
Emptiness of Multi-pushdown Automata Is
2ETIME-Complete

Mohamed Faouzi Atig1, Benedikt Bollig2, and Peter Habermehl1,2

1 LIAFA, CNRS and University Paris Diderot, France
atig+haberm@liafa.jussieu.fr

2 LSV, ENS Cachan, CNRS, Inria
bollig@lsv.ens-cachan.fr

Abstract. We consider multi-pushdown automata, a multi-stack extension of
pushdown automata that comes with a constraint on stack operations: a pop can
only be performed on the first non-empty stack (which implies that we assume a
linear ordering on the collection of stacks). We show that the emptiness problem
for multi-pushdown automata is 2ETIME-complete wrt. the number of stacks.
Containment in 2ETIME is shown by translating an automaton into a grammar
for which we can check if the generated language is empty. The lower bound is
established by simulating the behavior of an alternating Turing machine working
in exponential space. We also compare multi-pushdown automata with the model
of bounded-phase multi-stack (visibly) pushdown automata.

1 Introduction

Various classes of pushdown automata with multiple stacks have been proposed and
studied in the literature. The main goals of these efforts are twofold. First, one may
aim at extending the expressive power of pushdown automata, going beyond the class
of context-free languages. Second, multi-stack systems may model recursive concur-
rent programs, in which any sequential process is equipped with a finite-state control
and, in addition, can access its own stack to connect procedure calls to their corre-
sponding returns. In general, however, multi-stack extensions of pushdown automata
are Turing powerful and therefore come along with undecidability of basic decision
problems. To retain desirable decidability properties of pushdown automata, such as
emptiness, one needs to restrict the model accordingly. In [3], Breveglieri et al. define
multi-pushdown automata (MPDA), which impose a linear ordering on stacks. Stack
operations are henceforth constrained in such a way that a pop operation is reserved to
the first non-empty stack. These automata are suitable to model client-server systems of
processes with remote procedure calls. Another possibility to regain decidability in the
presence of several stacks is to restrict the domain of input words. In [8], La Torre et al.
define bounded-phase multi-stack visibly pushdown automata (bounded-phase MVPA).
Only those runs are taken into consideration that can be split into a given number of
phases, where each phase admits pop operations of one particular stack only. In the
above-mentioned cases, the respective emptiness problem is decidable. In [9], the re-
sults of [8] are used to show decidability results for restricted queue systems.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 121–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 M.F. Atig, B. Bollig, and P. Habermehl

In this paper, we resume the study of MPDA and, in particular, consider their
emptiness problem. The decidability of this problem, which is to decide if an automa-
ton admits some accepting run, is fundamental for verification purposes. We show that
the emptiness problem for MPDA is 2ETIME-complete. Recall that 2ETIME is the
class of all decision problems solvable by a deterministic Turing machine in time 22dn

for some constant d. In proving the upper bound, we correct an error in the decid-
ability proof given in [3].1 We keep their main idea: MPDA are reduced to equivalent
depth-n-grammars. Deciding emptiness for these grammars then amounts to check-
ing emptiness of an ordinary context-free grammar. For proving 2ETIME-hardness, we
borrow an idea from [10], where a 2ETIME lower bound is shown for bounded-phase
pushdown-transducer automata. We also show that 2m-MPDA are strictly more expres-
sive than m-phase MVPA providing an alternative proof of decidability of the emptiness
problem for bounded-phase MVPA.

The paper is structured as follows: In Section 2, we introduce MPDA formally, as
well as depth-n-grammars. Sections 3 and 4 then establish the 2ETIME upper and,
respectively, lower bound of the emptiness problem for MPDA, which constitutes our
main result. In Section 5, we compare MPDA with bounded-phase MVPA. We conclude
by identifying some directions for future work. Missing proofs can be found in [1].

2 Multi-pushdown Automata and Depth-n-grammars

In this section we define multi-pushdown automata with n ≥ 1 pushdown stacks and
their corresponding grammars. We essentially follow the definitions of [3].

Multi-pushdown Automata. Our automata have one read-only left to right input tape
and n ≥ 1 read-write memory tapes (stacks) with a last-in-first-out rewriting policy. In
each move, the following actions are performed:

– read one or zero symbol from the input tape and move past the read symbol
– read the symbol on the top of the first non-empty stack starting from the left
– switch the internal state
– for each i ∈ {1, . . . , n}, write a finite string αi on the i-th pushdown stack

Definition 1. For n ≥ 1, an (n-)multi-pushdown automaton (n-MPDA or MPDA) is a
tuple M = (Q, Σ, Γ, δ, q0, F, Z0) where:

– Q is a finite non-empty set of internal states,
– Σ (input) and Γ (memory) are finite disjoint alphabets,
– δ : Q × (Σ � {ε}) × Γ → 2Q×(Γ ∗)n

is a transition mapping,
– q0 is the initial state,
– F ⊆ Q is the set of final states, and
– Z0 ∈ Γ is the initial memory symbol.

1 A similar correction of the proof has been worked out independently by the authors of [3]
themselves [4]. They gave an explicit construction for the case of three stacks that can be
generalized to arbitrarily many stacks.

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 123

Table 1. A 2-MPDA for {ε} ∪ {ai1bi1ci1ai2bi2ci2 · · · aikbikcik | k ≥ 1 and i1, . . . , ik > 0}

M = ({q0, . . . , q3, qf}, {a, b, c}, {A, B, Z0, Z1}, δ, q0, {qf}, Z0)

δ(q0, ε, Z0) = {(qf , ε, ε)} δ(q2, b, A) = {(q2, ε, ε)}
δ(q0, a, Z0) = {(q1, AZ0, BZ1)} δ(q2, ε, Z0) = {(q3, ε, ε)}
δ(q1, ε, A) = {(q2, A, ε)} δ(q3, ε, Z1) = {(q0, Z0, ε)}
δ(q1, a, A) = {(q1, AA, B)} δ(q3, c, B) = {(q3, ε, ε)}

A configuration of M is an (n + 2)-tuple 〈q, x; γ1, . . . , γn〉 with q ∈ Q, x ∈ Σ∗,
and γ1, . . . , γn ∈ Γ ∗. The transition relation 	∗

M is the transitive closure of the binary
relation 	M over configurations, defined as follows:

〈q, ax; ε, . . . , ε, Aγi, . . . , γn〉 	M 〈q′, x; α1, . . . , αi−1, αiγi, . . . , αnγn〉

if (q′, α1, . . . , αn) ∈ δ(q, a, A), where a ∈ Σ ∪ {ε}.
The language of M accepted by final state is defined as the set of words x ∈

Σ∗ such that there are γ1, . . . , γn ∈ Γ ∗ and q ∈ F with 〈q0, x; Z0, ε, . . . ε〉 	∗
M

〈q, ε; γ1, . . . , γn〉. The language of M accepted by empty stacks, denoted by L(M), is
defined as the set of words x ∈ Σ∗ such that there is q ∈ Q with 〈q0, x; Z0, ε, . . . ε〉 	∗

M

〈q, ε; ε, . . . , ε〉.

Lemma 2 ([3]). The languages accepted by n-MPDA by final state are the same as the
languages accepted by n-MPDA by empty stacks.

Table 1 shows an example of a 2-MPDA. Notice that it accepts the same language by
final state and by empty stacks.

We need the following normal form of n-MPDA for the proof of our main theorem.
The normal form restricts the operation on stacks 2 to n: pushing one symbol on these
stacks is only allowed while popping a symbol from the first stack, and popping a
symbol from them pushes a symbol onto the first stack. Furthermore, the number of
symbols pushed on the first stack is limited to two and the stack alphabets are distinct.

Definition 3. A n-MPDA (Q, Σ, Γ, δ, q0, F, Z0) with n ≥ 2 is in normal form if

– Γ =
⋃n

i=1 Γ (i) where the Γ (i)’s are pairwise disjoint memory alphabets whose
elements are denoted by A(i), B(i), etc., and Z0 ∈ Γ (1).

– Only the following transitions are allowed:
• For all A(1) ∈ Γ (1) and a ∈ Σ ∪ {ε}, δ(q, a, A(1)) ⊆ {(q′, ε, . . . , ε) | q′ ∈

Q} ∪ Δ1 ∪ Δ2 with
∗ Δ1 = {(q′, B(1)C(1), ε, . . . , ε) | q′ ∈ Q ∧ B(1), C(1) ∈ Γ (1)},
∗ Δ2 = {(q′, ε, . . . , ε, A(i), ε, . . . , ε) | q′ ∈ Q ∧ A(i) ∈ Γ (i) ∧ 2 ≤ i ≤ n}.

• For all i with 2 ≤ i ≤ n and a ∈ Σ ∪ {ε},
δ(q, a, A(i)) ⊆ {(q′, B(1), ε, . . . , ε) | q′ ∈ Q ∧ B(1) ∈ Γ (1)}.

Lemma 4. An n-MPDA M can be transformed into an n-MPDA M ′ in normal form
with linear blowup in its size such that L(M) = L(M ′).

124 M.F. Atig, B. Bollig, and P. Habermehl

Proof. The proof makes use of the ideas from [3], where a proof for a normal form
for Dn-grammars (see below) is given. Notice, however, that we do not use the same
normal form as the one of [3] for MPDA. ��

Next, we recall some properties of the class of languages recognized by n-MPDA.
We start by defining a renaming operation: A renaming of Σ to Σ′ is a function f :
Σ → Σ′. It is extended to strings and languages in the natural way: f(a1 . . . ak) =
f(a1) · . . . · f(ak) and f(L) =

⋃
x∈L f(x). The following can be shown following [3].

Lemma 5. (Closure Properties) The class of languages recognized by n-MPDA is clo-
sed under union, concatenation, and Kleene-star. Moreover, given an n-MPDA M over
the alphabet Σ and a renaming function f : Σ → Σ′, it is possible to construct an
n-MPDA M ′ over Σ′ such that L(M ′) = f(L(M)).

Depth-n-grammars. We now define the notion of a depth-n-grammar. Let VN and VT

be finite disjoint alphabets and let “(“ and “)i“ for i ∈ {1, . . . , n} be n + 1 characters
not in VN ∪ VT . An n-list is a finite string of the form α = w(α1)1(α2)2 . . . (αn)n

where w ∈ V ∗
T and αi ∈ V ∗

N for all i with 1 ≤ i ≤ n.

Definition 6. A depth-n-grammar (Dn-grammar) is a tuple G = (VN , VT , P, S) where
VN and VT are the finite disjoint sets of non-terminal and terminal symbols, respec-
tively, S ∈ VN is the axiom, and P is a finite set of productions of the form A → α
with A ∈ VN and α an n-list.

For clarity, we may drop empty components of n-lists in the productions as follows:
A → w(ε)1 . . . (ε)n is written as A → w, A → (ε)1 . . . (ε)n is written as A → ε, and
A → w(ε)1 . . . (ε)i−1(αi)i(ε)i+1 . . . (ε)n is written as A → w(αi)i.

We define the derivation relation on n-lists as follows. Let i ∈ {1, . . . , n} and let
β = (ε)1 . . . (ε)i−1(Aβi)i(βi+1)i+1 . . . (βn)n be an n-list, where βj ∈ V ∗

N for all
j ∈ {i, . . . , n}. Then,

xβ ⇒ xw(α1)1(α2)2 . . . (αi−1)i−1(αiβi)i(αi+1)i+1 . . . (αnβn)n

if A → w(α1)1(α2)2 . . . (αn)n is a production and x ∈ V ∗
T . Notice that only leftmost

derivations are defined. As usual we denote by ⇒∗ the reflexive and transitive closure of
⇒. A terminal string x ∈ V ∗

T is derivable from S if (S)1(ε)2 . . . (ε)n ⇒∗ x(ε)1 . . . (ε)n.
This will be also denoted by S ⇒∗ x. The language generated by a Dn-grammar G is
L(G) = {x ∈ V ∗

T | S ⇒∗ x}.

Definition 7. Let G = (VN , VT , P, S) be a Dn-grammar. Then, the underlying context-
free grammar is Gcf = (VN , VT , Pcf , S) with Pcf = {A → wα1 . . . αn | A →
w(α1)1 . . . (αn)n ∈ P}.

The following lemma from [3] is obtained by observing that the language generated
by a Dn-grammar is empty iff the language generated by its underlying context-free
grammar Gcf is empty. Furthermore, it is well-known that emptiness of context-free
grammars can be decided in time linear in its size.

Lemma 8. The emptiness problem of Dn-grammars is decidable in linear time.

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 125

3 Emptiness of MPDA is in 2ETIME

In this section, we show that the emptiness problem of n-MPDA is in 2ETIME. We first
show that n-MPDA correspond to Dn-grammars with a double exponential number of
non-terminal symbols. To do so, we correct a construction given in [3]. Then, emptiness
of Dn-grammars is decidable using the underlying context-free grammar (Lemma 8).

Theorem 9. A language L is accepted by an n-MPDA iff it is generated by a Dn-
grammar.

In the following we give a sketch of the proof. The “if”-direction is obvious, since a
grammar is just an automaton with one state. For the “only if”-direction, let L be a
language accepted by empty stacks by an n-MPDA M = (Q, Σ, Γ, δ, q0, F, Z0). By
Lemma 4, we assume, without loss of generality, that M is in normal form. We will
construct a Dn-grammar GM = (VN , Σ, P, S) such that L(GM) = L.

Intuitively, we generalize the proof for the case of 2-MPDA [7]. In [3], an incorrect
proof was given for the case of n-MPDA. Recently, the authors of [3] independently
gave a generalizable proof for 3-MPDA, which is similar to ours [4]. The general proof
idea is the same as for the corresponding proof for pushdown automata. To eliminate
states, one has to guess the sequence of states through which the automaton goes by
adding pairs of state symbols to the non-terminal symbols of the corresponding gram-
mar. We do this for the first stack. However, when the first stack gets empty, the other
stacks may be not empty and one has to know the state in which the automaton is in
this situation. For this, we have to guess for all the other non-empty stacks and each of
their non-terminal symbols the state in which the automaton will be when reading these
symbols. 2

To do this for the n-th stack, a pair of state symbols is enough. For the (n−1)-th
stack, in addition to guessing the state, we also have to know the current state on top of
the n-th stack to be able to push correctly symbols onto the n-th stack. Therefore, a pair
of pairs of states (4 in total) is needed. For the (n−2)-th stack, we need to remember the
current state and the states on top of the (n−1)-th stack and on top of the n-th stack (in
total 8 states) and so on. Therefore, there will be 2n state symbols to be guessed in the
first stack. Furthermore we have special state symbols (denoted qe

i) to indicate that the
i-th stack is empty. In Fig. 1 we give an intuitive example illustrating the construction.

Now we define the grammar GM = (VN , Σ, P, S) formally. To define VN , we first
provide symbols of level i denoted by Vi. For i with 2 ≤ i ≤ n, let qe

i be states
pairwise different and different from any state of Q (these are the symbols indicating
that the corresponding stack is empty). States of level i are denoted by Qi and defined
as follows : Qn = Q ∪ {qe

n} and for all i such that 2 ≤ i < n, Qi = (Q × Qi+1 ×
· · · × Qn) ∪ {qe

i }, and Q1 = Q × Q2 × · · · × Qn. We denote by qi states of Qi. Then,
Vi = Qi×Γ ×Qi and VN = {S} ∪

⋃n
i=1 Vi. Notice that a state in Qi different from qe

i

has exactly 2n−i components. Therefore |VN | ≤ (|Q| + 1)2
n+1 |Γ |. The set P contains

exactly the following productions, which are partitioned into five types (a ∈ Σ ∪ {ε}):

2 The proof in [3] incorrectly assumes that this state is the same for each stack when the first
stack gets empty.

126 M.F. Atig, B. Bollig, and P. Habermehl

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q, (q5, (q2, q3), q7), qe
3 , q3)

A(1)

(q1, (q5, (q2, q3), q7), (q3, q4), q3)
(q1, (q5, (q2, q3), q7), (q3, q4), q3)

B(1)

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q5, (q2, q3), q7)
A(2)

qe
2

⎤

⎥
⎦

[]

⎡

⎢
⎣

q3

A(4)

qe
4

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q1, (q5, (q2, q3), q7), (q3, q4), q3)
B(1)

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q5, (q2, q3), q7)
A(2)

qe
2

⎤

⎥
⎦

⎡

⎢
⎣

(q3, q4)
A(3)

qe
3

⎤

⎥
⎦

⎡

⎢
⎣

q3

A(4)

qe
4

⎤

⎥
⎦

⎡

⎢
⎣

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q2, (q3, q4), q8)
B(2)

(q5, (q2, q3), q7)
(q5, (q2, q3), q7)

A(2)

qe
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q3, q4)
A(3)

qe
3

⎤

⎥
⎦

⎡

⎢
⎣

q3

A(4)

qe
4

⎤

⎥
⎦

[]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q2, (q3, q4), q8)
B(2)

(q5, (q2, q3), q7)
(q5, (q2, q3), q7)

A(2)

qe
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q3, q4)
A(3)

qe
3

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q8

A(4)

q3
q3

A(4)

qe
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 1. A sketch of a partial derivation (from top to bottom) of a depth-4-grammar corresponding
to a run of a 4-MPDA where three symbols are popped from the first stack while three symbols
are pushed onto the other stacks. In each configuration, if the first stack is non-empty, then the
state symbols on top of the other stacks can be found on top of the first stack as well. In the last
configuration, the top symbols of the other stacks can be found on top of the second stack.

T1 S → ([(q0, q
e
2, . . . , q

e
n), Z0, (q1, q1

2, . . . , q1
n)])1

if there is k with 2 ≤ k ≤ n + 1 such that
• for all i with 2 ≤ i < k we have q1

i = qe
i

• if k ≤ n, then q1
k = (q1, q1

k+1,. . ., q1
n)

T2 [(q1, q1
2, . . . , q1

n), A(1), q2
1] → a([(q4, q1

2 , . . . , q1
n), B(1), q3

1][q3
1 , C(1), q2

1])1
if (q4, B(1)C(1), ε, . . . , ε) ∈ δ(q1, a, A(1))

T3 [(q1, q1
2,. . ., q1

j−1, q1
j , q1

j+1,. . ., q1
n), A(1), (q2, q1

2 , . . . , q1
j−1, q2

j , q1
j+1, . . . , q1

n)]
→ a([q2

j , B(j), q1
j])j if q2

j �= qe
j and (q2, ε, . . . , ε, B(j), ε, . . . , ε) ∈ δ(q1, a, A(1))

T4 [(q1, q1
j+1, . . . , q1

n), A(j), q1
j]

→ a([(q4, qe
2, . . . , q

e
j−1, q

1
j , q1

j+1, . . . , q1
n), B(1), (q2, q2

2 , . . . , q2
n)])1

if (q4, B(1), ε, . . . , ε) ∈ δ(q1, a, A(j)), and there is k with 2 ≤ k ≤ n + 1 such that
• for all i with 2 ≤ i < min(k, j) we have q2

i = qe
i

• for all i with min(k, j) ≤ i < k we have q1
i = q2

i = qe
i

• if k ≤ n, then q2
k = (q2, q2

k+1,. . ., q2
n)

T5 [(q1, q1
2, . . . , q

1
n), A(1), (q2, q1

2, . . . , q
1
n)] → a if (q2, ε, . . . , ε) ∈ δ(q1, a, A(1))

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 127

The grammar corresponding to the example in Table 1 can be found in [1]. The fol-
lowing key lemma formalizes the intuition about derivations of the grammar GM by
giving invariants satisfied by them (illustrated in Fig. 1). This lemma is the basic ingre-
dient of the full proof of Theorem 9, which can be found in [1]. Intuitively, condition
1 says that the first element of the first stack contains the state symbols on top of the
other stacks. Condition 2 says that the last state symbols in the first stack are of the form
allowing condition 3 to be true when the corresponding symbol is popped. Condition 3
says that if the first stack is empty, then the top of the first non-empty stack contains the
same state symbols as the top of the other stacks. Conditions 4 and 5 say that the state
symbols guessed form a chain through the stacks.

Lemma 10. Let w(γ1)(γ2) . . . (γn) be an n-list different from (ε)1 . . . (ε)n appearing
in a derivation of the grammar GM .

1. If γ1 = [(q1, q1
2 , . . . , q1

n), A(1), (q2, q2
2 , . . . , q2

n)]γ′
1 with γ′

1 ∈ V ∗
1 , then for all i

with 2 ≤ i ≤ n, if γi is empty, then q1
i = qe

i , else γi = [q1
i , B(i), q3

i]γ′
i with

γ′
i ∈ V ∗

i .
2. If γ1 = γ′

1[(q
1, q1

2 , . . . , q1
n), A(1), (q3, q3

2 , . . . , q3
n)] with γ′

1 ∈ V ∗
1 , then there exists

k with 2 ≤ k ≤ n + 1 such that we have both for all i with 2 ≤ i < k, q3
i = qe

i

and k ≤ n implies q3
k = (q3, q3

k+1, . . . , q3
n).

3. Suppose that γ1 = ε. Let i be the smallest k such that γk is not empty and let
γi = [(q1, q1

i+1, . . . , q1
n), A(i), q2

i]γ′
i with γ′

i ∈ V ∗
i . Then, for all j > i, we have:

if γj is empty, then q1
j = qe

j , else γj = [q1
j , A(j), q3

j]γ′
j with γ′

j ∈ V ∗
j .

4. For all i with 2 ≤ i ≤ n, if γi is not empty then for some j ≥ 1,
γi = [q1

i , A
(i)
1 , q2

i][q2
i , A

(i)
2 , q3

i] . . . [qj−1
i , A

(i)
j−1, q

j
i][qj

i , A
(i)
j , qe

i] and for all l with
1 ≤ l ≤ j, ql

i �= qe
i .

5. If γ1 is not empty, then for some j ≥ 1,
γ1 = [q1

1 , A
(1)
1 , q2

1][q2
1 , A

(1)
2 , q3

1] . . . [qj−1
1 , A

(1)
j−1, q

j
1][qj

1, A
(1)
j , qj+1

1].

By observing that the size of the grammar GM corresponding to an MPDA M in the
construction used in the proof of Theorem 9 is double exponential in the number of
stacks and using Lemma 8 we obtain the following corollary.

Corollary 11. The emptiness problem of MPDA is in 2ETIME.

In the next Section, it is shown that the double exponential upper bound is tight.

4 Emptiness of MPDA Is 2ETIME-Hard

In this section, we prove that the emptiness problem of MPDA is 2ETIME-hard. This is
done by adapting a construction in [10], where it is shown that certain bounded-phase
pushdown-transducer automata capture precisely the class 2ETIME.

Theorem 12. The emptiness problem for MPDA is 2ETIME-hard under logspace
reductions.

128 M.F. Atig, B. Bollig, and P. Habermehl

c0
c1

c2

c3 c4

c5

c6 c7

c8

c9

c10 c11

c12

c13 c14

Fig. 2. A run of an alternating Turing machine

Proof. It is well-known that the class of problems solvable by alternating Turing ma-
chines in space bounded by 2dn for some d (call it AESPACE) equals 2ETIME [5].
Thus, it is sufficient to show that any problem in AESPACE can be reduced, in logarith-
mic space, to the emptiness problem for MPDA.

So let T be an alternating Turing machine working in space bounded by 2dn. Let
furthermore w be an input for T of length n. We construct (in logarithmic space) from
T and w an MPDA M with 2dn + 4 stacks such that the language of M is non-empty
iff w is accepted by T . The simulation of T proceeds in two phases: (1) M guesses a
possible accepting run of T on w; (2) M verifies if the guess is indeed a run.

Without loss of generality, we can assume that a transition of T is basically of the
form c → (c1∧c2)∨(c3∧c4)∨. . .∨(ch−1∧ch) (where configuration changes are local),
i.e., from configuration c, we might switch to both c1 and c2 or both c3 and c4 and so
on. This allows us to represent a run of T as a complete finite binary tree, as shown in
Fig. 2, whose nodes are labeled with configurations. Note that each configuration will
be encoded as a string, as will be made precise below. The run is accepting if all leaf
configurations are accepting. Following the idea of [10], we write the labeled tree as the
string (let cr denote the reverse of c)

c0|c1|c2|c3 ‖ cr
3 ‖ c4 ‖ cr

4|cr
2 ‖ c5|c6 ‖ cr

6 ‖ c7 ‖ cr
7|cr

5|cr
1 ‖

c8|c9|c10 ‖ cr
10 ‖ c11 ‖ cr

11|cr
9 ‖ c12|c13 ‖ cr

13 ‖ c14 ‖ cr
14|cr

12|cr
8|cr

0

It is generated by the (sketched) context-free grammar

A → αiAαi + αiBαi + αi‖αi

B → |A ‖ A|

where the αi are the atomic building blocks of an encoding of a configuration of T .
This string allows us to access locally those pairs of configurations that are related by
an edge in the tree and thus need to agree with a transition. Finally, the grammar can
make sure that all leafs are accepting configurations and that the initial configuration
corresponds to the input w. Using two stacks, we can generate such a word encoding
of a (possible) run of T and write it onto the second stack, say with c0 at the top, while
leaving the first stack empty behind us (cf. Fig. 3(a)).

The MPDA M now checks if the word written onto stack 2 stems from a run of T .
To this aim, we first extract from stack 2 any pair of configurations that needs to be
compared wrt. the transition relation of T . For this purpose, some of the configurations
need to be duplicated. Corresponding configurations are written side by side as follows:
By means of two further stacks, 3 and 4, we transfer the configurations located on stack
2 and separated by the symbol “|” onto the third stack (in reverse order), hereby copying
some configuration by writing it onto the fourth stack (cf. Fig. 3(b)).

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 129

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0

c1

c2

c3

cr
3...

cr
8

cr
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0

c8

c12

c14...
c2

c4

cr
3

cr
2

cr
1

cr
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c8

c12

cr
10

cr
9

c1

c5

cr
2

cr
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α′
4...

α′
1

α4...
α1

β′
4...

β′
1

β4...
β1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β2

β4

β′
2

β′
4

α2

α4

α′
2

α′
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

5

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1

β3

β′
1

β′
3

α1

α3

α′
1

α′
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α′
1

α1

β′
1

β1

α′
2

α2

β′
2

β2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α′
3

α3

β′
3

β3

α′
4

α4

β′
4

β4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8
(a) (b) (c)

Fig. 3. Guessing and verifying a run of an alternating Turing machine

It still remains to verify that c0 and c8 belong to a transition of T , as well as c12
and c14, etc. The encoding of one single configuration a1 . . . (q, ai) . . . a2dn will now
allow us to compare two configurations letter by letter. It has the form (−, a1, a2, e)
(a1, a2, a3, e) . . . (ai−1, (q, ai), ai+1, e) . . . (a2dn−1, a2dn , −, e) where the component
e denotes a “transition” c → c′ ∧ c′′, which has been selected to be executed next
and which has been guessed in the above grammar. We would like to compare the
k-th letter of one with the k-th letter of another configuration. To access correspond-
ing letters simultaneously, we divide the configurations on stacks 3 and 4 into two,
using two further stacks, 5 and 6. We continue this until corresponding letters are ar-
ranged one below the other. This procedure, which requires 2dn additional stacks, is
illustrated in Fig. 3(c) where each αi and βi stands for an atomic symbol of the form
(a1, a2, a3, e). Note that, in some cases, we encounter pairs of the form (c, c′) whereas
in some other cases, we face pairs of the form (cr, (c′)r). Whether we deal with the
reverse of a configuration or not can be recognized on the basis of its border symbols
(i.e., (−, a1, a2, e) or (a2dn−1, a2dn , −, e)). Consider, for example, stacks 3 and 4 in
Fig. 3(b). We want to compare c0 and c8 where c0 is of the form (−, a1, a2, e) . . ., i.e.,
it is read in the correct order. Suppose e is of the form c0 → c ∧ c′. Then, locally
comparing c0 and c8, we can check whether c′ = c8. If, at the bottom of stack 3, we
compare cr

1 = (a2dn−1, a2dn , −, e) . . . with cr
0 and e is of the form c0 → c ∧ c′, then

we need to check if c = c1. In other words, the order in which a configuration is read
indicates if we follow the right or left successor in the (tree of the) run. ��

From Corollary 11 and Theorem 12, we deduce our main result:

Theorem 13. The emptiness problem of MPDA is 2ETIME-complete under logspace
reductions.3

3 The emptiness problem of MPDA is 2EXPTIME-complete, too. Hereby, 2EXPTIME de-
notes the class of all decision problems solvable by a deterministic Turing machine in time
exp(exp(nd)) for some constant d (exp(x) denoting 2x). Note that 2EXPTIME is a robust
complexity class. On the other hand, 2ETIME is not robust, as it is not closed under logspace
reductions.

130 M.F. Atig, B. Bollig, and P. Habermehl

5 Comparison to Bounded-Phase Multi-stack Pushdown
Automata

In this section, we recall m-phase multi-stack (visibly) pushdown automata (m ≥ 1)
defined in [8] and show that they are strictly less expressive than 2m-MPDA.

Multi-stack Visibly Pushdown Automata. For n ≥ 1, an n-stack call-return al-
phabet is a tuple Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉 of pairwise disjoint finite al-

phabets. For i ∈ {1, . . . , n}, Σi
c is the set of calls of the stack i, Σi

r is the set of
returns of the stack i, and Σint is the set of internal actions. For any such Σ̃n, let
Σc =

⋃n
i=1 Σi

c, Σr =
⋃n

i=1 Σi
r, Σi = Σc ∪ Σi

r ∪ Σint, for every i ∈ {1, . . . , n}, and
Σ = Σc ∪ Σr ∪ Σint.

Definition 14. A multi-stack visibly pushdown automaton (MVPA) over the n-stack
call-return alphabet Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉 is a tuple N = (Q, Γ, Δ, q0, F)

where Q is a finite set of states, Γ is a finite stack alphabet containing a distinguished
stack symbol ⊥, Δ ⊆ (Q×Σc ×Q×(Γ \{⊥}))∪(Q×Σr ×Γ ×Q)∪(Q×Σint ×Q)
is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

A configuration of N is an (n + 2)-tuple 〈q, x; γ1, . . . , γn〉 where q ∈ Q, x ∈ Σ∗, and
for all i ∈ {1, . . . , n}, γi ∈ Γ ∗ is the content of stack i. The transition relation 	∗

N is
the transitive closure of the binary relation 	N over configurations, defined as follows:
〈q, ax; γ1, . . . , γn〉 	N 〈q′, x; γ′

1, . . . , γ
′
n〉 if one of the following cases holds:

1. Internal move: a ∈ Σint, (q, a, q′) ∈ Δ, and γi = γ′
i for every i ∈ {1, . . . , n}.

2. Push onto stack i: a ∈ Σi
c, γ′

j = γj for every j �= i, and there is A ∈ Γ \ {⊥}
such that (q, a, q′, A) ∈ Δ and γ′

i = Aγi.
3. Pop from stack i: a ∈ Σi

r, γ′
j = γj for every j �= i, and there is A ∈ Γ such that

(q, a, A, q′) ∈ Δ and either A �= ⊥ and γi = Aγ′
i, or A = ⊥ and γi = γ′

i = ⊥.

A string x ∈ Σ∗ is accepted by N if there are γ1, . . . , γn ∈ Γ ∗ and q ∈ F such that
〈q0, x; ⊥, . . . , ⊥〉 	∗

N 〈q, ε; γ1, . . . , γn〉. The language of N , denoted L(N), is the set
of all strings accepted by N .

Definition 15. For m ≥ 1, an m-phase multi-stack visibly pushdown automaton (m-
MVPA) over the n-stack call-return alphabet Σ̃n is a tuple K = (m, Q, Γ, Δ, q0, F)
where N = (Q, Γ, Δ, q0, F) is an MVPA over Σ̃n. The language accepted by K is
L(K) =

⋃
i1,...,im∈{1,...,n}

(
L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

))
.

Finally, we recall that the class of languages accepted by m-MVPA is closed under
union, intersection, renaming, and complementation [8]. However, one easily shows:

Lemma 16. The class of languages of m-MVPA is not closed under Kleene-star.

2m-MPDA are Strictly More Expressive than m-MVPA. We now show that, for
any m ≥ 1, 2m-MPDA are strictly more expressive than m-MVPA. Let us fix an
m-MVPA K = (m, Q, Γ, Δ, q0, F) over Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉, with

N = (Q, Γ, Δ, q0, F) an MVPA.

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 131

Proposition 17. For every sequence i1, . . . , im ∈ {1, . . . , n}, it is possible to construct
a 2m-MPDA M such that L(M) = L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

)
.

In the following, we sketch the proof. Intuitively, any computation of N accepting a
string x ∈ L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

)
can be decomposed into m phases, where in

each phase (say j), N can only pop from the stack ij (but it can push onto all stacks).
Let j ∈ {1, . . . , m} be the current phase of N and for every l ∈ {1, . . . , n}, let

kj
l = min

(
{k | j ≤ k ≤ m ∧ ik = l}∪{m+1}

)
denote the closest phase in {j, . . . , m}

such that N can pop from the l-th stack if the phase is kj
l (note that kj

ij
= j), if such

phase does not exist, then kj
l = m + 1.

We construct a 2m-MPDA M over Σ such that the following invariant is preserved
during the simulation of N when its current phase is j: the content of the l-th stack of
N is stored in the (2kj

l − 1)-th stack of M if kj
l �= m + 1. Then, an internal move

(labeled by a ∈ Σint) of N is simulated by an internal move (labeled by a) of M ; a pop
rule (labeled by a ∈ Σ

ij
r) of N from the ij-th stack corresponds to a pop rule (labeled

by a) of M from the (2j − 1)-th stack; and a push rule (labeled by a ∈ Σl
c) onto the

l-th stack of N is simulated by a push rule (labeled by a) of M onto the (2kj
l − 1)-th

stack if kj
l �= (m + 1), else by an internal move (labeled by a) of M .

On switching phase from j to (j + 1) if kj+1
ij

�= m + 1, when N is able once again
to pop from the (ij)-th stack, M moves the content of the (2j − 1)-th stack onto the
(2kj+1

ij
− 1)-th stack using the (2j)-th stack as an intermediary one, else it removes the

content of the (2j−1)-th stack. Observe that all the above described behaviors maintain
the stated invariant since kj+1

l = kj
l for every l �= ij .

We are now ready to present the main result of this section.

Theorem 18. 2m-MPDA are strictly more expressive than m-MVPA.

Proof. For every m-MVPA K over the stack alphabet Σ̃n one can construct a 2m-
MPDA M over Σ such that L(M) = L(K) by considering all possible orderings of
phases (fixing for each phase the stack which can be popped) and using Proposition
17. To prove strict inclusion, we notice that the class of languages recognized by 2m-
MPDA is closed under Kleene-star (Lemma 5) but the class of languages of m-MVPA
is not (Lemma 16). ��

2m-MPDA are Strictly More Expressive than m-MPA. In the following, we ex-
tend the previous result to m-phase multi-stack pushdown automata over non-visible
alphabets (defined in [8]). A multi-stack pushdown automaton (called MPA) over (non-
visible) alphabet Σ is simply an n-stack automaton with ε-moves, that can push and
pop from any stack when reading any letter. Also, we define m-phase version of these
(called m-MPA). An m-MPA is an MPA using at most m-phases, where in each phase
one can pop from one distinguished stack, and push on any other stack.

Theorem 19. 2m-MPDA are strictly more expressive than m-MPA.

The idea behind proving inclusion is that for any m-MPA K over Σ, it is possible to
construct an m-MVPA K ′ over Σ̃′

n = 〈{(Σ′i
c, Σ

′i
r)}i∈{1,...,n}, Σ′

int〉, with Σ′i
c =

132 M.F. Atig, B. Bollig, and P. Habermehl

(
Σ ∪{ε}

)
×{c}×{i}, Σ′i

r =
(
Σ ∪{ε}

)
×{r}×{i}, and Σ′

int =
(
Σ ∪{ε}

)
×{int},

such that every transition on a ∈ Σ ∪ {ε} that pushes onto the stack i is transformed to
a transition on (a, c, i), transitions on a that pop the stack i are changed to transitions
on (a, r, i), and the remaining a-transitions are changed to transitions over (a, int). Let
f be a renaming function that maps each symbol (a, c, i), (a, r, i), and (a, int) to a.
Then, w ∈ L(K) iff there is some w′ ∈ L(K ′) such that w = f(w′). It follows that
L(K) = f

(
L(K ′)

)
. Consider now the 2m-MPDA M ′ over Σ′ constructed from K ′

such that L(M ′) = L(K ′), thanks to Theorem 18. Then, it is possible to construct
from M ′ a 2m-MPDA M over Σ such that L(M) = f

(
L(M ′)

)
(Lemma 5) which

implies that L(M) = L(K). To prove the strict inclusion we use the easy to see fact
that m-MPA are not closed under Kleene-star whereas 2m-MPDA are (Lemma 5).

6 Conclusion

We have shown that the emptiness problem for multi-pushdown automata (MPDA) is
2ETIME-complete. The study of the emptiness problem is the first step of a compre-
hensive study of verification problems for MPDA. For standard pushdown automata,
a lot of work has been done recently (see for example [2]) concerning various model-
checking problems. It will be interesting to see how these results carry over to MPDA
and at which cost. A basic ingredient of model-checking algorithms is typically to char-
acterize the set of successors or predecessors of sets of configurations. For MPDA, this
problem remains to be studied. Another class of extended pushdown automata has re-
cently been studied extensively: the class of higher-order pushdown automata (HPDA,
see for example [6]). It is quite easy to see that HPDA of order n can simulate MPDA
with n stacks (which allows us to use all verification results for HPDA also for MPDA).
However, the converse is wrong, since emptiness of pushdown automata of order n is
(n−1)-EXPTIME-complete [6]. Therefore, it is interesting to study dedicated algo-
rithms for the verification of MPDA.

References

1. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-
complete. Research Report LSV-08-16, LSV, ENS Cachan (May 2008),
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/
PDF/rr-lsv-2008-16.pdf

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-
tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

3. Breveglieri, L., Cherubini, A., Citrini, C., Crespi Reghizzi, S.: Multi-push-down languages
and grammars. International Journal of Foundations of Computer Science 7(3), 253–292
(1996)

4. Breveglieri, L., Cherubini, A., Crespo Reghizzi, S.: Personal communication
5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
6. Engelfriet, J.: Iterated stack automata and complexity classes. Information and Computa-

tion 95(1), 21–75 (1991)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/
PDF/rr-lsv-2008-16.pdf

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 133

7. San Pietro, P.: Two-stack automata. Technical Report 92-073, Dipartimento di elettronica e
informazione, Politechnico di Milano (1992)

8. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In:
Proceedings of LICS, pp. 161–170. IEEE, Los Alamitos (2007)

9. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue
systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–
314. Springer, Heidelberg (2008)

10. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization of double
exponential time. In: Proceedings of CSL 2008. LNCS. Springer, Heidelberg (to appear,
2008)

	Emptiness of Multi-pushdown Automata Is 2ETIME-Complete
	Introduction
	Multi-pushdown Automata and Depth-n-grammars
	Emptiness of MPDA is in 2ETIME
	Emptiness of MPDA Is 2ETIME-Hard
	Comparison to Bounded-Phase Multi-stack Pushdown Automata
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

