enforce the use of a specific constraint language for the formulation of
restrictions. Examples are the LCON language used in the COCOS project [19],
or the configuration language of the ILOG Configurator [10].

Note, that the set of variables X can be theoretically infinite, leading to an
infinite search space. For practical reasons, solver implementations for a GCSP
put a limit on the total number of problem variables to ensure decidability and
finiteness of the search space. This way a GCSP is reduced to a dynamic CSP and
in further consequence to a CSP. A DCSP models each search state as a static
CSP, where complex activation constraints are required to ensure the alternate
activation of variables depending on the search state. These constraints need to
be formulated for every possible state of the GCSP, which leads to combina-
torial explosion of concrete constraints. Furthermore, the formulation of large
configuration problems as a DCSP is merely impractical from the perspective
of knowledge representation, which is crucial for knowledge-based applications
such as configuration systems.

4 DisGCSP Framework

Algorithms for configuration applications need to guarantee a good/optimal
solution, that’s why we focus on complete algorithms in our framework. The
first asynchronous complete search algorithm is Asynchronous Backtracking
(ABT) [21]. An enhanced version for several variables per agent is described

138 M. Zanker et al.

in [22]. [3] shows how ABT can be adapted to networks where not all agents
can directly communicate to one another. [7] makes the observation that ver-
sions of ABT with polynomial space complexity can be designed. Extensions
of ABT with asynchronous maintenance of consistencies, and asynchronous dy-
namic reordering are described in [20,15,17]. [14] achieves an increased level of
abstraction in DisCSPs by letting nogoods (i.e. certain constraints) consist of
aggregates (i.e. sets of variable assignments), instead of simple assignments.

We show how the basic DisCSP framework for ABT [21] can be applied to
a scenario of distributed product configuration. Therefore, improving the per-
formance of ABT with extensions as referenced above is straightforward. We
summarize in the following the properties of the ABT algorithm that guarantee
its correctness and completeness [21]. Then we apply this DisCSP framework
to a scenario where each agent locally solves a generative constraint satisfac-
tion task. Each time an agent extends the solution space of his local GCSP by
creating an additional variable, the DisCSP setting is transformed into a new
DisCSP setting, which again has all properties required by asynchronous search
to correctly function.

4.1 Asynchronous Search

We summarize the characteristics of asynchronous search algorithms like ABT
[21], reformulated to allow agents to know only the constraints that they enforce.
They are considered as follows:

1. A = {S1, . . . Sn} is a set of n totally ordered agents (i.e. representing different
sub-systems), where Si has priority over Sj if i < j.

2. Each agent Si owns a variable4 and knows all the constraints that involve its
variable and only variables of higher priority agents.5 The constraints known
by Si are referred to as its local constraints, denoted Γ Si and Si is interested
in those variables that are contained in its local constraints. A link exists
between two agents if they share a variable, that is directed from the agent
with higher priority to the agent with lower priority. A link from agent S1 to
agent S2 is referred to as an outgoing link of S1 and an incoming link of S2.

3. An assignment is a pair (xj , vj), where xj is a variable, and vj a value for xj .
4. The view of an agent Si is a set of the most recent assignments received for

those variables agent Si is interested in.
5. The agents communicate using the following types of messages, where chan-

nels without message loss are assumed:
– ok? message. Agents with higher priorities communicate via each

ok? message an assignment for their variable to lower priority agents.
– nogood message. In case an agent cannot find assignments that do

not violate its own constraints and its stored nogoods, it generates an

4 As described later, one can see this variable as a tuple of variables treated simulta-
neously.

5 In the original description of ABT, an agent also knows constraints on variables of
higher priority agents.

A Distributed Generative CSP Framework 139

explanation under the form of an explicit nogood ¬N . A nogood can be
interpreted as a constraint that forbids a combination of value assign-
ments to a set of variables. It is announced via a nogood message to
the lowest priority agent that has proposed an assignment in N .

– addlink message. The receiver agent is informed that the sender is inter-
ested in its variable. A link is established from the higher priority agent
to the agent with lower priority.

4.2 Framework for DisGCSP

A distributed configuration problem is a multi-agent scenario, where each agent
wants to satisfy a local GCSP and agents keep their constraints private for
security and privacy reasons, but share all variables which they are interested
in. As constraints employ meta-variables, the interest of an agent in variables
needs to be redefined:

Definition 5 (Interest in variables). An agent Sj owning a local
GCSPSj (XSj ,Γ Sj , T Sj ,ΔSj) is said to be interested in a variable x ∈ XSh of an
agent Sh, if there exists a generic constraint γ ∈ Γ Sj formulating a restriction
on the meta-variables Ma, . . . , Mk, where type(Mi) ∈ T Sj is the defined variable
type of the meta variable Mi, and ∃Mi ∈ Ma, . . . , Mk : type(x) = type(Mi).

Definition 6 (Distributed generative CSP). A distributed generative con-
straint satisfaction problem has the following characteristics:

– A = {S1, . . . , Sn} is a set of n agents, where each agent Si owns a local
GCSPSi (XSi, Γ Si, T Si, ΔSi).

– All variables in
⋃n

i=1 XSi and all type denominators in
⋃n

i=1 T Si share a
common namespace, ensuring that a symbol denotes the same variable, resp.
the same type, with every agent.

– For every pair of agents Si, Sj ∈ A and for every variable x ∈ XSj , where
agent Si is interested in x, must hold x ∈ XSi.

– For every pair of agents Si, Sj ∈ A and for every shared variable x ∈ XSi ∩
XSj the same type and index must be associated to x in the local GCSPs of
the agents, i.e., typeSi(x) = typeSj(x) ∧ indexSi(x) = indexSj (x).

Consequently, for every pair of agents Si, Sj ∈ A and for every shared variable
x ∈ XSi ∩ XSj a link must exist that indicates that they share variable x. The
link must be directed from the agent with higher priority to the agent with lower
priority.

Definition 7. Given a distributed generative constraint satisfaction problem
among a set of n agents then its solution encompasses the finding of a set of vari-
ables X =

⋃n
i=1 XSi , type and index assignments Δ =

⋃n
i=1 ΔSi and an assign-

ment tuple θ =
⋃n

i=1 θSi for every variable in X, s.t. for all agents Si : XSi , ΔSi

and θSi are a solution for the local GCSPSi of agent Si.

Remark. A solution to a distributed generative CSP is also a solution to a
centralized GCSP(

⋃n
i=1 XSi ,

⋃n
i=1 Γ Si ,

⋃n
i=1 T Si,

⋃n
i=1 ΔSi).

140 M. Zanker et al.

Definition 8 (Generic assignment). A generic assignment is a unary
generic constraint. It takes the form: 〈M, i, v〉, where M is a meta-variable, i
is a set of index values for which the constraint applies, and v is a value.

Definition 9 (Generic nogood). A generic nogood takes the form ¬N , where
N is a set of generic assignments for distinct meta-variables.

Value assignments to variables are communicated to agents via ok? messages
that transport generic assignments in our DisGCSP framework, which repre-
sent domain restrictions on variables by unary constraints. Each of these unary
constraints in our DisGCSP has attached an unique identifier called constraint
reference (cr) [16]. Any inference has to attach the crs associated to arguments
into the obtained nogood. We treat the extension of the domains of the variables
as a constraint relaxation [16]. For this reason we introduce the next features for
algorithm extensions:

– announce message broadcasts a tuple (x, t, i), where x is a newly created
variable of type t and with index i to all other agents. The receiving agents
determine their interest in variable x and react depending on their interest
and priority in one of the following ways (a) send an addlink message trans-
porting the variable set {x} (b) add the sending agent to its outgoing links
or (c) discard the message.

– domain message broadcasts a set CR of obsolete constraint references. Any
receiving agent removes all the nogoods having attached to them a con-
straint reference cr ∈ CR. The receiver of the message calls then the func-
tion check agent view() detailed in [21], making sure that it has a consistent
proposal or that it generates nogoods.

– nogood messages transport generic nogoods ¬N that contain assignments
for meta-variable instances. These messages are multicasted to all agents
interested in ¬N .6 An agent Si is interested in a generic nogood ¬N if it
has interest in any meta-variable in ¬N .

– When an agent needs to revoke the creation of a new variable due to back-
tracking in his local solving algorithm, he assigns it a specific value from its
domain indicating the deactivation of the variable and communicates it via
an ok? message to all interested agents.

In order to avoid too many messages a broker agent can be introduced that
maintains a static list of agents and their interest in variables of specific types
comparable to a yellow pages service. In this case the agent that created a new
variables only needs to request the broker agent for a list of interested agents
and does not need to broadcast an announce message to all agents.

Theorem 1. Whenever an existing extension of ABT is extended with the pre-
vious messages and is applied to DisGCSPs, the obtained protocols are correct,
complete and terminate.
6 The algorithm remains correct and terminates even if the nogoods are sent only to

the target decided as in ABT.

A Distributed Generative CSP Framework 141

Proof: Let us consider that we extend a protocol called P .

Completeness: All the generated information results by inference. If failure is
inferred (when no new component is available), then indeed no solution exists.

Termination: Without introducing new variables, the algorithm terminates. Since
the number of variables that can be generated is finite, termination is ensured.

Correctness: The resulting overall protocol is an instance of P , where the delays
of the system agent initializing the search equals the time needed to insert all
the variables generated before termination. Therefore the result satisfies all the
agents and the solution is correct.

5 Evaluation

In order to test the applicability of our approach, we implemented a prototype
for distributed generative constraint satisfaction on top of ILOG’s JConfigurator
[8]. JConfigurator is a Java library providing an API for modeling and solving
configuration problems based on an underlying object-oriented constraint solver.
Consistent with the GCSP approach, the user of this library defines the problem
in terms of components, ports and attributes and states generic constraints that
apply to the set of all instances of a specific component type [8,10].

Our framework provides a simple, experimental infrastructure for distributed
reasoning among an arbitrary number of agents, each of which is capable of
solving a local GCSP, where there are no limitations on the number of compo-
nent types or the complexity of the constraints for the local GCSPs. However,
for the purposes of evaluating the framework, despite the lack of benchmark-
ing problems, we restricted the structure of the configuration problem to being
similar to the example in Section 2 which still captures the main characteris-
tics of configuration problems. Our tests were limited to ports that connected
the sub-systems with the modules and component types that were characterized
solely by one integer attribute (with a finite numerical domain). However, the
maximum number of the sub-system ports and component instances were only
limited to a theoretical value.

In order to be able to compare our DisGCSP framework with the conventional
DisCSP framework, the example configuration problems were also modelled as
static CSPs with all possible component instances being generated prior to execu-
tion, where their domain was extended to include an additional value indicating
their inactivity. Thus, we were able to examine the effect of defining nogoods
and constraints generically on the number of interaction cycles between agents
and compare it with the classical constraint and nogood formulation in DisC-
SPs. In addition, we found that the additional computational costs for deriving
minimal conflicts pays off given the potentially high communication overhead of
the message passing associated with additional interaction cycles.

Architecture. The framework’s core is an Agent class that manages the
agent view and implements a variant of Yokoo’s Asynchronous Backtracking
algorithm (i.e., sending and processing ok? and nogood messages). Concrete

142 M. Zanker et al.

agent instances (with their local problems) are implemented by subclassing and
overriding application specific methods, for example, the definition of compo-
nents and constraints. Communication among agents is based on message pass-
ing via a mediating agent that provides capabilities for agent registration and
system initialization and is capable of detecting when the distributed system
reaches a stable state, i.e., a solution is found.

Conflict detection and exchange. The computation of nogoods (minimal
conflicts) in the case that the agent view is inconsistent, is based on Junker’s
QUICKXPLAIN algorithm [9], a efficient non-intrusive conflict-detector that
recursively partitions the problem into subproblems of half the size and skips
those that do not contain an element of the propagation-specific conflict7. In the
current version, we only compute a single minimal, conflict in each backtracking
step, future work will include the concurrent computation of several conflicts. A
computed conflict contains information about the number of variables involved
in the conflict as well as inconsistent variable assignments, where we can detect
when the inconsistency arises solely from variable cardinalities which further
improves the distributed search performance. Conflict exchange among agents
is based on serialization of the conflict information and the receiving agent’s
automated (re-)construction of the generic constraint.

Algorithm. Given the results from previous sections, several distributed con-
straint satisfaction algorithms can be employed to solve the distributed config-
uration problem. In our framework we currently employ a variant of Yokoo’s
sound and complete ABT algorithm without employing enhancements like dy-
namic agent ordering [1] or Aggregation Search [14]. This choice was mainly
driven by the characteristics of the configuration domain, where the order of the
agents is mainly determined by the supply chain setting. The extensions include
the handling of multiple variables by aggregating variables according to their
types: agents can request links to variable types (component types in configura-
tion terminology); thus, ok? messages contain the assignments of all currently
existing variables of a given type, where each variable type is owned by exactly
one agent. The computation of local solutions is performed by the underlying
constraint solver. The additional task of applying dynamic agent ordering or
configuration-specific heuristics remains part of our future work.

Measurements. Several initial tests (Table 1) were carried out on our frame-
work using the configuration problems as described above, varying the size of the
configuration problem, the number of agents as well as the local search strate-
gies and problem complexity in order to obtain significant distributed search
and backtracking activity8. The results shown in Table 1 present the behav-
ior of the various distributed systems for the same problem ecoded both as

7 Note, that we are only interested in propagation-specific conflicts that are induced
by the values in the agent view.

8 Note, that in the configuration domain, the number of co-operating agents of the
companies involved in the supply chain is typically very low (< 10), the agents are
usually loosely coupled and the problems are typically underconstrained.

A Distributed Generative CSP Framework 143

Table 1. Comparison of DisGCSP and DisCSP encoding

Nbr. of Nbr. of Nbr. of Shared Overall Check-

Encoding agents CT inst inst time time NG Msgs Checks

DisGCSP(1) 3 10 30 12 3.25 1.72 25 75 134

DisCSP(1) 23.20 14.30 165 477 820

DisGCSP(2) 6 22 120 27 8.53 3.21 40 126 210

DisCSP(2) 37.47 14.28 211 644 1105

DisGCSP(3) 10 30 140 65 13.90 5.05 63 205 375

DisCSP(3) 89.60 34.50 594 1792 3024

DisGCSP(4a) 12 36 164 87 15.32 5.03 66 238 403

DisCSP(4a) 127.44 38.30 705 2635 4094

DisGCSP(4b) 12 36 164 87 41.02 8.30 136 588 889

DisCSP(4b) 2600 128.00 3646 16476 23452

CT: component/variable types NG: overall number of
inst: instances recorded nogoods/backtracks
shared instances: shared component instances Msgs: overall number of messages
Check-time: consistency, search Checks: overall number of
and explanation per agent consistency checks and searches

Generative Constraint Satisfaction Problem with a given upper bound of pos-
sible component instances and as a static CSP. For distributed reasoning, the
identical variant of Yokoo’s ABT search (with support for multiple variables per
agent) is employed, where in the case of the GCSP problem generic nogoods
are exchanged among the agents. In both settings the explanation facilities for
computing minimal nogoods were utilized.

It is well known that formalisms that extend the static CSP paradigm such as
Dynamic CSP or Generative CSP have advantages for non-distributed problem
solving both from modeling, knowledge acquisition, and maintenance perspec-
tives as well as from a solution search point of view. In a distributed settings
where the configuration constraints are distributed among several cooperating
agents, the non-generic approach suffers from the problem of heavy messaging
traffic that is induced by the increased number of required interaction cycles for
finding a solution. In the case of traditional CSP encoding, a receiving agent
is only capable of computing minimal conflicts involving concrete variable in-
stances, however in the generic case the agent can deduce and report generic
nogoods to the sending agent. It is the fact that - in the GCSP and configura-
tion problem setting - individual variable (i.e., component) instances of a given
type are interchangeable. Therefore, reporting a nogood prevents the sending
agent from communicating an interchangeable solution which would again cause
an inconsistency for the receiving agent.

144 M. Zanker et al.

Table 1 contains the average time measurements for finding the first solution
in five different configuration scenarios with varying complexity. Each problem
instance was examined several times as differences occur due to the indetermin-
istic behavior of the parallel execution of the agents. The problem sizes (i.e.
the number of component types or agents) are realistic for the scenarios ad-
dressed within the CAWICOMS project. Furthermore, the scenarios reflect the
fact that in a supply chain setting only a small portion of the local configuration
problems are shared among the agents. The local GCSPs are underconstrained;
using more complex problems would result in an increase in the amount of time
needed for consistency checks and the local solution search which is done by
the constraint solver. The actual number of problem variables is determined
by the number of component instances, the cardinality variables for all types
and the internally generated variables that allow the formulation of n-ary con-
straints. While the net search times are secondary9, the experiments showed
that the generative variant performs significantly better in terms of required
interaction cycles, stored nogoods and messages.

Fig. 2. Comparing run times for different problem settings

Figure 2 visualizes the run times for the different sample problems. Note that
problem instances 4(a) and 4(b) are identical in terms of problem size and distri-
bution among agents but differ in search complexity, i.e., problem 4(b) contains a
problematic constraint constellation that causes the run-times of the static CSP
approach to increase dramatically. While message passing is quite cheap in our
multi-threaded prototype, the cost of agent communication in real distributed
environments is a crucial factor. Memory requirements for storing nogoods are
not problematic because they are minimal and can hence be represented in a
compact way; however, minimizing the number of search cycles by reducing the
search space through the elimination of interchangeable solutions leads to over-
all performance enhancements especially in cases where the local configuration
9 The time measurements where made on a standard PC where the parallel agent

threads run in one single process; overall memory consumption was in all DisGCSP
test cases below 25 MB.

A Distributed Generative CSP Framework 145

problems are complex. Beside the advantage of offering a faster distributed so-
lution search, the GCSP approach has significant advantages for the domain
of real-world distributed configuration problems in terms of knowledge mainte-
nance: the problem of modeling and maintaining shared agent knowledge and
agent interdependencies is neglected in many DisCSP approaches and alleviated
in a DisGCSP setting through the introduction of variable types and generic
constraints, thus eliminating the need for error-prone task of encoding problems
as static CSPs.

Finally, the experiments showed that the integration of distributed config-
uration capabilities into a commercial configuration tool like JConfigurator is
feasible and lays the foundation for the application of distributed constraint
solving in real-world environments.

6 Conclusions

Building on the definition of a centralized configuration task from [19], we for-
mally defined a new class of CSP, termed generative CSP (GCSP), that general-
izes the approaches of current constraint-based configurator applications [5,10].
The innovative aspects include an additional level of abstraction for constraints
and nogoods. Constraints and nogoods may consist of variable types instead
of solely variables. Furthermore, we extended GCSP to a distributed scenario,
allowing DisCSP frameworks to be adapted to dynamic configuration problems
(but it can be used in static models as well) and described how this enhance-
ment can be integrated into a large family of existing asynchronous DisCSP
algorithms. Initial evaluations indicate that GCSP is practical for typical dis-
tributed configuration problems.

References

1. Armstrong, A., Durfee, E.F.: Dynamic prioritization of complex agents in dis-
tributed constraint satisfaction problems. In: Proc. of the 15th Int. Joint Conf. on
Artificial Intelligence (IJCAI), Nagoya, Japan (1997)

2. Barker, V.E., O’Connor, D.E., Bachant, J.D., Soloway, E.: Expert systems for
configuration at Digital: XCON and beyond. Communications of the ACM 32(3),
298–318 (1989)

3. Bessière, C., Maestre, A., Meseguer, P.: Distributed dynamic backtracking. In:
Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, p. 772. Springer, Heidelberg (2001)

4. Dechter, R., Dechter, A.: Belief Maintenance in Dynamic Constraint Networks.
In: Proc. 7th National Conf. on Artificial Intelligence (AAAI), St. Paul, MN, pp.
37–42 (1988)

5. Fleischanderl, G., Friedrich, G., Haselböck, A., Schreiner, H., Stumptner, M.:
Configuring Large Systems Using Generative Constraint Satisfaction. In: Freuder,
E., Faltings, B. (eds.) IEEE Intelligent Systems, Special Issue on Configuration,
vol. 13(4), pp. 59–68 (1998)

6. Haselböck, A.: Knowledge-based configuration and advanced constraint technolo-
gies. PhD thesis, Technische Universität Wien (1993)

146 M. Zanker et al.

7. Havens, W.: Nogood caching for multiagent backtrack search. In: Proc. of 14th
National Conf. on Artificial Intelligence (AAAI), Agents Workshop, Providence,
Rhode Island (1997)

8. Junker, U.: Preference-based programming for Configuration. In: Proc. of IJCAI
2001 Workshop on Configuration, Seattle, WA (2001)

9. Junker, U.: QuickXPlain: Conflict Detection for Arbitrary Constraint Propagation
Algorithms. In: Proc. of IJCAI 2001 Workshop on Modelling and Solving problems
with constraint, Seattle, WA (2001)

10. Mailharro, D.: A classification and constraint-based framework for configuration.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 12(4),
383–397 (1998)

11. McGuiness, D.L., Wright, J.R.: Conceptual Modeling for Configuration: A Descrip-
tion Logic-based Approach. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 12(4), 333–344 (1998)

12. Mittal, S., Falkenhainer, B.: Dynamic Constraint Satisfaction Problems. In: Proc.
of 8th National Conf. on Artificial Intelligence (AAAI), Boston, MA, pp. 25–32
(1990)

13. Sabin, D., Freuder, E.C.: Configuration as Composite Constraint Satisfaction. In:
Proc. of AAAI Fall Symposium on Configuration, AAAI Press, Cambridge (1996)

14. Silaghi, M.-C., Sam-Haroud, D., Faltings, B.: Asynchronous search with aggrega-
tions. In: Proc. of 17th National Conf. on Artificial Intelligence (AAAI), Austin,
TX, pp. 917–922 (2000)

15. Silaghi, M.-C., Sam-Haroud, D., Faltings, B.: ABT with asynchronous reorder-
ing. In: Proc. of Intelligent Agent Technology (IAT), Maebashi, Japan, pp. 54–63
(October 2001)

16. Silaghi, M.-C., Sam-Haroud, D., Faltings, B.V.: Maintaining hierarchically dis-
tributed consistency. In: Proc. of 7th Int. Conf. on Principles and Practice of Con-
straint Programming (CP), DCS Workshop, Singapore, pp. 15–24 (2000)

17. Silaghi, M.-C., Sam-Haroud, D., Faltings, B.V.: Consistency maintenance for ABT.
In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 271–285. Springer, Heidelberg
(2001)

18. Stumptner, M.: An overview of knowledge-based configuration. AI Communica-
tions 10(2) (June 1997)

19. Stumptner, M., Friedrich, G., Haselböck, A.: Generative constraint-based config-
uration. Artificial Intelligence for Engineering Design, Analysis and Manufactur-
ing 12(4), 307–320 (1998)

20. Yokoo, M.: Asynchronous weak-commitment search for solving large-scale dis-
tributed constraint satisfaction problems. In: Proc. of 1st Int. Conf. on Multi-Agent
Sytstems (ICMAS), San Francisco, CA, pp. 318–467 (1995)

21. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: Proc. of 12th Int. Conf. on
Distributed Computing Systems (ICDCS), Yokohama, Japan, pp. 614–621 (1992)

22. Yokoo, M., Hirayama, K.: Distributed constraint satisfaction algorithm for complex
local problems. In: Proc. of the 3rd Int. Conf. on Multi-Agent Systems (ICMAS),
Paris, France, pp. 372–379 (1998)

MobiSoft: Networked Personal Assistants for

Mobile Users in Everyday Life

Christian Erfurth1, Steffen Kern1, Wilhelm Rossak1,
Peter Braun2, and Antje Leßmann3

1 Friedrich Schiller University Jena, Computer Science Department
Ernst-Abbe-Platz 2, 07743 Jena, Germany

{erfurth,kern,rossak}@informatik.uni-jena.de
2 The agent factory GmbH

c/o Intershop Tower, Leutragraben 1, 07743 Jena, Germany
braun@the-agent-factory.de

3 Godyo AG
Prüssingstraße 35, 07745 Jena, Germany

antje.lessmann@godyo.com

Abstract. This paper provides an overview of the MobiSoft project, it’s
ideas and aims as well as the achieved results. In MobiSoft, we applied
mobile software agents to support humans in their mobile everyday life.
We developed a generic application framework that can be customized
to fit into completely different scenarios ranging from industry use cases
to social human interactions during leisure time. We describe this frame-
work as well as several prototypes that demonstrate its general applica-
bility. This paper also delivers first results of a survey at the university
campus, that tried to capture user interest in personal assistants and
mobile applications in general.

1 Introduction to MobiSoft

Over the last years, mobile devices, in particular mobile phones, have become
part of our daily life and our indispensable companions. They help us managing
our appointments, contact lists, or personal tasks. It can be expected that they
will become even more powerful and widespread in the near future. They will
–or already do– provide support for various wireless network technologies that
allow for the establishment of personal area networks (PAN) in order to exchange
information with others in close proximity as well as to access information stored
on distant hosts across the Internet.

MobiSoft is an ongoing shared venture between Friedrich Schiller University
Jena (FSU), the agent factory GmbH, and Godyo AG and is funded by the
Thuringian Ministry of Economy, Technology and Labor. In MobiSoft we aim at
different application scenarios that range from information retrieval and control
of legacy systems in industry use cases to the support of human interactions in
all places where people come together.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 147–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

148 C. Erfurth et al.

Mobile employees in varous industries are the central user group in the first
type of applications. We aimed at supporting such mobile users with mobile soft-
ware agents that are able to discover other agents in the network and exchange
information efficiently and that are also capable to discover and use services to
solve given tasks. This works transparently for the user who has only stated a
request on a mobile device. Later, the agents on the mobile devices inform their
respective users about the results of their actions and let them decide on further
steps. By this, we overcome existing boundaries like tedious, manual browsing
by delegating such tasks to software agents. Concerning these application types
we had the following key aims:

– Access to critical information anytime and everywhere. Assistants can filter
such data on company servers and only crucial information is delivered as
soon as the user connects to a network to allow in-time reaction to important
news.

– Access and control of business processes by utilizing several mobile personal
assistants which act proactive and autonomously on their owners behalf.

The second type of application scenarios share the goal to initialize and ease so-
cial interactions. Our trageted users are, as before, humans which travel around
and meet at specific places, for example shopping malls, sports stadiums, public
transport, museums, libraries, conferences, lecture halls, etc. Although it might
be helpful and interesting, people rarely start talking to complete strangers, be-
cause of inhibitions, social barriers or simply a lack of time. Otherwise, if people
knew each other, they would more freely exchange information and, therefore,
spread and receive pieces of useful information that could further be combined
with already existing information and forwarded to others.

We aim at supporting such a very human behavior of information exchange
with mobile software agents that act as user representatives and reside on mobile
devices. We assume that users have delegated the task of finding proper human
communication partners to these agents. We conceive software agents to be small
entities that are situated in a networked environment of mobile devices. Agents
are able to react to their virtual environment; in our case this environment is
made up of other agents in proximity. The goal is to establish communication
between the local personal assitant and the other agents according to the needs of
the given scenario. Communication between agents is based on messages, which
are annotated with semantic information as defined in an agent communication
language (ACL) using high-level communication protocols such as negotiations
[37]. For more information about software agents in general, we refer to [39].

Our approach can be seen as complementary to more traditional techniques
for information discovery on mobile devices. At first, instead of a client-server
based communication, we propose a decentralized, peer-to-peer like technique
to handle the dynamics and complexity of mobile networks. Second, the process
of searching for and dissemination of information is proactively performed by
the personal assistant rather than by the human user. Finally, the goal of our
approach is on the one hand the establishment of social interactions, mainly in

MobiSoft: Networked Personal Assistants for Mobile Users 149

consumer scenarios, and on the other hand information retrieval and distribu-
tion. We therefore utilize assistants that are able to migrate through dynamic
networks.

In this project, we address several research problems that are at the intersec-
tion of distributed computing, mobile ad hoc networks, and information repre-
sentation using standardized languages and ontologies. We are aware of several
additional research issues, for example in the area of privacy protection and
human-computer interaction to make this type of application both useful and
widely acceptable for users. We see this project as a first step in which we aim
at developing the framework and technical infrastructure that will also enable
later studies of those issues in detail.

The rest of this paper is structured as follows: The next chapter introduces
three application scenarios that have been elaborated during the project. After-
wards, we introduce the application framework and describe certain aspects and
technologies in detail. Section 4 covers related work followed by a short report
on a survey covering the acceptance of mobile applications which we conducted
at FSU. The paper closes with an summary of the MobiSoft project and a short
look at further research challenges.

2 Application Scenarios

Within MobiSoft, we investigated different application scenarios which we ranked
as realistic for future usage in mobile contexts. The scenarios, namely Project
Assistant, Social-mobile Assistant, and Campus.NET, address different aspects
of technology application. During the project, Campus.NET and Social-Mobile
Assistant scenarios developed strong community aspects. Despite the fact that
these scenarios have fewer business aspects, they received more attention during
presentations of the project results, especially at Centrum der Büro- und Infor-
mationstechnik (CeBIT) 2007. This section will introduce all three scenarios.

2.1 Project Assistant

In this scenario a project manager is supported by personal electronic assistants
which act autonomously and proactive on their owners behalf. Running on mo-
bile devices, assistants can filter information on company servers and only crucial
information is delivered as soon as the user connects to a network, fast enough
to provide for in-time reaction to important news. This enables the manager to
access critical business information anytime and everywhere as well as to access
and control business processes by utilizing several personal assistants.

Imagine the following use case. You are a supply chain manager in a company
which delivers products for several different industries like automotive or iron
and steel industry. Your products are integrated into industry-specific and time-
critical production workflows. Additionally, your company itself has numerous
sub-suppliers, which are integrated into your own production.

In this position you are at the intersection of several business workflows acting
as a negotiator for different interests. You work out new contracts with business

150 C. Erfurth et al.

partners, exchange old contractors with new ones, alter your production work-
flows or control your company’s stock. Any information about delays in those
well-defined workflows or changes in any contract or your own production line is
highly important. Any of these events could slow down or ultimately stop your
production, reduce your profit and may in the end lead to a lost contract or
customer.

This use case exhibits two general problems. First, the supply chain manager
will be often away from his office traveling to and meeting partners. During this
time he has no access to critical information and thus no chance of intervention.
Second, many tasks, which are handled by the supply chain manager, are tedious
and error-prone. Additionally, the number of different tasks is continuously rising
increasing workload and introducing new points of failure.

We try to address them both. First, we want to provide a supply chain man-
ager with all necessary information at any time anywhere by making that data
accessible with a mobile device like PDA or mobile phone. Second, we want
to decrease the workload by assigning most of the routine and tedious tasks to
software assistants which will act autonomously and proactively. Those assistant
will only bother their owner if it is absolutely necessary. There will not only be
assistants for the supply chain manager but also assistants, which represent con-
tractors or customers. So the assistants may interact with each other to handle
tasks previously performed by humans. More over, those assistant will be capa-
ble to handle some tasks, like negotiating on new contracts, faster than humans.
The complexity of the system will be hidden behind a user interface which will
only display the crucial information and aspects of the systems state.

For more details on this scenario please have a look at [21].

2.2 Social-Mobile Assistant

Focus of this scenario are humans and their direct interaction. With the help of
their networked mobile devices, social-mobile assistants exchange information in
order to find matches for their interests. If found, assistants inform their owners.
Such social-mobile Assistants can be applied for

– The establishment of groups based on shared interests (work, hobbies) or
activities and goals (such as to reduce travel costs by sharing a taxi).

– The exchange of information, such as personal profiles, news, private sales,
or any kind of recommendations.

– The preselection of possible communication partners in social networks and
the coordination of shared task lists and diaries by automated negotiations.

Our social approach can be seen as complementary to more traditional tech-
niques for information discovery on mobile devices. The goal is mainly the es-
tablishment of social interactions rather than just information distribution. A
decentralized peer-to-peer technique which is based on the notion of proximity
is used.

The process of searching for and disseminating information is pro-actively
initiated by the personal assistant rather than by the human user. Fig. 1 shows

MobiSoft: Networked Personal Assistants for Mobile Users 151

Fig. 1. General Execution Steps during Face-to-Face Encounter of two mobile Users

this process. This information exchange works transparently for the user only
in the first steps, in which the assistants exchange information, such as user
profiles, or negotiate best interaction time. Later, the assistants inform their
respective users about the potential communication partner and let them decide
on further steps. By this, we overcome existing inhibitory behavior of humans
by delegating this task to software agents, while the agents’ goal is to find proper
communication partners and interesting information. In [22], we cover the social-
mobile aspects of MobiSoft in more detail.

2.3 Campus.NET

As the name Campus.NET already indicates this scenario targets issues of aca-
demic life. Typically, at a university there are different information systems in
various contexts, like enrollment, library, eLearning, administration etc. Some of
these heterogeneous systems might be integrated for higher convenience. Mobile
access and push services are useful add-ons.

On the one hand, for students as well as university staff a lot of information is
available for their support but distributed over these systems. On the other hand,
with teaching or studying in a special field users get a certain view on available
information and only a sub-set is of interest. Especially for a beginner, it is diffi-
cult to access necessary information and to get an overview of available support.
Additionally there are only a few tasks and deadlines one needs to observe. Cam-
pus.NET is intended to be firstly a portal to heterogeneous information sources,
secondly a watch dog for interesting events and finally a community platform to
find helpful or interesting contacts with other people. This scenario is therefore
the most complex one of those introduced. Within MobiSoft Campus.NET takes
advantage of the well developed infrastructure at FSU and the commitment of
students and university staff to support our ideas.

152 C. Erfurth et al.

3 Architecture and Technology

In this section, we will outline the technological foundations of the project as well
as the developments made during the project. As stated above, our experiences
and research result on agent systems and mobile agents that have been aquired
over many years and provided a sound basis to start with [8,6,14,7].

At first we are going to describe the second version of our Agent Toolkit
Tracy followed by the introduction of a special Tracy version for Java-enabled
mobile devices called TracyME. Along with the development of TracyME, we
established a new agent programming language – called TAL – to overcome
the limitations of mobile Java editions and to allow for agent miration between
mobile devices. During the project, we also implemented an administation UI
based on the Eclipse Framework to allow for easy usage and configuration of
numerous Tracy agencies. This UI will be described in short, too.

Second, we will describe a number of extentions to our Tracy base system,
so-called plugins, that provide additional services und necessary functionality,
like a peer-to-peer network overlay, automatic integration of Web Services into
Tracy, or the monitoring of agent networks.

Afterwards, we present several prototypes of the current system that show its
general applicability and the wide range of possible use cases.

3.1 TracySE, TracyME and TAL

Over the past years, we’ve conducted a lot of fundamental research on agent
systems and, especially, mobile agents. During those years, we’ve developed two
Agent System Toolkits named Tracy and Tracy2. The latter one naturally ben-
efitted from our experiences with the first version. The major difference is, that
Tracy2 relies on a micro kernel architecture, compare Figure 2, whereas its pre-
decessor applied a strict 3-tier design which proved to be far to monolithic in
action. On top of the kernel, a number of plugins provide the actual functionality
of a Tracy system. For example, message exchange among agents, agent migra-
tion or several security mechanism are realized as plugins. The last, missing part
to make up a complete agent system are the domain-specific agents. As with
plugins, the kernel is responsible to control agent lifecycles and to coordinate
interactions among agents and plugins. Over the last years, this highly modular
and extensible architecture proved to be useful, as it is very easy to adapat a
base Tracy system to custom needs by defining a set of necessary plugins and
corresponding agents.

One of the main MobiSoft aims was to port Tracy2 to the Java Micro Edition
environment to allow for the usage of agents and agent migration on mobile
devices. Other projects, like JadeLeap [3], use mobile devices merely as a remote
control for agents that reside on a distant host. Our goal was to actually host
agents on mobile devices and allow agent migration between mobile phones via
Bluetooth and to distant hosts over GPRS, UMTS or WiFi.

Moving Tracy2 to a J2ME environment proved to be merely straightforward.
At first, we ported the micro kernel to have the base execution environemt for

MobiSoft: Networked Personal Assistants for Mobile Users 153

Fig. 2. General architecture of TracySE and TracyME

agents and plugins running on mobile devices. Afterwards, we began to transfer
necessary plugins. Some of them only required minor adaptions whereas others
had to be completely rewritten. Furthermore, we implemented several new plu-
gins, i.e. for Bluetooth communication and user profile handling. Of all plugins,
that have been reimplemented for the Java 2 Micro Edition, the most challeng-
ing one was the migration plugin. Agent migration, i.e. an agents movement
from one host to another host, relies on several programming language features,
that are not available in J2ME. Namely, class loader and dynamic class loading
as well as object serialization. To overcome these limitations, we established a
new, java-like programming language, that is interpreted by a virtual machine
running under J2ME. The name of this language is simply TAL (The Agent
Language).

With this solution, we are able to run and migrate agents between two and
more mobile devices using Bluetooth or WiFi. Even the fact that TAL is a
new languge is not a great drawback as its syntax is very similar to Java and
implementation of agents rather straightforward.

The new Tracy system for mobile Java editions is called TracyME (Tracy
Micro Editon) and, along with this, we renamed Tracy2 to TracySE (Tracy
Standard Edition).

3.2 Network Types and Communication Techniques

In Mobisoft, we targeted different network types and applied different techniques
to support and handle these networks. On the one end, we got fixed, hard-wired
networks with normal workstations and servers and, on the other end, we looked
into true ad hoc networks, established by mobile devices alone. In between these
two extremes are networks that we call semi or managed ad hoc. These networks
consist of a static, hard-wired core that provides a kind of backbone for numerous
mobile devices which are connected with each other via Bluetooth or WiFi and,
by means of GPRS/UMTS or WiFi, are connected to the central core. Our main

154 C. Erfurth et al.

focus has been on ad hoc networks. Nevertheless, we aimed for solutions that
could be used for static networks, too.

To structure static and semi ad hoc networks we applied a peer-to-peer ap-
proach using JXTA [1]. First, JXTA is available for various platforms including
J2SE and J2ME environments. Second, [9] presented a powerful peer-to-peer
routing mechanism for mobile devices in ad hoc networks which is implemented
in JXTA. First, we use JXTA to publish information about available Tracy plat-
forms. Second, JXTA is used to publish information about available services.
This allows agents and platforms to find desired functionality or information
dynamically and independent of a specific platform.

Nevertheless, the choice for JXTA should not lead to a tight coupling between
Tracy and JXTA, thus we aimed at providing an abstract network management
plugin which is just a wrapper for a network overlay. The plugin provides a fixed
interface for other plugins and agents to find Tracy platforms and search for
respectively publish platform and service information. The plugin will delegate
those requests to a network overlay module –in our case JXTA– which is capable
to provide these services. Using this kind of delegation and loose coupling, it is
easy to replace JXTA with one or more better alternatives without changing any
agent or plugin that relies on the network management.

In full ad hoc networks, a complex overlay that relies on rendevous server (as
in case of JXTA) is not applicable. Thus, we headed for more lightweight tech-
niques like broadcasts or epidemic dissemination [20,36,5] to distribute agents
and information among participating devices. Preliminary test results show the
principal applicability of such algorithms. However, reliability and speed of dis-
tribution need to be increased to live up to the requirements of real applications.

Besides integrating network management for platform and service propagation
and discovery, we also implemented a network monitor plugin. With this plugin,
we are able to control and measure a network of Tracy platforms, get information
for each platform, running agents and their tours, and currently connected users.
This plugin helped us in our system tests to find bottlenecks and to pinpoint
problems during in each stage of the project. Moreover, our adminstration UI
Wai Lin greatly benefits from the data collected by this plugin.

3.3 Prototypes

In the course of the project, we implemented several prototypes to verify our cur-
rent approaches and ideas as well as to derive new directions for reasearch based
on the prototypes’ performance. In general, we had tree different prototypes in
parallel, each one covering one of the scenarios described in section 2.

The Project Assistant prototype delivers a base architecture and appropriate
agents to oversee and manipulate an enterprise resource planning (ERP) system
from a mobile device. The prototypes architecture is made up from the following
parts: the ERP system P/4 [15], a TracySE system connected to P/4 via numer-
ous Web Services and corresponding wrapper plugins, and several mobile devices
running TracyME and agents that are able to migrate to the TracySE system
and access the aforementioned wrapper plugins to manipulate the ERP system.

MobiSoft: Networked Personal Assistants for Mobile Users 155

These agents are able to monitor certain critical values like availabe stock or
contract conditions. In case of anything critical, they will migrate to their users
mobile device and deliver the necessary information. The user may now take the
appropriate actions by contacting other company members or making changes
in the system – both using agents.

The second prototype covers social-mobile scenarios. Here, each user carries a
personal assistant on his/her mobile device that maintains the users profile and
searches for other assistants in the vicinity using Bluetooth. We presented the
first version of the prototype at the CeBIT exhibition in 2006 and were highly dis-
appointed by its poor performance. The incredible amount of Bluetooth-enabled
devices at the fair and the rather faulty Bluetooth implementation on various
mobile phones have been the main reason for these bad results. For CeBIT
2007, we successfully reimplemented our TracyME Bluetooth plugin to avoid
all shortcomings of the various Bluetooth implementations on our test phones.
The prototype has been much more stable and reliabile – nearby phones hosting
matching profiles nearly always contacted each other and exchanged information.

For the Campus.NET scenario, we implemented several assistants each one
covering a specific use case of the scenario. For example, we got one assistant
that is able to access the library (which hosts a TracySE platform) and get in-
formation on books in general or that can monitor a books status (available,
conferred, lost, ...) over a longer period. Another assistant covers the lecture
timetable doing similar things as the library assistant, e.g. getting general in-
formation on courses or monitor a certain course or lecture. We also used this
prototype to evaluate the simple dissemination of information, e.g. the menu of
the cafeteria, among a number of mobile devices.

4 Related Work

Current approaches for mobile social applications [33] are based on central
servers. For example, Dodgeball [13] and Playtxt [31] are social mobile networks
to locate friends, friends of mutual acquaintances or other people with matching
profiles. In those applications a user has to provide his or her current location
manually, whereas in the Reno system [33] the current location is determined
via GSM technology.

In this project we try to combine the advantages of both existing approaches,
while avoiding a centralized architecture. On the one hand, we continue to use
the concept of places rather than locations. A place is a logical description of
an area such as soccer stadium, whereas a location is given by exact coordinates
or cells. On the other hand, it is essential for our approach that proximity of
humans can be determined transparently for users.

Therefore, we focus on applications that are based on mobile ad hoc networks
(MANETs). A MANET is a collection of mobile devices (nodes), which can
communicate with each other over a wireless network, for example WiFi or
Bluetooth. By definition, mobile ad hoc networks have no fixed infrastructure,
that is, all typical network functions need to be coordinated by the network

156 C. Erfurth et al.

nodes in a distributed manner. While WiFi is more suited for high-end mobile
devices and for scenarios which demand long range ad hoc networks, Bluetooth
is a promising communication technology for short range ad hoc networks like
personal area networks (PAN) on which we focus in this project. A personal area
network can be seen as a digital space around a person, whose size depends on the
underlying wireless transmission technique. If two digital spaces overlap, people
can virtually see each other, that is, their mobile devices are able to exchange
information. The concept of MANET is very appealing both for research and
industry, as it enables a new class of application that has not been possible so far.
In a PAN we do not need an explicit notion of places and provision of proximity
information is an inherent network function.

Most research into mobile ad hoc networks has focused on the problem of
multi-hop routing data packets to enable Internet-like applications in ad hoc
networks. In particular, they address the issues of how to enable peer-to-peer
like applications on mobile devices [29] to share files [11], MP3 play-lists [38],
or information dissemination of homogeneous data with one application such
as traffic information [30]. Most of those approaches were mainly for enabling
information exchange triggered manually by users [38] or make information dis-
semination completely independent of the user [30]. In contrast, our project aims
at the establishment of social interactions by use of MANET.

In our project, we identify and focus on two key problems, which are related
to the two main goals of our project as mentioned previously:

At first, we consider different strategies for information exchange [16]. Flood-
ing techniques are based on the concept of broadcasting information units to
all available nodes in the network. In general, flooding is a very simple tech-
nique that can be considered to be not appropriate in large networks, because
of high resource usage in terms of bandwidth and energy consumption. The
publish/subscribe architectures, well known from the Internet and also used for
mobile applications connected to central servers on the Internet, are useful if
the server (broker) can predict what type of information may be useful for the
client. The more accurate this predication is the less data is sent superfluously
over the network [40]. Profiles and application dependent requests are used to
describe the client’s needs and desires. Although, publish/subscribe architec-
tures are very attractive, major requirements of this model, such as orderedness,
consistency, and completeness make it difficult, if not impossible, to realise it
in mobile networks. For example [10] [17] propose a publish/subscribe model
for peer-to-peer and mobile networks without addressing the three requirements
mentioned previously. Epidemic dissemination sends each information unit to a
randomly chosen group of nodes. This dissemination approach enables messages
to propagate quickly in the network and it is very robust against the node and
network link failures. This approach works completely decentralised and must
be seen in contrast to IP multicast techniques in which a spanning tree has to
be set up from the source to all receiver nodes. In those techniques node or
network link failures result in loss of messages, whereas in the epidemic-based
approaches the messages can be delivered to a node via multiple (redundant)

MobiSoft: Networked Personal Assistants for Mobile Users 157

paths. For more information on those algorithms we refer to [20,36,5]. So far, the
epidemic-based algorithms have only been studied as a general replacement for
traditional routing and multicast algorithms in mobile ad hoc networks. Finally,
proximity-based algorithms send information units only to neighbours, that is,
other nodes in close proximity. At the moment it is not clear which of these
approaches works best under which circumstances. Early results are only based
on simulations [28] of small networks and focus on performance metrics rather
than qualitative comparisons of the approaches.

The second aspect of our project deals with the problem of information rep-
resentation in open environments which are not specific to a single application
domain as existing approaches [30]. We aim to apply information dissemina-
tion approaches to distribute information about users, user interests and sim-
ilar information. To make this approach flexible, extendable, and to base the
matchmaking process between user interests and roaming information units, it
is necessary to use semantically rich languages. Although there has been a lot of
research done in the area of matchmaking of user interests and profiles [23] and
the creation of social groups, today’s available techniques are still quite simple.
For example, in the Internet we find Tribe [34] that is a Web site enabling people
to find other people based on their interest. The users must create a profile, can
publish recommendations for restaurants etc., and establish or join tribes (online
communities) dedicated to a specific topic. The description of user interests is
based on a list of keywords. For mobile devices, we find Upoc [35] that can be
used to establish communities on the Web and then send short messages to all
members of a group or a content channel. These approaches compare user inter-
ests by comparing keywords. Jambo [19] provides a software for WiFi-enabled
mobile devices so that users can locate each other based on keyword-based pro-
file matching. Neither approach uses semantic descriptions of user profiles and
preferences, but only simple text-based approaches. The first two approaches
mentioned are based on central servers in the Internet, whereas the last approach
requires a WiFi managed network. Other projects such as Webhound/Webdoggie
[32] and HOMR/Ringo/Firefly [25] use similar approaches. Friend of a Friend
Finder (FOAF) is a project that aims to share information about persons in
the Internet. The language used in this project is RDF that provides a means to
describe data and meta-data. RDF defines a simple data model which consists of
resources and statements that link two resources, comparable to a subject-verb-
object relationship. A statement is called a triple, which consists of subject and
object, and the predicate that plays a role of the verb mentioned previously. In a
so-called FOAF file, a user describes his personal data and which other persons
this user knows using RDF. With a help of these links to other persons, a search
engine can now create a graph of who knows whom. However it is not possible
to describe user interests and preferences with FOAF.

We align ourself with [2] in that mobile agents roaming in mobile networks
need to be light-weighted to work on battery operated and resource constraint
devices like PDAs or mobile phones. Further, agents must be able to use different
communication techniques and act context-specific.

158 C. Erfurth et al.

A general concern in all mobile agent systems is security. An agent, that carries
sensitive information about its owner must be protected against malicious agents
or platforms. A discussion of security techniques lies beyond the scope of this
paper. Please refer to [26,4] for an introduction into security issues in mobile
agent systems and wireless networks.

In the area of supply chain management multi-agent systems are an alterna-
tive to common centralized client/server based systems. Multi-Agent Systems
have proven to perform well in the areas of task scheduling and distribution, ne-
gotiation or process planing and control and they are already used in industry.
See for example DISPOWEB[12], KRASH[24] or IntaPS[18] or [27]. With Mo-
biSoft, we are not challenging those systems but we aim to make those systems
accessible for our agents.

5 Lessons Learned

During the project we faced some technical difficulties in implementing our pro-
totypes, e. g. inadequat API support for available communication interfaces, ad-
ditional implementation effort due to different display resolutions as well as other
device specific obstacles and restictions of Java 2 Micro Edition in gerneral.

More non-technical aspects in the social area of potential users are also rele-
vant e. g.

– Has usability reached an appropriate level for ad hoc mobile device usage?
– Is there a correlation between age and gender of potential users and the

acceptance of mobile application usage?
– Is the usage of mobile devices as a community interface accepted?

Consolidated findings in this interdisciplinary area are essential for a successful
application of future technologies in the mobile sector. The user is the central
element in ubiquitous computing.

Based on the results and prototypes in the Campus.NET scenario, we made
a survey at the university to investigate the acceptance of personal electronic
assistants. We received over 1000 submissions of the online questionary (70%
from students, 23% from staff).

We ask the participants to rank importance of new services using electronical
assistants and readiness of use. For 70% of participants, services with software
assistants in the library sector are important or very important. In contrast to
that, 61% of participants stated that it is less important or not important to
have assistants for menu information on mobile devices. Sozial-mobile assistants
are generally ranked as partly important.

The readiness of use is ranked nearly identical for all of these areas. Despite of
the fact that the new technology of mobile personal assistants is not yet popular,
about 50% of the interviewed persons answered that they would perhaps use
assistants. Especially participants younger than 30 years are more interested in
usage than the older ones which mostly answered in no case. So, the technology
has the potential to get accepted in future.

MobiSoft: Networked Personal Assistants for Mobile Users 159

6 Conclusions

Within MobiSoft we investigate the application of mobile software agents as
personalized assistants on mobile devices, especially UMTS-enabled, in future
application scenarios. The introduced scenarios adress different usage possibil-
ities from business application to social interaction. Thereby, different network
constellations from semi-static to ad hoc networked mobile devices are covered
by the developed framework. With the prototypes we evaluate technology ap-
plication with its challenges in the field of mobile applications. With our survey
we get a first feedback of the technology acceptance from potential users.

MobiSoft has also shown that additional research and development effort has
to be put into, e. g. semantical description of information for filtering and match-
ing purposes, involvement of humans via mobile devices in dynamical business
workflows, and improvement of usability of mobile devices for efficient informa-
tion presentation and content creation.

Acknowledgments

The work presented in this paper is partially funded by the Thuringian Ministery
of Economy, Technology and Labor under grant FKZ B 509-04005. Many thanks
to Michael Selle, Judith Zimmermann, Jens Kramer, Norbert Wabnitz, Daniela
Fiedler, Torsten Dettborn, Volkmar Schau, Kasten Jahn, our many students and
all the others which contributed to MobiSoft actively.

References

1. JXTA., http://www.jxta.org

2. Bagci, F., Petzold, J., Trumler, W., Ungerer, T.: Ubiquitous mobile agent system in
a p2p-network. In: UbiSys-Workshop at the Fifth Annual Conference on Ubiquitous
Computing, Seattle, USA, October 12-15 (2003)

3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley & Sons, Chichester (2007)

4. Binder, W., Roth, V.: Secure mobile agent systems using java: Where are we head-
ing (2002)

5. Birman, K.P., Hayden, M., Ozkasap, O., Xian, Z., Budiu, M., Minsky, Y.: Bimodal
multicast. ACM Transaction on Computer Systems 17(2), 41–88 (1999)

6. Braun, P.: The Migration Process of Mobile Agents–Implementation, Classifica-
tion, and Optimization. PhD thesis, Friedrich-Schiller-Universität Jena, Computer
Science Department (May 2003)

7. Braun, P., Müller, I., Schlegel, T., Kern, S., Schau, V., Rossak, W.: Tracy:
An Extensible Plugin-Oriented Software Architecture for Mobile Agent Toolkits.
Whitestein Series in Software Agent Technologies, pp. 357–382. Birkhäuser, Basel
(2005)

8. Braun, P., Rossak, W.R.: Mobile Agents–Basic Concept, Mobility Models, and the
Tracy Toolkit. Morgan Kaufmann Publishers, San Francisco (2005)

http://www.jxta.org

160 C. Erfurth et al.

9. Buccafurri, F., Lax, G.: Tls: A tree-based dht lookup service for highly dynamic
networks. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS, vol. 3290, pp. 563–
580. Springer, Heidelberg (2004)

10. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale and
decentralized application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications 20(8) (2002)

11. Christoph Lindemann, O.P.W.: A distributed search service for peer-to-peer file
sharing in mobile applications. In: Proceedings fo the Second International Con-
ference on Peer-to-Peer Computing (P2P 2002). IEEE Computer Society Press,
Los Alamitos (2002)

12. DISPOWEB, http://www.dispoweb.de
13. Dodgeball, http://www.dodgeball.com
14. Erfurth, C.: Proaktive autonome Navigation für mobile Agenten. PhD the-

sis, Friedrich-Schiller-Universität Jena, Fakultät für Mathematik und Informatik
(2004)

15. ERP-System P/4, Godyo AG, http://www.godyo.com
16. Franklin, M.J., Zdonik, S.B.: Dissemination-based information systems. Data En-

gineering Bulletin 19(3), 20–30 (1996)
17. Huang, Y., Garcia-Molina, H.: Publish/subscribe in a mobile environment. In:

Banerjee, S. (ed.) Proceedings of the 2nd ACM International Workshop on Data
Engineering for wireless and mobile access, Santa Barbara CA (USA), pp. 27–34.
ACM Press, New York (2001)

18. IntaPS, http://www.intaps.org
19. Jambo, http://www.jambo.org
20. Kermarrec, A.-M., Massoulie, L., Ganesh, A.J.: Probabilistic reliable dissemina-

tion in large-scale systems. IEEE Transaction on Parallel and Distributed Sys-
tems 14(3), 248–258 (2003)

21. Kern, S., Braun, P., Dettborn, T., Eckhaus, R., Ji, Y., Erfurth, C., Rossak, W.:
Assistant-based mobile supply chain management. In: Riebisch, M., Tabeling, P.,
Zorn, W. (eds.) 13th Annual IEEE International Symposium and Workshops on the
Engineering of Computer Based Systems - Mastering the Complexity of Computer-
based Systems (ECBS 2006), Potsdam (Germany), March 2006, pp. 23–31. IEEE,
Los Alamitos (2006)

22. Kern, S., Braun, P., Rossak, W.: Mobisoft: An agent-based middleware for social-
mobile applications. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 984–993. Springer, Heidelberg (2006)

23. Kleemann, T., Sinner, A., von Hessling, A.: Semantic user profiles and their appli-
cations in a mobile environment. In: Workshop on Artificial Intelligence in Mobile
Systems at UbiComp 2004, Nottingham (UK) (September 2004)

24. KRASH, http://www.ipd.uka.de/krash
25. Lashkari, Y., Metral, M., Meas, P.: Collaborative interface agents. In: Proceedings

of the 12th National Conference on Artificial Intelligence, Seattle (USA), vol. 1,
pp. 444–449. MIT Press, Cambridge (1994)

26. Mavridis, I., Pangalos, G.: Security issues in a mobile computing paradigm (1997)
27. MultiAgent.com, http://www.multiagent.com
28. Nittel, S., Duckham, M., Kulik, L.: Information dissemination in mobile ad-hoc

geosensor networks. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience
2004. LNCS, vol. 3234. Springer, Heidelberg (2004)

http://www.dispoweb.de
http://www.dodgeball.com
http://www.godyo.com
http://www.intaps.org
http://www.jambo.org
http://www.ipd.uka.de/krash
http://www.multiagent.com

MobiSoft: Networked Personal Assistants for Mobile Users 161

29. Oberender, J., Andersen, F.U., de Meer, H., Dedinski, I., Hossfeld, T., Kappler,
C., Maeder, A., Tutschku, K.: Enabling mobile peer-to-peer networking. In: Kotsis,
G., Spaniol, O. (eds.) Euro-NGI 2004. LNCS, vol. 3427, pp. 219–234. Springer,
Heidelberg (2005)

30. Ouri Wolfson, A.P.S., Xu, B.: An economic model for resource exchange in mobile
peer-to-peer networks. In: Proceedings of the 16th International Conference on
Scientific and Statistical Database Management (SSDBM 2004). IEEE Computer
Society Press, Los Alamitos (2004)

31. Playtxt, http://www.playtxt.net
32. Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating

words of mouth. In: Proceedings of the Conference on Human Factors in Computing
Systems. ACM Press, New York (1995)

33. Smith, I.: Social-mobile applications. Computer 38(4), 84–85 (2005)
34. Tribe, http://www.tribe.net
35. Upoc, http://www.upoc.com
36. Vogels, W., van Renesse, R., Birman, K.: The power of epidemics: robust commu-

nication for large-scale distributed systems. ACM SIGCOMM Computer Commu-
nication Review 33(1), 131–135 (2003)

37. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge (2000)

38. Wiberg, M.: Folkmusic - a mobile peer-to-peer entertainment system. In: Pro-
ceedings of the 37th Hawaii International Conference on System Sciences. IEEE
Computer Society Press, Los Alamitos (2004)

39. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons,
Chichester (2002)

40. Yoneki, E., Bacon, J.: An adaptive approach to content-based subscription in mo-
bile ad-hoc networks. In: Proceedings of the 2nd IEEE Annual Conference on
Pervasive Computing and Communication Workshops (PERCOMM 2004). IEEE
Computer Society Press, Los Alamitos (2004)

http://www.playtxt.net
http://www.tribe.net
http://www.upoc.com

A Web-Based Virtual Machine for Developing

Computational Societies�

Sergio Saugar and Juan M. Serrano

Department of Computing
University Rey Juan Carlos

{Sergio.Saugar,JuanManuel.Serrano}@urjc.es

Abstract. Different theoretical and practical insights into the field of
computational organisations and electronic institutions has led to a clear
separation of concerns between societal and agent-based features in the
implementation of multiagent systems. From a theoretical perspective,
this separation of concerns is also at the core of recent proposals towards
a societal programming language. Building on the operational model of
one of these proposals, this paper addresses the practical issue of imple-
menting a web-based virtual machine for that language. The resulting
framework is intended to be used in a wide range of applications, all
of them related to the implementation of social processes (business pro-
cesses, social networks, etc.).

1 Introduction

Different theoretical and practical insights into the field of computational or-
ganisations and electronic institutions [1, 2, 3, 4] has led to a clear separation
of concerns between societal and agent-based features in the implementation of
multiagent systems. For instance, the institutional platform AMELI [5] makes a
precise distinction between programming the e-institution (using the language
of the ISLANDER tool) and programming the agents which participate in the
e-institution (e.g. using the AgentBuilder tool). From a theoretical perspective,
this separation of concerns is also at the core of recent proposals towards a so-
cietal programming language [3], which complements the myriads of agent pro-
gramming languages that can be found in the literature (e.g. Jason [6], 3APL [7],
etc.). The former kind of languages are aimed at programming socially-enable
middlewares, whereas the later are aimed at programming agentified software
components.

The design of a language for programming computational societies involves
two major tasks: specifying the abstract social middleware – i.e. the abstract
machine to be programmed, and specifying its type system. In [3], some prelim-
inary steps towards the first goal are taken. Particularly, the proposed opera-
tional model of social interactions precisely states the structure and dynamics
� Research sponsored by the Spanish Ministry of Science and Education (MEC),

project TIN2006-15455-C03-03, and the Regional Government of Madrid and Uni-
versity Rey Juan Carlos, project URJC-CM-2006-CET-0300.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 162–176, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Web-Based Virtual Machine for Developing Computational Societies 163

of computational societies. Put in another way, it provides the structure and
programmable behaviour of an abstract social middleware. Building on this the-
oretical results, this paper addresses the practical issue of implementing the
language. The chosen middleware technology for implementing its virtual ma-
chine, i.e. the virtual middleware infrastructure, is the World Wide Web. This
paper purports to present the architecture of a web-based social middleware in-
frastructure, namely the major design choices on its structure and dynamics. In
order to attain this goal, the REST architectural style [8] and guidelines will be
exploited.

The rest of the paper is structured as follows. Section 2 reviews from a middle-
ware perspective the major concepts on the structure and dynamics of computa-
tional societies presented in [3]. Then, sections 3 and 4 address the architectural
decisions on the structure and dynamics of a web-based social middleware in-
frastructure. The last section briefly summarises the major results and discusses
current and future lines of work.

2 Computational Societies as Social Middleware
Infrastructures

This section briefly reviews the operational model of computational societies put
forward in [3] and introduces the example that will be used throughout the pa-
per. Moreover, this operational model shall be interpreted as the abstract (i.e.
technology-neutral) specification of a social middleware infrastructure. From this
perspective, the major function of a computational society is to mediate the in-
teractions among heterogeneous, distributed software components. In the next
sub-sections, the kinds of roles played by software components attached to the
social middleware as well as the primitive interaction mechanisms enabled by
the middleware infrastructure will be considered. Moreover, the different types
of external actions performed by software components over the middleware will
be summarised. The last sub-sections introduce the abstract identifiers of mid-
dleware entities and an example within the university domain.

Roles. Software components interacting through an object-oriented middleware
are published as objects; if the web is considered as the middleware infrastruc-
ture, software components play the role of resources; in a publish/subscribe
infrastructure, components are attached to the middleware as producers and/or
consumers; and so on. In regard with this feature, two kinds of roles are sup-
ported by a social middleware: agents and resources. On the one hand, resources
represent those non-autonomous software components which store information
and/or provide different computational services to the society. On the other
hand, agents represent those autonomous software components which purport to
achieve some goal within the society. In order to attain that goal, agents are able
to perform different kinds of social actions, namely to say things to other agents
(i.e. to perform communicative actions) and manipulate the environmental re-
sources. The whole activity of some agent may be structured in a role-playing
hierarchy of further agents (e.g. if its purpose is too complex).

164 S. Saugar and J.M. Serrano

Social Interactions. The interaction space of an object-oriented middleware is
made up of remote method calls; the interactions through the web are handled in
terms of HTTP requests; in the case of a publish/subscribe infrastructure, event
channels are the primitive interaction mechanism. Concerning a social middle-
ware infrastructure, its interaction space is hierarchically structured in terms of
a tree of nested social interactions. In this way, the computational society itself
is represented by the root, or top-level interaction. Social interactions provide
the context within which agents and resources are deployed. Thus, a social in-
teraction features a set of member agents, a set of environmental resources and
a set of sub-interactions.

External Actions. External actions represent the interface between the ab-
stract middleware and the external software components. Thus, a software com-
ponent attached as an agent to the social middleware directs the behaviour of its
agent through different kinds of external actions. For instance, the component
may play/suspend its agent, thereby making public that the component is logged
in/off the computational society. When the software component is logged in, it
may attempt its agent to perform different kinds of social actions, e.g. setting up
a new sub-interaction within a given context.

The social middleware deals with attempts in a three-stage process: firstly,
it is checked whether the agent is empowered to do the specified social action (if
it is not, the attempt is simply ignored); secondly, it is checked whether the agent
is permitted to do the specified action under the current circumstances (if it is
not, an event signalling the forbidden attempt is generated); last, if the agent
is both empowered and permitted, the action is executed and the corresponding
events signalling the updates in the social state are generated. These events may
be notified to different agents according to their monitoring rules. In turn, these
events may be pulled out by software components through the external action
observe, which allows components to inspect the state of any social middleware
entity1.

Social Actions. The set up social action, mentioned above, is a communicative
action (particularly, a declarative speech act) which is part of a predefined cat-
alogue of standard social actions. This catalogue includes other actions, e.g., to
prematurely finish a given sub-interaction (close); playing a new agent role within
a given interaction context (join); and abandoning some played role (leave). Any
kind of social action is targeted at some interaction whose state is intended to
be modified (e.g. the target of a join action is the interaction context to which
the performer intends to join). The protocol of the target interaction determines
which agents are empowered and permitted to do that action.

Abstract Identifiers. Social middleware entities (agents, interactions,
resources, etc.) have a unique abstract identifier. The abstract identifier of the
1 The set of external actions mentioned above (play, suspend, attempt and observe)

is complemented with other actions such as enter and exit, which deal with the
registration of components to the middleware as software agents.

A Web-Based Virtual Machine for Developing Computational Societies 165

top-level interaction simply consists of a given name. Any other entity which
is deployed within some interaction context is identified by a local name which
identifies the entity within its interaction context, plus the identifier of its inter-
action context. Interaction identifiers are conventionally represented as a dot-
separated sequence of local names, n.nc. . . . nt, which starts with its local name
n and is followed by the context identifier nc. . . . nt; the sequence ends with the
name nt of the top-level interaction. Agent, resource, event and action identifiers
are similarly represented. The only difference is that the name of the entity is
separated from the context’s identifier using the at sign (“@”).

Example. Let’s consider a social middleware to support the different social pro-
cesses around the management of university courses. A given course, e.g. on data
structures, is represented by a particular social interaction. On the one hand,
this interaction is actually a complex one, made up of lower-level interactions.
For instance, within the scope of a course agents will participate in programming
assignment groups, examinations, lectures, and so on. On the other hand, courses
are run within the scope of a particular degree (e.g. computer science), a higher-
level interaction. Traversing upwards from a degree to its ancestors, we find its
school, and finally the university (the top-level interaction). Besides schools, de-
partments are also sub-interactions of the university. Taking into account the
above structure of the interaction space, the identifier ds.cs.si.urjc stands for
a course on data structures (ds) taught as part of the computer science degree
(cs), managed by the school of informatics (si) at the University Rey Juan Carlos
(urjc).

The agents within this computational society directly correspond to the dif-
ferent roles played by human users2. Thus, a student is represented by a role-
playing hierarchy whose root is the student agent deployed within the degree;
this student agent plays different student agent roles within the courses in which
it has enrolled; in turn, students of courses may play corresponding roles within
the programming assignment groups set up within their courses. Other agent
roles, deployed within departments, include associate professors and PhD can-
didates, which play the roles of teachers and teaching assistants within courses,
respectively. Concerning resources, we may consider different kinds of informa-
tional resources such as programs and test cases, generated by students within
the context of working groups.

In the scenario that will be considered in the next sections, the agent john@ds.
cs.si.urjc is a student of the course on data structures within the University Rey
Juan Carlos. In order to pass the course (the purpose of course students), stu-
dents have to pass several assignments in collaboration with another student.
When the first assignment is published, john’s colleague sets up the working
group wg1.ds.cs.si.urjc, which specifies john as an allowed partner. Then, an
event representing this change is published and notified to john. When john’s
human user observes these events, it attempts its agent john to join the as-
signment group. Then, since course’s students are empowered to join working
2 In this particular application, software components running the software agents are

simply user interfaces, e.g. web browsers.

166 S. Saugar and J.M. Serrano

groups and john has been explicitly given permission, the action is executed
by the middleware and a new agent john@wg1.ds.cs.si.urjc, played by john, is
created within the assignment group.

3 Structure of a Web-Based Social Middleware
Infrastructure

This section addresses the major design decisions concerning the structure of
a web-based social middleware infrastructure, in accordance with the abstract
specification introduced in the last section. The use of the web as the underlying
distributed technology involves two major structural design problems:

– Firstly, computational societies must be published as web resources. These
resources will represent the entry points to the social middleware for external
software components.

– Secondly, different policies may be considered for the distribution of the
interaction space through the network of web servers. Communication among
socially-enabled web servers will rely on the previous entry points as well.

3.1 Publishing Social Entities as Web-Resources

There are several alternatives in order to expose a computational society through
a web server. On the one hand, we may simply publish a single resource repre-
senting the whole computational society maintained by the web server. On the
other, we may follow a fine-grained strategy and publish every major kind of
social entity as a web resource. In order to leverage the HTTP protocol [9] to its
full potential we follow the second approach. Thus, social interactions, agents,
resources, actions and events are published as web resources. This allows, for
instance, to implement the attempts of software components as HTTP POST
requests over the agent resource, as described in the next section.

The URLs assigned to social entities follow general patterns which are de-
signed after the structure of their corresponding abstract identifiers. Being ex-
clusively based upon the data hold by abstract identifiers, the URLs resulting
from these patterns are not expected to change very likely. Moreover, the URLs
borrow the hierarchical and meaningfulness features of abstract identifiers as
well. Table 1 shows the URL patterns assigned to the different kinds of social
entities. Columns Host:Port and Path represent the corresponding parts of the
URL. For every social entity, the host and port section of its URL represent the
web server which manages that social entity. As will be described in the next
subsection, with the possible exception of interactions, every entity is managed
by the web server to which its interaction context belongs. The two rows of table
1 represent the two possible URL patterns:

– The first one is used for those interactions that are managed by a server
different from its context’s server. The URL for this kind of interactions is
constructed by adding the name of the interaction to the root URL (’/’)

A Web-Based Virtual Machine for Developing Computational Societies 167

Table 1. Generic Patterns of URLs

Entity Name Context Host:Port Path

Interaction name null server.com:port /name

Interaction, Event,
name interaction server.com:port /path/to/interaction/nameResource, Agent,

Action

of the server (note that the top-level interaction, whose context is empty, is
a special case of this pattern).

– The second pattern applies to the entities that are published in the web
server of its context interaction (i.e. events, actions, resources, agents and
sub-interactions). The URLs of these entities are formed by appending the
name of the entity to the URL of its interaction context (separated by ’/’).

3.2 Distributing the Interaction Space through Web Servers

We may consider two alternative stances on the distribution of the interaction
space. The first one consists of ignoring this possibility so that the whole compu-
tational society is published through a single server. This means that this server
processes all the HTTP requests over every social entity. In our scenario, this
alternative forces a single host to process all the HTTP requests over the whole
population of agents (students, teachers, etc.) and resources (assignments, solu-
tions, plans of studies, etc.) of the university, as well as over its whole catalogue
of social processes (courses, departments, schools, etc.). This alternative is only
valid for applications with low demands for scalability, where the population of
agents and resources as well as their interactions are kept under strict limits.

The second alternative, advocated by this paper, consists of allowing the dis-
tribution of the interaction space through multiple servers. The use of URL-
addressable resources allows the distribution of the computational society over
the Web, thereby exploiting its potential for scalability. The only constraint
imposed on the distribution is that every social entity, but interactions, must
be deployed within the web server which manages its interaction context. Sub-
interactions may be deployed within the web server which manages its interac-
tion context, but this is not mandatory. On the contrary, the URLs of agents,
resources, actions and events always share the host:port part with the URL of
their interaction context. Without any further restriction, and with the inten-
tion of guaranteeing the maximum deployment flexibility, every socially-enabled
web server is allowed to manage a forest of interaction trees. Each of them may
belong or not to the same computational society.

For instance, figure 1 shows a possible deployment of the interaction space
corresponding to the scenario described in section 2. Particularly, it depicts the
distribution of the major interactions throughout four hosts, each of them run-
ning a single web server. The first host, www.univhost.com, manages the top-level
interaction urjc, representing the university itself. According to the patterns de-
scribed in section 3.1, its URL is http://www.univhost.com/urjc. The second

168 S. Saugar and J.M. Serrano

host, www.schoolhost.com, manages that part of the interaction space which is
under the primary responsibility of the school of informatics, namely the so-
cial interaction representing the school itself si.urjc and its different degrees.
Besides the computer science degree cs.si.urjc, shown in the figure, other de-
grees such as software and computer engineering may be published through this
host as well. The URLs of the school of informatics and the computer science
degree are http://www.schoolhost.com/si and http://www.schoolhost.com/si/cs,
respectively. The third host, www.depthost.com, is associated to the computer
science department of the university, csd.urjc, published under the root URL of
the host http://www.depthost.com/csd. In accordance with the statutes of the
university, departments are in charge of the management of courses on the dif-
ferent subjects which are assigned to them. Thus, the course on data structures
ds.cs.si.urjc is published through the computer science department under the
URL http://www.depthost.com/ds. In this case, the web server of the department
host manages two sub-interaction trees. The last host, www.studenthost.com,
manages the working group set up by one of the students enrolled in the data
structure course. The web server of the student’s host may manage different
sub-interaction trees from other computational societies as well (e.g. a discus-
sion forum set up by the student within a social network).

4 Dynamics of a Web-Based Social Middleware
Infrastructure

The dynamics of a computational society is primarily influenced by the external
actions which software components execute over the social middleware which
manages that society. Since the social middleware is implemented as a network of
socially-enabled web servers, external actions are implemented as different kinds
of HTTP requests. Moreover, the activity carried out by the middleware in order
to process the different external actions heavily relies in the HTTP protocol as
well. This is a direct consequence of the distribution of the computational society
across the network of web servers. Therefore, HTTP requests may represent
either an external action or some internal action executed by the middleware as
part of the external action processing. Both kinds of HTTP request are handled
through a pool of conceptual execution threads. These threads have a one-to-
one correspondence to the different kinds of social entities. Thus, the agent
execution thread processes every HTTP request whose target URL denotes an
agent resource. Similarly, the interaction, resource, action and event execution
threads manage the HTTP requests addressed to the corresponding kinds of
social entities.

The remainder of this section proceeds to describe the implementation of the
external actions mentioned in section 2. Particularly, it will be described both
the way in which a given external action is represented as an HTTP request and
the roles played by the different conceptual threads involved in its processing.
The external actions play and suspend, related with login features, are taken into
account first. Next, the mapping and internal processing of observation actions is

A Web-Based Virtual Machine for Developing Computational Societies 169

wg1:AssignmentGroup

csd:Department

ds:Coursecs:Degree

si:School

urjc:University
Server:
www.univhost.com

Server:
www.schoolhost.com

Server:
www.studenthost.com

Server:
www.depthost.com

Id: urjc
Path: /urjc

Id: cs.si.urjc
Path: /si/cs

Id: si.urjc
Path: /si

Id: wg1.ds.cs.si.urjc
Path: /wg1

Id: csd.urjc
Path: /csd

Id: ds.cs.si.urjc
Path: /ds

Fig. 1. Distribution of the example’s interaction space

considered. Finally, we present the attempt processing cycle. Before delving into
the different external actions, however, the major HTTP methods and response
status are briefly summarised.

Review of HTTP. HTTP is a client-server protocol: a client sends a request
message to a server, which does some processing and returns afterwards a re-
sponse message containing a status code and the result of the request (or in-
formation about the status code). The format of a request message consist of a
request line, zero or more header lines, and an optional message body. Both the
standard semantics of status codes and HTTP headers are explained in [9]. A
request line has three parts, separated by spaces: a method name, the local path
of the requested resource (Request-URI), and the version of HTTP being used.
A typical request is:

METHOD /path/to/resource HTTP/1.1
Header: value
...
Message-Body

HTTP Methods. The semantics of the request rely on the chosen HTTP method.
We restrict our review to the four basic HTTP methods: GET, POST, PUT and
DELETE.

– GET: This method is intended to obtain a representation of the resource
identified by the Request-URI. It can be parameterized in order to constrain
or restrict the desired representation.

– POST: This method is used both to create new resources and to append
data to an existing resource. If the method is used to create new resources
the body of the request will contain an entity. This entity must be created

170 S. Saugar and J.M. Serrano

by the resource identified by the Request-URI and the decision about the
URL of the new entity is left to the server. On the contrary, if it is used to
append data, the body of the request will represent data that must be added
or processed by the Request-URI.

– PUT: The PUT method is used for creating a new resource (or updating
the state of an existing one) under the supplied Request-URI. The message
body of the request encodes the entity that will be published. If an entity
already exists on the Request-URI, then the message body encapsulates an
update of the entity (either full, affecting to the totality of their attributes,
or partial).

– DELETE: This method unbinds a resource from the specified Request-URI.
Note that this method does not imply the deletion of the actual data held
by the resource or the software component behind it.

Headers. HTTP defines 47 headers which add optional meta-information about
the Message-Body or, if no body is present, about the resource identified by the
request. The most relevant header from the point of view of this paper are the
following: Authorization, Host, Location, Referer and WWW-Authenticate.

Status Codes. Response messages to HTTP requests consists of a Status-Code
element, some headers and a message body. The Status-Code is a 3-digit integer
code which represents the result of the attempt made by the server to understand
and satisfy the request. The first digit of the Status-Code defines the class of
response (1xx informational, 2xx success, 3xx redirection, 4xx client error, 5xx
server error). The body of response messages may give a short textual description
of the Status-Code. Some of the codes we use in this paper are: 200 (“OK”), 201
(”Created”), 202 (”Accepted”), 204 (”No Content”), 400 (”Bad Request”),401
(”Unauthorized”), 403 (”Forbidden”).

Play Processing. The external action play is used by a software component to
initiate a logging session with a given agent, thereby obtaining the corresponding
credentials to manipulate it. To log in is a mandatory requirement for performing
some external actions such as attempts. Other actions, however, can be executed
by non-logged components (e.g. enter, observe, the play action itself, etc.).

A digest access authentication scheme is proposed for dealing with credentials
[10]. This scheme assumes that component credentials consist of the top-level
agent name, a password defined when the agent was registered, a unique value
shared between server and client and the MD5 algorithm. Once the component
has got credentials, it may include them in every subsequent request using the
Authorization header. The play external action is implemented as a GET request
about the credentials of the agent, targeted over the URL of the agent.

GET /path/to/agent/credentials HTTP/1.1
Host: www.server.com

This action is processed by the agent execution thread. If some component has
already initiated a session with the agent, the request is ignored and a response

A Web-Based Virtual Machine for Developing Computational Societies 171

with status code 400 is sent back. Otherwise, a response with status code 401 is
returned. In this response, a WWW-Authenticate header includes the protected
realm (the top-level agent), a unique value named nonce and a digest algorithm.

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="top-agent’s name",

nonce="84e0a095cfd25153b2e4014ea87a0980",
algorithm=MD5

In subsequent requests, the component composes a valid credential applying
the MD5 algorithm to a combination of the top-agent’s name, the nonce value
and the password, among other parameters. The server does the same compu-
tation and if it yields the same credentials, it can be sure that the component is
in possession of the correct password.

Suspend Processing. Components can finalise its session with some agent
with the suspend external action. This action deletes the nonce value associated
with the component. Afterwards, the credentials of the server and the client
won’t match and the component’s authorization credentials will be invalid. This
external action is translated as a PUT action over the agent’s credentials URL
with a null message body.

PUT /path/to/agent/credentials HTTP/1.1
Host: www.server.com

This request is processed by the agent execution thread. This thread deletes
the current nonce value, invalidating the following requests of the component.
The response’s status code is 204, because the server executes the action but
declines to send back any representation. At a later time, a component may play
again its agent, thus renewing its agent credentials.

Observe Processing. Components can get representations of the different pub-
lished entities (interactions, agents, resources, etc.) through the observe external
action. This action returns a representation of the requested entity, restricted
according to the visibility rules of the society. This external action is translated
as a GET query over the URL of the entity. This query can be parameterized to
select some parts of the resource instead of its full representation.

GET /path/to/entity HTTP/1.1
Accept:
Host: www.server.com

This request is processed by the execution thread corresponding to the kind of
entity to be inspected. This thread checks the protocol for visibility restrictions
and returns a response with status code 200. The message body of the response

172 S. Saugar and J.M. Serrano

contains the representation of the resource (maybe restricted according to its
visibility permissions). This method can be executed by any component. If the
component has initiated a session with an agent, the obtained representation
will be tailored to the visibility permissions corresponding to agents of that
type; otherwise, if the component hasn’t got any agent credentials the obtained
representation is the one associated by the protocol to agents of any type.

For instance, figure 2 shows a sequence diagram depicting the activity of
the middleware in response to the scenario introduced in section 2. The roles
displayed in the sequence diagram represent the different published resources;
their lifelines describe the activity of the threads that manage those kinds of
entities. The sequence diagram assumes that the student John has previously
initiated a session as a student of the course on data structures (ds) with the
web server http://www.depthost.com of the department of computer science,
using a web Browser. The first message shows John observing the event queue
of its agent http://www.depthost.com/ds/john, i.e. John’s client producing the
HTTP request GET /ds/john?show=events (message 1)3. Then, the response
includes a representation of the event queue including the URLs of the events
received by the agent (message 2). One of them refers to the new assignment
group http://www.studenthost.com/wg1 set up by its colleague. The remain-
ing messages pertain to the processing of the attempt made by John to make its
student join this assignment group.

AttemptProcessing. The external action attempt aims at adding a new pending
action to the specified performer agent. According to this specification, this kind of
external action is translated as a POST request over the agent URL. The attempt
data (the action as well as other attributes) is included in the message body:

POST /path/to/agent HTTP/1.1
Host: www.server.com

<attempt>
<action>...</action>
...

</attempt>

Message 3 of figure 2 represents an instance of the previous HTTP pattern.
Particularly, it refers to the HTTP request corresponding to the attempt of John
to make its student agent join the assignment group set up by its colleague.

An attempt HTTP request may refer to an action which is not targeted at some
interaction managed by the same web server of the performer agent. Since the
protocol of the target interaction must be consulted to check the empowerments
of the agent, the agent execution thread processes an attempt HTTP request by
requesting the target interaction to create it. Particularly, the request is actually

3 Commonly, the request will actually be generated by the user interface components
of the web browser, e.g. Java script code.

A Web-Based Virtual Machine for Developing Computational Societies 173

issued through a POST method over the target interaction URL4. The request
includes the referrer header that indicates the performer agent of the action.
The message body of this request is the action; the name of the action is set by
the agent execution thread based on the reserved word “act”, the performer’s
name and an incremental counter. Message 4 of figure 2 shows an instance of
the following request pattern:

POST /path/to/target/interaction HTTP/1.1
Host: www.server.com
Referer: http://www.maybeotherserver.com/path/to/performer

<action name="act_performer_1">...</action>

If the performer is not empowered to do the action then a request with status
code 400 is returned. Otherwise, the interaction execution thread creates the
action for the specified performer agent – in the referrer’s server. This is encoded
using a PUT action over the interaction context’s URL. The content of the
message body is the action as shown in the following scheme:

PUT /path/to/referrer/interaction/act_performer_1 HTTP/1.1
Host: www.server.com

<action name="act_performer_1">...</action>

For instance, message 5 of figure 2 shows the creation of a new action resource
in the server of the computer science department, in accordance with the pro-
tocol’s empowerment rules of assignment group interactions. Then, the action
execution thread of the computing department server processes this request, cre-
ates the action, and sent back a response with a status code 201 with the action
URL in the Location header (message 6). This response is forwarded by the in-
teraction execution thread of the student server to the agent execution thread
of the computing department server (message 7), which finishes the processing
of message 4. Then, the student’s execution thread sends a response back to the
browser with a status code 202 and the corresponding Location header (mes-
sage 8), which finishes the processing of the attempt HTTP request (message 3).
This status code indicates that the action has been just accepted for execution.
The Location header refers to the action resource as the monitor to check the
processing state.

The action execution thread is responsible for the execution of the social
action as soon as it is created. The way in which the action is executed depends
on its semantics. Nevertheless, an HTTP request will be involved which must
contain a Referer header with the URL of the action performer. For instance,
the execution of a join action involves the creation of a new agent resource in

4 Thus, the target interaction is acting here as an action factory.

174 S. Saugar and J.M. Serrano

the target interaction. Therefore, the corresponding HTTP request will be a
PUT request which attempts to create a new agent resource. The message body
contains the description of the new agent instance:

PUT /path/to/new/agent HTTP/1.1
Host: www.server.com
Referer: http://www.maybeotherserver.com/path/to/performer

<agent>...</agent>

/ds/act_john_1 : Action

/wg1/john : Agent

/wg1 : Interaction/ds/john : Agent : browser

 Department of Computer Science −− http://www.depthost.com Student Computer −− http://www.studenthost.com

201 Created
Location:http://www.depthost.com/ds/act_john_1

6:

PUT /wg1/john
Referer: http://www.depthost.com/ds/john
<agent>...</agent>

9:

200 OK
<join state="executed">...</join>

12:

201 Created
Location:http://www.studenthost.com/wg1/john

10:

201 Created
Location:http://www.depthost.com/ds/act_john_1

7:

PUT /ds/act_john_1
<join>...</join>

5:

200 OK
<events>...</events>

2:

202 Acepted
Location:http://www.depthost.com/ds/act_john_1

8:

POST /wg1
Referer: http://www.depthost.com/ds/john
<join name="act_john_1">...</join>

4:

GET /ds/john?show=events1:

POST /ds/john
<attempt>...</attempt>

3:

GET /ds/act_john_111:

Fig. 2. Join to an Assignment Group

For instance, message 9 of figure 2 shows the PUT request issued by the action
execution thread of the computing department server. This request aims at cre-
ating the agent /wg1/john within the assignment group of the student’s server.
The request is processed by the agent execution thread5, which checks if the refer-
rer agent (i.e. the performer of the action) has permissions to execute the action.
5 Requests corresponding to other actions, such as leave, set up, close, etc. would be

processed by other threads. For instance, set up and close involves PUT and DELETE
requests over web interaction resources. Therefore, these methods would be processed
by the interaction execution thread.

A Web-Based Virtual Machine for Developing Computational Societies 175

If it is not permitted then a response with a status code 403 is returned. Other-
wise, the action is executed and a suitable response is generated. Message 10 of
figure 2 shows the successful creation of the agent, which means that John’s agent
was permitted to join the assignment group. Then, the action execution thread
changes the state of the action accordingly. The scenario is finished when John
(actually, the web browser) observes the state of the action execution (using the
URL monitor sent back in message 8), through messages 11 and 12.

5 Conclusion

This paper has put forward some of the major architectural decisions in the
development of a web-based middleware infrastructure for the implementation
of multiagent societies. Firstly, a computational society is published in the web
through the refinement of web resources into three major sub-kinds: web agents,
web (institutional) resources and web interactions (i.e. processes). Social actions
and events are also published as web resources. Secondly, to account for scalabil-
ity, privacy, and flexibility of deployment requirements, computational societies
are allowed to be distributed across different socially-enabled web servers, each
of them managing a forest of subinteraction trees. Last, in order to exploit the
HTTP protocol in its full potential, the major HTTP methods (GET, PUT,
POST and DELETE) are used to implement the external actions performed by
software components towards the computational society, and the internal pro-
cessing of the socially-enabled web servers.

One of the distinctive features of the proposed agent-based middleware in-
frastructure is the use of the web as the underlying middleware technology. On
the contrary, other approaches face the web as a complementary – not funda-
mental – distributed infrastructure. In these contexts, the web appears in the
issue of interoperability between agents and web service components (e.g. [11]).
In our view, using the web as the underlying distributed infrastructure presents
two major advantages: firstly, software components acting as agents within the
society can be entirely de-coupled from the middleware server, which fits well
with the autonomy requirement of agents; secondly, the web is one of the largest
deployed distributed infrastructures, so that the network of social servers have
not to be built from scratch.

Current work focuses on the implementation of the proposed architecture us-
ing the Restlet framework [12]. The resulting framework is intended to be used
in a wide range of applications, all of them related to the implementation of so-
cial processes: business processes, e-government, e-democracy, etc. Particularly,
we intend to demonstrate the feasibility and potential of the social stance of
multiagent technologies on distributed computing, as well as the web-based ap-
proach to their implementation proposed in this paper, in the programming of
social networks. Social networks like Facebook, Myspace, LastFM, etc., provides
its users with different interaction mechanisms (chats, discussion groups, etc.).
The modification and extension of these social networks essentially involves pro-
gramming new social interactions. A web-based, social-oriented approach to the
implementation of social networks would make this task much easier.

176 S. Saugar and J.M. Serrano

References

1. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

2. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Transactions on Software Engineering and Method-
ology 12(3), 317–370 (2003)

3. Serrano, J.M., Saugar, S.: Operational semantics of multiagent interactions. In:
Proceedings of the Sixth Intl. Joint Conf. on Autonomous Agents and Multiagent
Systems, Honolulu, Hawai’i, 14-18 May 2007, pp. 884–891. ACM Press, New York
(2007)

4. Esteva, M., Rodriguez, J.A., Sierra, C., Garcia, P., Arcos, J.L.: On the formal spec-
ifications of electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) Agent-
mediated Electronic Commerce (The European AgentLink Perspective). LNCS
(LNAI), vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

5. Esteva, M., Rosell, B., Rodŕıguez-Aguilar, J.A., Arcos, J.L.: AMELI: An agent-
based middleware for electronic institutions. In: Proc. 3rd. Int. Joint Conf. on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 236–243 (2004)

6. Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the golden fleece of agent-
oriented programming. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah
Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and Ap-
plications, Springer, Heidelberg (2005)

7. Hindriks, K.V., Boer, F.S.D., der Hoek, W.V., Meyer, J.J.C.: Agent programming
in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)

8. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture.
ACM Trans. Inter. Tech. 2(2), 115–150 (2002)

9. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext transfer protocol – HTTP 1.1 (1999)

10. Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A.,
Stewart, L.: Http authentication: Basic and digest access authentication (1999)

11. JADE: Jade web services integration gateway (2007), http://jade.cselt.it
12. Consulting, N.: Restlet - lightweight rest framework for java (2007),

http://www.restlet.org

http://jade.cselt.it
http://www.restlet.org

Using the Wizard of Oz Method to
Train Persuasive Agents

Maiko Kawasoe, Tatsuya Narita, and Yasuhiko Kitamura

School of Science and Technology, Kwansei Gakuin University
2-1 Gakuen, Sanda-shi, Hyogo 669-1337, Japan

ykitamura@kwansei.ac.jp

Abstract. Persuasive conversational agents persuade users to change their atti-
tudes or behaviors through conversation and are expected to be applied as virtual
sales-clerks in e-shopping sites. Developing such an agent requires a conversation
model that identifies the most appropriate responses to the user’s inputs. To cre-
ate such a model, we propose the approach of combining a learning agent with
the Wizard of Oz method; in this approach, a person (called the Wizard) talks
to the user pretending to be the agent. The agent learns from the conversations
between the Wizard and the user and constructs its own conversation model. In
this approach, the Wizard has to reply to most of the user’s inputs at the begin-
ning, but the burden gradually falls because the agent learns how to reply as the
conversation model grows.

Every persuasive conversation has the goal of persuading the user and ends
with success or failure. We introduce a goal-oriented conversation model that can
represent the success probability of persuasion and a learning method to update
the model depending on the success/failure of the persuasive conversation. We
introduce a learning persuasive agent that implements the conversation model and
the learning method and evaluate it in the situation wherein the agent persuades
users to choose one type of digital camera over another. The agent could succeed
in reducing the Wizard’s inputs by 48%, and, more interestingly, succeeded in
persuading 2 users without any help from the Wizard.

1 Introduction

Persuasive technology draws attention as a means to create interacting computing sys-
tems that can change people’s attitudes and behaviors [1]. Conversational agents will
play an important role in such systems. They can interact with users through conversa-
tion [2] and are expected to become virtual sales-clerks that persuade customers to Web
shopping sites [3].

Developing a conversational agent requires a conversation model that represents how
the agent responds to inputs from users. It is not easy to create a conversation model
in which the agent interacts well with users and a large number of conversation rules
must be created by experts. To reduce the burden, we integrate a learning agent and
the Wizard of Oz method [4], in which a person called the Wizard talks with a user
pretending to be the agent. The agent learns from the conversations between the Wizard
and the users and constructs/refines a conversation model. At the beginning, the Wizard

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 177–190, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

178 M. Kawasoe, T. Narita, and Y. Kitamura

UserConversational Agent

I like Camera A.
I like the color.

I am a biginner.
Now I like Camera B.

She changes
her preference.

Camera B has image stabilizer.
It is useful for biginners.

Persuasion

Fig. 1. Persuasion through conversation

has to input most of the replies, but gradually the agent learns to reply appropriately as
the conversation model grows. When a reply made by the agent is not appropriate, the
Wizard can correct it.

In this paper, we introduce a conversational agent that persuades users as shown
in Fig. 1. The user initially prefers Camera A over Camera B, and the agent tries to
persuade her to change her preference from A to B.

Every persuasive conversation has the goal of persuading a user and ends with suc-
cess or failure. We introduce a goal-oriented conversation model that can represent the
success probability of persuasion and a learning method to update the model depending
on the success/failure of the persuasive conversation.

Section 2 of this paper addresses conversational agents and the Wizard of Oz method
as the bases of persuasive conversational agents. In Section 3, we propose a goal-
oriented conversation model and a learning method to update the model considering
the success probability of persuasion. We then show a prototype system in Section 4
and evaluation results in Section 5. Finally, we conclude this paper with our future
work in Section 6.

2 Persuasive Conversational Agents

2.1 Conversational Agents

Conversational agents interact with users though conversation to assist them in their
information processing tasks such as information retrieval from the Web [3]. ALICE
(Artificial Linguistic Internet Computer Entity) is representative of the conversational
agents now available on the Web and is being used in a number of Web sites.1

The conversation model represents how an agent replies to inputs from users. There
are two major approaches to constructing a conversation model. The first one is by
describing scenarios or rules as is used in ALICE, PPP Persona [5,6], and so on. AL-
ICE uses a language called AIML (Artificial Intelligence Markup Language), based on
XML, to describe rules, each of which links a pattern, which represents an input from

1 http://www.alicebot.org/

Using the Wizard of Oz Method to Train Persuasive Agents 179

the user, to a template, which represents a reply from the agent. This approach forces us
to write a large number of rules to make the agent reply fluently to various inputs from
the user.

The second approach is to utilize a conversation corpus as is done in Command
Talk [7]. In this approach, we need to establish a very large conversation corpus in ad-
vance to construct a conversation model. However, the agent cannot reply appropriately
to an input if the input is not in the corpus.

2.2 Wizard of Oz Method

This paper takes the approach of integrating a learning agent and the Wizard of Oz
method [8] as shown in Fig. 2. In the Wizard of Oz method, a person called the Wizard
interacts with the user pretending to be the conversational agent. The Wizard can reply
to input from the user when the agent cannot reply appropriately. The agent learns from
the Wizard how to reply to an input by constructing a conversation model and can
thereafter reply to the next instance of the same input. At the beginning, the Wizard
has to reply to most of the inputs, but the burden of the Wizard falls because the agent
learns to reply as the conversation model matures.

User

Wizard
Conversation

Conversation model

Conversational
Agent

Interacting with user

Constructing
coversation
model Conversation corpus

Fig. 2. Integrating a learning agent and the Wizard of Oz method

2.3 Persuasive Conversation

Persuasion is the action of changing people’s attitudes and behaviors [1]. This paper
considers the example of an agent that tries to persuade a user to change his/her prefer-
ence from camera A to Camera B. If the user comes to prefer B, we define the persua-
sion as successful; otherwise, a failure.

180 M. Kawasoe, T. Narita, and Y. Kitamura

Conventional conversational agents reply to an input from a user if the input matches
a rule in the conversation model. When it matches multiple rules, one of them is se-
lected. The selection process depends on the system and/or the applied domain. Per-
suasive agents, on the other hand, should select the rule that is more likely to lead to
success. To this end, we propose a goal-oriented conversation model that considers the
success probability of persuasion and a learning method to update the probability as
derived from persuasive conversations between the Wizard and users.

3 Learning Persuasive Agents

To build persuasive agents that can learn, we need a goal-oriented conversation model
and a learning method that can update the conversation model. Details of the model and
the learning method are given below.

3.1 Goal-Oriented Conversation Model

The conversation model can be represented as a state transition tree where a statement
is represented as a link to change a state from one to another as shown in Fig. 3. In
this example, the agent tries to persuade a user to be a member of Kitamura laboratory.
There are two types of states; user states, which represent the user talking and agent
states, which represent the agent talking. They are interleaved on the conversation path.
A conversation path represents the flow of conversation between the agent and one
or more users and begins with the initial states and terminates with either success or
failure. Each state is assigned a success probability score.

The agent decides how to respond to an input from the user following the conversa-
tion path held by the model. If the input matches a statement on a link to an agent state,

Initial state

U: What do you research?U: How many members
do you have?

A: We have 24
members.

U: Let me know
your research
topics.

U: It is interesting.

A: We research
Agents.

U: It sounds
interesting.

A: Do you have any question about
Kitamura lab?

A: We research
Internet.

0.17

0.17

0.25

0.25

0.33

0.33

0.33

0.50

U: I don’t
like it.

0.0

Success Failure

A: Do you want to be a member of our
lab.

U: Yes, I do. U: No, I choose another lab.

1.0 0.0

A: Agent state

0.29

U: User state
0.29

Fig. 3. Conversation model

Using the Wizard of Oz Method to Train Persuasive Agents 181

it chooses a statement that links the agent state to the user state with greatest success
probability.

For example in Fig. 3, the agent says “Do you have any question about Kitamura
lab?” at the beginning. If the user asks “How many members do you have?” the agent
replies “We have 24 members,” following the stored conversation path. If the user asks
“What do you research?” there are two reply candidates. The agent chooses the reply
“We research Agents.” because that link leads to a user state with higher success prob-
ability (0.25).

3.2 Updating Conversation Model

When an input from the user does not match any statement on the stored conversation
path, the conversation path is branched and the success probability scores are updated
depending on persuasion success/failure as shown in Fig. 4. If the persuasion succeeds
(fails), 1.0 (0) is assigned to the terminal state. The success probability score of each
state except terminal states in the conversation model is updated as below.

– Agent state s
Q(s) ← max

t∈succ(s)
Q(t)

– User state s

Q(s) ← 1
|succ(s)|

∑
t∈succ(s)

Q(t)

succ(s) is a set of child states of s. At an agent state, the agent can choose what to say,
so the success probability is set to be the maximum one among child user states. On the
other hand, at a user node, the user chooses what to say, so the success probability is
set to be the average one among child agent states. We here assume that the user takes
a neutral attitude toward the agent. If we assume the user takes a negative attitude, the
success probability should be the minimum one.

For example, when an agent says “We research Agents.” using the conversation
model shown in Fig. 3, if the user replies “What are Agents?” which is not contained in
the model, a new conversation path is created by branching as shown in Fig. 4 following
a persuasive conversation between the Wizard and the user. The persuasion succeeds,
so 1.0 is attached to the terminal state of the branched path and each state on the con-
versation path is updated as mentioned above.

3.3 Reducing Redundancy in the Conversation Model

Because our conversation model is a tree, two conversation paths that virtually identical
are treated as completely different if the first parts of the paths are different. Naive
extension of the conversation model creates redundancy.

To reduce this redundancy, we transform the conversation model by using multiple
phases as shown in Fig. 5. In this example, two conversation paths are different even
though only the first parts are different as shown in Fig. 5 (a). We transform the model
into one with two phases; greeting phase and persuasion phase, as shown in Fig. 5 (b)
to reduce the redundancy.

182 M. Kawasoe, T. Narita, and Y. Kitamura

Initial state

U: What do you research?U: How many members
do you have?

A: We have 24
members.

U: Let me know
your research
topics. U: It is interesing.

A: We research
Agents.

A: Do you have any question about
Kitamura lab?

A: We research
Internet.

0.17

0.17

0.50

0.50

0.33

0.33

0.33

0.0

A: Agent state

0.42

U: User state

U: I don’t
like it.

U: It sounds
interesting.

0.50

Success

A: Do you want to be
a member of our lab.

U: Yes, I do.

1.0

1.0

U: What are Agetns?

1.0
A: Agents are

U: I want to
learn more.

1.0

1.0

0.42

Fig. 4. Updated conversation model

4 Implementing a Persuasive Conversational Agent

We implemented a persuasive conversational agent as shown in Fig. 6 to chat with a
user. Messages from the agent appear in the top panel and the user inputs messages to
the agent in the message box at the bottom as shown in Fig. 7. When the agent receives
a message from the user, it generates responses from the conversation model. There are
two types of responses.

Context sensitive responses (CSR) are generated by the model by following a con-
versation path from the initial state. For example in Fig. 3, if the user inputs “What
do you research?” in response to the message “Do you have any question about
Kitamura lab?” from the agent in the initial state, the agent generates two context
sensitive responses “We research Agents,” and “We research Internet.” Their suc-
cess probabilities are 0.25 and 0.17, respectively.

Context free responses (CFR) are generated by the model by direct matching of the
input from the user without following any conversation path. For example in Fig. 3,
after the interchange of; “Do you have any question about Kitamura lab?”, “How
many members do you have?”, and “We have 24 members,” if the user asks “What
do you research?” the agent generates two context free responses “We research
Agents.” and “We research Internet.” In this case, because the responses do not fol-
low any conversation path, success probabilities are not attached to the responses.

Using the Wizard of Oz Method to Train Persuasive Agents 183

A: Do you have any question
about Kitamura lab?

A: Do you want to be
a member of our lab.

U: Yes, I do.

A: Hello.

U: Hello.

Success

U: What do yo research?

A: Good morning.

U: Good morning.

Failure

U: No, I don’t.

(a) Before transformation.

(b) After transformation.

A: Do you want to be
a member of our lab.

A: Do you have any question
about Kitamura lab?

U: What do yo research?

Persuasion phase

A: Do you have any question
about Kitamura lab?

U: What do yo research?

A: Do you want to be
a member of our lab.

U: No, I don’t.

Success Failure

U: Yes, I do.

Initial state

Greeting phase

A: Good morningA: Hello.

U: Hello.

Success

U: Good morning.

Success

Initial state

Fig. 5. Transforming conversation model

In the early stages of learning, the agent often fails to respond to the user if it uses
only CSRs because the conversation model is small. By utilizing CFRs, the agent can
generate more candidates.

184 M. Kawasoe, T. Narita, and Y. Kitamura

Messages from the user appear on the top panel of the Wizard chat client and re-
sponses generated by the agent appear as in a pull-down menu as shown in Fig. 8. The
Wizard can choose the most appropriate one from among them. If the Wizard does not
like any response, he/she can input a new message directly into the message box.

When a persuasion succeeds/fails or a phase terminates, the Wizard notifies the state
to the system through the pull-down menu in the left-bottom and a textbox to specify
the next phase as shown in Fig. 9. A button on the right-bottom is used to show the
conversation model, an example of which is shown in Fig. 10. When a link is clicked,
the corresponding message appears in the window.

5 Evaluation

We evaluated our persuasive conversational agent from two viewpoints; (1) the input
cost of Wizard when utilizing responses created by the agent, and (2) the persuasiveness
of the conversation model constructed through conversations between users and the
Wizard.

We performed two experiments in which the persuasive conversational agent tried to
guide users to choose one of two digital cameras using the following procedure.

1. Each participant read the specifications of two digital cameras, A and B, as shown
in Table 1. Camera A has better features than camera B, but the price of A is more
than that of B.

2. The participant chooses one as his/her favorite from the first impression.
3. The agent, with help from the Wizard, tries to persuade the participant to choose the

other one. It first asks why he/she chose the one selected, and then it tries to refute
the reasoning. It asks him/her for situations in which he/she would use the camera
and his/her taste, and recommends the camera that he/she did not initially choose.

User

Wizard

Conversation model
User chat client Wizard chat client

Persuasive
conversational

agent

Fig. 6. System overview

Using the Wizard of Oz Method to Train Persuasive Agents 185

Fig. 7. User chat client

response candidates

Fig. 8. Wizard chat client: choosing a response

186 M. Kawasoe, T. Narita, and Y. Kitamura

Pull-down menu to
specify the state

Button to display conversation model.Textbox to
specify the next phase

Fig. 9. Wizard chat client: specifying the state transition

Fig. 10. Displaying a conversation model

Using the Wizard of Oz Method to Train Persuasive Agents 187

Table 1. Specifications of digital cameras A and B

A B

Price Y=35,000 Y=29,800
Resolution 10M pixels 7M pixels

Weight 154g 131g
Image stabilizer Yes No

Table 2. Experiment 1: Result of persuasion

Initial choice Final choice Number of participants Success/Failure

A
A 22(54%) Failure
B 19(46%) Success

B
A 6(30%) Success
B 13(70%) Failure

4. The participant is then asked which camera he/she now prefers. The persuasion
succeeds (fails) if he/she changes (does not change) his/her opinion.

5.1 Experiment 1: Input Cost of Wizard

In this experiment, we constructed a conversation model by collecting persuasive con-
versations between an agent and 60 university students (48 male, 12 female, the average
age is 20.9) using the Wizard of Oz method. The results are shown in Table 2. In total,
we succeeded in persuading 25 (42%) of the 60 participants.

Figure 11 shows the number of responses made by the agent to each participant.
The responses selected by the Wizard are categorized into 4 groups. “CSR (best)” is
the context sensitive response with the highest success probability generated by the
agent. “CSR (2nd or worse)” covers the context sensitive responses that had 2nd or
lower probability generated by the agent. “CFR” covers context free responses. “Wizard
input” the responses input by the Wizard. At first, the Wizard has to input most of the
responses, but gradually this number falls and the number of responses made by the
agent increases. Overall, for the 60 persuasive conversations, the Wizard accepted 602
(48%) of the agent’s 1245 responses as appropriate, so this means that the input cost of
the Wizard was reduced.

In a remarkable occurrence, the agent succeeded in persuading one participant
(no.51) without any input from the Wizard.

5.2 Experiment 2: Persuasiveness of Conversation Model

To determine the persuasiveness of the conversation model described in the previous
section, we performed another experiment to persuade 10 students. In this experiment,
the agent was limited to one response at each turn. Only when the agent returned no

188 M. Kawasoe, T. Narita, and Y. Kitamura

0 10 20 30 40

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

Participant

CSR (best)

CSR
(2nd best or worse)
CFR

Wizard inputs

Number of responses

Fig. 11. Experiment 1: Categorized responses

Using the Wizard of Oz Method to Train Persuasive Agents 189

Table 3. Experiment 2: Result of persuasion

Initial choice Final choice Number of participants Success/Failure

A
A 4(57%) Failure
B 3(43%) Success

B
A 0(0%) Success
B 3(100%) Failure

0 5 10 15 20 25 30

1

3

5

7

9

Participant
CSR (best)

CFR

Wizard inputs

Number of responses

Fig. 12. Experiment 2: Categorized responses

Table 4. The number of generated states of each phase

Phase Number Of states

Greeting 35
Initial choice 17
A: persuasion 1296
B: persuasion 491

1839

response, the Wizard input a response as before. The result of this experiment is shown
in Table 3. In total, the agent succeeded in persuading 3 (30%) out of the 10 participants.

The responses made by the agent are categorized in Fig. 12. The agent succeeded in
persuading one participant (no.8) without any input from the Wizard.

The conversation model created from the two experiments consists of 1839 states as
shown in Table 4.

6 Conclusion

Persuasive conversational agents are expected to be virtual shopping clerks on e-
shopping sites. To create such agents, we need to create a conversation model that

190 M. Kawasoe, T. Narita, and Y. Kitamura

specifies how to reply to inputs from users. In this paper, we proposed an approach
to create a conversation model by integrating a learning agent and the Wizard of Oz
method. We evaluated the performance of the proposed persuasive conversational agent
in a situation where it persuaded users to choose one digital camera over another.

In the 1st experiment with 60 subjects, we could reduce the number of Wizard in-
puts by 48%, and in the 2nd experiment, the agent that used the conversation model
created in the first experiment succeeded in persuading one user (out of 10) without any
input from the Wizard; another 2 subjects were persuaded with some assistance by the
Wizard.

At present, our persuasive agent requires a lot of assistance from the Wizard to per-
suade human users. We need to work on to improve the ability of persuasion toward
an agent that requires no assistance. In future work, we will improve the success ra-
tio of persuasion. To this end, we need to collect more conversations to create a better
conversation model that replies to a larger number of inputs from users. Further work is
needed on reducing model redundancy by using natural language processing techniques
to handle synonymous sentences.

Another future task is to increase the maintainability of the conversation model. At
present, it is not easy to modify the conversation model. We need to develop a GUI for
this and to visualize the persuasion strategies contained in the model.

Acknowledgment

This work is partly supported by the Grant-in-Aide for Scientific Research
(No.17300050) from Japan Society for the Promotion of Science.

References

1. Fogg, B.J.: Persuasive Technology. Morgan Kaufmann, San Francisco (2003)
2. Cassell, J., et al.: Embodied Conversational Agents. MIT Press, Cambridge (2000)
3. Prendinger, H., Ishizuka, M. (eds.): Life-like Characters. Springer, Heidelberg (2004)
4. Fraser, N.M., Gilbert, G.N.: Simulating Speech Systems. Computer Speech and Lan-

guage 5(1), 81–99 (1991)
5. Andre, E., Rist, T., Muller, J.: Integrating Reactive and Scripted Behaviours in a Life-Like

Presentation Agent. In: Proceedings of the Second International Conference on Autonomous
Agent, pp. 261–268 (1998)

6. Andre, E., Rist, T., Muller, J.: WebPersona: A Life-Like Presentation Agent for the World-
Wide Web Knowledge-Based Systems 11(1), 25–36 (1998)

7. Stent, A., Dowding, J., Gawron, J.M., Bratt, E.O., Moore, R.: The CommandTalk spoken
dialogue system. In: Proc. ACL 1999, pp. 183–190 (1999)

8. Okamoto, M., Yeonsoo, Y., Ishida, T.: Wizard of Oz Method for Learning Dialogue Agents,
Cooperative Information Agents V, LNAI 2182. In: Klusch, M., Zambonelli, F. (eds.) CIA
2001. LNCS (LNAI), vol. 2182, pp. 20–25. Springer, Heidelberg (2001)

ASBO: Argumentation System Based on

Ontologies

Andrés Muñoz and Juan A. Bot́ıa

Department of Information and Communications Engineering
Computer Science Faculty, University of Murcia

Campus de Espinardo, 30100 Murcia, Spain
amunoz@um.es, juanbot@um.es

Abstract. Conflicts are unavoidable in open distributed systems. Belief
or semantic conflicts are of special interest in multiagent systems, where
agents need to communicate by exchanging knowledge. A common
approach to deal with conflicts is the use of argumentation-based
negotiation processes. There have been much work in the argumentation
research arena. Amongst the outcomes of this research, some generic
argumentation frameworks for handling inconsistences can be found,
together with several persuasion dialogue systems. The goal of this
paper is to contribute in advancing the state-of-art in argumentation
by extending the basic mechanisms used in conventional argumentation
frameworks. This contribution consists of a new and convenient style
of attack to arguments and making explicit the argumentation process
structure through an OWL-based ontology. Main benefits of this research
are twofold. Firstly, the availability of a more realistic framework thanks
to the definition of the new attack. Secondly, to enable automatic reason-
ing about the argumentation process itself. To illustrate this approach,
we expose a persuasive argumentation scenario based on a real situation.

Keywords: Argumentation, ontological reasoning, logic-based systems,
conflicts, persuasion dialogue.

1 Introduction

The problem of detection and resolution of conflicts is a constant pattern [9]
that repeats when designing open distributed systems. Normally, these systems
consist of autonomous entities with their own points of view about the system’s
current status. A special interest is deserved to potential semantic conflicts [14],
or conflicts on the different entities’ beliefs. In particular, these conflicts could
arise among agents within a MAS (Multi-Agent System) due to each agent pos-
sesses a partial view of the whole knowledge maintained in the system.

Briefly, semantic conflicts stem from different pieces of knowledge that are
well-founded separately, nevertheless if they are contradictory and all of them
occur in the same knowledge base, inconsistencies rise. This conflicting situation
gets considerably worse if the knowledge base is built upon any underlying logic,

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 191–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

192 A. Muñoz and J.A. Bot́ıa

as it leads to the instability of the base, a very undesired situation. By way of
example, let us suppose two agents in a MAS devoted to traffic control. AgentA
believes that cars must be forbidden in the city center, according to its own rea-
sons (e.g. cars pollute), and AgentB holds the contrary opinion, since cars are
needed by handicapped people to go to the city center. If we translate these be-
liefs into some formal language, e.g. First-Order Logic, the result obtained could
be represented as {forbid(cars)} and {¬forbid(cars)} for agents AgentA and
AgentB, respectively. Each belief is well-founded with respect to the agent that
produces it (assuming that each agent’s internal knowledge base is consistent).
However, if these two agents must live in the same system, the virtually global
knowledge base will contain two contradictory statements.

A wide range of techniques have been developed in an attempt to cope with
this recurrent problem. Some of them try to avoid conflict occurrence, as for
example social laws [26], coordination through cooperation when agents are
benevolent [13] and truth maintenance systems [7]. Social laws are difficult to
implement in rather simple environments and they seem to be non-applicable in
a complex environment like those of open distributed systems. Cooperation im-
plies benevolent agents, but agents in open systems are typically self-interested,
or even being willing to cooperate, they pursue their own goals, and it seems
hard to define a dynamic cooperation plan needed here. Truth maintenance sys-
tems try to explain why conflicts happen by registering the reasons that derive
the conflicting conclusions, but they are not able to reason about the conflict
itself, i.e., the sources of the conflict are not taken into consideration. On the
other hand, negotiation [25] focuses on solving conflicts once they have appeared.
Hence, we believe that argumentation-based negotiation processes are needed in
open distributed systems to enable effective coordination.

The goal of this paper is intended to advance the state-of-art in argumenta-
tion through two different lines of work. Firstly, we specify the abstract argu-
mentation framework stated in [23] by defining an argumentation system based
on ontologies. The knowledge that flows through the system is represented by
means of Semantic Web ontologies [3](usually expressed in OWL), therefore the
underlying logic and the argument modelling will be affected by this decision.
Secondly, we try to establish a new style of attack to arguments. This attack
is directed to ontology rules (i.e., rules built from ontological classes and its
relationships, individuals, etc.) that are used in the argument’s premises, by
preventing an agent from employing a specific rule and explaining the cause of
this attack.

The rest of the paper is structured as follows. Section 2 describes our approach
on argumentation systems, ASBO, explaining how to combine ontologies with
an argumentation framework. An extension of ASBO including the new attack
on ontology rules used in argument construction is presented in Section 3. In
section 4, a persuasion scenario in which ASBO is used to build and exchange
arguments is described. Section 5 discusses the related work and establishes our
contribution to the state of art within argumentation literature. Finally, section
6 summarizes the contribution of this paper and points out the future work.

ASBO: Argumentation System Based on Ontologies 193

2 An Argumentation System Based on Ontologies

Following the abstract argumentation framework defined by Prakken [23], there
are five basic notions that should be settled to define an argumentation system:
an underlying logic language, the concept of argument, the concept of conflict
between arguments, a notion of defeat between arguments, and the acceptability
status of arguments.

The ASBO approach is based on the usage of Semantic Web OWL-based
ontologies (“ontologies” from now on), since it allows an explicit connection be-
tween the agent’s knowledge representation and the portion of reality that is
being represented. Moreover, ontologies allow exchanging and reusing of knowl-
edge thanks to the formal schemes provided. Another important characteristic is
the possibility of generating new knowledge from inference processes applied to
ontologies. Finally, automatic detection of conflicts is an essential aspect when
reasoning with ontologies by means of an inherent validation process.

In order to illustrate how each Prakken’s basic notion is defined in ASBO, let
us introduce a small example of an scenario formed by two agents. Then, the
definition of ASBO follows. For the sake of readability, a language close to First-
Order logic is employed here1, but actually agents’ knowledge is represented by
using OWL ontologies, as shown in Figure 1. Suppose that agent Ag1 owns the
knowledge base ΔAg1 = (Agent(p), T ask(t), mandatory task(p, t)) and the rule
set RSAg1 :

RUrgent = (Agent(X), T ask(T),mandatory task(X,T)) ⇒ UrgentTask(T)
RNoUrgent = (Agent(X), T ask(T), recommended task(X, T),

Overloaded(X)) ⇒ TrivialTask(T)

RUrgent classifies a task as urgent if an agent has it annotated as mandatory,
whereas rule RNoUrgent states that a task is trivial if its execution is recom-
mended instead of mandatory, and moreover the agent is overloaded. On the
other hand, Ag2 knows ΔAg2 = (Agent(p), T ask(t), recommended task(p, t))
with rules RSAg2 , labeling the task as unnecessary if it is just recommended:

RTrivial = (Agent(X), T ask(T), recommended task(X,T)) ⇒ TrivialTask(T)

Underlying logic: Description Logic(DL) [2], and in particular OWL-DL [6],
is the formalism used in ASBO to represent agents’ knowledge. This logic is a
subset of First-Order Logics with several restrictions, widely used to represent
any domain in a formal and structured way. OWL-DL syntax consists of:

1. A set of unary predicates to represent concepts (or classes).
2. A set of binary predicates to represent relationships between concepts. These

predicates are also known as properties.
3. A set of operators to recursively define more complex concepts from other

concepts and relationships.

1 Capital letters denote variables, whereas normal letters are ground literals.

194 A. Muñoz and J.A. Bot́ıa

Usually, OWL-DL ontologies are divided into TBox (terminological) and
ABox (assertional) components. The former contains the schema that defines do-
main concepts and relationships among them, together with a (possibly empty)
set of restrictions on the relationships, whereas the latter is populated with in-
stances representing the current situation knowledge, according to the schema.
Figure 1 expresses our small example in DL terms. In the TBox, concepts
UrgentTask and Agent are given as intersection or union of other concepts
as Person or Task together with its properties. For example, UrgentTask is re-
lated to a boolean value through the urgent relationship. Moreover, TrivialTask
is expressed as the complementary concept of UrgentTask. In the right side of
Figure 1, the Aboxes for agents Ag1 and Ag2 are shown, i.e., the Δ of each agent.
Both contain the specific and partial world description of each one.

Fig. 1. The whole knowledge base for the example. Notice that the TBox is a common
schema to both agents, and ABoxes are partial world descriptions for each agent.

As for the ontology rule sets RS, these are expressed with SWRL (Semantic
Web Rule Language) [12], an abstract rule language. Rules in SWRL are of the
form of an implication among a conjunction of antecedents and a conjunction
of consequents, similar to the rules in the example. Both conjunctions consist
of atoms : unary (C(x)) or binary predicates (P (x, y)) from the DL language, or
Built-ins, where C are concepts, P represents relationships, and x, y are vari-
ables, instances from ABox or data values. Built-ins are functions that offer
different operations on variables (comparison, math,. . .). Thus, all atoms in the
antecedent must be true in order to the atoms in the consequents become true.

Arguments: A generic argument structure appears in Figure 2. The main ad-
vantage of this representation is to enable automatic detection of conflicts thanks
to the ontological formalism and the validation process. The Argument concept
consists of a conclusion, a support set, and the argument state. The range of val-
ues of a state can vary among acceptable, non-acceptable, conflict and unknown.
In case of non-acceptable or conflict values, the State concept allows specifying
the counterarguments that defeats or conflicts with it. In order to include the new
attack over ontology rules (please, see Section 3), the conclusion can be either a
derived fact supported by the argument, as in most of argumentations systems

ASBO: Argumentation System Based on Ontologies 195

Fig. 2. Argument structure

reviewed in the literature, or an ontology rule. Each element of the Support set,
S, consists of a conclusion (the intermediate conclusions of an argument) and a
Support Element set. Each element of the Support Element set can be either a
Fact or a Rule. In turn, facts can be divided into Local Facts, representing exclu-
sive facts, i.e. facts that a particular agent holds, but the rest of agents do not
share or accept. Global Facts, in opposition, is the set of beliefs that all agents in
a system not only share, but also accept. The fact structure reflects the syntax
of Description Logic. As a result, it contains unary predicates (ConceptAtom) or
binary predicates (RoleAtom). Finally, ontology rules are modelled by reusing
the SWRL ontology [12]. Here a similar separation as the one that has been
made with facts is proposed, but with a subtle difference. Now, a distinction
between global rules and local rules is established. Global rules are those that
are shared by all agents in the system, however in this case they can be attacked
by more specific rules, the local ones. These are hold exclusively by each agent,
and can equally be attacked by other local rules.

This differentiation between non-attackable global real facts and attackable
global rules makes sense, because a real fact is something that is true in the
system independently of the agents’ local knowledge, since it is captured by
the system when interacting with its environment. Contrarily, a global rule is
introduced by the system designer, and some agents may have more specific rules
that defeat them. This idea is somehow similar to DeLP [11], identifying global
rules as defeasible, and local ones as strict rules. On the other hand, observe that

196 A. Muñoz and J.A. Bot́ıa

any element of an argument expressed through an OWL ontology could reside
on a different location on the Web. Consequently, arguments can be constructed
with different kind of information, from an URI referring to a web page so as to
state a Fact, to a web service that implements an argument’s conclusion.

In order to build an argument, a reasoning scheme must be taken into ac-
count. Following ASBO underlying logic, a deductive inference process is used,
in which a conclusion is entailed by means of a set of argument support, S,
and an inference operator, denoted as �. This operator represents the modus po-
nens inference rule in the deductive process. Returning to the agents and tasks
example, the next argument can be derived from Ag1:

UUrgent = {UrgentTask(t),
�
suUrgent,1

�},
suUrgent,1 = {Agent(p), T ask(t),mandatory task(p, t), RUrgent} � UrgentTask(t),

where U = {φ, 〈S = su,1, . . . , su,n〉} is an argument with conclusion φ and sup-
port set S. su,i represents the i − th support element for the argument U .

Conflicts: Two main types of conflicts or attacks among arguments have been
considered in ASBO: Semantic conflicts (these include rebutting and undercut-
ting [18]) and rule conflicts. Both conflicts are automatically detected thanks to
the validation process that can be run over an ontology.

– Semantic conflicts, or “classic” attacks in argumentation, namely rebut and
undercut. Let us suppose two arguments, A = {φ, 〈SA = sA,1, . . . , sA,n〉},
and B = {ρ, 〈SB = sB,1, . . . , sB,n〉}. Then, A rebuts B if φ and ρ are con-
tradictories (i.e. φ ≡ ¬ρ). Furthermore, A undercuts B if φ is inconsistent
with any of the B’s intermediate conclusions in sB,i. Please, see section 3
for a more formal definition in both attacks. These conflicts are related to
the semantics of the concepts and relationships defined in the ontology. For
example, Ag1 could generate the previous argument UUrgent inferring t as
urgent, whereas another ontology rule may assert that the task t is trivial.
This is the RTrivial case. With this rule, Ag2 could build a counterargument
UTrivial that attacks (a rebutting attack) UUrgent, since UrgentTask and
TrivialTask are contradictories concepts (please, see Figure 1):

UTrivial = {TrivialTask(t), 〈suT rivial,1〉},
suT rivial,1 = {Agent(p), Task(t), recommended_task(p, t), RTrivial} � TrivialTask(t)

– Rule conflicts, this kind of conflict is defined as an attack to any of the
ontology rules in an argument by another rule. A special kind of attack
could be given not because of incompatible conclusions, as rebutting attack,
but due to different rule’s antecedents (please, see section 3 for details). For
example, Ag1 could state a counterargument UNoUrgent that conflicts with
the argument UTrivial’s rule RTrivial, because of the rule RNoUrgent:

UNoUrgent = {¬RTrivial,
�
suNoUrgent,1

�},
suNoUrgent,1 = {RNoUrgent}

Hence, Ag1 opposes to the use of RTrivial, but it does not oppose to the
rule’s conclusion, the same in both rules (that task t is trivial). However,

ASBO: Argumentation System Based on Ontologies 197

Ag1 has more specific knowledge (the overloaded status of the agent) to
reach that conclusion, and uses it to attack UTrivial. As a result, Ag1 blocks
the use of RTrivial and the TrivialTask(t) derivation process is not allowed
until Overloaded(p) is proved. Notice that in UNoUrgent the conclusion is
an ontology rule. Although just the rule’s names have been indicated in the
argument, it would actually contain the complete definition of each of them.

Defeat: The relation of defeat between arguments is defined as follows:

Let U1, U2 be two arguments. U1 defeats U2 iff U1 is the empty argument
and U2 attacks itself (self-defeating argument), or else if:

– U1 undercuts U2; or
– U1 rebuts U2 and U2 does not undercut U1.

Moreover, U1 strictly defeats U2 iff U1 defeats U2 and U2 does not defeat U1. This
definition will be augmented in section 3 after formally defining the ontology rule
attack.

Status: An argument can be classified in one of the acceptable, non-acceptable,
conflict or unknown state. To set the status of any argument, it is needed a pro-
cess that takes into account not only conflicting arguments, but all the relevant
arguments. In section 4, a persuasion dialogue system is proposed to establish
the status of each argument.

3 Attacking Ontology Rules in Argumentation

The ontology rule attack is part of the ASBO approach. Thanks to the semantic
burden that is contained in ontology rules, attacks among these elements can
be possible. Here a formal definition of the attack is given. Let us first see how
rebutting and undercutting attacks are defined. Using the structure defined in
section 2, an argument U is typically formed by a conclusion φ and the derivation
set S (Support set) that support φ. In the following example, Propositional Logic
is used to derive a from b (initial fact) and the ontology rules b → d and d → a
(notice that � represents the modus ponens inference operator):

U = {a, 〈S = su,1, su,2〉},
su,1 = {b, b → d} � d
su,2 = {d, d → a} � a

“Classic” attacks in argumentation systems are divided into two types: Rebut, or
to attack the argument’s conclusion (i.e. {¬a, 〈. . .〉}); and undercut, or to attack
the intermediate conclusions, i.e. the derived facts in su,i steps (e.g. {¬d, 〈. . .〉}).

Taking a deeper look into the argument structure, it is possible to establish
a more specific type of attack on the ontology rules taking part in the si steps.
For example, an argument R = {¬(b → d), 〈. . .〉} could be built, which attacks
the use of that rule b → d. The consequences derived from this attack have a
different semantic meaning than the two classic attacks explained. In this case,
the attacker does not necessarily oppose to obtain d, as in the undercutting
attack. On the other hand, other reasons for the attack could arise, for instance:

198 A. Muñoz and J.A. Bot́ıa

AttI. The opponent might increase the number of conditions to derive d: b, g →
d

AttII. The opponent might have a different set of conditions to derive d: g → d
AttIII. The opponent might claim that accepting the conditions of the at-

tacked rule makes other rules fire, with undesired consequences for the
opponent.

The concept of attacking ontology rules can now be formalized. Let Ant(r),
Cons(r) be the set of antecedents and consequents, correspondingly, of a rule r.
Let ΔX be the knowledge base of any agent X . Let RSX be the ontology rule
base of any agent X . These four sets consist of Description Logic conjunctive
expressions in which the operations ∪ (union), ∩ (intersection) and ≡ (equality)
are defined as in that logic. Let A, B be two agents, and rA, rB two ontology
rules, rA ∈ RSA and rB ∈ RSB. Then, rA attacks or conflicts with rB iff:

Cond1. Cons(rB) ≡ Cons(rA) and ∃α ⊂ Ant(rA) | α ∩ Ant(rB) ≡ ∅, or
Cond2. ∃δ ⊂ Ant(rB)| δ ≡ Ant(rA) and ΔA ∪ {rA} ∪ {δ} � ⊥
Condition 1 expresses a conflict between rules with the same consequent, but

different sets of antecedents, either because rule rA contains a greater set of
conditionals (AttI., argument UNoUrgent in section 2), or because both sets are
totally different (AttII.). Condition 2 defines a conflict due to a subset δ in the
rB’s antecedents that fires the rule rA, entailing an inconsistent state in the A’s
knowledge base (AttIII.)

Now, the definition of defeat between arguments given in section 2 can be
expanded with these conditions:

Let U1, U2 be two arguments, and r1, r2 be two ontology rules. U1 defeats
U2 iff U1 is the empty argument and U2 attacks itself (self-defeating
argument), or else if:

– U1 undercuts U2; or
– U1 rebuts U2 and U2 does not undercut U1.
– ∃r1 ∈ U1, ∃r2 ∈ U2|r1 attacks r2 according to Cond1 or Cond2.

Moreover, U1 strictly defeats U2 iff U1 defeats U2 and U2 does not defeat U1.

4 ASBO in a Persuasive Argumentation Scenario

The argumentation scenario has been developed in a MAS that is able to start
discussions on topics proposed by a user, implemented by means of the JADEX2

platform. There are specialized-knowledge agents for each topic (e.g., environ-
ment, health, etc.) depending on the ontology managed by each one. The user
poses a question to the system, and the agents try to reach an agreement about
the response that should be given, by means of the ASBO that each agent im-
plements and a dialogue game focused on persuasion. For this case of use, a
2 http://vsis-www.informatik.uni-hamburg.de/projects/jadex/

ASBO: Argumentation System Based on Ontologies 199

nowadays argumentative case has been chosen: City council are studying to for-
bid traffic in the city center. In order to seek out reasons for and against this
proposal, the following question is launched to our MAS:

forbid(cars)?

There are two significant specialized agents for this case: an agent “E” with
a wide knowledge in environmental issues, and agent “H” that is specialized in
handicapped people topics. Apart from the local knowledge and rules owned by
each agent, there is a set of global rules shared by all agents. These rules are
intended to represent general behavior, and may be attacked for more specific
local rules:

RC1 = dangerous to(x, y) ⇒ forbid(x)
RC2 = alternative(y,x) ⇒ ¬necessary(x)

The first rule states that if an element x represent a risk to y, then the former
must be forbidden. RC2 establishes that if an element y offers an alternative to
x, then the latter loses its “necessary” condition. Now, let us revise the agents’
knowledge. Agent E should agree with forbidding cars, as its goal is to protect the
environment. E owns an environment ontology, instantiated with the following
set of local facts and rules:

ΔE = {emit(cars, fumes), threaten(cars, pedestrian), alternative(bus, car)}
RE1 = emit(x, fumes) ⇒ pollute(x)
RE2 = emit(x,noise) ⇒ pollute(x)
RE3 = threaten(x, z) ⇒ dangerous to(x, z)
RE4 = pollute(x) ⇒ forbid(x)

As counterpart, H tries to watch over a bigger comfort for handicapped peo-
ple, therefore it will oppose to forbid cars since it is a valid mean of transport
that minimizes their problems. H instantiates a handicapped ontology in the
following way:

ΔH = {handicapped(Bob), help(cars,Bob), preferred to(car, bus)}
RH1 = handicapped(z), help(x, z) ⇒ necessary(x)
RH2 = alternative(y,x),¬preferred to(x, y) ⇒ ¬necessary(x)
RH3 = necessary(x) ⇒ ¬forbid(x)

The fact preferred to(car, bus) means that H believes that cars are preferred
to buses. RH1 states that an element x that helps a handicapped person z has
the quality of being necessary. It can be observed that RH2 is a specialization
of rule RC2, since agent H considers that an element x is not necessary if an
alternative y does exist, and moreover that x is not preferred to the alternative
y. Supposing that H is a rational agent, it will prefer RH2 to RC2 in an inference
process.

Once the agents have been defined, the next step is to set up a mechanism
to reach a consensus about the answer to the question launched in the system.
For that objective, agents must participate in a dialogue in which each agent
tries to persuade the others that its proposal is the most reasonable, and in

200 A. Muñoz and J.A. Bot́ıa

consequence it must be chosen by the system. The dialogue system consists of
three components:

– A communication language, C, that is known by all agents in the system.
– A protocol or dialogue rules that ensures the ending of the dialogue and

fairness among agents.
– A logic language, L, to express the content of the messages exchanged be-

tween agents (arguments).

The ASBO dialogue system is based on [21], with the difference that L belongs
to Description Logic. The TBox of each ontology used in the dialogue must be
accessible to all the participants, in order to understand and check the consis-
tency of the local knowledge exchanged in the arguments. Moreover, we expand
the dialogue system to include the ontology rule attack of section 3.

Fig. 3. Sequence of a persuasion dialogue

The dialogue listed below is an example of a possible complete dialectical pro-
cess in this scenario. Notation X.Inum means that agent X utters the illocution
Num. In figure 3 the same dialogue is shown in a face-to-face way. Let us explain
the steps that constitute it:

E.I1: claim(forbid(cars))
H.I2: why(forbid(cars))
E.I3: forbid(cars) since(Up)
H.I4: concede(emit(cars, fumes), pollute(cars))
H.I5: counterclaim(Up,¬forbid(cars))
E.I6: why(¬forbid(cars))
H.I7: ¬forbid(cars) since(U¬p)
E.I8: concede(handicapped(Bob), help(cars,Bob))
E.I9: counterclaim(U¬p,¬necessary(cars))
H.I10: why(¬necessary(cars))

ASBO: Argumentation System Based on Ontologies 201

E.I11: ¬necessary(cars) since(U¬n)
H.I12: concede(alternative(bus,car))
H.I13: counterclaim(U¬n, RH2)
E.I14: accept(U¬n, RH2)
E.I15: retract(¬necessary(cars))
E.I16: forbid(cars) since(Ua)
H.I17: accept(Ua, dangerous to(cars,pedestrians))
H.I18: retract(¬forbid(cars))
H.I19: accept(Up , forbid(cars))

I1: Agent E tries to obtain the conclusion forbid(cars), by looking into its own
knowledge first. E notices that rule RE4 supports forbid(cars) if the antecedent
is instantiated with pollute(cars). By means of RE1 or RE2, it could be possible.
As E knows that emit(cars,fumes), RE1 can be triggered. Thus, the following
argument is built:

Up = {forbid(cars), 〈sp1 , sp2〉},
sp1 = {emit(cars, fumes,RE1)} � pollute(cars),
sp2 = {pollute(cars), RE4} � forbid(cars)

After building the argument, E launches its conclusion into the system.

I2: Agent H receives the E’s illocution. Since its role drives him against
forbidding cars, H questions E’s claim.

I3: E exposes the reasons of its claim in I1, by communicating the argument
that supports it.3

I4, I5: H needs now to attack argument Up. Since H does not possess any knowl-
edge that counterattacks the facts emit(cars, fumes) and pollute(cars), nor the
argument’s rules, it must assume these propositions. Then, H focuses its attack
on the Up conclusion, i.e. H tries to build an argument for ¬forbid(cars). Look-
ing into its local knowledge, by taking rules RH1 and RH3 together with facts
handicapped(Bob) and help(cars, Bob), the argument U¬p is built:

U¬p = {¬forbid(cars), 〈s¬p1 , s¬p2〉},
s¬p1 = {handicapped(Bob), help(cars,Bob), RH1} � necessary(cars),
s¬p2 = {necessary(cars),RH3} � ¬forbid(cars)

After building this argument, H communicates that assumes the premises and
rules of the previous argument (I4), however it rebuts the conclusion (I5).

I8, I9: It is now the turn of E to attack argument U¬p. Firstly, the agent must
accept the handicapped(Bob) and help(cars, Bob) premises, because there is not
knowledge against them. About the necessary(cars) premise, E does not have
any specific knowledge against it either, but taking the global rules into account,

3 Steps (I10, I11) are similar to this last pair (I2, I3), and the same for (I6, I7) but
with agent E asking for reasons, so they will not be explained again.

202 A. Muñoz and J.A. Bot́ıa

RC2 allows E to attack that premise if alternative(y, car) could be justified. As
alternative(bus, car) is hold by E, the following argument undercuts U¬p:

U¬n = {¬necessary(cars), 〈s¬n1〉},
s¬n1 = {alternative(bus, car), RC2} � ¬necessary(cars)

I12, I13: After assuming the fact alternative(bus, car), H detects that one of their
specific local rules, RH2, has the same consequent that RC2. Furthermore, this
rule adds a new particular condition to obtain the conclusion ¬necessary(cars),
namely that the element which an alternative is offered to must not be preferred
to this alternative. As a result, RH2 attacks RC2 according to the AttI definition
in section 3. Now H attacks argument U¬n by defeating rule RC2 with rule RH2:

U¬RC2 = {¬RC2, 〈RH2〉}

H communicates this attack by means of a counterclaim to argument U¬n

including rule RH2(I13).

I14, I15, I16: E’s argument U¬n is attacked by RH2. In order to maintain this
argument, E needs to justify that cars are not preferred to buses. Nevertheless,
this knowledge is not derivable from the agent’s knowledge base, nor from global
rules. Hence, E accepts argument U¬p(E.I14), in response to H.I13 and retracts
¬necessary(cars)(E.I15), in response to H.I10. Here it is important to notice
that although E accepts argument U¬p, the dialogue has not finished, since E
still holds its argument Up, which is in a rebuttal conflict with U¬p now. This
agent has run out of local knowledge to build a new attack or argument for
forbid(cars). However, looking into global rules, E notices that RC1 opens a
new way to support its goal, by justifying dangerous to(cars, y). Using now its
specific knowledge, RE3 and the fact threaten(cars, pedestrian), E derives Ua:

Ua = {forbid(cars), 〈sa1 , sa2〉},
sa1 = {threaten(cars, pedestrian),RE3} � dangerous to(cars, pedestrian),
sa2 = {dangerous to(cars, pedestrian),RC1} � forbid(cars)

Notice that this illocution (E.I16) is a new response to H.I7, since it attacks
argument U¬p.

I17, I18, I19: Finally, H accepts argument Ua, because there is not any new knowl-
edge or rules that can attack it. Since this argument defeats U¬p, it is not any-
more a valid argument. Thus, H retracts ¬forbid(cars) in response to E.I6.
Because H is not able to make any more movements, the argument Up is ac-
cepted. As a result, the conclusion forbid(cars) is also accepted, which is the
response given to the user eventually.

5 Related Work

Argumentation deals with several fields in knowledge engineering [5]. Non-
monotonic and Defeasible Reasoning has created an extensive line of work, of
which some of the most remarkable publications are Dung [8], Bondarenko [4]

ASBO: Argumentation System Based on Ontologies 203

and Prakken [20]; the latter specially focused on legal reasoning. As a result, an
abstract and generic framework for reasoning under incomplete and inconsistent
information has been defined [23]. Expanding the scope of argumentation, Fox
and Krausse [10] propose applying it to the problem of decision making under
uncertainty. In this approach, the abstract argumentation framework must be
extended with representation of the agents’ values, beliefs and preferences, and
on the other hand, the process of decision making is complicated by uncertainty
on the information. Finally, argumentation has been considered in distributed
settings, in particular in multi-agent systems, in order to achieve acceptable
agreements between agents [17]. In this way, a negotiation protocol is defined
via argumentation [16], that leads to a persuasion dialogue in which an agent
tries to convince others that its conclusion is the most acceptable [1].

One of the possibilities offered by ASBO is to define and implement a type of
attack on rules from the argument’s premises. The idea of attacking rules from an
argument is not new. It can also be found in OSCAR [19] and in [24]. However,
they do not explain how that attack could be developed. Here, a definition and
implementation of a rule attack is introduced, taking into account both the rule
format and its semantic representation.

There exist several formal systems for an argumentation persuasion dia-
logue [22]. The Toulouse-Liverpool approach [15] consists of a two-party dia-
logue, with a communication language based on claims, challenges, concessions
and questions, but without a explicit reply structure. Propositional logic is used
as a language to represent arguments. In this system is difficult to have dia-
logues where arguments for and against the same claim are exchanged. Another
approach, the Prakken’s framework [21], allows specifying two-party persuasion
dialogues which status is defined exploiting a tree structure that is built as the
dialogue progresses. Termination is defined as the situation that a party is to
move but has got no legal moves. The abstract protocol proposed is multi-move
and multi-reply, and allows for all kinds of instantiations. Prakken’s approach has
been used to define a persuasion dialogue within ASBO, extending the protocol
with new illocutions in order to include rule attacks.

6 Conclusions and Future Work

Argumentation has proved to be an efficient and useful mechanism to deal with
semantic or belief conflicts. In this paper, we pursue to advance the state-of-art in
this field by defining a specific type of attack between arguments through ontol-
ogy rules. As a result, an argumentation framework that questions the reasoning
process itself is enabled, extending the possible argumentation lines in this frame-
work. Moreover, the combination of Semantic Web ontology techniques with an
abstract argumentation framework is accomplished to obtain an argumentation
system based on ontologies, in a first step to automatically detect and resolve
conflicts. By representing arguments and their relations by means of OWL-based
ontologies, it is viable to take advantage of the explicit semantic information that
is contained in this model. Because of the fact that an ontological formalism is

204 A. Muñoz and J.A. Bot́ıa

used in our argumentation system, the underlying logic, the concept of argu-
ment, conflict and the defeat relation between arguments have been properly
adapted. To illustrate the new style of attack and the argumentation system, an
example based on a persuasion scenario has been developed.

Our efforts are directed to define and validate a dialogue system that fits into
our argumentation system, including new illocutions to adapt the new attack
and arguments as ontology instances. On the other hand, definition of conflicts
and defeat concepts by an ontology model is also being studied, in order to
complete our semantic model of argumentation. Finally, another future goal is
the automatic solving of conflicts by means of “ad-hoc” inference rules defined
by agents themselves.

Acknowledgments. This work has been supported by the Fundación Séneca
grant “Programa de Ayuda a los grupos de excelencia 04552/GERM/06” and
thanks to the Spanish Ministerio de Ciencia e Innovación (MICINN) under the
grant AP2006-4154 in frames of the FPU Program.

References

1. Amgoud, L., Parsons, S.: Agent dialogues with conflicting preferences. In: Meyer,
J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp. 190–205.
Springer, Heidelberg (2002)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic handbook: theory, implementation, and applications.
Cambridge University Press, New York (2003)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(2001)

4. Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-
2), 63–101 (1997)

5. Carbogim, D.V., Robertson, D., Lee, J.: Argument-based applications to knowledge
engineering. Knowledge Engineering Review 15(2), 119–149 (2000)

6. Dean, M., Connoll, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness,
D.L., Patel-Schneider, P.F., Stein, L.A.: Web ontology language (OWL). Technical
report, W3C (2004)

7. Doyle, J.: A truth maintenance system. Artificial Intelligence 12, 231–272 (1979)
8. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-

monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77(2), 321–357 (1995)

9. Dunlop, N., Indulska, J., Raymond, K.: Methods for conflict resolution in policy-
based management systems. In: EDOC 2003: Proceedings of the 7th International
Conference on Enterprise Distributed Object Computing, p. 98. IEEE Computer
Society Press, Washington (2003)

10. Fox, J., Krause, P., Ambler, S.: Arguments, contradictions and practical reason-
ing. In: ECAI 1992: Proceedings of the 10th European conference on Artificial
intelligence, pp. 623–627. John Wiley & Sons, Inc., New York (1992)

11. Garćıa, A.J., Simari, G.R.: Defeasible logic programming: an argumentative ap-
proach. Theory Practice Logic Programmation 4(2), 95–138 (2004)

ASBO: Argumentation System Based on Ontologies 205

12. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A semantic web rule language combining OWL and RuleML. Technical
report, W3C (2004)

13. Lesser, V.: Cooperative multiagent systems: A personal view of the state of the
art. IEEE Transactions on Knowledge and Data Engineering 11(1) (January 1999)

14. Munoz, A., Botia, J.A., Garcia, F.J., Martinez, G., Skarmeta, A.F.G.: Solving con-
flicts in agent-based ubiquitous computing systems: a proposal based on argumen-
tation. In: Agent-Based Ubiquitous Computing (ABUC) Workshop, International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007), Hon-
olulu, Hawaii (May 2007)

15. Parsons, S., McBurney, P.: Argumentation-based communication between agents.
In: Communication in Multiagent Systems, pp. 164–178 (2003)

16. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by argu-
ing. Journal of Logic and Computation 1998(3), 261–292 (1998)

17. Parsons, S.D., Jennings, N.R.: Negotiation through argumentation-A preliminary
report. In: Proceedings of the Second International Conference Multi-Agent Sys-
tems (ICMAS 1996), Kyoto, Japan, pp. 267–274 (1996)

18. Pollock, J.L.: Cognitive Carpentry: A Blueprint for how to Build a Person. MIT
Press, Cambridge (1995)

19. Pollock, J.L.: Rational cognition in OSCAR. In: ATAL 1999: 6th International
Workshop on Intelligent Agents VI, Agent Theories, Architectures, and Languages
(ATAL), pp. 71–90. Springer, Heidelberg (2000)

20. Prakken, H.: From logic to dialectics in legal argument. In: ICAIL 1995: Pro-
ceedings of the 5th international conference on Artificial intelligence and law, pp.
165–174. ACM Press, New York (1995)

21. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. Log.
and Comput. 15(6), 1009–1040 (2005)

22. Prakken, H.: Formal systems for persuasion dialogue. Knowledge Engineering Re-
view 21(2), 163–188 (2006)

23. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in
legal reasoning. Artificial Intelligence and Law 4(3-4), 331–368 (1996)

24. Prakken, H., Vreeswijk, D.: Logical Systems for Defeasible Argumentation. Hand-
book of Phil. Logic, vol. 4, pp. 219–318. Kluwer Academic Publishers, Dordrecht
(2002)

25. Rosenschein, J.S., Zlotkin, G.: Rules of Encounter.Designing Conventions for Au-
tomated Negotiation among Computers. MIT Press, Cambridge (1994)

26. Shohama, Y., Tennenholtz, M.: On social laws for artificial agent societies: off-line
design. Artificial Intelligence 73, 231–252 (1995)

Controling Contract Net Protocol by Local Observation
for Large-Scale Multi-Agent Systems

Toshiharu Sugawara1, Toshio Hirotsu2, Satoshi Kurihara3,
and Kensuke Fukuda4

1 Dept. of Computer Science and Engineering, Waseda University, Tokyo 1698555, Japan
2 Dept. of Information and Computer Sciences, Toyohashi University of Technology

3 Inst. of Scientific and Industrial Research, Osaka University
4 National Institute of Informatics, Chiyoda, Tokyo 100-000, Japan

Abstract. We describe a new adaptive manager-side control policy for the con-
tract net protocol that uses the capabilities of all agents in a massively multi-agent
system (MMAS). Recent advances in Internet services, pervasive computing, and
grid computing require sophisticated MAS technologies to effectively use the
large amount of invested computing resources. To improve overall performance,
tasks must be allocated to appropriate agents, and from this viewpoint, a number
of negotiation protocols were proposed in the MAS context. Most assume a small-
scale, unbusy environment, however. We previously reported the possibility that,
using contract net protocol (CNP), the overall efficiency improved by an adequate
control of degree of fluctuation in the awarding phase, when the MMAS is in spe-
cific states. In this paper, we propose the method to estimate these specific states
from the bid values, which have hitherto not been used effectively. Then the new
manager-side policy flexibly and autonomously introduces some degree of fluc-
tuation responsive to the estimated states. We also demonstrate that our proposed
CNP policy provides considerably better performance than naive CNP and CNP
with inflexible policies, even though our policy does not use global information.

1 Introduction

Although recent advances in Internet services, sensor networks, pervasive comput-
ing, and grid computing exhibit the need for multi-agent systems (MAS), they
further require more sophisticated MAS technologies for large-scale and busy environ-
ments. For example, e-commerce transactions, which frequently appear in the current
Internet era, consist of coordinated tasks including interactions among a variety of in-
formation agents in charge of customer authentication and management, stock manage-
ment, shipping control, and payment processing. These kinds of tasks simultaneously
and frequently occur throughout in the world. In sensor-network applications, informa-
tion agents reside in many sensor and computational devices, and many computational
entities in grid computing should concurrently process the assigned subproblems into
which a large computation problem is decomposed. In these applications, many of the
tasks should be allocated appropriately for efficient, high-quality services. Of course,
providers of these services on the Internet want to maximally utilize the devices and
equipment in which they have invested and, at the same time, users want comfortable,

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 206–220, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Controling Contract Net Protocol by Local Observation 207

quick responses from these systems. Thus, task allocation in massively multi-agent sys-
tems (MMAS) is a central issue for fully utilizing the potential performance of all agents
deployed in different locations.

In the context of MAS, research in this line is of great concern, and a number of
negotiation protocols, such as such as the contract net protocol (CNP) [1,2], multi-stage
negotiation protocol [3], and a variety of auction protocols [4,5], have been proposed.
In particular, CNP and its extensions have been widely used in certain applications be-
cause of the simplicity and good performance of CNP [2,6]. In CNP, an agent plays one
of two roles: managers are responsible for allocating tasks and monitoring processes,
while contractors are responsible for executing the allocated tasks. A manager agent
announces a task to the contractor agents, which bid for the task with certain promised
values or prices (such as cost, duration, and payment). The manager agent then awards
the task to the contractor (the awardee) that bid with the best value and allocates the
task to it.

It is obvious that interference among agents is often observed in this kind of negoti-
ation protocol if many managers have tasks to allocate to efficient contractors. In basic
CNP, a contractor agent receives task announcements one by one. When many tasks
are announced by many managers, however, they have to wait a long time to receive
a sufficient number of bids. In the original conception of CNP [1], the use of multi-
ple bids was proposed for concurrently handling many announcements. If a contractor
is awarded multiple tasks simultaneously, however, it may not be able to provide the
quality or performance promised. In fact, the more highly capable contractor agents are
selected as awardees by many manager agents, leading to a concentration of tasks. In
addition, a large number of tasks in a MMAS induce an excessive number of messages,
which make all agents busy with (1) reading and analyzing the many messages received
(all agents), (2) deciding whether to bid for announced tasks (contractors), (3) calculat-
ing bid values (contractors), and (4) selecting awardees (managers). This degrades the
overall performance of an MAS.

A simple solution to this problem is to implement manager-side control by restrict-
ing announcements to certain selected agents to reduce the number of messages and
simplify the award process. In this paper, we call this approach restricted CNP. How-
ever, strong restrictions may also degrade the performance of task, because they may
not be announced to idle and/or highly capable agents. It is unclear whether the overall
performance of MAS will ultimately improve or worsen if tasks are more widely an-
nounced, especially in an MMAS environment in which more than thousands of agents
interact with one another. A number of papers e.g., [7,2,8] have proposed restricting
the audience for task announcement to improve performance, especially to avoid mes-
sage congestion or message sending to uninterested agents, for small-scale MASs. To
the best of our knowledge, however, there has been little research on the efficiency and
effectiveness of CNP (or more generally, negotiation protocols including CNP) when
applied to an MMAS.

The first goal of our research is to understand the behavior of CNP in an MMAS
to enable development of efficient, large-scale negotiation protocols. Toward this goal,
we previously investigated the performance of an MMAS, especially the overall effi-
ciency and reliability of contracted bid values, when tasks were allocated by CNP with a

208 T. Sugawara et al.

variety of manager-side controls such as announcement restriction [9,10]1. These papers
indicates the possibility that appropriate degree control of fluctuation in the award se-
lection and appropriate control of announcement restriction in the announcement phase
on the basis of the MMAS task load greatly improve overall performance. Note that
“fluctuation” in the award selection means that managers do not always select the best
contractor among bidding contractors.

Accordingly, we have now developed a flexible manager-side control policy,
including announcement and award phases for CNP, that improves overall system per-
formance, using these results. First, we designed the control of fluctuation in award
selection on the basis of the system’s task load of and confirmed that this control policy
could considerably improve overall performance. In actual open-system environment,
however, it is almost impossible to acquire global information such as the task load of an
entire MMAS. We thus modified this control policy so that each manager can estimate
the task loads of its local contractors in accordance with the received bid values (with
or without supplemental data), which were previously used only to select awardees.
The performance under this flexible control policy was compared with that under other
policies that either have no flexibility or that have some degrees of flexible fluctuation
based on the global information about the task load. Our new policy outperformed both
types, even though it does not use global information.

In this paper, we first describe the restricted CNP model and the simulation model.
Then, we summarize our previous findings[9,10] for how degree of fluctuation in the
award phase affects the overall efficiency of MMAS under CNP-based task allocation
and execution. Next we introduce manager-side award control using the global infor-
mation about the task load. We then describe how this control is modified to estimate
the task load states without using global information. Finally, we discuss the results of
the simulation and compare the performance under our control policies with that under
other policies.

2 Simulation

2.1 Restricted CNP Model

Let A = {a1, . . . , an} be a set of agents, M = {mj}(⊂ A) be a set of managers that
allocate tasks, and C = {ck}(⊂ A) be a set of contractors that can execute allocated
tasks if a contract is awarded. We assume that M ∩ C = ∅ and A = M ∪ C.

When manager mj has task T , it allocates T to another agent in accordance with
CNP. First, mj announces task T to all contractors in C (i.e., the announcement phase).
For brevity, we assume that all contractor agents can execute T . A contractor receiving
this announcement must decide whether to bid for this task. If it decides to bid, it sends
mj a bid message with a certain value called the bid value (i.e., the bidding phase).
Although bid values in general might include parameters such as the price for execut-
ing T , the quality of the result, and a combination of these values, timely responses
are always of great concern in interactive services and real-time applications. Thus, we

1 Ref. [10] has been submitted but has not been accepted yet, so is not available; its major results
are shown in Fig. 1.

Controling Contract Net Protocol by Local Observation 209

assume that all agents are rationally self-interested on the basis of efficiency and that
their bid values are simply promised times for completing T . Finally, mj selects a con-
tractor, usually one that bid the best value, and sends an award message to the awardee
allocating the announced task (i.e., the award phase).

As the basic CNP [1] has only been used for small-scale MASs in non-busy environ-
ments, we extend it to busier, MMAS environments. First, as done previously [1], we
assume that contractors are allowed to submit multiple bids concurrently in response to
task announcements from multiple managers so that we can apply this approach to busy
large-scale applications. Second, unlike in the original CNP, two new CNP messages,
regret and no-bid messages, are introduced (e.g., [2,11]). Regret messages are sent in
the award phase to contractors that have not been awarded the contract, while no-bid
messages are sent to managers when contractors decide not to bid on an announced
task. Using these messages avoids long waits for bid and award messages.

Next, we define restricted CNP. First, let us assume that |A| is large (on the order
of thousands), so |M | and |C| are also large, and that the agents are distributed widely,
like servers and customer agents on the Internet. For mj ∈ M , let Kmj be a set of
contractors known to mj ; mj can only announce a task to contractors in Kmj . Set Kmj

is called the scope of manager mj . Restricted CNP is thus defined as CNP in which
(1) multiple bids and regret and no-bid messages are allowed and (2) each manager mj

can announce tasks to only those contractors in Kmj selected by a certain policy, called
the announcement policy. Hereafter, the set of contractors selected according to the
announcement policy is called the audience. We believe that an appropriate announce-
ment policy can reduce the total number of messages and the cost of announcing bid
and award decisions, thus improving overall performance.

2.2 Simulation Model

We set |C| = 500 and |M | = 10000 in our simulation model2. The agents are randomly
placed on the points of a 150 x 150 grid with a torus topology. Then, the Manhattan
distance dist(ai,aj) between agents ai and aj is defined on this grid. Using this distance,
we set the communication cost (or delay) for messages from ai to aj . This cost is
denoted by cost(ai,aj). The communication cost ranges between 1 and 14 (in ticks, the
unit of time in the simulation), in proportion to the distance, dist(ai,aj). The elements
of Kmj for ∀mj ∈ M are also defined according to this distance; they consist of the
nearest 50 contractors to mj . More precisely, for integer n > 0, let Kmj(n) = {c ∈ C|
dist(mj ,c) ≤ n}. It follows that Kmj(n) ⊂ Kmj (n+1). Kmj is defined as the smallest
Kmj(n), such that |Kmj(n)| ≥ 50. Set Kmj remains static once it is calculated. Note
that this grid is not introduced for the inter-agent structure but is done for defining the
distance between agents; this structure is determined by the scopes of all agents.

With every tick, tl tasks on average are generated, based on a Poisson distribution,
in the simulation environment and randomly assigned to different tl managers, where
tl is a positive number. Parameter tl is called the task load and denotes tl tasks per
tick, or simply tl T/t. A manager assigned a task immediately initiates restricted CNP

2 We assume that the contractor agents run on the Internet, providing services requested by
manager agents, which correspond to clients.

210 T. Sugawara et al.

to allocate the task to an appropriate contractor. Note that previously [9,10], tasks were
constantly generated every tick. Although this may produce slightly different data than
previously, the difference is negligible.

For task T and agent ai, we introduce two parameters: the associated cost of T ,
cost(T), expressing the cost to complete T , and the ability of ai, a(ai), expressing the
processing speed of ai. For convenience, we adjust these parameters so that contractor
ci can complete T in cost(T)/a(ci) ticks. Since our experiments were designed sim-
ply to clarify the performance of restricted CNP in an MMAS, we assumed that all
tasks would have the same cost, i.e., 2500. The abilities of the contractors were initially
assigned so that the values of cost(T)/a(ci) (where i = 1, . . . , 500) were uniformly
distributed over the range 20 − 100; this means that the values of a(ci) range from 25
to 125.

When contractor ci is awarded a task, ci immediately executes it if it has no other
tasks. If ci is already executing another task, the new task is stored in ci’s queue, which
can hold up to 20 tasks. The tasks in the queue are then executed in turn. Tasks that
cannot be stored because of a full queue are dropped.

The bid value reflecting the state of contractor ci is the expected response time,
calculated as follows. Suppose that s tasks are queued in ci. As ci’s bid value is s ∗
(2500/a(ci)) + α, where α is the required time to complete the current task, smaller
bid values are better. In multiple bidding, ci might have a number of uncertain bids
for which results have not yet been received. These bids are not considered, however,
because it is uncertain whether they will be awarded. This means that contractors always
submit bids when a task announcement arrives. Note that although we can introduce a
bidding control to avoid over-allocation, by disallowing multiple bids when a contractor
is busy, we do not consider this kind of contractor-side control here. The use of other
bidding controls will be discussed elsewhere.

The completion time for each task is the elapsed time observed by the manager, from
the time an award message with the allocated task was sent to the time a message indi-
cating that the task has been completed is received. The completion time thus includes
the communication time in both directions, the queue time, and the execution time3.
We define the overall efficiency of MAS as the average completion time observed for
all managers and the reliability as the expected value of the differences between the
completion times and the promised response times. We can assume that a smaller ex-
pected value of {dci}ci∈C and a smaller standard deviation indicate higher reliability
of the MAS, where dci is the difference between the bid value of contractor ci and the
completion time of the task by ci.

The simulation data reported here are the mean values from three independent ex-
periments using different random number seeds. The theoretical limit of processing
capability, that is, the cumulative capability of all contractors of the MAS, in the three
experiments ranged from 9.7 to 10.2 T/t, with an average value of 9.9 T/t. We set pa-
rameter tl to 0.1, 0.5–1, 3–6, 9-10, or 11; the conditions for the MAS in each case are
listed in Table 1.

3 Because our goal is to clarify the performance of MMAS, the costs of processing announce-
ment messages and selecting a bid from bid messages have been not included in the completion
time.

Controling Contract Net Protocol by Local Observation 211

Table 1. MAS conditions for various task load

tl (T/t) Condition

0.1 Task load is extremely low; multiple bids are rare.
0.5–3 MAS is not busy.
3–6 MAS is moderately busy; no tasks are dropped.

9–10 Task load is near limit of MAS cumulative capability;
some tasks may be dropped.

11 MAS is extremely busy, beyond the theoretical limit
of all contractors; many tasks are dropped.

RSP

RSP
Value of k in PAS +RSPk

RSP
30

40

50

60

70

0 1 2 3 4 5 6

tl=0.5
tl=1

tl=5

tl=3

Value of k in PAS +RSPk

A
ve

ra
ge

 c
om

pt
io

n
tim

e
(ti

ck
)

A
ve

ra
ge

 c
om

pt
io

n
tim

e
(ti

ck
)

40

60

80

100

120

140

0 1 2 3 4 5 6

tl=6
tl=7

tl=8

tl=9

tl=9.2

Value of k in PAS +RSPk

A
ve

ra
ge

 c
om

pt
io

n
tim

e
(ti

ck
)Not congested

Highly congested

Moderately congested

200
300
400
500
600
700
800
900

1000

0 1 2 3 4 5 6

tl=9.7

tl=9.8

tl=11

tl=10

Fig. 1. Completion times under PASk+RSP(20)

3 Fluctuation in Award Selection

3.1 Previous Results

We first describe an announcement policy under which manager mj announces tasks to
only n contractors randomly selected from Kmj to reduce the number of messages in
CNP, where n, a positive integer, is called the announcement number and indicates the
number of announcements. This random selection policy is denoted as RSP(n). This
policy requires neither prior knowledge nor learning about the contractors, but tasks
may sometimes not be announced to capable contractors.

We previously examined [9] how overall efficiency varies for n ranging from 5 to
50 and 0.1 ≤ tl ≤ 11. We found that our expectation that a smaller n results in inef-
ficiency in the MMAS because tasks may not be announced to capable agents applies

212 T. Sugawara et al.

only when the task load is extremely low. Because managers send more task announce-
ment messages under RSP(n) for a larger n, we can predict task concentration in a few
good contractors in busier environments, thus making the MMAS inefficient. We found
that this phenomenon can be observed much earlier (even when the task load is low)
than we expected, however.

We also tested a learning-based audience restriction policy [9] in which each man-
ager learns which contractors are more capable by observing completion times. While
this restriction policy did not lead to better performance as expected, we did find that a
small degree of fluctuation in the award phase considerably improved the overall per-
formance and reliability.

To understand the effect of fluctuation in the award phase more clearly, we investi-
gated how the degree of fluctuations affects the overall performance[10]. After a task
announcement, manager mj receives bids from a number of contractors, {c1, . . . , cp}.
We denote the bid value from contractor ci as b(ci); mj selects an awardee, ci, in ac-
cordance with the following probability:

Pr(ci) =
1/b(ci)k∑p
l=1 1/b(cl)k

(1)

Note that smaller bid values are better. This probabilistic award selection control in
the award selection is denoted as PASk. The policy combined RCP(n) with PASk is
denoted by PASk+RSP(n). The larger the k, the smaller the degree of fluctuation; and
PAS0 and PAS∞ correspond to ‘random selection’ and ’no randomness’, respectively;
so PAS∞+RSP(n) is identical to RSP(n). Variable k is called a fluctuation factor, here-
after.

Figures 1 (a) to (c) show how overall performance varies under policies RSP and
PASk+RSP; k ranges from 1 to 6 and the announcement number, n, is fixed at 20. Note
that we show graphs for only n = 20 because the overall performance in this case is
generally better than that in cases where fluctuation is introduced [9]. We set n to 20 for
most of the experiments discussed in this paper, and the announcement number is often
omitted if n = 20.

These figures illustrate that the RSP policy only results in better performance than
PASk+RSP when the task load is less than 3 (not so busy) or more than 10 (extremely
busy, i.e., over the theoretical limits of the entire MAS). In other situations where 3 ≤
tl < 10, some degree of fluctuation can result in much better performance, but the k
value leading to the best performance depends on the task load. For example, when
tl is close to three, a larger k is better, but when tl is greater than six, the value of
k that expresses the best performance gradually approaches 3. However, if tl is larger
than nine, the best k value swiftly approaches 6. This analysis suggests that the award
selection policy must be sensitive to the task load of the MMAS.

3.2 Performance with Variable Task Load

Although Fig. 1 shows performance only when tl does not vary, the task load usually
varies in real-world applications. We have now examined how the overall performance
changes when the task load varies over time. The curves labeled “PAS3+RSP(20)”

Controling Contract Net Protocol by Local Observation 213

-50
-40
-30
-20
-10

0
10
20
30
40

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

tl=0.10.3 0.5 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 0.5 0.3 0.1

PAS +RSP(20) 3PAS +RSP(20)6

VAS(20)
t (tick)

Im
pr

ov
em

en
t r

at
io

 (%
)

Fig. 2. Ratio of completion times under PASk+RSP(20) and VAS(20)

and “PAS6+RSP(20)” in Fig. 2 show the improvement ratio (%) with PAS3+RSP and
PAS6+RSP with respect to RSP; that is,

℘(RSP(n)) − ℘(PASk + RSP(n))
℘(RSP(n))

∗ 100,

where ℘(p) indicates the overall performance when policy p is used. In this experiment,
tl started at 0.1 and gradually increased to 11 for 5000 ticks and then returned to 0.1.
The improvement ratios are plotted every 5000 ticks. The values of tl are also shown in
the figure.

Figure 2 not only clarifies the results of our previous experiments described in Sec-
tion 3.1 but also suggests that, in the awarding phase, selecting the policy flexibly on the
basis of the task load can improve the overall efficiency by as much as 30%. To evaluate
the flexible control, we introduce variable fluctuation control into policy PASk+RSP(n)
in which fluctuation factor is adaptively selected using the following fluctuation control
rule (FCR):

k = ∞ (i.e., RSP) if tl < 3 or tl > 10,
k = 6 if 3 ≤ tl ≤ 5 or 9 < tl ≤ 10, (R1)
k = 3 if 5 < tl ≤ 9.

This policy with FCR (R1), is called variable awardee selection policy and denoted by
VAS(n). This FCR is induced from the experimental results shown in Fig. 1.

The overall performance under VAS(20) is also shown in Fig. 2. It indicates that,
in general, VAS provides better performance than other policies using a fixed degree of
fluctuation. The only exception appears when tl exceeds 9, that is, at around t = 65000,
where the performance under VAS is lower than those under PASk+RSP (k = 3, 6).
This is due to a small delay in shifting from the busy state to the unbusy state. Figure 2
shows that the system became overloaded after some tasks were stored in the queues by
multiple awards; that is, the system got a little behind when the task load was beyond
its theoretical upper limit. We can avoid this degradation in performance by delay-
ing the switching from PAS3+RSP to PAS6+RSP and RSP, by modifying FCR (R1).
However, this delayed switch resulted in another degradation at around t = 85000.
This means that the control when the system is extremely busy is quite delicate and
difficult.

214 T. Sugawara et al.

4 Fluctuation Control Based on Estimation

4.1 Use of Queue Length

The major drawback of VAS is that it requires knowing the state of the system’s task
load, which is global information and usually unavailable in an open system like the
Internet. To overcome this problem, we propose estimating the system’s state from the
bid values and supplemental information that is usually available from contractors.

With the proposed variable control, in the announcement phase, managers request the
current queue length of each contractor as well as the bid values in their bid messages.
This request is included in the bid specifications [1]. The managers can then estimate
the task load (from their local viewpoints) using the queue lengths. First, suppose that
manager m announces the task to n contractors, c1, . . . , cn, randomly selected from
Km. It then calculates

r =
∑

1≤i≤n

q(ci)
n

, (2)

where q(ci) denotes the queue length received from ci. Ratio r is the average queue
length of the contractors to which m made the announcement; it thus indicates how many
tasks are simultaneously awarded (that is, the number of multiple awards). Then m select
an awardee under VAS(n) but its fluctuation factor is determined by the following FCR:

k = ∞ if r ≤ 0.05 or r > 2,
k = 6 if 0.05 < r ≤ 0.15 or 1.2 < r ≤ 2.0, (R2)
k = 3 if 0.15 < r ≤ 1.2.

-10
-5
0
5

10
15
20
25
30
35

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000

tl=0.1 0.3 0.5 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 0.5 0.3 0.1

VAS(20) (bench mark)

Im
pr

ov
em

en
t r

at
io

 (%
)

t (tick)

MASP(20)

MASP(*)

Fig. 3. Ratio of completion times under MASP(20) and MASP(*)

35
tl=0.10.3 0.5 1 2 3 4 5 6 7 8 9 10 11 11 10 9 8 7 6 5 4 3 2 1 0.5 0.3 0.1

-10
-5
0
5

10
15
20
25
30

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000 130000 140000
VAS(20) (bench mark)

Im
pr

ov
em

en
t r

at
io

 (%
)

t (tick)EMASP(20)

EMASP(*)

Fig. 4. Ratio of completion times under EMASP(20) and EMASP(*)

Controling Contract Net Protocol by Local Observation 215

This policy with task-load estimation is called multiple-award-number-based award se-
lection policy and denoted by MASP(n). Note that FCR (R2) is derived by modifying
FCR (R1) and these threshold values dividing the award policies are derived from our
prior experiments in which we investigated the relationship between the average queue
length and the task load, tl. For example, when tl = 9, the average queue length re-
ported with bid messages is approximately 1.2.

The curves in Fig. 2 indicate that the control when the system is busy (tl ≥ 9) re-
quires delicate attention, so we added another control for this situation. Our previous
findings in [9] suggests that, by controlling announcement number n,we can improve
overall performance. We thus added the control of announcement number into MAS:
when r > 2, n = 10, and when 2 ≥ t > 1.2, n = 5, otherwise n = 20. This pol-
icy is called MASP with variable announcement number and is denoted by MASP(*).
Note that there is another trade-off here; that is, reducing the number of announcements
mitigates the concentration but degrades the accuracy of task-load estimation.

The overall performance characteristics under MASP(20) and MASP(*) are shown
in Fig. 3. The performance under VAS(20) is also shown as the benchmark. The perfor-
mance under MASP(20) was slightly better than that under VAS(20). We believe that
this originates from small variations in the task load due to randomness; randomness
does not mean uniformity. Thus, while estimation based on data from local contractors
may not be accurate, it can reflect the local variations of the task load in a timely man-
ner: these small variations, which can occur anywhere, significantly affect performance.
When tl was 3 or 4 (t was around 30000 or 110000), VAS(20) had slightly better per-
formance. This is because task-load estimation based on queue length is less sensitive
when the system is not busy.

Figure 3 also shows that MASP(*) has better performance than the other policies
when the task load is high. By tailoring the number of announcement when the MMAS
is extremely busy, we can further improve the overall performance. Given these results,
we believe that MASP(20) and MASP(*) are superior to VAS(20), because it is impor-
tant to use all the capabilities of agents in MMAS when they are busy.

4.2 Estimation from Set of Bid Values

While the use of supplemental information, i.e., the queue length of each contractor
added into the bid messages, is a promising idea, but we tried to estimate the queue
length from only the bid values, that are information from the local contractors that is
not fully utilized.

The idea is quite simple: managers learn the capabilities of their local contractors,
which corresponds to how long it takes for them to complete a single task assigned, and
then compare the bid values with the learned capabilities in order to estimate the queue
lengths in individual contractors.

Suppose that manager m sends the l-th task announcement and receives bid mes-
sages from contractors Cl = {cj} ⊂ Km, where l is a positive integer. The ability of
contractor ci (∈ Km), as estimated from the l-th task announcement, is

aest
l (ci) =

{
min{bl(ci), aest

l−1(ci)} if ci ∈ Cl

aest
l−1(ci) if ci
∈ Cl,

(3)

216 T. Sugawara et al.

where bl(ci) is the bid value corresponding to the l-th task announcement from con-
tractor ci. Note that aest

0 (ci) is initially set a large number, such as 10000. Manager m
calculates the values of aest

l (ci) for ci ∈ Km. The derived value aest
l (ci) converges

with the minimum bid value from ci, which also means the estimated completion time
when ci has no other unfinished awarded task.

The estimated ci’s queue length is

qest
l (ci) =

bl(ci)
aest

l (ci)
− 1,

which is used in Eq. (2) instead of q(ci). The modified MASP (with variable announce-
ment number) using qest

l (ci) is called estimated multiple-award-number-based award
selection policy (with variable announcement number) and denoted by EMASP(n) (and
EMASP(*)).

The performance under EMASP(20) and EMASP(*) are shown in Fig. 4. The perfor-
mance under VAS(20) is again shown as the benchmark. Figures. 3 and 4 indicate that
EMASP(20) and EMASP(*) can exhibit performance as high as those under MASP(20)
and MASP(*) even though EMASP does not use the supplemental queue-length infor-
mation from contractors.

An important issue to be addressed here is the accuracy of the aest(ci) derived using
Eq. (3). In the experiment shown in Fig. 4, the task load starts small: when a contractor
is not busy, its bid value is the estimated completion time of only the announced task,
which is the accurate data managers want. Conversely, if the system is busy, its bid
values always include the execution time for other tasks in the queue in addition to that
for the announced task. Therefore, the estimated aest(ci) may be inaccurate and slowly
converge to the actual a(ci).

To understand the effect of this slow convergence on efficiency when the task load
is high, we set tl to 8 and investigated how the overall performance changed and how
the ratio of the policies selected by managers under EMASP(20) changed over time.
The results are presented in Fig. 5, where graph (a) shows the improvement ratios
for EMASP(20), PAS6+RSP and MASP(20) (which has almost identical features to
PAS3+RSP, which is thus omitted here) with respect to RSP(20), and graph (b) shows
the changes in the ratio of policies selected by managers under EMASP(20).

Graph (a) in Fig. 5 shows that EMASP(20) becomes better than PAS6+RSP(20) at
around t = 20000 and approaches the efficiency under MASP(20) at around t = 50000.
It always has better performance than RSP. Graph (b) shows that, at first, the ratio of
mangers selecting PAS6+RSP increased under EMASP(20). Because aest(ci) gradu-
ally approached a(ci), they soon recognized that the local contractors had become a
little busy, then they switched to PAS3+RSP(20) over time. The two-dot chain line in
Fig. 5 (b) indicates the ratio of PAS3+PAS(20) managers selected under MASP(20) (al-
most constantly 96.1%). Other managers chose other policies because of the local small
variations due to randomness. Note that initially all the managers chose RSP(20) since
aest(ci) always starts from ci’s first bid value.

For example, when t = 20000, managers announced 16 tasks on average since tl =
8. This number is quite small considering the actual number of systems on the Internet.
Of course, the task loads of actual systems always vary, and the systems are not always

Controling Contract Net Protocol by Local Observation 217

0

20

40

60

80

100

0 10000 20000 30000 40000 50000
10

15

20

25

30

5000 20000 35000 50000
Time (tick) Time (tick)

Im
pr

ov
em

en
t r

at
io

 (%
)

R
at

io
 o

f s
el

ec
te

d
po

lic
ie

s

in
 E

M
FC

(2
0)

 (%
)

tl=8

tl=8PAS + RSP (under MFC(20))

RSP

PAS + RSP3

3

PAS + RSP6

MFC(20) (≅ PAS +RSP(20))

PAS + RSP6

EMFC(20)

(a) (b)
3

Fig. 5. Performance improvement and ratio of policies selected under EMASP(20)

Table 2. Ratios (%) of dropped tasks

Time range 65000–70000 70000–75000 75000–80000

RSP 6.85 10.28 3.65
PAS3+RSP 4.86 9.58 3.75
PAS6+RSP 6.91 10.86 5.42

VAS(20) 6.48 10.70 2.93
MASP(20) 6.75 10.98 2.94
MASP(*) 8.69 10.87 3.28

EMASP(20) 7.19 10.45 2.80
EMASP(*) 7.29 10.57 3.49

busy. When the task load is lower, managers can quickly learn the actual abilities of
their local contractors. We can thus conclude that the proposed policy, EMASP, is well
suited for CNP in MMAS.

4.3 Dropped Tasks

The better overall performance was not achieved at the expense of many dropped tasks.
In our experiments, task drops were mainly observed only when t was in the range
65000 to 80000. The ratios between the observed numbers of dropped tasks and those of
tasks generated in the simulation environment are shown in Table 2. Although the ratios
under RSP3+RSP(20) were slightly smaller and those under MASP(*) were slightly
higher, no significant differences were found.

5 Discussion

The results of our experiments show that flexible control of fluctuation in award selec-
tion policy, which is controlled by k in Eq. 1, strongly affects the overall efficiency of
an MMAS; a little capriciousness by the manager when making an award would signif-
icantly improve the overall performance. However, this suggests that rational decisions
in award selection do not always lead to the best results. For truly rational decision-
making, fluctuated decision has to be intentionally introduced to manager agents in sit-
uations where even their best decisions can negatively affect the efficiency of all agents

218 T. Sugawara et al.

in the MMAS. In addition to the fluctuation in an award phase, the overall performance
is also strongly affected by announcement policy; there is an appropriate number of
announcements corresponding to the task load. One of the key issues is how agents can
identify situations in which they should be rational and those in which they should be
a little capricious. In an open system like the Internet, however, agents must be truly
autonomous: Therefore, they should recognize the situations and control their degrees
of fluctuation in decision-making and the number of announcements on their own. The
results of our experiments suggest that, because the task load is not uniform everywhere
in real applications, it is better that managers autonomously identify their situations on
the basis of their local viewpoints. The method proposed here provides one solution for
this issue.

We have to discuss the effects of communications delay. If we carefully analyze the
phenomena in our simulations, the main reason for multiple awards is communications
delay. We can broaden the scopes of managers, but a wider scope results in longer
delays and more frequent opportunities for multiple bids and awards, especially in busy
situations.

We also note that the overall performance is affected by the topological structures of
the physical (lower-layer) network. Recently, overlay networks reflecting application-
level relationships among agents have received much attention. However, communica-
tion delay usually does not depend on the overlay network but on the physical structures
of the Internet. Introducing network topologies among agents into our simulation is one
of our next research topics.

It seems reasonable to add the queue length to the bid specifications since managers’
scopes are restricted to the local contractors. Original information in bid messages may
not reflect the performance and/or capability of each contractor. Even for such a case,
the efficiency (or time-to-respond) is usually a matter of concern for Internet services
and interactive systems. Thus, if the MMAS conditions cannot be estimated from the bid
values, we think that additionally requesting the queue lengths is reasonable. Because
bid messages are “word” coming from the local contractors, we believe that the use of
bid messages is a good idea.

Finally, we must describe the importance of the system development methodology
based on MAS simulation for large-scale applications. We obtained threshold numbers
for switching the award-selection and announcement policies from simulations. One of
the purposes of the simulations was to clarify the phenomenon, performance and oper-
ations of systems in an early state of development or when their actual testing and eval-
uation are impossible. The large-scale applications on the Internet are such systems;
therefore, simulation-based performance tuning for MMAS should become more im-
portant. The importance of multi-agent-based simulation is now recognized and has
been used for several applications such as design of pervasive computing applica-
tions [12], evaluation of high-performancecluster system [13], load-balancing in widely
distributed systems [14] and explanation of phenomena occurring in markets [15]. Of
course, we need further improvement in simulations so that they can accurately reflect
real systems and, to this end, we should develop more reliable tools for simulating, for
example, the Internet.

Controling Contract Net Protocol by Local Observation 219

6 Conclusion

We have described a new flexible manager-side control policies for the contract net
protocol that effectively uses the capabilities of all information agents in an MMAS.
The basic ideas of our control policy are the use of bid values from local contractors
to estimate the local state of the MMAS and that managers in the CNP autonomously
and adaptively changes (1) the degree of fluctuation in the award policies and (2) the
number of announcements, from their local perspectives. We showed experimentally
that a control policy responsive to the local task load has better performance than a
naive CNP and a CNP with inflexible control policies, even though our policy does not
use global information.

The communication bottlenecks in broadband network are shifting from the com-
munication links to the server nodes, so the control of load balancing among servers
in large-scale and worldwide systems is becoming critical. A more sophisticated con-
trol that fully utilizes the potential capability of systems is required for future network
applications, and our research is aimed at to this requirement.

Although we did not introduce a contractor control policy, it is clear that control
policies on both sides are required for better performance; as a first step, we explored
how overall performance can be improved with only manager-side control. We also
assumed that (1) there are no dishonest contractors, (2) all managers have the same
policy, and (3) there is no locality in the task load. Additionally, no task structures were
assumed; this makes the interference among information agents induced by the CNP
simpler. Nevertheless, we observed nontrivial characteristics of the overall performance
of a large-scale MAS, in which a huge number of information agents interact with each
other. This paper describes only the first proposal of control policy for the CNP, We
intend to tackle these issues one by one, with the aim to develop the effective negotiation
protocol for MMAS.

References

1. Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers C-29(12), 1104–1113 (1980)

2. Sandholm, T.: An Implementation of the Contract Net Protocol Based on Marginal Cost
Calculations. In: Proceedings of the Eleventh National Conference on Artificial Intelligence,
pp. 256–262 (1993)

3. Conry, S.E., Kuwabara, K., Lesser, V.R., Meyer, R.A.: Multistage Negotiation for Distributed
Constraint Satisfaction. IEEE Transactions on Systems, Man and Cybernetics 21(6), 1462–
1477 (1991)

4. Sandholm, T.: Automated Contracting in Distributed Manufacturing among Independent
Companies. Intelligent Manufacturing 11(3), 273–286 (2000)

5. Yokoo, M., Sakurai, Y., Matsubara, S.: The Effect of False-name Bids in Combinatorial
Auctions: New Fraud in Internet Auctions. Games and Economic Behavior 46(1), 174–188
(2004)

6. Weyns, D., Boucké, N., Holvoet, T.: Gradient Field-Based Task Assignment in an AGV
Transportation System. In: Proceedings of 5th International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2006), pp. 842–849 (2006)

220 T. Sugawara et al.

7. Parunak, H.V.D.: Manufacturing experience with the contract net. In: Huhns, M. (ed.) Dis-
tributed Artificial Intelligence, pp. 285–310. Pitman Publishing, London and Morgan Kauf-
mann, San Mateo (1987)

8. Schillo, M., Kray, C., Fischer, K.: The Eager Bidder Problem: A Fundamental Problem of
DAI and Selected Solutions. In: Proceedings of First International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2002), pp. 599–606 (2002)

9. Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Performance Variation Due to Inter-
ference Among a Large Number of Self-Interested Agents. In: Proceedings of 2007 IEEE
Congress on Evolutionary Computation, pp. 766–773 (2007)

10. Sugawara, T., Hirotsu, T., Kurihara, S., Fukuda, K.: Effects of Fluctuation in Manager-side
Controls on Contract Net Protocol in Massively Multi-agent Systems. In: Proceedings of
2008 IEEE International Conference on Distributed Human-Machine Systems (2008)

11. Xu, L., Weigand, H.: The Evolution of the Contract Net Protocol. In: Wang, X.S., Yu, G.,
Lu, H. (eds.) WAIM 2001. LNCS, vol. 2118, pp. 257–264. Springer, Heidelberg (2001)

12. Ishida, T., Nakajima, Y., Murakami, Y., Nakanishi, H.: Augmented Experiment: Participatory
Design with Multiagent Simulation. In: International Joint Conference on Artificial Intelli-
gence (IJCAI 2007) (2007)

13. North, M.J., Hood, C.S.: A Multi-agent Systems Model of High Performance Comput-
ing Cluster Users. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS
(LNAI), vol. 3415, pp. 99–113. Springer, Heidelberg (2005)

14. Sugawara, T., Kurihara, S., Hirotsu, T., Fukuda, K., Sato, S., Akashi, O.: Total Performance
by Local Agent Selection Strategies in Multi-Agent Systems. In: Proceedings of 5th Int. Joint
Conf. on Autonomous Agents and Multiagent Systems (AAMAS2006), pp. 601–608. ACM,
New York (2006)

15. Izumi, K., Yamashita, T., Kurumatani, K.: Analysis of Learning Types in an Artificial Market.
In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415,
pp. 145–158. Springer, Heidelberg (2005)

Filter Allocation Using Iterative ECNP

Jan Tožička, Štěpán Urban, Magdalena Prokopová,
and Michal Pěchouček

Gerstner Laboratory
Department of Cybernetics, Czech Technical University

Technická 2, Prague, 166 27, Czech Republic
{tozicka,urban,prokopova,pechouc}@labe.felk.cvut.cz

Abstract. Network devices can filter traffic in order to protect end-user
computers against network worms and other threats. Since these devices
have very limited memories and cannot deploy filters against every known
worm, the traffic can be forwarded to other device during so called filter
delegation. In this contribution we present two negotiation based algo-
rithms looking for a good filter delegation solution. We formally describe
this filter allocation problem in a network dealing with distribution of
filters among agents so that several constraints are fulfilled and we ex-
tend this problem to fit a real world task. We show that both the basic
problem and its extension are NP-complete. Both algorithms solving this
problem are experimentally evaluated on a realistic network simulation.

1 Introduction

As data communication networks become more complex and its security more
crucial then it ever was, new ways to monitor and protect them must be inves-
tigated. The software agent technology can be applied to many problems spaces
from public and private to military networks on the battlefield.

Software agents seem to be a natural fit for this type of environment, they
are small, robust, mobile, and have the ability to analyze and adapt to their
local environment on the fly. This can also be very useful in networks with
communication lags and dropouts, such as overloaded networks and wireless
(Ad-Hoc) networks where the network structure can change.

Intrusion detection is an area where the agent technology can be applied.
Agents that contain mobile and RC characteristics would provide a dynamic
capability to discover and protect against emerging cyber threats. Knowledge
sharing among agents would enable dynamic reconfiguration of the agent’s ca-
pabilities and allow for distributed processing. The traditional method is to have
an appliance, or application running on a server, then attack signatures would
need to be put in by hand or downloaded and installed in order to add this new
functionality. While the agents will still rely on similar approach and should
be able to efficiently react to and contain known threats, they shall be able to
use AI techniques to identify new threats similar to the known ones or empha-
size irregular operations and cooperatively adapt using advanced negotiation
techniques.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 221–233, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

222 J. Tožička et al.

1.1 A-net Network Simulation

In our work we focus on the domain of network security and reaction to intru-
sions. During our work we developed an agent simulation of computer network
A-net (see Figure 1).

This agent-based network simulation provides us an easy way to deploy and
test different network protection mechanisms. Each network device is represented
by fully autonomous agent. The base layer of this simulation offers all common
network devices, end user systems and the traffic between them. In this layer
actual flow payload is not generated by the application itself, but rather one of
the several hundreds of example packets is used instead. By having the large
pool of example packets we can assume that this approximation is close enough
to the reality. The data we are using were gathered from real-world network
traffic outgoing and incoming to one of our host machines.

Additionally, we added viruses – worms that spread in the network and attack
vulnerable systems – and DDoS attacks – group of bots generate huge amount
of traffic targeted to one server. Using modeling of the network traffic, our in-
trusion detection system identifies these intrusions and creates descriptions of
the malicious traffic that should be filtered out of the network, we refer to these
as filters.

Fig. 1. A-net network simulation

1.2 Network Flow Filters

Each network device, such as router, switch, hub, is equipped with a field-
programmable gate array (FPGA) and a secondary memory. The gate array
is very limited and it can contain only few filters. Nevertheless it is able to pro-
cess a heavy traffic in real time (GBs per second) and filter out such a traffic
that corresponds to the filters. On the other hand the secondary memory is big
enough to contain specification of all worms ever created but it is very slow to
be used by CPU to filter the traffic in real time.

Filter Allocation Using Iterative ECNP 223

Under these settings we try to protect all vulnerable hosts and to decrease
the amount of malicious traffic in the network. In Figure 1 you can see that each
network device (switches and router) have boxes which shows us deployed filters
in our visualization. This box can be empty (no filter) or colored by color related
to filtered traffic. Colored host means that this computer has been infected by
a worm.

1.3 Filter Allocation Problem

In this article we focus on the distribution of filters in the network. The filters
are distributed over a network so that they cover all paths between vulnerable
hosts. This problem is formally described as filter allocation problem in a network
(FAPN) and we show that it is NP-complete in the Section 4. To be able to solve
real world problem we have extended the FAPN to FAPN-E which is distributed,
on-line, unbounded and with incomplete knowledge. If an network device cannot
deploy some of the filters other device covering the same path can deploy the
filter with possibly worse utility function or the filter can be delegated to other
netowrk device. In this article we present and compare two negotiation based
algorithms looking for suitable filter delegation.

The rest of the paper is organized as follows. Firstly, we introduce work re-
lated to our problem in the Section 2. The Section 3 presents two algorithms
searching for filter delegation. Firstly it presents ECNP based greedy algorithm
in the Section 3.2 which is further extended to second algorithm described in the
Section 3.3. We formally describe and analyze the complexity of FAPN problem
and its extension FAPN-E in the Section 4. Both algorithms are experimentally
compared in the Section 5 and we conclude this contribution in the Section 6.

2 Related Work

Balanced allocation of the monitoring process within the network as well as an
efficient placement of the intrusion response processes need to be decided and
reconfigured locally, in a peer-to-peer interaction among the network compo-
nents. That is valid because there is a desire to limit centralized decision making
processes and centralized collection of data in the network.

2.1 Service Oriented Architectures

Our domain is partially similar to service oriented architectures [3]. Service ori-
ented architectures allow to create application distributed over different enter-
prizes. In some cases the services require local resources for their functionality
while in other cases the services can be moved to other devices and used re-
motely. Our filters can be viewed as services. Nevertheless the relation of service
consumer-provider is not well defined in the network domain but in the filter
delegation where one agent explicitely expect other agent to do filtering on his
behalf.

224 J. Tožička et al.

2.2 Task Allocation Problem

Distributed task allocation is a typical problem that is solved in its different
variations in research communities (e.g. [10]).

The distributed task allocation algorithms are based on different auctioning
approaches (e.g. English, Vickery, Dutch, Seal-bid, All-pay [6]), each having dif-
ferent properties in different environments. The most widely used approaches
to distributed task allocation are based on the CNP (contract-net-protocol) [9]
(based on single round Seal-bid auction), iterated CNP, its OSCM -CNP op-
timality improvements [7] and other combinatorial auctions. These techniques
have been successfully used in a number of network oriented applications. [8]
focuses on similar problem to our case, the agents have limited resources and
preferences and thus they have to coordinate the task distribution. The tasks
do not cost anything to be promised but their consume resources when they are
performed. The situation with the filters is reverse: filter deployment consumes
expensive memory but its execution is free.

The problem of distributing filters through out the network is similar to the
problem of resource allocation and task distribution among autonomous agents
defined in [1] where a set of agents share a common resource and an agreement
is sought where all agents will be able to use this resource to fulfill their goals.

Similarly, in our approach each agent contributes to the negotiation task by
several inputs:

– filters – Each agent has its list of prioritized filters it wants to deploy.
– resources – Each agent taking part in the negotiation also offers some re-

sources for filtering, either to be shared or to be used by itself
– capabilities – Some agents can re-delegate their tasks to different agents, but

others can not.
– strategy – The strategy can be defined by specifying how much traffic we

allow to redirect and thus increase the network traffic

Based on the criteria for evaluating negotiation protocols presented in [1] we are
looking for an algorithm that is (i) distributed, i.e. without any central point, (ii)
simple, i.e. the negotiation consumes reasonable amount of resources. and (iii)
symmetric, i.e. all agents should be treated in the same way.

[2] describes the similar problem of task distribution, where the problem sce-
nario has following elements

– manager – Agent who owns the task is referred to as manager
– contractors – Agents willing to cooperate with manager are called contrac-

tors
– task – Each task has specified benefits and resources needed
– resources – Resources are distributed among agents

Agents are organized into social network according to who wants to cooperate
with who and they cooperate only with their neighbors. The manager starts
negotiation by offering the most efficient (ratio between benefits and required

Filter Allocation Using Iterative ECNP 225

resources) task to its contractors and agents choose out of all tasks the most
efficient one and make a bid.

As opposed to usual approach for task distribution in our domain we need
different approach to the use of the resources. In the most common scenario
resources can be used to satisfy only one task, on the other hand in our case
since the resources are assigned to perform certain type of task, they can be
used by large number of agents at the same time1, but only for this purpose.
Therefore some adjustments to existing algorithms are necessary.

3 Filter Allocation and Delegation in A-net

Each agent desires to fulfill all necessary filtering tasks for the lowest cost possible
but its resources are limited, therefore conflict of interests can arises. Thus in
order to satisfy its needs agent has to reach an agreement with other agents. In
[5], we have designed an algorithm that distributes a newly created filter through
the network covering all vulnerable pairs of hosts and servers – i.e. satisfying the
completeness condition (if such a distribution exists). Moreover this algorithm
uses minimal amount of resources.

Once a new filter is introduced into the network the agent that received this
filter sends it to its neighbor agents. Using the same technique the filter is dis-
tributed through the network. When the filter arrives to the host machine it
replies whether it is vulnerable againts described threat. Agents collect these
replies and based on them decide whether to deploy the filter and how to reply
to the agent that informed it about this filter.

However this distribution algorithm is optimal only for the distribution of one
filter, given several filters in a row the resulting distribution is not guaranteed to
be optimal. Also, this algorithm does not use the filter delegation which could
allow to deploy more filters in the network. Therefore we have implemented peer
to peer negotiation that further improves filter distribution.

Since, in our network simulation, we allow for a simple delegation mechanism
that allows to increase number of deployed filters in the network, a network
device can ask another device to filter for it and then the respective incoming
traffic is forwarded traffic to other device. These delegated filters are denoted as
filter-for, or FF.

In the case a filter should be placed on a device not equipped with enough
available resources the process of filter delegation starts to solve the situation.
The idea of delegation is to find other devices with available resources where
request for filter use can be forwarded.

Device can be chosen for filter delegation if

– the same filter is already deployed on the device, or
– the device has enough available resource to deploy the filter

TheFAPNproblem, formally described in the Section 4, is defined on anundirected
graph G = (A, E), however we limit in our simulation to acyclic graphs only.
1 Here, we consider resources needed for filter deployment only.

226 J. Tožička et al.

In this section we describe the requirements on such a solution in the Sec-
tion 3.1 and then we present two solutions of filter allocation problem. Firstly,
it is ECNP based greedy algorithm in the Section 3.2. We use this algorithm for
evaluation of the second algorithm that uses more advanced negotiation based on
an iterative modification of ECNP, described in the Section 3.3. Both algorithms
are experimentally compared later in the Section 5.

3.1 Task Description

In this contribution we present and compare two algorithms finding the devices
where the filters should be delegated to. ECNP protocol [4] addresses fast way
how to distribute selected set of tasks. The improved iterative version of ECNP
allows also to select good subset of tasks to be delegated.

When request for deploying new filter is obtained, the network device can
reevaluate filters that are already deployed and according to priorities and statis-
tics decide to remove one or more and place requested filter instead.

Apart from individual filter selection negotiation will be used also. Network
devices can cooperate to find place(s) where to place filter while other devices
will redirect their traffic to this place. The algorithm searching for optimal places
can use following inputs and produces desired outputs:

Inputs:

– price for deploying filter
– price for redirecting traffic

(The simple price for redirecting is given by number of nodes the traffic goes
through. More elaboratedmeasures take into account statistics – price for redi-
recting traffic for each filter can be multiplied by average usage of the filter.)

– priority of filter given at filter creation,
– statistics of filter usage/failures

• number of flows filtered out / used
• size of traffic filtered out / used
• time since last successful filtering out / usage

– age of the filter

Outputs:

– what filters are deployed on devices
– what filters are delegated to other devices (traffic redirected)

Evaluation: Supposing we can order filters from best to worst using predefined
metric (priority by itself or priority combined with statistics) we can divide the
evaluation of the solution into two separate maximization/minimization tasks:

– firstly the task is maximizing number of pairs covered by filters where count-
ing starts from the best filters

– on maximal coverage we need to minimize the increase in traffic in the net-
work (this can be based on old statistics of filter usage and the distance how
far the traffic is redirected)

Filter Allocation Using Iterative ECNP 227

By optimizing the above defined metrics the percentage of worm flows success-
fully filtered out should be the highest possible.

The algorithm delegating filters in the netowrk is also required to be:

– distributed – each agent is responsible for its netowork device and decides
which filter to deploy locally

– on-line – filters are comming in sequence and agent need to improve current
solution

– stable – the changes for new filter should be minimal since the cost of the
reconfiguration of FPGA

– unbounded – there is no upper bound for the number of filters
– able to work with incomplete knowledge – some of the inputs are not known

to the agents

3.2 Greedy Algorithm: ECNP

In the following paragraphs we describe the greedy algorithm that represents a
lower bound solution of the problem.

The Algorithm 1 shows how we find new places where the filters are delegated.
We are using ECNP, one of the extensions to CNP introduced in [4], where agents
can bid only for parts of the offer, i.e. to choose only one or two filters out of
the whole offer. Filters covered by winning bid are removed from the call-for-
proposals (CfP) and the negotiation continues until all remaining filters can fit
to the device itself. ECNP also introduces temporal grants and rejects, and thus
the initiator of the negotiation can change its decision.

Algorithm 1. Filter delegation greedy algorithm – ECNP
while Enough resource to fit all filters are available do

Send CfP for delegation of all filters that are not delegated yet to all agents.
Wait for bids from all agents.
Choose the best bid and confirm, reject others.
Discard the filter locally and set delegation.

end

This solution is static and does not try to improve filter distribution once it is
negotiated. It also delegates more filters than it is necessary. These imperfections
are addressed by the improved algorithm described below.

3.3 Improved Algorithm: Iterative ECNP

In our scenarios we are facing the challenge of incomplete knowledge – agents
can not estimate how much traffic the filter can filter out in advance. Anytime
new filter is deployed on a device, the filter evaluation becomes available after
some period of time when statistics are counted. Therefore we cannot take into

228 J. Tožička et al.

account the amount of filtered traffic during the initial distribution and moreover
this value can change in time, thus our solution needs to be periodically checked
and adjusted.

The negotiation about filter delegation can be solved one filter by one, but
better results are achieved when negotiating about set of filters. We propose
an algorithm that finds the best set of filters to be delegated, minimizing the
unavoidable increase in network traffic.

We modified ECNP protocol to build up our knowledge about how much will
the traffic increase by using filter delegation. First the value of traffic increase is
estimated for each filter and the set of filters with lowest value is chosen. We use
ECNP to find possible delegation places for each filter and more accurate esti-
mations, our implementation of ECNP is however modified and no proposal is
accepted. Using these more exact estimation the set of filters for delegation is re-
counted and ECNP is started again. The details are described in the Algorithm 2.

Algorithm 2. Iterative ECNP
Choose initial set S of filters for forwarding.
Set price for forwarding to initial value for all filters.
while set S of filters to be forwarded changed do

Start non-accepting ECNP algorithm.
Reject proposals instead of accepting them.
Recount eventual increase in traffic based on ECNP proposals.
Choose new set S of filters for forwarding.

end
Start ECNP algorithm for final set S and deploy filters.

We cannot use simple estimation for each filter by itself, but all estimations
has to be done over a set of filters. When estimating the value of increased traffic
for a single filter the selected place for delegation is the closest agent with free
resources, however this estimation can not be used for a set of filters, it is unlikely
that the closest agent has enough free resources for all the filters. Therefore a
set of filters is used for adjusting the estimations and the concrete distribution
where to delegate is found once the set of filters for delegation is determined.

4 Formal Description of Filter Allocation Problem in
Network

Let us now formally describe a filter allocation problem in a network (FAPN) in
this section. Each agent ai from the set of all agents A = {a1, . . . , an} has limited
resources ri available to provide some of the filters. Let F = {f1, . . . , fm} be a set
of filters. Eachfilter fj ∈ F is defined by a tuple < u(fj , a1), . . . , u(fj, an), r(fj) >,
where u(fj, ai) is the utility for deploying the filter fj by an agent ai and r(fj) is
a number of resources needed to deploy the filter.

In addition there are constraints where the filters are needed. These con-
straints are defined on a network represented by an undirected graph G = (A, E).

Filter Allocation Using Iterative ECNP 229

Each filter fj determines a subset of paths in the G graph Pj ⊆ Paths(A), which
needs to be covered by the filter fj. Paths Pj represent paths between all pairs
of vulnerable hosts in the case of worm filters or all path leading form bot net
to the server they are attacking.

The distribution of filters between agents is defined by the function D : F �→
A. A distribution is valid if it satisfies following properties:

correctness: Each agent ai ∈ A does not deploy more filters then it has re-
sources for:

∑
fj∈F :D(fj)=ai

r(fj) < ri

completeness: For each filter fj all paths Pj are covered.

We suppose that such a valid distribution exists for each instance of FAPN.
Under these settings the task is to maximize the overall utility U :

U =
∑

fj∈F
u(fj, d(fj))

Problems similar tasks to FAPN are often NP-complete (e.p. task allocation
problem).

Theorem 1. For an instance of a filter allocation problem in a network, as
defined in the Section 4, and a real number k the problem to decide whether
distribution D with utility higher than k exists is NP-complete.

Proof. Firstly, let us show that FAPN is NP problem. Having an instance of the
problem, real number k and a solution D we can check in a polynomial time
whether it is valid distribution and whether its utility is greater than k.

We use knapsack problem (KSP) to show that FAPN is NP-hard, i.e. FAPN
≤p KSP. An instance of KSP contains n items, where an item i has value vi and
size fi, and a size of the bag c. We look for a subset of items S ⊆ {1, . . . , n} that
maximizes

∑
i∈S vi while fulfilling the constraint

∑
i∈S si ≤ c. This instance can

be transformed into FAPN with two agents {a1, a2} : r1 = c, r2 =
∑n

1 si and
n filters {f1, . . . , fn} : fi =< {u(fi, a1) = vi, u(fi, a2) = 0}, r(fi) = si >. A
network connects both agents and they are present in all the sets Ai = {a1, a2}.

A valid solution of this instance of FAPN problem can be easily transformed
to a solution of original KSP problem. All items represented by filters deployed
by the agent a1 represent a solution S to KSP problem.

Variation of FAPN: FAPN-E. In this contribution we do not focus directly on
presented FAPN problem but its variation will be considered instead. Let us
change the FAPN problem in the following ways:

distribution – each agent is responsible for its filters
incomplete knowledge – non of the agents knows values of utility functions

in advance but it can approximate the utilities of deployed filters.
on-line task – the whole set of filters is not known in advance but filters appear

to the agents in sequence and the agents try to keep as good distribution as
possible

230 J. Tožička et al.

unlimited size of F – the set of filters is increasing with the time and its size
is unlimited. It means that after some time there is no valid distribution of
FAPN task since the completeness property cannot be fulfilled. This case is
described bellow in more detail.

The ever-growing set F will once harm the completeness property of each
correct solution. Agents can deal with this problem in two ways. Firstly, an
agent a1 can delegate the filter fj to another agent a2 (that even does not
have to be part of the path that need to be covered). This delegation consumes
also a1’s r′j resources. The utility of this delegated filter is the same as for the
original filter u′(fj , a2) = u(fj, a1) (if not considering price for delegation, e.g.
traffic growth). Another possibility is that some of the paths remain uncovered
in this case agents firstly try to cover as many paths as possible and afterwards
they maximize the utility function.

Theorem 2. The variation FAPN-E remains NP-complete.

Proof. Following the proof of the FAPN NP-completeness it is obvious that the
distribution, incomplete knowledge and on-line task cannot make the problem
easier. The filter delegation nor the filter omission, that are used to deal with
too large F sets, would not be used in the solution used in the original proof
since they would not improve the solution of created task, e.g. in the case when
r′j = rj . The filter omission will not be used since it would unnecessarily decrease
the coverage.

Let us now describe our domain in the formalism presented above. The network
we are protecting has a tree topology and the following items are essential for
our problem:
agents: Each agent ai ∈ A simulates a network device, such as router, switch,

hub or end user computer. We assume that switches and routers are equipped
with additional memory that can be further used.

resources:
filters: In our simulation we represent filters as filters. These filters can be

loaded into additional memory of network devices and then filter the traffic
going through the device. Each filter – filter fj determines a set of agents it
needs to cover. End user systems can have specified vulnerabilities and Aj

defines a set of agents with the same vulnerability. We presume that worms
can spread only between hosts with the same vulnerability.

network: All network devices are connected into the tree structure using the
usual network topology.

utilities: The utility of each filter on particular device is how much it can
decrease malicious traffic in the network, thus the sooner the traffic is filtered
out the better and also the more flows go through given device the better.

5 Experiments

Several experiments were performed to show, how the Iterative ECNP (I-ECNP)
can further improve the security of the system. Where I-ECNP is used more fil-
ters could be allocated into the network and more importantly their distribution

Filter Allocation Using Iterative ECNP 231

Fig. 2. Number of malicious flows reaching vulnerable hosts. This number is lower
when Iterative ECNP technique is used.

Fig. 3. Overall number of malicious flows that were filtered out by protection mecha-
nism

Fig. 4. Number of filtered out malicious flows per minute

in the network is adjusted for better performance therefore the system is bet-
ter protected against malicious attacks. The following figures represent average
from 3 test-runs using the original ECNP negotiation and 3 test-runs using the
I-ECNP negotiation. All these experiments were evaluated on A-net network

232 J. Tožička et al.

simulation with one router and 5 subnets connected to this router. Each subnet
contained 4 switchs, 15 hosts and one DHCP server.

Figure 2 shows comparison between number of malicious flows reaching vul-
nerable hosts with original negotiation used and with the new variant of Iterative
ECNP. By improving the negotiation we achieved to lower the number of flows
that reach vulnerable hosts and thus can infect these hosts.

Figure 3 and 4 show how the number of successfully filtered out worm flows
increased. The amount of filtered out malicious flows is higher when the new It-
erative ECNP technique is used. However after certain time, the network cannot
accomodate more filters and the difference between those techniques is decreasing.

6 Conclusion

Even thought network devices with the capabilities assumed in this paper are
available only in laboratories, we have investigated the algorithms for filter del-
egation. Both presented algorithms are based on the negotiation using ECNP
communication protocol. First one tries to delegate the filters in a greedy way,
while the other runs the ECNP negotiation repetitively to choose best subset of
filters to be delegated. Both algorithms were evaluated in a realistic network sim-
ulation A-net and the improvement of the iterated version of ECNP was shown.
We also formally described solved problem and shown that it is NP-complete.

Considering the similarity of the problem solved in this contribution and ser-
vice or task allocation problem, we believe that Iterative ECNP protocol can be
usefull in these domains as well.

Acknowledgement

We gratefully acknowledge the support of the presented research by Army Re-
search Laboratory project N62558-07-C-0007.

References

1. Cicortas, A., Iordan, V.: Multi-agent systems for resource allocation. In: 2nd
Romanian-Hungarian Joint Symposium on Applied Computational Intelligence,
SACI 2005 (2005)

2. de Weerdt, M., Zhang, Y., Klos, T.: Distributed task allocation in social networks.
In: Autonomous Agents and Multi-Agent Systems (AAMAS 2007). ACM Press,
New York (2007)

3. Dijkman, R., et al.: The state of the art in service-oriented computing and design.
4. Fischer, K., Muller, J.P., Pischel, M., Schier, D.: A model for cooperative trans-

portation scheduling. In: Proceedings of the First International Conference on Mul-
tiagent Systems, Menlo park, California, pp. 109–116. AAAI Press / MIT Press
(June 1995)

5. Pěchouček, M., Tožička, J., Štěpán U., Prokopová, M.: Extending computational
reflection in multiagent systems: towards autonomic computing. Technical report,
The Gerstner Laboratory, Czech Technical University in Prague (2007)

Filter Allocation Using Iterative ECNP 233

6. Sandholm, T.: Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. In: Chapter Distributed Rational Decision Making, pp. 201–258. MIT
Press, Cambridge (1999)

7. Sandholm, T., Lesser, V.: Coalitions among computationally bounded agents. Ar-
tificial Intelligence 94(1-2), 99–137 (1997)

8. Shehory, O., Kraus, S.: Coalition formation among autonomous agents: Strategies
and complexity. In: Castelfranchi, C., Muller, J.P. (eds.) MAAMAW 1993. LNCS
(LNAI), vol. 957, pp. 57–72. Springer, Heidelberg (1995)

9. Smith, R.G.: The contract net protocol: High level communication and control in a
distributed problem solver. IEEE Transactions on Computers C-29(12), 1104–1113
(1980)

10. Walsh, W.E., Wellman, M.P.: A market protocol for distributed task allocation.
In: Third International Conference on Multiagent Systems, Paris (1998)

On the Use of Symbolic Data Analysis to Model
Communication Environments

Flavien Balbo and Julien Saunier

LAMSADE, Université Paris-Dauphine
Place du Maréchal de Lattre de Tassigny, Paris Cedex 16
{balbo,saunier}@lamsade.dauphine.fr

Abstract. Recent research on multi-party communications shows how multi-
agent communications can take advantage of the complexity of the human com-
munication process. The salient point is the very nature of the communication
channels which enable humans to focus their attention on ambient communica-
tions, as well as to direct their own communications. For multi-agent systems,
the difficulty is the routing of messages according to both the needs of the sender
and the needs of the (potential) recipients . This difficulty is compounded by the
necessity of taking into account the context of this communication. This article
proposes an architecture for the Environment as Active Support for Interaction
model (EASI) which is based on a classification data model and supports multi-
party communication. Our proposition has been implemented and the functional
description of the environment is given.

1 Introduction

Recent research on multi-party communications (MPC) [2,7,14,20,23] shows how
multi-agent communications can take advantage of the complexity of the human com-
munication process. In particular, the agents can have opportunistic behavior [12], can
monitor the system [9], can have a support for information propagation [4]. The main
issue in supporting MPC is to take into account dyadic interaction (one to one), group
interaction (one to many) and overhearing (many to one/many) within the same inter-
action process. In MPC the sender viewpoint is not enough because it does not know
all the agents that might be interested in its message. For example, an agent can listen
to messages without the agreement/knowledge of the sender through overhearing [20].
Of course, the first MPC issue is the support of MPC itself, the second being the inte-
gration of context information, since part of the interaction is contextual and depends
on the state of the environment [26]. For a recipient, the usefulness of a message may
depend on the context of the sender, e.g. its location [11], the context of the message,
e.g. its theme [4], and the context of the recipient itself, e.g. its availability.

These challenges are related to how the recipients are chosen. MPC requires knowl-
edge of the needs of both the sender and the recipients [23]. In [20] and [23], the authors
insist that the choice of recipients and the transmission of messages should be done by
the environment. The environment is considered to be a first-class abstraction that em-
bodies part of the responsibilities of the multi-agent system [27]. The use of context
information requires a mechanism to access it and maintain it. Here, the environment

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 234–248, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Use of Symbolic Data Analysis to Model Communication Environments 235

can act as a context server [3]. This paper presents an architecture for the Environment
as Active Support for Interaction (EASI) model which is based on a classification data
model and supports MPC.

This paper is organized as follows. Section 2 describes the solutions to support in-
teraction in MAS according to the MPC problematic viewpoint. Section 3 presents the
adaptation of a classification data model for interaction purposes. Section 4 gives a
functional description of the environment. Section 5 compares our proposal with re-
lated work; section 6 concludes.

2 Interaction Support

In a message exchange two sub-problems exist, depending on the viewpoint of the
agents. From the senders viewpoint, it is a connection problem (CP): which agents
are related to my message? The problem is to map the senders needs (information,
capabilities[6], resources, ...) to the address of the related agents. From the recipients
viewpoint, it is a data extraction problem (DEP): which messages are related to me?
The problem is to map the recipients needs to the content of the messages. We classify
the solutions to support interaction in three categories: 1) the interaction is dyadic, the
solutions are based on direct communication between the agents; 2) the interaction is
mediated, the solutions are based on message exchanges through a data space; 3) the
interaction is ”organized”, the solutions are based on the use of a specific mechanism.

2.1 The Solutions Based on Dyadic Interaction

In an open and heterogeneous MAS, middle-agents are commonly used to look for an
agent. The principle is to record in these specialized agents the information needed
to look for the recipient with information about agent capabilities for the most usual.
When an agent looks for an agent with a specific capability, it sends a message to the
middle-agent and receives the list of potential recipients of its request. In the FIPA ab-
stract platform architecture, this principle has been reused for the white or yellow pages
directory services. The advantage in using a middle-agent is that it can support other
services such as ensuring the anonymity of the agents. Depending on the services, a
middle-agent taxonomy has been introduced in [29]. The problem created by central-
izing the information is offset by the possibility of having several middle-agents. This
solution implies common knowledge about these intermediaries and data updating has
to be taken into account. Hence the success of this approach where information about
agent capabilities means that not much data updating is required. Another frequently
used solution in open and heterogeneous MAS is the Contract Net Protocol (CNP) [6].
The initiator broadcasts its request with the criteria that the agents have to satisfy to
be selected for the following interaction process. If they want, recipients respond with
their auto evaluation on the criteria. The success of this protocol relies partially on the
fact that both sender and recipients are involved in the selection process [22]. Moreover,
since the criteria are chosen according to the needs of the sender and independently of
the protocol, the CNP has easily been adapted for several applications. The constraint is
that it needs a broadcast at the beginning of the protocol. All these solutions are adapted
to solve CP but they do not take into account DEP.

236 F. Balbo and J. Saunier

2.2 The Solutions Based on a Data Space

These solutions require the sender to put its message in a data space where the recipi-
ents read their messages. This data space can be external or can be a component of the
MAS environment. In the first category, based on the LINDA model, there are the tuple
spaces that are a continuation of the blackboard architecture. The aim of this approach
is to avoid the space and time synchronization problems related to point-to-point com-
munication. In this approach, the messages are tuples, and templates are used to look for
them. The matching is done by comparing the message tuples and the template tuples
according to the position and type of data used to describe the messages. TuCSoN has
been developed using this model; it enables the tuple space to be programmed in order
to specialize its reaction to the events, the result being what is called a Tuple center
[18]. Using the same model, there is also LIME [17], which is a tuple space model for
mobile agents.

Solutions based on the use of the environment extend the principle of a shared data
space to take into account an interaction support in which the agents evolve. [19,27]
propose a functional architecture of the environment which integrates a layer to support
the interaction between agents. Communication between agents mediated by the envi-
ronment comes from the reactive agent community and is often based on the stigmergy
principle. Extended to cognitive agents, this trace mechanism has been used in [21] and
[26], where all agent interactions are traces that can be observed by other agents and
give extra information in addition to that contained in the message. In [8] the agents
communicate through a tuple space that is integrated into the environment. These solu-
tions take the viewpoint of the recipients and cannot be used to solve the CP.

2.3 Solutions Based on a Specific Mechanism

These mechanisms are based on the use of meta-knowledge or of a network protocol.
In closed MAS and/or when the agents evolve within a platform, the MAS organization
gives information to address messages. For example, in the Madkit platform1, which is
based on the organization model aalaadin, the agents communicate according to their
role or their group in an organization. The structure of the organization is recorded
within what is called the kernel. When an agent sends a message to agents according
to a role, it sends the message to the kernel which looks for the recipients and puts
the message into each of their letter boxes. In Magique2, the MAS is organized within a
hierarchical network where each agent is located on a node and the intermediaries nodes
contain the skills of the agents situated below in the hierarchy. An agent that is looking
for a skill sends the message to its superior and the message follows the hierarchy until
the skill has been found. In these two examples, the agents do not have to know the
address of a middle-agent or a tuple-space, they just use a common structure, their
organization. Because the messages are not addressed according to the agent identifier
or address, this solution improves the robustness and the efficiency of the MAS but
limits communication to organization-based criteria. These solutions take the viewpoint
of the sender and are solutions for CP.

1 www.madkit.org
2 http://www2.lifl.fr/SMAC/projects/magique/

On the Use of Symbolic Data Analysis to Model Communication Environments 237

The mechanism can be based on a network protocol. In [4], the authors use broad-
casts restricted to specialized channels. The messages are sent on a channel to which the
recipients have subscribed. Each channel has an IP address and is described by a string
(following a taxonomy) in an XML file located on a URL. When an agent has chosen its
channel it waits for messages. The messages are sent using the multicast function of the
UDP protocol. In SIENA [5], the authors proposed a content-based routing protocol.
Routing is done by filters that are introduced by recipients according to notifications
that have been made by a sender. A notification is an item of information about the in-
formation that the sender could send on the network. The problem is to find the subset
of recipients for each message and algorithms can improve filter management efficiency
[25]. These solutions take the viewpoint of the recipients and are not suitable for the CP.

This discussion about the principal solutions that have been proposed to support
interaction between agents shows clearly that each one is suitable for just one of the
sub-problems. In this paper, we propose the EASI model, which takes into account,
together and separately, the needs of both senders and recipients. The advantage is to
have a single model that works with several interaction models and can easily combine
them in order to take into account multi-party communication.

3 Communication Environment

In order for messages to be routed successfully, the environment has to stock a large set
of data related to the agents, the message and everything necessary to know the con-
text of the communication. In EASI, when a message is sent the environment searches
through these data to choose the recipients. It has to gather information about the needs
of the sender, the needs of the potential overhearers, and the context. Hence, our model
has to address three issues: (1) an efficient search for recipients, (2) an expressive data
description model and (3) a straightforward applicability.

Concerning issue (1), the environment contains information on all the components
of the MAS and our objective is to let the agents use this common knowledge to de-
fine their interaction needs. For example, if information about the relationship between
agents is available, then an agent a could send a message to the agents that it has in
common with another agent b; in addition, an agent c, a friend of a but not of b and that
might be interested could overhear the message. The amount of data increases fast, but
the environment has to rapidly find the recipients and deliver the messages. Therefore,
the model has to enable the efficient description and organization of large data clusters.
Issue (2) is that of data representation, which should be expressive and enable a uni-
fied management of the descriptions and of the needs of the agents. The last issue (3)
concerns the use of the model: it should be independent of the implementation, but also
quickly applicable in real applications thanks to existing technologies.

These issues have led us to base our model on Symbolic Data Analysis (SDA) [1] in
order to formalize the environment. SDA relies on the logic concepts of intension and
extension to describe and classify data clusters. Its formalization is expressive since it
does not depend on the type of data (quantitative, categorical or multi-valued), the com-
parison operators are given by the designer and variables can be used. SDA is applicable
because the cluster definitions can be translated with SQL and/or in first-order logic.

238 F. Balbo and J. Saunier

Ω p1 p2 p3 p4 ... pnp

ω1 “a1” “Main Hall” 44 false ... pnp(ω1)
ω2 “a2” “A209” ... pnp(ω2)
ω3 “a3” “A209” 37 true ... pnp(ω3)
ω4 “a4” “A209” 33 true ... pnp(ω4)
....
ωn p1(ωn) p2(ωn) p3(ωn) p4(ωn) ... pnp(ωn)

Fig. 1. Symbolic data table: n individuals and p properties

3.1 Symbolic Data Modeling

Let us begin by introducing the basic SDA definitions. The real world is made up of n
individuals ω ∈ Ω. Each individual has np properties, and pj is a mapping from Ω to Dj

which associates to each ω ∈ Ω a value in the definition domain Dj of the jth property
and D = (D1, ..., Dnp). For instance, individual ω1 has four properties pj : its identifier
(string), its location (in a set of building positions), its age (number) and its availability
(boolean). The values associated to ω1 are p1(ω1) = ”a1”, p2(ω1) = ”MainHall”,
p3(ω1) = 44 and p4(ω1) = false.

Considering the values of all the properties pj , j = 1, ..., np for the ith individual,
dωi ∈ D is the description of ωi in the model. In the previous example, the description
dωi of the individual ω1 is ”a1”, ”MainHall”, 44, false.

In practice, the symbolic data related to a given set of individuals are represented
in an n × np matrix. The columns are the properties and the rows are the individuals.
Figure 1 contains a symbolic data table, where the first rows and columns have been
filled out. Not all the properties make sense for all the individuals, for instance the age
of a message.

In the real world, the individuals can be grouped together thanks to concepts. The
concepts Ck, k ∈ N are intents, they describe descriptions which satisfy certain indi-
viduals. An example of a concept C1 would be all the individuals below 40 situated in
room A209.

The extent of a concept is the set of individuals which satisfy this intent. In the table,
the extent of the concept “younger than 40, in room A209” is the set {ω3, ω4}. An
assertion is a symbolic object that is a mapping Ω → {true, false}. Let v = v1, ..., vnp

be the description of an individual or a concept i, with vj data that may be quantitative,
categorical or multi-valued. An assertion is defined as:

as = [pj1Rj1vj1] ∧ ... ∧ [pjqRjqvjq] for 1 <= j1, ..., jq <= np, where Rj is a
comparison operator between the property pj and the value vj . The set of symbolic
objects is S. For example, the assertion as1 = [p2(ω) = A209] ∧ [p3(ω) < 40] is
the description of the concept C1. A symbolic object is an intent description. Its extent
that is E(a) = {ω ∈ Ω|a(ω) = true} contains all the individuals which satisfy the
comparisons with the description values of the assertion. For example, the extent of a1

is a class of individuals which contains ω3 and ω4.
An assertion is therefore a comparison between the description of an entity and given

values. It defines a class of entity which contains all the entities that satisfy these com-
parisons. A concept is also ”what the user needs” with an exact but unknown extent

On the Use of Symbolic Data Analysis to Model Communication Environments 239

C
S

E(ask)
E(Ck)

p

Ω

Ck

ask

dωi

ωi

D

Fig. 2. Real world and model in Symbolic Data Analysis

in Ω, and a symbolic object is its formalization in the model with an imperfect but
computable extent in Ω.

Figure 2 sums up the SDA definitions. The real world is made up of individuals and
concepts. The concepts are intent descriptions of one or more individuals, for example
“the agents available and situated in room A209”. The extent of a concept (relation (1))
contains individuals ωi ∈ Ω which, taken as a whole, are a class. To each individual
of the real world corresponds a description dωi ∈ D in the modeled world, thanks to
the mapping p (relation (2)). A symbolic object is the formalization of a concept C
(relation (1′)). Symbolic objects S are intent descriptions using the descriptions of the
individuals dωi (relation (3)). The extent of a symbolic object contains the individuals
of the real world whose description satisfies its description (relation (4)).

3.2 Communication Routing

This section shows how the Symbolic Data Analysis model is adapted to design a com-
munication environment; more details about the EASI syntax can be found in [23]. In
EASI, the environment contains the data for communication (Ω, D) and information
about how to manage it (S). The concept is found at the MAS design level and not in
the environment model. Some adaptation is direct: an individual is called an entity and
Ω is the set of entities. An entity is the description of a component of the multi-agent
system: agent, message, or object, the last one being a generic term to take into account
anything which is neither an agent nor a message and that can be used to give informa-
tion about the context of an interaction. For example, rooms are objects which can be
described (size, capacity, facilities, etc.) and a message could be addressed according
to this information: ”message to the agents in the closest room”. There is a distinction
between the real component and its description in the EASI model. For example, an
agent has its own process and knowledge, and a description of it is recorded in the en-
vironment. The set of properties P is the ontology of the communication environment,

240 F. Balbo and J. Saunier

that is to say the information that can be used for communication purposes. D is the set
of descriptions of the entities and completes the ontology with the values of the entities
properties that are currently recorded in the environment.

Remember that a concept in ADS is an intent description of individuals. It represents
what the agents need to identify in Ω, that is to say in all their common knowledge. A
concept is reified by a symbolic object with an extent that is computed in Ω in order
to directly identify the entities, or in S in order to find the symbolic objects that are
related to the same need. There are three types of concept. The first type is related to
the category of entities. A category of entities is a set of entities that is described by
the same properties. This property set is called the Pdescription of the category, and the
entities are clustered using the existence condition of required properties. Let C be a
category and PC its Pdescription; the assertion catC = [PC ⊂ Pω] is true for an entity
ω ∈ Ω if PC is included in its own Pdescription (a null value for a property expresses
the absence of this property [23]. For example, let FIPA be the category of the FIPA
messages that are recorded in the environment, let PFIPA be the Pdescription of this
category, E(PFIPA) = {m ∈ Ω|catFIPA(m) = true} contains all the entities that
have the description of a FIPA message (the FIPA language component is the properties
in this case). This description level clusters the data in Ω according to their link with
the communication needs. The advantage is that this link is independent of the property
values and thus is independent of the update process.

The second type of concept is related to the communication needs of the agents, for
example transmitting a message to “the agents available and situated in room A209”.
A filter is the reification in S of this need and gives the intent description of the con-
straints on the entities that are related to a connection. A filter f ∈ F ⊂ S is a tuple
〈fa, fm, [fco], nf , [priorityf], initiatorf〉. The first three elements are assertions: fa

is the intent description of the constraints on the recipients, fm is the intent descrip-
tion of the constraints on the messages and fco is the intent description of the con-
straints on the context. The other elements are name, priority and initiator (agent that
adds this filter to the environment) of the filter. Each assertion has a Pdescription too,
for example Pfa is the Pdescription of fa and contains the properties that a recipient
must have to be taken into account as a recipient.). The extent of a filter according
to the property existence constraint in Ω contains the potential components of a con-
nection that are gathered in the tuple 〈E(Pfa), E(Pfm), E(Pfco)〉, with for example
E(Pfa) = {a ∈ A|∀pi ∈ Pfag , pi(a)
= null} with A ⊂ Ω the agents set.

The last type of concept is related to the need to manage the relation between the
entities and the symbolic objects. Basically, the idea is to match the Pdescriptions of
the entities to those of the assertions of the filters. A symbolic assertion is a mapping
S → {true, false}. For a symbolic object, the symbolic assertion sa takes the value
true if the symbolic assertion is valid and false if it is not. For example, the relation
between a message and its filters is designed as a concept: which filters f enable the
message m to be received. Its reification is given by the symbolic assertion sam(f) =
[Pfm ⊂ Pm] and its extent in F is Channelm = {f ∈ F|asm(f) = true}, with Pfm

the Pdescription of the message related to the filter f . The result of this extent is a new
symbolic object that we call SO and that has an extent in Ω. This extent is the union
of the extent of the symbolic objects belonging to it and gives a solution to identify

On the Use of Symbolic Data Analysis to Model Communication Environments 241

Fig. 3. Interaction component modeling

the relation between entities. For example, the extent of Channelm in Ω contains the
entities that have in common the messages m; more precisely, this extent contains all
its recipients (recipientm = {a ∈ A|∃f ∈ Channelm, a ∈ E(Pfa)}) and the whole
context (Contextm = {C ⊂ Ω|∃f ∈ Channelm, C ∈ E(pfm)}).

In EASI, the filters dedicated to the management of the MAS belong to the environ-
ment. These filters are introduced either by a group of system agents, or by a mechanism
which is internal to the environment. Thus, the filters are partitioned in two categories,
depending on their initiator: F = FE ∪ FA, where FE is the set of filters introduced
by or on behalf of the environment and FA is the set of filters introduced by the agents.
In this way, the environment can add messages to the agents, i.e. they will receive mes-
sages that would not have been received otherwise.

Figure 3 shows the components of the EASI model and their relations. In Ω the
entities are described with a value for each of their properties. This set is modified
according to the update process of the MAS, such as D that gives a global overview of
the entity values and therefore of the state of the MAS. S contains the tools to manage
the recorded information. For example, a message is an entity m in Ω and dm in D
records its values (2). Dm ⊂ D contains all the values for each property that are related
to the same category as m and enables the Pdescription Pm to be computed. According
to this description and following the initial concepts (1),the assertion catpm , the filters
and the sam are computed (3). The extent (4) of the assertion (catm) related to the
Pdescription Pm gives the entities that share the same properties. This cycle is used to
find a subset of entities from one of their component or from a Pdescription coming
from a user need (a concept). A filter is a subset of assertions and its extent is computed
in Ω on the tuple that is composed of the extents (5-6) (only the extent for the agents

242 F. Balbo and J. Saunier

Fig. 4. An Environment Functional Description

are given in Fig. 3). The objective is to limit the processing to just the entities that
are related to the interaction while remaining independent of the update process of the
entities. The symbolic assertion sam and its extent Channelm ∈ S are computed (7).
The extent in Ω is the union of the extent of the filters (8). These data clusters can
be computed a priori according to the description of the entities that are related to the
interaction process in the MAS, which means that only the link between a new entities
and these clusters has to be computed.

4 Functional Description of the Environment

This section provides a functional description of the environment (figure 4) that has
been developed using the interaction model EASI. The proposal is based on the abstract
functional description of the environment in [28]. The description is divided into two
parts, firstly a description of the internal modules, then the common cases of interaction
between agents and the environment.

4.1 Description of the Environment Modules

Our environment is composed of the modules related to the processing of the descrip-
tion of the MAS components (Description Module (DM)), to the processing of the com-
munication (Communication Module (CoM)) and to the control of the communication
(Control Module (CM)).

DM is composed of the sub-modules that manage the extent (Omega module) and the
intent (Intent Description (ID) module) descriptions of the MAS components. Omega
contains all the entities and enables modification operations (add/retract/modify).

On the Use of Symbolic Data Analysis to Model Communication Environments 243

ID contains the organization of the data as described in section 3.2. It contains the Pde-
scription of the entities, and for each filter the Pdescription of the assertions composing
it and the symbolic objects that are related to the link between the entities and the sym-
bolic objects. For example, for a filter f , ID contains Pfa , Pfm ,Pfco and for each of
these sets their links with the other symbolic objects like Channelm. ID maintains the
link between the intent description and their extent in Omega, and the module contain-
ing the filters. When an entity Pdescription is added, if it is already recorded then the
reference to the entity is added to all the structures the Pdescription is related to; in
the other cases all the structures have to be tested. At this point the entity Pdescription
are never deleted and this operation is under study. When the Pdescriptions related to
a filter are added, ID looks for SO where the filter has to be recorded; in the case of
failure, new SO are created according to the Pdescription of the assertions.

CoM is composed of the Message Box sub-module where messages are stored, the
Communication Filters sub-module where the filters are stored and triggered, and the
Translation sub-module, which is an interface with the non EASI world. Translation
stores received messages in the Message Box and ”translates” them using the EASI
model. Communication Filters contains the filters of the agents (FA) and of the envi-
ronment (FE). Filters are activated according to the modification in ID, which is then
matched against the entity in Omega. When the matching is successful, the related de-
scriptions are sent to the agent with the real message that is in Message Box.

CM contains the Interaction sub-module, which controls interaction between the
agents and the environment, and Dynamic, which controls the update process. Inter-
action distributes the input of the agents in the environment (entity, messages, filter)
and sends the agents the output of the environment (messages, update action). Dynamic
maintains up-to-date Omega, it deletes messages that are too old (if a property related
to time exist) or initiates an update of the agents properties. The objective is to give
the MAS a global strategy in order to limit the cost of the update process. For instance,
if agents have a property that gives their position, at least two strategies are possible:
agents update their property each time they move or only when they are requested. A
compromise has to be found between the number of errors and the cost of the update
process.

4.2 Description of Common Cases

This section gives an example of MPC and concerns the dynamic management of re-
sources in MAS. Each group of agents has a set of resources and, to simplify, each
resource is unique and indivisible. An agent that needs a resource does as follows: it
anticipates its needs and tries to know which agent in its group has its next resource
or, if it cannot anticipate this, looks for the agent that has it. The owner of a resource
accepts or refuses to give it to the requester. The objective is to avoid contacting all the
agents of the same group each time one of them needs a resource.

Firstly, the agents record themselves in the environment. Each agent adds an entity
to the environment that describes it (there is only the group property in our example).
Interaction adds the properties id (the value is unique and identifies the agent in the
environment) and address (the value is the address where the message will be sent).
The entity is added to Omega and the Pdescription in ID. The latter module looks for

244 F. Balbo and J. Saunier

symbolic objects that are related to this new Pdescription. For each of them that is
modified the related filters are tested.

When an agent knows which resource it will have to use, it adds to the environment
filters that match it against the description of the messages that are exchanged when an
agent asks for a resource. There are two filters: the first (succeed) is related to when
the resource owner agrees to give it and the second (fail) to when it refuses. Interaction
adds each filter to Communication Filters and computes the Pdescriptions (for example
Pfa) that are added to ID. This module computes the extents in Omega and adds the
result to Communication Filters to be triggered. If successful, the result is sent to the
agents. The filter related to the success of the request informs the overhearer of the new
owner of the resource and its behavior is not modified. The filter related to the failure
of the request informs the overhearer of the present owner of the resource. In this case,
the overhearer withdraws its filter related to the failure of the request. This filter will be
added again if the resource owner responds favorably to a new request. The objective is
to limit the number of useless messages. In the environment, the filter is deleted from
Communication Filter and the related Pdescriptions from ID.

When an agent needs to request a resource, it uses a filter that is already in the
environment. This filter belongs to FE and the content of this set is known to all the
agents. Like in [28] the environment may or may not be distributed. In the first case,
communication between environments is done through Translation; in the second case it
is done directly with Interaction. In the two cases, the environment process is the same.
The entity related to the message is added to Omega and its Pdescription is added to
Intent Description. The choice of properties related to a message can be parameterized
and additional properties like the date of the reception and the address of the recorded
value in Message Box can be added. ID looks for the symbolic objects that are related
to this new description. The set Channelm is added to Communication Filters to be
triggered.

5 Discussion

This section compares our proposal with those presented in section 2, using three crite-
ria. The first is the expressiveness of the proposals. A proposal is more expressive than
another if it can take into account more complex constraints in the search for agents
related to the interaction. The second criterion is the completeness of the proposal. A
proposal is more complete than another if it can be used in more interaction models.
The third criterion is the possibility of having context aware interaction. A proposal is
more context aware than another if it can take into account more complex constraints
on the context in the search for agents related to the interaction.

5.1 Expressiveness of the Delivery Mechanism

EASI is a model that aims to organize the data required to realize an interaction. For
solutions based on dyadic interaction, it is necessary to compare our proposal with
the matching process performed by the matchmaker or the sender of the messages. The
matchmakers that come closest to our proposal are those that enable content-based rout-
ing [15,24]. In the case of solutions based on the CNP, the sender receives the evaluation

On the Use of Symbolic Data Analysis to Model Communication Environments 245

of the agents on the requested properties and can also apply at least our selection pro-
cess. For solutions based on a tuple space, it is necessary to compare matching on tuples
and our solution. In tuple-spaces, the matching is limited to the type, position and value
of the components of the tuples, while EASI enables the use of comparison operators,
and the matching between entities. This is because in these works, the authors focused
on the interaction model and not on the data model. In [8] the data model is not de-
scribed, only its organization is: an input and an output matrix. The aim, for each item
of data, is to find its link with agents. The senders are the lines of the matrix outbox
and the recipients are the lines of the matrix inbox. As in EASI, set modeling gives a
sufficient level of abstraction to manage the data and to use projections to identify the
searched data. The operators that are used to do these projections are not included in
the model and depend on the implementation phase.

In SIENA [5], a content-based routing model, filters are matched against single no-
tifications (a tuple << type, name, value >+>) and patterns are matched against one
or more notifications. The matching is done by comparing the value in the notification
and the constants in the patterns. There are no variables that can be used to generalize
the patterns. Moreover, in EASI part of the matching is done on the recipient and the
context although only the data are evaluated in SIENA. Based on this criterion, this
work comes closest to our proposal.

To sum up, in the majority of this research, the expressivity of the model is not taken
into account and emphasis is put on other problems such as the interaction model in
the tuple model or scalability in the delivery mechanism. This means that each of these
solutions is complementary to the EASI model.

5.2 Completeness of the Delivery Mechanism

Using this criterion, the evaluation depends on the ability of a solution to enable: 1) a
sender to find a recipient; 2) a recipient to choose its messages; 3) mutual-awareness.
The first two points have been discussed in section 2 and we have shown that each of
the solutions has been designed to take mainly into account the sender or the recipient.
Mutual awareness is the possibility to receive messages that are sent to other agents.
From the delivery mechanism viewpoint this means that the sender can choose its re-
cipient and that another agent than the recipient can choose to receive the message.
The delivery mechanism must also support both the search for recipients by sender and
the search for messages by recipients. This is why the other solutions that take mutual
awareness into account are mainly based on broadcast [13,16].

If mutual awareness is extended to the case where an agent can choose to receive
messages coming from a subset of agents, then mutual awareness is a subcase of the
delivery mechanism used to choose a message. In this case, solutions based on a shared
data space and content-based routing solutions can be used if the data exchanged con-
tains information about the sender. However, the advantage of anonymity found in these
solutions is lost. Middle-agents mediate the search for receivers. Instead of delivering
the messages according to both the senders and the receivers needs, the choice is re-
stricted to a subpart of it. Furthermore, middle-agents are autonomous, while the envi-
ronment is a supporting infrastructure [27].

246 F. Balbo and J. Saunier

The channeled multicast is a restricted broadcast and the recipients can be described
as listeners of a subset of subjects, where a subject could be an agent. With the use of
filters, EASI takes the needs of the sender and the recipients into account independently
and simultaneously, according to the agent that has introduced the filter. If only the
needs of the sender are taken into account (the filter is introduced by the sender of
the message) then EASI is used as a delivery mechanism to choose the recipients. If
only the needs of the recipients are taken into account (the filter is introduced by the
recipients of the message), then if the message is not addressed EASI is used as a
delivery mechanism to choose messages. If the message is addressed (filter introduced
by sender) and heard (filter introduced by recipient) then EASI is used as a delivery
mechanism to choose both recipients and messages and thus enables mutual awareness.

5.3 Expressiveness of Context Awareness in the Delivery Mechanism

The evaluation of each solution depends on if and how it can take the context into
account in the search of the recipient or the message. This criterion is related to the
expressiveness of the solution and to the availability of context-related information.
Expressiveness is related to the expressiveness of the delivery mechanism and has al-
ready been discussed in 5.1. This criterion implies that the delivery mechanism has
access to the state of the components of the MAS. Not all solutions have been designed
to support context-awareness interaction: middle-agent, CNP, organization and chan-
neled multicast. These solutions cannot take into account any information other than
that related to the message itself. The solutions based on a shared data space or content-
based routing have been designed to support context awareness. The only restriction
is about the information available. In these solutions, information about agents is not
taken into account and so the interaction cannot be conditioned by the observable state
of the agents involved.

6 Conclusion

Designing a middleware to support MPC not only requires taking the needs of the agents
related to communication into account but also evaluating these needs according to the
context. The most common proposal is the use of a dedicated blackboard [7,10], which
is a static medium for sharing messages. Thanks to the design and use of filters, EASI
is an answer to these issues. The advantages of our proposal, based on the ADS clus-
tering model, are connected to the different ways in which the information is managed.
It can be done at different levels of abstraction, from an entity to a concept. The ad-
vantage is to limit the cost of the entity-updating process by the use of direct links
(concepts) between the entities and the data clusters (the concept extents). These links
are computable a priori and are dynamically changed if the MAS is open and new en-
tity categories are added. Another advantage is to be able to obtain a description of the
interaction facilities of the environment directly. This description is related to the ontol-
ogy of the description of the entities with their existing value and to the filter description
too. A filter (specially the environment filter) can be described as an interaction service:
dyadic, broadcast, multicast, related to position, etc. Finally, the homogeneous descrip-
tion of the information related to entities and filters (their Pdescriptions) simplifies a

On the Use of Symbolic Data Analysis to Model Communication Environments 247

processing that can be based on the same structure (under study) that is used to record
them. Our proposal can be distributed with agents that are recorded in several environ-
ments or with environments that are federated. The environment nevertheless remains
centralized and will be “really” distributed when the data model is distributed. Future
work is related to the distribution of the data model, including the distribution of the
description of the entities and filters.

References

1. Billard, L., Diday, E.: Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wi-
ley Series in Computational Statistics). John Wiley, Chichester (2007)

2. Branigan, H.: Perspectives on multi-party dialogue. Research on Language & Computation 4
(2-3), 153–177 (2006)

3. Bucur, O., Beaune, P., Boissier, O.: Steps towards making contextualized decisions: How to
do what you can, with what you have, where you are. In: Roth-Berghofer, T., Schulz, S.,
Leake, D.B. (eds.) MRC 2005. LNCS (LNAI), vol. 3946, pp. 62–85. Springer, Heidelberg
(2006)

4. Busetta, P., Donà, A., Nori, M.: Channeled multicast for group communications. In: AAMAS
2002: Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-agent Systems, pp. 1280–1287. ACM Press, New York (2002)

5. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems 19(3), 332–383 (2001)

6. Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving, 333–356
(1988)

7. Dignum, F., Vreeswijk, G.: Towards a testbed for multi-party dialogues. In: Workshop on
Agent Communication Languages, pp. 212–230 (2003)

8. Gouach, A., Michel, F., Guiraud, Y.: Mic*: a deployment environment for autonomous
agents. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI),
vol. 3374, pp. 109–126. Springer, Heidelberg (2005)

9. Gutnik, G.: Monitoring large-scale multi-agent systems using overhearing. In: AAMAS
2005: Proceedings of the fourth international joint conference on Autonomous agents and
multiagent systems, p. 1377. ACM Press, New York (2005)

10. Huget, M.-P., Demazeau, Y.: First steps towards multi-party communication. In: van Eijk,
R.M., Huget, M.-P., Dignum, F.P.M. (eds.) AC 2004. LNCS (LNAI), vol. 3396, pp. 65–75.
Springer, Heidelberg (2005)

11. Julien, C., Roman, G.-C.: Supporting context-aware interaction in dynamic multi-agent sys-
tems. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI),
vol. 3374, pp. 168–189. Springer, Heidelberg (2005)

12. Kamali, K., Fan, X., Yen, J.: Towards a theory for multiparty proactive communication
in agent teams. International Journal of Cooperative Information Systems 16(2), 271–298
(2007)

13. Kaminka, G., Pynadath, C., Tambe, M.: Monitoring teams by overhearing: A multi-agent
plan-recognition approach. Journal of Artificial Intelligence Research 17, 83–135 (2002)

14. Kumar, S., Huber, M.J., McGee, D., Cohen, P.R., Levesque, H.J.: Semantics of agent com-
munication languages for group interaction. In: Proceedings of the Seventeenth National
Conference on Artificial Intelligence, pp. 42–47. AAAI Press / The MIT Press (2000)

15. Kuokka, D., Harada, L.: On using kqml for matchmaking. In: ICMAS, pp. 239–245 (1995)
16. Legras, F., Tessier, C.: Lotto: Group formation by overhearing in large teams. In: Dignum,

F.P.M. (ed.) ACL 2003. LNCS (LNAI), vol. 2922, pp. 254–270. Springer, Heidelberg (2004)

248 F. Balbo and J. Saunier

17. Murphy, A.L., Picco, G.P., Roman, G.-C.: Lime: A coordination model and middleware sup-
porting mobility of hosts and agents. ACM Trans. Softw. Eng. Methodol. 15(3), 279–328
(2006)

18. Omicini, A., Zambonelli, F.: Tuple centres for the coordination of internet agents. In: SAC
1999: Proceedings of the 1999 ACM symposium on Applied computing, pp. 183–190. ACM
Press, New York (1999)

19. Platon, E., Mamei, M., Sabouret, N., Honiden, S., Parunak, H.V.D.: Mechanisms for envi-
ronments in multi-agent systems: Survey and opportunities. Autonomous Agents and Multi-
Agent Systems 14(1), 31–47 (2007)

20. Platon, E., Sabouret, N., Honiden, S.: Tag interactions in multiagent systems: Environment
support. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS
(LNAI), vol. 4389, pp. 106–123. Springer, Heidelberg (2007)

21. Ricci, A., Omicini, A., Viroli, M., Gardelli, L., Oliva, E.: Cognitive stigmergy: Towards a
framework based on agents and artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F.
(eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 124–140. Springer, Heidelberg (2007)

22. Sandholm, T.W.: An implementation of the contract net protocol based on marginal cost
calculations. In: Proceedings of the 12th International Workshop on Distributed Artificial
Intelligence, Hidden Valley, Pennsylvania, pp. 295–308 (1993)

23. Saunier, J., Balbo, F.: An environment to support multi-party communications in multi-agent
systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 52–61. Springer, Heidelberg (2007)

24. Skarmeas, N., Clark, K.L.: Content-based routing as the basis for intra-agent communication.
In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 345–
362. Springer, Heidelberg (1999)

25. Tarkoma, S., Kangasharju, J.: Optimizing content-based routers: posets and forests. Dis-
tributed Computing 19(1), 62–77 (2006)

26. Tummolini, L., Castelfranchi, C., Ricci, A., Viroli, M., Omicini, A.: “exhibitionists” and
”voyeurs” do it better: A shared environment approach for flexible coordination with tacit
messages. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS
(LNAI), vol. 3374, pp. 215–231. Springer, Heidelberg (2005)

27. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent
systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30 (2007)

28. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multia-
gent systems, state-of-the-art and research challenges. In: Weyns, D., Van Dyke Parunak, H.,
Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 2–52. Springer, Heidelberg
(2005)

29. Wong, H.C., Sycara, K.P.: A taxonomy of middle-agents for the internet. In: ICMAS, pp.
465–466. IEEE Computer Society, Los Alamitos (2000)

Commitment-Based Multiagent Decision Making

Viji R. Avali and Michael N. Huhns

Department of Computer Science and Engineering,
University of South Carolina Columbia, SC 29208 USA

Abstract. In a cooperative system, multiple dynamic agents work to-
gether and share resources to achieve common goals, while simultane-
ously pursuing their individual goals. Interactions among the agents in
such a cooperative system are critical to its successful behavior, and we
believe that commitments are the proper abstraction to characterize the
interactions. Commitments then become the basis for monitoring and
controlling the system and tracking the progress towards its goals.

Commitments are binary relationships that bind two agents: a “debtor
agent” that promises to provide a particular service for a “creditor agent”.
Their role is to represent agreements between the agents and prevent
potential conflicts while the agents collaborate to achieve the system’s
common goals, which are imposed from outside. But the willingness to
participate in achieving the goals comes from within the agent and that
is why the beliefs, desires, and intentions of the agents are crucial in for-
malizing commitments. In this paper, we have formalized commitments
in terms of the agents’ internal states of mind—their beliefs, desires, and
intentions. This formalization addresses what it means for a participat-
ing agent to promise or to satisfy a commitment. The formalization uses
a branching-time computational tree logic framework with commitment
definitions and operations to define a commitment-centric cooperative
multiagent environment.

Keywords: Commitments, BDI, CTL*.

1 Introduction and Motivation

In a cooperative system, multiple dynamic entities work together and share
their resources to achieve common goals, while simultaneously pursuing their
individual goals. In real-world business environments, participants interact by
exchanging goods and providing services for each other. In seeking and providing
services, the participants form associations, make promises, commit to levels of
functionality and quality, satisfy what they promised, and attempt to achieve
their intended goals. We believe that in an environment where software agents
are the participants, it is the binary relationship of commitment [1,10,11,5] that
associates the agents with one another and represents multiagent interactions.
Commitments can characterize—from an external viewpoint—not only the in-
teractions between the agents, but also the overall multiagent system behavior.

Recent work on the concept of commitments has provided ways for an agent
to evaluate a commitment and decide whether or not to promise it (as the debtor

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 249–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

250 V.R. Avali and M.N. Huhns

of the commitment) or accept it (as its creditor). However, current theories for
commitments deal with only a single commitment and do not provide any help
to an agent in relating or comparing several commitments. For example, if an
agent has made two or more commitments, in which order should the agent work
to satisfy them?

Our approach to this problem is to use the agent’s beliefs, desires, and inten-
tions to make decisions about commitments. The agent can then decide ratio-
nally when to accept, abandon, cancel, or devote resources to a commitment.
The agent can also decide rationally in which order to satisfy its commitments.
Moreover, a commitment-driven decision theory can be utilized to expressively
model a cooperative multiagent environment. Development of this comprehen-
sive theory is one of our research objectives.

Such a development should relate commitments to their effects on each of
the participating agents’ own internal state of mind. What does an autonomous
agent believe when it creates a commitment? What does such an agent desire
when it cancels its commitment? Many similar questions need to be addressed
in order to develop a commitment-driven decision theory.

There has been a lot of work done on the belief, desire, and intention (BDI)
architecture. Cohen and Levesque [2] explore the rational balance needed among
beliefs, goals, actions, and intentions using a linear-time model. Rao and Georgeff
[9] present a possible-worlds formalism for the BDI architecture using Computa-
tion Tree Logic (CTL). This work mentions that the BDI architecture could be
extended to commitments by considereing them as part of multiagent scenarios.

There is also a rich literature on commitments. They are now well defined [12]
and there is a formal representation for commitment operations [6]. Branching-
time computational tree logic has been used to describe a commitment’s typical
structure [13], life-cycle, and various operations that are involved throughout its
existence. However, most of the endeavors have focused on the external structure,
properties, and verification of commitments. They do not explicitly formalize
how commitments are understood by the participating agents themselves. These
two areas (the BDI architecture and commitments) have been addressed sepa-
rately and there has been little attempt to combine them (cf. [4]). Our work aims
to integrate the two areas and formalize commitments in terms of the agent’s
beliefs, desires, and intentions in a CTL* framework, as indicated in Figure 1.

An agent’s beliefs, desires and intentions define its internal state of mind.
This paper formally defines commitments in terms of participating agents’ be-
liefs, desires, and intentions. We use Rao and Georgeff’s BDI framework [9] and
Emerson’s CTL framework [3], as well as earlier definitions for commitments [12]
and operations on them [6].

The structure of this paper is as follows: Section 2 describes the major domain-
independent types of commitments we have identified. Section 3 introduces a
commitment-driven service-oriented multiagent environment and presents its
underlying assumptions. Section 4 revisits the BDICTL∗ framework to describe
agents in this environment. Section 5 introduces commitments and operations
on them. Section 6 develops our formalization of commitments in a BDICTL∗

Commitment-Based Multiagent Decision Making 251

Fig. 1. Our results bridge BDI architectures, which are internal to agents, and com-
mitments, which are public and involve the intentions among two or more agents. Our
results are formalized using CTL*.

framework and provides definitions for all commitment operations. Section 7
presents an example of how our formalization can be used to explain, interpret,
and model real-world multiagent systems. Lastly, Section 8 summarizes our for-
malization and presents future directions for this research.

2 Types of Commitments

Commitments associate one agent (the creditor) to another (the debtor) and are
directed from the debtor to the creditor. They can be categorized into two basic
types: discrete and continuous.

Discrete commitments have a lifetime, are created, remain active, and, at
some point, cease to exist.
Example: agent Alice commits to pay $5 to agent Bob. The commitment
ceases to exist when Alice pays Bob the money.

Continuous commitments are created and remain active indeterminately
and until canceled. As an example of this type, a control system in a nuclear
plant has a continuous commitment to maintain the coolant temperature
within a desired range. Unlike discrete commitments, which are public, a
continuous commitment might be visible only to the agent and is driven by
the beliefs, desires, and intentions of the agent.

Each type of commitment can in turn be of two types. The first is the type
that has a specific creditor, and these are what are typically thought of as com-
mitments. The second type is when there is no specific creditor, and we call this
an obligation. An obligation might be viewed as a commitment or a promise
that one makes to oneself or to society. A society serves as an abstract creditor,
which has been modeled as a Sphere of Commitment (SoCom) [12]. Examples

252 V.R. Avali and M.N. Huhns

Fig. 2. The two major types of commitments are discrete ones between two agents and
continuous ones between an agent and its society or itself

of continuous obligations are where one feels obligated to “honor your parents,”
“hold a door for the next person,” “do not litter,” and “protect the environ-
ment.” Note that the potential actions involved in these might be positive (do
something), negative (do not do something), or abstract (honor).

The two types of commitments are depicted in Figure 2. In this paper, we
focus on formalizing discrete commitments.

3 A Commitment-Driven Multiagent System

Our formalization considers a multiagent environment that is partially observ-
able, stochastic, sequential, and dynamic. The environment is cooperative and
consists of two classes of participating agents: service providers and service seek-
ers. Service providers and service seekers associate or bind with each other via the
binary relationship of commitments. In addition to these participating agents,
there is a class of nonparticipating agents in the environment that behave as
impartial arbiters. The arbiters provide the context to a commitment relation-
ship, as a SoCom. Every agent in the environment is autonomous; hence, at any
point in time, a providing agent may choose to either abide by its commitment
or stray from it. The arbiters can be used to capture a participating agent’s
behavior with regard to its commitments. Historical information about a partic-
ipating agent’s behavior can be utilized to measure its commitment adherence
for future interactions, which is an area for further research.

Commitment-Based Multiagent Decision Making 253

Our formalization assumes that the participating agents have already iden-
tified each other and have already become part of a commitment relationship.
How service seekers and service providers locate each other, how they identify
compatible providers or seekers, how they interact or negotiate to form a binary
commitment relationship, and what structure of communication and protocol
they use are questions beyond the scope of our formalization.

It is further assumed that, in this commitment-driven cooperative environ-
ment, the partial view that an agent has is governed solely by the commitment
relationships in which it participates. In other words, agents have knowledge of
other agents with whom they are associated via commitment relationships. Fur-
thermore, it is assumed that the knowledge about a commitment relationship is
governed by commitment operations, i.e., an agent has knowledge about a com-
mitment association only through operations that affect that commitment. For
example, when a service-seeking agent and a service-providing agent participate
in a commitment relationship, each will have knowledge of the other agent’s
commitment actions and each will have knowledge of when that commitment
gets created, satisfied, canceled, etc. However, knowledge such as how that com-
mitment is satisfied, why it was or was not satisfied, or why it was canceled is
not available to the participating agents.

The typical environment for commitments is dynamic and nondeterministic,
hence its temporal dimension is best represented as branching time. As the
underlying temporal parameter moves forward, choices of actions by agents in-
troduce branches, thus forming a tree. The following section describes in further
detail this temporal structure as it relates to an agent’s state of mind.

4 BDI in a Branching-Time CTL* Framework

In this section, we first restate Rao and Georgeff’s BDICTL formalism, which
is an extension of Emerson’s Computation Tree Logic (CTL). In this formalism,
the world is modeled with the help of an underlying branching temporal struc-
ture called a time tree, which has a single past and a branching time future,
i.e., each moment on this infinite time tree may have many successor moments.
It is assumed that along each path in this tree the corresponding timeline is
isomorphic to N. The maximal set of linearly ordered moments along a timeline
makes a world and any point in a particular world is called a situation.

CTL operators are used to quantify over possible paths and states, and the
temporal operators A, E, X, U, F, and G have their usual meanings (A: for all
futures, E : for some futures, X : next, U : until, F : eventually, and G: always).
BDI operators B, D, and I are used to represent the agent’s internal state of
mind.

4.1 Syntax and Semantics of BDICT L∗
A particular point in a particular world is called a situation. A structure M with
many such situations is a Kripke structure.

M = 〈S, R, Ba, Da, Ia, L〉

254 V.R. Avali and M.N. Huhns

where,

– S is a set of states.
– R is a binary relation R ⊆ S × S.
– L : S → PowerSet(AtomicPropositions) is a labeling that associates with

each state s an interpretation L(s) of all atomic propositions at state s.

The relations Ba, Da, and Ia map the agent’s current situation to its belief,
desire, and intention-accessible worlds. The structure M at a particular time
point or moment m is denoted by Mm.

Assuming n agents, we define a set of admissible rules for States and Paths
(true or false for states and paths) as follows:

State formulas:

(S1) Each atomic proposition is a state formula.
(S2) If α and β are state formulas, then so are α ∧ β and ¬α.
(S3) If α is a path formula, then Eα and Aα are state formulas.
(S4) If α is a state formula,then Ba(α), Da(α), Ia(α) are state formulas as well.

Path formulas:

(P1) Any state formula is also a path formula.
(P2) If α and β are path formulas, then so are α ∧ β and ¬α.
(P3) If α is a path formula, then Xα and αUβ are path formulas.

A formula is interpreted with respect to a situation structure M . A fullpath x
is an infinite sequence s0, s1, s2, ... of states, such that ∀i(si, si+1) ∈ R. A suffix
path xi is an infinite sequence si, si+1, si+2, ... of states. We write M |=m0 p
to mean that state formula p is true in structure M at moment m0. We write
M |=x p to mean that path formula p is true in structure M at fullpath x.
Ba(α), Da(α), and Ia(α) are beliefs, desires and intentions of agent a about α.

(S1) M |=m0 p iff p ∈ L(m0),
(S2) M |=m0 p ∧ q iff M |=m0 p and M |=m0 q,

M |=m0 ¬p iff not (M |=m0 p),
(S3) M |=m0 Ep iff ∃ fullpath x = (m0, m1, m2, ...) in M that M |=m0 p,

M |=m0 Ap iff ∀ fullpath x = (m0, m1, m2, ...) in M that M |=m0 p,
(S4) M, m0 |= Ba(α) iff ∀m1 ∈ S and m0R1m1, M, m1 |= α where ‘R1’ is the

accessibility relation.
(S5) M, m0 |= Da(α) iff ∀m1 ∈ S and m0R2m1, M, m1 |= α where ‘R2’ is the

accessibility relation.
(S6) M, m0 |= Ia(α) iff ∀m1 ∈ S and m0R3m1, M, m1 |= α where ‘R3’ is the

accessibility relation.

(P1) M |=x p iff M |=s0 p;
(P2) M |=x p ∧ q iff M |=x p and M |=x q,

M |=x ¬p iff not(M |=x p);
(P3) M |=x pUq iff ∃i[M |=xi q and ∀j(j < i implies, M |=xj p)]

Commitment-Based Multiagent Decision Making 255

5 Commitments

Now that we have described our multiagent environment and the state of mind
of its participating agents, we define commitments and the operations that the
agents can perform on them. For this purpose, we briefly revisit Singh and
Huhns’s formalism of commitments [12] and extend the commitment proper-
ties and operations defined therein.

Our formalism considers social commitments that are legal abstractions as-
sociating one agent with another. Earlier works have described another class of
commitments that are personal or internal to an agent and do not bind two
separate agents. However, such unitary internal commitments are not relevant
to our cooperative environment, which is driven solely by binary relationships
between the agents. Commitments are accessible publicly and they represent an
interaction between two participating agents. For example, service level agree-
ments, online purchases, and service contracts are all real-world instances of
commitments.

As per the commitment formalism developed by Singh and Huhns[12], the
following are three key properties of commitments:

1. Multiagency: Commitments associate one agent with another. The agent
that promises or commits to satisfying a condition is called the debtor agent
and the other agent that wants the condition to be satisfied by the debtor
is called the creditor agent. Each commitment is directed from its debtor to
its creditor.

2. Scope: Commitments have a well-defined scope, which gives context to the
commitment. A scope can be directed by a separate third-party organization
(Sphere of Commitment: SoCom).

3. Manipulability: Commitments are modifiable. They can be satisfied,
breached, or canceled.

We extend these properties by defining two additional ones:

1. Lifetime: Commitments have a lifetime; they are created, they live (remain
active), and at some point they cease to exist. Continuous commitments are
beyond the scope of this paper and a subject of future research.

2. Degree: When active, commitments do not necessarily remain in one con-
stant state; in real situations, at the time when people make commitments,
they intend to fulfill them. But situations change and the priorities of com-
mitments might thus change. This is captured by a degree of commitment.
For a service-oriented environment, the degree of commitment changes with
changing beliefs, desires, and intentions.

As an example, let us consider a travel agent who has a commitment to sell n
tickets for airline A. If another airline (airline B) slashes their ticket prices and
the customers want to buy those tickets, the travel agent reorders his commit-
ments to satisfy his customers. Though he is still committed to A, his priority
changes to selling airline B’s tickets. Likewise, an individual agent can order any

256 V.R. Avali and M.N. Huhns

new commitment that he creates using a partial order. Anytime a change in his
beliefs, desires, or intentions results in a change in preferences, he could reorder
his commitments, thus mimicking the real life situation. The ordering method
used would be dependent on the system.

Also, in the case of commitment cancelation or revocation, the commitment
might not change from an active state to an inactive state instantaneously;
instead, it might gradually decline in degree until it becomes inactive. This area
is also a subject for future research.

5.1 Structure of Commitments

Commitments are represented by a predicate C and have the form C(d, a, b,
p, S, δ), where

d: is a unique identifier,
a: is the debtor agent,
b: is the creditor agent,
p: is the promise or the condition that the debtor will bring about,
S : is the context, also known as the sphere of commitment, and
δ : is the degree of commitment.

For the sake of simplicity herein, we ignore δ.

5.2 Operations on Commitments

Our cooperative environment is commitment-driven and we assume the partici-
pating agents’ knowledge is governed solely by commitment operations. Here we
describe commitment operations as defined by [12,6], where commitments are
treated as abstract data types that associate a debtor, creditor, promise, and
context. The six fundamental commitment operations are

1. Create (a, C(d, a, b, p, S))
2. Discharge(a, C(d, a, b, p, S))
3. Cancel(a, C(d, a, b, p, S))
4. Release(b, C(d, a, b, p, S))
5. Assign(b, c, C(d, a, b, p, S))
6. Delegate(a, c, C(d,a, b, p, S))

We use predicates to describe whether the commitment C has been satis-
fied, canceled, breached, or still holds, and these predicates will be written as
satisfied(C), canceled(C), breached(C), and active(C), respectively [7].

6 Commitment Formalization in BDI+CTL*

In this section we present our formalization that represents a combination of BDI
and commitments. Multiagent associations are bound by commitments and each
agent’s knowledge of those commitments is through commitment operations.
Informally, a commitment between two agents comes about through interactions
(and often negotiations) between the agents, so both agents are necessarily aware
of and believe in the commitment.

Commitment-Based Multiagent Decision Making 257

Definition 6.1: Creating a Commitment,
Create(a, C(d,a,b,p,S))

1. For all paths, Agent a believes that from the next moment onwards commit-
ment C will be active until it is either satisfied or breached or canceled.
M |=m Create(a, C(d, a, b, p, S)) ⇒ ABa((XG(active(C)))U
(satisfied(C) ∨ breached(C) ∨ canceled(C)))

2. For all paths, Agent a believes that commitment C will eventually be satis-
fied.
M |=m Create(a, C(d, a, b, p, S)) ⇒ ABaF (satisfied(C))

3. For all paths from the next moment onwards, Agent a intends the commit-
ment C until it is either satisfied or breached or canceled.
M |=m Create(a, C(d, a, b, p, S)) ⇒ AXG((Ia(C))U
(satisfied(C) ∨ breached(C) ∨ canceled(C)))

4. For all paths, Agent a believes that from the next moment onwards Agent b
desires commitment C until it is either satisfied or canceled.
M |=m Create(a, C(d, a, b, p, S)) ⇒ ABa((XG(Db(C)))U
(satisfied(C) ∨ canceled(C)))

5. For all paths, Agent b believes that from the next moment onwards commit-
ment C will be active until it is either satisfied or breached or canceled.
M |=m Create(a, C(d, a, b, p, S)) ⇒ ABb((XG(active(C)))U
(satisfied(C) ∨ breached(C) ∨ canceled(C)))

6. For all paths, Agent b believes that from the next moment onwards Agent a
intends commitment C until it is either satisfied or breached or canceled.
M |=m Create(a, C(d, a, b, p, S)) ⇒ ABb((XG(Ia(C)))U
(satisfied(C) ∨ breached(C) ∨ canceled(C)))

7. For all paths, Agent b believes that commitment C will eventually be satis-
fied.
M |=m Create(a, C(d, a, b, p, S)) ⇒ ABbF (satisfied(C))

8. For all paths from the next moment onwards, Agent b desires commitment
C until it becomes inactive.
M |=m Create(a, C(d, a, b, p, S)) ⇒ AXG((Db(C))U(¬active(C)))

Note that agent b can not intend C to be satisfied, because b does not have
any control over C and cannot force it.

Definitions of other commitment operations can be written similarly.

Definition 6.2: Revoking a Commitment,
Cancel(a, C(d,a,b,p,S))

1. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ ABa(XG(¬active(C)))
2. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ ABaF (¬satisfied(C))
3. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ AXG(¬Ia(C))
4. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ ABb(XG(¬active(C)))
5. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ ABbF (¬satisfied(C))
6. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ AXG(¬(Db(C)))
7. M |=m Cancel(a, C(d, a, b, p, S)) ⇒ ABb(XG(¬Ia(C)))

258 V.R. Avali and M.N. Huhns

Definition 6.3: Discharging a Commitment,
Discharge(a, C(d,a,b,p,S))

1. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ ABa(XG(satisfied(C)))
2. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ ABa(XG(¬active(C)))
3. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ AXG(¬(Ia(C)))
4. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ ABa(XG(¬(Db(C))))
5. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ ABb(XG(satisfied(C)))
6. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ ABa(XG(¬active(C)))
7. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ AXG(¬(Db(C)))
8. M |=m Discharge(a, C(d, a, b, p, S)) ⇒ ABb(XG(¬(Ia(C))))

Definition 6.4: Releasing a Commitment,
Release(b, C(d,a,b,p,S))

1. M |=m Release(b, C(d, a, b, p, S)) ⇒ AXG(¬(Db(C)))
2. M |=m Release(b, C(d, a, b, p, S)) ⇒ ABb(XG(¬active(C)))
3. M |=m Release(b, C(d, a, b, p, S)) ⇒ ABa(XG(¬(Ia(C))))
4. M |=m Release(b, C(d, a, b, p, S)) ⇒ ABa(XG(¬(Db(C))))
5. M |=m Release(b, C(d, a, b, p, S)) ⇒ ABa(XG(¬active(C)))
6. M |=m Release(b, C(d, a, b, p, S)) ⇒ AXG(¬(Ia(C)))

Definition 6.5: Assigning a Commitment,
Assign(b, c, C(d,a,b,p,S))

1. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ AXG(¬(Db(C)))
2. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ BbA(XG(¬active(C)))
3. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABb(XG(Dc(C)))
4. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABb(XG(Ia(C)))
5. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABc((XG(active(C)))U

(satisfied(C) ∨ breached(C) ∨ canceled(C)))
6. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABc((XG(Ia(C)))U

(satisfied(C) ∨ breached(C) ∨ canceled(C)))
7. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABcF (satisfied(C))
8. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ AXG((Dc(C))U

(satisfied(C) ∨ canceled(C)))
9. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABa(XG(Dc(C)))

10. M |=m Assign(b, c, C(d, a, b, p, S)) ⇒ ABa(XG(¬Db(C)))

Definition 6.6: Delegating a Commitment,
Delegate(a, c, C(d,a,b,p,S))

1. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ AXG(¬Ia(C))
2. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABa(XG(Ic(C)))
3. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABa(XG(¬active(C)))
4. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABcF (satisfied(C))
5. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABc((XG(active(C)))

U
(satisfied(C) ∨ breached(C) ∨ canceled(C)))

6. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ AXG((Ic(C))U
(satisfied(C) ∨ canceled(C)))

Commitment-Based Multiagent Decision Making 259

7. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABa(XG(Db(C)))
8. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABb((XG(Ic(C)))U(satisfied(C)∨

breached(C) ∨ canceled(C)))
9. M |=m Delegate(a, c, C(d, a, b, p, S)) ⇒ ABbF (satisfied(C))

Theorem 1. The debtor and creditor will never end up believing a commitment
is still active after it has been discharged.

Proof. When a commitment C is discharged, from definition 5.3.2, Agent a
(debtor) believes that C will be inactive globally from the next moment on-
wards. From definition 5.3.6, Agent b (creditor) believes that C is inactive from
the next moment onwards.

Similar proofs can be given when a commitment is canceled or released.

7 Example Uses of the BDI Commitment Formalism

We present examples of how our formalization can be used to explain, interpret,
and model real-world multiagent systems. We use the travel agent example pre-
sented by Xing and Singh [13], where a customer contacts her travel agent to
book a trip to a city with many hotels and airports. The travel agent requests
airline and hotel clerks to make appropriate reservations and send confirmations
to the traveler. The customer, travel agent, airline agent, and the hotel agent
are all autonomous entities (persons or their representative agents).

When a customer contacts the travel agent to book a trip, the travel agent
creates a commitment. Per definition 5.1.2, the travel agent believes that such
a commitment will eventually be satisfied. Similarly, the customer believes
that the travel agent’s commitment will be satisfied eventually, which is con-
sistent with definition 5.1.7. Also, per definitions 5.1.3 and 5.1.8, the travel
agent intends to satisfy its commitment and the customer desires for that
commitment to be satisfied. When the reservations are made and the customer
is satisfied, the commitment is discharged. In accord with definition 5.3.5, the
travel agent now believes it has satisfied its commitment, which becomes in-
active. The customer, per definition 5.3.7, no longer desires for the trip to be
booked again (unless he initiates a new instance of a trip-booking commitment).

Carrying this example further, consider a scenario where a customer assigns
its commitment to another agent. Per definitions 5.5.1 and 5.5.2, we can see that
the customer does not desire the travel agent to book a trip for him. Instead,
the customer believes that the agent to whom the commitment was assigned
desires that trip, which is explained by definition 5.5.3.

Consider the example from [6] of a travel agent who wishes to book an airline
ticket to a certain destination, a rental car to use while there, and a hotel room
in which to stay. The four scenarios discussed in [6] are (1) the travel agent
wanting the passenger to fly on a particular day while still reserving the right
to choose any flight on that day, (2) the car rental company offering a one-week
free rental at a later time, (3) a hotel offering an electronic discount coupon
that expires today, but text on the coupon states that it can only be used dur-
ing a future spring break, and (4) the car rental company offering a warranty

260 V.R. Avali and M.N. Huhns

that cannot be used during the period in which the warranty is valid. The first
two scenarios can be implemented directly with our formalism, as any condi-
tions in such scenarios can be specified as the condition p in our commitment
structure.

When there is a violation of time constraints similar to scenarios three and
four, temporal operators in our condition p can capture the time constraints and
show that the commitment cannot be satisfied. Our CTL* framework takes care
of all the time constraints in a commitment and the BDI architecture captures
the commitments in terms of the states of mind of the participating agents.

When an agent has more than one commitment, the only link or relationship
between them has to be through the agent’s mind. These commitments need to
be consistent with the agents’s internal beliefs, which our formalization helps to
achieve. BDI can also be used to determine which of the several commitments
an agent does first. For example,

Alice commits to pay Bob $5
Bob commits to pay Joe $5

Because Bob believes it will get $5 from Alice, it then can form an intention
to honor its commitment to Joe. The BDI system allows the agents to contend
with multiple simultaneous commitments in the real world. As an example, if the
beliefs and desires are not included in the model of the travel agent transaction
scenario, the seller agent simply makes a commitment to the buyer agent based
upon the ticket availability information it has received from the airlines.

Since desire is not modeled, the buyer and seller cannot barter, as they will
make their commitments based purely upon the availability of tickets and money.
If the seller has pricing from a single airline, it will make the commitment to
sell, and the buyer will make the commitment to buy no matter what the price
is as long as he has the money. The seller is not going to call other airlines, and
the buyer is not going to call other travel agents due to lack of desires. Thus a
better deal for both is not possible here.

If the desire of an agent is modeled, then the buyer’s desire is to obtain the
cheapest price and this will make it change its commitment to the seller. The
commitment here is no longer “I will pay you whatever price you want,” but it
could be “I will buy the ticket only if it is the cheapest price.”

On the other hand, the Seller’s desire is to get the best price for the ticket, and
the seller’s commitment will be “I will you sell you the ticket only if you agree to
pay cash within 24 hours and for credit I will charge you 10% extra.” The seller
has modified his commitment, because he has recognized the implicit threat in
the buyer’s commitment. The buyer has the desire to get the cheapest ticket as
demonstrated by its commitment. If the seller does not modify its commitment,
the buyer could go elsewhere. At the same time, to safeguard against a defaulted
payment from the buyer and still make a profit, the seller is willing to offer or
match the price if cash is paid.

Applying our formalization to the example, Alice commits to pay Bob $5
means that Alice creates a commitment

Commitment-Based Multiagent Decision Making 261

Create(Alice, C(1,Alice,Bob,pay($5),S))
such that
1. Alice and Bob believe that commitment C will be active until it is either
satisfied or breached or canceled or suspended.

ABAlice((XG(active(C)))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)));
ABBob((XG(active(C)))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)))

2. For all paths, Alice and Bob believe that commitment C will eventually be
satisfied.
ABAliceF (satisfied(C)); ABBobF (satisfied(C))

3. For all paths from the next moment onwards, Alice intends the commitment
C until it is either satisfied or breached or canceled or suspended.

AXG((IAlice(C))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)))

4. For all paths, Alice believes that from the next moment onwards Bob desires
commitment C until it is either satisfied or canceled .

ABAlice((XG(DBob(C)))U(satisfied(C) ∨ canceled(C)))

5. For all paths, Bob believes that from the next moment onwards Alice intends
commitment C until it is either satisfied or breached or canceled or suspended.

ABBob((XG(IAlice(C)))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)))

6. For all paths from the next moment onwards, Bob desires commitment C until
it becomes inactive.

AXG((DBob(C))U(¬active(C)))

When Bob commits to pay Joe $5, Bob creates a commitment

Create (Bob, C(2, Bob, Joe, pay($5), S))
such that

1. Bob and Joe believe that commitment C will be active until it is either satisfied
or breached or canceled or suspended.

ABBob((XG(active(C)))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)));
ABJoe((XG(active(C)))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)))

2. For all paths, Bob and Joe believe that commitment C will eventually be
satisfied.

ABBobF (satisfied(C)); ABJoeF (satisfied(C))

3. For all paths from the next moment onwards, Bob intends the commitment
C until it is either satisfied or breached or canceled or suspended.

AXG((IBob(C))U(satisfied(C)∨ breached(C)∨ canceled(C)∨ suspended(C)))

262 V.R. Avali and M.N. Huhns

4. For all paths, Bob believes that from the next moment onwards Joe desires
commitment C until it is either satisfied or canceled.

ABBob((XG(DJoe(C)))U(satisfied(C) ∨ canceled(C)))

5. For all paths, Joe believes that from the next moment onwards Bob intends
commitment C until it is either satisfied or breached or canceled or suspended.

ABJoe((XG(IBob(C)))U(satisfied(C)∨breached(C)∨canceled(C)∨suspended(C)))

6. For all paths from the next moment onwards, Joe desires commitment C until
it becomes inactive.

AXG((DJoe(C))U(¬active(C)))

Bob believes that commitment 1 will be satisfied eventually and he will get
the $5. He intends to get the money from Alice and pay that to Joe and thus
satisfy commitment 2 (to pay Joe $5). Using this formalization, the system can
have rules, dependent on its requirements and available resources, to represent
these intentions. As a simple example, Bob can have a rule such as

ReceiveMoney(Alice, $5) ⇒ PayMoney(Joe, $5) (When money is received from
Alice, pay that to Joe).

The above examples demonstrate how our formalization can be utilized to un-
derstand, explain, interpret, and model a real-world, commitment-centric, mul-
tiagent system. Our formalization is an improvement over the temporal logic
approaches in [6,13], since it bridges BDI architectures and commitments.

8 Conclusion and Future Directions

Many real world systems are becoming cooperative. In a cooperative multiagent
system, commitments represent agent associations and interactions, and a par-
ticipant agent’s beliefs, desires, and intentions about the commitments in which
it is involved are critical to modeling agent behavior. With this formalization of
commitments in terms of an agent’s beliefs, desires, and intentions, we have pro-
vided the basic framework on which a more comprehensive commitment-driven
decision theory can be developed. The advantage of this theoretical framework
is that it blends two very robust and widely accepted theoretical frameworks
that together can be utilized to model a cooperative multiagent system. These
two frameworks are BDICTL∗ and commitments.

Our future research involves exploration of continuous commitments, how
agents decide what to commit (earlier works on “capability” [8] can be inte-
grated with commitments), when to cancel a commitment, how does a com-
mitment “age,” degree of commitment, and how can historical information of
an agent’s commitment adherence be utilized to predict its behavior. Commit-
ment adherence and Sphere of Commitment can also be tied to trust. Moreover,
with the help of either utility models or probabilities, a more comprehensive
commitment-driven decision theory can be developed to model a cooperative
multiagent environment expressively.

Commitment-Based Multiagent Decision Making 263

References

1. Castelfranchi, C.: Commitments: From Individual Intentions to Groups and Or-
ganisations. In: Proceedings of the Int. Conf. on Multi-Agent Systems 1996 (1996)

2. Cohen, P.R., Levesque, H.J.: Intention Is Choice with Commitment. Artificial In-
telligence 42(2-3), 213–261 (1990)

3. Emerson, E.A.: Handbook of Theoretical Computer Science: Formal Models and
Semantics, pp. 995–1072. MIT Press, Cambridge (1991)

4. Fasli, M.: On Commitments, roles and obligations. In: Central and Eastern Euro-
pean Conference on Multi-Agent Systems, pp. 93–102 (2001)

5. Jennings, N.R.: Commitments and Conventions: The Foundation of Coordination
in Multi-Agent Systems. The Knowledge Engineering Review 8(3), 223–250 (1993)

6. Mallya, A.U., Huhns, M.N.: Commitments Among Agents. IEEE Internet Com-
puting 7(4), 90–93 (2003)

7. Mallya, A.U., Singh, M.P.: An Algebra for Commitment Protocols. Autonomous
Agents and Multi-Agent Systems 14(2), 143–163 (2007)

8. Padgham, L., Lambrix, P.: Agent Capabilities: Extending BDI Theory, pp. 68–73.
AAAI/IAAI (2000)

9. Rao, A.S., Georgeff, M.P.: Modeling Rational Agents within a BDI-Architecture.
In: Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning, pp. 473–484 (1991)

10. Singh, M.P.: Commitments Among Autonomous Agents in Information-Rich Envi-
ronments. Modelling Autonomous Agents in a Multi-Agent World, 141–155 (1997)

11. Singh, M.P.: An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligence and Law 7(1), 97–113
(1999)

12. Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents, pp. 363–370. Wiley, London (2005)

13. Xing, J., Singh, M.P.: Engineering Commitment-Based Multiagent Systems: A
Temporal Logic Approach. In: Proceedings of the second international joint con-
ference on Autonomous agents and multiagent systems, pp. 891–898 (2003)

Towards an Open Negotiation Architecture for

Heterogeneous Agents

Koen V. Hindriks, Catholijn Jonker, and Dmytro Tykhonov

EEMCS, Delft University of Technology, Delft, The Netherlands
{k.v.hindriks,c.m.jonker,d.tykhonov}@tudelft.nl

Abstract. This paper presents the design of an open architecture for
heterogeneous negotiating agents. Both the system level architecture as
well as the architecture for negotiating agents are provided. The main
contribution of this paper is that it derives a precisely specified interface
from these architectures that facilitates an easy integration of hetero-
geneous agents into the overall negotiation framework. The interface is
defined as a set of adapters that allows for various levels of integration
of agents into the system architecture. The functionality provided by the
system architecture depends on the number of adapters that are imple-
mented and used to connect an agent to this architecture, ranging from
functionality to conduct a bilateral negotiation to functionality for com-
puting agent internal performance measures such as the quality of an
opponent model. The architecture is used as the basis of a competitive
testbed which allows us to study various negotiating agents. The design
yields a flexible negotiation framework that facilitates negotiating differ-
ent domains potentially using different protocols whereas no details of
the internal negotiating agent structure are enforced. An application of
the framework is illustrated by integrating two agents from the literature.

1 Introduction

The boost of literature on negotiating agents and strategies of recent years is
in line with the continuous advance of ecommerce applications, such as eBay,
and Marketplace in which negotiations play a role. While the literature focuses
on the development of ever more clever negotiation agents [6, 7, 11, 14, 17, 19],
the actual use of these agents in ecommerce applications is prohibited by two
factors: the inflexibility of the agents and the lack of ecommerce applications
that are open to such agents [13].

By the inflexibility of the agents we refer to the fact that they are incapable
of negotiating with arbitrary agents and incapable of negotiating on arbitrary
subjects. The code created for agents introducing new strategies in the litera-
ture typically has been developed with respect to one or a few specific domains,
and to run against other agents implemented by the same team [7, 14, 17, 19].
This is understandable, since the code is to provide evidence of the excellence
of the strategy. As a consequence, however, these agents cannot participate in a
generic negotiation environment where heterogeneous agents can interact with

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 264–279, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards an Open Negotiation Architecture for Heterogeneous Agents 265

each other. Interaction between such agents is not feasible due to several prob-
lems such as the absence of a shared negotiation ontology, and the lack of support
for generic interaction protocols. Open negotiation environments and testbeds
reported so far, such as the Trading Agent Competition [2], propose ontolo-
gies for a specific domain or scenario. The shared negotiation ontology must be
generic to be able to model arbitrary negotiation domains.

Current as well as newly developed negotiating agents are (will be) written
by different teams that should be free to select the technology of their choice
to build such agents. In practice it is not possible to impose a particular cod-
ing and design standard for developing negotiating agents. The applicability of
such agents, however, depends on their ability to interact in order to negoti-
ate. Both the inflexibility of the current state-of-the-art negotiating agents and
the closedness of existing ecommerce applications warrants the specification of a
well-defined and precisely specified interface that allows such agents to conduct
a negotiation.

Previous work on resolving these issues has focused mainly on the specifica-
tion of generic interaction protocols [4, 23]. Our aim has been to design and
implement a negotiation framework that allows existing heterogeneous agents to
negotiate and to analyze the results of such negotiation. The framework should
be able to function as a testbed as well as provide the enabling technology for
integrating heterogeneous agents. To this end, an approach must be developed
that enables the integration of arbitrary agents and algorithms for automated
negotiation into a generic negotiation system architecture. In particular, an open
system architecture for heterogeneous negotiating agents is needed, as well as
a conceptually simple and generic agent architecture, in order to clarify the re-
quirements on an interface to connect arbitrary negotiating agents to an overall
system architecture that supports (bilateral) negotiation. Our choice to intro-
duce an overall system architecture thus is motivated by several considerations:
(i) it can be used to create a principled design of an interface enabling heteroge-
neous negotiating agents to engage in negotiation, (ii) it may be used as a testbed
as well as for defining particular standards used to define a negotiation prob-
lem, and (iii) it precludes the need to specify ad hoc agent-to-agent interfaces.
The architecture and interface developed in this paper provides the basis for an
implementation of a testbed for negotiating agents that includes a set of negoti-
ation problems for benchmarking agents, a library of negotiation strategies, and
analytical tools to evaluate an agent’s performance and their strategies.

The paper is organized as follows. In Section 2 we propose an open archi-
tecture for heterogeneous negotiating agents and present a generic conceptual
design of a negotiating agent architecture. Using this design an interface be-
tween agent and system architecture is specified. In Section 3 the adapters that
are part of the interface are explained. The approach is illustrated by integrat-
ing two negotiating agents introduced in [17] and [19]. In Section 4 experiments
are presented that demonstrate the usefulness of the environment as a testbed.
Related work is discussed in Section 5. Section 6 concludes the paper.

266 K.V. Hindriks, C. Jonker, and D. Tykhonov

2 Negotiation System and Agent Architecture

We introduce an architecture as a first step to a solution to the integration prob-
lem. The solution is applicable for integration of the existing agents as well as for
the new agents that have not been implemented yet. This architecture has been
implemented and provides the basis of our software negotiation framework. (This
negotiation framework, user manuals, and a number of implemented negotiating
agents can be downloaded from http://mmi.tudelft.nl/negotiation.)

Figure 1 illustrates the proposed architecture. The architecture is based on
the analysis of the tasks of a generic negotiation environment. It represents
a minimal but sufficient framework to enable integration of negotiation agents.
The architecture consists of four main layers introduced below, a human bidding
interface, and a negotiating agent architecture. An interaction layer is required
to define and define the negotiation protocol and enable communication between
agents. An ontology layer is needed to provide the actual functionality needed to
define, specify and store a negotiation domain, the preferences of the negotiating
agents. The architecture can be used for education and training of humans in
negotiations. For that purpose, a graphical user interface layer provides options
to create a negotiation ontology, defines agent preferences, allows human user(s)
to participate in a negotiation, and review performance and benchmark results
of agents that conducted a negotiation. An analytical toolbox is required to use
the system as a research tool and organize tournaments. It provides a variety of
tools to analyze the performance of agents and possibly internal quality measures
related to e.g. the quality of an opponent model.

The overall architecture is introduced here to identify the main integration
points where adapters are needed to connect a negotiating agent to this ar-
chitecture. For the purpose of this paper, the human bidding interface is not
relevant. The agent architecture itself identifies common components of a nego-
tiating agent but is not intended to provide a comprehensive analysis of such
architectures or go beyond the current state of the art [3, 8, 14]. This architecture
may be instantiated with various software agents, which we illustrate below.

2.1 Negotiation System Architecture

Graphical User Interface. The graphical user interface enables a user to de-
fine the negotiation game, i.e. the parameters of the negotiation, the subject
or domain of negotiation, and preferences of agents (which also means that the
preferences a human should take into account can be predefined). This interface
does not introduce any integration points that should be part of the interface to
integrate negotiating agents into the negotiation environment.

Negotiation Domain. A negotiation domain is a specification of the objectives
and issues to be resolved by means of negotiation. It specifies the structure and
content of bids or offers exchanged, and of any final outcome or agreement (see
also Fig. 4 and 5 below). An outcome determines a specific value for each issue,
or, alternatively, only for a subset of the issues. Objectives allow to define a

http://mmi.tudelft.nl/negotiation

Towards an Open Negotiation Architecture for Heterogeneous Agents 267

Fig. 1. The Open Negotiation System Architecture

tree-like structure with either other objectives again or issues as children, in
line with [22]. Various types of issues are allowed, including discrete enumerated
value sets, integer-valued sets, real-valued sets, as well as a special type of issue
called price issue. Additionally, a specification of a negotiation domain may
introduce constraints on acceptable outcomes. For example, costs associated with
a particular outcome may not exceed the available budget of the agent.

Preference Profile. A preference profile specifies the preferences regarding possi-
ble outcomes of an agent. It can be thought of as a function mapping outcomes
of a negotiation domain onto the level of satisfaction an agent associates with
that outcome. The structure of a preference profile for obvious reasons resem-
bles that of a domain specification (see also Fig. 4 and 5 below). The tree-like
structure allows to specify relative priorities of parts of the tree. This allows, for
example, to ensure that all issues relating to travelling combined are weighted
equally as all issues relating to the actual stay at a particular location.

Shared Domain Knowledge. In a closed negotiation an agent is not informed
about the preferences of its negotiating partner. In that case an agent can at best
use a reconstruction (using e.g. machine learning techniques) of these preferences
to decide on the negotiation move it should do next. It is typical, however, that
with a domain comes certain public knowledge that is shared and can be used to

268 K.V. Hindriks, C. Jonker, and D. Tykhonov

obtain a better negotiation outcome. For example, common preferences such as
preferring early delivery over later (though not always the case) may be common
knowledge in a given domain. Such knowledge allows agents to compute the
preferences of their negotiation partner e.g. using the time interval between two
dates. This type of knowledge, labelled shared domain knowledge, is modelled
explicitly as a separate component that can be accessed by all negotiating agents.

Interaction Protocol. The interaction layer manages the rules of encounter or
protocol that regulate the agent interaction in a negotiation [18]. Any agent that
wants to participate in such a negotiation protocol must accept and agree to con-
form to these rules. An interaction protocol specifies which negotiation moves
and what information exchange between agents is allowed during a negotiation.
Interaction protocols are implemented in the negotiation environment as a sepa-
rate component to allow the use of a variety of protocols [4]. The current version
of the negotiation environment supports the alternating offer protocol [18], that
allows a generic communication between the agents. The protocol is illustrated
in Figure 2. A protocol can also dictate the exchange of complete package deal
proposals or allow instead the exchange of partial bids. The layer also manages
deadlines, or timeouts that may be set by the environment.

Fig. 2. A sequence diagram of the interaction protocol

The alternating offer protocol is not the only protocol used in the negotiation
research. Therefore, the interaction protocols are implemented in the negotiation
environment in a separate component to allow the use of a variety of protocols
[4]. Implementation of a new interaction protocol in the negotiation environment
is relatively easy task and has no or minimal effect on the agent code.

Towards an Open Negotiation Architecture for Heterogeneous Agents 269

Analytical Toolbox. The analytical toolbox layer of the architecture contains a
set of statistical analysis methods to perform an outcome analysis on negoti-
ation sessions as introduced and discussed in e.g., [10, 22]. Furthermore, the
toolbox contains methods for the analysis of dynamic properties of negotiation
sessions as discussed in e.g., [10]. The methods for both outcome and dynamics
analysis were used to produce a number of performance benchmarks for nego-
tiation behaviour and for the agent components [11]. The analytical toolbox
uses the optimal solutions [21], such as the Pareto efficient frontier, Nash prod-
uct and Kalai-Smorodinsky solution for the negotiation outcome benchmarking.
The benchmarks in the negotiation system can be used to analyze the perfor-
mance of opponent modelling techniques, the efficiency of negotiation strategies,
and the negotiation behaviour of the agent. The result of the analysis can help
researchers to improve their agents. The output of the analytical toolbox is pre-
sented by means of visualization (e.g., see 6).

2.2 Software Agent

The software agent component highlighted by the use of a different colour in
Figure 1 is a generic component that can be instantiated by heterogeneous soft-
ware agents. The components specified as part of a software agent in Figure 1
are part of the conceptual design of such agents but do not need to be actually
present or identifiable as such in any particular software agent. These compo-
nents do not introduce any design requirements for negotiating agents (although
they could be used as such, see also [3]). Instead these components are intro-
duced to identify integration points of agents with the system architecture. Five
of such integration points, also referred to as adapters, have been identified.

The preference model component models the agent’s preferences with respect
to the negotiation outcomes. For example, the agents introduced in [11, 17, 19]
use utility functions to represent preferences. Preferences however can be modeled
by other structures, such as ordinal rankings. The negotiation strategy is the core
component of a negotiating agent. This component makes decisions about the ac-
ceptance of an opponent’s offer, ending a negotiation, and sending a counter-offer,
using various tactics to generate such counter-offers [6]. The negotiation history
component maintains the negotiation history, i.e. bids exchanged between agents,
and can be used by the negotiation strategy component. It can also have a history
records about earlier negotiations, the outcomes, identities of the opponents, and
even opponent models. In repetitive negotiations with the same opponents this in-
formation can be used to improve negotiation performance of an agent by adapting
the negotiation strategy and improving the opponent model.

In a typical negotiation setup preferences of the negotiating parties are pri-
vate [22]. However, the efficiency of a negotiation strategy can be significantly
improved by using information about opponent preferences [24]. Thus, an im-
portant component of a negotiating agent is an opponent model. Our generic
component consists of three subcomponents: a preference model, a negotia-
tion strategy, and an update mechanism. The component preference model con-
tains representations of the preferences of the current and previous negotiating

270 K.V. Hindriks, C. Jonker, and D. Tykhonov

opponents. Typically, since the opponent’s preferences are assumed to be private,
the information stored in the component has a degree of uncertainty. The com-
ponent update mechanism is used to interpret offers received from an opponent
and to update the probability distribution associated with the preferences of an
opponent. The purpose of the component negotiation strategy in the opponent
model is to predict negotiation moves of the opponent. This knowledge can be
used in the negotiation strategy to improve the efficiency of an agent’s own offers
and increase the chance of acceptance of an offer by the opponent. Models of
the opponent’s preferences and strategy are typically learned by the agent from
negotiated agreements and offers exchanged in a negotiation [11, 14, 24].

3 Interface and Adapters

To integrate heterogeneous negotiating agents in a single negotiation framework,
their implementation has to be aligned with respect to the identified integration
points of Figure 1. Alignment by redesign of an agent typically requires significant
programming efforts and may cause back-compatibility problems. The number of
adapters between agent to be developed in an ad hoc enviroment is quadratic in the
number of agents: every pair of heterogeneous agents requires two adapters, one
at each side. Wrapping agents and connecting them to a common framework re-
quires only one adapter per agent, a number that is linear in the number of agents
to be integrated. To minimize programming effort we propose a set of adapters
or wrappers which need to be implemented once for each agent, and use software
design patterns to develop these adapters [16]. From the five integration points
identified, 3 must be implemented to be able to negotiate with another agent, in-
cluding a negotiation domain adapter, a preference profile adapter and an inter-
action protocol adapter. Implementing the shared domain knowledge and agent
introspection adapter provide additional functionality useful for more realistic ne-
gotiations, as well as for benchmarking agent performance.

In order to evaluate the effectiveness of our framework for integrating het-
erogeneous negotiating agents, we have integrated two existing agents from the
literature, the QO Agent from [17] and the agent based on fuzzy modelling tech-
niques [19] labelled FBM here. The integration of the agent should have no or
minimal consequences for the performance of the agent. In order to validate that
the integration did not affect the performance the integrated agent was evaluated
and compared with the original implementation using the negotiation problems
provided with that implementation. The results obtained did not show that the
performance of the agents was significantly affected. Below we present the de-
tails and guidelines for implementing the adapters. Due to space limitations we
cannot provide all details but only provide some specific findings regarding the
integration of the QO agent.

Interaction Protocol Adapter. The negotiation framework provides a skele-
ton Java class, called Negotiating Agent, to facilitate the implementation of
a custom-made negotiating agent (see Figure 3). This class implements basic

Towards an Open Negotiation Architecture for Heterogeneous Agents 271

Fig. 3. A UML specification of the interaction protocol adapter

functionality of the agent such as the agent initialization, and the loading of a
negotiation domain and preference profile, etc.

One of the most important tasks of this class is to ensure that a custom-made
agent will comply with the negotiation protocol. The NegotiatingAgent class
declares several methods that must be implemented in an agent. These methods
are called by the system architecture during a negotiation to inform an agent
about its opponent’s last action and to allow the agent to respond.

To integrate an existing agent in the negotiation framework we have used
the Object Adapter design pattern. Figure 3 shows the adopted design pattern
for the negotiating agent. In line with the pattern definition a Custom Agent
Adapter class is added that is inherited from the Negotiating Agent class The
receiveMessage() and chooseAction() methods of the adapter use the translation
routines of the negotiation domain adapter.

Key to the successful integration of an existing agent is understanding the
original code to a sufficient degree to understand the main information flows and
interaction patterns. The main problem is the significant amount of time that is
needed to analyze agent code to gain this insight. In particular, it is important to
identify the agent’s methods (a) that evaluate and interpret opponent bids and
(b) that decide on the agent’s next action. Moreover, differences in a protocol
used by one agent from that of another require choices to be made as to what
protocol to use in the negotiation framework. As an example, the protocol used
by the original QO Agent is different from the alternating offers protocol and
we chose to use the alternating offers protocol in our experiments.

Negotiation Domain and Shared Domain Knowledge Adapters. This
adapter must be able to interpret the information about the domain such as the
number of issues, type of the issues and the values of the issues. Figure 4 shows
a class diagram of the negotiation domain implementation of our negotiation
framework. The Negotiation Domain class is a composition of a set of issues
represented by the super class Issue. All classes for the specific issue types inherit
from the Issue super class. Issues can be grouped into a hierarchical structure
using the Objective class. As we explained earlier, our system provides four

272 K.V. Hindriks, C. Jonker, and D. Tykhonov

Fig. 4. Class diagram of the negotiation domain (left) and preference profile (right)

different types of issues: discrete, real, integer, and price issue (see the left part
of the Figure 4 for the corresponding classes). Issues and corresponding values
are bounded in the Bid class. An object of the Bid class represents one of the
possible outcomes of a negotiation domain. The system implements a number of
consistency checks to ensure that a bid is valid given the domain specification.

The adapter is implemented by two routines that translate the domain model
provided by the negotiation system into the internal representation of the agent
and vice versa.These routines are used to load a negotiation domain into the agent,
interpret an incoming proposal from an opponent and generate negotiation moves.

A negotiation domain is represented by using a particular negotiation on-
tology. The negotiation ontology we use is specified in terms of XML files [1],
which is widely-accepted file format for information exchange. Specific tags in
the XML file correspond to each of the various Java classes used to store a ne-
gotiation domain. For example, the Objective class is represented with the tag
labelled “objective” in the XML file that contains a negotiation domain speci-
fication (see the left part of the Figure 5). This tag can nest child tags such as
other objectves and issues to represent the hierarchy as explained above. The
type attribute of the issue tag specifies the type of the issue, such as discrete,
real, integer. Discrete issues are defined by the item tags. An item tag defines
a possible value of the issue in the value attribute. Intervals for the real and
integer issues are defined using the lowerbound and upperbound of the range
tag. The shared domain knowledge is also encoded in the negotiation domain
XML file. The semantics of the domain knowledge must be interpreted by the
agent itself, but is in fact supplied by means of the Negotiation Domain class
which defines an XML document object model (DOM) [1].

Towards an Open Negotiation Architecture for Heterogeneous Agents 273

Obviously, the routines to be developed mapping the ontology of the negotia-
tion framework onto that of the negotiating agent and vice versa need to take the
expressivity of the resepective ontologies into account. Only those parts of the
ontologies can be mapped on each other that express the same meaning. There-
fore the implementation of the negotiation domain adapter requires a careful
analysis of the negotiation ontology of the original agent implementation first.
Using this analysis the functions that translate negotiation concepts from the
ontology used by the agent and the ontology used by the system architecture (see
Fig. 5) have to be implemented. This procedure rather straightforwardly could
be applied to the QO agent, which uses issues that can take discrete values, and
uses plain text files to store a negotiation domain. Since discrete issues are one
type of issue allowed by the negotiation system it is easy to define the required
adapter methods.The method the QO agent needs to read a negotiation domain
from an XML file (the format used by the system architecture) was wrapped up
in a negotiation domain adapter.

Fig. 5. XML specification of a negotiation domain (left) and preference profile (right)

Preference Profile Adapter. This adapter must be able to interpret the
preferences of the agent as specified in Figure 4. The current implementation
of the negotiation system operates with a preference structure based on utility
functions. Other preferences modeling techniques, such as an ordinal ranking
of the outcomes can be implemented by inheriting from the Preference Profile
class. The utility space class in the negotiation system calculates the utility of
an outcome as a weighted sum of the evaluations values of the individual issues,
i.e. it implements linearly additive utility functions. The same type of utility
functions are used by the QO Agent.

274 K.V. Hindriks, C. Jonker, and D. Tykhonov

The preference profile, as the negotiation domain, can be saved as an XML
file (see Figure 5). The structure of a preference profile XML file is similar
to and extends the negotiation domain XML file with information about issue
evaluators and their associated weights (priorities). The type of the evaluator is
specified using the type attribute of the objective and issue tags. For example,
for a discrete issue utility values are specified in the evaluation attribute of the
item tag that represents the value of that issue. Consistency of a preference
profile given a corresponding domain is checked automatically when it is loaded
from the XML file by the negotiation system.

The procedure for implementing the preference model adapter is similar to
that of implementing the negotiation domain adapter. As before, the represen-
tation of the agent’s preferences in the original implementation need to be an-
alyzed. In addition, one should verify whether the structure of the utility space
and evaluation functions of the negotiation framework can be used to model
the structure of the preferences in the original implementation. Since these as-
pects match for the QO agent the adapter could be implemented without much
problems.

Agent Introspection Adapter. The negotiation system architecture can be
used as a testbed and research tool because it provides a number of benchmarks
and tools to analyze negotiation performance [11]. To facilitate such analysis, an
introspector is provided by the negotiation system. Negotiating agents can notify
this introspector about a variety of events, such as an update of the opponent
model, the selection of a next negotiation move, etc. The introspector must be
allowed access to some of the internal structures of an agent such as its preference
profile, its opponent model, and its negotiation history to be able to fully perform
its function. This access is required to compute e.g. metric distances between an
opponent preference model constructed by the agent and the actual preferences
of the opponent.

We use the Observer pattern which is an event-driven design pattern to im-
plement the introspector functionality. An agent needs to register with the in-
trospector that plays the role of Observer. Components of the agent then need
to notify the introspector when a corresponding event appears, which are sub-
sequently logged and analyzed to obtain benchmarks.

Dedicated code must be written to be able to have the introspector compute
some relevant performance measuresfor a particular agent. For example, for an
agent that tries to learn the opponent’s preferences measures related to the qual-
ity of learning as proposed in [12] can be computed. In order to do so, it is most
important to locate those places in the agent code that can be used effectively
for notifying the introspector to (re-)calculate the performance measures.

Lessons Learned. The expressive power of the ontologies available for the
specification of the negotiation domain and preference profiles were sufficient to
express all possible options to define a domain and profile for both the QO agent
as well as the FBM agent. The preference profiles of both agents are implemented
as utility functions and the evaluation functions used by the agents to evaluate

Towards an Open Negotiation Architecture for Heterogeneous Agents 275

the values of the issues were also already present in our system architecture. The
implementation of the adapter for the interaction layer, however, was more com-
plicated than expected. The main reason is that the interaction protocol used by
the original QO agent extends the alternating offers protocol since it allows addi-
tional types of messages to be exchanged between agents, such as threats. More-
over the localization of the core functions of the agent needed by the interaction
protocol adapter determined most of the integration efforts. Ideally, therefore, an
existing agent is integrated in close cooperation with its original developer. This
is not an issue, however, if agent are implemented from scratch.

4 Experiments

One of the purposes of the proposed architecture is to allow for integration of
heterogeneous agent and to facilitate comparison of their negotiation effectively
as a testbed, and can be used to perform experiments with various negotiation
domains, preference profiles and negotiating agents. The framework thus con-
tributes to automated negotiating agents research by providing a tool that is
able to provide new insights about such agents.

A tournament is a typical experimental setup for negotiating agents [10] that
allows to measure success of an agent compared to the performance of the other.
In addition, it is a useful tool to study the influence of various factors on the ne-
gotiation performance [12]. The analytical toolbox of the framework can generate
a tournament setup given a set of agents, negotiation domains and preference
profiles.

A small and simple negotiation problem, called “Party“ [12], is used to analyze
the performance of the QO agent within our negotiation framework. This domain
has been created for negotiation experiments with humans, which also explains
its rather limited size, including only 5 discrete issues with 5 possible values each
(totaling to 3,125 possible outcomes). All of the issues are unpredictable [12], i.e.
there is no shared domain knowledge. The preference profiles for the experiment
were selected randomly from a set of 30 profiles created by human participants
in a previously performed experiment. Since the QO agent needs 3 profiles as
possible models of the opponent’s preferences to be able to learn that profile,
it was provided with the real profile of its opponent and two additional profiles
that were randomly selected from all profiles.

In the experimental setup the QO agent negotiated against the Bayesian agent
introduced in [11]. The Bayesian agent uses a learning algorithm using a Bayesian
learning technique to build a model of the opponent’s preferences. The techniques
learns the necessary probabilities over a set of hypotheses about the evaluations
and weights of the issues. Structural assumptions about the evaluation functions
and weights are made to decrease the number of parameters to be learned and to
simplify the learning task. Only one experiment was run for each combination of
agents due to deterministic nature of the negotiation strategies of both agents.

Figure 6 presents the results of the negotiation experiment. The charts show
the space of all possible negotiation outcomes. The axis represent the utilities

276 K.V. Hindriks, C. Jonker, and D. Tykhonov

Fig. 6. Negotiation dynamics for the Party domain

of the outcomes with respect to the utility functions of the negotiating agents.
The charts show the negotiation paths of the agents marked by arrows with the
names of the agents.

The Bayesian agent starts with an offer that has maximum utility. It tries to
learn the opponent preferences from the offers it receives and uses this model when
it makes a concession towards the opponent. As a result, it stays close to the Pareto
Efficient frontier. The QO agent in this domain has more difficulty to propose effi-
cient offers.This is a result of limitation of the opponent model of the agent. The QO
agent accepts an offer of the Bayesian agent as soon as such an offer has a utility
level for the QO agent that is higher then utility of the QO agent ’s own offer.

The other agent integrated into our negotiation system is the FBM agent
introduced in [19]. The FBM agent was tested in a setup where it has to negotiate
against the Bayesian agent about a single issue defined on real values ranging
from 10 to 30. The original FBM agent is designed for negotiations where agents
can exchange fuzzy proposals. The implementation of the FBM agent we used
is able to negotiate about one-issue negotiations but can be extended for multi-
issue negotiations. The agent adopts time dependent negotiation tactics from [6]
and, thus, always makes concessions towards opponent. The offers are defined
using two values: the peak value and the stretch of the offer. The preference
profiles of the agents used were in complete opposition: the FBM agent wants
to minize the value of the issues and the Bayesian agent tries of maximize it. In
the experiments we performed, the β parameter that defines whether an agent
makes bigger concessions in the beginning of the negotiation (Conceder) or at
the end (Boulware) was varied, see Table 1.

In a single issue negotiation all negotiation outcomes are Pareto effient. The
most important aspect of the negotiation strategy in a single issue negotiation
is how fast one conceeds to the opponent. As a result, for β > 1 the FBM agent
implements a Conceder tactic and the FBM agent undeperforms with respect
to the Bayesian agent that makes linear concessions in this case because no
moves towards the Pareto frontier are possible. When the FBM agent employs a
Boulware tactic (β < 1) the Bayesian agent starts conceeding significantly and
the result is a much lower utility for the Bayesian agent.

Towards an Open Negotiation Architecture for Heterogeneous Agents 277

Table 1. Utility values of the FBM and Bayesian agents

Agents
Utility

β=0.02 β=0.1 β=0.5 β=1 β=2 β=10 β=50

FBM Agent 0.898 0.897 0.734 0.585 0.449 0.193 0.060

Bayesian Agent 0.102 0.103 0.266 0.415 0.551 0.807 0.940

5 Related Work

There is a large body of related work available. Due to lack of space we cannot
provide a complete overview but discuss specific approaches and examples of
negotiation frameworks that allow us to clearly position our own work.

Generic frameworks for negotiation. A range of quite different negotiation frame-
works exist in the literature, including frameworks for (i) automated negotiating
agents as well as (ii) negotiation support systems that provide electronic sup-
port for human negotiations. Within the first class a distinction can be made
between argumentation-based systems, e.g. [8, 20], and heuristic-utility based
systems, e.g. [10, 14, 17, 19]. The framework introduced and implemented be-
longs to the heuristic-utility based class of systems, though in principle it should
be possible to use the framework for argumentation-based negotiation as well.
Negotiation Support Systems (NSS) refer to systems that assist the process of
human communication in negotiation, see, for example, [5, 15]. For example, in
the Althena project (www.althenasoft.org) users can build content models,
but the system does not support by means of predefined structures, repositories
of content models, interaction support, or the selection of bidding strategies.
Similarly, our framework, through a graphical user interface, allows users to cre-
ate preference profiles, but significant extensions are needed in order to provide
similar negotiation support useful for humans.

Architectures for negotiating agents. The main focus in the literature on ne-
gotiating agent architectures, e.g. [3, 8, 14], is on the descriptive, structural
and behavioural specification but not on the design of and requirements associ-
ated with interfaces. The system and agent architecture presented here are used
specifically to obtain these interface requirements.

Negotiation ontologies. Our work is related to work on negotiation ontologies to
the extent that we need to define a language that can be used by heteregeneous
agents to exchange offers. The language that we have used, based XML schemas,
has been expressive enough to be able to integrate the QO agent and FBM agent.
Our efforts to set up a negotiation ontology for the architecture proposed thus
are motivated primarily by experience gained in practice. Related work about
ontologies such as [4, 23] focus more on protocol than domain ontologies, and
can be viewed as complementary. In future work our framework will be extended
to handle negotiation ontologies for protocols as well.

Testbeds and Trading Competitions. There is a variety of testbeds and trad-
ing competitions, but most are based on auction models instead of bilateral

www.althenasoft.org

278 K.V. Hindriks, C. Jonker, and D. Tykhonov

negotiation. In contrast, the framework introduced here provides a testbed that
can be used to evaluate the behavior and performance of automated negotiating
agents in bilateral negotiation. Moreover, most of the available testbeds are
based on a specific domain, whereas we believe that there is a need for multi-
issue bargaining testbeds which facilitate negotiation about various domains. A
system somewhat similar to ours is the Neg-o-Net system [9]. Neg-o-Net is a
generic agent-based computational simulation model for conducting multi-agent
negotiations concerning resource and environmental management decisions, and
includes a number of negotiation algorithms as well as agent models. However,
the system is developed specifically to investigate environmental management.

6 Conclusion and Future Work

In this paper we have defined a clear interface for integrating bilateral nego-
tiating agents into a (competitive) testbed. We have shown our approach is a
viable and realistic one by demonstrating the actual integration of two negotiat-
ing software agents according to the “recipe” discussed in the paper. Some initial
experimental results were provided to illustrate that by using the proposed en-
vironment we were able to easily obtain some new results and gain new insights
on the current state of the art in the area of automated negotiation.

The negotiation environment described and developed based on the princi-
ples and specifications introduced here implements an open system architecture
for such agents. The interface and adapters to connect agents to the negotia-
tion environment have been clearly specified which enable an easy integration
of heterogeneous negotiating agents. The actual use of this environment in, for
example, ecommerce applications based on bilateral negotiation, however, is still
significantly beyond its current main function as a testbed environment. Future
research should pave the way to such applications, which would involve among
others providing agents with the capability to propose a domain of negotiation,
and to define the rules of the negotiation game (i.e., protocol selection). Addi-
tional research on ontologies for negotiation are required to make this feasible; for
example, we cannot currently forumulate associated constraints on the domain
of negotiation that must be satisfied for an agreement to be acceptable. More
technically, components for web integration as well as extensions of adapters
need to be developed, e.g., in order to handle more generic ontologies.

Acknowledgements

We would like to thank Raz Lin and Zaynab Raeesy for providing us with the
code of their negotiating agents.

References

1. Extensible markup language (xml), http://www.w3.org/XML
2. The trading agent competition, http://www.sics.se/tac

http://www.w3.org/XML
http://www.sics.se/tac

Towards an Open Negotiation Architecture for Heterogeneous Agents 279

3. Ashri, R., Rahwan, I., Luck, M.: Architectures for negotiating agents. In: The 3rd
Int./Central And Eastern European Conf. on Multi-Agent Systems (2003)

4. Bartolini, C., Preist, C., Jennings, N.: A generic software framework for automated
negotiation. Technical report, HP Labs (2002)

5. Bellucci, E., Zeleznikow, J.: A comparative study of negotiation support systems.
In: Proceedings of HICSS (1998)

6. Faratin,P., Sierra,C., Jennings,N.R.:Negotiationdecision functions for autonomous
agents. Int. Journal of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)

7. Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make negotiation
trade-offs. Journal of Artificial Intelligence 142(2), 205–237 (2003)

8. Geipel, M.M., Weiss, G.: A generic framework for argumentation-based negotia-
tion. In: Klusch, M., Hindriks, K.V., Papazoglou, M.P., Sterling, L. (eds.) CIA
2007. LNCS (LNAI), vol. 4676, pp. 209–223. Springer, Heidelberg (2007)

9. Hales, D.: Neg-o-net - a negotiation simulation test-bed. Technical Report CPM-
03-109, CPM, April, Published as part of the FIRMA workpackage 3 report (2002)

10. Hindriks, K., Jonker, C.M., Tykhonov, D.: Negotiation dynamics: Analysis, conces-
sion tactics, and outcomes. In: Proceedings of the IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, pp. 427–433 (2007)

11. Hindriks, K., Tykhonov, D.: Opponent modelling in automated multi-issue nego-
tiation using bayesian learning. In: Proceedings of the AAMAS 2008 (2008)

12. Hindriks, K., Tykhonov, D.: Towards a quality assessment method for learning
preference profiles in negotiation. In: Proceedings of the AMEC 2008 (2008)

13. Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and
development. Journal of Autonomous Agents and Multi-Agent Systems (1998)

14. Jonker, C.M., Robu, V., Treur, J.: An agent architecture for multi-attribute nego-
tiation using incomplete preference information. Journal of Autonomous Agents
and Multi-Agent Systems 15(2), 221–252 (2007)

15. Kersten, G.E., Lai, H.: Negotiation Support and E-negotiation Systems: An
Overview. Group Decision and Negotiation 16(6), 553–586 (2007)

16. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd edn. Prentice-Hall, Englewood
Cliffs (2004)

17. Lin, R., Kraus, S., Wilkenfeld, J., Barry, J.: Negotiating with bounded rational
agents in environments with incomplete information using an automated agent.
Artificial Intelligence Journal 172(6-7), 823–851 (2008)

18. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

19. Raeesy, Z., Brzostwoski, J., Kowalczyk, R.: Towards a fuzzy-based model for
human-like multi-agent negotiation. In: Proc. of the IEEE/WIC/ACM Int. Conf.
on Intelligent Agent Technology, pp. 515–519 (2007)

20. Rahwan, I., Ramchurn, S.D., Jennings, N.R., McBurney, P., Parsons, S., So-
nenberg, L.: Argumentation-based negotiation. The Knowledge Engineering Re-
view 18(4), 343–375 (2004)

21. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press (1982)
22. Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and

Art of Collaborative Decision Making. Harvard University Press (2003)
23. Tamma, V., Phelps, S., Dickinson, I., Wooldridge, M.: Ontologies for support-

ing negotiation in e-commerce. Engineering Applications of Artificial Intelli-
gence 18(2), 223–236 (2005)

24. Zeng, D., Sycara, K.: Bayesian learning in negotiation. International Journal of

Human Computer Systems 48, 125–141 (1998)

Incrementally Refined Acquaintance Model for

Consortia Composition

Jan Doubek, Jǐŕı Vokř́ınek, Michal Pěchouček, and Martin Rehák

Agent Technology Group, Gerstner Laboratory
Department of Cybernetics, Czech Technical University in Prague
duby.jan@seznam.cz, {vokrinek,pechouc}@labe.felk.cvut.cz

Abstract. This paper presents a specific contracting algorithm that
contributes to the process of distributed planning and resource allocation
in competitive, semi-trusted environments. The presented contraction al-
gorithm is based on incrementally refined acquaintance models (IRAM)
of the actor that provide the right set of approximate knowledge needed
for appropriate task decomposition and delegation. This paper reports
on empirical evaluation of the IRAM algorithm deployment in consortia
formation domain.

1 Introduction

This work focuses on a technique for distributed consortium formation with
limited knowledge sharing. The consortia formation is based on a negotiation
between independent self-interested providers. The providers can offer several
services and the goal is to find the best suitable composition of providers to
cover required set of services.

The targeted domain organizes multi-party interaction in the environments
that are:

− non-centralized and with flat organizational structure [R1] – the existence
of a central coordination is minimal and the information about the skills of
actors, resource availability, knowledge and goals is distributed,

− multi-party involvement [R2] – the final project cannot be implemented
in isolation by a single actor, consortium composition can be initiated by
several actors simultaneously,

− provides partial knowledge sharing [R3] – the actors in the environment
are motivated to keep a substantial part of their private planning knowledge
and resource availability information undisclosed.

Due to the presented requirements, the consortia cannot be evaluated centrally
and the service allocation to the individual providers has to be negotiated. The
goal is to minimize the interactions with the providers to the necessary minimum
to reduce their private knowledge disclosure and simultaneously ensure the qual-
ity of the solution. To fulfill those demands we have designed presented algorithm
and acquaintance model representation and provide experimental evaluation.

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 280–291, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Incrementally Refined Acquaintance Model for Consortia Composition 281

This algorithm contributes to the process of distributed planning and resource
allocation in competitive, semi-trusted environments. The presented algorithm
is based on incrementally refined acquaintance models (IRAM) – the model that
the actor is maintaining about potential collaborators [1].

2 Problem Statement

The consortium composition can be represented as distributed state-space search
through all the potential consortia in the environment with limited information
sharing. Let us denote R as a requester agent, At as a set of services that R
requests to fulfill the task t. Furthermore we have agent Pj , as a provider agent
offering a certain set of services Amax

j , where j ∈ {1 . . . n} and

Fj(Aj) : {Aj ⊂ Amax
j } (1)

is pricing function for agent Pj to provide set of services Aj . When asked agent
Pj sends back just the price value.

The problem is then to acquire the optimal price

c(At) = min
n∑

j=1

Fj(Aj) � {Aj ⊂ Amax
j ;

⋃
j∈{1...n}

Aj = At} (2)

In this paper we then focus to find optimal vector of sets (A1, . . . , An) as a
decomposition of task t, where the overall price c(At) is minimal. Set of all
vectors that satisfies task the condition

⋃
j∈{1...n} Aj = At will be referenced as

a Deal Space - DSt.
In our model we have made several assumptions:

− Fixed price – the price of a particular subset of services is fixed during
algorithm run.

− Tasks are independent – a provider is capable of delivering same services
during all negotiation even if he was contracted for some services in the
previous tasks.

− Non-increasing partial price – a provider constructs a Fj(Aj) as ag-
gregated price from prices for individual services that are hidden to the
requester. We assume the individual services price to be non-increasing in
reference to increasing |Aj |.

3 IRAM-Based Consortium Formation

We have designed a straightforward decomposition mechanism that finds the
optimal decomposition given the right objective function and a complete in-
formation about provider’s resource availabilities. The decomposition algorithm
is polynomial and easy to construct (see [2]). Its behavior, however, worsens
strongly with lower quality of information about the provider’s prices stored

282 J. Doubek et al.

in the requestors’ acquaintance models (containing a subset of the deal space).
The most efficient approach in fully cooperative communities would be if the re-
questor queries all the providers and reconstructs the deal space for all services
provided by all actors prior to computing the optimal a contract.

As this is not possible in the environment compliant with the requirements
R1 and R3, the requestor needs to approximate such knowledge with only par-
tially available information. We are proposing incrementally refined acquaintance
model (IRAM) algorithm for handling partial knowledge sharing and private
knowledge disclosure [1].

This approach has been evaluated and compared with the another method
of provider prices estimation - the well-known Chebyschev Polynomials approx-
imation method.

3.1 Acquaintance Model

The acquaintance model can have a number of forms [3], [4]. In this particular
application the acquaintance model is understood as function that predicts actor
responses to a particular call-for-proposals (CFP) type of message. We represent
the acquaintance model (am) as a mapping from a set of P(Amax

j) possible sub-
sets asked from the provider Pj to a 1 dimensional real-value space representing
cost C.

Fam
j :P(Amax

j) → C (3)

Let us discuss several properties of an acquaintance model. The fixed point is
such a mapping among the actor, single service and a particular cost that is
based on exact information acquired from the communication with the specific
actor. In a fixed point asσ

x

Fam
j (asσ

x) = fj(sx, |Aj |, pcj) where |Aj | = σ (4)

where fj(sx, |Aj |, pcj) represents the price contribution of presence of service sx

in Aj to the total price of the entire set Fj(Aj).
Provided that the fixed points of the acquaintance model are collected in a

set Δ(Fam
j), we define the size of the acquaintance model δ(Fam

j) the amount
of the fixed points in the acquaintance model as follows:

δ(Fam
j) = |Δ(Fam

j)|. (5)

Various approximation functions have been used in the acquaintance models,
e.g. [2]. In our model we have selected the pairwise constant approximation. The
unknown price of service sy in subset with size |Aj |, equals to the closest bigger
known fixed point in means of the size of the containing subset|A′

j | : sy ∈ A′
j

Fj(sy, |Aj |, pcj) = Fj(sy, |A′
j |, pcj) if |Aj | � |A′

j |, (6)

provided that the symbol � represent the smallest bigger value.
The error of the acquaintance model - ε(Fam

j) - represents how well does
the acquaintance model capture real capability of the providers. Error of the

Incrementally Refined Acquaintance Model for Consortia Composition 283

acquaintance model is a dual quantity to the quality of the acquaintance model.
There can be a number of ways how the error can be related to the quality. We
only require that with a monotonic increase of quality the error decreases and
vice versa.

We represent the error of the acquaintance model as a sum of the differences
between the real costs and the information on costs provided by the acquaintance
model.

ε(Fam
j) =

∑
p,j

|Fam
p (Ap,j) − fp(Ap,j , pcj)| (7)

the index p goes through all possible subsets of Aj , and j goes through all
partners.

As said before, the reason why we use the acquaintance models for contract-
ing is that we are motivated by minimizing the unwanted knowledge disclosure
during interaction (requirement R3). Each interaction represents disclosure of
private information. By CFP the actors disclose their inability to perform a task
as well as their intention to do so. By a response to CFP the agents disclose
information about availability of particular resources. It is evident that with
rising δ(Fam

j), the acquaintance model is more exact and thus provides better
information (i.e. lower ε(Fam

j)). Better acquaintance model managed to reduce
communication (and thus private knowledge disclosure) during the negotiation
between the actors. However, bigger δ(Fam

j) (and thus smaller ε(Fam
j)) required

substantial interaction during the acquaintance model construction phase where
lots of unwanted information may have been disclosed.

The IRAM algorithm is balancing the size and the quality of the acquaintance
models. In order to evaluate performance of the IRAM algorithm we have devel-
oped a reference algorithm that is working with a similar acquaintance model,
constructed prior negotiation. Both algorithms are based on distributed state-
space search using negotiation between actors. As a negotiation protocol, we use
the competitive contract-net protocol [5], but any protocol that enables iterative
contract negotiation can be used.

3.2 IRAM Algorithm

The run of this algorithm for one particular task t is started with the initiation
phase. All providers are contacted for every single service and for maximal subset
of services from task t. The IRAM model am is constructed using the closest
bigger known fix-point approximation (see eq. 6). The model is represented by
sets of prices for specific service and pricing function settings (see eq. 1). The
price is set blank when is not known, and thus is calculated from other fixed
points.

The algorithm constructs the Deal Space and evaluates it with the prices
from Fam

j . The cheapest consortium Consbest is selected and the providers are
requested for appropriate services. Offered prices are then integrated into the
IRAM model. The deal space is then reevaluated and the cheapest consortium
is selected. If the new consortium is composed from fixed points (represents

284 J. Doubek et al.

Fig. 1. IRAM model(labeled with triangles) for one service according to sx, fixed points
in 1,8,17. Approximated function is labeled by diamonds.

real price of the consortium – no price approximation), this we understand as
optimum. Request for this consortium will lead to the exact same information
and due to eq. 6 the algorithm has converge to the optimum. The phases of
IRAM can be seen below.

Initialization. It is necessary to know at least two fixed points of acquaintance
model for specific service from each provider, for proper functionality of IRAM
algorithm. So if the algorithm have not these from previous contracts, it obtains
them in the first iteration. Due to this fact the amount of communication is
considerably higher regarding to following iterations. Preferably we choose the
single service data and maximum provider coverage data (Amax

j). Single service
provides us data needed for proportional price reconstruction necessary due to
aggregated price. And the max coverage data gives us the lowest possible prices
from provider needed for approximation.

Iteration Phases. The iteration phases represent processes that follow each
other in further negotiation stage.

− Contacting the best known consortium given by acquaintance model
− Updating IRAM model by the received responses
− Reevaluating the acquaintance model
− Sorting the deal space by total consortium price
− Termination condition evaluation

Termination Condition. The algorithm is iterating (contacting and updating
model) till the best evaluated consortium consists of fixed points only (e.g. no
part of consortium has estimated evaluation)

The steps of IRAM algorithm can be seen in Figure 2.

Incrementally Refined Acquaintance Model for Consortia Composition 285

1 Construct deal space DSt.

2 Send CFP(si) for all si ∈ t to all providers P.

3 Update am according to received responses.

4 Send CFP(Amax
p) to all providers P.

5 Update am according to received set of responses Ap.

6 Select Consbest from DSt evaluated by am.

7 If Consbest ⊂ S
j∈P (ΔFam

j) then terminate algorithm.

8 Send CFP(Ap,j), where
S

j=1...n Ap,j = Consbest to providers 1 . . . n.
9 Goto 5.

Fig. 2. IRAM algorithm steps

3.3 Properties of IRAM

The presented IRAM algorithm is sound and complete. The proof of complete-
ness of the algorithm is made through conversion of whole idea to A∗ algo-
rithm [6], where the nodes of searched space are individual consortia from DS,
and edges represent inclusion (or exclusion) of one provider to a consortium.
This representation corresponds to Coalition Structure graph [7].

The heuristics of A∗ is then based on acquaintance model approximation, all
of the nodes are priced particularly by real prices (fixed-points) and by com-
puted prices given by acquaintance model. The price of the consortium Cons is
represented by

c(Cons) = g(Cons) + h(Cons),

where g(Cons) =
∑

Aj⊂Δ(Fam
j)

(Fam
j (Aj)) =

∑
Aj⊂Δ(Fam

j)

Fj(Aj),

and h(Cons) =
∑

Aj⊂P(Amax
j)/P(Δ(Fam

j))

Fam(Aj). (8)

The g(Cons) represents price of the of subsets from Cons that is known from
previous negotiations (the fixed-points) and h(Cons) is the unknown price of
the subsets from Cons estimated by acquaintance model.

The non-increasing individual pricing function assumption causes

sx ∈ Aj,1; sy ∈ Aj,2; sy = sx; |Aj,1| ≤ |Aj,2|

⇒ fj(sx, |Aj,1|, pcj) ≥ fj(sy, |Aj,2|, pcj) (9)

According to eq. 6 and 9 the h(Cons) is always equal or lower then the real price
of this subset, so h(Cons) ≤ h∗(Cons) and the eq. 8 is admissible heuristics of
A∗ algorithm. Since the IRAM is based on exploration of the best candidates
evaluated by eq. 8 the algorithm provides the features of A∗ algorithm [6].

286 J. Doubek et al.

3.4 Reference Algorithm

The presented approach has been empirically validated by comparison with the
state-of-the-art algorithm with behavior similar to IRAM algorithm. Generally
the IRAM method is used to approximate unknown pricing functions of part-
ners and determine the direction of future negotiation. For the benchmarks pur-
poses we have implemented a reference algorithm based on deployment of known
Chebyshev polynomials [8], previously used for modeling of sellers production
pricing function.

The Chebyshev polynomials exactly Chebyshev polynomials of the first kind
are defined as

Tn(x) = cosn arccosx (10)

Due to its orthogonality with respect to the weight w(x) = (1−x2)−1/2 in the
interval [-1,1] are widely used for approximation, in most cases they are more
effective than Taylor’s. The Chebyshev polynomial state can be represented by
the recursion formula: Tn+1 = 2xTn(x)−Tn−1(x), where T0 = 1; T1 = x. Further
information can be obtained in [9].

The approximation itself is made through computing weights (ck). They rep-
resent the contribution of every Chebyshev polynomial to the resulting function.
The complete approximation formula is

f(x) ≈
N−1∑
k=0

ckTk(x) − 1
2
c0 (11)

The defining weights are reconstructed from approximated known points
(xk, f(xk)), k = 1..M with formula

cj =
2
M

M∑
k=1

f(xk)Tj(xk) (12)

The values of xk should be mapped to [−1, 1].

3.5 Implementation

As mentioned above, searched approximation method was selected according to
initial environmental conditions similar or equal to IRAM’s. In case of Chebyshev
polynomials the conditions matched exactly. The implementation of the IRAM
algorithm was just slightly modified in the field of approximation and all the
other interfaces (like communication, consortium construction and evaluation)
were left untouched. For a proper explanation of its deployment, let us explain
the adaptation of Chebyshev polynomials to the environment. The first two
samples (fixed points), needed in general for every approximation, are gathered
from the initiation phase of negotiation (same as IRAM). The deal space is then
evaluated from Chebyshev approximation of the pricing functions. The final
condition is also same as in IRAM. If the same solution is evaluated as the best
in two following iterations it is returned as result.

Incrementally Refined Acquaintance Model for Consortia Composition 287

As mentioned previously, the only alteration (from the IRAM algorithm) in
the optimal consortium search was the approximation process. Just like in IRAM
there is a pricing function model for every particular service from every provider,
this model consists of set of weights (eq. 11), the number of weights depends on
the number of Chebyshev polynomials used. The number is also correlated with
approximation quality (will be further described). The origin of the polynomials
is the same for all approximations thus is stored as a constant. The exploiting
of the incoming information takes place during the weight computation, which
is performed as a result of collecting each new price information.

4 Experiments

The key contribution of the presented paper is in empirical evaluation of the
presented algorithm. We will be analyzing the behavior of IRAM in relation to
the reference algorithm presented above.

For presenting the contribution of IRAM we construct a market model that
contains a set of four providers P , one simple requester that requests providers for
set of 17 tasks S = t1 . . . t17 using IRAM and reference algorithm for comparison.

In our experiments we randomly generated 4 providers, where everyone of
them was capable of delivering 14 services from total 18 services, this setting
was chosen due to computation requirements. The max size of acquaintance
model is δmax(Fam

j) = 65532 possible proposals i.e. fixed points, and average deal
space size in one task is 〈|DSt|〉 = 8777. The individual pricing functions were
randomly generated as follows. We generate uniform distribution set of prices
UP = (bp1 . . . bps) in defined range (200, 600) for base price bp of every service
from U . Then we create one random value in range dj ∈ (0.6, 1) for particular
provider pj that represent the discount in price according to the number of total
services asked |Aj |. From discount is then computed margin value mj

mj = 1 + 0.05 ∗ ((1 − dj)/0.8) ∗ ((1 − dj)/0.8 + 1)/2. (13)

The price fi,j of single service si is then derived from base price bpi and total
service asked |Aj | as follows.

fj(si) = mjbpid
|Aj |−1 + 0.5mjbpi (14)

Then the pricing function corresponds to eq. 1 Every provider then responds
only with this price when is asked for some services.

4.1 Quality of a Model

As shown in [8], the quality of a approximation rises with the number of polyno-
mials used. It can be shown that for a approximation of a polynomial function of a
certain degree d the number of Chebyshev polynomials needed for exact approx-
imation is also d. However in our case the pricing functions (eq. 1) are little bit
different to be specified exactly like a polynomial. Therefore we run quality tests
to find the right Chebyshev polynomial count. The results are shown in figure 3.

288 J. Doubek et al.

Fig. 3. Chebyshev approximation performance with different polynomial count

The scenario of the test is performed by 6 partners with 17 services each from
34 possible services. They are gradually asked for 20 tasks composed of 9 services.
The pricing functions specifications are the same as usual.The size of the deal
space is then according to the setting 19683. There is a set of tests on the same
setting just with different count of Chebyshev polynomials used. Measured vari-
ables was failure count (finding the wrong optimum), failure percentage, average
relative failure height (to the price of optimum) and computational time (on the
same hardware setting in ms). The table shows us that the approximation has
interesting numbers in one polynomial case, which represents the linear approx-
imation with one straight line. The other results worsens with rising polynomial
number until the peak at 11 polynomial for failure count and 5 for average rela-
tive failure height. The computational time is rising due to computing of higher
and higher powers. By the polynomial count of 23 we can se ideal approximation
of our pricing functions represented by 0 failures. So this setting we can use as
a proper benchmark for IRAM in this particular environment.

4.2 Benchmarking IRAM vs. Chebyshev

Finally we can unveil the key comparison of Chebyshev method and IRAM. For
the first set of tests we simply use the setting described in previous section in or-
der to illustrate major differences. The measured variables are average Iteration
count, sum of asked proposals and sum of asked services. The Figure 4 providing
measured variables with IRAM’s results in the last column, clearly shows that
with the same level of quality (zero failures) the shared information (gathered and
paid) from partners is 50 % bigger in negotiation than using Chebyshev approxi-
mation. To be equal in information requirements we have to accept 85 % chance to
have 5 % failure with Chebyshev of the order 11. Just for clear comparison of the
average computational time for one IRAM negotiation was 859,8 ms comparing to
13235,65ms of Chebyshev of the order 23. The time results have just relative infor-
mation value because the implementation of Chebyshev polynomial computation
can be slightly upgraded, which is not the key object of this paper. For the next
experiments we will use the Chebyshev polynomial of the order 11 and Chebyshev
polynomial of the order 23 for benchmarking with IRAM’s results.

Incrementally Refined Acquaintance Model for Consortia Composition 289

Fig. 4. IRAM vs. Chebyshev comparison

Another key comparison which can be shown on multiple task solving sce-
narios, is the progress of the harvested data utilization. Due to incrementally
better and larger model sizes we can obtain the solution with lower negotiation
requirements. Results of this experiments are shown in figures 5 and 6. In the
first one there is the number of fixed points requested from the partners in ev-
ery negotiation. This value has the meaning of shared information among the
partners. We can see a notable computational overhead needed for Chebyshev
of the order of 23 in the beginning of the negotiations. This trend then gets
significantly better than IRAM numbers with increasing number of task solved.
This is caused by bigger (thus better) Chebyshev of the order 23 model. The
Chebyshev of the order 11 has almost the same data. It was chosen because of
its equal data requirements as IRAM. On this particular data we can see pro-
gressive IRAM’s character in the single task formation problem, i.e. the model is
build from scratch. In the first step of the graph IRAM outperforms Chebyshev
by 50 %. In unknown environments or in highly dynamic cases this capabil-
ity become very useful. In the second figure we shown the sizes of each model
(see eq. 5) and how this size continually grows with the number of negotiations.

Fig. 5. IRAM vs. Chebyshev 11 and Chebyshev 23 asked fixed points in particular
negotiations

290 J. Doubek et al.

Fig. 6. IRAM vs. Chebyshev 11 and Chebyshev 23 in size of the models

Again, we can see the overhead needed by Chebyshev of the order 23. It comes
with the robustness of 23 Chebyshev polynomials and its requirements for ini-
tial data to construct the proper approximation. Trends for all of the algorithms
are almost the same. With an increasing number of negotiations they tend to
converge to certain bound where the models have mapped all interesting areas
of partner’s pricing functions. In those regions IRAM shows significantly lower
need for collected information to provide the best solution.

As we can see, the deployment of IRAM algorithm in this type of domains
brings significant improvement in performance, not just in information sharing
field but with its simple implementation even in computational requirements.

5 Conclusion

The paper also presents a specific algorithm for distributed task delegation and
resource allocation in semi-trusted multi-actor communities - the Incrementally
Refined Acquaintance Model (IRAM). This algorithm is based on incrementally
maintained social knowledge of the service requestor about the service providers.
The novelty of the presented approach is in the fact that social knowledge is
used even if very imprecise and it is gradually refined by means of unsuccessful
attempts to contract.

The presented IRAM algorithm allows consortia composition with respect
to defined requirements, mainly non-centralized approach and minimization of
private knowledge disclosure. In environments with a certain degree of dynam-
ics, IRAM’s decent information requirement in initiative phase of building the
model brings it a significant benefit in comparison with classical approximation
approaches (Chebyshev). It can be outperformed in longer sets of negotiations
due to more voluminous models representing the opponents.

High dynamics of the environment causes devaluation of acquaintance model
and it can lead to incorrect solution. In such dynamic environment, the IRAM

Incrementally Refined Acquaintance Model for Consortia Composition 291

algorithm has to start building the model from scratch for every new task. In one
deal scenario, the presented IRAM algorithm still provides quick convergence to
the optimum with low communication and thus low private knowledge disclosure.
Another option is limit the validity of the information obtained and reconstruct
part of the model only.

Acknowledgment

The work is funded by the European Commission’s FP6 programme within the
projects Collaborative Process Automation Support using Service Level Agree-
ments and IntelligentDynamic Agents in SME clusters (PANDA), IST-No.027169.
The research is also partly funded by the Ministry of Education, Youth and Sports
of the Czech Republic grant No. MSM 6840770038 and No. 1M0567.

Any opinions expressed in this paper are those of the author(s)/organization
and do not necessarily reflect the views of the European Community. The Com-
munity is not liable for any use that may be made of the information contained
herein.

References

1. Pěchouček, M., Mař́ık, V., Bárta, J.: Role of acquaintance models in agent’s private
and semi-knowledge disclosure. Knowledge-Based Systems 19, 259–271 (2006)

2. Pěchouček, M., Lerch, O., B́ıba, J.: Iterative query-based approach to efficient task
decomposition and resource allocation. In: Klusch, M., Rovatsos, M., Payne, T.R.
(eds.) CIA 2006. LNCS (LNAI), vol. 4149, pp. 258–272. Springer, Heidelberg (2006)

3. Cao, W., Bian, C.-G., Hartvigsen, G.: Achieving efficient cooperation in a multi-
agent system: The twin-base modeling. In: Kandzia, P., Klusch, M. (eds.) Cooper-
ative Information Agents. LNCS (LNAI), vol. 1202, pp. 210–221. Springer, Heidel-
berg, Heidelberg (1997)

4. Mař́ık, V., Pěchouček, M., Štěpánková, O.: Social knowledge in multi-agent systems.
In: Luck, M., Mař́ık, V., Štepankova, O. (eds.) Multi-Agent Systems and Applica-
tions. LNCS (LNAI). Springer, Heidelberg (2001)

5. Vokř́ınek, J., Hod́ık, J., B́ıba, J., Vyb́ıhal, J., Pěchouček, M.: Competitive contract
net protocol. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C.,
Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 656–668. Springer,
Heidelberg (2007)

6. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality af
A*. J. ACM 32(3), 505–536 (1985)

7. Sandholm, T.: Distributed Rational Decision Making. In: Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence, pp. 201–258. MIT Press,
Cambridge (1999)

8. Saha, S., Biswas, A., Sen, S.: Modeling opponent decision in repeated one-shot
negotiations. In: AAMAS 2005: Proceedings of the fourth international joint confer-
ence on Autonomous agents and multiagent systems, pp. 397–403. ACM, New York
(2005)

9. Rivlin, T.: Chebyshev Polynomials: From Approximation Theory to Algebra and
Number Theory. Wiley-Interscience, Chichester (1974)

Towards a Monitoring Framework for Agent-Based
Contract Systems

Noura Faci, Sanjay Modgil, Nir Oren, Felipe Meneguzzi,
Simon Miles, and Michael Luck

Department of Computer Science, King’s College London,
Strand, London WC2R 2LS, UK
noura.faci@kcl.ac.uk

Abstract. The behaviours of autonomous agents may deviate from those deemed
to be for the good of the societal systems of which they are a part. Norms have
therefore been proposed as a means to regulate agent behaviours in open and dy-
namic systems, and may be encoded in electronic contracts in order to specify
the obliged, permitted and prohibited behaviours of agents that are signatories to
such contracts. Enactment and management of electronic contracts thus enables
the use of regulatory mechanisms to ensure that agent behaviours comply with
the encoded norms. To facilitate such mechanisms requires monitoring in order
to detect and explain violation of norms. In this paper we propose a framework
for monitoring that is to be implemented and integrated into a suite of contract en-
actment and management tools. The framework adopts a non-intrusive approach
to monitoring, whereby the states of a contract with respect to its contained norms
can be inferred on the basis of messages exchanged. Specifically, the framework
deploys agents that observe messages sent between contract signatories, where
these messages correspond to agent behaviours and therefore indicate whether
norms are, or are in danger of, being violated.

1 Introduction

Interactions in systems composed of heterogeneous and self-interested agents are inher-
ently unreliable, requiring some form of societal control to bind these interactions. The
introduction of norms has been proposed to address this need in such systems [8,1],
allowing for open societies of autonomous agents that are, nevertheless, regulated to
some degree. Such norms are usually specified using deontic concepts, including the
notions of obligations, permissions and prohibitions that govern or direct agent be-
haviour in multi-agent systems. By incorporating sets of these norms into a formal
document representation, it is possible to define electronic contracts, which mirror the
the paper versions exchanged between businesses today, and offer the possibility of dy-
namic, runtime enforcement of contract party agent behaviours to ensure compliance
with norms.

This work is situated in the context of the CONTRACT project1 that aims to de-
velop frameworks, components and tools that make it possible to model, build, verify

1 www.ist-contract.org

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 292–305, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards a Monitoring Framework for Agent-Based Contract Systems 293

and monitor distributed electronic business systems on the basis of dynamically gener-
ated, cross-organisational contracts which underpin formal descriptions of the expected
behaviours of individual agents and the system as a whole. In this paper we report on
ongoing development of the project’s framework for monitoring electronic contracts.

The fact that agents are to varying degrees autonomous means that their behaviours
may deviate from those prescribed by norms; that is, agents may violate norms. Thus
there are requirements for monitoring norm violations during run-time contract-based
governance of agent behaviours [14]. Monitoring has also been extensively studied in
a Web Services context (e.g., [6,12,13]). However, monitoring of contracts specified as
Service-Level Agreements (SLA), focuses on quality of service metrics rather than on
the behaviours of contractual entities. We adopt the latter perspective in this paper; one
that allows for planning-oriented detection and analysis of norm violation by agents.
Two types of monitoring have been adopted in multi-agent systems:

1. In corrective monitoring (e.g., [5]) violations are detected as they occur, and the
results of analysis of these violations are used to instigate corrective measures.
Such measures might include the imposing of punishments on those contract par-
ties that violate norms, thus motivating future compliance (as well as possibly com-
pensating contract parties injured by non-compliance). These punishments may be
manifest in the form of less favourable terms offered to the violating parties when
re-negotiating contracts. Furthermore, the very fact that agents are being monitored,
and thus the threat of punishment, may itself motivate compliance.

2. In predictive monitoring (e.g. [18]) norm violations are predicted and actions are
specified to avoid violation. The obvious advantage is that the business process can
continue uninterrupted by remedial measures.

Our focus in this paper is on corrective monitoring based on run-time observation
of agent behaviours. However, we also discuss how the monitoring of agent behaviours
can be used for predictive purposes.

Approaches to monitoring of agent behaviours can also be distinguished according
to whether they adopt an intrusive or overhearing approach. In the intrusive approach
(e.g., [2,4,16,9]), the mental states of agents are assumed to be available for inspection.
Agents communicate their states to monitors that subsequently interpret the behaviours
of agents. Intrusive approaches thus make the design of agent-based systems more com-
plex, and rely heavily on the compliance of agents to communicate the required data.
We therefore adopt the overhearing approach [5] in which messages exchanged among
agents are observed, and behaviours are inferred from these messages.

The paper is organised as follows. Section 2 briefly describes the CONTRACT
project’s representation of electronic contracts, their contained norms, and the architec-
ture for enactment and managing of contracts. Sections 3, 4 and 5 then describe the pri-
mary contribution of this paper: we propose a multi-agent framework for non-intrusive
monitoring of electronic contracts, whereby the states of a contract with respect to its
contained norms can be inferred on the basis of messages exchanged. In this way one
can recognise whether a norm is currently in force, in danger of being violated, and
whether a norm is in fact violated or complied with. We believe that our framework is
the first to adopt such an approach to monitoring of electronic contracts.

294 N. Faci et al.

Section 3 focuses on the entities and associated information flows that comprise the
monitoring aspects of the architecture, while Section 4 then characterises the behaviour
of the architecture’s agents in terms of the messages these agents receive and send. Sec-
tion 5 then describes the mapping from the norms expressed in a contract to a represen-
tation suitable for monitoring, and how violations are detected based on the processing
of these representations and the observed exchange of messages between contract party
agents. Section 6 looks forward to future work; in particular, work on generation of
explanations for norm violations, and representation of danger states that indicate an
increased likelihood of norm violation and thus enable predictive monitoring. Finally,
Section 7 concludes and discusses related work.

2 Norms and Architecture

The CONTRACT project encodes contracts as XML documents consisting of normative
clauses that are essentially declarative specifications of agent behaviours. Associated
with these documents are ontologies that describe and define background concepts and
terms. These contract documents and associated ontologies are more fully described in
[15], but the XML encoding of normative clauses is the primary input to the monitor-
ing architecture. Here, we briefly review our underlying model of norms that ground
specification of a contract’s normative clauses.

Norms can be classified into obligations (what should be done), prohibitions (what
should not be done) and permissions (what is allowed to be done). Norms affect tar-
get agents that agree to abide by the norms contained in a contract, which apply un-
der certain circumstances. Note that these circumstances may occur multiple times
during a contract’s lifetime. For example, an obligation to keep a fire door shut (the
obligation’s goal state or condition) takes force whenever the door is opened. When-
ever such triggering (activating) circumstances arise, an instantiated version of the
norm parameterised by those circumstances begins to take effect on the target agent’s
behaviour.

More formally, norms are tuples of the form:

(NormType, NormActivation, NormCondition, NormExpiration, NormTarget)

where NormType∈ {obligation, permission, prohibition}, NormActivation denotes
the conditions under which the norm is activated (triggered), and NormCondition
denotes the goal or state that:

– must be brought about by the NormTarget in the case of an obligation;
– may be brought about by the NormTarget in the case of a permission; or
– must not be brought about by the NormTarget in the case of a prohibition.

Finally NormExpiration denotes the conditions under which the norm is no longer
in force.

Example 1. Consider the following obligation ObDel on an agent AgX to deliver
GoodsZ to agent AgY within one week of receiving the order from AgY :

Towards a Monitoring Framework for Agent-Based Contract Systems 295

– NormType = obligation
– NormActivation = order placed(AgY, AgX, GoodsZ) denoting that AgY has

placed an order to AgX for GoodsZ
– NormCondition = deliver(AgX, AgY, GoodsZ, 1 week) denoting that AgX has

delivers GoodsZ to AgY within 1 week
– NormExpiration = delivered(AgX, AgY, GoodsZ, 1 week) denoting that AgX

has delivered GoodsZ to AgY in 1 week
– NormTarget = AgX

Consider also the permission PerDel and prohibition ProDel that are defined in the
same way as ObDel, except that in the former case NormType = permission, and in
the latter case NormType = prohibition. Thus:

– PerDel permits agent AgX to deliver GoodsZ to agent AgY within one week of
receiving the order from AgY

– ProDel prohibits agent AgX from delivering GoodsZ to agent AgY within one
week of receiving the order from AgY 2. �

An administrative architecture [11] has also been defined, consisting of a set of service-
oriented middleware components and design patterns to support management of elec-
tronic contracts. The architecture can be seen as a combination of the following stages,
which are applied to an electronic contracting application as a methodological process.
First, off-line verification mechanisms check whether the contracts to be enacted obey
certain properties, such as being consistent, or achievable given the possible states the
world can reach. The architecture also provides for definition of application specific
processes suitable for administration of the electronic contracts through their lifetimes,
including enactment, updating, termination, renewal, and so on. Such processes may
also include observation of the system, so that the contract can be enforced or otherwise
effectively managed. Once suitable application processes are identified, we can specify
the roles that agents play within them, and the components that agents can utilise to
allow them to manage the contracts. In the following section we give more detail on the
agents, components and processes relevant to monitoring.

3 Overview of Monitoring

In this section, we introduce a novel approach to monitoring for on-line detection of
contract/norm violations in contract-based systems. The approach describes
observation of communications between contract parties, and performs matching of the
observed communications against augmented transition networks (ATNs)[17] which are
essentially directed labelled graphs consisting of nodes and arcs. These ATNs charac-
terise acceptable, prohibited, and obliged behaviours. The contract parties are treated as
black boxes and their internal state transitions are invisible to the Monitoring
components.

2 The example prohibition is primarily illustrative; it is admittedly somewhat odd to have a
prohibition on delivery of goods within a certain time period. We model such a prohibition
given the convenient representational match with the permission and obligation.

296 N. Faci et al.

As discussed in Section 1, our approach to monitoring is based on observation of
messages received and sent by agents that are signatories to a contract (the contract
parties). This requires that each normative clause in a contract is mapped to a represen-
tation whereby:

– the state (of the world) described by a norm’s NormActivation can be recognised
as being brought about, on the basis of messages exchanged; and

– the state (of the world) described by a norm’s NormCondition as being obliged
to, permitted to, or prohibited from, being brought about, can be recognised on the
basis of messages exchanged.

For example, consider the obligation ObDel in Example 1. The obligation is activated
when

order placed(AgY, AgX, GoodsZ)

holds, and this is recognised as being the case when the message

order(AgY, AgX, GoodsZ)

has been sent by AgY to AgX . Observation of this sent message indicates that the
contract is in a critical state with respect to ObDel.

The obligation is fulfilled when ObDel’s

NormCondition = deliver(AgX, AgY, GoodsZ, 1 week)

holds. This is recognised as being the case when the message

notify delivery(AgX, AgY, GoodsZ)

is observed as having been sent by AgX to AgY within one week of receipt of the
above order message. If the notify delivery message is not observed as having been
sent within one week, then ObDel is deemed to be violated.

In Section 5 we further describe a framework for mapping a contract’s normative
clauses to augmented transition networks (ATNs) [17], which constitute the monitor-
ing representation, and which associate the NormActivation and NormCondition
constituents of norms with messages exchanged.

Figure 1 provides an overview of the monitoring architecture. The architecture has
been designed based on the assumption that monitoring parties are external to the
contract itself. This means that Monitors can be flexibly deployed for any contracts,
provided that appropriate ATN representations of contracts are available for input to
Monitors, and that Monitors can operate asynchronously from the execution of the con-
tract itself. These design assumptions ensure that the system’s performance and moni-
toring performance are independent of each other. Furthermore, failure of one will not
adversely affect the other (for example if one monitor fails then another monitor can be
deployed without interrupting execution of the contract).

In the architecture, a Mapper maps a contract (obtained from a Contract Store) to
ATNs for input to the Monitor. This input is provided off-line. During the run-time
enactment of a contract it is the actual messages exchanged that are matched by the
Monitor with the ATNs in order to detect norm violations.

Towards a Monitoring Framework for Agent-Based Contract Systems 297

Fig. 1. Monitoring Architecture (ovals denote agents and cylinders denote data stores)

Notice that all messages exchanged between contract party agents, and between
contract party agents and the Environment (communicative entities that are not con-
tract party agents) must be observable by Observers. For effective monitoring, this
requirement is mandatory, and can be enforced by enabling Observer interception of
all communicative interactions. This is illustrated in Figure 1 in which the Observer
probes each of the communication channels between agents, and between agents and the
environment. These communication channels are conceptual entities; in practice, the
probing may be implemented by associating the Observer with the middleware com-
munication interfaces of each agent. Intuitively, if every normative clause is mapped to
messages exchanged by entities, and all such messages are observable, then this pro-
vides some measure of guarantee that every norm violation can be monitored.

Finally, the Monitor processes each norm violation in order to provide an expla-
nation of the violation that is made use of by Management party agents in order to,
for example, impose punishments in the case of corrective monitoring, or instigate

298 N. Faci et al.

preemptive action in the case of predictive monitoring. In Section 6 we look forward
to future work addressing explanation generation. The following section then charac-
terises the behaviour of the agents in Figure 1 in terms of their interfaces with other
agents.

4 Agent Behaviours in the Monitoring Architecture

The monitoring architecture is intended to be integrated into a wide range of appli-
cations, and deployed in varying ways. To ease this integration process, we follow a
service-oriented approach by defining the form of messages sent from and received
by the monitoring components (i.e. their interfaces). Publishing an interface allows
technology-specific agents to be implemented such that they use the correct format of
messages to communicate, regardless of their internal architectures. In this section, we
define the interfaces for the components introduced in the previous section. For each
component, we define the form of each message type it sends, the parameters the mes-
sage provides, and the role of the agent expected to receive it. Note that in what follows,
messages will contain the unique names monitor-id, observer-id,. . . of agents and other
components of the monitoring architecture.

4.1 Monitor

The Monitor is required to report violations of active contracts (corrective monitor-
ing) and issue warnings when there is a risk of violation (predictive monitoring). These
behaviours are specified by messages sent from the Monitor to Observers and Manage-
ment parties. These messages are of the following form:

– Subscribe(monitor-id, observer-id, contract-id, timeInterval/eventExp): The Mon-
itor agent, named monitor-id, subscribes to the Observer, named observer-id with
respect to a given contract, named contract-id, in order to receive observed data
at intervals corresponding to period, timeInterval, or when a condition eventExp is
true.

– Cancel(monitor-id, observer-id, contract-id) : The Monitor agent, monitor-id, can-
cels its subscription to the Observer, observer-id for contract-id.

– Inform(monitor-id, manager-id, contract-id, norm, explanation, violator(s)) : The
Monitor agent, monitor-id, informs manager-id of a violation of a norm by viola-
tor(s) in contract-id, because of explanation.

– Inform(monitor-id, manager-id, contract-id, norm, explanation, violator(s),
timeInterval): The Monitor agent, monitor-id, informs manager-id of the existence
of a danger state in which, after a period of time, timeInterval, after the sending
of the inform message, violator(s) may violate norm in contract-id, because of
explanation.

4.2 Observer

The Observer collects data (observes messages). This requires that the Observer sub-
scribes to communication channels between agents, and between agents and the
environment.

Towards a Monitoring Framework for Agent-Based Contract Systems 299

– Subscribe(observer-id, communication channel-id) : Observer, observer-id, sub-
scribes to communication channel communication channel-id

Messages are relayed from the Observer to the Monitor:

– Notify(observer-id, monitor-id, contract-id, contract messages) : Observer,
observer-id, notifies Monitor, monitor-id, of contract messages exchanged, sent and
received by contract parties in contract-id.

4.3 Mapper

The Mapper maps the representation of the contract in a contract store to the ATN mon-
itoring representation for input to the Monitor. This behaviour is specified by messages
sent from the Mapper to the Contract store and Monitor:

– Subscribe(mapper-id, contractStore-id): mapper-id subscribes to contractStore-id.
– Notify(mapper-id, monitor-id, contract-id, contractParty-id, transition-structure):

mapper-id notifies monitor-id with the mapped ATN representation, transition-
structure, of a new active contract, contract-id, where this ATN specifies contract
messages (see above) associated with transitions between states, as described in
Section 5.

4.4 Contract Store

The Contract Store provides the Mapper with Contracts, as specified by messages sent
from the Contract Store to the Mapper. These messages are of the form:

– Inform(contractStore-id, mapper-id, activeContract-id, norm clauses):
contractStore-id provides mapper-id with a new contract, activeContract-id, and
its contained normative content, norm clauses, which is to be mapped to the ATNs.

4.5 Manager

The Manager receives the results of monitoring from the Monitor, as specified by mes-
sages sent from the Manager to the Monitor:

– Subscribe(manager-id, monitor-id, contract-id) : manager-id subscribes to a Mon-
itor, monitor-id, for a contract, contract-id.

– Cancel(manager-id, monitor-id, contract-id) : manager-id cancels its subscription
to monitor-id for contract-id.

5 Contract Monitoring: Representation and Interpretation

This section describes the mapping of normative clauses in a contract to its monitoring
representation – Augmented Transition Networks (ATNs) – such that the normative
clauses map to messages exchanged between contract parties. It is these messages that
are observed in order to determine when a contract is in a critical state with respect to a
given normative clause, and whether contract parties comply with the normative clause.

300 N. Faci et al.

5.1 Mapping Norms to Augmented Transition Networks

ATNs were originally developed for natural language processing, and are recursive in
the sense that ATNs can themselves label arcs. In the ATN representation of normative
clauses, nodes correspond to states of the contract in which norms are activated and
norms may or may not be violated. Transitions between nodes are labelled by messages
sent and received by contract party agents. Intuitively, the messages correspond to ac-
tions executed by agents, where these actions in turn bring about states of affairs in which
norms are activated, and states of affairs in which norms may or may not be violated.

We have defined a general framework for mapping that takes as input the XML en-
coding of a contract and its associated OWL (www.w3.org/TR/owl-ref/) encoded domain
and action ontologies [15]. Domain ontologies define the predicates used in the descrip-
tion of states, and the action ontologies describe the actions executed by contract party
agents and interacting agents in the environment, where these action ontologies include
the pre and post-conditions of the actions that are in turn described by predicates in the
domain ontology.

Given norm (NormType, NormActivation, NormCondition, Norm
Expiration, NormTarget), then for N = NormActivation or N = Norm
Condition, the actors and actions associated with N are identified, and respectively
denoted by actors(N) and actions(N). Currently, this process of identification is not au-
tomated, and involves selection of actions in the action ontology whose post-conditions
(defined in the domain ontology) match the NormActivation and NormCondition.

A mapping is then defined that takes as input N , actors(N) and actions(N), and
returns a set of messages MN and synchronisation conditions SynchN on MN :

message map(N , actors(N), actions(N)) �→ (MN ,SynchN)

Intuitively, messages MN are those exchanged between actors(N). The synchronisa-
tion conditions SynchN describe temporal relations on these messages such that if the
messages are observed as specified by these temporal relations, then one can infer that
actors(N) have executed actions(N) in order to bring about N . Note that in what fol-
lows we will focus on the contents of messages and will not commit to a specific agent
communication language.

Example 2. Recall ObDel in Example 1:

– NormType = obligation
– NormActivation = order placed(AgY, AgX, GoodsZ)
– NormCondition = deliver(AgX, AgY, GoodsZ, 1 week)
– NormExpiration = delivered(AgX, AgY, GoodsZ, 1 week)
– NormTarget = AgY

For NormActivation, the actors and actions are as follows:

actors(order placed(AgY, AgX, GoodsZ)) = {AgY, AgX}
actions(order placed(AgY, AgX, GoodsZ)) = {order(AgY, AgX, GoodsZ)}
and the mapping yields the tuple (Morder placed(...),Synchorder placed(...)) =

({m1 = order(AgY, AgX, GoodsZ)}, {(m1, t1)})

Towards a Monitoring Framework for Agent-Based Contract Systems 301

and the synchronisation indicates that t1 is the time at which the order message m1
is sent.

For NormCondition, the actors and actions are as follows:

actors(deliver(AgX, AgY, GoodsZ, 1 week)) = {AgX, AgY }
actions(deliver(AgX, AgY, GoodsZ, 1 week)) = {deliver(AgX, AgY, GoodsZ)}
and the mapping yields the tuple (Mdeliver(...),Synchdeliver(...)) =

({m2 = notify delivery(AgX, AgY, GoodsZ)}, {(m2, t1 + 1week})

and the synchronisation indicates that the time at which the notify delivery message
is sent is within 1 week of the order message m1 being sent. �

Notice that both activation of a norm and the norm conditions may involve multiple
actors jointly executing actions according to specific temporal constraints. For example,
suppose that the obligation on AgX , to deliver GoodsZ to AgY within 1 week, is
activated only if AgY has placed the order, and within three days of placing the order
AgX receives confirmation from its bank that AgY has cleared monies owed to AgX
for previous orders. For this activation condition N ′ we would have:

(MN ′ ,SynchN ′) =
(
{m1 = order(AgY, AgX, GoodsZ),
m2 = notify clearance(Bank AgX, AgX, debt(AgY))},
{(m1, t1), (m2, t1 + 3days)}
)

In general, for each normative clause NC in a contract, its NormActivation (NCA)
is mapped to a pair (MNCA ,SynchNCA), which labels a transition to a node (see
Figure 2) that denotes a state S which, if the norm is an obligation or prohibition, is
critical and so must be monitored. Its NormCondition (NCC) is mapped to a pair
(MNCC ,SynchNCC) that labels a transition from S to S′.

Fig. 2. ATN representation of a normative clause

During contract enactment (i.e., at run-time) these ATNs are interpreted with respect
to messages observed as defined by the associated synchronisation conditions. In this
way, critical states are identified and norm violations detected.

302 N. Faci et al.

5.2 Interpretation of Augmented Transition Networks

If we refer to Figure 2, then we can make the following general statements:

– If NC is an obligation, then the contract is in a critical state S with respect to NC
if messages MNCA are observed according to SynchNCA , and the obligation is
violated if messages MNCC are not observed as having been sent according to
SynchNCC .

– If NC is a prohibition, then the contract is in a critical state S with respect to
NC if messages MNCA are observed according to SynchNCA , and the prohibi-
tion is violated if messages MNCC are observed as having been sent according to
SynchNCC .

– If NC is a permission, then the contract is in an allowed state S with respect to
NC if messages MNCA are observed according to SynchNCA, and the permis-
sion is executed if messages MNCC are observed as having been sent according
to SynchNCC . We will further motivate requirements for ATN representations of
permitted behaviours (where the issue of violation does not arise) in Section 5.3.

Example 3. Recall the obligation ObDel, permission PerDel and prohibition ProDel

described in Example 1. Each of these have the same NormActivation and Norm
Condition. Hence for each we obtain the ATN shown in Figure 3:

Fig. 3. ATN representation of ObDel, PerDel, and ProDel

In the case that the ATN represents ObDel or ProDel, then the contract is in a criti-
cal state with respect to the norm if AgX is observed as having received the message
order(AgY, AgX, GoodsZ) from AgY at some time t1. If the ATN represents ObDel,
then ObDel is violated if notify delivery(AgX, AgY, GoodsZ) is not observed as
having been sent by AgX to AgY within 1 week after time t1. If the ATN represents
ProDel, then ProDel is violated if notify delivery(AgX, AgY, GoodsZ)} is observed
as having been sent by AgX to AgY within 1 week after time t1. �

5.3 Composition of ATNs

Thus far we have considered only ATNs with two nodes representing individual nor-
mative clauses. However, a contract may implicitly specify work-flow patterns by asso-
ciating the NormCondition of one norm with the NormActivation of another. For
example, AgX’s delivery of GoodsZ to AgY , resulting in the contract state S′, may
itself be an activation condition for another norm. Hence, if the ATN in Figure 3 de-
notes either ObDel or PerDel, then S′ may denote a state of the contracts in which the
obligation:

Towards a Monitoring Framework for Agent-Based Contract Systems 303

AgY is obliged to send payment for GoodsZ to AgX within three days

is activated (illustrating why we want to encode ATN representations of permitted be-
haviours). A transition from S′ to S′′ will then be labelled by a message sent from AgY
to AgX indicating payment. If this message is not observed as having been sent in three
days, then the obligation will be deemed violated.

Now, suppose the ATN in Figure 3 denotes ProDel. In this case, observation of the
sent message notify delivery(AgX, AgY, GoodsZ) within 1 week, indicates viola-
tion of the prohibition. S′ may then denote a critical state of the contract with respect
to a now activated secondary obligation — a contrary to duty obligation — which now
applies to AgX . Such an obligation might be to pay a penalty that is imposed as a pun-
ishment by a management party agent that is informed of AgX’s violation of ProDel.

6 Future Work

We have thus far implemented black box agents and their associated communication
interfaces as described in Sections 3 and 4. It remains to further specify and implement
the mapping mechanisms outlined in Section 5.1 and implement violation detection
algorithms (based on matching ATNs and observed messages) and violation explanation
algorithms for use by the Monitor.

To enable explanation of violations, we may need to refer to some external represen-
tation of the the workflow (that is not implicit in the contract). For example, consider
an obligation Ob1 whereby certain behaviours Per1, P er2, . . . are permitted in order to
realise this obligation (in planning terms the goal state that is obliged to be realised by
Ob1 may be achieved by plans Per1, P er2, . . .). Certain behaviours Pro1, P ro2, . . .
may be prohibited from realising Ob1. If Ob1 is detected as having been violated, then
an explanation may, for example, indicate that Ob1 was violated because behaviours
Per1, P er2, . . . were not executed (as determined by the messages corresponding to
these behaviours not being observed), and because behaviours Pro1, P ro2, . . . were
not allowed for realising Ob1. Notice that such an explanation could be augmented by
domain and situation specific information indicating why Per1, P er2, . . . could not be
executed. For example consider an obligation to repair an aircraft engine within a given
time (this example is taken from the CONTRACT prject use case [10]). In order to fulfill
this obligation, it may be permitted to source engine parts from one part manufacturer
and prohibited to source engine parts from another part manufacturer. If the obligation
is violated (no message notifying completion of repair is sent) then the explanation may
account for the fact that the permitted ordering of parts did not take place (augmented
by situation specific data as to why the permitted behaviour did not occur).

Finally, we note that the focus of this paper has been on corrective monitoring
whereby critical states are monitored for violation of norms. Predictive monitoring re-
quires representation and recognition of danger states, which are associated with agent
behaviours that suggest that a norm may be in danger of violation. Future work will
address how such states may be identified empirically, for example by observing and
analysing violation of norms at contract run-time and the intermediate states that are
reached prior to violation. These intermediate states can then be explicitly included in

304 N. Faci et al.

the ATN representation of contracts, so that during future run-time executions, obser-
vation of messages indicating transition to these states may signal preemptive action to
avoid violation.

7 Conclusions

We conclude with a discussion of closely related work. As mentioned in the introduc-
tion, monitoring of contracts has been extensively studied in a Web Services context
(e.g., [6,12,13]), where the focus has been on quality of service metrics rather than on
the behaviours of contractual entities. Other work has adopted an overhearing approach
to monitoring in organisational contexts. Legras et al. [7] use overhearing of messages
to monitor changes to the beliefs that agents have about their relationships with other
agents in an organisation. Based on this information, a model of how each agent per-
ceives their organisational relationships is accordingly updated. Conversely, Kaminka
et al. [5] have developed a plan-recognition approach to overhearing in order to monitor
the state of distributed agents that work in a team and collaborate to carry out a specific
task. The monitor makes use of the known plan representation of this task to infer on the
basis of overheard messages, the belief states of different team-members. These works
have thus adopted overhearing in order to infer the mental states of the agents, where
these states are domain-dependent and private to the agents. By contrast, in this paper
we have described a multi-agent framework that adopts overhearing for a different pur-
pose: it is the states of a contract with respect to its contained norms that are inferred on
the basis of messages exchanged. Thus, the proposed approach relies on public knowl-
edge which are norms in a contract. In this way, one can recognise whether a norm
is currently in force (activated), in danger of being violated, and whether a norm is in
fact violated or complied with. Moreover, in contrast to existing approaches to contract
monitoring, our approach benefits from requirements emerging from real world busi-
ness applications [3].

Acknowledgements. The research described in this paper is partly supported by the Eu-
ropean Commission Framework 6 funded project CONTRACT (INFSO-IST-034418).
The opinions expressed herein are those of the named authors only and should not
be taken as necessarily representative of the opinion of the European Commission or
CONTRACT project partners.

References

1. Conte, R., Falcone, R., Sartor, G.: Agents and norms: How to fill the gap? Artificial Intelli-
gence and Law 7, 1–5 (1999)

2. Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational structures.
In: Proceedings of the Fifth International Conference on Autonomous Agents, Montreal,
Canada, pp. 529–536 (June 2001)

3. Jakob, M., Pchouek, M., Chabera, J., Miles, S., Luck, M., Oren, N., Kollingbaum, M., Holt,
C., Vazquez, J., Storms, P., Dehn, M.: Case studies for contract-based systems. In: Proceed-
ings of the Seventh International Joint Conference on Autonomous Agents and Multiagent
Systems, Industry and Applications Track (2008)

Towards a Monitoring Framework for Agent-Based Contract Systems 305

4. Jennings, N.R.: Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence 75(2), 195–240 (1995)

5. Kaminka, G.A., Pynadah, D.V., Tambe, M.: Monitoring teams by overhearing: A multi-agent
plan-recognition approach. Journal of Artificial Intelligence Research 17, 83–135 (2002)

6. Keller, A., Ludwig, H.: The WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network Systems Management 11(1), 57–81 (2003)

7. Legras, F., Tessier, C.: Lotto: group formation by overhearing in large teams. In: AAMAS
2003: Proceedings of the second international joint conference on Autonomous agents and
multiagent systems, pp. 425–432. ACM, New York (2003)

8. Lopez, F., Lopez, Y., Luck, M., d’Inverno, M.: A normative framework for agent-based sys-
tems. Computational and Mathematical Organization Theory 12(2-3), 227–250 (2006)

9. Mazouzi, H., El Fallah Seghrouchni, A., Haddad, S.: Open protocol design for complex in-
teractions in multi-agent systems. In: AAMAS 2002, pp. 517–526. ACM, New York (2002)

10. Meneguzzi, F.R., Miles, S., Luck, M., Holt, C., Smith, M., Oren, N., Faci, N., Kollingbaum,
M., Modgil, S.: Electronic contracting in aircraft aftercare: A case study. In: Proceedings of
the Seventh International Joint Conference on Autonomous Agents and Multiagent Systems,
Industry and Applications Track (2008)

11. Miles, S., Oren, N., Luck, M., Modgil, S., Faci, N., Holt, C., Vickers, G.: Modelling and
administration of contract-based systems. In: Proceedings of the AISB 2008 Symposium
on Behaviour Regulation in Multi-agent Systems, pp. 19–24. The Society for the Study of
Artificial Intelligence and Simulation of Behaviour (2008)

12. Milosevic, Z., Gibson, S., Linington, P.F., Cole, J., Kulkarni, S.: On design and implementa-
tion of a contract monitoring facility. In: Proceedings of the First International Workshop on
Electronic Contracting, p. 10. IEEE Computer Society Press, Los Alamitos (2004)

13. Molina-Jimenez, C., Shrivastava, S., Crowcroft, J., Gevros, P.: On the monitoring of contrac-
tual service level agreements. In: WEC 2004: Proceedings of the First IEEE International
Workshop on Electronic Contracting (WEC 2004), pp. 1–8. IEEE Computer Society Press,
Washington (2004)

14. Molina-Jiménez, C., Shrivastava, S.K., Solaiman, E., Warne, J.P.: Contract representation for
run-time monitoring and enforcement. In: CEC, pp. 103–110 (2003)

15. Panagiotidi, S., Vazquez-Salceda, J., Alvarez-Napagao, S., Ortega-Martorell, S., Willmott,
S., Confalonieri, R., Storms, P.: Intelligent contracting agents language. In: Behaviour Regu-
lation in MAS, AISB 2008 Convention Communication, Interaction and Social Intelligence,
pp. 49–55 (2008)

16. Tambe, M.: Towards flexible teamwork. Journal of Artificial Intelligence Research 7, 83–124
(1997)

17. Woods, W.A.: Transition network grammars for natural language analysis. Communications
of the ACM 13(10), 591–606 (1970)

18. Xu, L., Jeusfeld, M.A.: Pro-active monitoring of electronic contracts. In: Eder, J., Missikoff,
M. (eds.) Advanced Information Systems Engineering (CAiSE), pp. 584–600. Springer, Hei-
delberg (2003)

Collaborative Load-Balancing in Storage Networks
Using Agent Negotiation

Shay Raz1, Raz Lin1, and Onn Shehory2

1 Computer Science Department
Bar-Ilan University

Ramat-Gan, 52900 Israel
linraz@cs.biu.ac.il

2 IBM Research Labs in Israel
c/o Tel Aviv site
Haifa University

Mount Carmel, Haifa 31905 Israel
onn@il.ibm.com

Abstract. The rapid advances in the computer industry allow building larger sys-
tems that require mass storage volumes. As storage space increases, its manage-
ment becomes increasingly difficult. In contemporary enterprise storage systems,
performance has developed into a major bottleneck, which negatively affects the
overall IT performance. Centralized solutions are often infeasible and thus a dis-
tributed solution should be sought. Our novel approach involves incorporating
intelligent agents to the storage system, allowing the utilization of a distributed
negotiation scheme between agents that act on behalf of the clients who require
storage and on behalf of the storage servers within the system. Using a simulation
environment which models real settings of a large storage network, we demon-
strate the benefits of applying our distributed solution in the storage management
domain in terms of client satisfaction, servers’ revenue, and overall system per-
formance. Our results show a significant improvement in storage performance
when this solution is implemented.

1 Introduction

Advances in contemporary computer and storage technologies allow for networked stor-
age systems to consolidate large storage volumes (in terms of Terabytes) at lower costs1.
This, in turn, allows storing more data and increasing frequency of data access. At the
same time, new data formats (e.g., multimedia formats) impose excessive demands on
the I/O rates and storage volumes of storage systems. Whereas these changes are well
supported in terms of storage resources, the storage management solutions currently
shipped with storage servers are inadequate [12,13,18]. It is becoming evident that a
major weakness of contemporary large-scale storage systems is their management. A
good solution to storage management should thus be scalable and efficient. In fact, the

1 E.g., in recent years the storage volume prices have decreased from $1,000,000 per Terabyte
in 1992 to $4605.37 in 2001 and to an estimated price of $21.21 in 2010, which translates to a
yearly price reduction of 45% [8].

M. Klusch, M. Pechoucek, and A. Polleres (Eds.): CIA 2008, LNAI 5180, pp. 306–320, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Collaborative Load-Balancing in Storage Networks 307

management of storage systems has become a key issue in modern corporate informa-
tion technology at large.

While in large and complex network systems the use of a centralized approach to
system management seems appealing, it is often infeasible. This is due to the large
number of diverse devices, and even a larger number of parameters relevant to their
management. Consequently, it is rather difficult to ensure a high quality of service for
storage clients, without carefully and dynamically adjusting the system to the changing
needs. Thus, centralized solutions often attempt to maximize a single objective function,
compromising the individual needs of storage consumers and storage providers within
the system (e.g., see [21]).

Our solution attempts to address this problem via a distributed model in which in-
telligent agents cooperate to achieve a shared goal. A distributed storage network can
be modeled by a set of clients (applications), requiring storage services, and a set of
servers (storage subsystems) which provide these services. A client’s I/O operations
are typically handled by one of the servers residing in the network, while each server
may handle I/O requests from several clients. Note that these I/O requests and storage
services can consist of both read and write operations.

Thus, in this paper we present a storage management mechanism. Our mechanism
overcomes limitations of current approaches. In our solution, a distributed negotiation
mechanism serves as a means for managing storage networks. We investigate the ben-
efits of implementing such negotiations between servers and clients in terms of client
satisfaction, servers’ revenue, and overall system performance. By adding negotiation
capabilities to storage consumers and providers, we enable dynamic load-balancing of
the servers’ load, thus increasing both the revenues for the servers, and the satisfaction
of the clients. We note, however, that the clients and the servers have different maxi-
mization objectives, which may be contradicting. While the servers aim to maximize
their revenues from the clients, the clients aim to maximize their satisfaction from the
service.

We evaluate our solution via experiments. Using a simulation environment which
models a realistic setting of a storage network, we demonstrate the efficacy of the dis-
tributed negotiation scheme in these types of storage systems. In addition, we demon-
strate the generic nature of this protocol by experimenting with different types of actions
taken by both the servers and the clients.

In a nut shell, this paper advances the state-of-the-art in several ways. It demon-
strates the efficacy of distributed negotiations in online load-balancing of large stor-
age networks. Traditional load-balancing techniques for storage systems are commonly
centralized, and even when distributed, do not address the case in which the storage
subsystems are autonomous and possibly represent self-interested parties [7]. Our ap-
proach, on the other hand, allows, via distributed negotiation, to aspire towards better
load-balancing, while preserving the autonomy of each subsystem. In addition, given
the importance of managing large storage systems, performance becomes a key fac-
tor for effective storage. Our novel approach allows the improvement of performance
of storage networks in a timely manner and allows online adaptation to changing de-
mands, which are characteristics of computer systems. Lastly, in contrast to existing
solutions [7], we recognize two distinct types of players in the storage domain: the

308 S. Raz, R. Lin, and O. Shehory

consumers (clients) and the storage providers (servers). Our model takes this into ac-
count since each type of player has a different objective and is modeled differently.

The remainder of the paper is organized as follows. Section 2 provides an overview
of the problem and the storage domain. Section 3 surveys related work in the field of
distributed negotiation and storage performance. Section 4 describes our negotiation
protocol and the evaluation’s mechanism of both the server and the client. Section 5
describes the simulation design while Section 6 describes the experimental setting and
methodology and reviews the results. Finally, we conclude in Section 7.

2 Problem Context: Storage Networks

Consider a distributed storage network comprised of multiple storage clients and
servers. Each client generates I/O requests and expects a certain quality of service, and
storage servers service these requests, for some monetary compensation. When servers
fail to address requests to which they have committed at the agreed upon quality, they
may be subject to penalties. In our model, at a specific time period, each client sends its
storage requests to a single storage server, yet the client is also free to switch to another
server to better address its needs at proceeding time periods. Servers may handle several
requests concurrently. This interaction and compensation model among the clients and
the servers is formally expressed by service level agreements (SLA) and service level
objectives (SLO) ([16], Part I). The SLA states that partial fulfillment of the quality
of service (QoS) implies partial payment by the client, while the SLO is the server’s
service objective to ensure the minimum QoS.

Formally, we have a set of clients Cl = {c1, c2, . . . , cn} and a set of servers Sr =
{s1, s2, . . . , sm}. Let REQS be the set of all possible I/O requests. Note that ⊥ ∈
REQS. Let creqs

j (it) ⊆ REQS denote the set of I/O requests generated by client
cj ∈ Cl at iteration it. A single iteration consists of several fixed time segments in
which negotiation-related actions can be made.

The clients are modeled using an open subsystem model (e.g., see [6]). That is, new
requests are generated independently of the completion time of the previous requests.
Clients differ from one another in the intensity of their I/O requests. A client with an
intensity value of 0 basically does not require any I/O services, while the higher the
intensity value of a client the more I/O requests it generates in a given time unit. Thus,
the I/O intensity of a client corresponds to its typical pattern of I/O usage. For instance, a
client that uses video streaming has a large I/O intensity, whereas a client that performs
text editing has a low I/O intensity. The client’s intensity reflects the time density of its
service requests (e.g., a client with an intensity value of 2 will require twice as much
I/O requests in the same time segment as compared to a client with an intensity value of
1). We denote the intensity of a client cj as cint

j . In our experiments, we inflict several
I/O intensities on the clients involved.

In our model, clients pay for the services using tokens. Each client is allocated, at
each iteration, a fixed number of tokens to be used during that iteration. We denote
the number of tokens of client cj as ctok

j . Each client cj maintains a satisfaction level,
denoted csat

j (it), which reflects its satisfaction level from the quality of service it has
received at iteration it, such that 0 ≤ csat

j (it) ≤ 1. This value is calculated using a

Collaborative Load-Balancing in Storage Networks 309

linear combination of the average request time and its standard deviation. The actual
payment made by the client at iteration it is denoted by cpay

j (it). Note that the payment
is made by the client per service it has received from the server within a fixed period
of time, and it is computed in correspondence to the client’s satisfaction level from
that service. Thus, the actual payment, cpay

j (it), equals ctok
j · csat

j (it), such that 0 ≤
cpay
j (it) ≤ ctok

j .
In our model, all servers are assumed to be of an equal type. That is, each has the

same physical characteristics and capabilities. Note that this does not prevent them from
having different load preferences, as presented later in our experiments. The server’s
address space is divided into K equal segments, each being a logical partition. Thus,
a single server can serve up to K clients, by allocating a partition space to each. The
service provided by the server is for I/O operations. The server’s load is measured in
terms of queue length, which is a well known estimator of the load on a storage device
(e.g., [20]). The server’s average queue at time period t is denoted squeue

i (t), and inte-
grated over that time period. Formally, if tit denotes the start time of iteration it, then
si’s average queue length in it, denoted sAvgQueue

i (it), is:

sAvgQueue
i (it) =

∫ tit+1

tit
squeue

i (t)dt

tit+1 − tit
(1)

The objective of the storage management system is to maximize the system’s utility,
while keeping the performance level sufficiently high to meet the clients’ requirements.
To prevent deterioration in the quality of service, the system should be equipped with
means for efficient matching between servers and clients, such that the servers are able
to complete the requests of the clients within a sufficiently short time to meet their SLAs
with their clients. When meeting their SLAs, the servers will receive full payment from
their clients. In such cases, the client will pay all of its tokens, since its satisfaction is 1.
That is, in such cases client cj will pay cpay

j (it) = ctok
j .

Systems of the sort presented above, in particular ones that consist of numerous
clients and servers, can benefit from a distributed solution. Such a solution has the
advantages of avoiding a single point of failure, and allowing the storage management
mechanism to be functional even if some nodes malfunction. Hence, our goal is to
provide a distributed mechanism which ensures acceptable storage performance: once a
performance problem is identified, our mechanism should dynamically and proactively
resolve it. The mechanism should allow clients to efficiently locate servers suitable for
their needs, and servers to offer and publish their capabilities to potential clients.

We proceed by reviewing current storage management solutions, as well as relevant
studies in the field of distributed negotiation.

3 Related Work

In recent years, research has demonstrated the promise of using cooperative negotiation
approaches in real-time load balancing (e.g., in cellular domains see [1,10]; in electric-
ity usage see [2]). In the context of storage system networks, a negotiation model is also

310 S. Raz, R. Lin, and O. Shehory

presented in [5,15]. Stoupa and Vakali [15] present a QoS negotiation model which is
client-oriented. The model itself allows the clients to describe their characteristics and
rank the importance of the different QoS parameters. Then, the system matches them
with a list of potential storage subsystems. The negotiation terminates when the client
chooses a specific subsystem. In contrast to [15], we propose a distributed mechanism,
and not a centralized one. A distributed approach should turn out to be more effec-
tive in overcoming bottlenecks and avoiding a single point of failure. Our algorithm
also inherently allows changing the assignments of clients to servers based on servers’
load. Moreover, a distributed mechanism is more appropriate for large networks, in
which maintaining a centralized management agent will be more difficult and resource
consuming. In addition, in our model both the clients and the servers take part in the
negotiation, while in their model only the clients take an active part.

Czajkowski et al. [5] describe an agent based negotiation system for computer re-
source allocation in a distributed network. Similar to our work, the negotiation is done
to ensure high levels of SLAs. However, they introduce centralized coordination man-
agement functions which are used to coordinate the different tasks. We, on the other
hand, adopt a distributed approach, which should be more effective and more scalable
in large systems. Furthermore, their method has not yet been validated, while we show
the efficacy of our work using simulations.

Xu et al. [20] address the case of load-balancing of a distributed storage system.
Their objective, though, is to achieve better performance of the system, where the sys-
tem is modeled as a whole. We, on the other hand, address the case of a system com-
prised of multiple clients and servers, where each has its own utility function to be
maximized. We do, however, maximize the system utility in cases where this utility is
additive. We also assert that the objectives of the clients and the severs may be con-
flicting. Thus, we try to achieve a load-balance in such a way that will take this into
consideration, while still achieving better performance of the system as a whole.

In the context of modeling the storage devices, the usage of both numerical simu-
lators and analytical models are common. Disk simulators, such as Pantheon [19] and
DiskSim [3], which are effective in simulating storage device behavior, are being used.
These simulators produce accurate per-request response times. Analytical storage de-
vice models (e.g., see [4,9,11,14,17]) are somewhat simpler to compute since they de-
scribe device behavior via a set of formulas. However, finding a reliable formula set
can be a very difficult task, as it requires comprehensive knowledge and understanding
of the interaction between storage devices and workloads. We have therefore elected to
use a simulator, and specifically, DiskSim [3]. The use of DiskSim has enabled us to
simulate a real disk settings2, and to incorporate our novel distributed approach into the
system level layer.

4 Model and Protocol

We first present the formal model of the problem addressed, and then the distributed
negotiation protocol.

2 DiskSim simulates many components of the disk system, such as: disks, controllers, buses and
cache.

Collaborative Load-Balancing in Storage Networks 311

4.1 Formal Model

We consider a distributed negotiation protocol between storage clients and servers. We
assume that the clients’ SLAs and the servers’ SLOs are common knowledge. The
sought agreement between the clients and the servers should match the former to the
latter.

In our model, participants negotiate to maximize three types of utility functions: for
clients, for servers, and for the whole system. The utility function of a client measures
its satisfaction level based on the service it receives. We express it by a weighted average
of the average request service time and its standard deviation.

There are two types of request service times in our utility model: the service time
sought and expected by a client, as expressed in its SLA, and the actual service time,
as measured in experiments. We denote for each iteration it the average SLA service
time by T SLA

Avg (creqs
j (it)), and the average actual service time by T actual

Avg (creqs
j (it)).

Similar terms are used for the corresponding average standard deviations (replace Avg

by AvgStd).
Formally, the client’s utility function is given by the following formula:

ucj (it) = A · min{1,
T SLA

Avg (creqs
j (it))

T actual
Avg (creqs

j (it))
} + (2)

B · min{1,
T SLA

AvgStd(c
reqs
j (it))

T actual
AvgStd(c

reqs
j (it))

}

such that A + B = 1. In the simulations we set A and B to 0.5.
The utility function of the server measured its revenues from providing the services.

We denote the set of clients serviced by server si during iteration it as Clsi(it), such
that Clsi(it) ⊆ Cl. The utility of si is given by:

usi(it) =
∑

cj∈Clsi
(it)

cpay
j (it) (3)

The system-level utility, which is calculated per iteration and denoted usys, considers
all of the requests made in the system during a given iteration. It is a weighted average
of the clients’ utilities, as follows:

usys(it) =

∑|Cl|
j=1(c

tok
j · ucj(it))∑|Cl|
j=1 ctok

j

(4)

An agreement a ∈ A is a mapping between a client and a server, which conforms to the
SLA between them, that is, a = {cj , si}, where cj ∈ Cl, si ∈ Sr. Since a client can
choose not to work with any server and a server can choose to remove a client from its
partition, we also have a special agreement {cj,⊥} ∈ A.

4.2 The Distributed Negotiation Protocol

The negotiation itself can be triggered by different events (e.g., global events as time
interrupt or local events, such as exceeding load thresholds). The specific trigger to be

312 S. Raz, R. Lin, and O. Shehory

used is principally external to our mechanism. In our simulations we used predefined
time-unit intervals. In each iteration of our simulations servers and clients are selected
randomly to engage in the negotiations.

At first, the clients are not associated with any server and can choose to (a) request a
service from a server, or (b) disengage from its current server. The server can choose to
(a) offer its services to a specific client, or (b) remove a client from its partition. Below
we elaborate on these different actions.

Server Actions. The server’s actions depend on its estimated average queue length
at iteration it + 1, denoted s′AvgQueue

i (it + 1). This estimation takes into account the
server’s current average queue length, as well as the clients the server handles. As some
client might have been removed from the server’s partitions during the iteration, while
others might have been added, the server has to estimate the intensity of the clients it
will handle. To this end, the server uses a linear estimation of its future load according
to its current load. Due to lack of space we will not describe these formulas in detail.

The server has two thresholds which determine its load status - an upper bound
threshold and a lower bound threshold. If the server’s estimated average queue length is
above the upper bound threshold then the server is over-loaded. In this case, the server
chooses to remove a client cj which is allocated to one of its partitions. The agreement
{cj,⊥} is automatically implemented. If the server’s estimated average queue length
is below the lower bound, then it is under-loaded. In this case, the server tries to find
a client cj that has not been allocated to any partition in the system. If such a client
is found, the server initiates a request for a commitment offer from the client. If the
client accepts the request, then an agreement a = {cj , si} which adheres to the SLA
between cj and si is reached. While the server’s decision making process regarding
which client to select is principally external to our proposed mechanism, in our simu-
lations we modeled only one behavior type in which the server selects a vacant client
arbitrarily.

Finally, the server can be in a stable load, if its estimated average queue length is in-
between. When in stable load, and in order to avoid local minima and with the prospect
of increasing the server’s utility in the next iteration, the server may choose, with a
probability of Prrem, to remove a client cj from its partition and to implement the
{cj,⊥} agreement. Prrem is set such that it ensures that, at most, half of the time, the
server will choose the removal action. Formally:

Prrem = min(0.5,
vacant

|Sr|) (5)

where vacant represents the number of clients that are not mapped to any server. The
probability will converge to 0.5 in cases in which there are many vacant clients. This
will allow the servers to try to find more profitable clients at the expense of other clients.
Nonetheless, we limit the probability to a maximum value of 0.5 in order to control the
stabilization of the system.

In our simulations, the least profitable client for the server was removed. The prof-
itability of a client is measured as the ratio between client cj’s potential maximum

payment and its generated load during the current iteration it, that is
ctok

j

creq
j (it)

.

Collaborative Load-Balancing in Storage Networks 313

Note that our utility maximization is based on a heuristic approach, which entails
that servers drop a client when over-loaded or with a stable load. While this heuristic
can cause a temporary decrease in the server’s utility, it can also lead to an increase in
the utility in the long run. Our experiments indeed show (Section 6) the efficacy of this
heuristic.

Client Actions. The client’s actions depend on whether it is already mapped to a server
or not. If a client cj is not mapped to a server, then it tries to find a server from which
to request services, based on its SLA. In the simulations we modeled only one behavior
in which the client selects an arbitrary server. If a server si is found, then the client
initiates a request for commitment to the offer of that server. If the server accepts the
request, then an agreement {cj, si} is reached and the mapping is implemented.

If the client is already receiving services from a server, the client calculates its satis-
faction from the service. Then, the client disengages from its server using the following
probability measure, based on a given satisfaction threshold thrsat:

Pr = MRF · max{0,
thrsat − csat

j (it)
thrsat

}, 0 ≤ MRF ≤ 1 (6)

where MRF represents the client’s tolerance to an inadequate quality of service. Higher
values of MRF will increase the probability that an unsatisfied client will remove itself
from the server, while lower values decrease this probability. A client that decides to
remove itself from the server implements the {cj,⊥} agreement.

5 Simulation Design

The objective of our simulations was to show that our novel distributed approach en-
ables an efficient load-balancing of the storage system. A building block of the simula-
tion system was the DiskSim simulator [3], which is an efficient and highly configurable
disk system simulator. Additional designs and implementations were necessary to build
a multi-disk distributed storage system. The simulation was divided into fixed time
segment iterations. Each iteration consisted of a simulation phase followed by a nego-
tiation phase. The service level parameters, such as request time and load parameters,
were calculated for each iteration.

While our model permits any kind of servers and clients, in the simulations we had
to limit this diversity for practical reasons. Specifically, we allowed four different types
of servers and four different types of clients. These types represent typical and common
characteristics of servers and clients. Recall that the server’s load is measured in terms
of queue length. Thus, each type of server can satisfy a different quantity of I/O requests
per time unit. We model this with a lower and upper bound thresholds, which state the
server’s load status. With regard to the clients, each type of client had a different type
of SLA requirement. Each client differed by its intensity value. Table 1 describes the
different types of servers and clients that were used. Correlations existed between client
and server types, such that each client type would be best served by a specific server
type. As clients differ by their I/O intensity values and the servers by their thresholds
for under-load states and overload states, the best correlation is achieved when the I/O

314 S. Raz, R. Lin, and O. Shehory

Table 1. Servers’ types measured by the average queue length and matched clients’ types and
intensities

Server Type Lower Bound Upper Bound Client Type Client’s
(under-load) (overload) Intensity

Alpha 0.1 0.2 A 0.3

Beta 0.2 0.5 B 0.45

Gamma 0.5 1.5 C 0.55

Delta 1.5 15.0 D 0.65

intensities of the clients allow the servers to be in a stable load, that is in-between
their load boundaries. For example, a client of type A would be best served by the
Alpha server, as the load imposed by it and the quality of service provided by the server
correspond.

We ran five sets of experiments in order to test our mechanism. In each experiment
6 servers and 30 clients were used. In each experiment we measured the effects of
the MRF parameter on the success of load-balancing the system using our model.
Recall that the MRF parameter is an important parameter as it influences the client’s
tolerance toward an inadequate quality of service. Thus, the MRF parameter can have
a substantial effect on the stability of the system. We hypothesized that higher MRF
values would lead to lower system utility values, and our results indeed support this
hypothesis. Thus, after checking the whole MRF range, we proceeded and ran several
runs per experiment, focusing on lower MRF values — those proven to be better in
our earlier experiments. Each experiment consisted of 10 runs using different random
seeds of 50 iterations each.

Each experiment was performed with a different setting of clients and servers. In
the first experiment we tested the benefits of our algorithm when only clients take an
active part in the negotiations. Thus, 6 servers with no lower bound threshold were
simulated. Note that we ran all of the experiments with different MRF values. When
the MRF value is 0, it means that the client will not be active in the negotiations
(i.e., it will not try to remove itself from the server to which it is attached), regardless
of its satisfaction level from that server. Thus, the results of the first experiment and
the runs in which the MRF value is equal to 0, are important as they demonstrate
the efficacy of our negotiation model in cases where only one side (clients or servers)
perform negotiations. This is an important property since it is not always possible to
control the behavior of all parties in all distributed systems.

The second experiment consisted of three types of servers and clients, while the
third experiment consisted of four types of each. These different settings were chosen
to demonstrate the efficacy of our model when there is a variety in the characteristics of
the servers and the clients. In this manner we were also able to show the competitiveness
of our model compared to the optimal theoretical solution. In these specific settings, the
optimal solution would yield a utility of 1.

The fourth experiment consisted of four types of servers and clients as well (as in
experiments 3), yet the number of servers of each type was chosen randomly. Lastly, we
compared our distributed algorithm with a greedy algorithm. In the greedy algorithm,

Collaborative Load-Balancing in Storage Networks 315

any client can choose to engage with any available server, and any unsatisfied client
can disengage from its server and engage with a less loaded server which has a vacant
partition. Table 2 describes the different numbers of each client and server types in the
different experiments3.

Table 2. Simulation settings

Client’s Type Server’s Type
A B C D Alpha Beta Gamma Delta unbounded

1 5 10 10 5 0 0 0 0 6

2 10 10 10 0 2 2 2 0 0

3 5 10 10 5 1 2 2 1 0

4 5 10 10 5 1 1 2 2 0

5 0 10 10 10 0 2 2 2 0

6 Simulation Results

Figure 1 depicts the change of the system’s utility value for different values of MRF ,
as a function of the iteration number, for the first experiment, in which the servers are
passive in the negotiations. The results show that our mechanism appears to be useful
and efficient even in cases where only the clients take an active part.

As illustrated in Figure 1, when the servers do not implement any load-balancing
strategy and the clients apply our strategies results in the sought improvement in the
system’s utility. We can also observe that in the absence of our mechanism, the average
system’s utility is 0.55. Note that this is a generic result which does not refer to a spe-
cific system configuration (as it is an average of the multiple random configurations).
Using our mechanism we can see that the client’s load balancing improves significantly
to more than 0.75. Of course, for a specific system, one could devise a specific config-
uration that would improve the 0.55 utility value, and possibly the 0.75 value as well.
However, this would require a careful planning, and most likely would also involve
manual design and fine-tuning, while an automated design could actually be performed.
Indeed, our mechanism can serve as a design tool for such specific configurations.

As we mentioned earlier, additional three scenarios were used to test our algorithm.
Figures 2, 3 and 4 demonstrate the change of the system’s utility value for different
values of MRF , as a function of the iteration number, for the three types, four types
and four random types of servers and clients, respectively.

We can see that in all three scenarios, our algorithm quickly achieves higher utility
values (e.g., when the MRF value is set to 0.1 the average utility value is 0.84, 0.82
and 0.80 for the three types, four types and four random types of servers and clients,
respectively) than the average system’s utility of 0.55 when our mechanism is not imple-
mented. We can also see that in most cases, smaller MRF s values indeed yield better

3 We also ran simulations with two types of servers and clients and achieved good results. How-
ever, since in real settings there are rarely only two types of each, we do not present these
results in this paper.

316 S. Raz, R. Lin, and O. Shehory

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 6 11 16 21 26 31 36 41 46

Iteration

S
y
s
te

m
 U

ti
li
ty

MRF=0.375 MRF=0.1 MRF=0

Fig. 1. System utility in servers with no lower-bound threshold

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 6 11 16 21 26 31 36 41 46

Iteration

S
y

s
te

m
 U

ti
li

ty

MRF=0.375 MRF=0.1 MRF=0

Fig. 2. System utility for the three types of servers and clients

overall results. Even in the special case in which the MRF value is set to 0, that is, the
clients are passive in the negotiations, the system’s utilities are much higher than 0.55.

It is interesting to note, though, the special behavior achieved when the MRF value
is set to 0, as demonstrated in Figure 4. In this case, a client receiving services, will
not choose the action to be removed from the server to which it is connected. This is

Collaborative Load-Balancing in Storage Networks 317

regardless of the client’s satisfaction level from that server. Thus, the system’s utility is
more likely to converge, as clients tend to remain connected to their servers, despite the
QoS they obtain, as indeed shown in Figure 4 (a system utility value of 0.75). However,
this can lead to a local maximum and prevent the system from achieving higher utility
values (as indeed demonstrated in the case of MRF = 0.1).

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 6 11 16 21 26 31 36 41 46

Iteration

S
y

s
te

m
 U

ti
li

ty

MRF=0.375 MRF=0.1 MRF=0

Fig. 3. System utility for the four types of servers and clients

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 6 11 16 21 26 31 36 41 46

Iterations

U
ti

li
ty

MRF=0.375 MRF=0.1 MRF=0

Fig. 4. System utility for four random types of servers and clients

318 S. Raz, R. Lin, and O. Shehory

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 6 11 16 21 26 31 36 41 46

Iteration

S
y

s
te

m
 U

ti
li

ty

5 servers, distributed algorithm 5 servers, greedy algorithm 6 servers, distributed algorithm 6 servers, greedy algorithm

Fig. 5. System utility for the greedy and distributed algorithms

Figure 5 presents the results of the greedy algorithm and our distributed algorithm
in two distinct scenarios. In both we have three clients of type B, C and D. Yet, in the
first scenario we have 6 servers, while in the second we have 5 servers which represent
a scenario in which there is a shortage of resources (that is, heavier load exists). In
the first scenario our algorithm performs as good as the greedy algorithms, yet the
greedy algorithm converges more slowly than our algorithm. In the second scenario
our algorithm generates better results. While our results show that there is not much
benefit to our mechanism over the greedy one in cases in which the load of the system is
negligible (as reflected by the 6 servers scenario), our algorithm outperforms the greedy
algorithm in those cases it is most needed, that is, when heavy load exists. These are
the cases when good load management is crucial for continuous usage of the storage
system.

Based on these experiments we can see that our mechanism is beneficial when mul-
tiple agents (clients and servers) of different types are involved, as well as in cases in
which only one side takes an active part in negotiations. Our mechanism allows the
system to achieve better performance in real-time while avoiding local maxima and
maximizing the satisfaction of the clients.

7 Conclusions

This paper presents a novel approach which allows storage systems to efficiently man-
age their resources using distributed negotiations. Our mechanism does not impose
heavy computational or network overheads on any single unit within the system. There-
fore, it should scale well. Additionally, our mechanism allows each participant to seek
maximization of its own utility. Thus, we overcome the limitation presented by the

Collaborative Load-Balancing in Storage Networks 319

common approach to distributed storage resource allocation, where only the overall
system utility is considered.

Using a simulation environment, we have shown how dynamical load-balancing of
the servers’ load enables an increase in both the servers’ revenues and the clients’ satis-
faction. We have shown that our mechanism, due to its distributed nature, has proven to
be useful and efficient even in cases where only clients, or only servers, implement it.
Moreover, we have shown that it can outperform the greedy algorithm in situations in
which solutions are more difficult to arrive at. In addition, our simulation system can be
used as a design tool for a system administrator to help provide a better load-balancing
scheme prior to first system initialization.

Motivated by the promising results obtained thus far, future research should focus on
implementing different behaviors for the servers as well as the clients. These behaviors
may help in achieving even better performance overall. Furthermore, it may be helpful
to allow servers to dynamically adapt their thresholds, based on the given load in the
entire system.

References

1. Bigham, J., Du, L.: Cooperative negotiation in a multi-agent system for real-time load bal-
ancing. In: Proceedings of AAMAS, pp. 568–575 (2003)

2. Brazier, F., Cornelissen, F., Gustavsson, R., Jonker, C.M., Lindeberg, O., Polak, B., Treur, J.:
Agents negotiating for load balancing of electricity use. In: Proceedings of 18th International
Conference on Distributed Computing Systems, pp. 622–629 (1998)

3. Bucy, J., Ganger, G.: The DiskSim simulation environment version 3.0 reference manual.
Technical Report CMU-CS-03-102, Carnegie Mellon University (2003)

4. Chen, S., Towsley, D.: A performance evaluation of raid architectures. IEEE Transactions on
Computers 45(10), 1116–1130 (1996)

5. Czajkowski, K., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: Snap: A protocol for ne-
gotiating service level agreements and coordinating resources management in distributed
systems. In: Proceedings of the 8th Workshop on Job Scheduling Strategies for Parallel Pro-
cessing, pp. 153–183 (2002)

6. Ganger, G.R.: System-Oriented Evaluation of I/O Subsystem Performance. PhD thesis, Uni-
versity of Michigan (1995)

7. Ganger, G.R., Wothington, B.L., Hou, R.Y., Patt, Y.N.: Disk arrays: High-performance, high-
reliability storage subsystems. IEEE Computer 27(3), 30–36 (1994)

8. Gilheany, S.: Projecting the cost of magnetic disk storage over the next 10 years. White paper,
Berghell Associates (January 2001)

9. Lee, E.K., Katz, R.H.: An analytic performance model of disk arrays. In: Proceedings of
ACM SIGMETRICS, pp. 98–109 (1993)

10. Lin, R., Dor-Shifer, D., Rosenberg, S., Kraus, S., Sarne, D.: Towards the fourth generation
of cellular networks: Improving performance using distributed negotiation. In: Proceedings
of the 9th ACM international Symposium on Modeling Analysis and Simulation of Wireless
and Mobile Systems (MSWiM), pp. 347–356 (2006)

11. Merchant, A., Alvarez, G.A.: Disk array models in Minerva. Technical Report HPL-2001-
118, HP Laboratories (2001)

12. Morris, R.J.T., Truskowski, B.J.: The evolution of storage systems. Storage Systems 42(2),
205–217 (2003)

320 S. Raz, R. Lin, and O. Shehory

13. Santos, J.R., Mutz, R.: Performance analysis of the rio multimedia storage system with het-
erogeneous disk configurations. In: Proceedings of 6th ACM International Conference on
Multimedia, pp. 303–305 (1998)

14. Shriver, E., Merchant, A., Wilkes, J.: An analytic behavior model for disk drives with reada-
head caches and request reordering. In: Proceedings of International Conference on Mea-
surement and Modeling of Computer Systems, pp. 182–191 (1998)

15. Stoupa, K., Vakali, A.: QoS-oriented negotiation in disk subsystems. Data & Knowledge
Engineering 58(2), 107–128 (2006)

16. Sturm, R., Morris, W., Jander, M.: Foundations of Service Level Management, 1st edn. Sams,
Indianapolis, Ind (2000)

17. Uysal, M., Alvarez, G.A., Merchant, A.: A modular, analytical throughput model for modern
disk arrays. In: Proceedings of 9th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, pp. 183–192 (2001)

18. Vogel, A., Kerhervé, B., von Bochmann, G., Gecsei, J.: Distributed multimedia applications
and quality of service - a survey. IEEE Multimedia 2(2), 10–19 (1995)

19. Wilkes, J.: The Pantheon storage-system simulator. Technical Report HPL-SSP-95-14, HP
Laboratories (1995)

20. Xu, Z., Zhu, Y., Min, R., Hu, Y.: Achieving better load balance in distributed storage sys-
tem. In: Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications, pp. 1314–1322 (2002)

21. Yin, L., Uttamchandani, S., Korupolu, M., Voruganti, K., Katz, R.: Smart: An integrated
multi-action ddvisor for storage systems. In: Proceedings of the USENIX Annual Confer-
ence, pp. 229–242 (2006)

Author Index

Albusac, Javier 101
Avali, Viji R. 249

Balbo, Flavien 234
Bartos, Karel 116
Bot́ıa, Juan A. 191
Botti, Vicente 86
Braun, Peter 147

Decker, Stefan 1
Doubek, Jan 280

Engel, Thomas 41
Erfurth, Christian 147

Faci, Noura 292
Friedrich, Gerhard 131
Fukuda, Kensuke 206
Fusenig, Volker 41

Garcia, Emilia 86
Giret, Adriana 86
Gonzalez-Morcillo, Carlos 101
Grill, Martin 116

Hauswirth, Manfred 1
Heuvelink, Annerieke 71
Hindriks, Koen V. 264
Hirotsu, Toshio 206
Hoogendoorn, Mark 55
Huhns, Michael N. 249

Jaffry, S. Waqar 55
Jannach, Dietmar 131
Jiménez, Luis 101
Jonker, Catholijn 264

Kawasoe, Maiko 177
Kern, Steffen 147
Kitamura, Yasuhiko 177
Klein, Michel C.A. 71
Kurihara, Satoshi 206

Lawton, James H. 36
Leßmann, Antje 147
Lin, Raz 306
Luck, Michael 292

Meneguzzi, Felipe 292
Miles, Simon 292
Modgil, Sanjay 292
Muñoz, Andrés 191

Narita, Tatsuya 177

Oren, Nir 292
Ossowski, Sascha 16

Pěchouček, Michal 116, 221, 280
Prokopová, Magdalena 221

Raz, Shay 306
Rehák, Martin 116, 280
Rossak, Wilhelm 147

Saugar, Sergio 162
Saunier, Julien 234
Schuldt, Heiko 24
Serrano, Juan M. 162
Shehory, Onn 306
Silaghi, Marius C. 131
Staab, Eugen 41
Sugawara, Toshiharu 206
Sycara, Katia P. 35

Tožička, Jan 221
Treur, Jan 55, 71
Tykhonov, Dmytro 264

Urban, Štěpán 221

Vallejo, David 101
Vokř́ınek, Jǐŕı 280

Zanker, Markus 131

	Title Page
	Preface
	Organization
	Table of Contents
	Enabling Networked Knowledge
	What Is Networked Knowledge?
	Why Enabling Networked Knowledge?
	Social Semantic Information Spaces
	Semantic Social Networks
	Semantic Collaborative Technologies

	Semantic Reality
	Application-Oriented Research Domains
	An Example Application Scenario
	Core Research Topics for the Next Years
	Creating Impact
	References

	Coordination and Agreement in Multi-Agent Systems
	Introduction
	Coordination in Multi-Agent Systems
	Towards a Technology of Agreement
	Discussion
	References

	Agents and Databases: A Symbiosis?
	Introduction
	Information Agents and Databases
	Information Agents
	Databases
	Symbionts or Predators, Peaceful Coexistence or Mutual Indifference?

	Hyperdatabases
	The Hyperdatabase Vision
	Hyperdatabase Projects

	Conclusion
	References

	Agents and Semantic Services: A Critical Review
	Agent-Supported Planning in Distributed Command and Control Environments
	Introduction
	DEEP: Distributed Episodic Exploratory Planning
	High Level Architecture

	References

	Towards Trust-Based Acquisition of Unverifiable Information
	Introduction
	Application Scenarios
	Trust-Based Mechanism for Information Acquisition
	Evaluation of a Response
	Bayesian Trust-Model
	Optimizing the Number of Challenges
	Weighting the Number of Challenges with Trust

	Discussion
	Related Work
	Conclusion and Future Work
	References

	Modeling Dynamics of Relative Trust of Competitive Information Agents
	Introduction
	Modelling Dynamics of Trust of Competitive Trustees
	Parameters Characterising Individual Differences between Humans
	Dynamical Models for Relative Trust and Distrust
	Combining Positive and Negative Trust in Overall Relative Trust
	Decision Model for Selection of a Trustee

	Simulation Results
	Relativeness
	Trust Decay
	Flexibility of Trust
	Autonomy of Trust
	Initial Trust and Distrust

	Dynamics of Relative Trust in Different Cultures
	Formal Analysis of the Model
	Discussion
	References

	A Formal Approach to Aggregated Belief Formation
	Introduction
	Belief Formalism
	Belief Aggregation
	Aggregation Examples
	Complex Belief of Type Integrated Sources

	Algebraic Formalization
	Implementation
	Controlling Aggregations
	Free and Bounded Variables
	Nested Aggregations

	Example Scenarios
	Related Research
	Summary and Future Research
	References

	Software Engineering for Service-Oriented MAS
	Introduction
	Background
	Agent-Oriented Software Engineering
	Service-Oriented System Engineering
	Service-Oriented MAS Engineering

	Software Engineering Requirements
	Integration between Agents and Services
	Development Issues
	Multiagent Systems
	Service-Oriented Architectures

	Frameworks and Techniques
	Tools Analysis
	Integration between Agents and Services
	Development Issues
	Multiagent Systems
	Service-Oriented Architectures
	Discussion

	Conclusions and Future Work
	References

	A Service-Oriented MultiAgent Architecture for Cognitive Surveillance
	Introduction
	Related Work
	Comparison to the Proposed Architecture

	Architecture
	Architectural Overview
	Perceptual Layer
	Conceptual Layer
	Scaling the Surveillance System

	Deployment and Results
	Discussion and Conclusion
	References

	Trust-Based Classifier Combination for Network Anomaly Detection
	Introduction
	Extended Trust Modeling
	Detection Process
	Detection Agent Types
	Collective Trust Modeling
	Algorithm Properties

	Experimental Evaluation
	Related Work
	Conclusion
	References

	A Distributed Generative CSP Framework for Multi-site Product Configuration
	Introduction/Background
	Motivating Example
	Generative Constraint Satisfaction
	DisGCSPFramework
	Asynchronous Search
	Framework for DisGCSP

	Evaluation
	Conclusions
	References

	MobiSoft: Networked Personal Assistants for Mobile Users in Everyday Life
	Introduction to MobiSoft
	Application Scenarios
	Project Assistant
	Social-Mobile Assistant
	Campus.NET

	Architecture and Technology
	TracySE, TracyME and TAL
	Network Types and Communication Techniques
	Prototypes

	Related Work
	Lessons Learned
	Conclusions
	References

	A Web-Based Virtual Machine for Developing Computational Societies
	Introduction
	Computational Societies as Social Middleware Infrastructures
	Structure of a Web-Based Social Middleware Infrastructure
	Publishing Social Entities as Web-Resources
	Distributing the Interaction Space through Web Servers

	Dynamics of a Web-Based Social Middleware Infrastructure
	Conclusion
	References

	Using the Wizard of Oz Method to Train Persuasive Agents
	Introduction
	Persuasive Conversational Agents
	Conversational Agents
	Wizard of Oz Method
	Persuasive Conversation

	Learning Persuasive Agents
	Goal-Oriented ConversationModel
	Updating ConversationModel
	Reducing Redundancy in the ConversationModel

	Implementing a Persuasive Conversational Agent
	Evaluation
	Experiment 1: Input Cost ofWizard
	Experiment 2: Persuasiveness of ConversationModel

	Conclusion
	References

	ASBO: Argumentation System Based on Ontologies
	Introduction
	An Argumentation System Based on Ontologies
	Attacking Ontology Rules in Argumentation
	ASBO in a Persuasive Argumentation Scenario
	Related Work
	Conclusions and Future Work
	References

	Controling Contract Net Protocol by Local Observation for Large-Scale Multi-Agent Systems
	Introduction
	Simulation
	Restricted CNP Model
	Simulation Model

	Fluctuation in Award Selection
	Previous Results
	Performance with Variable Task Load

	Fluctuation Control Based on Estimation
	Use of Queue Length
	Estimation from Set of Bid Values
	Dropped Tasks

	Discussion
	Conclusion
	References

	Filter Allocation Using Iterative ECNP
	Introduction
	A-net Network Simulation
	Network Flow Filters
	Filter Allocation Problem

	Related Work
	Service Oriented Architectures
	Task Allocation Problem

	Filter Allocation and Delegation in A-net
	Task Description
	Greedy Algorithm: ECNP
	Improved Algorithm: Iterative ECNP

	Formal Description of Filter Allocation Problem in Network
	Experiments
	Conclusion
	References

	On the Use of Symbolic Data Analysis to Model Communication Environments
	Introduction
	Interaction Support
	The Solutions Based on Dyadic Interaction
	The Solutions Based on a Data Space
	Solutions Based on a Specific Mechanism

	Communication Environment
	Symbolic Data Modeling
	Communication Routing

	Functional Description of the Environment
	Description of the Environment Modules
	Description of Common Cases

	Discussion
	Expressiveness of the Delivery Mechanism
	Completeness of the DeliveryMechanism
	Expressiveness of Context Awareness in the DeliveryMechanism

	Conclusion
	References

	Commitment-Based Multiagent Decision Making
	Introduction and Motivation
	Types of Commitments
	A Commitment-Driven Multiagent System
	BDI in a Branching-Time CTL* Framework
	Syntax and Semantics of {\it BDI -{CTL}}∗

	Commitments
	Structure of Commitments
	Operations on Commitments

	Commitment Formalization in BDI+CTL*
	Example Uses of the BDI Commitment Formalism
	Conclusion and Future Directions
	References

	Towards an Open Negotiation Architecture for Heterogeneous Agents
	Introduction
	Negotiation System and Agent Architecture
	Negotiation System Architecture
	Software Agent

	Interface and Adapters
	Experiments
	Related Work
	Conclusion and Future Work
	References

	Incrementally Refined Acquaintance Model for Consortia Composition
	Introduction
	Problem Statement
	IRAM-Based Consortium Formation
	Acquaintance Model
	IRAM Algorithm
	Properties of IRAM
	Reference Algorithm
	Implementation

	Experiments
	Quality of a Model
	Benchmarking IRAM vs. Chebyshev

	Conclusion
	References

	Towards a Monitoring Framework for Agent-Based Contract Systems
	Introduction
	Norms and Architecture
	Overview of Monitoring
	Agent Behaviours in the Monitoring Architecture
	Monitor
	Observer
	Mapper
	Contract Store
	Manager

	Contract Monitoring: Representation and Interpretation
	Mapping Norms to Augmented Transition Networks
	Interpretation of Augmented Transition Networks
	Composition of {\it ATN}s

	Future Work
	Conclusions
	References

	Collaborative Load-Balancing in Storage Networks Using Agent Negotiation
	Introduction
	Problem Context: Storage Networks
	Related Work
	Model and Protocol
	FormalModel
	The Distributed Negotiation Protocol

	Simulation Design
	Simulation Results
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

