

Lecture Notes in Computer Science 5257
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Masami Ito Masafumi Toyama (Eds.)

Developments in
Language Theory

12th International Conference, DLT 2008
Kyoto, Japan, September 16-19, 2008
Proceedings

13

Volume Editors

Masami Ito
Kyoto Sangyo University
Faculty of Science, Kyoto 603-8555, Japan
E-mail: ito@cc.kyoto-su.ac.jp

Masafumi Toyama
Kyoto Sangyo University
Faculty of Computer Science and Engineering
Kyoto 603-8555, Japan
E-mail: toyama@cc.kyoto-su.ac.jp

Library of Congress Control Number: 2008934866

CR Subject Classification (1998): F.4.3, F.4.2, F.4, F.3, F.1, G.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85779-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85779-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12519972 06/3180 5 4 3 2 1 0

Preface

The 12th International Conference on Developments in Language Theory (DLT
2008) was held at Kyoto Sangyo University, Kyoto, September 16–19, 2008. This
was the second time DLT took place in Kyoto. Previous DLTs were held in Turku
(1993), Magdeburg (1995), Thessaloniki (1997), Aachen (1999), Vienna (2001),
Kyoto (2002), Szeged (2003), Auckland (2004), Palermo (2005), Santa Barbara
(2006) and Turku (2007). These will be followed by the next DLT in Stuttgart
(2009).

The topics dealt with at the conference were: grammars, acceptors and trans-
ducers for words, trees and graphs; algebraic theories of automata; algorithmic,
combinatorial and algebraic properties of words and languages; variable length
codes; symbolic dynamics; cellular automata; polyominoes and multidimensional
patterns; decidability questions; image manipulation and compression; efficient
text algorithms; relationships to cryptography, concurrency, complexity theory
and logic; bio-inspired computing; quantum computing.

The Program Committee selected 36 papers from 102 submitted papers. Each
submitted paper was evaluated by at least three members of the Program Com-
mittee. All 36 selected papers are contained in this volume together with 6
invited papers. The editors thank the members of the Program Committee for
the evaluation of the papers and the many referees who assisted the Program
Committee members in this process. We are also grateful to the contributors to
DLT 2008, in particular to the invited speakers for the realization of a successful
conference. Moreover, we thank the Organizing Committee for its splended work,
in particular Szabolcs Iván for his technical assistance. Without his assistance, it
would have been impossible to perform the paper selecting process. Finally, we
would like to express our gratitude to the Steering Committee for its support, in
particular to Prof. Grzegorz Rozenberg for his valuable advice. This conference
was dedicated to his 65th birthday.

The conference was supported by Kyoto Sangyo University and the Japanese
Society for the Promotion of Science. The conference was held under the auspices
of the European Association for Theoretical Computer Science. We are grateful
to these institutions.

July 2008 Masami Ito
Masafumi Toyama

Organization

Steering Committee

Jean Berstel Marne-la-Vallée, France
Cristian S. Calude Auckland, New Zealand
Volker Diekert Stuttgart, Germany
Juraj Hromkovic Zurich, Switzerland
Oscar H. Ibarra Santa Barbara, USA
Masami Ito Kyoto, Japan
Werner Kuich Vienna, Austria
Ghorge Paun Bucharest, Rumania
Antonio Restivo Palermo, Italy
Grzegorz Rozenberg, Chair Leiden, Netherlands
Arto Salomaa Turku, Finland
Sheng Yu London, Canada

Program Committee

Symeon Bozapalidis Thessaloniki, Greece
Olivier Carton Paris, France
Alessandra Cherubini Milan, Italy
Aldo de Luca Naples, Italy
Zoltán Ésik Szeged, Hungary
Volker Diekert Stuttgart, Germany
Jozef Gruska Brno, Czech Republic
Tero Harju Turku, Finland
Hendrik Jan Hoogeboom Leiden, Netherlands
Oscar H. Ibarra Santa Barbara, USA
Masami Ito, Chair Kyoto, Japan
Yuji Kobayashi Funbashi, Japan
Werner Kuich Vienna, Austria
Markus Lohrey Leipzig, Germany
Victor Mitrana Bucharest, Rumania
Friedrich Otto Kassel, Germany
Jaques Sakarovitch Paris, France
Kai Salomaa Kingston, Canada
Pedro V. Silva Porto, Portugal
Denis Thérien Montreal, Canada
Sheng Yu London, Canada
Mikhail Volkov Ekaterinburg, Russia

VIII Organization

Organizing Committee

Masami Ito, Co-chair Kyoto, Japan
Szabolcs Ivan Szeged, Hungary
Yoshiyuki Kunimochi Fukuroi, Japan
P. Leupold Kyoto, Japan
Jianqin Liu Kobe, Japan
Masafumi Toyama, Co-chair Kyoto, Japan
Kayoko Tsuji Tenri, Japan

External Referees

Anil Ada
Cyril Allauzen
Jean-Paul Allouche
Marco Almeida
Dmitry Ananichev
Marcella Anselmo
Jean Berstel
Franziska Biegler
Luc Boasson
Benedikt Bollig
Henning Bordihn
Robert Brijder
Srecko Brlek
Veronique Bruyere
Michelangelo Bucci
Thierry Cachat
Cezar Campeanu
Arturo Carpi
Giuseppa Castiglione
Arkadev Chattopadhyay
Christian Choffrut
Marek Chrobak
Alfredo Costa
Maxime Crochemore
Sinisa Crvenkovic
Elena Czeizler
Eugen Czeizler
Juergen Dassow
Alessandro De Luca
Klaus Denecke
Michael Domaratzki
Pal Domosi
Jérôme Durand-Lose

Omer Egecioglu
Laszlo Egri
Chiara Epifanio
Christiane Frougny
Yuan Gao
Zsolt Gazdag
Viliam Geffert
Silvio Ghilardi
Hugo Gimbert
Stefan Göler
Archontia Grammatikopoulou
Erich Grädel
Giovanna Guaiana
Irene Guessarian
Stefan Gulan
H. Peter Gumm
Klinkner Gwénaël
Yo-Sub Han
Johanna Högberg
Markus Holzer
Lucian Ilie
Szabolcs Ivan
Petr Jancar
Antonios Kalampakas
Juhani Karhumaki
Jarkko Kari
Efim Kinber
Daniel Kirsten
Jetty Kleijn
Walter Kosters
Mojmir Kretinsky
Manfred Kudlek
Manfred Kufleitner

Organization IX

Michal Kunc
Yoshiyuki Kunimochi
Petr Kurka
Dietrich Kuske
Salvatore La Torre
Klaus-Jorn Lange
Eric Laugerotte
Peter Leupold
Kamal Lodaya
Christof Loeding
Sylvain Lombardy
Florin Manea
Sebastian Maneth
Christian Mathissen
Pierre McKenzie
Alexander Meduna
Ingmar Meinecke
Mark Mercer
Wolfgang Merkle
Hartmut Messerschmidt
Naoto Miyoshi
Frantisek Mraz
Emanuele Munarini
Lorand Muzamel
Mark-Jan Nederhof
Dirk Nowotka
Hitoshi Ohsaki
Alexander Okhotin
Gennaro Parlato
Andrei Paun
Dominique Perrin
Holger Petersen
Jean-Eric Pin
Brunetto Piochi
Martin Platek

Matteo Pradella
Panagiota Pournara
George Rahonis
Bala Ravikumar
Klaus Reinhardt
Antonio Restivo
Christophe Reutenauer
Kristina Richomme
Emanuele Rodaro
Jan Rutten
Nicolae Santean
Andrea Sattler-Klein
Shinnosuke Seki
Olivier Serre
Alexander Shen
Arseny Shur
Michael Sipser
Jean-Claude Spehner
Paola Spoletini
Ludwig Staiger
Heiko Stamer
Frank Stephan
Howard Straubing
Izumi Takeuti
Carolyn Talcott
Pascal Tesson
Wolfgang Thomas
Sandor Vagvolgyi
Birgit van Dalen
Stefano Varricchio
György Vaszil
Laurent Vuillon
Pascal Weil
Thomas Worsch
Hsu-Chun Yen

Sponsoring Institutions

Kyoto Sangyo University
Japan Society for the Promotion of Science

Table of Contents

Invited Talks

Iteration Semirings . 1
Zoltán Ésik

Various Aspects of Finite Quantum Automata (Extended Abstract) 21
Mika Hirvensalo

On the Hardness of Determining Small NFA’s and of Proving Lower
Bounds on Their Sizes . 34

Juraj Hromkovič and Georg Schnitger

Selected Ideas Used for Decidability and Undecidability of
Bisimilarity . 56

Petr Jančar

The Frobenius Problem and Its Generalizations . 72
Jeffrey Shallit

Well Quasi-orders in Formal Language Theory . 84
Flavio D’Alessandro and Stefano Varricchio

Contributed Papers

On the Non-deterministic Communication Complexity of Regular
Languages . 96

Anil Ada

General Algorithms for Testing the Ambiguity of Finite Automata 108
Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 121
Mohamed Faouzi Atig, Benedikt Bollig, and Peter Habermehl

The Average State Complexity of the Star of a Finite Set of Words Is
Linear . 134

Frédérique Bassino, Laura Giambruno, and Cyril Nicaud

On the Computational Capacity of Parallel Communicating Finite
Automata . 146

Henning Bordihn, Martin Kutrib, and Andreas Malcher

On a Generalization of Standard Episturmian Morphisms 158
Michelangelo Bucci, Aldo de Luca, and Alessandro De Luca

XII Table of Contents

Universal Recursively Enumerable Sets of Strings . 170
Cristian S. Calude, André Nies, Ludwig Staiger, and Frank Stephan

Algorithmically Independent Sequences . 183
Cristian S. Calude and Marius Zimand

Relationally Periodic Sequences and Subword Complexity 196
Julien Cassaigne, Tomi Kärki, and Luca Q. Zamboni

Bounds on Powers in Strings . 206
Maxime Crochemore, Szilárd Zsolt Fazekas, Costas Iliopoulos, and
Inuka Jayasekera

When Is Reachability Intrinsically Decidable? . 216
Barbara F. Csima and Bakhadyr Khoussainov

Some New Modes of Competence-Based Derivations in CD Grammar
Systems . 228

Erzsébet Csuhaj-Varjú, Jürgen Dassow, and György Vaszil

The Synchronization Problem for Strongly Transitive Automata 240
Arturo Carpi and Flavio D’Alessandro

On the Decidability of the Equivalence for k-Valued Transducers
(Extended Abstract) . 252

Rodrigo de Souza

Decidable Properties of 2D Cellular Automata . 264
Alberto Dennunzio and Enrico Formenti

Fixed Point and Aperiodic Tilings . 276
Bruno Durand, Andrei Romashchenko, and Alexander Shen

Extended Multi Bottom-Up Tree Transducers . 289
Joost Engelfriet, Eric Lilin, and Andreas Maletti

Derivation Tree Analysis for Accelerated Fixed-Point Computation 301
Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Tree Automata with Global Constraints . 314
Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison

Bad News on Decision Problems for Patterns . 327
Dominik D. Freydenberger and Daniel Reidenbach

Finding the Growth Rate of a Regular of Context-Free Language in
Polynomial Time . 339

Pawe�l Gawrychowski, Dalia Krieger, Narad Rampersad, and
Jeffrey Shallit

Table of Contents XIII

More Concise Representation of Regular Languages by Automata and
Regular Expressions . 359

Viliam Geffert, Carlo Mereghetti, and Beatrice Palano

A Taxonomy of Deterministic Forgetting Automata 371
Jens Glöckler

Provably Shorter Regular Expressions from Deterministic Finite
Automata (Extended Abstract) . 383

Hermann Gruber and Markus Holzer

Large Simple Binary Equality Words . 396
Jana Hadravová and Štěpán Holub

On the Relation between Periodicity and Unbordered Factors of Finite
Words . 408

Štěpán Holub and Dirk Nowotka

Duplication in DNA Sequences . 419
Masami Ito, Lila Kari, Zachary Kincaid, and Shinnosuke Seki

On the State Complexity of Complements, Stars, and Reversals of
Regular Languages . 431

Galina Jirásková

On the State Complexity of Operations on Two-Way Finite
Automata . 443

Galina Jirásková and Alexander Okhotin

On the Size Complexity of Rotating and Sweeping Automata 455
Christos Kapoutsis, Richard Královič, and Tobias Mömke

An Analysis and a Reproof of Hmelevskii’s Theorem
(Extended Abstract) . 467

Juhani Karhumäki and Aleksi Saarela

Hierarchies of Piecewise Testable Languages . 479
Ondřej Kĺıma and Libor Polák

Construction of Tree Automata from Regular Expressions 491
Dietrich Kuske and Ingmar Meinecke

Balance Properties and Distribution of Squares in Circular Words 504
Roberto Mantaci, Sabrina Mantaci, and Antonio Restivo

MSO Logic for Unambiguous Shared-Memory Systems 516
Rémi Morin

Complexity of Topological Properties of Regular ω-Languages 529
Victor L. Selivanov and Klaus W. Wagner

Author Index . 543

Iteration Semirings

Zoltán Ésik�

Research Group on Mathematical Linguistics
Rovira i Virgili University, Tarragona, Spain

Abstract. A Conway semiring is a semiring S equipped with a unary
operation ∗ : S → S, called star, satisfying the sum star and product
star equations. An iteration semiring is a Conway semiring satisfying
Conway’s group equations. In this extended abstract, we review the role
of iteration semirings in the axiomatization of regular languages and
rational power series, and in the axiomatization of the equational theory
of continuous and complete semirings.

1 Introduction

One of the most fundamental algebraic structures introduced in Computer Science
are the algebras of regular languages over an alphabet. These algebras are idem-
potent semirings equipped with a star operation, denoted ∗ and called Kleene iter-
ation. Other structures with similar operations include binary relations equipped
with the operations of union, relation composition and reflexive-transitive closure
which provide a theoretical basis for nondeterministic imperative programming.
The reflexive-transitive closure operation on binary relations and the operation
of Kleene iteration on languages can both be defined as least upper bounds of a
chain of approximations, or by an infinite geometric sum. More generally, each ω-
continuous or ω-complete semiring gives rise to a star operation. It is known that
regular languages satisfy the very same equations as binary relations, or as idem-
potent ω-continuous semirings, or ω-complete semirings with an infinitary idem-
potency condition: the sum of every nonempty countable sum of any element a
with itself is a. Moreover, the ∗-semirings of regular languages can be character-
ized as the free algebras in the class of all models of these equations.

The equational theory of regular languages has received a lot of attention since
the late 1950’s. Early results by Redko [40,41] and Conway [13] show that there is
no finite basis of equations. On the other had, there are severalfinitely axiomatized
first-order theories capturing the equational theory of regular languages. The first
such first-order theory was described by Salomaa [42]. He proved that a finite set of
equations, together with a guarded unique fixed point rule is sound and complete
for the equational theory of regular languages. This result has been the model of
several other complete axiomatizations involving power series, trees and tree lan-
guages, traces, bisimulation semantics, etc., see Morisaki and Sakai [38], Elgot [17],
� Supported in part by grant no. MTM 2007-63422 from the Ministry of Science and

Education of Spain. On leave from University of Szeged, Hungary.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 1–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 Z. Ésik

Elgot, Bloom, Tindell [18], Ito andAndo [28],Milner [36,37],Rabinovitch [39],Cor-
radini, De Nicola, Labella [14], to mention a few examples. Salomaa’s axiomatiza-
tion has been further refined by Archangelsky and Gorshkov [1], Krob [34], Kozen
[30,31] and Boffa [10,11]. See also [7]. In particular, the system found by Kozen re-
lies on the least pre-fixed point rule for left and right linear fixed point equations.
This result is important since the (guarded) unique fixed point rule is not sound in
several important models such as binary relations over a nontrivial set.

Another direction of research has been trying to describe infinite nontrivial
equational basis of regular languages, cf. [34,5]. A Conway semiring [6] is
a ∗-semiring (i.e., a semiring equipped with a star operation) satisfying the well-
known sum star and product star equations. In [13], Conway associated an equa-
tion with each finite group in any ∗-semiring. An iteration semiring is a Conway
semiring which is a model of these group equations. Conway conjectured that the
iteration semiring equations, together with a strengthened form of idempotency
(the equation 1∗ = 1) are complete for regular languages. His conjecture was con-
firmed by Krob. (See also [19] for a proof from a more general perspective.) The
completeness of this system readily implies the completeness of all known first-
order axiomatizations, including the completeness of the systems given by Krob,
Kozen, Boffa and others mentioned above. The equations associated with the fi-
nite groups are rather complex. For commutative (or even solvable) groups, they
can be reduced to the classical “power equations”, see Conway [13] and Krob [34],
but the simplification of the general group equations is still open.

In this paper our aim is to review the role of Conway and iteration semirings
in some recent axiomatization results extending those mentioned above. These
recent results show that the iteration semiring equations, together with three
simple additional equations, provide a complete account of the equations that
hold in ω-continuous, or ω-complete semirings without any idempotency con-
ditions. Moreover, the same equations provide a complete account of the valid
equations of rational power series over the semiring N∞, obtained by adding a
point of infinity to the usual semiring N of nonnegative integers. We also provide
finite first-order axiomatizations extending the results of Krob and Kozen. We
will also include results regarding the equational theory of rational series over N,
or the semirings k on the set {0, 1, · · · , k − 1} obtained from N∞ by collapsing
∞ with the integers ≥ k − 1. For proofs we refer to [8] and [9].

2 Preliminaries

A semiring [24] is an algebra S = (S,+, ·, 0, 1) such that (S,+, 0) is a commuta-
tive monoid, (S, ·, 1) is a monoid, moreover, the following hold for all a, b, c ∈ S:

0 · a = 0
a · 0 = 0

a(b + c) = ab + ac

(b + c)a = ba + ca

Iteration Semirings 3

The operation + is called sum or addition, and the operation · is called product
or multiplication. A semiring S is called idempotent if

1 + 1 = 1, or equivalently, a + a = a

for all a ∈ S. A morphism of semirings preserves the sum and product operations
and the constants 0 and 1. Since semirings are defined by equations, the class of
all semirings is a variety (see e.g., [25]) as is the class of all idempotent semirings.

For any integer k ≥ 1, we will also write k for the term which is the k-fold
sum of 1 with itself: 1 + · · ·+ 1, where 1 appears k-times. Thus, a semiring S is
idempotent if the equation 1 = 2 holds in S. More generally, we will find occasion
to deal with semirings satisfying the equation k − 1 = k, for some k ≥ 2.

An important example of a semiring is the semiring N = (N,+, ·, 0, 1) of
nonnegative integers equipped with the usual sum and product operations, and
an important example of an idempotent semiring is the boolean semiring B whose
underlying set is {0, 1} and whose sum and product operations are disjunction
and conjunction. Actually N and B are respectively the initial semiring and the
initial idempotent semiring. More generally, for every k ≥ 2, we let k denote the
semiring obtained from N by identifying all integers ≥ k − 1. We may represent
k as the semiring on the set {0, · · · , k−1} where sum and product are the usual
operations if the result of the operation is in this set, otherwise the operation
returns k − 1. For each k, the semiring k is initial in the class of semirings
satisfying k − 1 = k.

We end this section by describing two constructions on semirings. For more
information on semirings, the reader is referred to Golan’s book [24].

2.1 Polynomial Semirings and Power Series Semirings

Suppose that S is a semiring and A is a set. Let A∗ denote the free monoid of all
words over A including the empty word ε. A formal power series, or just power
series over S in the (noncommuting) letters in A is a function s : A∗ → S. It is a
common practice to represent a power series s as a formal sum

∑
w∈A∗(s, w)w,

where the coefficient (s, w) is ws, the value of s on the word w. The support of a
series s is the set supp(s) = {w : (s, w) �= 0}. When supp(s) is finite, s is called
a polynomial. We let S〈〈A∗〉〉 and S〈A∗〉 respectively denote the collection of all
power series and polynomials over S in the letters A.

We define the sum s+s′ and product ss′ of two series s, s′ ∈ S〈〈A∗〉〉 as follows.
For all w ∈ A∗,

(s + s′, w) = (s, w) + (s′, w)

(ss′, w) =
∑

uu′=w

(s, u)(s′, u′).

We may identify any element s ∈ S with the series, in fact polynomial that maps
ε to s and all other elements of A∗ to 0. In particular, 0 and 1 may be viewed
as polynomials. It is well-known that equipped with the above operations and
constants, S〈〈A∗〉〉 is a semiring which contains S〈A∗〉 as a subsemiring.

4 Z. Ésik

The semiring S〈A∗〉 can be characterized by a universal property. Consider
the natural embedding of A into S〈A∗〉 such that each letter a ∈ A is mapped
to the polynomial whose support is {a} which maps a to 1. By this embedding,
we may view A as a subset of S〈A∗〉. Recall also that each s ∈ S is identified
with a polynomial. The following fact is well-known.

Theorem 1. Given any semiring S′, any semiring morphism hS : S → S′ and
any function h : A→ S′ such that

(shS)(ah) = (ah)(shS) (1)

for all a ∈ A and s ∈ S, there is a unique semiring morphism h� : S〈A∗〉 → S′

which extends both hS and h.

The condition (1) means that for any s ∈ S and letter a ∈ A, shS commutes with
ah. In particular, since N is initial, and since when S = N the condition (1) holds
automatically, we obtain that any map A → S′ into a semiring S′ extends to a
unique semiring morphism N〈A∗〉 → S′, i.e., the polynomial semiring N〈A∗〉 is
freely generated by A in the class of semirings. In the same way, for each k ≥ 2,
k〈A∗〉 is freely generated by A in the class of semirings satisfying the equation
k − 1 = k.

Note that a series in B〈〈A∗〉〉 = 2〈〈A∗〉〉 may be identified with its support.
Thus a series in B〈〈A∗〉〉 corresponds to a language over A and a polynomial in
B〈A∗〉 to a finite language. The sum operation corresponds to set union and the
product operation to concatenation. The constants 0 and 1 are the empty set
and the singleton set {ε}.

The power series semirings S〈〈A∗〉〉 can be generalized in a straightforward
way to semirings of series S〈〈M〉〉, where M = (M, ·, 1) is a locally finite partial
monoid.1 Here, a partial monoid is a set M equipped with a partially defined
product (m,m′) 	→ mm′ and a constant 1 such that for any m,m′,m′′ in M ,
(mm′)m′′ is defined iff m(m′m′′) is defined in which case they are equal. More-
over, the products 1m and m1 are always defined and equal to m. We say that a
partial monoid is locally finite if each m ∈M can be written only a finite number
of different ways as a product m1 · · ·mk with mi �= 1 for all i. Clearly, every
free monoid is locally finite. Another example is given by data word monoids.
Suppose that A is an alphabet and D is set of data values. A data word over
(A,D) is either the symbol 1 or a word in D(AD)+. Let (A,D)∗ denote this
set. We define a partial product operation on (A,D)∗ called fusion and denoted
•: For any u = d0a1 · · · andn and u′ = d′0a

′
1 · · · a′md′m in D(AD)+ we define

u • u′ = d0a1 · · · and
′
na

′
1 · · · a′md′m if dn = d′0, and leave u • u′ undefined other-

wise. Moreover, we define 1 • u = u • 1 = u for all u ∈ (A,D)∗. Let M be a
locally finite partial monoid. We call an element m ∈ M irreducible if m �= 1
and m cannot be written as a nontrivial product of elements different from 1. It
is clear that each m ∈ M is a product of irreducibles (where the empty product
is 1).

1 This notion generalizes the locally finite monoids of Eilenberg [16].

Iteration Semirings 5

2.2 Matrix Semirings

When S is a semiring, then for each n ≥ 0 the set Sn×n of all n × n matrices
over S is also a semiring denoted Sn×n. The sum operation is defined pointwise
and product is the usual matrix product. The constants are the matrix 0nn all
of whose entries are 0 (often denoted just 0), and the diagonal matrix En whose
diagonal entries are all 1.

We can associate an n × n zero-one matrix with each function or relation ρ
from the set {1, · · · , n} to the set {1, · · · ,m}, whose (i, j)th entry is 1 when
iρj, and 0 otherwise. We usually identify ρ with the associated matrix, called a
functional or relational matrix. A matrix associated with a bijective function is
called a permutation matrix.

3 Conway Semirings

The definition of Conway semirings involves two important equations of regular
languages. Conway semirings appear implicitly in Conway [13] and were defined
explicitly in [6]. See also [35]. On the other hand, the applicability of Conway
semirings is limited due to the fact that the star operation is total, whereas many
important semirings only have a partially defined star operation. Moreover, it is
not true that all such semirings can be embedded into a Conway semiring with
a totally defined star operation. The following definition is taken from [9].

Definition 1. A partial ∗-semiring is a semiring S equipped with a partially
defined star operation ∗ : S → S whose domain is an ideal of S. A ∗-semiring
is a partial ∗-semiring S such that ∗ is defined on the whole semiring S. A
morphism S → S′ of (partial) ∗-semirings is a semiring morphism h : S → S′

such that for all s ∈ S, if s∗ is defined then so is (sh)∗ and s∗h = (sh)∗.

Thus, in a partial ∗-semiring S, 0∗ is defined, and if a∗ and b∗ are defined then
so is (a+ b)∗, finally, if a∗ or b∗ is defined, then so is (ab)∗. When S is a partial
∗-semiring, we let D(S) denote the domain of definition of the star operation.

Definition 2. A partial Conway semiring is a partial ∗-semiring S satisfying
the following two axioms:

1. Sum star equation:

(a + b)∗ = a∗(ba∗)∗

for all a, b ∈ D(S).
2. Product star equation:

(ab)∗ = 1 + a(ba)∗b,

for all a, b ∈ S such that a ∈ D(S) or b ∈ D(S).

A Conway semiring is a partial Conway semiring S which is a ∗-semiring (i.e.,
D(S) = S). A morphisms of (partial) Conway semirings is a (partial) ∗-semiring
morphism.

6 Z. Ésik

Note that in any partial Conway semiring S,

aa∗ + 1 = a∗

a∗a + 1 = a∗

0∗ = 1

for all a ∈ D(S). Moreover, if a ∈ D(S) or b ∈ D(S), then

(ab)∗a = a(ba)∗.

It follows that also

aa∗ = a∗a

(a + b)∗ = (a∗b)∗a∗

for all a, b ∈ D(S). When a ∈ D(S) we will denote aa∗ = a∗a by a+ and call +

the plus operation.
When S is a (partial) Conway semiring, each semiring Sn×n may be turned

into a (partial) Conway semiring.

Definition 3. Suppose that S is a partial Conway semiring with D(S) = I. We
define a partial star operation on the semirings Sk×k, k ≥ 0, whose domain of
definition is Ik×k, the ideal of those k × k matrices all of whose entries are in
I. When k = 0, Sk×k is trivial as is the definition of star. When k = 1, we use
the star operation on S. Assuming that k > 1 we write k = n + 1. For a matrix(
a b
c d

)

in Ik×k, define

(
a b
c d

)∗
=
(
α β
γ δ

)

(2)

where a ∈ Sn×n, b ∈ Sn×1, c ∈ S1×n and d ∈ S1×1, and where

α = (a + bd∗c)∗ β = αbd∗

γ = δca∗ δ = (d + ca∗b)∗.

Theorem 2. (Conway[13], Krob [34,35], Bloom, Ésik [6], Bloom, Ésik, Kuich
[9]) Suppose that S is a partial Conway semiring with D(S) = I. Then, equipped
with the above star operation, each semiring Sk×k is a partial Conway semiring
with D(Sk×k) = Ik×k.

Theorem 3. (Conway[13], Krob [34], Bloom, Ésik [6], Bloom, Ésik, Kuich [9])
Suppose that S is a partial Conway semiring with D(S) = I. Then the following
equations hold in Sk×k:

1. The matrix star equation (2) for all possible decompositions of a square
matrix over I into four blocks as above such that a and d are square matrices.

Iteration Semirings 7

2. The permutation equation

(πAπT)∗ = πA∗πT ,

for all A in Ik×k and any k×k permutation matrix π, where πT denotes the
transpose of π.

We note the following variant of the matrix star equation. Let S be a partial

Conway semiring, I = D(S). Then if A =
(
a b
c d

)

is a matrix with entries in I,

partitioned as above, then

A∗ =
(

(a + bd∗c)∗ a∗b(d + ca∗b)∗

d∗c(a + bd∗c)∗ (d + ca∗b)∗

)

4 Iteration Semirings

Many important (partial) Conway semirings satisfy the group equations associ-
ated with the finite groups, introduced by Conway [13]. When a (partial) Conway
semiring satisfies the group equations, it will be called a (partial) iteration semi-
ring. Below we will consider groups of order n defined on the set {1, · · · , n} of
positive integers with multiplication (i, j) 	→ ij and inverse i 	→ i−1.

Definition 4. We say that the group equation associated with a finite group G
of order n holds in a partial Conway semiring S if

e1M
∗
Gun = (a1 + · · ·+ an)∗ (3)

holds, where a1, · · · , an are arbitrary elements of D(S), and where MG is the
n×n matrix whose (i, j)th entry is ai−1j, for all 1 ≤ i, j ≤ n, and e1 is the 1×n
functional matrix whose first entry is 1 and whose other entries are 0, finally un

is the n× 1 matrix all of whose entries are 1.

Equation (3) asserts that the sum of the entries of the first row of M∗
G is (a1 +

· · ·+ an)∗. For example, the group equation associated with the group of order
2 is

(
1 0

)
(
a1 a2

a2 a1

)∗(1
1

)

= (a1 + a2)∗

which by the matrix star equation can be written as

(a1 + a2a
∗
1a2)∗(1 + a2a

∗
1) = (a1 + a2)∗.

(It is known that in Conway semirings, this equation is further equivalent to the
power identity (a2)∗(1 + a) = a∗.)

Definition 5. We say that a Conway semiring S is an iteration semiring if it
satisfies all group equations. We say that a partial Conway semiring S is a partial
iteration semiring if it satisfies all group equations (3) where a1, · · · , an range
over D(S). A morphism of (partial) iteration semirings is a (partial) Conway
semiring morphism.

8 Z. Ésik

Proposition 1. Suppose that the partial Conway semiring S satisfies the group
equation (3) for all a1, · · · , an ∈ D(S). Then S also satisfies

uT
nM

∗
GeT

1 = (a1 + · · ·+ an)∗, (4)

for all a1, · · · , an ∈ D(S), where e1, MG and un are defined as above. Thus, if
S is an iteration semiring, then (4) holds for all finite groups G.

Remark 1. In Conway semirings, the group equation (3) is equivalent to (4).

Remark 2. Let G denote a class of finite groups. It is known, cf. [13,34] that the
defining equations of Conway semirings, in conjunction with the group equations
associated with the groups in G are complete for iteration semirings iff every finite
simple group is a quotient of a subgroup of a group in G.

The group equations seem to be extremely difficult to verify in practice. However,
they are implied by the simpler functorial star conditions defined below.

Definition 6. Suppose that S is a partial Conway semiring so that each matrix
semiring Sn×n is also a Conway semiring. Let I = D(S), and let C be a class of
rectangular matrices over S. We say that S has a functorial star with respect to
C if for all matrices A ∈ Im×m and B ∈ In×n, and for all m× n matrices C in
C, if AC = CB then A∗C = CB∗. Finally, we say that S has a functorial star
if it has a functorial star with respect to the class of all rectangular matrices.

Proposition 2. (Bloom, Ésik [6], Bloom, Ésik, Kuich [9]) Suppose that S is a
(partial) Conway semiring.

1. S has a functorial star with respect to the class of all injective functional
matrices and their transposes.

2. If S has a functorial star with respect to the class of functional matrices
m → 1, m ≥ 2, then S has a functorial star with respect to the class of all
functional matrices.

3. If S has a functorial star with respect to the class of transposes of functional
matrices m → 1, m ≥ 2, then S has a functorial star with respect to the
class of transposes of all functional matrices.

4. If S has a functorial star with respect to the class of all functional matrices
m → 1, m ≥ 2, or with respect to the class of transposes of functional
matrices m→ 1, m ≥ 2, then S is a (partial) iteration semiring.

Theorem 4. (Conway [13], Krob [34], Ésik [19], Bloom, Ésik, Kuich [9]) If S
is a (partial) iteration semiring, then so is Sk×k for each k ≥ 0.

Later we will see that the class of (partial) iteration semirings is also closed under
taking power series semirings. We now give two classes of (partial) iteration
semirings.

Iteration Semirings 9

4.1 Partial Iterative Semirings

In this section we exhibit a class of partial iteration semirings. The definition
of these semirings is motivated by Salomaa’s axiomatization [42] of regular lan-
guages.

Definition 7. A partial iterative semiring is a partial ∗-semiring S such that for
every a ∈ D(S) and b ∈ S, a∗b is the unique solution of the equation x = ax+ b.
A morphism of partial iterative semirings is a ∗-semiring morphism.

We note that any semiring S with a distinguished ideal I such that for all a ∈ I
and b ∈ S, the equation x = ax + b has a unique solution can be turned into a
partial iterative semiring, where star is defined on I. Indeed, when a ∈ I, define
a∗ as the unique solution of the equation x = ax+1. It follows that aa∗b+b = a∗b
for all b, so that a∗b is the unique solution of x = ax+ b. We also note that when
S, S′ are partial iterative semirings, then any semiring morphism h : S → S′

with D(S)h ⊆ D(S′) automatically preserves star.

Theorem 5. (Bloom, Ésik, Kuich [9]) Every partial iterative semiring is a par-
tial iteration semiring with a functorial star.

Thus, when S is a partial iterative semiring with D(S) = I, then by Definition 3,
each matrix semiring Sn×n is a partial iteration semiring with D(S) = In×n.

Theorem 6. (Bloom, Ésik, Kuich [9]) Suppose that S is a partial iterative
semiring with D(S) = I. Then for any A ∈ In×n and B ∈ Sn×p, A∗B is
the unique solution of the matrix equation X = AX +B. In particular, Sn×n is
a partial iterative semiring where the star operation is defined on In×n.

Theorem 7. (Bloom, Ésik, Kuich [9]) Suppose that S is a partial iterative
semiring with D(S) = I and A ∈ Sn×n and B ∈ Sn×p such that Ak ∈ In×n for
some k ≥ 1. Then the equation X = AX + B in the variable X ranging over
Sn×p has (Ak)∗(Ak−1B + · · ·+ B) as its unique solution.

We give an example of a partial iterative semiring. Let S be a semiring and M a
locally finite partial monoid, and consider the semiring S〈〈M〉〉. We call a series
s ∈ S〈〈M〉〉 proper if (s, 1) = 0. Clearly, the proper series form an ideal. For any
series s, r, if s is proper, then the equation x = sx + r has a unique solution.
(For the case when M is a locally finite monoid, see [16].) Moreover, this unique
solution is s∗r, where s∗ is the unique solution of the equation y = sy + 1.

Proposition 3. For any semiring S and locally finite partial monoid M , S〈〈M〉〉,
equipped with the above star operation defined on the proper series, is a partial
iterative semiring and thus a partial iteration semiring.

Theorem 8. (Bloom, Ésik [6]) Suppose that S is partial iterative semiring with
star operation defined on D(S) = I, and suppose that S0 is a subsemiring of
S which is equipped with a unary operation ⊗. Moreover, suppose that S is the
direct sum of S0 and I, so that each s ∈ S has a unique representation as a sum

10 Z. Ésik

x + a with x ∈ S0 and a ∈ I. If S0, equipped with the operation ⊗, is a Conway
semiring, then there is a unique way to turn S into a Conway semiring whose
star operation extends ⊗. This operation also extends the star operation defined
on I. Moreover, when S0 is an iteration semiring, then S is also an iteration
semiring. In particular, if S is a Conway or an iteration semiring, then so is
S〈〈A∗〉〉, for any set A.

The last sentence of the previous result can be generalized.

Theorem 9. For every locally finite partial monoid M , if S is a Conway or
iteration semiring, then so is S〈〈M〉〉 in an essentially unique way.

4.2 ω-Complete ∗-Semirings

Power series semirings only have a partial star operation defined on proper series.
In order to make star a totally defined operation, Eilenberg introduced complete
semirings in [16]. A variant of this notion is defined below, see also Krob [32],
Hebisch [27], Karner [29] and Bloom, Ésik [6].

Definition 8. We call a semiring S ω-complete if it is equipped with a summa-
tion operation

∑
i∈I si, defined on countable families si, i ∈ I over S such that∑

i∈∅ si = 0,
∑

i∈{1,2} si = s1 + s2, moreover,

a(
∑

i∈I

bi) =
∑

i∈I

abi (
∑

i∈I

bi)a =
∑

i∈I

bia
∑

j∈J

∑

i∈Ij

ai =
∑

i∈I

ai

where in the last equation the countable set I is the disjoint union of the sets
Ij , j ∈ J . A morphism of ω-complete semirings also preserves summation.

We note that ω-complete semirings are sometimes called countably complete
semirings. An example of an ω-complete semiring is the semiring N∞ obtained
by adding a point of infinity ∞ to the semiring N, where a sum

∑
i∈I si is defined

to be ∞ if there is some i with si = ∞ or the number of i with si �= 0 is infinite.
In all other cases each si is in N and the number of i with si �= 0 is finite, so
that we define

∑
i∈I si as the usual sum of those si with si �= 0. Suppose that

S is an ω-complete semiring. Then we define a star operation by a∗ =
∑

n≥0 a
n,

for all a ∈ S.

Definition 9. An ω-complete ∗-semiring is a ∗-semiring S which is an ω-
complete semiring whose star operation is derived from the ω-complete struc-
ture as above. A morphism of ω-complete ∗-semirings is a semiring morphism
which preserves all countable sums and thus the star operation.

Theorem 10. (Bloom, Ésik [6]) Any ω-complete ∗-semiring is an iteration semi-
ring with a functorial star.

The fact that any ω-complete ∗-semiring is a Conway semiring was shown in
[27].

Iteration Semirings 11

Proposition 4. If S is an ω-complete semiring, then equipped with the point-
wise summation, so is each matrix semiring Sn×n as is each power series semi-
ring S〈〈M〉〉, where M is any locally finite partial monoid.

(Actually for the last fact it suffices that each element of M has an at most
countable number of nontrivial decompositions into a product.) Thus, when S is
an ω-complete ∗-semiring, where the star operation is derived from an ω-complete
structure, then we obtain two star operations on each matrix semiring Sn×n: the
star operation defined by the matrix star equation, and the star operation derived
from the ω-complete structure on Sn×n. However, these two star operations are
the same. A similar fact holds for each power series semiring S〈〈M〉〉, where M
is a locally finite partial monoid.

Theorem 11. (Bloom, Ésik [6]) Let S be an ω-complete ∗-semiring, so that S
is an iteration semiring.

1. For each n ≥ 1, the star operation determined on Sn×n by Definition 3 is
the same as the star operation derived from the ω-complete structure on S.

2. For each locally finite partial monoid M , the star operation determined on
S〈〈M〉〉 by Theorem 8 is the same as that derived from the ω-complete struc-
ture on S.

Actually, the last fact is stated in [6] for free monoids, but the extension is clear.
It is easy to show that all free ω-complete ∗-semirings exist.

Theorem 12. For each set A, N∞〈〈A∗〉〉 is freely generated by A in the class
of all ω-complete ∗-semirings. Moreover, for each k ≥ 2, the ∗-semiring k〈〈A∗〉〉
is freely generated by A in the class of all ω-complete ∗-semirings satisfying
1∗ = k − 1.

Note that if an ω-complete semiring S satisfies 1∗ = k − 1, then any countable
sum of at least k − 1 copies of an element a with itself is (k − 1)a, the sum of
exactly k − 1 copies.

Complete semirings [16] have a summation operation defined on all families
of elements over the semiring. There is a weaker notion of rationally additive
semirings, see [21]. These semirings also give rise to iteration semirings with a
functorial star.

5 Kleene Theorem

The classical Kleene theorem equates languages recognizable by finite automata
with the regular languages, and its generalization by Schützenberger equates
power series recognizable by weighted finite automata with rational power series.
Since Kleene’s theorem can be formulated in equational logic, by the complete-
ness results presented in Section 6, it can be proved by equational reasoning
using the equational axioms. Actually the Conway semiring equations suffice
for that purpose. In this section we show a Kleene theorem for partial Conway
semirings. To this end, we define a general notion of (finite) automaton in partial
Conway semirings. Our presentation follows [9].

12 Z. Ésik

Definition 10. Suppose that S is a partial Conway semiring, S0 is a subsemi-
ring of S and A is a subset of D(S). An automaton in S over (S0, A) is a
triplet A = (α,M, β) consisting of an initial vector α ∈ S1×n

0 , a transition
matrix M ∈ (S0A)n×n, where S0A is the set of all linear combinations over
A with coefficients in S0, and a final vector β ∈ Sn×1

0 . The behavior of A is
|A| = αM∗β.

(Since M ∈ D(S)n×n, M∗ exists.)

Definition 11. We say that s ∈ S is recognizable over (S0, A) if s is the be-
havior of some automaton over (S0, A). We let RecS(S0, A) denote the set of
all elements of S which are recognizable over (S0, A).

Next we define rational elements.

Definition 12. Let S, S0 and A be as above. We say that s ∈ S is rational
over (S0, A) if s = x + a for some x ∈ S0 and some a ∈ S which is contained
in the least set Rat′S(S0, A) containing A ∪ {0} and closed under the rational
operations +, ·, + and left and right multiplication with elements of S0. We let
RatS(S0, A) denote the set of rational elements over (S0, A).

Note that Rat′S(S0, A) ⊆ D(S).

Proposition 5. Suppose that S is a partial Conway semiring, S0 is a subsemi-
ring of S and A is a subset of D(S). Then RatS(S0, A) contains S0 and is closed
under sum and product. Moreover, it is closed under star iff it is closed under
the plus operation.

Proposition 6. Suppose that S is a partial Conway semiring, S0 is a subsemi-
ring of S and A is a subset of D(S). Then RatS(S0, A) is contained in the least
subsemiring of S containing S0 and A which is closed under star.

We give two sufficient conditions under which RatS(S0, A) is closed under star.

Proposition 7. Let S, S0 and A be as above. Assume that either S0 ⊆ D(S)
and S0 is closed under star, or the following condition holds:

∀x ∈ S0∀a ∈ D(S) (x + a ∈ D(S) ⇒ x = 0). (5)

Then RatS(S0, A) is closed under star. Moreover, in either case, RatS(S0, A)
is the least subsemiring of S containing S0 and A which is closed under star.

Remark 3. Note that the second condition in the above proposition holds when-
ever each s ∈ S has at most one representation s = x + a with x ∈ S0 and
a ∈ D(S). This happens when S is the direct sum of S0 and D(S).

Theorem 13. (Bloom, Ésik, Kuich [9]) Suppose that S is a partial Conway
semiring, S0 is a subsemiring of S, A ⊆ D(S). Then RecS(S0, A)=RatS(S0, A).

Iteration Semirings 13

Corollary 1. Suppose that S is a Conway semiring, S0 is a Conway subsemi-
ring of S and A ⊆ S. Then RecS(S0, A) = RatS(S0, A) is the least Conway
subsemiring of S which contains S0 ∪A.

Corollary 2. Suppose that S is a partial Conway semiring, S0 is a subsemiring
of S and A ⊆ D(S). Suppose that condition (5) holds. Then RecS(S0, A) =
RatS(S0, A) is the least partial Conway subsemiring of S which contains S0∪A.

The case when the partial Conway semiring is a power series semiring over a free
monoid deserves special attention. Let A be set and S be a semiring, and consider
the partial iteration semiring S〈〈A∗〉〉 whose star operation is defined on proper
series. Alternatively, let S be a Conway semiring, and consider the Conway
semiring S〈〈A∗〉〉 (cf. Theorem 8). We denote RatS〈〈A∗〉〉(S,A) by Srat〈〈A∗〉〉 and
RecS〈〈A∗〉〉(S,A) by Srec〈〈A∗〉〉.
Remark 4. Note that when S is a Conway semiring, then it is also a semiring. So
we may view S〈〈A∗〉〉 in two different ways: as a Conway semiring (see Theorem 8),
or as a partial Conway semiring where star is defined on the proper series. Thus,
we obtain two different notion of rationality: two different definitions of Srat〈A∗〉〉,
one being a Conway semiring (in fact an iteration semiring) and the other being
a partial Conway semiring. However, by Proposition 7 the elements of these two
semirings are the same, and the star operation agrees on proper series in the two
semirings.

Corollary 3. Suppose that S is a semiring and A is a set. Then Srat〈〈A∗〉〉 is
the least partial iteration subsemiring of S〈〈A∗〉〉 containing S ∪ A. Moreover,
Srat〈〈A∗〉〉 = Srec〈〈A∗〉〉.
Corollary 4. Suppose that S is a Conway semiring. Then Srat〈〈A∗〉〉 is the
least Conway subsemiring of S〈〈A∗〉〉 containing S ∪ A. Moreover, Srat〈〈A∗〉〉 =
Srec〈〈A∗〉〉.
The previous facts can be generalized. Suppose that M is a locally finite partial
monoid and let S be a semiring, or a Conway semiring. In the first case, S〈〈M〉〉
is a partial iteration semiring whose star operation is defined on the proper
series, and in the second case, S〈〈M〉〉 is a Conway semiring. Moreover, in the
first case, each series associated with an irreducible of M is proper. Now let
A denote the set of all irreducibles. We let Srat〈〈M〉〉 = RatS〈〈M〉〉(S,A) and
Srec〈〈M〉〉 = RecS〈〈M〉〉(S,A).

Corollary 5. Suppose that S is a semiring and M is a locally finite monoid.
Then Srat〈〈M〉〉 is the least partial iteration subsemiring of S〈〈M〉〉 containing
S ∪A. Moreover, Srat〈〈M〉〉 = Srec〈〈M〉〉.
Corollary 6. Suppose that S is a Conway semiring and M is locally finite par-
tial monoid. Then Srat〈〈M〉〉 is the least Conway subsemiring of S〈〈M〉〉 contain-
ing S ∪A. Moreover, Srat〈〈M〉〉 = Srec〈〈M〉〉.
The above corollaries essentially cover the Kleene theorems for timed automata
in [12,15]. To obtain these results, one only needs to specialize M to certain data
word monoids.

14 Z. Ésik

6 Completeness

Theorem 14. (Bloom, Ésik [8]) For each set A, the semiring Nrat〈〈A∗〉〉 is freely
generated by A in the class of all partial iteration semirings. In more detail,
given any partial iteration semiring S and function h : A→ S with Ah ⊆ D(S),
there is a unique morphism of partial iteration semirings h� : Nrat〈〈A∗〉〉 → S
extending h.

The proof of Theorem 14 uses the results of Section 5 and some recent results
from Béal, Lombardy, Sakarovitch [2,3].

Corollary 7. For each set A, the semiring Nrat〈〈A∗〉〉 is freely generated by the
set A in the class of all partial iterative semirings.

The notion of a (∗-semiring) term (or rational expression) over a set A is defined
as usual: Each letter a ∈ A is a term as are the symbols 0 and 1, and if t and
t′ are terms then so are t + t′, tt′ and t∗. When S is a ∗-semiring and t is term,
then for any valuation A → S, t evaluates to an element of S. We say that an
equation t = t′ between terms t and t′ over A holds in S, or is satisfied by S, if t
and t′ evaluate to the same element for each valuation A→ S. We may assume
that terms are over a fixed countably infinite set of letters.

The above definition does not make sense for partial ∗-semirings. Therefore
we define ideal terms (over A) as follows. Each letter a ∈ A is an ideal term as
is the symbol 0. When t, t′ are ideal terms and s is any term over A, then t+ t′,
ts, st are ideal terms. A guarded term is a term t such that whenever t has a
“subterm” of the form s∗, then s is an ideal term. When S is a partial ∗-semiring
and t is a guarded term over A, then t evaluates to an element of S under each
ideal valuation A → D(S). Let t and t′ be guarded. We say that t = t′ holds in
S if t and t′ evaluate to the same element of S under each guarded evaluation.
The following result follows from Theorem 14.

Theorem 15. The following conditions are equivalent for guarded terms t and t′.

1. The equation t = t′ holds in all partial iteration semirings.
2. The equation t = t′ holds in all partial iterative semirings.
3. The equation t = t′ holds in all semirings Nrat〈〈A∗〉〉.
4. The equation t = t′ holds in Nrat〈〈{a, b}∗〉〉.

We now turn to the semirings Nrat
∞ 〈〈A∗〉〉.

Theorem 16. (Bloom, Ésik [8]) For any set A, the ∗-semiring Nrat
∞ 〈〈A∗〉〉 is

freely generated by A in the class of all iteration semirings satisfying (6), (7)
and (8):

1∗1∗ = 1∗ (6)
1∗a = a1∗ (7)

(1∗a)∗1∗ = 1∗a∗. (8)

Moreover, for any k ≥ 2, the ∗-semiring krat〈〈A∗〉〉 is freely generated by A in
the class of all iteration semirings satisfying 1∗ = k − 1.

Iteration Semirings 15

Using this fact, we obtain:

Theorem 17. (Bloom, Ésik [8]) The following conditions are equivalent for an
equation.

1. The equation holds in all ω-complete ∗-semirings.
2. The equation holds in all iteration semirings satisfying (6), (7), (8).
3. The equation holds in all ∗-semirings Nrat

∞ 〈〈A∗〉〉.
4. The equation holds in Nrat

∞ 〈〈{a, b}∗〉〉.

We note that in conjunction with the iteration semiring equations, (6) is equiv-
alent to 1∗ = 1∗∗ and (8) is equivalent to (1 + a)∗ = 1∗a∗ or a∗∗ = 1∗a∗.

Theorem 18. (Bloom, Ésik [8]) For any k ≥ 2, following conditions are equiv-
alent for an equation.

1. The equation holds in all ω-complete ∗-semirings satisfying 1∗ = k − 1.
2. The equation holds in all iteration semirings satisfying 1∗ = k − 1.
3. The equation holds in all ∗-semirings krat〈〈A∗〉〉.
4. The equation holds in krat〈〈{a, b}∗〉〉.

In Theorems 16 and 18, the case when k = 2 is due to Krob [34].

7 Ordered Iteration Semirings

A semiring S is called ordered if it is equipped with a partial order which is
preserved by the sum and product operations. An ordered semiring S is positive
if 0 is the least element of S. Morphisms of (positive) ordered semirings are also
monotone.

Note that when S is a positive ordered semiring, then a ≤ a+b for all a, b ∈ S.
Moreover, the relation � defined by a � b iff there is some c with a + c = b is
also a partial order on S which is preserved by the operations. Since 0 � a for
all a ∈ S, it follows that equipped with the relation �, S is a positive ordered
semiring, called a sum ordered semiring. Every idempotent semiring S is sum
ordered, moreover, the sum order agrees with the semilattice order : a � b iff
a + b = b, for all a, b ∈ S. For later use observe that if S and S′ are positive
ordered semirings such that S is sum ordered, then any semiring morphism
S → S′ is monotone and thus a morphism of ordered semirings.

Definition 13. An ordered iteration semiring is an iteration semiring which
is a positive ordered semiring. A morphism of ordered iteration semirings is an
iteration semiring morphism which is also an ordered semiring morphism.

It is clear that if S is an ordered positive semiring, then so is any matrix semiring
Sn×n and any power series semiring S〈〈A∗〉〉, or more generally, any semiring
S〈〈M〉〉 where M is a locally finite partial monoid. It follows easily that if S is
an ordered iteration semiring, then Sn×n and S〈〈M〉〉 are also ordered iteration
semirings.

Below we give two classes of ordered iteration semirings.

16 Z. Ésik

7.1 ω-Continuous ∗-Semirings

There are several definitions of continuous, or ω-continuous semirings in the
literature. Our definition is taken from [6]. See also [29], where the same semirings
are termed finitary.2 Recall that a poset is an ω-cpo if it has a least element and
suprema of ω-chains. Moreover, a function between ω-cpo’s is ω-continuous if it
preserves suprema of ω-chains. It is clear that if P is an ω-cpo, then so is each
Pn equipped with the pointwise order.

Definition 14. An ω-continuous semiring is a positive ordered semiring S such
that S is an ω-cpo and the sum and product operations are ω-continuous. An
idempotent ω-continuous semiring is an ω-continuous semiring which is idem-
potent. A morphism of (idempotent) ω-continuous semirings is a semiring mor-
phism which is a continuous function.

Note that each finite positive ordered semiring is ω-continuous. Thus, for each
integer k ≥ 1, the semiring k, equipped with the usual order is ω-continuous.
Moreover, N∞, ordered as usual, is also ω-continuous.

Theorem 19. (Karner [29]) Every ω-continuous semiring can be turned into an
ω-complete semiring by defining

∑

i∈I

ai = sup
F⊆I

∑

i∈F

ai

where F ranges over the finite subsets of F and ai, i ∈ I is a countable family
of elements of S. Morphisms of ω-continuous semirings preserve all countable
sums.

Since each ω-continuous semiring is ω-complete and esch ω-complete semiring is
a ∗-semiring, we deduce that each ω-continuous semiring S is a ∗-semiring where
a∗ =

∑
n an = supn

∑n
i=0 a

i for all a ∈ S.

Definition 15. An ω-continuous ∗-semiring is an ω-continuous semiring which
is a ∗-semiring where star is determined by the ordered structure as above. A
morphism of ω-continuous ∗-semirings is a morphism of ω-continuous semirings.

Note that any morphism automatically preserves star. As an example, consider
the 3-element semiring S0 = {0, 1,∞} obtained by adding the element ∞ to
the boolean semiring B such that a + ∞ = ∞ + a = ∞ for all a ∈ {0, 1,∞}
and b∞ = ∞b = ∞ if b �= 0. Equipped with the order 0 < 1 < ∞, it is an

2 In [33,29], a continuous semiring is a semiring equipped with the sum order which
is a continuous semiring as defined here. Our terminology stems from the commonly
accepted definition of an ω-continuous algebra [23,26] as an algebra equipped with
a partial order which is an ω-cpo such that the operations are ω-continuous in each
argument.

Iteration Semirings 17

ω-continuous semiring and thus an ω-complete semiring. Let us denote by S this
ω-complete semiring. Note that in S, a countably infinite sum of 1 with itself
is 1 and thus 1∗ = 1 holds. However, there is another way of turning S0 into
an ω-complete semiring. We define infinite summation so that an infinite sum
is ∞ iff either one of the summands is ∞, or the number of nonzero summands
is infinite. In the resulting ω-complete semiring S′, it holds that a countably
infinite sum of 1 with itself is ∞ and thus 1∗ = ∞.

Theorem 20. The class of ω-continuous semirings is closed under taking ma-
trix semirings and power series semirings over all locally finite partial monoids.

This fact is well-known (the second claim at least for free monoids). In each case,
the order is the pointwise order. Since each ω-complete ∗-semiring is an iteration
semiring, the same holds for ω-continuous ∗-semirings.

Corollary 8. Every ω-continuous ∗-semiring is an ordered iteration semiring.

On the semirings k and N∞, the order is the sum order. It follows that the point-
wise order is the sum order on each semiring k〈〈M〉〉 or N∞〈〈M〉〉. The following
fact is easy to establish.

Theorem 21. For each set A, the ω-continuous ∗-semiring N∞〈〈A∗〉〉, equipped
with the pointwise order, is freely generated by A in the class of all ω-continuous
∗-semirings. Moreover, for each set A, and for each k ≥ 2, the ω-continuous
∗-semiring k〈〈A∗〉〉, equipped with the pointwise order, is freely generated by A in
the class of all ω-continuous semirings satisfying k − 1 = k.

7.2 Inductive ∗-Semirings

Inductive ∗-semirings, introduced in [22], are a generalization of ω-continuous
∗-semirings. As opposed to ω-continuous ∗-semirings, inductive ∗-semirings are
defined by first-order conditions.

Definition 16. Suppose that S is a ∗-semiring which is an ordered semiring.
We call S an inductive ∗-semiring if the following hold for all a, b, x ∈ S:

aa∗ + 1 ≤ a∗

ax + b ≤ x ⇒ a∗b ≤ x.

A morphism of inductive ∗-semirings is a ∗-semiring morphism which is an
ordered semiring morphism.

It then follows that for any a, b in an inductive ∗-semiring S, a∗b is the least pre-
fixed point of the map x 	→ ax+ b, which is actually a fixed point. In particular,
every inductive ∗-semiring is a positive ordered semiring. Moreover, it follows
that the star operation is also monotone.

18 Z. Ésik

Definition 17. A symmetric inductive ∗-semiring is an inductive ∗-semiring S
which also satisfies

xa + b ≤ x⇒ ba∗ ≤ x

for all a, b, x ∈ S. A morphism of symmetric inductive ∗-semirings is an induc-
tive ∗-semiring morphism.

In [31], Kozen defines a Kleene algebra as an idempotent symmetric inductive
∗-semiring. A morphism of Kleene algebras is a ∗-semiring morphism (which is
necessarily an ordered semiring morphism).

Theorem 22. (Ésik, Kuich [22]) Every inductive ∗-semiring is an ordered iter-
ation semiring.

Thus if S is an inductive ∗-semiring, then, equipped with the star operation
of Definition 3, each matrix semiring Sn×n is an iteration semiring. Moreover,
for any locally finite partial monoid M , S〈〈M〉〉 is a also an iteration semiring.
Actually we have:

Theorem 23. (Ésik, Kuich [22]) If S is a (symmetric) inductive ∗-semiring,
then each matrix semiring over S is a (symmetric) inductive ∗-semiring. More-
over, for any locally finite partial monoid M , S〈〈M〉〉 is a (symmetric) inductive
∗-semiring.

(The second part of this theorem is proved in [22] only for free monoids.)

8 Completeness, again

Although the sum order and the pointwise order coincide on N∞〈〈A∗〉〉 (and in
fact on any semiring S〈〈A∗〉〉, where S is sum ordered), these two orders are in
general different on the semiring Nrat

∞ 〈〈A∗〉〉. In this section, we will consider the
sum order on the semiring Nrat

∞ 〈〈A∗〉〉. On the other hand, the sum order and the
pointwise order coincide on the semirings krat〈〈A∗〉〉. The following fact can be
derived from Theorem 16.

Theorem 24. The semiring Nrat
∞ 〈〈A∗〉〉, equipped with the sum order, is freely

generated by the set A in the class of all ordered iteration semirings satisfying
the equations (6),(7) and (8). Moreover, for each k ≥ 2 and any set A, k〈〈A∗〉〉,
equipped with the sum order is freely generated by A in the class of all ordered
iteration semirings satisfying 1∗ = k − 1.

Theorem 25. (Bloom, Ésik [8]) For each set A, Nrat
∞ 〈〈A∗〉〉, equipped with the

sum order, is freely generated by A both in the class of all inductive ∗-semirings
satisfying (6) and in the class of all symmetric inductive ∗-semirings. Similarly,
for each set A and integer k > 1, k〈〈A∗〉〉 equipped with the sum order is freely
generated by A in the class of all inductive (symmetric inductive) ∗-semirings
satisfying k − 1 = k.

The case when k = 2 is due to Krob [34] and Kozen [30,31].

Iteration Semirings 19

References

1. Arhangelsky, K.B., Gorshkov, P.V.: Implicational axioms for the algebra of regular
languages (in Russian). Doklady Akad. Nauk, USSR, ser A. 10, 67–69 (1987)

2. Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of Z-automata. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005)

3. Béal, M.-P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted
automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A.
(eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006)

4. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Hei-
delberg (1988), October 19, 2007, http://www-igm.univ-mlv.fr/berstel/

5. Bloom, S.L., Ésik, Z.: Equational axioms for regular sets. Mathematical Structures
in Computer Science 3, 1–24 (1993)

6. Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Pro-
cesses. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg
(1993)

7. Bloom, S.L., Ésik, Z.: Two axiomatizations of a star semiring quasi-variety. EATCS
Bulletin 59, 150–152 (1996)

8. Bloom, S.L., Ésik, Z.: Axiomatizing rational power series (to appear)

9. Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration theories, Funda-
menta Informaticae (to appear)

10. Boffa, M.: A remark on complete systems of rational identities (French). RAIRO
Inform. Theor. Appl. 24, 419–423 (1990)

11. Boffa, M.: A condition implying all rational identities (French). RAIRO Inform.
Theor. Appl. 29, 515–518 (1995)

12. Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages. J. Au-
tomata, Languages and Combinatorics 7, 167–181 (2001)

13. Conway, J.C.: Regular Algebra and Finite Machines. Chapman and Hall, Boca
Raton (1971)

14. Corradini, F., De Nicola, R., Labella, A.: An equational axiomatization of bisimu-
lation over regular expressions. J. Logic Comput. 12, 301–320 (2002)

15. Droste, M., Quaas, K.: A Kleene-Schützenberger theorem for weighted timed au-
tomata. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 127–141.
Springer, Heidelberg (2008)

16. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, Lon-
don (1974)

17. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Logic Col-
loquium 1973, Studies in Logic, vol. 80, pp. 175–230. North Holland, Amsterdam
(1975)

18. Elgot, C., Bloom, S.L., Tindell, R.: On the algebraic structure of rooted trees. J.
Comput. System Sci. 16, 362–399 (1978)

19. Ésik, Z.: Group axioms for iteration. Information and Computation 148, 131–180
(1999)

20. Ésik, Z., Kuich, W.: A generalization of Kozen’s axiomatization of the equational
theory of the regular sets. In: Words, Semigroups, and Transductions, pp. 99–114.
World Scientific, Singapore (2001)

21. Ésik, Z., Kuich, W.: Rationally additive semirings. J. UCS 8, 173–183 (2002)

22. Ésik, Z., Kuich, W.: Inductive ∗-semirings. Theoret. Comput. Sci. 324, 3–33 (2004)

http://www-igm.univ-mlv.fr/berstel/

20 Z. Ésik

23. Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics and
continuous algebras. J. ACM (24), 68–95 (1977)

24. Golan, J.S.: Semirings and their Applications. Kluwer Academic Publishers, Dor-
drecht (1999)

25. Grätzer, G.: Universal Algebra. Springer, Heidelberg (1979)
26. Guessarian, I.: Algebraic Semantics. LNCS, vol. 99. Springer, Heidelberg (1981)
27. Hebisch, U.: A Kleene theorem in countably complete semirings. Bayreuth. Math.

Schr. 31, 55–66 (1990)
28. Ito, T., Ando, S.: A complete axiom system of super-regular expressions. In: In-

formation processing 74 (Proc. IFIP Congress, Stockholm, 1974), pp. 661–665.
North-Holland, Amsterdam (1974)

29. Karner, G.: On limits in complete semirings. Semigroup Forum 45, 148–165 (1992)
30. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regu-

lar events, Technical report, Cornell University, Department of Computer Science
(1990)

31. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inform. and Comput. 110, 366–390 (1994)

32. Krob, D.: Complete semirings and monoids (French). Semigroup Forum 3, 323–329
(1987)

33. Krob, D.: Continuous semirings and monoids (French). Semigroup Forum 37, 59–78
(1988)

34. Krob, D.: Complete systems of B-rational identities. Theoretical Computer Sci-
ence 89, 207–343 (1991)

35. Krob, D.: Matrix versions of aperiodic K-rational identities. Theoretical Informat-
ics and Applications 25, 423–444 (1991)

36. Milner, R.: A complete inference system for a class of regular behaviours. J. Com-
put. System Sci. 28, 439–466 (1984)

37. Milner, R.: A complete axiomatisation for observational congruence of finite-state
behaviours. Inform. and Comput. 81, 227–247 (1989)

38. Morisaki, M., Sakai, K.: A complete axiom system for rational sets with multiplic-
ity. Theoretical Computer Science 11, 79–92 (1980)

39. Rabinovitch, A.: A complete axiomatisation for trace congruence of finite state
behaviors. In: Mathematical Foundations of Programming Semantics 1993. LNCS,
vol. 802, pp. 530–543. Springer, Heidelberg (1994)

40. Redko, V.N.: On the determining totality of relations of an algebra of regular events
(in Russian). Ukrainian Math. Ž. 16, 120–126 (1964)

41. Redko, V.N.: On algebra of commutative events (in Russian). Ukrainian Math.
Ž. 16, 185–195 (1964)

42. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the Association for Computing Machinery 13, 158–169 (1966)

Various Aspects of Finite Quantum Automata

(Extended Abstract)

Mika Hirvensalo1,2,3

1 Department of Mathematics, University of Turku, FI-20014, Turku, Finland
2 TUCS – Turku Centre for Computer Science
3 Supported by Turku University Foundation

mikhirve@utu.fi

1 Introduction

Determining the birth date of computer science is a very complicated task and
certainly reliant to the standpoint chosen. Some may point out the work of Kurt
Gödel [18], Alan Turing [31], and Alonso Church [11], thus locating the appear-
ance of computer science to 1930’s. Some want to mention Charles Babbage’s
engines, some Gottfried Leibniz’ Calculus Ratiocinator, and some refer back to
the Euclidean algorithm.

If the first occurrence of computer science is hard to locate in a satisfactory
way, the quest for the most significant open problem in computer science is
presumably much more complicated task. Fortunately there is always the easy
way: to listen to the money talking. Clay Mathematics Institute has offered an
award of million dollars to whom can resolve the deep P vs. NP question [12].
Even without the prize, this problem is generally accepted very important in
theoretical computer science, and some are willing to date the birth of computer
science as late as 1970’s, to the days when Stephen Cook introduced ingredients
to formally state the problem which we now know as P vs. NP problem [13].

The question P �= NP? is a very natural one, but the seek for the solution
is a hopelessly shaggy pathway. The problem has resisted all solution attempts,
and there is even theoretical reasoning given by Alexander Razborov and Steven
Rudich, explaining why most known resolution attempts are doomed to remain
powerless [28].

Problems analogous to P vs. NP also occur in novel computing models. The
idea of quantum computing was first introduced by Richard Feynman [16] (1982),
and the formal model was further developed by David Deutsch [14]. More so-
phisticated constructions were subsequently developed by Ethan Bernstein and
Umesh Vazirani [7], and problems analogous to P vs. NP have also emerged:
what is the relation between polynomial-time quantum computing and polyno-
mial time deterministic and nondeterministic computing? More precisely, one
may ask whether P �= BQP or whether NP ⊆ BQP (BQP being the com-
plexity class of problems solvable with a quantum computer in polynomial time,
allowing a bounded error probability). Solutions to such questions are unknown
so far, and those problems seem to be as tricky as the old classic P �= NP?

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 21–33, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

22 M. Hirvensalo

As our present knowledge is too frail to allow answers to above questions,
we can always restrict the model of computation. Turing machine (TM) as a
computational device is the most powerful of those that allow finite description,
and restricting to a weaker model may allow us to provide solutions to analogous
questions. This is one of the motivations to study finite quantum automata.

Finite automata (FA) are very simple computational devices. Shortly we will
remind the reader of the formal definitions of FA and their variants, but a brief
comparison of TM’s and FA’s shows that both models are uniform, meaning
that the same device can handle inputs of all lengths, but that the computation
of Turing machine is non-oblivious in the sense that the trajectory of the read-
write head depends on the input word and can be different on input words of the
same length. Finite automata, on their part, always handle the input words in an
oblivious manner: one input letter at time. When studying the various types of
automata, one can eventually realize that in the presence of non-obliviousness,
complexity estimates are essentially harder than for oblivious computation.

2 Variants of Finite Automata

In this section, we represent the definitions needed in later in this article, but
for broader presentation and details on finite automata we refer to [15] and
[32]. A finite automaton is a quadruple F = (Q,Σ, I, δ, F), where Q is a finite
set of states, Σ is the alphabet, I ⊆ Q is the set of initial states, δ ⊆ Q ×
Σ × Q is the transition relation, and F is the set of final (accepting) states.
If |I| = 1 and |{(p, σ, q) ∈ δ | q ∈ Q}| ≤ 1 for each choice of p and σ. we say
that F is deterministic. If |{(p, σ, q) ∈ δ | q ∈ Q}| = 1 for each choice of p and
σ, we then say that the deterministic automaton is complete. It is well-known
that for any deterministic automaton one can create an equivalent complete
deterministic automaton with only one more state [15]; equivalent in the sense
that the automata accept exactly the same language.

2.1 Probabilistic Automata

For a treatment on probabilistic automata, we refer to [26], but the basic defini-
tion is as follows: A probabilistic automaton is a quadruple P = (Q,Σ, I, δ, F),
where Q, Σ, and F are as for deterministic automata, I : Q→ [0, 1] is the initial
distribution, and δ : Q × Σ × Q → [0, 1] is the transition probability function
which satisfies ∑

q∈Q

δ(p, σ, q) = 1 (1)

for any pair p, σ ∈ Q × Σ. The value δ(p, σ, q) stands for the probability that
being in state p and reading letter σ, the automaton enters state q. Thus (1) is
a very natural constraint.

Another, equivalent description of probabilistic automata is obtained by enu-
merating Q = {q1, . . . , qn} and defining an n× n matrix Ma for each a ∈ Σ by
(Ma)ij = δ(qj , a, qi). The columns of these matrices are probability distributions

Various Aspects of Finite Quantum Automata 23

by condition (1) which we express in other words by saying that the matrices
are stochastic or Markov matrices. We also define the initial vector x ∈ Rn by
xi = I(qi) and the final vector y by yi = 1, if qi ∈ F and yi = 0 otherwise. This
other description of the automaton is thus a triplet P = (y, {Ma | a ∈ Σ},x),
and this description allows an easy definition of the function computed by au-
tomaton: For any probabilistic automatonP we define a function fP : Σ∗ → [0, 1]
by

fP(w) = yMwRxT ,

where Mw = Ma1 . . .Mal
for any word w = a1 . . . al, and wR = al . . . a1 stands

for the mirror image of word w (M1 = I for the empty word 1).
The primary function of a probabilistic automaton is hence to compute a

function σ∗ → [0, 1], which is to say that a probabilistic automaton defines a fuzzy
subset of Σ∗. Ordinary subsets of Σ∗ (languages) recognized by these automata
can then be defined in various ways; most traditional way is to introduce a cut
point λ ∈ [0, 1] and to define

L≥λ = {w ∈ Σ∗ | fP(w) ≥ λ}

as a cut point language determined by λ. A variant is obtained by defining

L>λ = {w ∈ Σ∗ | fP(w) > λ},

which we call a strict cut point language determined by λ.
An interesting class of cut point languages are those with isolated cut point:

We say that the cut point is isolated if there is an ε > 0 so that fP(w) /∈
[λ− ε, λ + ε] for all w ∈ Σ∗. From the practical point of view, the isolation of a
cut point λ is necessary to discover whether fP (w) ≥ λ or not (without knowing
about isolation, it is not possible to know how many experiments (computations)
are needed to determine that fP(w) ≥ λ). On the other hand, the problem of
deciding, given a probabilistic automaton, whether the cut-point is isolated, is
undecidable [8].

In general, cut point languages can also be non-regular, but a cornerstone
result on probabilistic automata says that cut-point languages with an isolated
cut point are always regular [26], meaning that for any cut point language with
isolated cut point there is a deterministic automaton recognizing the same lan-
guage as well. On the other hand, probabilistic automata with isolated cut point
and deterministic automata may be exponentially separated [17]. By this we
mean that there is an infinite sequence of languages L1, L2, L3, . . . so that Li

is an isolated cut-point language to a probabilistic automaton with O(i) states,
whereas any deterministic automaton recognizing Li has Ω(ci) states for a con-
stant c > 1.

2.2 Quantum Automata

From the above description of probabilistic automata it is easy to see that com-
plete deterministic automata are special cases of them. When going over to

24 M. Hirvensalo

quantum automata, this is not so straightforward. Later on, we will introduce
notions on quantum mechanics, but at this moment we present the traditional
quantum automata.

Definition 1. A quantum automaton with n states is a triplet Q = (P, {Ma |
a ∈ Σ},x), where x ∈ Cn is the initial superposition, each Ma is a unitary
matrix, and P is the final measurement projection.

In the above definition and hereafter, a fixed orthonormal basis of Cn is identified
with the state set of the quantum automaton. Hence it is also possible to define
the final measurement projection by a set of final states.

As in the case of probabilistic automata, the primary task quantum automata
is also to compute a function Σ∗ → [0, 1]. However, there are several ways how
to define this function. One, introduced by Crutchfield and Moore [24] is the
most obvious variant of those functions associated to probabilistic automata:

fQ(w) = ||PQwRx||2 , (2)

where ||x|| =
√

|x1|2 + . . . + |xn|2 stands for the L2-norm in Cn. Quantum au-
tomata equipped with function of type (2) is referred to as measure-once quantum
automata or MO-QFA.

Another way to define the function was introduced by Kondacs and Watrous
[22], a definition which we will discuss later, but notions such as cut point lan-
guages can be straightforwardly defined to quantum automata, no matter how
the function Σ∗ → [0, 1] is actually defined.

3 Quantum Mechanics: Formalism

3.1 Pure States

For a more detailed exposition on the mathematical formalism of quantum me-
chanics, [19] is referred to; in this section, we merely give the guidelines.

The formalism of quantum automata has traditionally been written by using
pure state quantum mechanics, which is explained as follows: An n-level system
is a physical system capable of being in n perfectly distinguishable states, which
can be denoted by |1〉, |2〉, . . ., |n〉. In the mathematical formalism, the distin-
guishable states |1〉, |2〉, . . ., |n〉 form an orthonormal basis of an n-dimensional
vector space Hn � Cn over complex numbers (Hilbert space). The basis states
| 1〉, | 2〉, . . ., |n〉 are not the only states the system can be in: Any unit-length
vector

α1 |1〉+ α2 |2〉+ . . . + αn |n〉 (3)

in Hn represents a state of the system, although there may be several vectors of
type (3) representing the same state. As (3) has unit length, |α1|2 + |α2|2 + . . .+
|αn|2 = 1, and the coefficients α1, . . ., αn have the following interpretation: When
observing state (3) with respect to basis {| 1〉, . . . , | n〉}, one has a probability
|αi|2 of seeing the system in state | i〉.

Various Aspects of Finite Quantum Automata 25

Quantum mechanics is fundamentally probabilistic theory, meaning that (3)
carries the maximal information about the system state. In particular, this means
that (3) cannot be explained by an underlying deterministic theory with igno-
rance interpretation telling that the use of probabilities |α1|2, . . ., |αn|2 emerges
from our incomplete knowledge about the system state.

The time evolution of a quantum system can be mathematically described
by setting several conditions (see [19]) involving that unit-length vectors are
mapped back to unit-length vectors and the requirement of the continuous nature
of the evolution. From quite a natural set of requirements, one can derive the
Schrödinger equation of motion, or equivalently, that the evolution of a quantum
system must be unitary (mapping is unitary if U∗U = UU∗ = I, where U∗

stands for the adjoint mapping of U . In matrix formalism, the adjoint mapping
is obtained by taking the complex conjugate of the transpose). In the discrete-
time systems this is expressed by relating systems states x and y via y = Ux,
where U : Hn → Hn is a unitary mapping depending on the physical system.

The observation of a quantum system is mathematically described by giving a
decomposition Hn = E1⊕ . . .⊕Ek into orthogonal subspaces. The state x ∈ Hn

can always be written as

x = α1x1 + . . . + αkxk, (4)

where xi ∈ Ei has unit norm. Now each Ei corresponds to a property that the
systems can have (equivalently, a value of an observable) and |αi|2 is interpreted
as the probability that the system is seen to have property Ei. This interpreta-
tion of (3) is referred as to the minimal interpretation of quantum mechanics.
if Ei was observed, the post-observation state of the system is xi. It should be
mentioned that this projection postulate is of ad hoc -nature and not consis-
tent with the unitary time evolution. The quest for a consistent description of
the measurement process faces severe problems, collectively referred as to the
measurement paradox of quantum physics.

3.2 Mixed States

Mathematical descriptions of quantum computing devices such as Turing ma-
chines, quantum circuits, and quantum finite automata are based, with only
some exceptions, on a quantum system with pure states. The pure state formal-
ism has an advantage of being mathematically simpler than the general one, but
it is evidently insufficient in many cases. For instance, in general it is impossible
to assign a pure state to a subsystem even if the whole system is in a pure state.
For a more detailed treatment of the topics in this section, see [19], for instance.

In a general formalism, the states of quantum system are elements of L(Hn)
(linear mappings Hn → Hn) instead of those in Hn. As there was a restriction
to pure states (unit norm), also the elements that depict the states of quantum
systems are those of L(Hn) that are 1) self-adjoint, 2) of unit trace 3) posi-
tive (positive semidefinite in mathematical terminology). Elements of Hn are
frequently identified with matrices that represent them in some fixed basis, and

26 M. Hirvensalo

in the matrix language the conditions 1 – 3 read as: 1) The transpose of the
complex conjugate of the matrix is the same as the original matrix, 2) the sum
of the diagonal elements equals to 1, and 3) the eigenvalues of the matrix are
nonnegative (from condition 1 it follows that the eigenvalues are real).

As the matrices are obviously more complicated objects than the vectors,
the opportunity of having some general structure is welcome. One of the basic
pillars of quantum mechanics is given by the spectral theorem: For any T ∈ L(Hn)
satisfying 1 – 3 there is an orthonormal basis x1, . . ., xn of Hn so that

T = λ1|x1〉〈x1|+ . . . + λn|xn〉〈xn|. (5)

In the spectral representation (5), λ1, . . ., λn are indeed the eigenvalues of A, and
xi is an eigenvector belonging to λi. Notation |x〉〈x| is due to P. Dirac and stands
for the projection onto one-dimensional subspace spanned by x. In a matrix
form, |x〉〈y| can be more generally interpreted as a tensor product (Kronecker
product) of a row vector x and a column vector y. In the matrix language (5)
simply says that any matrix satisfying conditions 1 – 3 has a diagonal form in
some orthonormal basis.

A state is said to be pure if it is a projection onto one-dimensional subspace,
meaning that its spectral representation is of form T = |x〉〈x| for some unit-
length x ∈ Hn. This gives also rise to the pure state formalism described in the
earlier section: Instead of projection to one-dimensional subspace, we choose a
unit-length vector (the choice is not unique) to present that subspace. States
that are not pure, are mixed. As any state T satisfies conditions 1 – 3 described
earlier, it follows that λi ≥ 0 and λ1 + . . . + λn = 1, meaning that any state T
can be represented as a convex combination of pure states. Unfortunately, the
spectral representation (5) is unique (if and) only if the eigenvalues of T are
distinct, so it is not generally possible to assign an ignorance interpretation to a
quantum state T . This means that in the degenerate case (multiple eigenvalues),
one cannot interpret (5) as a probability distribution of pure states |x1〉〈x1|, . . .,
|xn〉〈xn|.

The minimal interpretation turns into the following form: For a state T and
decomposition Hn = E1⊕ . . .⊕Ek, Tr(TEi) is the probability that the system is
observed to have property Ei (Tr(A) means the trace of mapping A). The min-
imal interpretation gives also the operational means to define subsystem states.
Two subsystem states T1 ∈ L(Hn) and T2 ∈ L(Hm) can always be joined into
a compound decomposable state T1 ⊗ T2, but in a compound system state space
Hn ⊗Hm there may be also states that cannot be represented as tensor prod-
ucts of subsystem states. For a general state T ∈ L(Hn ⊗ Hm), the subsystem
state T1 ∈ L(Hn) is defined by requiring that Tr(T1P) = Tr(T (P ⊗ I)) for each
projection P ∈ L(Hn) (I ∈ L(Hm) stands for the identity mapping). It can be
shown that T1 is uniquely determined, and sometimes notation T1 = TrHm(T)
is used for it [19] (we say that T1 is obtained by tracing over Hm).

From the viewpoint of this story, it is important to give thoughts to the
time evolution in the general formalism, if only in the discrete-time case. The
requirements are as follows: If states T and T ′ of the system at consecutive times

Various Aspects of Finite Quantum Automata 27

are related via T ′ = V (T), then 1) V must be linear and 2) if T⊗S is self-adjoint,
unit-trace, positive mapping, then also V (T) ⊗ S is for any state S ∈ L(Hm).
Conditions 1 – 2 can be expressed by saying that V is a completely positive
trace-preserving, self-adjointness preserving linear mapping L(Hn) 	→ L(Hn).
The reason why we also require V (T) ⊗ S to be a state is evident: we want
that if the original system is included as a subsystem in any compound system,
the time evolution still keeps that as a “legal” state. For such a general time
evolution, the following representations are known:

V (T) =
n2
∑

i=1

ViAV ∗
i , (6)

where mappings Vi ∈ L(Hn) satisfy
∑n2

i=1 V
∗
i Vi = I (Kraus representation), and

V (T) = TrHm(U(T ⊗ S)U∗), (7)

where S ∈ L(Hm) is a fixed state (Stinespring representation). From both
representations one can see that the unitary evolution described earlier is a
special case of completely positive mappings: indeed, it is easy to see that
|Ux〉〈Ux| = U |x〉〈x|U∗. We say that the time evolution of form T 	→ UTU∗

is that of a closed system (opposite: open).
It is noteworthy that the latter representation (7) shows that an arbitrary

(open) time evolution (completely positive mapping) is obtained via embedding
the quantum system in a larger system, which then evolves as a closed system.

4 Quantum Automata (Continued)

4.1 Measure-Once Automata

Quantum automata by Moore and Crutchfield were introduced already in section
2.2. This model is the most natural one for quantum computing, but the model
is indeed a variant, not a generalization of deterministic finite automata. In [1]
if was noted that the cut point languages accepted by QFA with isolated cut
point are all regular.

The closure properties of languages (here fQ : Σ∗ → [0, 1] is regarded as a
fuzzy language) defined by MO-QFA are elegant: These languages are closed
under convex combination, product, complement (f 	→ 1 − f), and inverse ho-
momorphism. Moreover, they satisfy a version of the pumping lemma [24].

However, MO-QFA cannot recognize all regular languages for most natural
acceptance modes. Moore and Crutchfield [24] noticed that if the characteristic
function of a regular language L equals to fQ for some quantum automaton Q,
then the language L is a group language, meaning that its syntactic monoid is a
group. This result can be extended to all languages recognized by MO-automata
with an isolated cut point [10].

So the language recognition power of MO-QFA (with isolated cut point) is
quite weak. But as a compensation, when they do recognize a language, they can

28 M. Hirvensalo

be exponentially more succinct than the corresponding deterministic or proba-
bilistic automata [4]. This means that one can construct an infinite sequence
of languages Ln so that MO-QFA with O(n) states can recognize Ln, but any
probabilistic automaton recognizing Ln has 2Ω(n) states.

It is also interesting to notice that if the cut point is not isolated, then there is
an opportunity of recognizing also non-regular languages. It is an easy exercise
to find a two-state quantum automaton Q such that fQ(w) = 0, if |w|a = |w|b
and fQ(w) > 0 otherwise.

4.2 Measure-Many Quantum Automata

MM-QFA defined by Kondacs and Watrous [22] have the same ingredients as
MO-QFA, except that the state set is divided into accepting, rejecting, and neu-
tral states. The computation of an MM-QFA differs from that of MO-QFA es-
sentially: after reading an input symbol, the unitary mapping is applied as in
the MO-model, but also the state of the automaton is observed. If the automa-
ton is seen in an accepting (resp. rejecting) state, the input word is accepted
(resp. rejected) immediately, otherwise the computation proceeds to the next
input symbol; from the state where the automaton was left after the observation
procedure.

It is also assumed that the input word is surrounded with special endmarkers
not occurring in the input alphabet, and this computational procedure evidently
determines an acceptance probability fQ(w) for each input word w. For a given
MO-QFA it is not difficult to construct an MM-QFA recognizing essentially the
same language. Hence MM-QFA can be seen as generalizations of MO-QFA.

As we did for MO-QFA, we assume here that the language recognition is with
an isolated cut point. The first observation is that also the class of languages
recognized by MM-QFA is a proper subclass of regular languages: all languages
recognized by MM-QFA are regular, but even the very simple language {a, b}∗a
cannot be recognized by an MM-QFA (with isolated cut point).

Unlike in the case of MO-QFA, the class of languages recognized by MM-QFA
has not very elegant properties. MO-QFA recognize exactly the group languages,
but no similar algebraic characterization is known for languages recognized by
MM-QFA. These languages are trivially closed under complement and inverse
morphisms, but they are not closed under union or intersection [5].

Another peculiar feature of MM-QFA is that the magnitude of the cut point
isolation is very fragile. On of the first results in this direction was given in [4],
where it was shown, that if an MM-automaton gives the correct answer with
a probability greater than 7

9 , then the language is a group language, but this
result is not true for probabilities smaller than 0.68 Later on, this result was
improved by discovering the smallest probability 0.7726 . . . for which the result
holds [6].

In [3] the authors construct a sequence of languages Ln recognizable by MM-
automata, but no MM-QFA can recognize Ln with a correctness probability
greater than 1

2 + 3√
n−1

, thus showing that the cut point isolation, even the best
possible one, can decrease arbitrarily small.

Various Aspects of Finite Quantum Automata 29

It is a well-known fact that two-way deterministic automata cannot recognize
more than the one-way automata do (two-way automata may be exponentially
more succinct, though) [15]. Therefore it may come as a surprise that the two-
way variant of MM-QFA recognize more than the one-way model. Kondacs and
Watrous [22] showed that two-way MM-QFA can recognize all regular languages
(with isolated cut point), and that language {anbn | n ≥ 1} can be recognized
by a two-way MM-QFA.

4.3 Latvian Quantum Automata

The notion of Latvian QFA [2] generalizes that one of MM-QFA. Instead of
observing the state of quantum automaton, an arbitrary observable on the state
space is allowed. Formally, M = (Q,Σ, {Ua}, {Ma}, q0, F), where each Ua is a
unitary matrix, and Ma a measurement defined as Ma: Hn = Ea

1 ⊕ . . . ⊕ Ea
k

(orthogonal subspaces). q0 is the initial state and F is the set of final states.
It is also required that for the right endmarker $, P$ is a measurement with
respect to decomposition Hn = 〈F 〉 ⊕ 〈F 〉⊥, where 〈F 〉 stands for the subspace
generated by the final states.

This generalization has much more elegant properties than the MM-QFA do:
In [2] it is shown that the languages recognized by Latvian QFA are closed under
Boolean operations and inverse homomorphisms, but yet they cannot recognize
all regular languages. Also an algebraic characterization is known: The Latvian
automata recognize exactly those languages whose syntactic semigroup is of form
J ∗ G (wreath product), where J is a J -trivial monoid and G a group (see [2]
for definitions).

5 Some Decidability Properties

The topic in this section is somewhat remote from the rest of the tale, but here
we have a very delicate issue certainly worth mentioning. We will consider both
probabilistic automata and MO-QFA, but in this section, the cut point is not
isolated. The basic problem under study is as follows: given an automaton A and
cut point λ, is it possible to determine whether the cut point language L≥λ(A)
(or the strict cut-point language L>λ(A)) is empty or not?

For probabilistic automata, problems L≥λ(A) = ∅? and L>λ(A) = ∅? turn
out to be both undecidable [8], [21]. The method of proving this begins with em-
bedding the Post Correspondence Problem [27] into integer matrices (a method
introduced by Paterson [25]), and continues by a procedure introduced by P.
Turakainen [30] to convert any set of matrices into doubly stochastic ones, still
preserving some essential properties of the original matrix set. It is possible to
show that the emptiness problem for cut point and strict cut point languages is
in fact undecidable for 25-state probabilistic automata over a binary alphabet.

By using a different method, one can show that for MO-automata with 21
states over binary alphabet, the emptiness problem (L≥λ(A) = ∅?) of cut point
languages is undecidable as well [21]. As a big surprise, it turns out that the
emptiness problem for strict cut point languages (L>λ(A) = ∅?) is decidable

30 M. Hirvensalo

[9]. The decision procedure is eventually based on two pillars: One being the
fact that the closure of the semigroup generated by unitary matrices is a group,
and as such, an algebraic set. The second pillar is the famous Tarski decision
procedure for the theory of real numbers (see [9] for details).

6 Quantum Automata with Open Time Evolution

In this final section we will (re)introduce another model of quantum automata.
As seen before, measure-once, measure-many, and the Latvian quantum au-
tomata are variants but not generalizations of deterministic finite automata in
the sense that all of these automata cannot recognize all regular languages (even
though they can win the traditional automata when thinking about the number
of states).

The model was already introduced in [20], but we will reintroduce it here,
hopefully with improved arguments talking for the reasonableness of the defini-
tion.

Definition 2. A quantum automaton with open time evolution is a quintuple
Q = (Q,Σ, δ, q0, F), where Q is the state set, Σ is the alphabet, q0 is the initial
state, and F ⊆ Q the set of final states. Function δ is a transition function from
Σ to set of completely positive, trace-preserving mappings on the state space.

As the other quantum automata, open evolution automata compute a function
fQ : Σ∗ → [0, 1]. To describe this function, we let n = |Q| and B = {q | q ∈ Q},
and orthonormal basis of Hn. If there is no danger of confusion, we identify state
q ∈ Q and projection |q〉〈q| (a pure state). The transition function δ is extended
to Σ∗ by defining δ(1) = I (the identity mapping) and δ(aw) = δ(w)δ(a) for any
w ∈ Σ∗ and a ∈ Σ.

The final states of the automaton determines the final projection by P =∑
q∈Q |q〉〈q|, and then the function computed by the automaton is defined as

fQ(w) = Tr(Pδ(w)|q0〉〈q0|).

It is worth noticing that it is also possible to modify the definition by replac-
ing |q0〉〈q0| by an arbitrary initial state Q0 ∈ L(Hn), and the final projection
determined by the final states by an arbitrary projection in L(Hn).

The reasons to introduce this definition are quite natural: The first reason
is that completely positive mappings provide a very general description of the
dynamics of open quantum systems, exactly in the same way as unitary map-
pings give that for closed systems. The second one is that Definition 2 is indeed
a generalization of DFA, and also a generalization of MO, MM, and Latvian
quantum automata. In fact, to see that Definition 2 generalizes probabilistic au-
tomata (and hence also DFA), it is enough to define, for each Markov matrix
M , a mapping Vij =

√
Mij |qi〉〈qj | ∈ L(Hn), and a trace-preserving completely

positive mapping by

VM (A) =
n∑

i,j=1

VijAV ∗
ij .

Various Aspects of Finite Quantum Automata 31

As the action of VM on a pure state |qj〉〈qj | can be easily recovered:

VM (|qj〉〈qj |) =
n∑

i=1

Mij |qi〉〈qi|,

it is easy to see that the function computed by a probabilistic automaton with
Markov matrices {Ma | a ∈ Σ} and an open-evolution quantum automaton with
completely positive, trace-preserving mappings VM coincide.

To see that the Definition 2 extends also that of all other quantum automata
discussed here, it is enough to consider Latvian QFA. To perform unitary evo-
lutions is an easy task: For any unitary Ua ∈ L(Hn), mapping Ua : A 	→ UaAU∗

a

is trace-preserving and completely positive, and it faithfully reproduces the ef-
fect of unitary mapping x 	→ Uax. Then, for any measurement decomposition
Ea : Hn = E1 ⊕ . . .⊕ Ek, we define

Ma(A) = P1AP ∗
1 + . . . + PkAP ∗

k ,

where Pi is a projection onto the subspace Ei. Then it is not difficult to see that
also Ma is a trace-preserving completely positive mapping. If we further define

Va = MaUa,

it is easy to see a quantum automaton with open time evolution defined by
mappings Va determines the same function Σ∗ → [0, 1] as a Latvian automaton
with unitary mappings Ua and measurements Ea (details are left to the reader).

It is possible to claim that Definition 2 is not genuine in the sense that open
time evolution for quantum systems requires an auxiliary system (see equation
(7)) to be interpreted as a closed system. And this is true also for each compu-
tational step, there should be a “fresh” auxiliary system to perform each com-
putational step as a closed system. Hence the Hilbert space consumed by open
time quantum automata is much larger than that of the definition. In fact, the
actual space dimension depends on the input word, as for each computational
step there is need for an auxiliary system in a known state.

The obvious reply to the criticism above is that why should anyone require
the evolution of quantum automata to be closed for finite automata? The time
evolution of classical computations models (Turing machines, finite automata)
is definitely not closed – on the contrary, information loss is perfectly accept-
able for them, why shouldn’t that be acceptable for quantum models, too? In
fact, the information loss is present in all real-world computers: the processors
are irreversible, and consequently, in a course of the computational processes,
they generate heat and are cooled by external equipment designed for that pur-
pose. Therefore, it should be perfectly acceptable also for quantum models to be
consider as open system with non-unitary time evolution.

32 M. Hirvensalo

References

1. Ablayev, F., Gainutdinova, A.: On the Lower Bounds for One-Way Quantum Au-
tomata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 132–
140. Springer, Heidelberg (2000)

2. Ambainis, A., Beaudry, M., Golovkins, M., Ķikusts, A., Mercer, M., Thérien, D.:
Algebraic Results on Quantum Automata. Theory of Computing Systems 39, 165–
188 (2006)

3. Ambainis, A., Bonner Rūsiņš, R.F., Ķikusts, A.: Probabilities to Accept Languages
by Quantum Finite Automata. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i.,
Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 174–185. Springer,
Heidelberg (1999)

4. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses
and generalizations. In: Proceedings of the 39th FOCS, pp. 376–383 (1998)

5. Ambainis, A., Ķikusts, A., Valdats, M.: On the class of languages recognizable by
1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

6. Ambainis, A., Ķikusts, A.: Exact results for accepting probabilities of quantum
automata. Theoretical Computer Science 295(1), 3–25 (2003)

7. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal on Com-
puting 26(5), 1411–1473 (1997)

8. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of
fixed dimension. Theory of Computing systems 36, 231–245 (2003)

9. Blondel, V.D., Jeandel, E., Koiran, P., Portier, N.: Decidable and undecidable
problems about quantum automata. SIAM Journal on Computing 34(6), 1464–
1473 (2005)

10. Brodsky, A., Pippenger, N.: Characterizations of 1-Way Quantum Finite Au-
tomata. SIAM Journal on Computing 31(5), 1456–1478 (2002)

11. Church, A.: An unsolvable problem in elementary number theory. American Jour-
nal of Mathematics 58, 345–363 (1936)

12. Clay Mathematics Institute, http://www.claymath.org/
13. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the

Third Annual ACM Symposium on the Theory of Computing, pp. 151–158. ACM,
New York (1971)

14. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quan-
tum computer. Proceedings of the Royal Society of London A 400, 97–117 (1985)

15. Eilenberg, S.: Automata, languages, and machines, vol. A. Academic Press, London
(1974)

16. Feynman, R.P.: Simulating physics with computers. International Journal of The-
oretical Physics 21(6/7), 467–488 (1982)

17. Freivalds, R.: Non-constructive Methods for Finite Probabilistic Automata. In:
Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 169–
180. Springer, Heidelberg (2007)

18. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931)

19. Hirvensalo, M.: Quantum Computing, 2nd edn. Springer, Heidelberg (2004)
20. Hirvensalo, M.: Some Open Problems Related to Quantum Computing. In: Paun,

G., Rozenberg, G., Salomaa, A. (eds.) Current Trends in Theoretical Computer
Science – The Challenge of the New Century, vol. 1. World Scientific, Singapore
(2004)

http://www.claymath.org/

Various Aspects of Finite Quantum Automata 33

21. Hirvensalo, M.: Improved Undecidability Results on the Emptiness Problem of
Probabilistic and Quantum Cut-Point Languages. In: van Leeuwen, J., Italiano,
G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007.
LNCS, vol. 4362, pp. 309–319. Springer, Heidelberg (2007)

22. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,
pp. 66–75 (1997)

23. Matiyasevich, Y., Sénizergues, G.: Decision problems for semi-Thue systems with
a few rules. Theoretical Computer Science 330(1), 145–169 (2005)

24. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theo-
retical Computer Science 237(1-2), 275–306 (2000)

25. Paterson, M.S.: Unsolvability in 3 X 3 matrices. Studies in Applied Mathematics 49,
105–107 (1970)

26. Paz, A.: Introduction to Probabilistic Automata. Academic Press, London (1971)
27. Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of American

Mathematical Society 52, 264–268 (1946)
28. Razborov, A.A., Rudich, S.: Natural Proofs. Journal of Computer and System

Sciences 55, 24–25 (1997)
29. Tarski, A.: A decision method for elementary algebra and geometry. University of

California Press (1951)
30. Turakainen, P.: Generalized automata and stochastic languages. Proceedings of

American Mathematical Society 21, 303–309 (1969)
31. Turing, A.M.: On Computable Numbers, With an Application to the Entschei-

dungsproblem. Proc. London Math. Soc. 2(42), 230–265 (1936)
32. Rozenberg, G., Salomaa, A.: Regular Languages. In: Rozenberg, G., Salomaa,

A. (eds.) Handbook of Formal Languages. Word, Language, Grammar, vol. 1,
Springer, Heidelberg (1997)

On the Hardness of Determining Small NFA’s

and of Proving Lower Bounds on Their Sizes�

Juraj Hromkovič1 and Georg Schnitger2

1 Department of Computer Science, ETH Zurich, ETH Zentrum, CH-8022 Zurich,
Switzerland

2 Department of Computer Science, Johann-Wolfgang-Goethe Universität, Robert
Mayer-Strasse 11-15, D-6054 Frankfurt a. M., Germany

Abstract. In contrast to the minimization of deterministic finite au-
tomata (DFA’s), the task of constructing a minimal nondeterministic
finite automaton (NFA) for a given NFA is PSPACE-complete. This fact
motivates the following computational problems:

(i) Find a minimal NFA for a regular language L, if L is given by another
suitable formal description, resp. come up with a small NFA.

(ii) Estimate the size of minimal NFA’s or find at least a good approxi-
mation of their sizes.

Here, we survey the known results striving to solve the problems formu-
lated above and show that also for restricted versions of minimization of
NFA’s there are no efficient algorithms.

Since one is unable to efficiently estimate the size of a minimal NFA
in an algorithmic way, one can ask at least for developing mathematical
proof methods that help in proving good lower bounds on the size of
a minimal NFA for a given regular language. We show here that even
the best known methods for this purpose fail for some concrete regular
languages.

Finally, we give an overview of the results about the influence of the
degree of ambiguity on the size of NFA’s and discuss the relation between
the descriptional complexity of NFA’s and NFA’s with ε-transitions.

1 Introduction

The minimization of nondeterministic finite automata is a hard computational
problem. The same is true even if one strives only to approximately estimate the
size of a minimal NFA. Hence, searching for small NFA’s cannot be automated in
an efficient way and so one has to consider estimating the size of minimal NFA’s
as a research problem for each particular regular language. Thus the question
arises whether there exists a robust mathematical method that could be used to
prove at least some tight lower bounds on the sizes of minimal NFA’s, if its po-
tential is explored in the right way. The goal of this paper is to give an overview

� The work on this paper was supported by SNF-grant 200023-007327/1, DFG-grant
SCHN 503/4-1 and was done during the stay of the second author at ETH Zurich.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 34–55, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Hardness of Determining Small NFA’s 35

on the hardness of searching for minimal or small NFA’s and on available meth-
ods for proving lower bounds for descriptional complexity measures of minimal
NFA’s. Moreover, we show that the most robust method known for proving lower
bounds on the sizes of minimal NFA’s is not universal in the sense that it fails
for some specific regular languages.

The paper is organized as follows. In Section 2 we give a survey on the com-
putational hardness of determining minimal or small NFA’s and present some
related open problems. Section 3 is devoted to methods for proving lower bounds
on the size of minimal NFA’s for given regular languages. The communication
complexity approach is known as the best one in the sense that it seems to sub-
sume all other methods used. But even this general approach is not powerful
enough in order to reach tight lower bounds for all regular languages. Here we
discuss some generalizations of this approach and prove that even they fail for
some specific languages. The last section surveys results and open problems with
regard to the sizes of minimal NFA’s with restricted ambiguity where ambigu-
ity is one of the fundamental measures of the degree of nondeterminism. We
close this paper by listing the results related to the comparison of sizes of min-
imal NFA’s and minimal ε-free NFA’s. Here size is measured by the number of
transitions and the main goal is to show proof techniques that enable to derive
nontrivial lower bounds on the number of transitions of ε-free NFA’s recognizing
concrete regular languages.

2 The Complexity of Determining Small NFA’s

In contrast to the problem of minimizing DFA’s, which is efficiently possible,
the task of minimizing a given NFA or regular expression is extremely hard in
the worst case, namely PSPACE-complete. Moreover, the minimization problem
for NFA’s or regular expressions remains PSPACE-complete even if the regular
language is specified by a DFA [15].

However in many cases a small NFA and not necessarily a minimal NFA is
required and hence the task of approximating a minimal NFA is of foremost im-
portance. The approximation complexity depends on the input representation
and here we want to consider two scenarios. In the first scenario the language is
specified by either an NFA or a regular expression. Not surprisingly the approx-
imation problem is considerably harder than in the second scenario where the
language is specified by a DFA. In both scenarios our goal is to determine NFA’s
with either few states or few transitions, resp. to determine regular expressions
of small length, where the length of a regular expression R is the number of
symbols from the alphabet Σ appearing in R.

2.1 Small NFA’s from NFA’s

The approximation complexity for determining NFA’s or regular expressions in
the first scenario can be characterized rather precisely.

36 J. Hromkovič and G. Schnitger

Theorem 1. [5] Unless P = PSPACE, it is impossible to efficiently approxi-
mate the size of a minimal NFA or regular expression describing L(A) within an
approximation factor of o(n) when given an NFA or regular expression A with
n states, transitions or symbols, respectively.

Thus the news is disastrous: no meaningful approximation can be determined
efficiently even if a given NFA of size m may have extremely small equivalent
NFA.

We sketch the argument which is based on the proof of the PSPACE-complete-
ness of “Regular Expression Non-Universality” [19]: given a regular expression
R, is L(R) �= Σ∗? First observe that there is a PSPACE-complete language L
which is recognizable by a deterministic in-place Turing machine M with (initial
state q0 and) a unique accepting state qf ; moreover M runs for at least 2n steps
on inputs w ∈ L of length n. We show how to reduce the word problem for L(M)
to the minimization problem for regular expressions.

The crucial step is to construct a regular expression Rw for a given input w
of M in time polynomial in the length of w. The expression Rw describes all
words which are not concatenations of consecutive legal configurations starting
from configuration q0w and ending with the unique accepting configuration qf .
If the efficient construction of Rw as well as its length bound |Rw| = O(|w|) is
taken for granted, then the rest of the argument is immediate.

Case 1: M rejects w. Then L(Rw) coincides with Σ∗ and Rw is equivalent with
a regular expression of size |Σ| = O(1).

Case 2: M accepts w. Now L(Rw) coincides with Σ∗\{y}, where y describes the
unique accepting computation on input w ∈ L. But the accepting computation,
and hence y, has length at least 2|w| due to the requirement on M . Certainly
DFA’s for Σ∗ \ {y} have to have size at least 2|w| and equivalent regular expres-
sions or NFA’s have to have size at least |w|. Thus Rw cannot be compressed
significantly in this case. As a consequence, if an equivalent regular expression of
length o(|Rw|) is determined efficiently, then this is equivalent with M rejecting
w and the word problem is solved efficiently.

We have argued that the approximation problem for regular expressions is
hard; the analogous statement for NFA’s is now an immediate consequence. The
approximation problem for unary regular languages remains hard as well, but
now we have to use the stronger P �= NP assumption.

Theorem 2. [7] Unless P = NP, it is impossible to efficiently approximate the
size of a minimal equivalent NFA within an approximation factor of o(n), when
given an NFA with n states over the unary alphabet.

2.2 Small NFA’s from DFA’s

Now we assume that the regular language L is given by a DFA. The rather
redundant formalism of DFA’s increases the input size in comparison to repre-
senting L by regular expressions or NFA’s and hence approximation algorithms
determining small regular expressions or small NFA’s have considerable more

On the Hardness of Determining Small NFA’s 37

allowed running time, if polynomial time is granted. Thus it should not come as
a surprise that negative approximation results require stronger hypotheses than
the P �= PSPACE assumption.

Here we work with the cryptographic assumption that strong pseudo-random
functions exist in nonuniform NC1, i.e., are computable by circuits of logarithmic
depth and polynomial size. The concept of strong pseudo-random functions is
introduced by Razborov and Rudich [24]. Naor and Reingold [20] show that
strong pseudo-random functions can even be computed by threshold circuits in
constant depth and polynomial size, provided factoring Blum integers requires
time 2nε

for some ε > 0. Actually, a slightly weaker notion of strong pseudo-
random functions suffices.

Definition 1. Let fN = (fs
N)s∈S be a function ensemble with functions fs

N :
{0, 1}N → {0, 1} for a seed s ∈ S and let (ri

N)i∈{1,...,22n} be the ensemble of
all N -bit boolean functions. Then fN is a strong pseudo-random ensemble with
parameter ε iff for any deterministic algorithm A

|prob[A(fN) = 1]− prob[A(rN) = 1]| < 1
3
,

provided A runs in time O(2O(Nε)) and has access to fs
N , respectively ri

N , via a
membership oracle. The probability is defined by the uniform sampling of s from
S, resp. of i from {1, . . . , 22N}.

The assumption that strong pseudo-random function fN exist in nonuniform
NC1 implies that the functions fs

N have boolean formulae1 of length polynomial
in N . Still regular expressions are too weak to express formulae of small size.
However, here a trick of Pitt and Warmuth [22] helps: the computing power of
regular expressions increases considerably if inputs are repeated. Since verifying
that inputs are repeated correctly requires too large regular expressions, we may
utilize the tremendous power of nondeterministic description schemes which have
no problem to concisely express the complement, namely that inputs are not
repeated correctly. In particular, for an N -bit boolean function g and p(c) = N c

define

Lp(c)(g) = the complement of {xp(c) : x ∈ {0, 1}N ∧ g(x) = 1}.

The power of regular expressions is shown by the following technical result.

Lemma 1. [5] Assume that b ∈ N. If an N -bit boolean function g has a formula
of length at most N b, then there is a constant c such that Lp(c)(g) has regular
expressions of length polynomial in N .

Omitting some technical details, the inapproximability of minimal regular ex-
pressions or NFA’s can now be shown as follows. First observe that the language
Lp(c)(g) has DFA’s of size at most O(p(c) · 2N): The DFA consists of a complete

1 A formula is a binary tree with ∧ and ∨-gates as interior nodes. Leaves are marked
by labels from {x1, ¬x1, . . . , xN , ¬xN}. The formula length is its number of leaves.

38 J. Hromkovič and G. Schnitger

binary tree of depth N rooted at the initial state. A leaf that corresponds to a
word x ∈ {0, 1}N with g(x) = 0 gets a self loop, a leaf that corresponds to a
word x with g(x) = 1 is starting point of a path of length N · (p(c)− 1) that can
only be followed by inputs with p(c)−1 repetitions of x. Whereas each such path
leads to a rejecting state, any deviation from the path leads to an accepting trap
state. Each state is accepting, except for those already described as rejecting.

The DFA is huge, however observe that O(p(c) · 2N) states suffice for input
size p(c) ·N . A truly random function ri

N requires regular expressions of length
at least Ω(2N) to describe Lp(c)(ri

N), however, applying Lemma 1, Lp(c)(fs
N) can

be described by regular expressions of length polynomial in N , if fN is a strong
pseudo-random ensemble represented by formulae of polynomial length.

We have opened up a huge gap between truly random and strong pseudo-
random functions. As a consequence, according to Definition 1, no efficient ap-
proximation algorithm A can provide a meaningful approximation of the minimal
length of an equivalent regular expressions. Since the argument can be applied
as well to the stronger description mechanism of NFA’s we obtain:

Theorem 3. [5] Suppose that strong pseudo-random functions exist in nonuni-
form NC1 for some parameter ε > 0. Let A be any approximation algorithm that
approximately determines the length of a shortest equivalent regular expression,
the number of transitions (resp. the number of states) of a minimum equivalent
NFA, when given a DFA with n states.

If A runs in time polynomial in n, then A cannot reach the approximation
factor n

logc n (resp.
√

n
logc n when minimizing the number of states), where c is a

sufficiently large constant.

Thus for any efficient approximation algorithm A there are DFA’s of size n with
equivalent regular expressions of poly-logarithmic size, but A will find equivalent
regular expressions only of size n

poly(log n) .
In the case of minimizing NFA’s Gruber and Holzer [6] were able to replace

the cryptographic assumption by the weaker P �= NP assumption. The excluded
approximation factors however decrease correspondingly.

Theorem 4. [6] Suppose that P �= NP. Let A be any approximation algorithm
that approximately determines the number of transitions (resp. the number of
states) of a minimum equivalent NFA, when given a DFA with n states. If A
runs in time polynomial in n, then A cannot reach the approximation factor
n1/5−ε (for all ε > 0). This holds when counting states or transitions.

The inapproximability results can be improved to n1/3−ε, if alphabets of size
O(n) are considered and if states are counted.

The approximation complexity for unary languages decreases considerably.
(Observe that a DFA for a unary language consists of a path followed by a cycle.
Call a DFA cyclic iff its path is empty.)

Theorem 5. Assume that |Σ| = 1 for the alphabet Σ.
(a) [4] If a cyclic DFA with n states is given, then the minimal number of states
of an equivalent NFA can be approximated efficiently within a factor of O(log2 n).

On the Hardness of Determining Small NFA’s 39

(b) [7] If a DFA with n states is given, then the minimal number of states of an
equivalent NFA can be approximated efficiently within a factor of O(

√
n).

Although the above results show the significant progress made in understanding
the approximation complexity of determining small regular expressions or small
NFA’s, some important questions remain open.

(1) What is the approximation complexity of determining small unambiguous
NFA?
(An unambiguous NFA is an NFA with at most one accepting computa-
tion per input. Observe that the equivalence and containment problem is
efficiently solvable for unambiguous NFA [27].)

(2) When minimizing unary NFA’s only the case of a given DFA remains open.
Can the positive results of Theorem 5 be improved?

(3) When minimizing the number of states of an NFA equivalent to a given DFA
with n states, the approximation factor

√
n

logc n can be excluded. Is it possible
to exclude even the approximation factor n

logc n?
The argument in [5] cannot be improved in straightforward manner, since
the language Lp(c)(g), for any N -bit boolean function g, can be accepted by
NFA’s with O(2N/2) states. Thus only a gap between poly(N), for boolean
functions with polynomial formula length, and O(2N/2) in the worst case is
opened up.

3 Communication Complexity and Proving Lower
Bounds on the Size of NFA’s

Since there does not exist any efficient algorithm for estimating the minimal
number of states of nondeterministic finite automata accepting a given regu-
lar language, one should ask at least for a method to investigate the size of
minimal NFA’s “by hand”. In 1986 communication complexity was proposed
for this aim in [14]. Two-party protocols and their communication complexity
were introduced by Yao [28] in order to measure the amount of information ex-
change between different parts of distributed computing systems. The original
two-party protocol is a non-uniform computing model for computing Boolean
functions from {0, 1}2n to {0, 1}. It consists of two computers C1 and C2 [Fig.
1]. At the beginning C1 gets the first half of the input bits and C2 gets the
second one. The computers are required to cooperate in order to compute the
value of the function corresponding to their common input. They are allowed to
communicate by exchanging binary messages and the complexity of their work
is measured by the number of bits exchanged. The communication complexity
of two-party protocols became one of the most powerful instruments for proving
lower bounds on the complexity of various computing models computing con-
crete tasks (see some surveys in [11, 13, 16]) as well as for investigating the
relative power of determinism, nondeterminism and randomness [13, 16, 21].

A special version of protocols, called one-way two-party protocols is related
to proving lower bounds on the number of states of finite automata. One-way

40 J. Hromkovič and G. Schnitger

communication list C2C1

x1, x2, . . . , xn xn+1, xn+2, . . . , x2n

Fig. 1.

protocols are restricted in that sense, that C1 is allowed to send only one binary
message to C2 and after that C2 is required to compute the correct answer.
Formally, the work of C1 can be described by a function f1 : {0, 1}n → {0, 1}∗,
where f1(α) is the binary message sent to C2. The work of C2 can be described
by a function f2 : {0, 1}n × {0, 1}∗ → {0, 1}. The arguments of f2 are its n
input bits and the message received and the output is the value of the Boolean
function computed. The one-way communication complexity of a Boolean
function f , cc1(f), is the communication complexity of the best one-way
protocol computing f .

One-way protocols can be considered for any computation mode (determinis-
tic, nondeterministic or different kinds of randomization). Since each language
can be viewed as an infinite sequence of finite functions, one can easily construct
a sequence of one-way protocols that simulate the work of a given finite automa-
ton as follows. For each input length m we have one separate one-way protocol
Pm = (C1,m, C2,m). C1,m with input α of length �m

2 � sends the binary code of
the state q reached by the finite automaton after reading α from its initial sate.
Then, C2,m with its input β simulates the work of the finite automaton from the
state q on the word β. If and only if the simulation finishes in an accepting state,
C2,m outputs the value 1. One can easily observe that this way of simulating fi-
nite automata by one-way protocols works for any mode of computation. Since
the communication complexity of all protocols simulating an automaton with a
state set Q is at most �log2 |Q|�, one-way communication complexity provides a
lower bound on the number of states of finite automata.

In other words, measuring the complexity of one-way protocols as the num-
ber mc1(n) of different messages used in all computations on all inputs of the
length n, the message complexity mc1(n) is a lower bound on the number of
states of finite automata. There is one essential drawback of this lower bound
technique. The two-party protocol model is non-uniform, while automata are a
uniform computing model. Due to this difference in modelling, the gap between
the message complexity of one-way protocols and the number of states of finite
automata can be arbitrarily large for some languages. For instance, the message
complexity of regular languages over one-letter alphabets is only 1. Another
example is the finite language Ln = {02nxx|x ∈ {0, 1}n}, whose deterministic
message complexity is 2, but the size of the minimal NFA’s is at least 2n.

In order to overcome this drawback we have introduced uniform one-way proto-
cols in [10]. A uniform one-way protocol (C1, C2) consists again of two computers
C1 and C2, but inputs x = x1, x2, . . . , xn ∈ Σ∗ for an alphabet Σ are arbitrarily

On the Hardness of Determining Small NFA’s 41

λ 0 1 00 01 10 11 . . . α . . .

λ aλ a0 a1 a00 a01

0 a0 a00 a01 a000

1 a1 a10 a11 a100

00 a00 a000 a001

01 a01

11
...

β aβα

...
. . .

Fig. 2.

divided into a prefix x1, . . . , xk as the input of C1 and a suffix xk+1, . . . , xn as the
input ofC2. A uniform protocol is required to provide the correct answer for each of
the possible n + 1 partitions (k ∈ {0, 1, . . . , n}) of the word x ∈ Σn. Interestingly,
for each regular languageL, the message complexity of deterministic uniform one-
way protocols accepting L is equal to the size of the minimal deterministic finite
automaton forL. To see this fact one has to represent the task of accepting L as the
infinite communication matrix ML for L (Fig. 2)

The rows as well as the columns of ML are labelled by the words form Σ∗ in
the canonical order starting with λ. ML is a 0/1-matrix. The element αiβk of
ML in the intersection of row Ri and column Ck is 1 iff the word αiβk belongs to
L. Observe, that, for each word x ∈ Σn, there are exactly n+ 1 elements in ML

corresponding to x. Hence, we cannot assign a language to any such 0/1-matrix.
Now, we are ready to argue that deterministic message complexity is equal

to the size of the minimal deterministic FA for any regular language L. The
computer C1 is required to send a message to C2. We claim that the number of
messages needed is the number of different rows of ML. Let Ri = (ri1, ri2, . . .)
and Rj = (rj1, rj2, . . .) be different rows of ML. For sure, there is a column k
labelled by βk in which they differ, i.e., rik �= rjk. If C1 sends the same message
m to C2 for its inputs αi and αj corresponding to the rows Ri and Rj , then C2

either has to accept both αiβk and αjβk or to reject both words αiβk and αjβk

(The arguments of C2 are the message m and the word βk and these arguments
are the same for inputs αiβk and αjβk). Since the rows Ri and Rj differ in
column k, the number of messages used is at least the number of different rows
of ML. Now, one can easily observe that the number of different rows of ML is
nothing else than the number of the equivalence classes of the Nerode relation
for L and we are done (for a detailed argumentation see [10]).

Unfortunately, the situation for the nondeterministic mode of computation
is completely different. The nondeterministic message complexity nmc(L) can
essentially differ from the size ns(L) of the minimal NFA’s for L. Additionally, it
is not so easy to estimate nmc(L) for a given regular language L. From commu-
nication complexity theory [13, 16] we know that nmc(L) is the minimal number
of 1-monochromatic submatrices that cover all 1’s in ML.

42 J. Hromkovič and G. Schnitger

β1 β2 β3 . . . βi . . .

α1 1 1 1 1

α2 1 1 1 1

α3 1 1 1 1
...

αi 1 1 1 1
...

Fig. 3.

One can visualize the argument as follows. The computations of a (nondeter-
ministic) one-way protocol can be represented as m#a for a ∈ {accept, reject},
where m is the message sent from C1 to C2. Consider a concrete accepting com-
putation

m#accept.

Let
(α1, β1), (α2, β2), (α3, β3), . . . , (αi, βi), . . .

be inputs with corresponding partitions (C1 has αi and C2 has βi) for which
m#accept is an accepting computation. Then this accepting computation ac-
cepts all words of L corresponding to words on the intersections of

the rows α1, α2, . . . , αi, . . . and the columns β1, β2, . . . , βi,

In Fig. 3 one immediately sees that this intersection of rows and columns deter-
mines unambiguously a 1-monochromatic submatrix of ML.

To solve the combinatorial problem of covering all 1’s of a matrix by the
minimal number of potentially overlapping 1-monochromatic submatrices is not
easy. One possibility to use this fact is to restrict ML to a finite submatrix M ′

L

and then to estimate the largest 1-monochromatic submatrix S of M ′
L. As a

consequence, the number of 1’s in M ′
L divided by the number of 1’s in S is a

lower bound on the message complexity of L.
Another lower bound technique is based on the so-called 1-fooling sets and this

technique covers the approach proposed independently by Glaister and Shallit
[35], who directly strived to prove lower bounds on the size of NFA’s for concrete
languages without using the concept of communication complexity. A one-way
1-fooling set for a language L is a finite subset AL consisting of pairs

{(α, β)|αβ ∈ L}

[13, 21], such that

if (α, β) ∈ AL and (γ, δ) ∈ AL (i.e., αβ ∈ L and γδ ∈ L),

On the Hardness of Determining Small NFA’s 43

β δ

α 1 0

γ 0 1

Fig. 4.

then

αδ /∈ L or γβ /∈ L.

If AL has this property, then for any two elements (α, β) and (γ, δ) from AL,
each protocol accepting L has to send another message C1(α) from C1 to C2 for
α than for γ. One can argue this fact as follows. Let, for any w, v ∈ Σ∗, C1(w, v)
be the set of all messages submitted from C1 to C2 in all possible accepting
computations on wv, where the input part of C1 is w. If C1(α, β) ∩C1(γ, δ) �= ∅
and αβ is accepted, then unavoidably γβ is accepted by the protocol as well.
Analogously, if C1(α, β) ∩ C1(γ, δ) �= ∅ and γδ is accepted, then αδ is accepted
too. If one wants to argue directly for finite automata, one can say that for any
two elements (α, β) and (γ, δ) of AL, and any NFA accepting L, each state q
reached after reading α in an accepting computation on αβ differs from any state
p reached after reading δ in an accepting computation on δγ. Hence, the number
of different messages (states) of a protocol (a NFA) accepting L must be at least
|AL|. For more details and a survey about methods for proving lower bounds on
communication complexity we recommend [11, 13, 16, 29, 30, 31, 32].

To visualize the argument above one can consider Fig. 4 below. We see that
the intersection of the rows α and γ and the columns β and δ does not build a
1-monochromatic matrix (because both (α, β) and (δ, γ) are elements of a one-
way 1-fooling set). Hence, the 1’s corresponding to (α, δ) and to (β, γ) cannot be
covered by any 1-monochromatic submatrix because at least one of the elements
aαδ and aγβ is zero. Therefore, the number of all monochromatic submatrices
covering all 1’s corresponding to the elements of the one-way 1-fooling sets must
be at least the cardinality of the one-way 1-fooling set.

For most regular languages it is not easy to investigate their nondeterministic
communication complexity in order to prove a lower bound on the size of minimal
NFA’s. The situation is still worse. A good lower bound on nmc(L) need not to
be a good lower bound for ns(L). Consider the language

L(3,n) = {xyz|x, y, z ∈ {0, 1}n, x = y ∨ x �= z}.

In [8] it is shown that

nmc(L(3,n)) ∈ O(n2) and ns(L(3,n)) ∈ 2Ω(n);

44 J. Hromkovič and G. Schnitger

i.e., that the message complexity can be logarithmic in the size of minimal NFA’s.
Let us show that nmc(L(3,n)) is small. If C1 gets at least xy (i.e., the cut is inside
of z), then C1 can check whether x = y. If so, C1 knows that the input word is
in L(3,n). If x �= y, C1 guesses the position in which x and z differ and verifies it
by sending the order (index) and the value of this position to C2.

If C2 obtains at least the whole suffix yz (i.e., the cut is inside of x), then C2

checks whether y = z. The main point is that if y = z, C2 knows that the input
xyz is in the language and accepts independently of the message received from
C1. If y �= z, then the words outside the language L(3,n) must have the form

zyz

for y �= z. To check the opposite for xyz it is again sufficient to check whether
x �= y, which is easy for nondeterministic computation models.

If the cut of xyz is somewhere inside y, one can check the property x = y
or x �= z in a similar way as described above for the other two cases. Observe,
that one has to accept all words except xyx for x �= y. To check x �= z in xyz
with a cutpoint in y in a nondeterministic way is easy. To get xxx accepted the
protocol accepts if C1 sees that its part of y is a prefix of x and C2 sees that its
part of y is a suffix of z for an input xyz with a cutpoint in y. If x = z then
consequently the input is xyz = xxx. If x �= z, we are allowed to accept, because
in that case the input cannot be of the forbidden form xyx for y �= x.

The main point is, that independently of the cutpoint, it is sufficient to verify
the inequality of two strings and this is an existence task and all existence tasks
are easy for nondeterminism.

Now, let us argue that ns(L(3,n)) is large. Observe, that L(3,n) contains all
words xxx ∈ {0, 1}3n. For each xxx fix an accepting computation Com(xxx).
Let T-Com(x, x) = (p, q) be the trace of Com(xxx) consisting of the state p
reached after reading x and the state q read after reaching xx. Assume, for
x �= y,

T-Com(xxx) = T-Com(yyy) = (p, q)

Then one can easily observe that there exists an accepting computationCom(xyx)
on xyx with

T-Com(xyx) = T-Com(xxx) = T-Com(yyy),

because q can be reached from p by reading x as well as y. Hence, the number
of different traces must be at least 2n, which is the cardinality of {xxx|x ∈
{0, 1}n}. Hence, if Q is the state set of a NFA accepting L, then |Q|2 ≥ 2n, i.e.,
ns(L(3,n)) ≥ 2

n
2 .

The proof above shows that cutting the words into 3 parts may be helpful.
Motivated by this observation we proposed to introduce the following general-
ization of two-party one-way communication protocols.

The uniform k-party communication protocol consists of k agents A1, . . . , Ak.
Inputs x = x1 · · ·xk ∈ Σ∗ are arbitrarily divided into (possibly empty) sub-
strings such that agent Ai receives substring xi. The one-way communication
starts with agent A1 and ends with agent Ak who has to decide whether to

On the Hardness of Determining Small NFA’s 45

C1 C2 C3 Ck

Fig. 5.

accept or reject. Agent Ai, upon receiving a message m from its left neighbor
Ai−1, determines a message m′ based on m and its substring xi and sends m′

to its right neighbor Ai+1.
The message complexity of a protocol is the maximum, over all agents Ai, of

the number of different messages sent in all computations. The different com-
munication modes such as deterministic, probabilistic or nondeterministic com-
munication are defined in the canonical way.

Let, for any regular language L, nmck(L) denote the message complexity of
the best nondeterministic uniform k-party protocol and remember that ns(L) is
the minimal number of states of an NFA recognizing L.

In [33] Adorna established an exponential gap between the message complex-
ities nmc2(L(3,n)) and nmc3(L(3,n)), and in his PhD thesis [34] he showed an
exponential gap between nmck and nmck+1 for any k ≥ 2. To do so he consid-
ered the language

L(k,n) = {x1, x2, . . . , xk|xi ∈ {0, 1}n for i = 1, 2, . . . , n
and ∃i ∈ {1, 2, . . . , k − 2} such that
xi = xi+1 ∨ xi �= xi+2}

for any k ≥ 3. To prove that

nmck(L(k,n)) ≥ 2
n

k−1 (i.e., ns(L(k,n) ≥ 2
n

k−1)

one can argue similarly as for L(3,n). The set

{xk|x ∈ {0, 1}n}

is a subset of L(3,n). If one partitions xk into k pieces x and each agent Ai gets
an x, then one can fix an accepting computation

Com(x) = m1#m2# . . .#mk−1#accept

of a nondeterministic uniform k-party protocol accepting L(k,n) on the input
xk, where mi is the message sent by the agent Ai. If, for two different inputs
xk �= yk,

Com(x) = Com(y)

then Com(x) is also an accepting computation on the word

xyxy . . . x (if k is odd) or xyxy . . . xy (if k is even).

46 J. Hromkovič and G. Schnitger

But none of these two words belong to L(k,n). Hence, the number of different
accepting computations must be at least 2n and consequently at least (2n)

1
k−1 =

2
n

k−1 different messages are needed.
To understand that L(k,n) is easy for nmck−1 one has to observe that if a

word does not belong to L(k,n) then it has the form

vuvuvu . . .

for v, u ∈ {0, 1, }n, and v �= u. Since a nondeterministic protocol can verify a
difference of xi and xi+2 for any i easily, one needs only to think how to accept
words xk. If one agent gets two consecutive xx, then it immediately knows that
the input is in L(k,n) and we are done. If xk is partitioned into k − 1 parts and
none contains xx, then each agent getting wh or wxh for a suffix w of x and a
prefix h of x, compares all positions i occuring in consecutive fragments of x.
One can prove by induction that all positions i = 1, 2, . . . , n will be checked at
least once by the agents during the whole computation. The protocol accepts xk

in computations in which all attempts to prove xi �= xi+2 failed and all internal
comparisons of bits in xi and xi+1 succeeded. This approach works because no
such computation can accept words of the form uvuvuv . . . for u �= v and these
words are the only ones not in L(k,n).

To manage all these comparisons the message of an agent Aj must on one
side provide the exact information of the length of the prefix processed up till
now and the order of the position to be compared in the test xi = xi+2 for some
i. Hence, O(n2) messages suffice.

The result of Adorna shows, that there is no fixed k such that nmck(L) is
polynomially related to ns(L) for each regular language. Here we prove that
the situation is still worse. We strengthen the result by showing that there is a
sequence of languages {Ln}n≥1 such that even extremely large values of k (i.e.,
values of k exponential in ns(Lk)) are insufficient to predict ns(Lk) with the help
of nmck(Ln).

To do so, for every positive integer n, we consider the unary language

Ln = {1l : l �= n}.

We work with k parties A1, . . . , Ak. Agent A1 nondeterministically selects a
prime number p ≤ Pk for a parameter Pk to be determined later.

If agent Ai receives the substring 1mi and if mi > n, it sends a “too long”
message to its right neighbor Ai+1, resp. passes a received “too long” message on
to Ai+1. Otherwise, assuming that Ai has received a message (p,m1 + · · ·+mi−1

mod p) from its left neighbor Ai−1, it sends the message (p,m1+· · ·+mi mod p)
to its right neighbor. Ak accepts the joint input if its suffix is too long or if it
has received a “too long” message. In this way all words with length at least
k ·n+ 1 are accepted, because for each partition of such long inputs at least one
of the agents gets an input part of length n. Additionally Ak accepts, if

m1 + · · ·+ mk �≡ n mod p.

On the Hardness of Determining Small NFA’s 47

The protocol accepts only strings from Ln, since it requires a proof that the joint
input is different from 1n. When are all inputs 1m with 1m �= 1n accepted? If

m = m1 + · · ·+ mk for m1, . . . ,mk ≤ n,

then m ≤ k · n and consequently

|m− n| ≤ (k − 1) · n.

Thus if we require

k · n ≤ Πp≤Pk
p, (1)

then m ≡ n mod Πp≤Pk
p implies that Πp≤Pk

p divides m − n which is only
possible if m = n. Thus the protocol is correct, since all strings in Ln are indeed
accepted.

In summary, Ln can be accepted by the uniform k-party communication model
even if each agent sends only O(P 2

k) messages. How large is Pk and how many
states are required for NFA’s recognizing Ln?

Theorem 6. Let Ln = {1l : l �= n}. Then

Ω(
√
n) = nfa(Ln) ≤ n + 1,

and

Ln has k-party protocols with message complexity O(log2
2(k · n)).

In particular, even for k = 2c·n1/4
agents, message complexity is smaller than

state complexity, provided c is sufficiently small.

Proof. We first give a lower bound for ns(Ln). Let Nn be some unary NFA
recognizing Ln with s states. We apply the Chrobak normal form for unary
NFA’s [2] and can assume that there is an equivalent NFA N ′

n which consists of
an initial path of length at most s2 and subsequent cycles with at most s states
altogether. But, if s = o(

√
n), then inputs 1n and 1n+n! are treated alike on each

cycle, since n ≡ n + n! mod r holds for any cycle length r ≤ n. But Nn has to
treat 1n and 1n+n! differently and ns(Ln) = Ω(

√
n) follows.

Our next goal is to show that Pk = O(log2(k · n)) holds. If true, then, as
claimed, our protocol achieves message complexity O(log2

2(k · n)) for k parties.
Now consider ϑ(x) =

∑
p≤x ln p, where we sum all primes p ≤ x. Then ϑ(x) ∼ x

[1] and hence ln(Πp≤xp) = ϑ(x) ≥ x/2. In particular, Πp≤xp ≥ ex/2 and the
requirement (1) is indeed satisfied for Pk = O(log2(k · n)).

Since our protocol has message complexity O(P 2
k), for k = 2c·n1/4

parties its
message complexity is bounded by O(c2 ·

√
n) and hence smaller than the state

complexity, if c is sufficiently small. !

We call attention to the fact, that Holger Petersen [36] proved the upper bound
nfa(Ln) ∈ O(

√
n) and hence our lower bound is asymptotically optimal. For

further reading related to the minimization of NFAs and to proving lower bounds
on the size of minimal nondeterministic automata we recommend [37, 38, 39, 40,
41, 42].

48 J. Hromkovič and G. Schnitger

4 NFAs and Related Nondeterministic Formalisms

4.1 Ambiguity

Let N be an NFA with alphabet Σ and let TN (x) be the computation tree of
N on input x. There are several ways to measure the degree of nondetermin-
ism employed by N as a function of the input size. In the first measure define
adviceN(x) to be the maximal number of nondeterministic guesses in any com-
putation for x; in other words, adviceN(x) is the maximum, over all paths in
TN(x), of the number of nodes with at least two children. Finally

adviceN (n) = max{adviceN(x) : x ∈ Σn}

is the advice-complexity of N . The leaves-complexity of N determines the max-
imal number of computations for inputs of length n. Thus, if leafN(x) is the
number of leaves of TN (x), then

leafN (n) = max{leafN (x) : x ∈ Σn}.

The ambiguity ambigN (x) of N on input x ∈ L(N) is the number of accepting
computations of N on x and

ambigN (n) = max{ambigN (x) : x ∈ Σn}

is the ambiguity of N . The three measures can be related as follows.

Theorem 7. [8] For any minimal NFA N

adviceN (n), ambigN (n) ≤ leafN (n) = O(adviceN (n) · ambigN (n)).

As a first consequence, since the advice complexity is at most linear in the input
length, NFA’s with bounded ambiguity have at most O(adviceN (n)) ⊆ O(n)
different computations for inputs of size n.

The leaf complexity turns out to be either bounded by a constant or at least
linear but polynomially bounded, or otherwise exponential in the input length.

Theorem 8. [8] Let N be an NFA with sizeN states. Then

either leafN (n) ≤ sizeN
sizeN or leafN (n) ≥ n/sizeN (n)− 1.

Moreover,

either leafN (n) ≤ (n · sizeN)sizeN or leafN (n) = 2Θ(n).

To study the degree of ambiguity four classes of NFA’s, namely UNA (unambigu-
ous NFA), FNA (finitely ambiguous NFA), PNA (polynomially ambiguous NFA)
and ENA (exponentially ambiguous NFA) are introduced in [23]. Of particular
interest are FNA’s, since important algorithmic problems such as equivalence
and containment turn out to be tractable for NFA’s with finite ambiguity [27].

As a consequence of Theorems 7 and 8, if an NFA has at least linear ambiguity,
then it is either a PNA or an ENA. Leung [17] shows that ENA’s can be far more
succinct than PNA’s; subsequently a more general argument was given in [8].

On the Hardness of Determining Small NFA’s 49

Theorem 9. [17] For every n ∈ N there is an ENA Nn with n states such that
any equivalent PNA has at least 2n − 1 states.

The arguments in [8] implicitly use the following decomposition result for PNA’s,
which shows structural limitations of PNA’s.

Theorem 10. Let N be a PNA. Then there is a finite set I and finitely many
UNA’s Ui,1, . . . , Ui,ki for each i ∈ I such that

L(N) =
⋃

i∈I

L(Ui,1) · · ·L(Ui,ki).

Any Ui,j has exactly one final state. Moreover, for any i, the combined number
of states or transitions of Ui,1, . . . , Ui,ki is bounded by the number of states or
transitions of N .

If we place the UNA’s Ui,1, . . . , Ui,ki in sequence, then the resulting NFA has
polynomial ambiguity. Thus, for any given PNA N we obtain an equivalent
PNA N ′ by first nondeterministically selecting a “simple” NFA from a finite set
of simple NFA’s. A simple NFA itself is obtained after “concatenating” relatively
few, small UNA’s.

Proof of Theorem 10: Interpret the transition diagram of N as a directed graph
GN by selecting the states of N as the nodes of GN and by inserting an edge
(p, q) into GN iff there is a transition from state p to state q in N .

Let C be an arbitrary strongly connected component of GN and let p, q ∈ C
be two arbitrary nodes of C. If there are two distinct paths in GN from p to q,
then these two paths cannot be computation paths in N for a common input w:
otherwise use the strong connectivity in C to extend both paths to two cycles by
appending a path from q back to p. We obtain two distinct cycles which share
the state p and are traversed in N by a common input w′. As a consequence the
ambiguity of N has to be exponential.

Thus, if we select an arbitrary state p of C as the initial state and an arbitrary
state q as the unique final state we obtain a UNA Up,q. Since the graph G∗

N of
strongly connected components is acyclic, there are only finitely many paths in
G∗

N . We choose the index set I in the claim of Theorem 10 as the set of all paths in
G∗

N , additionally noting the states of arrival and departure for any edge between
strongly connected components. If a path i ∈ I traverses the edges (e0, . . . , em)
and if ej leaves component Cj in state rj and enters component Cj+1 in state
qj+1 with the transition rj

aj→ qj+1, then i contributes the concatenation

L(Uq0,r0) · a0 · L(Uq1,r1) · a1 · · ·L(Uqj ,rj) · aj · · · .

Obviously the combined number of states or transitions required for i is bounded
by the number of states or transitions of N . !
Can FNA’s and PNA’s be separated? In other words, is there a family Pn with
PNA’s Pn of size n such that no equivalent family of FNA’s Fn has size polyno-
mial in n? Surprisingly the answer is negative for unary languages.

50 J. Hromkovič and G. Schnitger

Theorem 11. For any unary NFA with s states there is an equivalent FNA
with O(s2) states.

The statement is an immediate consequence of the Chrobak normal form for
NFA’s [2]. The separation problem has remained open for NFA’s over general
alphabets, however even among FNA’s succinctness increases dramatically when
increasing ambiguity.

Theorem 12. [8] There is a family (Ln : n ∈ N) of languages which are recog-
nizable by FNA’s with ambiguity n and size O(n2), but any FNA with ambiguity
k has to have at least Ω(2(n/k) states.

Certainly a separation of FNA’s and PNA’s is one of the most important open
problems for ambiguity. Moreover, is there an analogue of Theorem 10 for FNA’s?
For instance is it possible to represent any language L(F) as a finite union L(Ui)
of unambiguous NFA’s Ui of size at most polynomial in the size of F?

4.2 ε-Transitions and Succinctness

We study the role of ε-transitions in increasing succinctness by first investigating
the size of ε-free NFA’s recognizing the language expressed by a given regular
expression. Then we compare the size of NFA’s with ε-transitions and the size
of NFA’s without ε-transitions. In both cases we measure size by the number of
transitions.

From Regular Expressions to ε-Free NFA’s. A typical application in lex-
icographical analysis starts with a regular expression that has to be converted
into an ε-free nondeterministic finite automaton. Thus the task of converting
regular expressions into small ε-free NFA’s is of practical importance.

All classical conversions produce ε-free NFAs with worst-case size quadratic
in the length of the given regular expression and for some time this was assumed
to be optimal [26] until Hromkovic, Seibert and Wilke [12] constructed ε-free
NFAs with surprisingly only O(n(log2 n)2) transitions for regular expressions of
length n. Subsequently Geffert [3] noticed the impact of the size of the alphabet,
he showed that even ε-free NFAs with O(n · k · log2 n) transitions suffice for
alphabets of size k. Actually it turned out that regular expressions over very
small alphabets are recognizable by ε-free NFA’s of almost linear size:

Theorem 13. [25]

(a) Every regular expression R of length n over an alphabet of size k can be
recognized by an ε-free NFA with at most

O(n ·min{log2 n · log2 2k, k1+log∗ n})

transitions.
(b) There are regular expressions of length n over an alphabet of size k such that

any equivalent ε-free NFA has at least Ω(n · log2
2 2k) transitions.

On the Hardness of Determining Small NFA’s 51

As a first consequence of part (a) there are ε-free NFA’s of size O(n·log2 n·log2 2k)
for regular expressions of length n over an alphabet of size k. For small alphabets,
for instance if k = O(log2 log2 n), the upper bound O(n · k1+log∗ n) is better. In
particular, O(n · 2log∗

2 n) transitions and hence almost linear size suffice for the
binary alphabet.

A first lower bound was also given in [12], where it is shown that the regular
expression

En = (1 + ε) · (2 + ε) · · · (n + ε)

over the alphabet {1, . . . , n} requires NFAs of size at least Ω(n · log2 n). Lifshits
[18] improves this bound to Ω(n(log2 n)2/ log2 log2 n). As a consequence of the
improved lower bound in part (b), the construction of [12] is optimal for large
alphabets, i.e., if k = nΩ(1). Since Theorem 13 is almost optimal for alphabets
of fixed size, only improvements for alphabets of intermediate size, i.e., ω(1) =
k = no(1), are still required.

We conclude this section by showing that En can indeed by recognized by ε-
free NFA’s with Θ(n log2

2 n) transitions. This example shows the main ingredients
of the O(n · log2

2 n) upper bound of [12].

Example 1. Assume that n is a power of two. We recursively construct NFAs
An to recognize En. {0, 1, . . . , n− 1, n} is the set of states of An; state 0 is the
initial and state n is the unique final state of An. To obtain An place two copies
of An/2 in sequence: {0, 1, . . . , n/2− 1, n/2} and {n/2, n/2 + 1, . . . n− 1, n} are
the sets of states of the first and second copy respectively, where the final state
n/2 of the first copy is also the initial state of the second copy.

Observe that En is the set of all strictly increasing sequences with elements
from the set {1, . . . , n}. Now, if (a1, . . . , ar, ar+1, . . . as) is any increasing se-
quence with ar ≤ n/2 < ar+1, then the sequence has an accepting path which
starts in 0, reaches state n/2 when reading ar and ends in state n when reading
as. But increasing sequences ending in a letter a ≤ n/2, resp. starting in a letter
a > n/2 have to be accepted as well. Therefore direct all transitions, ending
in the final state n/2 of the first copy, also into the final state n. Analogously,
direct all transitions, starting from the initial state n/2 of the second copy, also
out of initial state 0.

Now unroll the recursion and visualize An on the complete binary tree Tn

with n − 1 nodes (thus we disregard the initial state 0 and the final state n).
The root of Tn plays the role of state n/2. In particular, for any node v of height
h there are 2h transitions between v and the root. Thus the root is the target
of

∑
h

n
2h · 2h = n · log2 n transitions and more generally, nodes u of height h

have 2h · h transitions connecting u with a descendant in Tn. All in all, An has
O(n · log2

2 n) transitions if transitions incident with states 0 or n are disregarded.

From NFA’s with ε Transitions to NFA’s without ε-Transitions. The
standard conversion of an ε-free NFA N ′ from a given NFA N inserts a transition
p

a→ q into N ′ whenever there is an ε-path in N from p to some state r followed
by the transition r

a→ q. Hence the bound

nt(L) ≤ |Σ| · ntε(L)2 (2)

52 J. Hromkovič and G. Schnitger

is obvious, where ntε(L), nt(L) are the minimal number of transitions of an
NFA for L with, resp. without ε-transitions. Since ε-free NFA turn out to be
surprisingly powerful when simulating regular expressions, it is natural to ask
whether the bound (2) can be improved.

Theorem 14. [9] There are regular languages {Ln}∞n=1 and {Kn}∞n=1 such that

(a) ntε(Ln) = O(n · 2n), but nt(Ln) = Ω(22n). Ln is defined over the alphabet
{0, 1}n.

(b) ntε(Kn) = O(n · 2n), but nt(Kn) = Ω(2n+c
√

n) for every constant c < 1/2.
Kn is defined over the alphabet {0, 1}.

Hence, for m = 2n, Ln and Kn can be accepted by NFAs with O(m log2 m)
transitions, but every ε-free NFA for Ln has at least Ω(m2) transitions, whereas
Kn requires ε-free NFAs of size O(m · 2c·

√
log2 m) for every c < 1/2. Thus ε-free

NFAs for Ln require almost quadratically more transitions than unrestricted
NFAs for Ln and the obvious transformation from NFAs to ε-free NFAs cannot
be drastically improved. Observe however that Ln is defined over an alphabet of
size m and the lower bound for Ln is far from establishing that bound (2) for the
standard conversion is tight. The provable gap for binary alphabets is smaller,
but still a far larger than poly-logarithmic gap is shown to be necessary.

We describe the weaker lower bound nt(L′
n) = Ω(23n/2) for the language

L′
n = {uv : u, v ∈ {0, 1}n, 〈u, v〉 ≡ 0 mod 2 }

of length-2 words over the alphabet Σn = {0, 1}n; thus uv ∈ L′
n iff the inner

product of u and v is zero modulo 2. We do not show the upper bound ntε(L′
n) =

O(n · 2n), but remark that there are “switching circuits for L′
n” with O(n · 2n)

edges: such a switching circuit contains a path from a source u ∈ Σn to a sink
v ∈ Σn if and only if uv ∈ L′

n. To transform a switching circuit into an NFA,
first translate its edges into ε-transitions and subsequently add branches from
an initial state to the sources and from the sinks to the unique final state.

The 2n×2n matrix Hn with Hn[u, v] = 〈u, v〉 ≡ 1 mod 2 is the nth Hadamard
matrix if we replace a matrix entry 0 by −1. Hn has the remarkable property
that submatrices consisting only of zeroes have to be small. In particular assume
that a submatrix X × Y of Hn consists only of 0-entries. We may close X and
Y under addition modulo two to obtain vector spaces X and Y (with X ⊆ X
and Y ⊆ Y) such that the submatrix X×Y still consists of zeroes only. Thus X
and Y are orthogonal vector spaces and dim(X)+ dim(Y) ≤ n follows. Hence

|X | · |Y | ≤ 2n. (3)

Now consider an arbitrary NFA N without ε-transitions for L′
n. We may assume

that N consists of an initial state q0, a final state qf and “inner” states q;
moreover all accepting paths are of the form q0

u→ q
v→ qf . For an inner state

q let fanin(q) (resp. fanout(q)) be the set of labels of incoming (resp. leaving)

On the Hardness of Determining Small NFA’s 53

edges. Then any inner state q has the “submatrix”-property: fanin(q)×fanout(q)
is a submatrix of Hn covering only zeroes. We apply (3) and obtain

|fanin(q)| · |fanout(q)| ≤ 2n. (4)

But t(N) =
∑

q |fanin(q)| +
∑

q |fanout(q)| is the number of transitions of N .
Thus we obtain a lower bound for the size of N , if we minimize t(N) subject to
the inequalities (4) and to the requirement that all zeroes of Hn are “covered”
by at least one inner state, i.e., that

∑
q |fanin(q)| · |fanout(q)| ≥ 22n−1. This

optimization problem is solved optimally if |fanin(q)| = |fanout(q)| = 2n/2 for
2n−1 inner states, implying t(N) = Ω(23n/2).

Observe that the submatrix–property makes this an a communication com-
plexity argument: the zeroes of the communication matrix Hn are to be covered
by 0-chromatic submatrices such that the sum of row and column sizes is as
small as possible.

References

1. Bach, E., Shallit, J.: Algorithmic Number Theory 1. MIT Press, Cambridge (1996)
2. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),

149–158 (1986)
3. Geffert, V.: Translation of binary regular expressions into nondeterministic ε-free

automata with O(n log n) transitions. J. Comput. Syst. Sci. 66, 451–472 (2003)
4. Gramlich, G.: Probabilistic and nondeterministic unary automata. In: Proc. of 28th

MFCS, pp. 460–469 (2003)
5. Gramlich, G., Schnitger, G.: Minimizing nfa’s and regular expressions. J. Comput.

Syst. Sci. 73, 909–923 (2007)
6. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition

complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT
2007. LNCS, vol. 4588, pp. 205–216. Springer, Heidelberg (2007)

7. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: Proc. 1st LATA, pp. 261–272 (2007)

8. Hromkovič, J., Karhumäki, J., Klauck, H., Seibert, S., Schnitger, G.: Communi-
cation Complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172(2), 202–217 (2002)

9. Hromkovič, J., Schnitger, G.: Comparing the size of NFAs with and without ε-
transitions. Theor. Comput. Sci. 380(1-2), 100–114 (2007)

10. Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communica-
tion complexity, OBDD’s, and finite automata. Information and Computation 169,
284–296 (2001)

11. Hromkovič, J., Schnitger, G.: Communication Complexity and Sequential Compu-
tation. In: Pŕıara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 71–84.
Springer, Heidelberg (1997)

12. Hromkovič, J., Seibert, S., Wilke, T.: Translating regular expression into small
ε-free nondeterministic automata. J. Comput. Syst. Sci. 62(4), 565–588 (2001)

13. Hromkovič, J.: Communication Complexity and Parallel Computating. Springer,
Heidelberg (1997)

14. Hromkovič, J.: Relation Between Chomsky Hierarchy and Communication Com-
plexity Hierarchy. Acta Math. Univ. Com 48-49, 311–317 (1986)

54 J. Hromkovič and G. Schnitger

15. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Com-
put. 22(6), 1117–1141 (1993)

16. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

17. Leung, H.: Separating exponential ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

18. Lifshits, Y.: A lower bound on the size of ε-free NFA corresponding to a regular
expression. Inf. Process. Lett. 85(6), 293–299 (2003)

19. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proc. 13th Ann. IEEE Symp. on
Switching and Automate Theory, pp. 125–129 (1972)

20. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

21. Papadimitriou, C., Sipser, M.: Communication Complexity. In: Proc. 14th ACM
STOC, pp. 196–200 (1982)

22. Pitt, L., Warmuth, M.K.: Prediction-preserving reducibility. J. Comput. Syst.
Sci. 41(3), 430–467 (1990)

23. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succinctness of their presentation. SIAM J. Comput. 18(6), 1263–1282 (1989)

24. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35
(1997)

25. Schnitger, G.: Regular expressions and NFAs without ε transitions. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer, Hei-
delberg (2006),
www.thi.informatik.uni-frankfurt.de

26. Sippu, S., Soisalon-Soininen, E.: Parsing Theory. Languages and Parsing, vol. I.
Springer, Heidelberg (1988)

27. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM J.
Comput. 14(3), 598–611 (1985)

28. Yao, A.C.: Some Complexity Questions Related to Distributed Computing. In:
Proc. 11th ACM STOC, pp. 209–213 (1979)

29. Dietzfelbinger, M., Hromkovič, J., Schnitger, G.: A comparison of two lower bound
methods for communication complexity. Theoretical Computer Science 168, 39–51
(1996)

30. Lovász, L.: Communication Complexity. A survey. In: Korte, L., Promel, S. (eds.)
Paths, Flows, and VLSI Layout. Springer, Berlin (1990)

31. Hromkovič, J.: Randomized communication protocols (A survey). In: Steinhöfel,
K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 1–32. Springer, Heidelberg (2001)

32. Hromkovič, J.: Communicatoin protocols - an exemplary study of the power of ran-
domness. In: Rajasekharan, S., Pardalos, P.M., Reif, J.H., Rolim, J. (eds.) Hand-
book of Randomized Computing, vol. II, pp. 533–596

33. Adorna, H.N.: 3-party message complexity is better than 2-party ones for proving
lower bounds on the size of minimal nondeterministic finite state automata. In:
Proc. 3rd Int. Workshop on Descriptional Complexity of Automata, Grammars
and Related Structures, pp. 23–34. Univ. Magdeburg (2001), Preprint No. 16; See
also Journal of Automata, Languages and Combinatorics 7 (4), 419–432 (2002)

34. Adorna, H.N.: On the separation between k-party and (k+1)-party nondeterminis-
tic message complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450,
pp. 152–161. Springer, Heidelberg (2003)

www.thi.informatik.uni-frankfurt.de

On the Hardness of Determining Small NFA’s 55

35. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Information Processing Letters 59, 75–77 (1996)

36. Petersen, H.: personal communication
37. Arnold, A., Dicky, A., Nivat, M.: A note about minimal non-deterministic au-

tomata. Bulletin of the EATCS 47, 166–169 (1992)
38. Carrez, C.: On the minimalization of non-deterministic automaton, Laboratoire de

Calcul de la Faculté des Sciences de l’Université de Lille (1970)
39. Birget, J.-C.: Partial orders on words, minimal elements of regular languages and

state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)
40. Courcelle, B., Niwinski, D., Podelski, A.: A Geometrical View of the Determiniza-

tion and Minimization of Finite-State Automata. Mathematical Systems The-
ory 24(2), 117–146 (1991)

41. Gruber, H., Holzer, M.: Finding Lower Bounds for Nondeterministic State Com-
plexity is Hard. Developments in Language Theory 2006, 363–374 (2006)

42. Salomaa, K.: Descriptional Complexity of Nondeterministic Finite Automata. De-
velopments in Lanugage Theory 2007, 31–35 (2007)

Selected Ideas Used for Decidability and

Undecidability of Bisimilarity

Petr Jančar�

Center for Applied Cybernetics,
Dept. of Computer Science, Technical University of Ostrava,

17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
petr.jancar@vsb.cz

Abstract. The paper tries to highlight some crucial ideas appearing in
the decidability and undecidability proofs for the bisimilarity problem
on models originating in language theory, like context-free grammars
and pushdown automata. In particular, it focuses on the method of
finite bases of bisimulations in the case of decidability and the method
of “Defender’s forcing” in the case of undecidability. An intent was to
write an easy-to-read article in a slightly informal way, which should
nevertheless convey the basic ideas with sufficient precision.

Keywords: bisimulation equivalence, decidability.

1 Introduction

In concurrency theory, process theory, theory of reactive systems etc., bisimilar-
ity has been established as a fundamental behavioural equivalence (see, e.g., [1]).

Bisimilarity, also called bisimulation equivalence, is a finer relation than clas-
sical language equivalence, and serves as a basis for expressing when two systems
(e.g., a specification and an implementation) exhibit the same behaviour. One
natural research topic is thus the decidability and complexity questions for de-
ciding bisimilarity on various models, including those well established in the
theory of languages and automata. A survey of results and techniques in this
area appears in [2]; some later results are summarized in [3] and [4] (the latter
being regularly updated on the web).

This text is not meant as another survey. The author’s aim has been just
to highlight some (subjectively) selected ideas and techniques used in the area,
mainly concentrating on the models originating in language theory. An intent
was to write an easy-to-read article in a slightly informal way, which should
nevertheless convey some basic ideas with sufficient precision.

We will start by defining the bisimulation equivalence via its characterization
in terms of two-player games, played between Attacker and Defender. We note
that at finite state systems (coinciding with nondeterministic finite automata, in

� Supported by Grant No. 1M0567 of the Ministry of Education of the Czech Republic.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 56–71, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 57

fact), the bisimilarity problem is polynomial (though PSPACE-complete for lan-
guage equivalence). Then we consider processes generated by context-free gram-
mars, with Greibach normal form type of rules X

a−→ α (α being a sequence
of variables). These grammars yield the class BPA (Basic Process Algebra) – in
the case when concatenation is viewed as sequential composition; the class BPP
(Basic Parallel Processes) arises when concatenation is viewed as parallel (com-
mutative) operation. In both cases (for BPA and BPP) we show the decidability
of bisimilarity, viewing the proofs as instances of a general decidability scheme.

Pushdown automata can be viewed as finite collections of rules α
a−→ β,

yielding the class of processes denoted PDA. When the same collections of rules
are used in the parallel (i.e., commutative) setting, we get the class PN of pro-
cesses generated by Petri nets. Here we just recall the decidability of bisimilarity
for PDA (and the connection to the famous problem of language equivalence
for deterministic PDA), and the undecidability for PN. We then demonstrate
the so called Defender’s forcing method on a recent undecidability result, for
(Type -1) systems which constitute a generalization of PDA, having the rules
(or rule schemes) of the type R

a−→ α where R is a regular language (such a rule
represents the rules β

a−→ α for all β ∈ R).
We finish by mentioning some open problems.

2 Bisimulation Equivalence

Our central notion, bisimulation equivalence, also called bisimilarity, is defined
on (the semantic model called) labelled transition systems; these can be viewed
as nondeterministic automata, possibly with infinitely many states.

A labelled transition system (LTS) is a triple (S,A,−→), where S is a set of
states, A is a set of actions, and −→⊆ S × A × S is a transition relation. We
write s

a−→ s′ instead of (s, a, s′) ∈−→ and we extend this notation to sequences
w ∈ A∗ in the natural way. We write s −→ s′ if there is a ∈ A such that s

a−→ s′

and s −→∗ s′ if s w−→ s′ for some w ∈ A∗ (i.e., s′ is reachable from s).
We can thus see that in the finite case, when the sets S,A are finite, an LTS is

just an NFA, a nondeterministic finite automaton, without specified initial and
accepting states.

Given an LTS (S,A,−→), we now aim at defining when a binary relation
R ⊆ S×S is a bisimulation (relation). We do this by help of a certain functional
F : 2S×S → 2S×S , defined in terms of a simple (“one-round”) game between
Attacker and Defender ; to make later discussions easier, we consistently view
Attacker as “him” and Defender as “her”.

Given a relationR ⊆ S×S, F(R) is defined as the set of pairs (s, t) ∈ S×S for
which Defender surely wins in the following game: Attacker “performs” a move
s

a−→ s′, or t
a−→ t′ (for some action a); if there is no such move (there are no

outgoing arcs from s or t), Attacker loses (and Defender wins). After Attacker’s
move (when it was possible) there is Defender’s turn and she has to “perform
a matching move” by choosing a transition from the other state (t a−→ t′ when
Attacker performed s

a−→ s′, and s
a−→ s′ when Attacker performed t

a−→ t′),

58 P. Jančar

under the same label a, so that the resulting pair (s′, t′) is in R; if she can do
this, she wins, if she has no such matching move, she loses.

We now define that a relationR ⊆ S×S is a bisimulation if it is a postfixpoint
of F , i.e., if R ⊆ F(R).

We note that when R is a bisimulation then Defender has a winning strategy
from every (s, t) ∈ R in the (possibly infinite) iteration of the above simple game:
if Defender has won the first round, the second round starts from the resulting
pair (s′, t′) (where Attacker can freely choose any move from s′ or t′), etc. Since
R ⊆ F(R), Defender can maintain that all the pairs (s′′, t′′) reached after her
moves (in the iterated game) belong to R. Any play of this iterated game (from
(s, t) ∈ R) thus either finishes with a lose of Attacker in some m-th round, or
goes forever, in which case Defender is the winner.

Mapping F is clearly monotonic (R ⊆ R′ implies F(R) ⊆ F(R′)), and there
is thus the greatest (post)fixpoint of F , the union of all postfixpoints (i.e., of all
bisimulations). This greatest fixpoint, denoted ∼, is the bisimulation equivalence,
or bisimilarity (on S in the LTS (S,A,−→)). Thus

∼ =
⋃
{R | R ⊆ F(R)} .

(Reflexivity, symmetricity, and transitivity of ∼ can be easily checked.)
Thus two states s and t are bisimulation equivalent (bisimilar), written s ∼ t,

iff they are related by some bisimulation. We note that we can also relate states
of different LTSs, viewing them as states in the disjoint union of those LTSs.

What does it mean when s �∼ t ? It is not difficult to realize that then Attacker
has a winning strategy, WS for short, in the above iterated game, even when
there is no constraint on the resulting pairs: Defender is allowed to match each
move so that the result (s′, t′) is in S × S; she can only lose when she has
no outgoing arc with the relevant label from the relevant state (in some m-th
round). When Attacker applies his WS, each play is finite and finishes with his
win (where Defender is unable to match his move).

A strategy of Attacker (analogously for Defender) from a pair (s0, t0) can be
naturally viewed as a tree with the root labelled with (s0, t0): any branch (a
sequence of nodes labelled with pairs (s′, t′)) corresponds to a play; each node
in which it is Attacker’s turn has just one successor, and each node in which it
is Defender’s turn has successors corresponding to all (legal) moves of Defender.
If the underlying LTS is image finite, i.e., for every state s and action a there
are only finitely many states s′ such that s

a−→ s′, then a WS of Attacker
corresponds to a finitely branching tree where every branch is finite – so the
whole tree is finite then (recalling König’s lemma). In such a case there is even
a bound m ∈ N such that Attacker can guarantee his win within first m rounds.

In other words, at image finite systems we have ∼=
⋂

m∈N
F (m)(S × S), or

∼=
⋂

m∈N

∼m

where s ∼m t means that Defender can “survive” at least m rounds in the
unconstrained iterated game. (F (m)(R) is a shorthand for F(F(. . .F(R))) where

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 59

F is applied m times.) We can easily note that each ∼m is also an equivalence
relation.

Remark. Our unconstrained iterated game is usually called the bisimulation
game; such game-theoretic characterizations of behavioural equivalences are
standard in this area.

3 Rewrite Systems as LTSs Generators

In theory of processes, it is usual to define the syntax of a language for de-
scribing systems and/or their specifications as terms (over some variables and
operations) of an appropriate algebra, and to provide semantics by attaching
labelled transition systems to these terms; the transitions are often defined by
structural induction, by structural operational semantics (SOS) rules. Among
usual ingredients of such algebras are the operations of sequential composition
and parallel composition. There are usually other operations, allowing communi-
cation between parallel components etc., but we only concentrate on these basic
operations here.

Our main (syntactic) systems which generate possibly infinite-state LTSs are
the following rewrite systems (which can be viewed as simple process algebras).

By a rewrite system we understand a structure (V ,A, Δ) where V is a finite
set of variables, A a finite set of actions (corresponding to terminals in the usual
grammar setting), and Δ a finite set of (basic rewrite) rules α

a−→ β where
α ∈ V+, β ∈ V∗, and a ∈ A. We usually identify Δ with the whole rewrite
system (meaning that V ,A are determined by Δ).

We note that if the left-hand side of each rule α
a−→ β in Δ is a variable

(α = X ∈ V), we get an analogue of a context-free grammar in Greibach normal
form.

System Δ generates the LTS LΔ where the set od states is V∗ and the tran-
sitions are induced by the following (deduction, or SOS) rule.

(α a−→ β) ∈ Δ, γ ∈ V∗

αγ
a−→ βγ

(1)

This rule can be aptly called the prefix-rewriting rule. In the case of a context-
free grammar (in Greibach normal form), possible evolutions of any δ ∈ V∗

correspond to the left derivations; in other words, the operation of concatenation
is here viewed as sequential composition.

The introduced (sequential) rewrite systems are also called PDA-systems (or
pushdown systems), constituting the class denoted PDA, and generating PDA-
LTSs (or PDA-graphs). The subclass generated by context-free grammars (in
Greibach normal form), is called BPA (Basic Process Algebra).

In fact, one would expect that V in a PDA-system is the disjoint union Q∪Γ
for some set Q of control states and a set Γ of stack symbols, that the (pushdown)

60 P. Jančar

rules are of the form pX
a−→ qα, where p, q ∈ Q, X ∈ Γ and α ∈ Γ ∗, and that

the transitions are captured by the following deduction rule.

(pX a−→ qα) ∈ Δ, β ∈ Γ ∗

pXβ
a−→ qαβ

But it is not hard to show that the LTSs generated by systems with these special
rules are isomorphic with the LTSs generated by the general rules α

a−→ β
(see [5]).

Remark. We do not consider ε-moves (of usual pushdown automata) at the
moment.

In the case when concatenation is taken as parallel composition, and is thus viewed
as a commutative operation, a sequence α can be conveniently identified with its
Parikh image, the vector (k1, k2, . . . , km) ∈ Nm where V = {X1, X2, . . . , Xm} and
ki is the number of occurrences of Xi in α (for i = 1, 2, . . . ,m).

In this parallel setting, we can still use (an analogue of) the SOS-rule (1)
where the conclusion can be more conveniently expressed as α + γ

a−→ β + γ.
Variables can now be seen as places in a Petri net, and (the Parikh image of)
sequence α can be seen as the appropriate marking (multiset of variables). The
basic rewrite rules naturally correspond to labelled Petri net transitions. We thus
call these (parallel rewrite) systems as PN-systems, constituting the class PN. In
the case of context-free grammars (in Greibach normal form), the corresponding
subclass of PN is called BPP (Basic Parallel Processes); possible evolutions of
δ ∈ V∗ now correspond to all derivations (not only to the left ones).

We finish this definition section with the notion of norm. For α ∈ V∗, the
norm of α, denoted ‖α‖, is the length of a shortest word u ∈ A∗ such that
α

u−→ ε (where ε denotes the empty sequence); ‖α‖ is infinite, denoted ‖α‖ = ω,
when there is no such word, in which case we also say that α is unnormed.

4 Some Ideas for Decidability

4.1 Finite LTSs

We have already noted that finite LTSs are, in fact, nondeterministic finite au-
tomata, NFA. They can be viewed as generated by rewrite systems with rules
of the type X

a−→ Y , X a−→ ε.
For NFA, (the problem of deciding) language equivalence is well known to be

PSPACE-complete but we now easily observe that bisimilarity is polynomial.
Indeed, given a finite-state LTS A, with the state set S, we can perform

the standard greatest fixpoint computation: starting with R0 = S × S, we can
compute R0 ⊇ F(R0) ⊇ F(F(R0)). . . until a fixpoint, in fact ∼, is reached.
Polynomiality is clear but we would have to go into more details when looking
for more efficient implementations. Such algorithms were devised by Kanellakis
and Smolka [6] and Paige and Tarjan [7]; they are also explained in [8].

We now turn our attention to infinite state LTSs (generated by rewrite
systems).

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 61

4.2 A General Decidability Scheme for Infinite State Systems

We first note that the LTSs LΔ generated by our rewrite systems (V ,A, Δ) are
image finite; in fact, they are even finitely branching (the outdegree of every
node of the corresponding graph is finite) since A is finite.

So we have ∼=
⋂

m ∼m, and a winning strategy of Attacker (if it exists) can
be presented as a finite tree; thus nonbisimilarity is surely semidecidable for our
rewrite systems: given Δ and a pair (α0, β0), we can generate all Attacker’s finite
strategy-trees from (α0, β0), and verify for each of them if it represents a WS
for him). An idea of semidecidability (and thus decidability) of bisimilarity is
to present a finite witness of a winning strategy of Defender, i.e., of a (possibly
infinite) bisimulation. We now sketch a general scheme which can be used to this
aim.

Suppose we have Δ (a finite set of rules), and a pair (α0, β0) of processes
(i.e., states in LΔ) for which we should decide if α0 ∼ β0. We know that this is
the case iff there is a bisimulation R containing (α0, β0); unfortunately, all such
bisimulations might be infinite.

By a finite base we mean a finite set B of pairs (α, β), which somehow gener-
ates a bigger (maybe infinite) set G(B) ⊇ B so that the following is guaranteed:

– ∀m : B ⊆∼m⇒ G(B) ⊆∼m,
– B ⊆ F(G(B)), i.e., every move by Attacker from (α, β) ∈ B can be matched

by Defender so that the resulting pair is in G(B).

Proposition 1. If B is a finite base then B ⊆∼.

Proof. Suppose there is a pair (α, β) ∈ B such that α ∼m β and α �∼m+1 β, for
the least m.

But then α′ ∼m β′ for all pairs (α′, β′) ∈ G(B) and thus α′′ ∼m+1 β′′ for all
pairs (α′′, β′′) ∈ F(G(B)) ⊇ B – a contradiction. !

We are intentionally not specific regarding the (generating) mapping G but we
can easily observe validity of the following equivalence rule: we always assume
that G(B) contains the (least) equivalence generated by B. (Recall that ∼m is
an equivalence relation for each m.)

Let us now imagine an agent Clever who aims at constructing a finite base
B containing (α0, β0) when α0 ∼ β0 (i.e., when α0 ∼m β0 for all m). He per-
forms the following (nondeterministic) procedure in which he uses his remarkable
abilities: given (α, β), he immediately recognizes if α ∼ β, given a set C, he rec-
ognizes if (α, β) ∈ G(C), etc. The procedure also uses a (partial) order on the
set of pairs (derived from their structure) to which we refer when saying that
(α, β) is smaller than (α′, β′); this order is supposed to be well-founded (there
are no infinite decreasing chains).

Clever initializes B (i.e., “a program variable containing a set of pairs”)
by (the value) {(α0, β0)}. He successively includes new elements in B, declaring
them as “unprocessed” ((α0, β0) is also initially unprocessed), and he either fin-
ishes with a finite set (a finite base, in fact) when all elements in B are processed,
or works forever. More concretely, he repeatedly performs the following step:

62 P. Jančar

– Take an “unprocessed” element (α, β) in B, guess a minimal (finite) “exten-
sion” set E ⊆∼, E ∩B = ∅, such that (α, β) ∈ F(B ∪ E) (E is rich enough
to enable Defender to match all Attacker’s moves from (α, β)), and declare
(α, β) as processed.

– Consider “adding” each (α′, β′) ∈ E to B. This can mean a real including
in B but there is also another (“clever nondeterministic”) option (which
includes (α′, β′) in G(B)):
• if you find a finite set M of bisimilar pairs (α1, β1), (α2, β2), . . . , (αn, βn)

which are smaller than (α′, β′) and generate (α′, β′), i.e. (α′, β′) ∈
G(M ∪ B), then consider adding the pairs from M instead of (α′, β′)
(and proceed recursively).

It is obvious that any completed finite run of the above procedure (finishing
with all pairs processed) has, in fact, constructed a finite base. If Clever has
no such run at his disposal then there is an infinite sequence of bisimilar pairs
in which none can be generated from smaller pairs (by our unspecified G).

In some concrete cases it can be shown that such an infinite sequence can-
not exist, which means that there must be a finite base. This then implies
(semi)decidability of bisimilarity, under the condition that it is (semi)decidable
whether B ⊆ F(G(B)) for a given B; in this case we speak about an effective
finite base. When we are even able to bound the size of such (smallest) base B
(if it exists), we can get a complexity upper bound.

4.3 BPA (Sequential Context-Free Processes)

Language equivalence is well-known to be undecidable for context-free gram-
mars, also for those having no redundant nonterminals, i.e., for those grammars
which generate only BPA processes with finite norms. In the case of bisimilarity,
Baeten, Bergstra, and Klop [9] showed the decidability for this class. This first
proof was lengthy and technically nontrivial; later, simpler proof were developed
which also work for the whole class BPA. We now sketch the idea behind the
proof of Christensen, Hüttel, and Stirling [10], viewing it as an instance of our
previously described general scheme. This means that we show the following
theorem.

Theorem 2. For any BPA system Δ and a pair (α0, β0) such that α0 ∼ β0 (in
LΔ), there is an effective finite base B containing (α0, β0).

It is convenient (and harmless) to assume that every variable in Δ appears on
the left-hand side of at least one rewrite rule; then surely α �∼ ε when α �= ε.

Besides the previously discussed equivalence rule, it is sufficient to enhance
“generator” G by the congruence rule based on the following proposition.

Proposition 3. (In BPA,) if α ∼m α′ and β ∼m β′ then αβ ∼m α′β′.

Proof. Starting from (αβ, α′β′), Defender uses the strategy guaranteeing her to
survive m rounds from (α, α′), until possibly β or β′ is exposed; in fact, if this

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 63

happens before the m-th round, both β and β′ must be exposed simultaneously
(the pair (β, β′) is reached after Defender’s response), and Defender can continue
by using the appropriate strategy for (β, β′). !

Let us observe that if α = βXγ and ‖X‖ = ω (X is unnormed) then γ is irrelevant
and can be safely omitted. So any α is tacitly assumed to have either finite norm
or to be of the form βX where β is (the maximal) prefix with finite norm and X
is an unnormed variable; ‖β‖ is then viewed as the prefix-norm of α.

We can primarily order processes α according to their prefix-norms, and sec-
ondarily (those with the same prefix-norm) lexicographically, say. We thus get
a linear well-ordering which can be extended to pairs: e.g., (α, β) ≤ (α′, β′)
iff max{α, β} < max{α′, β′} or max{α, β} = max{α′, β′} and min{α, β} ≤
min{α′, β′}.

The following proposition shows the theorem (Clever can always succeed).

Proposition 4. There is no infinite sequence SEQ of bisimilar pairs such that
none of them can be generated from smaller bisimilar pairs by a sequence of
applications of the (equivalence and) congruence rule.

Proof. We assume such SEQ exists. For some fixed “head-variables” X,Y , we
can assume that the pairs in (an infinite subsequence of) SEQ are:

(Xα1, Y β1), (Xα2, Y β2), (Xα3, Y β3), . . . (where Xαi ∼ Y βi for all i).

We note that if αi is smaller than αj then αi �∼ αj : otherwise the smaller
pairs (αi, αj) and (Xαi, Y βj) generate (Xαj , Y βj) (using (Xαi, Xαj)). This
holds analogously for βi, βj, so we can even assume that SEQ also satisfies the
following: either all αi are the same or they create an increasing sequence and
are pairwise nonbisimilar; the same holds for βi.

Suppose first that αi are all the same, equal to α1; βi are necessarily pairwise
nonbisimilar then, and Y has finite norm. Consider now all pairs (Xα1, Y βi) and
suppose that in each of them Attacker starts with a sequence of moves Y

w−→ ε,
thus exposing βi (on the right-hand side). Defender necessarily matches this
infinitely many times by installing the same γ (Xα1

w−→ γ) on the left-hand
side; thus γ ∼ βi for infinitely many i, which is a contradiction (βi are pairwise
nonbisimilar). Analogously, βi cannot be the same either.

Thus both αi and βi are increasing, and both X , Y have finite norm; wlog
we assume ‖X‖ ≥ ‖Y ‖. We let Attacker start with a shortest sequence of moves
Y

w−→ ε in all (Xαi, Y βi) and we thus discover that γαi ∼ βi for a fixed γ and
infinitely many i (we can also have γ = ε).

So we can assume that we have chosen SEQ so that for all i: Xαi ∼ Y γαi.
We cannot have X ∼ Y γ (where neccessarily ‖X‖ = ‖Y γ‖, which implies

‖γ‖ < ‖X‖): (Xαi+1, Y βi+1) is generated by the smaller pairs (X,Y γ) and
(βi+1, γαi+1) (using generated (Xαi+1, Y γαi+1)).

So X �∼ Y γ. Now assume Attacker starts playing his WS for (X,Y γ) in
(Xαi, Y γαi) while Defender plays her WS for (Xαi, Y γαi). During the play
they necessarily expose αi on one side but not on the other (when finishing

64 P. Jančar

a round); this happens within m rounds for some fixed m. This implies that
αi ∼ δαi for a fixed nonempty δ and infinitely many i. For these i, αi ∼ δαi ∼
δδαi ∼ δδδαi ∼ · · · ∼ δω. (Extending the LTS-semantics to infinite sequences is
obvious.) This is a contradiction since αi are pairwise nonbisimilar. !

We have thus demonstrated the decidability of bisimilarity on the class BPA. It
is not difficult to get some intuition that the size of the smallest possible base
(of the discussed type), if there is any, can be bounded (by a function of the size
of Δ,α0, β0) if we submerged into careful technical calculations (and developed
further ideas).

Burkart, Caucal, and Steffen [11], in fact, did this; it seems that a close anal-
ysis of their algorithm would reveal a doubly exponential complexity bound
(according to [2]).

In the normed case, where all variables have finite norm, the complexity results
look much better. Based on so called “prime decomposition”, Hirshfeld, Jerrum,
and Moller [12] showed a polynomial algorithm with complexity in O(n13). This
was recently improved to O(n8 polylog n) by Lasota and Rytter [13].

4.4 BPP (Parallel Context-Free Processes)

The decidability of bisimilarity on BPP (generated by context-free grammars
where concatenation is commutative) was shown by Christensen, Hirshfeld, and
Moller [14]; it can be presented as another instance of our general scheme.

Theorem 5. For any BPP system Δ and a pair (α0, β0) such that α0 ∼ β0 (in
LΔ), there is an effective finite base B containing (α0, β0).

We recall that each α is viewed as a (Parikh) vector (k1, k2, . . . , kn) ∈ Nn where
V = {X1, X2, . . . , Xn} and ki is the number of occurrences of Xi in α. Validity
of the congruence rule is again obvious.

Proposition 6. (In BPP,) if α ∼m α′ and β ∼m β′ then α + β ∼m α′ + β′.

(Defender matches Attacker’s move from α (β) by the relevant move from α′

(β′) and vice versa.)
We now say that a pair (α1, β1) is smaller than (α2, β2), denoted (α1, β1) <lex

(α2, β2), if it is lexicographically smaller as a vector in N2n (the leftmost com-
ponent in which the vectors differ decides the order); the well-foundedness can
be easily checked.

It is also useful to recall the following simple fact (which can be easily estab-
lished by induction on m).

Proposition 7. (Dickson’s lemma) In every infinite sequence v1, v2, . . . of vec-
tors from Nm there is i < j such that vi ≤ vj (where ≤ is taken componentwise).

Now we are ready to show the theorem (Clever can always succeed).

Proposition 8. There is no infinite sequence SEQ of bisimilar pairs such that
none of them can be generated from smaller bisimilar pairs by a sequence of
applications of the (equivalence and) congruence rule.

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 65

Proof. Suppose such SEQ (α1, β1), (α2, β2), . . . , where we can assume (i.e.,
switch the components so) that αi <lex βi for all i.

Dickson’s lemma implies (αi, βi) ≤ (αj , βj) for some i < j; since (αi, βi) �=
(αj , βj) we thus have (αi, βi) <lex (αj , βj).

But this is impossible since the smaller pairs (αi, βi) and (αj , βj − βi + αi)
generate (αj , βj).

(We note that (αi, βi) generates (αi + (βj − βi), βi + (βj − βi)) and thus
(βj , βj − βi + αi.) !

Remark. In principle, we have thus also shown a short proof that every congru-
ence on a finitely generated commutative semigroup is finitely generated (see [2]
for further references).

Dickson’s lemma guarantees finiteness but provides no upper bound directly.
An upper (and optimal) bound was provided in [15], by developing another

method. A method of so called dd-functions enables to provide a succint semilin-
ear description of the bisimulation equivalence for a given BPP system, showing
that the problem is PSPACE-complete; PSPACE-hardness for both BPP and
BPA was shown by Srba [16].

In the normed case, the bisimilarity problem for BPP is again polynomial;
prime decomposition was used to establish this in [17] but dd-functions seem
again more effective, enabling to derive O(n3) bound [18].

4.5 PDA

Sénizergues [19] showed by an involved construction that bisimilarity is decid-
able on the whole class PDA (in fact, on a slightly more general class). This was
achieved by elaboration on his techniques developed for solving the famous ques-
tion of decidability for DPDA (deterministic PDA) language equivalence [20].
Stirling found a shorter exposition of the result for DPDA [21] on which he
based a shorter proof for bisimilarity on PDA as well [22].

Remark. The solution of the DPDA problem still remains a bit “mysterious”.
Sénizergues published a simplified version in [23], while Stirling published an-
other simplified version in [24] (which also provides a complexity upper bound).
In principle, the proofs can be seen as technically more demanding instances of
the general scheme. (I will not try to sketch them in this text but I plan to give
an overview in the conference talk.)

5 Some Ideas for Undecidability

In this section we sketch a method, called Defender’s forcing, which is useful for
showing undecidability (or complexity lower bounds); for illustration we show
undecidability of bisimilarity for so called Type -1 systems (by which an open
question of Sénizergues and Stirling has been answered). The presentation is
based on [25] where further results and references can be found.

66 P. Jančar

5.1 A Variant of Post Correspondence Problem

We start by defining a variant of Post’s Correspondence Problem (PCP) which
will serve us for the illustrative reduction.

A PCP-instance INST is here defined as a nonempty sequence
(u1, v1), (u2, v2), . . . , (un, vn) of pairs of nonempty words over the alphabet
{A,B} where |ui| ≤ |vi| for all i ∈ {1, 2, . . . , n} (|u| denoting the length of u).

An infinite initial solution of a given PCP-instance is an infinite sequence
of indices i1, i2, i3, . . . from the set {1, 2, . . . , n} such that i1=1 and the infinite
words ui1ui2ui3 · · · and vi1vi2vi3 · · · are equal.

By inf-PCP we denote the problem to decide whether a given PCP-instance
has an infinite initial solution.

Proposition 9. Problem inf-PCP is Π0
1 -complete (i.e., its complement is equiv-

alent to the halting problem).

Remark. Our requirement |ui| ≤ |vi| is non-standard but it can be easily checked
to be harmless for the validity of Proposition 9 (as follows directly from an
inspection of the standard textbook reduction of the halting problem to PCP);
we use this for technical convenience.

We note the following useful fact. By a partial solution of a PCP-instance
(u1, v1), (u2, v2), . . . , (un, vn) we mean a finite sequence i1, i2, i3, . . . , i� such
that ui1ui2 . . . ui�

is a prefix of vi1vi2 . . . vi�
. For a PCP-instance, a sequence

i1, i2, i3, . . . of indices where i1 = 1 is an infinite initial solution iff for each � the
sequence i1, i2, i3, . . . , i� is a partial solution.

5.2 Type -1 Systems

Type -1 systems (in terminology used by Stirling) generalize the sequential
rewrite systems by allowing the rewrite rules of the type R

a−→ α where a ∈ A,
α ∈ V∗, and R is a regular language over V such that ε �∈ R. (For concreteness,
we can assume that R is given by a regular expression.)

A Type -1 system Δ defines the LTS LΔ where V∗ is the set of states, and
the deduction rule showing transitions in LΔ is the following.

(R a−→ α) ∈ Δ, β ∈ R, γ ∈ V∗

βγ
a−→ αγ

Thus any rule (R a−→ α) ∈ Δ represents possibly infinitely many (basic) rewrite
rules β

a−→ α where β ∈ R. We note that the out-degree of each node in LΔ is
still finite, though the in-degree can be infinite.

5.3 A Reduction of inf-PCP to Bisimilarity on Type -1 Systems

Let us consider a fixed instance INST of inf-PCP, i.e., a sequence of pairs
(u1, v1), (u2, v2), . . . , (un, vn) over the alphabet {A,B}; symbols I1, I2, . . . , In will

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 67

represent the indices 1, 2, . . . , n. We can imagine the following game: Starting
with the one-element sequence I1, Attacker repeatedly asks Defender to prolong
the current sequence Ii1Ii2 . . . Ii�

(where i1 = 1) by one Ii (of her choice); this
can be viewed as a generating phase of the game, and if Attacker lets go this
phase forever, he loses. But Attacker has always the possibility to switch to a ver-
ification phase in which it is checked whether the current sequence Ii1Ii2 . . . Ii�

represents a partial solution (i.e., whether ui1ui2 . . . ui�
is a prefix of vi1vi2 . . . vi�

);
the negative case is a win for Attacker, the positive case is a win for Defender.
It is obvious that INST has an (infinite initial) solution iff Defender has a WS
in the game.

We now want to implement the described game as the bisimulation game
starting with the pair (q0I1⊥, q′0I1⊥) of processes (states) of the below described
Type -1 system.

Since we use (sequential) prefix rewriting, it is convenient to represent the
current sequences of indices in the reversed order, as Ii�

Ii�−1 . . . Ii1⊥, and prolong
them to the left. The special symbol ⊥ is used as an endmarker (the “bottom-of-
the-stack symbol”) which here just helps to guarantee normedness (as discussed
later).

In (a play of) the bisimulation game, starting from (q0I1⊥, q′0I1⊥), the play-
ers will be creating two copies of a sequence of indices; one copy is intended to
be interpreted over ui’s, the other over vi’s (in the verification phase).

The main problem is that we have to arrange that it is Defender who decides
by which symbol Ii will both sequences be prolonged (during the generating
phase).

To this aim, we use a general idea, the essence of which is sketched on Figure 1.
Imagine we start from a pair (α, β) and there are two “legal” next-step pairs,

(α1, β1) and (α2, β2). (For example, (α, β) can represent two slightly differing
copies of a configuration C during a (nondeterministic) computation, where C

α

a

��

a

���
�

�
�

�
�

�
�

�
�

�
�

a

������������������������� β

a

����
��

��
��

��
��

��
�

a

���
��

��
��

��
��

��
��

α′

a1

����
��

��
��

��
��

��
��

a2

���
��

��
��

��
��

��
��

� β ′
1

a2

���
�

�
�

�
�

�
�

a1

��

β ′
2a1

��� �

a2

��
α1 α2 β1 β2

Fig. 1. From (α, β) Defender chooses and forces (α1, β1) or (α2, β2)

68 P. Jančar

has two possible one-step successors C1, C2 – these are represented by (α1, β1)
and (α2, β2), respectively.) The drawn (fragment of an) LTS guarantees that it
is Defender who can freely choose one of those pairs:

Attacker is, in fact, forced to play α
a−→ α′ since otherwise Defender can

install a pair with equal components – an obvious win for her. So Defender’s
turn is in the (intermediate) pair (α′, β), and she freely chooses i ∈ {1, 2} and
plays β

a−→ β′
i. In the resulting pair (α′, β′

i), Attacker is forced to use the action
ai (otherwise Defender installs an equal-component pair), and the only answer
of Defender then installs the pair (αi, βi).

Schematically, we can express this by the following “rules” (where i, j range
over {1, 2, . . . , n} for some n).

α
a−→ α′

α
a−→ β′

i β
a−→ β′

i

α′ ai−→ αi β′
i

ai−→ βi

β′
i

aj−→ αj for i �= j

(The rule α
a−→ β′

i thus stands for the n rules α
a−→ β′

1, α
a−→ β′

2, . . .,
α

a−→ β′
n, the rule β′

i

aj−→ αj , i �= j, stands for n(n−1) rules like β′
1

a2−→ α2,
β′

8
a5−→ α5, etc.)

By using frames we have highlighted the use of Defender’s forcing (DF); At-
tacker must make sure that the framed rules (corresponding to the dashed arrows
in Fig. 1) are never used (neither by him or her) since otherwise Defender can
install a pair with equal components — an obvious win for her.

We now give all the rules of our particular Type -1 system, and then explain
them in detail; the frames highlight the use of Defender’s forcing.

Notation. We let I∗ stand for the regular expression (I1 + I2 + · · ·+ In)∗. By uR

we denote the reverse image of u. By head(w) we denote the first symbol of w;
tail(w) is the rest of w. By h(w) (head-action) we mean a if head(w) = A, and
b if head(w) = B. Subscripts i, j range over {1, 2, . . . , n}; thus the rule q0

g−→ pi

stands for the n rules q0
g−→ p1, q0

g−→ p2, . . ., q0
g−→ pn, the rule pi

aj−→ q0Ij ,
i �= j, stands for n(n−1) rules like p1

a2−→ q0I2, p8
a5−→ q0I5, etc.

(G1) rules: q0
g−→ t

q0
g−→ pi q′0

g−→ pi

t
ai−→ q0Ii pi

ai−→ q′0Ii

pi
aj−→ q0Ij where i �= j

(S1) rules: q0
s−→ qu

q0(I∗)Ii
s−→ qvw q′0(I

∗)Ii
s−→ qvw for all suffixes w of vR

i

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 69

(V1) rules: quIi
h(uR

i)−→ qu tail(uR
i) qvIi

h(vR
i)−→ qv tail(vR

i)
quA

a−→ qu qvA
a−→ qv

quB
b−→ qu qvB

b−→ qv

qu⊥ e−→ ε qv⊥ e−→ ε

To show that q0I1⊥ ∼ q′0I1⊥ iff INST has an (infinite initial) solution, we
first assume that there is such a (fixed) solution i1, i2, i3, . . . and describe a
WS for Defender. The play starts with the pair (q0I1⊥, q′0I1⊥), and as long as
Attacker uses (G1)-rules (the generating phase), Defender forces that the play
goes through longer and longer pairs

(q0Ii�
Ii�−1 . . . Ii1⊥ , q′0Ii�

Ii�−1 . . . Ii1⊥) (∗)
where i1=1 and Ii1 , Ii2 , . . . , Ii�

represents a prefix of the assumed (fixed) solution
i1, i2, i3, We observe that Defender can guarantee this since it is her who
chooses Ii2 , Ii3 ,

Hence if Attacker wants to win, he has to switch (from generating to verifica-
tion), i.e., to use (S1)-rules in some pair (∗); he is then forced to use q0

s−→ qu.
Defender answers by shortening the “right-hand side” sequence so that the re-
sulting pair

(quIi�
Ii�−1 . . . Ii1⊥ , qvw IimIim−1 . . . Ii1⊥) (∗∗)

satisfies

(ui�
)R(ui�−1)

R . . . (ui1)
R = w (vim)R(vim−1)

R . . . (vi1)
R . (2)

Finally the (deterministic) (V1)-rules clearly show that Defender wins.
If INST has no solution then there is an obvious WS for Attacker. He repeat-

edly uses (G1) until a pair (∗) which does not correspond to a partial solution
appears. This will eventually happen. Then Attacker switches, using q0

s−→ qu,
and after Defender’s response we must get a pair (∗∗) where the condition (2)
does not hold. Thus the following verification phase is clearly winning for At-
tacker.

The processes q0I1⊥, q′0I1⊥ (of the Type -1 system (G1), (S1), (V1)) are
obviously normed, i.e., each process (state) reachable from them has finite norm
(can be rewritten to ε). We have thus shown the following theorem.

Theorem 10. The bisimilarity problem for (normed) Type -1 systems is Π0
1 -

complete.

5.4 Petri Nets

For completeness, we can mention that the bisimilarity problem on PN (Petri net
processes) is also Π0

1 -complete. This can be also easily shown by using Defender’s
forcing; to this aim, the nonhalting problem for Minsky counter machines is more
convenient than the (sequential) inf-PCP. (We refer the reader to [25] and the
references there.)

70 P. Jančar

6 Some Open Problems

One open decidability question, closely related to the discussed problems, con-
cerns so called PA (Process Algebra) processes; the rewrite rules are X

a−→ α
where α is a term created from variables by (a mixture) of sequential and parallel
composition. Hirshfeld and Jerrum [26] showed a procedure working in doubly-
exponential nondeterministic time for the normed PA but the question is open
for the general class PA.

Remark. A simple subcase of this problem is the “BPA vs. BPP” problem,
i.e., deciding if a given BPA process is bisimilar with a given BPP process. In the
normed case, an exponential algorithm is shown in [27]; this has been recently
improved by showing a polynomial algorithm in [28]. In the general BPA vs.
BPP problem, just decidability is known so far [29].

The situation regarding decidability of weak bisimilarity, which abstracts away
from silent (internal) actions, is much worse. The problem is then highly unde-
cidable for PDA, PA, PN (we again refer to [25]). The decidability questions are
open for both BPA and BPP.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

2. Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp.
545–623. Elsevier Science, Amsterdam (2001)

3. Kučera, A., Jančar, P.: Equivalence-checking on infinite-state systems: Techniques
and results. Theory and Practice of Logic Programming 6(3), 227–264 (2006)

4. Srba, J.: Roadmap of infinite results. In: Current Trends In Theoretical Computer
Science, The Challenge of the New Century. Formal Models and Semantics, vol. 2,
pp. 337–350. World Scientific Publishing Co., Singapore (2004),
http://www.brics.dk/∼srba/roadmap/

5. Caucal, D.: On the regular structure of prefix rewriting. Theoretical Computer
Science 106(1), 61–86 (1992)

6. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Information and Computation 86(1), 43–68 (1990)

7. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16(6), 973–989 (1987)

8. Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state
systems. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra,
pp. 391–424. Elsevier Science, Amsterdam (2001)

9. Baeten, J., Bergstra, J., Klop, J.: Decidability of bisimulation equivalence for pro-
cesses generating context-free languages. Journal of the ACM 40(3), 653–682 (1993)

10. Christensen, S., Hüttel, H., Stirling, C.: Bisimulation equivalence is decidable for
all context-free processes. Information and Computation 121, 143–148 (1995)

11. Burkart, O., Caucal, D., Steffen, B.: An elementary decision procedure for arbitrary
context-free processes. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS,
vol. 969, pp. 423–433. Springer, Heidelberg (1995)

http://www.brics.dk/~srba/roadmap/

Selected Ideas Used for Decidability and Undecidability of Bisimilarity 71

12. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimi-
larity of normed context-free processes. Theoretical Computer Science 158, 143–159
(1996)

13. Lasota, S., Rytter, W.: Faster algorithm for bisimulation equivalence of normed
context-free processes. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS,
vol. 4162, pp. 646–657. Springer, Heidelberg (2006)

14. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation is decidable for all basic
parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157.
Springer, Heidelberg (1993)

15. Jančar, P.: Strong bisimilarity on Basic Parallel Processes is PSPACE-complete.
In: Proc. 18th LiCS, pp. 218–227. IEEE Computer Society, Los Alamitos (2003)

16. Srba, J.: Strong bisimilarity of simple process algebras: Complexity lower bounds.
Acta Informatica 39, 469–499 (2003)

17. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial-time algorithm for deciding
bisimulation equivalence of normed Basic Parallel Processes. Mathematical Struc-
tures in Computer Science 6, 251–259 (1996)

18. Jančar, P., Kot, M.: Bisimilarity on normed Basic Parallel Processes can be decided
in time O(n3). In: Bharadwaj, R. (ed.) Proceedings of the Third International
Workshop on Automated Verification of Infinite-State Systems - AVIS 2004 (2004)

19. Sénizergues, G.: The bisimulation problem for equational graphs of finite outde-
gree. SIAM Journal on Computing 34(5), 1025–1106 (2005); (a preliminary version
appeared at FOCS 1998)

20. Sénizergues, G.: L(A)=L(B)? Decidability results from complete formal systems.
Theoretical Computer Science 251(1-2), 1–166 (2001); (a preliminary version ap-
peared at ICALP 1997)

21. Stirling, C.: Decidability of DPDA equivalence. Theoretical Computer Science
255(1-2), 1–31 (2001)

22. Stirling, C.: Decidability of bisimulation equivalence for pushdown processes. Re-
search Report EDI-INF-RR-0005, School of Informatics, Edinburgh University, The
latest version is downloadable from the author’s home-page (January 2000)

23. Sénizergues, G.: L(A)=L(B)? a simplified decidability proof. Theoretical Computer
Science 281(1-2), 555–608 (2002)

24. Stirling, C.: Deciding DPDA equivalence is primitive recursive. In: Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 821–832. Springer, Heidelberg (2002)

25. Jančar, P., Srba, J.: Undecidability of bisimilarity by defender’s forcing. Journal
of the ACM 55(1), 1–26 (2008)

26. Hirshfeld, Y., Jerrum, M.: Bisimulation equivalence is decidable for normed process
algebra. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999.
LNCS, vol. 1644, pp. 412–421. Springer, Heidelberg (1999)

27. Černá, I., Křet́ınský, M., Kučera, A.: Comparing expressibility of normed BPA and
normed BPP processes. Acta Informatica 36, 233–256 (1999)

28. Jančar, P., Kot, M., Sawa, Z.: Normed BPA vs. normed BPP revisited. In: Pro-
ceedings of CONCUR 2008. LNCS. Springer, Heidelberg (to appear, 2008)

29. Jančar, P., Kučera, A., Moller, F.: Deciding bisimilarity between BPA and BPP
processes. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp.
159–173. Springer, Heidelberg (2003)

The Frobenius Problem and Its Generalizations

Jeffrey Shallit�

School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1, Canada

shallit@cs.uwaterloo.ca
http://www.cs.uwaterloo.ca/~shallit

1 Introduction

Let x1, x2, . . . , xn be positive integers. It is well-known that every sufficiently
large integer can be represented as a non-negative integer linear combination
of the xi if and only if gcd(x1, x2, . . . , xn) = 1. The Frobenius problem is the
following: given positive integers x1, x2, . . . , xn with gcd(x1, x2, . . . , xn) = 1,
compute the largest integer not representable as a non-negative integer linear
combination of the xi. This largest integer is sometimes denoted g(x1, . . . , xn).

As an example, consider the following problem that appears frequently in
books of puzzles (e.g., [24]):

The Chicken McNuggets Problem:

At McDonald’s, Chicken McNuggets are available in packs of either 6,
9, or 20 nuggets. What is the largest number of McNuggets that one
cannot purchase?

The answer is g(6, 9, 20) = 43. To see that 43 is not representable, observe that
we can choose either 0, 1, or 2 packs of 20. If we choose 0 or 1 or 2 packs, then
we have to represent 43 or 23 or 3 as a linear combination of 6 and 9, which is
impossible.

To see that every larger number is representable, note that

44 = 1 · 20 + 0 · 9 + 4 · 6
45 = 0 · 20 + 3 · 9 + 3 · 6
46 = 2 · 20 + 0 · 9 + 1 · 6
47 = 1 · 20 + 3 · 9 + 0 · 6
48 = 0 · 20 + 0 · 9 + 8 · 6
49 = 2 · 20 + 1 · 9 + 0 · 6

and every larger number can be written as a multiple of 6 plus one of these
numbers.

In this survey, I will briefly discuss what is known about the Frobenius problem
and then turn to a recent generalization of the problem to words.
� Research of this author supported in part by NSERC.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 72–83, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Frobenius Problem and Its Generalizations 73

2 Brief History of the Frobenius Problem

The problem was discussed by Frobenius (1849–1917) in his lectures in the
late 1800’s — but apparently Frobenius never published anything. A related
problem was discussed by Sylvester [23, p. 134] in 1882: he gave a formula for
h(x1, x2, . . . , xn), the total number of non-negative integers not representable
as a linear combination of the xi, in the case n = 2. The modern study of the
Frobenius problem began with the 1942 paper of Brauer [3]. Applications of
the Frobenius problem occur in number theory, automata theory, sorting algo-
rithms, and many other areas. For a good survey of the Frobenius problem, see
Ramı́rez-Alfonśın [15].

3 Research on the Frobenius Problem

Previous research on the Frobenius problem can be divided into four different
areas:

1. Explicit formulas or algorithms for computing g when the dimension is
bounded;

2. Upper and lower bounds for g;
3. Formulas for g in special cases;
4. Computational complexity of g.

3.1 Explicit Formulas for g

In the case where n = 2, we have

Theorem 1. g(x, y) = xy − x− y.

Proof. Suppose xy − x − y is representable as ax + by. Then, taking the result
modulo x, we have −y ≡ by (mod x), so b ≡ −1 (mod x). Similarly, modulo y,
we get −x ≡ ax, so a ≡ −1 (mod y). But then ax + by ≥ (y − 1)x + (x− 1)y =
2xy − x− y, a contradiction. So xy − x− y is not representable.

To prove every integer larger than xy−x−y is representable, let c = x−1 mod y
and d = y−1 mod x. Then a simple calculation shows that (c− 1)y + (d− 1)x =
xy−x−y+1, so this gives a representation for g(x, y)+1. To get a representation
for larger numbers, we use the extended Euclidean algorithm to find integers e, f
such that ex − fy = 1. We just add the appropriate multiple of this equation,
reducing, if necessary, by (−y)x + xy or yx + (−x)y if a coefficient becomes
negative.

For example, for [x, y] = [13, 19], we find [2, 10] · [x, y] = 216 = g(13, 19) + 1.
Also [3,−2] · [x, y] = 1. To get a representation for 217, we just add these two
vectors to get [5, 8].

For 3 numbers, more complicated (but still polynomial-time) algorithms have
been given by Greenberg [8] and Davison [5].

Kannan [10,11] has given a polynomial-time algorithm for any fixed dimension,
but the time depends at least exponentially on the dimension and the algorithm
is very complicated.

74 J. Shallit

3.2 Upper and Lower Bounds for g

A simple upper bound can be obtained by dynamic programming [26].

Theorem 2. If a1 < a2 < · · · an, then g(a1, a2, . . . , an) < a2
n.

Proof. Consider testing each number 0, 1, 2, . . . in turn to see if it is representable
as a non-negative integer linear combination.

Then r is representable if and only if at least one of r− a1, r− a2, . . . , r− an

is representable. Now group the numbers in blocks of size an, and write a 1
if the number is representable, 0 otherwise. Clearly if j is representable, so is
j + an, so each consecutive block has 1’s in the same positions as the previ-
ous, plus maybe some new 1’s. In fact, new 1’s must appear in each consec-
utive block, until it is full of 1’s, for otherwise the Frobenius number would
be infinite. So we need to examine at most an blocks. Once a block is full,
every subsequent number is representable. Thus we have shown g(a1, a2,
. . . , an) < a2

n.

Davison [5] found lower bounds for g(x1, x2, x3). For more general lower bounds,
see [15, §3.6].

3.3 Formulas for g in Special Cases

Brauer [3] found an explicit formula for the Frobenius number in the case where
the xi are consecutive integers. This was generalized by Roberts [16] to the case
where the xi are in arithmetical progression.

3.4 Computational Complexity of g

Ramı́rez-Alfonśın [14] has proven that computing g is NP-hard under Turing-
reductions, by reducing from the integer knapsack problem. (No NP-hardness
result under Cook-reductions is currently known.)

The integer knapsack problem is

Given x1, x2, . . . , xn, and a target t, do there exist non-negative integers
ai such that

∑
1≤i≤n aixi = t ?

His reduction requires 3 calls to a subroutine for the Frobenius number g.
Despite this result, it is currently computationally feasible to solve the Frobe-

nius problem for dimensions up to 13, even with very large inputs [2,6,17].

4 Applications of the Frobenius Number

The Frobenius number has applications to sorting; specifically, to the analysis
of Shell sort, a sorting algorithm devised by D. Shell in 1959 [22]. The basic idea
is to arrange the list to be sorted in an array with j columns for some j, then
insertion sort each column, then decrease j and repeat.

The Frobenius Problem and Its Generalizations 75

For example, suppose we start with 10 5 12 13 4 6 9 11 8 1 7. We arrange the
list in 5 columns:

10 5 12 13 4
6 9 11 8 1
7

Then insertion sort each column:

6 5 11 8 1
7 9 12 13 4
10

Next, we arrange the list in 3 columns:

6 5 11
8 1 7
9 12 13
4 10

Then we insertion sort each column:

4 1 7
6 5 11
8 10 13
9 12

Finally, we use insertion sort to sort the remaining elements:
1 4 5 6 7 8 9 10 11 12 13.
The running time of Shell sort depends on the increments used. In its original

version, the increments were powers of 2, but this gives a quadratic running time.
The running time decreases to O(n3/2) if the increments 1, 3, 7, 15, 31, . . . are
used. (These numbers are the powers of 2, minus 1.) The running time decreases
further to O(n4/3) if the increments 1, 8, 23, 77, . . . are used. (These numbers are
those of the form 4j+1 + 3 · 2j + 1). Finally, the running time is O(n(log n)2) if
the increments 1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, . . . are used. (These numbers are
those of the form 2i3j).

The following result links the Frobenius problem with Shell sort.

Theorem 3. The number of steps required to r-sort a file a[1..N] that is already
r1, r2, . . . , rt-sorted is ≤ N

r g(r1, r2, . . . , rt).

Proof. The number of steps to insert a[i] is the number of elements in a[i −
r], a[i − 2r], . . . that are greater than a[i]. But if x is a linear combination of
r1, r2, . . . , rt, then a[i− x] < a[i], since the file is r1, r2, . . . , rt-sorted. Thus the
number of steps to insert a[i] is ≤ the number of multiples of r that are not
linear combinations of r1, r2, . . . , rt. This number is ≤ g(r1, r2, . . . , rt)/r.

For more details about the connection between the Frobenius number and Shell
sort, see [9,18,25,19].

76 J. Shallit

4.1 The Frobenius Problem and NFA to DFA Conversion

As is well-known, when converting an NFA of n states to an equivalent DFA via
the subset construction, 2n states are sufficient. What may be less well-known is
that this construction is optimal in the case of a binary or larger input alphabet,
in that there exist languages L that can be accepted by an NFA with n states,
but no DFA with < 2n states accepts L. However, for unary languages, the 2n

bound is not attainable. It can be proved that approximately e
√

n log n states are
necessary and sufficient in the worst case to go from a unary n-state NFA to a
DFA.

Chrobak [4] showed that any unary n-state NFA can be put into a certain
normal form, where there is a “tail” of < n2 states, followed by a single nondeter-
ministic state which has branches into different cycles, where the total number
of states in all the cycles is ≤ n. The bound of n2 for the number of states in
the tail comes from the bound we have already seen on the Frobenius problem.

5 Related Problems

As we already have seen, Sylvester published a paper in 1882 where he de-
fined h(x1, x2, . . . , xn) to be the total number of integers not representable as
an integer linear combination of the xi. He also gave the formula h(x1, x2) =
1
2 (x1 − 1)(x2 − 1).

There is a very simple proof of this formula: consider all the numbers between
0 and (x1 − 1)(x2 − 1). Then it is not hard to see that every representable
number in this range is paired with a non-representable number via the map
c→ c′, where c′ = (x1 − 1)(x2 − 1)− c− 1, and vice-versa.

However, the complexity of computing h is still open.

5.1 The Local Postage Stamp Problem

In this problem, we are given a set of denominations 1 = x1, x2, . . . , xk of stamps,
and an envelope that can contain at most t stamps. We want to determine the
smallest amount of postage we cannot provide. Call it Nt(x1, x2, . . . , xk). For
example, N3(1, 4, 7, 8) = 25.

Many papers have been written about this problem, especially in Germany and
Norway, and algorithms have been given for many special cases. Alter and Bar-
nett asked [1] if Nt(x1, x2, . . . , xk) can be “expressed by a simple formula”. The
answer is, probably not, because it is known that computing Nt(x1, x2, . . . , xk)
is NP-hard [20].

5.2 The Global Postage-Stamp Problem

The global postage-stamp problem is yet another variant: now we are given a
limit t on the number of stamps to be used, and an integer k, and the goal is to
find a set of k denominations x1, x2, . . . , xk that maximizes Nt(x1, x2, . . . , xk).

The computational complexity of this problem is unknown.

The Frobenius Problem and Its Generalizations 77

5.3 The Optimal Coin Change Problem

Yet another variant is the optimal change problem: here we are given a bound on
the number of distinct coin denominations we can use (but allowing arbitrarily
many of each denomination), and we want to find a set that minimizes the
average number of coins needed to make each amount in some range.

For example, in the US we currently use 4 denominations less than $1 for
change: 1¢, 5¢, 10¢, and 25¢. These can make change for every amount between
0¢ and 99¢, with an average cost of 4.7 coins per amount. It turns out that the
system of 4 denominations (1, 5, 18, 25) is optimal, with an average cost of only
3.89 coins per amount [21]. For Canada, where 1-dollar and 2-dollar coins are
also in general circulation, the best 6-coin systems are (1, 6, 14, 62, 99, 140) and
(1, 8, 13, 69, 110, 160), each of which give an expected 4.67 coins per transaction.

5.4 Improving the Current Coin System

One could also ask, what single denomination could we add to the current US
system to improve its efficiency in making change? The answer is, add a 32¢ piece.
For Canada, where 1-dollar and 2-dollar coins are also in general circulation, the
best coin to add is an 83¢ piece [21].

Both Europe and China use a system of denominations based on the recurring
pattern

1, 2, 5, 10, 20, 50, 100, 200, 500, . . .

This may seem natural, but a small change to

1, 3, 4, 10, 30, 40, 100, 300, 400, . . .

would decrease the average number of coins per transaction. This new system
has the following advantages:

– change can still be made on a digit-by-digit basis. For example, to make
change for 348, first do the hundreds digit (getting 300), then the tens (get-
ting 40), and then the ones (getting 4+4).

– the greedy algorithm can be used in all cases but one. The exception is that
6 = 3+3 and not 4+1+1. (Similarly, 60 = 30+30, etc.)

– assuming the uniform distribution of change denominations, on all scales
(10, 100, 1000, etc.) the new system is about 6% better.

– if one assumes change denominations are distributed by Benford’s law, the
new system is about 7% better up to 10, about 6% better up to 100, and
about 6% better up to 1000.

Japan currently uses coins based on the system

1, 5, 10, 50, 100, 500, . . .

This could be improved by changing to

1, x, 10, 10x, 100, 100x, . . .

where x is either 3 or 4.

78 J. Shallit

6 Generalizing the Frobenius Problem to Words

Above we defined g(x1, x2, . . . , xk) to be the largest integer not representable
as a non-negative integer linear combination of the xi. We can now replace the
integers xi with words (strings of symbols over a finite alphabet Σ), and ask,
what is the right generalization of the Frobenius problem?

There are several possible answers.

– Instead of non-negative integer linear combinations of the xi, we could con-
sider the regular expression x∗

1x
∗
2 · · ·x∗

k;
– Or we could consider {x1, x2, . . . , xk}∗.

Instead of the condition that gcd(x1, x2, . . . , xk) = 1, which was used to ensure
that the number of unrepresentable integers is finite, we could demand that

Σ∗ − x∗
1x

∗
2 · · ·x∗

k

or
Σ∗ − {x1, x2, . . . , xk}∗

be finite, or in other words, that

x∗
1x

∗
2 · · ·x∗

k

or
{x1, x2, . . . , xk}∗

be co-finite.
And instead of looking for the largest non-representable integer, we could ask

for the length of the longest word not in x∗
1x

∗
2 · · ·x∗

k or {x1, x2, . . . , xk}∗. This
gives us a natural generalization of the Frobenius problem to the noncommuta-
tive setting of a free monoid.

However, the first choice, x∗
1x

∗
2 · · ·x∗

k, is not very fruitful, as the following
result shows.

Theorem 4. Let x1, x2, . . . , xk ∈ Σ+. Then x∗
1x

∗
2 · · ·x∗

k is co-finite if and only
if |Σ| = 1 and gcd(|x1|, . . . , |xk|) = 1.

Proof. Let Q = x∗
1x

∗
2 · · ·x∗

k.
If |Σ| = 1 and gcd(|x1|, . . . , |xk|) = 1, then every sufficiently long unary word

can be obtained by concatenations of the xi, so Q is co-finite.
For the other direction, suppose Q is co-finite. If |Σ| = 1, let gcd(|x1|, . . . , |xk|)

= d. If d > 1, Q contains only words of length divisible by d, and so is not co-
finite. So d = 1.

Hence assume |Σ| ≥ 2,and leta, bbedistinct letters inΣ. Let � = max1≤i≤k |xi|,
the length of the longest word among the xi. Let Q′ = ((a2�b2�)k)+. Then we claim
that Q′ ∩ Q = ∅. For if none of the xi consists of powers of a single letter, then the

The Frobenius Problem and Its Generalizations 79

longest block of consecutive identical letters in any word in Q is < 2�, so no word
in Q′ can be in Q.

Otherwise, say some of the xi consist of powers of a single letter. Take any word
w in Q, and count the number n(w) of maximal blocks of 2� or more consecutive
identical letters in w. (Here “maximal” means such a block is delimited on both
sides by either the beginning or end of the word, or a different letter.) Clearly
n(w) ≤ k. But n(w′) ≥ 2k for any word w′ in Q′. Thus Q is not co-finite, as it
omits all the words in Q′.

Now let’s turn back to {x1, x2, . . . , xk}∗; this case is much more fruitful.

Example. Suppose S = Σm ∪ Σn, where gcd(m,n) = 1. Then S∗ is co-finite
and the length of the longest word not in S∗ is g(m,n). In this case, the length
of the longest omitted word is quadratic in the length of the longest word in S¿

Example. Define U1 = {1}, U2 = U1 ∪ {00, 01}, and Uk = Uk−1 ∪ {01k−20,
001k−30} for k ≥ 3. Then it is not hard to see that U∗

n omits 1i−10 for 1 ≤ i ≤ n,
and these are all the strings of length ≤ n omitted. If we define Vn = Un ∪
{1n−20}, then V ∗

n is co-finite and the longest word omitted is 1n−30. In this case
the length of the longest word omitted is only linear in the length of the longest
word in Vn. This example is due to Jui-Yi Kao.

Now suppose max1≤i≤k |xi| = n. We can obtain an exponential upper bound
on length of the longest omitted word, as follows:

Given x1, x2, . . . , xk, create a DFA accepting Σ∗−{x1, x2, . . . , xk}∗. This DFA
keeps track of the last n− 1 symbols seen, together with markers indicating all
positions within those n − 1 symbols where a partial factorization of the input
into the xi could end.

Since this DFA accepts a finite language, the longest word it accepts is
bounded by the number of states. Thus we have [12]:

Theorem 5. Let S = {x1, x2, . . . , xk} be a finite set with max1≤i≤k |xi| = n,
that is, the longest word is of length n. Then if S∗ is co-finite, the length of the
longest word not in S∗ is bounded above by 2

2|Σ|−1 (2n|Σ|n − 1).

But is an exponential upper bound attainable? Surprisingly, the answer is yes.
My Ph. D. student Zhi Xu has recently produced a class of examples {x1, x2,
. . . , xk} in which the length of the longest word is n, but the longest word in
Σ∗ − {x1, x2, . . . , xk}∗ is exponential in n. Here are his examples:

Let r(n, k, l) denote the word of length l representing n in base k, possibly
with leading zeros. For example, r(3, 2, 3) = 011. Let

T (m,n) = {r(i, |Σ|, n−m)02m−nr(i + 1, |Σ|, n−m) : 0 ≤ i ≤ |Σ|n−m − 2}.

Then we have [12]:

Theorem 6. Let m,n be integers with 0 < m < n < 2m and gcd(m,n) = 1,
and let S = Σm +Σn −T (m,n). Then S∗ is co-finite and the longest words not
in S∗ are of length g(m, l), where l = m|Σ|n−m + n−m.

80 J. Shallit

Example. Let m = 3, n = 5, Σ = {0, 1}. In this case, l = 3 · 22 + 2 = 14,
S = Σ3 + Σ5 − {00001, 01010, 10011}. Then a longest word not in S∗ is

00001010011 000 00001010011

of length 25 = g(3, 14).
Exponential length for the longest omitted word comes from choosing, for

example, n = 2m− 1.
Interestingly enough, the language S(m,n) = Σm + Σn − T (m,n) can be

accepted by an NFA with a relatively small number of states. With this obser-
vation, we get a class of NFA’s with a polynomial number of states, accepting a
finite language L such that L∗ is co-finite such that the longest word not in L∗

is of exponential length.

Theorem 7. The language S(m,n) can be accepted by an NFA with O(n2)
states and specified by a regular expression with O(n2 logn) symbols.

Proof. We can construct an NFA with m + 1 states for {0, 1}m, so it suffices
to construct an NFA for the words of length n. The NFA has seven parts that
accept seven different sublanguages, as follows. (Here # is short for 02m−n.)

1. {0, 1}n−m ({0, 1}2m−n − {02m−n}) {0, 1}n−m;
2.

⋃
2≤a<n−m {0, 1}n−m−a−1 0 La # {0, 1}n−m−a−1 1 {0, 1}a;

3.
⋃

2≤a<n−m {0, 1}n−m−a−1 1 La # {0, 1}n−m−a−1 0 {0, 1}a;
4.

⋃
1≤a<n−m {0, 1}n−m−a−1 0 1a # {0, 1}n−m−a−1({0, 1}a+1 − {10a});

5.
⋃

1≤a<n−m {0, 1}n−m−a−1 1 0a # {0, 1}n−m−a−1({0, 1}a+1 − {10a−11});
6. 0n−m#({0, 1}n−m − {0n−m−11});
7. 1n−m#{0, 1}n−m.

Here La is the language of all words of length a that include at least one 1
and one 0; this language can be accepted by an NFA with O(a) states. It can
also be specified by a regular expression with O(n log n) symbols, using divide
and conquer [7], via the following identities:

L2a = La{0, 1}a ∪ {0, 1}aLa ∪ {0a1a, 1a0a};
La+1 = La{0, 1} ∪ {0a1, 1a0}.

The idea behind the construction is that we are trying to accept all words not
of the form r(i, 2, n−m)#r(i + 1, 2, n−m). So if the first half differs from the
second half of the word, this can occur either at the bits at the end containing
at least one 0 and one 1, where carries could occur, or in more significant digits.
Expressions 2 and 3 handle the more significant digits. Expressions 4 and 5
handle numbers whose base-2 expansions end in 011 · · ·1 or 10 · · ·0, and the
error occurs there. Expression 6 handles the case i = 0 and expression 7 handles
the case i = 2n−m − 1. Finally, expression 1 handles the case where the word in
the middle is not # = 02n−m.

The Frobenius Problem and Its Generalizations 81

Zhi Xu has also generated some examples where the number of omitted words
is doubly exponential in n, the length of the longest word. Let

T ′(m,n) = {r(i, |Σ|, n−m)02m−nr(j, |Σ|, n−m) : 0 ≤ i < j ≤ |Σ|n−m − 1}.

Theorem 8. Let m,n be integers with 0 < m < n < 2m and gcd(m,n) = 1,
and let S = Σm + Σn − T ′(m,n). Then S∗ is co-finite and S∗ omits at least
2|Σ|n−m − |Σ|n−m − 1 words.

Example. Let m = 3, n = 5, Σ = {0, 1}. Then

S = Σ3 + Σ5 − {00001, 00010, 00011, 01010, 01011, 10011}

and S∗ omits 1712 > 11 = 222 − 22 − 1 words.

7 Other Possible Generalizations

Instead of considering the longest word omitted by x∗
1x

∗
2 · · ·x∗

k or {x1, x2, . . . ,
xk}∗, we might consider their state complexity.

The state complexity of a regular language L is the smallest number of states
in any DFA that accepts L [13,28]. It is written sc(L).

It turns out that the state complexity of {x1, x2, . . . , xk}∗ can be exponential
in both the length of the longest word and the number of words.

Theorem 9. Let t be an integer ≥ 2, and define words as follows:

y := 01t−10

and
xi := 1t−i−101i+1

for 0 ≤ i ≤ t−2. Let St := {0, x0, x1, . . . , xt−2, y}. Then S∗
t has state complexity

3t2t−2 + 2t−1.

Example. For t = 6 the words in St are 0 and

y = 0111110
x0 = 1111101
x1 = 1111011
x2 = 1110111
x3 = 1101111
x4 = 1011111

Using similar ideas, we can also create an example achieving subexponential
state complexity for x∗

1x
∗
2 · · ·x∗

k.

Theorem 10. Let y and xi be as defined above. Let L = (0∗x∗
1x

∗
2 · · ·x∗

n−1y
∗)e

where e = (t + 1)(t− 2)/2 + 2t. Then sc(L) ≥ 2t−2.

This example is due to Jui-Yi Kao [12].

82 J. Shallit

8 Computational Complexity

If S is represented as an NFA or regular expression, then we can show that the
problem of determining if S∗ is co-finite is NP-hard and is in PSPACE [27].
However, if S is represented as merely a list of words, we do not currently know
the computational complexity of the problem.

In a recent e-mail conversation, Oscar Ibarra suggested looking at the com-
plexity of determining if S∗ is co-finite in the case where S is over a unary
alphabet. In that case, even if S is infinite and represented by an NFA, the
decision problem is in P.

Theorem 11. Let M be an n-state unary NFA. Then L(M)∗ is co-finite if and
only if the gcd of the lengths of all words accepted by M of length ≤ n2 + 2n is
equal to 1.

Proof. Evidently L(M)∗ is co-finite if and only if the gcd of the lengths of all
words in L(M) is 1. To see that it suffices to consider words of length ≤ n2 +2n,
put M in Chrobak normal form. As mentioned previously, this is a normal form
where there is a “tail” of at most n2 states followed by a single nondeterministic
state that goes to at most n different cycles, each of which has cycle length ≤ n.
Consider computing the gcd of all word lengths of M iteratively starting with
the shortest word; at some finite length � we reach the final gcd of the lengths
of all strings. Assume � > n2 + 2n. This corresponds to following the “tail” and
then going around a cycle twice and then a bit more. Therefore � is a linear
combination of a shorter word and the cycle length. But the cycle length can be
written as the difference of a word accepted by going around the cycle 1 time
and 2 times. Therefore the gcd is unchanged if we omit �, a contradiction.

9 Open Problems

We conclude by reprising some of the open problems mentioned in this paper.

1. What is the complexity of computing h(a1, a2, . . . , an), the total number of
non-negative integers not representable as an integer linear combination of
the ai?

2. Is there a Cook reduction for the NP-hardness of the Frobenius problem?
3. What is the complexity of the following problem? Given a finite list of words

S = {x1, x2, . . . , xk}, determine if S∗ is co-finite.
4. What is the computational complexity of the global postage stamp problem?

References

1. Alter, R., Barnett, J.A.: A postage stamp problem. Amer. Math. Monthly 87,
206–210 (1980)

2. Beihoffer, D., Hendry, J., Nijenhuis, A., Wagon, S.: Faster algorithms for Frobenius
numbers. Elect. J. Combinatorics 12(1) (2005), Paper R27,
http://www.combinatorics.org/Volume 12/Abstracts/v12i1r27.html

http://www.combinatorics.org/Volume_12/Abstracts/v12i1r27.html

The Frobenius Problem and Its Generalizations 83

3. Brauer, A.: On a problem of partitions. Amer. J. Math. 64, 299–312 (1942)
4. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,

149–158 (1986); Errata 302, 497–498 (2003)
5. Davison, J.L.: On the linear diophantine problem of Frobenius. J. Number The-

ory 48, 353–363 (1994)
6. Einstein, D., Lichtblau, D., Strzebonski, A., Wagon, S.: Frobenius numbers by

lattice point enumeration. Integers 7, A15 (2007) (electronic)
7. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-w.: Regular expressions: new results

and open problems. J. Autom. Lang. Combin. 10, 407–437 (2005)
8. Greenberg, H.: Solution to a linear Diophantine equation for nonnegative integers.

J. Algorithms 9, 343–353 (1988)
9. Incerpi, J., Sedgewick, R.: Improved upper bounds on shellsort. J. Comput. System

Sci. 31, 210–224 (1985)
10. Kannan, R.: Solution of the Frobenius problem. In: Veni Madhavan, C.E. (ed.)

Proc. 9th Conf. Found. Software Tech. Theor. Comput. Sci. LNCS, vol. 405, pp.
242–251. Springer, Heidelberg (1989)

11. Kannan, R.: Lattice translates of a polytope and the Frobenius problem. Combi-
natorica 12, 161–177 (1992)

12. Kao, J.-Y., Shallit, J., Xu, Z.: The Frobenius problem in a free monoid. In: Albers,
S., Weil, P. (eds.) STACS 2008, 25th Annual Symposium on Theoretical Aspects of
Computer Science, Dagstuhl Seminar Proceedings, Germany, pp. 421–432 (2008)

13. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk. SSSR 194, 1266–1268 (1970); In Russian. English translation in Soviet Math.
Dokl. 11, 1373–1375 (1970)

14. Ramı́rez-Alfonśın, J.L.: Complexity of the Frobenius problem. Combinatorica 16,
143–147 (1996)

15. Ramı́rez-Alfonśın, J.L.: The Diophantine Frobenius Problem. Oxford University
Press, Oxford (2005)

16. Roberts, J.B.: Note on linear forms. Proc. Amer. Math. Soc. 7, 465–469 (1956)
17. Roune, B.H.: Solving thousand-digit Frobenius problems using Gröbner bases. J.

Symbolic Comput. 43, 1–7 (2008)
18. Sedgewick, R.: A new upper bound for shellsort. J. Algorithms 7, 159–173 (1986)
19. Selmer, E.S.: On shellsort and the Frobenius problem. BIT 29, 37–40 (1989)
20. Shallit, J.: The computational complexity of the local postage stamp problem.

SIGACT News 33(1), 90–94 (2002)
21. Shallit, J.: What this country needs is an 18-cent piece. Math. Intelligencer 25(2),

20–23 (2003)
22. Shell, D.L.: A high-speed sorting procedure. Commun. ACM 27, 30–32 (1959)
23. Sylvester, J.J.: On subinvariants, i.e. semi-invariants to binary quantics of an un-

limited order. Amer. J. Math. 5, 119–136 (1882)
24. Vardi, I.: Computational Recreations in Mathematica. Addison-Wesley, Reading

(1991)
25. Weiss, M.A., Sedgewick, R., Hentschel, E., Pelin, A.: Shellsort and the Frobenius

problem. Congr. Numer. 65, 253–260 (1988)
26. Wilf, H.S.: A circle-of-lights algorithm for the money-changing problem. Amer.

Math. Monthly 85, 562–565 (1978)
27. Xu, Z., Shallit, J.: An NP-hardness result on the monoid Frobenius problem

(preprint, 2008), http://arxiv.org/abs/0805.4049
28. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

http://arxiv.org/abs/0805.4049

Well Quasi-orders in Formal Language Theory�

Flavio D’Alessandro1 and Stefano Varricchio2

1 Dipartimento di Matematica, Università di Roma “La Sapienza”
Piazzale Aldo Moro 2, 00185 Roma, Italy

dalessan@mat.uniroma1.it
2 Dipartimento di Matematica, Università di Roma “Tor Vergata”

via della Ricerca Scientifica, 00133 Roma, Italy
varricch@mat.uniroma2.it

Abstract. The concept of well quasi-order is a generalization of the
classical notion of well order and plays a role in the studying of sev-
eral problems of Mathematics and Theoretical Computer Science. This
paper concerns some applications of well quasi-orders to Formal Lan-
guage Theory. In particular, we present a survey of classical and recent
results, based upon such structures, concerning context-free and regular
languages. We also focus our attention to some application of well quasi-
orders in the studying of languages obtained by using the operators of
shuffle and iterated shuffle of finite languages.

Keywords: Well quasi-orders, finite automata, context-free languages,
shuffle, iterated shuffle.

1 Introduction

The concept of well quasi-order is a generalization of the classical notion of well
order. A quasi-order on a set S is called a well quasi-order (wqo) if every non-
empty subset X of S has at least one minimal element in X but no more than
a finite number of (non-equivalent) minimal elements. There exist various char-
acterizations of this concept which was often rediscovered by different authors
(see [20]). The concept of well quasi-order plays a role in the studying of many
problems of Mathematics and Theoretical Computer Science. For this reason,
well quasi-orders have been widely investigated in the past and there exists a
large literature on this subject. Recently, in the theory of language equations,
remarkable results based on wqo’s have been obtained by M. Kunc [22]. These
results have been culminating in the negative solution of the famous conjecture
by Conway claiming the regularity of the maximal solutions of the commutative
language equation XL = LX where L is a finite language of words [21]. On the
other hand, using wqo’s, in [22] it is proved that the maximal solution of the
inequality XK ⊆ LX is a regular language whenever L is so. In this paper, we
offer a survey of some classical and recent results about the applications of well
� The first author acknowledges the partial support of ‘‘fundings ‘‘Facoltà di
Scienze MM. FF. NN. 2006’’ of the University of Rome ‘‘La Sapienza’’.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 84–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Well Quasi-orders in Formal Language Theory 85

quasi-orders in Formal Language Theory. The first part of the paper presents
two basic theorems that give a deep insight into combinatorics on words and
languages. The first is due to Higman [15] and it gives a very general theorem on
division orders in abstract algebras that in the case of semigroups becomes: Let
S be a semigroup quasi-ordered by a division order ≤. If there exists a generating
set of S well quasi-ordered by ≤, then S will also be so. The second is a remark-
able generalization of the famous Myhill-Nerode theorem on regular languages.
In [11] Ehrenfeucht et al. proved that a language is regular if and only if it is up-
wards closed with respect to a monotone well quasi-order. From this result many
regularity conditions have been derived (see for instance [1,8,9,10]). Monotone
quasi-orders can be associated naturally with the derivation relations of suitable
semi-Thue systems, so that one can prove the regularity of a language gener-
ated by a semi-Thue system by showing the wqo property of the corresponding
derivation relation. In [11] a class of semi-Thue systems called unitary is studied.
In particular unitary systems whose derivation relation is a wqo are character-
ized. By applying this result and the generalized Myhill-Nerode theorem, one
can obtain a remarkable condition that assures that a language generated by
a unitary system is regular. Another important application is the regularity of
the languages on a binary alphabet generated by copying systems [1]. We also
present a new generalization [2,3] of Higman’s theorem to context-free languages
while in Section 5 an improvement [4,5] of the above mentioned result for uni-
tary systems is described. In the last section, we consider some applications of
well quasi-orders in the studying of languages obtained by using the operators
of shuffle and iterated shuffle of finite languages.

2 Preliminaries

The main notions and results concerning quasi-orders and languages are shortly
recalled in this section. Let A be a finite alphabet and let A∗ be the free monoid
generated by A. The elements of A are usually called letters and those of A∗

words. The identity of A∗ is denoted ε and called the empty word. A non-empty
word w ∈ A∗ can be written uniquely as a sequence of letters as w = a1a2 · · · an,
with ai ∈ A, 1 ≤ i ≤ n, n > 0. The integer n is called the length of w and
denoted |w|. For all a ∈ A, |w|a denotes the number of occurrences of the letter
a in w. If w is the empty word, then we set |w| = 0 and, for any a ∈ A, |w|a = 0.
Let w ∈ A∗. The word u ∈ A∗ is a factor of w if there exist p, q ∈ A∗ such that
w = puq. If w = uq, for some q ∈ A∗ (resp. w = pu, for some p ∈ A∗), then u is
called a prefix (resp. a suffix) of w.

The set of all prefixes (resp. suffixes, factors) of w is denoted Pref(w) (resp.
Suff(w), Fact(w)). A word u is a subsequence of a word v if u = a1a2 · · · an,
v = v1a1v2a2 · · · vnanvn+1 with ai ∈ A, vi ∈ A∗. A subset L of A∗ is called a
language. If L is a language of A∗, then Alph(L) is the smallest subset B of A
such that L ⊆ B∗. Moreover, Pref(L) denotes the set of the prefixes of all words
of L. A subset X of a semigroup S is called recognizable if there exists a finite
index congruence of S that saturates X , that is X is a union of cosets of the

86 F. D’Alessandro and S. Varricchio

congruence. The family of recognizable languages of S is denoted Rec(S). Let P
be a subset of a semigroup S. Then the sets P−1S and SP−1 are defined as:

P−1S = {t ∈ S | ∃ p ∈ P, s ∈ S | s = pt},

and
SP−1 = {t ∈ S | ∃ p ∈ P, s ∈ S | s = tp}.

A binary relation ≤ on a set S is a quasi-order (qo) if ≤ is reflexive and
transitive. Moreover, if ≤ is symmetric, then ≤ is an equivalence relation. The
meet ≤ ∩≤−1 is an equivalence relation ∼ and the quotient of S by ∼ is a poset
(partially ordered set). A quasi-order ≤ in a semigroup S is monotone on the
right (resp. on the left) if for all x1, x2, y ∈ S

x1 ≤ x2 implies x1y ≤ x2y (resp. yx1 ≤ yx2).

A quasi-order is monotone if it is monotone on the right and on the left.
An element s ∈ X ⊆ S is minimal in X with respect to ≤ if, for every x ∈ X ,

x ≤ s implies x ∼ s. For s, t ∈ S if s ≤ t and s is not equivalent to t mod ∼,
then we set s < t.

A quasi-order in S is called a well quasi-order (wqo) if every non-empty subset
X of S has at least one minimal element but no more than a finite number of
(non-equivalent) minimal elements. We say that a set S is well quasi-ordered
(wqo) by ≤, if ≤ is a well quasi-order on S.

There exist several conditions which characterize the concept of well quasi-
order and that can be assumed as equivalent definitions (cf. [10]).

Theorem 1. Let S be a set quasi-ordered by ≤. The following conditions are
equivalent:

i. ≤ is a well quasi-order;
ii. every infinite sequence of elements of S has an infinite ascending subse-

quence;
iii. if s1, s2, . . . , sn, . . . is an infinite sequence of elements of S, then there exist

integers i, j such that i < j and si ≤ sj;
iv. there exists neither an infinite strictly descending sequence in S (i.e., ≤ is

well founded), nor an infinity of mutually incomparable elements of S.

A partial order satisfying the wqo property is also called a well partial order.
The quasi-orders considered in this paper are actually partial orders. However,
according to the current terminology, we refer to them as quasi-orders. Let σ =
{si}i≥1 be an infinite sequence of elements of S. Then σ is called good if it
satisfies condition iii. of Theorem 1 and it is called bad otherwise, that is, for
all integers i, j such that i < j, si �≤ sj . It is worth noting that, by condition
iii. above, a useful technique to prove that ≤ is a wqo on S is to prove that no
bad sequence exists in S.

Let ≤ be a quasi-order on a set S and let X be a subset of S. We say that
X is upwards closed, or simply closed, with respect to ≤, if x ≤ y and x ∈ S
implies y ∈ S.

Well Quasi-orders in Formal Language Theory 87

Following [10], we recall that a rewriting system, or semi-Thue system, on an
alphabet A is a pair (A, π) where π is a binary relation on A∗. Any pair of
words (p, q) ∈ π is called a production and denoted by p → q. Let us denote by
⇒π the derivation relation of π, that is, for u, v ∈ A∗, u⇒π v if

∃ (p, q) ∈ π and ∃ h, k ∈ A∗ such that u = hpk, v = hqk.

The derivation relation ⇒∗
π is the transitive and reflexive closure of ⇒π. One

easily verifies that ⇒∗
π is a monotone quasi-order on A∗.

3 Generalized Myhill-Nerode Theorem and Highman
Theorem

According to the classical Myhill-Nerode theorem, one can obtain a characteri-
zation of recognizable subsets of a semigroup in terms of finite index congruence
of the semigroup. A remarkable extension of this theorem was obtained in [11]
in terms of wqo.

Theorem 2. A subset X of a semigroup S is recognizable if and only if X is
closed with respect to a monotone well quasi-order in S.

In Sections 4 and 5 we will consider some applications of the previous theorem
to formal languages. It is useful to recall that recognizable sets of a semigroup
can be described also by using equivalence relations, monotone on the right or
on the left. More precisely, a classical theorem by Nerode states that a subset X
is recognizable if and only if there exists a finite index equivalence, monotone on
the right (resp. on the left) that saturates X . In this context, a result connected
with Theorem 2 was proposed in [9,10]. If X is a subset of a semigroup S, then
we associate with X a quasi-order ≤r

X defined as: for any s, t ∈ S,

s ≤r
X t ⇐⇒ s−1X ⊆ t−1X.

The relation ≤r
X is monotone on the right. Similarly, one can associate a

quasi-order, monotone on the left ≤l
X defined as: s ≤l

X t ⇐⇒ Xs−1 ⊆ Xt−1.
In analogy with the theorem by Nerode, one can ask whether the wqo property
of ≤r

X implies the regularity of X . The answer is negative. Indeed, for instance,
one can check that the language L = {anbm | n ≥ m ≥ 0} is not regular while,
on the other hand, ≤l

X is a wqo. However, a partial generalization of Nerode’s
theorem and of Theorem 2 as well is the following.

Theorem 3. A subset X of a semigroup S is recognizable if and only if the
quasi-orders ≤r

X and ≤l
X are wqo.

As a consequence one has:

Corollary 1. A subset X of a semigroup S is recognizable if and only if X is
closed with respect to a left and to a right monotone well quasi-order in S.

88 F. D’Alessandro and S. Varricchio

Another important result proved in the wqo theory is the Higman theorem. We
recall that a quasi-order ≤ in a semigroup S is said to be a division order or a
divisibility order if it is monotone and, moreover, for all s ∈ S and x, y ∈ S1,
s ≤ xsy. The ordering by divisibility in abstract algebras was studied by Higman
who proved in [15] a very general theorem that, in the case of semigroups, has
the following statement.

Theorem 4. Let S be a semigroup quasi-ordered by a divisibility order ≤. If
there exists a generating set of S well quasi-ordered by ≤, then S will be also so.

It is worth recalling that in [20] Kruskal extends Higman’s result, proving that
certain embeddings on finite trees are well quasi-orders. Moreover, in [17] some
extensions of Higman and Kruskal’s theorem to regular languages and rational
trees have been given. In particular, we recall the following generalization of
Kruskal’s theorem:

Theorem 5. Let A be a wqo alphabet and let T be the family of the rational k-
ary trees, with nodes labeled by A. Then the natural embedding relation induced
on T is a wqo.

A remarkable consequence of Theorem 4 is the following. Let S = A∗ be the free
monoid generated by an alphabet A quasi-ordered by a relation ≤. The relation
≤ can be extended to A∗ as follows. Let u, v ∈ A∗. We set u ≤ v if

u = a1 · · · an, ai ∈ A, i = 1, ..., n,

v ∈ A∗b1A
∗b2A

∗ · · ·A∗bnA
∗, bi ∈ A, i = 1, ..., n,

where
ai ≤ bi, i = 1, ..., n.

Trivially, the relation defined above is a division order, called subsequence
ordering, and if ≤ is a wqo on A, then, by Higman theorem, its extension is
a wqo on A∗. In the sequel, we refer to this result as the Higman theorem in
the free monoid. It can be proved that the subsequence ordering is the smallest
division order in A∗.

In [3] a new generalization of Higman theorem has been given. This result
is based upon the notion of division order on a language: given a language L
over the alphabet A, a quasi order ≤ on A∗ is called a division order on L if
it is monotone and for any u, v ∈ L if u is factor of v then u ≤ v. When L is
the whole free monoid A∗ this notion is equivalent to the classical one, but, in
general, a quasi-order on A∗ could be a division order on a set L and not on A∗.
Let G = (V,A, P) be a context-free grammar, where V = {A1, . . . , Ak} is the
alphabet of the variables, A is the alphabet of the terminal symbols and P is the
set of the productions. For any i, 1 ≤ i ≤ k, denote Li the language generated
by G assuming the variable Ai as start symbol. The following theorem holds [3].

Well Quasi-orders in Formal Language Theory 89

Theorem 6. Let G = (V,A, P) be a context-free grammar and, according to the
previous notation, let L =

⋃n
i=1 Li be the union of all languages generated by

the variables of G. If ≤ is a division order on L, then ≤ is a well quasi-order
on L.

As an immediate corollary of the previous theorem, we have that if L is a context-
free language generated by a grammar with only one variable, then any division
order on L is a wqo on L. This generalizes Higman theorem on finitely generated
free monoids since, for any finite alphabet A, the set A∗ can be generated by
a context-free grammar having only one variable. It is possible to give a slight
generalization of the notion of division order on languages as follows.

Definition 1. Let L ⊆ A∗ be a language and let ≤ be a monotone quasi-order.
Then ≤ is a weak division order on L if for any u, x, y ∈ A∗ such that u, xuy, xy ∈
L, one has u ≤ xuy.

We observe that any division order on L is a weak division order on L but the
converse is false. Moreover, any weak division order on A∗ is a division order.
By using some combinatorial arguments akin to that used to prove Theorem 6,
one can prove the following theorem.

Theorem 7. Let L be a context-free language containing the empty word and
generated by a context-free grammar with only one variable. Then any weak
division order on L is a wqo on L.

4 Copying Systems

In this section we describe how Theorem 2 has been used to prove the regularity
of some relevant formal languages. We consider the case of copying systems
and languages generated by them, introduced in [14]. In that paper it is proved
that, when the alphabet has cardinality at least three, such languages are not, in
general, regular (see Theorem 10). In the case of a binary alphabet, the languages
generated by copying systems are actually all regular [1].

Let A = {a, b} and let (A, π) be the rewriting system with π = {(x, xx) | x ∈
A∗}. The derivation relation ⇒∗

π is called copying relation. We can also consider
a restricted copying relation denoted as ⇒∗

π′ where

π′ = {(a, aa), (b, bb), (ab, abab), (ba, baba)}.

Trivially ⇒∗
π′ ⊆ ⇒∗

π.

Theorem 8. The derivation relation ⇒∗
π′ is a well quasi-order on A∗.

Let us remark that one can easily prove (cf [1]) that the rewriting system π′ is,
in fact, equivalent to π. Moreover, π′ is the smallest set of rules among those
which are equivalent to π. Therefore, the following result easily follows.

Theorem 9. The derivation relation ⇒∗
π is a well quasi-order on A∗.

90 F. D’Alessandro and S. Varricchio

Corollary 2. Let L ⊆ A∗ be a language which is closed with respect to ⇒∗
π.

Then L is a regular language.

Proof. The statement is a consequence of Theorem 9 and Theorem 2.

Let us now consider a free monoid B∗ and the copying relation ⇒∗
π in B∗. For

any w ∈ B∗ we consider the set Lw,π defined as

Lw,π = {u ∈ B∗ | w ⇒∗
π u}.

If a word w contains at least three distinct letters, then the language Lw,π is
not regular [14].

Theorem 10. Let w ∈ B∗ be a word such that Card(Alph(w)) ≥ 3. Then Lw,π

is not regular.

Proposition 1. Let B be a finite alphabet and w ∈ B∗. Then Lw,π is regular if
and only if w contains at most two distinct letters.

Proof. By Theorem 10, if w is a word containing at least three distinct letters,
then Lw,π is not a regular language. Hence, if Lw,π is regular, then
Card(Alph(w)) ≤ 2. Conversely, suppose that d = Card(Alph(w)) ≤ 2. If d = 0,
then w = ε and Lw,π = {ε} is regular. If d = 1, then w ∈ a∗ with a ∈ B and
Lw,π = a|w|a∗ is regular. If d = 2, since Lw,π is closed with respect to ⇒∗

π, then
from Corollary 2 the result follows.

5 Well Quasi-orders and Unitary Grammars

Other applications of great interest of wqo to Formal Language Theory are based
upon the notion of unitary grammar introduced in [11]. Let us present these results.
A semi-Thue system is called unitary if π is a finite set of productions of the kind

ε→ u, u ∈ I, I ⊆ A+.

Such a system, also called unitary grammar, is then determined by the finite
set I ⊆ A+. Its derivation relation is denoted by ⇒∗

I (or, simply, ⇒∗). We set
Lε

I = {u ∈ A∗ | ε ⇒∗ u}. A language L is called unitary if there exists a finite
set of words I such that L = Lε

I . Unitary grammars have been introduced in
order to study the relationships between the classes of context-free and regular
languages. Let us consider this aspect with more attention. Unitary languages
are context-free since, given a language Lε

I , a context-free grammar generating
Lε

I can be constructed from the set I in the obvious way.

Example 1. Let A = {a, b} and let I = {ab}. One can verify that the language
Lε

I is the language of the so called semi Dyck words over A. We recall that a
word u over the alphabet A is said to be a semi-Dyck word if |u|a = |u|b and,
moreover, for every prefix p of u, |p|a ≥ |p|b. This language is context-free non
regular. Similarly, if I = {ab, ba}, then Lε

I is the language of Dyck words over
A, that is, of all words u such that |u|a = |u|b. The very same result holds for
every alphabet A = {a1, ..., ak, b1, ..., bk}.

Well Quasi-orders in Formal Language Theory 91

By the well-known Chomsky-Schützenberger theorem, every context-free lan-
guage is the homomorphic image of the intersection of a Dyck language with a
regular one. Since the class of regular languages is closed under homomorphism
and intersection and since Dyck languages are unitary, these facts indicate that,
at least, some unitary languages capture the non regular aspect of a context-free
language. This argument eventually lead to investigate the conditions assuring
the regularity of a unitary language. In this theoretical setting, an important
theorem proven in [11] is based upon the notion of unavoidable set. This notion
is classical and well-known in the field of Combinatorics on Words (see [23], Ch.
1). A set I of words is said to be unavoidable (on the set A = Alph(I)) if ev-
ery sufficiently long word over A has a factor that belongs to I. A set is said
to be avoidable if it is not unavoidable. The next two examples prefigurate an
important characterization, given with Theorem 11 below, of unavoidable sets
of words in terms of the wqo property of the unitary grammars.

Example 2. Let A∗ be the free monoid generated by the alphabet A = {a, b}.
Set I = {a, bb}. Then the set I is clearly unavoidable since, any word of length at
least 2 contains a factor in I. On the other hand, one can check that the derivation
relation ⇒∗

I is a wqo on A∗. The same result holds in the case I = {aa, ab, ba, bb}

Example 3. Let A∗ be the free monoid generated by the alphabet A = {a, b}.
Set I = {ab}. Then the set I is clearly avoidable since, for instance, every power
of the letter a avoids I. On the other hand the derivation relation ⇒∗

I is not a
wqo on A∗. Indeed, one can verify that the sequence {an}n≥0 is bad with respect
to the relation ⇒∗

I .

Theorem 11. Let I be a finite set of A+ and assume that A = Alph(I). Then
the derivation relation ⇒∗

I is a wqo on A∗ if and only if the set I is unavoidable.

The following remark concerns a noteworth application of Theorem 11.

Example 4. Let A∗ be the free monoid genereted by the alphabet A. Obviously,
A is unavoidable in A∗. Set I = A. Then the derivation relation ⇒∗

I is the
subsequence ordering on A∗. According to Theorem 11, the derivation relation
⇒∗

I is a wqo on A∗. Thus we obtain Higman Theorem in the free monoid.

A straighforward corollary of Theorem 11 gives a regularity condition for lan-
guages generated by unitary grammars.

Corollary 3. Let I be a finite set of A+ and assume that A = Alph(I). The
following conditions are equivalent:

i. the derivation relation ⇒∗
I is a wqo on A∗;

ii. the set I is unavoidable;
iii. the language Lε

I is regular.

Example 5. Let us consider again Example 1. Since I = {ab}, the language Lε
I

is the language of semi Dyck words. This language is context-free non regular
and I is avoidable.

92 F. D’Alessandro and S. Varricchio

Example 6. Let us consider again Example 2. One can easily check that Lε
I is

the shuffle of a∗ and {bb}∗, and thus it is regular.

A short comment on the proof of the corollary above. Since the language Lε
I

is closed with respect to the derivation relation ⇒∗
I , the implication ii.⇒ iii. is

immediately obtained by applying Theorem 2 to Lε
I . On the other hand, one can

prove the implication iii. ⇒ i., by showing that, if I is an avoidable set, then
the language Lε

I is not regular. This last task can be done by using a suitable
anti-pumping argument.

One can ask if, in Corollary 3, the condition i. can be replaced by the weaker
condition that the relation ⇒∗

I is a wqo on Lε
I . The positive answer to this

question was given in [4,5], by proving the following Theorem 12.

Theorem 12. The derivation relation ⇒∗
I is a wqo on A∗ if and only if ⇒∗

I is
a wqo on Lε

I .

We mention that another important contribution to the field of formal languages
whose proof is based upon Corollary 3 was given by Senizergues in [26]. Here
it is proved that every rational subset of a free group is either recognizable
or disjunctive, that is the syntactic congruence associated with the set is the
identical relation. This result can be viewed as an extension of the classical
Kleene theorem to rational sets of free groups and gives a positive answer to an
open problem raised by Sakarovitch. The reader is referred to [25] for a complete
survey on this problem.

6 On Other Well Quasi-orders

One can consider a possible extension of the results presented in the previous
section, Theorem 12, Corollary 3 and Theorem 11, with respect to other signif-
icant quasi orders. If I is a finite set of words, let us associate with I a binary
relation &∗

I defined as the transitive and reflexive closure of &I where v &I w if

v = v1v2 · · · vn+1,

w = v1a1v2a2 · · · vnanvn+1,

where the ai’s are letters, and a1a2 · · · an ∈ I. We set Lε
�I

= {w ∈ A∗ | ε &∗
I w}.

In [13], the following theorem has been proved.

Theorem 13. Let I ⊆ A+ and assume that A = Alph(I). The following condi-
tions are equivalent:

i. the derivation relation &∗
I is a wqo on A∗;

ii. the set I is subsequence unavoidable in A∗, that is there exists a positive
integer k such that any word u ∈ A∗, with |u| ≥ k, contains as a subsequence
a word of I;

iii. the language Lε
�I

is regular.

Well Quasi-orders in Formal Language Theory 93

In [13] it is also proved that I is subsequence unavoidable if and only if, for every
a ∈ A, I ∩ {a}+ �= ∅.

Example 7. Let A∗ be the free monoid generated by the alphabet A = {a, b}.
Set I = {ab}. Then the set I is clearly subsequence avoidable since, for instance,
every power of the letter a avoids I. Moreover, it is easily seen that the derivation
relation &∗

I is not a wqo on A∗. Indeed, one can verify that the sequence {an}n≥0

is bad with respect to the relation &∗
I . On the other hand, one can verify that

Lε
�I

= Lε
I , so that this language is equal to the language of the semi Dyck words.

Another interesting property of the relation &∗
I is the following consequence of

Theorem 7 proven in [3].

Proposition 2. Let I ⊆ A+. Then &∗
I is a well quasi order on Lε

I .

Proof. The language Lε
I is generated by a context-free grammar with only one

variable and ε ∈ Lε
I . Moreover, the relation &∗

I is a weak division order over Lε
I .

The statement, then, follows from Theorem 7.

By the previous proposition, it is natural to ask whether &∗
I is a wqo on Lε

�I

or not. The answer is negative. In fact, we can exhibit a set I such that the
quasi-order &∗

I is not a wqo on Lε
�I

. For this purpose, let A = {a, b, c, d} be a
four-letter alphabet and let Ā = {ā, b̄, c̄, d̄} be a disjoint copy of A. Let Ã = A∪Ā
and let I = {aā, bb̄, cc̄, dd̄}. Now consider the sequence {Sn}n≥1 of words of Ã∗

defined as: for every n ≥ 1,

Sn = adbb̄cc̄ā(ad̄dcc̄cc̄ā)nad̄bb̄ā.

The following result holds.

Proposition 3. The sequence {Sn}n≥1 is bad with respect to &∗
I . Moreover, the

elements of {Sn}n≥1 belong to Lε
�I

and so &∗
I is not a wqo on Lε

�I
.

We can summarize the relationships between, on one hand, the quasi-orders &∗
I

and ⇒∗
I , and, on the other hand, the languages Lε

�I
and Lε

I by the following list:

– There exists a finite set I such that ⇒∗
I is not a wqo on Lε

I ;
– There exists a finite set I such that &∗

I is not a wqo on Lε
�I

;
– For any finite set I the relation &∗

I is a wqo on Lε
I .

The theoretical setting we have described, suggests to ask whether Theorem
13 may be extended by replacing condition (i) with the weaker condition that the
derivation relation &∗

I is a wqo on Lε
�I

. Unfortunately this is not true. Indeed, by
the previous Example 7, if I = {ab}, Lε

�I
= Lε

I is the language of all semi-Dyck
words over the alphabet {a, b}. By Proposition 2, &∗

I is a well quasi order on
Lε
�I

= Lε
I while this language is not regular. This example lead us to further

investigate the relation between Lε
�I

and &∗
I . The results of this investigation

will be presented in the next section.

94 F. D’Alessandro and S. Varricchio

7 Well Quasi-orders and Shuffle Closure of Finite
Languages

Given a set I of word, the set Lε
�I

is, actually, the set of all the words obtained
by the shuffle of (copies of) words of I. Moreover, the relation &∗

I is a natural
partial order over Lε

�I
. Observe also that for any u, v in Lε

�I
, u &∗

I v if and
only if v is the shuffle of u and another word of Lε

�I
. In [5], the authors have

opened the problem of the characterization of the finite sets I such that &∗
I is a

well quasi-order on Lε
�I

. In this section we present the results of [6,7], where a
complete answer is given in the case when I consists of a single word w.

In this context, it is worth noticing that in [5] is proved that &∗
{w} is not a wqo

on Lε
�{w}

if w = abc. A simple argument allows one to extend the result above
in the case that w = aibjch, i, j, h ≥ 1. By using a simple technical argument,
this implies that if a word w contains three distinct letters at least, then &∗

{w}
is not a wqo on Lε

�{w}
. Therefore, in order to characterize the word w such that

&∗
{w} is a wqo on Lε

�{w}
, one can consider only the case when w is a word on the

binary alphabet {a, b}. Let E be the exchange morphism (E(a) = b, E(b) = a),
and let w̃ be the mirror image of w.

Definition 2. A word w is called bad if one of the words w, w̃, E(w) and E(w̃)
has a factor of one of the two following forms

akbh with k, h ≥ 2 (1)
akbalbm with k > l ≥ 1,m ≥ 1 (2)

A word w is called good if it is not bad.

One can prove that a word is good if and only if it is a factor of (ban)ω or (abn)ω

for some n ≥ 0. The following result characterizes the set of good words in terms
of the wqo property [6,7].

Theorem 14. Let w be a word over the alphabet {a, b}. The derivation relation
&∗
{w} is a wqo on Lε

�{w}
if and only if w is good.

Corollary 4. Let w be a word over the alphabet {a, b}. The derivation relation
&∗
{w} is a wqo on Lε

�{w}
if and only if w is a factor of (ban)ω or (abn)ω for some

n ≥ 0.

References

1. Bovet, D.P., Varricchio, S.: On the regularity of languages on a binary alphabet
generated by copying systems. Information Processing Letters 44, 119–123 (1992)

2. D’Alessandro, F., Varricchio, S.: On well quasi-orders on languages. In: Ésik, Z.,
Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 230–241. Springer, Heidelberg
(2003)

3. D’Alessandro, F., Varricchio, S.: Well quasi-orders and context-free grammars. The-
oretical Computer Science 327(3), 255–268 (2004)

Well Quasi-orders in Formal Language Theory 95

4. D’Alessandro, F., Varricchio, S.: Avoidable sets and well quasi orders. In: Calude,
C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 139–150.
Springer, Heidelberg (2004)

5. D’Alessandro, F., Varricchio, S.: Well quasi-orders, unavoidable sets, and derivation
systems. RAIRO Theoretical Informatics and Applications 40, 407–426 (2006)

6. D’Alessandro, F., Richomme, G., Varricchio, S.: Well quasi orders and the shuffle
closure of finite sets. In: H. Ibarra, O., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036,
pp. 260–269. Springer, Heidelberg (2006)

7. D’Alessandro, F., Richomme, G., Varricchio, S.: Well quasi-orders and context-free
grammars. Theoretical Computer Science 377(1–3), 73–92 (2007)

8. de Luca, A., Varricchio, S.: Some regularity conditions based on well quasi-orders.
In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 356–371. Springer, Heidelberg
(1992)

9. de Luca, A., Varricchio, S.: Well quasi-orders and regular languages. Acta Infor-
matica 31, 539–557 (1994)

10. de Luca, A., Varricchio, S.: Finiteness and regularity in semigroups and formal
languages. EATCS Monographs on Theoretical Computer Science. Springer, Berlin
(1999)

11. Ehrenfeucht, A., Haussler, D., Rozenberg, G.: On regularity of context-free lan-
guages. Theoretical Computer Science 27, 311–332 (1983)

12. Harju, T., Ilie, L.: On well quasi orders of words and the confluence property.
Theoretical Computer Science 200, 205–224 (1998)

13. Haussler, D.: Another generalization of Higman’s well quasi-order result on Σ∗.
Discrete Mathematics 57, 237–243 (1985)

14. Ehrenfeucht, A., Rozenberg, G.: On regularity of languages generated by copying
systems. Discrete Applied Mathematics 8, 313–317 (1984)

15. Higman, G.H.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 3, 326–336 (1952)

16. Ilie, L., Salomaa, A.: On well quasi orders of free monoids. Theoretical Computer
Science 204, 131–152 (1998)

17. Intrigila, B., Varricchio, S.: On the generalization of Higman and Kruskal’s theo-
rems to regular languages and rational trees. Acta Informatica 36, 817–835 (2000)

18. Ito, M., Kari, L., Thierrin, G.: Shuffle and scattered deletion closure of languages.
Theoretical Computer Science 245(1), 115–133 (2000)

19. Jantzen, M.: Extending regular expressions with iterated shuffle. Theoretical Com-
puter Science 38, 223–247 (1985)

20. Kruskal, J.: The theory of well quasi-ordering: a frequently discovered concept. J.
Combin. Theory, Ser. A 13, 297–305 (1972)

21. Kunc, M.: The power of commuting with finite sets of words. In: Diekert, V.,
Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 569–580. Springer, Heidelberg
(2005)

22. Kunc, M.: Regular solutions of language inequalities and well quasi-orders. Theo-
retical Computer Science 348(2-3), 277–293 (2005)

23. Lothaire: Algebraic combinatorics on words. In: Encyclopedia of Mathematics and
its applications. Cambridge University Press, Cambridge (2002)

24. Puel, L.: Using unavoidable sets of trees to generalize Kruskal’s theorem. J. Sym-
bolic Comput. 8(4), 335–382 (1989)

25. Sakarovitch, J.: Éléments de théorie des automates, Vuibert, Paris (2003)
26. Senizergues, G.: On the rational subsets of the free group. Acta Informatica 33(3),

281–296 (1996)

On the Non-deterministic Communication

Complexity of Regular Languages

Anil Ada�

School of Computer Science, McGill University
aada@cs.mcgill.ca

Abstract. In this paper we study the non-deterministic communication
complexity of regular languages. We show that a regular language has
either constant or at least logarithmic non-deterministic communication
complexity. We prove several linear lower bounds which we know cover
a wide range of regular languages with linear complexity. Furthermore
we find evidence that previous techniques (Tesson and Thérien 2005) for
proving linear lower bounds, for instance in deterministic and probabilis-
tic models, do not work in the non-deterministic setting.

1 Introduction

The notion of communication complexity was introduced by Yao [16] in light
of its applications to parallel computers. Following this seminal work, it has
been shown to have many more applications where the need for communica-
tion is not explicit and thus has become the “Swiss Army knife” of complexity
theory. These applications include time/space lower bounds for VLSI chips [9],
time/space tradeoffs for Turing Machines [3], data structures [9], boolean circuit
lower bounds [6,8], pseudorandomness [3], separation of proof systems [4] and
lower bounds on the size of polytopes representing NP -complete problems [15].

It is an intriguing task to better understand the landscape of communication
complexity and thus other areas of complexity theory. A natural starting point is
to comprehend the complexity of regular languages, which in some sense are the
simplest languages with respect to the usual time/space complexity framework.
Perhaps surprisingly, regular languages form a non-trivial case study with respect
to communication complexity. There are hard regular languages even in very
powerful models of communication complexity. Furthermore, some of the very
well-known and studied functions in this area such as Disjointness and Inner
Product are equivalent to regular languages from a communication complexity
perspective.

In [13], it was established that the class of regular languages having O(f)
deterministic communication complexity forms a language variety and so the
question of the communication complexity of regular languages has an algebraic
answer. In a follow up work [14], a complete algebraic characterization of the

� Supported by the research grants of Prof. Denis Thérien.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 96–107, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Non-deterministic Communication Complexity of Regular Languages 97

communication complexity of regular languages was established in the determin-
istic, simultaneous, probabilistic, simultaneous probabilistic and Modp-counting
models. These results unmasked an interesting complexity gap: In all of the
above models, the complexity of a regular language falls into one of four classes
O(1), Θ(log log n), Θ(log n) or Θ(n). In contrast, we note that for any function
f with 1 ≤ f ≤ n, it is possible to construct a non-regular language with com-
plexity Θ(f) for any of these models.

In this paper we are interested in the non-deterministic communication
complexity of regular languages. To get a similar characterization for the non-
deterministic model, one needs the notions of positive language varieties and
ordered monoids. This is because the syntactic monoid of a regular language does
not distinguish between a language and its complement. Differing from the mod-
els mentioned earlier, non-deterministic complexity of a function and its com-
plement may not be equal. So regular languages having O(f) non-deterministic
communication complexity do not form a variety but a positive variety.

Adopting this refined approach, we take the first steps towards a complete
classification for the non-deterministic communication complexity of regular
languages. We identify the regular languages having constant non-deterministic
complexity. We show that if a regular language does not have constant complex-
ity than it has Ω(logn) complexity, revealing a complexity gap. We also obtain
several linear lower bound results which we know cover a wide range of regular
languages having linear complexity. These bounds point out sufficient condi-
tions for not being in the positive variety Pol(Com), providing us with some
nice combinatorial intuition about this variety. Finally we find evidence that
previous techniques used in [14] for proving linear lower bounds, for instance
in deterministic and probabilistic models, do not work in the non-deterministic
setting.

Organization. In Sect. 2 and Sect. 3, we give the necessary background on
algebraic automata theory and communication complexity respectively. In Sect.
4, we define the communication complexity of a regular language and a monoid.
Furthermore, we show that the non-deterministic communication complexity
of regular languages admits an algebraic characterization. Section 5 is devoted
to the bounds we have on the non-deterministic communication complexity of
regular languages and ordered monoids.

2 Algebraic Automata Theory

We refer the reader to [11] for further background on algebraic automata theory
with an emphasis on the more general theory of ordered monoids.

A monoid (M ,·) is a set M together with an associative binary operation ·
and an identity 1M ∈ M which satisfies 1M ·m = m · 1M = m for any m ∈ M .
An order relation on a set S is a relation that is reflexive, anti-symmetric and
transitive and it is denoted by ≤. We say that ≤ is a stable order relation on a
monoid M if for all x, y, z ∈ M , x ≤ y implies zx ≤ zy and xz ≤ yz. An ordered
monoid (M,≤M) is a monoid M together with a stable order relation ≤M that

98 A. Ada

is defined on M . A morphism of ordered monoids Φ : (M,≤M) → (N,≤N) is a
morphism between M and N that also preserves the order relation, i.e. for all
m,m′ ∈M , m ≤M m′ implies Φ(m) ≤N Φ(m′).

A subset I ⊆ M is called an order ideal if for any y ∈ I, x ≤M y implies
x ∈ I. Every order ideal I in a finite monoid M has a generating set x1, ..., xk

such that I = 〈x1, ..., xk〉 := {y ∈ M : ∃xi with y ≤M xi}. We say that a
language L ⊆ Σ∗ is recognized by an ordered monoid (M,≤M) if there exists a
morphism of ordered monoids Φ : (Σ∗,=) → (M,≤M) and an order ideal I ⊆M
such that L = Φ−1(I).

Define the syntactic congruence as follows: x ≡L y if for all u, v ∈ Σ∗ we have
uxv ∈ L iff uyv ∈ L. The syntactic monoid is the quotient monoid M(L) =
Σ∗/ ≡L. Let x �L y if for all u, v ∈ Σ∗, uyv ∈ L =⇒ uxv ∈ L. So x ≡L y
if and only if x �L y and y �L x. Now �L induces a well-defined stable order
≤L on M(L) given by [x] ≤L [y] if and only if x �L y. The ordered monoid
(M(L),≤L) is the syntactic ordered monoid of L.

We say that an ordered monoid (N,≤N) divides an ordered monoid (M,≤M)
if there exists a surjective morphism of ordered monoids from a submonoid of
(M,≤M) onto (N,≤N). We know that (M(L),≤L) recognizes L and divides any
other ordered monoid that also recognizes L.

We say that a family of ordered monoids V is a variety of ordered monoids if
it is closed under division of ordered monoids and finite direct product1. A class
of languages V is called a positive variety of languages if it is closed under finite
intersection, finite union, inverse morphisms, left and right quotients.

Given a variety of finite ordered monoids V, let V be the set of languages
whose syntactic ordered monoid belongs to V. The Variety Theorem originally
due to Eilenberg [5] and adapted to the ordered case by Pin [10] states that V
is a positive variety of languages and the mapping V 	→ V is one to one.

The polynomial closure of a set of languages L in Σ∗ is a family of languages
such that each of them is a finite union of L0a1L1...akLk, where k ≥ 0, ai ∈ Σ
and Li ∈ L. If V is a variety of languages, then we denote by Pol(V) the class of
languages that is the polynomial closure of V . We know that Pol(V) is a positive
variety [12].

We say that the concatenation L0a1L1...akLk is unambiguous if all words
x ∈ L0a1L1...akLk has a unique factorization x = w0a1w1...akwk with wi ∈ Li.
We denote by UPol(V) the variety of languages consisting of disjoint unions of
unambiguous concatenations L0a1L1...akLk with Li ∈ V (in some sense, there
is only one witness for x in L ∈ UPol(V)). Similarly we denote by ModpPol(V)
the language variety generated by the languages for which membership depends
on the number of factorizations mod p.

An element e ∈ M is called idempotent if e2 = e. For any finite M , there is
a number k > 0 such that for every element m ∈ M , mk is an idempotent. We
call k an exponent of M .

1 The order in a finite direct product M1 × ... × Mn is given by (m1, ..., mn) ≤
(m′

1, ..., m
′
n) iff mi ≤ m′

i ∀i ∈ [n].

On the Non-deterministic Communication Complexity of Regular Languages 99

3 Communication Complexity

We present here a quick introduction to communication complexity but refer the
reader to the great book of Kushilevitz and Nisan [9] for further details.

In the deterministic model, two players, Alice and Bob, wish to compute a
function f : SnA×SnB → T where S and T are finite sets. Alice is given x ∈ SnA

and Bob y ∈ SnB and they collaborate in order to obtain f(x, y) by exchanging
bits using a common blackboard according to some predetermined communica-
tion protocol P . This protocol determines whose turn it is to write, furthermore
what a player writes is a function of that player’s input and the information ex-
changed thus far. When the protocol ends, its output P(x, y) ∈ T is a function
of the blackboard’s content. We say that P computes f is P(x, y) = f(x, y) for
all x, y and define the cost of P as the maximum number of bits exchanged for
any input. The deterministic communication complexity of f , denoted D(f) is
the cost of the cheapest protocol computing f . We will be interested in the com-
plexity of functions f : S∗ × S∗ → T and will thus consider D(f) as a function
from N× N to N and study its asymptotic behaviour.

In a non-deterministic communication protocol P another player, say God,
having access to both x and y first sends to Alice and Bob a proof π. Al-
ice and Bob then follow an ordinary deterministic protocol P ′ with output in
{0, 1}. The protocol P accepts the input (x, y) if and only if there is some
proof π such that the output of the ensuing deterministic protocol P ′ outputs
1. The cost of a non-deterministic protocol is the maximum number of bits ex-
changed in the protocol (including the bits of π) for any input (x, y). We denote
the non-deterministic communication complexity of a language L as N1(L). The
co-non-deterministic communication complexity of L, denoted N0(L) is the non-
deterministic communication complexity of L’s complement.

Let PDISJ be the following promise problem. Alice gets a set x ⊆ [n] and
Bob a set y ⊆ [n] with the guarantee that |x ∩ y| ≤ 1 and PDISJ(x, y) = 1
if and only if x ∩ y = ∅. One can show N1(PDISJ) = Ω(n) (see [1]). Define
two more problems: LT (x, y) = 1 iff x ≤ y when x and y are viewed as n-bit
integers; IPq(x, y) = 1 iff

∑n
i=1 xiyi ≡ 0 mod q. It is well known that both

functions have Ω(n) non-deterministic communication complexity.
Communication complexity classes were introduced in [2] in which an

“efficient” protocol was defined to have cost no more than poly-logarithmic, i.e.
O(logc n) for a constant c. Thus one obtains communication complexity classes
analogous to P and NP in the following way: P cc := {f |D(f) = polylog(n)},
NP cc := {f |N1(f) = polylog(n)}.

4 Algebraic Approach to Communication Complexity

In general, we want to study the communication complexity of functions which
do not explicitly have two inputs. In the case of regular languages and ordered
monoids we use a form of worst-case partition definition. Formally, the commu-
nication complexity of a pair (M, I) where M is a finite ordered monoid and I is

100 A. Ada

an order ideal in M is the communication complexity of the monoid evaluation
problem corresponding to M and I: Alice is given m1,m3, ...,m2n−1 and Bob is
given m2,m4, ...,m2n such that each mi ∈ M . They want to decide if the prod-
uct m1m2...m2n is in I. The communication complexity of M is the maximum
complexity of (M, I) where I ranges over all order ideals in M .

Similarly, the communication complexity of a regular language L ⊆ A∗ is the
communication complexity of the following problem: Alice and Bob respectively
receive a1, a3, . . . a2n−1 and a2, a4, . . . , a2n where each ai is either in A or is the
neutral letter ε and they want to determine whether a1a2 . . . a2n belongs to L.

The following two lemmas establish the soundness of an algebraic approach
to the communication complexity of regular languages.

Lemma 1. Let L ⊆ A∗ be regular and M = M(L). Then N1(M) = Θ(N1(L)).

Proof. It is straightforward to show N1(L) = O(N1(M)). To show N1(M) =
O(N1(L)), we present a protocol for (M, I) where I = 〈i1, ..., ik〉 is some order
ideal in M .

Let Φ be the accepting morphism. For each monoid element m, fix a word
that is in the preimage of m under Φ, and denote it by wm. Let Ya := {(u, v) :
uav ∈ L}. Recall that a �L b if for all u, v ∈ Σ∗, ubv ∈ L =⇒ uav ∈ L. So
Φ(a) ≤L Φ(b) iff a �L b iff Yb ⊆ Ya. For each Ya and Yb with Yb �⊆ Ya, pick (u, v)
such that (u, v) ∈ Yb but (u, v) /∈ Ya. Let K be the set of all these (u, v). One
can think of K as containing a witness for Yb �⊆ Ya for each such pair. Note that
K is finite. Now pad each wm and each word appearing in a pair in K with the
neutral letter ε so that each of these words have the same constant length.

Now the protocol is as follows. Suppose Alice is given ma
1 ,m

a
2 , ...,m

a
n and Bob

is given mb
1,m

b
2, ...,m

b
n. For each ij they want to determine if ma

1m
b
1...m

a
nm

b
n ≤L

ij. This is equivalent to determining if wma
1mb

1...ma
nmb

n
�L wij , which is equivalent

to wma
1
wmb

1
...wma

n
wmb

n
�L wij . If this is not the case, Ywij

�⊆ Ywma
1

w
mb

1
...wma

n
w

mb
n

and so there will be a witness of this in K, i.e. there exists (u, v) such that
uwijv ∈ L but uwma

1
wmb

1
...wma

n
wmb

n
v /∈ L. If indeed wma

1
wmb

1
...wma

n
wmb

n
�L wij

then for each (u, v) ∈ K with uwijv ∈ L, we will have uwma
1
wmb

1
...wma

n
wmb

n
v ∈ L.

Using the protocol for L, Alice and Bob check which of the two cases is true. !

In particular the non-deterministic complexity of an ordered monoid M is, up
to a constant, the maximal communication complexity of any regular language
that it can recognize.

Lemma 2. For any increasing f : N → N the class of monoids such that N1(M)
is O(f) forms a variety of ordered monoids.

Proof. The closure of this class under direct product is obvious. Suppose N ≺M ,
so there is a surjective morphism φ from a submonoid M ′ of M onto N . Denote
by φ−1(n) a fixed element from the preimage of n. Let I be an order ideal in
N . A protocol for (N, I) is as follows. Alice is given na

1 , n
a
2 , ..., n

a
t and Bob is

given nb
1, n

b
2, ..., n

b
t . They want to decide if na

1n
b
1...n

a
t n

b
t ∈ I. This is equivalent to

deciding if φ−1(na
1)φ

−1(nb
1)...φ

−1(na
t)φ−1(nb

t) ∈ φ−1(I). It is easy to see φ−1(I)

On the Non-deterministic Communication Complexity of Regular Languages 101

is an order ideal in M ′ so Alice and Bob can use the protocol for M ′ to decide
if the above is true. Therefore we have N1(N) ≤ N1(M ′). It is straightforward
to check that N1(M ′) ≤ N1(M) and so N1(N) ≤ N1(M) as required. !

To compare the communication complexity of two languages K,L in different
models, Babai et al. [2] defined rectangular reductions from K to L which are, in-
tuitively, reductions which can be computed privately by Alice and Bob without
any communication cost. We give here a form of this definition which specifically
suits our needs. Let u = u1u2 . . . uk be a word over M , i.e. u ∈ M∗. We denote
by eval(u) the corresponding monoid element, i.e. eval(u) = u1 · ... · uk.

Definition 3. Let f : {0, 1}n × {0, 1}n → {0, 1}, M a finite ordered monoid
and I an order ideal in M . A rectangular reduction of length t from f to (M, I)
is a sequence of 2t functions a1, b2, a3, ..., a2t−1, b2t with ai : {0, 1}n → M and
bi : {0, 1}n → M and such that for every x, y ∈ {0, 1}n we have f(x, y) = 1 if
and only if eval(a1(x)b2(y)...b2t(y)) is in I.

Such a reduction transforms an input (x, y) of the function f into a sequence
of 2t monoid elements m1,m2, ...,m2t where the odd-indexed mi are obtained as
a function of x only and the even-indexed mi are a function of y.

We write f ≤t
r (M, I) to indicate that f has a rectangular reduction of length

t to (M, I). When t = O(n) we omit the superscript t. It should be clear that
if f ≤t

r (M, I) and f has communication complexity Ω(g(n)), then (M, I) has
communication complexity Ω(g(t−1(n))).

We will be interested in a special kind of rectangular reduction which we call a
local rectangular reduction. In a local rectangular reduction, Alice converts each
bit xi to a sequence of s monoid elements ma

i,1,m
a
i,2, ...,m

a
i,s by applying a fixed

function a : {0, 1} → M s. Similarly Bob converts each bit yi to a sequence of
s monoid elements mb

i,1,m
b
i,2, ...,m

b
i,s by applying a fixed function b : {0, 1} →

M s. f(x, y) = 1 iff eval(ma
1,1m

b
1,1...m

a
1,sm

b
1,s......m

a
n,1m

b
n,1...m

a
n,sm

b
n,s) ∈ I. The

reduction transforms an input (x, y) into a sequence of 2sn monoid elements.
Let a(z)k denote the kth coordinate of the tuple a(z). We specify this kind of
local transformation with a 2× 2s matrix:

a(0)1 b(0)1 a(0)2 b(0)2 a(0)s b(0)s

a(1)1 b(1)1 a(1)2 b(1)2 a(1)s b(1)s

It is convenient to see which words the transformation produces for all possible
values of xi and yi. For simplicity let us assume s is even.

xi yi corresponding word over M
0 0 a(0)1b(0)1...a(0)sb(0)s

0 1 a(0)1b(1)1a(0)2b(1)2...a(0)sb(1)s

1 0 a(1)1b(0)1a(1)2b(0)2...a(1)sb(1)s

1 1 a(1)1b(1)1...a(1)sb(1)s

102 A. Ada

5 Bounds for Regular Languages and Monoids

Lemma 4 ([14]). IfM is commutative thenD(M)=O(1) and thusN1(M)=O(1).

Lemma 5 (Adapted from [14]). If M is not commutative then for any order
on M we have N1(M) = Ω(logn).

Proof. Since M is not commutative, there must be a, b ∈ M such that ab �= ba.
Therefore either ab �≤M ba or ba �≤M ab. W.l.o.g. assume ba �≤M ab. Let I = 〈ab〉.
We show that LT ≤2n

r (M, I). Alice gets x and constructs a sequence of 2n

monoid elements in which a is in position x and 1M is in everywhere else. Bob
gets y and constructs a sequence of 2n monoid elements in which b is in position
y and 1M is in everywhere else. If x ≤ y then the product of the monoid elements
is ab which is in I. If x > y then the product is ba which is not in I. !

Denote by Com the positive language variety corresponding to the variety of com-
mutative monoids Com. The above two results show that regular languages that
have constant non-deterministic communication complexity are exactly those
languages in Com .

Lemma 6. If L ⊆ A∗ is a language of Pol(Com) then N1(L) = O(log n).

Proof. Suppose L is a union of t languages of the form L0a1L1...akLk. Alice
and Bob know beforehand the value of t and the structure of each of these t
languages. So a protocol for L is as follows. Assume Alice is given xa

1 , ..., x
a
n

and Bob is given xb
1, ..., x

b
n. God communicates to Alice and Bob which of the

t languages the word xa
1x

b
1...x

a
nx

b
n resides in. This requires a constant number

of bits to be communicated since t is a constant. Then God communicates the
positions of each ai. This requires k logn bits of communication where k is a
constant. The validity of the information communicated by God can be checked
by Alice and Bob by checking if the words in between the ai’s belong to the
right languages. Since these languages are in Com, this can be done in constant
communication. Therefore in total we require only O(log n) communication. !

From the above proof, we see that we can actually afford to communicate
O(log n) bits to check that the words between the ai’s belong to the corre-
sponding language. In other words, we could have Li ∈ Pol(Com). Note that
this does not mean that this protocol works for a strictly bigger class since
Pol(Pol(Com)) = Pol(Com).

Denote by UP the subclass of NP in which the languages are accepted by
a non-deterministic Turing Machine having exactly one accepting path (or one
witness) for each string in the language. It is known that UP cc = P cc ([15]).
From [14] we know that regular languages having O(log n) deterministic com-
munication complexity are exactly those languages in UPol(Com) and regu-
lar languages having O(log n) Modp counting communication complexity are
exactly those languages in ModpPol(Com). Furthermore, it was shown that
any regular language outside of UPol(Com) has linear deterministic complexity
and any regular language outside of ModpPol(Com) has linear Modp counting

On the Non-deterministic Communication Complexity of Regular Languages 103

complexity. So with respect to regular languages, UP cc = P cc = UPol(Com)
and ModpP

cc = ModpPol(Com). Similarly we conjecture that with respect to
regular languages NP cc = Pol(Com) and that other regular languages have
linear non-deterministic complexity.

Conjecture 7. If L ⊆ Σ∗ is a regular language that is not in Pol(Com), then
N1(L) = Ω(n). Thus we have

N1(L) =

⎧
⎨

⎩

O(1) if and only if L ∈ Com;
Θ(log n) if and only if L ∈ Pol(Com) but not in Com ;
Θ(n) otherwise.

In general, the gap between deterministic and non-deterministic communication
complexity of a function can be exponentially large. However, it has been shown
that the deterministic communication complexity of a function f is bounded
above by the product cN0(f)N1(f) for a constant c and that this bound is
optimal [7]. The above conjecture, together with the result of [14] imply the
following much tighter relation for regular languages.

Conjecture 8 (Corollary to Conjecture 7). If L is a regular language then D(L) =
max{N1(L), N0(L)}.

For any variety V , we have that Pol(V)∩co-Pol(V) = UPol(V) [11]. This implies
that N1(L) = O(log n) and N0(L) = O(log n) iff D(L) = O(log n), proving a
special case of the above corollary.

Conjecture 7 suggests that when faced with a non-deterministic communica-
tion problem for regular languages, the players have three options. They can ei-
ther follow a trivial protocol that does not exploit the power of non-determinism
or apply non-determinism in the most natural way as for the complement of
the functions Disjointness and Equality. Otherwise the best protocol up to a
constant factor is for one of the players to send all of his/her bits to the other
player, a protocol that works for any function in any model. So with respect to
regular languages, there is no “tricky” way to apply non-determinism to obtain
cleverly efficient protocols.

To prove a linear lower bound for the regular languages outside of Pol(Com),
we need a convenient algebraic description for the syntactic monoids of these lan-
guages since in most cases lower bound arguments rely on these algebraic prop-
erties. So an important question that arises in this context is: What does it mean
to be outside of Pol(Com)? An algebraic description exists based on a result of
[12] that describes the ordered monoid variety corresponding to Pol(Com).

Lemma 9. Suppose L is not in Pol(Com) and M is the syntactic ordered
monoid of L with exponent ω. Then there exists u, v ∈ M∗ such that

(i) for any monoid M ′ ∈ Com and any morphism φ : M → M ′, we have
φ(eval(u)) = φ(eval(v)) and φ(eval(u)) = φ(eval(u2)),

(ii) eval(uωvuω) �≤ eval(uω).

104 A. Ada

We now present the linear lower bound results. The proofs of the next two lem-
mas can be adapted from [14] to the non-deterministic case using the following
simple fact.

Proposition 10. Any stable order defined on a group G must be the trivial
order (equality).

Proof. Assume the claim is false, so there exists a, b ∈ G such that a �= b and
a ≤ b. This means 1 ≤ a−1b =: g. Since 1 ≤ g, we have 1 ≤ g ≤ g2 ≤ . . . ≤ gk = 1
for some k. This implies 1 = g, i.e. a = b. !

Lemma 11. If M is a non-commutative group then N1(M) = Ω(n).

We say that M is a Tq monoid if there exists idempotents e, f ∈ M such that
(ef)qe = e but (ef)re �= e when q does not divide r.

Lemma 12. If M is a Tq monoid for q > 1 then N1(M) = Ω(n).

The next lemma captures regular languages that come close to the description
of Lemma 9. A word w is a shuffle of n words w1, ..., wn if

w = w1,1w2,1...wn,1w1,2w2,2...wn,2 w1,kw2,k...wn,k

with k ≥ 0 and wi,1wi,2...wi,k = wi is a partition of wi into subwords for 1 ≤
i ≤ n.

Lemma 13. If M and u, v ∈ M∗ are such that (i) u = w1w2 for w1, w2 ∈
M∗, (ii) v is a shuffle of w1 and w2, (iii) eval(u) is an idempotent, and (iv)
eval(uvu) �≤ eval(u), then N1(M) = Ω(n).

Proof. We show that PDISJ ≤r (M, I) where I = 〈eval(u)〉. Since v is a shuffle
of w1 and w2, there exists k ≥ 0 such that v = w1,1w2,1w1,2w2,2...w1,kw2,k. The
reduction is essentially local and is given by the following matrix when k = 3.
The transformation easily generalizes to any k.

w1 ε ε ε ε w2,1 ε w2,2 ε w2,3

w1,1 w2,1 w1,2 w2,2 w1,3 w2,3 ε ε ε ε

xi yi corresponding word
0 0 w1w2,1w2,2w2,3 = u
0 1 w1w2,1w2,2w2,3 = u
1 0 w1,1w1,2w1,3w2,1w2,2w2,3 = u
1 1 w1,1w2,1w1,2w2,2w1,3w2,3 = v

After x and y have been transformed into words, Alice prepends her word with
u and appends it with |u| many ε’s, where |u| denotes the length of the word u.
Bob prepends his word with |u| many ε’s and appends it with u. Let a(x) be the
word Alice has and let b(y) be the word Bob has after these transformations. If
PDISJ(x, y) = 0, there exists i such that xi = yi = 1. By the transformation,

On the Non-deterministic Communication Complexity of Regular Languages 105

this means a(x)1b(x)1a(x)2b(x)2...a(x)sb(x)s is of the form u...uvu...u and since
eval(u) is idempotent, eval(a(x)1b(x)1a(x)2b(x)2...a(x)sb(x)s) = eval(uvu) �≤
eval(u). If PDISJ(x, y) = 1, then by the transformation, a(x)1b(x)1...a(x)sb(x)s

is of the form u...u and so eval(a(x)1b(x)1a(x)2b(x)2...a(x)sb(x)s) = eval(u).
Thus PDISJ ≤r (M, 〈eval(u)〉). !

The conditions of this lemma imply the conditions of Lemma 9: since eval(u)
is idempotent, for any monoid M ′ ∈ Com and any morphism φ : M → M ′,
we have φ(eval(u)) = φ(eval(u2)) and since v is a shuffle of w1 and w2 we have
φ(eval(u)) = φ(eval(v)). Also, since eval(u) is idempotent, eval(uω) = eval(u),
and in this case eval(uvu) �≤ eval(u) is equivalent to eval(uωvuω) �≤ eval(uω).

Lemma 13 gives us a corollary about the monoid BA+
2 which is defined to be

the syntactic ordered monoid of (ab)∗ ∪ a(ba)∗. The syntactic ordered monoid
of the complement of this language is BA−

2 . The unordered syntactic monoid is
denoted by BA2 and is known as the Brandt monoid.

Corollary 14. N1(BA+
2) = Ω(n).

Proof. It is easy to verify that BA+
2 is the monoid {a, b}∗ with the relations

aa = bb, aab = aa, baa = aa, aaa = a, aba = a, bab = b. All we need to know
about the order relation is that eval(aa) is greater than any other element. This
can be derived from the definition of the syntactic ordered monoid since for any
w1 and w2, w1aaw2 is not in L. So w1aaw2 ∈ L =⇒ w1xw2 ∈ L trivially holds
for any word x. Let u = ab and v = ba. These u and v satisfy the four conditions
of Lemma 13. The last condition is satisfied because eval(uvu) = eval(abbaab) =
eval(aa) and eval(ab) �= eval(aa). Thus N1(BA+

2) = Ω(n). !

Denote by U− the syntactic ordered monoid of the regular language (a∪b)∗aa(a∪
b)∗. The syntactic ordered monoid of the complement of this language is U+. The
unordered syntactic monoid is denoted by U . Observe that N1(U−) = O(log n)
since all we need to do is check if there are two consecutive a’s. One also easily
sees that N1(BA−

2) = O(log n). By an argument similar to the one for Corollary
14, one can show that N1(U+) = Ω(n).

Combining the linear lower bound results we can conclude the following.

Theorem 15. If M is a Tq monoid for q > 1 or is divided by one of BA+
2 , U+

or a non-commutative group, then N1(M) = Ω(n).

We underline the relevance of the above result by stating a theorem which we
borrow from [14].

Theorem 16 (implicit in [14]). If M is such that D(M) �= O(log n) then
M is either a Tq monoid for some q > 1 or is divided by one of BA2, U or a
non-commutative group.

As a consequence, we know that if an ordered monoid M is such that N1(M) �=
O(log n) then M is either a Tq monoid or is divided by one of BA+

2 , BA−
2 , U+,

U− or a non-commutative group.
As a corollary to Theorem 15 and Lemma 6 we have:

106 A. Ada

(a) L4 ∈ Pol(GSol).

a

a, bb
a

1 2

3

(b) L5 ∈ Pol(GNil,2).

a, b

b

a

a

b

1 2

34

Fig. 1. Two examples. The missing arrows go to an accepting sink state.

Corollary 17. If M(L) is a Tq monoid or is divided by one of BA+
2 , U+ or a

non-commutative group, then L is not in Pol(Com).

Consider the syntactic ordered monoid of the regular language recognized by
the automaton in Fig. 1(a). One can show that it does not contain a non-
commutative group, is not a Tq monoid and is not divided by BA+

2 nor U+.
On the other hand, using Lemma 13 with u = abbaa and v = aabab we can show
that it requires linear non-deterministic communication. Thus this lower bound
is not achievable by previously known methods and highlights the importance
of Lemma 13.

The regular language L5 accepted by the automaton in Fig. 1(b) is a concrete
example of a language not in Pol(Com) and where all our techniques fail. In
particular, it shows that the conditions in Lemma 13 do not cover every regular
language outside of Pol(Com). We know that L5 lies in Pol(GNil,2) where GNil,2

denotes the variety of languages whose syntactic monoid is a nilpotent group of
class 2. These groups are “almost” commutative so L5 in some sense comes close
to being in Pol(Com).

For the deterministic and probabilistic models where PDISJ is a hard func-
tion, one can observe that all the linear lower bounds obtained in [14] go through
a local rectangular reduction from PDISJ since PDISJ reduces both to Dis-
jointness and Inner Product. One might hope to obtain all the non-deterministic
lower bounds in this manner as well. Given Lemma 9, one would want a local
reduction of the form

xi yi corresponding word
0 0 uω

0 1 uω

1 0 uω

1 1 v

where u and v satisfy the conditions of Lemma 9.

Lemma 18. There is no local reduction from PDISJ to L5 as described above.

Acknowledgements. The author gratefully acknowledges Pascal Tesson and
Denis Thérien for introducing him to the problem and for very insightful

On the Non-deterministic Communication Complexity of Regular Languages 107

discussions. We also thank Jean-Eric Pin whose valuable input has been ac-
quired through Pascal Tesson.

References

1. Ada, A.: Non-deterministic communication complexity of regular languages. Mas-
ter’s thesis (2008)

2. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory (preliminary version). In: FOCS 1986: Proceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science, pp. 337–347 (1986)

3. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)

4. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for Lovasz-Schrijver systems
and beyond follow from multiparty communication complexity. SIAM Journal on
Computing 37(3), 845–869 (2007)

5. Eilenberg, S.: Automata, Languages, and Machines. Academic Press, Inc., Orlando
(1974)

6. Grolmusz, V.: Separating the communication complexities of MOD m and MOD p
circuits. In: IEEE Symposium on Foundations of Computer Science, pp. 278–287
(1992)

7. Halstenberg, B., Reischuk, R.: On different modes of communication. In: STOC
1988: Proceedings of the twentieth annual ACM symposium on Theory of comput-
ing, pp. 162–172. ACM, New York (1988)

8. H̊astad, J., Goldmann, M.: On the power of small-depth threshold circuits. Com-
putational Complexity 1, 113–129 (1991)

9. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, Cambridge (1997)

10. Pin, J.-E.: A variety theorem without complementation. Russian Mathematics
(Izvestija vuzov.Matematika) 39, 80–90 (1995)

11. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of formal languages, ch. 10, vol. 1, pp. 679–746. Springer, Heidelberg (1997)

12. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. In: Fülöp, Z.,
Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 348–359. Springer, Heidelberg
(1995)

13. Raymond, J.-F., Tesson, P., Thérien, D.: An algebraic approach to communication
complexity. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS,
vol. 1443, pp. 29–40. Springer, Heidelberg (1998)

14. Tesson, P., Thérien, D.: Complete classifications for the communication complexity
of regular languages. Theory Comput. Syst. 38(2), 135–159 (2005)

15. Yannakakis, M.: Expressing combinatorial optimization problems by linear pro-
grams. Journal of Computer and System Sciences 43(3), 441–466 (1991)

16. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC 1979: Proceedings of the eleventh annual ACM sym-
posium on Theory of computing, pp. 209–213. ACM Press, New York (1979)

General Algorithms for Testing

the Ambiguity of Finite Automata

Cyril Allauzen1,�, Mehryar Mohri1,2, and Ashish Rastogi1,�

1 Google Research,
76 Ninth Avenue, New York, NY 10011

2 Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, NY 10012

Abstract. This paper presents efficient algorithms for testing the
finite, polynomial, and exponential ambiguity of finite automata with
ε-transitions. It gives an algorithm for testing the exponential ambiguity
of an automaton A in time O(|A|2E), and finite or polynomial ambigu-
ity in time O(|A|3E), where |A|E denotes the number of transitions of A.
These complexities significantly improve over the previous best complex-
ities given for the same problem. Furthermore, the algorithms presented
are simple and based on a general algorithm for the composition or in-
tersection of automata. We also give an algorithm to determine in time
O(|A|3E) the degree of polynomial ambiguity of a polynomially ambigu-
ous automaton A. Finally, we present an application of our algorithms to
an approximate computation of the entropy of a probabilistic automaton.

1 Introduction

The question of the ambiguity of finite automata arises in a variety of contexts.
In some cases, the application of an algorithm requires an input automaton to be
finitely ambiguous, in others, the convergence of a bound or guarantee relies on
finite ambiguity, or the asymptotic rate of increase of ambiguity as a function of the
string length. Thus, in all these cases, an algorithm is needed to test the ambiguity,
either to determine if it is finite, or to estimate its asymptotic rate of increase.

The problem of testing ambiguity has been extensively analyzed in the past
[3,6,7,9,12,13,14,15,16]. The problem of determining the degree of ambiguity
of an automaton with finite ambiguity was shown by Chan and Ibarra to be
PSPACE-complete [3]. However, testing finite ambiguity can be achieved in
polynomial time using a characterization of exponential and polynomial am-
biguity given by Ibarra and Ravikumar [6] and Weber and Seidel [15]. The most
efficient algorithms for testing polynomial and exponential ambiguity, thereby
testing finite ambiguity, were given by Weber and Seidel [14,16]. The algorithms
they presented in [16] assume the input automaton to be ε-free, but they are ex-
tended by Weber to the case where the automaton has ε-transitions in [14]. In the
presence of ε-transitions, the complexity of the algorithms given by Weber[14] is
� Research done at the Courant Institute, partially supported by the New York State

Office of Science Technology and Academic Research (NYSTAR).

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 108–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

General Algorithms for Testing the Ambiguity of Finite Automata 109

O((|A|E + |A|2Q)2) for testing the exponential ambiguity of an automaton A and
O((|A|E + |A|2Q)3) for testing polynomial ambiguity, where |A|E stands for the
number of transitions and |A|Q the number of states of A.

This paper presents significantly more efficient algorithms for testing finite,
polynomial, and exponential ambiguity for the general case of automata with
ε-transitions. It gives an algorithm for testing the exponential ambiguity of an au-
tomaton A in time O(|A|2E), and finite or polynomial ambiguity in time O(|A|3E).
The main idea behind our algorithms is to make use of the composition or
intersection of finite automata with ε-transitions [11,10]. The ε-filter used in
these algorithms crucially helps in the analysis and test of the ambiguity. The
algorithms presented in this paper would not be valid and would lead to incorrect
results without the use of the ε-filter. We also give an algorithm to determine
in time O(|A|3E) the degree of polynomial ambiguity of a polynomially ambigu-
ous automaton A. Finally, we present an application of our algorithms to an
approximate computation of the entropy of a probabilistic automaton.

The remainder of the paper is organized as follows. Section 2 presents general
automata and ambiguity definitions. In Section 3, we give a brief description
of existing characterizations for the ambiguity of automata and extend them to
the case of automata with ε-transitions. In Section 4, we present our algorithms
for testing finite, polynomial, and exponential ambiguity, and the proof of their
correctness. Section 5 shows the relevance of the computation of the polynomial
ambiguity to the approximation of the entropy of probabilistic automata.

2 Preliminaries

Definition 1. A finite automaton A is a 5-tuple (Σ,Q,E, I, F) where Σ is a
finite alphabet; Q is a finite set of states; I ⊆ Q the set of initial states; F ⊆ Q
the set of final states; and E ⊆ Q × (Σ ∪ {ε}) × Q a finite set of transitions,
where ε denotes the empty string.

We denote by |A|Q the number of states, by |A|E the number of transitions, and
by |A| = |A|E + |A|Q the size of an automaton A. Given a state q ∈ Q, E[q]
denotes the set of transitions leaving q. For two subsets R ⊆ Q and R′ ⊆ Q,
we denote by P (R, x,R′) the set of all paths from a state q ∈ R to a state
q′ ∈ R′ labeled with x ∈ Σ∗. We also denote by p[π] the origin state, by n[π] the
destination state, and by i[π] ∈ Σ∗ the label of a path π.

A string x ∈ Σ∗ is accepted by A if it labels an accepting path, that is a path
from an initial state to a final state. A finite automaton A is said to be trim if
all its states lie on some accepting path. It is said to be unambiguous if no string
x ∈ Σ∗ labels two distinct accepting paths; otherwise, it is said to be ambiguous.
The degree of ambiguity of a string x in A is denoted by da(A, x) and defined
as the number of accepting paths in A labeled by x. Note that if A contains an
ε-cycle, there exists x ∈ Σ∗ such that da(A, x) = ∞. Using a depth-first search
of A restricted to ε-transitions, it can be decided in linear time if A contains
ε-cycles. Thus, in the following, we will assume, without loss of generality, that
A is ε-cycle free.

110 C. Allauzen, M. Mohri, and A. Rastogi

The degree of ambiguity of A is defined as da(A) = supx∈Σ∗ da(A, x). A is said
to be finitely ambiguous if da(A) <∞ and infinitely ambiguous if da(A) = ∞. It
is said to be polynomially ambiguous if there exists a polynomial h in N[X] such
that da(A, x) ≤ h(|x|) for all x ∈ Σ∗. The minimal degree of such a polynomial
is called the degree of polynomial ambiguity of A and is denoted by dpa(A). By
definition, dpa(A) = 0 iff A is finitely ambiguous. When A is infinitely ambiguous
but not polynomially ambiguous, it is said to be exponentially ambiguous and
dpa(A) = ∞.

3 Characterization of Infinite Ambiguity

The characterization and test of finite, polynomial, and exponential ambiguity
of finite automata without ε-transitions are based on the following three funda-
mental properties [6,15,14,16].

Definition 2. The properties (EDA), (IDA), and (EDA) for A are defined as
follows.

(a) (EDA): there exists a state q with at least two distinct cycles labeled by some
v ∈ Σ∗ (see Figure 1(a)) [6].

(b) (IDA): there exist two distinct states p and q with paths labeled with v from
p to p, p to q, and q to q, for some v ∈ Σ∗ (see Figure 1(b)) [15,14,16].

(c) (IDAd): there exist 2d states p1, . . . pd, q1, . . . , qd in A and 2d − 1 strings
v1, . . . , vd and u2, . . . ud in Σ∗ such that for all 1 ≤ i ≤ d, pi �= qi and
P (pi, vi, pi), P (pi, vi, qi), and P (qi, vi, qi) are non-empty, and, for all 2 ≤
i ≤ d, P (qi−1, ui, pi) is non-empty (see Figure 1(c)) [15,14,16].

Observe that (EDA) implies (IDA). Assuming (EDA), let e and e′ be the first
transitions that differ in the two cycles at state p, then, since Definition 1 disal-
lows multiple transitions between the same two states with the same label, we
must have n[e] �= n[e′]. Thus, (IDA) holds for the pair (n[e], n[e′]).

In the ε-free case, it was shown that a trim automaton A satisfies (IDA) iff
A is infinitely ambiguous [15,16], that A satisfies (EDA) iff A is exponentially
ambiguous [6], and that A satisfies (IDAd) iff dpa(A) ≥ d [14,16]. In the following
proposition, these characterizations are straightforwardly extended to the case
of automata with ε-transitions.

p

v
v

p

v

qv

v

p1

v1

q1
v1

v1

p2
u2

v2

q2
v2

v2

pd
ud

vd

qd
vd

vd

(a) (b) (c)

Fig. 1. Illustration of the properties: (a) (EDA); (b) (IDA); and (c) (IDAd)

General Algorithms for Testing the Ambiguity of Finite Automata 111

0
1a

2
ε

b

0,0

1,1a

2,1
ε

2,2ε
1,2ε

ε

ε

b

0,0
1,1a

2,2
ε

b
0 1

a
b

2
ε

b 0,1 0,2# 1,1a

1,2#

2,2
#

b

b

(a) (b) (c) (d) (e)

Fig. 2. ε-filter and ambiguity : (a) Finite automaton A; (b) A∩A without using ε-filter,
which incorrectly makes A appear as exponentially ambiguous; (c) A ∩ A using an ε-
filter. Weber’s processing of ε-transitions: (d) Finite automaton B; (e) ε-free automaton
B′ such that dpa(B) = dpa(B′).

Proposition 1. Let A be a trim ε-cycle free finite automaton.

(i) A is infinitely ambiguous iff A satisfies (IDA).
(ii) A is exponentially ambiguous iff A satisfies (EDA).

(iii) dpa(A) ≥ d iff A satisfies (IDAd).

Proof. The proof is by induction on the number of ε-transitions in A. If A does
not have any ε-transition, then the proposition holds as shown in [15,16] for (i),
[6] for (ii) and [16] for (iii).

Assume now that A has n + 1 ε-transitions, n ≥ 0, and that the statement of
the proposition holds for all automata with n ε-transitions. Select an ε-transition
e0 in A, and let A′ be the finite automaton obtained after application of ε-removal
to A limited to transition e0. A′ is obtained by deleting e0 from A and by adding a
transition (p[e0], l[e], n[e]) for every transition e ∈ E[n[e0]]. It is clear that A and
A′ are equivalent and that there is a label-preserving bijection between the paths
in A and A′. Thus, (a) A satisfies (IDA) (resp. (EDA), (IDAd)) iff A′ satisfies
(IDA) (resp. (EDA), (IDAd)) and (b) for all x ∈ Σ∗, da(A, x) = da(A′, x). By
induction, Proposition 1 holds for A′ and thus, it follows from (a) and (b) that
Proposition 1 also holds for A. !

These characterizations have been used in [14,16] to design algorithms for testing
infinite, polynomial, and exponential ambiguity, and for computing the degree
of polynomial ambiguity in the ε-free case.

Theorem 1 ([14,16]). Let A be a trim ε-free finite automaton.

1. It is decidable in time O(|A|3E) whether A is infinitely ambiguous.
2. It is decidable in time O(|A|2E) whether A is exponentially ambiguous.
3. The degree of polynomial ambiguity of A, dpa(A), can be computed in O(|A|3E).

The first result of Theorem 1 has also been generalized by [14] to the case of
automata with ε-transitions but with a significantly worse complexity.

Theorem 2 ([14]). Let A be a trim ε-cycle free finite automaton. It is decidable
in time O((|A|E + |A|2Q)3) whether A is infinitely ambiguous.

The algorithms designed for the ε-free case cannot be readily used for finite
automata with ε-transitions since they would lead to incorrect results (see Fig-
ure 2(a)-(c)). Instead, [14] proposed a reduction to the ε-free case. First, [14]

112 C. Allauzen, M. Mohri, and A. Rastogi

0 1b
b

2b
3b

b
a

0 1b

b
2a

3a
b

0, 0 1, 1b

0, 1b

2, 1b 3, 1

b

b

b

3, 2
a

3, 3a

(a) (b) (c)

Fig. 3. Example of finite automaton intersection. (a) Finite automata A1 and (b) A2.
(c) Result of the intersection of A1 and A2.

gave an algorithm to test if there exist two states p and q in A with two dis-
tinct ε-paths from p to q. If that is the case, then A is exponentially ambiguous
(complexity O(|A|4Q + |A|E)). Otherwise, [14] defined from A an ε-free automa-
ton A′ over the alphabet Σ ∪ {#} such that A is infinitely ambiguous iff A′ is
infinitely ambiguous, see Figure 2(d)-(e).1 However, the number of transitions
of A′ is |A|E + |A|2Q. This explains why the complexity in the ε-transition case
is significantly worse than in the ε-free case. The same approach can be used to
test the exponential ambiguity of A in time O((|A|E + |A|2Q)2) and to compute
dpa(A) when A is polynomially ambiguous in O((|A|E + |A|2Q)3). Note that we
give tighter estimates of the complexity of the algorithms of [14,16] where the
authors gave complexities using the loose inequality: |A|E ≤ |Σ| |A|2Q.

4 Algorithms

Our algorithms for testing ambiguity are based on a general algorithm for the
composition or intersection of automata, which we briefly describe in the follow-
ing section.

4.1 Intersection of Finite Automata

The intersection of finite automata is a special case of the general composition
algorithm for weighted transducers [11,10]. States in the intersection A1 ∩ A2

of two finite automata A1 and A2 are identified with pairs of a state of A1

and a state of A2. The following rule specifies how to compute a transition
of A1 ∩ A2 in the absence of ε-transition from appropriate transitions of A1

and A2: (q1, a, q′1) and (q2, a, q′2) =⇒ ((q1, q2), a, (q′1, q
′
2)). Figure 3 illustrates the

algorithm. A state (q1, q2) is initial (resp. final) when q1 and q2 are initial (resp.

1 Observe that A′ is not the result of applying the classical ε-removal algorithm to
A, since ε-removal does not preserve infinite ambiguity and would lead be an even
larger automaton. Instead [14] used a more complex algorithm where ε-transitions
are replaced by regular transitions labeled with a special symbol while preserving
infinite ambiguity, dpa(A) = dpa(A′), even though A′ is not equivalent to A. States
in A′ are pairs (q, i) with q a state in A and i ∈ {1, 2}. There is a transition from
(p, 1) to (q, 2) labeled by # if q belongs to the ε-closure of p and from (p, 2) to (q, 1)
labeled by σ ∈ Σ if there was such a transition from p to q in A.

General Algorithms for Testing the Ambiguity of Finite Automata 113

final). In the worst case, all transitions of A1 leaving a state q1 match all those
of A2 leaving state q2, thus the space and time complexity of composition is
quadratic: O(|A1||A2|), or O(|A1|E |A2|E) when A1 and A2 are trim.

4.2 Epsilon-Filtering

A straightforward generalization of the ε-free case would generate redundant
ε-paths. This is a crucial issue in the more general case of the intersection of
weighted automata over a non-idempotent semiring, since it would lead to an
incorrect result. The weight of two matching ε-paths of the original automata
would then be counted as many times as the number of redundant ε-paths gener-
ated in the result, instead of once. It is also a crucial problem in the unweighted
case since redundant ε-paths can affect the test of infinite ambiguity, as we shall
see in the next section. A critical component of the composition algorithm of
[11,10] consists however of precisely coping with this problem using an epsilon-
filtering mechanism.

Figure 4(c) illustrates the problem just mentioned. To match ε-paths leaving
q1 and those leaving q2, a generalization of the ε-free intersection can make the
following moves: (1) first move forward on an ε-transition of q1, or even a ε-
path, and remain at the same state q2 in A2, with the hope of later finding a
transition whose label is some label a �= ε matching a transition of q2 with the
same label; (2) proceed similarly by following an ε-transition or ε-path leaving
q2 while remaining at the same state q1 in A1; or, (3) match an ε-transition of
q1 with an ε-transition of q2.

Let us rename existing ε-labels of A1 as ε2, and existing ε-labels of A2 ε1, and
let us augment A1 with a self-loop labeled with ε1 at all states and similarly,
augment A2 with a self-loop labeled with ε2 at all states, as illustrated by Fig-
ures 4(a) and (b). These self-loops correspond to remaining at the same state
in that machine while consuming an ε-label of the other transition. The three
moves just described now correspond to the matches (1) (ε2 : ε2), (2) (ε1 : ε1),
and (3) (ε2 : ε1). The grid of Figure 4(c) shows all the possible ε-paths between
intersection states. We will denote by Ã1 and Ã2 the automata obtained after
application of these changes.

For the result of intersection not to be redundant, between any two of these
states, all but one path must be disallowed. There are many possible ways of
selecting that path. One natural way is to select the shortest path with the
diagonal transitions (ε-matching transitions) taken first. Figure 4(c) illustrates
in boldface the path just described from state (0, 0) to state (1, 2). Remarkably,
this filtering mechanism itself can be encoded as a finite-state transducer such
as the transducer M of Figure 4(d). We denote by (p, q) � (r, s) to indicate that
(r, s) can be reached from (p, q) in the grid.

Proposition 2. Let M be the transducer of Figure 4(d). M allows a unique
path between any two states (p, q) and (r, s), with (p, q) � (r, s).

Proof. The full proof of this proposition is given in [2]. !

114 C. Allauzen, M. Mohri, and A. Rastogi

ε1
ε2

a

ε2
ε1

b

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

ε1:ε1

ε1:ε1

ε1:ε1

ε1:ε1

ε1:ε1

ε1:ε1

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε2

ε2:ε1

ε2:ε1

ε2:ε1

ε2:ε1 0

ε2:ε1
x:x

1ε1:ε1

2

ε2:ε2

x:x

ε1:ε1

x:x

ε2:ε2

(a) (b) (c) (d)

Fig. 4. Marking of automata, redundant paths and filter. (a) Ã1: self-loop labeled
with ε1 added at all states of A1, regular εs renamed to ε2. (b) Ã2: self-loop labeled
with ε2 added at all states of A2, regular εs renamed to ε1. (c) Redundant ε-paths: a
straightforward generalization of the ε-free case could generate all the paths from (0, 0)
to (2, 2) for example, even when composing just two simple transducers. (d) Filter
transducer M allowing a unique ε-path.

Thus, to intersect two finite automata A1 and A2 with ε-transitions, it suffices
to compute Ã1 ◦ M ◦ Ã2, using the ε-free rules of composition. States in the
intersection are now identified with triplets made of a state of A1, a state of M ,
and a state of A2. A transition (q1, a1, q

′
1) in Ã1, a transition (f, a1, a2, f

′) in M ,
and a transition (q2, a2, q

′
2) in Ã2 are combined to form the following transition

in the intersection: ((q1, f, q2), a, (q′1, f
′, q′2)), with a = ε if {a1, a2} ⊆ {ε1, ε2} and

a = a1 = a2 otherwise. In the rest of the paper, we will assume that the result of
intersection is trimmed after its computation, which can be done in linear time.

Theorem 3. Let A1 and A2 be two finite automata with ε-transitions. To each
pair (π1, π2) of accepting paths in A1 and A2 sharing the same input label x ∈ Σ∗

corresponds a unique accepting path π in A1 ∩A2 labeled with x.

Proof. This follows straightforwardly from Proposition 2. !

4.3 Ambiguity Tests

We start with a test of the exponential ambiguity of A. The key is that the
(EDA) property translates into a very simple property for A2 = A ∩A.

Lemma 1. Let A be a trim ε-cycle free finite automaton. A satisfies (EDA) iff
there exists a strongly connected component of A2 = A ∩ A that contains two
states of the form (p, p) and (q, q′), where p, q and q′ are states of A with q �= q′.

Proof. Assume that A satisfies (EDA). There exist a state p and a string v such
that there are two distinct cycles c1 and c2 labeled by v at p. Let e1 and e2

be the first edges that differ in c1 and c2. We can then write c1 = πe1π1 and
c2 = πe2π2. If e1 and e2 share the same label, let π′

1 = πe1, π′
2 = πe2, π′′

1 = π1

and π′′
2 = π2. If e1 and e2 do not share the same label, exactly one of them must

General Algorithms for Testing the Ambiguity of Finite Automata 115

be an ε-transition. By symmetry, we can assume without loss of generality that
e1 is the ε-transition. Let π′

1 = πe1, π′
2 = π, π′′

1 = π1 and π′′
2 = ε2π2. In both

cases, let q = n[π′
1] = p[π′′

1] and q′ = n[π′
2] = p[π′′

2]. Observe that q �= q′. Since
i[π′

1] = i[π′
2], π′

1 and π′
2 are matched by intersection resulting in a path in A2

from (p, p) to (q, q′). Similarly, since i[π′′
1] = i[π′′

2], π′′
1 and π′′

2 are matched by
intersection resulting in a path from (q, q′) to (p, p). Thus, (p, p) and (q, q′) are
in the same strongly connected component of A2.

Conversely, assume that there exist states p, q and q′ in A such that q �= q′

and that (p, p) and (q, q′) are in the same strongly connected component of A2.
Let c be a cycle in (p, p) going through (q, q′), it has been obtained by matching
two cycles c1 and c2. If c1 were equal to c2, intersection would match these two
paths creating a path c′ along which all the states would be of the form (r, r),
and since A is trim this would contradict Theorem 3. Thus, c1 and c2 are distinct
and (EDA) holds. !

Observe that the use of the ε-filter in composition is crucial for Lemma 1 to
hold (see Figure 2). The lemma leads to a straightforward algorithm for testing
exponential ambiguity.

Theorem 4. Let A be a trim ε-cycle free finite automaton. It is decidable in
time O(|A|2E) whether A is exponentially ambiguous.

Proof. The algorithm proceeds as follows. We compute A2 and, using a depth-
first search of A2, trim it and compute its strongly connected components. It
follows from Lemma 1 that A is exponentially ambiguous iff there is a strongly
connected component that contains two states of the form (p, p) and (q, q′) with
q �= q′. Finding such a strongly connected component can be done in time linear
in the size of A2, i.e. in O(|A|2E) since A and A2 are trim. Thus, the complexity
of the algorithm is in O(|AE |2). !

Testing the (IDA) property requires finding three paths sharing the same label
in A. As shown below, this can be done in a natural way using the automaton
A3 = (A ∩A) ∩A, obtained by applying twice the intersection algorithm.

Lemma 2. Let A be a trim ε-cycle free finite automaton. A satisfies (IDA) iff
there exist two distinct states p and q in A with a non-ε path in A3 = A∩A∩A
from state (p, p, q) to state (p, q, q).

Proof. Assume that A satisfies (IDA). Then, there exists a string v ∈ Σ∗ with
three paths π1 ∈ P (p, v, p), π2 ∈ P (p, v, q) and π3 ∈ P (q, v, p). Since these
three paths share the same label v, they are matched by intersection result-
ing in a path π in A3 labeled with v from (p[π1], p[π2], p[π3]) = (p, p, q) to
(n[π1], n[π2], n[π3]) = (p, q, q).

Conversely, if there is a non-ε path π form (p, p, q) to (p, q, q) in A3, it has
been obtained by matching three paths π1, π2 and π3 in A with the same input
v = i[π] �= ε. Thus, (IDA) holds. !

This lemma appears already as Lemma 5.10 in [8]. Finally, Theorem 4 and
Lemma 2 can be combined to yield the following result.

116 C. Allauzen, M. Mohri, and A. Rastogi

Theorem 5. Let A be a trim ε-cycle free finite automaton. It is decidable in
time O(|A|3E) whether A is finitely, polynomially, or exponentially ambiguous.

Proof. First, Theorem 4 can be used to test whether A is exponentially ambigu-
ous by computing A2. The complexity of this step is O(|A|2E).

If A is not exponentially ambiguous, we proceed by computing and trimming
A3 and then testing whether A3 verifies the property described in Lemma 2. This
is done by considering the automaton B on the alphabet Σ′ = Σ∪{#} obtained
from A3 by adding a transition labeled by # from state (p, q, q) to state (p, p, q)
for every pair (p, q) of states in A such that p �= q. It follows that A3 verifies
the condition in Lemma 2 iff there is a cycle in B containing both a transition
labeled by # and a transition labeled by a symbol in Σ. This property can be
checked straightforwardly using a depth-first search of B to compute its strongly
connected components. If a strongly connected component of B is found that
contains both a transition labeled with # and a transition labeled by a symbol
in Σ, A verifies (IDA) but not (EDA) and thus A is polynomially ambiguous.
Otherwise, A is finitely ambiguous. The complexity of this step is linear in the
size of B: O(|B|E) = O(|AE |3 + |AQ|2) = O(|AE |3) since A and B are trim.

The total complexity of the algorithm is O(|A|2E + |A|3E) = O(|A|3E).

When A is polynomially ambiguous, we can derive from the algorithm just de-
scribed one that computes dpa(A).

Theorem 6. Let A be a trim ε-cycle free finite automaton. If A is polynomially
ambiguous, dpa(A) can be computed in time O(|A|3E).

Proof. We first compute A3 and use the algorithm of Theorem 5 to test whether
A is polynomially ambiguous and to compute all the pairs (p, q) that verify the
condition of Lemma 2. This step has complexity O(|A|3E).

We then compute the component graph G of A, and for each pair (p, q) found
in the previous step, we add a transition labeled with # from the strongly
connected component of p to the one of q. If there is a path in that graph
containing d edges labeled by #, then A verifies (IDAd). Thus, dpa(A) is the
maximum number of edges marked by # that can be found along a path in G.
Since G is acyclic, this number can be computed in linear time in the size of G,
i.e. in O(|A|2Q). Thus, the overall complexity of the algorithm is O(|A|3E). !

5 Application to Entropy Approximation

In this section, we describe an application in which determining the degree of
ambiguity of a probabilistic automaton helps estimate the quality of an approxi-
mation of its entropy. Weighted automata are automata in which each transition
carries some weight in addition to the usual alphabet symbol. The weights are
elements of a semiring, that is a ring that may lack negation. The following is a
more formal definition.

General Algorithms for Testing the Ambiguity of Finite Automata 117

Definition 3. A weighted automaton A over a semiring (K,⊕,⊗, 0, 1) is a 7-
tuple (Σ,Q, I, F,E, λ, ρ) where Σ is a finite alphabet, Q a finite set of states, I ⊆
Q the set of initial states, F ⊆ Q the set of final states, E ⊆ Q×Σ∪{ε}×K×Q
a finite set of transitions, λ : I → K the initial weight function mapping I to K,
and ρ : F → K the final weight function mapping F to K.

Given a transition e ∈ E, we denote by w[e] its weight. We extend the weight
function w to paths by defining the weight of a path as the ⊗-product of the
weights of its constituent transitions: w[π] = w[e1] ⊗ · · · ⊗ w[ek]. The weight
associated by a weighted automaton A to an input string x ∈ Σ∗ is defined by
[[A]](x) =

⊕
π∈P (I,x,F) λ[p[π]]⊗w[π]⊗ρ[n[π]]. The entropy H(A) of a probabilistic

automaton A is defined as:

H(A) = −
∑

x∈Σ∗
[[A]](x) log([[A]](x)). (1)

The system (K,⊕,⊗, (0, 0), (1, 0)) with K = (R∪{+∞,−∞})×(R∪{+∞,−∞})
and⊕ and⊗ defined as follows defines a commutative semiring called the entropy
semiring [4]: for any two pairs (x1, y1) and (x2, y2) in K, (x1, y1) ⊕ (x2, y2) =
(x1 + x2, y1 + y2) and (x1, y1) ⊗ (x2, y2) = (x1x2, x1y2 + x2y1). In [4], the au-
thors showed that a generalized shortest-distance algorithm over this semir-
ing correctly computes the entropy of an unambiguous probabilistic automa-
ton A. The algorithm starts by mapping the weight of each transition to a
pair where the first element is the probability and the second the entropy:
w[e] 	→ (w[e],−w[e] logw[e]). The algorithm then proceeds by computing the
generalized shortest-distance defined over the entropy semiring, which computes
the ⊕-sum of the weights of all accepting paths in A.

Here, we show that the same shortest-distance algorithm yields an approxi-
mation of the entropy of an ambiguous probabilistic automaton A, where the ap-
proximation quality is a function of the degree of polynomial ambiguity, dpa(A).
Our proofs make use of the standard log-sum inequality [5], a special case of
Jensen’s inequality, which holds for any positive reals a1, . . . , ak, and b1, . . . , bk:

k∑

i=1

ai log
ai

bi
≥
(

k∑

i=1

ai

)

log

∑k
i=1 ai

∑k
i=1 bi

. (2)

Lemma 3. Let A be a probabilistic automaton and let x ∈ Σ+ be a string accepted
by A on k paths π1, . . . , πk. Let w[πi] be the probability of path πi. Clearly, [[A]](x) =
∑k

i=1 w[πi]. Then,
∑k

i=1 w[πi] logw[πi] ≥ [[A]](x)(log[[A]](x) − log k).

Proof. The result follows straightforwardly from the log-sum inequality, with
ai = w[πi] and bi = 1:

k∑

i=1

w[πi] log w[πi] ≥
(

k∑

i=1

w[πi]

)

log

∑k
i=1 w[πi]

k
= [[A]](x)(log[[A]](x) − log k). (3)

 !

118 C. Allauzen, M. Mohri, and A. Rastogi

Let S(A) be the quantity computed by the generalized shortest-distance
algorithm over the entropy semiring or a probabilistic automaton A. When A is
unambiguous, it is shown by [4] that S(A) = H(A).

Theorem 7. Let A be a probabilistic automaton and let L denote the expected
length of the strings accepted by A (i.e. L =

∑
x∈Σ∗ |x|[[A]](x)). Then,

1. if A is finitely ambiguous with da(A) = k for some k ∈ N, then H(A) ≤
S(A) ≤ H(A) + log k;

2. if A is polynomially ambiguous with dpa(A) = k for some k ∈ N, then
H(A) ≤ S(A) ≤ H(A) + k logL.

Proof. The lower bound S(A) ≥ H(A) follows from the observation that for a
string x that is accepted in A by k paths π1, . . . , πk,

k∑

i=1

w[πi] log(w(πi)) ≤
(k∑

i=1

w[πi]

)

log

(k∑

i=1

w[πi]

)

. (4)

Since the quantity −
∑k

i=1 w[πi] log(w[πi]) is string x’s contribution to S(A) and
the quantity −(

∑k
i=1 w[πi]) log(

∑k
i=1 w[πi]) its contribution to H(A), summing

over all accepted strings x, we obtain H(A) ≤ S(A).
Assume that A is finitely ambiguous with degree of ambiguity k. Let x ∈ Σ∗

be a string that is accepted on lx ≤ k paths π1, . . . , πlx . By Lemma 3, we have
∑lx

i=1 w[πi] logw[πi] ≥ [[A]](x)(log[[A]](x) − log lx) ≥ [[A]](x)(log[[A]](x) − log k).
Thus, S(A) = −

∑
x∈Σ∗

∑lx
i=1 w[πi] logw[πi] ≤ H(A) +

∑
x∈Σ∗(log k)[[A]](x) =

H(A) + log k. This proves the first statement of the theorem.
Next, assume that A is polynomially ambiguous with degree of polynomial

ambiguity k. By Lemma 3, we have
∑lx

i=1 w[πi] logw[πi] ≥ [[A]](x)(log[[A]](x) −
log lx) ≥ [[A]](x)(log[[A]](x) − log(|x|k)). Thus,

S(A) ≤ H(A) +
∑

x∈Σ∗
k[[A]](x) log |x| = H(A) + kEA[log |x|] (5)

≤ H(A) + k log EA[|x|] = H(A) + k log L, (by Jensen’s inequality)

which proves the second statement of the theorem. !

The theorem shows in particular that the quality of the approximation of the
entropy of a polynomially ambiguous probabilistic automaton can be estimated
by computing its degree of polynomial ambiguity, which can be achieved effi-
ciently as described in the previous section. This also requires the computation
of the expected length L of an accepted string. L can be computed efficiently
for an arbitrary probabilistic automaton using the entropy semiring and the

General Algorithms for Testing the Ambiguity of Finite Automata 119

generalized shortest-distance algorithms, using techniques similar to those de-
scribed in [4]. The only difference is in the initial step, where the weight of each
transition in A is mapped to a pair of elements by w[e] 	→ (w[e], w[e]).

6 Conclusion

We presented simple and efficient algorithms for testing the finite, polynomial, or
exponential ambiguity of finite automata with ε-transitions. We conjecture that
the time complexity of our algorithms is optimal. These algorithms have a vari-
ety of applications, in particular to test a pre-condition for the applicability of
other automata algorithms. Our application to the approximation of the entropy
gives another illustration of their usefulness. Our algorithms also demonstrate
the prominent role played by the intersection or composition of automata and
transducers with ε-transitions [11,10] in the design of testing algorithms. Com-
position can be used to devise simple and efficient testing algorithms. We have
shown elsewhere how it can be used to test the functionality of a finite-state
transducer, or the twins property for weighted automata and transducers [1].

References

1. Allauzen, C., Mohri, M.: Efficient Algorithms for Testing the Twins Property.
Journal of Automata, Languages and Combinatorics 8(2), 117–144 (2003)

2. Allauzen, C., Mohri, M.: 3-way composition of weighted finite-state transducers.
In: CIAA 2008. LNCS, vol. 5148, pp. 262–273. Springer, Heidelberg (2008)

3. Chan, T., Ibarra, O.H.: On the finite-valuedness problem for sequential machines.
Theoretical Computer Science 23, 95–101 (1983)

4. Cortes, C., Mohri, M., Rastogi, A., Riley, M.: Efficient computation of the relative
entropy of probabilistic automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.)
LATIN 2006. LNCS, vol. 3887, pp. 323–336. Springer, Heidelberg (2006)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
Inc., New York (1991)

6. Ibarra, O.H., Ravikumar, B.: On sparseness, ambiguity and other decision problems
for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986.
LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)

7. Jacob, G.: Un algorithme calculant le cardinal, fini ou infini, des demi-groupes de
matrices. Theoretical Computer Science 5(2), 183–202 (1977)

8. Kuich, W.: Finite automata and ambiguity. Technical Report 253, Institute für
Informationsverarbeitung - Technische Universität Graz und ÖCG (1988)

9. Mandel, A., Simon, I.: On finite semigroups of matrices. Theoretical Computer
Science 5(2), 101–111 (1977)

10. Mohri, M., Pereira, F.C.N., Riley, M.: Weighted Automata in Text and Speech
Processing. In: Proceedings of ECAI 1996, Workshop on Extended finite state
models of language, Budapest, Hungary. John Wiley and Sons, Chichester (1996)

11. Pereira, F., Riley, M.: Speech Recognition by Composition of Weighted Finite
Automata. In: Finite State Language Processing. MIT Press, Cambridge (1997)

12. Ravikumar, B., Ibarra, O.H.: Relating the type of ambiguity of finite automata to
the succintness of their representation. SIAM Journal on Computing 18(6), 1263–
1282 (1989)

120 C. Allauzen, M. Mohri, and A. Rastogi

13. Reutenauer, C.: Propriétés arithmétiques et topologiques des séries rationnelles en
variable non commutative. Thèse de troisième cycle, Université Paris VI (1977)

14. Weber, A.: Über die Mehrdeutigkeit und Wertigkeit von endlichen, Automaten und
Transducern. Dissertation, Goethe-Universität Frankfurt am Main (1987)

15. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. In: Wieder-
mann, J., Gruska, J., Rovan, B. (eds.) MFCS 1986. LNCS, vol. 233, pp. 620–629.
Springer, Heidelberg (1986)

16. Weber, A., Seidl, H.: On the degree of ambiguity of finite automata. Theoretical
Computer Science 88(2), 325–349 (1991)

Emptiness of Multi-pushdown Automata Is
2ETIME-Complete

Mohamed Faouzi Atig1, Benedikt Bollig2, and Peter Habermehl1,2

1 LIAFA, CNRS and University Paris Diderot, France
atig+haberm@liafa.jussieu.fr

2 LSV, ENS Cachan, CNRS, Inria
bollig@lsv.ens-cachan.fr

Abstract. We consider multi-pushdown automata, a multi-stack extension of
pushdown automata that comes with a constraint on stack operations: a pop can
only be performed on the first non-empty stack (which implies that we assume a
linear ordering on the collection of stacks). We show that the emptiness problem
for multi-pushdown automata is 2ETIME-complete wrt. the number of stacks.
Containment in 2ETIME is shown by translating an automaton into a grammar
for which we can check if the generated language is empty. The lower bound is
established by simulating the behavior of an alternating Turing machine working
in exponential space. We also compare multi-pushdown automata with the model
of bounded-phase multi-stack (visibly) pushdown automata.

1 Introduction

Various classes of pushdown automata with multiple stacks have been proposed and
studied in the literature. The main goals of these efforts are twofold. First, one may
aim at extending the expressive power of pushdown automata, going beyond the class
of context-free languages. Second, multi-stack systems may model recursive concur-
rent programs, in which any sequential process is equipped with a finite-state control
and, in addition, can access its own stack to connect procedure calls to their corre-
sponding returns. In general, however, multi-stack extensions of pushdown automata
are Turing powerful and therefore come along with undecidability of basic decision
problems. To retain desirable decidability properties of pushdown automata, such as
emptiness, one needs to restrict the model accordingly. In [3], Breveglieri et al. define
multi-pushdown automata (MPDA), which impose a linear ordering on stacks. Stack
operations are henceforth constrained in such a way that a pop operation is reserved to
the first non-empty stack. These automata are suitable to model client-server systems of
processes with remote procedure calls. Another possibility to regain decidability in the
presence of several stacks is to restrict the domain of input words. In [8], La Torre et al.
define bounded-phase multi-stack visibly pushdown automata (bounded-phase MVPA).
Only those runs are taken into consideration that can be split into a given number of
phases, where each phase admits pop operations of one particular stack only. In the
above-mentioned cases, the respective emptiness problem is decidable. In [9], the re-
sults of [8] are used to show decidability results for restricted queue systems.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 121–133, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

122 M.F. Atig, B. Bollig, and P. Habermehl

In this paper, we resume the study of MPDA and, in particular, consider their
emptiness problem. The decidability of this problem, which is to decide if an automa-
ton admits some accepting run, is fundamental for verification purposes. We show that
the emptiness problem for MPDA is 2ETIME-complete. Recall that 2ETIME is the
class of all decision problems solvable by a deterministic Turing machine in time 22dn

for some constant d. In proving the upper bound, we correct an error in the decid-
ability proof given in [3].1 We keep their main idea: MPDA are reduced to equivalent
depth-n-grammars. Deciding emptiness for these grammars then amounts to check-
ing emptiness of an ordinary context-free grammar. For proving 2ETIME-hardness, we
borrow an idea from [10], where a 2ETIME lower bound is shown for bounded-phase
pushdown-transducer automata. We also show that 2m-MPDA are strictly more expres-
sive than m-phase MVPA providing an alternative proof of decidability of the emptiness
problem for bounded-phase MVPA.

The paper is structured as follows: In Section 2, we introduce MPDA formally, as
well as depth-n-grammars. Sections 3 and 4 then establish the 2ETIME upper and,
respectively, lower bound of the emptiness problem for MPDA, which constitutes our
main result. In Section 5, we compare MPDA with bounded-phase MVPA. We conclude
by identifying some directions for future work. Missing proofs can be found in [1].

2 Multi-pushdown Automata and Depth-n-grammars

In this section we define multi-pushdown automata with n ≥ 1 pushdown stacks and
their corresponding grammars. We essentially follow the definitions of [3].

Multi-pushdown Automata. Our automata have one read-only left to right input tape
and n ≥ 1 read-write memory tapes (stacks) with a last-in-first-out rewriting policy. In
each move, the following actions are performed:

– read one or zero symbol from the input tape and move past the read symbol
– read the symbol on the top of the first non-empty stack starting from the left
– switch the internal state
– for each i ∈ {1, . . . , n}, write a finite string αi on the i-th pushdown stack

Definition 1. For n ≥ 1, an (n-)multi-pushdown automaton (n-MPDA or MPDA) is a
tuple M = (Q,Σ, Γ, δ, q0, F, Z0) where:

– Q is a finite non-empty set of internal states,
– Σ (input) and Γ (memory) are finite disjoint alphabets,
– δ : Q× (Σ) {ε})× Γ → 2Q×(Γ ∗)n

is a transition mapping,
– q0 is the initial state,
– F ⊆ Q is the set of final states, and
– Z0 ∈ Γ is the initial memory symbol.

1 A similar correction of the proof has been worked out independently by the authors of [3]
themselves [4]. They gave an explicit construction for the case of three stacks that can be
generalized to arbitrarily many stacks.

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 123

Table 1. A 2-MPDA for {ε} ∪ {ai1bi1ci1ai2bi2ci2 · · · aikbikcik | k ≥ 1 and i1, . . . , ik > 0}

M = ({q0, . . . , q3, qf}, {a, b, c}, {A, B, Z0, Z1}, δ, q0, {qf}, Z0)

δ(q0, ε, Z0) = {(qf , ε, ε)} δ(q2, b, A) = {(q2, ε, ε)}
δ(q0, a, Z0) = {(q1, AZ0, BZ1)} δ(q2, ε, Z0) = {(q3, ε, ε)}
δ(q1, ε, A) = {(q2, A, ε)} δ(q3, ε, Z1) = {(q0, Z0, ε)}
δ(q1, a, A) = {(q1, AA, B)} δ(q3, c, B) = {(q3, ε, ε)}

A configuration of M is an (n + 2)-tuple 〈q, x; γ1, . . . , γn〉 with q ∈ Q, x ∈ Σ∗,
and γ1, . . . , γn ∈ Γ ∗. The transition relation &∗

M is the transitive closure of the binary
relation &M over configurations, defined as follows:

〈q, ax; ε, . . . , ε, Aγi, . . . , γn〉 &M 〈q′, x;α1, . . . , αi−1, αiγi, . . . , αnγn〉

if (q′, α1, . . . , αn) ∈ δ(q, a, A), where a ∈ Σ ∪ {ε}.
The language of M accepted by final state is defined as the set of words x ∈

Σ∗ such that there are γ1, . . . , γn ∈ Γ ∗ and q ∈ F with 〈q0, x;Z0, ε, . . . ε〉 &∗
M

〈q, ε; γ1, . . . , γn〉. The language of M accepted by empty stacks, denoted by L(M), is
defined as the set of words x ∈ Σ∗ such that there is q ∈ Q with 〈q0, x;Z0, ε, . . . ε〉 &∗

M

〈q, ε; ε, . . . , ε〉.

Lemma 2 ([3]). The languages accepted by n-MPDA by final state are the same as the
languages accepted by n-MPDA by empty stacks.

Table 1 shows an example of a 2-MPDA. Notice that it accepts the same language by
final state and by empty stacks.

We need the following normal form of n-MPDA for the proof of our main theorem.
The normal form restricts the operation on stacks 2 to n: pushing one symbol on these
stacks is only allowed while popping a symbol from the first stack, and popping a
symbol from them pushes a symbol onto the first stack. Furthermore, the number of
symbols pushed on the first stack is limited to two and the stack alphabets are distinct.

Definition 3. A n-MPDA (Q,Σ, Γ, δ, q0, F, Z0) with n ≥ 2 is in normal form if

– Γ =
⋃n

i=1 Γ
(i) where the Γ (i)’s are pairwise disjoint memory alphabets whose

elements are denoted by A(i), B(i), etc., and Z0 ∈ Γ (1).
– Only the following transitions are allowed:

• For all A(1) ∈ Γ (1) and a ∈ Σ ∪ {ε}, δ(q, a, A(1)) ⊆ {(q′, ε, . . . , ε) | q′ ∈
Q} ∪Δ1 ∪Δ2 with
∗ Δ1 = {(q′, B(1)C(1), ε, . . . , ε) | q′ ∈ Q ∧B(1), C(1) ∈ Γ (1)},
∗ Δ2 = {(q′, ε, . . . , ε, A(i), ε, . . . , ε) | q′ ∈ Q ∧ A(i) ∈ Γ (i) ∧ 2 ≤ i ≤ n}.

• For all i with 2 ≤ i ≤ n and a ∈ Σ ∪ {ε},
δ(q, a, A(i)) ⊆ {(q′, B(1), ε, . . . , ε) | q′ ∈ Q ∧B(1) ∈ Γ (1)}.

Lemma 4. An n-MPDA M can be transformed into an n-MPDA M ′ in normal form
with linear blowup in its size such that L(M) = L(M ′).

124 M.F. Atig, B. Bollig, and P. Habermehl

Proof. The proof makes use of the ideas from [3], where a proof for a normal form
for Dn-grammars (see below) is given. Notice, however, that we do not use the same
normal form as the one of [3] for MPDA. !

Next, we recall some properties of the class of languages recognized by n-MPDA.
We start by defining a renaming operation: A renaming of Σ to Σ′ is a function f :
Σ → Σ′. It is extended to strings and languages in the natural way: f(a1 . . . ak) =
f(a1) · . . . · f(ak) and f(L) =

⋃
x∈L f(x). The following can be shown following [3].

Lemma 5. (Closure Properties) The class of languages recognized by n-MPDA is clo-
sed under union, concatenation, and Kleene-star. Moreover, given an n-MPDA M over
the alphabet Σ and a renaming function f : Σ → Σ′, it is possible to construct an
n-MPDA M ′ over Σ′ such that L(M ′) = f(L(M)).

Depth-n-grammars. We now define the notion of a depth-n-grammar. Let VN and VT

be finite disjoint alphabets and let “(“ and “)i“ for i ∈ {1, . . . , n} be n + 1 characters
not in VN ∪ VT . An n-list is a finite string of the form α = w(α1)1(α2)2 . . . (αn)n

where w ∈ V ∗
T and αi ∈ V ∗

N for all i with 1 ≤ i ≤ n.

Definition 6. A depth-n-grammar (Dn-grammar) is a tuple G = (VN , VT , P, S) where
VN and VT are the finite disjoint sets of non-terminal and terminal symbols, respec-
tively, S ∈ VN is the axiom, and P is a finite set of productions of the form A → α
with A ∈ VN and α an n-list.

For clarity, we may drop empty components of n-lists in the productions as follows:
A → w(ε)1 . . . (ε)n is written as A → w, A → (ε)1 . . . (ε)n is written as A → ε, and
A→ w(ε)1 . . . (ε)i−1(αi)i(ε)i+1 . . . (ε)n is written as A→ w(αi)i.

We define the derivation relation on n-lists as follows. Let i ∈ {1, . . . , n} and let
β = (ε)1 . . . (ε)i−1(Aβi)i(βi+1)i+1 . . . (βn)n be an n-list, where βj ∈ V ∗

N for all
j ∈ {i, . . . , n}. Then,

xβ ⇒ xw(α1)1(α2)2 . . . (αi−1)i−1(αiβi)i(αi+1)i+1 . . . (αnβn)n

if A → w(α1)1(α2)2 . . . (αn)n is a production and x ∈ V ∗
T . Notice that only leftmost

derivations are defined. As usual we denote by⇒∗ the reflexive and transitive closure of
⇒. A terminal string x ∈ V ∗

T is derivable from S if (S)1(ε)2 . . . (ε)n ⇒∗ x(ε)1 . . . (ε)n.
This will be also denoted by S ⇒∗ x. The language generated by a Dn-grammar G is
L(G) = {x ∈ V ∗

T | S ⇒∗ x}.

Definition 7. Let G = (VN , VT , P, S) be a Dn-grammar. Then, the underlying context-
free grammar is Gcf = (VN , VT , Pcf , S) with Pcf = {A → wα1 . . . αn | A →
w(α1)1 . . . (αn)n ∈ P}.

The following lemma from [3] is obtained by observing that the language generated
by a Dn-grammar is empty iff the language generated by its underlying context-free
grammar Gcf is empty. Furthermore, it is well-known that emptiness of context-free
grammars can be decided in time linear in its size.

Lemma 8. The emptiness problem of Dn-grammars is decidable in linear time.

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 125

3 Emptiness of MPDA is in 2ETIME

In this section, we show that the emptiness problem of n-MPDA is in 2ETIME. We first
show that n-MPDA correspond to Dn-grammars with a double exponential number of
non-terminal symbols. To do so, we correct a construction given in [3]. Then, emptiness
of Dn-grammars is decidable using the underlying context-free grammar (Lemma 8).

Theorem 9. A language L is accepted by an n-MPDA iff it is generated by a Dn-
grammar.

In the following we give a sketch of the proof. The “if”-direction is obvious, since a
grammar is just an automaton with one state. For the “only if”-direction, let L be a
language accepted by empty stacks by an n-MPDA M = (Q,Σ, Γ, δ, q0, F, Z0). By
Lemma 4, we assume, without loss of generality, that M is in normal form. We will
construct a Dn-grammar GM = (VN , Σ, P, S) such that L(GM) = L.

Intuitively, we generalize the proof for the case of 2-MPDA [7]. In [3], an incorrect
proof was given for the case of n-MPDA. Recently, the authors of [3] independently
gave a generalizable proof for 3-MPDA, which is similar to ours [4]. The general proof
idea is the same as for the corresponding proof for pushdown automata. To eliminate
states, one has to guess the sequence of states through which the automaton goes by
adding pairs of state symbols to the non-terminal symbols of the corresponding gram-
mar. We do this for the first stack. However, when the first stack gets empty, the other
stacks may be not empty and one has to know the state in which the automaton is in
this situation. For this, we have to guess for all the other non-empty stacks and each of
their non-terminal symbols the state in which the automaton will be when reading these
symbols. 2

To do this for the n-th stack, a pair of state symbols is enough. For the (n−1)-th
stack, in addition to guessing the state, we also have to know the current state on top of
the n-th stack to be able to push correctly symbols onto the n-th stack. Therefore, a pair
of pairs of states (4 in total) is needed. For the (n−2)-th stack, we need to remember the
current state and the states on top of the (n−1)-th stack and on top of the n-th stack (in
total 8 states) and so on. Therefore, there will be 2n state symbols to be guessed in the
first stack. Furthermore we have special state symbols (denoted qe

i) to indicate that the
i-th stack is empty. In Fig. 1 we give an intuitive example illustrating the construction.

Now we define the grammar GM = (VN , Σ, P, S) formally. To define VN , we first
provide symbols of level i denoted by Vi. For i with 2 ≤ i ≤ n, let qe

i be states
pairwise different and different from any state of Q (these are the symbols indicating
that the corresponding stack is empty). States of level i are denoted by Qi and defined
as follows : Qn = Q ∪ {qe

n} and for all i such that 2 ≤ i < n, Qi = (Q × Qi+1 ×
· · · ×Qn) ∪ {qe

i }, and Q1 = Q×Q2 × · · · ×Qn. We denote by qi states of Qi. Then,
Vi = Qi×Γ×Qi and VN = {S} ∪

⋃n
i=1 Vi. Notice that a state in Qi different from qe

i

has exactly 2n−i components. Therefore |VN | ≤ (|Q|+ 1)2
n+1 |Γ |. The set P contains

exactly the following productions, which are partitioned into five types (a ∈ Σ ∪ {ε}):

2 The proof in [3] incorrectly assumes that this state is the same for each stack when the first
stack gets empty.

126 M.F. Atig, B. Bollig, and P. Habermehl

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q, (q5, (q2, q3), q7), qe
3 , q3)

A(1)

(q1, (q5, (q2, q3), q7), (q3, q4), q3)
(q1, (q5, (q2, q3), q7), (q3, q4), q3)

B(1)

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q5, (q2, q3), q7)

A(2)

qe
2

⎤

⎥
⎦

[]

⎡

⎢
⎣

q3

A(4)

qe
4

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q1, (q5, (q2, q3), q7), (q3, q4), q3)

B(1)

(q3, (q2, (q3, q4), q8), (q3, q4), q3)
(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q5, (q2, q3), q7)

A(2)

qe
2

⎤

⎥
⎦

⎡

⎢
⎣

(q3, q4)

A(3)

qe
3

⎤

⎥
⎦

⎡

⎢
⎣

q3

A(4)

qe
4

⎤

⎥
⎦

⎡

⎢
⎣

(q3, (q2, (q3, q4), q8), (q3, q4), q3)

C(1)

(q2, (q2, (q3, q4), q8), (q3, q4), q8)

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q2, (q3, q4), q8)

B(2)

(q5, (q2, q3), q7)
(q5, (q2, q3), q7)

A(2)

qe
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q3, q4)

A(3)

qe
3

⎤

⎥
⎦

⎡

⎢
⎣

q3

A(4)

qe
4

⎤

⎥
⎦

[]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(q2, (q3, q4), q8)

B(2)

(q5, (q2, q3), q7)
(q5, (q2, q3), q7)

A(2)

qe
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

(q3, q4)

A(3)

qe
3

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q8

A(4)

q3
q3

A(4)

qe
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 1. A sketch of a partial derivation (from top to bottom) of a depth-4-grammar corresponding
to a run of a 4-MPDA where three symbols are popped from the first stack while three symbols
are pushed onto the other stacks. In each configuration, if the first stack is non-empty, then the
state symbols on top of the other stacks can be found on top of the first stack as well. In the last
configuration, the top symbols of the other stacks can be found on top of the second stack.

T1 S → ([(q0, qe
2, . . . , q

e
n), Z0, (q1, q1

2, . . . , q
1
n)])1

if there is k with 2 ≤ k ≤ n + 1 such that
• for all i with 2 ≤ i < k we have q1

i = qe
i

• if k ≤ n, then q1
k = (q1, q1

k+1,. . ., q
1
n)

T2 [(q1, q1
2, . . . , q

1
n), A(1), q2

1] → a([(q4, q1
2 , . . . , q

1
n), B(1), q3

1][q3
1 , C

(1), q2
1])1

if (q4, B(1)C(1), ε, . . . , ε) ∈ δ(q1, a, A(1))
T3 [(q1, q1

2,. . ., q
1
j−1, q

1
j , q

1
j+1,. . ., q

1
n), A(1), (q2, q1

2 , . . . , q
1
j−1, q

2
j , q

1
j+1, . . . , q

1
n)]

→ a([q2
j , B

(j), q1
j])j if q2

j �= qe
j and (q2, ε, . . . , ε, B(j), ε, . . . , ε) ∈ δ(q1, a, A(1))

T4 [(q1, q1
j+1, . . . , q

1
n), A(j), q1

j]
→ a([(q4, qe

2, . . . , q
e
j−1, q

1
j , q

1
j+1, . . . , q

1
n), B(1), (q2, q2

2 , . . . , q
2
n)])1

if (q4, B(1), ε, . . . , ε) ∈ δ(q1, a, A(j)), and there is k with 2 ≤ k ≤ n + 1 such that
• for all i with 2 ≤ i < min(k, j) we have q2

i = qe
i

• for all i with min(k, j) ≤ i < k we have q1
i = q2

i = qe
i

• if k ≤ n, then q2
k = (q2, q2

k+1,. . ., q
2
n)

T5 [(q1, q1
2, . . . , q

1
n), A(1), (q2, q1

2, . . . , q
1
n)] → a if (q2, ε, . . . , ε) ∈ δ(q1, a, A(1))

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 127

The grammar corresponding to the example in Table 1 can be found in [1]. The fol-
lowing key lemma formalizes the intuition about derivations of the grammar GM by
giving invariants satisfied by them (illustrated in Fig. 1). This lemma is the basic ingre-
dient of the full proof of Theorem 9, which can be found in [1]. Intuitively, condition
1 says that the first element of the first stack contains the state symbols on top of the
other stacks. Condition 2 says that the last state symbols in the first stack are of the form
allowing condition 3 to be true when the corresponding symbol is popped. Condition 3
says that if the first stack is empty, then the top of the first non-empty stack contains the
same state symbols as the top of the other stacks. Conditions 4 and 5 say that the state
symbols guessed form a chain through the stacks.

Lemma 10. Let w(γ1)(γ2) . . . (γn) be an n-list different from (ε)1 . . . (ε)n appearing
in a derivation of the grammar GM .

1. If γ1 = [(q1, q1
2 , . . . , q

1
n), A(1), (q2, q2

2 , . . . , q
2
n)]γ′

1 with γ′
1 ∈ V ∗

1 , then for all i
with 2 ≤ i ≤ n, if γi is empty, then q1

i = qe
i , else γi = [q1

i , B
(i), q3

i]γ′
i with

γ′
i ∈ V ∗

i .
2. If γ1 = γ′

1[(q
1, q1

2 , . . . , q
1
n), A(1), (q3, q3

2 , . . . , q
3
n)] with γ′

1 ∈ V ∗
1 , then there exists

k with 2 ≤ k ≤ n + 1 such that we have both for all i with 2 ≤ i < k, q3
i = qe

i

and k ≤ n implies q3
k = (q3, q3

k+1, . . . , q
3
n).

3. Suppose that γ1 = ε. Let i be the smallest k such that γk is not empty and let
γi = [(q1, q1

i+1, . . . , q
1
n), A(i), q2

i]γ′
i with γ′

i ∈ V ∗
i . Then, for all j > i, we have:

if γj is empty, then q1
j = qe

j , else γj = [q1
j , A

(j), q3
j]γ′

j with γ′
j ∈ V ∗

j .
4. For all i with 2 ≤ i ≤ n, if γi is not empty then for some j ≥ 1,

γi = [q1
i , A

(i)
1 , q2

i][q2
i , A

(i)
2 , q3

i] . . . [qj−1
i , A

(i)
j−1, q

j
i][qj

i , A
(i)
j , qe

i] and for all l with
1 ≤ l ≤ j, ql

i �= qe
i .

5. If γ1 is not empty, then for some j ≥ 1,
γ1 = [q1

1 , A
(1)
1 , q2

1][q2
1 , A

(1)
2 , q3

1] . . . [qj−1
1 , A

(1)
j−1, q

j
1][qj

1, A
(1)
j , qj+1

1].

By observing that the size of the grammar GM corresponding to an MPDA M in the
construction used in the proof of Theorem 9 is double exponential in the number of
stacks and using Lemma 8 we obtain the following corollary.

Corollary 11. The emptiness problem of MPDA is in 2ETIME.

In the next Section, it is shown that the double exponential upper bound is tight.

4 Emptiness of MPDA Is 2ETIME-Hard

In this section, we prove that the emptiness problem of MPDA is 2ETIME-hard. This is
done by adapting a construction in [10], where it is shown that certain bounded-phase
pushdown-transducer automata capture precisely the class 2ETIME.

Theorem 12. The emptiness problem for MPDA is 2ETIME-hard under logspace
reductions.

128 M.F. Atig, B. Bollig, and P. Habermehl

c0
c1

c2

c3 c4

c5

c6 c7

c8

c9

c10 c11

c12

c13 c14

Fig. 2. A run of an alternating Turing machine

Proof. It is well-known that the class of problems solvable by alternating Turing ma-
chines in space bounded by 2dn for some d (call it AESPACE) equals 2ETIME [5].
Thus, it is sufficient to show that any problem in AESPACE can be reduced, in logarith-
mic space, to the emptiness problem for MPDA.

So let T be an alternating Turing machine working in space bounded by 2dn. Let
furthermore w be an input for T of length n. We construct (in logarithmic space) from
T and w an MPDA M with 2dn + 4 stacks such that the language of M is non-empty
iff w is accepted by T . The simulation of T proceeds in two phases: (1) M guesses a
possible accepting run of T on w; (2) M verifies if the guess is indeed a run.

Without loss of generality, we can assume that a transition of T is basically of the
form c→ (c1∧c2)∨(c3∧c4)∨. . .∨(ch−1∧ch) (where configuration changes are local),
i.e., from configuration c, we might switch to both c1 and c2 or both c3 and c4 and so
on. This allows us to represent a run of T as a complete finite binary tree, as shown in
Fig. 2, whose nodes are labeled with configurations. Note that each configuration will
be encoded as a string, as will be made precise below. The run is accepting if all leaf
configurations are accepting. Following the idea of [10], we write the labeled tree as the
string (let cr denote the reverse of c)

c0|c1|c2|c3 ‖ cr
3 ‖ c4 ‖ cr

4|cr
2 ‖ c5|c6 ‖ cr

6 ‖ c7 ‖ cr
7|cr

5|cr
1 ‖

c8|c9|c10 ‖ cr
10 ‖ c11 ‖ cr

11|cr
9 ‖ c12|c13 ‖ cr

13 ‖ c14 ‖ cr
14|cr

12|cr
8|cr

0

It is generated by the (sketched) context-free grammar

A → αiAαi + αiBαi + αi‖αi

B → |A ‖ A|

where the αi are the atomic building blocks of an encoding of a configuration of T .
This string allows us to access locally those pairs of configurations that are related by
an edge in the tree and thus need to agree with a transition. Finally, the grammar can
make sure that all leafs are accepting configurations and that the initial configuration
corresponds to the input w. Using two stacks, we can generate such a word encoding
of a (possible) run of T and write it onto the second stack, say with c0 at the top, while
leaving the first stack empty behind us (cf. Fig. 3(a)).

The MPDA M now checks if the word written onto stack 2 stems from a run of T .
To this aim, we first extract from stack 2 any pair of configurations that needs to be
compared wrt. the transition relation of T . For this purpose, some of the configurations
need to be duplicated. Corresponding configurations are written side by side as follows:
By means of two further stacks, 3 and 4, we transfer the configurations located on stack
2 and separated by the symbol “|” onto the third stack (in reverse order), hereby copying
some configuration by writing it onto the fourth stack (cf. Fig. 3(b)).

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 129

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0

c1

c2

c3

cr
3...

cr
8

cr
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0

c8

c12

c14...
c2

c4

cr
3

cr
2

cr
1

cr
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c8

c12

cr
10

cr
9

c1

c5

cr
2

cr
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α′
4...

α′
1

α4...
α1

β′
4...

β′
1

β4...
β1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β2

β4

β′
2

β′
4

α2

α4

α′
2

α′
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

5

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β1

β3

β′
1

β′
3

α1

α3

α′
1

α′
3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

6

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α′
1

α1

β′
1

β1

α′
2

α2

β′
2

β2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α′
3

α3

β′
3

β3

α′
4

α4

β′
4

β4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8
(a) (b) (c)

Fig. 3. Guessing and verifying a run of an alternating Turing machine

It still remains to verify that c0 and c8 belong to a transition of T , as well as c12
and c14, etc. The encoding of one single configuration a1 . . . (q, ai) . . . a2dn will now
allow us to compare two configurations letter by letter. It has the form (−, a1, a2, e)
(a1, a2, a3, e) . . . (ai−1, (q, ai), ai+1, e) . . . (a2dn−1, a2dn ,−, e) where the component
e denotes a “transition” c → c′ ∧ c′′, which has been selected to be executed next
and which has been guessed in the above grammar. We would like to compare the
k-th letter of one with the k-th letter of another configuration. To access correspond-
ing letters simultaneously, we divide the configurations on stacks 3 and 4 into two,
using two further stacks, 5 and 6. We continue this until corresponding letters are ar-
ranged one below the other. This procedure, which requires 2dn additional stacks, is
illustrated in Fig. 3(c) where each αi and βi stands for an atomic symbol of the form
(a1, a2, a3, e). Note that, in some cases, we encounter pairs of the form (c, c′) whereas
in some other cases, we face pairs of the form (cr, (c′)r). Whether we deal with the
reverse of a configuration or not can be recognized on the basis of its border symbols
(i.e., (−, a1, a2, e) or (a2dn−1, a2dn ,−, e)). Consider, for example, stacks 3 and 4 in
Fig. 3(b). We want to compare c0 and c8 where c0 is of the form (−, a1, a2, e) . . ., i.e.,
it is read in the correct order. Suppose e is of the form c0 → c ∧ c′. Then, locally
comparing c0 and c8, we can check whether c′ = c8. If, at the bottom of stack 3, we
compare cr

1 = (a2dn−1, a2dn ,−, e) . . . with cr
0 and e is of the form c0 → c ∧ c′, then

we need to check if c = c1. In other words, the order in which a configuration is read
indicates if we follow the right or left successor in the (tree of the) run. !

From Corollary 11 and Theorem 12, we deduce our main result:

Theorem 13. The emptiness problem of MPDA is 2ETIME-complete under logspace
reductions.3

3 The emptiness problem of MPDA is 2EXPTIME-complete, too. Hereby, 2EXPTIME de-
notes the class of all decision problems solvable by a deterministic Turing machine in time
exp(exp(nd)) for some constant d (exp(x) denoting 2x). Note that 2EXPTIME is a robust
complexity class. On the other hand, 2ETIME is not robust, as it is not closed under logspace
reductions.

130 M.F. Atig, B. Bollig, and P. Habermehl

5 Comparison to Bounded-Phase Multi-stack Pushdown
Automata

In this section, we recall m-phase multi-stack (visibly) pushdown automata (m ≥ 1)
defined in [8] and show that they are strictly less expressive than 2m-MPDA.

Multi-stack Visibly Pushdown Automata. For n ≥ 1, an n-stack call-return al-
phabet is a tuple Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉 of pairwise disjoint finite al-

phabets. For i ∈ {1, . . . , n}, Σi
c is the set of calls of the stack i, Σi

r is the set of
returns of the stack i, and Σint is the set of internal actions. For any such Σ̃n, let
Σc =

⋃n
i=1 Σ

i
c, Σr =

⋃n
i=1 Σ

i
r, Σi = Σc ∪Σi

r ∪ Σint, for every i ∈ {1, . . . , n}, and
Σ = Σc ∪Σr ∪Σint.

Definition 14. A multi-stack visibly pushdown automaton (MVPA) over the n-stack
call-return alphabet Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉 is a tuple N = (Q,Γ,Δ, q0, F)

where Q is a finite set of states, Γ is a finite stack alphabet containing a distinguished
stack symbol⊥, Δ ⊆ (Q×Σc×Q×(Γ \{⊥}))∪(Q×Σr×Γ ×Q)∪(Q×Σint×Q)
is the transition relation, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states.

A configuration of N is an (n + 2)-tuple 〈q, x; γ1, . . . , γn〉 where q ∈ Q, x ∈ Σ∗, and
for all i ∈ {1, . . . , n}, γi ∈ Γ ∗ is the content of stack i. The transition relation &∗

N is
the transitive closure of the binary relation &N over configurations, defined as follows:
〈q, ax; γ1, . . . , γn〉 &N 〈q′, x; γ′

1, . . . , γ
′
n〉 if one of the following cases holds:

1. Internal move: a ∈ Σint, (q, a, q′) ∈ Δ, and γi = γ′
i for every i ∈ {1, . . . , n}.

2. Push onto stack i: a ∈ Σi
c, γ′

j = γj for every j �= i, and there is A ∈ Γ \ {⊥}
such that (q, a, q′, A) ∈ Δ and γ′

i = Aγi.
3. Pop from stack i: a ∈ Σi

r, γ′
j = γj for every j �= i, and there is A ∈ Γ such that

(q, a, A, q′) ∈ Δ and either A �= ⊥ and γi = Aγ′
i, or A = ⊥ and γi = γ′

i = ⊥.

A string x ∈ Σ∗ is accepted by N if there are γ1, . . . , γn ∈ Γ ∗ and q ∈ F such that
〈q0, x;⊥, . . . ,⊥〉 &∗

N 〈q, ε; γ1, . . . , γn〉. The language of N , denoted L(N), is the set
of all strings accepted by N .

Definition 15. For m ≥ 1, an m-phase multi-stack visibly pushdown automaton (m-
MVPA) over the n-stack call-return alphabet Σ̃n is a tuple K = (m,Q, Γ,Δ, q0, F)
where N = (Q,Γ,Δ, q0, F) is an MVPA over Σ̃n. The language accepted by K is
L(K) =

⋃
i1,...,im∈{1,...,n}

(
L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

))
.

Finally, we recall that the class of languages accepted by m-MVPA is closed under
union, intersection, renaming, and complementation [8]. However, one easily shows:

Lemma 16. The class of languages of m-MVPA is not closed under Kleene-star.

2m-MPDA are Strictly More Expressive than m-MVPA. We now show that, for
any m ≥ 1, 2m-MPDA are strictly more expressive than m-MVPA. Let us fix an
m-MVPA K = (m,Q, Γ,Δ, q0, F) over Σ̃n = 〈{(Σi

c, Σ
i
r)}i∈{1,...,n}, Σint〉, with

N = (Q,Γ,Δ, q0, F) an MVPA.

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 131

Proposition 17. For every sequence i1, . . . , im ∈ {1, . . . , n}, it is possible to construct
a 2m-MPDA M such that L(M) = L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

)
.

In the following, we sketch the proof. Intuitively, any computation of N accepting a
string x ∈ L(N) ∩

(
(Σi1)∗ · · · (Σim)∗

)
can be decomposed into m phases, where in

each phase (say j), N can only pop from the stack ij (but it can push onto all stacks).
Let j ∈ {1, . . . ,m} be the current phase of N and for every l ∈ {1, . . . , n}, let

kj
l = min

(
{k | j ≤ k ≤ m ∧ ik = l}∪{m+1}

)
denote the closest phase in {j, . . . ,m}

such that N can pop from the l-th stack if the phase is kj
l (note that kj

ij
= j), if such

phase does not exist, then kj
l = m + 1.

We construct a 2m-MPDA M over Σ such that the following invariant is preserved
during the simulation of N when its current phase is j: the content of the l-th stack of
N is stored in the (2kj

l − 1)-th stack of M if kj
l �= m + 1. Then, an internal move

(labeled by a ∈ Σint) of N is simulated by an internal move (labeled by a) of M ; a pop
rule (labeled by a ∈ Σ

ij
r) of N from the ij-th stack corresponds to a pop rule (labeled

by a) of M from the (2j − 1)-th stack; and a push rule (labeled by a ∈ Σl
c) onto the

l-th stack of N is simulated by a push rule (labeled by a) of M onto the (2kj
l − 1)-th

stack if kj
l �= (m + 1), else by an internal move (labeled by a) of M .

On switching phase from j to (j + 1) if kj+1
ij

�= m + 1, when N is able once again
to pop from the (ij)-th stack, M moves the content of the (2j − 1)-th stack onto the
(2kj+1

ij
− 1)-th stack using the (2j)-th stack as an intermediary one, else it removes the

content of the (2j−1)-th stack. Observe that all the above described behaviors maintain
the stated invariant since kj+1

l = kj
l for every l �= ij .

We are now ready to present the main result of this section.

Theorem 18. 2m-MPDA are strictly more expressive than m-MVPA.

Proof. For every m-MVPA K over the stack alphabet Σ̃n one can construct a 2m-
MPDA M over Σ such that L(M) = L(K) by considering all possible orderings of
phases (fixing for each phase the stack which can be popped) and using Proposition
17. To prove strict inclusion, we notice that the class of languages recognized by 2m-
MPDA is closed under Kleene-star (Lemma 5) but the class of languages of m-MVPA
is not (Lemma 16). !

2m-MPDA are Strictly More Expressive than m-MPA. In the following, we ex-
tend the previous result to m-phase multi-stack pushdown automata over non-visible
alphabets (defined in [8]). A multi-stack pushdown automaton (called MPA) over (non-
visible) alphabet Σ is simply an n-stack automaton with ε-moves, that can push and
pop from any stack when reading any letter. Also, we define m-phase version of these
(called m-MPA). An m-MPA is an MPA using at most m-phases, where in each phase
one can pop from one distinguished stack, and push on any other stack.

Theorem 19. 2m-MPDA are strictly more expressive than m-MPA.

The idea behind proving inclusion is that for any m-MPA K over Σ, it is possible to
construct an m-MVPA K ′ over Σ̃′

n = 〈{(Σ′i
c, Σ

′i
r)}i∈{1,...,n}, Σ

′
int〉, with Σ′i

c =

132 M.F. Atig, B. Bollig, and P. Habermehl

(
Σ∪{ε}

)
×{c}×{i}, Σ′i

r =
(
Σ∪{ε}

)
×{r}×{i}, and Σ′

int =
(
Σ∪{ε}

)
×{int},

such that every transition on a ∈ Σ ∪ {ε} that pushes onto the stack i is transformed to
a transition on (a, c, i), transitions on a that pop the stack i are changed to transitions
on (a, r, i), and the remaining a-transitions are changed to transitions over (a, int). Let
f be a renaming function that maps each symbol (a, c, i), (a, r, i), and (a, int) to a.
Then, w ∈ L(K) iff there is some w′ ∈ L(K ′) such that w = f(w′). It follows that
L(K) = f

(
L(K ′)

)
. Consider now the 2m-MPDA M ′ over Σ′ constructed from K ′

such that L(M ′) = L(K ′), thanks to Theorem 18. Then, it is possible to construct
from M ′ a 2m-MPDA M over Σ such that L(M) = f

(
L(M ′)

)
(Lemma 5) which

implies that L(M) = L(K). To prove the strict inclusion we use the easy to see fact
that m-MPA are not closed under Kleene-star whereas 2m-MPDA are (Lemma 5).

6 Conclusion

We have shown that the emptiness problem for multi-pushdown automata (MPDA) is
2ETIME-complete. The study of the emptiness problem is the first step of a compre-
hensive study of verification problems for MPDA. For standard pushdown automata,
a lot of work has been done recently (see for example [2]) concerning various model-
checking problems. It will be interesting to see how these results carry over to MPDA
and at which cost. A basic ingredient of model-checking algorithms is typically to char-
acterize the set of successors or predecessors of sets of configurations. For MPDA, this
problem remains to be studied. Another class of extended pushdown automata has re-
cently been studied extensively: the class of higher-order pushdown automata (HPDA,
see for example [6]). It is quite easy to see that HPDA of order n can simulate MPDA
with n stacks (which allows us to use all verification results for HPDA also for MPDA).
However, the converse is wrong, since emptiness of pushdown automata of order n is
(n−1)-EXPTIME-complete [6]. Therefore, it is interesting to study dedicated algo-
rithms for the verification of MPDA.

References

1. Atig, M.F., Bollig, B., Habermehl, P.: Emptiness of multi-pushdown automata is 2ETIME-
complete. Research Report LSV-08-16, LSV, ENS Cachan (May 2008),
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS LSV/
PDF/rr-lsv-2008-16.pdf

2. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-
tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

3. Breveglieri, L., Cherubini, A., Citrini, C., Crespi Reghizzi, S.: Multi-push-down languages
and grammars. International Journal of Foundations of Computer Science 7(3), 253–292
(1996)

4. Breveglieri, L., Cherubini, A., Crespo Reghizzi, S.: Personal communication
5. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)
6. Engelfriet, J.: Iterated stack automata and complexity classes. Information and Computa-

tion 95(1), 21–75 (1991)

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/
PDF/rr-lsv-2008-16.pdf

Emptiness of Multi-pushdown Automata Is 2ETIME-Complete 133

7. San Pietro, P.: Two-stack automata. Technical Report 92-073, Dipartimento di elettronica e
informazione, Politechnico di Milano (1992)

8. La Torre, S., Madhusudan, P., Parlato, G.: A robust class of context-sensitive languages. In:
Proceedings of LICS, pp. 161–170. IEEE, Los Alamitos (2007)

9. La Torre, S., Madhusudan, P., Parlato, G.: Context-bounded analysis of concurrent queue
systems. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 299–
314. Springer, Heidelberg (2008)

10. La Torre, S., Madhusudan, P., Parlato, G.: An infinite automaton characterization of double
exponential time. In: Proceedings of CSL 2008. LNCS. Springer, Heidelberg (to appear,
2008)

The Average State Complexity of the Star of a

Finite Set of Words Is Linear

Frédérique Bassino1, Laura Giambruno2, and Cyril Nicaud3

1 LIPN UMR CNRS 7030, Université Paris-Nord, 93430 Villetaneuse, France
2 Dipartimento di Matematica e Applicazioni, Università di Palermo, 90100, Italy

3 IGM, UMR CNRS 8049, Université Paris-Est, 77454 Marne-la-Vallée, France
bassino@lipn.univ-paris13.fr, lgiambr@math.unipa.it, nicaud@univ-mlv.fr

Abstract. We prove that, for the uniform distribution over all sets X
of m (that is a fixed integer) non-empty words whose sum of lengths is
n, DX , one of the usual deterministic automata recognizing X∗, has on
average O(n) states and that the average state complexity of X∗ is Θ(n).
We also show that the average time complexity of the computation of
the automaton DX is O(n log n), when the alphabet is of size at least
three.

1 Introduction

This paper addresses the following issue: given a finite set of words X on an
alphabet A and a word u ∈ A∗, how to determine efficiently whether u ∈ X∗ or
not?

With a non-deterministic automaton, one can determine whether a word u
is in X∗ or not in time proportional to the product of the lengths of u and X ,
where the length of X is the sum of the lengths of its elements.

With a deterministic automaton recognizing X∗, one can check whether a
word u is in X∗ or not in time proportional to the size of u, once the automaton is
computed. But in [5], Ellul, Krawetz, Shallit and Wand found an example where
the state complexity of X∗, i.e. the number of states of the minimal automaton of
X∗, is exponential. More precisely, for every integer h ≥ 3, they gave a language
Xh of length Θ(h2), containing Θ(h) words, whose state complexity is Θ(h2h).
Using another measure on finite sets of words, Campeanu, Culik, Salomaa and
Yu proved in [2,3] that if the set X is a finite language of state complexity n ≥ 4,
the state complexity of X∗ is 2n−3+2n−4 in the worst case, for an alphabet with
at least three letters. Note that the state complexity of X∗ is 2n−1 +2n−2 in the
worst case when X is not necessarily finite [14,15].

An efficient alternative using algorithms related to Aho-Corasick automaton
was proposed in [4] by Clément, Duval, Guaiana, Perrin and Rindone. In their
paper, an algorithm to compute all the decompositions of a word as a concate-
nation of elements in a finite set of non-empty words is also given.

This paper is a contribution to this general problem, called the noncommu-
tative Frobenius problem by Shallit [10], from the name of the classical prob-
lem [8,9] of which it is a generalization. Our study is made from an average point

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 134–145, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Average State Complexity of the Star of a Finite Set Words Is Linear 135

of view. We analyse the average state complexity of X∗, for the uniform distri-
bution of sets of m non-empty words, whose sum of lengths is n, and as n tends
towards infinity. We use the general framework of analytic combinatorics [6] ap-
plied to sets of words and classical automata constructions. Our main result is
that, on average, the state complexity of the star of a set X of m non-empty
words is linear with respect to the length of X . For an alphabet with at least
three letters, we also provide an algorithm to build a deterministic automaton
recognizing X∗ in average time O(n log n), where n is the length of X .

The paper is organized as follows. In Section 2 we recall some definitions, usual
automata constructions and combinatorial properties about words. In Section 3
we sketch the proof of the linearity of the average number of states of a deter-
ministic automaton DX recognizing X∗. As a consequence of our construction,
in Section 4, we prove that the average time complexity for the construction
of the automaton DX is in O(n log n) when the size of the alphabet is at least
three. In Section 5, we establish that the average state complexity of the star of
a finite set with m non-empty words whose sum of lengths is n is proportional
to n. In the case of sets of two words, we prove a stronger result: the average size
of the minimal automaton of X∗ is equivalent to n. Finally, in Section 6 we give
an algorithm to randomly and equiprobably generate sets X of m non-empty
words whose sum of lengths is n, and use it to obtain some experimental results
about the average number of states of DX .

2 Preliminary

2.1 Definitions and Constructions

A finite automaton A over a finite alphabet A is a quintuple A = (A,Q, T, I, F)
where Q is a finite set of states, T ⊂ Q×A×Q is the set of transitions, I ⊂ Q
is the set of initial states and F ⊂ Q is the set of final states. The automaton
A is deterministic if it has only one initial state and for any (p, a) ∈ Q × A
there exists at most one q ∈ Q such that (p, a, q) ∈ T . It is complete if for
each (p, a) ∈ Q × A, there exists at least one q ∈ Q such that (p, a, q) ∈ T . A
deterministic finite automaton A is accessible when for each state q of A, there
exists a path from the initial state to q. The size #A of an automaton A is its
number of states. The minimal automaton of a regular language is the unique
smallest accessible and deterministic automaton recognizing this language. The
state complexity of a regular language is the size of its minimal automaton. We
refer the readers to [7,13,1] for elements of theory of finite automata.

Any finite automaton A = (A,Q, T, I, F) can be transformed into a determin-
istic automaton B = (A,P(Q), T ′, {I}, F ′) recognizing the same language and
in which F ′ = {P ∈ P(Q) | P ∩ F �= ∅} and T ′ = {(P, a,R) with P ∈ P(Q), a ∈
A and R = {q | ∃p ∈ P, (p, a, q) ∈ T }}. To be more precise only the accessible
part of the automaton B is really built in this subset construction.

Let X ⊂ A∗ be a finite set of words. Denote by Pr(X) the set of all prefixes of
elements of X . The automaton (A,Pr(X), TX , {ε}, X), where TX = {(u, a, ua) |
u ∈ Pr(X), a ∈ A, ua ∈ Pr(X)}, recognizes the set X and the automaton

136 F. Bassino, L. Giambruno, and C. Nicaud

ε a ab

abab

ba bab

a b

ab

a

b

ε a ab

abab

ba bab

a b

ab

a

b

a

b

a

b

ab

Fig. 1. The automata ({a, b}, Pr(X), TX , {ε}, X) and AX , for X = {a, aba, bab}

AX = (A,Pr(X), TX ∪ T, {ε}, X ∪ {ε}), where T = {(u, a, a) | u ∈ X, a ∈
A∩Pr(X)} recognizes X∗ (see Fig.1). We denote by AS the automaton defined
for the set of elements of any sequence S by the above construction. In such
an automaton only the states labelled by a letter have more than one incoming
transition.

For any finite set of words X ⊂ A∗ (resp. any sequence S), we denote by DX

(resp. DS) the accessible deterministic automaton obtained from the automaton
AX (resp. AS) making use of the subset construction and by MX the minimal
automaton of X∗.

Lemma 1. For any finite set of words X ⊂ A∗, the states of the deterministic
automaton DX recognizing X∗ are non-empty subsets {u1, · · · , u�} of Pr(X) such
that for all i, j ∈ {1, · · · , �}, either ui is a suffix of uj or uj is a suffix of ui.

2.2 Enumeration

Let X ⊂ A∗ be a finite set of words. We denote by |X | the cardinality of X
and by ‖X‖ the length of X defined as the sum of the lengths of its elements:
‖X‖ =

∑
u∈X |u|. Let Setn,m be the set of sets of m non-empty words whose

sum of lengths is n:

Setn,m = {X = {u1, · · · , um} | ‖X‖ = n, ∀i ∈ {1, · · · ,m} ui ∈ A+}

and Sn,m be the set of sequences of m non-empty words whose sum of lengths
is n:

Sn,m = {S = (u1, · · · , um) | ‖S‖ = n, ∀i ∈ {1, · · · ,m} ui ∈ A+}

We denote by S �=
n,m ⊂ Sn,m the set of sequences of pairwise distinct words. Recall

that f(n) = O(g(n)) if there exists a positive real number c such that for all n
big enough |f(n)| ≤ c|g(n)|.

The Average State Complexity of the Star of a Finite Set Words Is Linear 137

Proposition 1. For any fixed integer m ≥ 2,

|Sn,m| =
(
n− 1
m− 1

)

|A|n and |Setn,m| =
1
m!

|Sn,m|
(

1 +O
(

1
n2

))

.

Proof. (sketch) Any sequence S of Sn,m can be uniquely defined by a word v of
length n, which is the concatenation of the elements of S, and a composition of
n into m parts, that indicates how to cut the word of length n into m parts.
Therefore |Sn,m| =

(
n−1
m−1

)
|A|n. Using methods from analytic combinatorics [6],

one can prove that

|S �=
n,m| = |Sn,m|

(

1 +O
(

1
n2

))

.

Furthermore since an element of Setn,m is mapped to exactly m! sequences of
S �=

n,m , we obtain |S �=
n,m| = m!|Setn,m|, concluding the proof. !

We say that the word v is a proper prefix (resp. suffix) of a word u if v is a prefix
(resp. suffix) of u such that v �= ε and v �= u. The word v is called a border of
u if v is both proper prefix and proper suffix of u. We denote by Pref(u) (resp.
Suff(u)) the set of proper prefixes (resp. suffixes) of u and by Bord(u) the set of
borders of u. A word is primitive when it is not the power of another one.

Let u, v and w be three non-empty words such that v is a proper suffix of u
and w is a proper suffix of v. We define the three following sets:

Qu = {{u} ∪ P | P ⊂ Suff(u)}
Qu,v = {{u} ∪ P | P ∈ Qv}

Qu,v,w = {{u} ∪ P | P ∈ Qv,w}.

Note that the cardinalities of Qu, Qu,v and Qu,v,w are respectively equal to
2|u|−1, 2|v|−1 and 2|w|−1.

In the proof of the main result (Theorem 1) of this paper, we count the number
of states of automata according to their labels. This enumeration is based on the
following combinatorial properties of words whose proofs derived from classical
results of combinatorics on words (see [11,12]) are omitted.

Lemma 2. Let u be a non-empty word of length �. The number of sequences S ∈
Sn,m such that u is a prefix of a word of S is smaller or equal to m

(
n−�
m−1

)
|A|n−�.

Lemma 3. Let u, v ∈ A+ such that v is not a prefix of u, |u| = � and |v| = i.
The number of sequences S ∈ Sn,m such that both u and v are prefixes of words
of S is smaller or equal to m(m− 1)|A|n−�−i

(
n−�−i+1

m−1

)
.

Lemma 4 ([12] p. 270). For 1 ≤ i < �, there are at most |A|�−i pairs of
non-empty words (u, v) such that |u| = �, |v| = i and v is a border of u.

Lemma 5. For 1 ≤ j < i < � such that either i ≤ 2
3� or j ≤ i

2 , there are at
most |A|�− i

2−j triples of non-empty words (u, v, w) with |u| = �, |v| = i, |w| = j
such that v is a border of u and w is a border of v.

138 F. Bassino, L. Giambruno, and C. Nicaud

Proposition 2. For 1 ≤ j < i < � such that i > 2
3 � and j > i

2 and for any
triple of non-empty words (u, v, w) with |u| = �, |v| = i, |w| = j such that v
is a border of u and w is a border of v, there exist a primitive word x, with
1 ≤ |x| ≤ � − i, a prefix x0 of x and nonnegative integers p > q > s > 0 such
that u = xpx0, v = xqx0 and w = xsx0.

3 Main Result

In this section we give the proof of the following theorem.

Theorem 1. For the uniform distribution over the sets X of m (a fixed integer)
non-empty words whose sum of lengths is n, the average number of states of the
accessible and deterministic automata DX recognizing X∗ is linear in the length
n of X.

First, note that to prove this result on sets it is sufficient to prove it on sequences:

1
|Setn,m|

∑

X∈Setn,m

#DX =
1

m! |Setn,m|
∑

S∈S �=
n,m

#DS ≤
1

m! |Setn,m|
∑

S∈Sn,m

#DS

and we conclude using Proposition 1.
Let Y ⊂ A∗ and S ∈ Sn,m, we denote by Det(S, Y) the property: Y is the

label of a state of DS . Let P be a property, the operator [[]] is defined by [[P]] = 1
if P is true and 0 otherwise.

To find an upper bound for the average number of states of the deterministic
automaton DS when the sequence S ranges the set Sn,m, we count the states of
all automata according to their labels. More precisely we want to estimate the
sum ∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

Y ⊂A∗

[[Det(S, Y)]],

Taking into account the cardinality of the labels of the states:
∑

S∈Sn,m

#DS =
∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y)]] +
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y)]].

The first sum deals with states labelled by a single word. Since, for each
S ∈ Sn,m, the words that appear in the labels of states of DS are prefixes of
words of S, we have

∑

S∈Sn,m

∑

|Y |=1

[[Det(S, Y)]] =
∑

S∈Sn,m

∑

u prefix of
a word of S

[[Det(S, {u})]] ≤ (n + 1)|Sn,m|.

It remains to study the sum

Δ =
∑

S∈Sn,m

∑

|Y |≥2

[[Det(S, Y)]].

The Average State Complexity of the Star of a Finite Set Words Is Linear 139

Let Y ⊂ A∗ be a non-empty set which is not a singleton. By Lemma 1, if Y is
the label of a state of an automaton DS , then Y belongs to a set Qu,v, for some
non-empty word u and some proper suffix v of u. Therefore

Δ =
∑

S∈Sn,m

∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

[[Det(S, Y)]].

Changing the order of the sums we obtain

Δ =
∑

u∈A+

∑

v∈Suff(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y)]].

We then partition the sum Δ into Δ1 +Δ2 depending on whether the word v is
prefix of u or not:

Δ1 =
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y)]]

Δ2 =
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

∑

S∈Sn,m

[[Det(S, Y)]]

To prove Theorem 1, we establish in the following that Δ1 and Δ2 are both
O(n |Sn,m|).

3.1 Proof for an Alphabet of Size at Least 3

Let k ≥ 3 be the cardinality of the alphabet A. Using Lemma 3 we have that

Δ2 ≤
∑

u∈A+

∑

v∈Suff(u)\Pref(u)

∑

Y ∈Qu,v

m(m− 1)kn−|u|−|v|
(
n− |u| − |v|+ 1

m− 1

)

.

As |Qu,v| = 2|v|−1, with � = |u| and i = |v|,

Δ2 ≤
n−m+1∑

�=2

k�
�−1∑

i=1

2i−1m(m− 1)kn−�−i

(
n− �− i + 1

m− 1

)

.

Moreover, since 2ik−i ≤ 1 and since
∑n−m+1

�=2

∑�−1
i=1

(
n−�−i+1

m−1

)
=
(
n−1
m

)
,

Δ2 ≤
m(m− 1)

2
kn

(
n− 1
m

)

and thus, by Proposition 1, Δ2 = O(n |Sn,m|).
Now by Lemma 2, we have

Δ1 ≤
∑

u∈A+

∑

v∈Bord(u)

∑

Y ∈Qu,v

m

(
n− |u|
m− 1

)

kn−|u|.

140 F. Bassino, L. Giambruno, and C. Nicaud

Since |Qu,v| = 2|v|−1 we get by Lemma 4

Δ1 ≤
n−m+1∑

�=2

�−1∑

i=1

m

(
n− �

m− 1

)

kn−�k�−i2i−1.

Since
∑�−1

i=1

(
2
k

)i ≤ 2
k−2 , when k ≥ 3, and

∑n−m+1
�=2

(
n−�
m−1

)
=
(
n−1
m

)
,

Δ1 ≤
m

(k − 2)
kn

(
n− 1
m

)

.

We use Proposition 1 to conclude that Δ1 = O(n |Sn,m|).

3.2 Proof for an Alphabet of Size 2

The study of Δ2 is the same as in the previous section. Now we partition the
sum Δ1 into two sums Δ1,1 and Δ1,2 depending on whether the set Y contains
exactly two elements or not (and therefore belongs to some set Qu,v,w). More
precisely,

Δ1,1 =
∑

u∈A+

∑

v∈Bord(u)

∑

S∈Sn,m

[[Det(S, {u, v})]]

and
Δ1,2 =

∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]].

Using Lemmas 2 and 4, and since
∑�−1

i=1 2−i ≤ 1 and
∑n−m+1

�=2

(
n−�
m−1

)
=
(
n−1
m

)
,

we obtain

Δ1,1 ≤
n−m+1∑

�=2

�−1∑

i=1

m

(
n− �

m− 1

)

2n−�2�−i ≤ m 2n

(
n− 1
m

)

.

Consequently, by Proposition 1, Δ1,1 = O(n |Sn,m|).
Next we decompose the sum Δ1,2 into the sums B1,2 + N1,2 depending on

whether w is a prefix (and therefore a border) of v or not.
When w is not a prefix of v, the number of sequences S ∈ Sn,m such that u and

w are prefixes of two distinct words of S is at most m(m − 1)2n−�−j
(
n−�−j+1

m−1

)

from Lemma 3.
Since, from Lemma 4, there are less than 2�−i pairs (u, v) such that v is a

border of u and since |Qu,v,w| = 2|w|−1, we get:

N1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Suff(v)\Pref(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]]

≤
n−m+1∑

�=3

�−1∑

i=2

i−1∑

j=1

2�−i2j−1m(m− 1)2n−�−j

(
n− �− j + 1

m− 1

)

≤ m(m− 1)2n−1
n−m+1∑

�=3

�−1∑

i=2

2−i
i−1∑

j=1

(
n− �− j + 1

m− 1

)

The Average State Complexity of the Star of a Finite Set Words Is Linear 141

As
(
n−�−j+1

m−1

)
≤
(

n−�
m−1

)
, we obtain

N1,2 ≤ m(m− 1)2n−1
n−m+1∑

�=3

(
n− �

m− 1

) �−1∑

i=2

(i− 1)2−i

Because of the convergence of the series,
∑�−1

i=2 (i− 1)2−i is bounded. Therefore,
as

∑n−m+1
�=3

(
n−�
m−1

)
=
(
n−2
m

)
and |Sn,m| =

(
n−1
m−1

)
2n, we have N1,2 = O(n|Sn,m|).

When w is prefix of v, the associated sum B1,2 is partitioned into the following
sums:

B1,2 =
∑

u∈A+

∑

v∈Bord(u)

∑

w∈Bord(v)

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]] = B′
1,2 + B′′

1,2

with
B′

1,2 =
∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3 |u|

∑

w∈Bord(v)

|w|> |v|
2

∑

Y ∈Qu,v,w

∑

S∈Sn,m

[[Det(S, Y)]]

and B′′
1,2 = B1,2 \ B′

1,2. Using Lemma 5, the fact that |Qu,v,w| = 2|w|−1 and
relaxing the constraints on the lengths of the words v and w, we get

B′′
1,2 ≤

n−m+1∑

�=3

�−1∑

i=2

i−1∑

j=1

m

(
n− �

m− 1

)

2n−�2�− i
2−j2j−1.

Since
∑�−1

i=2 (i− 1)2−
i
2 is bounded by a constant M ,

B′′
1,2 ≤ mM2n−1

n−m+1∑

�=3

(
n− �

m− 1

)

.

Finally as
∑n−m+1

�=3

(
n−�
m−1

)
=
(
n−2
m

)
and |Sn,m| =

(
n−1
m−1

)
2n, B′′

1,2 = O(n |Sn,m|).
Now from Lemma 2 and since |Qu,v,w| = 2|w|−1, we get:

B′
1,2 ≤

∑

u∈A+

∑

v∈Bord(u)
|v|> 2

3 |u|

∑

w∈Bord(v)

|w|> |v|
2

2|w|−1m

(
n− |u|
m− 1

)

2n−|u|.

Moreover, from Proposition 2, the words u, v and w of length respectively �, i
and j are powers of a same primitive word x: u = xpx0, v = xqx0 and w = xsx0,
with p > q > s > 0 and x0 ∈ Pr(x). Let r be the length of x, then there are less
than 2r such words x and since 1 ≤ r ≤ � − i and i > 2

3�, r < �
3 . Finally the

lengths of v and w can be written i = �−hr where 1 ≤ h < �/3r and j = �−h′r
where h < h′ < 1

2 (�
r + h), since j > i/2. Therefore

B′
1,2 ≤

n−m+1∑

�=3

�
3−1∑

r=1

�
3r∑

h=1

1
2 (�

r +h)∑

h′=h+1

m

(
n− �

m− 1

)

2n−�2r2�−h′r−1

≤ m 2n−1
n−m+1∑

�=3

(
n− �

m− 1

) �
3−1∑

r=1

2r

�
3r∑

h=1

1
2 (�

r +h)∑

h′=h+1

(2−r)h′
.

142 F. Bassino, L. Giambruno, and C. Nicaud

As
∑ �

3r

h=1

∑ 1
2 (�

r +h)

h′=h+1(2−r)h′ ≤ 4/22r when r ≥ 1, we obtain

B′
1,2 ≤ m2n+1

n−m+1∑

�=3

(
n− �

m− 1

) �
3−1∑

r=1

2−r ≤ m2n+1
n−m+1∑

�=3

(
n− �

m− 1

)

Finally, since
∑n−m+1

�=3

(
n−�
m−1

)
=
(
n−2
m

)
and |Sn,m| =

(
n−1
m−1

)
2n, we obtain that

B′
1,2 = O(n |Sn,m|), concluding the proof.

4 Average Time Complexity of the Determinization

The state complexity of a language recognized by a non-deterministic automaton
with n states is, in the worst case, equal to 2n. Therefore the lower bound of the
worst-case time complexity of the determinization is Ω(2n). In such cases, it is
interesting to measure the time complexity according to the size of the output
of the algorithm and to try to design algorithms whose efficiency is a function
of the size of the result instead of the one of the input. In particular they should
be fast when the output is small, even if it is not possible to prevent the output
from being of exponential size in the worst case.

The complexity of the subset construction basically depends upon the encod-
ing and the storage of the set of states. At each step, for a given set of states P
and a letter a ∈ A, the algorithm computes the set P · a of states of the initial
automaton that can be reached from a state of P by a transition labelled by a.
Then it tests whether this set has already been computed before or not.

For general non-deterministic automata, the choice of an appropriate data
structure for the determinization is not easy. The use of a hashtable may not
be an efficient strategy: it is hard to choose the size of the table and the time
complexity grows when the table has to be resized and new hashvalues have to
be computed for every subset.

Here the automata AX to be determinized are specific: for any state u and any
letter a, the set u ·a can only be ∅, {a}, {ua} or {a, ua}. The sets of states of AX

can be encoded with lists ordered according to the suffix order, i.e. v ≤suff u
if and only if v ∈ Suff(u) ∪ {ε}. By Lemma 1, it is a total order over the set of
states of DX . Hence for any state P of DX , which is also a set of states of AX ,
and any letter a ∈ A, the set P · a can be computed in O(|P |) operations using
theses data structures. Moreover as the lists are sorted, the comparison of two
sets of states P and P ′ can be done, in the worst case, with O(min{|P |, |P ′|})
operations. To store the sets of states ofAX we use n+1 balanced trees T0, · · · , Tn

where each tree Ti contains only subsets of size i. When a new set of states P
is computed, it is inserted in the tree T|P |. To check whether the set of states
P has already been created it is sufficient to search P in the tree T|P |. These
operations can be done with O(log |T|P ||) set comparisons, therefore their time
complexity is O(|P | log |T|P ||). As there are at most

(
n
|P |
)
≤ n|P | elements in

T|P |, the insertion or the search of a set of states P can be done in O(|P |2 logn)
arithmetic operations.

The Average State Complexity of the Star of a Finite Set Words Is Linear 143

Using this data representation, we can prove the following result whose proof,
similar to the proof of Theorem 1, is omitted.

Theorem 2. For an alphabet of size at least 3, the average time complexity, for
the uniform distribution over the sets X of Setn,m, of the construction of the
accessible and deterministic automaton DX is O(n logn).

The estimation of the time complexity of the determinization of AX remains an
open problem in the case of a two-letters alphabet.

5 Minimal Automata

In Section 3 we have proved that the average number of states of DX , for X in
Setn,m, is linear in the length of X . The same result holds for the average state
complexity of X∗ since, for each X in Setn,m, the size of the minimal automaton
MX of X∗ is smaller or equal to the size of DX . Moreover, we prove that the
average state complexity of X is Ω(n).

Theorem 3. For the uniform distribution over the sets X of Setn,m the average
state complexity of X∗ is Θ(n).

Proof. (sketch) Let Slog ⊂ Sn,m be the subset of sequences S = (u1, . . . , um)
such that for i ∈ {1, . . . ,m}, |ui| > 2 �logn� and the prefixes (resp. suffixes) of
length �logn� of words in S are pairwise distinct.

For any S = (u1, . . . , um) ∈ Slog, the set {u1, · · · , um} is a prefix code. There-
fore, making use of a usual construction of the minimal automaton MS from
the literal automaton of {u1, · · · , um} [1, Prop. 2.4], we prove that MS has at
least n− 2m logn states.

Next, using asymptotic estimations, we show that the cardinalities of Slog

and Sn,m are asymptotically close: |Sn,m| = |Slog|(1+o(1)). Moreover, as Slog ⊂
S �=

n,m, we have:

1
|Setn,m|

∑

X∈Setn,m

#MX ≥ 1
m!|Setn,m|

∑

S∈Slog

#MS ≥
|Slog|(n− 2m logn)

m!|Setn,m|

Finally we conclude the proof using Proposition 1. !

Corollary 1. For the uniform distribution over the sets X of Setn,m, the aver-
age number of states of DX is Θ(n).

Now we study the case m = 2 of sets of two non-empty words:

Theorem 4. For the uniform distribution over the sets X of Setn,2, the average
state complexity of X∗ is asymptotically equivalent to n.

Proof. First the proof of Theorem 3 leads to a lower bound asymptotically equiv-
alent to n. Second Kao, Shallit and Xu recently proved [10] that

{
#M{u,v} ≤ |u|+ |v| if u, v ∈ A+ are not powers of the same word
#M{u,v} ≤ (|u|+ |v|)2 otherwise.

144 F. Bassino, L. Giambruno, and C. Nicaud

Let Pn be the subset of Sn,2 containing all sequences (u, v) such that u and v
are powers of a same word. For any non-empty word u of size |u| ≤ n

2 there is
at most one word v in A+ such that (u, v) ∈ Pn. Therefore

∑

(u,v)∈Pn

#M{u,v} ≤ 2
∑

u∈A+,|u|≤n
2

n2 ≤ 2n2

�n/2�∑

i=1

|A|i = O
(
n2|A|n/2

)
.

Consequently, as |Sn,2| ∼ n|A|n when n tends towards infinity, the contribution of
Pn to the average is negligible. And since, for (u, v) ∈ Sn,2 \Pn, the size of M{u,v}
is lower or equal to n, the average state complexity of X∗ is equivalent to n. !

6 Random Generation and Experimental Results

In the following we explain how to build a random generator for the uniform
distribution over the set Setn,m. Recall that each element of Setn,m corresponds
to exactly m! elements of S �=

n,m. Therefore a uniform random generator for S �=
n,m

provides a uniform generator for Setn,m.
We use a rejection algorithm to generate elements of S �=

n,m: we repeatedly
generate a random element of Sn,m, reject it if it is not in S �=

n,m, stop if it is
in S �=

n,m. One can show that the average number of elements to be generated
is equal to 1

p , where p is the probability for an element of Sn,m to be in S �=
n,m,

which is O(1) from Proposition 1.
To draw uniformly at random an element (u1, · · · , um) of S �=

n,m, we first gener-
ate the lengths of the ui. More precisely a random composition of n into m parts
is generated making use of the bijection (see Proposition 1) with the subsets of
{1, · · · , n− 1} of size m− 1, themself seen as the m− 1 first values of a random

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000

S
iz

e
of

 D
x

Size of X

m=3
m=12
m=20

Fig. 2. The average number of states of DX for random sets of words X ∈ Setn,m on
a 3-letters alphabet. For each value of m, 20 points have been computed using 1000
random draws each time.

The Average State Complexity of the Star of a Finite Set Words Is Linear 145

permutation of {1, · · · , n− 1}. When the lengths of the words are known, each
letter is drawn uniformly at random from the alphabet A.

Because of the rejection algorithm, this method may never end, but its average
complexity isO(n). Indeed all algorithms are linear, testing whether the sequence
is in S �=

n,m is also linear, and the average number of rejects is O(1). This algorithm
has been used to obtain the results shown in Figure 2.

From these experimental results, the average number of states of the de-
terministic automaton DX recognizing X∗ seems asymptotically of the form
n− cm + o(1), where cm is a positive number depending on m.

Acknowledgement. The first and third authors were supported by the ANR

(project BLAN07-2 195422).

References

1. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, London (1985)
2. Campeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations

on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 60–70. Springer, Heidelberg (2001)

3. Campeanu, C., Salomaa, K., Yu, S.: State complexity of regular languages: finite
versus infinite. In: Calude, C.S., Paun, G. (eds.) Finite Versus Infinite: Contribu-
tions to an Eternal Dilemma, pp. 53–73. Springer, Heidelberg (2000)

4. Clément, J., Duval, J.-P., Guaiana, G., Perrin, D., Rindone, G.: Parsing with a
finite dictionary. Theoretical Computer Science 340, 432–442 (2005)

5. Ellul, K., Krawetz, B., Shallit, J., Wang, M.-W.: Regular expressions: new results
and open problems. J. Autom. Lang. Combin. 10, 407–437 (2005)

6. Flajolet, P., Sedgewick, R.: Analytic combinatorics (in preparation, 2008), Version
of January 2, 2008, http://www.algo.inria.fr/flajolet/publist.html

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley Publishing Company, Reading (1979)

8. Ramiréz-Alfonśın, J.L.: Complexity of the Frobenius problem. Combinatorica 16,
143–147 (1996)

9. Ramiréz-Alfonśın, J.L.: The Diophantine Frobenius Problem. Oxford University
Press, Oxford (2005)

10. Kao, J.-Y., Shallit, J., Xu, Z.: The Frobenius problem in a free monoid. In: Sym-
posium on Theoretical Aspects of Computer Science 2008, Bordeaux, pp. 421–432
(2008), www.stacs-cong.org

11. Lothaire, M.: Combinatorics on words. Encyclopedia of mathematics and its ap-
plications, vol. 17. Addison-Wesley, Reading (1983)

12. Lothaire, M.: Algebraic combinatorics on words. Encyclopedia of mathematics and
its applications, vol. 90. Cambridge University Press, Cambridge (2002)

13. Lothaire, M.: Applied combinatorics on words. Encyclopedia of mathematics and
its applications, vol. 104. Cambridge University Press, Cambridge (2005)

14. Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad.
Nauk. SSRR 194, 1266–1268 (1970) (in Russian); English translation in. Soviet.
Math. Dokl. 11, 1373–1375 (1970)

15. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theoretical Computer Science 125, 315–328 (1994)

http://www.algo.inria.fr/flajolet/publist.html
www.stacs-cong.org

On the Computational Capacity of Parallel

Communicating Finite Automata

Henning Bordihn1,�, Martin Kutrib2, and Andreas Malcher2

1 Institut für Informatik, Universität Potsdam,
August-Bebel-Straße 89, 14482 Potsdam, Germany

henning@cs.uni-potsdam.de
2 Institut für Informatik, Universität Giessen

Arndtstraße 2, 35392 Giessen, Germany
{kutrib,malcher}@informatik.uni-giessen.de

Abstract. Systems of parallel finite automata communicating by states
are investigated. We consider deterministic and nondeterministic devices
and distinguish four working modes. It is known that systems in the most
general mode are as powerful as one-way multihead finite automata. Here
we solve some open problems on the computational capacity of systems
working in the remaining modes. In particular, it is shown that determin-
istic returning and non-returning devices are equivalent, and that there
are languages which are accepted by deterministic returning and cen-
tralized systems but cannot be accepted by deterministic non-returning
centralized systems. Furthermore, we show that nondeterministic central-
ized systems are strictly more powerful than their deterministic variants.
Finally, incomparability with the class of (deterministic) (linear) context-
free languages as well as the Church-Rosser languages is derived.

1 Introduction

The need for a fundamental understanding of parallel processes and cooperating
systems is increasing more and more in today’s complex world. In the classi-
cal theory of formal languages and automata mainly sequential machine models
like, for example, finite automata, pushdown automata, or Turing machines are
studied. It turned out that this theory is very helpful to describe, analyze, and
understand sequential processes. To obtain such a theory also for cooperating
systems, it is an obvious generalization to proceed from one sequential automaton
to systems of sequential automata. Some questions immediately arising are, for
example, whether the input is processed in a parallel or sequential way and how
the input is accepted. One may ask how the cooperation between different au-
tomata is organized and whether they work in a synchronous or an asynchronous
way. One has to define in which way communication between different automata
takes place and how appropriate restrictions on the amount of information com-
municated can be formulated. In the literature, systems of cooperating sequential
� Most of the work was done while the author was at Institut für Informatik, Univer-

sität Giessen, Germany.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 146–157, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Computational Capacity 147

automata appear in many facets. Multi-head finite automata [13] are in some
sense the simplest model of cooperating automata, since a finite automaton is
provided with a fixed number of reading heads. So, we have some model with
one finite state control and the cooperation between the finite state control and
the single components is the reading of the input and positioning the heads. This
model is generalized to multi-head two-way finite automata [7] and multi-head
pushdown automata [6]. Multi-processor automata [2] are in a way restricted
multi-head finite automata, and the relation between both classes is investi-
gated in [5]. Systems of different finite automata communicating by appropriate
protocols are described in [1,10], and systems of cooperating finite automata
working in parallel are introduced in [11]. Apart from systems of cooperating
automata there is also the broad field of systems of cooperating grammars [4].

Here, we will focus on parallel communicating finite automata systems which
were introduced in [11]. In this model, several finite automata read and process
the input in parallel in a synchronized way. The communication between au-
tomata is defined in such a way that an automaton can request the current state
from another automaton. The system can work in returning or non-returning
mode. In the former case each automaton which sends its current state is re-
set to its initial state after this communication step. In the latter case the
state of the sending automaton is not changed. We also distinguish between
centralized systems where only one designated automaton, called master, can
request information from other automata, and non-centralized systems where ev-
ery automaton is allowed to communicate with others. Altogether we obtain four
different working modes. One fundamental result shown in [11] is that nonde-
terministic (deterministic) non-centralized systems working in the non-returning
mode are equally powerful as one-way multi-head nondeterministic (determinis-
tic) finite automata. Recently, it has been shown in [3] that the returning and
non-returning working modes coincide for nondeterministic non-centralized sys-
tems. The authors left as an open question whether the same is also true for
deterministic systems. Moreover, the question whether or not centralized sys-
tems are equally powerful as non-centralized systems remained open. Here, the
first question and, for deterministic systems working in the non-returning mode,
the second question are answered.

2 Preliminaries and Definitions

We denote the powerset of a set S by 2S . The empty word is denoted by λ, the
reversal of a word w by wR, and for the length of w we write |w|. We use ⊆ for
inclusions and ⊂ for strict inclusions.

Next we turn to the definition of the devices in question, which have been in-
troduced in [11]. A parallel communicating finite automata system of degree k is
a device of k finite automata working in parallel with each other, synchronized
according to a universal clock, on a common one-way read-only input tape. The k
automata communicate on request by states, that is, when some automaton en-
ters a distinguished query state qi, it is set to the current state of automaton Ai.

148 H. Bordihn, M. Kutrib, and A. Malcher

Concerning the next state of the sender Ai, we distinguish two modes. In non-
returning mode the sender remains in its current state, whereas in returning mode
the sender is set to its initial state. Moreover, we distinguish whether all automata
are allowed to request communications, or whether there is just one master allowed
to request communications. The latter types are called centralized.

One of the fundamental results obtained in [11] is the characterization of the
computational power of (unrestricted) parallel communicating finite automata
systems by multi-head finite automata. Due to this relation, we present a formal
definition of language acceptance that suits to the definition given in [15] for one-
way multi-head finite automata. To this end, we provide tape inscriptions which
are input words followed by an endmarker. Whenever the transition function
of (at least) one of the single automata is undefined the whole systems halts.
Whether the input is accepted or rejected depends on the states of the automata
having undefined transitions. The input is accepted if at least one of them is in
an accepting state.

Formally, a nondeterministic parallel communicating finite automata system
of degree k (PCFA(k)) is a construct A = 〈Σ,A1, A2, . . . , Ak, Q,�〉, where Σ
is the set of input symbols, each Ai = 〈Si, Σ, δi, s0,i, Fi〉, 1 ≤ i ≤ k, is a non-
deterministic finite automaton with state set Si, initial state s0,i ∈ Si, set of
accepting states Fi ⊆ Si, and transition function δi : Si × (Σ ∪ {λ,�}) → 2Si ,
Q = {q1, q2, . . . , qk} ⊆

⋃
1≤i≤k Si is the set of query states, and � /∈ Σ is the

end-of-input symbol.
The automata A1, A2, . . . , Ak are called components of the system A. A con-

figuration (s1, x1, s2, x2, . . . , sk, xk) of A represents the current states si as well
as the still unread parts xi of the tape inscription of all components 1 ≤ i ≤ k.
System A starts with all of its components scanning the first square of the
tape in their initial states. For input word w ∈ Σ∗, the initial configuration is
(s0,1, w�, s0,2, w�, . . . , s0,k, w�). Basically, a computation of A is a sequence of
configurations beginning with an initial configuration and ending with a halting
configuration. Each step can consist of two phases. In a first phase, all com-
ponents are in non-query states and perform an ordinary (non-communicating)
step independently. The second phase is the communication phase during which
components in query states receive the requested states as long as the sender
is not in a query state itself. This process is repeated until all requests are re-
solved, if possible. If the requests are cyclic, no successor configuration exists.
As mentioned above, we distinguish non-returning communication, that is, the
sender remains in its current state, and returning communication, that is, the
sender is reset to its initial state.

For the first phase, we define the successor configuration relation & by

(s1, a1y1, s2, a2y2, . . . , sk, akyk) & (p1, z1, p2, z2, . . . , pk, zk),

if Q ∩ {s1, s2, . . . , sk} = ∅, ai ∈ Σ ∪ {λ,�}, pi ∈ δi(si, ai), and zi = � for
ai = � and zi = yi otherwise, 1 ≤ i ≤ k. For non-returning communication in
the second phase, we set (s1, x1, s2, x2, . . . , sk, xk) & (p1, x1, p2, x2, . . . , pk, xk),
if, for all 1 ≤ i ≤ k such that si = qj and sj /∈ Q, we have pi = sj , and pr = sr

On the Computational Capacity 149

for all the other r, 1 ≤ r ≤ k. Alternatively, for returning communication in the
second phase, we set (s1, x1, s2, x2, . . . , sk, xk) & (p1, x1, p2, x2, . . . , pk, xk), if, for
all 1 ≤ i ≤ k such that si = qj and sj /∈ Q, we have pi = sj , pj = s0,j, and
pr = sr for all the other r, 1 ≤ r ≤ k.

A computation halts when the successor configuration is not defined for the
current situation. In particular, this may happen when cyclic communication
requests appear, or when the transition function of one component is not de-
fined. (We regard the transition function as undefined whenever it maps to the
empty set.) The language L(A) accepted by a PCFA(k) A is precisely the set of
words w such that there is some computation beginning with w� on the input
tape and halting with at least one component having an undefined transition
function and being in an accepting state. Let &∗ denote the reflexive and transi-
tive closure of & and set L(A) = {w ∈ Σ∗ | (s0,1, w�, s0,2, w�, . . . , s0,k, w�) &∗

(p1, a1y1, p2, a2y2, . . . , pk, akyk), such that pi ∈ Fi and δi(pi, ai) is undefined, for
some 1 ≤ i ≤ k }.

If all components Ai are deterministic finite automata, that is, for all s ∈ Si

the transition function δi(s, a) maps to a set of at most one state and is undefined
for all a ∈ Σ, whenever δi(s, λ) is defined, then the whole system is called
deterministic, and we add the prefix D to denote it. The absence or presence of
an R in the type of the system denotes whether it works in non-returning or
returning mode, respectively. Finally, if there is just one component, say A1, that
is allowed to query for states, that is, Si ∩Q = ∅, for 2 ≤ i ≤ k, then the system
is said to be centralized. We denote centralized systems by a C. Whenever the
degree is missing we mean systems of arbitrary degree. The family of languages
accepted by devices of type X (with degree k) is denoted by L (X) (L (X(k))).

In order to clarify our notation we give an example. We consider the language
{w$w | w ∈ {a, b}+} and show that it can be accepted by a DRCPCFA as well
as by a DCPCFA with two components. Thus, all types of systems of parallel
communicating finite automata accept more than regular languages.

We first describe the construction for the centralized and returning mode.
The input can be divided into two halves, namely the halves to the left and to
the right of the separating symbol $. The principal idea of the construction is
that the non-master component reads the first symbol of the left half and then
waits until the master component has been moved to the first symbol of the
right half. Then, the master component queries the non-master component and
gets the information about the current symbol of the non-master component.
Subsequently, the non-master component returns to its initial state. In the next
time step, the non-master component reads the next input symbol of the left
hand half and the master component checks the information about the current
left hand symbol against the next input symbol of the right hand half. If both
symbols match, the master component queries again the non-master component
and otherwise it stops the computation. This behavior is iterated as long as both
symbols match. Finally, the master component enters an accepting state if and
only if it reads the end-of-input symbol for the first time and has received the
information that the current input symbol of the non-master component is $. The

150 H. Bordihn, M. Kutrib, and A. Malcher

precise rules of the master component (δ1) and the non-master component (δ2)
are as follows.

δ1(s0,1, a) = s0,1 δ1(s0,1, b) = s0,1 δ1(s0,1, $) = q2

δ1(sa, a) = q2 δ1(sb, b) = q2

δ1(s$, �) = accept

δ2(s0,2, a) = sa δ2(s0,2, b) = sb δ2(s0,2, $) = s$

δ2(sa, λ) = sa δ2(sb, λ) = sb δ2(s$, λ) = s$

The construction for the deterministic centralized non-returning mode is quite
different. Here, the rough idea is that in every time step the master component
queries the non-master component, and the non-master component reads an in-
put symbol. When the non-master component has read the separating symbol $,
which is notified to the master with the help of primed states, then the master
component starts to compare its input symbol with the information from the
non-master component. If all symbols up to $ match, the input is accepted and
in all other cases rejected.

δ1(s0,1, λ) = q2 δ1(sa, λ) = q2 δ1(sb, λ) = q2

δ1(s$, λ) = q2 δ1(s
′
a, a) = q2 δ1(s

′
b, b) = q2

δ1(s� , $) = accept

δ2(s0,2, a) = sa δ2(s0,2, b) = sb

δ2(sa, a) = sa δ2(sa, b) = sb δ2(sa, $) = s$

δ2(sb, a) = sa δ2(sb, b) = sb δ2(sb, $) = s$

δ2(s$, a) = s′
a δ2(s$, b) = s′

b δ2(s� , �) = s�
δ2(s

′
a, a) = s′

a δ2(s
′
a, b) = s′

b δ2(s
′
a, �) = s�

δ2(s
′
b, a) = s′

a δ2(s
′
b, b) = s′

b δ2(s
′
b, �) = s�

3 Deterministic Non-returning Versus Returning

For nondeterministic non-centralized devices it is shown in [3] that returning
parallel communicating finite automata systems are neither weaker nor stronger
than non-returning ones. In the same paper the question is raised whether the
same equivalence is true in the deterministic case. This section is devoted to
answering the question in the affirmative. To this end, we first introduce a general
method to send information tokens through the returning components cyclically.
These tokens can be processed by the components.

Cycling-token-method. Basically, an information token is a finite record of
data which can be read or written by the components. So, it can be represented
by states. The precise structure of the token depends on the application, but
in any case there is one field for the identification of the component that has
been processing it at last. Now the idea is to set up the components such that
the information token is passed through the components cyclically, that is, from
component A1 to A2, from A2 to A3, and so on until it is passed from Ak back

On the Computational Capacity 151

to A1 what completes the round. Next we show how to set up the components,
where we assume for a moment that we have k ≥ 3 components. Moreover, since
at this stage a general framework is provided, we may disregard the current
input symbols, that is, we assume that all moves are λ-moves.

The first problem to cope with is to break the synchronization at the be-
ginning. Otherwise, when some component Ai+1 requests the state of Ai and,
thus, Ai reenters its initial state, then Ai will request the state of Ai−1 and so
on. But these cascading communication requests would destroy necessary infor-
mation. Therefore, we set up the first component A1 to play a special role, and
call it the guide. In general, we distinguish four types of components, the guide,
the successor A2 of the guide, the predecessor Ak of the guide, and all remaining
components A3, A4, . . . , Ak−1. For k = 6 the following interactions can be seen
in Figure 1.

In order to break the synchronization, all components except the guide immedi-
ately change from their initial states to the query state q1, that is, they request the
state of the guide which, in turn, changes to the state I indicating that the com-
ponents are in the first cycling round. In general, the first round is different from
later rounds. After being set to state I all components start to count. Component
A2 counts up to 1, and component Ai, 3 ≤ i ≤ k, counts up to 3(i − 2). Imme-
diately after counting, all cells 2 ≤ i ≤ k change to the query state qi−1 in order
to receive the state of their predecessors, that is, to receive the token. In order to
generate the initial token t0,1, the guide changes from state I to state t0,1. When
a component receives a token it processes it during the next step. Subsequently, it
stays in that state until the token is requested by its successor, which causes the
component to reenter its initial state. After being set to the initial state, a compo-
nent requests the state of the guide, say T , that now indicates that the component
has completed the first round. So, the guide changes from the state representing
the initial token to state T . After sending the token, every component reenters
its initial state and thus requests the state T of the guide. At the first time step
at which the guide is not being asked when in state T , it changes to the query
state qk. So, it receives the token from its predecessor, and a new round starts.
At these points in time, component Ak reenters its initial state and then requests
the state of the guide. While in this situation the other components receive state
T , component Ak necessarily receives the token which has been processed by A1

one time step before. But component Ak can interpret its new state appropriately
since the identification field of the token shows that it has not been received from
its predecessor but the guide.

Now it remains to be described how to set up counters for the second and sub-
sequent rounds. Component A2 counts up to 3(k− 2)+1, component Ai, 3 ≤ i ≤
k−1, counts up to 3(k−2), and component Ak counts up to 3(k−2)−2. Clearly,
the states of the counters for the first and subsequent rounds must be different.
Again, immediately after counting, all cells 2 ≤ i ≤ k change to the query state
qi−1 in order to receive the token. From now on the whole process is repeated.

The correctness of the construction can be shown by induction. The compu-
tation for k = 2 is easily derived. For k ≥ 3, running the system for six time

152 H. Bordihn, M. Kutrib, and A. Malcher

t A1 A2 A3 A4 A5 A6

0 s0,1 s0,2 s0,3 s0,4 s0,5 s0,6

1 I q1 q1 q1 q1 q1

s0,1 I I I I I
2 I 1 1 1 1 1
3 t0,1 q1 2 2 2 2

s0,1 t0,1

4 I t0,2 3 3 3 3
5 t0,1 t0,2 q2 4 4 4

s0,2 t0,2

6 T q1 t0,3 5 5 5
s0,1 T

7 I 1′ t0,3 6 6 6
8 t0,1 2′ t0,3 q3 7 7

s0,3 t0,3

9 T 3′ q1 t0,4 8 8
s0,1 T

10 I 4′ 1′ t0,4 9 9
11 t0,1 5′ 2′ t0,4 q4 10

s0,4 t0,4

12 T 6′ 3′ q1 t0,5 11
s0,1 T

13 I 7′ 4′ 1′ t0,5 12
14 t0,1 8′ 5′ 2′ t0,5 q5

s0,5 t0,5

15 T 9′ 6′ 3′ q1 t0,6

s0,1 T
16 I 10′ 7′ 4′ 1′ t0,6

17 t0,1 11′ 8′ 5′ 2′ t0,6

18 T 12′ 9′ 6′ 3′ t0,6

19 q6 13′ 10′ 7′ 4′ t0,6

t0,6 s0,6

t A1 A2 A3 A4 A5 A6

20 t1,1 q1 11′ 8′ 5′ q1

s0,1 t1,1 t1,1

21 I t1,2 12′ 9′ 6′ 1′

22 t0,1 t1,2 q2 10′ 7′ 2′

s0,2 t1,2

23 T q1 t1,3 11′ 8′ 3′

s0,1 T
24 I 1′ t1,3 12′ 9′ 4′

25 t0,1 2′ t1,3 q3 10′ 5′

s0,3 t1,3

26 T 3′ q1 t1,4 11′ 6′

s0,1 T
27 I 4′ 1′ t1,4 12′ 7′

28 t0,1 5′ 2′ t1,4 q4 8′

s0,4 t1,4

29 T 6′ 3′ q1 t1,5 9′

s0,1 T
30 I 7′ 4′ 1′ t1,5 10′

31 t0,1 8′ 5′ 2′ t1,5 q5

s0,5 t1,5

32 T 9′ 6′ 3′ q1 t1,6

s0,1 T
33 I 10′ 7′ 4′ 1′ t1,6

34 t0,1 11′ 8′ 5′ 2′ t1,6

35 T 12′ 9′ 6′ 3′ t1,6

36 q6 13′ 10′ 7′ 4′ t1,6

t1,6 s0,6

...

Fig. 1. Cycling-token-method for six components. We denote by ti,j the token that com-
pleted i rounds and has been processed by component j at the latest. Two rows for a
time step represent the results after the first phase and after the second (communica-
tion) phase.

steps drives the guide into state T for the first time. Next, it is easily verified
that the system reaches a configuration at time 3k such that, subsequently, the
global behavior of the system becomes cyclic with cycle length 3k−1, where the
token changes due to the processing. The technical details are omitted here. !
In order to prove the equivalence we first show the following simulation.

Lemma 1. For all k ≥ 1, the family L (DRPCFA(k)) includes L (DPCFA(k)).

Proof. Given some non-returning parallel communicating finite automata sys-
tem A of degree k, we construct an equivalent returning parallel communicating
finite automata system A′ of degree k by using the cycling-token-method. The
idea is to use tokens that store the states of the components of A in addition
to the data field for the identification of the component that processed it at

On the Computational Capacity 153

last. Since at the beginning the guide (of A′) knows that all components (of A)
are in their initial states, it can generate the initial token t0,1. A component
of A′ processes the token by reading the state of the corresponding component
of A from the token, simulating the corresponding transition, and storing the
new state of the corresponding component of A in the token. When the token is
received by the guide, it processes it in the same way as the other components
but, in addition, it simulates the subsequent communication phase and stores
the resolved states in the token, which is now prepared for the next round.

So far, we obtained only a partial solution. The problem to overcome may
occur at the end of a computation. All components of A move at the same time,
whereas the components of A′ move one after the other. Assume that for two
components of A the transition functions are undefined at the same time, where
one is in an accepting state and the other one in a rejecting state. Then A ac-
cepts the input, but whether A′ accepts or rejects depends on which component
receives the token and, thus, halts first. So, we extend the construction as fol-
lows. Whenever the transition function of a component of the given system A is
undefined, we define one more step. Depending on whether the component is an
accepting or non-accepting state, we let it change to a new accepting state sa

or to a new non-accepting state sr. The transition functions are undefined for
the new states sa and sr. In this way the accepted language is not changed, but
whether a component halts is determined solely by its state, and not by its cur-
rent input symbol. Now the guide of the simulating system A′ knows in advance
at the beginning of a round whether or not the whole system will halt. Moreover,
in the halting case it knows in advance whether the input will be accepted or
rejected. So, it remains to let the transition function of the guide be undefined
in this case, and to define the set of its accepting states suitably. !

In [11] the equivalence between DPCFA(k) and deterministic one-way k-head
finite automata (k-DFA) has been shown. The next theorem concludes the proofs
of equivalence.

Theorem 2. For all k ≥ 1, the three families L (DRPCFA(k)), L (DPCFA(k)),
and L (k-DFA) are equal.

Proof. It remains to be shown that, for all k ≥ 1, the family L (k-DFA) includes
L (DRPCFA(k)). Given some DRPCFA(k) A, basically, the idea of simulating
it by a deterministic one-way k-head finite automaton A′ is to track all current
states of the components of A in the current state of A′ (cf. [11]). So, A′ can
simulate all components in parallel. !

4 Deterministic Non-centralized Versus Centralized

This section is devoted to comparing deterministic centralized systems with non-
centralized systems. We obtain for centralized systems the surprising result that
the returning mode is not weaker than the non-returning mode. Let us consider
Lrc = { ucxv$uv | u, v ∈ {a, b}∗, x ≥ 0 }.

154 H. Bordihn, M. Kutrib, and A. Malcher

Theorem 3. The language Lrc belongs to the family L (DRCPCFA) (and thus
to L (DRPCFA) = L (DPCFA)), but not to L (DCPCFA).

Proof. First, we show that Lrc is accepted by a deterministic centralized parallel
communicating automata system in returning mode having two components.
The construction is similar to the construction of the example in Section 2 and
omitted here. Next, in contrast to the assertion we assume that Lrc is accepted by
a DCPCFA A. First, we derive a contradiction for degree two, that is, A consists
of a master component A1 allowed to query for states of a second component A2.
The state sets are denoted by S1 and S2. In particular, we consider accepting
computations on inputs from { ucxv$uv | u, v ∈ {a, b}∗, |u| = |v| = n, x = n2 },
where n is a fixed constant that is sufficiently large. We distinguish between
computations in which the master or the non-master component (component,
for short) arrives at the $-symbol first.

Case 1. The component reaches the $-symbol before the master in more than
the half of the accepting computations. The set of these computations is further
partitioned into subclasses depending on the state and the tape position of the
master, and the state of the component, all at the time at which the component
reaches the $-symbol. There are 22n different inputs, |S1| · |S2| different state
pairs, and n2 +2n different tape positions. So, at least one of the subclasses con-
tains at least 22n

2·|S1|·|S2|·(n2+2n) ≥ 22n−c1 log(n) inputs, for some constant c1 ≥ 1.
Subcase 1.a. The position of the master is somewhere at the infix cxv when

the component reaches the $-symbol. Here we further partition the subclass into
subsubclasses depending on the infix v. Since there are 2n different infixes v,
there is at least one subsubclass containing at least 22n−c1 log(n)

2n ≥ 2n−c1 log(n)

inputs. We consider two of them, say w = ucxv$uv and w′ = u′cxv$u′v. If
the position of the master is at some symbol c, the accepting computations
are as follows: (s0,1, w�, s0,2, w�) &∗ (p1, c

iv$uv�, p2, $uv�) &∗ (q1, z1, q2, z2),
and (s0,1, w

′�, s0,2, w
′�) &∗ (p1, c

iv$u′v�, p2, $u′v�) &∗ (q′1, z′1, q′2, z′2), where
p1, q1, q

′
1 ∈ S1, p2, q2, q

′
2 ∈ S2, and (q1, z1, q2, z2) and (q′1, z

′
1, q

′
2, z

′
2) are ac-

cepting configurations. This implies that (s0,1, u
′cxv$uv�, s0,2, u

′cxv$uv�) &∗

(p1, c
iv$uv�, p2, $uv�) &∗ (q1, z1, q2, z2) is an accepting computation, which is a

contradiction since u′cxv$uv /∈ Lrc. If the position of the master is at some sym-
bol of the subword v, a contradiction is derived in the same way. This concludes
Subcase 1.a.

Subcase 1.b. The position of the master is somewhere at the prefix u when
the component reaches the $-symbol. Here we further partition the subclass into
subsubclasses depending on the prefix u, the time taken by the component to
get from the $-symbol to the endmarker (or to run into a λ-loop), its state at
that time, the possible position and state of the master at that time step as well
as on the time taken by the master to reach the $-symbol from the position (or
to halt accepting), and its state at the arrival. There are 2n different prefixes u.
The component takes at most c3n time steps to get from the $-symbol to the
endmarker � (or to run into a λ-loop), for some constant c3 ≥ 2. During this
time the master can reach at most c3n different positions, and it takes at most

On the Computational Capacity 155

c4n
2 time steps to reach the $-symbol (or to halt accepting). In total, there is

at least one subsubclass containing at least

22n−c1 log(n)

2n · c3n · |S2| · c3n · |S1| · c4n2 · |S1|
≥ 2n−c5 log(n)

inputs, for some constant c5. We consider two of them, say w = ucxv$uv and
w′ = ucxv′$uv′. Since the component takes at most c3n time steps to get from
the $-symbol to the endmarker � (or to run into a λ-loop), but the master needs
at least n2 time steps to pass through the c’s, the master reads some symbol of u
or a c at that time (if it has not accepted before). All cases are treated in the
same way. If the position of the master is at some symbol c and the component
reaches the endmarker, the accepting computations are as follows:

(s0,1, w�, s0,2, w�) &∗ (p1, ujuj+1 · · ·unc
xv$uv�, p2, $uv�)

&∗ (q1, civ$uv�, q2,�) &∗ (r1, $uv�, r2,�) &∗ · · ·

(s0,1, w
′�, s0,2, w

′�) &∗ (p1, ujuj+1 · · ·unc
xv′$uv′�, p2, $uv

′�)
&∗ (q1, civ′$uv′�, q2,�) &∗ (r1, $uv′�, r2,�) &∗ · · ·

where u = u1u2 · · ·un, p1, q1, r1 ∈ S1, p2, q2, r2 ∈ S2. But this implies that

(s0,1, uc
xv′$uv�, s0,2, uc

xv′$uv�) &∗ (p1, ujuj+1 · · ·unc
xv′$uv�, p2, $uv�)

&∗ (q1, civ′$uv�, q2,�)
&∗ (r1, $uv�, r2,�) &∗ · · ·

is also an accepting computation, which is a contradiction since ucxv′$uv /∈ Lrc.
This concludes Subcase 1.b and, thus, Case 1.

Case 2. The master reaches the $-symbol not later than the component in at
least the half of the accepting computations. The initial partitioning for this case
is exactly as for Case 1 with master and component interchanged. So, the set of
these computations is partitioned into subclasses depending on the state and the
tape position of the component and the state of the master, all at the time at which
the master reaches the $-symbol. Again, at least one of the subclasses contains at
least 22n−c1 log(n) inputs, for some constant c1 ≥ 1. The reasoning for the situa-
tion where the position of the component is somewhere at the infix cxv$ when the
master reaches the $-symbol is dual to Subcase 1.a. Furthermore, if the compo-
nent does not run into a λ-loop, a synonym for Subcase 1.b does not exist, since
in order to avoid infinite loops the component has to read one input symbol every
d time steps, where d ≤ |S2| is a constant. Therefore, it has read the n symbols
of prefix u before the master can read the n2 symbols c. If, on the other hand, the
component runs into a λ-loop somewhere at the prefix u, then we further partition
the subclass into subsubclasses depending on the prefix u and the time taken by
the master to accept. There are 2n different prefixes u, and the master takes at
most c3n time steps to accept. The further reasoning is as for Subcase 1.b. This
concludes Case 2 and the proof of the assertion for DCPCFAs of degree two.

In order to generalize the proof to arbitrary degrees, we first argue that the
fundamental situation for Case 2 is almost the same. Roughly speaking, all non-
master components have to read symbols after a number of time steps that is

156 H. Bordihn, M. Kutrib, and A. Malcher

bounded by their number of states in order to avoid infinite loops. This implies
that only the master can wait at the beginning of the input to match both
occurrences of u. Similarly to Case 1, when the first component reaches the $-
symbol all other non-master components are at positions that are close to the
$-symbol, that is, at most at a distance of d · n, where d is again a constant
depending on the number of states. This, in turn, implies that the components
reach the endmarker before the master reaches the infix v. In addition, for all the
partitions we obtained the number of inputs in the chosen classes by dividing an
exponential function by a polynomial. Dealing with more than two components
increases the degree of the polynomials and the constants, but still we have the
same situation in the order of magnitude. So, the generalization of the proof is
a technical challenge following the idea for degree two. !

Corollary 4. L (DCPCFA) ⊂ L (DPCFA) = L (DRPCFA).

5 Determinism Versus Nondeterminism

In order to show that nondeterministic centralized systems are strictly more
powerful than their deterministic variants we consider the complement of the
mirror language, that is, Lmi = {wwR | w ∈ {a, b, c}+}.

Lemma 5. The language Lmi belongs to L (CPCFA), but does not belong to
L (DPCFA).

Proof. We omit the construction of a CPCFA accepting Lmi, and prove that Lmi

does not belong to the family L (DPCFA(k)), for any k ≥ 1. In contrast to the
assertion, assume that there exists a k ≥ 1 such that Lmi ∈ L (DPCFA(k)). Since
L (DPCFA(k)) ⊆ L (k-DFA) and L (k-DFA) is closed under complementation,
we obtain that {wwR | w ∈ {a, b, c}+} ∈ L (k-DFA). This is a contradiction,
since {wwR | w ∈ {a, b, c}+} /∈ L (k-NFA), for all k ≥ 1. !

Corollary 6. 1. L (DCPCFA) ⊂ L (CPCFA). 2. L (DPCFA) ⊂ L (PCFA).

Finally, we compare the classes under consideration with some well-known lan-
guage families.

Lemma 7. The family L (PCFA) is strictly included in the complexity class NL,
hence, in the family of deterministic context-sensitive languages.

Proof. It is well-known that nondeterministic two-way multi-head finite au-
tomata characterize the complexity class NL (cf. [14]). Since L = {wwR | w ∈
{a, b, c}+} can be accepted by some two-way NFA with two heads, language L
belongs to NL. On the other hand, language L does not belong to L (k-NFA),
for all k ≥ 1. !

Lemma 8. All language classes accepted by parallel communicating finite au-
tomata systems are incomparable to the class of (deterministic) (linear) context-
free languages.

On the Computational Capacity 157

Proof. The marked mirror language {w$wR | w ∈ {a, b}+} is deterministic linear
context free, but is not accepted by any k-NFA, for all k ≥ 1. Thus, the language
{w$wR | w ∈ {a, b}+} does not belong to L (PCFA).

Conversely, the language {w$w | w ∈ {a, b}+} belongs to L (DRCPCFA) as
well as to L (DCPCFA) (cf. Section 2), but is not context free. !

Lemma 9. All language classes accepted by parallel communicating finite au-
tomata systems are incomparable with the class of Church-Rosser languages.

Proof. The unary language {a2n | n ≥ 1} is a Church-Rosser language [12]. It
does not belong to the family L (PCFA), since all unary languages in L (PCFA)
are semilinear [8,11].

Conversely, the marked copy language {w$w | w ∈ {a, b}+} belongs to the
families L (DRCPCFA) and L (DCPCFA), but is not a Church-Rosser lan-
guage [9]. !

References

1. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30,
323–342 (1983)

2. Buda, A.: Multiprocessor automata. Inform. Process. Lett. 25, 257–261 (1987)
3. Choudhary, A., Krithivasan, K., Mitrana, V.: Returning and non-returning parallel

communicating finite automata are equivalent. RAIRO Inform. Théor. 41, 137–145
(2007)

4. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, G.: Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, Yverdon
(1994)

5. Ďurǐs, P., Jurdziński, T., Kuty�lowski, M., Loryś, K.: Power of cooperation and
multihead finite systems. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP
1998. LNCS, vol. 1443, pp. 896–907. Springer, Heidelberg (1998)

6. Harrison, M.A., Ibarra, O.H.: Multi-tape and multi-head pushdown automata. In-
form. Control 13, 433–470 (1968)

7. Ibarra, O.H.: On two-way multihead automata. J. Comput. System Sci. 7, 28–36
(1973)

8. Ibarra, O.H.: A note on semilinear sets and bounded-reversal multihead pushdown
automata. Inform. Process. Lett. 3, 25–28 (1974)

9. Jurdziński, T.: The Boolean closure of growing context-sensitive languages. In:
Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 248–259. Springer,
Heidelberg (2006)

10. Klemm, R.: Systems of communicating finite state machines as a distributed alter-
native to finite state machines. Phd thesis, Pennsylvania State University (1996)

11. Mart́ın-Vide, C., Mateescu, A., Mitrana, V.: Parallel finite automata systems com-
municating by states. Int. J. Found. Comput. Sci. 13, 733–749 (2002)

12. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. ACM 35, 324–344 (1988)

13. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394
(1966)

14. Wagner, K., Wechsung, G.: Computational Complexity. Reidel, Dordrecht (1986)
15. Yao, A.C., Rivest, R.L.: k +1 heads are better than k. J. ACM 25, 337–340 (1978)

On a Generalization of Standard Episturmian

Morphisms

Michelangelo Bucci, Aldo de Luca, and Alessandro De Luca

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università degli Studi di Napoli Federico II

Via Cintia, Monte S. Angelo, I-80126 Napoli, Italy
{micbucci,aldo.deluca,alessandro.deluca}@unina.it

Abstract. In a recent paper with L. Q. Zamboni the authors intro-
duced the class of ϑ-episturmian words, where ϑ is an involutory anti-
morphism of the free monoid A∗. In this paper, we introduce and study
ϑ-characteristic morphisms, that is, morphisms which map standard epis-
turmian words into standard ϑ-episturmian words. They are a natural
extension of standard episturmian morphisms. The main result of the
paper is a characterization of these morphisms when they are injective.

1 Introduction

The study of combinatorial and structural properties of finite and infinite words
is a subject of great interest, with many applications in mathematics, physics,
computer science, and biology (see for instance [1,2,3]). In this framework, Stur-
mian words play a central role, as they are the aperiodic infinite words of minimal
“complexity” (see [2, Chap. 2]). By definition, Sturmian words are on a binary
alphabet; some natural extensions to the case of an alphabet with more than two
letters have been given in [4,5], introducing the class of the so-called episturmian
words.

Several extensions of standard episturmian words are possible. For exam-
ple, in [6] a generalization was obtained by making suitable hypotheses on the
lengths of palindromic prefixes of an infinite word; in [7,8,9,10] different exten-
sions were introduced, all based on the replacement of the reversal operator
R : w ∈ A∗ 	→ w̃ ∈ A∗ by an arbitrary involutory antimorphism ϑ of the free
monoid A∗. In particular, the so called ϑ-standard and standard ϑ-episturmian
words were studied.

In this paper we focus on the study of ϑ-characteristic morphisms, a natural
extension of standard episturmian morphisms, which map all standard epis-
turmian words on an alphabet X to standard ϑ-episturmian words over some
alphabet A. Beside being interesting by themselves, such morphisms are a pow-
erful tool for constructing nontrivial examples of standard ϑ-episturmian words
and for studying their properties. The main result of this paper is a characteri-
zation of injective ϑ-characteristic morphisms (cf. Theorem 3.2). For the sake of
brevity, we shall prove here only this theorem; all the other proofs can be found

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 158–169, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On a Generalization of Standard Episturmian Morphisms 159

in [11]. For notations and definitions not included here, the reader is referred to
[1,2,7,12].

1.1 Standard Episturmian Words and Morphisms

We recall (cf. [4,5]) that an infinite word t ∈ Aω is standard episturmian if it is
closed under reversal (that is, if w ∈ Fact t then w̃ ∈ Fact t) and each of its left
special factors is a prefix of t. We denote by SEpi(A), or by SEpi when there is
no ambiguity, the set of all standard episturmian words over the alphabet A.

Given a word w ∈ A∗, we denote by w(+) its right palindrome closure, i.e.,
the shortest palindrome having w as a prefix (cf. [13]). We define the iterated
palindrome closure operator ψ : A∗ → A∗ by setting ψ(ε) = ε and ψ(va) =
(ψ(v)a)(+) for any a ∈ A and v ∈ A∗. From the definition, one easily obtains
that the map ψ is injective. Furthermore, for any u, v ∈ A∗, one has ψ(uv) ∈
ψ(u)A∗ ∩ A∗ψ(u). The operator ψ can then be naturally extended to Aω. The
following fundamental result was proved in [4]:

Theorem 1.1. An infinite word t is standard episturmian over A if and only if
there exists Δ ∈ Aω such that t = ψ(Δ).

For any t ∈ SEpi , there exists a unique Δ such that t = ψ(Δ). This Δ is called
the directive word of t. If every letter of A occurs infinitely often in Δ, the word
t is called a (standard) Arnoux-Rauzy word. In the case of a binary alphabet, an
Arnoux-Rauzy word is usually called a standard Sturmian word (cf. [2, Chap. 2]).

We report here some properties of the operator ψ which will be useful in the
sequel. The first one is known (see for instance [13,4]).

Proposition 1.2. For all u, v ∈ A∗, u is a prefix of v if and only if ψ(u) is a
prefix of ψ(v).

Proposition 1.3. Let x ∈ A ∪ {ε}, w′ ∈ A∗, and w ∈ w′A∗. Then ψ(w′x) is a
factor of ψ(wx).

The following proposition was proved in [4, Theorem 6].

Proposition 1.4. Let x ∈ A, u ∈ A∗, and Δ ∈ Aω. Then ψ(u)x is a factor of
ψ(uΔ) if and only if x occurs in Δ.

For each a ∈ A, let μa : A∗ → A∗ be the morphism defined by μa(a) = a and
μa(b) = ab for all b ∈ A \ {a}. If a1, . . . , an ∈ A, we set μw = μa1 ◦ · · · ◦ μan

(in particular, με = idA). The next formula, proved in [14], shows a connection
between these morphisms, called pure standard episturmian morphisms (see [5]),
and iterated palindrome closure.

Proposition 1.5. For any w, v ∈ A∗, ψ(wv) = μw(ψ(v))ψ(w).

By Theorem 1.1, there exists v ∈ Aω such that t = ψ(v), thus, from Proposi-
tion 1.5, one easily derives

ψ(wv) = μw(ψ(v)) . (1)

Furthermore, the following holds (cf. [11]):

160 M. Bucci, A. de Luca, and A. De Luca

Corollary 1.6. For any t ∈ Aω and w ∈ A∗, ψ(w) is a prefix of μw(t).

We recall (cf. [4,14,5]) that a standard episturmian morphism is an injective
endomorphism ϕ of A∗ such that ϕ(SEpi) ⊆ SEpi . As proved in [4], a morphism
is standard episturmian if and only if can be written as μw ◦ σ, with w ∈ A∗

and σ : A∗ → A∗ a morphism extending a permutation on the alphabet A. All
these morphisms are injective. The set of all standard episturmian morphisms is
a monoid under map composition.

1.2 Involutory Antimorphisms and Pseudopalindromes

An involutory antimorphism of A∗ is any antimorphism ϑ : A∗ → A∗ such
that ϑ ◦ ϑ = id. The simplest example is the reversal operator. Any involutory
antimorphism ϑ satisfies ϑ = τ ◦ R = R ◦ τ for some morphism τ : A∗ → A∗

extending an involution of A. Conversely, if τ is such a morphism, then ϑ =
τ ◦R = R ◦ τ is an involutory antimorphism of A∗.

Let ϑ be an involutory antimorphism of A∗. We call ϑ-palindrome any fixed
point of ϑ, i.e., any word w such that w = ϑ(w), and denote by PALϑ the
set of all ϑ-palindromes. We observe that ε ∈ PALϑ by definition, and that
R-palindromes are exactly the usual palindromes. If one makes no reference to
the antimorphism ϑ, a ϑ-palindrome is often called a pseudopalindrome. Some
general properties of pseudopalindromes, have been studied in [7].

In the following, we shall fix an involutory antimorphism ϑ of A∗, and use
the notation w̄ for ϑ(w). We denote by Pϑ the set of unbordered ϑ-palindromes
(i.e., ϑ-palindromes without nontrivial ϑ-palindromic prefixes). We remark that
Pϑ is a biprefix code (cf. [12]) and that PR = A. The following result was proved
in [9]:

Proposition 1.7. PAL∗
ϑ = P∗

ϑ.

This can be equivalently stated as follows: every ϑ-palindrome can be uniquely
factorized by the elements of Pϑ. For instance, if ā = b and c̄ = c, the ϑ-
palindrome abacabcbab can be factorized as ab · acabcb · ab.

For any nonempty word w, we will denote, from now on, by wf and w� re-
spectively the first and the last letter of w. Since Pϑ is a code, the map

f : π ∈ Pϑ 	−→ πf ∈ A (2)

can be extended (uniquely) to a morphism f : P∗
ϑ → A∗. Moreover, since Pϑ is

a prefix code, any word in Pω
ϑ can be uniquely factorized by the elements of Pϑ,

so that f can be naturally extended to Pω
ϑ .

Proposition 1.8. Let ϕ : X∗ → A∗ be an injective morphism such that ϕ(X) ⊆
Pϑ. Then, for any w ∈ X∗:

1. ϕ(w̃) = ϕ(w),
2. w ∈ PAL ⇐⇒ ϕ(w) ∈ PALϑ,

On a Generalization of Standard Episturmian Morphisms 161

1.3 Overlap-Free and Normal Codes

We say that a code Z over A is overlap-free if no two of its elements overlap
properly, i.e., if for all u, v ∈ Z, Suff u ∩ Pref v ⊆ {ε, u, v}.

For instance, let Z1 = {a, bac, abc} and Z2 = {a, bac, cba}. One has that Z1 is
an overlap-free suffix code, and Z2 is a prefix code which is not overlap-free.

Let Z be a subset of A∗; we denote by LS Z (resp. RS Z) the set of all words
u ∈ FactZ which are left special (resp. right special) in Z, i.e., such that there
exist two distinct letters a and b for which au, bu ∈ FactZ (resp. ua, ub ∈ FactZ).

A code Z ⊆ A+ will be called right normal if it satisfies the following condi-
tion:

(Pref Z \ Z) ∩RS Z ⊆ {ε} , (3)

i.e., any proper and nonempty prefix u of any word of Z such that u /∈ Z is
not right special in Z. In a symmetric way, a code Z is called left normal if it
satisfies the condition

(Suff Z \ Z) ∩ LS Z ⊆ {ε} . (4)

A code Z is called normal if it is right and left normal.
As an example, the code Z1 = {a, ab, bb} is right normal but not left normal;

the code Z2 = {a, aba, aab} is normal.

Proposition 1.9. Let Z be a biprefix, overlap-free, and right normal (resp. left
normal) code. Then:

1. if z ∈ Z is such that z = λvρ, with λ, ρ ∈ A∗ and v a nonempty prefix
(resp. suffix) of z′ ∈ Z, then λz′ (resp. z′ρ) is a prefix (resp. suffix) of z,
proper if z �= z′.

2. for z1, z2 ∈ Z, if zf
1 = zf

2 (resp. z�
1 = z�

2), then z1 = z2.

From the preceding proposition, a biprefix, overlap-free, and normal code satisfies
both properties 1 and 2 and their symmetrical statements; all the statements
of the following propositions can also be applied to codes which are biprefix,
overlap-free, and normal.

Proposition 1.10. Let Z be a suffix, left normal, and overlap-free code over A,
and let a, b ∈ A, v ∈ A∗, λ ∈ A+ be such that a �= b, va /∈ Z∗, vaλ ∈ Pref Z∗,
and bλ ∈ FactZ∗. Then aλ ∈ FactZ.

Proposition 1.11. Let Z be a biprefix, overlap-free, and right normal code over
A. If λ ∈ Pref Z∗ \ {ε}, then there exists a unique word u = z1 · · · zk with k ≥ 1
and zi ∈ Z, i = 1, . . . , k, such that

u = z1 · · · zk = λζ, z1 · · · zk−1δ = λ , (5)

where δ ∈ A+ and ζ ∈ A∗.

In conclusion of this section, we report (cf. [11]) the following simple general
lemma on prefix codes, which will be useful in the next sections:

Lemma 1.12. Let g : B∗ → A∗ be an injective morphism such that g(B) = Z
is a prefix code. Then for all p ∈ B∗ and q ∈ B∞, one has that p is a prefix of
q if and only if g(p) is a prefix of g(q).

162 M. Bucci, A. de Luca, and A. De Luca

1.4 Standard ϑ-Episturmian Words

In [9] standard ϑ-episturmian words were naturally defined by substituting, in
the definition of standard episturmian words, the closure under reversal with the
closure under ϑ. Thus an infinite word s is standard ϑ-episturmian if it satisfies
the following two conditions:

1. for any w ∈ Fact s, one has w̄ ∈ Fact s,
2. for any left special factor w of s, one has w ∈ Pref s.

We denote by SEpiϑ the set of all standard ϑ-episturmian words over A.
The following proposition, proved in one direction in [9] and completely in

[11], is a first tool for constructing nontrivial standard ϑ-episturmian words.

Proposition 1.13. Let g : X∗ → A∗ be an injective morphism such that g(X) ⊆
Pϑ for a fixed ϑ. Then g(SEpi(X)) ⊆ SEpiϑ(A) if and only if each letter of
alph g(X) appears exactly once in g(X).

Example 1.14. Let A = {a, b, c, d, e}, ā = b, c̄ = c, d̄ = e, X = {a, b}, and
s = g(t), where t = aabaaabaaabaab · · · ∈ SEpi(X), Δ(t) = (aab)ω, g(a) = acb,
and g(b) = de, so that

s = acbacbdeacbacbacbde · · · . (6)

Proposition 1.13 ensures that g maps SEpi(X) into a subset of SEpiϑ(A), thus
s is standard ϑ-episturmian.

In the following, for a given standard ϑ-episturmian word s we shall denote by

Πs = {πn | n ≥ 1} (7)

the set of words of Pϑ appearing in its unique factorization s = π1π2 · · · in
unbordered ϑ-palindromes.

The details of the proof of the following useful theorem can be found in [11].

Theorem 1.15. Let s ∈ SEpiϑ. Then Πs is an overlap-free and normal code.

Since for s ∈ SEpiϑ, Πs is a biprefix, overlap-free, and normal code, by Proposi-
tion 1.8, Proposition 1.9, and Lemma 1.12 one can derive the following theorem,
proved in [9, Theorem 5.5] in a different way, which shows in particular that
any standard ϑ-episturmian word is a morphic image, by a suitable injective
morphism, of a standard episturmian word.

Theorem 1.16. Let s be a standard ϑ-episturmian word. Then f(s) is a stan-
dard episturmian word, and the restriction of f to Πs is injective, i.e., if πi and
πj occur in the factorization of s over Pϑ, and πf

i = πf
j , then πi = πj.

On a Generalization of Standard Episturmian Morphisms 163

2 Characteristic Morphisms

Let X be a finite alphabet. A morphism ϕ : X∗ → A∗ will be called ϑ-
characteristic if ϕ(SEpi(X)) ⊆ SEpiϑ, i.e., ϕ maps any standard episturmian
word over the alphabet X in a standard ϑ-episturmian word on the alphabet A.
With this terminology, we observe that an injective morphism ϕ : X∗ → X∗ is
standard episturmian if and only if it is R-characteristic. A trivial example of a
non-injective ϑ-characteristic morphism is the constant morphism ϕ : x ∈ X 	→
a ∈ A, where a is a fixed ϑ-palindromic letter; furthermore Proposition 1.13
provides an easy way of constructing injective ϑ-characteristic morphisms, like
the one used in Example 1.14.

Let X = {x, y}, A = {a, b, c}, ϑ defined by ā = a, b̄ = c, and ϕ : X∗ → A∗

be the injective morphism such that ϕ(x) = a, ϕ(y) = bac. If t is any standard
episturmian word beginning in y2x, then s = ϕ(t) begins with bacbaca, so that a
is a left special factor of s which is not a prefix of s. Thus s is not ϑ-episturmian
and therefore ϕ is not ϑ-characteristic.

A first result (cf. [11]) on the structure of ϑ-characteristic morphisms is given
by the following:

Proposition 2.1. Let ϕ : X∗ → A∗ be a ϑ-characteristic morphism. For each
x in X, ϕ(x) ∈ PAL2

ϑ.

Let ϕ : X∗ → A∗ be a morphism such that ϕ(X) ⊆ P∗
ϑ. For any x ∈ X , let

ϕ(x) = π
(x)
1 · · ·π(x)

rx be the unique factorization of ϕ(x) by the elements of Pϑ.
Set

Π(ϕ) = {π ∈ Pϑ | ∃x ∈ X, ∃ i : 1 ≤ i ≤ rx and π = π
(x)
i } . (8)

If ϕ is a ϑ-characteristic morphism, then by Propositions 2.1 and 1.7, we have
ϕ(X) ⊆ PAL2

ϑ ⊆ P∗
ϑ, so that Π(ϕ) is well defined.

The following important theorem provides a useful decomposition of injective
ϑ-characteristic morphisms (see [11] for a proof).

Theorem 2.2. Let ϕ : X∗ → A∗ be an injective ϑ-characteristic morphism.
Then Π(ϕ) is an overlap-free and normal code. Furthermore ϕ can be decomposed
as

ϕ = g ◦ μw ◦ η , (9)

where η : X∗ → B∗ is an injective literal morphism, B ⊆ A, μw : B∗ → B∗ is
a pure standard episturmian morphism (with w ∈ B∗), and g : B∗ → A∗ is an
injective morphism such that g(B) = Π(ϕ). The above decomposition can always
be chosen so that B = η(X) ∪ alphw ⊆ A and g(b) ∈ bA∗ ∩ Pϑ for each b ∈ B.

Example 2.3. Let X , A, ϑ, and g be defined as in Example 1.14 and let η(a) =
a, η(b) = b. The morphism ϕ defined by ϕ(a) = acbdeacb, ϕ(b) = acbde is de-
composable as

ϕ = g ◦ μab ◦ η .

Since g is ϑ-characteristic and μab ◦ η = μab is R-characteristic, it follows that
ϕ is ϑ-characteristic.

164 M. Bucci, A. de Luca, and A. De Luca

Example 2.4. Let X = {x, y}, A = {a, b, c}, and ϑ be the antimorphism of A∗

such that ā = a and b̄ = c. The morphism ϕ : X∗ → A∗ defined by ϕ(x) = a
and ϕ(y) = abac is ϑ-characteristic (this will be clear after Theorem 3.2, see
Example 3.3). It can be decomposed as ϕ = g ◦μa ◦ η, where η : X∗ → B∗ (with
B = {a, b}) is the morphism such that η(x) = a and η(y) = b, while g : B∗ → A∗

is defined by g(a) = a and g(b) = bac. We remark that (μa ◦ η)(SEpi(X)) ⊆
SEpi(B), but from Proposition 1.13 it follows that g(SEpi(B)) �⊆ SEpiϑ.

Proposition 2.5 (cf. [11]). Let ϕ : X∗ → A∗ be an injective ϑ-characteristic
morphism, decomposed as in (9). The word u = g(ψ(w)) is a ϑ-palindrome such
that for each x ∈ X, ϕ(x) is either a prefix of u or equal to ug(η(x)).

3 Main Result

Before proceeding with the main theorem, which gives a characterization of all
injective ϑ-characteristic morphisms, we need the following lemma, again proved
in [11].

Lemma 3.1. Let t ∈ SEpi(B) with alph t = B, and let s = g(t) be a standard
ϑ-episturmian word over A, with g : B∗ → A∗ an injective morphism such
that g(B) ⊆ Pϑ. Suppose that b, c ∈ A \ Suff Πs and v ∈ Π∗

s are such that
bvc̄ ∈ FactΠs. Then there exists δ ∈ B∗ such that v = g(ψ(δ)).

Theorem 3.2. Let ϕ : X∗ → A∗ be an injective morphism. Then ϕ is ϑ-
characteristic if and only if it is decomposable as

ϕ = g ◦ μw ◦ η

as in (9), with B = η(X) ∪ alphw and g(B) = Π ⊆ Pϑ satisfying the following
conditions:

1. Π is an overlap-free and normal code,
2. LS ({g(ψ(w))} ∪Π) ⊆ Pref g(ψ(w)),
3. if b, c ∈ A \ Suff Π and v ∈ Π∗ are such that bvc̄ ∈ FactΠ, then v =

g(ψ(w′x)), with w′ ∈ Pref w and x ∈ {ε} ∪ (B \ η(X)).

Example 3.3. Let A = {a, b, c}, X = {x, y}, B = {a, b}, and let ϑ and ϕ : X∗ →
A∗ be defined as in Example 2.4, namely ā = a, b̄ = c, and ϕ = g ◦μa ◦ η, where
η(x) = a, η(y) = b, and g : B∗ → A∗ is defined by g(a) = a and g(b) = bac. Then
Π = g(B) = {a, bac} is an overlap-free, normal code which satisfies condition 2
of Theorem 3.2. The only word verifying the hypotheses of condition 3 is bac,
and bac = bab̄ = g(b) ∈ Π , with a ∈ Π∗ and b /∈ Suff Π . Since a = g(ψ(a))
and B \ η(X) = ∅, also condition 3 of Theorem 3.2 is satisfied. Hence ϕ is
ϑ-characteristic.

Example 3.4. Let X = {x, y}, A = {a, b, c}, ϑ be such that ā = a, b̄ = c, and
the morphism ϕ : X∗ → A∗ be defined by ϕ(x) = a and ϕ(y) = abaac. In
this case we have ϕ = g ◦ μa ◦ η, where B = {a, b}, g(a) = a, g(b) = baac,

On a Generalization of Standard Episturmian Morphisms 165

η(x) = a, and η(y) = b. Then the morphism ϕ is not ϑ-characteristic. Indeed, if
t is any standard episturmian word starting with yxy, then ϕ(t) has the prefix
abaacaabaac, so that aa is a left special factor of ϕ(t) but not a prefix of it. In fact,
condition 3 of Theorem 3.2 is not satisfied in this case, since baac = baab̄ = g(b),
b /∈ Suff Π , aa ∈ Π∗, B \ η(X) = ∅, and

aa /∈ {g(ψ(w′)) | w′ ∈ Pref a} = {ε, a} .

If we choose X ′ = {y} with η′(y) = b, then

g(μa(η′(yω))) = (abaac)ω ∈ SEpiϑ ,

so that ϕ′ = g ◦ μa ◦ η′ is ϑ-characteristic. In this case B = η′(X ′) ∪ alph a,
B \ η′(X ′) = {a}, and aa = g(ψ(aa)) = g(aa), so that condition 3 is satisfied.

Example 3.5. Let X = {x, y}, A = {a, b, c, d, e, h}, and ϑ be the antimorphism
over A defined by ā = a, b̄ = c, d̄ = e, h̄ = h. Let also w = adb ∈ A∗,
B = {a, b, d} = alphw, and η : X∗ → B∗ be defined by η(x) = a and η(y) = b.
Finally, set g(a) = a, g(d) = dahae, and g(b) = badahaeadahaeac, so that the
morphism ϕ = g ◦ μw ◦ η is such that

ϕ(y) = adahaeabadahaeadahaeac and ϕ(x) = ϕ(y) adahaea .

Then ϕ is ϑ-characteristic, as the code Π(ϕ) = g(B) and the word u = g(ψ(w)) =
g(adabada) = ϕ(x) satisfy all three conditions of Theorem 3.2.

Note that Proposition 1.13 can be derived as a corollary of Theorem 3.2 (cf. [11]).

Remark 3.6. Let us observe that Theorem 3.2 gives an effective procedure to
decide whether, for a given ϑ, an injective morphism ϕ : X∗ → A∗ is ϑ-
characteristic. The procedure runs in the following steps:

1. Check whether ϕ(X) ⊆ P∗
ϑ.

2. If the previous condition is satisfied, then compute Π = Π(ϕ).
3. Verify that Π is overlap-free and normal.
4. Compute B = f(Π) and the morphism g : B∗ → A∗ given by g(B) = Π .
5. Since ϕ = g ◦ ζ, verify that ζ is R-characteristic, i.e., there exists w ∈ B∗

such that ζ = μw ◦ η, where η is a literal morphism from X∗ to B∗.
6. Compute g(ψ(w)) and verify that conditions 2 and 3 of Theorem 3.2 are

satisfied. This can be effectively done.

Proof (Theorem 3.2). Necessity: From Theorem 2.2, we obtain the decompo-
sition (9) where B = η(X) ∪ alphw and g(B) = Π(ϕ) ⊆ Pϑ is an overlap-free
and normal code.

Let us set u = g(ψ(w)), and prove that condition 2 holds. We first suppose
that cardX ≥ 2, and that a, a′ ∈ η(X) are distinct letters. Let Δ be an infinite
word such that alphΔ = η(X). Setting ta = ψ(waΔ) and ta′ = ψ(wa′Δ), by (1)
we have

ta = μw(ψ(aΔ)) and ta′ = μw(ψ(a′Δ)) ,

166 M. Bucci, A. de Luca, and A. De Luca

so that, setting sy = g(ty) for y ∈ {a, a′}, we obtain

sy = g(μw(ψ(yΔ))) ∈ SEpiϑ

as ψ(yΔ) ∈ η(SEpi(X)) ⊆ SEpi(B) and ϕ = g ◦ μw ◦ η is ϑ-characteristic.
By Corollary 1.6 and (1), one obtains that the longest common prefix of ta and
ta′ is ψ(w). As alphΔ = η(X) and B = η(X) ∪ alphw, we have alph ta =
alph ta′ = B, so that Πsa = Πsa′ = Π . Since g is injective, by Theorem 1.16
we have g(a)f �= g(a′)f , so that the longest common prefix of sa and sa′ is
u = g(ψ(w)). Any word of LS({u} ∪Π), being a left special factor of both sa

and sa′ , has to be a common prefix of sa and sa′ , and hence a prefix of u.
Now let us suppose X = {z} and denote η(z) by a. In this case we have

ϕ(SEpi(X)) = {g(μw(aω))} = {(g(μw(a)))ω} .

Let us set s = (g(μw(a)))ω ∈ SEpiϑ. By Corollary 1.6, u = g(ψ(w)) is a prefix
of s. Let λ ∈ LS({u} ∪ Π). Since Π = Πs, the word λ is a left special factor of
the ϑ-episturmian word s, so that we have λ ∈ Pref s.

If a ∈ alphw, then B = {a} ∪ alphw = alphw = alphψ(w), so that Π ⊆
Factu. This implies |λ| ≤ |u| and then λ ∈ Pref u as desired.

If a /∈ alphw, then by Proposition 2.5 we obtain ϕ(z) = g(μw(a)) = u g(a),
because ϕ(z) /∈ Pref u otherwise by Lemma 1.12 we would obtain μw(a) ∈
Pref ψ(w), that implies a ∈ alphw. Hence s = (u g(a))ω. Since Π ⊆ (Factu) ∪
{g(a)}, we have |λ| ≤ |u g(a)|, so that λ ∈ Pref(u g(a)). Again, if λ is a proper
prefix of u we are done, so let us suppose that λ = uλ′ for some λ′ ∈ Pref g(a),
and that λ is a left special factor of g(a). Then the prefix λ′ of g(a) is repeated
in g(a). The longest repeated prefix p of g(a) is either a right special factor or
a border of g(a). Both possibilities imply p = ε, since g(a) is unbordered and
Π is a biprefix and normal code. As λ′ ∈ Pref p, it follows λ′ = ε. This proves
condition 2.

Finally, let us prove condition 3. Let b, c ∈ A \ Suff Π , v ∈ Π∗, and π ∈ Π be
such that bvc̄ ∈ Factπ. Let t′ ∈ SEpi(X) with alph t′ = X , and set t = μw(η(t′)),
s1 = g(t). Since ϕ is ϑ-characteristic, s1 = ϕ(t′) is standard ϑ-episturmian. By
Lemma 3.1, we have v = g(ψ(δ)) for some δ ∈ B∗. If δ = ε we are done, as
condition 3 is trivially satisfied for w′ = x = ε; let us then write δ = δ′a for some
a ∈ B. The words bg(ψ(δ′)) and g(aψ(δ′)) are both factors of the ϑ-palindrome
π; indeed, ψ(δ′a) begins with ψ(δ′)a and terminates with aψ(δ′). Hence g(ψ(δ′))
is left special in π as b /∈ Suff Π is different from (g(a))� ∈ Suff Π . Therefore
g(ψ(δ′)) is a prefix of g(ψ(w)), as we have already proved condition 2. Since g is
injective and Π is a biprefix code, by Lemma 1.12 it follows ψ(δ′) ∈ Pref ψ(w),
so that δ′ ∈ Pref w by Proposition 1.2. Hence, we can write δ = w′x with
w′ ∈ Pref w and x either equal to a (if δ′a /∈ Pref w) or to ε. It remains to show
that if w′x /∈ Pref w, then x /∈ η(X).

Let us first assume that η(X) = {x}. In this case we have s1 = g(μw(η(t′))) =
g(ψ(wxω)) by (1). Since bv = bg(ψ(w′x)) ∈ Factπ, g(x) is a proper factor of
π. Then, as B = {x} ∪ alphw and g(x) �= π, we must have π ∈ g(alphw), so
that bv ∈ Fact g(ψ(w)) as alphw = alphψ(w). By Proposition 1.3, ψ(w′x) is

On a Generalization of Standard Episturmian Morphisms 167

a factor of ψ(wx). We can then write ψ(wx) = ζψ(w′x)ζ′ for some ζ, ζ′ ∈ B∗.
If ζ were empty, by Proposition 1.2 we would obtain w′x ∈ Pref(wx); since
w′x /∈ Pref w, we would derive w = w′, which is a contradiction since we proved
that bv = bg(ψ(w′x)) ∈ Fact g(ψ(w)). Therefore ζ �= ε, and v is left special
in s, being preceded both by (g(ζ))� and by b /∈ Suff Π . This implies that v
is a prefix of s and then of g(ψ(w)) as |v| ≤ |g(ψ(w))|. By Lemma 1.12, it
follows ψ(w′x) ∈ Pref ψ(w) and then w′x ∈ Pref w by Proposition 1.2, which is
a contradiction.

Suppose now that there exists y ∈ η(X) \ {x}, and let Δ ∈ η(X)ω with
alphΔ = η(X). The word s2 = g(ψ(wyxΔ)) is equal to g(μw(ψ(yxΔ))) by (1),
and is then standard ϑ-episturmian since ϕ = g ◦ μw ◦ η is ϑ-characteristic. By
applying Proposition 1.3 to w′ and wy ∈ w′A∗, we obtain ψ(w′x) ∈ Factψ(wyx).
We can write ψ(wyx) = ζψ(w′x)ζ′ for some ζ, ζ′ ∈ B∗. As w′x /∈ Pref w and
x �= y, we have by Proposition 1.2 that ψ(w′x) /∈ Pref ψ(wy), so that ζ �= ε.
Hence v = g(ψ(w′x)) is left special in s2, being preceded both by (g(ζ))� and
by b /∈ Suff Π . This implies that v is a prefix of s2 and then of g(ψ(wy)); by
Lemma 1.12, this is absurd since ψ(w′x) /∈ Pref ψ(wy).

Sufficiency: Let t′ ∈ SEpi(η(X)) and t = μw(t′) ∈ SEpi(B). Since g(B) = Π ⊆
Pϑ, by Proposition 1.8 it follows that g(t) has infinitely many ϑ-palindromic
prefixes, so that its set of factors is closed under ϑ.

Thus, in order to prove that g(t) ∈ SEpiϑ, it is sufficient to show that any
nonempty left special factor λ of g(t) is in Pref g(t). Since λ is left special, there
exist a, a′ ∈ A, a �= a′, v, v′ ∈ A∗, and r, r′ ∈ Aω, such that

g(t) = vaλr = v′a′λr′ . (10)

The word g(t) can be uniquely factorized by the elements of Π . Therefore, vaλ
and v′a′λ are in Pref Π∗. We consider three different cases.

Case 1: va /∈ Π∗, v′a′ /∈ Π∗.

Since Π is a biprefix (as it is a subset of Pϑ), overlap-free and normal code,
by Proposition 1.10 we have aλ, a′λ ∈ FactΠ . Therefore, by condition 2 of
Theorem 3.2, it follows λ ∈ LSΠ ⊆ Pref g(ψ(w)), so that it is a prefix of g(t)
since by Corollary 1.6, ψ(w) is a prefix of t = μw(t′).

Case 2: va ∈ Π∗, v′a′ ∈ Π∗.

From (10), we have λ ∈ Pref Π∗. By Proposition 1.11, there exists a unique word
λ′ ∈ Π∗ such that λ′ = π1 · · ·πk = λζ and π1 · · ·πk−1δ = λ, with k ≥ 1, πi ∈ Π
for i = 1, . . . , k, δ ∈ A+, and ζ ∈ A∗.

Since g is injective, there exist and are unique the words τ, γ, γ′ ∈ B∗ such
that g(τ) = λ′, g(γ) = va, g(γ′) = v′a′. Moreover, we have g(γτ) = vaλ′ =
vaλζ ∈ Pref g(t) and g(γ′τ) = v′a′λ′ = v′a′λζ ∈ Pref g(t). By Lemma 1.12, we
derive γτ, γ′τ ∈ Pref t. Setting α = γ�, α′ = γ′�, we obtain ατ, α′τ ∈ Fact t, and
α �= α′ as a �= a′. Hence τ is a left special factor of t; since t ∈ SEpi(B), we
have τ ∈ Pref t, so that g(τ) = λ′ ∈ Pref g(t). As λ is a prefix of λ′, it follows
λ ∈ Pref g(t).

168 M. Bucci, A. de Luca, and A. De Luca

Case 3: va /∈ Π∗, v′a′ ∈ Π∗ (resp. va ∈ Π∗, v′a′ /∈ Π∗).

We shall consider only the case when va /∈ Π∗ and v′a′ ∈ Π∗, as the symmetric
case can be similarly dealt with.

Since v′a′ ∈ Π∗, by (10) we have λ ∈ Pref Π∗. By Proposition 1.11, there
exists a unique word λ′ ∈ Π∗ such that λ′ = π1 · · ·πk = λζ and π1 · · ·πk−1δ = λ,
with k ≥ 1, πi ∈ Π for i = 1, . . . , k, δ ∈ A+, and ζ ∈ A∗. By the uniqueness of
λ′, v′a′λ′ is a prefix of g(t).

By (10) we have vaπ1 · · ·πk−1δ ∈ Pref g(t). By Proposition 1.10, aλ ∈ FactΠ ,
so that there exist ξ, ξ′ ∈ A∗ and π ∈ Π such that

ξaλξ′ = ξaπ1 · · ·πk−1δξ
′ = π ∈ Π .

Since δ is a nonempty prefix of πk, it follows from Proposition 1.9 that π =
ξaπ1 · · ·πkξ

′′ = ξaλ′ξ′′, with ξ′′ ∈ A∗.
Let p (resp. q) be the longest word in Suff(ξa) ∩Π∗ (resp. in Pref ξ′′ ∩Π∗),

and write π = ξaλ′ξ′′ = zpλ′qz′, with z, z′ ∈ A∗.
Since λ′ and zp are nonempty and Π is a biprefix code, one derives that z

and z′ cannot be empty. Moreover, b = z� /∈ Suff Π and c̄ = (z′)f /∈ Pref Π , for
otherwise the maximality of p and q could be contradicted using Proposition 1.9.

By condition 3, we have pλ′q = g(ψ(w′x)) for some w′ ∈ Pref w and x ∈
{ε} ∪ (B \ η(X)). Since p, λ′, q ∈ Π∗ and g is injective, we derive λ′ = g(τ) for
some τ ∈ Factψ(w′x). We will show that λ′ is a prefix of g(t), which proves the
assertion as λ ∈ Pref λ′.

Suppose first that p = ε, so that a = b and τ ∈ Pref ψ(w′x). If τ ∈ Pref ψ(w′),
then λ′ ∈ g(Pref ψ(w′)) ⊆ Pref g(ψ(w′)) ⊆ Pref g(ψ(w)), and we are done as
g(ψ(w)) ∈ Pref g(t). Let us then assume x �= ε, so that x ∈ B \ η(X), and
ψ(w′)x ∈ Pref τ . Moreover, we can assume w′x /∈ Pref w, for otherwise we would
derive λ′ ∈ Pref g(ψ(w)) again. Let Δ ∈ η(X)ω be the directive word of t′, so
that by (1) we have t = ψ(wΔ). Since w′ ∈ Pref w, we can write wΔ = w′Δ′ for
some Δ′ ∈ Bω, so that t = ψ(w′Δ′).

We have already observed that v′a′λ′ is a prefix of g(t); as v′a′ ∈ Π∗, by
Lemma 1.12 one derives τ ∈ Fact t. Since ψ(w′)x ∈ Pref τ , it follows ψ(w′)x ∈
Factψ(w′Δ′); by Proposition 1.4, we obtain x ∈ alphΔ′. This implies, since
x /∈ η(X), that w �= w′, and we can write w = w′σxσ′ for some σ, σ′ ∈ B∗. By
Proposition 1.3, ψ(w′x) is a factor of ψ(w′σx) and hence of ψ(w), so that, since
τ ∈ Pref ψ(w′x), we have τ ∈ Factψ(w). Hence we have either τ ∈ Pref ψ(w),
so that λ′ ∈ Pref g(ψ(w)) and we are done, or there exists a letter y such that
yτ ∈ Factψ(w), so that dλ′ ∈ Fact g(ψ(w)) with d = (g(y))� ∈ Suff Π . In the
latter case, since a = b /∈ Suff Π and aλ′ ∈ FactΠ , we have by condition 2
that λ′ ∈ Pref g(ψ(w)). Since g(ψ(w)) is a prefix of g(t), in the case p = ε the
assertion is proved.

If p �= ε, we have a ∈ Suff Π . Let then α, α′ ∈ B be such that (g(α))� = a
and (g(α′))� = a′; as a �= a′, we have α �= α′. Since pλ′ is a prefix of g(ψ(w′x)),
p ∈ Π∗, and p� = (g(α))� = a, by Lemma 1.12 one derives that ατ is a factor of
ψ(w′x). Moreover, as v′a′λ′ ∈ Pref g(t) and v′a′ ∈ Π∗, we derive that α′τ is a
factor of t.

On a Generalization of Standard Episturmian Morphisms 169

Let then δ′ be any prefix of the directive word Δ of t′, such that α′τ ∈
Factψ(wδ′). By Proposition 1.3, ψ(wδ′x) contains ψ(w′x), and hence ατ , as
a factor. Thus τ is a left special factor of ψ(wδ′x) and then of the standard
episturmian word ψ(wδ′xω); as |τ | < |ψ(wδ′)|, it follows τ ∈ Pref ψ(wδ′) and
then τ ∈ Pref t, so that λ′ ∈ Pref g(t). The proof is now complete. !

References

1. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
2. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,

Cambridge (2002)
3. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cam-

bridge (2005)
4. Droubay, X., Justin, J., Pirillo, G.: Episturmian words and some constructions of

de Luca and Rauzy. Theoretical Computer Science 255, 539–553 (2001)
5. Justin, J., Pirillo, G.: Episturmian words and episturmian morphisms. Theoretical

Computer Science 276, 281–313 (2002)
6. Fischler, S.: Palindromic prefixes and episturmian words. Journal of Combinatorial

Theory, Series A 113, 1281–1304 (2006)
7. de Luca, A., De Luca, A.: Pseudopalindrome closure operators in free monoids.

Theoretical Computer Science 362, 282–300 (2006)
8. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On some problems related

to palindrome closure. Theoretical Informatics and Applications (to appear, 2008),
doi:10.1051/ita:2007064

9. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On different generalizations
of episturmian words. Theoretical Computer Science 393, 23–36 (2008)

10. Bucci, M., de Luca, A., De Luca, A., Zamboni, L.Q.: On θ-episturmian words.
European Journal of Combinatorics (to appear, 2008)

11. Bucci, M., de Luca, A., De Luca, A.: Characteristic morphisms of generalized
episturmian words. Preprint n. 18, DMA “R. Caccioppoli” (2008)

12. Berstel, J., Perrin, D.: Theory of Codes. Academic Press, New York (1985)
13. de Luca, A.: Sturmian words: structure, combinatorics, and their arithmetics. The-

oretical Computer Science 183, 45–82 (1997)
14. Justin, J.: Episturmian morphisms and a Galois theorem on continued fractions.

Theoretical Informatics and Applications 39, 207–215 (2005)

Universal Recursively Enumerable Sets of

Strings

Cristian S. Calude1, André Nies2, Ludwig Staiger3, and Frank Stephan4,�

1 Department of Computer Science, The University of Auckland, Private Bag 92019,
Auckland, New Zealand

cristian@cs.auckland.ac.nz
2 Department of Computer Science, The University of Auckland, Private Bag 92019,

Auckland, New Zealand
andre@cs.auckland.ac.nz

3 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
D - 06099 Halle, Germany

staiger@informatik.uni-halle.de
4 Department of Mathematics and School of Computing, National University of

Singapore, Singapore 117543
fstephan@comp.nus.edu.sg

Abstract. The present work clarifies the relation between domains of
universal machines and r.e. prefix-free supersets of such sets. One such
characterisation can be obtained in terms of the spectrum function sW (n)
mapping n to the number of all strings of length n in the set W . An r.e.
prefix-free set W is the superset of the domain of a universal machine iff
there are two constants c, d such that sW (n)+sW (n+1)+ . . .+sW (n+c)
is between 2n−H(n)−d and 2n−H(n)+d for all n; W is the domain of a
universal machine iff there is a constant c such that for each n the pair
of n and sW (n)+ sW (n+1)+ . . . + sW (n+ c) has at least the prefix-free
Description complexity n. There exists a prefix-free r.e. superset W of a
domain of a universal machine which is the not a domain of a universal
machine; still, the halting probability ΩW of such a set W is Martin-Löf
random. Furthermore, it is investigated to which extend this results can
be transferred to plain universal machines.

1 Introduction

The present paper provides a classification of recursively enumerable prefix codes
using algorithmic information theory [1,4,5,6,9,10]. The paper combines recur-
sion theoretic arguments with (combinatorial) information theory. It is well-
known that recursion theory does not yield a sufficiently fine distinction between
several classes of recursively enumerable prefix codes, as, for example, the prefix
code S = {0n1 : n ∈W} has the same complexity as the subset W ⊆ N and all
these prefix codes are indistinguishable by their entropy.

� F. Stephan is supported in part by NUS grant number R252-000-308-112.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 170–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Universal Recursively Enumerable Sets of Strings 171

On the other hand one may assume that recursively enumerable prefix codes
are in some sense “maximally complex” if they are the domains of universal
prefix-free Turing machines. This observation is supported by Corollary 2 of [3]
which states that every recursively enumerable prefix code is one-to-one em-
beddable into the domain of a universal prefix-free Turing machine by a partial
recursive mapping increasing the output length at most by a constant. Moreover,
this characterisation yields a connection to the information-theoretic density of
a universal recursively enumerable prefix code. Calude and Staiger [3] showed
that universal recursively enumerable prefix codes have maximal density — in
contrast with the code S discussed above.

The present paper provides a more detailed characterisation of the domains of
universal prefix-free Turing machines and universal recursively enumerable (r.e.)
prefix codes in terms of the spectrum function. More technically, an r.e. prefix
code S is an r.e. set of strings over the fixed alphabet X = {0, 1} such that
there are no two strings p, q ∈ S with p being a proper prefix of q. A machine
U is a partial-recursive function from X∗ to X∗ and one defines for every x the
Description complexity CU (x) based on U as CU (x) = min{|p| : U(p) ↓= x}.
U is called universal if for every further machine V there is a constant c with
∀x [CU (x) ≤ CV (x) + c]. In the case that the domain of U is prefix-free, one
denotes the Description complexity based on U as HU and calls U universal iff
for every further machine V with prefix-free domain there is a constant c with
∀x [HU (x) ≤ HV (x) + c]. A basic result of algorithmic information theory says
that such universal machines exist [1,10]. In general, the underlying machine is
fixed to some default and the complexities C (plain) and H (prefix-free) are
written without any subscript [7]. Now a prefix code is called universal iff it is
the superset of the domain of a prefix-free universal domain.

For a prefix-free set V , let ΩV be (the set representing the binary course-of-
values of the real number)

∑
p∈V 2−|p|. Ω-numbers turned out to be left-r.e. (as

immediate by the definition). Chaitin [4] proved that if V is the domain of a
universal prefix-free machine, then ΩV is Martin-Löf random. Here a set A is
Martin-Löf random iff H(A(0)A(1)A(2) . . . A(n)) ≥ n for almost all n. Calude,
Hertling, Khoussainov and Wang [2] and Kučera and Slaman [11] showed that
the converse is also true and every left-r.e. Martin-Löf random set corresponds
to the halting probability of some universal machine. Later, Calude and Staiger
[3] extended this work by considering the relations between domains of prefix-
free machines and their r.e. prefix-free supersets. They established basic results
and showed that such supersets cannot be recursive. In the present work, their
results are extended as follows:

1. Let sW (n) denote the number of strings of length n in W and sW (n,m) =∑n+m
i=n sW (i). A prefix-free r.e. set W is the superset of the domain of a

prefix-free universal machine iff there is a constant c such that sW (n, c) ≥
2n−H(n) for all n.

2. A prefix-free r.e. set W is the domain of some universal machine iff there
exists a constant c such that H(〈n, sW (n, c)〉) ≥ n for all n.

172 C.S. Calude et al.

3. There are prefix-free r.e. sets which satisfy the second but not the first con-
dition; an example is any prefix-free r.e. set which has for almost all n that
sW (n) = 2n−H(n).

4. If W is an r.e. prefix-free superset of the domain of a universal machine U ,
then ΩU is Solovay reducible to ΩW , ΩW is Martin-Löf random and W is
wtt-complete.

To some extend, these results transfer to plain universal machines and their
supersets as well. Furthermore, the question is investigated when an r.e. but
not necessarily prefix-free set is a superset of the domain of a universal prefix-
free machine. In particular the following natural question remained open: Is the
domain of every plain universal machine the superset of the domain of some
prefix-free universal machine? The reader should be reminded of the following
additional notions used in this paper.

The ordering ≤qlex is called the quasi-lexicographical, length-lexicographical
or military ordering of X∗: λ <qlex 0 <qlex 1 <qlex 00 <qlex 01 <qlex 10 <qlex

11 <qlex 000 <qlex 001 and so on. Furthermore, the sets of natural numbers N
and strings X∗ are identified by saying that n ∈ N represents the unique string x
with #{y ∈ X∗ : y <qlex x} = n. This is in particular useful in order to extend
concepts like complexity to natural numbers without defining these concepts
twice.

The function a, b 	→ 〈a, b〉 is Cantor’s pairing function of a and b: 〈a, b〉 =
(a + b)(a + b + 1)/2 + b.

A real number q is Solovay reducible to a real number r if there is an infinite
approximation a0, a1, a2, . . . of q from below such that there is some positive real
constant c > 0 and some recursive approximation b0, b1, b2, . . . of r from below
such that (aa+1−as)c > bs+1−bs for all s. Similarly a set A is Solovay reducible
to B if

∑
n∈A 2−n is Solovay reducible to

∑
n∈B 2−n as real numbers.

Further unexplained notation can be found in the books of Odifreddi [14],
Calude [1] and Li and Vitányi [10].

2 Universal r.e. Prefix Codes

Recall that a prefix-free universal machine U is a prefix-free machine such that
for every further machine V there is a constant c such that for every p ∈ dom(V)
there is a q ∈ dom(U) with U(q) = V (p)∧|q| ≤ |p|+ c. Following [3], a universal
r.e. prefix code A ⊂ X∗ is an r.e. prefix-free set containing the domain of a
prefix-free universal machine. The major goal of this section is to clarify the
relation between domains of prefix-free universal machines and universal r.e.
prefix codes.

For every V ⊂ X∗, let the spectrum function sV : X∗ → N be defined as
sV (n) = #(V ∩ Xn) and sV (n,m) =

∑n+m
i=n sV (i). Furthermore, for machines

U , sU (n) is just sdom(U)(n).

Theorem 1. If U is a universal prefix-free machine then there exists a constant
c such that H(〈n, sU (n, c)〉) ≥ n for all n.

Universal Recursively Enumerable Sets of Strings 173

Proof. Assume by way of contradiction that this fails. Now choose c to be a
multiple of 3 such that:

1. for every p ∈ dom(U) there is a q ∈ dom(U) with |q| < |p| + c/3 and
U(q) >qlex U(p);

2. for every p ∈ dom(U), H(U(p)) < H(p) + c/3;
3. H(pn) ≤ H(〈n, sU (n, c)〉)+c/3, where pn is the quasi-lexicographically small-

est string in dom(U) such that n ≤ |pn| ≤ n + c and U(pn) ≥qlex U(q) for
all q ∈ dom(U) with n ≤ |q| ≤ n + c.

Note that the third condition can be satisfied as there is a three-place partial-
recursive function with inputs m, n and c with the following properties: this
function simulates U until U has halted on a set R of m strings r with n ≤ |r| ≤
n+ c and it then outputs the length-lexicographic first r′ ∈ R for which U(r′) is
length-lexicographically maximal: U(r′) ≥qlex U(r) for all r ∈ R. The function
terminates and outputs pn in the case that m = sU (n, c). Now the complexity of
the output of this two-place function is bounded by H(〈n, sU (n, c)〉)+2 log(c)+c′,
for some constant c′ and hence for all sufficiently large c the third condition is
satisfied.

Note that by the first item it holds that U(q) <qlex U(pn) for all q ∈ dom(U)
with |q| ≤ n + 2c/3. Hence |pn| ≥ n + 2c/3. By the second item it holds that
H(pn) ≥ n + c/3. By the third item it then follows that H(〈n, sU (n, c)〉) ≥ n.�
Theorem 2. There exists a prefix-free machine W and a universal prefix-free
machine U such that dom(U) ⊂ dom(W) and W is not universal.

Proof. Let U be a universal prefix-free machine such that ΩU < 1/2. Now
one can build by the Kraft-Chaitin Theorem a prefix-free set W such that for
all n either sU (n) = sW (n) = 0 or there is a natural number m with 2m ≤
sU (n) < sW (n) = 2m+1. As sU (n) ≤ sW (n) for all n, one can make a partial-
recursive one-one function f from dom(U) into W such that |f(p)| = |p| for all
p ∈ dom(U); this defines a further partial function from f(U) to X∗ by mapping
f(p) 	→ U(p) for all p ∈ dom(U) which is a universal machine whose domain is
a subset of W . It follows that W is a prefix-free superset of the domain of some
universal function. Furthermore, for every constant c, the machine

n 	→ H(〈n, sW (n, c)〉)

is logarithmic in n as for each value sW (m) has only n+1 many possible choices:
either 0 or 2m for some m ∈ {0, 1, . . . , n}. Hence, by Theorem 1, the set W cannot
be the domain of a prefix-free universal machine. �
Although the complexity of a universal prefix code might not be large up to a
given length n, the next result shows that the number

ΩW =
∑

x∈W

2−|x|

is Martin-Löf random, a property shared with the domains of prefix-free universal
machines. Note that there is no contradiction as for every left-r.e. real number
ρ > 0 one can find a recursive prefix-free set W such that ΩW = ρ, see [2].

174 C.S. Calude et al.

Theorem 3. Let W be an r.e. universal prefix code. Then ΩW is Martin-Löf
random.

Proof. Assume that U is a prefix-free universal machine whose domain is con-
tained in the prefix-free r.e. set W . The basic idea of the proof is to show that
ΩU is Solovay reducible to ΩW . This is done by approximating the halting prob-
ability of U such that ΩU,0 = 0 and for every u one can compute a natural
number ku with ΩU,u+1−ΩU,u = 2−ku . Next one constructs a sequence t0, t1, . . .
of integers such that there is a rational constant δ > 0 with the property:

∀u [δ · 2−ku ≤ ΩW,tu+1 −ΩW,tu] .

This property is a reformulation of the fact that there is a Solovay-reduction
from ΩU to ΩW . As ΩU is Solovay-reducible to a left-r.e. set iff the latter is
Martin-Löf random, the theorem follows once that δ is found [16].

The constant δ and the sequence t0, t1, t2, . . . will come out of the following
inductive construction: Using the Fixed-point Theorem, one can construct a
r.e. prefix-free set V using a constant c such that for every x ∈ V there is a
p ∈ dom(U) with U(p) = x ∧ |p| ≤ |x|+ c. Now one defines V in stages:

1. An invariance of the construction is ΩV,u = ΩU,u for all u.
2. The initialisation is t0 = 0 and V0 = ∅ which is consistent with the given

invariance.
3. At stage u, assume that tu, Vu and Wu are defined. Let ku be the unique

integer with
2−ku = ΩU,u+1 −ΩU,u .

Find a natural number mu which is so large that 2|Wtu | < 2mu. By the
Kraft-Chaitin Theorem one can select 2mu strings of length ku + mu which
are not yet in Vu and put them as new elements into Vu+1. This adds 2−ku

to ΩV giving

ΩV,u+1 = ΩV,u + 2mu · 2−ku−mu = ΩU,u + 2−ku = ΩU,u+1 .

Furthermore, one can select tu+1 to be the first stage beyond tu where for
every string x ∈ Vu+1 there is an y ∈ dom(Utu+1) ∩Wtu+1 such that |y| ≤
|x|+ c and U(y) = x; as at least half of these strings y had not been in Wtu

it follows that
ΩW,tu+1 −ΩW,tu ≥ 2−ku−c−1 .

4. The last equation of the activity at stage u permits to choose δ = 2−c−1.

Hence ΩU is Solovay reducible to ΩW and ΩW is Martin-Löf random [16]. �

Theorem 4. If W is an r.e. universal prefix code then there exist two constants
c, d such that

∀n
[
2n−H(n)−d ≤ sW (n, c) ≤ 2n−H(n)+d

]
. (1)

Universal Recursively Enumerable Sets of Strings 175

Proof. It is well-known that for each r.e. prefix-free set there is a constant d′

such that
∀n

[
sW (n) ≤ 2n−H(n)+d′

]
.

Therefore given c one can select d such that d ≥ d′ + c + 2 in order to get the
inequality of the right hand side in (1). For the left hand side, take c so large
that ∀n [H(〈n, sU (n, c)〉) ≥ n]. The prefix-free machine V codes pairs 〈n,m〉 of
natural numbers in a prefix-free way: V (p0e1q) = 〈n,m〉 if U(p) = n, m is the
binary value of q and |q| = n− |p| − 2e. Thus there is a constant cV depending
on the machine V such that H(〈n,m〉) ≤ n− e + 1 + cV for all m < 2n−|p|−2e.

Since ∀n [H(〈n, sU (n, c)〉) ≥ n], it follows that sU (n, c) ≤ 2n−H(n)−2e can hold
only for e < cV +1, that is, there is a maximal value e for which there are values
of n with

sU (n, c) ≤ 2n−H(n)−2e .

Taking now d to be the maximum of c + d′ + 2 from above and 2e + 2 from the
current choice of e establishes this theorem. �
If W is an r.e. universal prefix code, then one can use the constants c, d above to
compute for every n the value H(n) up to a constant error. It follows that one
can find for every number n a number m with H(m) > n: one just takes that m
below 4n for which m − log(sW (m, c)) is maximal and the choice is right in all
but finitely many places. Using Merkle’s result on complex sets [8] or Arslanov’s
completeness criterion for weak truth-table reducibility in combination with the
fact that W has r.e. dnr Turing degree [14], one obtains that W is wtt-complete.

Corollary 5. If W is an r.e. universal prefix code then W is weak truth-table
complete, that is, K ≤wtt W .

The next result is the converse of Theorem 1 and had been deferred to this
place as it builds on the above results. This permits to give a characterisation
of the domains of prefix-free universal machines in terms of the complexity of
the function sV (n,m). The constant c comes in as there are universal machines
which use only programs of even length and so on.

Theorem 6. Assume that W is an r.e. prefix-free set such that there is a con-
stant c with ∀n [H(〈n, sW (n, c)〉) ≥ n]. Then W is the domain of a universal
prefix-free machine.

Proof. Let c as fixed above. First note that there is a constant d such that

∀n [H(〈n, sW (n, c)〉) ≤ n + d] .

The reason is that there is a constant e such that

∀n
[
sW (n, c) ≤ 2n−H(n)+e

]
,

by Theorem 4; hence one can code n with a program p having the length of H(n)
bits and then sW (n, c) given n with n + e − |p| bits. The constant d might be

176 C.S. Calude et al.

a bit larger than e as one has to translate this coding into the language of the
universal machine used.

Let p0, p1, p2, . . . be a recursive one-one enumeration of the domain of some
prefix-free universal machine U . Now one builds, using the Recursion Theorem, a
recursive sequence t0, t1, t2, . . . such that for some constant b the following holds
for all s:

1. H(sWts
(m, c)) < |ps|+ (m + b− |ps|)/2 for all s and m ≥ |ps|.

2. For every s there is a string qs ∈ Wts+1 −Wts with |qs| ≤ |ps|+ b + c.

Note that the first condition together with Theorem 1 implies that there exists
a string qs as desired in W −Wts . The second condition then allows us to choose
ts+1 so large that the string qs is actually in Wts+1 .

Finally, one defines the following machine V defined on the domain of W : For
any q ∈W find the unique s such that q ∈ Wts+1 −Wts and let V (q) = U(ps).

As |qs| ≤ |ps| + b + c and qs ∈ Wts+1 − Wts , it follows that U(ps) has a
program at the machine V which is at most b + c bits longer than ps, hence V
is a universal prefix-free machine with domain W . �

3 Plain Versus Prefix-Free Description Complexity

The main result of this section is the following theorem which parallels Theo-
rems 1, 4 and 6 in the previous section for universal plain machines. Note that
X∗ would be a legitimate superset of the domain of a plain universal machine in
the context of this section, as there are no such requirements like prefix-freeness.

Theorem 7. Given an r.e. set W , the equivalences (1) ⇔ (2) and (3) ⇔ (4)
hold for the following four conditions.
(1) There is a constant c such that sW (n, c) ≥ 2n for all n.
(2) W is the superset of a domain of a plain universal machine.
(3) There is a constant c with C(sW (n, c)) ≥ n for all n.
(4) W is the domain of a plain universal machine.

Proof. (1) ⇒ (2): One can construct, for every n which is a multiple of c+1 and
uniformly recursive in n, a one-one mapping from An = Xn∪Xn+1∪ . . .∪Xn+c

into W such that all p ∈ An is mapped into W ∩ An+c+1; these mappings just
enumerate the first 2n+c+1 elements of W ∩An+c+1 and then map those in An

in a one-one manner into these elements. This mapping has a partial-recursive
and one-one inverse f whose domain is a subset of W and whose range is the
full set X∗; note that |f(p)| ≥ |p| − 2c− 2 for all p where f(p) is defined.

If U is a plain universal machine, then the mapping p 	→ U(f(p)) is also a
plain universal machine with its domain being a subset of W ; this completes the
proof for case (1).

(2) ⇒ (1): There is a constant c such that every string of length n + 1 has at
most plain Description complexity n + c. At least half of these strings does not
have plain Description complexity below n. Thus it follows that for at least half

Universal Recursively Enumerable Sets of Strings 177

of the 2n+1 strings x of length n + 1 there is a p ∈ W with n ≤ |p| ≤ n + c and
U(p) = x. Thus sW (n, c) ≥ 2n.

(3) ⇒ (4): Fix the number c and follow closely the proof of Theorem 6. First
note that there is a constant d such that

∀n [C(sW (n, c)) ≤ n + d] .

Let p0, p1, p2, . . . be a recursive one-one enumeration of the domain of a plain
universal machine U . Now one builds, using the Recursion Theorem, some re-
cursive sequence t0, t1, t2, . . . such that for some constant b the following holds
for all s:

1. C(sWts
(m, c)) < |ps|+ (m + b− |ps|)/2, for all s and m ≥ |ps|.

2. For every s there is a string qs ∈ Wts+1 −Wts with |qs| ≤ |ps|+ b + c.

Note that the first condition together with Theorem 1 imply that there exists a
string qs as desired in W −Wts ; by virtue of the second condition one can choose
ts+1 so large that the string qs is actually in Wts+1 .

Now the following machine V is defined on the domain of W : For any q ∈ W
find the unique s such that q ∈Wts+1 −Wts and let W (q) = U(ps).

As |qs| ≤ |ps|+b+c and qs ∈Wts+1−Wts , it follows that U(ps) has a program
for the machine V which is at most b+ c bits longer than ps, hence V is a plain
universal machine with domain W .

(4) ⇒ (3): Let U be the universal machine with domain W . For each n, let xn be
that string in W which is enumerated last into W ∩ (X0 ∪X1 ∪X2 ∪ . . .∪Xn).
Note that one can compute from xn and (n−|xn|)/2 a string yn of length n which
is not in W ; taking s to be the first number with xn ∈Ws, yn is just the length
lexicographic first string of Xn which is outside the set {U(p) : p ∈Ws∧|p| < n}.
On the one hand, one has that

C(yn) ≤ C(xn) + (n− |xn|)/2 + c′ ≤ |xn|+ (n− |xn|)/2 + c′′,

for some constants c′, c′′ and all n; on the other hand one has that C(yn) ≥ n.
It follows that |xn| ≥ n− 2c′′ and C(xn) ≥ n− c′ − c′′ for all n.

Assume now by way of contradiction that for every c > c′ + c′′ there exists an
nc with C(sW (nc, c)) < nc. Then it follows that C(xnc+c) ≤ nc + c/2 + c′′′ for
some constant c′′′ and all c > c′ + c′′. To see this, note that one can code this
sW (nc, c) by a string u. Furthermore, one can code xnc+c by a string of the form
a1b0b′

1u where a ∈ {0, 1}, c = 2b+a and b′ = |nc|−|u| > 0. Now one can compute
a, b, b′, u from a1b0b′

1u and has that nc = |u|+ b′ and c = 2b+a. Afterwards one
can compute sW (nc, c) from u and has that xnc+c is the string number sW (nc, c)
among those strings enumerated into W which have at least length nc and at
most length nc + c. Hence, as said above, C(xnc+c) ≤ nc + c/2 + c′′′ for some
constant c′′′, the value of c′′′ depends then on the translation of the description
a1b0b′

1u into the universal machine on which C is based. Hence nc +c−c′−c′′ ≤
nc + c/2 + c′′′ and c/2 ≤ c′ + c′′ + c′′′, a contradiction to the assumption that c

178 C.S. Calude et al.

could take any value greater than c′+c′′. Thus there is a c > c′ +c′′ for which nc

does not exist and it follows for this c that ∀n [C(sW (n, c)) ≥ n]. This completes
the proof. �
A consequence of Theorem 7 is that the compressible strings (for the plain
Description complexity) form a domain of a universal machine.

Corollary 8. Let W = {p ∈ X∗ : C(p) < |p|}. Then there is a universal plain
machine with domain W .

Proof. Let Cs be an approximation of the complexity C from above and let U
be the underlying plain universal machine. Now define a machine V on input of
the form 0i1j0p as follows:

1. Let n = |p|+ i + 1.
2. Determine m = U(p).
3. If m is found, search for the first stage s such that there are at least m strings

in the set {q : n ≤ |q| ≤ n + 2j ∧ Cs(q) < |q|}.
4. If m, s are found, let V (0i1j0p) = r be the lexicographic first string of length

n + 2j with Cs(r) ≥ |r|.

Note that V (0i1j0p) is defined iff the second and third step of this algorithm
terminate. There is a constant d such that

∀i, j > 0
[
C(V (0i1j0p)) < i + j + |p|+ d

]
.

Let c = 2d and assume by way of contradiction that there is a number n with
C(sW (n, c)) < n. Then there would be a p with |p| < n and U(p) = sW (n, c).
Let i = n−|p|−1 and let j = d. By construction, V (0i1j0p) is a string of length
n + c not in W and

C(V (0i1j0p)) ≤ i + j + |p|+ d = n + c− 1 < n + c .

These two facts contradict together the definitions of c, d and W . Hence W is
the domain of a universal machine by Theorem 7. �
It is easy to see that the domain of a plain universal machine cannot be the
subset of any prefix-free set. But the converse question is more interesting. The
first theorem gives some minimum requirement on the function sV .

Theorem 9. Assume that V is the superset of the domain of a prefix-free uni-
versal machine. Then either there is a constant c such that sV (n, c) ≥ 2n for all
n or the Turing degree of sV is that of the halting problem.

Proof. Let V be an r.e. superset of the domain of the universal machine U and
assume that for every constant c there is a natural number n with sV (n, c) < 2n.

Now one defines a further prefix-free machine W as follows: for every p ∈
dom(U), let t be the time the computation of U(p) needs to converge and let
n be the first number such that sV,t(n, 4|p|) < 2n. Now let W (q) = q for all
q ∈ {p} ·Xn+|p|

Universal Recursively Enumerable Sets of Strings 179

By definition, there is a constant c such that for every q in the domain of W
there is an r in the domain of U with U(r) = q and |r| ≤ |q|+ c. It follows that
sU (n, 4|p|) ≥ 2|p|+n − 2n ≥ 2n for all p ∈ dom(U) with |p| > c. Hence there is a
string of length up to 4|p|+ n in V − Vs.

Now dom(U) ≤T V by the following algorithm: on input p, search the first
n such that sV (n, 4|p|) < 2n. This number exists by assumption on V . Then
determine the time t such that Vt(q) = V (q) for all q with |q| ≤ n + 4|p| — this
can be done easily relative to the oracle V . If U(p) is defined within t steps then
output “p ∈ dom(U)” else output “p /∈ dom(U)”. It can easily be verified that
the whole knowledge needed about V is only the values of sV and sV,t, hence
one has even that dom(U) ≤T sV . �
Note that for each constant c the set {0cp : |p| is a multiple of c} is a superset of
the domain of some universal prefix-free machine; hence the “either-condition”
Theorem 9 cannot be dropped. The next result shows that the “or-condition”
is not sufficient to guarantee that some subset is the domain of a prefix-free
universal machine.

Theorem 10. Let V be an r.e. set such that for every c there is an n with
sV (n, c) < 2n. Then there is an r.e. set V ′ with sV = sV ′ such that V ′ does not
contain the domain of any prefix-free universal machine.

Proof. The central idea is to construct by induction relative to the halting
problem a sequence p0, p1, p2, . . . of strings such that each pe+1 extends pe and
pe ∈ We whenever this can be satisfied without violating the extension-condition.
Furthermore, the set V ′ is constructed such that for each length n one enumerates
sV (n) many strings of length n into V ′ and chooses each string w ∈ Xn such that
w is different from the strings previously enumerated into V ′ and one satisfies
that w extends the approximations p0,n, p1,n, . . . , pe,n of p0, p1, . . . , pe for the
largest possible e which can be selected.

For any fixed e it holds for almost all n that pe,n = pe and that sV (n) ≤ 2n−|pe|

implies that all members of V ′ ∩Xn extend pe. By assumption there is for each
constant c > |pe| a sufficiently large n such that sV,4c < 2n and all members
of V ′ of length n + c, n + c + 1, . . . , n + 4c extend pe. Assume now that We

is the domain of a universal machine. Then, for one of these constants c the
corresponding n has in addition the property that there is a member of We of
between length n + c and n + 2c. If this member of We is not in V ′ then We is
not a subset of V ′. If this member of We is in V ′ then it is an extension of pe

and by the way pe is chosen it follows that also pe ∈ We, a contradiction to the
assumption that We is prefix-free. Hence none of the We is a subset of V ′ and
the domain of a prefix-free universal machine. �
The previous result is contrasted by the following example.

Example 11. Assume that V is an r.e. set (not prefix-free) such that there is
a real constant c > 0 with sV (n) · 2−n > c for all n and assume that f is a
recursive function with

∑
n 2−nf(n) < c. Then there is a prefix-free recursive

subset W ⊆ V with sW (n) = f(n) for all n.

180 C.S. Calude et al.

The set W can be constructed by simply picking, for n = 0, 1, 2, 3, . . ., exactly
f(n) strings of length n out of V which do not extend previously picked shorter
strings.

The main question remains which conditions on sV guarantee that V has a
subset which is the domain of a prefix-free universal machine. In the light of
Theorem 10 a necessary condition is that ∃c ∀n [sV (n, c) ≥ 2n]. One might ask
whether this condition is also sufficient. By Theorem 7 this condition charac-
terises the supersets of plain universal machines; hence one can restate the ques-
tion as follows.

Open Problem 12. Is the domain of every plain universal machine a superset
of the domain of a prefix-free universal machine?

4 Discussion

The major goal was to investigate, which prefix-free r.e. sets of strings is a univer-
sal prefix code [3], that is, a superset of the domain of a universal machine. The
result is that these sets V can be characterised using the function of finite sum of
the spectrum function sV : roughly speaking, sV (n, c) has to be near to 2n−H(n).
The reason is that there are universal machines having only strings of even length
and so forth. Furthermore, universal prefix codes and domains of universal ma-
chines share the property that their halting probability is Martin-Löf random. But
it could also be shown that not all universal prefix codes are the domain of a uni-
versal machine: while there is a universal prefix code for which sV (n) = 2n−H(n)

for all n, no domain of a universal machine has this property. The reason is that
for such a domain there is a constant c such that H(sV (n, c)) is near to n.

A further interesting question is to characterise those r.e. sets in general which
are a superset of the domain of a prefix-free universal machine. Combining of
Theorem 10 with the fact that sU (n) · 2−n goes to 0 for n to ∞ for any prefix-
free machine U , one can deduce that this characterisation cannot depend on sV

alone, but also on the way the strings are placed. It remains an interesting open
problem whether every r.e. set V satisfying ∃c∀n [sV (n, c) ≥ 2n] contains the
domain of a universal prefix-free machine. Note that this question is equivalent
to asking whether the domain of every plain universal machine is a superset of
the domain of some prefix-free universal machine.

Furthermore, there are various definitions of universality and this paper is
based on that definition where one says that U is universal if the Description
complexity based on U cannot be improved by more than a constant. The most
prominent alternative notion says that U is universal by adjunction or prefix-
universal if for every further machine V there is a finite string q such that
U(qp) = V (p) for all p ∈ dom(V). Universality by adjunction is quite restrictive
and one cannot characterise in terms of the spectrum function sW when a prefix-
free set W is the domain of a machine which is universal by adjunction; however,
this is done for normal universal machines in Theorems 1 and 6. Nevertheless,

Universal Recursively Enumerable Sets of Strings 181

due to the more restrictive nature, prefix-free machines which are universal by
adjunction have the property

∃c ∀n [H(sU (n)) ≥ n−H(n)− c].

This property is more natural as the one in Theorem 1. Hence, it is easy to obtain
machines which are universal but not universal by adjunction. An example would
be a machine U obtained from V such that for all p ∈ dom(V), U(p0) = U(p1) =
V (p) if |p| is odd and U(p) = V (p) if |p| is even; it is easy to see that U inherits
prefix-freeness and universality from V . Calude and Staiger [3, Fact 5] provide
more information about this topic.

As the topic of the paper are mostly supersets of domains of universal ma-
chines, one could ask what can be said about the r.e. subsets of such domains.
Indeed, these subsets are easy to characterise: A prefix-free r.e. set V ⊆ X∗ is
the subset of the domain of a prefix-free universal machine iff there is a string
p such that no q comparable to p is in V ; an r.e. set V ⊆ X∗ is the subset
of the domain of a plain universal machine iff there is a constant c such that
sX∗−V (n, c) ≥ 2n for all n. Note that a subset of the domain of a prefix-free
machine is also the subset of the domain of a plain universal machine, but not
vice versa. Indeed, every prefix-free subset of X∗ is the subset of the domain of
a plain universal machine.

Acknowledgment. The authors would like to thank Wang Wei for discussions
on the topic of this paper.

References

1. Calude, C.S.: Information and Randomness: An Algorithmic Perspective, 2nd edn.,
Revised and Extended. Springer, Berlin (2002)

2. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable
reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)

3. Calude, C.S., Staiger, L.: On universal computably enumerable prefix codes. Math-
ematical Structures in Computer Science (accepted)

4. Chaitin, G.J.: A theory of program size formally identical to information theory.
Journal of the Association for Computing Machinery 22, 329–340 (1975)

5. Chaitin, G.J.: Information-theoretic characterizations of recursive infinite strings.
Theoretical Computer Science 2, 45–48 (1976)

6. Chaitin, G.J.: Algorithmic information theory. IBM Journal of Research and De-
velopment 21, 350–359+496 (1977)

7. Downey, R., Hirschfeldt, D., LaForte, G.: Randomness and reducibility. Journal of
Computer and System Sciences 68, 96–114 (2004)

8. Kjos-Hanssen, B., Merkle, W., Stephan, F.: Kolmogorov Complexity and the
Recursion Theorem. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 149–161. Springer, Heidelberg (2006)

9. Kolmogorov, A.N.: Three approaches to the definition of the concept “quantity of
information”. Problemy Peredachi Informacii 1, 3–11 (1965)

10. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2nd edn. Springer, Heidelberg (1997)

182 C.S. Calude et al.

11. Kučera, A., Slaman, T.: Randomness and recursive enumerability. SIAM Journal
on Computing 31, 199–211 (2001)

12. Martin-Löf, P.: The definition of random sequences. Information and Control 9,
602–619 (1966)

13. Nies, A.: Computability and Randomness. Oxford University Press, Oxford (to
appear)

14. Odifreddi, P.: Classical Recursion Theory. North-Holland, Amsterdam (1989)
15. Schnorr, C.P.: Process complexity and effective random tests. Journal of Computer

and System Sciences 7, 376–388 (1973)
16. Solovay, R.: Draft of paper on Chaitin’s work Unpublished notes, 215 pages (1975)

Algorithmically Independent Sequences

Cristian S. Calude1,� and Marius Zimand2,��

1 Department of Computer Science, University of Auckland, New Zealand
www.cs.auckland.ac.nz/ ~cristian

2 Department of Computer and Information Sciences, Towson University,
Baltimore, MD, USA

http://triton.towson.edu/~mzimand

Abstract. Two objects are independent if they do not affect each other.
Independence is well-understood in classical information theory, but less
in algorithmic information theory. Working in the framework of algorith-
mic information theory, the paper proposes two types of independence for
arbitrary infinite binary sequences and studies their properties. Our two
proposed notions of independence have some of the intuitive properties
that one naturally expects. For example, for every sequence x, the set
of sequences that are independent with x has measure one. For both no-
tions of independence we investigate to what extent pairs of independent
sequences, can be effectively constructed via Turing reductions (from one
or more input sequences). In this respect, we prove several impossibility
results. For example, it is shown that there is no effective way of pro-
ducing from an arbitrary sequence with positive constructive Hausdorff
dimension two sequences that are independent (even in the weaker type
of independence) and have super-logarithmic complexity. Finally, a few
conjectures and open questions are discussed.

1 Introduction

Intuitively, two objects are independent if they do not affect each other. The
concept is well-understood in classical information theory. There, the objects
are random variables, the information in a random variable is its Shannon en-
tropy, and two random variables X and Y are declared to be independent if
the information in the join (X,Y) is equal to the sum of the information in X
and the information in Y . This is equivalent to saying that the information in
X conditioned by Y is equal to the information in X , with the interpretation
that, on average, knowing a particular value of Y does not affect the information
in X .

The notion of independence has been defined in algorithmic information
theory as well for finite strings [Cha82]. Our approach is very similar. This
time the information in a string x is the complexity (plain or prefix-free) of x,

� Calude was supported in part by UARC Grant 3607894/9343 and CS-PBRF Grant.
�� Zimand was supported by NSF grant CCF 0634830. Part of this work was done

while visiting the CDMTCS of the University of Auckland, New Zealand.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 183–195, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

184 C.S. Calude and M. Zimand

and two strings x and y are independent if the information in the join string
〈x, y〉 is equal to the sum of the information in x and the information in y, up
to logarithmic (or, in some cases, constant) precision.

The case of infinite sequences (in short, sequences) has been less studied. An
inspection of the literature reveals that for this setting, independence has been
considered to be synonymous with pairwise relative randomness, i.e., two se-
quences x and y are said to be independent if they are (Martin-Löf) random
relative to each other (see [vL90, DH]). As a consequence, the notion of inde-
pendence is confined to the situation where the sequences are random.

The main objective of this paper is to put forward a concept of independence
that applies to all sequences. One can envision various ways for doing this. One
possibility is to use Levin’s notion of mutual information for sequences [Lev84]
(see also the survey paper [GV04]) and declare two sequences to be independent
if their mutual information is small. If one pursues this direction, the main issue
is to determine the right definition for “small.” We take another approach, which
consists in extending in the natural way the notion of independence from finite
strings to sequences. This leads us to two concepts: independence and finitary-
independence. We say that (1) two sequences x and y are independent if, for all
n, the complexity of x�n (the prefix of x of length n) and the complexity of x�n
relativized with y are within O(log n) (and the same relation holds if we swap
the roles of x and y), and (2) two sequences x and y are finitary-independent if,
for all n and m, the complexity of x�n and the complexity of x�n given y�m are
within O(log n + logm) (and the same relation holds if we swap the roles of x
and y). We have settled for the additive logarithmical term of precision (rather
than some higher accuracy) since this provides robustness with respect to the
type of complexity (plain or prefix-free) and other technical advantages.

We establish a series of basic facts regarding the proposed notions of in-
dependence. We show that independence is strictly stronger than finitary-
independence. The two notions of independence apply to a larger category of
sequences than the family of random sequences, as intended. However, they are
too rough for being relevant for computable sequences. It is not hard to see that a
computable sequence x is independent with any other sequence y, simply because
the information in x can be obtained directly. In fact, this type of trivial inde-
pendence holds for a larger type of sequences, namely for any H-trivial sequence,
and trivial finitary-independence holds for any sequence x whose prefixes have
logarithmic complexity. It seems that for this type of sequences (computable or
with very low complexity) a more refined definition of independence is needed
(perhaps, based on resource-bounded complexity). We show that the two pro-
posed notions of independence have some of the intuitive properties that one
naturally expects. For example, for every sequence x, the set of sequences that
are independent with x has measure one.

We next investigate to what extent pairs of independent, or finitary-
independent sequences, can be effectively constructed via Turing reductions. For
example, is there a Turing reduction f that given oracle access to an arbitrary
sequence x produces a sequence that is finitary-independent with x? Clearly,

Algorithmically Independent Sequences 185

if we allow the output of f to be a computable sequence, then the answer is
positive by the type of trivial finitary-independence that we have noted above.
We show that if we insist that the output of f has super-logarithmic complexity
whenever x has positive constructive Hausdorff dimension, then the answer is
negative. In the same vein, it is shown that there is no effective way of producing
from an arbitrary sequence x with positive constructive Hausdorff dimension two
sequences that are finitary-independent and have super-logarithmic complexity.

Similar questions are considered for the situation when we are given two
(finitary-) independent sequences. It is shown that there are (finitary-) inde-
pendent sequences x and y and a Turing reduction g such that x and g(y) are
not (finitary-)independent. This appears to be the only counter-intuitive effect
of our definitions. Note that the definition of constructive Hausdorff dimension
(or of partial randomness) suffers from the same problem. For example, there
exist a sequence x with constructive Hausdorff dimension 1 and a computable
g such that g(x) has constructive Hausdorff dimension ≤ 1/2. It seems that if
one wants to extend the notion of independence to non random sequences (in
particular to sequences that have arbitrary positive constructive Hausdorff di-
mension) such counter-intuitive effects cannot be avoided. On the other hand,
for any independent sequences x and y and for any Turing reduction g, x and
g(y) are finitary-independent.

We also raise the question on whether given as input finitely many (finitary-)
independent sequences it is possible to effectively build a new sequence that is
(finitary-) independent (in a non-trivial way) with each sequence in the input. It
is observed that the answer is positive if the sequences in the input are random,
but for other types of sequences the question remains open. The same issue can
be raised regarding finite strings and for this case a positive answer is obtained.
Namely, it is shown that given three independent finite strings x, y and z with
linear complexity, one can effectively construct a new string that is independent
with each of x, y and z, has high complexity and its length is a constant fraction
of the length of x, y and z.

Because of space limitations, this extended abstract contains no proof. All
proofs are available in the full version of the paper [CZ07].

1.1 Preliminaries

Let N denote the set of non-negative integers; the size of a finite set A is denoted
||A||. Unless stated otherwise, all numbers are in N and all logs are in base 2. We
work with the binary alphabet {0, 1}. A string is an element of {0, 1}∗ and a se-
quence is an element of {0, 1}∞. If x is a string, |x| denotes its length; xy denotes
the concatenation of the strings x and y. If x is a string or a sequence, x(i) denotes
the i-th bit of x and x�n is the substring x(1)x(2) · · ·x(n). For two sequences x
and y, x⊕y denotes the sequence x(1)y(1)x(2)y(2)x(3)y(3) · · · and x XOR y de-
notes the sequence (x(1) XOR y(1))(x(2) XOR y(2))(x(3) XOR y(3)) · · · , where
(x(i) XOR y(i)) is the sum modulo 2 of the bits x(i) and y(i). We identify a
sequence x with the set {n ∈ N | x(n) = 1}. We say that a sequence x is com-
putable (computably enumerable, or c.e.) if the corresponding set is computable

186 C.S. Calude and M. Zimand

(respectively, computably enumerable, or c.e.). If x is c.e., then for every s ∈ N,
xs is the sequence corresponding to the set of elements enumerated within s steps
by some (given) machine M that enumerates x. We also identify a sequence x
with the real number in the interval [0, 1] whose binary writing is 0.x(1)x(2) · · · .
A sequence x is said to be left c.e. if the corresponding real number x is the limit
of a computable increasing sequence of rational numbers. The plain and the
prefix-free complexities of a string are defined in the standard way; however we
need to provide a few details regarding the computational models. The machines
that we consider process information given in three forms: (1) the input, (2) the
oracle set, (3) the conditional string. Correspondingly, a universal machine has
3 tapes: (i) one tape for the input and work, (ii) one tape for storing the condi-
tional string, (iii) one tape (called the oracle-query tape) for formulating queries
to the oracle.

The oracle is a string or a sequence. If the machine enters the query state
and the value written in binary on the oracle-query tape is n, then the machine
gets the n-th bit in the oracle, or if n is larger than the length of the oracle, the
machine enters an infinite loop.

We fix such a universal machine U . The notation Uw(u | v) means that the
input is u, the conditional string is v and the oracle is w, which is a string
or a sequence. The plain complexity of a string x given the oracle w and the
conditional string v is Cw(x | v) = min{|u| | Uw(u | v) = x}. There exists a
constant c such that for every x, v and w Cw(x | v) < |x|+ c.

A machine is prefix-free (self-delimiting) if its domain is a prefix-free set.
There exist universal prefix-free machines. We fix such a machine U ; the prefix-
free complexity of a string x given the oracle w and the conditional string v is
Hw(x | v) = min{|u| | Uw(u | v) = x}.

In case w or v are the empty strings, we omit them in C(·) and H(·). Through-
out this paper we use the O(·) notation to hide constants that depend only on
the choice of the universal machine underlying the definitions of the complexities
C and H . There are various equivalent definitions for (algorithmic) random se-
quences as defined by Martin-Löf [ML66] (see [C02]). In what follows we will use
the (weak) complexity-theoretic one [Cha75] using the prefix-free complexity: A
sequence x is Martin-Löf random (in short, random) if there is a constant c such
that for every n, H(x�n) ≥ n − c. The set of random sequences has construc-
tive (Lebesgue) measure one [ML66]. The sequence x is random relative to the
sequence y if there is a constant c such that for every n, Hy(x�n) ≥ n− c.

The constructive Hausdorff dimension of a sequence x—which is the di-
rect effectivization of “classical Hausdorff dimension”—defined by dim(x) =
lim infn→∞ C(x�n)/n (= lim infn→∞ H(x�n)/n), measures intermediate levels of
randomness (see [Rya84, Sta93, Tad02, May02, Lut03, Rei04], [Sta05, CST06,
DHNT06]).

A Turing reduction f is an oracle Turing machine; f(x) is the language com-
puted by f with oracle x, assuming that f halts on all inputs when working
with oracle x (otherwise we say that f(x) does not exist). In other words, if
n ∈ f(x) then the machine f on input n and oracle x halts and outputs 1 and if

Algorithmically Independent Sequences 187

n �∈ f(x) then the machine f on input n and oracle x halts and outputs 0. The
function use is defined as follows: usex

f(n) is the index of the rightmost position
on the tape of f accessed during the computation of f with oracle x on input
n. The Turing reduction f is a wtt-reduction if there is a computable function
q such that usex

f (n) ≤ q(n), for all n. The Turing reduction f is a truth-table
reduction if f halts on all inputs for every oracle. A truth-table reduction is a
wtt-reduction.

2 Defining Independence

Two objects are independent if none of them contains significant information
about the other one. Thus, if in some formalisation, I(x) denotes the information
in x and I(x | y) denotes the information in x given y, x and y are independent
if I(x) − I(x | y) and I(y) − I(y | x) are both small. In this paper we work in
the framework of algorithmic information theory. In this setting, in case x is a
string, I(x) is the complexity of x (where for the “complexity of x” there are
several possibilities, the main ones being the plain complexity or the prefix-free
complexity).

The independence of strings was studied in [Cha82]: two strings are inde-
pendent if I(xy) ≈ I(x) + I(y). This approach motivates our Definition 1 and
Definition 2.

In case x is an infinite sequence, the information in x is characterised by
the sequence (I(x�n))n∈N of information in the initial segments of x. For the
information upon which we condition (e.g., the y in I(x | y)), there are two
possibilities: either the entire sequence is available in the form of an oracle,
or we consider initial segments of it. Accordingly, we propose two notions of
independence.

Definition 1. (The “integral” type of independence) Two sequences x and
y are independent if Cx(y�n) ≥ C(y�n) − O(log n) and Cy(x�n) ≥ C(x�n) −
O(log n).

Definition 2. (The finitary type of independence) Two sequences x, y are
finitary-independent if for all natural numbers n and m,

C(x�n y�m) ≥ C(x�n) + C(y�m)−O(log(n) + log(m)).

Remark 1. We will show in Proposition 1, that the inequality in Definition 2 is
equivalent to saying that for all n and m, C(x�n | y�m) ≥ C(x�n) − O(log n +
logm), which is the finite analogue of the property in Definition 1 and is in line
with our discussion above.

Remark 2. If x and y are independent, then they are also finitary-independent
(Proposition 2). The converse is not true (Corollary 1).

Remark 3. The proposed definitions use the plain complexity C(·), but we could
have used the prefix-free complexity as well, because the two types of complexity

188 C.S. Calude and M. Zimand

are within an additive logarithmic term. Also, in Definition 2 (and throughout
this paper), we use concatenation to represent the joining of two strings. How-
ever, since any reasonable pairing function 〈x, y〉 satisfies | |〈x, y〉| − |xy| | <
O(log |x| + log |y|), it follows that |C(< x, y >) − C(xy)| < O(log |x| + log |y|),
and thus any reasonable pairing function could be used instead.

Remark 4. A debatable issue is the subtraction of the logarithmic term. Indeed,
there are other natural possibilities. We argue that our choice has certain ad-
vantages over other possibilities that come to mind.

Let us focus on the definition of finitary-independence. We want
C(x�n y�m) ≥ C(x�n) + C(y�n)−O(f(x) + f(y)), for all n,m, where f should
be some “small” function. We would like the following two properties to hold:

(A) the sequences x and y are finitary-independent iff C(x�n | y�m) > C(x�n)−
O(f(x�n) + f(y�m)), for all n and m,

(B) if x is “somewhat” random and y = 00 · · · 000 · · · , then x and y are finitary-
independent.

Other natural possibilities for the definition could be:
(i) if f(x) = C(|x|), the definition of finitary independence–(i) would be:

C(x�n y�m) ≥ C(x�n) + C(y�m)−O(C(n) + C(m)),

or (ii) if f(x) = logC(x), the definition of finitary-independence–(ii) would be:

C(x�n y�m) ≥ C(x�n) + C(y�m)−O(logC(x�n) + logC(y�m)).

If sequences x and y satisfy (i), or (ii), then they also satisfy Definition 2.
Variant (i) implies (B), but not(A) (for example, consider sequences x and y

with C(n) << logC(x�n) and C(m) << logC(y�m), for infinitely many n and
m). Variant (ii) implies (A), but does not imply (B) (for example if for infinitely
many n, C(x�n) = O(log3 n); take such a value n, let p be a shortest description
of x�n, and let m be the integer whose binary representation is 1p. Then x�n
and 0ω�m, do not satisfy (B)). The proposed definition implies both (A) and
(B).

Another advantage is the robustness discussed in Remark 3.

Remark 5. If the sequence x is computable, then x is independent with every
sequence y. In fact a stronger fact holds. A sequence is called H-trivial if, for
all n, H(x�n) ≤ H(n)+O(1). This is a notion that has been intensively studied
recently (see [DHNT06]). Clearly every computable sequence is H-trivial, but
the converse does not hold [Zam90, Sol75]. If x is H-trivial, then it is independent
with every sequence y. Indeed, Hy(x�n) ≥ H(x�n)−O(log n), because H(x�n) ≤
H(n)+O(1) ≤ logn+O(1), and Hx(y�n) ≥ H(y�n)−O(log n), because, in fact,
Hx(y�n) and H(y�n) are within a constant of each other [Nie05]. The same
inequalities hold if we use the C(·) complexity (see Remark 3).

For the case of finitary-independence, a similar phenomenon holds for a (seem-
ingly) even larger class.

Algorithmically Independent Sequences 189

Definition 3. A sequence x is called C-logarithmic if C(x�n) = O(log n).

It can be shown (for example using Proposition 1, (a)) that if x is C-logarithmic,
then it is finitary-independent with every sequence y.

Note that every sequence x that is the characteristic sequence of a c.e. set
is C-logarithmic. This follows from the observation that, for every n, the initial
segment x�n can be constructed given the number of 1’s in x�n (an information
which can be written with log n bits) and the finite description of the enumerator
of the set represented by x. If a sequence is H-trivial then it is C-logarithmic,
but the converse probably does not hold.

In brief, the notions of independence and finitary-independence are relevant
for strings having complexity above that of H-trivial sequences, respectively
C-logarithmic sequences. The cases of independent (finitary-independent) pairs
(x, y), where at least one of x and y is H-trivial (respectively, C-logarithmic)
will be referred to as trivial independence.

Remark 6. Some desirable properties of the independence relation are:

P1. Symmetry: x is independent with y iff y is independent with x.
P2. Robustness under type of complexity (plain or prefix-free).
P3. If f is a Turing reduction, except for some special cases, x and f(x) are

dependent (“independence cannot be created”).
P4. For every x, the set of sequences that are dependent with x is small (i.e., it

has measure zero).

Clearly both the independence and the finitary-independence relations satisfy
P1. They also satisfy P2, as we noted in Remark 3. It is easy to see that the
independence relation satisfies P3, whenever we require that the initial segments
of x and f(x) have plain complexity ω(logn) (because Cx(f(x)�n) = O(log n),
while C(f(x)�n) = ω(logn)). We shall see that the finitary-independence relation
satisfies P3 under some stronger assumptions for f and f(x) (see Section 4.1 and
in particular Theorem 6). Theorem 3 shows that the (finitary-) independence
relation satisfies P4.

2.1 Properties of Independent and Finitary-Independent Sequences

The following simple properties of finitary-independent sequences are technically
useful in some of the next proofs.

Proposition 1. (a) Two sequences x and y are finitary-independent iff for all
n and m, C(x�n | y�m) ≥ C(x�n)−O(log n + logm).

(b) Two sequences x and y are finitary-independent iff for all n, C(x�n y�n) ≥
C(x�n) + C(y�n)−O(log(n)).

(c) Two sequences x and y are finitary-independent iff for all n, C(x�n | y�n) ≥
C(x�n)−O(log(n)).

(d) If x and y are not finitary-independent, then for every constant c there are
infinitely many n such that C(x�n y�n) < C(x�n) + C(y�n)− c logn.

190 C.S. Calude and M. Zimand

(e) If x and y are not finitary-independent, then for every constant c there are
infinitely many n such that C(x�n | y�n) < C(x�n)− c logn.

Proposition 2. If the sequences x and y are independent, then they are also
finitary-independent.

Proposition 3. If dim(x) = σ and the sequences (x, y) are finitary-indepen-
dent, then dim(x XOR y) ≥ σ.

Proposition 4. (a) If x is random and the sequences (x, y) are finitary-
independent, then (y, x XOR y) are finitary-independent.

(b) If x is random and (x, y) are independent, then (y, x XOR y) are indepen-
dent.

Proposition 5. There are sequences x, y, and z such that (x, y) are indepen-
dent, (x, z) are independent, but (x, y ⊕ z) are not finitary-independent.

In Remark 5, we have listed several types of sequences that are independent or
finitary-independent with any other sequence. The next result goes in the oppo-
site direction: it exhibits a pair of sequences that can not be finitary-independent
(and thus not independent).

Proposition 6. [Ste07] If x and y are left c.e. sequences, dim(x) > 0, and
dim(y) > 0, then x and y are not finitary-independent.

3 Examples of Independent and Finitary-Independent
Sequences

We give examples of pairs of sequences that are independent or finitary-
independent (other than the trivial examples from Remark 5).

Theorem 1. Let x be a random sequence and let y be a sequence that is random
relative to x. Then x and y are independent.

Theorem 2. Let x be an arbitrary sequence and let y be a sequence that is
random relative to x. Then x and y are finitary-independent.

As expected, most pairs of sequences are independent (and thus also finitary-
independent).

Theorem 3. For every x, the set {y | y independent with x} has (Lebesgue)
measure one.

4 Effective Constructions of Finitary-Independent
Sequences

The examples of (finitary-) independent sequences provided so far are existential
(i.e., non-constructive). In this section we investigate to what extent it is possible

Algorithmically Independent Sequences 191

to effectively construct such sequences. We show some impossibility results and
therefore we focus on the weaker type of independence, finitary-independence.
Informally speaking, we investigate the following questions:

Question (a). Is it possible to effectively construct from a sequence x another
sequence y finitary-independent with x, where the finitary-independence is not
trivial (recall Remark 5)? This question has two variants depending on whether
we seek a uniform procedure (i.e., one procedure that works for all x), or whether
we allow the procedure to depend on x.

Question (b). Is it possible to effectively construct from a sequence x two
sequences y and z that are finitary-independent, where the finitary-independence
is not trivial? Again, there are uniform and non-uniform variants of this question.

We analyse these questions in Section 4.1. Similar questions for the case when
the input consists of two sequences x1 and x2 are discussed in Section 4.2.

4.1 If We Have One Source

We first consider the uniform variant of Question (a): Is there a Turing reduction
f such that for all x ∈ {0, 1}∗, (x, f(x)) are finitary-independent? We even
relax the requirement and demand that f should achieve this objective only if
x has positive constructive Hausdorff dimension (this only makes the following
impossibility results stronger).

As noted above, the question is interesting if we require f(x) to have some
“significant” amount of randomness whenever x has some “significant” amount
of randomness. The answer should be negative, because, intuitively, one should
not be able to produce independence (this is property P3 in Remark 6).

We consider two situations depending on two different meanings of the concept
of “significant” amount of randomness.

Case 1: We require that f(x) is not C-logarithmic. We do not solve the question,
but we show that every reduction f that potentially does the job must have non-
polynomial use.

Proposition 7. Let f be a Turing reduction. For every sequence x, if the
function usex

f(n) is polynomially bounded, then x and f(x) are not finitary-
independent, unless one of them is C-logarithmic.

Case 2: We require that f(x) has complexity just above that of C-logarithmic
sequences (in the sense below). We show that in this case, the answer to the
uniform variant of Question (a) is negative: there is no such f .

Definition 4. A sequence x is C-superlogarithmic if for every constant c > 0,
C(x�n) > c logn, for almost every n.

The next theorems in this section are based on results from [NR06], [BDS07],
and [Zim08].

We proceed to the impossibility results related to Case 2. To simplify the
structure of quantifiers in the statement of the following result, we posit here
the following task for a function f mapping sequences to sequences:

192 C.S. Calude and M. Zimand

TASK A: for every x ∈ {0, 1}∞ with dim(x) > 0, the following should hold:
(a) f(x) exists, (b) f(x) is C-superlogarithmic, (c) x and f(x) are finitary-
independent.

Theorem 4. There is no Turing reduction f that satisfies TASK A.

We next consider the uniform variant of Question (b). We posit the following
task for two functions f1 and f2 mapping sequences to sequences:

TASK B: for every x ∈ {0, 1}∞ with dim(x) > 0, the following should hold:
(a) f1(x) and f2(x) exist, (b) f1(x) and f2(x) are C-superlogarithmic, (c) f1(x)
and f2(x) are finitary-independent.

Theorem 5. There are no Turing reductions f1 and f2 satisfying TASK B.

The non-uniform variants of Questions (a) and (b) remain open. In the particular
case when f is a wtt-reduction, we present impossibility results analogous to
those in Theorem 4 and Theorem 5.

Theorem 6. For all rational σ ∈ (0, 1), there exists dim(x) = σ such that for
every wtt-reduction f , at least one of the following statements (a), (b), (c) holds
true: (a) f(x) does not exist, (b) f(x) is not finitary-independent with x, (c)
f(x) is not C-superlogarithmic.

Theorem 7. For all rational σ ∈ (0, 1), there exists x with dim(x) = σ such
that for every wtt-reductions f1 and f2, at least one of the following statements
(a), (b), (c) holds true: (a) f1(x) does not exist or f2(x) does not exist, (b) f1(x)
and f2(x) are not finitary-independent, (c) f1(x) is not C-superlogarithmic or
f2(x) is not C-superlogarithmic.

4.2 If We Have Two Sources

We have seen some limits on the possibility of constructing a finitary-independent
sequences starting from one sequence. What if we are given two finitary-
independent sequences: is it possible to construct from them more finitary-
independent sequences?

First we observe that if x and y are two (finitary-) independent sequences and
g is an arbitrary Turing reduction, then it does not necessarily follow that x and
g(y) are (finitary-) independent (as one may expect). On the other hand, if x
and y are independent, it does follow that x and g(y) are finitary-independent.

Proposition 8. (a) [Ste07] There are two independent sequences x and y and
a Turing reduction g such that x and g(y) are not independent.

(b) There are two finitary-independent sequences x and y and a Turing reduc-
tion g such that x and g(y) are not finitary-independent.

Proposition 9. If x and y are independent, and g is a Turing reduction, then
x and g(y) are finitary-independent (provided g(y) exists).

Corollary 1. There are sequences that are finitary-independent but not inde-
pendent.

Algorithmically Independent Sequences 193

By Proposition 8, we see that (finitary-) independence is not preserved by
computable functions. However, we note that there exists a simple proce-
dures that, starting with a finitary-independent pair (x, y), produces a new
pair of finitary-independent sequences. Namely, the pair (x, yodd) is finitary-
independent. Another question is whether given a pair of (finitary-)independent
strings (x, y), it is possible to effectively produce another sequence that is
(finitary-)independent with both x and y. The answer is positive in the case
when x and y are both random. Indeed, if x and y are random and inde-
pendent (respectively finitary-independent), then x XOR y is independent (re-
spectively, finitary-independent) with both x and y. The similar question for
non-random x and y remains open. (See Section 4.3 for some results for finite
strings).

4.3 Producing Independence: The Finite Case

In what follows we attack the question on whether it is possible to effectively
produce an object which is independent to each of several given independent
objects for the simpler case of strings. In this setting we are able to give a
positive answer for the situation when we start with three1 input strings that
are independent (and not necessarily random). First we define the analogue of
independence for strings.

Definition 5. Let c ∈ R+ and k ∈ N. We say that strings x1, x2, . . . , xk in
{0, 1}∗ are c-independent if

C(x1x2 . . . xk) ≥ C(x1)+C(x2)+. . .+C(xk)−c(log |x1|+log |x2|+. . .+log |xk|).

The main result of this section is the following theorem, whose proof draws from
the techniques of [Zim08].

Theorem 8. For all constants σ > 0 and σ1 ∈ (0, σ), there exists a computable
function f : {0, 1}∗×{0, 1}∗×{0, 1}∗ → {0, 1}∗ with the following property: For
every c ∈ R+ there exists c′ ∈ R+ such that if the input consists of a triplet
of c-independent strings having sufficiently large length n and plain complexity
at least σ · n, then the output is c′-independent with each element in the input
triplet and has length �σ1n�.

More precisely, if

(i) (x, y, z) are c-independent,
(ii) |x| = |y| = |z| = n, and
(iii) C(x) ≥ σ · n, C(y) ≥ σ · n, C(z) ≥ σ · n,

then, provided n is large enough, the following pairs of strings (f(x, y, z), x),
(f(x, y, z), y), (f(x, y, z), z) are c′-independent, |f(x, y, z)| = �σ1n�, and
C(f(x, y, z)) ≥ �σ1n� −O(log n).

1 The case when the input consists of two independent strings remains open.

194 C.S. Calude and M. Zimand

Acknowledgments

We are grateful to André Nies and Frank Stephan for their insightful comments.
In particular, Definition 1 has emerged after several discussions with André, and
Proposition 6 and Proposition 8, (a) are due to Frank [Ste07]. We also thank
Jan Reimann for his assistance in modifying a result from [NR06], which was
needed for Theorem 6 and Theorem 7. We thank Alexander Shen for suggesting
Theorem 3 and Proposition 8, (b).

References

[BDS07] Bienvenu, L., Doty, D., Stephan, F.: Constructive dimension and weak
truth-table degrees. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007.
LNCS, vol. 4497, Springer, Heidelberg (to appear, 2007) Available as Tech-
nical Report arXiv:cs/0701089 ar arxiv.org

[C02] Calude, C.S.: Information and Randomness: An Algorithmic Perspective,
Revised and Extended, 2nd edn. Springer, Berlin (2002)

[CST06] Calude, C., Staiger, L., Terwijn, S.: On partial randomness. Annals of Pure
and Applied Logic 138, 20–30 (2006)

[CZ07] Calude, C.S., Zimand, M.: Algorithmically Independent Sequences.
CDMTCS Research Report 317, 25 (2008)

[Cha75] Chaitin, G.: A theory of program size formally identical to information
theory. Journal of the ACM 22, 329–340 (1975)

[Cha82] Chaitin, G.: Gödel’s theorem and information. International Journal of
Theoretical Physics 21, 941–954 (1982)

[DH] Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity.
Springer, Heidelberg (to be published)

[DHNT06] Downey, R., Hirschfeldt, D., Nies, A., Terwijn, S.: Calibrating randomness.
The Bulletin of Symbolic Logic 12(3), 411–492 (2006)

[GV04] Grünwald, P., Vitanyi, P.: Shannon information and Kolmogorov com-
plexity, 2004. CORR Technical report arxiv:cs.IT/0410002, revised (May
2006)

[Kau03] Kautz, S.M.: Independence properties of algorithmically random se-
quences, CORR Technical Report arXiv:cs/0301013 (2003)

[Lev84] Levin, L.: Randomness conservation inequalities: information and inde-
pendence in mathematical theories. Information and Control 61(1) (1984)

[Lut03] Lutz, J.: The dimensions of individual strings and sequences. Information
and Control 187, 49–79 (2003)

[May02] Mayordomo, E.: A Kolmogorov complexity characterization of construc-
tive Hausdorff dimension. Information Processing Letters 84, 1–3 (2002)

[ML66] Martin-Löf, P.: The definition of random sequences. Information and Con-
trol 9, 602–619 (1966)

[Nie05] Nies, A.: Lowness properties and randomness. Advances in Mathemat-
ics 197, 274–305 (2005)

[NR06] Nies, A., Reimann, J.: A lower cone in the wtt degrees of non-integral
effective dimension. In: Proceedings of IMS workshop on Computational
Prospects of Infinity, Singapore (to appear, 2006)

[Rei04] Reimann, J.: Computability and fractal dimension, Technical report, Uni-
versität Heidelberg, Ph.D. thesis (2004)

Algorithmically Independent Sequences 195

[Rya84] Ryabko, B.: Coding of combinatorial sources and Hausdorff dimension.
Doklady Akademii Nauk SSR 277, 1066–1070 (1984)

[Sol75] Solovay, R.: Draft of a paper (or series of papers) on Chaitin’s work, un-
published manuscript, IBM Thomas J. Watson Reserach Center, p. 215
(1975)

[Sta93] Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Inform. and
Comput. 103, 159–194 (1993)

[Sta05] Staiger, L.: Constructive dimension equals Kolmogorov complexity. Infor-
mation Processing Letters 93, 149–153 (2005)

[Ste07] Stephan, F.: Email communication (May 2007)
[Tad02] Tadaki, K.: A generalization of Chaitin’s halting probability Ω and halting

self-similar sets. Hokkaido Math. J. 31, 219–253 (2002)
[vL90] van Lambalgen, M.: The axiomatization of randomness. The Journal of

Symbolic Logic 55, 1143–1167 (1990)
[Zam90] Zambella, D.: On sequences with simple initial segments, ILLC Technical

Report ML 1990-05, University of Amsterdam (1990)
[Zim08] Zimand, M.: Two sources are better than one for increasing the

Kolmogorov complexity of infinite sequences. Proceedings of CSR
2008, Moscow (June 2008) (Also available as CORR Techical Report.
arXiv:0705.4658)

[ZL70] Zvonkin, A., Levin, L.: The complexity of finite objects and the devel-
opment of the concepts of information and randomness by means of the
theory of algorithms. Russian Mathematical Surveys 25(6), 83–124 (1970)

Relationally Periodic Sequences and Subword

Complexity

Julien Cassaigne1, Tomi Kärki2, and Luca Q. Zamboni3,4

1 CNRS, Institut de Mathématiques de Luminy,
Case 907, 163 avenue de Luminy, 13288 Marseille Cedex 9, France

2 Department of Mathematics and Turku Centre for Computer Science,
University of Turku, 20014 Turku, Finland

3 Université de Lyon, Université Lyon 1, CNRS UMR 5208 Institut Camille Jordan,
Bâtiment du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918,

F-69622 Villeurbanne Cedex, France
4 Reykjavik University, School of Computer Science,

Kringlan 1, 103 Reykjavik, Iceland

Abstract. By the famous theorem of Morse and Hedlund, a word is
ultimately periodic if and only if it has bounded subword complexity,
i.e., for sufficiently large n, the number of factors of length n is constant.
In this paper we consider relational periods and relationally periodic se-
quences, where the relation is a similarity relation on words induced by
a compatibility relation on letters. We investigate what would be a suit-
able definition for a relational subword complexity function such that it
would imply a Morse and Hedlund-like theorem for relationally periodic
words. We consider strong and weak relational periods and two candi-
dates for subword complexity functions.

Keywords: Period, subword complexity, similarity relation, relational
period, partial word.

1 Introduction

Let w be an infinite word, i.e., an infinite sequence of letters from a finite al-
phabet A. One way to describe the structure of w is to consider its complexity
function. Define the subword complexity cw(n) to be the number of different
blocks of letters of length n occurring in w. In “very random” sequences, every
block of letters of length n appears with a frequency asymptotic to 1/|A|n. In
other words, these sequences have maximal complexity cw(n) = |A|n. Similarly,
ultimately periodic sequences are also characterized by their subword complex-
ity. In fact, in the first half of the 20th century, Morse and Hedlund [5] proved
the following theorem:

Theorem 1 (Morse, Hedlund, 1940). Let w be an infinite word and let k
be the number of different letters occurring in w. The following properties are
equivalent:

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 196–205, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relationally Periodic Sequences and Subword Complexity 197

(i) w is ultimately periodic,
(ii) cw(n) = cw(n + 1) for some n,

(iii) cw(n) < n + k − 1 for some n ≥ 1,
(iv) cw(n) is bounded.

In other words, ultimately periodic sequences are precisely those sequences hav-
ing bounded complexity. Using the notion of complexity we may also define
another very well studied set of binary infinite words, namely Sturmian words.
These words have remarkable properties and their subword complexity satisfies
cw(n) = n + 1; see [7, Chapter 2].

In this paper we investigate sets of infinite words which are ultimately periodic
“up to a given similarity relation”. A similarity relation is a relation on words
induced by a compatibility relation on letters. Three types of so called relational
periods, were introduces in [3] and [4], where their properties with respect to the
theorem of Fine and Wilf were considered. In this paper we concentrate on strong
and weak relational periods. Our goal is to characterize ultimately relationally
periodic words using a suitable definition for relational subword complexity. It
is not clear what would be a good definition of such complexity giving a Morse
and Hedlund-like theorem. We discuss this problem and show by examples why
some natural candidates are not suitable.

2 Similarity Relations

Let R ⊆ X × X be a relation on a set X . We usually write xR y instead
of (x, y) ∈ R. The identity relation on X is denoted by ιX and the universal
relation is denoted by ΩX . For a subset Y of X , we define RY = R ∩ (Y × Y).
The relation R is a compatibility relation if it is both reflexive and symmetric, i.e.,
(i) ∀x ∈ X : xRx, and (ii) ∀x, y ∈ X : xR y =⇒ y R x. In this presentation
we consider special kind of relations on words defined in the following way.

Definition 1. Let A be an alphabet. A relation on words over A is called a
similarity relation if its restriction on letters is a compatibility relation and, for
any words u = u1 · · ·um and v = v1 · · · vn (ui, vj ∈ A), the relation R satisfies

u1 · · ·um Rv1 · · · vn ⇐⇒ m = n and ui Rvi for all i = 1, 2, . . . ,m .

The restriction of R on letters, denoted by RA, is called the generating relation
of R. Words u and v satisfying uRv are said to be R-similar or R-compatible.

Since a similarity relation R is induced by its restriction on letters, it can be
presented by listing all pairs {a, b} (a �= b) such that (a, b) ∈ RA. We use the
notation

R = 〈r1, . . . , rn〉 ,
where ri = (ai, bi) ∈ A×A for i = 1, 2, . . . , n, to denote that R is the similarity
relation generated by the symmetric closure of ιA ∪ {r1, . . . , rn}. For example,
let A� = {a, b, .} and set R = 〈(a, .), (b, .)〉. Then we have

RA� = ιA� ∪ {(a, .), (., a), (b, .), (., b)} .

198 J. Cassaigne, T. Kärki, and L.Q. Zamboni

For example, we have ab.aaRabb.a but, for instance, ab. and .a. are not R-
similar. Note that the relation R corresponds to the compatibility relation of
binary partial words with a “do not know”-symbol .. Partial words were intro-
duced by Berstel and Boasson in [1]. For more on partial words, see [2].

More on properties of similarity relations can be found in [6]. For example, the
connection between similarity relations and the compatibility relation of partial
words is discussed in detail.

3 Relational Periods

For a compatibility relation on letters (and for the corresponding similarity re-
lation on words) we will now define two relational periods.

Definition 2. Let R be a compatibility relation on an alphabet A and denote
the ith letter of a finite word x over A by xi. An integer p ≥ 1 is

(i) a strong R-period of x if, for all i, j ∈ {1, 2, . . . , |w|}, we have

i ≡ j (mod p) =⇒ xi Rxj ,

(ii) a weak R-period of x if, for all i ∈ {1, 2, . . . , |w| − p}, we have xi Rxi+p.

This definition can be generalized naturally to infinite words by letting i and
j be any positive integers. We want to point out that in the literature strong
R-periods are sometimes called global and weak R-periods are called local as is
the case of strong and weak periods of partial words. However, the term local
period has also another meaning and is therefore discarded here. Note also that
the definition of a (normal) period of a word coincides with the definitions of
both the strong and the weak R-period where R = ιA.

Next let us consider an example which shows that the above defined two types
of relational periods are different. For instance, they can have different minimal
periods.

Example 1. Let A = {a, b, c, d}, R = 〈(a, b), (b, c), (c, d), (d, a)〉 and denote x =
babbbcbd. Clearly, the minimal (normal) period is 8. By the definition of R, we
see that 2 is a weak R-period of x. Since (x7, x8) = (b, d) �∈ R, 1 is not a
weak period and therefore the smallest weak R-period is 2. Since (b, d) �∈ R, the
minimal strong R-period must be at least 6. Indeed, it is exactly 6 because of
the relation aR d.

By the definition, it is evident that a strong R-period of a word x is also a weak
R-period of x, whereas the previous example shows that the converse statement
does not hold in general. Moreover, it is easy to prove that the above definitions
of strong and weak relational periods coincide if the compatibility relation R is
also transitive, in other words, if R is an equivalence relation. Note that in this
case relational periods can be seen as normal periods by replacing the letters
with the corresponding equivalence classes.

In the sequel we will examine infinite words which are relationally periodic at
least after a finite prefix.

Relationally Periodic Sequences and Subword Complexity 199

Definition 3. An infinite word x = x1x2x3 · · · is ultimately strongly (resp.
weakly) R-periodic if for some integers n and p the suffix xnxn+1xn+2 · · · has
a strong (resp. weak) R-period p. The set of all ultimately strongly R-periodic
infinite words is denoted by SR and the set of all ultimately weakly R-periodic
infinite words is denoted by WR.

By the above considerations it is clear that SR ⊆ WR. Our goal is to characterize
these sets using some suitable complexity functions. More precisely, we would like
to define a function cR,w : N → N such that a word w belongs to SR (resp. toWR)
if and only if cR,w(n) is bounded. This kind of result would be a generalization of
Theorem 1 for relational periods. In the next section we will define two candidates
and show that they do not entirely satisfy our objectives, but give some insight
into tackling the problem.

4 Relational Subword Complexity

A word u is a factor (or a subword) of a word v, if there exist words x and y
such that v = xuy. The set of factors of length n of a word u, is denoted by
Fw(n). A meaningfull relational subword complexity function should somehow
describe the number of relationally different factors of the word. It is evident that
the usual subword complexity function cw(n) = |Fw(n)| is not suitable for this
purpose. For example, any word with maximal subword complexity cw(n) = |A|n
is strongly ΩA-periodic, since all factors of same length are compatible with each
other.

In this section we consider two more suitable candidates for the relational
subword complexity function. It is easiest to defined these functions using graphs
of subwords.

Definition 4. A relational subword graph GR,w(n) is a graph, where the set of
of vertices is Fw(n) and there is an edge between vertices u and v if u and v are
R-compatible.

Our two candidates for the relational subword complexity function are the fol-
lowing:

1. Let cT
R,w(n) be the number of connected components of GR,w(n). Note that

the number of connected components is the number of RT -equivalence classes
of Fw(n), where RT denotes the transitive closure of R.

2. Let cI
R,w(n) be the maximal cardinality of a set of pairwise incompatible

elements of Fw(n). Note that a set with maximal number of pairwise incom-
patible elements of Fw(n) is a maximal independent set of GR,w(n) and this
set need not be unique.

Denote the set of infinite words over the alphabetA byAω. For the above com-
plexity functions, we next define two subsets of Aω with bounded R-relational
subwords complexity, where the relation R is a compatibility relation on the
alphabet:

TR = {w ∈ Aω | ∃B ∈ N : cT
R,w(n) < B}

200 J. Cassaigne, T. Kärki, and L.Q. Zamboni

and
IR = {w ∈ Aω | ∃B ∈ N : cI

R,w(n) < B} .

Recall that SR is the set of ultimately strongly R-periodic words and WR is the
set of ultimately weakly R-periodic words. Unfortunately, it turns out that all the
sets SR, WR, TR and IR can be different. However, the following theorem reveals
how the above defined complexity functions are connected to the ultimately
relationally periodic words.

Theorem 2. For any similarity relation R, we have SR ⊆ IR ⊆ WR ⊆ TR.
Moreover, if R is not transitive, then SR �= IR �= WR �= TR. Otherwise, all the
sets SR, IR,WR, TR are equal.

We divide the proof of the theorem into several small lemmata.

Lemma 1. If an infinite word w is ultimately weakly R-periodic, then cT
R,w(n)

is bounded (WR ⊆ TR).

Proof. Let w be an ultimately weakly R-periodic infinite word. Suppose that
p is a weak R-period of a suffix w′ of w. Then there are at most p connected
components in GR,w′(n) for all n ≥ 1. Namely, by the definition of a weak R-
period, all letters occurring in positions congruent to m (mod p) are RT -related.
Hence, all factors in Fw′(n) starting from congruent positions modulo p belong to
the same connected component. Thus, cT

R,w′(n) ≤ p and, consequently, cT
R,w(n)

is bounded, since w = uw′ for some finite word u. !

Lemma 2. There exist a relation R and a word w such that w is not ultimately
weakly R-periodic but the function cT

R,w(n) is bounded (WR �= TR).

Proof. Consider an infinite word v = (vj)j≥1 over the infinite alphabet N =
{0, 1, 2, . . .} defined by

vj = max{k | j ≡ 0 (mod 2k)} .

Define u = ϕ(v), where ϕ(k) = abkc for each k ∈ N and bk denotes the concate-
nation of k letters b. Set R = 〈(a, b), (b, c)〉.

Now GR,u(n) is connected, since bn ∈ Fu(n) for every n and bn is R-similar
with all factors of length n. On the other hand, u is not ultimately weakly R-
periodic. Namely, if we assume that p is a weak R-period of some suffix u′ of u,
this contradicts with the fact that the word abp−1c occurs infinitely often in u′.
Hence, p cannot be a weak R-period of any suffix u′. !

Lemma 3. If the subword complexity function cI
R,w(n) is bounded, then w is

ultimately weakly R-periodic (IR ⊆ WR).

Proof. Let w = (wj)j≥1 be an infinite word and assume that cI
R,w(n) ≤ B

for some natural number B. Consider factors w(in) = winwin+1 · · ·win+n−1 for
in = 1, 2, . . . , B + 1 and for some n ≥ 1. At least two of them are R-similar by
the assumption. Suppose that these words are w(rn) and w(sn), where rn < sn.

Relationally Periodic Sequences and Subword Complexity 201

Hence, we have wrn+j Rwsn+j for all j = 0, 1, 2, . . . , n − 1 and, consequently,
pn = sn − rn is a weak R-period of the finite word wrnwrn+1 · · ·wsn+n−1.

We may assume that rn is the smallest position and sn is the smallest posi-
tion with respect to rn satisfying w(rn) Rw(sn). Thus, the sequence (pn)n≥1 is
uniquely defined. Since 1 ≤ pn ≤ B for all n, some number l occurs infinitely
often in (pn)n≥1. Consider the infinite set of indices I such that pi = l for all
i ∈ I. Since also 1 ≤ rn ≤ B for all n, some number r occurs infinitely often
in (ri)i∈I . This means that there exist arbitrarily long prefixes of w′ = (wj)j≥r

which have l as a weak R-period. Hence, l is a weak R-period of w′, since w′ is
the limit of these prefixes. Thus, w is ultimately weakly R-periodic. !
Lemma 4. There exists a relation R and a word w such that w is ultimately
weakly R-periodic but the function cI

R,w(n) is not bounded (IR �= WR).

Proof. Consider the morphism φ : {a, c}∗ → {a, c}∗, where φ(a) = ac and φ(c) =
a. The word

f = (fj)j≥1 := lim
m→∞

φm(a) = acaacacaacaac · · ·

obtained by iterating the morphism φ is called the Fibonacci word. We modify
this word by adding a letter b in front of every letter of f . Hence, we obtain
the word u = (uj)j≥1 such that u2j = fj and u2j−1 = b. Clearly, 1 is a weak
R-period of u for R = 〈(a, b), (b, c)〉. However, cI

R,w(n) is not bounded. Consider
the factors of u of even length n starting from the even positions. Since Fibonacci
word is a Sturmian sequence, there are exactly n + 1 different words of length
n in f . By the definition of u, all the above mentioned factors have b’s in even
positions and a’s or c’s in odd positions. Hence, there are exactly n/2+1 different
factors of even length n starting from the even positions of u and they are all
pairwise R-incompatible, since (a, c) �∈ R. Thus, we have u �∈ IR. !
Lemma 5. If an infinite word w is ultimately strongly periodic, then cI

R,w(n) is
bounded (SR ⊆ IR).

Proof. Consider an infinite word w = uw′, where u is a finite word and p is a
strong R-period of w′. Then any set of pairwise R-incompatible factors of w′ can
contain at most p words. Namely, consider a pairwise R-incompatible subset of
Fw′(n) with p+1 elements. By the pigeon hole principle, at least two elements u
and v in the set are such that u = wiwi+1 · · ·wi+n−1 and v = wjwj+1 · · ·wj+n−1

for some i and j satisfying i ≡ j (mod p). Hence, by the definition of a strong
R-period, these words are R-similar, which is a contradiction. Since u is a finite
word, we have cI

R,w(n) < p + 1 + |u|, and therefore w ∈ IR. !
Lemma 6. There exist a relation R and a word w such that w is not ultimately
strongly R-periodic but the function cI

R,w(n) is bounded (SR �= IR).

Proof. Consider the alphabet A = {a, b, c} and the relation R = 〈(a, b), (b, c)〉.
We construct an infinite word s ∈ Aω such that it is not ultimately strongly
R-periodic and cI

R,w(n) = 2 for all n ≥ 1.
Let s be of the form abi1cbi2abi3cbi4a · · · , where the indices ij are such that

the following two conditions are satisfied:

202 J. Cassaigne, T. Kärki, and L.Q. Zamboni

(i) ik ≡ k − 1 (mod k) for all k ≥ 1,
(ii) pk+1 − pk > 2pk, where pk is the position of the kth non-b letter.

It is clear that such a word s exists. Now it follows from (i) that 2j − 1 is not a
strong R-period of s since the distance between the jth a and jth c is a multiple
of 2j − 1 for each j ≥ 1. Similarly, it follows that 2j is not a strong R-periods
of s since the distance between the jth c and (j + 1)st a is a multiple of 2j for
each j ≥ 1. Moreover, by the construction, it follows for each j, that 2j and
2j − 1 are not strong R-periods of any suffix of s. Namely, by the same reason
as above, 2m(2j) and 2m(2j− 1) are not strong R-periods of the suffix for some
m ∈ N large enough. Hence, condition (i) implies that s is not ultimately strongly
R-periodic.

Moreover, condition (ii) ensures that the following holds:

(I) For all x ∈ {a, c}, we have Dxx ∩Dxx̄ = Dxx ∩Dx̄x = ∅.
(II) For all x, y, z ∈ {a, c}, we have (Dxz + Dz̄y) ∩Dx̄ȳ = ∅.

Here ā = c, c̄ = a and Dxy is the set of all distances between the kth occurrence
of x in s and the lth occurrence of y in s for all integers k and l where k < l.
By replacing x, y and z by the letters a and c in (I) and (II) we get conditions
concerning altogether 12 intersections, which we should prove to be empty. These
conditions guarantee that there cannot be three pairwise R-incompatible factors
of s of the same length. Let us assume, on the contrary, that there are three
pairwise incompatible factors w1, w2 and w3 of length n. Denote the ith letter
of a word w by w(i). There are two possibilities (see Figure 1):

(a) There exist positions k and l such that (w1(k), w2(k)) �∈ R, (w1(k), w3(k)) �∈
R and (w2(l), w3(l)) �∈ R.

(b) There exist positions k, l and m such that (w1(k), w2(k)) �∈ R and w3(k) =
b, (w1(l), w3(l)) �∈ R and w2(l) = b and (w2(m), w3(m)) �∈ R and w1(m)=b.

By the conditions (I) and (II), situations (a) and (b) never occur. Hence, the
maximal cardinality of a pairwise R-incompatible set of words of Fw(n) is two,
i.e., cI

R,w(n) = 2 for all n ≥ 1.
It remains to prove (I) and (II). This can be done by induction on k for

the prefixes of s of length pk. For a prefix of length p0 = 0 the conditions

w1

w2

w3

k

x̄

x

x

l

x

x̄

w1

w2

w3

k

x

x̄

b

l

z

b

z̄

m

b

ȳ

y

Fig. 1. Illustrations of three pairwise R-incompatible words

Relationally Periodic Sequences and Subword Complexity 203

hold trivially. Let us now assume that (I) and (II) hold for the prefix of s of
length pk, where s(pk) = a. We prove that (I) and (II) hold also for the prefix
of length pk+1. The case where s(pk) = c is proved similarly. Denote by Dxy(k)
the above defined set of distances Dxy for a prefix of s of length pk.

For the proof of (I), we note that Daa(k + 1) = Daa(k) and Dca(k + 1) =
Dca(k), since s(pk+1) = c by the construction of s. Moreover, we have

Dac(k + 1) = Dac(k) ∪N(a, k + 1) and Dcc(k + 1) = Dcc(k) ∪N(c, k + 1) ,

where N(x, k + 1) = {pk+1 − pl | l < k + 1, s(pl) = x} corresponds to all
distances between x and the new letter s(pk+1). Since, by condition (ii), we have
pk+1 − pl ≥ pk+1 − pk > 2pk for l < k + 1, it follows that d > 2pk for every
d ∈ N(x, k + 1). On the other hand, d′ ≤ pk for all d′ ∈ Dyz(k) and therefore
Dyz(k)∩N(x, k + 1) = ∅. Hence, Daa(k + 1) ∩Dac(k + 1) = Daa(k)∩Dac(k) =
∅, where the last equality follows from the induction hypothesis. Similarly, we
conclude that Dcc(k + 1) ∩ Dca(k + 1) = Dcc(k) ∩ Dca(k) = ∅. Moreover, by
the induction hypothesis, it holds that Daa(k + 1) ∩ Dca(k + 1) = ∅. Since
N(x, k + 1) contains only distances between the letter x and the letter in the
fixed position pk+1, we have N(a, k + 1) ∩ N(c, k + 1) = ∅. Therefore, it also
follows that Dcc(k+1)∩Dac(k+1) = (Dcc(k)∩Dac(k))∪(Dcc(k)∩N(a, k+1))∪
(N(c, k+1)∩Dac(k))∪(N(c, k+1)∩N(a, k+1)) = ∅. Hence, we have proved (I).

In order to prove (II), we show that d1 + d2 �= d for all distances d1 ∈
Dxz(k + 1), d2 ∈ Dz̄y(k + 1) and d ∈ Dx̄ȳ(k + 1). By the induction hypothesis,
we have to consider only cases where at least one of the distances d1, d2 and d
is new, i.e., belongs to the set N(X, k + 1) for some X ∈ {x, z̄, x̄}. Note that,
for d ∈ N(X, k + 1), we have

d > 2pk (1)

as above. We consider four different cases.
Assume firstly that y = z = a. Then it follows that Dxz(k + 1) = Dxa(k),

Dz̄y(k + 1) = Dca(k) and Dx̄ȳ(k + 1) = Dx̄c(k + 1) = Dx̄c(k) ∪ N(x̄, k + 1).
If d ∈ N(x̄, k + 1), then we have d > 2pk by (1) but d1 + d2 ≤ 2pk. Hence,
d1 + d2 �= d.

Assume secondly that y = z = c. This implies that Dxz(k + 1) = Dxc(k) ∪
N(x, k + 1), Dz̄y(k + 1) = Dac(k) ∪ N(a, k + 1) and Dx̄ȳ(k + 1) = Dx̄a(k). If
either d1 ∈ N(x, k + 1) or d2 ∈ N(a, k + 1), then d1 + d2 > 2pk > pk ≥ d.

Assume thirdly that y = c and z = a. Now we have Dxz(k + 1) = Dxa(k),
Dz̄y(k+ 1) = Dcc(k)∪N(c, k+ 1) and Dx̄ȳ(k+ 1) = Dx̄a(k). If d2 ∈ N(c, k+ 1),
then d1 + d2 > d as in the previous case.

Finally, assume that y = a, z = c. Then we have Dxz(k + 1) = Dxc(k) ∪
N(x, k + 1), Dz̄y(k + 1) = Daa(k) and Dx̄ȳ(k + 1) = Dx̄c(k) ∪ N(x̄, k + 1). If
there is only one new distance, either d1 or d, then it follows that d1 +d2 �= d by
the same reasoning as above. Hence, consider the case where both distances are
new, i.e., d1 ∈ N(x, k + 1) and d ∈ N(x̄, k + 1). Since d is a distance between x̄
and ȳ, where ȳ is in the position pk+1, and d1 is a distance between x and z = ȳ,
where z is in the position pk+1, we must have d1 �= d. If d = d1 + d2, then we
conclude that d > d1. Assume that d1 = pk+1 − pl and d = pk+1 − pl′ for some l

204 J. Cassaigne, T. Kärki, and L.Q. Zamboni

and l′ smaller that k+1. By substituting these to the equation d−d1 = d2, we get
pl−pl′ = d2. Since pl−pl′ ∈ Dx̄x(k) and d2 ∈ Dz̄y(k) = Daa(k), this contradicts
with the induction hypothesis Daa(k) ∩Dac(k) = Daa(k) ∩Dca(k) = ∅.

Hence, we have shown (II) and the proof of the lemma is hereby concluded. !

The proof of Theorem 2 is an easy consequence of the lemmata.

Proof (Proof of Theorem 2). By Lemmata 1, 3 and 5, it follows that SR ⊆ IR ⊆
WR ⊆ TR. If R is not transitive, then there must exist letters a, b and c such
that aR b, bR c and (a, c) �∈ R. Hence, the examples of Lemmata 2, 4 and 6
imply that SR �= IR �= WR �= TR. If R is transitive, then R is an equivalence
relation and, as mentioned above, SR = WR. For such R we may replace the
word w = w1w2w3 · · · by the word [w] = [w1][w2][w3] · · · , where [wi] denotes the
R-equivalence class of wi. Since in this case cT

R,[w](n) = |F[w](n)|, we conclude
by Theorem 1 that, for a word w ∈ WR, the complexity function cT

R,[w](n) is
bounded and therefore also cT

R,w(n) must be bounded. Hence, we have SR =
IR = WR = TR. !

5 Future Work

It remains an open question whether there exists a complexity function cR,w(n)
such that an infinite word w is strongly or weakly R-periodic if and only if cR,w(n)
is bounded. The following function could be worth of studying. Let cD

R,w(n) be
the minimal size of a dominating set of the graph GR,w(n), i.e., the minimal size
of a set S ∈ Fw(n) such that every factor of Fw(n) is R-compatible with at least
one element of S. Another possibility is to allow the dominating set S to be any
subset of An. This definition of complexity could be related to the ultimately
externally R-periodic words, which are infinite words such that for some suffix
there exists an external R-period p. These periods were not considered in this
paper, but as a final remark we will give the definition, which can also be found
in [4]. For a word x = x1x2x3 · · · , where xi ∈ A, an integer p is an external
R-period of x if there exists a word y = y1 · · · yp such that, for all i ∈ N and
j ∈ {1, 2, . . . , p}, i ≡ j (mod p) implies xi Ryj. In this case, the word y is called
an external word of x.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoret.
Comput. Sci. 218, 135–141 (1999)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton (2007)

3. Halava, V., Harju, T., Kärki, T.: The theorem of Fine and Wilf for relational periods.
TUCS Tech. Rep. 786. Turku Centre for Computer Science, Finland (2006)

4. Halava, V., Harju, T., Kärki, T.: Interaction properties of relational periods. Discrete
Math. Theor. Comput. Sci. 10, 87–112 (2008)

Relationally Periodic Sequences and Subword Complexity 205

5. Hedlund, G.A., Morse, M.: Symbolic dynamics II: Sturmian trajectories. Amer. J.
Math. 62, 1–42 (1940)

6. Kärki, T.: Similarity Relations on Words: Relational Codes and Periods (PhD the-
sis). TUCS Dissertations No 98. Turku Centre for Computer Science, Finland (2008)

7. Lothaire, M.: Algebraic combinatorics on words. In: Encyclopedia of Mathematics
and its Applications 90. Cambridge University Press, Cambridge (2002)

Bounds on Powers in Strings

Maxime Crochemore1,2, Szilárd Zsolt Fazekas3,�,
Costas Iliopoulos1, and Inuka Jayasekera1,��

1 King’s College London, U.K.
2 Université Paris-Est, France

3 Rovira i Virgili University, Tarragona, Spain

Abstract. We show a Θ(n log n) bound on the maximal number of oc-
currences of primitively-rooted k-th powers occurring in a string of length
n for any integer k, k ≥ 2. We also show a Θ(n2) bound on the max-
imal number of primitively-rooted powers with fractional exponent e,
1 < e < 2, occurring in a string of length n. This result holds obviously
for their maximal number of occurrences. The first result contrasts with
the linear number of occurrences of maximal repetitions of exponent at
least 2.

1 Introduction

The subject of this paper is the evaluation of the number of powers in strings.
This is one of the most fundamental topics in combinatorics on words not only
for its own combinatorial aspects considered since the beginning of last century
by the precursor A. Thue [16], but also because it is related to lossless text com-
pression, string representation, and analysis of molecular biological sequences,
to quote a few applications. These applications often require fast algorithms to
locate repetitions because either the amount of data to be treated is huge or
their flow is to be analysed on the fly, but their design and complexity analysis
depends of the type of repetitions considered and of their bounds.

A repetition is a string composed of the concatenation of several copies of
another string whose length is called a period. The exponent of a string is in-
formally the number of copies and is defined as the ratio between the length of
the string and its smallest period. This means that the repeated string, called
the root, is primitive (it is not itself a nontrivial integer power). We consider
two types of strings: integer powers—those having an integer exponent at least
2, and fractional powers—those having a fractional exponent between 1 and 2.
For both of them we consider their maximal number in a given string as well as
their maximal number of occurrences.

It is known that all occurrences of integer powers in a string of length n
can be computed in time O(n log n) (see three different methods in [2], [1], and
� Supported by grant no. AP2004-6969 from the Spanish Ministry of Science and

Education of Spain. Partially supported by grant. no. MTM 63422 from the Ministry
of Science and Education of Spain.

�� Supported by a DTA Award from EPSRC.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 206–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bounds on Powers in Strings 207

[12]). Indeed these algorithms are optimal because the number of occurrences of
squares (powers of exponent 2) can be of the order of n logn [2].

The computation of occurrences of fractional powers with exponent at least 2
has been designed initially by Main [11] who restricted the question to the detec-
tion of their leftmost maximal occurrences only. Eventually the notion of runs—
maximal occurrences of fractional powers with exponent at least 2—introduced
by Iliopoulos et al. [7] for Fibonacci words led to a linear-time algorithm for
locating all of them on a fixed-sized alphabet. The algorithm, by Kolpakov and
Kucherov [8,9], is an extension of Main’s algorithm but their fundamental con-
tribution is the linear number of runs in a string. They proved that the number
of runs in a string of length n is at most cn, could not provide any value for
the constant c, but conjectured that c = 1. Rytter [14] proved that c ≤ 5, then
c ≤ 3.44 in [15], Puglisi et al. [13] that c ≤ 3.48, Crochemore and Ilie [3] that
c ≤ 1.6, and Giraud [6] that c ≤ 1.5. The best value computed so far is c = 1.048
[4] (see the Web page http://www.csd.uwo.ca/ ilie/runs.html).

Runs capture all the repetitions in a string but without discriminating among
them according to their exponent. For example, the number of runs is not easily
related to the number of occurrences of squares. This is why we consider an or-
thogonal approach here. We count and bound the maximal number of repetitions
having a fixed exponent, either an integer larger than 1 or a fractional number
between 1 and 2. We also bound the number of occurrences of these repetitions.

After introducing the notations and basic definitions in the next section, Sec-
tion 3 deals with fractional powers with exponent between 1 and 2. It is shown
that the maximum number of primitively-rooted powers with a given exponent e,
1 < e < 2, in a string can be quadratic as well of course as their maximum num-
ber of occurrences. In Section 4, we consider primitively-rooted integer powers
and show that the maximum number of occurrences of powers of a given expo-
nent k, k ≥ 2, is Θ(n log n). This latter result contrasts with the linear number of
such powers. We also present an efficient algorithm for constructing the strings
in question.

2 Preliminaries

In this section we introduce the notation and recall some basic results that will
be used throughout the paper. All results stated in this section were obtained in
[10]. An alphabet A is a finite non-empty set. We call the elements of A letters.
The set of all finite words over A is A∗, which is a monoid with concatenation
(juxtaposition), where the unit element is ε, the empty word, whereas the set
of non-empty words is A+ = A∗ − ε. The length of a word w is denoted by |w|;
|ε| = 0. Without loss of generality, we can assume that our alphabet is ordered
and hence we can have an order on words. The one we will use is called the
lexicographical order and it is defined by the following relation:

au < bv ⇔ (a < b or (a = b and u < v)) or a < az

where a, b ∈ A, u, v ∈ A∗, z ∈ A+.

208 M. Crochemore et al.

For words u, v, w ∈ A∗, with w = uv, we say that u is a prefix and v is a
suffix of w. For a word w and an integer n ≥ 0, the n-th power of w is defined
inductively as w0 = ε, wn = wwn−1. Extending this definition we can talk about
non-integer powers too. Take n = k

l > 1 with gcd(k, l) = 1. We say that a word
w is an n-power if both of the following conditions apply:

– |w| = m · k for some integer m > 0,
– m · l is a period of w.

The prefix of length m · l of w is a root of w.
When w �= ε, w3 is called a cube, with root w. A word w is called primitive

if there is no word u and integer p ≥ 2 such that w = up. For a word w = up

with u primitive and p ≥ 1. We say that w′ is a conjugate of w if there exist
u, v ∈ A∗ such that w = uv and w′ = vu. A Lyndon word is a (primitive) word
which is the lexicographically smallest among its conjugates.

Take a primitive word uv, such that vu forms a Lyndon word and v is
nonempty. In the cube (uv)3, we call central Lyndon position the one at |uvu|,
uvu.vuv. For two non-empty words u and v it is known that uv = vu implies
u, v ∈ z+ for some z ∈ A∗, therefore every word has a unique Lyndon position.

If a word w can be written as w = uv = vz, for some words u, v, z ∈ A+,
then we say that w is bordered (v is a border of w). If a word w is bordered,
then there exists u ∈ A+, v ∈ A∗ such that w = uvu, that is a bordered word w
always has a border of length at most half the length of w. Moreover, it is easy
to see that a bordered word uvu cannot be a Lyndon word, because then either
uuv (if u < v) or vuu (if v < u) is lexicographically smaller than uvu.

3 A Bound on Repeats with Exponent e, with 1 < e < 2

In this section, we show that the number of distinct repetitions with exponent e,
with 1 < e < 2 is bound by Θ(n2). We do this by looking at the number of such
repetitions that can start at a position in words of the form akba

k
e−1−1, where k

is any positive integer such that c|k, where e = c+d
d and gcd(c + d, d) = 1.

First we consider an example with e = 3
2 and k = 9, ie. w = a9ba17 (see Fig 2).

At the first position in this word, we can have 5 repetitions of exponent 3
2 , namely

a9ba5, a9ba8, a9ba11, a9ba14 and a9ba17. Moving on to the second position, we will
have only 4 repetitions of exponent 3

2 , namely a8ba6, a8ba9, a8ba12 and a8ba15.
In the third position also, we are able to have the repetitions a7ba7, a7ba10 and
a7ba13. However, now we will have one extra repetition as we can also have
a7ba4. It is clear that at every other position in the word, as we get closer to
the b, we will have an extra repetition. The number of repetitions of exponent
3
2 at each position are now 5, 4, 4, 3, 3, 2, 2, 1, 1 (see Fig. 2). The total number of
repetitions can now be summed up to ((5 ∗ 6)/2) + (((5 − 1) ∗ 5)/2) = 25. We
will generalise this example in the next theorem.

Theorem 1. The maximal number of distinct repetitions of exponent e, with
1 < e < 2, in a word of length n is Θ(n2).

Bounds on Powers in Strings 209

Proof. The upper bound is trivial because no factor of the string can be counted
twice as an e-th power for given e, so let us turn to proving the lower bound.

We shall count the number of repetitions starting at each position in a word.
For an exponent, e, with 1 < e < 2, we consider a word, w, formed as shown
in Fig. 1. Here, we concatenate a repetition of exponent, e, with root akb and
a

k
e−1−1, where k is any positive integer such that c|k, where e = c+d

d and gcd(c+
d, d) = 1. In this case the length of our string will be k · e

e−1 .

a ... aba ... a

k
k

e−1 − 1

Fig. 1. Structure of word, w

a a a a a a a a a b a a a a a a a a a a a a a a a a a

Fig. 2. Repetitions of exponent 1.5 in a9ba17

For e-powers starting at the first position, the end positions can be (k+1)(e−
1), (k + 1)(e− 1) + (c + d), (k + 1)(e− 1) + 2 · (c + d),...
From here we get that the number of e-th powers starting at the first position is

|w| − (k + 1)(e− 1)
c + d

+ 1 =
k · e

e−1 − (k + 1)(e− 1)
c + d

+ 1

Substituting c+d
d for e in the formula above we get that the number of e-th

powers starting at the first position is:

k · d− c

d · c − 1
d

+ 1

This formula proves useful because by substituting k − i for k and taking the
integer part of the result (since we are talking about the number of occurrences)

210 M. Crochemore et al.

we get the number of e-th powers starting at position i + 1. Now let us sum up
the number of e-th power occurrences starting at any one of the first k positions:

k∑

i=1

�i · d− c

d · c − 1
d

+ 1�

For any positive n its integer part �n� is greater or equal than n − 1. As we
are trying to give a lower bound to the number of occurrences, it is alright to
subtract 1 from the formula instead of taking its integer part:

k∑

i=1

(

i · d− c

d · c − 1
d

)

= k · (k + 1) · d− c

2d · c −
k

d

This means that the number of e-th powers in our string is quadratic in k. At the
same time the length of the string, as we mentioned in the beginning, is k · e

e−1 ,
so for a given e, the number of e-th powers in a string of length n is Θ(n2).

It is easy to see that every occurrence of an e-th power in this string is unique
and this concludes the proof. !

4 A Bound on Primitively Rooted Cubes

After considering powers between 1 and 2, we shall take a look at powers greater
than 2. First, we will show that it is possible to construct strings of length n,
which have Ω(n logn) occurrences of cubes. We can extend the procedure to
all integer powers greater than 2, and this, together with the O(n log n) upper
bound implied by the number of squares (see [2]) leads us to the Θ(n log n)
bound. Finally, we will prove that the sum of all occurrences of powers at least
2 (including non-integer exponents) is quadratic.

Lemma 1. The maximal number of primitively rooted cubes in a word of length
n is Ω(n logn).

Proof. Let us suppose there are two primitively rooted cubes (uv)3 and (xy)3 in
w such that their central Lyndon positions uvu.vuv and xyx.yxy are the same.
First let us look at the case where the cubes have to be of different length.
Without loss of generality we can assume |uv| < |xy|. In this case vu is at
the same time a prefix and suffix of yx. Hence, yx is bordered and cannot be
a Lyndon word contradicting the assumption that x.y is a Lyndon position.
This proves that should there be more cubes which have their central Lyndon
position identical, they all have to be of the same length. Naturally, the first
and last position of a word cannot be central Lyndon to any cube and this gives
us the bound n − 2 if we disregard cubes of the same length which have their
central Lyndon positions at the same place (see Fig. 3). It is easy to see, that
because of the periodicity theorem the only string of length n, for which n − 2
different positions are central Lyndon ones to some cube, is an.

Bounds on Powers in Strings 211

1 k+1 2k+2 3k+3 4k+3

a a a a a a a a a a a a a a a a a

...

...

} 4k + 1
cubes

Fig. 3. Cubes of word a4k+3

Now take the word a4k+3. According to our previous argument it has at
most 4k + 1 cubes. However, if we change a’s into b’s at positions k + 1,2k + 2
and 3k + 3 we get that the number of primitively rooted cubes in this word is
4k + 1 − 9 + (k + 1) = 5k − 7. This is because by introducing each b we lose
three cubes but in the end we gain another k + 1 cubes of the form (ajbak−j)3

with 0 ≤ j ≤ k (see Fig. 4). Note that these latter cubes all have their central
Lyndon position after the first b (assuming a < b).

We introduced three b’s in the previous step but of course we can repeat the
procedure for the four block of a’s delimited by these b’s and then in turn for the
new, smaller blocks of a’s that result and so on. In the second step, however, we
need to introduce 12 b’s - that is, 3 for each of the 4 blocks of a’s - not to disrupt
the cubes of length 3k + 3. This way we lose 12 · 3 = 36 cubes and we gain (�(k−
3)/4�+1)·4 new ones. Performing the introduction of b’s until the number of cubes
we lose in a step becomes greater or equal to the ones we gain, gives us a string
with the maximal possible number of cubes for its length. If k equals 4j, 4j + 1
or 4j + 2 for some j then according to the formula above the number of cubes we
gain is 4j. Note that if k = 4j +3 than the number of cubes we gain in the second
step is 4j+4 = k+1, i.e. the same as in the first step. However, together with the
delimiting b’s introduced before we would get a big cube which is not primitively
rooted anymore, so we need to move the newly introduced b’s 1, 2 and 3 positions
to the left, respectively. This gives us that in this case too the number of newly
formed cubes will be 4j. The smallest length at which introducing the b’s does not
induce less cubes is 35 that is with k = 8. Summarizing the points above we get
that for a string of length n the maximum increase in the number of cubes for the
ith (i > 1) consecutive application of our procedure is:

(n− 3)
4

− 9 · 4i−1

1 k+1 2k+2 3k+3 4k+3

a a a a a a b a a a a b a a a a b a a a a a a...

... }

}

added
k + 1
cubes

removed
3 ∗ 3
cubes

Fig. 4. Cubes of word akbakbakbak

212 M. Crochemore et al.

To be able to sum these increases we have to know the number of steps performed.
This is given by solving for i the equation:

n− 3
4

= 9 · 4i−1

From here we get that the number of steps performed is #steps = �log4
n−3

9 �,
where by �x� we mean the integer part of x.

Hence the number of cubes for length n ≥ 39 is:

n− 2 + 1 +
#steps∑

i=1

(
n− 3

4
− 9 · 4i−1

)

= n− 1 +
(n− 3)�log4

(n−3)
9 �

4
− 9(1− 4�log4

n−3
9 �)

−3

= n + 2 +
(n− 3)�log4

(n−3)
9 �

4
− 3 · 4�log4

n−3
9 �

The plus one after n− 2 comes from the first application of the insertion of b’s
where we get (n− 3)/4 + 1 cubes instead of (n− 3)/4. For strings shorter than
39 therefore the count is one less. !

Since the first paragraph of the proof is valid for any integer power, we can
extend the proof by giving the construction of the strings that prove the lower
bound in general for a string of length n and power k (see Fig. 4).

The algorithm above produces strings which have O(n log n) occurrences of
k-th powers. Note, that if we perform the procedure the other way around, we
only need O(log n) cycles and we can eliminate the recursion:

Theorem 2. Algorithm ConstructStrings2 (see Fig. 4) produces a string of
length n that has Ω(n logn) occurrences of primitively rooted cubes.

Proof. Before entering the second while loop, the length of string and the num-
ber of k-th power occurrences in it are both c = (k + 1) · � + k. Now we will
show by induction on i that after the i-th iteration of the second while loop the
length of string will be (k + 1)i · (c + 1) − 1 and the number of occurrences of
k-th powers will be (k + 1)i · c + i · (k + 1)i−1(c + 1).

Note that if the length of string was m and the number of k-th power occur-
rences was p after the previous cycle, then concatenating k + 1 copies of string
delimited by k copies of delimiter we get (k + 1) · p + m + 1 powers in the new
string, which will have length (k + 1) ·m+ k. Therefore, after the first cycle the
length of string will be

(k + 1) · c + k = (k + 1) · c + (k + 1)− 1 = (k + 1)1 · (c + 1)− 1

At the same time the number of k-th powers will be

(k + 1) · c + c + 1 = (k + 1)1 · c + 1 · (k + 1)0 · (c + 1)

Bounds on Powers in Strings 213

Algorithm. ConstructStrings1 (n, k)
Input: n ≥ 0, k ≥ 0
Output: A string which proves the lower bound of the number of occurrences of integer

powers.
1. � = n
2. string = a�

3. power(1, �)
4. Procedure: power(start, end)
5. � = end - start
6. if � < k3 + k2 + k
7. then return
8. else string[start + ��/(k + 1)] = b
9. string[start + 2 · ��/(k + 1)] = b
10. . . .
11. string[start + k · �ell/(k + 1)] = b
12. for i ←0 to k
13. power(start + i · �/(k + 1), start + (i + 1) · �/(k + 1))

so our statement holds for i = 1. Now suppose it is true for some i ≥ 1. From
here we get that for i + 1 the length of string will be:

(k + 1) · ((k + 1)i · (c + 1)− 1) + k = (k + 1)i+1 · (c + 1)− 1

whereas the number of k-th powers is:

(k + 1) · ((k + 1)i · c + i · (k + 1)i−1 · (c + 1)) + ((k + 1)i · (c + 1)− 1) + 1

= (k + 1)i+1 · c + i · (k + 1)i · (c + 1) + (k + 1)i · (c + 1)

= (k + 1)i+1 · c + (i + 1) · (k + 1)i(c + 1)

Now let us look at the running time of the algorithm. In the first while loop
we divide the actual length by k + 1 and we do it until it becomes smaller than
k3 +k2 +k therefore we perform O(log n) cycles. The second while loop has the
same number of cycles, with one string concatenation performed in each cycle,
hence substituting logn for i in the formula above concludes the proof. !

Corollary 1. In a string of length n the maximal number of primitively rooted
k-th powers, for a given integer k ≥ 2, is Θ(n log n).

Proof. We know from [5] that the maximal number of occurrences of primitively
rooted squares in a word of length n is O(n log n). This implies that the number
of primitively rooted greater integer powers also have an O(n log n) upper bound,
while in Theorem 2 we showed the lower bound Ω(n logn). !

Remark 1. The first part of the proof is directly applicable to runs so we have
that in a string of length n the number of runs of length at least 3p− 1, where
p is the (smallest) period of the run is at most n− 2. Unfortunately we cannot
apply the proof directly for runs shorter than that because we need the same
string on both sides of the central Lyndon position.

214 M. Crochemore et al.

Algorithm. ConstructStrings2 (n, k)
Input: n ≥ 0, k ≥ 0
Output: A string which proves the lower bound of the number of occurrences of integer

powers.
1. � = n
2. while � ≥ k3 + k2 + 3k + 2
3. do �= �−k

k+1

4. string = (ak2+1 + b)k + a(k+1)·�−k3−k

5. delimiter = b
6. while length(string) ∗ (k + 1) + k < n
7. do string = (string + delimiter)k + string
8. if delimiter = b
9. then delimiter = a
10. else delimiter = b
11. (∗ changing the delimiter is needed to stay primitive ∗)
12. string = string + an−length(string)

We have seen that the number of k-th powers for a given k(≥ 2) in a string of
length n is Θ(n log n), but what happens if we sum up the occurrences of k-th
powers for all k ≥ 2?

Remark 2. The upper bound of the sum of all occurrences of k-th powers with
primitive root, where k ≥ 2, in a word w with |w| = n is n·(n−1)

2 . Moreover, the
bound is sharp.

Proof. First consider the word an, for some n > 0. Clearly, taking any substring
ak, with 2 ≤ k ≤ n, we get a k-th power, so the number of powers greater or
equal to two is given by the number of contiguous substrings of length at least
two, that is n·(n−1)

2 . Now we will show that this is the upper bound. Let us
suppose that any two positions i and j in the string delimit a k-th power with
k ≥ 2, just like in the example above. We need to prove that the same string
cannot be considered a k1-th power and a k2-th power at the same time, with
k1, k2 ≥ 2 and k1 �= k2. Suppose the contrary, that is there are 1 ≤ m < � ≤ j−i

2
so that both m and � are periods of w[i, j]. Since j − i > m + �− gcd(m, �) the
periodicity lemma tells us that w[i, j] has a period p smaller than m with p|m
and p|�, and this, in turn, means w[i, i + �] is not primitive. !

5 Conclusion

In conclusion, we have proven the following bounds on repetitions in words:

(i) The maximal number of distinct repetitions of exponent, e, with 1 < e < 2,
in a word of length n is Θ(n2).

(ii) The maximal number of primitively rooted k-th powers in a word of length
n is Ω(n logn).

We have also described an O(m logn) algorithm which can be used to con-
struct strings to illustrate these bounds. Here O(m) is the time complexity of
concatenating two strings of length n.

Bounds on Powers in Strings 215

References

1. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.
Theoret. Comput. Sci. 22(3), 297–315 (1983)

2. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

3. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci. (in
press, 2007)

4. Crochemore, M., Ilie, L., Tinta, L.: Towards a solution to the “runs” conjecture.
In: Ferragina, P., Landau, G.M. (eds.) Combinatorial Pattern Matching. LNCS.
Springer, Berlin (in press, 2008)

5. Crochemore, M., Rytter, W.: Squares, cubes and time-space efficient stringsearch-
ing. Algorithmica 13(5), 405–425 (1995)

6. Giraud, M.: Not so many runs in strings. In: Martin-Vide, C. (ed.) 2nd International
Conference on Language and Automata Theory and Applications (2008)

7. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a
Fibonacci string. Theoret. Comput. Sci. 172(1–2), 281–291 (1997)

8. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of the 40th IEEE Annual Symposium on Foundations of Computer
Science, New York, pp. 596–604. IEEE Computer Society Press, Los Alamitos
(1999)

9. Kolpakov, R., Kucherov, G.: On maximal repetitions in words. J. Discret. Algo-
rithms 1(1), 159–186 (2000)

10. Lothaire, M.: Applied Combinatorics on Words. Cambridge University Press, Cam-
bridge (2005)

11. Main, M.G.: Detecting leftmost maximal periodicities. Discret. Appl. Math. 25,
145–153 (1989)

12. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422–432 (1984)

13. Puglisi, S.J., Simpson, J., Smyth, W.F.: How many runs can a string contain?
Personal communication (submitted, 2007)

14. Rytter, W.: The number of runs in a string: Improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006)

15. Rytter, W.: The number of runs in a string. Inf. Comput. 205(9), 1459–1469 (2007)
16. Thue, A.: Uber unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I Math-Nat.

Kl. 7, 1–22 (1906)

When Is Reachability Intrinsically Decidable?

Barbara F. Csima1,� and Bakhadyr Khoussainov2,��

1 Department of Pure Mathematics, University of Waterloo
csima@math.uwaterloo.ca

2 Department of Computer Science, University of Auckland
bmk@cs.auckland.ac.nz

Abstract. A graph H is computable if there is a graph G = (V, E)
isomorphic to H where the set V of vertices and the edge relation E are
both computable. In this case G is called a computable copy of H. The
reachability problem for H in G is, given u, w ∈ V , to decide whether
there is a path from u to w. If the reachability problem for H is decidable
in all computable copies of H then the problem is intrinsically decidable.
This paper provides syntactic-logical characterizations of certain classes
of graphs with intrinsically decidable reachability relations.

1 Introduction

The study of reachability problems has played a central role in many areas of
computer science and applications. In the context of finite graphs the problem
is reduced to computing the connected components of the graphs. Tarjan’s al-
gorithm solves the reachability problem for finite graphs in linear time [18]. In
complexity theory reachability for finite graphs has been important in the inves-
tigation of subclasses of P (e.g. see [4] and its reference list). The problem plays
a valuable role in model checking and verification since model checking tasks
are often reduced to reachability problems [2], [3]. There is also a large interest
in reachability problems in different types of computational models such as in
counter automata, timed automata, pushdown automata, Petri-nets, rewriting
systems, hybrid systems, systems with unbounded number of clocks, protocols,
communication systems [5], [8], [9]. These all give rise to infinite graphs and
many natural tasks for these graphs involve computing the reachability relation.
See also [7], [13], [16] and their references. The paper [1] defines a methodol-
ogy for reachability analysis of infinite-state systems based on the theory of well
quasi-orderings.

Suppose that we are given a finite presentation of an infinite graph. For ex-
ample, the graph can be the space of states of a system with an unbounded
number of protocols or the configuration space of a Turing machine. The con-
figuration space of a machine is the graph whose vertices are the configurations
of the machine and an edge is put between configurations x and y if there is an

� Partially supported by Canadian NSERC Discovery Grant 312501.
�� Partially supported by Marsden Fund of Royal New Zealand Society.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 216–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

When Is Reachability Intrinsically Decidable? 217

instantaneous move of the machine from x to y. In each of these cases the graphs
have finite presentations. For example, if T is a Turing machine then T is a finite
presentation of its own configuration space. It is clear that the reachability prob-
lem for such graphs is computably enumerable (that is, recognizable by Turing
machines). Due to the undecidibility of the Halting problem, the reachability
problem for graphs that have finite presentations is not always decidable.

The aim of this paper is to study the reachability problem for infinite graphs,
and find syntactic conditions under which the reachability problem is always
decidable independent of the finite presentation. We point out that some fi-
nite presentations of graphs automatically imply decidability of the reachability
problem. For example, reachability is decidable for the configuration spaces of
pushdown automata [7]. Similarly, reachability is decidable for graphs that have
certain types of monadic second order interpretations in the binary tree (see for
example [10], [11]). In this paper we seek conditions which entail decidability
of the reachability problem in a given graph independent of its finite presenta-
tion. Clearly, these conditions should be intrinsic to the graphs rather than their
presentations. We now set up the problem formally.

Let H be an infinite graph. We always assume that our graphs are undirected.
We define finite presentations of graphs via Turing machines as follows:

Definition 1. The graph H is computable if there exists a graph G = (V,E)
isomorphic to H and there are Turing machines TV and TE over an alphabet
Σ such that the following two properties hold: (1) The machine TV halts on
every input string, and for all u ∈ Σ∗, TV accepts u if and only if u ∈ V . (2)
The machine TE halts on every pair of input strings, and for all u,w ∈ Σ∗, TE

accepts (u,w) if and only if (u,w) ∈ E. In this case the pair P = (TV , TE) is a
presentation of H and G is the computable copy of H given by P .

We often abuse notation and identify the presentation P of H with the com-
putable copy G given by P .

The reachability relation in H is the set {(x, y) | there is a path in H from x
to y}. In order to give an algorithmic spin to the reachability relation one needs
to employ presentations of the graph H:

Definition 2. The reachability problem for H in presentation P (equiva-
lently in G) is, given u,w ∈ V , to decide whether there exists a path from u
to w.

The reachability problem in a computable graph G is computably enumerable
(that is, recognized by a Turing machine). Indeed, given u and w one systemat-
ically searches through all paths starting with u. When a path from u to w is
detected the search is terminated. We give several examples.

Example 1. In the graph G = (V,E) with V = {0, 1}∗ and E = {(u,w) | |u| =
|v|}, where |x| refers to the length of x, the reachability problem is decidable.

Example 2. Let G be a computable graph such that each connected component of
G embeds exactly one cycle. The reachability problem in G is decidable. Indeed,

218 B.F. Csima and B. Khoussainov

on inputs u and w search for cycles embedded into the components of u and w.
If the cycles are distinct, then reject the pair (u,w); otherwise, accept.

Example 3. Consider the graph G = (Z,E), where Z is the set of all integers,
and E = {(3i, 3i + 1) | i is not negative} ∪ {(3i + 1, 3i + 2) | i is not negative}.
The reachability problem in G is decidable.

Example 4. This example comes from the verification community. A parame-
terized system S is an infinite sequence M1, M2, . . . of finite state machines
where for each i, we effectively know the number of states in Mi and all the
transitions in Mi. Given a specification φ (written in a logic such as LTL), the
verification of φ on S consists of checking whether or not the state space of S
satisfies φ for all n. The state space of S consists of tuples (s1, . . . , sn, n), where
each si is a state of Mi and n ≥ 1. Let G have an edge between (s1, . . . , sn, n) and
(q1, . . . , qm,m) iff n = m and there is a transition from si to qi for i = 1, . . . , n.
The reachability problem in G is decidable.

We stress that decidability of the reachability problem for H in one presenta-
tion does not imply reachability is decidable in all presentations. In this sense
reachability is not absolute in terms of decidability. Here is our central definition:

Definition 3. If the reachability problem for H is decidable in all presentations
of H then we say that the problem is intrinsically decidable.

For the graphs in Examples 1 and 2, reachability is intrinsically decidable. For
the graphs in Example 3, reachability is not intrinsically decidable (this will
follow from Lemma 2 (1); note that any two singleton components arising from
negative integers can be disjointly embedded into any 3-vertex component arising
from a non-negative integer). In Example 4, intrinsic decidability of reachability
depends on the system S.

We note that intrinsic decidability (of the reachability relation) has some
similarities with finding lower bounds for regular model checking problems. In
this problem the configurations of a transition system are coded by strings in such
a way that the edge relation under this coding is recognized by finite automata.
Such a coding is called a regular coding (and hence makes the transition system
an automatic graph). Under the coding one then checks if a given specification is
satisfied by the transition system. Finding lower bounds for this problem requires
investigating all regular codings.

Our goal is to provide characterizations of certain classes of graphs with in-
trinsically decidable reachability relations. We work over a language with a single
binary relation symbol, E, and equality. Our characterization involves an infini-
tary logic. Recall that the logic L∞ω is an extension of first order logic with
infinitary

∨
and

∧
connectives (for a treatment see [15]). We use an effective

fragment of this logic, Lcω, defined by Ash and Nerode in [6], as follows.

Definition 4. We say that a relation R(x̄) in graph H is existentially defin-
able if there exists a tuple ā in H and a computable sequence of existential first
order logic formulas ψ0(x̄, ā), ψ1(x̄, ā), . . . such that for all v̄ in H we have

H |= R(v̄) ⇐⇒ ψ0(v̄, ā) ∨ ψ1(v̄, ā) ∨ ψ2(v̄, ā) ∨

When Is Reachability Intrinsically Decidable? 219

The reachability relation in any graph is existentially definable. The desired
formula is the disjunction of formulas pi(x, y), where pi(x, y) states that there is
a path of length i between x and y. That is, pi(x, y) = ∃x0...∃xi(x ≡ x0) ∧ (y ≡
xi) ∧ (

∧
m �=n ¬xm ≡ xn) ∧ (

∧
0≤m<i Exmxm+1). The following is an obvious

lemma:

Lemma 1. If relation R of a graph H is existentially definable then in all pre-
sentations of H the relation R is computably enumerable.

Corollary 1. If the complement of the reachability relation of a graph H is ex-
istentially definable then the reachability problem for H is intrinsically decidable.

Proof. Let G be a computable copy of H. By Lemma 1 the complement of reach-
ability in G is c.e. We also know that the reachability relation is c.e. So, the
reachability problem in G is decidable. Hence it is intrinsically decidable. !

We investigate the converse of the corollary above. We provide classes of graphs
in which the complement of the reachability relation is existentially definable.
These results provide logical characterizations of intrinsically decidable reacha-
bility relations.

Notations and conventions. Whenever we write “component” we mean “con-
nected component”. In the rest of the paper we always assume that our graphs
are infinite (save for finite subgraphs of the infinite graphs we are considering).
Also, we assume that the set of vertices of computable graphs coincides with the
set ω of natural numbers. We note that we may construct an infinite computable
graph G by stages, by at each stage s of an effective construction defining a finite
graph Gs with domain an initial segment of ω, such that Gs ⊂ Gs+1, and letting
G = ∪sGs. The graph G will have domain ω, and it will be computable since we
will know by stage s = max{v, w} whether or not there is an edge between the
vertices v and w.

A partial computable function Φ : ωn → ω is one that can be computed by a
Turing machine. We can systematically list all Turing machines T0, T1, . . . , Te, . . .,
and thus give rise to an effective listing of all partial computable functions Φ0, Φ1,
. . . , Φe, Finally, Φe,s denotes the following partial function. The domain of
Φe,s consists of all i ≤ s such that Φe(i) is defined, and the value Φe(i) is ob-
tained within s steps of the computation of the Turing machine Te on input i.
Also, Φe,s(i) ↓ means that the value of Φe,s on input i is defined.

We let X [2] = {{a, b} | a, b ∈ X ∧ a �= b}, the set of unordered pairs from X .
For other basic notations of computability theory the reader is referred to [17].

Our main proofs involve methods from computability theory (see for example
[17]) and computable model theory (see [12]). Our proofs are of two types. The
first type of proofs (Lemma 2 and Proposition 1) are finite injury type of con-
struction common in computable model theory and computability. The second
type of proofs (Theorems 2 and 3) are based on more complicated constructions
known as ∅′′ (the second jump of the computable degree) priority tree construc-
tions (see [17]).

220 B.F. Csima and B. Khoussainov

2 Graphs with Computable Size Functions

In this section we consider graphs all of whose components are finite. We call
these graphs strongly locally finite. Our goal is to characterize certain strongly
locally finite graphs with intrinsically decidable relations.

Let H be a strongly locally finite graph. The component of a vertex v of H
is denoted by C(v). The size function sizeH of H gives for each vertex v the
cardinality of C(v). Thus, sizeH(v) = |C(v)| for all vertices v of H.

Let G = (ω,E) be a computable copy of a strongly locally finite graph H. In
this section we consider those computable graphs G whose size functions sizeG
are computable. Clearly, the function sizeG is computable if and only if for each
vertex v ∈ ω one can effectively compute the number of edges from v. For such
a G, we effectively list all connected components of G as C0, C1, C2, We fix
this listing and use it for the next definitions and results.

Definition 5. We say that components Ci and Cj disjointly embed into Ck if
their disjoint union as a graph can be embedded into Ck. We also define the func-
tion h : ω[2] → ω ∪ {∞} by h(i, j) = |{k : Ci and Cj disjointly embed into Ck}|.
We call h the disjoint embedding function for the presentation G.

This definition implies that if Ci and Cj disjointly embed into Ck then no edge
exists between the images of Ci and Cj in Ck under the embedding.

Lemma 2. Let G be a computable copy of H. Under the assumptions above
about the graph G we have the following properties:

1. If for all n, there exist i, j > n, i �= j, such that h(i, j) = ∞, then the
reachability problem for H is not intrinsically decidable.

2. If there exists an n ∈ ω such that h(i, j) is finite for all i, j > n, i �= j, and h
is computable, then the reachability problem for H is intrinsically decidable.

3. If there exists an n ∈ ω such that h(i, j) is finite for all i, j > n, i �= j, and h
is not computable, then the reachability for H is not intrinsically decidable.

Proof (1). To show that the reachability relation on G is not intrinsically decid-
able, we need to exhibit a computable graph G′ = (ω,E′) isomorphic to G such
that the reachability relation is not decidable on G′. For that the graph G′ must
satisfy the following requirements:

Pe : Φe does not decide the reachability relation on G′

where Φ0, Φ1, . . . is an effective list of all partial computable functions from ω2

to {0, 1}. We consider Φe,s+1(v, w) = 0 to mean that Φe tells us that v and w
are not in the same component, and Φe,s+1(v, w) = 1 to mean that Φe tells us
that v and w are in the same component.

The requirement Pe has a higher priority than Pt if t > e. We will construct
G′ by stages. At stage s we construct a finite graph G′

s so that G′
s is isomorphic

to G restricted to C0 ∪ . . .∪Cs−1, G′
s ⊂ G′

s+1 for all s, and fs is the isomorphism
constructed at stage s. Our desired graph will be G′ = ∪s G′

s.

When Is Reachability Intrinsically Decidable? 221

At stage 0, set G′
0 to be the empty graph. Set f0 to be undefined. Say that all

components Ci are free for all requirements Pe.
At stage s + 1, consider Gs obtained by adding Cs to Gs−1. Let C′

0, . . . , C
′
s−1

be all components in G′
s−1 where each C′

i is isomorphic to Ci via fs for i < s.
Find minimal e ≤ s + 1 such that for some 〈i, j〉 < s with i �= j we have:

1. Pe requires attention and Φe,s+1(v, w) ↓ for some v ∈ C′
i and w ∈ C′

j

2. Ci and Cj disjointly embed into Cs or Φe,s+1(v, w) �= 0.
3. The components Ci and Cj are free for Pe.

If such e does not exist then go to stage s + 2. If Φe,s+1(v, w) �= 0, declare Pe

does not require attention, and declare Ci and Cj not free for all Pt with t > e.
Otherwise, act as follows: (1) Extend C′

i and C′
j to a single component, denoted

by C′
s, such that C′

s
∼= Cs; (2) Build new copies C′

i and C′
j isomorphic to Ci

and Cj ; (3) Redefine fs by mapping Ci to C′
i, Cj to C′

j and Cs to C′
s. Declare

Ci, Cj , Cs not free for Pt with t > e, declare Pt requires attention for t > e, and
declare Pe does not require attention. This completes the construction for G′

s+1.
The correctness of the construction is now a standard proof. The proof is

based on the following two observations. First of all, one inductively shows that
each requirement Pe is satisfied. Secondly, one proves that the function f(v) =
lims fs(v) establishes an isomorphism between G and G′ constructed. !

Proof (2). Suppose h(i, j) is finite for all pairs i, j > n for some fixed n, and
that h is computable. We show that the reachability relation forH is intrinsically
decidable. Note that we can view G as an effective disjoint union of finite graphs
D0, ..., Dn, C0, C1, C2,... , where h(i, j) is finite for all (i, j) corresponding to
Ci, Cj . Let G′ be another computable presentation of G. We want to decide the
reachability problem on G′. Since G′ ∼= G, we may assume that we are given D′

0
∼=

D0, ..., D
′
n
∼= Dn, that is, we can compute membership in the D′

i. Suppose v and
w are vertices of G′. Since G′ is computable, we can approximate each component
C(x) of vertex x by stages C0(x) ⊆ C1(x) ⊆ . . . so that C(x) = ∪sCs(x). We
can decide whether w is reachable from v using the following algorithm:

1. If v ∈ D′
i for some 1 ≤ i ≤ n, then R(v, w) ⇐⇒ w ∈ D′

i.
2. If at any stage s, a path is found from v to w, then declare v, w connected.
3. Find stage s1 at which Cs1(v) = Ci and Cs1 (w) = Cj for some distinct i, j.
4. Find Ck1 , ..., Ckh(i,j) all the components of G into which Ci and Cj disjointly

embed (These can be found since the size function for G is computable) .
5. Find the first stage s2 ≥ s1 such that G′ provides components C′

k1
, ..., C′

kh(i,j)

isomorphic to Ck1 , ..., Ckh(i,j) , and v and w belong to these components.
6. If v and w are in the same component C′

l for some l ∈ {k1, . . . , kh(i,j)} then
declare v, w connected; otherwise, declare v, w are not connected.

By stage s2 when the components C′
k1
, ..., C′

kh(i,j)
are found the components

Cs2(v) and Cs2(w) may now properly extend the old approximations Cs1(v)
and Cs1 (w). For example, it may be that Cs2 (v) = Cs2(w) in which case by item

222 B.F. Csima and B. Khoussainov

(2) v and w are declared connected. It is not too hard to see that the algorithm
provided decides the reachability problem for the graph G′. !

Proof (3). We need to build a computable copy G′ ∼= G such that the reachability
relation is not decidable on G′. We use the same construction as in the proof of
part (1) of this theorem. The only difference is that we modify the list C0, C1, . . .
to contain only those components of G for which h(i, j) is finite.

Suppose Pe is the requirement with the highest priority that is not satisfied.
Let s be the stage when all requirements with higher priorities are satisfied. Since
Φe is the characteristic function of the reachability relation, we can compute the
function h as follows. Consider (i, j) such that Ci, Cj are free for Pe. Note that
there are only finitely many Ci that are not free for Pe. Let t be the stage > s
such that Φe,t(v, w) is defined for some v ∈ C′

i[t] and w ∈ C′
j [t]. Such a stage

must exist since Φe is total, and since by the construction each C′
i is shifted at

most finitely often. We must have Φe,t(v, w) = 0, as otherwise Pe would have
been satisfied at stage t. From this stage on Ci and Cj cannot be disjointly
embedded into Ck for all k > t. Hence h(i, j) can be computed effectively, a
contradiction. !

Corollary 2. The reachability relation on G is intrinsically decidable if and only
if h(i, j) is computable and there is an n such that h(i, j) is finite for all i, j > n.

Proof. The conditions on h in parts (1), (2) and (3) cover all possibilities, and
only condition (2) gives an intrinsically decidable rechability relation.

Theorem 1. The reachability problem for G is intrinsically decidable if and only
if both the reachability and its complement are existentially definable.

Proof. We need only prove the direction that if the reachability problem for
G is intrinsically decidable, then the complement of the reachability relation is
existentially definable. Suppose that the reachability problem for G is intrinsi-
cally decidable. Then by Corollary 2, h is computable and has finite values al-
most everywhere. Let G be viewed as an effective disjoint union of finite graphs
D0, ..., Dn, C0, C1, C2, ..., where h(i, j) is finite for all (i, j) corresponding to Ci,
Cj , as in the proof of Lemma 2 (2). We need to exhibit an existential Lcω formula
ψ(v, w, d) such that for any computable presentation G′ of G there exists some
tuple d

′
of vertices from G′, such that for any vertices v′, w′ of G′, we have that

G′ |= ¬R(v′, w′) ⇐⇒ ψ(v′, w′, d
′
). We use the proof of Lemma 2 (2) to provide

the formula. For any tuple x = (x0, ..., xm), let δ(x) :=
∧

p�=q ¬xp = xq.

For 1 ≤ i ≤ n, let ϕi(v, w, di) := “v ∈ Di” ∧ ¬“w ∈ Di”. Here “v ∈ Di”
abbreviates the formula v = di,1 ∨ ... ∨ v = di,ni , where ni = |Di|.

For all pairs (i, j) ∈ ω[2], we can compute h(i, j), and since G has com-
putable size function, we can compute Ck1 , ...Ckh(i,j) , the h(i, j) many distinct
components in G into which Ci and Cj disjointly embed. That is, for each
l ∈ {i, j, k1, ..., kh(i,j)}, we can compute the vertices {cl,0, ..., cl,nl

} of Cl. We
let xl = (xl,0, ..., xl,nl

). Now for all pairs (i, j) ∈ ω[2], define

When Is Reachability Intrinsically Decidable? 223

ψi,j(v, w) := ∃xixjxk0 ...xkh(i,j) [δ(xi, xj , xk0 , ..., xkh(i,j))

∧
∨

1≤p≤ni

v = xi,p∧
∨

1≤p≤nj

w = xj,p∧

∧

(l,m∈{i,j,k1,...,kh(i,j)}
1≤p≤nl,1≤q≤nm

)

[
∧

G|=E[cl,p,cm,q]

Exl,pxm,q ∧
∧

G�|=E[cl,p,cm,q]

¬Exl,pxm,q]].

There are only finitely many formulas of the form ϕi, and the formulas of the
form ψi,j are computable in (i, j). Hence, the following formula is an effective
disjunction of existential first order formulas:

ψ(v, w, d1, ..., dn) :=
∨

1≤i≤n

ϕi(v, w, di) ∧
∨

(i,j)∈ω[2]

ψi,j(v, w).

From the proof of Lemma 2 (2) it is not hard to see that the formula above
existentially defines the complement of the reachability relation. !

3 Counterexample

A natural question arises whether we can remove the assumption on computabil-
ity of the size function. The goal of this section is to show the assumption cannot
be omitted by outlining the proof of the following theorem:

Theorem 2. There exists a strongly locally finite computable graph G with in-
trinsically decidable reachability relation such that the complement of the relation
is not existentially definable.

Proof. We give a stage-wise construction of G on which the reachability relation
is decidable. Our construction must guarantee the following two properties of G.

First, we need to guarantee that the complement of reachability is not existen-
tially definable. Let ψ0, ψ1, ψe, ... be an effective listing of all infinitary effective
existential formulas with finitely many parameters from G. For each e the graph
G must provide vertices v and w such that G |= R[v, w] ⇐⇒ G |= ψe[v, w]. This
will guarantee that the complement of reachability is not existentially definable.

The second property is that reachability in G must be intrinsically decid-
able. This is done as follows. Let G0,G1,G2, ... be an effective enumeration of all
computable graphs. We ensure that if Ge

∼= G then a computable isomorphism
between G and Ge exists. This with the fact that reachability will be decidable
on G will guarantee the intrinsic decidability of the reachability relation.

We will construct our graph G to consist of finite chains, as described below.
A cycle of length n > 2, denoted as Cn, is a graph isomorphic to {{1, ..., n}, E},
where E = {{1, 2}, {2, 3}, ..., {n−1, n}, {n, 1}}. We link the cycle Cn to the cycle
Cm (both share no vertex) by adding a single new vertex v that has an edge to n
in Cn and an edge to 1 in Cm. Call the resulting graph the chain CnCm. Similarly,
chains Cn1 ...Cnk

and Cm1 ...Cml
are linked to form the chain Cn1 ...Cnk

Cm1 ...Cml
.

224 B.F. Csima and B. Khoussainov

The strategy to defeat a single ψe =
∨

i∈ω ψe,i (in achieving the first property)
is as follows. First, construct unique cycles Ce1 , Ce2 , and Ce3 in G that do not
use any parameters mentioned by ψe. Choose v ∈ Ce1 and w ∈ Ce2 . If at some
stage we see that Gs |= ψe,i[v, w], then extend the cycle Ce3 to a chain Ce1Ce3Ce2 .
Let v′ and w′ be the images of v and w under the disjoint embedding of Ce1

and Ce2 into Ce1Ce3Ce2 . Then since ψe,i is an existential formula, we must have
Gs+1 |= ψe,i[v′, w′], though also Gs+1 |= R[v′, w′].

The strategy to satisfy the second property for a single Ge (say G0) in the pres-
ence of one ψe is the following. Suppose we knew that G0

∼= G, and we wanted
to build a computable isomorphism g0 : G → G0, while still working to defeat
ψe. In this case we would again begin by constructing cycles Ce1 , Ce2 , and Ce3 in
G. However, we would wait until Ge provided components isomorphic to Ce1 , Ce2 ,
and Ce3 , and define our computable isomorphism from G to G0 accordingly, before
choosing v ∈ Ce1 and w ∈ Ce2 and waiting for a stage where Gs |= ψe,i[v, w]. At
that point we would proceed as before, and we would wait for G0 to extend its
component of Ce3 to one of the form Ce1Ce3Ce1 , and we would then define g0 on
this extension. Since we do not know whether G0

∼= G, we will need six unique cy-
cles Ce01 , Ce02 , Ce03 and Ce11 , Ce12 , Ce13 . The cycles Ce01 , Ce02 , Ce03 will be used to
defeat ψe under the assumption that G0 �∼= G. They will not wait for G0 to provide
isomorphic copies of them before proceeding against ψe. The cycles Ce11 , Ce12 , Ce13

will work under the assumption that G0
∼= G. Once G0 exhibits copies isomorphic

to Ce11 , Ce12 , Ce13 , then we will use these cycles to work against ψe. We will know
that we do not need the cycles Ce01 , Ce02 , Ce03 , and so we will link new distinct cy-
cles to each of Ce01 , Ce02 , Ce03 and Ce01Ce03Ce02 (if present), in order to distinguish
them for future definition of the isomorphism g0.

The general construction is a standard and quite technical ∅′′ priority tree
construction, where to defeat ψe while still building the possible computable
isomorphisms for Gi with i < e, we need to have cycles of the form Cσ1 , Cσ2 , Cσ3 ,
where σ ∈ {0, 1}e. That is, the finite binary string σ codes the guess as to which
graphs of higher priority are actually isomorphic to G, and waits for those it feels
are isomorphic to show isomorphic components before proceeding against ψe.

4 Locally Finite Graphs

Here we consider locally finite graphs by allowing infinite components. Recall
that a graph is locally finite if each vertex belongs to only finitely many edges.
A locally finite computable graph G is highly computable if given a vertex v of G
one can compute the number of edges of v. The state spaces of Turing machines
are examples of highly computable graphs. Clearly, the graph constructed in
Theorem 2 is not highly computable.

It is easy to turn the graph built in Theorem 2 into a locally finite graph
with intrinsically decidable reachability relation such that (1) all components of
the graph are infinite and (2) the complement of reachability is not existentially
definable. One may assume that the reason for such a phenomenon is that the

When Is Reachability Intrinsically Decidable? 225

graph is not highly computable. However, by slightly modifying the construction
in Theorem 2, one can prove this:

Theorem 3. There exists a highly computable graph G (that necessarily pos-
sesses infinite components) with intrinsically decidable reachability relation such
that the complement of the relation is not existentially definable.

To get a positive result we use the Ash-Nerode theorem [6] applied to reachabil-
ity relations on computable graphs. Let G = (V,E) be a computable graph and
R be its reachability relation. Assume that the following condition, called the
Ash-Nerode condition, holds: There exists an algorithm that given a FO exis-
tential formula φ(x, y, ā), where ā ∈ V , decides whether G |= ∀x∀y(φ(x, y, ā) →
¬R(x, y)). This implies that R is decidable, and given and FO existential for-
mula ψ(ā), where ā ∈ V , we can decide whether G |= ψ(ā).

Theorem 4 (Ash-Nerode [6]). If the computable graph G = (V,E) and the
reachability relation R satisfies the Ash-Nerode condition then R is intrinsically
decidable if and only if R and V 2 \R are both existentially definable. !

Below we provide a sufficient condition for reachability not to be intrinsically
decidable. Our goal is to extend Lemma 2 (1) for locally finite computable graphs.

Assume that g(i) = limj→∞ f(i, j) exists for every i, where f : ω × ω → ω is
a computable function. Intuitively, the function f approximates the value g(i)
by making finitely many guesses about the value of g(i) and eventually makes a
correct guess. We say that a set X ⊆ ω is a Δ0

2-set if there exists a computable
function f : ω × ω → {0, 1} such that X(i) = limj f(i, j) for all i ∈ ω. The
function f is called an approximation to X .

Proposition 1. Let G be a locally finite computable graph with decidable reach-
ability relation. For each s ∈ ω, let Gs be the restriction of the graph of G to
{0, ..., s}. Since G is computable, we can compute Gs. For each v ∈ {0, ..., s},
let Cs(v) denote the connected component of v in Gs. Assume that there exists
an infinite Δ0

2-set of vertices X such that (1) Any two distinct elements of
X are in distinct components of G; and (2) For all (x, y) ∈ X [2] and for all
t ≥ 1 there exist infinitely many distinct components of G into which Ct(x) and
Ct(y) disjointly embed. Then the reachability relation on G is not intrinsically
decidable.

Proof. Since reachability on G is decidable, we may assume that if Cmax(v,w)(v) �=
Cmax(v,w)(w), then Cs(v) �= Cs(w) for all s. We build a computable graph G′ ∼= G
by meeting the requirements for e ∈ ω:

Pe : Φe is not the characteristic function of the reachability relation on G′.

We will construct G′ by stages. At each stage s we will have a function gs : Gs
∼=

G′
s and we will ensure that g = lims gs exists. If we declare that gs(v) = v′, then

we will define gs such that gs : Cs(v) ∼= Cs(v′). If at a later stage t the component
of v in G grows (Cs(v) � Ct(v)), and we still have gt(v) = gs(v), then we will add

226 B.F. Csima and B. Khoussainov

a new vertex to G′
t and define gt to extend gs so that gt : Ct(v) ∼= Ct(v′). To meet

requirement Pe we will find vertices v′e and w′
e in G′ such that if Φe(v′e, w

′
e) = 1

then G′ |= ¬Ev′ew
′
e and if Φe(v′e, w′

e) = 0 then G′ |= Ev′ew
′
e. Let {Xs}s∈ω be a

computable approximation to X . Find minimal e ≤ s + 1 such that Pe requires
attention and either: (1) Φe,s+1(v′, w′) ↓�= 0 for some v′ and w′ that are free
for Pe and are such that Cs(v′) �= Cs(w′); or (2) Φe,s+1(v′, w′) = 0 for the
least pair (v, w) ∈ Xs for which v′ and w′ both free for Pe. (We have used the
shorthand g−1

s (v′) = v.)
If such e does not exist then go on to the next stage. Otherwise, if case (1),

declare Pe does not require attention, and declare all current and future members
of Cs(v′) and Cs(w′) not free for all Pt with t > e. In case (2), speed up the
enumerations of X and G until either (A) we find a stage t > s where (v, w) �∈ Xt

or (B) we find a new component Ct(z) on which we have yet to define g and
into which Cs(v) and Cs(w) disjointly embed. In case (A), move to stage t+1 of
the construction. In case (B), extend Cs(v′) and Cs(w′) to a single component,
denoted by Ct(z′), such that Ct(z′) ∼= Ct(z); build new copies Ct(v′) and Ct(w′)
isomorphic to Ct(v) and Ct(w), respectively; redefine gt by mapping z to z′, v
to (the new) v′, w to (the new) w′, and extending the map to an isomorphism
Gt
∼= G′

t. Declare all current and future members of Ct(v′), Ct(w′), and Ct(z′)
not free for all Pt with t > e, declare Pt requires attention for all t > e, and
declare Pe does not require attention. Continue to stage t+1 of the construction.
This completes the construction for G′

s+1.
One can now show by induction on e that each requirement is satisfied, having

only caused finitely many components to be non-free for lower priority require-
ments. The marking of all relevant components as “not free” for lower priority
requirements after an action for Pe ensures that g and g−1 are only ever re-
defined finitely often on any given input. This together with the fact that at
each stage s, gs : Gs

∼= G′
s shows that g establishes an isomorphism between G

and G′. Thus G ∼= G′, but the reachability relation is not decidable on G′. !

5 Application

We now apply results obtained to the class of automatic graphs. Recall that a
graph is automatic if its domain is finite automaton recognizable, and there exists
a two tape synchronous finite automaton that recognizes the edge relation. For
precise definition and examples see [14]. Given an automatic graph G, a vertex
v, and Φ(x) a first order formula, one can effectively decide if Φ(v) is true [14].
Hence, if G is automatic then the function that outputs the number of edges for
any given vertex v in G is computable. We now apply our results above to the
following theorem.

Theorem 5. Let G be an automatic graph such that either G is strongly locally
finite or the reachability in G is finite automata recognizable. Then the reachabil-
ity problem for G is intrinsically decidable if and only if the reachability relation
and its complement are both existentially definable.

When Is Reachability Intrinsically Decidable? 227

Proof. If G is strongly locally finite then Theorem 1 does the job. This follows
from the fact that for automatic strongly locally finite graphs the size function is
always computable. Now, suppose that G = (V,E) is automatic and the reacha-
bility relation R is finite automata recognizable. Then, (V,E,R) is an automatic
structure. Hence, the Ash-Nerod condition holds true for this structure. The rest
follows from the Ash-Nerode theorem.

References

1. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs
with well quasi-ordered domains. ICom 160, 109–127 (2000)

2. Abdulla, P.A., Collomb-Annichini, A., Bouajjani, A., Jonsson, B.: Using forward
reachability analysis for verification of lossy channel systems. Formal Methods in
System Design 25(1), 39–65 (2004)

3. Aceto, L., Burgueno, A., Larsen, K.G.: Model checking via reachability testing for
timed automata. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 263–280.
Springer, Heidelberg (1998)

4. Allender, E.: Reachability problems: An update. In: Cooper, S.B., Löwe, B., Sorbi,
A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 25–27. Springer, Heidelberg (2007)

5. Alur, R., Dill, D.: Theory of timed automata. TCS 126, 183–235 (1994)
6. Ash, C.J., Nerode, A.: Intrinsically recursive relations. In: Aspects of effective al-

gebra (Clayton, 1979), pp. 26–41. Upside Down A Book Co., Yarra Glen (1981)
7. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:

Application to model checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243. Springer, Heidelberg (1997)

8. Bouajjani, A., Esparza, J., Schwoon, S., Strejcek, J.: Reachability analysis of mul-
tithreaded software with asynchronous communication. In: Ramanujam, R., Sen,
S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 348–359. Springer, Heidelberg (2005)

9. Bouajjani, A., Touili, T.: On computing reachability sets of process rewrite systems.
In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 484–499. Springer, Heidelberg
(2005)

10. Caucal, D.:On infinite terms having a decidable monadic theory. In:Diks, K., Rytter,
W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002)

11. Colcombet, T., Löding, C.: Transforming structures by set interpretations, Tech-
nical report AIB-2006-07 of RWTH Aachen (2006)

12. Ershov, Y.L., Goncharov, S.S., Nerode, A., Remmel, J.B., Marek, V.W.: Handbook
of recursive mathematics. Studies in Logic and the Foundations of Mathematics, ,
vol. 1, 2, vol. 138, 139. North-Holland, Amsterdam (1998)

13. Ibarra, O.H., Bultan, T., Su, J.: On reachability and safety in infinite-state systems.
International J. of Foundations of Comp. Sci. 12(6), 821–836 (2001)

14. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

15. Libkin, L.: Elements of finite model theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, Berlin (2004)

16. Rybina, T., Voronkov, A.: A logical reconstruction of reachability. In: Ershov
Memorial Conference, pp. 222–237 (2003)

17. Soare, R.I.: Recursively enumerable sets and degrees. Perspectives in Mathematical
Logic. Springer, Berlin (1987)

18. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Com-
put. 1(2), 146–160 (1972)

Some New Modes of Competence-Based

Derivations in CD Grammar Systems

Erzsébet Csuhaj-Varjú1,�, Jürgen Dassow2, and György Vaszil1,��

1 Computer and Automation Research Institute, Hungarian Academy of Sciences
Kende u. 13-17, H-1111 Budapest, Hungary

{csuhaj,vaszil}@sztaki.hu
2 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik PSF 4120,

D-39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

Abstract. We introduce some new cooperation protocols for cooperat-
ing distributed (CD) grammar systems. They depend on the number of
different nonterminals present in the sentential form if a component has
finished its work, i.e. on the final competence or efficiency of the grammar
on the string (the competence is large if the number of the different non-
terminals is small). We prove that if the underlying derivation mode is
the t-mode derivation, then some variants of these systems determine the
class of random context ET0L languages. If these CD grammar systems
use the k step limited derivations (for k ≥ 3) as underlying derivations,
they are able to generate any recursively enumerable language.

1 Introduction

The original motivation for the introduction of cooperating distributed grammar
systems (CD grammar system for short) was to model the blackboard type
problem solving systems by grammatical means (see [4,6]). In these systems, the
grammars generate a common sentential form in turn according to a cooperation
protocol (derivation mode). The grammars represent problem solving agents, the
sentential form describes the actual state of the problem solving process, and
the derivation corresponds to the solving of the problem. Most of the derivation
modes of these systems that have been studied so far are based on the so-
called competence of the component grammars which is essentially the number of
different nonterminals in the sentential form which can be rewritten by the rules
of the component (the competence is high, if this number is large). This concept
reflects the idea that the nonterminals correspond to unsolved subproblems and
their replacement to a step to their solutions. For details, we refer to [3,1,2,5]
and the summarizing article [7].

� Also works with: Department of Algorithms and Their Applications, Faculty of In-
formatics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/c.

�� Part of the research was carried out while the author was at the Institute of Computer
Science, University of Potsdam.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 228–239, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Some New Modes of Competence-Based Derivations 229

The above notion of competence is measured on the current sentential form
which is a natural idea, since the current sentential form is given/known, and
it is easy to compute the most competent components. On the other hand,
the components can create new nonterminals (i.e., new subproblems), such that
the sentential form obtained by the work of a competent component can be
very difficult with respect to the problem solving. Therefore, another natural
concept of competence can be based on the number of different nonterminals
(i.e., unsolved subproblems) in the sentential form obtained after the grammar
finished the derivation.

In this paper we propose derivation modes based on three variations of this
new concept of competence. The first one allows a component to be active if it is
able to derive a sentential form with a minimal number of different nonterminals
(or unsolved subproblems). Then one of these most competent components per-
forms an arbitrary derivation in the given underlying mode. The second variant
differs from the first one only in the requirement that the chosen most com-
petent component has to perform a derivation which leads to a sentential form
with a minimal possible number of different nonterminals. In the case of the third
variant every component performs a derivation on the sentential form simulta-
neously and proposes its result; then a proposed string with a minimal number
of different nonterminal occurrences is chosen and the derivation continues with
this string.

In this paper we study the generative power of the associated CD grammar
systems. We prove that if the underlying derivation mode is the t-mode deriva-
tion, then some variants of these systems determine the class of random context
ET0L languages. If these CD grammar systems use the k step limited derivations
(for k ≥ 3) as underlying derivations, they are able to generate any recursively
enumerable language. Due to the lack of space, we present the proofs with only
the necessary details; the full proofs can easily be obtained with some simple
technical considerations.

2 Definitions

We first present some notations used in the paper. The cardinality of a finite set
X is denoted by card(X). The set of all (non-empty) words over an alphabet X
is denoted by X∗ (and X+, respectively); the empty word is denoted by λ. For
a non-empty word w, alph(w) denotes the minimal alphabet X (with respect to
inclusion) such that w ∈ X+.

Throughout the paper, we assume that the reader is familiar with the basic
notions of formal language theory ([10]). For the sake of completeness, we recall
the definition of some language families which will be used in the sequel. We
first note that we denote by L(CF) and L(RE) the class of context-free and
recursively enumerable languages, respectively.

An extended tabled interactionless L system (an ET0L system) is a construct
G = (V, T,P , w) where V is an alphabet, T is a subset of V , w ∈ V + and,
P = {P1, P2, . . . , Pr} for some r ≥ 1 where, for 1 ≤ i ≤ r, Pi is a finite subset of

230 E. Csuhaj-Varjú, J. Dassow, and G. Vaszil

V × V ∗ such that, for any a ∈ V , there is at least one element (a, v) in Pi. As
usually, we write a → v instead of (a, v). We say that x ∈ V + directly derives
y ∈ V ∗ in G (written as x =⇒ y), if x = x1x2 . . . xn, y = y1y2 . . . yn, xi ∈ V ,
yi ∈ V ∗, 1 ≤ i ≤ n, and there is a j, 1 ≤ j ≤ r, such that xi → yi ∈ Pj for
1 ≤ i ≤ n. The language L(G) generated by the ET0L system G is defined as
L(G) = {z | z ∈ T ∗, w =⇒∗ z} , where =⇒∗ is the reflexive and transitive
closure of =⇒.

A random context ET0L system (an RCET0L system, in short) is a construct
G = (V, T,P , w) where V , T and w are specified as in the case of an ET0L system,
P = {P1, P2, . . . , Pr} for some r ≥ 1 such that, for 1 ≤ i ≤ r, Pi = (P ′

i , Ri, Qi),
where Ri and Qi are subsets of V , and G′ = (V, T, {P ′

1, P
′
2, . . . , P

′
r}, w) is an

ET0L system. We say that x ∈ V + directly derives y ∈ V ∗ in G (written as
x =⇒ y), if x =⇒ y holds with respect to P ′

i in G′ for some i, 1 ≤ i ≤ r, and
every letter of Ri occurs in x and no letter of Qi occurs in x. The language L(G)
generated by the RCET0L system G is defined as L(G) = {z | z ∈ T ∗, w =⇒∗

z} , where =⇒∗ is the reflexive and transitive closure of =⇒.
By L(ET0L) and L(RCET0L)) we denote the families of all languages gener-

ated by ET0L systems and random context ET0L systems. For detailed infor-
mation on these language families we refer to [8] and [10].

A context-free programmed grammar (with appearance checking) is denoted
by G = (N,T, P, S) where N , T with N ∩ T = ∅ are the set of nonterminals
and terminals, respectively, S ∈ N is the start symbol (the axiom), and P is
a finite set of rules of the form (r : A → z, Succr, Failr), where r ∈ lab(P)
is the label of the rule, A ∈ N , z ∈ (N ∪ T)∗, and Succr, Failr ⊆ lab(P)
are the success and failure sets of rule r, respectively. A word w ∈ T ∗ is an
element of the language L(G) generated by G if and only if there is a derivation
S = y0 =⇒r1 y1 =⇒r2 y2 =⇒r3 . . . =⇒rk

yk = w where, for 1 ≤ i ≤ k, ri =
(ri : Ai → zi, Succri, Failri) and (1) yi−1 = x1Aix2, yi = x1zix2 and, if i < k,
ri+1 ∈ Succri, or (2) |yi−1|Ai = 0, yi = yi−1 and, if i < k, ri+1 ∈ Failri. The
class of languages generated by context-free programmed grammars is denoted
by L(PR).

We now present the notion of a cooperating distributed grammar system (for
details we refer to [6] and [9]).

A cooperating distributed grammar system (a CD grammar system, in short)
is a construct G = (N,T, P1, P2, . . . , Pn, S) , where N is a set of nonterminals
and T is a set of terminals, S ∈ N is the start symbol, and for 1 ≤ i ≤ n, the
component Pi is a set of context-free productions.

For 1 ≤ i ≤ n, the set of all nonterminals A such that there is a rule A → w
in Pi is denoted by dom(Pi).

We say that a derivation D1 : x =⇒∗ y in the CD grammar system G is
performed in the terminating mode (for short, in t-mode) if there is an i, 1 ≤
i ≤ n, such that D1 : x = x0 =⇒Pi x1 =⇒Pi x2 =⇒Pi . . . =⇒Pi xk = y, k ≥ 1,
and dom(Pi) ∩ alph(y) = ∅. That is, a component Pi performs a derivation in
the t-mode, if it continues rewriting the sentential form as long as it is able to
replace a nonterminal. In this case, we write x =⇒t

Pi
y.

Some New Modes of Competence-Based Derivations 231

We say that a derivation D2 : x =⇒∗ y in G is performed in the k step mode
derivation (in short, in the = k-mode), where k ≥ 1, if there is a component Pi,
for some i, 1 ≤ i ≤ n, such that D2 : x = x0 =⇒Pi x1 =⇒Pi x2 =⇒Pi . . . =⇒Pi

xk = y. That is, component Pi rewrites the sentential form according to the
= k-mode derivation, if it performs exactly k derivation steps on the string. We
write then x =⇒=k

Pi
y.

The language L(G,α), where α ∈ {t} ∪ {= k | k ≥ 1}, generated by a CD
grammar system G = (N,T, P1, P2, . . . , Pn, S), n ≥ 1, in the α-mode derivation
is defined as the set of all words w ∈ T ∗ such that there is a derivation S =
w0 =⇒α

Pi1
w1 =⇒α

Pi2
w2 =⇒α

Pi3
. . . =⇒α

Pim
wm = w in G.

If one considers CD grammar systems as formal language theoretical models
of problem solving, then the nonterminals in a sentential form correspond to
unsolved subproblems. Therefore, it is natural to say that a component is more
competent in solving a subproblem than some other one if starting from the same
sentential form it derives a string that contains a smaller number of different
nonterminals than the string derived by the other grammar. Notice that this
concept is strongly related to the notion of efficiency, since a component can
be considered more efficient than some other one if it is able to reduce the
number of different open subproblems more efficiently. We may also call this type
of competence final competence since it can only be seen after the component
finishes the derivation.

In the following, we shall formally define cooperation protocols based on this
new concept of competence in CD grammar systems.

Definition 1. Let G = (N,T, P1, P2, . . . , Pn, S), n ≥ 1, be a CD grammar sys-
tem, let x ∈ (N ∪ T)+ and α ∈ {t} ∪ {= k | k ≥ 1}. We set

fcα(x) = min{card(alph(y) ∩N) | x =⇒α
Pi

y, alph(y) �= alph(x), 1 ≤ i ≤ n}.

We say that the component Pi is a component with maximal final competence
(or it is a maximally efficient component) on x in the α-mode derivation if there
is a derivation x =⇒α

Pi
z such that fcα(x) = card(alph(z) ∩N) holds.

We require alph(y) �= alph(x) since otherwise the set of occurring nonterminals
(or the set of unsolved subproblems) is not changed.

In the following we show that fcα(x) can be effectively determined. Let x ∈
(N ∪ T)∗ and α ∈ {t} ∪ {= k | k ≥ 1} be given. Let Z = alph(x) ∩ N =
{A1, A2, . . . Am}, where Ai ∈ N, 1 ≤ i ≤ m. Notice that fcα(x) only depends on
the nonterminals occurring in x, since fcα(x) coincides with fcα(A1A2 . . . Am).
Thus, we can define fcα(Z) = fcα(A1A2 . . . Am). For Z ⊆ N and i, 1 ≤ i ≤ n,
there is a finite set MZ,i = {M1,M2, . . .Ml} of subsets Mj of N, 1 ≤ j ≤ l,
such that (alph(v) ∩ N) ∈ MZ,i for all words v which can be generated by
the component Pi from x in derivation mode α, where alph(x) ∩ N = Z and
α ∈ {t} ∪ {= k | k ≥ 1}. Obviously, MZ,i can be effectively determined (one has
only to check whether A1A2 . . . Am is able to generate by the application of Pi

in the α-mode derivation a word over (T ∪M) for subsets M of N). Thus, for a
set Z ⊆ N , one can effectively compute fcα(Z) and the set Iα(Z) of components
which have maximal final competence on any word x with alph(x) ∩N = Z.

232 E. Csuhaj-Varjú, J. Dassow, and G. Vaszil

Definition 2. Let G = (N,T, P1, P2, . . . , Pn, S), n ≥ 1, be a CD grammar sys-
tem, α ∈ {t} ∪ {= k | k ≥ 1}, and let D : S = w0 =⇒α

Pi1
w1 =⇒α

Pi2
. . . =⇒α

Pim

wm ∈ T ∗, m ≥ 1, be an α-mode derivation in G.
We say that D is an (fc, α)-mode derivation (a derivation with maximal final

competence in the α-mode), if Pij is a maximally efficient component in the
α-mode derivation on wj−1 for all 1 ≤ j ≤ m.

We say that D is an (sfc, α)-mode derivation (a derivation with strongly
maximal final competence in the α-mode), if D is an (fc, α)-mode derivation
and for 1 ≤ j ≤ m, card(alph(wj) ∩N) = fcα(wj−1).

If D is an (fc, α)-mode derivation, then the component starting the derivation
is one of the maximally efficient grammars on the current sentential form, but
the component is allowed to perform an arbitrary α mode derivation. If it is an
(sfc, α)-mode derivation, then the component is not only a maximally efficient
one, but it performs an α-mode derivation resulting in a sentential form with a
minimal number of different nonterminals.

Another natural variant of competence is the case when the performance of
the components is compared. In this case, all components perform a derivation
on a word simultaneously, i.e., every component Pi generates a word xi, and
the generation continues only with those strings xj where card(alph(xj)∩N) ≤
card(alph(xi) ∩N) hold for 1 ≤ i ≤ n.

Definition 3. Let G = (N,T, P1, P2, . . . , Pn, S), n ≥ 1, be a CD grammar sys-
tem. For a string x ∈ (N ∪ T)+ and an n-tuple (y1, y2, . . . , yn) of words such
that x =⇒α

Pi
yi, α ∈ {t} ∪ {= k | k ≥ 1}, we define cc(x, y1, y2, . . . , yn) as the

set of words yj, 1 ≤ j ≤ n, such that card(alph(yj) ∩ N) ≤ card(alph(yi) ∩ N)
for 1 ≤ i ≤ n and alph(yj) �= alph(x).

Let D : S = w0 =⇒α
Pi1

w1 =⇒α
Pi2

. . . =⇒α
Pim

wm ∈ T ∗, m ≥ 1, be an α-
mode derivation. We say that D is a (cc, α)-mode derivation (a derivation with
comparing competence in the α-mode) if there are words yi,j, 1 ≤ i ≤ n and
1 ≤ j ≤ m, such that

– wj−1 =⇒α
Pi

yi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
– yij ,j ∈ cc(wj−1, y1,j, y2,j , . . . , yn,j) for 1 ≤ j ≤ m,
– wj = yij ,j.

The language L(G, β, α), for β ∈ {fc, sfc, cc} and α ∈ {t}∪{= k | k ≥ 1} consists
of all words w ∈ T ∗ that can be derived from S by a (β, α)-mode derivation in
G. The family of languages generated by CD grammar systems with (β, α)-mode
derivations is denoted by L(CD, β, α).

We illustrate the above introduced notions by an example.

Example 1. Let us consider a CD grammar system G = ({S,A,B,C1, C2, C3, C4,
C5, C6}, {a, b, c}, P1, P2, P3, P4, S) where P1 = {S → AB,A → aA′, A → a,B →
bB′}, P2 = {S → AB,A → aA′, B → b, B → bB′}, P3 = {S → AB,A →
C1, B → C2, A → C3C4, B → C5C6}, P4 = {A′ → A,B′ → B} ∪ {Ci → c |
1 ≤ i ≤ 6}. Let us start with the (fc, t)-derivations. First we have to apply P1

Some New Modes of Competence-Based Derivations 233

or P2 since fct(S) = 1 and any application of P3 leads to a word with at least
two nonterminals. By by alternating application of P1 and P4 or P2 and P4 we
generate words of the form anAbnB as long as the chosen component, i.e. P1or
P2 does not use its terminating rule, and P3 cannot be applied to such a word.
If we use a terminating rule of the component, then we obtain w = anbnB′ or
w′ = anA′bn. After applying P4, we can only use P2 in the first case, and only P1

in the second case (since fct(w) = fct(w′) = 0). Thus, L(G, fc, t) = {anbm, ambn |
n > m ≥ 1}.Using (sfc, t)-derivations, we have to apply P1 or P2 to the axiom and
we have to derive a word with one nonterminal only, i.e., we obtain abB′ or aA′b,
respectively. After the application of P4 the derivation has to terminate. Thus,
L(G, sfc, t) = {aab, abb}. In the case of (cc, t)-derivations, we can apply P3 only
if P1 and P2 do not use their terminating rules and from P3 the rules A → C1

and/or B → C2 are used. Therefore, we obtain L(G, cc, t) = {anbm, ambn | n >
m ≥ 1} ∪ {ancbm, ambnc | n ≥ m ≥ 1} ∪ {ancbnc | n ≥ 0}.

3 The Case of Maximal Final Competence

From [4] it is known that L(CD, t) = L(ET0L), and L(CF) ⊂ L(CD,= k) ⊆
L(MAT), for all k ≥ 2 where L(MAT) denotes the class of languages generated
by matrix grammars without appearance checking. We prove that CD grammar
systems working with (fc, t)-mode derivations generate the class of random con-
text ET0L languages and by the (fc,= k)-mode derivations, where k ≥ 3, the
class of recursively enumerable languages.

Lemma 1. L(RCET0L) ⊆ L(CD, fc, t).

Proof. Let G = (V, T, {(P1, R1, Q1), (P2, R2, Q2), . . . , (Pr, Rr, Qr)}, w) be a ran-
dom context ET0L system with Ri = {Ai,1, Ai,2, . . . , Ai,mi} for 1 ≤ i ≤ r. For
1 ≤ i ≤ r and 1 ≤ j ≤ mi + 1, we set V ′ = {x′ | x ∈ V }, V ′′ = {x′′ | x ∈ V },
V (i,j) = {x(i,j) | x ∈ V }, V (i,j)′

= {x(i,j)′ | x ∈ V }. Let us define the homomor-
phisms h′ : V ∗ → (V ′)∗ by h′(x) = x′, h′′ : V ∗ → (V ′′)∗ by h′′(x) = x′′, hi,j :
V ∗ → (V (i,j))∗ by hi,j(x) = x(i,j), and h′

i,j : V ∗ → (V (i,j)′
)∗ by h′

i,j(x) = x(i,j)′
.

We construct the simulating CD grammar system G′ as follows. Let
G′ = (N,T, P0, (P ′

i)1≤i≤r , ((Pi,j)1≤j≤mi+1)1≤i≤r, ((P ′
i,j , P

′′
i,j)1≤j≤mi)1≤i≤r,

(Pfin,i)1≤i≤2, S), where N = {X,X(i,j), X
(i,j)
1 , X

(i,j)
2 , X3, F1, F2, F3 | 1 ≤ i ≤

r, 1 ≤ j ≤ mi} ∪ V ′ ∪ V ′′ ∪
⋃r

i=1

⋃mi+1
j=1 (V (i,j) ∪ V (i,j)′

). Now let
P0 = {S → Xh′(w)}, let
P ′

i = {x′ → x(i,1) | x ∈ V } ∪ {X → X(i,1)}, and
Pi,mi+1 = {x(i,mi+1) → h′(w) | x ∈ V \Qi, x → w ∈ Pi} ∪ {x(i,m1+1) → F1 |

x ∈ Qi} ∪ {X(i,mi+1) → X}, for all 1 ≤ i ≤ r, let
Pi,j = {X(i,j) → X

(i,j)
1 X

(i,j)
2 } ∪ {x(i,j) → x(i,j)′ | x ∈ V },

P ′
i,j = {A(i,j)

i,j → A
(i,j)′

i,j F1F2F3, X
(i,j) → F1} ∪ {x(i,j) → x(i,j)′ | x ∈ V, x �=

Ai,j},
P ′′

i,j = {X(i,j)
1 → X(i,j+1), X

(i,j)
2 → λ} ∪ {x(i,j)′ → x(i,j+1) | x ∈ V }, for all

1 ≤ i ≤ r, 1 ≤ j ≤ mi. Finally, let

234 E. Csuhaj-Varjú, J. Dassow, and G. Vaszil

Pfin,1 = {x′ → x′′ | x ∈ V } ∪ {X → X3},
Pfin,2 = {X3 → λ} ∪ {x′′ → F1 | x ∈ V \ T } ∪ {x′′ → x | x ∈ T }.

We now discuss the possible derivations in G′. Starting from the startsymbol,
S, we obtain Xh′(w), that is, a word of the form Xh′(z). To Xh′(z), we can
only apply the components P ′

1, P
′
2, . . . , P

′
r and Pfin,1. These components have

maximal final competence since all of them only change the names of the letters,
i.e., all the alphabets of the obtained words have the same cardinality.

Let us assume first that we apply Pfin,1. Then we obtain X3h
′′(z). The only

applicable component is Pfin,2 which yields z if z ∈ T ∗ or a word contain-
ing at least one occurrence of F1 if z /∈ T ∗. In the latter case the deriva-
tion cannot terminate since there is no rule with left-hand side F1. Assume
that we apply P ′

i , i.e., we want to simulate the application of (Pi, Ri, Qi) with
Ri �= ∅, that is, with mi ≥ 1, to z. The application of P ′

i gives X(i,1)hi,1(z).
Now two components can be used, Pi,1 and P ′

i,1. Suppose that Ai,1 occurs in z.

Then Pi,1 yields X
(i,1)
1 X

(i,1)
2 h′

i,1(z) and the application of P ′
i,1 leads to z′ with

alph(z′) = alph(h′
i,j(z)) ∪ {F1, F2, F3}. Therefore, only Pi,j has maximal final

competence. The only applicable table is P ′′
i,1 which results in X(i,2)hi,2(z). If

Ai,1 does not occur in z, then only P ′
i,1 has maximal final competence, but it

introduces F1 and therefore we cannot terminate the derivation. Thus, we can
only terminate successfully the derivation if the first letter Ai,1 of Ri occurs in z.
Continuing the procedure, we can check in the same way in succession the pres-
ence of Ai,2, Ai,3, . . . , Ai,mi and we finally obtain X(i,mi+1)hi,mi+1(z) (if mi = 0,
we obtain this string already in the first step). Then the only continuation is the
application of Pi,mi+1 which results in Xh′(v) where z =⇒Pi v in G (note that
we check the absence of the symbols of Qi in this step, because an occurrence
of a letter of Qi leads to an occurrence of F1). Therefore, we have simulated one
derivation step of G (on primed versions of the words). Now it is very easy to
see that L(G) = L(G, fc, t), the further details are left to the reader.

Lemma 2. L(CD, fc, t) ⊆ L(RCET0L).

Proof. Let G = (N,T, P1, P2, . . . , Pn, S) be a CD grammar system working
with (fc, t)-mode derivations. We construct the simulating RCET0L system
G′ = (V, T,P , XS) as follows: Let V = N ∪ T ∪ {X} ∪ {[i] | 1 ≤ i ≤ n}
and P = {R(U) | U ⊆ N} ∪ {Rfin} ∪

⋃n
i=1{R(i), R(i)′}. Let us define R(U) =

({X → [i] | i ∈ It(U)}, U ∪ {X}, N \ U}) for U ⊆ N, R(i) = (Pi, {[i]}, ∅),
for 1 ≤ i ≤ n, R(i)′ = ({[i] → X}, {[i]}, dom(Pi)}), for 1 ≤ i ≤ n, and
Rfin = ({X → λ}, {X}, N).

Assume that we have a sentential form Xv with v ∈ (N ∪ T)+. By the
permitting and forbidden contexts, we can only apply the table R(U) with
U = alph(v)∩N . Its application gives [i]v where i ∈ It(U), i.e., the component Pi

applicable with maximal final competence in t-mode to v. Then, the only appli-
cable table is R(i) which has to be applied as long as the sentential form contains
a letter of dom(Pi). Thus, by R(i) we simulate the application of Pi in the t-
mode. Finally, we get Xv′ by an application of R(i)′ where v =⇒t v′. Thus, the
derivations in G′ have the form XS =⇒∗ Xv1 =⇒∗ Xv2 =⇒∗ Xv3 =⇒∗ . . . =⇒∗

Some New Modes of Competence-Based Derivations 235

Xvn =⇒ vn (in the last step we apply the table Rfin which ensures that vn ∈ T ∗)
where S =⇒t

Pi1
v1 =⇒t

Pi2
v2 =⇒t

Pi3
v3 =⇒t

Pi4
. . . =⇒t

Pin
nn is a terminating

(fc, t)-mode derivation of G. Now it is easy to show that L(G, fc, t) = L(G′), we
leave the details to the reader.

Combining Lemma 1 and 2 we obtain

Theorem 1. L(CD, fc, t) = L(RCET0L).

Theorem 2. L(RE) = L(CD, fc,= k) for any k ≥ 3.

Proof. We show that L(PR) ⊆ L(CD, fc,= k), k ≥ 3. This is sufficient, since
L(RE) = L(PR) and the inclusion L(RE) ⊇ L(CD, fc,= k) can be proved
by using standard techniques. First we deal with the case of k = 3. Let G =
(N,T, P, S) be a programmed grammar. Without loss of generality we may
assume that the rules of G are of the form (r : A → z, Succr, Failr) where
r ∈ lab(P) and z = BC with B,C ∈ N or z ∈ T . We construct the simulating
CD grammar system

G′ = (N ′, T, P0, (Pr,i)r∈lab(P),1≤i≤5, (Pr)r∈lab(P), (Pr̄,1, Pr̄,2)r∈lab(P), (PA)A∈N ,
Pt,1, Pt,2, S̄) as follows. Let
N ′ = {A,Ar, [r], [r]′, [r]′′, [r̄], [r̄]′, [r̄]′′ | A ∈ N, r ∈ lab(P)} ∪ {[t], [t]′, [t]′′, X,X ′,
X ′′, Y, Y ′, Z,W, F, S′, S′′, S̄}, and let us define the components of the system in
the following way:

P0 = {S̄ → S′, S′ → S′′, S′′ → [r]SXY | r ∈ lab(P)}, and for all rules
(r : A→ BC,Succr, Failr) we define

Pr,1 = {A→ BrCrW [r]′, X → X ′, Y → Y ′},
Pr,2 = {[r] → [r]′′, [r]′′ → Z, [r]′ → [s], [r]′ → [s̄], [r]′ → [t] | s ∈ Succr},
Pr,3 = {Z → λ,X ′ → X,Y ′ → Y },
Pr,4 = {Br → B,Cr → C,W → λ},
Pr,5 = {[r] → [r]′′, [r]′′ → F, [s]′ → F | s �= r},

and let the set Pr = {P (r)
i | 1 ≤ i ≤ 3} contain the following components

P
(r)
1 = {[r]′ → F,X → F, Y → F}, P (r)

2 = {[r]′ → F,X ′ → F, Y → F}, and
P

(r)
3 = {[r]′ → F,X → F, Y ′ → F}. Moreover, we define

Pr̄,1 = {[r̄] → [r̄]′, [r̄]′ → [r̄]′′, [r̄]′′ → [s], [r̄]′′ → [s̄], [r̄]′′ → [t] | s ∈ Failr},
Pr̄,2 = {X → X ′, X ′ → F, [r̄] → A}.

Now, for each A ∈ N , let PA = {[t] → A,X → X ′, X ′ → F}, and finally let
Pt,1 = {[t] → [t]′, X → X ′, X ′ → X ′′}, Pt,2 = {[t]′ → λ, Y → λ,X ′′ → λ}.

When G′ starts working, the only applicable component is P0, and it produces
a sentential form [r]SXY for some rule r. In general, sentential forms w of G
correspond to sentential forms w′ = w1[r]w2XY or w′ = w1[r̄]w2XY of G′ where
w = w1w2, X,Y are additional marker nonterminals, and [r] or [r̄], r ∈ lab(P),
signals that a successful or an unsuccessful application of the rule r, respectively,
will follow.

Suppose that the sentential form of G′ is of the form w′ = w1[r1]w2XY for
some r1 ∈ lab(P). Then there are one or more applicable components among
Pr,1, r ∈ lab(P) where r = r1 not necessarily holds. Let us consider one of these

236 E. Csuhaj-Varjú, J. Dassow, and G. Vaszil

components. If (r : A → BC,Succr, Failr), then the application of Pr,1 might
increase the number of nonterminals in the sentential form by three or four,
depending on the number of occurrences of the nonterminal A present in the
sentential form.

If the rules of Pr,1 are applied in such a way that more than one occurrences
of the symbol A are rewritten, then at least one of X or Y remains unprimed,
thus the components in Pr, component Pr,4, and Pr,5 would be able (by the left
side of their rules) to rewrite the sentential form. Since if A was rewritten more
than once, then there has to be more than one occurrences of the symbol [r]′

present, component Pr,5 cannot decrease the number of nonterminals, therefore
some component from Pr (and possibly component Pr,4) must be applied (in
some order), since one of the elements of Pr is able to decrease the number
of nonterminals by one (and Pr,4 might also be able to do it, if the sentential
form contains additional B or C nonterminals). The elements of Pr (one of
which must be applied in any case) produce a sentential form containing the
trap symbol F which cannot be rewritten, thus, a derivation of G′ can only be
successful, if Pr,1 is used to rewrite one A to BrCrW [r]′, and XY to X ′Y ′. Now
the component Pr,4, and in case r �= r1 also Pr,5 is able to decrease the number
of nonterminals by one (by at least one in case of Pr,4), thus they have to be
applied, and produce a sentential form where W is erased, BrCr is changed
to BC, and if r �= r1, then the trap symbol F is present. If we assume that
the r = r1, that is, the component Pr1,1 corresponding to rule r1 of G was
applied, then the derivation can be continued with component Pr1,2 which does
not change the number of nonterminals but changes [r1]′ to [s], [s̄], or [t]. If now
Pr1,3 is used which decreases the number of nonterminals by one by erasing Z
and changing X ′Y ′ back to XY , then we obtain a sentential form w′

1[s]w
′
2XY ,

w′
1[s̄]w′

2XY , or w′
1[t]w′

2XY where w1w2 can be rewritten to w′
1w

′
2 by rule r1 of

P , and s ∈ Succr1 .
If we have a string of the form w1[s]w2XY , the simulation of the successful

application of rule s will follow, as described above. If we have w1[s̄]w2XY ,
the failure of the application of rule s will be simulated by the components
Ps̄,i, 1 ≤ i ≤ 2, both of which are able to take three derivation steps and not
increase the number of different nonterminals. If there is no A present, thus, the
successful application of rule (s : A → BC,Succs, Fails) is not possible, then
none of these components change the number of nonterminals, therefore, the
successful derivation has to be continued with Ps̄,1 which introduces a symbol
corresponding to a rule in Fails. If there is an A in the sentential form, that
is, when rule s cannot be applied unsuccessfully, then only Ps̄,2 can be used (so
the trap symbol is introduced) because in this case it decreases the number of
nonterminals.

If we have w1[t]w2XY , that is, when the nonterminal [t] is introduced, the
simulation of G by G′ should be finished. This is done by components PA, and
Pt,i, 1 ≤ i ≤ 2 which successfully terminate the derivation if there is no terminal
present in the sentential form.

Some New Modes of Competence-Based Derivations 237

To prove the statement for any k ≥ 3, we might modify the construction above
by adding k − 3 different additional marker nonterminals to the sentential form
and k − 3 additional rules to the components which either prime or un-prime
these symbols in k − 3 additional steps (or remove them when the derivation is
finished). Since priming or unpriming the additional symbols does not change the
number of different nonterminals in the sentential form, the arguments above also
hold for this modified system which then simulates G with k steps derivations.

4 The Case of Strongly Maximal Final Competence

In this section we first present a lower and an upper bound for the generative
power of CD grammar systems using (sfc, t)-mode derivations and then show
that these systems with (sfc,= k)-mode derivations, for k ≥ 3, generate all
recursively enumerable languages as with (fc,= k)-mode derivations.

Lemma 3. L(CF) ⊂ L(CD, sfc, t).

Proof. The inclusion follows from the fact that any context-free grammar can
be considered as a CD grammar system with only one component in the t-mode
derivation, thus in the (sfc, t)-mode derivation. To prove the strictness of the
inclusion, we consider the CD grammar system G = ({S,A,B,A′, B′, A′′, B′′},
{a, b, c}, P1, P2, P3, S) with P1 = {S → AB, A → aA′b, B → B′c}, P2 = {S →
AB, A → A′′, B → B′′}, P3 = {A′ → A, B′ → B, A′′ → ab, B′′ → c}, which
generates in the (sfc, t)-mode derivation the non-context-free context-sensitive
language {anbncn | n ≥ 1}.
Lemma 4. L(CD, sfc, t) ⊆ L(RCET0L).

Proof. Let G = (N,T, P1, P2, . . . , Pn, S) be a CD grammar system working with
(sfc, t)-mode derivations. We now construct the simulating RCET0L system G′ =
(V, T,P , XS) with the following components.

Let V = N ∪ T ∪ {X} ∪ {[i, U] | 1 ≤ i ≤ n,U ⊆ N} ∪ {[U] | U ⊆ N},
P = {Rfin} ∪

⋃
U⊆N{R(U), R(U)′} ∪

⋃n
i=1{R(i), R(i)′}, where for U ⊆ N

R(U) = ({X → [i, U ′] | i ∈ ZU , card(U ′) = fc(U)}, U ∪ {X}, N \ U),
R(U)′ = ({[U] → X}, U ∪ {[U]}, N \ U). For 1 ≤ i ≤ n,
R(i) = (Pi, ∅, {X} ∪ {[j, U ′] | 1 ≤ j ≤ n, j �= i, U ′ ⊆ N} ∪ {[U ′] | U ′ ⊆ N}),
R(i)′ = ({[i, U] → [U] | U ⊆ N}, ∅, dom(Pi)}∪{X}∪{[j, U ′] | 1 ≤ j ≤ n, j �=

i, U ′ ⊆ N} ∪ {[U ′] | U ′ ⊆ N}), and Rfin = ({X → λ}, {X}, N).
As in the proof of Lemma 2, one can prove that L(G, sfc, t) = L(G′) taking into

consideration that the tables R(U)′ are used for checking that the simulation of
w =⇒t

Pi
v by tables R(i) and R(i)′ ends with a word v where card(alph(v)∩N) =

fct(w).

Theorem 3. L(RE) = L(CD, sfc,= k), for any k ≥ 3.

Proof. The statement can be proved by modifying the system constructed in the
proof of Theorem 2 by removing the components in the sets Pr and changing
Pr,1 to Pr,1 = {A→ BrCrW [r]′X ′X ′′, X ′ → λ,X ′′ → λ}. For k > 3, we consider
the same modifications as described in the proof of Theorem 2.

238 E. Csuhaj-Varjú, J. Dassow, and G. Vaszil

5 The Case of Comparing Competence

In this section we show that the generative power of CD grammar systems work-
ing with (cc, α)-mode derivations is equal to that of the CD grammar systems
with (fc, α)-mode derivations, where α ∈ {t} ∪ {= k | k ≥ 3}.

Theorem 4. L(RCET 0L) = L(CD, cc, t).

Proof. To prove the inclusion L(RCET 0L) ⊆ L(CD, cc, t), we repeat the proof
of Lemma 1. In any derivation step of the system we have chosen a component
which is in cct(Xh′(z), y1, y2, . . . yk), (for k = 2r+2+

∑r
i=1 mi), too. The reverse

inclusion can be proved as follows. Let G = (N,T, P1, P2, . . . , Pn, S) be a CD
grammar system working with (cc, t)-mode derivations and let U = N ∪ T . For
1 ≤ i ≤ n, we set U (i) = {x(i) | x ∈ U} and define the homomorphism hi : U∗ →
(U (i))∗ by hi(x) = x(i) for x ∈ U . We construct a simulating RCET0L system
G′ = (V, T,P , XS) with the following components. Let V = {X} ∪ {[i] | 1 ≤ i ≤
n} ∪ N ∪

⋃n
i=1 U

(i) ∪
⋃

U⊆N{[U], [U]′, [U]′′} and let P = {Q1, Q2, Q3, Qfin} ∪
{R(i) | 1 ≤ i ≤ n} ∪ {R(U) | U ⊆ N} ∪ {R(U,U1, U2, . . . , Un) | U ⊆ N,Ui ⊆
N, 1 ≤ i ≤ n}.

We set R(U) = ({X → [U]}, U∪{X}, N \U). (If a sentential form Xw is given
(note that this also holds for the axiom), R(U) is only applicable if alph(w) = U ;
therefore we store alph(w) in the first letter).

We define Q1 = ({[U] → [U]′ | U ⊆ N} ∪ {A → A(1)A(2) . . . A(n) | A ∈
N}, ∅, {X}∪{[i] | 1 ≤ i ≤ n}∪

⋃
W⊆N{[W]′, [W]′′}). (By the application of Q1,

any nonterminal occurring in the current sentential form is replaced by a copy
A(i) for 1 ≤ i ≤ n).

Let Q2 = ({A(i) → hi(w) | A → w ∈ Pi}, ∅, {X} ∪ {[i] | 1 ≤ i ≤ n} ∪⋃
W⊆N{[W], [W]′′}). (We replace in parallel the nonterminals A(i) according to

rules of Pi where the upper index i is preserved; this procedure can be repeated
which means that we simulate a derivation in the t-mode for any component Pi

using the letter indexed by i, 1 ≤ i ≤ n).
We set Q3 = ({[U]′ → [U]′′ | U ⊆ N}, ∅, h1(dom(P1)) ∪ h2(dom(P2)) ∪ . . . ∪

hn(dom(Pn)) ∪ {X} ∪ {[i] | 1 ≤ i ≤ n} ∪
⋃

W⊆N{[W], [W]′′}). (By Q3 we check
whether all components have finished their derivation in the t-mode, thus from
Xw we have generated a word [alph(w)]′′v where v contains in a partially indexed
version (the terminals in w are not indexed) of a word yi with w =⇒t

Pi
yi).

Let R(U,U1, U2, . . . , Un) = ({[U]′′ → [i] | hi(Ui) �= hi(U), card(hi(Ui)) ≤
card(hj(Uj)), hj(Uj) �= hj(U), 1 ≤ j ≤ n},

⋃
1≤i≤n hi(Ui)∪{[U]′′},

⋃
1≤i≤n(hi(N)

\ hi(Ui))). (This table can only be applied if – up to the upper indexes –
alph(yi) = Ui); thus from U,U1, U2, . . . , Un we can compute all i’s such that
yi ∈ cct(w, y1, y2, . . . , yn); one of these values is chosen for the continuation).

Finally, let R(i) = ({[i] → X} ∪ {x(i) → x | x ∈ U} ∪ {x(j) → λ | x ∈ U, 1 ≤
j ≤ n, i �= j}, {[i]}, ∅). (The application of R(i) cancels all letters which are
derived by a simulation of a component Pj with j �= i and all upper indexes are
deleted; thus we have Xw =⇒∗ Xyi in G′ where yi ∈ cct(w, y1, y2, . . . , yn)).

By the explanations added to the tables the reader can easily verify that
L(G′) = L(G, cc, t).

Some New Modes of Competence-Based Derivations 239

Theorem 5. L(RE) = L(CD, cc,= k), for k ≥ 3.

Proof. It can easily be seen that the CD grammar system G′ constructed in the
proof of Theorem 2 also simulates the derivations of the programmed grammar
G in the (cc,= k)-mode derivations.

6 Conclusions

We have shown that most of the language families generated with the t-mode
derivation as underlying derivation coincide with the family of random con-
text ET0L languages, while using the = k step derivation modes as underlying
derivation mode all recursively enumerable languages can be generated. Since
the precise relation of the two language classes is not yet known, our results are
contributions to approaching this problem as well.

References

1. ter Beek, M., Csuhaj-Varjú, E., Holzer, M., Vaszil, G.: On competence in CD
grammar systems. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004.
LNCS, vol. 3340, pp. 76–88. Springer, Heidelberg (2004)

2. ter Beek, M., Csuhaj-Varjú, E., Holzer, M., Vaszil, G.: On competence in cooper-
ating distributed grammar systems with parallel rewriting. International Journal
of Foundations of Computer Science 18(6), 1425–1439 (2007)

3. Bordihn, H., Csuhaj-Varjú, E.: On competence and completeness in CD grammar
systems. Acta Cybernetica 12, 347–361 (1996)

4. Csuhaj-Varjú, E., Dassow, J.: On cooperating/distributed grammar systems. Jour-
nal of Information Processing and Cybernetics (EIK) 26, 49–63 (1990)

5. Csuhaj-Varjú, E., Dassow, J., Holzer, M.: CD grammar systems with competence
based entry conditions in their cooperation protocols. International Journal of
Computer Mathematics 83, 159–169 (2006)

6. Csuhaj-Varjú, E., Dassow, J., Kelemen, J., Păun, Gh.: Grammar Systems - A
Grammatical Approach to Distribution and Cooperation. Topics in Computer
Mathematics 5. Gordon and Breach Science Publishers, Yverdon (1994)

7. Dassow, J.: On cooperating distributed grammar systems with competence based
start and stop conditions. Fundamenta Informaticae 76, 293–304 (2007)

8. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. EATCS
Monograph on Theoretical Computer Science 18. Springer, Heidelberg (1989)

9. Dassow, J., Păun, G., Rozenberg, G.: Grammar systems. In: [10], ch. 4, vol. II, pp.
155–213

10. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I – III.
Springer, Heidelberg (1997)

The Synchronization Problem for Strongly

Transitive Automata�

Arturo Carpi1 and Flavio D’Alessandro2

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia,
via Vanvitelli 1, 06123 Perugia, Italy

carpi@dipmat.unipg.it
2 Dipartimento di Matematica, Università di Roma “La Sapienza”

Piazzale Aldo Moro 2, 00185 Roma, Italy
dalessan@mat.uniroma1.it

Abstract. The synchronization problem is investigated for a new class
of deterministic automata called strongly transitive. An extension to un-
ambiguous automata is also considered.

Keywords: Černý conjecture, synchronizing automata, rational series.

1 Introduction

The synchronization problem for a deterministic n-state automaton consists in
the search of an input-sequence, called a synchronizing word such that the state
attained by the automaton, when this sequence is read, does not depend on the
initial state of the automaton itself. If such a sequence exists, the automaton is
called synchronizing. If a synchronizing automaton is deterministic and complete,
a well-known conjecture by Černý claims that it has a synchronizing word of
length not larger than (n − 1)2 [5]. This conjecture has been shown to be true
for several classes of automata (cf [1,2,5,7,9,11,14,16]). The interested reader
is refered to [12] for a historical survey of the problem. Two of the quoted
references deserve a special mention: in [11], Kari proved Černý conjecture for
Eulerian automata, that is, for automata whose underlying graph is Eulerian.
Dubuc [7] proved the conjecture for circular automata, that is, for automata
possessing a letter that acts, as a circular permutation, over the set of states
of the automaton. In [1], Béal proposed an unified algebraic approach, based
upon rational series, that allows one to obtain quadratic bounds for the minimal
length of a synchronizing word of circular or Eulerian automata. In Section 3, by
developing the theoretical approach of [1], we study the synchronization problem
for a new class of automata called strongly transitive. A n-state automaton is
said to be strongly transitive if it is equipped by a set of words {w1, ..., wn},
called independent, such that, for any pair of states s and t, there exists a word
� This work was partially supported by MIUR project ‘‘Linguaggi formali e
automi: teoria e applicazioni’’ and by fundings ‘‘Facoltà di Scienze
MM. FF. NN. 2006’’ of the University of Rome ‘‘La Sapienza’’.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 240–251, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Synchronization Problem for Strongly Transitive Automata 241

wi such that swi = t. The main result of this section is that any synchronizing
strongly transitive n-state automaton has a synchronizing word of length not
larger than

(n− 2)(n + L− 1) + 1,

where L denotes the length of the longest word of an independent set of the au-
tomaton. As a straightforward corollary of this result, one can obtain the bound
2(n−2)(n−1)+1 for the shortest synchronizing word of any n-state synchroniz-
ing circular automaton. Together with this result, some basic properties of such
automata are investigated. It is shown that circular and synchronizing automata
are strongly transitive. In particular it is proved that, if a n-state automaton has
a synchronizing word u, then it has an independent set of words of length not
larger than |u|+ n− 1. It is also proved that the previous upper bound is tight.
More precisely, we construct an infinite family of synchronizing and thus strongly
transitive automata such that any independent set of the automaton contains a
word w such that |w| ≥ |u|+ n− 1 where u is the shortest synchronizing word.
Moreover we give examples of strongly transitive automata which are neither
circular nor synchronizing.

In Section 4, we focus our attention on the class of unambiguous automata.
We recall that the synchronization problem is closely related to that of finding
short words of minimal rank in an automaton. Here, the rank of a word is the
linear rank of the associated transition relation and thus a synchronizing word is
a word of rank 1. In general, the length of the shortest word of minimal rank in a
nondeterministic automaton is not polynomially upperbounded by the number
of states of the automaton [10]. However in the case of unambiguous automata,
such a bound exists: in [4], it is shown that for a n-state complete unambiguous
automaton, there exists a word of minimal rank r of length less than 1

2rn
3. Some

interesting results on such class of automata have been recently proven in [2].
In this paper, we consider unambiguous automata on an alphabet A satisfying

the following combinatorial property: there exist two sets of words V and W such
that A ⊆ V,W and, for any state s, one has

∑

v∈V

Card(sv) ≥ Card(V) and
∑

w∈W

Card(sw−1) ≥ Card(W).

For instance, Eulerian automata satisfy the previous conditions with V = W =
A. The main result of this section is that a synchronizing unambiguous n-state
automaton satisfying the previous conditions has a synchronizing word of length
not larger than

(n− 2)(n + L− 1) + 1,

where L is the maximal length of the words of the set V ∪W . In particular, we
derive that any synchronizing unambiguous Eulerian n-state automaton has a
synchronizing word of length not larger than (n− 1)2.

242 A. Carpi and F. D’Alessandro

2 Preliminaries

We assume that the reader is familiar with the theory of automata and rational
series. In this section we shortly recall a vocabulary of few terms and we fix the
corresponding notation used in the paper.

Let A be a finite alphabet and let A∗ be the free monoid of words over the
alphabet A. The empty word is denoted by ε. If n is a positive integer, An denotes
the set of all words w ∈ A∗ of length |w| = n. For any u ∈ A∗ and a ∈ A, |u|a
denotes the number of occurrences of the letter a in u. For any finite subset W
of A∗, we denote by LW the length of the longest word in W.

A finite automaton is a triple A = (S,A, δ) where S is a finite set of elements
called states and δ is a map δ : S × A −→ Π(S) from S × A into the family
Π(S) of all subsets of S. The map δ is called the transition function of A. The
canonical extension of the map δ to the set S×A∗ is still denoted by δ. For any
u ∈ A∗ and s ∈ S, the set of states δ(s, u) will be also denoted su. If P is a
subset of S and u is a word of A∗, we denote by Pu and Pu−1 the sets:

Pu =
⋃

s∈P

su, Pu−1 = {s ∈ S | su ∩ P �= ∅}.

If Card(sa) ≤ 1 for all s ∈ S, a ∈ A, the automaton A is deterministic; if
Sw �= ∅ for all w ∈ A∗, A is complete; if

⋃
w∈A∗ sw = S for all s ∈ S, A is

transitive. If n = Card(S), we will say that A is a n-state automaton. Let A
be a deterministic automaton. A synchronizing or reset word is a word u ∈ A∗

such that Card(Su) = 1. The state q such that Su = {q} is called reset state. A
synchronizing deterministic automaton is an automaton that has a reset word.
The following conjecture has been raised in [5].

Černý Conjecture. Each synchronizing complete deterministic n-state au-
tomaton has a reset word of length not larger than (n− 1)2.

Let K be a semiring. We recall that a formal series with coefficients in K and vari-
ables in A is a mapping of the free monoid A∗ into K. A series S : A∗ → K is ra-
tional if there exists a triple (α, μ, β) where α ∈ K1×n, β ∈ Kn×1, μ : A∗ → Kn×n

is a morphism of the free monoid A∗ in the multiplicative monoid Kn×n of ma-
trices with coefficients in K, and, for every u ∈ A∗, S(u) = αμ(u)β. The triple
(α, μ, β) is called a representation of S and the integer n is called its dimension.
With a minor abuse of language, if no ambiguity arises, the number n will be
also called the dimension of S. Let A = (S,A, δ) be any n-state automaton. One
can associate with A a morphism ϕA : A∗ → QS×S of the free monoid A∗ in
the multiplicative monoid QS×S of matrices over the set of rational numbers,
defined as: for any a ∈ A and for any s, t ∈ S,

ϕA(a)st =
{

1 if t ∈ sa
0 otherwise.

It is worth to recall some well-known properties of the map ϕA. For every
u ∈ A∗ and for every s, t ∈ S, the coefficient ϕA(u)st is the number of all

The Synchronization Problem for Strongly Transitive Automata 243

distinct computations of A from s to t labelled by u. If every matrix of the
monoid ϕA(A∗) is such that every row does not contain more than one non-null
entry, then A is deterministic. If ϕA(A∗) does not contain the null matrix then
A is complete. The following result is important [3, Corollary 3.6].

Proposition 1. Let S : A∗ → Q be a rational series of dimension n with coef-
ficients in Q. If, for every u ∈ A∗ such that |u| ≤ n− 1, S(u) = 0 the series S
is null.

As a corollary we obtain the following well-known result (see [3], [8]).

Theorem 1. (Moore, Conway) Let S1, S2 : A∗ → Q be two rational series with
coefficients in Q of dimension n1 and n2 respectively. If, for every u ∈ A∗ such
that |u| ≤ n1 + n2 − 1, S1(u) = S2(u), the series S1 and S2 are equal.

Let P be a subset of S. We associate with P a series S with coefficients in Q
defined as: for every u ∈ A∗, S(u) = Card(Pu−1) − Card(P). As proven in [1,
Lemma 2], S is a rational series of dimension n. As a straightforward consequence
one obtains the following corollary of Proposition 1.

Corollary 1. Let A = (S,A, δ) be a deterministic n-state automaton and let P
be a subset of S. Suppose that there exists a word u such that Card(Pu−1) �=
Card(P). Then there exists a word satisfying the previous condition whose length
is not larger than n− 1.

Remark 1. It is useful to remark that every proper and nonempty subset of
a deterministic transitive synchronizing automaton satisfies the hypotheses of
Corollary 1. Indeed, if P is such a set, for any state p of P , one can find a reset
word w such that Sw = {p}. This gives S = Pw−1 and thus Card(Pw−1) >
Card(P).

3 Strongly Transitive Automata

In this section, we deal with deterministic complete automata. As pointed out,
for instance in [13], the study of Černý conjecture can be always reduced to
the case of transitive automata. We now study Černý conjecture for a special
class of transitive automata called strongly transitive. Let us first introduce the
following definition.

Definition 1. Let A = (S,A, δ) be a n-state automaton. Then A is called
strongly transitive if there exist n words w0, . . . , wn−1 ∈ A∗ such that

∀ s, t ∈ S, ∃ i = 0, . . . , n− 1, swi = t. (1)

The set {w0, . . . , wn−1} is called independent.
We observe that a set {w0, ..., wn−1} is independent if and only if, for any

state s of S, the states swi, i = 0, ..., n− 1, are pairwise distinct. The following
example shows that transitivity does not imply strongly transitivity.

244 A. Carpi and F. D’Alessandro

Example 1. Consider the 3-state automaton A over the alphabet A = {a, b}
defined by the following graph:

�������	1
a ��		
a

b

�������	2

b ��		
b

�������	3
a

��

The automaton A is transitive. Let us prove that it is not strongly transitive.
Indeed, by contradiction, let W be an independent set. Then there are words
u, v ∈W such that 3u = 1, 3v = 2. One easily derives that |u|b and |v|b are odd
so that 1u = 1v = 3. Therefore we have a contradiction because the states 1u
and 1v must be distinct. Hence W cannot be independent.

The following proposition shows that any transitive synchronizing automaton is
strongly transitive.

Proposition 2. Let A be a transitive synchronizing n-state automaton. If A
has a reset word of length �, then there exists an independent set W for A such
that LW < � + n.

Proof. Let q and u be a reset state and a reset word ofA respectively with |u| = �.
Since A is transitive, there exist words u0, u1, . . . , un−1 of length < n that label
computations from q to all the states of A. The set W = {uu0, uu1, . . . , uun−1}
is independent and LW < � + n.

By a well known result of [9,13,14], any synchronizing automaton has a reset
word of length not larger than (n3 − n)/6. Thus it has an independent set W
such that LW is not larger than (n3−n)/6+n−1. Moreover if Černý conjecture
is true, the previous number can be lowered to n(n−1). Now we prove that there
exist automata for which the upper bound stated in Proposition 2 is tight. More
precisely, we will construct, for any positive integer n, a synchronizing (2n+ 1)-
state automaton A such that, for any independent set W of A, LW ≥ � + 2n,
where � is the length of the shortest reset word of A.

Example 2. Let n be a positive integer. Consider the automatonAn =(Sn, A, δn)
where A = {a, b, c}, Sn = {0, 1, 2, . . . , 2n} and the transition map δn is defined
as follows:

– 0a = 0c = 0, 0b = 1,
– for i = 1, 2, . . . , n, ia = i− 1, ib = i + (−1)i, ic = i− (−1)i,
– for i = n + 1, n + 2, . . . , 2n− 1, ia = i + 1, ib = ic = n + 1,
– (2n)a = 0, (2n)b = (2n)c = n + 1,

For instance, the graph of the automaton A4 is drawn below. One can eas-
ily check that the word a4 is a reset word of minimal length while the set
a4{ε, b, bc, bcb, bcbc, bcbcb, bcbcba, bcbcba2, bcbcba3}, is an independent set of words
of the automaton A4.

The Synchronization Problem for Strongly Transitive Automata 245

�������	5 a
��

��

�������	6 a
��

��

�������	7 a
��

��

�������	8

a

��

����

b,c

�������	4

b

��

�������	3
c

		 ��a,c
�������	2

b
		 ��a,b

�������	1
c

		 ��a,c
�������	0

b
		 ��a,b

a,c

��

One can easily verify that Sna
n = {0}. Thus An is a synchronizing automaton

and, by Proposition 2, it is strongly transitive. We shall prove that, for any
independent set W , LW ≥ Card(Sn) + |an| − 1. We need the following lemma
whose proof is omitted.

Lemma 1. Let W be an independent set of An. Then every word of W is a
reset word.

Proposition 3. For any independent set W of An one has LW ≥ 3n.

Proof. Let w ∈ W be a word such that 0w = 2n. The main task amounts to
prove that |w| ≥ 3n. By Lemma 1, we can prove the inequality above in the case
that Snw = {2n}. For this purpose, one can observe that, for every i = 0, . . . , n
and σ ∈ A, {0, 1, . . . , i}σ ⊇ {0, 1, . . . , i− 1}. This implies that, for every u ∈ An,

0 ∈ {0, 1, . . . , n}u. (2)

Since the minimal length of a path from 0 to 2n in the graph of An is 2n, one
has |w| ≥ 2n, so that one can factorize w = uv with u, v ∈ A∗ and |u| = n.
Eq. (2) implies that 0 ∈ Snu and therefore, 0v ∈ Snw = {2n}. By the previous
remark, this implies |v| ≥ 2n, so that |w| ≥ 3n and the proof is complete.

The following useful property easily follows from Definition 1.

Lemma 2. Let A be a strongly transitive automaton and let W be an independent
set of A. Then, for every u ∈ A∗, the set uW is an independent set of A.

Proposition 4. Let A = (S,A, δ) be a strongly transitive n-state automaton
and let W be an independent set of A. Then for every subset P of S:

∑

w∈W

Card(Pw−1) = nCard(P). (3)

Proof. Let W = {w0, . . . , wn−1} and let p ∈ S. Because of Eq. (1), one has
S =

⋃n−1
i=0 {p}w−1

i , and the sets {p}w−1
i are pairwise disjoint. This immediately

gives:
n−1∑

i=0

Card({p}w−1
i) = n. (4)

246 A. Carpi and F. D’Alessandro

Let P = {p1, . . . , pm} be a set of m states. Since A is deterministic, for any pair
pi, pj of distinct states of P and for every u ∈ A∗, one has {pi}u−1 ∩ {pj}u−1 =
∅, and, along with Eq. (4), this yields:

n−1∑

i=0

Card(Pw−1
i) =

n−1∑

i=0

m∑

j=1

Card({pj}w−1
i) = mn. (5)

Corollary 2. Let A = (S,A, δ) be a synchronizing transitive n-state automaton
and let W be an independent set of A. Let P be a proper and non empty subset
of S. Then there exists a word v ∈ A∗ such that

|v| ≤ n + LW − 1, Card(Pv−1) > Card(P).

Proof. Let W = {w0, . . . , wn−1}. We first prove that there exist a word v ∈ A∗

with |v| ≤ n− 1 and i = 0, ..., n− 1 such that

Card(P (vwi)−1) �= Card(P). (6)

If there exists i = 0, . . . , n−1 such that Card(Pw−1
i) �= Card(P), take v = ε. Now

suppose that the latter condition does not hold so that Card(Pw−1
0) = Card(P).

Since P is a proper subset of S, by Remark 1 and by applying Corollary 1 to
the set Pw−1

0 , one has that there exists a word v ∈ A∗ such that |v| ≤ n− 1 and
Card(P (vw0)−1) �= Card(P).

Thus take words v and wi that satisfy Eq. (6). If Card(P (vwi)−1) > Card(P),
since |vw−1

i | ≤ n−1+LW , we are done. Finally suppose that Card(P (vwi)−1) <
Card(P). By Lemma 2, the set vW = {vw0, . . . , vwn−1} is independent for A.
Therefore, by Proposition 4,

n−1∑

i=0

Card(P (vwi)−1) = nCard(P),

so that Eq. (6) implies the existence of an index j such that Card(P (vwj)−1) >
Card(P). Since, as before, |vw−1

j | ≤ n− 1 + LW , the claim is proved.

As a consequence of Corollary 2, the following theorem holds.

Theorem 2. Let A = (S,A, δ) be a synchronizing transitive n-state automaton
and let W be an independent set of A. Then there exists a reset word for A of
length not larger than (n− 2)(n + LW − 1) + 1.

Proof. Let P be a non-empty subset of S with Card(P) < n. Since A is syn-
chronizing, there exists some word u such that Card(Pu−1) �= Card(P). By
Corollary 2, we can assume that |u| ≤ n+LW − 1 and Card(Pu−1) > Card(P).
Therefore from any subset P of at least 2 states, by applying the previous ar-
gument (n − 2) times at most, we can construct a word u such that Su = P,
|u| ≤ (n − 2)(n + LW − 1). The claim finally follows from the fact that, in a
synchronizing automaton, there always exist a letter a ∈ A and a set P of two
states such that Card(Pa) = 1.

The Synchronization Problem for Strongly Transitive Automata 247

Remark 2. In [7], Dubuc showed that Černý conjecture is true for circular au-
tomata. An n-state automaton is called circular if its underlying graph has a
Hamiltonian cycle labelled by a power of a letter. This is equivalent to say that
such a letter, say a, acts, as a circular permutation, on the set of states of the au-
tomaton. This implies that the words ε, a, a2, . . . , an−1 form an independent set
of the automaton. Thus, from Theorem 2, one derives that any circular n-state
automaton has a reset word of length not larger than

2(n− 2)(n− 1) + 1 .

We remark that a similar bound was established in [15] for the larger class of
regular automata.

We have seen that circular automata are strongly transitive. However this no-
tion is more general than that of circular automaton as shown in the following
example.

Example 3. Consider an automaton A = (S,A, δ) where A = {a, b, c},

S = {sij | i ∈ {0, ..., �− 1}, j ∈ {0, ..., k − 1}}, �, k ≥ 1

and the map δ satisfies the following conditions:

1. ∀ i = 0, ..., �− 1, ∀ j = 0, ..., k − 2, sija = sij+1, sik−1a = si0,
2. ∀ i = 0, ..., � − 2, ∀ j = 0, ..., k − 1, sijb = si+1j′ and sijc = sij′′ , for some

j′, j′′ = 0, ..., k − 1;
3. ∀ j = 0, ..., k − 1, s�−1jb = s0j′ , and s�−1jc = s0j′′ , for some j′, j′′ =

0, ..., k − 1;
4. ∀ j = 0, ..., k − 2, s0jc = s0j , s0k−1c = s00;

It is easily checked that the automaton is not circular and that the words

ε, a, . . . , ak−1, b, ba, . . . , bak−1, . . . , b�−1, b�−1a, . . . , b�−1ak−1

form an independent set of A and their length is k + � − 2 at most. One could
verify that α = (b(cak−1)k−2c)�(cb�−1)�−2c(cak−1)k−2c is a reset word.

4 Unambiguous Automata

We recall some basic notions and results concerning monoids of (0,1)-matrices.
Let S be a finite set of indexes and let QS×S be the monoid of S × S matrices
with the usual row-column product. For any m ∈ QS×S and for any s ∈ S, the
symbols ms∗ and m∗s will denote respectively the row and the column of m of
index s.

We will denote by {0, 1}S×S the set of the matrices of QS×S whose entries
are all 0 and 1. Any submonoid M of QS×S such that M ⊆ {0, 1}S×S will be
called a monoid of (0, 1)-matrices (or monoid of unambiguous relations)

248 A. Carpi and F. D’Alessandro

A monoid of (0, 1)-matrices is transitive if, for any s, t ∈ S, there exists m ∈M
such that mst = 1.

Let M be a monoid of (0, 1)-matrices. Any row (resp. column) of a matrix of
M will be called a row (resp. column) of M . The sets of the rows and columns of
M are ordered in the usual way: a ≤ b if as ≤ bs for all s ∈ S . The weight of a
row or column a of M is the integer ‖a‖ =

∑
s∈S as. The following two lemmas

will be useful in the sequel. Proofs are omitted for the sake of brevity.

Lemma 3. Let M be a transitive monoid of (0,1)-matrices. If a �= 0 is a row
(resp. column) of M which is not maximal, then one has ‖am‖ > ‖a‖ (resp.
‖ma‖ > ‖a‖) for some m ∈M .

Lemma 4. Let M be a transitive monoid of (0,1)-matrices of dimension n. For
any row a and any column b of M , one has ‖a‖+ ‖b‖ ≤ n + 1.

The minimal ideal of a transitive monoid of (0-1)-matrices has been characterized
by Césari [6]. We summarize in the following statement some of the results of
[6].

Proposition 5. Let M be a transitive monoid of (0-1)-matrices which does not
contain the null matrix and let D be its minimal ideal and p be the minimal rank
of its elements. Then the elements of D are the matrices of M of the form

m = b1a1 + b2a2 + · · ·+ bpap + μ ,

with a1,a2, . . . ,ap maximal rows of M , b1,b2, . . . ,bp maximal columns of M ,
and μ ∈ {0, 1}S×S. Moreover, for any such m one has μ = 0.

An automaton A is said to be unambiguous if and only if M = ϕA(A∗) is a
monoid of (0,1)-matrices. This is equivalent to say that, for any pair of states
s, t and any word u, there exists at most one computation of A from s to t
labelled by u. A reset word of A is any word w such that ϕA(w) has linear
rank 1.

In the sequel we shall suppose that A is a transitive unambiguous n-state
automaton. Moreover, we assume that there exists a finite set V ⊆ A∗ such that
A ⊆ V and for every state p of A

∑

v∈V

Card(pv) ≥ Card(V) . (7)

Notice that if A is deterministic and complete, then any finite set V satisfies
Eq. (7). Under our hypotheses, the following holds.

Lemma 5. For all a ∈ NS,
∑

v∈V ‖aϕA(v)‖ ≥ ‖a‖Card(V) .

In view of Proposition 5, in order to find a reset word of A, it would be useful
to find a word w of short length such that ϕA(w) has a maximal row or column.
Next proposition furnishes a tool to produce rows of increasing weight.

The Synchronization Problem for Strongly Transitive Automata 249

Proposition 6. Let a be a row of ϕA(A∗) such that ‖aϕA(u)‖ �= ‖a‖ for some
u ∈ A∗. Then there exists a word w such that

‖aϕA(w)‖ > ‖a‖ , |w| ≤ LV + n− 1 .

Proof. We notice that the series S defined by S(u) = ‖aϕA(u)‖, u ∈ A∗, is a
rational series of dimension n. Indeed, S has the linear representation (a, ϕA,Λ)
where Λ = t(1, 1, . . . , 1). On the other side, the series S0 defined by S0(u) = ‖a‖
for all u ∈ A∗, is a rational series of dimension 1.

Let u be the shortest word such that ‖aϕA(u)‖ �= ‖a‖. By Proposition 1, one
has |u| ≤ n. If ‖aϕA(u)‖ > ‖a‖, then the statement is verified for w = u. Thus
we assume ‖aϕA(u)‖ < ‖a‖.

Write u = u′x with u′ ∈ A∗ and x ∈ A, and set b = aϕA(u′). Since x ∈ V ,
by Lemma 5 one has

∑

v∈V \{x}
‖bϕA(v)‖ ≥ ‖b‖Card(V)− ‖bϕA(x)‖ .

By the minimality of u, one has ‖b‖ = ‖a‖ while ‖bϕA(x)‖ = ‖aϕA(u)‖ < ‖a‖.
Thus, from the previous equation one obtains

∑

v∈V \{x}
‖bϕA(v)‖ > ‖a‖Card(V \ {x}) .

Consequently, there is v ∈ V \ {x} such that ‖bϕA(v)‖ > ‖a‖. Taking w = u′v,
one has ‖aϕA(w)‖ = ‖bϕA(v)‖ > ‖a‖. Since, moreover, |w| = |u| − 1 + |v| ≤
|u|+ LV − 1, the proof is achieved.

Lemma 6. The automaton A is complete.

Proof. Let a be a row of ϕA(A∗) with ‖a‖ maximal. By Proposition 6, it follows
that ‖aϕA(u)‖ = ‖a‖ > 0 for all u ∈ A∗. Consequently, ϕA(u) �= 0 for all u ∈ A∗.

Proposition 7. Set m1 = max{‖a‖ | a row of ϕA(A∗)}. There exists a word
w such that ϕA(w) has a maximal row and

|w| ≤ max{0, 1 + (m1 − 2)(LV + n− 1)} . (8)

Proof. If the automaton A is deterministic, then any row of ϕA(ε) is maximal
and the statement is trivially verified. Thus we assume that A is not determin-
istic. Hence, there is a letter x ∈ A and a row a0 of ϕA(x) such that ‖a0‖ ≥ 2.

In view of Proposition 6 and Lemma 3 one can find words wi and vectors ai,
1 ≤ i ≤ k such that

ai = ai−1ϕA(wi) , ‖ai‖ > ‖ai−1‖ , |wi| ≤ LV + n− 1 , (9)

and ak is a maximal row of ϕA(A∗). Set w = xw1w2 · · ·wk. Since a0 is a row of
ϕA(x), the vector ak = a0ϕA(w1w2 · · ·wk) is a row of ϕA(w). Moreover, from
(9) one has

m1 ≥ ‖ak‖ ≥ k + ‖a0‖ ≥ k + 2 , |w| ≤ 1 + k(LV + n− 1) .

From these inequalities, one easily derives Eq. (8), concluding the proof.

250 A. Carpi and F. D’Alessandro

In the sequel we will further suppose that there exists also a finite set W ⊆ A∗

such that A ⊆W and for every state p of A
∑

w∈W

Card(pw−1) ≥ Card(W). (10)

In such a case, with an argument symmetrical to that used in the proof of
Proposition 7 one can prove the following

Proposition 8. Set m2 = max{‖b‖ | b column of ϕA(A∗)}. There exists a
word v such that ϕA(v) has a maximal column and

|v| ≤ max{0, 1 + (m2 − 2)(LW + n− 1)} .

Now we state the main result of this section.

Proposition 9. Let A be a synchronizing unambiguous transitive n-state au-
tomaton, with n ≥ 2. Let V,W ⊆ A∗ be two finite sets of words satisfying
Eq. (7) and Eq. (10), respectively, with A ⊆ V,W . Then, A has a reset word u
such that

|u| ≤ (n− 2)LV ∪W + n2 − 3n + 3 .

Proof. First, we consider the case that the parameters m1,m2 introduced in
Propositions 7 and 8 verify the conditions mi ≥ 2, i = 1, 2.

By Propositions 7 and 8, there are words w and v and states p, q ∈ S such
that (ϕA(w))p∗ = a is a maximal row of ϕA(A∗), (ϕA(v))∗q = b is a maximal
column of ϕA(A∗), and

|w| ≤ 1 + (m1 − 2)(LV + n− 1) , |v| ≤ 1 + (m2 − 2)(LW + n− 1) . (11)

Since A is transitive, there exists a word z such that p ∈ qz and |z| ≤ n−1. One
has then (ϕA(z))qp = 1 and consequently

ϕA(vzw) = (ϕA(v))∗q(ϕA(z))qp(ϕA(w))p∗ + μ = ba + μ ,

for some μ ∈ {0, 1}S×S. By Lemma 6, ϕA(A∗) is a transitive monoid of (0,1)-
matrices without 0, and its minimal rank is 1. By Proposition 5 one derives that
μ = 0 and u = vzw is a reset word.

Now we evaluate |u|. From (11) one has

|u| = |v|+ |w| + |z| ≤ n + 1 + (m1 + m2 − 4)(LV ∪W + n− 1) .

Since by Lemma 4, m1 + m2 ≤ n + 1, one derives

|u| ≤ (n− 3)LV ∪W + n2 − 3n + 4 ,

so that the statement holds true.
Now we consider the casem2 = 1 (the casem1 = 1 is symmetrically dealt with).

We can still find a wordw and a state p ∈ S such that a = (ϕA(w))p∗ is a maximal

The Synchronization Problem for Strongly Transitive Automata 251

rowofϕA(A∗)and |w| ≤ 1+(m1−2)(LV +n−1). Sincem1 ≤ nandLV ≤ LV ∪W ,
one obtains |w| ≤ (n − 2)LV ∪W + n2 − 3n + 3 . Now, to complete the proof, it is
sufficient to verify thatw is a reset word. Sincem2 = 1, the vectorb = (ϕA(ε))∗p is
a maximal column ofϕA(A∗). Moreover,ϕA(w) = ba + μ for some μ ∈ {0, 1}S×S.
By Proposition 5 one derives thatw is a reset word. This concludes the proof.

An automaton A on a k-letter alphabet is Eulerian if for any vertex of its graph,
there are exactly k in-coming and k out-coming arrows. In [11], Kari showed that
Černý conjecture is true for Eulerian deterministic automata. If A is an Eulerian
automaton, then the hypotheses of Proposition 9 are satisfied for V = W = A.
Thus we may extend Kari’s result to unambiguous Eulerian automata.

Corollary 3. Any transitive, synchronizing, and unambiguous Eulerian n-state
automaton has a reset word of length not larger than (n− 1)2.

References

1. Béal, M.-P.: A note on Černý’s Conjecture and rational series, technical report,
Institut Gaspard Monge, Université de Marne-la-Vallée (2003)

2. Béal, M.-P., Ceizler, E., Kari, J., Perrin, D.: Unambiguous automata. Math. com-
put. sci., 14 (2008)

3. Berstel, J., Reutenauer, C.: Rational series and their languages. Springer, Heidel-
berg (1988)

4. Carpi, A.: On synchronizing unambiguous automata. Theoret. comput. sci. 60,
285–296 (1988)

5. Černý, J., Poznámka, K.: Homogénnym experimenton s konečnými automatmi.
Mat. fyz. cas SAV 14, 208–215 (1964)

6. Césari, Y.: Sur l’application du théorème de Suschewitsch à l’étude des codes ra-
tionnels complets. In: Loeckx, J. (ed.) Automata, Languages and Programming.
LNCS, vol. 14, pp. 342–350. Springer, Berlin (1974)

7. Dubuc, L.: Sur les automates circulaires et la conjecture de Cerny. RAIRO Inform.
Théor. Appl. 32, 21–34 (1998)

8. Eilenberg, S.: Automata, Languages and Machines, vol. A. Academic Press, London
(1974)

9. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3, 125–127
(1982)

10. Goralč́ık, P., Hedrĺın, Z., Koubek, V., Ryšlinková, J.: A game of composing binary
relations. RAIRO Inform. Théor. 16, 365–369 (1982)

11. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. comput.
sci. 295, 223–232 (2003)

12. Mateescu, A., Salomaa, A.: Many-valued truth functions, Cerny’s conjecture and
road coloring. EATCS Bull. 68, 134–150 (1999)

13. Pin, J.E.: Le problème de la synchronization et la conjecture de Cerny, Thèse de 3
ème cycle, Université de Paris 6 (1978)

14. Pin, J.E.: Sur un cas particulier de la conjecture de Cerny. In: Ausiello, G., Böhm,
C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 345–352. Springer, Heidelberg (1978)

15. Rystov, I.: Almost optimal bound of recurrent word length for regular automata.
Cybern. Syst. Anal. 31(5), 669–674 (1995)

16. Trahtman, A.N.: The Cerny conjecture for aperiodic automata. Discrete Math.
Theor. Comput. Sci. 9, 3–10 (2007)

On the Decidability of the

Equivalence for k-Valued Transducers

(Extended Abstract)

Rodrigo de Souza�

TELECOM ParisTech, 46, rue Barrault, 75634 Paris Cedex 13
rsouza@enst.fr

Abstract. We give a new proof for the decidability of the equivalence
of two k-valued transducers, a result originally established by Culik and
Karhümaki and independently by Weber. Our proof relies on two con-
structions we have recently introduced to decompose a k-valued trans-
ducer and to decide whether a transducer is k-valued. As a result, our
proof is entirely based on the structure of the transducers under inspec-
tion, and the complexity it yields is of single exponential order on the
number of states. This improves Weber’s result by one exponential.

1 Introduction

This communication is the third part of a complete reworking of the theory of
k-valued rational relations and transducers which makes it appear as a natural
generalisation of the theory of rational functions and functional transducers, not
only at the level of results but also at the level of proofs. In [1], we present a
construction to decompose a k-valued transducer into a sum of k functional and
unambiguous ones of single exponential size. The existence of such a decompo-
sition has been settled by Weber in [2]; but this proof yields a bound of double
exponential order. And in [3] we generalise a technique of [4] to a new algorithm
to decide whether a transducer is k-valued, a result originally due to Gurari and
Ibarra [5]. Here, we combine the techniques of [1] and [3] into a procedure to
decide the equivalence of k-valued transducers in single exponential time.

Equivalence of automata is a most fundamental problem in the field of au-
tomata theory and has been studied for several formalisms. For transducers
the equivalence reduces to the Post Correspondence Problem and is thus un-
decidable [6]. This result has been subsequently sharpened by Griffiths [7] for
generalised sequential machines with no empty words in the transitions and next
by Ibarra [8] for the same device over a unary input (or output) alphabet.

Things change for k-valued transducers. For the functional ones (k = 1), the
decidability of the equivalence follows from the decidability of the functionality,
a particular case of Gurari and Ibarra’s theorem which had been established by
Schützenberger [9] and independently by Blattner and Head [10]. The general

� Research supported by CAPES Foundation (Brazilian government).

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 252–263, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Decidability of the Equivalence for k-Valued Transducers 253

case is much more involved. It has been tackled with different methods by Culik
and Karhumäki [11] and by Weber, the latter with a bound for the complexity:

Theorem 1 (Weber [12]). The equivalence of two k-valued transducers is de-
cidable in double exponential time.

Here, we improve Weber’s result by one exponential (which seems to be the
optimal for the equivalence of automata is a PSPACE-complete problem [13]):

Theorem 2. The equivalence of two k-valued transducers is decidable in single
exponential time.

Culik and Karhumäki’s proof relies heavily on existential properties of test sets.
They show that, for every HDT0L language, there exists a finite test set for the
family of k-valued transducers having at most n states (where k and n are fixed
parameters). The finiteness of this test set and thus a termination condition for
their procedure comes from the existence of a test set for morphisms on every
language — the Ehrenfeucht Conjecture, which had just been confirmed. Even
thought Culik and Karhumäki’s test set can be effectively constructed (which
proves indeed the decidability for k-valued transducers on HDT0L languages)
no clue for the complexity of the underlying algorithm is given.

Weber’s proof starts with a decomposition of the k-valued transducers under
inspection, and offers two ways to decide the equivalence. The first one relies
on Gurari and Ibarra’s procedure to decide the k-valuedness; it yields a counter
automaton which accepts some word iff the transducers are not equivalent, and
uses a polynomial time procedure due to Ibarra to decide the emptiness of a
counter automaton [14]. The second algorithm depends upon a bound for some
Ramsey numbers and from it a bound for the length of a witness for the non-
inclusion. The complexities of both solutions are affected by the size (number of
states) of the initial decomposition, which is of double exponential order.

At first sight, our proof may resemble Weber’s one: it uses a decomposition
of the transducers and next a procedure to test the k-valuedness. But it is at
the same time different in both steps, as one can derive from the discussions
in [1] and in [3]. In one word, both the decomposition theorem and the Ramsey-
type arguments which are developed in [12] are highly combinatorial; the exact
overall complexity of Gurari and Ibarra’s reduction to decide the k-valuedness is
difficult to estimate. Our constructions, which we explain more in detail below,
are more oriented towards the structure of the transducers. They yield more
accurate complexities, and does not resort to any other object than transducers.

The first ingredient of our proof is the decomposition of a k-valued transducer
T into k functional and unambiguous ones we have explained in [1], and which we
call here a lexicographic decomposition of T . It is based on covering of automata.
Coverings have been introduced in [15]; roughly speaking, a covering of A is a
larger automaton B with a mapping between states and transitions which puts
the computations of A and B in bijection. Typically, B allows to distinguish more
easily among the computations and contains a subautomata which chooses some
special subset of them. We construct two coverings in [1], one for N-automata
and other for transducers — respectively, the “multi-skimming covering” and the

254 R. de Souza

T VN

A
S

i
B

(i)
k

S
i
Z(i)

π π

Fig. 1. Lexicographic decomposition of T : VN is an equivalent and input-k-ambiguous
transducer yielded by the lag separation covering; A is the underlying input automaton
of VN ;

⋃
i B(i)

k is a decomposition of A given by multi-skimming covering;
⋃

i Z(i) is

the final decomposition, which one obtains by “lifting” the outputs of T to
⋃

i B(i)
k

“lag separation covering”.1 Both are based on the same principle of putting a
lexicographic ordering on the transitions and from it a lexicographic ordering on
the computations. The whole decomposition uses both coverings, as it is pictured
in Figure 1: the lag separation covering allows to built a transducer which is
equivalent to T and input-k-ambiguous, the multi-skimming covering yields a
decomposition of such a transducer. Individually, each covering can provoke an
exponential blow up; but the mappings kept between the computations, together
with the fact that T is k-valued, allow to show that the useful states in the
lexicographic decomposition are of some very restricted form. One can bound
the number of these states by one exponential on the number of states of T .

The algorithm we present in [3] to decide the k-valuedness is completely differ-
ent from Gurari and Ibarra’s one. It starts with a generalisation of the product
of T 2 by the Lead or Delay Action (LDA) G, which has been introduced in [4]
to characterise the functionality (k = 1). In T 2×G, G measures differences of
outputs of pairs of successful computations reading a same word. Then, it can
be “seen” in the final states of T 2×G whether T is functional. Likewise, the
k-valuedness can be read in the product of T k+1 by the Pairwise Lead or Delay
Action Gk+1. But, as we explain in [3], this generalisation is not so straightfor-
ward for T k+1×Gk+1 may be infinite for k > 1. To tackle this general case we
define a valuation of T k+1 where the value of a state2 q is a finite set m(q) of
partially defined pairwise differences (PDPD) which “traverse” the (potentially
infinite) set of states of T k+1×Gk+1 projecting on q. Then, it can be read in
m(q) if every computation of T k+1 from some initial state to q contains a pair of
projections with the same output. Clearly, T is k-valued iff this holds in the final
states. We call m(q) the value of q and the family of these sets the Lead or Delay
Valuation of T k+1 (LDV). Our algorithm to test the k-valuedness constructs the
LDV in polynomial time with a topological traversal of T k+1.

Our algorithm to decide the inclusion of (the behaviour of) a k-valued trans-
ducer S in (the behaviour of) another one T builds at first a lexicographic de-
composition of S, say R(0), . . . ,R(k−1). This is intended to simplify the problem:
as the union of these unambiguous transducers is equivalent to S, it remains to
decide whether each of them is included in T in polynomial time on their sizes.

Let R be any of the R(i). In order to decide the inclusion of R in T , one can
be tempted to construct a lexicographic decomposition of T , Z(0), . . . ,Z(k−1),

1 The latter is renamed the “lead or delay covering” in the journal version of [1].
2 We write tuples of states, words or computations with bold letters.

On the Decidability of the Equivalence for k-Valued Transducers 255

and decide whether W = R×Z(0)× . . .×Z(k−1) is k-valued. Such a procedure
fails due to the following. If R is included in T , then R∪T is clearly a k-valued
transducer. But the contrary is false in general: it may well exist a word which
is read by at most k successful computations in R ∪ T with the output of the
one of R being different from the outputs of the ones of T . Thus, one has to be
more accurate before applying the LDV and be able to know, for every successful
computation of R, all the ones in Z(0), . . . ,Z(k−1) reading the same input.

Here comes the trick which allows to combine both constructions. We make
a product of W by an action ◦μ of the free monoid A∗ of the input words on
N-vectors. Roughly speaking, ◦μ “counts”, for every u ∈ A∗, the ends of the
computations in Z(0), . . . ,Z(k−1) which start in some initial state and read u.
In W×◦μ, these N-vectors allow to distinguish the computations of W satis-
fying the aforementioned crucial property: the projection on R is a successful
computation; the successful computations of Z(0), . . . ,Z(k−1) reading the same
input are entirely included in the other projections (Proposition 6). It follows
that we can decide the inclusion of R in T by constructing the LDV of W×◦μ,
and analysing the values m(q) of the ends of these critical computations.

Although the size of the “accessible part” of ◦μ seems to be of double expo-
nential order (on the number n of states of T), the properties we have used in [1]
to bound the size of the lexicographic decomposition by one exponential (Propo-
sition 4) implies the same for ◦μ (Proposition 9). Then we come to our main
result: the equivalence can be decided in single exponential time (Theorem 6).

The description of this algorithm is postponed to Section 5. Before, we recall
briefly the LDV (Sections 3) and the lexicographic decomposition (Section 4).

Let us stress that in our result the valuedness k is viewed as a fixed param-
eter and is thus a constant; otherwise, the single exponential complexity does
not hold anymore for the expression given in Theorem 6 grows slower than 2nk

.
Moreover, it is to be acknowledged that Weber’s procedure allows to decide the
equivalence for bounded valued transducers whose exact valuedness is not known
beforehand. In a sense, both problems are equivalent for, as Weber showed in [16],
the valuedness of a bounded valued transducer can be effectively calculated; but
it may be of exponential order on the number of states of the transducer. There-
fore, in a more honest comparison it has to be added that the complexity of the
procedure proposed in [12] remains of double exponential order even under the
hypothesis of constant valuedness we are dealing with (this is due, in particular,
to the size of the preliminary decomposition used in [12]).

Finally, let us note that Weber also proves in [12] the existence of a witness of
double exponential size for the non-inclusion of k-valued transducers. Again, the
lexicographic decomposition and the LDV allow to obtain a more concise one.
Due to space constraints we postpone to a forthcoming paper the construction
of this witness, as well as the details and proofs which are omitted here.

2 Preliminaries

We follow the definitions and notation in [17,18,19].

256 R. de Souza

The set of words over a finite alphabet A (the free monoid over A) is denoted
by A∗, and the empty word by 1A∗ , or simply 1 in figures.

Let M be a monoid. An automaton A = 〈Q,M,E, I, T 〉 is a labelled directed
graph given by sets Q of states, I, T ⊆ Q of initial and final states, respectively,
and E ⊆ Q×M×Q of transitions labelled by M . It is finite if Q and E are finite.

A computation in A is a sequence of transitions c : p0
m1−−→ p1

m2−−→ . . .
ml−−→ pl,

also written c : p0
m1...ml−−−−−→

A
pl. The label of c is m1 . . .ml ∈ M , and c is a

successful computation if p0 ∈ I and pl ∈ T . The behaviour of A is the set
|||A||| ⊆M of labels of successful computations. The behaviour of finite automata
over M coincide with the family RatM of the rational subsets of M [18].

If M is a free monoid A∗ and the labels of transitions are letters, then A is a
(boolean) automaton over A. If M is a product A∗×B∗, then every transition is
labelled by an input word u ∈ A∗ and an output one x ∈ B∗ — this is denoted
by u|x — and A is a transducer realising a rational relation from A∗ to B∗.

The image of a word u ∈ A∗ by (the behaviour of) a transducer is the set
of outputs of successful computations which read u. The transducer is called
k-valued, where k is a positive integer, if, for every input word, the image has at
most k words. It is bounded valued if there exists such an integer k.

We shall only consider transducers which are real-time: every transition is
labelled by a pair a|K formed by a letter a ∈ A and a set K ∈ RatB∗, and I, T
are functions from Q to RatB∗. By using classical constructions on automata,
every transducer can be transformed into a real-time one. For bounded valued
relations, we may suppose that every transition outputs a single word, and that
the image of every initial or final state is the empty word. In this case3, the
transducer is rather denoted as T = 〈Q,A,B∗, E, I, T 〉.

We shall make systematic use of product of (real-time) transducers. This op-
eration is defined in the same way as for boolean automata, with the difference
that the outputs have to be taken into account. Formally, the square of a trans-
ducer T = 〈Q,A,B∗, E, I, T 〉 is the transducer T 2 =

〈
Q2, A,B∗2, F, I2, T 2

〉

where (p, q)
a|(u,v)−−−−→ (p′, q′) is in F if, and only if, both p

a|u−−→ p′ and q
a|v−−→ q′ are

in E (see [4] for details). Likewise, the product T1×. . .×Tl of several transducers
over A∗×B∗ is a transducer labelled by A×B∗l. Moreover, all these automata
are implicitly assumed to be accessible (as in the convention adopted in [3]).

An N-automaton (where N is the semiring of the natural numbers) is an
automaton labelled by letters with multiplicities in N attached to transitions
and states (for the latter, an initial and a final one). It realises an N-rational
series : a function s : A∗ → N mapping every u ∈ A∗ to a multiplicity obtained
by summing the weights of the successful computations labelled by u.

A morphism from an automaton B = 〈R,M,F, J, U 〉 (over a monoid M) to
A = 〈Q,M,E, I, T 〉 is a pair of mappings, R → Q and F → E (both denoted by
ϕ) which respect adjacency of transitions and where Jϕ ⊆ I and Uϕ ⊆ T . The
image by ϕ of every successful computation of B is a successful one in A with the
same label, hence |||B||| ⊆ |||A|||. The morphism is a covering if it is locally bijective.

3 A nondeterministic generalised sequential machine in some references.

On the Decidability of the Equivalence for k-Valued Transducers 257

This implies a bijection between the successful computations and thus |||B||| = |||A|||.
See [15] for details. Coverings for automata with multiplicity in some semiring K,
or K-covering, have been defined in [20]. Rather than put a bijection between the
successful computations of the (support of the) automata, a K-covering equals
the sums of the multiplicities of computations labelled by the same word.

3 The Lead or Delay Valuation

The Lead or Delay Valuation (LDV) is the second tool we use to decide the
equivalence, but we shall discuss it in first place in order to define some notation.

As said in the introduction, we have introduced the LDV of a product T k+1

in [3] to decide the k-valuedness of T (our new proof for Gurari and Ibarra’s
theorem). In order to ease the use of this notion in Section 5, we shall explain
here what we call the LDV of a product W = T1× . . .×Tl of possibly distinct
transducers. There is no novelty with respect to [3], for the valuation of the
states of W is contained in the valuation of T l where T = T1 ∪ · · · ∪ Tl.

In order to define the LDV we need an action, the PLDA in Definition 1. Let
F (B) be the free group generated by an alphabet B, that is, the quotient of
(B∪B)∗ by the relations xx = xx = 1B∗ (x ∈ B) where B a disjoint copy of B.
We write Δ = B∗∪B

∗∪{0} , where 0 is a new element not in F (B), and define
a function ρ : F (B)∪ {0} → Δ by wρ = w , if w ∈ Δ, and wρ = 0 otherwise.4

Definition 1. The LDA, denoted by G, is the action of B∗×B∗ on Δ defined
as follows: for every w ∈ Δ and (u, v) ∈ B∗×B∗, w · (u, v) = (uwv)ρ (where
0u = u0 = 0). For every integer l > 1, the Pairwise Lead or Delay Action
(PLDA), Gl, is the action of B∗l on the set Δl of Δ-vectors indexed by the set
{(i, j) | 1 ≤ i < j ≤ l} which applies the LDA independently on each coordinate.

For computations c : p
u|x−−→ q and d : r

u|y−−→ s with the same input, let LD(c, d),
their Lead or Delay, be the element 1B∗ · (x, y) of Δ. Intuitively, LD(c, d) is the
“difference” between the outputs of c and d. The PLDA measures the Lead or
Delay between every pair of projections of computations in W = T1×. . .×Tl.

For every state q of W , let X(q) = {δ ∈ Δl | (q, δ) in W×Gl }. This set may
be infinite. The aim of the LDV is to characterise the k-valuedness within a finite
object. It attributes to q a finite set m(q) of “minimal traverses” for X(q).

In order to define these traverses, let Hl be the union of Δl with the vectors (of
same dimension) on Δ∪{⊥}, where ⊥ represents undefined entries; the elements
of Hl are called partially defined pairwise differences, or PDPD. A traverse for
X ⊆ Hl is a PDPD γ ∈ Hl satisfying: no entry of γ is equals to 0; for every
δ ∈ X , there exists a coordinate (i, j) such that δi,j �= ⊥ and γi,j = δi,j ; for every
(i, j) such that γi,j �= ⊥, there exists at least one δ in X such that γi,j = δi,j .

The set Hl is naturally ordered by β / γ iff γ coincides with β on the defined
entries of β. Now we can define the LDV of the states of W :

4 We use a postfix notation for relations: xτ is the image of x by the relation τ

258 R. de Souza

Definition 2. For every X ⊆ Hl, let tv (X) be the set of traverses for X. Denote
m(X) = min(tv (X)) (the set of minimal traverses for X). The value of a state
q of W in the LDV is the set m(q) = m(X(q)).

The finiteness of the LDV and the useful information on the computations of
W it allows to retrieve are stated in the propositions below. The second one is
a direct consequence of the definition of the LDV; the proof of the first one is
more involved (see the manuscript version of [3]).

Proposition 1. For every l > 1, for every X ⊆ Δl, card(m(X)) ≤ 2l4 . !

Proposition 2. For every state q of W, the following assertions are equivalent:
there exists at least one γ in m(q) whose defined entries are all 1B∗; every
computation of W from some initial state to q has at least one pair of projections
with the same output. !

As explained in [3], the LDV can be constructed with a traversal of the strongly
connected components (SCCs) of W . It builds the values in some topological
order and is based on two properties. The first one is a stability property on the
valuation within every SCC; it implies that the values of distinct states in a same
SCC are interdependent, thus the knowledge of one of them allows to calculate
the others. The second property states that every m(p) depends uniquely on the
values of the states which precedes and are adjacent to the SCC of q: it is equal
to the set of the minimal least upper bounds by the order / of the previously
calculated values (the operation ⊕ in Figure 2). Then we have:

Proposition 3. The LDV of W can be constructed in time and space complexity
O(25(k+1)4�nk+1mk+1), where n and m are the sum of the number of states and
the sum of the number of transitions of the transducers T1, . . . , Tl, respectively,
and � is the maximal length of the outputs of the transitions. !

4 The Lexicographic Covering

The lexicographic covering is a method to build coverings of automata we have
introduced in [1] to construct a “concise” decomposition of a k-valued transducer:

Theorem 3 ([1]). Every k-valued transducer T can be effectively decomposed
into a sum of k unambiguous transducers with 2O(h�k4nk+4) states, where n and
� are respectively the maximal numbers of states and lengths of the outputs of
transitions of T and h is the cardinality of the output alphabet.

We defined two instances of this method, one for transducers, the lag separation
covering, and other for N-automata, the multi-skimming covering. The idea of
both is to order lexicographically computations of automata, inasmuch as it
can be made with words on some alphabet. Then, by erasing some parts of
the covering, one can find a subautomaton which chooses some special subset of
computations — the smallest ones, for example, in the multi-skimming covering.

On the Decidability of the Equivalence for k-Valued Transducers 259

p

q

r

a |1
b |1

b |1

a |1

a |1

b |a

p q r

a |1
b |1

b |1
a |1

a |1

b |a

⊕

⊕

„
1 ⊥

⊥

«

„
⊥ ⊥

1

«

„
⊥ 1

⊥

«

„
1 ⊥

⊥

«

„
1 ⊥

⊥

«

„
1 ⊥

⊥

«

„
⊥ 1

⊥

«

„
⊥ 1

⊥

« „
⊥ 1

⊥

«

„
⊥ 1

⊥

«

„
1 ⊥

⊥

«

„
⊥ 1

⊥

«

„
1 ⊥

⊥

«
„
⊥ ⊥

1

«

„
⊥ ⊥

a

«

„
⊥ ⊥

1

«

„
⊥ ⊥

a

«

. . .

„
⊥ 1

⊥

«

„
⊥ a

⊥

«

„
⊥ 1

⊥

«

„
⊥ a

⊥

«

. . .

„
⊥ ⊥

1

«

„
⊥ ⊥

ā

«

„
⊥ ⊥

1

«

„
⊥ ⊥

ā

«

. . .

„
1 ⊥

⊥

«

„
a ⊥

⊥

«

„
1 ⊥

⊥

«

„
a ⊥

⊥

«

. . .

b |(1, 1, a)

b |(1, a, 1)

Fig. 2. The LDV of part of the cube of a transducer T . The first coordinate is fixed on
p, the second and third ones are the horizontal and vertical projections, respectively.
The PDPDs are represented as upper triangular matrices indexed by {p, q}×{q, r} (in
this order). The values of the states of T 3 are represented inside the gray regions; in two
cases, it is the result of the operation ⊕ (the least upper bound of PDPDs) on PDPDs
coming from other SCCs. Dashed transitions have output equal to (1B∗ , 1B∗ , 1B∗).

The aim of the lag separation covering of T = 〈Q,A,B∗, E, I, T 〉 is a selection
among the computations with the same label and such that the differences of
lengths of outputs along them (their “lag”) are bounded by an integer N . In this
covering, UN , the states are pairs in Q×P(B≤N ∪ B

≤N)Q, the vectors in the
second component intend to “store” the Lead or Delay between the computations
of T and the smaller ones. Together with a combinatorial property of the LDA,
this covering allows to prove that every k-valued rational relation can be realised
by a transducer whose underlying input automaton is k-ambiguous:
Theorem 4 ([1]). For every k-valued transducer T , there exists an index N
such that the lag separation covering UN contains a subtransducer VN which is
equivalent to T and input-k-ambiguous. !
The aim of the multi-skimming covering is the construction of an automaton of
single exponential size which performs “skimmings” on an N-rational series:

260 R. de Souza

Theorem 5 ([1]). Let A be an N-automaton with n states. For every k > 0,
there exists an N-covering Bk of A such that: Bk has at most n(k + 1)n states;
Bk has a subautomaton Dk which realises |||A||| . k: for every i, 0 ≤ i < k, Bk has
an unambiguous subautomaton B(i)

k which recognises the support of |||A||| . i.

The multi-skimming covering of A = 〈Q, I,E, T 〉 is an N-automaton B of di-
mension Q×NQ; the N-covering Bk which fits with the statement of Theorem 5 is
the finite N-quotient of B based on the quotient Nk of N by the relation k = k+1.
Roughly speaking, the N-vectors “count”, for every successful computation of A,
the number of the smaller ones. One can thus chooses the smallest computations
to construct the unambiguous subautomaton B(0)

k , and so on.
These coverings allow a decomposition of T in two steps: first, the lag sepa-

ration covering of T yields an equivalent and input-k-ambiguous transducer VN ;
next, the construction of the N-covering Bk on the underlying input automaton
of VN followed by a “lifting” of the outputs of the transitions of T to Bk yields
unambiguous transducers Z(0), . . . ,Z(k−1) decomposing T (see Figure 3).

p

q

a |b2 a |1B∗

a |b

(∅ ∅)
`
{b̄} ∅

´
({1B∗} {b})

`
{b̄} {1B∗}

´

r

s

a |b2

a |b

a |1B∗

a |1B∗

a |b2

(a) A lag separation covering UN with N = 1. The
P(Δ1)

Q-vectors (vertical projection) are indexed
by {p, q}, in that order.

Z(0) Z(1)

r

s

a | b

a | b2

(0 0) (1 0)

a | b

a | b2

(b) A 2-skimming of the
input automaton of V1.

Fig. 3. A lexicographic decomposition of a 2-valued transducer into unambiguous ones
Z(0) and Z(1), which realise the functions an �→ bn (n ≥ 0) and an �→ bn+1 (n >
0), respectively. In both coverings, an ordering is put on the transitions leaving the
initial state; the solid transition is the smallest one. In 3(a), the input-2-ambiguous
subtransducer V1 is reduced to the states {r, s}. In 3(b), Z(0) and Z(1) are obtained
by keeping as final exactly one final state on the indicated column.

Effectiveness and single exponential size are critical properties of the lexico-
graphic decomposition to be used in the equivalence algorithm we are going to
present. The latter is not so obvious in view of the use of two constructions of
exponential size. But the single exponential size can be achieved if the coverings
are restricted to the trim parts of the involved automata: under this hypothesis,
we can show (Lemma 4.3 in [1]) that all the built vectors have a linear number
of non-null entries. There exists a single exponential number of such vectors:

On the Decidability of the Equivalence for k-Valued Transducers 261

Proposition 4. Let T be a k-valued transducer. Let n, � and h be respectively
the numbers of states, the maximal length of the outputs of transitions, and the
cardinality of the output alphabet of T . In every useful state of a lexicographic
decomposition Z(0), . . . ,Z(k−1), the second component is a vector with at most
kn entries different from 0, and thus every Z(i) has 2O(h�k4nk+4) useful states.

5 Putting Everything Together to Decide the Equivalence

Now we show how the LDV applied to the unambiguous transducers given by the
lexicographic decomposition yields a procedure to establish the inclusion (and
thus the equivalence) of k-valued transducers:

Theorem 6. Let S and T be two k-valued transducers on A∗×B∗. Let n and
� be respectively the maximal numbers of states and lengths of the outputs of
transitions of these transducers, and h the cardinality of B. The inclusion of
(the behaviour of) S in (the behaviour of) T is decidable in 2O(h�k5nk+4).

Restating the Problem with the Decomposition. Recall that, in order to
decide the inclusion of S in T , it suffices to decide the inclusion of every unam-
biguous transducer of a lexicographic decomposition of S in T . LetR any of them.
In order to decide the inclusion of R in T , we use now a lexicographic decompo-
sition Z(0), . . . ,Z(k−1) of T . For every computation c in R×Z(0)× . . .×Z(k−1),
let us call its projection on the first component (so, on R) the R-projection and
every projection on the other ones (so, on some transducer in the decomposition)
a T -projection. We also say that c is a full computation if itsR-projection is a suc-
cessful computation and its T -projections contain all the successful computations
in Z(0), . . . ,Z(k−1) reading the input of c. The following is clear:

Proposition 5. The unambiguous transducer R is included in T iff every full
computation of R×Z(0)× . . .×Z(k−1) has at least one T -projection which is
successful and whose output is equals to the output of its R-projection. !
We shall show below how to test these conditions on the full computations with
the help of the LDV. But before we need to identify these full computations. To
do this, letA be the underlying input automaton of the input-k-ambiguous trans-
ducer VN from which the decomposition Z(0), . . . ,Z(k−1) has been extracted. Let
(λ, μ, ν) be the matrix representation of A (see the definition in [19]), and let
◦μ : NQ×A∗ → NQ be the action defined as follows: for every v ∈ NQ and a ∈ A,
v ◦μ a = v · aμ. The “initial state” of this action (which can be seen as an au-
tomaton whose states are N-vectors) is the vector λ of initial multiplicities of A.
We can see the full computations within the product5 R×Z(0)×. . .×Z(k−1)×◦μ:

Proposition 6. Let

C : (i, i(0), . . . , i(k−1), λ)
u|(x,x(0),...,x(k−1))−−−−−−−−−−−−−−→

R×Z(0)×...×Z(k−1)×◦μ

(q,q(0), . . . ,q(k−1), v)

5 See [4] for a background on actions and product of an automaton by an action.

262 R. de Souza

be a computation starting in an initial state. The projection of C on the product
R×Z(0)× . . .×Z(k−1) is a full computation iff the number of final states in
q(0), . . . ,q(k−1) is equal to the sum of the coefficients of the N-vector v · ν. !

Accordingly, we say that a state (q,q(0), . . . ,q(k−1), v) of R×Z(0)×. . .×Z(k−1)

is full if the number of final states in q(0), . . . ,q(k−1) is equal to the sum of the
coefficients of the vector v · ν.

Deciding the Inclusion with the LDV. Let W be the accessible part of
R×Z(0)× . . .×Z(k−1)×◦μ. It is a direct consequence of the definition of the
PLDA Gk+1 that Proposition 5 can be restated as follows:

Proposition 7. The unambiguous transducer R is included in T iff for every
state (q, δ) in W×Gk+1 such that q is full in W, there exists a coordinate i,
2 ≤ i ≤ k + 1, such that δ1,i = 1B∗. !

The same can be expressed in the LDV of W . This comes from the definition of
traverse of a set of PDPDs (compare with Proposition 2):

Proposition 8. The unambiguous transducer R is included in T iff for every
full state q of W, the value m(q) contains at least one PDPD γ such that: γ has
at least one defined coordinate of form γ1,i; all the defined coordinates of this
form are equal to 1B∗ . !

Our algorithm to decide the inclusion of R in T is a construction of the LDV of
W as described in Section 3 followed by the easy test of the condition stated in
Proposition 8 in the full states.

Complexity. As explained in [1], the size of the transducers R (one of the
functional transducers of a lexicographic decomposition of S) and Z(0)× . . .×
Z(k−1) (a lexicographic decomposition of T), measured as the number of states,
is bounded by 2O(h�k4nk+4). In order to evaluate the size of W , it remains to
evaluate the number of accessible vectors in the action ◦μ. This can be made with
the same argument we used to show that the number of states in a lexicographic
decomposition is bounded by one exponential (Proposition 4):

Proposition 9. If T is a trim k-valued transducer, then every accessible vector
of the action ◦μ has at most nk non-null coordinates. !

We conclude that the number of accessible vectors of ◦μ and thus the size of W
is bounded by 2O(h�k4nk+4). By putting this upper bound in the expression of
the complexity of our algorithm to construct the LDV of W (Proposition 3), we
obtain the complexity claimed in Theorem 6.

Acknowledgements. I am grateful to Jacques Sakarovitch for his support and
for the discussions which have led to the result presented in this communication.

On the Decidability of the Equivalence for k-Valued Transducers 263

References

1. Sakarovitch, J., Souza, R.: On the decomposition of k-valued rational rela-
tions. In: Albers, S., Weil, P. (eds.) Proceedings of STACS 2008, pp. 621–632
(2008), http://stacs-conf.org (to appear in Theory of Computing Systems)
arXiv:0802.2823v1

2. Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. RAIRO
Informatique Théorique et Applications 30(5), 379–413 (1996)

3. Sakarovitch, J., Souza, R.: On the decidability of bounded valuedness for trans-
ducers. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162,
pp. 588–600. Springer, Heidelberg (2008), Preliminary full version with proofs in
http://www.infres.enst.fr/∼rsouza/DFV.pdf

4. Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: an effi-
cient procedure for deciding functionality and sequentiality. Theoretical Computer
Science 292, 45–63 (2003)

5. Gurari, E., Ibarra, O.: A note on finite-valued and finitely ambiguous transducers.
Mathematical Systems Theory 16, 61–66 (1983)

6. Fischer, P.C., Rosenberg, A.L.: Multitape one-way nonwriting automata. Journal
of Computer and System Sciences 2(1), 88–101 (1968)

7. Griffiths, T.V.: The unsolvability of the equivalence problem for Λ-free nondeter-
ministic generalized machines. Journal of the ACM 15(3), 409–413 (1968)

8. Ibarra, O.: The unsolvability of the equivalence problem for ε-free NGSM’s with
unary input (output) alphabet and applications. SIAM Journal on Computing 7(4),
524–532 (1978)

9. Schützenberger, M.P.: Sur les relations rationnelles. In: Automata Theory and
Formal Languages, 2nd GI Conference. LNCS, vol. 33, pp. 209–213. Springer, Hei-
delberg (1975)

10. Blattner, M., Head, T.: Single-valued a-transducers. Journal of Computer and Sys-
tem Sciences 15(3), 310–327 (1977)

11. Culik, K., Karhumäki, J.: The equivalence of finite valued transducers (on HDT0L
languages) is decidable. Theoretical Computer Science 47(1), 71–84 (1986)

12. Weber, A.: Decomposing finite-valued transducers and deciding their equivalence.
SIAM Journal on Computing 22(1), 175–202 (1993)

13. Garey, M., Johnson, D.: Computers and Intractability. Freeman, New York (1979)
14. Gurari, E., Ibarra, O.: The complexity of decision problems for finite-turn multi-

counter machines. Journal of Computer and System Sciences 22(2), 220–229 (1981)
15. Sakarovitch, J.: A construction on finite automata that has remained hidden. The-

oretical Computer Science 204(1–2), 205–231 (1998)
16. Weber, A.: On the valuedness of finite transducers. Acta Informatica 27(8), 749–

780 (1989)
17. Berstel, J.: Transductions and Context-Free Languages. B. G. Teubner (1979)
18. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, Lon-

don (1974)
19. Sakarovitch, J.: Éléments de théorie des automates. Vuibert, Paris (2003); English

translation: Elements of Automata Theory. Cambridge University Press, Cam-
bridge (to appear)

20. Sakarovitch, J.: The rational skimming theorem. In: Van, D.L., Ito, M. (eds.) Proc.
of The Mathematical Foundations of Informatics (1999), pp. 157–172. World Sci-
entific, Singapore (2005)

http://stacs-conf.org
http://www.infres.enst.fr/~rsouza/DFV.pdf

Decidable Properties of 2D Cellular Automata�

Alberto Dennunzio1 and Enrico Formenti2,��

1 Università degli Studi di Milano–Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione,

Viale Sarca 336, 20126 Milano Italy
dennunzio@disco.unimib.it

2 Université de Nice-Sophia Antipolis, Laboratoire I3S,
2000 Route des Colles, 06903 Sophia Antipolis France

enrico.formenti@unice.fr

Abstract. In this paper we study some decidable properties of two-
dimensional cellular automata (2D CA). The notion of closingness is
generalized to the 2D case and it is linked to permutivity and openness.
The major contributions of this work are two deep constructions which
have been fundamental in order to prove our new results and we strongly
believe it will be a valuable tool for proving other new ones in the near
future.

Keywords: cellular automata, decidability, symbolic dynamics.

1 Introduction and Motivations

Cellular automata (CA) are a well-known formal model for complex systems
and, at the same time, a paradigmatic model of massive parallel computation.
Indeed, a CA is made of an infinite number of identical finite automata arranged
on a regular lattice (Z2 or Z in this paper). Each automaton assumes a state
chosen from a set A, called the set of states or the alphabet. A configuration
is a snapshot of all states of the automata. A local rule updates the state of
each automaton on the basis of its current state and the ones of a finite set of
neighboring automata. All the automata are updated synchronously.

Behind the simplicity of the CA definition stands the huge complexity of
different dynamical behaviors which captured the attention of researchers all
over these last thirty years. We refer the reader to [10, 15, 7, 13, 18] for a review
of the main results and for a comprehensive bibliography.

Historically, Von Neumann introduced CA to study formal models for cells
self-reproduction. These were two-dimensional models. Paradoxically, the study

� This work has been supported by the Interlink/MIUR project “Cellular Automata:
Topological Properties, Chaos and Associated Formal Languages”, by the ANR
Blanc “Projet Sycomore” and by the PRIN/MIUR project “Formal Languages and
Automata: Mathematical and Applicative Aspects”.

�� Corresponding author.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 264–275, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Decidable Properties of 2D Cellular Automata 265

of the CA dynamical behavior concentrated essentially on the one-dimensional
case except for additive CA and a few others (see, for example [19]).

The reason of this gap is may be twofold: from one hand, there is a common
feeling that most of topological results are “automatically” transferred to higher
dimensions; from the other hand, researchers mind the complexity gap. Indeed,
many CA properties are dimension sensitive i.e. they are decidable in dimension
1 and undecidable in higher dimensions [2, 8, 12, 9, 3].

In this paper, in order to overcome this complexity gap, we use two deep con-
structions which allow to see a 2D as a 1D CA (see Section 4). In this way, well-
known properties of one-dimensional CA can be lifted to the two-dimensional
case. The idea is to “cut” the space of configurations of a CA in dimension d into
slices of dimension d− 1. Hence, the former CA (in dimension d) can be seen as
a new CA (in dimension d− 1) operating on configurations made of slices. The
only inconvenient is that this latter CA has an infinite set of states. However,
Theorem 3 and 4 prove that this is not always a problem.

The idea for this construction appeared in the context of additive CA in [17]
and it was formalized in [6] . In the present paper, we generalize it to arbitrary
2D CA. Moreover, we further refine it so that slices are translation invariant
along some fixed direction. This confers finiteness to the set of states of the
sliced CA allowing to lift even more properties.

Finally, we list the new contributions given by this paper besides the afore-
mentioned constructions:

– the notion of closingness is generalized to 2D;
– closingness is decidable;
– closing 2D CA have a dense set of periodic orbits (DPO) and are surjective;
– 4-closing 2D CA are open;
– open CA (in any dimension) are surjective;
– permutive 2D CA have DPO and are mixing and surjective;
– bi-permutive 2D CA are strongly transitive.

Remark that permutivity is also a decidable property. We conjecture that open
2D CA are 4-closing and hence openness should also be a decidable property. At
present, those three properties seem to be the frontier between decidability and
undecidability in CA.

For the sake of simplicity and lack of space, we decided to formulate new
results and definition for the directions NE, SE, SW, NW but most of them are
generalizable to any arbitrary direction. A complete treatment will appear in an
extended forthcoming journal version of the present paper. Moreover, in order to
stress on results and new notions, we have chosen to put all the technical parts
and the constructions at the end of the paper.

2 Basic Definitions

In this section we briefly recall standard definitions about CA as dynamical
systems. For introductory matter and recent results see [14, 1, 16] , for instance.

266 A. Dennunzio and E. Formenti

For all i, j ∈ Z with i ≤ j, let [i, j] = {i, i + 1, . . . , j}. Let N+ be the set of
positive integers. For a vector x ∈ Z2, denote by |x| the infinite norm (in R2)
of x. Let r ∈ N. Denote by Mr the set of all the two-dimensional matrices with
values in A and entry vectors in the square [−r, r]2. For any matrix N ∈ Mr,
N(x) ∈ A represents the element of the matrix with entry vector x.

1D CA. Let A be a possibly infinite alphabet. A 1D CA configuration is a
function from Z to A. The 1D CA configuration set AZ is usually equipped with
the metric d defined as follows

∀c, c′ ∈ AZ, d(c, c′) = 2−n, where n = min
{
i ≥ 0 : ci �= c′i or c−i �= c′−i

}
.

If A is finite, AZ is a compact, totally disconnected and perfect topological
space (i.e., AZ is a Cantor space). For any pair i, j ∈ Z, with i ≤ j, and any
configuration c ∈ AZ we denote by c[i,j] the word ci · · · cj ∈ Aj−i+1, i.e., the
portion of c inside the interval [i, j]. A cylinder of block u ∈ Ak and position
i ∈ Z is the set [u]i = {c ∈ AZ : c[i,i+k−1] = u}. Cylinders are clopen sets w.r.t.
the metric d and they form a basis for the topology induced by d.

A 1D CA is a structure 〈1, A, r, f〉, where A is the alphabet, r ∈ N is the
radius and f : A2r+1 → A is the local rule of the automaton. The local rule f
induces a global rule F : AZ → AZ defined as follows,

∀c ∈ AZ, ∀i ∈ Z, F (c)i = f(xi−r , . . . , xi+r) .

Note that F is a uniformly continuous map w.r.t. the metric d. A 1D CA with
global rule F is right (resp., left) closing iff F (c) �= F (c′) for any pair c, c′ ∈ AZ

of distinct left (resp., right) asymptotic configurations, i.e., c(−∞,n] = c′(−∞,n]

(resp., c[n,∞) = c′[n,∞)) for some n ∈ Z, where a(−∞,n] (resp., a[n,∞)) denotes the
portion of a configuration a inside the infinite integer interval (−∞, n] (resp.,
[n,∞)). A CA is said to be closing if it is either left or right closing. A rule f :
A2r+1 → A is righmost (resp., leftmost) permutive iff ∀u ∈ A2r, ∀β ∈ A, ∃α ∈ A
such that f(uα) = β (resp., f(αu) = β). A 1D CA is said to be permutive if its
local rule is either rightmost or leftmost permutive.

2D CA. Let A be a finite alphabet. A 2D CA configuration is a function from
Z2 to A. The 2D CA configuration set AZ

2
is equipped with the following metric

which is denoted for the sake of simplicity by the same symbol of the 1D case:

∀c, c′ ∈ AZ
2
, d(c, c′) = 2−k where k = min

{
|x| : x ∈ Z2, c(x) �= c′(x)

}
.

The 2D configuration set is a Cantor space. A 2D CA is a structure 〈2, A, r, f〉,
where A is the alphabet, r ∈ N is the radius and f : Mr → A is the local rule
of the automaton. The local rule f induces a global rule F : AZ

2 → AZ
2

defined
as follows,

∀c ∈ AZ
2
, ∀x ∈ Z2, F (c)(x) = f

(
Mx

r (c)
)

,

where Mx
r (c) ∈ Mr is the finite portion of c of reference position x ∈ Z2 and

radius r defined by ∀k ∈ [−r, r]2, Mx
r (c)(k) = c(x+k). For any v ∈ Z2 the shift

Decidable Properties of 2D Cellular Automata 267

map σv : AZ
2 → AZ

2
is defined by ∀c ∈ AZ

2
, ∀x ∈ Z2, σv(c)(x) = c(x + v). A

function F : AZ
2 → AZ

2
is said to be shift-commuting if ∀k ∈ Z2, F ◦σk = σk◦F .

Note that 2D CA are exactly the class of all shift-commuting functions which
are (uniformly) continuous with respect to the metric d (Hedlund’s theorem
from [11]). A 2D subshift S is a closed subset of the CA configuration space such
that for any v ∈ Z2, σv(S) ⊂ S.

For any fixed vector v, we denote by Sv the set of all configurations c ∈ AZ
2

such that σv(c) = c. Remark that, for any 2D CA global map F and for any v,
the set Sv is F -invariant, i.e., F (Sv) ⊆ Sv.

DTDS. A discrete time dynamical system (DTDS) is a pair (X, g) where X is
a set equipped with a distance d and g : X 	→ X is a map which is continuous on
X with respect to the metric d. When X is the configuration space of a (either
1D or 2D) CA equipped with the above introduced metric, the pair (X,F) is
a DTDS. From now on, for the sake of simplicity, we identify a CA with the
dynamical system induced by itself or even with its global rule F .

Given a DTDS (X, g), a point c ∈ X is periodic for g if there exists an integer
p > 0 such that gp(c) = c. If the set of all periodic points of g is dense in X ,
we say that the DTDS has the denseness of periodic orbits (DPO). Recall that
a DTDS (X, g) is (topologically) transitive if for any pair of non-empty open
sets O1, O2 ⊆ X there exists an integer n ∈ N such that gn(O1) ∩ O2 �= ∅. A
DTDS (X, g) is (topologically) mixing if for any pair of non-empty open sets
O1, O2 ⊆ X there exists an integer n ∈ N such that for any t ≥ n we have
gt(O1) ∩O2 �= ∅. Trivially, any mixing DTDS is also transitive. A DTDS (X, g)
is (topologically) strongly transitive if for any non-empty open set O ⊆ X , it holds
that

⋃
n∈N

gn(O) = X . A DTDS (X, g) is open (resp., surjective) iff g is open
(resp., g is surjective). Remark that any strongly transitive system is surjective.
Moreover, in compact spaces, transitive (or mixing) DTDS are surjective.

Recall that two DTDS (X, g) and (X ′, g′) are isomorphic (resp., topologically
conjugated) if there exists a bijection (resp., homeomorphism) φ : X 	→ X ′ such
that g′ ◦ φ = φ ◦ g. (X ′, g′) is a factor of (X, g) if there exists a continuous and
surjective map φ : X → X ′ such that g′ ◦ φ = φ ◦ g. Remark that in that case,
(X ′, g′) inherits from (X, g) some properties such as surjectivity, transitivity,
mixing, and DPO.

3 Main Results

Notation. In the sequel, the symbol U is any direction in {NE,SE, SW,NW}.
Given the direction U , let Ū be the opposite direction, i.e., NE = SW , SW =
NE, NW = SE and SE = NW . Moreover, we associate the NE direction
with the vector λ = (1, 1) and the SE one with μ = (1,−1). Then, the vector
associated with SW is −λ = (−1,−1) and, similarly, −μ = (−1, 1) is associated
with NW . For each direction U , let ν be the vector associated with U .

A pattern P is a function from a finite domain Dom(P) ⊆ Z2 taking val-
ues in A. Given two patterns P and P ′, denote P ⊕ P ′, the pattern Π such

268 A. Dennunzio and E. Formenti

that Dom(Π) = Dom(P) ∪ Dom(P ′) and ∀x ∈ Dom(Π), Π(x) = P (x) if
x ∈ Dom(P), P ′(x) otherwise. The notion of cylinder can be conveniently ex-
tended to general patterns as follows: for any P ⊆ AZ

2
, let [P] be the set{

c ∈ AZ
2 | ∀x ∈ Dom(P), c(x) = P (x)

}
. As in the 1D case, cylinders form a

basis for the open sets.
In the sequel, with a little abuse of notation, for any pattern P , F (P) is

the pattern P ′ such that dom(P ′) = {x ∈ dom(P), Br(x) ⊆ dom(P)} and forall
x ∈ dom(P ′), P ′(x) = f(Br(x)), where Br(x) =

{
y ∈ Z2, |x− y| ≤ r

}
.

3.1 Closingness

We now generalize to 2D CA the notion of closingness. This property turns out
to be decidable. As a main result, we prove that closing 2D CA have DPO.

Definition 1 (U-asymptotic configurations). Two configurations c, c′ ∈ AZ
2

are U -asymptotic if there exists q ∈ Z such that ∀x ∈ Z2 with ν · x ≥ q it holds
that c(x) = c′(x).

Definition 2 (Closingness). A 2D CA F is U-closing is for any pair of Ū -
asymptotic configurations c, c′ ∈ AZ

2
we have that c �= c′ implies F (c) �= F (c′).

A 2D CA is closing (resp., 4-closing) if it is U -closing for some U (resp., for all
U ∈ {NE,SE, SW,NW}).

We are going to define two families of binary relations on the set of configurations
which will greatly help in simplifying the notation. For any m ∈ N and for any
c, c′ ∈ AZ

2
, we write c0ν

m c′ if and only if c(x) = c′(x) for each x ∈ Z2 with
|x| ≤ m and ν · x < 0. For any m ∈ N and for any c, c′ ∈ AZ

2
, we write c�mc′

if and only if ∀x ∈ Z2 with |x| ≤ m it holds that c(x) = c′(x). Remark that the
definition of these binary relations can be easily extended to work on patterns.

The following proposition gives a combinatorial characterization of closingness
for 2D CA. Its proof is very similar to the one-dimensional case (see [14]); we
report it here only to show the role played by the relations 0ν

m and �m.

Proposition 1. A 2D CA F is U -closing iff there exists m ∈ N such that for
all configurations c, c′ ∈ AZ

2
, c0ν

m c′ and F (c)�mF (c′) implies c(0) = c′(0).

Proof. Assume that F is NE-closing and, by contradiction, that for all m > 0
there exist c, c′ ∈ AZ

2
such that c0ν

m c′ and F (c)�mF (c′) implies c(0) �= c′(0).
For any m > 0 define the following sets

Xm =
{
(c, c′) ∈ AZ

2 ×AZ
2 | c0ν

m c′ and F (c)�mF (c′) and c(0) �= c′(0)
}

.

Remark that for any m > 0, Xm �= ∅, Xm+1 ⊆ Xm and Xm is closed. Therefore
X = ∩m>0Xm is not empty. In other words, there exist c, c′ such that for all
m > 0, c 0ν

m c′ i.e. c and c′ are SW -asymptotic. Moreover, for all m > 0,
F (c)�mF (c′) implies F (c) = F (c′). Finally, c(0) �= c′(0) (since c, c′ belong
to some Xm) together with the previous remarks gives the contradiction. For

Decidable Properties of 2D Cellular Automata 269

the opposite implication. Assume that there exists m > 0 such that for all
configurations c, c′ ∈ AZ

2
, c 0ν

m c′ and F (c)�mF (c′) implies c(0) = c′(0) but
F is not NE-closing. Consider a pair of distinct SW -asymptotic configurations
c, c′ and shift them enough (if necessary) such that c(0) �= c′(0). Clearly, c0ν

m c′

and, since they are SW -asymptotic, we have F (c)�mF (c′). !

Proposition 2. Closingness is a decidable property.

Proof. Consider a 2D CA F with radius r. Assume that F is NE-closing (the
other cases are similar). Consider the following statement Q(m) =

[∀ P, P ′, C, C′, (P 0ν
m P ′ and F (P ⊕ C)�mF (P ′ ⊕ C′)) ⇒ C(0) = C′(0)] .

where the quantification is made over all patterns P, P ′ such that dom(P) =
dom(P ′) =

{
x ∈ Z2 | |x| ≤ m + r, ν · x < 0

}
and over all pattern C,C′ such

that dom(C) = dom(C′) =
{
x ∈ Z2 | |x| ≤ m + r, ν · x ≥ 0

}
. We claim that

Q(m) must be true for some m ≤ 2r. Indeed, assume that this is not the case
and let m > 2r. Consider the patterns P, P ′, C, C′ satisfying the sufficient part
of Q(2r). Let P̄ , P̄ ′, C̄, C̄′ be the same as P, P ′, C, C′ but such that P̄ ⊕ C̄ and
P̄ ′ ⊕ C̄′ are surrounded by a border of cells in state a ∈ A of width m − 2r.
Then, P̄ , P̄ ′, C̄, C̄′ do not verify Q(m). If Q(m) is never verified for any m, then
F is not NE-closing (just extend patterns into configurations by adding some
“default” symbol outside the domain of the pattern). !

Theorem 1. Any closing 2D CA has DPO.

Proof. Assume that F is NE-closing. Choose c ∈ AZ
2

and ε > 0. Let n ∈ N
be such that 1

2n < ε. Set v = nμ (which is perpendicular to λ). Since F is
NE-closing, by Lemma 5 and 6, (Sv, F) is topologically conjugated to a 1D CA
(BZ, F ∗) where F ∗ is right closing and B is finite. Since closing 1D CA on finite
alphabet have DPO [4], then (Sv, F) has DPO too. Let c′ ∈ Sv be a configuration
such that d(c′, c) < 1

2n . Then there exists a periodic configuration p ∈ Sv such
that d(c′, p) < 1

2n . This concludes the proof. !

Corollary 1. Any closing 2D CA is surjective.

Proof. Just recall that DPO implies surjectivity, then use Theorem 1. !

3.2 Openness

In this section we study the relation between openness and closingness. Recall
that in 1D CA, a CA is open if and only if it is both left and right closing. Here
we prove a weaker result, namely that 4-closing 2D CA are open. We conjecture
that also the opposite relation is true.

Notation. For t,m ≥ 1, q, q′ ∈ Z, we say that a pattern u has shape [m, t, q, q′]
if dom(u) =

{
x ∈ Z2 | q ≤ λx ≤ q + m− 1 and q′ ≤ −μx ≤ q′ + t− 1

}
.

270 A. Dennunzio and E. Formenti

Proposition 3. Consider a 2D NE-closing CA F . Then, for all sufficiently
large m > 0 and any t ≥ 1, q, q′ ∈ Z, if u and v are patterns of shape [t,m, q, q′]
and [t, 2m, q, q′], resp., and F ([u]) ∩ [v] �= ∅, then for each pattern b of shape
[1, t, q + 2m, q′] there exists a pattern a of shape [1, t, q + m, q′] such that

F ([u ⊕ a]) ∩ [v ⊕ b] �= ∅ . (1)

Proof. Consider the slicing F ∗ on Sk of F according to a vector k⊥λ with |k|
bigger than t. Take m like in Proposition 1. By Lemma 6, F ∗ is right-closing. Let
B = A|k|. The patterns u, v, b are contained in suitable 1D blocks u′ ∈ Bm, v′ ∈
B2m, and a suitable b′ ∈ B, respectively. By [14, Thm. 5.44, p. 228], there exists
a′ ∈ B, such that W = F ∗([u′a′])∩ [v′b′] �= ∅. To conclude the proof just remark
that any c ∈W is such that Ψ−1(c) is in the intersection set in (1). !

Similar results as in Proposition 3 hold for all other directions SE, SW,NW .

Theorem 2. If a 2D CA F is 4-closing, then F is open.

Proof. We just need to show that the image of a cylinder is an open set. Let m
be like in Proposition 3. For any pattern u of shape [2k+1, 2k+1,−k,−k], if v is
a pattern of shape [2k′ +1, 2k′ +1,−k′,−k′] for k′ = k+m and F ([u])∩ [v] �= ∅,
then, using Proposition 3 and a completeness argument, one can see that any
configuration in [v] has a preimage in [u]. Therefore,

F ([u]) =
⋃
{[v] : F ([u]) ∩ [v] �= ∅, and v has shape [2k′ + 1, 2k′ + 1,−k′,−k′]}

is a union of cylinders and hence F ([u]) is open. !

The following result is well-known for 1D CA, we are not aware of proofs for
higher dimensions. Moreover, we underline the fact that the result is obtained
using only topological arguments.

Proposition 4. Any open CA is surjective.

Proof. For any D-dimensional CA of global rule F , F (AZ
D

) is subshift. If F

is open, then F (AZ
D

) has non-empty interior. It is well-known that AZ
D

is the
only subshift with non-empty interior, hence F (AZ

D

) = AZ
D

. !

3.3 Permutivity

We now introduce another decidable property for the local rule of a 2D CA.

Definition 3 (Permutivity). A 2D CA of local rule f and radius r is U -
permutive, if for each pair of matrices N,N ′ ∈ Mr with N(x) = N ′(x) in all
vectors x �= rν, it holds that N(rν) �= N ′(rν) implies f(N) �= f(N ′). A 2D CA
is bi-permutive iff it is both U permutive and Ū-permutive.

Proposition 5. Any U -permutive 2D CA is U -closing.

Decidable Properties of 2D Cellular Automata 271

Proof. Assume that a 2D CA F is NE-permutive. Take two SW -asymptotic
configurations c, c′ with F (c) = F (c′). Let q ∈ Z be the integer such that c(x) =
c′(x) for any x with λ · x ≤ q. Consider all vectors y with y · λ = q + 1. By
hypothesis, we obtain c(y) = c(y) for all these vectors. The repetition of this
argument to q + 2, q + 3, . . . gives c = c′. !

Proposition 6. Any U -permutive 2D CA has DPO.

Proof. Use Proposition 5 and Theorem 1. !

Theorem 3. Any bi-permutive 2D CA is strongly transitive.

Proof. Consider a bi-permutive 2D CA F . By Lemma 1, it is a factor of a 1D
CA ((AZ)Z, F ∗) which, by Lemma 2, is both left and right permutive. Lemma 4
concludes the proof. !

Theorem 4. Any U-permutive 2D CA is (topologically) mixing.

Proof. Consider a U -permutive 2D CA F . By Lemma 1, it is a factor of a 1D
CA ((AZ)Z, F ∗) which, by Lemma 2, is either left or right permutive. Lemma 3
concludes the proof. !

4 Constructions

In this section we illustrate the slicing constructions which are fundamental to
prove all the results of this paper.

U-Slicing. For each U , define d = μ, if U ∈ {NE,SW}, d = λ, otherwise.
We construct the line L0 generated by the vector d. The construction is such
that the set L∗

0 = L0 ∩ Z2 contains vectors of the form x = td where t ∈ Z. The
mapping ϕ : L∗

0 	→ Z associating any x ∈ L∗
0 with the integer ϕ(x) = t is a group

isomorphism with respect to the standard operations. Consider now the family
L constituted by all the lines parallel to L0 containing at least a point of integer
coordinates (trivially, for any vector x ∈ Z2 there exists a line parallel to L0

which contains this vector). It is clear that L is in a one-to-one correspondence
with Z. We enumerate the lines according to their intersection with the axis l1
given by the direction e1 = (1, 0). In other words, for any i ∈ Z, Li is the line
whose intersection with l1 is the point ie1. Equivalently, Li is the line expressed
in parametric form by x = ie1 + td (x ∈ R2, t ∈ R). Note that, for any x ∈ Z2

there exist i, t ∈ Z such that x = ie1 + td. In particular, one can remark that
∀i, j ∈ Z, if x ∈ Li and y ∈ Lj , then x + y ∈ Li+j .

Let us summarize the construction. We have a countable collection L = {Li :
i ∈ Z} of lines parallel to L0 inducing a partition of Z2. Define L∗

i = Li∩Z2, then
Z2 =

⋃
i∈Z

L∗
i . Therefore, any configuration c ∈ AZ

2
can be viewed as a mapping

c :
⋃

i∈Z
L∗

i 	→ Z. For every i ∈ Z, the slice ci over the lines Li of the configuration
c is the mapping ci : L∗

i → A, which is the restriction of c to the set L∗
i ⊂ Z2.

272 A. Dennunzio and E. Formenti

In this way, a configuration c ∈ AZ
2

can be expressed as the bi-infinite one-
dimensional sequence ≺ c 1= (. . . , c−2, c−1, c0, c1, c2, . . .) of its slices ci ∈ AL∗

i

where the i-th component of the sequence ≺ c 1 is ≺ c 1i= ci. Let us stress that
each slice ci is defined only over the set L∗

i . Moreover, ∀x ∈ Z2, ∃!i ∈ Z : x ∈ L∗
i

and in this case we identify ≺ c 1 (x) ≡≺ c 1i (x) = ci(x) = c(x) ∈ A. The
identification of any configuration c ∈ AZ

2
with the corresponding bi-infinite se-

quence of slices c ≡≺ c 1= (. . . , c−2, c−1, c0, c1, c2, . . .), allows the introduction
of a new one-dimensional bi-infinite CA over the alphabet AZ expressed by a
global transition mapping F ∗ : (AZ)Z 	→ (AZ)Z which associates any configura-
tion a : Z 	→ AZ with a new configuration F ∗(a) : Z → AZ. The local rule f∗ of
this new CA we are going to define will take a certain number of configurations
of AZ as input and will produce a new configuration of AZ as output.

For each h ∈ Z, define the following bijective mapping Th : AL∗
h 	→ AL∗

0 which
associates any slice ch over the line Lh with the slice Th(ch)

(ch : L∗
h → A) Th−→ (Th(ch) : L∗

0 → A)

defined as ∀x ∈ L∗
0, Th(ch)(x) = ch(x + he1). Remark that the mapping T −1

h :
AL∗

0 → AL∗
h associates any slice c0 over the line L0 with the slice T −1

h (c0) over the
line Lh such that ∀x ∈ L∗

h, T −1
h (ch)(x) = c0(x−he1). Denote by Φ0 : AL∗

0 → AZ

the bijective mapping putting in correspondence any c0 : L∗
0 → A with the

configuration Φ0(c0) ∈ AZ,

(c0 : L∗
0 → A) Φ0−−→

(
Φ0(c0) : Z2 → A

)

defined as follows: ∀t ∈ Z, Φ0(c0)(t) := c0(ϕ−1(t)) ∈ A (equivalently we have
that ∀x ∈ L∗

0, Φ0(c0)(ϕ(x)) = c0(x)). Let us stress that the mapping Φ−1
0 : AZ →

AL∗
0 associates any configuration a ∈ AZ with the configuration Φ−1

0 (a) ∈ AL∗
0

in the following way: ∀x ∈ L∗
0, Φ

−1
0 (a)(x) = a(ϕ(x)).

Now we have all the necessary formalism to correctly define the radius r∗ local
rule f∗ : (AZ)2r∗+1 → AZ with r∗ = 2r starting from a radius r 2D CA F :

∀(a−r∗ , . . . , ar∗) ∈ (AZ)2r∗+1, f∗(a−r∗ , . . . , ar∗) = Φ0(b)

where b : L∗
0 → A is the slice obtained the simultaneous application of the local

rule f of the original CA on the slices c−r∗ , . . . , cr∗ of any configuration c such
that ∀i ∈ [−r∗, r∗], ci = T −1

i (Φ−1
0 (ai)). The global map of this new CA is F ∗ :

AZZ → AZZ and the link between F ∗ and f∗ is given, as usual, by (F ∗(a))i =
f∗(ai−r∗ , . . . , ai+r∗) where a = (. . . , a−1, a0, a1, . . .) ∈ (AZ)Z and i ∈ Z.

Lemma 1. The DTDS (AZ
2
, F) is isomorphic to the DTDS ((AZ)Z, F ∗) by the

bijective mapping Ψ : AZ
2 → (AZ)Z defined as follows

∀c ∈ AZ
2
, Ψ(c) = (. . . , Φ0(T−1(c−1)), Φ0(T0(c0)), Φ0(T1(c1)), . . .) .

Moreover, the mapping Ψ−1 : (AZ)Z 	→ AZ
2

∀a ∈ (AZ)Z, Ψ−1(a)=(. . . , T −1
−1 (Φ−1

0 (a−1)), T −1
0 (Φ−1

0 (a0)), T −1
1 (Φ−1

0 (a1)), . . .)

is continuous. Hence, (AZ
2
, F) is a factor of ((AZ)Z, F ∗).

Decidable Properties of 2D Cellular Automata 273

Proof. It is clear that Ψ is bijective. We show that Ψ ◦ F = F ∗ ◦ Ψ , i.e., that
∀i ∈ Z, ∀c ∈ AZ

2
, Ψ(F (c))i = F ∗(Ψ(c))i. We have Ψ(F (c))i = Φ0(Ti(F (c)i))

where the slice F (c)i is obtained by the simultaneous application of f on the
slices ci−r∗ , . . . , ci+r∗ . On the other hand F ∗(Ψ(c))i is equal to

f∗(Ψ(c)i−r∗ , . . . , Ψ(c)i+r∗) = f∗(Φ0(Ti−r∗(ci−r∗)), . . . , Φ0(Ti+r∗(ci+r∗))) = Φ0(b)

where, by definition of f∗, b is the slice obtained by the simultaneous application
of f on the slices dr∗ = T −1

−r∗(Ti−r∗(ci−r∗)), . . . , dr∗ = T −1
r∗ (Ti+r∗(ci+r∗)) which

gives Ti(F (c)i). We now prove that Ψ−1 is continuous mapping from the metric
space (AZ)Z to the metric space AZ

2
, both equipped with the suitable metric,

which for the sake of simplicity is denoted by the same symbol d. Choose an
arbitrary configuration a = (. . . , a−1, a0, a1, . . .) ∈ (AZ)Z and a real number
ε > 0. Let n be a positive integer such that 1

2n < ε. Consider the hyperplanes
Hi with −2n ≤ i ≤ 2n. Setting δ = 1

22n , for any configuration b ∈ (AZ)Z with
d(b, a) < δ, we have that bi = ai for each i ∈ Z,−2n ≤ i ≤ 2n. This fact implies
that (Ψ−1(b))i = (Ψ−1(a))i, and then (Ψ−1(b))i(x) = (Ψ−1(a))i(x), for each i
with −2n ≤ i ≤ 2n and for any x ∈ H∗

i . Equivalently, we have (Ψ−1(a))(x) =
(Ψ−1(b))(x), for any x ∈ H∗

i , with −2n ≤ i ≤ 2n and in particular for any x
such that |x| ≤ n. So we have obtained that d(Ψ−1(b), Ψ−1(a)) < ε. Hence, Ψ−1

is continuous. !

Lemma 2. Consider a 2D CA F . If F is U -permutive and ν · λ + ν · μ > 0
(resp., ν · λ + ν · μ < 0) then the 1D CA ((AZ)Z, F ∗) obtained by the U -slicing
construction is rightmost (resp., leftmost) permutive.

Proof. It immediately follows from the U -slicing construction. !

Lemma 3. Let F be a 1D CA with local rule f on a possibly infinite alphabet
A. If f is either rightmost or leftmost permutive, then F is topologically mixing.

Proof. The proof is similar to that given in [5] for CA with finite alphabet. !

Lemma 4. Let F be a 1D CA with local rule f on a possibly infinite alphabet
A. If f is both rightmost and leftmost permutive, then F is strongly transitive.

Proof. Choose b ∈ AZ, u ∈ A∗, i ∈ Z, and consider the cylinder [u]i. Let t ∈ N
be such that tr > i + |u| − 1 and −tr < i. The value b0 ∈ A depends only on
the values of any configuration c ∈ F−t(b) in [−rt, rt]. We build a configuration
a ∈ [u]i such that F t(a) = b. Fix ai = ci for each −rt ≤ i ≤ rt, assuring that
a ∈ [u]i and F t(a)0 = b0. Since the local rule f (t) of F t is both leftmost and
rightmost permutive there exist symbols α−1, α1 ∈ A, such that F t(a)−1 = b−1

and F t(a)1 = b1, when setting a−rt−1 = α−1, art+1 = α1. By repeating the
above procedure the thesis is obtained. !

Slicing plus finite alphabet. The following lemmata grant that for any 2D
CA F , we can build an associated sliced version F ∗ with finite alphabet. This
is very useful since one can use all the well-known results about 1D CA and try
to lift them to F .

274 A. Dennunzio and E. Formenti

Lemma 5. Let F be a 2D CA. For any vector v ∈ Z2 with v ⊥ λ or v ⊥ μ,
(Sv, F) is topologically conjugated to a 1D dimensional CA (BZ, F ∗) on the
alphabet B = A|v|.

Proof. Fix a vector v ⊥ λ. Consider the slicing construction on the set Sv.
According to it, any configuration c ∈ Sv is identified with the corresponding
bi-infinite sequence of slices. Since slices of configurations in Sv are in one-to-one
correspondence with symbols of the alphabet B, the slicing construction gives a
1D CA F ∗ : BZ → BZ such that, by Lemma 1, (Sv , F) is isomorphic to (BZ, F ∗)
by the bijective map Ψ : Sv → BZ. By Lemma 1, Ψ−1 is continuous. Since
configurations of Sv are periodic with respect to σv, Ψ is continuous too. !

Lemma 6. Let F be a 2D CA. For any vector v ∈ Z2 with v ⊥ λ or v ⊥ μ, let
(BZ, F ∗) be the 1D CA of Lemma 5 which is topologically conjugated to (Sv, F).
When v ⊥ λ, if F is NE-closing (resp., SW -closing), then F ∗ is right (resp.,
left) closing. On the other hand, when v ⊥ μ, if F is SE-closing (resp., NW -
closing), then F ∗ is right-closing (resp., left-closing).

Proof. Take v ⊥ λ and assume that F is NE-closing. Since F does not collapse
any pair of distinct SW -asymptotic configurations in Sv, the thesis immediately
follows by the slicing construction on Sv. The other cases are similar. !

5 Conclusions

In this paper we studied some decidable properties of 2D CA. In particular,
we generalized to the 2D case the notion of closingness and we investigated
its relation with permutivity and openness. This has been done by means of a
construction which associates any 2D CA with a peculiar 1D CA. We strongly
believe that these two constructions are useful to prove other fundamental results
about 2D CA dynamics and their view as transformations of picture languages.
We are currently investigating these connections.

References

[1] Acerbi, L., Dennunzio, A., Formenti, E.: Shifting and lifting of cellular automata.
In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 1–10.
Springer, Heidelberg (2007)

[2] Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of
parallel maps for tesselation structures. Journal of Computer and System Sci-
ences 6, 448–464 (1972)

[3] Bernardi, V., Durand, B., Formenti, E., Kari, J.: A new dimension sensitive prop-
erty for cellular automata. Theoretical Computer Science 345, 235–247 (2005)

[4] Boyle, M., Kitchens, B.: Periodic points for cellular automata. Indag. Math. 10,
483–493 (1999)

[5] Cattaneo, G., Dennunzio, A., Margara, L.: Chaotic subshifts and related languages
applications to one-dimensional cellular automata. Fundamenta Informaticae 52,
39–80 (2002)

Decidable Properties of 2D Cellular Automata 275

[6] Cattaneo, G., Dennunzio, A., Margara, L.: Solution of some conjectures about
topological properties of linear cellular automata. Theoretical Computer Sci-
ence 325, 249–271 (2004)

[7] Cervelle, J., Dennunzio, A., Formenti, E.: Chaotic behavior of cellular automata.
In: Meyers, B. (ed.) Mathematical basis of cellular automata, Encyclopedia of
Complexity and System Science. Springer, Heidelberg (2008)

[8] Durand, B.: Global properties of 2d cellular automata: Some complexity results.
In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp.
433–441. Springer, Heidelberg (1993)

[9] Durand, B.: Global properties of cellular automata. In: Goles, E., Martinez, S.
(eds.) Cellular Automata and Complex Systems. Kluwer, Dordrecht (1998)

[10] Formenti, E., Kůrka, P.: Dynamics of cellular automata in non-compact spaces.
In: Meyers, B. (ed.) Mathematical basis of cellular automata, Encyclopedia of
Complexity and System Science. Springer, Heidelberg (2008)

[11] Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical sys-
tem. Mathematical System Theory 3, 320–375 (1969)

[12] Kari, J.: Reversibility and surjectivity problems of cellular automata. Journal of
Computer and System Sciences 48, 149–182 (1994)

[13] Kari, J.: Tiling problem and undecidability in cellular automata. In: Meyers, B.
(ed.) Mathematical basis of cellular automata, Encyclopedia of Complexity and
System Science. Springer, Heidelberg (2008)

[14] Kůrka, P.: Topological and Symbolic Dynamics. Cours Spécialisés, vol. 11. Société
Mathématique de France (2004)

[15] Kůrka, P.: Topological dynamics of one-dimensional cellular automata. In: Meyers,
B. (ed.) Mathematical basis of cellular automata, Encyclopedia of Complexity and
System Science. Springer, Heidelberg (2008)

[16] Di Lena, P., Margara, L.: Computational complexity of dynamical systems: the
case of cellular automata. Information and Computation (to appear, 2008)

[17] Margara, L.: On some topological properties of linear cellular automata. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 209–219. Springer, Heidelberg (1999)

[18] Pivato, M.: The ergodic theory of cellular automata. In: Meyers, B. (ed.) Mathe-
matical basis of cellular automata, Encyclopedia of Complexity and System Sci-
ence. Springer, Heidelberg (2008)

[19] Theyssier, G., Sablik, M.: Topological dynamics of 2d cellular automata. In: Beck-
mann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp.
523–532. Springer, Heidelberg (2008)

Fixed Point and Aperiodic Tilings

Bruno Durand1, Andrei Romashchenko2,3, and Alexander Shen1,3

1 LIF, CNRS & Univ. de Provence, Marseille
2 LIP, ENS de Lyon & CNRS

3 Institute for Information Transmission Problems, Moscow

Abstract. An aperiodic tile set was first constructed by R. Berger while
proving the undecidability of the domino problem. It turned out that ape-
riodic tile sets appear in many topics ranging from logic (the Entschei-
dungsproblem) to physics (quasicrystals)

We present a new construction of an aperiodic tile set that is based on
Kleene’s fixed-point construction instead of geometric arguments. This
construction is similar to J. von Neumann self-reproducing automata;
similar ideas were also used by P. Gács in the context of error-correcting
computations.

The flexibility of this construction allows us to construct a “robust”
aperiodic tile set that does not have periodic (or close to periodic) tilings
even if we allow some (sparse enough) tiling errors. This property was
not known for any of the existing aperiodic tile sets.

1 Introduction

In this paper, tiles are unit squares with colored sides. Tiles are considered as
prototypes: we may place translated copies of the same tile into different cells of
a cell paper (rotations are not allowed). Tiles in the neighbor cells should match
(common side should have the same color in both).

Formally speaking, we consider a finite set C of colors. A tile is a quadruple
of colors (left, right, top and bottom ones), i.e., an element of C4. A tile set is
a subset τ ⊂ C4. A tiling of the plane with tiles from τ (τ-tiling) is a mapping
U : Z2 → τ that respects the color matching condition. A tiling U is periodic if
it has a period, i.e., a non-zero vector T ∈ Z2 such that U(x + T) = U(x) for
all x ∈ Z2. Otherwise the tiling is aperiodic. The following classical result was
proved by Berger in a paper [2] where he used this construction as a main tool
to prove Berger’s theorem: the domino problem (to find out whether a given tile
set has tilings or not) is undecidable.

Theorem 1. There exists a tile set τ such that τ-tilings exist and all of them
are aperiodic. [2]

The first tile set of Berger was rather complicated. Later many other construc-
tions were suggested. Some of them are simplified versions of the Berger’s con-
struction ([16], see also the expositions in [1,5,13]). Some others are based on
polygonal tilings (including famous Penrose and Ammann tilings, see [10]). An

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 276–288, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Fixed Point and Aperiodic Tilings 277

ingenious construction suggested in [11] is based on the multiplication in a kind
of positional number system and gives a small aperiodic set of 14 tiles (in [3] an
improved version with 13 tiles is presented).

In this paper we present yet another construction of aperiodic tile set. It does
not provide a small tile set; however, we find it interesting because:

• The existence of an aperiodic tile set becomes a simple application of a
classical construction used in Kleene’s fixed point (recursion) theorem, in von
Neumann’s self-reproducing automata [15] and, more recently, in Gács’ reliable
cellular automata [7,8]; we do not use any geometric tricks. The construction
of an aperiodic tile set is not only an interesting result but an important tool
(recall that it was invented to prove that domino problem is undecidable); our
construction makes this tool easier to use (see Theorem 3 and Section 10 as
examples).
• The construction is rather general, so it is flexible enough to achieve some

additional properties of the tile set. Our main result is Theorem 6: there exists
a “robust” aperiodic tile set that does not have periodic (or close to periodic)
tilings even if we allow some (sparse enough) tiling errors. It is not clear whether
this can be achieved for previously known aperiodic tile sets; however, the math-
ematical model for a processes like quasicrystals’ growth or DNA-computation
should take errors into account. Note that our model (independent choice of
place where errors are allowed) has no direct physical meaning; it is just a sim-
ple mathematical model that can be used as a playground to develop tools for
estimating the consequences of tiling errors.

The paper is organized as follows. In Section 2 we define the notion of a self-
similar tile set (a tile set that simulates itself). In Section 3 we explain how
a tile set can be simulated by a computation implemented by another tile set.
Section 4 shows how to achieve a fixed point (a tile set that simulates itself).
Then we provide several applications of this construction: we use it to implement
substitution rules (Section 5) and to obtain tile sets that are aperiodic in a
strong sense (Section 6) and robust to tiling errors (Sections 7 and 8). Section 9
provides probability estimates that show that tiling errors are correctable with
probability 1 (with respect to Bernoulli distribution). Finally, we show some
other applications of the fixed point construction that simplify the proof of the
undecidability of the domino problem and related results.

2 Macro-Tiles

Fix a tile set τ and an integer N > 1. A macro-tile is an N ×N square tiled by
matching τ -tiles. Every side of a macro-tile carries a sequence of N colors called
a macro-color.

Let ρ be a set of τ -macro-tiles. We say that τ simulates ρ if (a) τ -tilings exist,
and (b) for every τ -tiling there exists a unique grid of vertical and horizontal
lines that cuts this tiling into N ×N macro-tiles from ρ.

278 B. Durand, A. Romashchenko, and A. Shen

Fig. 1.

Example 1. Assume that we have only one (‘white’) color
and τ consists of a single tile with 4 white sides. Fix some
N . There exists a single macro-tile of size N × N . Let ρ
be a singleton that contains this macro-tile. Then every τ -
tiling can be cut into macro-tiles from ρ. However, τ does
not simulate ρ, since the placement of cutting lines is not
unique.

Example 2. In this example a set ρ that consists of exactly one macro-tile (that
has the same macro-colors on all four sides) is simulated by some tile set τ . The
tile set τ consists of N2 tiles indexed by pairs (i, j) of integers modulo N . A tile
from τ has colors on its sides as shown on Fig. 1. The macro-tile in ρ has colors
(0, 0), . . . , (0, N − 1) and (0, 0), . . . , (N − 1, 0) on its borders (Fig. 2).

Fig. 2.

If a tile set τ simulates some set ρ of τ -macro-tiles
with zoom factor N > 1 and ρ is isomorphic to τ ,
the set τ is called self-similar. Here an isomorphism
between τ and ρ is a bijection that respects the rela-
tions “one tile can be placed on the right of another
one” and “one tile can be placed on the top of another
one”. (An isomorphism induces two bijections between
horizontal/vertical colors of τ and horizontal/vertical
macro-colors of ρ.)

The idea of self-similarity is used (more or less explic-
itly) in most constructions of aperiodic tile sets ([11,3]
are exceptions); we find the following explicit formulation useful.

Theorem 2. A self-similar tile set τ has only aperiodic tilings.

Proof. Every τ -tiling U can be uniquely cut into N ×N -macro-tiles from ρ. So
every period T of U is a multiple of N (since the T -shift of a cut is also a cut).
Then T/N is a period of ρ-tiling, which is isomorphic to a τ -tiling, so T/N is
again a multiple of N . Iterating this argument, we conclude that T is divisible
by Nk for every k, so T = 0. �

So to prove the existence of aperiodic tile sets it is enough to construct a self-
similar tile set, and we construct it using the fixed-point idea. To achieve this,
we first explain how to simulate a given tile set by embedding computations.

3 Simulating a Tile Set

For brevity we say that a tile set τ simulates a tile set ρ when τ simulates some
set of macro tiles ρ̃ isomorphic to ρ (e.g., a self-similar tile set simulates itself).

Let us start with some informal discussion. Assume that we have a tile set ρ
whose colors are k-bit strings (C = Bk) and the set of tiles ρ ⊂ C4 is presented

Fixed Point and Aperiodic Tilings 279

as a predicate R(c1, c2, c3, c4). Assume that we have some Turing machine R
that computes R. Let us show how to simulate ρ using some other tile set τ .

This construction extends Example 2, but simulates a tile set ρ that con-
tains not a single tile but many tiles. We keep the coordinate system modulo N
embedded into tiles of τ ; these coordinates guarantee that all τ -tilings can be
uniquely cut into blocks of size N ×N and every tile “knows” its position in the
block (as in Example 2). In addition to the coordinate system, now each tile in τ
carries supplementary colors (from a finite set specified below) on its sides. On
the border of a macro-tile (i.e., when one of the coordinates is zero) only two
supplementary colors (say, 0 and 1) are allowed. So the macro-color encodes a
string of N bits (where N is the size of macro-tiles). We assume that N ≥ k and
let k bits in the middle of macro-tile sides represent colors from C. All other bits
on the sides are zeros (this is a restriction on tiles: each tile knows its coordinates
so it also knows whether non-zero supplementary colors are allowed).

Now we need additional restrictions on tiles in τ that guarantee that the
macro-colors on sides of each macro-tile satisfy the relation R. To achieve this,
we ensure that bits from the macro-tile sides are transferred to the central
part of the tile where the checking computation of R is simulated (Fig. 3).

Fig. 3.

For that we need to fix which tiles in a macro-tile form “wires”
(this can be done in any reasonable way; let us assume that wires
do not cross each other) and then require that each of these tiles
carries equal bits on two sides; again it is easy since each tile
knows its coordinates.

Then we check R by a local rule that guarantees that the
central part of a macro-tile represents a time-space diagram of
R’s computation (the tape is horizontal, time goes up). This is

done in a standard way. We require that computation terminates in an accepting
state: if not, the tiling cannot be formed.

To make this construction work, the size of macro-tile (N) should be large
enough: we need enough space for k bits to propagate and enough time and
space (=height and width) for all accepting computations of R to terminate.

In this construction the number of supplementary colors depends on the
machine R (the more states it has, the more colors are needed in the com-
putation zone). To avoid this dependency, we replace R by a fixed univer-
sal Turing machine U that runs a program simulating R. Let us agree that
the tape has an additional read-only layer. Each cell carries a bit that is not

Fig. 4.

changed during the computation; these bits are used as a program
for the universal machine (Fig. 4). So in the computation zone the
columns carry unchanged bits, and the tile set restrictions guaran-
tee that these bits form the program for U , and the central zone
represents the protocol of an accepting computation for that pro-
gram. In this way we get a tile set τ that simulates ρ with zoom
factor N using O(N2) tiles. (Again we need N to be large enough.)

280 B. Durand, A. Romashchenko, and A. Shen

4 Simulating Itself

We know how to simulate a given tile set ρ (represented as a program for the uni-
versal TM) by another tile set τ with a large enough zoom factor N . Now we want
τ to be isomorphic to ρ (then Theorem 2 guarantees aperiodicity). For this we use
a construction that follows Kleene’s recursion (fixed-point) theorem1 [12].

Note that most rules of τ do not depend on the program for R, dealing with
information transfer along the wires, the vertical propagation of unchanged pro-
gram bits, and the space-time diagram for the universal TM in the computation
zone. Making these rules a part of ρ’s definition (we let k = 2 logN + O(1) and
encode O(N2) colors by 2 logN +O(1) bits), we get a program that checks that
macro-tiles behave like τ -tiles in this respect.

The only remaining part of the rules for τ is the hardwired program. We need
to ensure that macro-tiles carry the same program as τ -tiles do. For that our
program (for the universal TM) needs to access the bits of its own text. (This
self-referential action is in fact quite legal: the program is written on the tape,
and the machine can read it.) The program checks that if a macro-tile belongs
to the first line of the computation zone, this macro-tile carries the correct bit
of the program.

How should we choose N (hardwired in the program)? We need it to be large
enough so the computation described (which deals with O(logN) bits) can fit
in the computation zone. The computation is rather simple (polynomial in the
input size, i.e., O(logN)), so for large N it easily fits in Ω(N) available time.

This finishes the construction of a self-similar aperiodic tile set.

5 Substitution System and Tilings

The construction of self-similar tiling is rather flexible and can be easily aug-
mented to get a self-similar tiling with additional properties. Our first illustration
is the simulation of substitution rules.

Let A be some finite alphabet and m > 1 be an integer. A substitution rule is
a mapping s : A → Am×m. By A-configuration we mean an integer lattice filled
with letters from A, i.e., a mapping Z2 → A considered modulo translations.

A substitution rule s applied to a configuration X produces another configu-
ration s(X) where each letter a ∈ A is replaced by an m×m matrix s(a).

A configuration X is compatible with substitution rule s if there exists an
infinite sequence . . .

s→ X3
s→ X2

s→ X1
s→ X, where Xi are some configurations.

1 A reminder: Kleene’s theorem says that for every transformation π of programs one
can find a program p such that p and π(p) produce the same output. Proof sketch:
since the statement is language-independent (use translations in both directions be-
fore and after π), we may assume that the programming language has a function
GetText() that returns the text of the program and a function Exec(string s) that
replaces the current process by execution of a program s. (Think about an interpreter:
surely it has an access to the program text; it can also recursively call itself with an-
other program.) Then the fixed point is Exec(π(GetText())).

Fixed Point and Aperiodic Tilings 281

Example 3. Let A = {0, 1}, s(0) = (0 1
1 0), s(1) = (0 1

1 0). It is easy to see that
the only configuration compatible with s is the chess-board coloring.

Example 4. Let A = {0, 1}, s(0) = (0 1
1 0), s(1) = (1 0

0 1). One can check that
all configurations that are compatible with this substitution rule (called Thue –
Morse configurations in the sequel) are aperiodic.

The following theorem goes back to [14]. It says that every substitution rule
can be enforced by a tile set.

Theorem 3 (Mozes). Let A be an alphabet and let s be a substitution rule
over A. Then there exists a tile set τ and a mapping e : τ → A such that

(a) s-image of any τ-tiling is an A-configuration compatible with s;
(b) every A-configuration compatible with s can be obtained in this way.

Proof. We modify the construction of the tile set τ (with zoom factor N) taking
s into account. Let us first consider the very special case when

• the substitution rule maps each A-letter into an N×N -matrix (i.e., m = N).
• the substitution rule is easy to compute: given a letter u ∈ A and (i, j), we

can compute the (i, j)-th letter of s(u) in time poly(log |A|) 2 N .

In this case we proceed as follows. In our basic construction every tile knows its
coordinates in the macro-tile and some additional information needed to arrange
‘wires’ and simulate calculations of the universal TM. Now in addition to this
basic structure each tile keeps two letters of A: the first is the label of a tile itself,
and the second is the label of the N ×N -tile it belongs to. This means that we
keep additional 2 log |A| bits in each tile, i.e., multiply the number of tiles by
|A|2. It remains to explain how the local rules work. We add two requirements:

(a) the second letter is the same for neighbor tiles (unless they are separated
by a border of some N ×N macro-tile);

(b) the first letter in a tile is determined by the second letter and the coordi-
nates of the tile inside the macro-tile, according to the substitution rule.

Both requirements are easy to integrate in our construction. The requirement
(a) is rather trivial; to achieve (b) we need to embed in a macro-tile a calculation
of s([label on this macro-tile]). It is possible when s is easy to compute.

The requirements (a) and (b) ensure that configuration is an s-image of some
other configuration. Also (due the self-similarity) we have the same at the level
of macro-tiles. But this is not all: we need to guarantee that the first letter on
the level of macro-tiles is identical to the second letter on the level of tiles. This
is also achievable: the first letter of a macro-tile is encoded by bits on its border,
and we can require that these bits match the second letter of the tiles at that
place (recall that second letter is the same across the macro-tile). It is easy to see
that now τ has the required properties (each tiling projects into a configuration
compatible with τ and vice versa).

However, this construction assumes that N (the zoom factor) is equal to the
matrix size in the substitution rule, which is usually not the case (m is given,
and N we have to choose, and it needs to be large enough). The solution is to
let N be equal to mk for some k, and use the substitution rule sk, i.e., the k-th

282 B. Durand, A. Romashchenko, and A. Shen

iteration of s (a configuration is compatible with sk if and only if it is compatible
with s). Now we do not need s to be easily computed: for large k the computation
of sk will fit into the space available (exponential in k). �

6 Strong Version of Aperiodicity

Let α > 0 be a real number. A configuration U : Z2 → A is α-aperiodic if for
every nonzero vector T ∈ Z2 there exists N such that in every square whose side
is at least N the fraction of points x such that U(x) �= U(x + T) exceeds α.

Remark 1. If U is α-aperiodic, then Besicovitch distance between U and any pe-
riodic pattern is at least α/2. (The Besicovitch distance is defined as lim supN dN

where dN is the fraction of points where two patterns differ in the N×N centered
square.)

Theorem 4. There exists a tile set τ such that τ-tilings exist and every τ-tiling
is α-aperiodic for every α < 1/3.

Proof. This tile set is obtained by applying Theorem 3 to Thue–Morse substi-
tution rule T (Example 4). Note that any configuration C = {cij} compatible
with T is a xor-combination cij = ai ⊕ bj of two one-dimensional Thue-Morse
sequences a and b, and for a and b a similar result (every shift changes between
1/3 and 2/3 of positions in a large block) is well known (see, e.g., [17]). �

7 Filling Holes

The second application of our flexible fixed-point construction is an aperiodic

Fig. 5.

tile set where isolated defects can be healed.
Let c1 < c2 be positive integers. We say that a tile set

τ is (c1, c2)-robust if the following holds: For every n and
for every τ -tiling U of the c2n-neighborhood of a square
n × n excluding the square itself there exists a tiling V
of the entire c2n-neighborhood of the square (including
the square itself) that coincides with U outside of the
c1n-neighborhood of the square (see Fig. 5).

Theorem 5. There exists a self-similar tile set that is
(c1, c2)-robust for some c1 and c2.

Proof. For every tile set μ it is easy to construct a “robustified” version μ′ of μ,
i.e., a tile set μ′ and a mapping δ : μ′ → μ such that: (a) δ-images of μ′-tilings
are exactly μ-tilings; (b) μ′ is “5-robust”: every μ′-tiling of a 5× 5 square minus
3× 3 hole can be uniquely extended to the tiling of the entire 5× 5 square.

Indeed, it is enough to keep in one μ′-tile the information about, say, 5 × 5
square in μ-tiling and use the colors on the borders to ensure that this informa-
tion is consistent in neighbor tiles.

Fixed Point and Aperiodic Tilings 283

Fig. 6.

This robustification can be easily combined with the fixed-point
construction. In this way we can get a 5-robust self-similar tile set
τ if the zoom factors N is large enough. Let us show that this set is
also (c1, c2)-robust for some c1 and c2 (that depend on N , but N is
fixed.)

Indeed, let us have a tiling of a large enough neighborhood around
an n×n hole. Denote by k the minimal integer such that Nk ≥ n (so the k-level
macro-tiles are greater than the hole under consideration). Note that the size of
k-level macro-tiles is linear in n since Nk ≤ N · n.

In the tiling around the hole, an N ×N block structure is correct except for
the N -neighborhood of the central n × n hole. For similar reasons N2 × N2-
structure is correct except for the N + N2-neighborhood, etc. So for the chosen
k we get a k-level structure that is correct except for (at most) 9 = 3×3 squares
of level k, and such a hole can be filled (due to 5-robustness) with Nk × Nk

squares, and these squares can be then detalized back.
To implement this procedure (and fill the hole), we need a correct tiling only

in the O(Nk)-neighborhood of the hole (technically, we need to have a correct
tiling in (3Nk)-neighborhood of the hole; as 3Nk ≤ 3Nn, we let c2 = 3N). The
correction procedure involves changes in another O(Nk)-neighborhood of the
hole (technically, changes touch (2Nk)-neighborhood of the hole; 2Nk ≤ 2Nn,
so we let c1 = 2N). �

8 Tilings with Errors

Now we combine our tools to prove that there exists a tile set τ that is aperiodic
in rather strong sense: this set does not have periodic tilings or tilings that
are close to periodic. Moreover, this remains true if we allow the tiling to have
some “sparse enough” set of errors. Tiling with errors is no more a tiling (as
defined above): in some places the neighbor colors do not match. Technically
it is more convenient to consider tilings with “holes” (where some cells are not
tiled) instead of errors but this does not matter: we can convert a tiling error
into a hole just by deleting one of two non-matching tiles.

Let τ be a tile set and let H ⊂ Z2 be some set (H for “holes”). We consider
(τ,H)-tilings, i.e., mappings U : Z2 \H → τ such that every two neighbor tiles
from Z2 \H match (i.e., have the same color on the common side).

We claim that there exists a tile set τ such that (1) τ -tilings of the entire
plane exist and (2) for every “sparse enough” set H every (τ,H)-tiling is far
from every periodic mapping Z2 → τ .

To make this claim true, we need a proper definition of a “sparse” set. The
following trivial counterexample shows that a requirement of small density is
not enough for such a definition: if H is a grid made of vertical and horizontal
lines at large distance N , the density of H is small but for any τ there exist
(τ,H)-tilings with periods that are multiples of N .

The definition of sparsity we use (see below) is rather technical; however, it
guarantees that for small enough ε a random set where every point appears with

284 B. Durand, A. Romashchenko, and A. Shen

probability ε independently of other points, is sparse with probability 1. More
precisely, for every ε ∈ (0, 1) consider a Bernoulli probability distribution Bε on
subsets of Z2 where each point is included in the random subset with probability
ε and different points are independent.

Theorem 6. There exists a tile set τ with the following properties: (1) τ-tilings
of Z2 exist; (2) for all sufficiently small ε for almost every (with respect to Bε)
subset H ⊂ Z2 every (τ,H)-tiling is at least 1/10 Besicovitch-apart from every
periodic mapping Z2 → τ .

Remark 2. Since the tiling contains holes, we need to specify how we treat the
holes when defining Besicovitch distance. We do not count points in H as points
where two mappings differ; this makes our statement stronger.

Remark 3. The constant 1/10 is not optimal and can be improved by a more
accurate estimate.

Proof. Consider a tile set τ such that (a) all τ -tilings are α-aperiodic for every
α < 1/3; (b) τ is (c1, c2)-robust for some c1 and c2. Such a tile set can be easily
constructed by combining the arguments used for Theorem 5 and Theorem 4.

Then we show (this is the most technical part postponed until Section 9)
that for small ε a Bε-random set H with probability 1 has the following “error-
correction” property: every (τ,H)-tiling is Besicovitch-close to some τ -tiling of
the entire plane. The latter one is α-aperiodic, therefore (if Besicovitch distance
is small compared to α) the initial (τ,H)-tiling is far from any periodic mapping.

For simple tile sets that allow only periodic tilings this error-correction prop-
erty can be derived from basic results in percolation theory (the complement
of H has large connected component etc.) However, for aperiodic tile sets this
argument does not work and we need more complicated notion of “sparse” set
based on “islands of errors”. We employ the technique suggested in [7] (see also
applications of “islands of errors” in [9], [6]).

9 Islands of Errors

Let E ⊂ Z2 be a set of points; points in E are called dirty; other points are
clean. Let β ≥ α > 0 be integers. A set X ⊂ E is an (α, β)-island in E if:

(1) the diameter of X does not exceed α;
(2) in the β-neighborhood of X there is no other points from E.

(Diameter of a set is a maximal distance between its elements; the distance d
is defined as the maximum of distances along both coordinates; β-neighborhood
of X is a set of all points y such that d(y, x) ≤ β for some x ∈ X .)

It is easy to see that two (different) islands are disjoint (and the distance
between their points is greater than β).

Let (α1, β1), (α2, β2),. . . be a sequence of pairs of integers and αi ≤ βi for all i.
Consider the iterative “cleaning” procedure. At the first step we find all (α1, β1)-
islands (rank 1 islands) and remove all their elements from E (thus getting a

Fixed Point and Aperiodic Tilings 285

smaller set E1). Then we find all (α2, β2)-islands in E1 (rank 2 islands); removing
them, we get E2 ⊂ E1, etc. Cleaning process is successful if every dirty point is
removed at some stage.

At the ith step we also keep track of the βi-neighborhoods of islands deleted
during this step. A point x ∈ Z2 is affected during a step i if x belongs to one
of these neighborhoods.

The set E is called sparse (for given sequence αi, βi) if the cleaning process is
successful, and, moreover, every point x ∈ Z2 is affected at finitely many steps
only (i.e., x is far from islands of large ranks).

The values of αi and βi should be chosen in such a way that:
(1) for sufficiently small ε > 0 a Bε-random set is sparse with probability 1

(Lemma 1 below);
(2) if a tile set τ is (c1, c2)-robust and H is sparse, then any (τ,H)-tiling is

Besicovitch close to some τ -tiling of the entire plane (Lemmas 2 and 3).

Lemma 1. Assume that 8
∑

k<n βk < αn ≤ βn for every n and
∑

i
log βi

2i < ∞.
Then for all sufficiently small ε > 0 a Bε-random set is sparse with probability 1.

Fig. 7. Explanation tree;
vertical lines connect dif-
ferent names for the same
points

Proof of Lemma 1. Let us estimate the probability
of the event “x is not cleaned after n steps” for a
given point x (this probability does not depend on x).
If x ∈ En, then x belongs to En−1 and is not cleaned
during the nth step (when (αn, βn)-islands in En−1

are removed). Then x ∈ En−1 and, moreover, there
exists some other point x1 ∈ En−1 such that d(x, x1)
is greater than αn/2 but not greater than βn+αn/2 <
2βn. Indeed, if there were no such x1 in En−1, then
αn/2-neighborhood of x in En−1 is an (αn, βn)-island
in En−1 and x would be removed.

Each of the points x1 and x (that we denote also x0 to make the notation
uniform) belongs to En−1 because it belongs to En−2 together with some other
point (at the distance greater than αn−1/2 but not exceeding βn−1 + αn−1/2).
In this way we get a tree (Figure 7) that explains why x belongs to En.

The distance between x0 and x1 in this tree is at least αn/2 while the diameter
of the subtrees starting at x0 and x1 does not exceed

∑
i<n 2βi. Therefore,

the Lemma’s assumption guarantees that these subtrees cannot intersect and,
moreover, that all the leaves of the tree are different. Note that all 2n leaves of
the tree belong to E = E0. As every point appears in E independently from
other points, such an “explanation tree” is valid with probability ε2n

. It remains
to estimate the number of possible explanation trees for a given point x.

To specify x1 we need to specify horizontal and vertical distance between x0

and x1. Both distances do not exceed 2βn, therefore we need about 2 log(4βn) bits
to specify them (including the sign bits). Then we need to specify the distances
between x00 and x01 as well as distances between x10 and x11; this requires at
most 4 log(4βn−1) bits. To specify the entire tree we therefore need

2 log(4βn) + 4 log(4βn−1) + 8 log(4βn−2) + . . . + 2n log(4β1),

286 B. Durand, A. Romashchenko, and A. Shen

that is (reversing the sum and taking out the factor 2n) equal to 2n(log(4β1) +
log(4β2)/2 + . . .). Since the series

∑
log βn/2n converges by assumption, the

total number of explanation trees for a given point (and given n) does not exceed
2O(2n), so the probability for a given point x to be in En for a Bε-random E does
not exceed ε2n

2O(2n), which tends to 0 (even super-exponentially fast) as n→∞.
We conclude that the event “x is not cleaned” (for a given point x) has zero

probability; the countable additivity guarantees that with probability 1 all points
in Z2 are cleaned.

It remains to show that every point with probability 1 is affected by finitely
many steps only. Indeed, if x is affected by step n, then some point in its
βn-neighborhood belongs to En, and the probability of this event is at most
O(β2

n)ε2n

2O(2n) = 22 log βn+O(2n)−log(1/ε)2n

; the convergence conditions guaran-
tees that log βn = o(2n), so the first term is negligible compared to others,
the probability series converges and the Borel–Cantelli lemma gives the desired
result. �

The following (almost evident) Lemma describes the error correction process.

Lemma 2. Assume that a tile set τ is (c1, c2)-robust, βk > 4c2αk for every k
and a set H ⊂ Z2 is sparse (with respect to αi, βi). Then every (τ,H)-tiling can
be transformed into a τ -tiling of the entire plane by changing it in the union of
2c1αk-neighborhoods of rank k islands (for all islands of all ranks).

Proof of Lemma 2. Note that βk/2-neighborhoods of rank k islands are dis-
joint and large enough to perform the error correction of rank k islands, since
βk > 4c2αk. �

It remains to estimate the Besicovitch size of the part of the plane changed
during error correction.

Lemma 3. The Besicovitch distance between the original and corrected tilings
(in Lemma 2) does not exceed O(

∑
k(αk/βk)2).

(Note that the constant in O-notation depends on c1.)
Proof of Lemma 3. We need to estimate the fraction of changed points in large

centered squares. By assumption, the center is affected only by a finite number
of islands. For every larger rank k, the fraction of points affected at the stage k in
any centered square does not exceed O((αk/βk)2): if the square intersects with
the changed part, it includes a significant portion of the unchanged part. For
smaller ranks the same is true for all large enough squares that cover completely
the island affecting the center point). �

It remains to chose αk and βk. We have to satisfy all the inequalities in Lem-
mas 1–3 at the same time. To satisfy Lemma 2 and Lemma 3, we may let
βk = ckαk for large enough c. To satisfy Lemma 1, we may let αk+1 = 8(β1 +
. . . + βk) + 1. Then αk and βk grow faster that any geometric sequence (like
factorial multiplied by a geometric sequence), but still log βi is bounded by a
polynomial in i and the series in Lemma 1 converges.

With these parameters (taking c large enough) we may guarantee that Besi-
covitch distance between the original (τ,H)-tiling and the corrected τ -tiling

Fixed Point and Aperiodic Tilings 287

does not exceed, say 1/100. Since the corrected tiling is 1/5-aperiodic and
1/10 + 2 · (1/100) < 1/5, we get the desired result (Theorem 6). �

10 Other Applications of Fixed Point Self-similar Tilings

The fixed point construction of aperiodic tile set is flexible enough and can be
used in other contexts. For example, the “zoom factor” N can depend on the
level k (number of grouping steps). This construction can be used to replace
the constant 1/10 in Theorem 6 by any number less that 1, to provide a new
proof for the results of [4] (a tileset whose tilings have maximal Kolmogorov
complexity) and extend them to tilings with sparse errors; it can be also used
in some other applications of tilings. Here is an example. We say that a tile set
τ is m-periodic if τ -tilings exist and for each of them the set of periods is the
set of all multiples of m (this is equivalent to the fact that both vectors (0,m)
and (m, 0) are periods). Let E [resp. O] be all m-periodic tile sets for all even
m [resp. odd m].

Theorem 7. The sets E and O are inseparable enumerable sets.

Acknowledgments. The authors thank the participants of the Kolmogorov semi-
nar in Moscow (working on the RFBR project 06-01-00122-a) for many fruitful
discussions.

References

1. Allauzen, C., Durand, B.: Appendix A: Tiling Problems. In: Börger, E., Grädel, E.,
Gurevich, Y. (eds.) The Classical Decision Problems. Springer, Heidelberg (1996)

2. Berger, R.: The Undecidability of the Domino Problem. Mem. Amer. Math. Soc 66
(1966)

3. Culik, K.: An Aperiodic Set of 13 Wang Tiles. Discrete Math. 160, 245–251 (1996)
4. Durand, B., Levin, L., Shen, A.: Complex Tilings. J. Symbolic Logic 73(2), 593–613

(2008)
5. Durand, B., Levin, L., Shen, A.: Local Rules and Global Order, or Aperiodic

Tilings. Math. Intelligencer 27(1), 64–68 (2004)
6. Durand, B., Romashchenko, A.: On Stability of Computations by Cellular Au-

tomata. In: Proc. European Conf. Compl. Syst., Paris (2005)
7. Gács, P.: Reliable Cellular Automata with Self-Organization. In: Proc. 38th Ann.

Symp. Found. Comput. Sci., pp. 90–97 (1997)
8. Gács, P.: Reliable Cellular Automata with Self-Organization. J. Stat.

Phys. 103(1/2), 245–267 (2001)
9. Gray, L.: A Reader’s Guide to Gács’ Positive Rates Paper. J. Stat. Phys. 103(1/2),

1–44 (2001)
10. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W.H. Freeman and Com-

pany, New York (1987)
11. Kari, J.: A Small Aperiodic Set of Wang tiles. Discrete Math. 160, 259–264 (1996)
12. Rogers, H.: The Theory of Recursive Functions and Effective Computability. MIT

Press, Cambridge (1987)

288 B. Durand, A. Romashchenko, and A. Shen

13. Levin, L.: Aperiodic Tilings: Breaking Translational Symmetry. Computer J. 48(6),
642–645 (2005), http://www.arxiv.org/cs.DM/0409024

14. Mozes, S.: Tilings, Substitution Systems and Dynamical Systems Generated by
Them. J. Analyse Math. 53, 139–186 (1989)

15. von Neumann, J.: Theory of Self-reproducing Automata. Burks, A. (ed.). Univer-
sity of Illinois Press (1966)

16. Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. Inven-
tiones Mathematicae 12, 177–209 (1971)

17. Zaks, M., Pikovsky, A.S., Kurths, J.: On the Correlation Dimension of the Spectral
Measure for the Thue–Morse Sequence. J. Stat. Phys. 88(5/6), 1387–1392 (1997)

http://www.arxiv.org/cs.DM/0409024

Extended Multi Bottom-Up Tree Transducers

Joost Engelfriet1, Eric Lilin2, and Andreas Maletti3,�

1 Leiden Institute of Advanced Computer Science
Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

engelfri@liacs.nl
2 Université des Sciences et Technologies de Lille

UFR IEEA 59655, Villeneuve d’Ascq, France
eric.lilin@lifl.fr

3 International Computer Science Institute
1947 Center Street, Suite 600, Berkeley, CA 94704, USA

maletti@icsi.berkeley.edu

Abstract. Extended multi bottom-up tree transducers are defined and
investigated. They are an extension of multi bottom-up tree transducers
by arbitrary, not just shallow, left-hand sides of rules; this includes rules
that do not consume input. It is shown that such transducers can com-
pute any transformation that is computed by a linear extended top-down
tree transducer. Moreover, the classical composition results for bottom-
up tree transducers are generalized to extended multi bottom-up tree
transducers. Finally, a characterization in terms of extended top-down
tree transducers is presented.

1 Introduction

In the field of natural language processing, Knight [1,2] proposed the following
criteria that any reasonable formal tree-to-tree model of syntax-based machine
translation [3] should fulfil:

(a) It should be a genuine generalization of finite-state transducers [4]; this in-
cludes the use of epsilon rules, i.e., rules that do not consume any part of
the input tree.

(b) It should be efficiently trainable.
(c) It should be able to handle rotations (on the tree level).
(d) Its induced class of transformations should be closed under composition.

Graehl and Knight [5] proposed the linear and nondeleting extended (top-
down) tree transducer (ln-xtt) [6,7] as a suitable formal model. It fulfils (a)–(c)
but fails to fulfil (d). Further models were proposed but, to the authors’ knowl-
edge, they all fail at least one criterion. Table 1 shows some important models
and their properties.

� Author was supported by a fellowship within the Postdoc-Programme of the German
Academic Exchange Service (DAAD).

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 289–300, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

290 J. Engelfriet, E. Lilin, and A. Maletti

Table 1. Overview of formal models with respect to desired criteria. “x” marks fulfil-
ment; “–” marks failure to fulfil. A question mark shows that this remains open though
we conjecture fulfilment.

Model \ Criterion (a) (b) (c) (d)

Linear and nondeleting top-down tree transducer [8,9] – x – x
Quasi-alphabetic tree bimorphism [10] – ? – x
Synchronous context-free grammar [11] x x – x
Synchronous tree substitution grammar [12] x x x –
Synchronous tree adjoining grammar [13,14,15] x x x –
Linear and complete tree bimorphism [15] x x x –
Linear and nondeleting extended top-down tree transducer [5,6,7] x x x –
Linear multi bottom-up tree transducer [16,17,18] – ? x x
Linear extended multi bottom-up tree transducer [this paper] x ? x x

We propose a formal model that satisfies criteria (a), (c), and (d), and has
more expressive power than the ln-xtt. The device is called linear extended multi
bottom-up tree transducer, and it is as powerful as the linear model of [16,17,18]
enhanced by epsilon rules (as shown in Theorem 5). In this paper we formally
define and investigate the extended multi bottom-up tree transducer (xmbutt)
and various restrictions (e.g., linear, nondeleting, and deterministic). Note that
we consider the xmbutt in general, not just its linear restriction.

We start with normal forms for xmbutts. First, we construct for every xmbutt
an equivalent nondeleting xmbutt (see Theorem 3). This can be achieved by
guessing the required translations. Though the construction preserves linearity,
it obviously destroys determinism. Next, we present a one-symbol normal form
for xmbutts (see Theorem 5): each rule of the xmbutt either consumes one input
symbol (without producing output), or produces one output symbol (without
consuming input). This normal form preserves all three restrictions above.

Our main result (Theorem 13) states that the class of transformations com-
puted by xmbutts is closed under pre-composition with transformations com-
puted by linear xmbutts and under post-composition with those computed by
deterministic xmbutts. In particular, we also obtain that the classes of trans-
formations computed by linear and/or deterministic xmbutts are closed under
composition. These results are analogous to classical results (see [19, Theorems
4.5 and 4.6] and [20, Corollary 7]) for bottom-up tree transducers [21,19] and
thus show the “bottom-up” nature of xmbutts. Also, they generalize the com-
position results of [18, Theorem 11]. As in [18], our proof essentially uses the
principle set forth in [20, Theorem 6], but the one-symbol normal form allows us
to present a very simple composition construction for xmbutts and verify that
it is correct, provided that the first input transducer is linear or the second is
deterministic. We observe here that the “extension” of a tree transducer model
(or even just the addition of epsilon rules) can, in general, destroy closure un-
der composition, as can be seen from the linear and nondeleting top-down tree
transducer. This seems to be due to the non-existence of a one-symbol normal
form in the top-down case.

Extended Multi Bottom-Up Tree Transducers 291

We verify that linear xmbutts have sufficient power for syntax-based machine
translation. This is because, as mentioned before (and shown in Theorem 8),
they can simulate all ln-xtts. Thus, we have a lower bound to the power of
linear xmbutts. In fact, even the composition closure of the class of transforma-
tions computed by ln-xtts is strictly contained in the class of transformations
computed by linear xmbutts. Finally, we also present exact characterizations
(Theorems 7 and 14): xmbutts are as powerful as compositions of an ln-xtt with
a deterministic top-down tree transducer. In the linear case the latter transducer
has the so-called single-use property [22,23,24,25,26], and similar results hold in
the deterministic case. Thus, the composition of two extended top-down tree
transducers forms an upper bound to the power of the linear xmbutt. As a side-
result we obtain that linear xmbutts admit a semantics based on recognizable
rule tree languages. This suggests that linear xmbutts also satisfy criterion (b).

2 Preliminaries

Let A,B,C be sets. A relation from A to B is a subset of A×B. Let τ1 ⊆ A×B
and τ2 ⊆ B × C. The composition of τ1 and τ2 is the relation τ1 ; τ2 given by
τ1 ; τ2 = {(a, c) | ∃b ∈ B : (a, b) ∈ τ1, (b, c) ∈ τ2}. This composition is lifted to
classes of relations in the usual manner.

The nonnegative integers are denoted by N and {i | 1 ≤ i ≤ k} is denoted
by [k]. A ranked set is a set Σ of symbols with a relation rk ⊆ Σ ×N such that
{k | (σ, k) ∈ rk} is finite for every σ ∈ Σ. Commonly, we denote the ranked set
only by Σ and the set of k-ary symbols of Σ by Σ(k) = {σ ∈ Σ | (σ, k) ∈ rk}. We
also denote that σ ∈ Σ(k) by writing σ(k). Given two ranked sets Σ and Δ with
associated rank relations rkΣ and rkΔ, respectively, the set Σ ∪Δ is associated
the rank relation rkΣ ∪ rkΔ. A ranked set Σ is uniquely-ranked if for every
σ ∈ Σ there exists exactly one k such that (σ, k) ∈ rk. For uniquely-ranked
sets, we denote this k simply by rk(σ). An alphabet is a finite set, and a ranked
alphabet is a ranked set Σ such that Σ is an alphabet.

Let Σ be a ranked set. The set of Σ-trees, denoted by TΣ, is the smallest
set T such that σ(t1, . . . , tk) ∈ T for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk ∈ T .
We write α instead of α() if α ∈ Σ(0). Let Γ ⊆ Σ and H ⊆ TΣ. By Γ (H) we
denote {γ(t1, . . . , tk) | γ ∈ Γ (k), t1, . . . , tk ∈ H}. Now, let Δ be a ranked set. We
denote by TΔ(H) the smallest set T ⊆ TΣ∪Δ such that H ⊆ T and Δ(T) ⊆ T .

Let t ∈ TΣ. The set of positions of t, denoted by pos(t), is defined by
pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)} for every σ ∈ Σ(k) and
t1, . . . , tk ∈ TΣ. Note that we denote the empty string by ε and that pos(t) ⊆ N∗.
Let w ∈ pos(t) and u ∈ TΣ . The subtree of t that is rooted in w is denoted by t|w,
the symbol of t at w is denoted by t(w), and the tree obtained from t by replacing
the subtree rooted at w by u is denoted by t[u]w. For every Γ ⊆ Σ and σ ∈ Σ,
let posΓ (t) = {w ∈ pos(t) | t(w) ∈ Γ} and posσ(t) = pos{σ}(t).

Let X = {xi | i ≥ 1} be a set of formal variables, each considered to have the
unique rank 0. A tree t ∈ TΣ(X) is linear (respectively, nondeleting) in V ⊆ X
if card(posv(t)) ≤ 1 (respectively, card(posv(t)) ≥ 1) for every v ∈ V . The

292 J. Engelfriet, E. Lilin, and A. Maletti

set of variables of t is var(t) = {v ∈ X | posv(t) �= ∅} and the sequence of
variables is given by yieldX : TΣ(X) → X∗ with yieldX(v) = v for every v ∈ X
and yieldX(σ(t1, . . . , tk)) = yieldX(t1) · · · yieldX(tk) for every σ ∈ Σ(k) and
t1, . . . , tk ∈ TΣ(X). A tree t ∈ TΣ(X) is normalized if yieldX(t) = x1 · · ·xm for
some m ∈ N. Every mapping θ : X → TΣ(X) is a substitution. We define the
application of θ to a tree in TΣ(X) inductively by vθ = θ(v) for every v ∈ X
and σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ) for every σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ(X).

An extended (top-down) tree transducer (xtt, or transducteur généralisé de-
scendant) [6,7] is a tuple M = (Q,Σ,Δ, I,R) where Q is a uniquely-ranked
alphabet such that Q = Q(1), Σ and Δ are ranked alphabets that are both
disjoint with Q ∪ X , I ⊆ Q, and R is a finite set of rules of the form l → r
with l ∈ Q(TΣ(X)) linear in X , and r ∈ TΔ(Q(var(l))). The xtt M is linear
(respectively, nondeleting) if r is linear (respectively, nondeleting) in var(l) for
every l → r ∈ R. The semantics of the xtt is given by term rewriting. Let
ξ, ζ ∈ TΔ(Q(TΣ)). We write ξ ⇒M ζ if there exist a rule l → r ∈ R, a position
w ∈ pos(ξ), and a substitution θ : X → TΣ such that ξ|w = lθ and ζ = ξ[rθ]w .
The tree transformation computed by M is the relation

τM = {(t, u) ∈ TΣ × TΔ | ∃q ∈ I : q(t) ⇒∗
M u} .

The class of all tree transformations computed by xtts is denoted by XTOP. We
use ‘l’ and ‘n’ to restrict to linear and nondeleting devices, respectively. Thus,
ln-XTOP denotes the class of all tree transformations computable by linear and
nondeleting xtts.

An xtt M = (Q,Σ,Δ, I,R) is a top-down tree transducer [8,9] if for every
rule l → r ∈ R there exist q ∈ Q and σ ∈ Σ(k) such that l = q(σ(x1, . . . , xk)).
The top-down tree transducer M is deterministic if (i) card(I) = 1 and (ii) for
every l ∈ Q(Σ(X)) there exists at most one r such that l → r ∈ R. Finally, M is
single-use [22,23,24,25] if for every q(v) ∈ Q(X), k ∈ N, and σ ∈ Σ(k) there exist
at most one l → r ∈ R and w ∈ pos(r) such that l(1) = σ and r|w = q(v). We
use TOP and TOPsu to denote the classes of transformations computed by top-
down tree transducers and single-use top-down tree transducers, respectively.
We also use the prefixes ‘l’, ‘n’, and ‘d’ to restrict to linear, nondeleting, and
deterministic devices, respectively.

Finally, we recall top-down tree transducers with regular look-ahead [27]. We
use the standard notion of a recognizable (or regular) tree language [28,29], and
we let Rec(Σ) = {L ⊆ TΣ | L recognizable}. A top-down tree transducer with
regular look-ahead is a pair 〈M, c〉 such that M = (Q,Σ,Δ, I,R) is a top-down
tree transducer and c : R → Rec(Σ). We say that such a transducer 〈M, c〉 is
deterministic if (i) card(I) = 1 and (ii) for every l ∈ Q(Σ(X)) and t ∈ TΣ there
exists at most one r such that l → r ∈ R, l(1) = t(ε), and t ∈ c(l → r). Similarly,
〈M, c〉 is single-use [26, Definition 5.5] if for every q(v) ∈ Q(X) and t ∈ TΣ there
exist at most one l → r ∈ R and w ∈ pos(r) such that l(1) = t(ε), t ∈ c(l → r),
and r|w = q(v). The semantics of 〈M, c〉 is defined in the same manner as for xtt
with the additional restriction that lθ|1 ∈ c(l → r). We use TOPR and TOPR

su

to denote the classes of transformations computed by top-down tree transducers
with regular look-ahead and single-use top-down tree transducers with regular

Extended Multi Bottom-Up Tree Transducers 293

look-ahead, respectively. We use the prefix ‘d’ in the usual manner. For further
information on tree languages and tree transducers, we refer to [28,29].

3 Extended Multi Bottom-Up Tree Transducers

In this section, we define S-transducteurs ascendants généralisés [30], which are
a generalization of S-transducteurs ascendants (STA) [30,31]. We choose to call
them extended multi bottom-up tree transducers here in line with [16,17,18],
where ‘multi’ refers to the fact that states may have ranks different from one.

Definition 1. An extended multi bottom-up tree transducer (xmbutt) is a tuple
(Q,Σ,Δ, F,R) where

– Q is a uniquely-ranked alphabet of states, disjoint with Σ ∪Δ ∪X;
– Σ and Δ are ranked alphabets of input and output symbols, respectively,

which are both disjoint with X;
– F ⊆ Q \Q(0) is a set of final states; and
– R is a finite set of rules of the form l → r where l ∈ TΣ(Q(X)) is linear

in X and r ∈ Q(TΔ(var(l))).

A rule l → r ∈ R is an epsilon rule if l ∈ Q(X); otherwise it is input-consuming.
The sets of epsilon and input-consuming rules are denoted by Rε and RΣ, re-
spectively.

An xmbutt M = (Q,Σ,Δ, F,R) is a multi bottom-up tree transducer (mbutt)
[respectively, an STA] if l ∈ Σ(Q(X)) [respectively, l ∈ Σ(Q(X)) ∪ Q(X)] for
every l → r ∈ R. Linearity and nondeletion of xmbutts are defined in the natural
manner. The xmbutt M is linear if r is linear in var(l) for every rule l → r ∈ R.
Moreover, M is nondeleting if (i) F ⊆ Q(1) and (ii) r is nondeleting in var(l) for
every l → r ∈ R. Finally, M is deterministic if (i) there do not exist two distinct
rules l1 → r1 ∈ R and l2 → r2 ∈ R, a substitution θ : X → X , and w ∈ pos(l2)
such that l1θ = l2|w, and (ii) there does not exist an epsilon rule l → r ∈ R such
that l(ε) ∈ F . Let us now present a rewrite semantics. In the rest of this section,
let M = (Q,Σ,Δ, F,R) be an xmbutt.

Definition 2. Let Σ′ and Δ′ be ranked alphabets disjoint with Q. Moreover, let
ξ, ζ ∈ TΣ∪Σ′(Q(TΔ∪Δ′)), and l → r ∈ R. We write ξ ⇒l→r

M ζ if there exist
w ∈ pos(ξ) and θ : X → TΔ∪Δ′ such that ξ|w = lθ and ζ = ξ[rθ]w, and we
write ξ ⇒M ζ if there exists ρ ∈ R such that ξ ⇒ρ

M ζ. The tree transformation
computed by M is τM = {(t, ξ|1) ∈ TΣ × TΔ | ξ ∈ F (TΔ), t⇒∗

M ξ}.

The xmbutt M ′ is equivalent to M if τM ′ = τM . We denote by XMBOT
the class of tree transformations computed by xmbutts. We use the prefixes
‘l’, ‘n’, and ‘d’ to restrict to linear, nondeleting, and deterministic devices, re-
spectively. For example, l-XMBOT denotes the class of all tree transformations
computed by linear xmbutts.

If M is deterministic and t ∈ TΣ , then there exists at most one ξ ∈ Q(TΔ)
such that (i) t⇒∗

M ξ and (ii) there exists no ζ such that ξ ⇒M ζ. Hence, τM is a
partial function, if M is deterministic. Moreover, if M is a deterministic mbutt
and t ∈ TΣ, then there exists at most one ξ ∈ Q(TΔ) such that t ⇒∗

M ξ. A

294 J. Engelfriet, E. Lilin, and A. Maletti

deterministic mbutt M is total if for every t ∈ TΣ there exists ξ ∈ Q(TΔ) such
that t⇒∗

M ξ (an equivalent static definition is easy to formulate).
Our first result shows that every xmbutt is equivalent to a nondeleting one.

Unfortunately, the construction does not preserve determinism.

Theorem 3. XMBOT = n-XMBOT and l-XMBOT = ln-XMBOT.

Proof. For the xmbutt M = (Q,Σ,Δ, F,R) we construct an equivalent non-
deleting xmbutt M ′ = (Q′, Σ,Δ, F ′, R′). The idea is that M ′ simulates M
but guesses at each moment which subtrees of the states will be deleted in
the remainder of M ’s computation. The set Q′ of states of M ′ consists of all
pairs 〈q, J〉 with q ∈ Q(k) and J ⊆ [k], and the rank of 〈q, J〉 is card(J);
moreover, F ′ = {〈q, {1}〉 | q ∈ F}. The rules of M ′ are constructed such that
t ⇒∗

M ′ 〈q, J〉(ui1 , . . . , uim), where J = {i1, . . . , im} and i1 < · · · < im, if and
only if there exist ui ∈ TΔ for every i ∈ [k]\J such that t⇒∗

M q(u1, . . . , uk). !

The following normal form will be at the heart of our composition construction
in the next section. It says that exactly one input or output symbol occurs in
every rule (such rules will be called one-symbol rules).

Definition 4. The xmbutt M is in one-symbol normal form if for every rule
l → r ∈ R we have card(posΣ(l)) + card(posΔ(r)) = 1.

Theorem 5. For every xmbutt M there exists an equivalent xmbutt N in one-
symbol normal form. Moreover, if M is linear (respectively, nondeleting, deter-
ministic), then so is N .

Proof. Let us assume, without loss of generality, that all left-hand sides of rules
of M are normalized. First we take care of the left-hand sides of rules and
decompose rules with more than one input symbol in the left-hand side into
several rules, cf. [30, Proposition II.B.5]. Take a uniquely-ranked set P and a
bijection f : TΣ(Q(X)) → P such that (i) Q ⊆ P , (ii) f(q(x1, . . . , xn)) = q for
every q ∈ Q(n), and (iii) rk(f(l)) = card(var(l)) for every l ∈ TΣ(Q(X)). In fact,
we will only use f(l) for normalized l ∈ TΣ(Q(X)).

Let l → r ∈ R be input-consuming such that l /∈ Σ(P (X)). Suppose that
l = σ(l1, . . . , lk) for some σ ∈ Σ(k) and l1, . . . , lk ∈ TΣ(Q(X)). Moreover, let
θ1, . . . , θk : X → X be bijections such that liθi is normalized. Finally, for every
i ∈ [k] let pi = f(liθi) and ri = pi(x1, . . . , xm) where m = rk(pi). We construct
the xmbutt M1 = (Q ∪ {p1, . . . , pk}, Σ,Δ, F, (R \ {l → r}) ∪R1,1 ∪R1,2) where
R1,1 = {liθi → ri | i ∈ [k], li /∈ Q(X)} and R1,2 = {l′ → r}, in which l′ is the
unique normalized tree of {σ}(P (X)) such that l′(i) = pi for every i ∈ [k] (note
that if li ∈ Q(X), then pi = li(ε) and so l′|i = li). Repeated application of this
construction (keeping P and the mapping f fixed) eventually yields an equivalent
xmbutt M ′ = (Q′, Σ,Δ, F,R′) such that l ∈ Σ(P (X)) for each input-consuming
rule l → r ∈ R′.

Next, we remove all epsilon rules l → r ∈ R′ such that r ∈ Q′(X) in the stan-
dard way. Finally, we decompose the right-hand sides. Let M ′′ = (S,Σ,Δ, F,R′′)
be the xmbutt obtained so far and l → r ∈ R′′ a rule that is not yet a

Extended Multi Bottom-Up Tree Transducers 295

one-symbol rule. Let r = s(u1, . . . , ui−1, δ(u′
1, . . . , u

′
k), ui+1, . . . , un) for some

s ∈ S(n), i ∈ [n], δ ∈ Δ(k), and u1, . . . , ui−1, ui+1, . . . , un, u
′
1, . . . , u

′
k ∈ TΔ(X).

Also, let q /∈ S be a new state of rank k + n − 1. We construct the xmbutt
M ′′

1 = (S ∪ {q}, Σ,Δ, F,R′′
1) with R′′

1 = (R′′ \ {l → r}) ∪ R′′
1,1 where R′′

1,1

contains the two rules:

– l → q(u1, . . . , ui−1, u
′
1, . . . , u

′
k, ui+1, . . . , un) and

– q(x1, . . . , xk+n−1) → s(x1, . . . , xi−1, δ(xi, . . . , xi+k−1), xi+k, . . . , xk+n−1).

Repeated application of the procedure yields the desired xmbutt N . !
Example 6. Let (Q,Σ, Γ,Q,R) be the xmbutt with Q = {q(1)}, Σ = {σ(1), α(0)},
Γ = {γ(2), α(0)}, and R = {σ(α) → q(α), σ(q(x1)) → q(γ(x1, α))}. Clearly, it
is linear, nondeleting, and deterministic. Applying the procedure of Theorem 5
we obtain the states q(1), q

(0)
1 , q

(0)
2 , q

(2)
3 , q

(1)
4 and the rules α → q1, σ(q1) → q2,

q2 → q(α), σ(q(x1)) → q4(x1), q4(x1) → q3(x1, α), q3(x1, x2) → q(γ(x1, x2)).

In the deterministic case we have an additional normal form: the deterministic
mbutt. This allows us to characterize the classes d-XMBOT and ld-XMBOT in
terms of top-down tree transducers, using the result of [16].

Theorem 7. For every deterministic xmbutt M there exists an equivalent total
deterministic mbutt N . Moreover, if M is linear, then so is N . Consequently,
d-XMBOT = d-TOPR and ld-XMBOT = d-TOPR

su.

Proof. Applying the first construction in the proof of Theorem 5 and then re-
moving all epsilon rules in the usual way, we obtain an equivalent deterministic
mbutt N . Obviously, by introducing a dummy state of rank 0, N can be made
total. To obtain a deterministic multi bottom-up tree transducer of [16] we also
have to add a special root symbol and add rules that, while consuming the spe-
cial root symbol, project on the first argument of a final state. It is proved in [16]
that such deterministic multi bottom-up tree transducers have the same power
as deterministic top-down tree transducers with regular look-ahead. The second
equality was already suggested in the Conclusion of [17]. We prove it by recon-
sidering (a minor variation of) the proofs of [16, Lemmata 4.1 and 4.2]. If the
mbutt is linear, then the corresponding top-down tree transducer with regular
look-ahead will be single-use and vice versa. !
Finally, we verify that l-XMBOT is suitably powerful for applications in machine
translation. We do this by showing that all transformations of l-XTOP are also
in l-XMBOT. This shows that xmbutts can handle rotations [2].

Theorem 8. l-XTOP ⊂ l-XMBOT.

Proof. The inclusion can be proved in a similar manner as l-TOP ⊆ l-BOT [19,
Theorem 2.8], where l-BOT denotes the class of transformations computed by
linear bottom-up tree transducers [21,19]. Every transformation of l-XTOP pre-
serves recognizability [18, Theorem 4], but there is a linear (deterministic) mbutt
that computes the transformation {(σ(t), δ(t, t)) | t ∈ TΣ\{σ}} where σ ∈ Σ(1)

and δ ∈ Δ(2). Hence, not every transformation of l-XMBOT preserves recogniz-
ability. !

296 J. Engelfriet, E. Lilin, and A. Maletti

4 Composition Construction

In this section, we investigate compositions of tree transformations computed
by xmbutts. Let us first recall the classical composition results for bottom-
up tree transducers [19,20]. Let M and N be bottom-up tree transducers. If
M is linear or N deterministic, then the composition of the transformations
computed by M and N can be computed by a bottom-up tree transducer.
As a special case, the classes of transformations computed by linear, linear
and nondeleting, and deterministic bottom-up tree transducers are closed under
composition.

In our setting, let M and N be xmbutts. We will prove that if M is linear or
N is deterministic, then there is an xmbutt M ;N that computes τM ;τN . In par-
ticular, we prove that l-XMBOT, d-XMBOT, and ld-XMBOT are closed under
composition. The closure of l-XMBOT was first presented in [30, Propositions
II.B.5 and II.B.7]. The closure of d-XMBOT is also immediate from Theorem 7
and [27, Theorem 2.11]; in [31, Proposition 2.5] it was shown for a different
notion of determinism. The closure of ld-XMBOT is to be expected from The-
orem 7 and the fact that the single-use restriction was introduced in [22,23] to
guarantee the closure under composition of attribute grammar transformations
(see [25, Theorem 3]).

Fig. 1. Tree homomorphism ϕ where q ∈ Q(2), p1 ∈ P (1), and p2 ∈ P (2).

Let us prepare the composition construction. Let M = (Q,Σ, Γ, FM , RM) and
N = (P, Γ,Δ, FN , RN) be xmbutts such that Q, P , and Σ ∪ Γ ∪Δ are pairwise
disjoint. We define the uniquely-ranked alphabet

Q〈P 〉 = {q〈p1, . . . , pn〉 | q ∈ Q(n), p1, . . . , pn ∈ P}

such that rk(q〈p1, . . . , pn〉) =
∑n

i=1 rk(pi) for every q ∈ Q(n) and p1, . . . , pn ∈ P .
Let Π = Σ ∪ Γ ∪Δ ∪X . We define the mapping ϕ : TΠ∪Q〈P 〉 → TΠ∪Q∪P such
that for every q〈p1, . . . , pn〉 ∈ Q〈P 〉(k), π ∈ Π(k), and t1, . . . , tk ∈ TΠ∪Q〈P 〉

ϕ(q〈p1, . . . , pn〉(t1, . . . , tk)) = q(p1(ϕ(t1), . . . , ϕ(tl)), . . . , pn(ϕ(tm), . . . , ϕ(tk)))
ϕ(π(t1, . . . , tk)) = π(ϕ(t1), . . . , ϕ(tk))

where l = rk(p1) and m = k − rk(pn) + 1. Thus, we group the subtrees be-
low the corresponding state pi (see Fig. 1). Note that ϕ is a linear and non-
deleting tree homomorphism, which acts as a bijection from TΣ(Q〈P 〉(TΔ(X)))
to TΣ(Q(P (TΔ(X)))). In the sequel, we will identify t with ϕ(t) for all trees
t ∈ TΣ(Q〈P 〉(TΔ(X))).

Extended Multi Bottom-Up Tree Transducers 297

Definition 9. Let M = (Q,Σ, Γ, FM , RM) be an xmbutt in one-symbol normal
form and N = (P, Γ,Δ, FN , RN) an STA. Moreover, let LHS(Σ) and LHS(ε)
be the sets of normalized trees of Σ(Q〈P 〉(X)) and Q〈P 〉(X), respectively. The
composition M ; N = (Q〈P 〉, Σ,Δ, FM 〈FN 〉, R) of M and N is the STA with
R = R1 ∪R2 ∪R3 where:

R1 = {l → r | l ∈ LHS(Σ) and ∃ρ ∈ RΣ
M : l ⇒ρ

M r},
R2 = {l → r | l ∈ LHS(ε) and ∃ρ ∈ Rε

N : l ⇒ρ
N r}, and

R3 = {l → r | l ∈ LHS(ε) and ∃ρ1 ∈ Rε
M , ρ2 ∈ RΓ

N : l (⇒ρ1
M ; ⇒ρ2

N) r}.

To illustrate the implicit use of ϕ, let us show the “official” definition of R1:

R1 = {l → r | l ∈ LHS(Σ), r ∈ Q〈P 〉(TΔ(X)), and ∃ρ ∈ RΣ
M : ϕ(l) ⇒ρ

M ϕ(r)} .

The construction preserves linearity; moreover, it preserves determinism if N is
an mbutt. In the rest of this section we investigate when τM ;N = τM ; τN , but
we first illustrate the construction on our small running example.

Example 10. Let M be the xmbutt of Example 6 in one-symbol normal form,
and let N = ({g(1), h(1)}, Γ,Δ, {g}, RN) be the STA with Δ = Γ ∪ {δ(1)} and

RN = {α→ h(α), h(x1) → h(δ(x1)), γ(h(x1), h(x2)) → g(γ(x1, x2))} .

Clearly, N computes {(γ(α, α), γ(δi(α), δj(α)) | i, j ∈ N}, and hence τM ; τN is
{(σ(σ(α)), γ(δi(α), δj(α)) | i, j ∈ N}. The states of M ; N will be

{q〈g〉(1), q〈h〉(1), q1〈〉(0), q2〈〉(0), q3〈g, g〉(2), . . . , q3〈h, h〉(2), q4〈g〉(1), q4〈h〉(1)} ,

of which only q〈g〉 is final. We present some relevant rules only [left in official
form l → r; right in alternative notation ϕ(l) → ϕ(r)].

α → q1〈〉 α → q1

σ(q1〈〉) → q2〈〉 σ(q1) → q2

q2〈〉 → q〈h〉(α) q2 → q(h(α))
q〈h〉(x1) → q〈h〉(δ(x1)) q(h(x1)) → q(h(δ(x1)))

σ(q〈h〉(x1)) → q4〈h〉(x1) σ(q(h(x1))) → q4(h(x1))
q4〈h〉(x1) → q3〈h, h〉(x1, α) q4(h(x1)) → q3(h(x1), h(α))

q3〈h, h〉(x1, x2) → q〈g〉(γ(x1, x2)) q3(h(x1), h(x2)) → q(g(γ(x1, x2)))

The first, second, and fifth rules are in R1 (of Definition 9), the fourth rule is
in R2, and the remaining rules in R3. !

Next, we will prove that τM ; τN is in XMBOT provided that (i) M is linear or
(ii) N is deterministic. We can assume that M is in one-symbol normal form,
by Theorem 5, and that it is nondeleting in case (i), by Theorem 3. We can also
assume that N is an STA in case (i), by Theorem 5, and a total deterministic

298 J. Engelfriet, E. Lilin, and A. Maletti

mbutt in case (ii), by Theorem 7. Thus, we meet the requirements of Definition 9
and henceforth assume its notation.

We start with a simple lemma. It shows that in a derivation that uses steps of
M and N (like the derivations of M ; N) we can always perform all steps of M
first and only then perform the derivation steps of N . This already proves one
direction needed for the correctness of the composition construction.

Lemma 11. Let t ∈ TΣ and ξ ∈ Q(P (TΔ)). If t ⇒∗ ξ where ⇒ is ⇒M ∪⇒N ,
then t (⇒∗

M ; ⇒∗
N) ξ. In particular, τM ;N ⊆ τM ; τN .

Proof. It obviously suffices to prove: For every ξ, ζ ∈ TΣ(Q(TΓ (P (TΔ)))), if
ξ (⇒N ; ⇒M) ζ, then ξ (⇒M ; ⇒∗

N) ζ. Its proof is easy. !

Next we prove that τM ; τN ⊆ τM ;N under the above assumptions on M and N ,
by a standard induction over the length of the derivation.

Lemma 12. Let t ∈ TΣ and ξ ∈ Q(P (TΔ)) be such that t (⇒∗
M ; ⇒∗

N) ξ. If
(i) M is linear and nondeleting, or (ii) N is a total deterministic mbutt, then
t⇒∗

M ;N ξ. With ξ ∈ FM (FN (TΔ)) we obtain τM ; τN ⊆ τM ;N .

Theorem 13. The three classes l-XMBOT, d-XMBOT, and ld-XMBOT are
closed under composition. Moreover,

l-XMBOT ; XMBOT ⊆ XMBOT and XMBOT ; d-XMBOT ⊆ XMBOT .

Proof. The inequalities follow directly from Lemmata 11 and 12 using Theorems
3, 5, and 7 to establish the preconditions of Definition 9 and Lemma 12. The
closure results follow from the fact that the composition construction preserves
linearity and determinism. !

5 Relation to Top-Down Tree Transducers

Now, let us focus on an upper bound to the power of xmbutts. By [18, Theo-
rem 14] every mbutt computes a transformation of ln-TOP ; d-TOP. Here we
prove a similar result for xmbutts.

Theorem 14

l-XMBOT = ln-XTOP ; d-TOPsu and XMBOT = ln-XTOP ; d-TOP .

Proof. By Theorems 7, 8, and 13, the inclusions ⊇ are immediate. For the de-
composition results, we employ the standard idea of separating the input and
output behavior of the given xmbutt M (cf. [19, Theorem 3.15]). For each in-
put tree, the first xtt M1 outputs “rule trees” that encode which rules could
be applied. The second xtt M2 then deterministically executes these rules and
creates the output. Linearity of M implies that M2 is single-use. More formally,
if t ⇒∗

M q(u1, . . . , um), then there is a “rule tree” t̃ such that q(t) ⇒∗
M1

t̃ and
n(t̃) ⇒∗

M2
un for every n ∈ [m]. !

Extended Multi Bottom-Up Tree Transducers 299

We note that the direction ⊆ of all four equalities in Theorems 7 and 14 is proved
in essentially the same manner. If we compare the deterministic (Theorem 7) to
the nondeterministic case (Theorem 14), then in the former case there exists at
most one successful “rule tree”, which can be constructed by a deterministic,
finite-state bottom-up relabeling [19,27] and has the shape of the input tree.
Thus, the deterministic top-down tree transducer can query its look-ahead for
the rule that labels its current position in the successful “rule tree”.

By Theorem 14, the power of xmbutts is limited by two extended top-down
tree transducers. In particular, the first equation shows in a precise way how
much stronger l-XMBOT is with respect to ln-XTOP. But Theorem 14 also
shows that we can separate nondeterminism and state checking (performed by
the linear and nondeleting xtt) from evaluation (performed by the deterministic
top-down tree transducer). Since linear xtts preserve recognizability, the rule
trees mentioned in the proof of Theorem 14 form a recognizable tree language.
Formally, the set {u ∈ TR | ∃t ∈ TΣ : (t, u) ∈ τM1} is recognizable, which shows
that the set of rule trees of an xmbutt is recognizable. This is a strong indication
toward the existence of efficient training algorithms.

Conclusion and Open Problems. We have shown that xmbutts are suitably
powerful to compute any transformation that can be computed by linear ex-
tended top-down tree transducers (see Theorem 8). Moreover, we generalized the
main composition results of [19,20] for bottom-up tree transducers to xmbutts
(see Theorem 13). In particular, we showed that l-XMBOT and d-XMBOT are
closed under composition. Finally, we characterized XMBOT as the composi-
tion of ln-XTOP and d-TOP (see Theorem 14), which shows that, analogously
to bottom-up tree transducers, nondeterminism and evaluation can be separated.

Since linear xmbutts do not necessarily preserve recognizability whereas linear
xtts do, it is clear that even the composition closure of l-XTOP is strictly con-
tained in l-XMBOT. This raises two questions: (a) Which xmbutts can be trans-
formed into an xtt? (b) Can we characterize the composition closure of l-XTOP?

References

1. Knight, K.: Criteria for reasonable syntax-based translation models. Personal com-
munication (2007)

2. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp.
1–24. Springer, Heidelberg (2005)

3. DeNeefe, S., Knight, K., Wang, W., Marcu, D.: What can syntax-based MT learn
from phrase-based MT? In: EMNLP & CoNLL, pp. 755–763 (2007)

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley, Reading (1979)

5. Graehl,J.,Knight,K.:Trainingtreetransducers.In:HLT-NAACL,pp.105–112(2004)
6. Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle

M. Dauchet, Université de Lille (1975)
7. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86. Edin-

burgh University Press (1976)

300 J. Engelfriet, E. Lilin, and A. Maletti

8. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3),
257–287 (1970)

9. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System
Sci. 4(4), 339–367 (1970)

10. Steinby, M., T̂ırnăucă, C.I.: Syntax-directed translations and quasi-alphabetic tree
bimorphisms. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp.
265–276. Springer, Heidelberg (2007)

11. Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assembler.
J. Comput. System Sci. 3(1), 37–56 (1969)

12. Shabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars.
PhD thesis, University of Pennsylvania (1990)

13. Shieber, S.M., Shabes, Y.: Synchronous tree-adjoining grammars. In: COLING,
pp. 1–6 (1990)

14. Shieber,S.M.:Unifyingsynchronoustreeadjoininggrammarsandtreetransducersvia
bimorphisms.In:EACL.TheAssociationforComputerLinguistics,pp.377–384(2006)

15. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput.
Sci. 20, 33–93 (1982)

16. Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of determin-
istic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2),
57–67 (2004)

17. Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree
transducers. Theoret. Comput. Sci. 347(1–2), 276–287 (2005)

18. Maletti, A.: Compositions of extended top-down tree transducers. Inform. and
Comput. (to appear, 2008)

19. Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math.
Systems Theory 9(3), 198–231 (1975)

20. Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform.
and Control 41(2), 186–213 (1979)

21. Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory of
Computing, pp. 143–172. Prentice Hall, Englewood Cliffs (1973)

22. Ganzinger, H.: Increasing modularity and language-independency in automatically
generated compilers. Sci. Comput. Prog. 3(3), 223–278 (1983)

23. Giegerich, R.: Composition and evaluation of attribute coupled grammars. Acta
Inform. 25(4), 355–423 (1988)

24. Kühnemann, A.: Berechnungsstärken von Teilklassen primitiv-rekursiver Pro-
grammschemata. PhD thesis, Technische Universität Dresden (1997)

25. Kühnemann, A.: Benefits of tree transducers for optimizing functional programs.
In: Arvind, V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 146–
157. Springer, Heidelberg (1998)

26. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO
definable tree translations. Inform. and Comput. 154(1), 34–91 (1999)

27. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems
Theory 10(1), 289–303 (1977)

28. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
29. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3,

pp. 1–68. Springer, Heidelberg (1997)
30. Lilin, E.: Une généralisation des transducteurs d’états finis d’arbres: les S-

transducteurs. Thèse 3ème cycle, Université de Lille (1978)
31. Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déter-

ministes. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp.
280–289. Springer, Heidelberg (1981)

Derivation Tree Analysis for
Accelerated Fixed-Point Computation

Javier Esparza, Stefan Kiefer, and Michael Luttenberger

Institut für Informatik, Technische Universität München, 85748 Garching, Germany
{esparza,kiefer,luttenbe}@model.in.tum.de

Abstract. We show that for several classes of idempotent semirings the least
fixed-point of a polynomial system of equations X = f (X) is equal to the least
fixed-point of a linear system obtained by “linearizing” the polynomials of f in
a certain way. Our proofs rely on derivation tree analysis, a proof principle that
combines methods from algebra, calculus, and formal language theory, and was
first used in [5] to show that Newton’s method over commutative and idempo-
tent semirings converges in a linear number of steps. Our results lead to efficient
generic algorithms for computing the least fixed-point. We use these algorithms
to derive several consequences, including an O(N3) algorithm for computing the
throughput of a context-free grammar (obtained by speeding up the O(N4) algo-
rithm of [2]), and a generalization of Courcelle’s result stating that the downward-
closed image of a context-free language is regular [3].

1 Introduction

Systems X = f(X) of fixed-point equations, where f is a system of polynomials,
appear naturally in semantics, interprocedural program analysis, language theory, and
in the study of probabilistic systems (see e.g. [7,8,10,13]). In all these applications the
equations are interpreted over ω-continuous semirings, an algebraic structure that guar-
antees the existence of a least solution μf . The key algorithmic problem is to compute
or at least approximate μf .

In [5,4] we generalized Newton’s method—the well-known method of numerical
mathematics for approximating a zero of a differentiable function—to arbitrary ω-
continuous semirings. Given a polynomial system f , our generalized method computes
a sequence of increasingly accurate approximations to μf , called Newton approxi-
mants. We showed in [5] that the n-th Newton approximant of a system of n equations
over an idempotent (w.r.t. addition) and commutative (w.r.t. multiplication) semiring is
already equal to μf . This theorem leads to a generic computing procedure.

Our proof of this result uses a (to the best of our knowledge) novel technique, which
we call derivation tree analysis. The system f induces a set T of derivation trees, a
generalization of the well-known derivation trees of context-free grammars. Each tree
can be naturally assigned a semiring element, called the yield of the tree. It is easy to
show that μf is equal to the sum of the yields of all derivation trees. Derivation tree
analysis first identifies a subset T ′ of derivation trees whose total yield Y(T ′) is easy
to compute in some sense, and then proves that T ′ satisfies the embedding property:

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 301–313, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

302 J. Esparza, S. Kiefer, and M. Luttenberger

Y(t) / Y(T ′) for every derivation tree t. If the semiring is idempotent, the embedding
property implies Y(T) = Y(T ′), and so μf = Y(T ′). In [5], the set T ′ was chosen so
that Y(T ′) is equal to the n-th Newton approximant, and the embedding property was
proved using some tree surgery and exploiting the commutativity of the semiring.

The computation of the n-th Newton approximant can still require considerable
resources. In this paper we present a further application of derivation tree analysis to
idempotent semirings, leading to more efficient computation algorithms. For this, we
define the set B of bamboos of a system f . Loosely speaking, bamboos are derivation
trees with an arbitrarily long stem but only short branches. We first show that Y(B) is
the solution of a linear system of equations whose functions are similar (but not iden-
tical) to the straightforward linearisation of f . Then, we prove that the following three
classes of semirings satisfy the embedding property:

• Star-distributive semirings are idempotent and commutative semirings satisfying the
additional axiom (a+b)∗ = a∗+b∗ (where ∗ is the well-known Kleene iteration opera-
tor). The so-called “tropical” (min,+)-semiring over the reals (extended with +∞ and
−∞) is star-distributive. Our tree analysis leads to an algorithm for computing μf very
similar to the generalized Bellman-Ford algorithm of Gawlitza and Seidl [9]. We use it
to derive a new algorithm for computing the throughput of a context-free grammar, a
problem introduced and analyzed by Caucal et al. in [2]. Our algorithm runs in O(N3),
a factor N faster than the algorithm presented in [2].
• Lossy semirings are idempotent semirings satisfying the additional axiom a + 1 = a
where 1 is the neutral element of multiplication. A natural model are downward-closed
languages with union and concatenation as operations. Lossy semirings find applica-
tion in the verification of lossy channel systems, a model of computation thoroughly
investigated by Abdulla et al. (see e.g. [1]). Our tree analysis leads to an algebraic proof
of Courcelle’s theorem stating that the downward closure of a context-free language is
effectively regular [3].
• 1-bounded semirings are idempotent semirings where the equation a+1 = 1 holds. A
natural example is the “maximum probability” semiring with the interval [0, 1] as car-
rier, maximum as addition, and standard multiplication over the reals. Using derivation
tree analysis it is very easy to show that the least fixed-point μf of a polynomial system
f with n variables is given by fn(0), the n-fold application of f to 0.

The rest of the paper is organized as follows. After the preliminaries in Section 2 we
introduce derivation tree analysis in Section 3. Bamboos are defined in Section 4. In the
Sections 5, 6 and 7 we apply derivation tree analysis to the semiring classes mentioned
above. A technical report [6] includes the missing proofs.

2 Preliminaries

As usual, N denotes the set of natural numbers including 0.
An idempotent semiring S = 〈S,+, ·, 0, 1〉 consists of a commutative, idempotent

additive monoid 〈S,+, 0〉, and a multiplicative monoid 〈S, ·, 1〉. In the following we
often omit the dot · in products. Both algebraic structures are connected by left- and
right-distributivity, e.g. a(b + c) = ab + ac, and by the requirement that 0 · a = 0 for

Derivation Tree Analysis for Accelerated Fixed-Point Computation 303

all a ∈ S. The natural-order relation / S × S is defined by a / b ⇔ a + b = b. The
semiring S is naturally ordered if / is a partial order.

An idempotent, naturally ordered semiring S is ω-continuous, if countable summa-
tion

∑
i∈N

ai ∈ S is defined (with ai ∈ S), and satisfies the following requirements:
(i) summation is continuous, i.e., sup�{a0 + a1 + . . . + ak | k ∈ N} =

∑
i∈N

ai

for all sequences a : N → S; (ii) distributivity extends in the natural way to count-
able summation; and (iii)

∑
j∈J

∑
i∈Ij

ai =
∑

i∈N
ai holds for all partitions (Ij)j∈J

of N. In every such ω-continuous semiring the Kleene-star operator ∗ : S → S is well-
defined by a∗ :=

∑
k∈N

ak for all a ∈ S. In the following we consider only idempotent
ω-continuous semirings S. We refer to them as io-semirings.

We fix a finite, non-empty set X of variables for the rest of the section, and use n to
denote |X | in the following. A map fromX to S is called a vector. The set of all vectors
is denoted by V . We write both v(X) and vX for the value of a vector v at X ∈ X ,
also called the X-component of v. Sum of vectors is defined componentwise: given a
countable set I and a vector vi for every i ∈ I , we denote by

∑
i∈I vi the vector given

by
(∑

i∈I vi

)
(X) =

∑
i∈I vi(X) for every X ∈ X .

A monomial of degree k is a finite expression a1X1a2 · · ·akXkak+1 where k ≥
0, a1, . . . , ak+1 ∈ S \ {0} and X1, . . . , Xk ∈ X . A polynomial is an expression of
the form m1 + · · · + mk where k ≥ 0 and m1, . . . ,mk are monomials. Since S is
idempotent, we assume w.l.o.g. that all monomials of a polynomial are distinct. The
degree of a polynomial is the largest degree of its monomials. We let S[X] denote the
set of all polynomials.

Let f = α1X1α2 . . . Xkαk+1 be a monomial and let v be a vector. The evaluation
of f at v, denoted by f(v), is the product α1vX1α2 · · ·αkvXk

αk+1. We extend this to
any polynomial: if f =

∑k
i=1 mi, then f(v) =

∑k
i=1 mi(v).

A system of polynomials or polynomial system is a map f : X → S[X]. We write
fX for f (X). Every polynomial system induces a map from V to V by componentwise
evaluation of the polynomials: f (v)X := fX(v) for all v ∈ V, and X ∈ X . The
following proposition, which follows easily from Kleene’s theorem and the fact that f
is a monotone and continuous mapping, shows that any polynomial system f has a least
fixed-point μf , which is by definition the least solution of X = f (X).

Proposition 1. A polynomial system f has a unique least fixed-point μf , i.e., μf =
f(μf), and μf / v holds for all v with v = f(v). Further, μf is the supremum (w.r.t.
/) of the Kleene sequence (f i(0))i∈N, where f i denotes the i-fold application of f .

3 Derivation Trees

We generalize the notion of derivation tree, as known from formal languages and gram-
mars. We identify a node u of a (ordered) tree t with the subtree of t rooted at u. In
particular, we identify a tree with its root.

Let f be a polynomial system over a set X of variables. A derivation tree t of f is an
ordered (finite) tree whose nodes are labelled with both a variable X and a monomial
m of fX . We write λv , resp. λm for the corresponding labelling-functions. Moreover,
if the monomial labelling of a node u is λm(u) = a1X1a2 . . .Xsas+1 for some s ≥ 0,

304 J. Esparza, S. Kiefer, and M. Luttenberger

(X, aXY b)

(X, c) (Y, dX)

(X, c)

X

a X

c

Y

d X

c

b

Fig. 1. A derivation tree on the left, and its standard representation on the right

then u has exactly s children u1, . . . , us, ordered from left to right, with λv(ui) = Xi

for all i = 1, . . . , s. A derivation tree t is an X-tree if λv(t) = X . The set of all X-trees
of f is denoted by Tf ,X , or just by TX if f is clear from the context.

The left part of Figure 1 shows a derivation tree of the system f over the variables
X and Y given by fX = aXY b+ c and fY = dX +Y e. The derivation trees of f are
very similar to the derivation trees of the context-free grammar with productions X →
aXY b|c and Y → dX |Y e. For technical reasons, the nodes of “our” trees are labeled
by “productions” (for instance, the label (X, aXY b) corresponds to the production
X → aXY b). On the right of Figure 1 we show how the tree would look like according
to the standard definition. The height h(t) of a derivation tree t is the length of a longest
path from the root to a leaf. The set of X-trees (of f) of height at most h is denoted
by T (h)

X . The yield Y(t) of a derivation tree t with λm(t) = a1X1a2 · · ·Xsas+1 is
inductively defined to be Y(t) = a1Y(t1)a2 · · ·Y(ts)as+1. We extend the definition
of Y to sets T ⊆ TX by setting Y(T) :=

∑
t∈T Y(t). E.g., the system f defined above

has exactly two X-trees of height at most 2: the tree consisting of a single node labeled
by (X, c), and the left tree of Figure 1. Their yields are c and acdcb, respectively, and

so Y(T (2)
X) = c+ acdcb. It follows Y(T (2)

X) = f3(0)X , i.e., the yield of the X-trees of
height at most 2 is equal to the “Kleene approximant” f3(0)X from Proposition 1. The
following proposition, easy to prove [4], shows that this is not a coincidence.

Proposition 2. For all h ∈ N and X ∈ X , we have Y(T (h)
X) =

(
fh+1(0)

)
X

.

Together with Proposition 1 we get:

Corollary 1. μfX = Y(TX).

3.1 Derivation Tree Analysis

We say that a set TX of X-trees satisfies the embedding property if Y(t) / Y(TX) holds
for every X-tree t. Loosely speaking, the yield of every X-tree can be “embedded”
in the yield of TX . As addition is idempotent, the embedding property immediately
implies that Y(TX) / Y(TX). Of course, as TX ⊆ TX , we also have the other direction,
which leads to the following result.

Proposition 3. Let f be a system of polynomials over an io-semiring, and let X be
a variable of f . If a set TX of X-trees of f satisfies the embedding property, then
μf = Y(TX).

Derivation Tree Analysis for Accelerated Fixed-Point Computation 305

This proposition suggests a technique for the design of efficient algorithms computing
μf : (1) define a set TX of derivation trees whose yield is “easy to compute” in some
io-semiring, and (2) identify “relevant” classes of io-semirings for which TX satisfies
the embedding property. By Proposition 3, μf is “easy to compute” for these classes.
We call this technique derivation tree analysis.

4 Bamboos and Their Yield

The difficulty of derivation tree analysis lies in finding a set TX exhibiting a good
balance between the contradictory requirements “easy to compute” and “relevant”: if
TX = ∅ then the yield is trivial to compute, but TX does not satisfy the embedding
property in any interesting case. Conversely, TX = TX trivially satisfies the embedding
property for every io-semiring, but is not easy to compute. The main contribution of
this paper is the identification of a class of derivation trees, bamboos, exhibiting this
balance. In this section we define bamboos and show that their yield is the least solution
of a system of linear equations easily derivable from f . The “easy to compute” part is
justified by the fact that in most semirings used in practice linear equations are far easier
to solve than polynomial equations (e.g. in the real semiring or the language semiring
with union and concatenation as operations). The “relevance” of bamboos is justified in
the next three sections.

Definition 1. Let f be a system of polynomials. A tree t ∈ Tf ,X is an X-bamboo if
there is a path leading from the root of t to some leaf of t, the stem, such that the height
of every subtree of t not containing a node of the stem is at most n − 1. The set of all
X-bamboos of f is denoted by Bf,X , or just by BX if f is clear from the context.

In order to define the system of linear equations mentioned above we need the notion
of differential of a system of polynomials.

Definition 2. Let f ∈ S[X] be a polynomial and let v ∈ V be a vector. The differential
of f at v w.r.t. a variable X is the map DX f |v : V → S inductively defined as follows:

DX f |v(a) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if f ∈ S or f ∈ X \ {X}
aX if f = X

DX g |v(a) · h(v) + g(v) · DX h|v(a) if f = g · h
∑k

i=1 DX mi |v(a) if f =
∑k

i=1 mi.

: tree of height < n

: leaf

Fig. 2. A bamboo with its stem printed bold; on the right it is shown with its stem straightened

306 J. Esparza, S. Kiefer, and M. Luttenberger

Further, we define the differential of f at v by Df |v(a) :=
∑

X∈X DX f |v(a). The dif-
ferential of a system of polynomials f at v is defined componentwise by (Df |v(a))X :
= D(fX)|v(a) for all X ∈ X .

Example 1. For f(X,Y) = a ·X ·X · Y · b, v = (vX , vY), c = (cX , cY) we have:

DX f |v(c) = a · cX · vX · vY · b + a · vX · cX · vY · b
DY f |v(c) = a · vX · vX · cY · b

Using differentials we define a particular linearization of a polynomial system.

Definition 3. Let f be a system of n polynomials. The bamboo system fB associated
to f is the linear system fB(X) = Df |fn(0)(X) + f(0). The least solution of the
system of equations X = fB(X) is denoted by μfB.

Now we can state the relation between bamboos and bamboo systems.

Theorem 1. Let f be a system of polynomials over an io-semiring. For every variable
X of f we have Y(BX) = (μfB)X , i.e., the yield of the X-bamboos is equal to the
X-component of the least solution of the bamboo system.

Together with Proposition 3 we get the following corollary.

Corollary 2 (derivation tree analysis for bamboos). Let f be a system of polynomials
over an io-semiring. If BX satisfies the embedding property for all X , i.e., for all X-
trees t it holds Y(t) / Y(BX), then μf = μfB .

5 Star-Distributive Semirings

Definition 4. A commutative (w.r.t. multiplication) io-semiring S is star-distributive if
(a + b)∗ = a∗ + b∗ holds for all a, b ∈ S.

A commutative io-semiring is star-distributive whenever the natural order / is total:

Proposition 4. Any totally ordered commutative io-semiring is star-distributive.

Proof. Let w.l.o.g. a / b. Then (a + b)∗ = b∗ / a∗ + b∗ / (a + b)∗. !

In particular, the (min,+)-semiring over the integers or reals is star-distributive.
We have already considered commutative idempotent semirings in [5] where we

showed that μf can be computed by solving n linear equation systems by means of
a Newton-like method, improving the O(3n) bound of Hopkins and Kozen [12]. In this
section we improve this result even further for star-distributive semirings: One single
linear system, the bamboo system fB, needs to be solved. This leads to an efficient
algorithm for computing μf in arbitrary star-distributive semirings. In Section 5.1 we
instantiate this algorithm for the (min,+)-semiring; in Section 5.2 we use it to improve
the algorithm of [2] for computing the throughput of a context-free grammar.

We start by stating two useful properties of star-distributive semirings.

Derivation Tree Analysis for Accelerated Fixed-Point Computation 307

(a) a

c

b

a1

a2

a3 c

b

(b) a1

c

b

a1

a2

a3

a3 c

+

Fig. 3. “Unpumping” trees to make them bamboos

Proposition 5. In any star-distributive semiring the following equations hold:

(1) a∗b∗ = a∗ + b∗, and (2) (ab∗)∗ = a∗ + ab∗.

We can now state and prove our result:

Theorem 2. μf = μfB holds for polynomial systems f over star-distributive
semirings.

Proof Sketch (see [6] for a complete proof). The proof is by derivation tree analysis.
So it suffices to discharge the precondition of Corollary 2. More precisely we show
for any X-tree t that Y(t) / Y(BX) holds. It suffices to consider the case where t is
not an X-bamboo. Then the height of t is at least n, and so t is “pumpable”, i.e., one
can choose a path p in t from the root to a leaf such that two different nodes on the
path share the same variable-label. So t can be decomposed into three (partial) trees
with yields a, b, c, respectively, such that Y(t) = abc, see the left side of Figure 3(a).
Notice that, by commutativity of product, ab∗c is the yield of a set of trees obtained by
“pumping” t. We show ab∗c / Y(BX) which implies Y(t) / Y(BX). As t is not an X-
bamboo, t has a pumpable subtree disjoint from p. In this sketch we assume that it is a
subtree of that part of t whose yield is a, see the right side of Figure 3(a). Now we have
a = a1a2a3, and so ab∗c = a1a2a3b

∗c / a1a
∗
2a3b

∗c = a1a3b
∗c + a1a

∗
2a3c, where

we used commutativity and Proposition 5(1) in the last step. Both summands in above
sum are yields of sets of trees obtained by pumping pumpable trees smaller than t, see
Figure 3(b). By an inductive argument those yields are both included in Y(BX). !

5.1 The (min, +)-Semiring

Consider the “tropical” semiring R = (R ∪ {−∞,∞},∧,+R,∞, 0). By ∧ resp. +R

we mean minimum resp. addition over the reals. Observe that the natural order / is
the order ≥ on the reals.1 As R is totally ordered, Proposition 4 implies that R is star-
distributive. Assume for the rest of this section that f is a polynomial system over R

1 By symmetry, we could equivalently consider maximum instead of minimum.

308 J. Esparza, S. Kiefer, and M. Luttenberger

of degree at most 2. We can apply Theorem 2, i.e., μf = μfB holds. This immediately
suggests a polynomial algorithm to compute the least fixed-point: Compute fn(∞) by
performing n Kleene iterations, and solve the linear system X = Df |fn(∞)(X) ∧
f(∞). The latter can be done by means of the Bellman-Ford algorithm.

Example 2. Consider the following equation system.
(
X, Y, Z

)
=
(
− 2 ∧ (Y +R Z), Z +R 1, X ∧ Y

)
=: f(X)

We have f (∞) = (−2,∞,∞),f2(∞) = (−2,∞,−2),f3(∞) = (−2,−1,−2).
The linear system X = Df |fn(∞)(X) ∧ f(∞) = fB(X) looks as follows:

(
X, Y, Z

)
=
(
− 2 ∧ (−1 +R Z) ∧ (Y +R −2), Z +R 1, X ∧ Y

)
.

This equation system corresponds in a straightforward way to the following graph.

S X
−2

Y

−2

Z

+1

00

−1

We claim that the V -component of μfB equals the least weight of any path from S to
V where V ∈ {X,Y, Z}. To see this, notice that (fk

B(∞))V corresponds to the least
weight of any path from S to V of length at most k. The claim follows by Kleene’s
theorem. So we can compute μfB with the Bellman-Ford algorithm. In our example,
X,Y, Z are all reachable from S via a negative cycle, so μfB = (−∞,−∞,−∞). By
Theorem 2, μf = μfB = (−∞,−∞,−∞). !

The Bellman-Ford algorithm can be used here as it handles negative cycles correctly.
The overall runtime of our algorithm to compute μf is dominated by the Bellman-Ford
algorithm. Its runtime is in O(n ·m), where m is the number of monomials appearing
in f . We conclude that our algorithm has the same asymptotic complexity as the “gen-
eralized Bellman-Ford” algorithm of [9]. It is by a factor of n faster than the algorithm
deducible from [5] because our new algorithm uses the Bellman-Ford algorithm only
once instead of n times.

5.2 Throughput of Grammars

In [2], a polynomial algorithm for computing the throughput of a context-free grammar
was given. Now we show that the algorithm can be both simplified and accelerated by
computing least fixed-points according to Theorem 2.

Let us define the problem following [2]. Let Σ be a finite alphabet and ρ : Σ → N
a weight function. We extend ρ to words a1 · · · ak ∈ Σ∗ by setting ρ(a1 · · · ak) :=
ρ(a1) + . . . + ρ(ak).2 The mean weight of a non-empty word w is defined as ρ(w) :=
ρ(w)/|w|. The throughput of a non-empty language L ⊆ Σ+ is defined as the infi-
mum of the mean weights of the words in L: tp(L) := inf{ρ(w) | w ∈ L}. Let

2 We write + for the addition of reals in this section.

Derivation Tree Analysis for Accelerated Fixed-Point Computation 309

G = (Σ,X , P, S) be a context-free grammar and L = L(G) its language. The problem
is to compute tp(L). As in [2] we assume that G has at most 2 symbols on the right
hand side of every production and that L is non-empty and contains only non-empty
words.

Note that we cannot simply construct a polynomial system having tp(L) as its least
fixed-point, as the throughput of two non-terminals is not additive. In [2] an ingenious
algorithm is proposed to avoid this problem. Assume we already know a routine, the
comparing routine, that decides for a given t ∈ Q whether tp(L) ≥ t holds. Assume
further that this routine has O(Nk) time complexity for some k. Using the comparing
routine we can approximate tp(L) up to any given accuracy by means of binary search.
Let d = maxa∈Σ ρ(a) − mina∈Σ ρ(a). A dichotomy result of [2] shows that O(N +
log d) iterations of binary search suffice to approximate tp(L) up to an ε that allows to
compute the exact value of tp(L) in time O(N3). This is proved by showing that, once
a value t has been determined such that t− ε < tp(L) ≤ t, one can:

– transform G in O(N3) time into a grammar G′ of size O(N3) generating a finite
language, and having the same throughput as G (this construction does not yet
depend on tp(L));

– compute the throughput of G′ in linear time in the size of G′, i.e., in O(N3) time.

The full algorithm for the throughput runs then inO(Nk(N + log d)) + O(N3) time.
The algorithm of [2] and our new algorithm differ in the comparing routine. In the

routine of [2] the transformation of G into the grammar G′ is done before tp(L) has
been determined. Then a linear time algorithm can be applied to G′ to decide whether
tp(L) ≥ t holds. (This algorithm does not work for arbitrary context-free grammars,
and that is why one needs to transform G into G′.) Since G′ has size O(N3), the
comparing routine has k = 3, and so the full algorithm runs in O(N4 + N3 log d)
time.

We give a more efficient comparing routine with k = 2. Given a t ∈ Q, assign
to each word w ∈ Σ+ its throughput balance σt(w) = ρ(w) − |w| · t. Notice that
σt(w) ≥ 0 if and only if ρ(w) ≥ t. Further, for two words w, u we now have σt(wu) =
σt(w) + σt(u). So we can set up a polynomial system X = f(X) over the
tropical semiring R where f is constructed such that each variable X ∈ X in the equa-
tion system corresponds to the minimum (infimum) throughput balance of the words
derivable from X . More formally, define a map m by setting m(a) = ρ(a) − t for
a ∈ Σ and m(X) = X for X ∈ X . Extend m to words in (Σ ∪ X)∗ by setting
m(α1 · · ·αk) = m(α1) + · · ·+m(αk). Let PX be the productions of G with X on the
left hand side. Then set fX(X) :=

∧
(X→w)∈PX

m(w). For instance, if PX consists of
the rules X → aXY and X → bZ , we have fX(X) = ρ(a) − t + X + Y ∧ ρ(b) −
t + Z .

It is easy to see that the relevant solution of the system X = f (X) is the least one
w.r.t. /, i.e., (μf)S ≥ 0 if and only if tp(L) ≥ t. So we can use the algorithm from
Section 5.1 as our comparing routine. This takes time O(N2) where N is the size of
the grammar. With that comparing routine we obtain an algorithm for computing the
throughput with O(N3 + N2 log d) runtime.

310 J. Esparza, S. Kiefer, and M. Luttenberger

6 Lossy Semirings

Definition 5. An io-semiring S is called lossy if 1 / a holds for all a �= 0.

Note that by definition of natural order the requirement 1 / a is equivalent to a = a+1.
In the free semiring generated by a finite alphabet Σ, and augmented by the equation
a = a + 1 (a ∈ S \ {0}), every language L ⊆ Σ∗ is “downward closed”, i.e. for every
word w = a1a2 . . . al ∈ L all possible subwords {a′1a′2 . . . a′l | a′i ∈ {ε, ai}} are also
included in L. By virtue of Higman’s lemma [11] the downward-closure of a context-
free language is regular. This has been used in [1] for an efficient analysis of systems
with unbounded, lossy FIFO channels. Downward closure was used there to model the
loss of messages due to transmission errors.

We say that a system f of polynomials is clean if μfX �= 0 for all X ∈ X . Every
system can be cleaned in linear time by removing the equations of all variables X such
that μfX = 0 and setting these variables to 0 in the other equations (the procedure is
similar to the one that eliminates non-productive variables in context-free grammars).
We consider only clean systems, and introduce a normal form for them.

Definition 6. Let f ∈ S[X]X be a system of polynomials over a lossy semiring. f is in
quadratic normal form if every polynomial fX has the form

c +
∑

Y,Z∈X
aY,Z · Y · Z +

∑

Y ∈X
bl,Y · Y · br,Y

where (i) c ∈ S \ {0}, (ii) aY,Z ∈ {0, 1}, and (iii) if
∑

Z∈X aY,Z �= 0, then bl,Y �=
0 �= br,Y for all Y, Z ∈ X .

Lemma 1. For every clean g ∈ S[X]X we can construct in linear time a system f ∈
S[X ′]X

′
in quadratic normal form, where X ⊆ X ′ and μgX = μfX for all X ∈ X .

Proof Sketch. Note that, as g is clean, we have 1 / μg. Hence, requirement (i) is
no restriction. The transformation that normalizes a system is similar to the one that
brings a context-free grammar into Chomsky normal-form (CNF). The superset X ′ ⊃
X results from the introduction of new variables by this transformation into CNF. !

Our main result in this section is that for strongly connected systems f in quadratic
normal form we again have that μf = μfB. We then show how this result leads to an
algorithm for arbitrary systems.

Given two variables X,Y ∈ X , we say that X depends on Y (w.r.t. f) if Y occurs
in a monomial of fX or there is a variable Z such that X depends on Z and Z depends
on Y . The system f is strongly connected if X depends on Y for all variables X,Y .

Theorem 3. μf = μfB holds for strongly connected polynomial systemsf in quadratic
normal form over lossy semirings.

We again use derivation tree analysis to show that every derivation tree t can be trans-
formed into a bamboo subsuming the yield of t, see [6] for details.

Because of the preceding theorem, given a strongly connected system f , we may use
the linear system fB(X) = f(0)+ Df |fn(0)(X) for calculating μf . As f is strongly

Derivation Tree Analysis for Accelerated Fixed-Point Computation 311

connected, fB is also strongly connected. The least fixed-point of such a strongly con-
nected linear system fB is easily calculated: all non-constant monomials appearing in
fB have the form blXbr for some X ∈ X , and bl, br ∈ S \ {0}. As fB is strongly
connected, every polynomial (fB)Y is substituted for Y in (fB)X again and again
when calculating the Kleene sequence (fk

B(0))k∈N. So, let l be the sum of all left-
handed coefficients bl (appearing in any fX), and similarly define r. We then have
(μfB)X = l∗

(∑
Y ∈X fY (0)

)
r∗ for all X ∈ X .

If f is not strongly connected, we first decompose f into strongly connected subsys-
tems, and then we solve these systems bottom-up. Note that substituting the solutions
from underlying SCCs into a given SCC leads to a new system in normal form. As
there are at most n = |X | many strongly connected components for a given system
f ∈ S[X]X , we obtain the following theorem which was first stated explicitly for
context-free grammars in [3].

Theorem 4. The least fixed-point μf of a polynomial system f over a lossy semiring
is representable by regular expressions over S. If f is in normal form μf can be calcu-
lated solving at most n bamboo systems.

7 1-Bounded Semirings

Definition 7. An io-semiring S is called 1-bounded if a / 1 holds for all a ∈ S.

Natural examples are the tropical semiring over the natural numbers (N∪{∞},∧,+,∞,
0) and the “maximum-probability” semiring ([0, 1],∨, ·, 0, 1), where ∧ and ∨ denote
minimum and maximum, respectively. Notice that any commutative 1-bounded semi-
ring is star-distributive (as a∗ = 1 for all a), but not all 1-bounded semirings have
commutative multiplication. Consider for example the semiring of those languages L
over Σ that are upward-closed, i.e., w ∈ L implies u ∈ L for all u such that w is
a subword of u. This semiring is 1-bounded and has Σ∗ as 1-element. Upward-closed
languages form a natural dual to downward-closed languages from the previous section.
We show that μf can be computed very easily in the case of 1-bounded semirings:

Theorem 5. μf = fn(0) holds for polynomial systems over 1-bounded semirings.

Proof Sketch. Recall that, by Proposition 2, we have (fn(0))X = Y(T (n−1)
X), where

T (n−1)
X contains all X-trees of height at most n − 1. We proceed by derivation tree

analysis, i.e., by discharging the precondition of Proposition 3. So it suffices to show
that for any X-tree t there is an X-tree t′ of height at most n − 1 with Y(t) / Y(t′).
Such a tree t′ can be constructed by pruning t as long as some variable label occurs
more than once along any path. !
Theorem 5 appears to be rather easy from our point of view, i.e., from the point of view
of derivation trees. However, even this simple result has very concrete applications in
the domain of interprocedural program analysis [14]. The main algorithms of [14], the
so-called post∗ and pre∗ algorithms, can be seen as solvers of fixed-point equations over
bounded semirings, which are semirings that do not have infinite ascending chains.
Those solvers are based on Kleene’s iteration and the complexity result given there

312 J. Esparza, S. Kiefer, and M. Luttenberger

depends on the maximal length of ascending chains in the semiring (cf. [14], page 28).
Such a bound may not exist, and does not exist for the tropical semiring over the natural
numbers (N ∪ {∞},∧,+,∞, 0) which is considered as an example in [14], pages 13
and 18. However, Theorem 5 can be applied to this semiring, which shows that the
program analysis algorithms of [14] applied to 1-bounded semirings are polynomial-
time algorithms, independent of the length of chains in the semiring.

8 Conclusion

We have shown that derivation tree analysis, a proof technique first introduced in [5], is
an efficient tool for the design of efficient fixed-point algorithms on io-semirings. We
have considered three classes of io-semirings with applications to language theory and
verification. We have shown that for star-distributive semirings and lossy semirings the
least fixed-point of a polynomial system of equations is equal to the least fixed-point
of a linear system, the bamboo system. This improves the results of [5]: The generic
algorithm given there requires to solve N different systems of linear equations in the
star-distributive case (where N is the original number of polynomial equations), and is
not applicable to the lossy case.

We have used our results to design an efficient fixed-point algorithm for the (min,+)
-semiring. In turn, we have applied this algorithm to provide a cubic algorithm for com-
puting the throughput of a context-free language, improving the O(N4) upper bound
obtained by Caucal et al. in [2].

For lossy semirings, derivation tree analysis based on bamboos has led to an al-
gebraic generalization of a result of Courcelle stating that the downward-closure of a
context-free language is effectively regular. Finally we have used derivation tree analy-
sis to derive a simple proof that μf = fn(0) holds for 1-bounded semirings, with some
applications in interprocedural program analysis.

References

1. Abdulla, P.A., Bouajjani, A., Jonsson, B.: On-the-fly analysis of systems with unbounded,
lossy FIFO channels. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 305–318.
Springer, Heidelberg (1998)

2. Caucal, D., Czyzowicz, J., Fraczak, W., Rytter, W.: Efficient computation of throughput val-
ues of context-free languages. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783,
pp. 203–213. Springer, Heidelberg (2007)

3. Courcelle, B.: On constructing obstruction sets of words. EATCS Bulletin 44, 178–185
(1991)

4. Esparza, J., Kiefer, S., Luttenberger, M.: An extension of Newton’s method to ω-continuous
semirings. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol. 4588, pp.
157–168. Springer, Heidelberg (2007)

5. Esparza, J., Kiefer, S., Luttenberger, M.: On fixed point equations over commutative semi-
rings. In: STACS 2007. LNCS, vol. 4397, pp. 296–307. Springer, Heidelberg (2007)

6. Esparza, J., Kiefer, S., Luttenberger, M.: Derivation tree analysis for accelerated fixed-point
computation. Technical report, Technische Universität München (2008)

Derivation Tree Analysis for Accelerated Fixed-Point Computation 313

7. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown automata. Logical
Methods in Computer Science (2006)

8. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS,
vol. 3404, pp. 340–352. Springer, Heidelberg (2005)

9. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration. In: De Nicola,
R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)

10. Harris, T.E.: The Theory of Branching Processes. Springer, Heidelberg (1963)
11. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2 (1952)
12. Hopkins, M.W., Kozen, D.: Parikh’s theorem in commutative Kleene algebra. In: LICS 1999

(1999)
13. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg

(1999)
14. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their application

to interprocedural dataflow analysis. Science of Computer Programming 58(1–2), 206–263
(2005); Special Issue on the Static Analysis Symposium 2003

Tree Automata with Global Constraints

Emmanuel Filiot1, Jean-Marc Talbot2, and Sophie Tison1

1 INRIA Lille - Nord Europe, Mostrare Project,
University of Lille 1 (LIFL, UMR 8022 of CNRS)

2 University of Provence (LIF, UMR 6166 of CNRS), Marseille

Abstract. A tree automaton with global tree equality and disequality constraints,
TAGED for short, is an automaton on trees which allows to test (dis)equalities be-
tween subtrees which may be arbitrarily faraway. In particular, it is equipped with
an (dis)equality relation on states, so that whenever two subtrees t and t′ evaluate
(in an accepting run) to two states which are in the (dis)equality relation, they
must be (dis)equal. We study several properties of TAGEDs, and prove decidabil-
ity of emptiness of several classes. We give two applications of TAGEDs: decid-
ability of an extension of Monadic Second Order Logic with tree isomorphism
tests and of unification with membership constraints. These results significantly
improve the results of [10].

1 Introduction

The emergence of XML has strengthened the interest in tree automata, as it is a clean
and powerful model for XML tree acceptors [19,20]. In this context, tree automata have
been used, for example, to define schemas, and queries, but also to decide tree logics,
to type XML transformations, and even to learn queries. However, it is known that
sometimes, expressiveness of tree automata is not sufficient. This is the case for instance
in the context of non-linear rewriting systems, for which more powerful tree acceptors
are needed to decide interesting properties of those rewrite systems. For example, the
set of ground instances of f(x, x) is not regular.

Tree automata with constraints have been introduced to overcome this lack of ex-
pressiveness [3,9,12,13]. In particular, the transitions of these tree automata are fired as
soon as the subtrees of the current tree satisfy some structural (dis)equality. But typ-
ically, these constraints are kept local to preserve decidability of emptiness and good
closure properties – in particular, tests are performed between siblings or cousins –. In
the context of XML, and especially to define tree patterns, one need global constraints.
For instance, it might be useful to represent the set of ground instances of the pattern
X(author(x),author(x)), where X is a binary context variable, and x is an author
which occurs at least twice (we assume this pattern to be matched against XML trees
representing a bibliography). In this example, the two subtrees corresponding to the au-
thor might be arbitrarily faraway, making the tree equality tests more global. Patterns
might be more complex, by the use of negation (which allow to test tree disequalities),
Boolean operations, and regular constraints on variables. In [10], we study the spatial
logic TQL, which in particular, allows to define such patterns. We proved decidability

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 314–326, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tree Automata with Global Constraints 315

of a powerful fragment of this logic, by reduction to emptiness test of a new class of tree
automata, called Tree Automata with Global Equalities and Disequalities (TAGEDs for
short). These are tree automata A equipped with an equality =A and a disequality �=A

relation on (a subset of) states. A tree t is accepted by A if there is a computation of
A on t which leads to an accepting state, and whenever two subtrees of t evaluate to
two states q1, q2 such that q1 =A q2 (resp. q1 �=A q2), then these two subtrees must
be structurally equal (resp. structurally different). TAGEDs may be interesting on their
own, since they are somehow orthogonal to usual automata with constraints [3]. Indeed,
if we view equality tests during computations as an equivalence relation on a subset of
nodes (two nodes being equivalent if their rooted subtrees are successfully tested to be
equal), in the former, there are a bounded number of equivalence classes of unbounded
cardinality, while in the latter, there might be an unbounded number of equivalence
classes of bounded cardinality.

The main result of [10] was decidability of emptiness of a subclass of TAGEDs,
called bounded TAGEDs, which allow only a bounded number (by some constant inde-
pendent of the tree) of (dis)equality tests on the run. In this paper, we prove several prop-
erties of TAGED-definable languages (closure by union and intersection, non-closure
by complement). We prove results on TAGEDs (non-determinization, undecidability of
universality). The other main results are decidability of emptiness of several classes of
TAGEDs which significantly improves the result of [10], and uses different and simpler
techniques. In particular, we prove a pumping lemma for TAGEDs which performs a
bounded number of disequality tests along paths (and arbitrarily many equality tests).

We give two applications of TAGEDs. The first is decidability of an extension of
MSO with tree isomorphism tests. The second application concerns a first-order dis-
unification problems, with (regular) membership constraints. Dealing with membership
constraints has been done in several papers. In [8], the authors prove solvability of
first-order formulas whose atoms are either equations between terms or membership
constraints t ∈ L where L is a regular tree language. In [15], the authors propose an al-
gorithm to solve iterated matching of hedges against terms with flexible arity symbols,
one-hole context and sequence variables constrained to range over a regular language.
In this paper, we extend the logic of [8] with context variables (with arbitrarily many
holes, and membership constraints) to allow arbitrary depth matching. Context unifica-
tion is still an open problem, but motivated by XML tasks, we do not need to do full
context unification. We prefer to impose a strong linearity condition on context vari-
ables. We prove that, even with this restriction, solvability of first-order formulas over
these atoms is undecidable. We introduce an existential fragment for which satisfiability
is decidable by reduction to emptiness of a class of TAGEDs.

Related Work. Extensions of tree automata which allow for syntactic equality and dis-
equality tests between subterms have already been defined by adding constraints to the
rules of automata. E.g., adding the constraint 1.2 = 2 to a rule means that one can ap-
ply the rule at position π only if the subterm at position π.1.2 is equal to the subterm
at position π.2. Testing emptiness of the recognized language is undecidable in general
[17] but two classes with a decidable emptiness problem have been emphasized. In the
first class, automata are deterministic and the number of equality tests along a path is
bounded [9] whereas the second restricts tests to sibling subterms [3]. This latter class

316 E. Filiot, J.-M. Talbot, and S. Tison

has recently been extended to unranked trees [13], the former one has been extended
to equality modulo equational theories [12]. But, contrarily to TAGEDs, in all these
classes, tests are performed locally, typically between sibling or cousin subterms. Au-
tomata with local and global equality tests, using one memory, have been considered
in [6]. Their emptiness problem is decidable, and they can simulate positive TAGEDs
(TAGEDs performing only equality tests) which use at most one state per runs to test
equalities. Finally, automata for DAGs are studied in [2,4], they cannot be compared to
positive TAGEDs, as they run on DAG representations of trees (with maximal sharing),
and in TAGEDs, we cannot impose every equal subtrees to evaluate in the same state in
a successful run.

We only sketch the proofs, but all the missing proofs are in the full paper version
[23].

2 Trees and TAGED

Binary trees. We start from a ranked alphabet Σ ranged over binary symbols f and
constant symbols a. A binary tree t is a ground term over Σ. The set of binary trees
over Σ is denoted by TΣ . The set of nodes of a tree t ∈ TΣ , denoted by Nt, is defined
inductively as a set of words over {1, 2} by: Na = {ε} and Nf(t1,t2) = {ε}∪{α.u | α ∈
{1, 2}, u ∈ Ntα} (ε denotes the empty word and . the concatenation). For any tree t,
and any node u ∈ Nt, we define the subtree at node u, denoted by t|u, inductively by:
t|ε = t, f(t1, t2)|α.u = tα|u, α ∈ {1, 2}. Note that we have Nt|u = {v | u.v ∈ Nt}.
We also denote by Ot(u) ∈ Σ the label of node u in t. Finally, we denote by � the
strict descendant relation between nodes. Hence, for all u, v ∈ Nt, u� v if u is a prefix
of v (therefore the root is minimal for �).

Tree Automata. We define tree automata on binary trees, but the reader may refer to [7]
for more details. A tree automaton is a 4-tuple A = (Σ,Q, F,Δ) where Q is a finite
set of states, F ⊆ Q is a set of final states, and Δ is a set of rules of the form a → q
and f(q1, q2) → q, where f is a binary function symbol, a a constant, and q1, q2, q are
states from Q. A run of A on a tree t is a tree r over Q such that: (i) Nr = Nt, (ii) for
all leaves u ∈ Nr, we have Ot(u) → Or(u) ∈ Δ, and (iii) for all inner-nodes u ∈ Nr,
we have Ot(u)(Or(u.1), Or(u.2)) → Or(u) ∈ Δ. A run r is successful if Or(ε) ∈ F .
The language recognized (or defined) by A, denoted L(A), is the set of trees t for which
there exists a successful run of A.

We consider binary and constant symbols only, but the two definitions above can be
easily extended to symbols of other arity (in particular, we use unary symbols in several
proofs and examples).

Example 1. Let Σb be the alphabet consisting of the two binary symbols∧,∨, the unary
symbol ¬, and the two constant symbols 0, 1. Trees from TΣb

represents Boolean for-
mulas. We define an automaton on Σb which accepts only Boolean formulas logically
equivalent to 1. Its set of states (resp. final states) is defined by Qb = {q0, q1} (resp.
Fb = {q1}), and its set of rules Δb by, for all b, b1, b2 ∈ {0, 1}, and all ⊕ ∈ {∧,∨}:

b→ qb ¬(qb) → q¬b ⊕(qb1 , qb2) → qb1⊕b2 .

Tree Automata with Global Constraints 317

Definition 1 (TAGED). A TAGED is a 6-tuple A = (Σ,Q, F,Δ,=A, �=A) such that:
• (Σ,Q, F,Δ) is a tree automaton;
• =A is a reflexive and symmetric binary relation on a subset of Q;
• �=A is an irreflexive and symmetric binary relation on Q.

A TAGED A is said to be positive (resp. negative) if �=A (resp. =A) is empty.

The notion of successful run differs from tree automata as we add equality and dis-
equality constraints. A run r of the tree automaton (Σ,Q, F,Δ) on a tree t satisfies
the equality constraints if ∀u, v ∈ Nt, Or(u) =A Or(v) ⇒ t|u = t|v . Similarly, it
satisfies the disequality constraints if ∀u, v ∈ Nt, Or(u) �=A Or(v) ⇒ t|u �= t|v .

A run is successful (or accepting) if it is successful for the tree automaton (Σ,Q, F,
Δ) and if it satisfies the constraints. The language accepted by A, denoted L(A), is
the set of trees t having a successful run for A. We denote by dom(=A) the domain of
=A, i.e. {q | ∃q′ ∈ Q, q =A q′}. The set dom(�=A) is defined similarly. Finally, two
TAGEDs are equivalent if they accept the same language.

In [10], we introduced the class of bounded TAGED, where in successful runs, the
number of occurrences of states from dom(=A) ∪ dom(�=A) is bounded by some fixed
k ∈ N. We proved emptiness to be decidable for that class. The classes we consider
in this paper are either incomparable or strictly more expressive. All the results from
Section 3 also hold for bounded TAGED. Note also that TAGED are strictly more ex-
pressive than tree automata, as illustrated by the next example.

Example 2. Let Q = {q, q=, qf}, F = {qf}, and let Δ be defined as the set of fol-
lowing rules: a → q, a → q=, f(q, q) → q, f(q, q) → q=, f(q=, q=) → qf , for all
a, f ∈ Σ. Let the positive TAGED A1 = (Σ,Q, F,Δ, {q= =A1 q=}). Then L(A1) is
the set {f(t, t) | f ∈ Σ, t ∈ TΣ}, which is known to be non regular [7].

Example 3. Let X be a finite set of variables. We now define a TAGED Asat which
accepts tree representations of satisfiable Boolean formulas with free variables X . We
let Ab = (Σb, Qb, Fb, Δb) be the automaton defined in Example 1. Every variable is
viewed as a binary symbol, and we let ΣX = Σb ∪ X . Every Boolean formula is
naturally viewed as a tree, except for variables x ∈ X which are encoded as trees
x(0, 1) over ΣX . For instance, the formula (x∧y)∨¬x is encoded as the tree ∨(t1, t2),
where t1 = ∧(x(0, 1), y(0, 1)) and t2 = ¬(x(0, 1)).

Now, we let Q = Qb ∪ {qx | x ∈ X} ∪ {p0, p1}, for two fresh states p0, p1, and
F = Fb. The idea is to choose non-deterministically to evaluate the leaf 0 or 1 below
x to qx, but not both, for all x ∈ X . This means that we affect 0 or 1 to a particular
occurrence of x. Then, by imposing that every leaf evaluated to qx are equal,we can
ensure that we have chosen to same Boolean value for all occurrences of x, for all
x ∈ X . This can be done with the set of rules Δb extended with the following rules, for
all b ∈ {0, 1} and all x ∈ X :

b→ pb b→ qx x(p0, qx) → q1 x(qx, p1) → q0.

Finally, for all x ∈ X , we let qx =Asat qx.

The (uniform) membership problem is “given a TAGED A, given a tree t, does t belong
to L(A)?”. We can prove the following:

318 E. Filiot, J.-M. Talbot, and S. Tison

Proposition 1. Membership is NP-complete for TAGED.

Proof. Example 3 gives a polynomial reduction of SAT to membership of TAGEDs. To
show it is in NP, it suffices to guess a labeling of the nodes of the tree by states, and
then to verify that it is a run, and that equality and disequality constraints are satisfied.
This can be done in linear time both in the size of the automaton and of the tree. �

3 Closure Properties of TAGEDs and Decision Problems

In this section, we prove closure properties of TAGED-definable languages.

Proposition 2 (Closure by union and intersection). TAGED-definable languages are
closed by union and intersection.

Proof. Let A = (Λ,Q, F,Δ,=A, �=A) and A′ = (Λ,Q′, F ′, Δ′,=A′ , �=A′) be two
TAGEDs. Wlog, we suppose that Q ∩ Q′ = ∅. A TAGED accepting L(A) ∪ L(A′) is
defined by A ∪A′ = (Λ,Q ∪Q′, F ∪ F ′, Δ ∪Δ′,=A ∪ =A′ , �=A ∪ �=A′).

For the closure by intersection, we use the usual product construction A × A′ [7],
whose set of final states if F×F ′. State equality =A×A′ is defined by {((q, q′), (p, p′)) |
breakq =A p or q =A′ p}, while �=A×A′ is defined by {((q, q′), (p, p′)) | q �=A

p or q �=A′ p}. �

Prop 2 also holds for the class of languages defined by positive or negative TAGEDs. A
TAGED is deterministic if all rules have different left-hand sides (hence there is at most
one run per tree). For a deterministic TAGED A, we can prove that one can compute
a non-deterministic TAGED accepting the complement of L(A): we have to check if
the tree evaluates in a non-accepting state or in an accepting state but in this case we
non-deterministically guess a position where a constraint is not satisfied. However:

Proposition 3. TAGEDs are not determinizable.

Proof. Let Σ = {f, a} an alphabet where f is binary and a constant. Consider the
language L0 = {f(t, t) | t ∈ TΣ} of Example 2. It is obvious that L0 is definable by
a non-deterministic (bounded) TAGED. Suppose that there is a deterministic TAGED
A = (Σ,Q, F,Δ,=A, �=A) such that L(A) = L0. Let t be a tree whose height is
strictly greater than |Q|. Since f(t, t) ∈ L0, there are a successful run qf (r, r) of A on
f(t, t) for some final state qf , two nodes u, v and a state q ∈ Q such that t|v is a strict
subtree of t|u, and Or(u) = Or(v) = q. Since f(t|u, t|u) ∈ L0, and A is deterministic,
there is a final state q′f ∈ F and a rule f(q, q) → q′f ∈ Δ. Hence q′f (r|u, r|v) is a run
of A on f(t|u, t|v). Since qf (r, r) satisfies the constraints, q′f (r|u, r|v) also satisfies the
constraints. Hence f(t|u, t|v) ∈ L(A), which contradicts t|u �= t|v . �

Proposition 3 is not surprising, since:

Proposition 4. The class of TAGED-definable languages is not closed by complement.

Tree Automata with Global Constraints 319

Proof. (Sketch) We exhibit a tree language whose complement is easily definable by
a TAGED, but which is not TAGED-definable. This language is the union of sets Tn,
for all n ∈ N, where Tn = {f(g(t, t), t′) | t ∈ TΣ, t′ ∈ Tn−1}, and T0 = {a}.
To check whether a tree is in Tn, a TAGED would have to perform n equality tests,
for each subtree rooted by g. This would require n states. This is only an intuition.
The proof is a bit more complicated as the TAGED could also perform inequality
tests. �

We end up this section with an undecidability result:

Proposition 5. Testing universality of TAGEDs is undecidable.

Proof. (Sketch) We adapt the proof of [17] for undecidability of emptiness of classical
tree automata with equality constraints. We start from an instance of the Post Corre-
spondence Problem (PCP). We encode the set of solutions of PCP as a tree language
whose complement is easily definable by a TAGED. Hence, the complement is univer-
sal iff PCP has no solution. �

Even if TAGEDs are not determinizable, we can assume that testing an equality between
subtrees can be done using the same state, as stated by the following lemma:

Lemma 1. Every TAGED A is equivalent to a TAGED A′ (whose size might be expo-
nential in the size of A) such that =A′⊆ idQA′ , where idQA′ is the identity relation on
QA′ . Moreover, A′ can be built in exponential time (and may have exponential size).

Proof. (Sketch) Intuitively, we can view an accepting run r of A on a tree t as a DAG
structure. Let U ⊆ Nt such that all subtrees t|u, u ∈ U , have been successfully tested
equal by A in the run r (i.e. ∀u, v ∈ U , Or(u) =A Or(v)). Let t0 = t|u, for some u ∈
U . We replace all nodes of U by a single node u0 which enroots t0. The parent of any
node of U points to u0. We maximally iterate this construction to get the DAG. Note that
this DAG is not maximal sharing1, since only subtrees which have been successfully
tested to be equal are shared. We construct A′ such that it simulates a run on this DAG,
obtained by overlapping the runs on every equal subtrees for which a test has been
done. �

4 Emptiness of Positive and Negative TAGEDs

In this section we prove decidability of emptiness of positive and negative TAGEDs
respectively. For positive TAGEDs, it uses Lemma 1, and the classical reachability
method for tree automata. For negative TAGEDs, we reduce the problem to testing
satisfiability of set constraints.

Theorem 1. Testing emptiness of positive TAGEDs is EXPTIME-complete.

1 There might be two isomorphic subgraphs occurring at different positions.

320 E. Filiot, J.-M. Talbot, and S. Tison

Proof. upper bound. Let A be a positive TAGED such that its equality relation is a
subset of the identity relation (otherwise we transform A modulo an exponential blow-
up, thanks to Lemma 1). Let A− be its associated tree automaton (i.e. A without the
constraints). We have L(A) ⊆ L(A−).

Then it suffices to apply a slightly modified version of the classical reachability
method used to test emptiness of a tree automaton [7]. In particular, we can make this
procedure associate with any state q a unique tree tq. When a new state is reached, it
can possibly activate many rules f(q1, q2) → q whose rhs are the same state q. The
algorithm has to make a choice between this rules in order to associate a unique tree
tq = f(tq1 , tq2) to q. This choice can be done for instance by giving an identifier to
each rule and choosing the rule with the least identifier.

If L(A−) is empty, then L(A) is also empty. If L(A−) is non-empty, we get a tree t
and a run r which obviously satisfies the equality constraints, since a state q such that
q =A q is mapped to unique tree tq (if q is reachable).

lower bound. We reduce the problem of testing emptiness of the intersection of n tree
automata A1, . . . , An (see [7]), which is known to be EXPTIME-complete. We assume
that their sets of states are pairwise disjoint (Qi ∩ Qj = ∅ whenever i �= j), and for
all i = 1, . . . , n, Ai has exactly one final state qfi , and qfi does not occur in lhs of
rules of Ai (otherwise we slightly modify Ai, modulo a factor 2 in the size of Ai). We
let L = {f(t1, . . . , tn) | f ∈ Σ, ∀i, ti ∈ L(Ai), ∀i, j, ti = tj}. It is clear that L is
empty iff L(A1) ∩ . . . L(An) is empty. It is not difficult to construct a TAGED A (with
|A| = O(

∑
i |Ai|)), such that L = L(A): it suffices to take the union of A1, . . . , An

and to add the rule f(qf1 , . . . , qfn) → qf , where qf is a fresh final state of A. Then we
add the following equality constraints: ∀i, j, qfi =A qfj . �

If =A⊆ idQ, in a successful run we can assume that the subruns rooted at states q such
that q =A q are the same. Hence, we can introduce a pumping technique for positive
TAGEDs satisfying this property. The idea is to pump similarly in parallel below all
states q such that q =A q, while keeping the equality constraints satisfied. The pumping
technique is described in the full version of the paper [23]. Thanks to this, if there is a
loop in a successful run, we can construct infinitely many accepted trees. In particular:

Theorem 2. Let A be a positive TAGED. It is decidable whether L(A) is infinite or
not, in O(|A||Q|2) if =A⊆ idQ, and in EXPTIME otherwise.

We now prove decidability of emptiness of negative TAGEDs (=A= ∅), by reduction to
positive and negative set constraints (PNSC for short). Set expressions are built from set
variables, function symbols, and Boolean operations. Set constraints are either positive,
e1 ⊆ e2, or negative, e1 �⊆ e2, where e1, e2 are set expressions. Set expressions are
interpreted in the Herbrand structure while set constraints are interpreted by Booleans
0,1. Testing the existence of a solution of a system of set constraints has been proved to
be decidable in several papers [5,1,21,11]. In particular, it is known to be NEXPTIME-
complete. We do not formally define set constraints and refer the reader to [5,1,21,11].
Consider for instance the constraint f(X,X) ⊆ X . It has a unique solution which is
the empty set. Consider now X ⊆ f(X,X) ∪ a, where a is a constant symbol. Every
set of terms over {f, a} closed by the subterm relation is a solution. More generally, we

Tree Automata with Global Constraints 321

can encode the emptiness problem of tree automata as a system of set constraints. Let
A = (Σ,Q, F,Δ) be a tree automaton. Wlog, we assume all state q ∈ Q to occur in
the rhs of a rule. We associate with A the system SA defined by:

(SA)
{
Xq ⊆

⋃
f(q1,q2)→q∈Δ f(Xq1 , Xq2) ∪

⋃
a→q∈Δ a for all q ∈ Q

⋃
q∈F Xq �⊆ ∅

We can prove that L(A) is non-empty iff SA has a solution. Let (A, �=A) be a negative
TAGED, and consider the system S′

A consisting in SA extended with the constraints
Xq ∩ Xp = ∅, for all q, p ∈ Q such that q �=A p. We can prove that L(A, �=A) �= ∅
iff S′

A has a solution. Since deciding existence of a solution of a system of PNSC is in
NEXPTIME, we get:

Theorem 3. Emptiness of negative TAGEDs is decidable in NEXPTIME.

5 Emptiness When Mixing Equality and Disequality Constraints

In this section, we mix equality and disequality constraints. This has already been done
in [10] for bounded TAGEDs. Emptiness was proved by decomposition of runs, but here
we use a pumping technique that allows to decide emptiness for a class of TAGEDs that
significantly extends the class considered in [10]. In particular, we allow an unbounded
number of positive tests, but boundedly many negative tests along root-to-leaves paths,
i.e. branches. While this class subsumes positive TAGEDs, the upper-bound for testing
emptiness is bigger than the bound obtained in Section 4.

Formally, a vertically bounded TAGED (vbTAGED for short) is a pair (A, k) where
A is a TAGED, and k ∈ N. A run r of (A, k) on a tree t ∈ TΣ is a run of A on t. It is
successful if r is successful for A and the number of states from dom(�=A) occurring
along a root-to-leaves path is bounded by k: in other words, for all root-to-leaves path
u1 � . . .� un of t (where each ui is a node), one has |{ui | Or(ui) ∈ dom(�=A)}| ≤ k.

We now come to the main result of the paper:

Theorem 4. Emptiness of vbTAGEDs (A, k) is decidable in 2NEXPTIME.

Proof. Sketch We first transform A so that it satisfies =A⊆ idQ, thanks to Lemma 1
(modulo an exponential blow-up). Let t ∈ TΣ , and r a run of A on it which satisfies
the equality constraints (but not necesssarily the disequality constraints), and such that
its root is labeled by a final state. We introduce sufficient conditions on t and r (which
can be verified in polynomial-time, in |t|, |r| and |A|) to be able to repair the unsatisfied
inequality constraints in t in finitely many rewriting steps. These rewritings can be done
while keeping the equality constraints satisfied. In particular, since =A⊆ idQ, we can
assume that for all u, v ∈ Nt such that u ∼t,r v, r|u = r|v . Hence, we can use a “par-
allel” pumping technique similar to the pumping technique for positive TAGEDs. The
pumping is a bit different however: indeed, if t and r satisfies the sufficient conditions,
we increase the size of some contexts of t and r, called elementary contexts, in order
to repair all the unsatisfied inequality constraints. The repairing process is inductive. In

322 E. Filiot, J.-M. Talbot, and S. Tison

particular, we introduce a notion of frontier below which all inequality constraints have
been repaired. The process stops when the frontier reach the top of the tree (and in this
case the repaired tree is in the language). From a tree and a run that satisfy the sufficient
conditions, and a frontier F , one can create a new tree and a new run satisfying the
conditions, and a new frontier which is strictly contained in F . Conversely, if L(A, k) �=
∅, then there is a tree t and a run r satisfying the conditions such that the height of t is
smaller than 2(k + |Q|)|Q| (and by (k + 2|Q|)2|Q|+1 if =A �⊆ idQ). Hence, it suffices
to guess a tree and a run satisfying the conditions to decide emptiness of A.

Since the class of vbTAGEDs subsumes the class of positive TAGEDs, we also get
an EXPTIME lower bound for emptiness of vbTAGEDs, by Theorem 1. Moreover, if
=A⊆ idQ and k ≤ |Q| (or k is unary encoded), emptiness of A is in NEXPTIME. �

6 Applications

6.1 MSO with Tree Isomorphism Tests

We study an extension of MSO with isomorphism tests between trees. Trees over an
alphabet Σ are viewed as structures over the signature consisting of unary predicates
Oa, for all a ∈ Σ, to test the labels, and the two successor relations S1 and S2 which
relates the parent to its first child and its second child respectively. The domain of the
structure is the set of nodes.

We consider node variables x, y and set variables X,Y . MSO consists of the closure
of atomic formulas Oa(x) (for a ∈ Σ), S1(x, y), S2(x, y), x ∈ X , by conjunction ∧,
negation ¬, and existential quantifications ∃x, ∃X . We refer the reader to [16] for the
semantics of MSO. It is well-known that MSO sentences and tree automata define the
same tree languages [22]. We use similar back and forth translations to prove that an
extension of MSO with tree isomorphism tests effectively defines the same language as
vertically bounded TAGED. This significantly improves the result of [10].

We consider a predicate eq(X), which holds in a tree t under assignment ρ : X 	→ U
(denoted by t, ρ |= eq(X)), for some U ⊆ Nt, if for all u, v ∈ U , the trees t|u and
t|v are isomorphic. For all k ∈ N, we consider the predicate diffk(X,Y), which holds
in t under assignment ρ if (i) the maximal length of a descendant chain in ρ(X) and
ρ(Y) is bounded by k, (ii) for all u ∈ ρ(X), v ∈ ρ(Y), the trees t|u and t|v are
not isomorphic. We consider MSO∃

= the extension of MSO whose formulas are of the
form ∃X1 . . . ∃Xnφ, where φ is an MSO formula extended with atoms eq(Xi) and
diffk(Xi, Xj) (1 ≤ i, j ≤ n)2. MSO∃

= is strictly more expressive than MSO as tree
isomorphism is not expressible in MSO [7], but as a corollary of Theorem 4, we obtain:

Theorem 5. MSO∃
= and vbTAGEDs effectively define the same tree languages, and

satisfiability of MSO∃
= formulas is decidable.

If we allow universal quantification of set variables X1, . . . , Xn, the logic becomes
undecidable (even if the Xis denote singletons) [10].

2 We assume that X1, . . . , Xn are not quantified in φ

Tree Automata with Global Constraints 323

6.2 Unification with Membership Constraints

We show that TAGEDs are particularly suitable to represent sets of ground instances
of terms. Then we investigate a particular unification problem with tree and context
variables where context variables can occur only in a restricted manner. In particular,
we consider first-order logic (FO) over term equations t ≈ t′, where t, t′ are terms
with tree and context variables, such that in a formula, every context variable can occur
at most once. Tree and context variables might be constrained to range over regular
languages (membership constraints). We prove this logic to be undecidable and exhibit
a decidable existential fragment. This is particularly relevant for XML queries, as we
can express tree patterns with negations. For instance, let Ldtd be a regular tree language
representing the DTD of a bibliography, d a ground term representing a bibliography,
Lpath the set of unary contexts denoted by the XPath expression bib/books (i.e. contexts
whose hole is reachable by the path bib/books), and X a unary context variable. The
formula φ(y, z) = ∃X, d ≈ X(book(author(y), title(z))) ∧ d ∈ Ldtd ∧X ∈ Lpath

checks that d conforms to the DTD and extracts from d all (author,title) pairs reachable
from the root by a path bib/books/book. The formula ∃z∃z′, φ(y, z)∧φ(y, z′)∧¬(z ≈
z′) extracts from d all authors y who published at least two books.

The restriction on context variables allows to test (dis)equalities arbitrarily deeply
but can not be used to test context (dis)equalities. Even with this restriction, FO is
undecidable, while it is known that without context variables, FO on atoms t ≈ t′ with
membership constraints is decidable [8].

Let Σ be a ranked alphabet (assumed to be of binary and constant symbols for the
sake of clarity). LetXt be a countable set of tree variables x, y, andXc a countable set of
multi-ary context variables X,Y (we assume the existence of a mapping ar : Xc → N
giving the arity of any context variable). The set of terms over Σ, Xt and Xc is denoted
by T (Σ,Xt,Xc). For instance X(f(x,X(y), x)) is a term where X ∈ Xc (arity 1),
f ∈ Σ (arity 3) and x, y ∈ Xt. A term is ground if it does not contain variables. The set
of ground terms over Σ is simply denoted TΣ . We also denote by CΣ the set of contexts
over Σ, and by Cn

Σ the set of n-ary contexts over Σ, for all n ∈ N. For all C ∈ Cn
Σ ,

and terms t1, . . . , tn ∈ T (Σ,Xt,Xc), we denote by C[t1, . . . , tn] the term obtained by
substituting the holes in C by t1, . . . , tn respectively (see [7] for a formal definition of
contexts). A ground substitution σ is a function from Xt ∪ Xc into TΣ ∪ CΣ such that
for all x ∈ Xt, σ(x) ∈ TΣ , and for all X ∈ Xc, σ(X) ∈ CΣ and ar(X) = ar(C).
The ground term obtained by applying σ on a term t is denoted tσ. A ground term t′

is a ground instance of a term t if there is σ such that t′ = tσ. Finally, a term t is
context-linear if every context variables occurs at most once in t.

Proposition 6. Let t ∈ T (Σ,Xt,Xc) be context-linear. The set of ground instances of
t is definable by a positive TAGED.

Proof. (Sketch) It suffices to introduce states for each subterm of t, and a special state
q∀ in which every ground term evaluates. Then we add state equalities qx =A qx for all
variable x occurring in t. �

We now introduce unification problems. An equation e is a pair of terms denoted by
t ≈ t′, where t, t′ ∈ T (Σ,Xt,Xc). A ground substitution σ is a solution of e if tσ

324 E. Filiot, J.-M. Talbot, and S. Tison

and t′σ are ground terms, and tσ = t′σ. Let n ∈ N. A regular n-ary context language
L is a regular language over Σ ∪ {◦1, . . . , ◦n}, where ◦1, . . . , ◦n are fresh symbols
denoting the holes, and such that every symbol ◦i occurs exactly once in terms (this
can be ensured by a regular control). A membership constraint is an atom of the form
x ∈ Lx, or X ∈ LX , where x ∈ Xt, X ∈ Xc, Lx is a regular tree language, and LX is
a regular ar(X)-ary context language.

We consider FO over equations and membership constraint atoms, with the following
restriction: for all formulas φ, and all context variables X ∈ Xc, there is at most one
equation e, and one term t in e such that X occurs in t. We denote by FO[≈,∈] this
logic. FO[≈,∈]-formulas are interpreted over ground substitutions σ. We define the
semantics σ |= φ inductively: σ |= e if σ is a solution of e, σ |= x ∈ Lx if σ(x) ∈ Lx

(and similarly for X ∈ LX), σ |= ∃xφ if there is a ground term t such that σ[x 	→ t] |=
φ (and similarly for ∃Xφ). Disjunction and negation are interpreted as usual.

We can show the following by reducing PCP:

Proposition 7. Satisfiability of FO[≈,∈] is undecidable.

However, it is known that satisfiability of FO[≈,∈] in which no context variable occurs
is decidable [8]. We consider the existential fragment FO∃[≈,∈] of FO[≈,∈] formulas
where existential quantifiers ∃x or ∃X cannot occur below an odd number of negations.

Theorem 6. Satisfiability of FO∃[≈,∈] is decidable.

Proof. (Sketch) Wlog, we consider only closed formulas. We define a normal form
which intuitively can be viewed as a set of pairs (E,M), where E is a set of equations
e (or negated equations ¬e), and M is a set of membership constraints. For each pair
(E,M), we construct a vbTAGED (AE,M , |E|) which defines the ground instances of
the term t0 depicted in Fig. 1 satisfying: (i) # is a fresh symbol, (ii) for all terms
t, t′, there exists i ∈ {1, . . . , n} s.t. t = ti and t′ = t′i iff either (t ≈ t′) ∈ E or
¬(t ≈ t′) ∈ E, (iii) if t0σ is a ground instance of t0, then the membership constraints
are satisfied, and σ is a solution of every equation of E (this can be done for instance
by adding state inequalities qt �=A qt′ , if ¬(t ≈ t′) ∈ E). The formula is satisfiable iff
there is a pair (E,M) such that L(AE,M , |E|) �= ∅. �

Fig. 1. term t0

Anti-pattern matching. [14] considers terms with
negations (called anti-patterns). For instance, the
anti-pattern f(x,¬x) denotes all the ground terms
f(t1, t2) such that t1 �= t2. More generally, negations
can occur at any position in the term: ¬(g(¬a)) de-
notes all ground terms which are not rooted by g or
g(a), and ¬f(x, x) denotes ground terms which are
not of the form f(t, t). A ground term matches an
anti-pattern if it belongs to its denotation. [14] proves
it to be decidable. We can easily define a vbTAGED
Ap which accepts the denotation of an anti-pattern p
where negations occur at variables only. Thus the anti-pattern matching problem re-
duces to test membership to L(Ap). When negations occur arbitrarily, the translation is

Tree Automata with Global Constraints 325

not so clear since the semantics of anti-patterns is universal (a ground term t matches
¬f(x, x) if ∀x, t �= f(x, x)). We let as future work this translation (for instance by
pushing down the negations).

7 Future Work

In [10], TAGEDs are based on hedge automata [18], so that they accept unranked trees.
We can encode unranked trees over Σ as terms over the signature Σ ∪ {cons}, where
cons is a binary symbol denoting concatenation of an unranked tree to an hedge. For
instance, f(a, b, c) maps to f(cons(a, cons(b, c))). Hedge automata can be translated
into tree automata over those encodings. Moreover, the encoding is unique, and any
subtree t becomes a subtree rooted by a symbol of Σ in the encoding. Hence testing
constraints between subtrees in unranked trees is equivalent to test constraints between
subtrees rooted by Σ in binary encodings. Therefore, TAGEDs over unranked trees
can be translated into TAGEDs over encodings, and we can prove that all the results
presented in this paper carry over to unranked trees. Moreover, in [10], we consider
the TQL logic over unranked trees, and prove a fragment of it to be decidable, by re-
duction to emptiness of bounded TAGEDs (over unranked trees). This work could be
used to decide larger fragments of TQL, via a binary encoding. Concerning the unifica-
tion problem considered here, we would like to use TAGEDs to test whether there are
finitely many solutions, and to represent the set of solutions. A question remains: de-
ciding emptiness of full TAGEDs. It is not easy, even for languages of trees of the form
f(t1, t2), where t1 and t2 are unary. Finally, it could be interesting to consider more
general tests, like recognizable relations on trees (since tree (dis)equality is a particular
recognizable binary relation).

References

1. Aiken, A., Kozen, D., Wimmers, E.L.: Decidability of systems of set constraints with nega-
tive constraints. Information and Computation 122(1), 30–44 (1995)

2. Anantharaman, S., Narendran, P., Rusinowitch, M.: Closure properties and decision problems
of dag automata. Inf. Process. Lett. 94(5), 231–240 (2005)

3. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree au-
tomata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 161–171.
Springer, Heidelberg (1992)

4. Charatonik, W.: Automata on dag representations of finite trees. Technical report (1999)
5. Charatonik, W., Pacholski, L.: Set constraints with projections are in NEXPTIME. In: IEEE

Symposium on Foundations of Computer Science (1994)
6. Comon, H., Cortier, V.: Tree automata with one memory, set constraints and cryptographic

protocols. TCS 331(1), 143–214 (2005)
7. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez,

D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata

8. Comon, H., Delor, C.: Equational formulae with membership constraints. Information and
Computation 112(2), 167–216 (1994)

9. Dauchet, M., Caron, A.-C., Coquidé, J.-L.: Reduction properties and automata with con-
straints. JSC 20, 215–233 (1995)

http://www.grappa.univ-lille3.fr/tata

326 E. Filiot, J.-M. Talbot, and S. Tison

10. Filiot, E., Talbot, J.-M., Tison, S.: Satisfiability of a spatial logic with tree variables. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 130–145. Springer, Hei-
delberg (2007)

11. Gilleron, R., Tison, S., Tommasi, M.: Some new decidability results on positive and negative
set constraints. In: Proceedings of the International Conference on Constraints in Computa-
tional Logics, pp. 336–351 (1994)

12. Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality constraints mod-
ulo equational theories. Research Report, LSV, ENS Cachan (2006)

13. Karianto, W., Löding, C.: Unranked tree automata with sibling equalities and disequalities.
Research Report, RWTH Aachen (2006)

14. Kirchner, C., Kopetz, R., Moreau, P.-E.: Anti-pattern matching. In: De Nicola, R. (ed.) ESOP
2007. LNCS, vol. 4421. Springer, Heidelberg (2007)

15. Kutsia, T., Marin, M.: Solving regular constraints for hedges and contexts. In: UNIF 2006,
pp. 89–107 (2006)

16. Libkin, L.: Logics over unranked trees: an overview. LMCS 2006 3(2), 1–31 (2006)
17. Mongy, J.: Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. PhD thesis,

Université de Lille (1981)
18. Murata, M.: Hedge automata: A formal model for xml schemata. Technical report, Fuji Xerox

Information Systems (1999)
19. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002.

LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)
20. Schwentick, T.: Automata for XML – a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)
21. Stefansson, K.: Systems of set constraints with negative constraints are nexptime-complete.

In: LICS (1994)
22. Thatcher, J.W., Wright, J.B.: Generalized finite automata with an application to a decision

problem of second-order logic. Mathematical System Theory 2, 57–82 (1968)
23. Full paper version, http://hal.inria.fr/inria-00292027

http://hal.inria.fr/inria-00292027

Bad News on Decision Problems for Patterns

Dominik D. Freydenberger1,� and Daniel Reidenbach2

1 Institut für Informatik, Goethe-Universität, Postfach 111932,
D-60054 Frankfurt am Main, Germany
freydenberger@em.uni-frankfurt.de

2 Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, United Kingdom

D.Reidenbach@lboro.ac.uk

Abstract. We study the inclusion problem for pattern languages, which
is shown to be undecidable by Jiang et al. (J. Comput. System Sci. 50,
1995). More precisely, Jiang et al. demonstrate that there is no effective
procedure deciding the inclusion for the class of all pattern languages
over all alphabets. Most applications of pattern languages, however, con-
sider classes over fixed alphabets, and therefore it is practically more
relevant to ask for the existence of alphabet-specific decision procedures.
Our first main result states that, for all but very particular cases, this
version of the inclusion problem is also undecidable. The second main
part of our paper disproves the prevalent conjecture on the inclusion
of so-called similar E-pattern languages, and it explains the devastat-
ing consequences of this result for the intensive previous research on the
most prominent open decision problem for pattern languages, namely
the equivalence problem for general E-pattern languages.

1 Introduction

A pattern – a finite string that consists of variables and of terminal symbols (or:
letters) – is a compact and natural device to define a formal language. It gen-
erates a word by a substitution of all variables with arbitrary words of terminal
symbols (taken from a fixed alphabet Σ) and, hence, its language is the set of
all words under such substitutions. More formally, a pattern language thus is
the (typically infinite) set of all images of the pattern under terminal-preserving
morphisms, i. e. morphisms which map each terminal symbol onto itself. For ex-
ample, if we consider the pattern α := x1 a x2 b x1 (where the symbols x1 and x2

are variables and a and b are terminal symbols) then the language generated by
α exactly contains those words which consist of an arbitrary prefix u, followed
by the letter a, an arbitrary word v, the letter b and a suffix which equals u
again. Consequently, the pattern language of α includes, amongst others, the
words w1 := a a b b b a, w2 := a b a b a b a b and w3 := a a a b a a, and it does not
cover the words w4 := b a, w5 := b a b b b a and w6 := a b b a. It is a well-known
fact that pattern languages in general are not context-free.
� Corresponding author.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 327–338, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

328 D.D. Freydenberger and D. Reidenbach

Basically, two types of pattern languages are considered in literature: NE -
pattern languages and E -pattern languages. The definition of the former was
introduced by Angluin [1], and it disallows that variables are substituted with
the empty word (hence, “NE” is short for “nonerasing”). The latter kind of
pattern languages additionally consider those substitutions which map one ore
more variables onto the empty word (so “E” stands for “erasing” or “extended”);
this definition goes back to Shinohara [25]. Thus, in our above example, the
word w3 is contained in the E-pattern language of α, but not in its NE-pattern
language. Surprisingly, this small difference in the definitions leads to significant
differences in the characteristics of the resulting (classes of) languages.

As a consequence of their simple definition, which comprises nothing but finite
strings and (a particular type of) morphisms, pattern languages show numerous
connections to other fundamental topics in computer science and discrete math-
ematics, including classical ones such as (un-)avoidable patterns (cf. Jiang et
al. [8]), word equations (cf. Mateescu, Salomaa [12], Karhumäki et al. [10]) and
equality sets (and, thus, the Post Correspondence Problem, cf. Reidenbach [18])
as well as emerging ones such as extended regular expressions (cf. Câmpeanu
et al. [3]) and the ambiguity of morphisms (cf. Freydenberger et al. [6], Rei-
denbach [18]). In terms of the basic decision problems, pattern languages show a
wide range of behaviors: trivial (linear time) decidability (e. g., the equivalence of
NE-pattern languages), NP-completeness (e. g., the membership in NE- and E-
pattern languages) and undecidability (e. g., the inclusion of NE- and E-pattern
languages); furthermore, the decidability of quite a number of these problems is
still open (e. g., the equivalence problem for E-pattern languages). Surveys on
these topics are provided by, e. g., Mateescu and Salomaa [13] and Salomaa [23].

Among the established properties (and even among all results on pattern
languages), the proof for the undecidability of the inclusion problem by Jiang,
Salomaa, Salomaa and Yu [9] is considered to be one of the most notable achieve-
ments, and this is mainly due to the very hard proof, which answers a long-
standing open question, and the fact that the result remarkably contrasts with
the trivial decidability of the equivalence problem for NE-pattern languages.
Furthermore, the inclusion problem is of vital importance for the main field of
application of pattern languages, namely inductive inference. Inductive inference
of pattern languages – which deals with an approach to the important problem
of computing a pattern that is common to a given set of strings – is a both clas-
sical and active area of research in learning theory; a survey is provided by Ng
and Shinohara [16]. It is closely connected to the inclusion problem for pattern
languages since, according to the celebrated characterization by Angluin [2], the
inferrability of any indexable class of languages largely depends on the inclusion
relation between the languages in the class. Consequently, many (both classical
and recent) papers on inductive inference of classes of pattern languages nearly
exclusively deal with questions related to the inclusion problem for these classes
(see, e. g., Mukouchi [15], Reidenbach [19,21], Luo [11]).

Unfortunately, from this rather practical point of view, the inclusion
problem for E- and for NE-pattern languages as understood and successfully

Bad News on Decision Problems for Patterns 329

tackled by Jiang et al. [9] is not very significant, since they prove that there
is no single procedure which, for every terminal alphabet Σ and for every pair
of patterns, decides on the inclusion between the languages over Σ generated
by these patterns. Hence, slightly more formally, Jiang et al. [9] demonstrate
that the inclusion problem is undecidable for (a technical subclass of) the class
of all pattern languages over all alphabets, and the requirement for any deci-
sion procedure to handle pattern languages over various alphabets is extensively
utilized in the proof. Contrary to this, in inductive inference of pattern languages
– and virtually every other field of application of pattern languages known to the
authors – one always considers a class of pattern languages over a fixed alpha-
bet. Consequently, it seems practically more relevant to investigate the problem
of whether, for any alphabet Σ, there exists a procedure deciding the inclusion
problem for the class of (E/NE-)pattern languages over this alphabet Σ.

In the present paper we study and answer this question (or rather: these
infinitely many questions). Our considerations reveal that, for every finite al-
phabet Σ with at least two letters, the inclusion problem is undecidable for the
full classes of E-pattern languages over Σ. Furthermore, with regard to the class
of NE-pattern languages over any Σ, we prove the equivalent result, but our
reasoning does not cover binary and ternary alphabets. Although we thus have
the same outcome as Jiang et al. [9] for their variant of the inclusion problem,
the proof for our much stronger statement considerably differs from their argu-
mentation; consequently, it suggests that there is no straightforward way from
the well-established result to ours. Moreover, we feel that our insights (and our
uniform reasoning for all alphabet sizes) are a little surprising, since the inferra-
bility of classes of pattern languages is known to be discontinuous depending on
the alphabet size and the question of whether NE- or E-pattern languages are
considered (cf. Reidenbach [21]). The second main part of our paper addresses
the other major topic in [9]: we discuss the extensibility of a positive decid-
ability result given in [9] on the inclusion problem for the class of terminal-free
E-pattern languages (generated by those patterns that consist of variables only)
to classes of so-called similar E-pattern languages. This question is intensively
discussed in literature (e. g. by Ohlebusch, Ukkonen [17]) as it is of major impor-
tance for the still unresolved equivalence problem for the full class of E-pattern
languages. We demonstrate that, in contrast to the prevalent conjecture, the
inclusion of similar E-pattern languages does not show an analogous behavior
to that of terminal-free E-pattern languages, and we explain the fatal impact of
this insight on the previous research dealing with the equivalence problem.

2 Preliminaries

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0}. The symbol ∞ stands for infinity.
For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and λ stands for the empty string. The symbol A+ denotes the set of
all nonempty strings over A, and A∗ := A+ ∪ {λ}. For the concatenation of two
strings w1, w2 we write w1 ·w2 or simply w1w2. We say that a string v ∈ A∗ is a

330 D.D. Freydenberger and D. Reidenbach

factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1vu2. If u1 = λ
(or u2 = λ), then v is a prefix of w (or a suffix, respectively). The notation |x|
stands for the size of a set x or the length of a string x. For any w ∈ Σ∗ and any
n ∈ N0, wn denotes the n-fold concatenation of w, with w0 := λ. Furthermore,
we use · and the regular operations ∗ and + on sets and strings in the usual way.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ with h(vw) =
h(v)h(w) for all v, w ∈ A∗. Given morphisms f : A∗ → B∗ and g : B∗ → C∗ (for
alphabets A, B, C), their composition g ◦ f is defined as g ◦ f(w) := g(f(w)) for
all w ∈ A∗. A morphism h : A∗ → B∗ is nonerasing if h(a) �= λ for all a ∈ A.

Let Σ be a (finite or infinite) alphabet of so-called terminal symbols (or:
letters) and X an infinite set of variables with Σ ∩ X = ∅. Unless specified
differently, we assume X = {xi | i ∈ N}, with xi �= xj for all i �= j. A pattern is a
string over Σ∪X , a terminal-free pattern is a string over X and a word is a string
over Σ. The set of all patterns over Σ∪X is denoted by PatΣ, the set of terminal-
free patterns by Pattf . For any pattern α, we refer to the set of variables in α as
var(α) and to the set of terminal symbols as term(α). Two patterns α, β ∈ PatΣ
are similar if their factors over Σ are identical and occur in the same order in the
patterns. More formally, α, β are similar if α = α0u1α1u2 . . . αn−1unαn and β =
β0u1β1u2 . . . βn−1unβn for some n ∈ N0, αi, βi ∈ X+ for each i ∈ {1, . . . , n− 1},
α0, β0, αn, βn ∈ X∗ and uj ∈ Σ+ for each j ∈ {1, . . . , n}.

A morphism σ : (Σ ∪X)∗ → (Σ ∪X)∗ is called terminal-preserving if σ(a) =
a for all a ∈ Σ. A terminal-preserving morphism σ : (Σ ∪X)∗ → Σ∗ is called a
substitution. The E-pattern language LE,Σ(α) of a pattern α ∈ PatΣ is the set of
all w ∈ Σ∗ such that σ(α) = w for some substitution σ; the NE-pattern language
LNE,Σ(α) is defined in the same way, but restricted to nonerasing substitutions.
The term pattern language refers to any of the definitions introduced above. Two
pattern languages are called similar if they have generating patterns that are
similar. Accordingly, we call a pattern language terminal-free if it is generated
by a terminal-free pattern. We denote the class of all E-pattern languages over
Σ with ePATΣ and the class of all NE-pattern languages over Σ with nePATΣ.

A nondeterministic 2-counter automaton without input (cf. Ibarra [7]) is a
4-tuple A = (Q, δ, q0, F), consisting of a state set Q, a transition relation δ :
Q× {0, 1}2 → Q× {−1, 0,+1}2, the initial state q0 ∈ Q and a set of accepting
states F ⊆ Q. A configuration of A is a triple (q,m1,m2) ∈ Q×N0 ×N0, where
q indicates the state of A and m1 (or m2) denotes the content of the first (or
second, respectively) counter. The relation &A on Q × N0 × N0 is defined by δ
as follows: Let p, q ∈ Q, m1,m2, n1, n2 ∈ N0. Then (p,m1,m2)&A(q, n1, n2) iff
there exist c1, c2 ∈ {0, 1} and r1, r2 ∈ {−1, 0,+1} such that (i) ci = 0 if mi = 0
and ci = 1 if mi ≥ 1 for i ∈ {1, 2}, (ii) ni=mi + ri for i ∈ {1, 2} and (iii)
(q, r1, r2) ∈ δ(p, c1, c2). Furthermore, for i ∈ {1, 2}, we assume that ri �= −1 if
ci = 0. Intuitively, in every state A is only able to check whether the counters
equal zero, change each counter by at most one and switch into a new state.

A computation is a sequence of configurations, and an accepting computa-
tion of A is a sequence C1, . . . , Cn ∈ Q × N0 × N0 (for some n ∈ N0) with
C1 = (q0, 0, 0), Cn ∈ F × N0 × N0 and Ci &A Ci+1 for all i ∈ {1, . . . , n − 1}. In

Bad News on Decision Problems for Patterns 331

order to encode configurations of A, we assume that Q = {q0, . . . , qs} for some
s ∈ N0 and define a function cod : Q×N0×N0 → {0,#}∗ by cod(qi,m1,m2) :=
0i+1#0m1+1#0m2+1 and extend this to an encoding of computations by defin-
ing cod(C1, C2, . . . , Cn) := ## cod(C1)## cod(C2)## . . .## cod(Cn)## for
every n ≥ 1 and every sequence C1, . . . , Cn ∈ Q × N0 × N0. Furthermore, let
VALC(A) := {cod(C1, . . . , Cn) | C1, . . . , Cn is an accepting computation of A},
and INVALC(A) := {0,#}∗\VALC(A). As the emptiness problem for 2-counter
automata with input is undecidable (cf. Minsky [14], Ibarra [7]), it is also unde-
cidable whether a nondeterministic 2-counter automaton without input has an
accepting computation.

3 The Inclusion of Pattern Languages over Fixed
Alphabets

In this section, we discuss the decidability of the inclusion problem for ePATΣ

and nePATΣ . We begin with all non-unary finite alphabets Σ; the special case
|Σ| ∈ {1,∞} is studied separately. Jiang, Salomaa, Salomaa and Yu [9] prove
the undecidability of the general inclusion problem for E-pattern languages:

Theorem 1 (Jiang et al. [9]). There is no total computable function χE

which, for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides
on whether or not LE,Σ(α) ⊆ LE,Σ(β).

Technically, Jiang et al. show that, given a nondeterministic 2-counter automa-
ton without input A, one can effectively construct an alphabet Σ and patterns
αA, βA ∈ PatΣ such that LE,Σ(αA) ⊆ LE,Σ(βA) iff A has an accepting computa-
tion. As this problem is known to be undecidable, the general inclusion problem
for E-pattern languages must also be undecidable.

In their construction, Σ contains one letter for every state of A, and six
further symbols that are used for technical reasons. As limiting the number of
states would lead to a finite number of possible automata (and thus trivial and
inapplicable decidability), one cannot simply fix the number of states in order to
adapt this result to the inclusion problem for ePATΣ with some fixed alphabet
Σ. Thus, as mentioned by Reidenbach [18] and Salomaa [24], there seems to
be no straightforward way from this undecidability result to the undecidability
of the inclusion problem for ePATΣ , especially when Σ is comparatively small.
Nevertheless, our first main theorem states:

Theorem 2. Let Σ be a finite alphabet with |Σ| ≥ 2. Then the inclusion problem
for ePATΣ is undecidable.

The proof of this theorem is rather lengthy and can be found in Section 3.1. It is
in principle based on the construction by Jiang et al.[9], with two key differences.
First, the problem of an unbounded number of states (and therefore the number
of letters necessary to encode these states) is handled by using a unary encoding
instead of special letters to designate the states in configurations; second, the
special control symbols are encoded over a binary alphabet or removed. These

332 D.D. Freydenberger and D. Reidenbach

modifications enforce considerable changes to the patterns and the underlying
reasoning. But before we go into these details, we first discuss the immediate
consequences of Theorem 2. In fact, the proof demonstrates a stronger result:

Corollary 1. Let Σ be a finite alphabet with |Σ| ≥ 2. Given two patterns α ∈
PatΣ and β ∈ ({a} ∪X)∗ for some terminal a ∈ Σ, it is in general undecidable
whether LE,Σ(α) ⊆ LE,Σ(β).

This corollary is the alphabet specific version of Jiang et al.’s Corollary 5.1 in [9]
that is used to obtain the following result on the general inclusion problem for
NE-pattern languages :

Theorem 3 (Jiang et al. [9]). There is no total computable function χNE

which, for every alphabet Σ and for every pair of patterns α, β ∈ PatΣ, decides
on whether or not LNE,Σ(α) ⊆ LNE,Σ(β).

In the terminology used in the present paper, the proof of Theorem 3 in [9]
reduces the inclusion problem for ePATΣ (for patterns of a restricted form as
in Corollary 1) to the inclusion problem for nePATΣ∪{�,$}, where # and $ are
two extra letters that are not contained in Σ. Using the same reasoning as Jiang
et al. in their proof of Theorem 3, but when substituting their Corollary 5.1 with
Corollary 1 above, one immediately achieves the following result:

Theorem 4. Let Σ be a finite alphabet with |Σ| ≥ 4. Then the inclusion problem
for nePATΣ is undecidable.

As the construction used in the reduction heavily depends on the two extra
letters, the authors do not see a straightforward way to adapt it to binary or
ternary alphabets. Therefore, the decidability of the inclusion problem for NE-
pattern languages over these alphabets remains open:

Open Problem 1. Let Σ be an alphabet with |Σ| = 2 or |Σ| = 3. Is the inclu-
sion problem for nePATΣ decidable?

We now take a brief look at the special cases of unary and infinite alphabets.
Here we can state that the inclusion of pattern languages is less complex than
in the standard case:

Proposition 1. Let Σ be an alphabet, |Σ| ∈ {1,∞}. Then the inclusion problem
is decidable for ePATΣ and for nePATΣ.

The proof for Proposition 1 is omitted due to space constraints.
Obviously, Proposition 1 implies that the equivalence problem is decidable,

too, for ePATΣ and nePATΣ over unary or infinite alphabets Σ. Furthermore,
with regard to 2 ≤ |Σ| <∞, it is shown by Angluin [1] that two patterns generate
the same NE -pattern language iff they are the same (apart from a renaming of
variables). Thus, the equivalence problem for nePATΣ is trivially decidable for
every Σ, a result which nicely contrasts with the undecidability of the inclusion
problem established above. The equivalence problem for ePATΣ, however, is still
an open problem in case of 2 ≤ |Σ| <∞. In Section 4 we present and discuss a
result that has a significant impact on this widely-discussed topic.

Bad News on Decision Problems for Patterns 333

3.1 Proof of Theorem 2

Due to space constraints, the proofs of all lemmas in this section are omitted.
We begin with the case |Σ| = 2, so let Σ := {0,#}. Let A := (Q, δ, q0, F) be a
nondeterministic 2-counter automaton; w. l. o. g. let Q := {q0, . . . , qs} for some
s ∈ N0. Our goal is to construct patterns αA, βA ∈ PatΣ such that LE,Σ(αA) ⊆
LE,Σ(βA) iff VALC(A) = ∅. We define αA := vv#4vxvyv#4vuv, where x, y are
distinct variables, v = 0#30 and u = 0##0. Furthermore, for a yet unspecified
μ ∈ N that shall be defined later, let βA := (x1)2 . . . (xμ)2#4β̂1 . . . β̂μ#4β̈1 . . . β̈μ,
with, for all i ∈ {1, . . . , μ}, β̂i := xi γi xi δi xi and β̈i := xi ηi xi, where x1, . . . , xμ

are distinct variables and all γi, δi, ηi ∈ X∗ are terminal-free patterns. The pat-
terns γi and δi shall be defined later; for now, we only mention:

1. ηi := zi(ẑi)2zi and zi �= ẑi for all i ∈ {1, . . . , μ},
2. var(γiδiηi) ∩ var(γjδjηj) = ∅ for all i, j ∈ {1, . . . , μ} with i �= j,
3. xk /∈ var(γiδiηi) for all i, k ∈ {1, . . . , μ}.

Thus, for every i, the elements of var(γiδiηi) appear nowhere but in these three
factors. Let H be the set of all substitutions σ : (Σ ∪ {x, y})∗ → Σ∗. We interpret
each triple (γi, δi, ηi) as a predicate πi : H → {0, 1} in such a way that σ ∈ H
satisfies πi if there exists a morphism τ : var(γiδiηi)∗ → Σ∗ with τ(γi) =
σ(x), τ(δi) = σ(y) and τ(ηi) = u – in the terminology of word equations (cf.
Karhumäki et al. [10]), this means that σ satisfies πi iff the system consisting of
the three equations γi = σ(x), δi = σ(y) and ηi = u has a solution τ . Later, we
shall see that LE,Σ(αA)\LE,Σ(βA) exactly contains those σ(αA) for which σ does
not satisfy any of π1 to πμ, and choose these predicates to describe INVALC(A).
The encoding of INVALC(A) shall be handled by π4 to πμ, as each of these
predicates describes a sufficient criterium for membership in INVALC(A). But
at first we need a considerable amount of technical preparations. A substitution
σ is of good form if σ(x) ∈ {0,#}∗, σ(x) does not contain #3 as a factor, and
σ(y) ∈ 0∗. Otherwise, σ is of bad form. The predicates π1 and π2 handle all cases
where σ is of bad form and are defined through γ1 := y1,1(ẑ1)3y1,2, δ1 := ŷ1,
γ2 := y2, and δ2 := ŷ2,1 ẑ2 ŷ2,2, where y1,1, y1,2, y2, ŷ1, ŷ2,1, ŷ2,2, ẑ1 and ẑ2

are pairwise distinct variables. Recall that ηi = zi(ẑi)2zi for all i. It is not very
difficult to see that π1 and π2 characterize the morphisms that are of bad form:

Lemma 1. A substitution σ ∈ H is of bad form iff σ satisfies π1 or π2.

This allows us to make the following observation, which serves as the central
part of the construction and is independent from the exact shape of π3 to πμ:

Lemma 2. For every substitution σ ∈ H, σ(αA) ∈ LE,Σ(βA) iff σ satisfies one
of the predicates π1 to πμ.

Thus, we can select predicates π1 to πμ in such a way that LE,Σ(αA)\LE,Σ(βA) =
∅ iff VALC(A) = ∅ by describing INVALC(A) through a disjunction of predicates
on H . The proof of Lemma 2 shows that if σ(αA) = τ(βA) for substitutions σ, τ ,
where σ is of good form, there exists exactly one i (3 ≤ i ≤ μ) s.t. τ(xi) = 0#30.
Due to technical reasons, we need a predicate π3 that, if unsatisfied, sets a lower

334 D.D. Freydenberger and D. Reidenbach

bound on the length of σ(y), defined by γ3 := y3,1 ŷ3,1 y3,2 ŷ3,2 y3,3 ŷ3,3 y3,4, and
δ3 := ŷ3,1 ŷ3,2 ŷ3,3, where all of y3,1 to y3,4 and ŷ3,1 to ŷ3,3 are pairwise distinct
variables. Clearly, if some σ ∈ H satisfies π3, σ(y) is a concatenation of three
(possibly empty) factors of σ(x). Thus, if σ satisfies none of π1 to π3, σ(y) must
be longer than the three longest non-overlapping sequences of 0s in σ(x). This
allows us to identify a class of predicates definable by a rather simple kind of
expression, which we use to define π4 to πμ in a less technical way.

Let X ′ := {x̂1, x̂2, x̂3} ⊂ X , let G denote the set of those substitutions in H
that are of good form and let R be the set of all substitutions ρ : (Σ ∪X ′)∗ → Σ∗

for which ρ(0) = 0, ρ(#) = # and ρ(x̂i) ∈ 0∗ for all i ∈ {1, 2, 3}. For patterns
α ∈ (Σ ∪X ′)∗, we define R(α) := {ρ(α) | ρ ∈ R}.

Definition 1. A predicate π : G → {0, 1} is called a simple predicate if there
exist a pattern α ∈ (Σ ∪X ′)∗ and languages L1, L2 ∈ {Σ∗, {λ}} such that σ
satisfies π iff σ(x) ∈ L1 R(α) L2.

From a slightly different point of view, the elements of X ′ can be understood
as numerical parameters describing (concatenational) powers of 0, with substi-
tutions ρ ∈ R acting as assignments. For example, if σ ∈ G satisfies a simple
predicate π iff σ(x) ∈ Σ∗R(#x̂1#x̂20#x̂1), we can also write that σ satisfies π
iff σ(x) has a suffix of the form #0m#0n0#0m (with m,n ∈ N0), which could
also be written as #0m#0∗0#0m, as n occurs only once in this expression. Using
π3, our construction is able to express all simple predicates:

Lemma 3. For every simple predicate πS over n variables with n ≤ 3, there
exists a predicate π defined by terminal-free patterns γ, δ, η such that for all
substitutions σ ∈ G:

1. if σ satisfies πS, then σ also satisfies π or π3,
2. if σ satisfies π, then σ also satisfies πS .

Roughly speaking, if σ does not satisfy π3, then σ(y) (which is in 0∗, due to
σ ∈ G) is long enough to provide building blocks for simple predicates using
variables from X ′.

Our next goal is a set of predicates that (if unsatisfied) forces σ(x) into a basic
shape common to all elements of VALC(A). We say that a word w ∈ {0,#}∗ is
of good structure if w ∈ (##0+#0+#0+)+ ##. Otherwise, w is of bad structure.
Recall that due to the definition of cod, all elements of VALC(A) are of good
structure, thus being of bad structure is a sufficient criterion for belonging to
INVALC(A). In order to cover the morphisms σ where σ(x) is of bad structure,
we define predicates π4 to π13 through simple predicates as follows:

π4 : σ(x) = λ, π9 : σ(x) ends on 0,
π5 : σ(x) = #, π10 : σ(x) ends on 0#,

π6 : σ(x) = ##, π11 : σ(x) contains a factor ##0∗##,

π7 : σ(x) begins with 0, π12 : σ(x) contains a factor ##0∗#0∗##,

π8 : σ(x) begins with #0, π13 : σ(x) contains a factor ##0∗#0∗#0∗#0.

Bad News on Decision Problems for Patterns 335

Due to Lemma 3, the predicates π1 to π13 do not strictly give rise to a char-
acterization of substitutions with images that are of bad structure, as there are
σ ∈ G where σ(x) is of good structure, but π3 is satisfied due to σ(y) being too
short. But this problem can be avoided by choosing σ(y) long enough to leave
π3 unsatisfied, and the following holds:

Lemma 4. A word w ∈ Σ∗ is of good structure iff there exists a substitution
σ ∈ H with σ(x) = w such that σ satisfies none of the predicates π1 to π13.

For every w of good structure, there exist uniquely determined n, i1, j1, k1, . . . ,
in, jn, kn ∈ N1 such that w = ##0i1#0j1#0k1## . . .##0in#0jn#0kn##.
Thus, if σ ∈ H does not satisfy any of π1 to π13, σ(x) can be understood as an
encoding of a sequence T1, . . . , Tn of triples Ti ∈ (N1)

3, and for every sequence
of that form, there is a σ ∈ H such that σ(x) encodes a sequence of triples of
positive integers, and σ does not satisfy any of π1 to π13.

In the encoding of computations that is defined by cod, ## is always a border
between the encodings of configurations, whereas single # separate the elements
of configurations. As we encode every state qi with 0i+1, the predicate π14, which
is to be satisfied whenever σ(x) contains a factor ##00s+1, handles all encoded
triples (i, j, k) with i > s + 1. If σ does not satisfy this simple predicate (in
addition to the previous ones), there is a computation C1, . . . , Cn of A with
cod(C1, . . . , Cn) = σ(x).

All that remains is to choose an appropriate set of predicates that describe
all cases where C1 is not the initial configuration, Cn is not an accepting config-
uration, or there are configurations Ci, Ci+1 such that Ci &A Ci+1 does not hold
(thus, the exact value of μ depends on the number of invalid transitions in A).
As this construction is rather lengthy, but similar to the approach of Jiang et
al. [9], we abstain from giving a detailed description of the predicates π15 to πμ.

Now, if there is a substitution σ that does not satisfy any of π1 to πμ, then
σ(x) = cod(C1, . . . , Cn) for a computation C1, . . . , Cn, where C1 is the initial
and Cn a final configuration, and for all i ∈ {1, . . . , n− 1}, Ci &A Ci+1. Thus, if
σ(αA) /∈ LE,Σ(βA), then σ(x) ∈ VALC(A), which means thatA has an accepting
computation.

Conversely, if there is some accepting computation C1, . . . , Cn of A, we can
define σ through σ(x) := cod(C1, . . . , Cn), and choose σ(y) to be an appropri-
ately long sequence from 0∗. Then σ does not satisfy any of the predicates π1 to
πμ defined above, thus σ(αA) /∈ LE,Σ(βA), and LE,Σ(αA) �⊆ LE,Σ(βA).

We conclude that A has an accepting computation iff LE,Σ(αA) is not a
subset of LE,Σ(βA). Therefore, any algorithm deciding the inclusion problem for
ePATΣ can be used to decide whether a nondeterministic 2-counter automata
without input has an accepting computation. As this problem is known to be
undecidable, the inclusion problem for ePATΣ is also undecidable.

The proof for larger (finite) alphabets requires only little changes to the way
the patterns αA and βA are derived from a given automaton A. Thus, we omit
this part of the proof.

This concludes the proof of Theorem 2.

336 D.D. Freydenberger and D. Reidenbach

4 The Inclusion of Similar E-Pattern Languages

It can be easily observed that the patterns used for establishing the undecid-
ability of the inclusion problem for E-pattern languages are not similar (cf.
Section 2). Hence, our reasoning in Section 3.1 does not answer the question of
whether the inclusion problem is undecidable for these natural subclasses. In this
regard, Jiang et al. [9] demonstrate that for the full class of the simplest similar
E-pattern languages, namely those generated by terminal-free patterns, inclusion
is decidable. This insight directly results from the following characterization:

Theorem 5 (Jiang et al. [9]). Let Σ be an alphabet, |Σ| ≥ 2, and let α, β ∈
Pattf be terminal-free patterns. Then LE,Σ(α) ⊆ LE,Σ(β) iff there exists a mor-
phism φ : X∗ → X∗ satisfying φ(β) = α.

Note that the decidability of the inclusion problem for terminal-free NE -pattern
languages is still open.

The problem of the extensibility of Theorem 5 to general similar patterns
(replacing φ : X∗ → X∗ by a terminal-preserving morphism φ : (Σ ∪ X)∗ →
(Σ ∪ X)∗) is not only of intrinsic interest, but it has a major impact on the
so far unresolved equivalence problem for E-pattern languages (see our expla-
nations below). Therefore it has attracted a lot of attention, and it is largely
conjectured in literature (e. g., Dányi, Fülöp [4], Ohlebusch, Ukkonen [17]) that
the inclusion of similar E-pattern languages shows the same property as that
of terminal-free E-pattern languages. Our main result of the present section,
however, demonstrates that, surprisingly, this conjecture is not correct:

Theorem 6. For every finite alphabet Σ, there exist similar patterns α, β ∈
PatΣ such that LE,Σ(α) ⊂ LE,Σ(β) and there is no terminal-preserving mor-
phism φ : (Σ ∪X)∗ → (Σ ∪X)∗ satisfying φ(β) = α.

Due to space constraints, we do not present a proof for Theorem 6, but we merely
give appropriate example patterns for Σ := {a, b, c, d, e}, i. e. |Σ| = 5:

α = x1 ax2 ax3 b x2 b x5 c x2 c x7 d x2 d x9 e x2 e x11,

β = x1 ax2x4 a x3 b x4x6 bx5 cx6x8 c x7 d x8x10 d x9 ex10x2 ex11.

The relevance of Theorem 6 for the research on the equivalence problem for
E-pattern languages follows from a result by Jiang et al. [8] which says that,
for alphabets with at least three letters, two patterns need to be similar if they
generate the same E-pattern language:

Theorem 7 (Jiang et al. [8]). Let Σ be an alphabet, |Σ| ≥ 3, and let α, β ∈
PatΣ. If LE,Σ(α) = LE,Σ(β) then α and β are similar.

Consequently, in literature the inclusion problem for similar E-pattern languages
is mainly understood as a tool for gaining a deeper understanding of the equiva-
lence problem, and the main conjecture by Ohlebusch and Ukkonen [17] expresses
the expectation that the relation between inclusion problem for similar E-pattern
languages and equivalence problem might be equivalent to the relation between
these problems for terminal-free patterns (cf. Theorem 5):

Bad News on Decision Problems for Patterns 337

Conjecture 1 (Ohlebusch, Ukkonen [17]). Let Σ be an alphabet, |Σ| ≥ 3, and
let α, β ∈ PatΣ. Then LE,Σ(α) = LE,Σ(β) iff there exist terminal-preserving
morphisms φ, ψ : (Σ ∪X)∗ → (Σ ∪X)∗ satisfying φ(β) = α and ψ(α) = β.

Note that the existence of φ and ψ necessarily implies that α and β are similar.
Ohlebusch and Ukkonen [17] demonstrate that Conjecture 1 holds true for a

variety of rich classes of E-pattern languages. In general, however, the conjecture
is disproved by Reidenbach [20] using very complex counter example patterns.
These patterns are valid for alphabet sizes 3 and 4 only, and their particular
construction seems not to be extendable to larger alphabets. Concerning finite
alphabets Σ with |Σ| ≥ 5, our result in Theorem 6 does not directly contradict
Conjecture 1, since our patterns α, β do not generate identical languages. Thus,
there is still a chance that the conjecture is correct for alphabet sizes greater
than or equal to 5. Nevertheless, as the considerations by Ohlebusch and Ukko-
nen [17] are based on a specific expectation concerning the inclusion of similar
E-pattern languages which Theorem 6 demonstrates to be incorrect, it seems
that the insights given in the present section disprove the very foundations of
their approach to the equivalence problem for the full class of E-pattern lan-
guages. Therefore we feel that the only remaining evidence that still supports
Conjecture 1 for |Σ| ≥ 5 is the lack of known counter-examples.

Furthermore, our result definitely affects the use of the sophisticated proof
technique introduced by Filè [5] and Jiang et al. [9] for the proof of Theorem 5.
For terminal-free patterns α, β and any alphabet Σ with |Σ| ≥ 2, this technique
constructs a particular substitution τβ such that τβ(α) ∈ LE,Σ(β) if and only
if there is a morphism mapping β onto α. After considerable effort made by
Dányi and Fülöp [4], Ohlebusch and Ukkonen [17] and Reidenbach [20] to extend
this approach to general similar patterns, Theorem 6 demonstrates that such a
substitution τβ does not exist for every pair of such patterns, since, for every
finite alphabet Σ, there are similar patterns α, β such that LE,Σ(β) contains all
words in LE,Σ(α), although there is no terminal-preserving morphism mapping
β onto α. Consequently, Theorem 6 shows that the main tool for tackling the
inclusion problem for terminal-free E-pattern languages – namely our profound
knowledge on the properties of the abovementioned substitution τβ – necessarily
fails if we want to extend it to arbitrary similar patterns, and therefore it seems
that the research on the inclusion problem for similar E-pattern languages (and,
thus, the equivalence problem for general E-pattern languages) needs to start
virtually from scratch again.

References

1. Angluin, D.: Finding patterns common to a set of strings. Journal of Computer
and System Sciences 21, 46–62 (1980)

2. Angluin, D.: Inductive inference of formal languages from positive data. Informa-
tion and Control 45, 117–135 (1980)

3. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. J. Found. Comput. Sci. 14, 1007–1018 (2003)

338 D.D. Freydenberger and D. Reidenbach

4. Dányi, G., Fülöp, Z.: A note on the equivalence problem of E-patterns. Information
Processing Letters 57, 125–128 (1996)

5. Filè, G.: The relation of two patterns with comparable language. In: Proc. STACS
1988. LNCS, vol. 294, pp. 184–192. Springer, Heidelberg (1988)

6. Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic im-
ages of strings. Int. J. Found. Comput. Sci. 17, 601–628 (2006)

7. Ibarra, O.: Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM 25, 116–133 (1978)

8. Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with
and without erasing. Int. J. Comput. Math. 50, 147–163 (1994)

9. Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal
of Computer and System Sciences 50, 53–63 (1995)

10. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and
relations by word equations. Journal of the ACM 47, 483–505 (2000)

11. Luo, W.: Compute inclusion depth of a pattern. In: Auer, P., Meir, R. (eds.) COLT
2005. LNCS (LNAI), vol. 3559, pp. 689–690. Springer, Heidelberg (2005)

12. Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages.
RAIRO Informatique théoretique et Applications 28, 233–253 (1994)

13. Mateescu, A., Salomaa, A.: Patterns. In: [22], pp. 230–242 (1997)
14. Minsky, M.: Recursive unsolvability of Post’s problem of “Tag” and other topics

in the theory of turing machines. Ann. of Math. 74, 437–455 (1961)
15. Mukouchi, Y.: Characterization of pattern languages. In: Proc. 2nd International

Workshop on Algorithmic Learning Theory, ALT 1991, pp. 93–104 (1991)
16. Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the

pattern languages from positive data. Theor. Comp. Sci. 397, 150–165 (2008)
17. Ohlebusch, E., Ukkonen, E.: On the equivalence problem for E-pattern languages.

Theor. Comput. Sci. 186, 231–248 (1997)
18. Reidenbach, D.: The Ambiguity of Morphisms in Free Monoids and its Impact on

Algorithmic Properties of Pattern Languages. Logos Verlag, Berlin (2006)
19. Reidenbach, D.: A non-learnable class of E-pattern languages. Theor. Comput.

Sci. 350, 91–102 (2006)
20. Reidenbach, D.: An examination of Ohlebusch and Ukkonen’s conjecture on the

equivalence problem for E-pattern languages. Journal of Automata, Languages and
Combinatorics 12, 407–426 (2007)

21. Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397,
166–193 (2008)

22. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer,
Berlin (1997)

23. Salomaa, K.: Patterns. In: Martin-Vide, C., Mitrana, V., Păun, G. (eds.) Formal
Languages and Applications. Studies in Fuzziness and Soft Computing, vol. 148,
pp. 367–379. Springer, Heidelberg (2004)

24. Salomaa, K.: Patterns. Lecture, 5th PhD School in Formal Languages and Appli-
cations, URV Tarragona (2006)

25. Shinohara, T.: Polynomial time inference of extended regular pattern languages.
In: Proc. RIMS Symposia on Software Sci. Eng. LNCS, vol. 147, pp. 115–127.
Springer, Heidelberg (1982)

Finding the Growth Rate of a Regular of

Context-Free Language in Polynomial Time

Pawe�l Gawrychowski1,�, Dalia Krieger2, Narad Rampersad2,
and Jeffrey Shallit2

1 Institute of Computer Science, University of Wroc�law
ul. Joliot-Curie 15, PL-50-383 Wroc�law, Poland

gawry1@gmail.com
2 School of Computer Science, University of Waterloo

Waterloo, Ontario, N2L 3G1, Canada
{d2kriege@cs,nrampersad@math,shallit@graceland}.uwaterloo.ca

Abstract. We give an O(n + t) time algorithm to determine whether
an NFA with n states and t transitions accepts a language of polynomial
or exponential growth. Given a NFA accepting a language of polynomial
growth, we can also determine the order of polynomial growth in O(n+t)
time. We also give polynomial time algorithms to solve these problems
for context-free grammars.

1 Introduction

Let L ⊆ Σ∗ be a language. If there exists a polynomial p(x) such that |L∩Σm| ≤
p(m) for all m ≥ 0, then L has polynomial growth. Languages of polynomial
growth are also called sparse or poly-slender. If there exists a real number r > 1
such that |L ∩ Σm| ≥ rm for infinitely many m ≥ 0, then L has exponential
growth. Languages of exponential growth are also called dense. If there exist
words w1, w2, . . . , wk ∈ Σ∗ such that L ⊆ w∗

1w
∗
2 · · ·w∗

k, then L is called a bounded
language.

Ginsburg and Spanier (see [6, Chapter 5], [7]) proved many deep results
concerning the structure of bounded context-free languages. One significant
result [6, Theorem 5.5.2] is that determining if a context-free grammar generates
a bounded language is decidable. However, although it is a relatively straight-
forward consequence of their work, they did not make the following connection
between the bounded context-free languages and those of polynomial growth: a
context-free language is bounded if and only if it has polynomial growth. Curi-
ously, this result has been independently discovered at least six times: namely,
by Trofimov [23], Latteux and Thierrin [14], Ibarra and Ravikumar [9], Raz [19],
Incitti [11], and Bridson and Gilman [2]. A consequence of all of these proofs
is that a context-free language has either polynomial or exponential growth; no
intermediate growth is possible.

� Research supported by MNiSW grant number N N206 1723 33, 2007-2010.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 339–358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

340 P. Gawrychowski et al.

The particular case of the bounded regular languages was also studied by
Ginsburg and Spanier [8], and subsequently by Szilard, Yu, Zhang, and Shallit
[22] (see also [10]). Shur [20,21] has also studied the growth rate of regular
languages. It follows from the more general decidability result of Ginsburg and
Spanier that there is an algorithm to determine whether a regular language
has polynomial or exponential growth (see also [22, Theorem 5]). Ibarra and
Ravikumar [9] observed that the algorithm of Ginsburg and Spanier runs in
polynomial time for NFA’s, but they gave no detailed analysis of the runtime.
Here we give a linear time algorithm to solve this problem. If the growth rate is
polynomial we show how to find the order of polynomial growth in linear time.

For the general case of context-free languages, an analysis of the algorithm
of Ginsburg and Spanier shows that it requires exponential time. Assuming
that we want to explicitly construct words w1, w2, . . . , wk ∈ Σ∗ such that L ⊆
w∗

1w
∗
2 · · ·wk, this exponential complexity is unavoidable, as there are context-free

languages for which an exponentially large value of k is required. Surprisingly,
it turns out that using a more complicated algorithm it is possible to check if a
given context-free language has polynomial growth in polynomial time. We also
give a polynomial time algorithm for finding the exact order of this growth.

Due to space considerations, the proofs of certain lemmas have been removed
to the appendix.

2 Regular Languages

2.1 Polynomial vs. Exponential Growth

In this section we give an O(n+ t) time algorithm to determine whether an NFA
with n states and t transitions accepts a language of polynomial or exponential
growth.

Theorem 1. Given a NFA M , it is possible to test whether L(M) is of polyno-
mial or exponential growth in O(n + t) time, where n and t are the number of
states and transitions of M respectively.

Let M = (Q,Σ, δ, q0, F) be an NFA. We assume that every state of M is both
accessible and co-accessible, i.e., every state of M can be reached from q0 and
can reach a final state. For each state q ∈ Q, we define a new NFA Mq =
(Q,Σ, δ, q, {q}) and write Lq = L(Mq).

Following Ginsburg and Spanier, we say that a language L ⊆ Σ∗ is commuta-
tive if there exists u ∈ Σ∗ such that L ⊆ u∗. The following lemma is essentially
a special case of a stronger result for context-free languages (compare [6, Theo-
rem 5.5.1], or in the case of languages specified by DFA’s, [22, Lemmas 2 and 3]).

Lemma 1. The language L(M) has polynomial growth if and only if for every
q ∈ Q, Lq is commutative.

We now are ready to prove Theorem 1.

Finding the Growth Rate of a Regular of Context-Free Language 341

Proof. Let n denote the number of states of M . The idea is as follows. For every
q ∈ Q, if Lq is commutative, then there exists u ∈ Σ∗ such that Lq ⊆ u∗. For
any w ∈ Lq, we thus have w ∈ u∗. If z is the primitive root of w, then z is also
the primitive root of u. If Lq ⊆ z∗, then Lq is commutative. On the other hand,
if Lq �⊆ z∗, then Lq contains two words with different primitive roots, and is thus
not commutative. This argument leads to the following algorithm.

Let q ∈ Q be a state of M . We wish to check whether Lq is commutative.
Any accepting computation of Mq can only visit states in the strongly connected
component of M containing q. We therefore assume that M is indeed strongly
connected (if it is not, we run the algorithm on each strongly connected
component separately; they can be determined in O(n+t) time [3, Section 22.5]).

We first construct the NFA Mq accepting Lq. This takes O(n+ t) time. Then
we find a word w ∈ L(Mq), where |w| < n. If L(Mq) is non-empty, such a w exists
and can be found in O(n+ t) time. Next we find the primitive root of w, i.e., the
shortest word z such that w = zk for some k ≥ 1. This can be done in O(n) time
using any linear time pattern matching algorithm. To find the primitive root of
w = w1 · · ·w�, find the first occurrence of w in w2 · · ·w�w1 · · ·w�−1. If the first
occurrence begins at position i, then z = w1 · · ·wi is the primitive root of w.

For i = 0, 1, . . . , |z| − 1, let Ai be the set of all q′ ∈ Q such that there is a
path from q to q′ labeled by a word from z∗z1z2 · · · zi. Observe that if some q′

belongs to Ai and Aj where i < j then we can find two different paths from q to
q: zaz1 · · · zis and zbz1 · · · zjs, where a and b are non-negative integers and s is
the label of some path from q′ to q. For Lq to be commutative, both these words
must be powers of z, which is impossible: their lengths are different modulo |z|.
Thus, the Ai’s must be disjoint.

We determine the Ai’s as follows. To begin, we know q ∈ A0. For any i, if
q′ ∈ Ai, then we know q′′ ∈ A(i+1) mod |z| for all q′′ ∈ δ(q′, z1+i mod |z|). Based
on this rule, we proceed to iteratively assign states to the appropriate Ai until
all states have been assigned. If some q′ appears in two distinct Ai’s, we termi-
nate and report that Lq is not commutative. Since we never need to examine
a state more than once, it follows that the complexity of computing the Ai’s is
O(n + t).

Next, for each i we check that for each q′ ∈ Ai all outgoing transitions
are labeled by z1+i mod |z|. If not, Lq cannot be commutative (as we could
then find a path from q to q that is not a power of z). If this holds for
all i, the automaton has a very simple structure: it is an |z|-partite graph
(the Ai’s forming the partition classes) and edges outgoing from one partition
class all have the same label. Thus, every path that starts and ends in q is a
power of z. Furthermore, every path that starts and ends in some q′ is a power
of some cyclic shift of z. Thus, Lq′ is also commutative, so we do not have
to repeat the computation for the remaining states of M (i.e., the states in
Q \ {q}).

We have therefore determined whether Lq is commutative for all q ∈ Q, and
hence whether L(M) has polynomial or exponential growth, in O(n + t) time. !

342 P. Gawrychowski et al.

2.2 Finding the Exact Order of Polynomial Growth

In this section we show that given an NFA accepting a language of polyno-
mial growth, it is possible to efficiently determine the exact order of polynomial
growth.

Let M be an NFA accepting a language of polynomial growth. We will need
the following definition:

Definition 1. We call x0y
∗
1x1y

∗
2x2 . . . y

∗
kxk, where each yi is non-empty, a star

expression of level k. We say that it is primitive when each yi is primitive.

We would like to decompose L(M) into languages described by such expressions.
Let us look at the exact order of polynomial growth of the language described
by a primitive star expression. It is easy to see that L(x0y

∗
1x1y

∗
2x2 . . . y

∗
kxk)

has O(mk−1) growth; getting a lower bound is slightly more involved. Let T =
x0y

∗
1x1y

∗
2x2 . . . y

∗
kxk be a primitive star expression. If there exists 1 ≤ i < k such

that xi = yl
iyi[1..j] and yi+1 = y

(j)
i (yi cyclically shifted by j) for some l ≥ 0

and j < |yi|, then we say that i is a fake index.

Lemma 2. Let T = x0y
∗
1x1y

∗
2x2 . . . y

∗
kxk be a primitive star expression. L(T)

has Θ(mk−1) growth iff T has no fake indices.

Extending the above lemma gives us the following result:

Lemma 3. Let T = x0y
∗
1x1y

∗
2x2 . . . y

∗
kxk be a primitive star expression. L(T)

has Θ(mk−1−d) growth iff there are exactly d fake indices in T .

We thus have an efficient way of calculating the growth order of a language
described by a primitive star expression. However, we need a stronger result:

Theorem 2. Let T = x0y
∗
1x1y

∗
2x2 . . . y

∗
kxk be a star expression. L(T) has

Θ(mk−1−d) growth iff there are exactly d indices 1 ≤ i < k such that xi =
root(yi)lroot(yi)[1..j] and root(yi+1) = root(yi)(j) for some l ≥ 0 and j <
|root(yi)|, where root(w) stands for the primitive root of w.

Proof. Obviously, replacing each yi by its primitive root cannot remove any word
from the described language. Thus L(T) has O(mk−1−d) growth. To show that
it is Ω(mk−1−d), we use the same method as in the previous two lemmas (see
the appendix for the proofs): first we get rid of all d fake indices (here it may
happen that we decrease the language in question, as replacing (ya)∗(yb)∗ by
(ya)∗ only might be necessary), then construct the corresponding equation and
show that it has at most one solution for each word. !

Corollary 1. Inserting an additional y∗ into a star expression T and replacing
any yi by some power of its primitive root or y∗i by ya

i y
∗
i y

b
i do not change the

growth order of L(T).

Now we return to the original problem. Given M , we will construct a new au-
tomaton M ′ which will be almost acyclic, the only cycles being self-loops. Recall

Finding the Growth Rate of a Regular of Context-Free Language 343

that as L(M) has polynomial growth, the algorithm of Theorem 1 partitions
the vertices of each strongly connected component into sets A0, A1, . . . , A|z|−1.
Take one such component S and let z be the corresponding primitive word. Now
choose any u, v ∈ S and consider labels of paths from u to v:

Case 1: if u ∈ Ai, v ∈ Aj and i ≥ j, then they are all of the form z[i +
1..|z|]zpz[1..j]. Furthermore, for some q, r > 0, there are such paths for every
p ∈ {q, q + r, q + 2r, . . .}.
Case 2: if u ∈ Ai, v ∈ Aj and i < j, then they are all of the form z[i + 1..j] or
z[i + 1..|z|]zpz[1..j]. As in the previous case, for some q, r > 0, there are paths
of the second form for every p ∈ {q, q + r, q + 2r, . . .}.

This suggests the following construction: for each state v create two copies
vin and vout. Each edge connecting u and v belonging to two different strongly
connected components gets replaced by an edge from uout to vin with the same
label. For each non-singleton strongly connected component S we create the
following gadget:

b0 b1 b2 bs−1 a0 a1 a2 as−1 as

z[1] z[2] z[s] z[1] z[2] z[s− 1]
z

For each u ∈ S we find i such that u ∈ Ai and add edges uin
ε→ bi, bi

ε→ uout

and ai
ε→ uout. The starting state of M ′ is simply qin, where q is the start state

of M , and vout is a final state of M ′ whenever v is a final state of M .
L(M ′) should be viewed as a finite sum of languages described by star expres-

sions corresponding to labels of simple paths from the start state to some final
state (whenever there is a self-loop adjacent to some vertex v and labeled with
z, we should think that v is labelled with z∗). Let T denote the set of all such
star expressions, so that L(M ′) =

∑
T∈T L(T).

Theorem 3. The orders of polynomial growth of L(M) and L(M ′) are the same.

Now we can focus on finding the growth order of L(M ′). Although M ′ has a
relatively simple structure, T can be of exponential size, so we cannot afford to
construct it directly. This turns out to not be necessary due to the characteriza-
tion of growth orders of primitive star expressions that we have developed. Take
an expression T = x0y

∗
1x1y

∗
2x2 . . . y

∗
kxk and observe that to calculate the growth

order of Ty∗k+1xk+1 we only need to know the growth order of T , the word yk

and if xk is of the form yl
kyk[1..j], the value of j. This suggests a dynamic pro-

gramming solution: for each vertex v of M ′ we calculate: (1) the greatest possible
growth order of a star expression T = x0y

∗
1x1y

∗
2x2 · · · y∗kxk such that xk is not a

prefix of y∞k and T is a label of a path from the start state to v; (2) for each yk

being a label of some self-loop and j < |yk|, the greatest possible growth order of
a star expression T = x0y

∗
1x1y

∗
2x2 · · · y∗kxk such that xk is of the form yl

kyk[1..j]
and T is a label of a path from the start state to v.

We process the vertices of M ′ in topological order (ignoring the self-loops
gives us such order). Assuming that we already have the correct information

344 P. Gawrychowski et al.

for some vertex, we can iterate through the outgoing transitions and update
the information for all its successors. For example, knowing that there is a path
ending in u whose label is a star expression · · · y∗kyl

kyk[1..j] having a growth order
of d, a transition u

c→ v and a self-loop v
z→ v, we can construct a path ending

in v whose label is a star expression · · · y∗kyl
kyk[1..j]cz∗ having a growth order of

d + 1 if c �= yk[j + 1] or z �= y
(j+1)
k , and d otherwise. At the very beginning we

know only that for any self-loop v
z→ v there is a path ending in v whose label

is a star expression · · · z∗ having a growth order of 0.
We have to calculate O(|Q|) information for each vertex. There are at most

O(|Q||δ|) updates and each of them can be done in O(1) time if we can decide
in constant time whether z′ = z(j) for any j and labels z, z′ of some self-loops
in M ′. As both z, z′ are primitive, there can be at most one such j. We can
preprocess it for all pairs of labels in time O(|Q|2), giving a O(|Q||δ|) algorithm.

It turns out that we can achieve linear complexity by reducing the amount
of information kept for each vertex. First observe that whenever we have two
labels z, z′ of self-loops such that z′ = z(i), any star expression · · · z′∗z′lz′[1..j]
can be treated as an expression · · · z∗zlz[1..1 + (i + j − 1) mod |z|] having the
same growth order. After such reductions for each vertex v we can keep infor-
mation only about those two expressions of the form · · · y∗kyk[1..j] that have the
greatest growth order among all possible yk and j. Indeed, whenever we have
an expression T1T2 such that T1 = · · · y∗kyk[1..j] is a label of a path ending in
v and there are two different (with respect to the above reduction) expressions
T ′

1, T
′′
1 that have greater or equal order of growth and are also labels of paths

ending in v, at least one of T ′
1T2, T ′′

1 T2 will have growth order as large as T1T2.
This decreases the amount of information kept for each vertex to a constant. To
get linear total complexity we must improve the runtime of the preprocessing
phase. Recall that it is possible to find the lexicographically smallest cyclic shift
of a word in linear time, for example by using Duval’s algorithm. Such a shift
is the same for any two conjugate primitive words, so we calculate the smallest
cyclic shifts of all labels of self-loops and then group those labels whose shifts
are the same. This can be done by inserting them one-by-one into a trie. After
such preprocessing we can find the value of j such that z′ = z(j) in constant
time for any two labels z, z′.

Theorem 4. Given an NFA M with n states and t transitions such that L(M)
is of polynomial growth, there is an algorithm that finds the exact order of poly-
nomial growth of L(M) in O(n + t) time.

2.3 An Algebraic Approach for DFA’s

We now consider an algebraic approach to determining whether the order of
growth is polynomial or exponential, and in the polynomial case, the order of
polynomial growth. Shur [21] has recently presented a similar algebraic method
for this problem. Let M = (Q,Σ, δ, q0, F) be a DFA, where |Q| = n, and let
A = A(M) = (aij)1≤i,j≤n be the adjacency matrix of M , that is, aij denotes the
number of paths of length 1 from qi to qj . Then (Am)i,j counts the number of

Finding the Growth Rate of a Regular of Context-Free Language 345

paths of length m from qi to qj . Since a final state is reachable from every state
qj , the order of growth of L(M) is the order of growth of Am as m → ∞. This
order of growth can be estimated using nonnegative matrix theory.

Theorem 5 (Perron-Frobenius). Let A be a nonnegative square matrix, and
let r be the spectral radius of A, i.e., r = max{|λ| : λ is an eigenvalue of A}.
Then

1. r is an eigenvalue of A;
2. there exists a positive integer h such that any eigenvalue λ of A with |λ| = r

satisfies λh = rh.

For more details, see [17, Chapters 1, 3].

Definition 2. The number r = r(A) described in the above theorem is called
the Perron-Frobenius eigenvalue of A. The dominating Jordan block of A is the
largest block in the Jordan decomposition of A associated with r(A).

Lemma 4. Let A be a nonnegative n× n matrix over the integers. Then either
r(A) = 0 or r(A) ≥ 1.

Proof. Let r(A) = r, λ1, . . . , λ� be the distinct eigenvalues of A, and suppose
that r < 1. Then limm→∞ rm = limm→∞ λm

i = 0 for all i = 1, . . . , �, and so
limm→∞ Am = 0 (the zero matrix). But Am is an integral matrix for all m ∈ N,
and the above limit can hold if and only if A is nilpotent, i.e., r = λi = 0 for all
i = 1, . . . , �. !

Lemma 5. Let A be a nonnegative n× n matrix over the integers. Let r(A) =
r, λ1, . . . , λ� be the distinct eigenvalues of A, and let d be the size of the domi-
nating Jordan block of A. Then Am ∈ Θ(rmmd−1).

Note: The growth order of Am supplies an algebraic proof of the fact that regular
languages can grow either polynomially or exponentially, but no intermediate
growth order is possible. This result can also be derived from a more general
matrix-theoretic result of Bell [1].

Lemma 5 implies that to determine the order of growth of L(M), we need
to compute the Perron-Frobenius eigenvalue r of A(M): if r = 0, then L(M) is
finite; if r = 1, the order of growth is polynomial; if r > 1, the order of growth
is exponential. In the polynomial case, if we want to determine the order of
polynomial growth, we need to also compute the size of the dominating Jordan
block, which is the algebraic multiplicity of r in the minimal polynomial of A(M).

Both computations can be done in polynomial time, though the runtime is
more than cubic. The characteristic polynomial, cA(x), can be computed in
Õ(n4 log ‖A‖) bit operations (here Õ stands for soft-O, and ‖A‖ stands for the
L∞ norm of A). If cA(x) = xn then r = 0; else, if cA(1) �= 0, then r > 1. In
the case of cA(1) = 0, we need to check whether cA(x) has a real root in the
open interval (1,∞). This can be done using a real root isolation algorithm;
it seems the best deterministic one uses Õ(n6 log2 ‖A‖) bit operations [4]. The

346 P. Gawrychowski et al.

minimal polynomial, mA(x), can be computed through the rational canonical
form of A in Õ(n5 log ‖A‖) bit operations (see references in [5]). All algorithms
mentioned above are deterministic; both cA(x) and mA(x) can be computed in
Õ(n2.697 log ‖A‖) bit operations using a randomized Monte Carlo algorithm [12].

An interesting problem is the following: given a nonnegative integer matrix
A, is it possible to decide whether r(A) > 1 in time better than Õ(n6 log2 ‖A‖)?
Using our combinatorial algorithm, we can do it in time O(n2 log ‖A‖), as follows.
We first construct a graph G from A by creating edges (i, j) in G if the ij entry
of A is positive. We can do this in O(n2 log ‖A‖) time. We then find the strongly
connected components of G in O(n2) time. For each edge (i, j), if i and j are in
the same strongly connected component and the ij entry of A is > 1, then we
may immediately report that r(A) > 1. We thus assume henceforth that if i and
j are in the same strongly connected component of G, then the ij entry of A is
at most 1.

We now consider the strongly connected components of G separately. For
each strongly connected component H of G, we turn H into a DFA M (we don’t
bother specifying an initial state or final states) over an m-letter alphabet, where
m is the number of vertices of H , as follows. For each edge (i, j) in H , we turn
the edge (i, j) into a single transition labeled by an alphabet symbol that has
not already been used for a transition outgoing from i. This is justified by our
previous assumption that the ij entries of A within the same strongly connected
component are at most 1. Thus, there are at most m outgoing transitions from a
given state, and the DFA M has m states and O(m2) transitions. We now run the
algorithm of Theorem 1 to determine if all of the Lq’s of M are commutative in
O(m2) time. If so, then H has polynomial growth; otherwise, it has exponential
growth.

If all strongly connected components of G have polynomial growth, then
r(A) ≤ 1; otherwise, r(A) > 1. The total running time of the algorithm is
O(n2 log ‖A‖).

3 Context-Free Languages

Given a context-free grammar G = (V,Σ,R, S), we are interested in checking
whether L(G) has polynomial growth. We assume that G is in Chomsky normal
form, each nonterminal can be derived from S and languages generated by non-
terminals are nonempty. The following result can be found in [6, Theorem 5.5.1].

Lemma 6. The language generated by a CFG G = (V,Σ,R, S) is bounded if
and only if for each nonterminal A both left(A) and right(A) are commutative,
where left(A) = {u : A

∗⇒ uAw for some w ∈ Σ∗} and right(A) = {u : A
∗⇒

wAu for some w ∈ Σ∗}.

From now on we focus on testing whether each left(A) is commutative. To test
all right(A) we reverse all productions and repeat the whole procedure. Note
that if L ⊆ Σ∗ is commutative and w ∈ L, then L ⊆ root(w)∗. So, to check if a

Finding the Growth Rate of a Regular of Context-Free Language 347

nonempty left(A) is commutative we should: (1) take any u ∈ left(A) and set w
to be its primitive root, and (2) verify that each u ∈ left(A) is a power of w.

Before we proceed further we need a convenient description of left(A). Define a
graph H = (V,E) where V is the set of all nonterminals and for each production
A→ BC we put A

ε→ B and A
B→ C into E. Each left(A) is a sum of languages

generated by labels of paths from A to A, where the label of a path is the
concatenation of the labels of all of its edges.

In our algorithm we will make heavy use of results concerning straight-line
programs. A SLP is a context-free grammar in Chomsky normal form such that
each nonterminal occurs on the left side of exactly one production and derives
exactly one word. Such grammars should be viewed as a convenient way of
describing compressed words. Given a text T and a pattern P , both as SLPs,
there are polynomial time algorithms for finding the first occurrence of P in T
or detecting that there is no such occurrence (see [13] or [15] for a more efficient
version). Given a SLP describing some word w we can easily construct a SLP
describing any subword of w.

Constructing a SLP describing some u ∈ left(A) is quite straightforward. We
first define the function length(A) := min{|w| : A ∗⇒ w}. We need the following:

Lemma 7. Given a context free grammar, we can calculate for each nonterminal
A the value of length(A) in polynomial time.

To construct u, first use the above lemma. For each nonterminal A choose one
production: A → a if there is such an a, and A → BC for which length(A) =
length(B)+length(C) otherwise. It is easy to see that after removing all the other
productions any nonterminal A still generates some word. Let X1X2 . . .Xk be a
label of one of the simple paths from A to A in H . If k = 1 we can take X1 as the
start symbol. Otherwise we add productions Yi → XiYi+1 for i = 1, . . . , k − 2
and Yk−1 → Xk−1Xk and make Y1 the start symbol. It is easy to verify that in
both cases the resulting grammar is a SLP describing some u ∈ left(A).

Having a description of some u ∈ left(A), we construct the description of
u[2..|u|]u[1..|u| − 1] and use one of the compressed pattern matching algorithms
to find the length of root(u). Having this length, we can easily construct a
description of the primitive word w itself.

Now we should verify that L(X1 . . . Xk) ⊆ w∗ for each label X = X1 . . . Xk of
a path from A to A in H . If such containment does not hold we say that we found
a contradiction. Let S be the strongly connected component of H containing A.
The verification can be done in two steps:

Lemma 8. There is a polynomial time algorithm that detects a contradiction or
calculates for any B ∈ S the value pathlength(B) such that the label of any path
from A to B derives only words of lengths giving the remainder of pathlength(B)
when divided by |w|. !

Proof. First we apply Lemma 7. Then we need to verify that for any nonterminal
C being a label of some edge connecting two vertices in S, the lengths of all words
in L(C) give the same remainder as length(C) when divided by |w|. This can

348 P. Gawrychowski et al.

be done by checking that length(X) ≡ length(Y)+ length(Z) mod |w| holds for
any production X → Y Z that can appear in a derivation of some word in L(C).
This condition is clearly necessary: if it does not hold, we can find u, v ∈ L(C)
such that |u| �≡ |v| mod |w| and a path from A to A having a label of the
form X1X2 . . . XiCXi+2 . . . Xk. This label derives two words whose lengths give
different remainders when divided by |w| so they cannot both be a power of w and
we found a contradiction. To prove that this condition is also sufficient, we use
induction to show that in such a case the lengths of all words in any L(C) give the
same remainder as length(C) when divided by |w|. Indeed, it holds for all words
having a derivation tree of depth 1. Assume that it holds for all words having
a derivation tree of depth less than m and take u ∈ L(C) having a derivation
tree of depth m > 1. There must be a production C → DE such that D

∗⇒ u1,
E

∗⇒ u2 where u = u1u2 and the derivation trees of both u1 and u2 have depths
less than m. Thus from the induction hypothesis |u1| ≡ length(D) mod |w| and
|u2| ≡ length(E) mod |w|, so |u| ≡ length(D)+length(E) mod |w|. We verified
that length(C) ≡ length(D) + length(E) mod |w| so in fact |u| ≡ length(C)
mod |w| and we are done.

Now we can define the values of pathlength(B). For each edge in S set
its weight to be 0 if its label is ε or length(B) if it is some nonterminal B.
Then for each B ∈ S define pathlength(B) to be the weight modulo |w| of
some path from A to B. Obviously, this value is the only possible candidate
for pathlength(B). We still need to check if it is correct, though. Verify that
pathlength(B)+ length(s) ≡ pathlength(C) mod |w| for each edge B

s→ C in S
where length(ε) = 0. This condition is obviously necessary: otherwise we would
have two paths from A to A whose labels derive words having different lengths
modulo |w| and a contradiction can be found. To see that it is also sufficient, we
use induction to prove that the length of any word that can be derived from a
label of any path from A to some B gives the remainder of pathlength(B) when
divided by |w|. !

Having the above lemma, we should check whether for each edge in S outgoing
from some B and having a nonempty label of C, each word in L(C) is a prefix of
(w[pathlength(B)+1..|w|]w[1..pathlength(B)])∞. This is clearly both necessary
and sufficient, as it ensures that any word that can be derived from a label of
any path starting in A and ending in B is of the form w∗w[1..pathlength(B)].

Lemma 9. There is a polynomial time algorithm that detects a contradiction or
verifies that each word in L(B) is a prefix of (w[i..|w|]w[1..i − 1])∞.

Proof. We describe the algorithm in terms of constraints. The meaning of a
constraint 〈B, i〉 is that each word fromL(B) should be a prefix of (w[i..|w|]w[1..i−
1])∞. We begin with only one such constraint, namely 〈B, i〉, which is initially
marked as unprocessed. While there is an unprocessed constraint 〈B, i〉 for some
B from which it is possible to derive a word of length at least |w|, we mark it as pro-
cessed and add new constraints 〈C, i〉 and 〈D, 1 + (i + length(C)− 1) mod|w|〉 for
each production B → CD. We do not add a new constraint if it has been already
processed. To achieve polynomial time we need the following observation: if we

Finding the Growth Rate of a Regular of Context-Free Language 349

have two processed constraints 〈B, i〉 and 〈B, j〉 where i �= j then L(B) contains
a word of length at least |w| that should be a prefix of both (w[i..|w|]w[1..i−1])∞

and (w[j..|w|]w[1..j−1])∞. But then w(i) = w(j) and w cannot be primitive. Thus
we have found a contradiction as soon as the number of processed constraints is
greater than the number of nonterminals and we can terminate. Checking if a given
L(B) contains a word of length at least |w| can be done by identifying nontermi-
nals that generate infinite languages first. All the others create an acyclic part of
the grammar, in the sense that we can order them as A1, A2, . . . Am in such a way
that whenever Ai → AjAk is a production j, k > i holds. Thus we can use a sim-
ple dynamic programming to calculate for each Ai the greatest length of a word
in L(Ai). This ensures a polynomial running time.

As a result we get a set of unprocessed constraints of the form 〈Ai, r〉 where
all Ai belong to the acyclic part of the grammar. Additionally, we verified earlier
that all lengths of words in each L(Ai) give the same remainder when divided
by |w|. Thus each such constraint can be rewritten as L(Ai) = {w′} where w′

is described by a SLP of polynomial size. Now we would like to verify this by
either using the compressed pattern matching algorithm. Unfortunately, it may
happen that the context free grammar describing a given L(Ai) is not a SLP:
it may happen that a nonterminal appears on the left side of more than one
production. On the other hand, if for each Ai we remove all but one production
with Ai on the left side, we get a SLP: each nonterminal generates exactly
one word and appears on the left side of exactly one production. If this SLP
does not generate w′, we found a contradiction. If it does, for each removed
production Ai → AjAk check whether AjAk and Ai generate the same word
in the constructed SLP. Similarly, for each removed production Ai → a check
whether Ai generates a in the constructed SLP. This is obviously a necessary
condition. To prove that it is also sufficient, we use induction to show that for
each i = m,m− 1, . . . , 1 |L(Ai)| = 1. It is clear for i = m. Assume that it holds
for all j > i but Ai contains two different words u, v. We can assume that u
is generated by Ai in the SLP. If the uppermost productions in the derivation
trees of u and v are the same, we can immediately use the induction hypothesis.
Otherwise, the condition we verified with the induction hypothesis give us that
u = v. !

Combining these two lemmas gives:

Theorem 6. There is a polynomial time algorithm that checks whether the lan-
guage generated by a given context-free grammar has polynomial growth.

Having checked that L(G) is bounded, we would like to calculate the exact order
of its polynomial growth as we did in the NFA case. The general idea is almost
the same: we decompose L(G) into languages described by star expressions and
use dynamic programming (slightly more involved than in the NFA case) to
calculate the greatest growth order of those expressions.

First for each nonterminal A we find primitive words leftA, rightA using the
above method such that left(A) ⊆ left∗A, right(A) ⊆ right∗A, and for some α, β ≥ 1,

350 P. Gawrychowski et al.

leftα
A ∈ left(A) and rightβA ∈ right(A) . In the case that one of the languages in

question is empty, we take ε as the corresponding word.
We would like to construct a set of star expressions such that the maximum

of their growth orders is the same as the growth order of L(G), which was
relatively simple in the case of regular languages. When we deal with context-
free languages, things get more complicated. Consider a grammar A → uAv|a
where u and v are different primitive words. Its growth order is clearly 0 while the
obvious way of representing the language it generates as a star expression would
give u∗av∗ with a growth order of 1. On the other hand, adding a production
A → u2Av increases the growth order to 1 and in such a case we can represent
the language in question as u∗av∗. It turns out that those two extreme situations
are in some sense the only possibilities. To formalize this statement, we need

Definition 3. We call x0y
v1
1 x1y

v2
2 x3 . . . y

vk

k xk, where each yi is nonempty and
all vi are different variables, a generalized star expression. Additionally, we are
allowed to add constraints of the form (vi, vj) ∈ C ⊆ N2 as long as each variable
is a part of at most one such constraint.

The set of words described by such an expression contains words that we get by
assigning nonnegative values to variables in a way that is consistent with all the
constraints. Thus a star expression is just a generalized star expression with no
constraints. This notion allows us to represent L(G) in a convenient way. For
any nonterminal A define

L1(A) := {a : A→ a is a production}
Li+1(A) := Li(A) ∪

⋃

A→BC

leftα
ALi(B)Li(C)rightβ

A,

where i = 1, 2, . . . , n−1 and (α, β) ∈ context(A) :=
{
(α, β) :A ∗⇒ leftα

A A rightβA
}

.
Each Li(A) corresponds in a natural way to a finite sum of languages described
by generalized star expressions and it is clear that Ln(S) = L(G). We need to
get rid of the constraints without modifying the growth order. This can be done
in two phases:

Definition 4. Given a nonterminal A such that leftA, rightA �= ε, we say that
it is independent if (α, β1), (α, β2) ∈ context(A) for some α, β1 �= β2.

First we remove constraints concerning independent nonterminals, then we mod-
ify constraints concerning dependent nonterminals:

Lemma 10. Given a generalized star expression, we can remove a constraint
(vi, vj) ∈ context(A), where A is an independent nonterminal, without changing
the growth order of the language in question.

Lemma 11. Given a generalized star expression, we can replace each constraint
(vi, vj) ∈ context(A), where A is a dependent nonterminal, by either (vi, vj) ∈
N× {1} or (vi, vj) ∪ {1} × N without changing the growth order.

Finding the Growth Rate of a Regular of Context-Free Language 351

These two lemmas allow us to modify the definition of each Li+1(A) so as to get
a set of primitive star expressions. If A is an independent nonterminal, we set

Li+1(A) := Li(A) ∪
⋃

A→BC

left∗ALi(B)Li(C)right∗A

and otherwise we take

Li+1(A) := Li(A)∪
⋃

A→BC

leftALi(B)Li(C)right∗A∪
⋃

A→BC

left∗ALi(B)Li(C)rightA

Before we show how to calculate the greatest growth order of an expression in
Ln(S), we need to prove that the above definition can be effectively used:

Lemma 12. Given a context-free grammar, we can check in polynomial time if
a given nonterminal A is independent.

Now we can focus on finding the greatest growth order of a primitive star ex-
pression in Ln(S). As in the NFA case, we observe that calculating the growth
order of left∗AT1T2right∗A requires only a partial knowledge about the structure
of T1 and T2. Indeed, if T1 = x0y

∗
1x1 · · · y∗kxk and T2 = x′

0y
′∗
1 x′

1 · · · y′∗k′x′
k′ , where

k, k′ ≥ 1, we need only to know the words yk, y
′
1, the growth orders of T1, T2,

the length of xk modulo |yk| if xk ∈ y∗kyk[1..j], and the length of x′
0 modulo |y′1|

if x′
0 ∈ y′1[j

′..|y′1|]y′∗1 . So, for each Li(A) we would like to calculate the greatest
possible growth order of a star expression T = x0y

∗
1x1 . . . y

∗
kxk from Li(A) such

that k ≥ 1, y1 and yk are some leftB or rightB, and one of the following cases
applies:

1. x0 /∈ y1[j′..|y1|]y∗1 for all j′ and xk /∈ y∗kyk[1..j] for all j,
2. x0 /∈ y1[j′..|y1|]y∗1 for all j′ and xk ∈ y∗kyk[1..j],
3. x0 ∈ y1[j′..|y1|]y∗1 and xk /∈ y∗kyk[1..j] for all j,
4. x0 ∈ y1[j′..|y1|]y∗1 and xk ∈ y∗kyk[1..j],

where j = 0, 1, . . . , |yk| − 1 and j′ = 1, 2, . . . , |y1|. There is one problem, though:
the lengths |y1| and |yk| can be exponential and we cannot afford to store infor-
mation about an exponential number of states. To overcome this, observe that
for a fixed y1, yk and j′, it makes sense to keep information only about two dif-
ferent values of j for which the corresponding growth orders are greatest. The
same applies to j′. This allows us to use dynamic programming: now there is
only a polynomial number of different states to consider. Assuming that we have
calculated the greatest growth orders of expressions in Li(A) for any nontermi-
nal A, we can calculate growth order of expressions in all Li+1(A). There is one
problem, though: in the above reasoning we assumed that both T1 and T2 have
orders of at least 1 but three other cases are also possible:

Case 1: both T1 and T2 have orders of 0. As we are interested in getting an
expression of order at least 1, we may assume that leftA �= ε or leftB �= ε. T1T2

352 P. Gawrychowski et al.

is just a word that can be derived from BnCn using only the following new
productions:

Ai → a for each original production A→ a

Ai+1 → BiCi for each original production A → BC

where i = 1, 2, . . . , n− 1. W.l.o.g. assume that leftA �= ε. To update information
about growth orders of expressions of the form left∗AT1T2right∗A, we could cal-
culate all j such that T1T2 can be of the form left∗AleftA[1..j] and check if it is
possible that T1T2 is not of such form. As we mentioned before, in case there are
many such j, we need only two of them. So, for each nonterminal Ai, in a bottom-
up order, we calculate the set of remainders modulo |lengthA| of lengths of words
that can be derived from Ai, which we call R(Ai). If |R(Ai)| > 1, we can forget
about all but two values so the complexity is polynomial. We can take R(BnCn)
as the set of j such that T1T2 can be of the form left∗AleftA[1..j]. Of course even if
j ∈ R(BnCn) we do not know if we can find T1T2 being the corresponding prefix
of left∞A , we only know that we can find T1T2 having the corresponding length.
Fortunately, if T1T2 is not a prefix of left∞A , the growth order can only increase.
What is more, if |R(BnCn)| > 1 we can forget about the possibility that T1T2 is
not a prefix of left∗A because at least one value of j will give us the same growth
order. We still need to consider the case of R(BnCn) = {r}, though. In such a
case we should check if each word in L(BnCn) is of the form left∗AleftA[1..r]. We
can use Lemma 9 for that; it may not happen that it finds a contradiction as
the language in question would not be bounded then.

Case 2: T1 has an order of 0 but T2 has a nonzero order. Now we cannot assume
that leftA �= ε (which was crucial in the previous case), but knowing that T2 is
of the form x0y

∗
1 . . . y∗kxk and has a specified growth order, we can use the same

method as above, replacing leftA by y1.

Case 3: T1 has a nonzero order but T2 has an order of 0. Similar as above.
We have proven the following theorem:

Theorem 7. Given an CFG G such that L(G) is of polynomial growth, there is a
polynomial-time algorithm that finds the exact order of polynomial growth of L(G).

Acknowledgments

We would like to thank Arne Storjohann for his input regarding algorithms for
computing the Perron-Frobenius eigenvalue of a nonnegative integer matrix.

References

1. Bell, J.: A gap result for the norms of semigroups of matrices. Linear Algebra
Appl. 402, 101–110 (2005)

2. Bridson, M., Gilman, R.: Context-free languages of sub-exponential growth. J.
Comput. System Sci. 64, 308–310 (2002)

Finding the Growth Rate of a Regular of Context-Free Language 353

3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press, Cambridge (2001)

4. Eigenwillig, A., Sharma, V., Yap, C.K.: Almost tight recursion tree bounds for the
Descartes method. In: ISSAC 2006, pp. 71–78 (2006)

5. Giesbrecht, M., Storjohann, A.: Computing rational forms of integer matrices. J.
Symbolic Comput. 34, 157–172 (2002)

6. Ginsburg, S.: The Mathematical Theory of Context-free Languages. McGraw-Hill,
New York (1966)

7. Ginsburg, S., Spanier, E.: Bounded ALGOL-like languages. Trans. Amer. Math.
Soc. 113, 333–368 (1964)

8. Ginsburg, S., Spanier, E.: Bounded regular sets. Proc. Amer. Math. Soc. 17, 1043–
1049 (1966)

9. Ibarra, O., Ravikumar, B.: On sparseness, ambiguity and other decision problems
for acceptors and transducers. In: Monien, B., Vidal-Naquet, G. (eds.) STACS
1986. LNCS, vol. 210, pp. 171–179. Springer, Heidelberg (1985)

10. Ilie, L., Rozenberg, G., Salomaa, A.: A characterization of poly-slender context-free
languages. Theoret. Informatics Appl. 34, 77–86 (2000)

11. Incitti, R.: The growth function of context-free languages. Theoret. Comput.
Sci. 225, 601–605 (2001)

12. Kaltofen, E., Villard, G.: On the complexity of computing determinants. Comput.
Complex. 13, 91–130 (2004)

13. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

14. Latteux, M., Thierrin, G.: On bounded context-free languages. Elektron. Informa-
tionsverarb. Kybernet. 20, 3–8 (1984)

15. Lifshits, Y.: Solving classical string problems on compressed texts. In: CPM 2007,
pp. 228–240 (2007)

16. Lyndon, R.C., Schützenberger, M.-P.: The equation aM = bNcP in a free group.
Michigan Math. J. 9, 289–298 (1962)

17. Minc, H.: Nonnegative Matrices. Wiley, Chichester (1988)
18. Plandowski, W.: The Complexity of the Morphism Equivalence Problem for

Context-Free Languages, PhD thesis
19. Raz, D.: Length considerations in context-free languages. Theoret. Comput.

Sci. 183, 21–32 (1997)
20. Shur, A.M.: Combinatorial complexity of rational languages. Discr. Anal. and Oper.

Research, Ser. 1 12(2), 78–99 (2005)
21. Shur, A.M.: Combinatorial complexity of regular languages. In: Hirsch, E.A.,

Razborov, A.A., Semenov, A., Slissenko, A. (eds.) Computer Science – Theory
and Applications. LNCS, vol. 5010, pp. 289–301. Springer, Heidelberg (2008)

22. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with
polynomial densities. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS,
vol. 629, pp. 494–503. Springer, Heidelberg (1992)

23. Trofimov, V.I.: Growth functions of some classes of languages. Cybernetics 6, 9–12
(1981)

A Appendix

In this appendix we give the full proofs of certain lemmas, which were omitted
in the main text above due to space considerations.

354 P. Gawrychowski et al.

A.1 Proofs Omitted from Section 2

Lemma 2. Let T = x0y
∗
1x1y

∗
2x2 . . . y

∗
kxk be a primitive star expression. L(T)

has Θ(mk−1) growth iff T has no fake indices.

Proof. Assume there is a fake index i. Then y∗i xiy
∗
i+1 can be rewritten as

y∗i y
l
iyi[1..j](yi[j + 1..|yi|]yi[1..j])∗, which is the same as y∗i y

l
iy

∗
i yi[1..j]

= y∗i y
l
iyi[1..j]. Thus L(T) can be described by a primitive star expression of

level k − 1, so its growth is O(mk−2).
Now assume there is no such i. First we modify T in the following way:

whenever some xi is of the form yiz, replace y∗i xi by yiy
∗
i z. This does not change

L(T). So, we can assume that for each 1 ≤ i < k either xi = yi[1..j] and
yi+1 �= y

(j)
i or xi = yi[1..j]cz where c �= yi[j + 1] for some j < |yi|. Then we

observe that L(T ′) ⊆ L(T) where T ′ = x0y
′+
1 x1y

′+
2 x2 . . . y

′+
k xk and each y′i is a

power of yi chosen so that all lengths |y′i| are the same.
Now we can show that for each w ∈ Σ∗ the equation

w = x0y
′α1
1 x1y

′α2
2 x2 . . . y

′αk

k xk, all αi ≥ 1,

has at most one solution. This will prove that L(T ′) has Ω(mk−1) growth. We
apply induction on k. The cases in which k = 0, 1 are obvious. Suppose k > 1.
Assume that there are a > b ≥ 1 such that both x0y

′a
1 x1y

′
2 and x0y

′b
1 x1y

′
2 are

prefixes of w. Then x1y
′
2 is a prefix of y′c1 x1y

′
2 for some c ≥ 1. Consider two

possibilities:

Case 1: x1 = y′1[1..j] for some j < |yi| (y′i is a power of yi). This means that y′2
is the same as y

′(j)
1 . Therefore, the primitive roots of these two words should be

the same. The length of the primitive root does not change after rotation, so we
get y2 = y

(j)
1 , a contradiction.

Case 2: x1 = y′1[1..j]cz for some j < |y1| and c �= y1[j + 1]. This means that
y′1[1..j]c is a prefix of y′1, which is impossible. !

Lemma 3. Let T = x0y
∗
1x1y

∗
2x2 . . . y

∗
kxk be a primitive star expression. L(T)

has Θ(mk−1−d) growth iff there are exactly d fake indices in T .

Proof. We have already proved this lemma for d = 0. Assume that d > 0. We
can transform T to get an level k − d primitive star expression containing no
fake indices using the following operation: take a maximal contiguous segment
of fake indices i, i + 1, . . . , i + m − 1 and observe that the whole expression
y∗i xiy

∗
i+1xi+1 . . . y

∗
i+m can be replaced by y∗i y

l
iyi[1..j] for some l ≥ 0 and j <

|yi| without changing the language in question. Such a replacement decreases
the number of fake indices by exactly m: the only possible place where a new
fake index could be created is y∗i y

l
iyi[1..j]xi+my∗i+m+1, but as we have chosen a

maximal segment, there are only two possibilities (y′ stands for y
(j)
i):

Case 1: xi+m is not of the form y′∗y′[1..j′]. Then yl
iyi[1..j]xi+m cannot be written

as yl′

i yi[1..j′′];

Finding the Growth Rate of a Regular of Context-Free Language 355

Case 2: xi+m is of the form y′∗y′[1..j′] but yi+m+1 �= y′(j
′). Then yl

iyi[1..j]xi+m =
yl′

i yi[1..j′′] but yi+m+1 �= y
(j′′)
i .

Thus, repeating the above operations leaves us with a level k−d primitive star
expression having no fake indices and describing the same language (describing
only some subset of L(T) would be enough). Thus L(T) has Θ(mk−d−1) growth.

 !

Theorem 3. The orders of polynomial growth of L(M) and L(M ′) are the same.

Proof. By the construction of M ′, it is easy to see that for each w ∈ L(M) we
can find a T ∈ T such that w ∈ L(T).

The other direction is more involved: we must show that for each T ∈ T we
can find a subset of L(M) having the same order of growth. Of course, there is
a natural way of doing that: T corresponds to a sequence of vertices of M :

u1
w1→ v1

c1→ u2
w2→ v2

c2→ . . .
cm−1→ um

wm→ vm, T = w1c1w2c2 . . . cm−1wm

such that uk and vk are in the same strongly connected component of M , vk
ck→

uk+1 are transitions connecting different strongly connected components in M
and wk is either zk[i + 1..j] or zk[i + 1..|zk|]z∗kzk[1..j], where zk is the primitive
root associated with the strongly connected component containing uk, vk. We
would like to take the labels of all paths in M going through the above sequence
of vertices. Unfortunately, two bad things may happen:

Case 1: wk = zk[i + 1..j] for some k but there is no path from uk to vk labeled
with such a wk in M . However, we know that there are paths labeled with
zk[i+1..|zk|]zq+αr

k zk[1..j], so we can modify T , setting wk = zk[i+1..j](tr)∗t1+q,
where t = z

(j)
k , which does not decrease the growth order. Then we can observe

that setting wk = zk[i + 1..|zk|](zr
k)∗zq

kzk[1..j] results in the same language.

Case 2: wk = zk[i + 1..|zk|]z∗kzk[1..j] but paths from uk to vk are of the form
zk[i+1..|zk|]zq+αr

k zk[1..j]. In this case, we know that replacing z∗k in T by (zr
k)∗zq

k

does not change its growth order, so we can set wk = zk[i+1..|zk|](zr
k)∗zq

kzk[1..j].
Thus we can modify T without decreasing its growth order so that L(T) is

contained in the set of labels of paths in M going through the above sequence
of vertices. !

Lemma 5. Let A be a nonnegative n× n matrix over the integers. Let r(A) =
r, λ1, . . . , λ� be the distinct eigenvalues of A, and let d be the size of the domi-
nating Jordan block of A. Then Am ∈ Θ(rmmd−1).

Proof. The theorem trivially holds for r = 0. Assume r ≥ 1. Without loss of
generality, we can assume that A does not have an eigenvalue λ such that λ �= r
and |λ| = r; if such an eigenvalue exists, replace A by Ah. Let J be the Jordan
canonical form of A, i.e., A = SJS−1, where S is a nonsingular matrix, and J
is a diagonal block matrix of Jordan blocks. We use the following notation: Jλ,e

is a Jordan block of order e corresponding to eigenvalue λ, and Ox is a square

356 P. Gawrychowski et al.

matrix, where all entries are zero, except for x at the top-right corner. Let Jr,d

be the dominating Jordan block of A. It can be verified by induction that

Jm
r,d =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

rm
(
m
1

)
rm−1

(
m
2

)
rm−2 · · ·

(
m

d−2

)
rm−d+2

(
m

d−1

)
rm−d+1

0 rm
(
m
1

)
rm−1 · · ·

(
m

d−3

)
rm−d+3

(
m

d−2

)
rm−d+2

...
...

...
...

...
0 0 0 · · · rm

(
m
1

)
rm−1

0 0 0 · · · 0 rm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Thus the first row of Jm
r,d has the form

rm

[

1
m

r

m(m− 1)
2!r2

· · · m(m− 1) · · · (m− (d− 2))
(d− 1)!rd−1

]

,

and so

lim
m→∞

Jm
r,d

rmmd−1
= Oα, where α =

1
(d− 1)!rd−1

.

All Jordan blocks other than the dominating block converge to zero blocks. and

lim
m→∞

Am

rmmd−1
= S lim

m→∞

Jm

rmmd−1
S−1.

The result follows. !

A.2 Proofs Omitted from Section 3

Lemma 7. Given a context free grammar, we can calculate for each nonterminal
A the value of length(A) in polynomial time.

Proof. We calculate the values of lengthi(A) defined as follows:

length1(A) :=

{
1 A → a is a production for some a

∞ otherwise

lengthi+1(A) := min{lengthi(B) + lengthi(C) : A→ BC is a production }

for every nonterminal A and i = 1, 2, . . . , n, where n is the number of all nonter-
minals. This obviously takes polynomial time as we have n2 values to compute
and each lengthi(A) is either ∞ or at most 2i. Observe that lengthi(A) is in fact
the smallest possible length of a word that can be derived from A in such a way
that the derivation tree is of depth at most i. If we consider a shortest word that
can be derived from A, its derivation tree is of depth at most n, so we can take
length(A) = lengthn(A). !

In the following two proofs we show that the order of polynomial counting all
words of length at most N does not change. It is equivalent to checking that the
growth order does not change.

Finding the Growth Rate of a Regular of Context-Free Language 357

Lemma 10. Given a generalized star expression, we can remove a constraint
(vi, vj) ∈ context(A), where A is an independent nonterminal, without changing
the growth order of the language in question.

Proof. By joining maximum segments of fake indices we can show that the num-
ber of words of length at most N is exactly the number of different vectors
$x = [$a1$v,$a2$v, . . . ,$ak$v] where all $ak have nonnegative coordinates and the i-th
coordinate of $v is simply the value assigned to the i-th variable, for all possible
assignments consistent with constraints such that xc ≤ N where $c is some fixed
vector with strictly positive coordinates. If all $a(i)

k are zero or all $a(j)
k are zero

we can safely remove the constraint because the value of one variable does not
matter. Otherwise there is exactly one k such that $ai

k is nonzero and exactly
one k such that $a

(j)
k is nonzero. If they are the same we can also safely remove

the constraint because only the sum of those variables matters. Thus by reorder-
ing the coordinates of $x we can assume that $a(i)

k−1,$a
(j)
k > 0. Now the number of

words of length N when we ignore the constraint (vi, vj) ∈ context(A) is at most
N2 multiplied by the number of different vectors [$a1$v,$a2$v . . .$ak−2$v] such that∑

j ajvcj ≤ N . On the other hand, we know that (α, β1), (α, β2) ∈ context(A)
for some α, β1 < β2 and it is possible to show that the number of words of
length tN when we keep all constraints is at least N2 multiplied by the number
of different vectors [$a1$v,$a2$v . . .$ak−2$v] such that

∑
j ajvcj ≤ N , where t is some

constant (t = 2αck−1 + 3β2ck is big enough). This shows that ignoring the con-
straint (vi, vj) ∈ context(A) does not increase the growth order. !

Lemma 11. Given a generalized star expression, we can replace each constraint
(vi, vj) ∈ context(A), where A is a dependent nonterminal, by either (vi, vj) ∈
N× {1} or (vi, vj) ∪ {1} × N without changing the growth order.

Proof. As in the previous lemma, we join maximum segments of fake indices. If
two constrained variables occur in the same segment, we can treat them as one
unconstrained variable. If some segment contains an unconstrained variable, it
contributes 1 to the final order. We can delete such segment, removing all con-
straints concerning variables it contains. Thus w.l.o.g. we can assume that each
variable is constrained by some context(A) where A is a dependent nonterminal
and each two constrained variables occur in different segments.

Again, the number of words of length at most N is exactly the number of dif-
ferent vectors $x = [$a1$v,$a2$v, . . . ,$ak$v] for all possible consistent assignments such
that xc ≤ N . Imagine a multigraph on k vertices, each of them corresponding to
one coordinate of $x, in which we put an edge (x, y) for each constraint (vi, vj)
such that $a(i)

x ,$a
(j)
y > 0. Now observe that coordinates corresponding to vertices

from different connected components are completely independent; the resulting
order is simply the sum of orders corresponding to different components. Thus
it is enough to consider one such component. There are two possibilities:

Case 1: this component is a tree. Then the number of vectors $x such that xc ≤ N
is Θ(Nk−1). To see why, choose any vertex to be the root of this tree and then fix
coordinates starting from the leaves in a bottom-up fashion. After choosing the

358 P. Gawrychowski et al.

values of all coordinates but the root, the value of the coordinate corresponding
to the root is uniquely determined. Thus the number of vectors is O(Nk−1). To
see that it is Ω(Nk−1), observe that there are constants αv < βv such that for
each coordinate corresponding to a non-root v we can assign any value from
[αvN, βvN].

Case 2: this component contains a cycle. Then the number of vectors $x such
that xc ≤ N is Θ(Nk). Obviously, it is O(Nk). Take any spanning tree of
this component and choose the root to be a vertex having an incident edge
outside this spanning tree. As in the previous case, we can choose any value
from some [αvN, βvN] for each coordinate corresponding to a non-root v. Then
we can modify the coordinate corresponding to the root by using the variable
corresponding to the additional edge. An appropriate choice of the constants
αv < βv gives us that there are Ω(Nk) possible choices.

This shows how to replace each constraint by either N×{1} or {1}×N without
decreasing the growth order. More specifically, we replace (vi, vj) ∈ context(A)
by N× {1} if we want to fix the value of vi and the value of vj is not fixed yet.

It can be also checked that no replacement will result in an increased growth
order. !

Lemma 12. Given a context-free grammar, we can check in polynomial time if
a given nonterminal A is independent.

Proof. First we check if for each nonterminal B that can appear in some deriva-
tion A

∗⇒ u1Bu2Av or A
∗⇒ uAv1Bv2, it holds that |{|w| : B ∗⇒ w}| = 1. This

can be done in polynomial time by checking that for any production C → DE
that can appear in some derivation B

∗⇒ w, length(C) = length(D)+ length(E).
If it does not hold then clearly A is independent. Otherwise we build a graph
H = (V,E) where V is the set of all nonterminals and E contains edges B → C
of weight (0, length(D)) and B → D of weight (length(C), 0) for any production
B → CD and take the strongly connected component containing A. We define
the weight of a path to be the component-wise sum of weights of its edges. It is
clear that to check if A is independent, we should check if there are two paths
from A to A having different weights (α, β1) and (α, β2). Take any path from
A to A with a weight of (x, y) where x, y > 0 (if there is no such path, we are
done) and for each edge replace its weight (α, β) by yα−xβ. Now it is clear that
we should check if there is a path from A to A with a nonzero modified weight.
This can be done in polynomial time using a similar method to the one from
Lemma 8. !

More Concise Representation

of Regular Languages
by Automata and Regular Expressions�

Viliam Geffert1, Carlo Mereghetti2, and Beatrice Palano2

1 Department of Computer Science – P. J. Šafárik University
Jesenná 5 – 04154 Košice – Slovakia

viliam.geffert@upjs.sk
2 Dipartimento di Scienze dell’Informazione – Università degli Studi di Milano

via Comelico 39 – 20135 Milano – Italy
{mereghetti,palano}@dsi.unimi.it

Abstract. We consider two formalisms for representing regular
languages: constant height pushdown automata and straight line pro-
grams for regular expressions. We constructively prove that their sizes
are polynomially related. Comparing them with the sizes of finite state
automata and regular expressions, we obtain optimal exponential and
double exponential gaps, i.e., a more concise representation of regular
languages.

Keywords: Pushdown automata; regular expressions; straight line
programs; descriptional complexity.

1 Introduction

Several systems for representing regular languages have been presented and
studied in the literature. For instance, for the original model of finite state au-
tomaton [10], a lot of modifications have been introduced: nondeterminism [10],
alternation [4], probabilistic evolution [9], two-way input head motion [11], etc.
Other important formalisms for defining regular languages are, e.g., regular
grammars [6] and regular expressions [7]. All these models have been proved
to share the same expressive power by exhibiting simulation results.

However, representation of regular languages may be much more “economi-
cal” in one system than another. This consideration has lead to a consolidated
line of research— sometimes referred to as descriptional complexity — aiming to
compare formalisms by comparing their size. The oldest and most famous result
in this sense is the optimal exponential gap between the size of a deterministic
(dfa) and nondeterministic (nfa) finite state automaton [8,10].

In this paper, we study the size of two formalisms for specifying regular lan-
guages, namely: a constant height pushdown automaton (h-pda) and a straight
line program for a regular expression (slp).
� This work was partially supported by the Slovak Grant Agency for Science (VEGA)

under contract “Combinatorial Structures and Complexity of Algorithms”.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 359–370, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

360 V. Geffert, C. Mereghetti, and B. Palano

First, it is well known that the languages recognized by nondeterministic
pdas (npdas) form the class of context-free languages, a proper superclass of the
languages accepted by deterministic pdas (dpdas), which in turn is a proper
superclass of regular languages [6]. However, if the maximum height of the push-
down store is bounded by a constant, i.e., if it does not depend on the input
length, it is a routine exercise to show that such machine accepts a regular
language. (In general, it is not possible to bound the pushdown height by a con-
stant.) Nevertheless, a representation by constant height pdas can potentially
be more succinct than by the standard finite state automata, both for deter-
ministic and nondeterministic machines. Here we prove optimal exponential and
optimal double exponential simulation costs of constant height pdas by finite
state automata. We also get an exponential lower bound for eliminating non-
determinism in constant height pdas. (Some related results on pdas accepting
regular languages vs. finite state automata can be found in [12].)

Second, a natural counterpart to constant height pdas turned out to be
straight line programs (slps), in perfect analogy to the relation of finite state
automata vs. regular expressions. An slp is a loopless program representing a
directed acyclic graph, the internal nodes of which represent the basic regular
operations (i.e., union, concatenation, and star). Compared with the size of the
standard regular expression represented by a binary tree, an slp can be more
succinct by using the fact that replicated subtrees are shared. Here we prove an
optimal exponential gap between the sizes of regular expressions and slps.

Moreover, we design conversions which construct equivalent constant height
pdas from slps, and vice versa, in such a way that the sizes of these two for-
malisms are polynomially related. This should be compared with the relation
between the standard nfas and regular expressions: the cost for the “←” conver-
sion is linear [2,3], but it is exponential for the opposite conversion [5].

2 Preliminaries

In this section, we present the formalism we shall be dealing with. We assume
the reader is familiar with the basic notions on formal language theory (see,
e.g., [6]). The set of natural numbers, including zero, is denoted here by N.

2.1 Straight Line Programs for Regular Expressions

A regular expression, defined over a given alphabet Σ, is: (i) ∅, ε, or any symbol
a ∈ Σ, (ii) r1+r2, r1·r2, or r∗1, if r1 and r2 are regular expressions. The language
represented by a given regular expression r, denoted by L(r), is defined in the
usual way [6]. With a slight abuse of terminology, we often identify a regular
expression with the language it represents. Thus, Σ∗ is the set of words on Σ,
including the empty word ε. By |w|, we denote the length of a word w ∈ Σ∗ and
by Σi the set of words of length i ∈ N, with Σ0 = {ε} and Σ≤m =

⋃m
i=0 Σ

i.
By |Σ|, we denote the cardinality of the set Σ.

More Concise Representations of Regular Languages 361

Definition 1. The size of a regular expression r on Σ, denoted by size(r), is the
number of occurrences of symbols of {∅, ε} ∪ Σ plus the number of occurrences
of operations +, · and ∗ inside r.

Example 1. For r = a · (a + b)∗ + (a + b)∗ · b · a∗, we have size(r) = 16.

A convenient way for representing regular expressions is given by straight line
programs (see, e.g., [1]). Given a set of variables X = {x1, . . . , x�}, a straight line
program for regular expressions (slp) on Σ is a finite sequence of instructions

P ≡ instr1 ; . . . instri ; . . . instr� ,

where the i-th instruction instri has one of the following forms:

(i) xi := ∅, xi := ε, or xi := a for any symbol a ∈ Σ,
(ii) xi := xj +xk, xi := xj ·xk, or xi := x∗

j , for 1 ≤ j, k < i.

Such program P expands to the regular expression reg-exp(P) = x�, obtained
by nested macro-expansion of the variables x1, . . . , x�−1, using the right parts
of their instructions. Notice that a variable may be reused several times in the
right parts. Such a number of occurrences is called a fan-out of the variable. The
fan-out of x� is 0, while the fan-out of any other variable is at least 1, since, with
the exception of x�, we can remove instructions defining variables not used at
least once in some right part.

Definition 2. The size of a straight line programP is the ordered pair size(P) =
(length(P), fan-out(P)), where length(P) denotes the number of instructions
in P , and fan-out(P) the maximum fan-out of its variables.

Example 2. Let us construct an slp for the regular expression in the Example 1:

P ≡ x1 := a; x2 := b; x3 := x1+x2; x4 := x∗
1; x5 := x∗

3;

x6 := x2 ·x4; x7 := x1 ·x5; x8 := x5 ·x6; x9 := x7+x8 .

Clearly, reg-exp(P) = x9 = a·(a+b)∗ + (a+b)∗ ·b·a∗, and size(P) = (9, 3).

Each slp P can be associated with a vertex-labeled directed acyclic graph (dag)
DP = (V,E), where the vertices in V = {v1, . . . , v�} correspond to the respective
variables in X = {x1, . . . , x�}. That is, a vertex vi is labeled by e ∈ {∅, ε} ∪ Σ,
whenever the i-th instruction is xi := e, and by ‘+’ or ‘·’, whenever this instruc-
tion is xi := xj+xk or xi := xj·xk, respectively. In the case of a binary operation,
the directed arcs (vj , vi) and (vk, vi) are included in E, to connect vi with its left
and right sons, respectively. Similarly, vi is labeled by ‘∗’, if the i-th instruction
is xi := x∗

j , with (vj , vi) included in E. (This idea is illustrated by Figure 1.)
From the definition of P , it is easy to see that DP does not contain any

directed cycle and that the fan-out of a variable establishes the out-degree of the
corresponding vertex. So, there exists a unique sink v� (vertex without outgoing
arcs) and some sources (vertices without ingoing arcs) labeled by e ∈ {∅, ε}∪Σ.
We define the depth of DP , depth(DP), as the maximum length of a path from
a source to the sink.

362 V. Geffert, C. Mereghetti, and B. Palano

b

+ *

*

+

a

x x

x x

x

x

x

3 4

5 6

7 8

9

x1 x2 a a b a b b a

+ *+

* *

+

Fig. 1. On the left, the directed acyclic graph DP associated with the slp P introduced
in Example 2. The corresponding classical representation of the regular expression from
Example 1 as a binary tree on the right.

In what follows, we point out some relations between the sizes of an slp and its
regular expression. Clearly, an slp with fan-out bounded by 1 is just an ordinary
regular expression written down in a slightly different way:

Proposition 1. For each slp P , length(P) = size(reg-exp(P)) if and only if
fan-out(P) = 1.

In general, however, straight line programs can be exponentially more succinct
than regular expressions. The following example shows that, even with only fan-
out 2, we get an exponential gap.

Example 3. Consider the slp P� on Σ = {a}:

P� ≡ x1 := a; x2 := x1 ·x1; x3 := x2 ·x2; . . . x� := x�−1 ·x�−1 .

It can be immediately seen that fan-out(P�) = 2 and reg-exp(P�) = a2�−1
. Thus,

for any � ≥ 1, we obtain size(reg-exp(P�)) = 2length(P�)−1.

This latter example establishes the optimality of the following general result:

Proposition 2. Let P and P ′ be two equivalent slps such that fan-out(P ′) = 1.
Then, length(P ′) ≤ 2depth(P).

2.2 Constant Height Pushdown Automata

It is well known that the regular expressions (hence, slps as well) represent the
class of regular languages [6]. This class can also be represented by automata.

A nondeterministic finite state automaton (nfa, for short) is a quintuple A =
〈Q,Σ,H, q0, F 〉, where Q is the finite set of states, Σ the finite input alphabet,
H⊆Q×(Σ∪{ε})×Q the transition relation, q0∈Q the initial state, and F ⊆Q
the set of final (accepting) states. An input string is accepted, if there exists a
computation beginning in the state q0 and ending in some final state q ∈ F after

More Concise Representations of Regular Languages 363

reading this input. The set of all inputs accepted by A is denoted by L(A). The
automaton A is deterministic (dfa), if there are no ε-transitions in H and, for
every q ∈ Q and a ∈ Σ, there exists at most one p ∈ Q such that (q, a, p) ∈ H .

In the literature, a nondeterministic pushdown automaton (npda) is usually
obtained from an nfa by adding a pushdown store, containing symbols from Γ ,
the pushdown alphabet. At the beginning, the pushdown contains a single initial
symbol Z0 ∈ Γ . The transition relation is usually given in the form of δ, a
mapping from Q×(Σ∪{ε})×Γ to finite subsets of Q×Γ ∗. Let δ(q, x,X) 5 (p, ω).
Then A, being in the state q, reading x on the input and X on the top of the
pushdown, can reach the state p, replace X by ω and finally, if x �= ε, advance
the input head one symbol. Its deterministic version (dpda) is obtained in the
usual way. (For more details, see, e.g., [6].)

For technical reasons, we shall introduce the npdas in the following form,
where moves manipulating the pushdown store are clearly distinguished from
those reading the input tape: a npda is a 6-tuple A = 〈Q,Σ, Γ,H, q0, F 〉, where
Q,Σ, Γ, q0, F are defined as above, while H ⊆ Q× ({ε} ∪Σ ∪ {+,−}·Γ)×Q is
the transition relation with the following meaning:

(i) (p, ε, q) ∈ H : A reaches the state q from the state p without using the input
tape or the pushdown store,

(ii) (p, a, q) ∈ H : A reaches the state q from the state p by reading the symbol a
from the input, not using the pushdown store,

(iii) (p,−X, q) ∈ H : if the symbol on top of the pushdown is X , A reaches the
state q from the state p by popping X , not using the input tape,

(iv) (p,+X, q) ∈ H : A reaches the state q from the state p by pushing the
symbol X onto the pushdown, not using the input tape.

Such machine does not use any initial pushdown symbol: an accepting compu-
tation begins in the state q0 with the empty pushdown store and input head at
the beginning, and ends in a final state q ∈ F after reading the entire input.

A deterministic pushdown automaton (dpda) is obtained from npda by claim-
ing that it can never get into a situation in which more than one instruction can
be executed. (As an example, a dpda cannot have a pair of instructions of the
form (q, ε, p1) and (q, a, p2).)

It is not hard to see that any npda in the classical form can be turned into
this latter form and vice versa, preserving determinism in the case of dpdas.

At the cost of one more state, we can transform our npdas so that they
accept by entering a unique final state at the end of input processing, with
empty pushdown store. Notice however that the following transformation does
not preserve determinism.

Lemma 1. For any npda A = 〈Q,Σ, Γ,H, q0, F 〉, there exists an equivalent
npda A′ = 〈Q∪{qf}, Σ, Γ,H ′, q0, {qf}〉, where A′ accepts by entering the unique
final state qf �∈ Q with empty pushdown store at the end of the input.

Given a constant h ∈ N, we say that the npda A is of pushdown height h if,
for any word in L(A), there exists an accepting computation along which the
pushdown store never contains more than h symbols.

364 V. Geffert, C. Mereghetti, and B. Palano

From now on, we shall consider constant height npdas only. Such machine will
be denoted by a 7-tuple A = 〈Q,Σ, Γ,H, q0, F, h〉, where h ∈ N is a constant
denoting the pushdown height, and all other elements are defined as above. By
definition, the meaning of the transitions in the form (iv) is modified as follows:

(iv’) (p,+X, q) ∈ H : if the current pushdown store height is smaller than h, then
A reaches the state q from the state p by pushing the symbol X onto the
pushdown, not using the input tape.

Thus, this kind of transitions is disabled, if the current pushdown height is equal
to h. A constant height npda can be replaced by an equivalent standard npda
(without a built-in limit h on the pushdown) by storing, in the finite control
states, a counter recording permitted pushdown heights (i.e., a number ranging
within {0, . . . , h}), hence, paying by a constant increase in the number of states.

Note that, for h = 0, the definition of constant height npda exactly coincides
with that of an nfa, as one may easily verify. Moreover, Lemma 1 holds for con-
stant height npdas as well, which enables us to consider acceptance by a single fi-
nal state and, at the same time, with empty pushdown store. Therefore, from now
on, a constant height npda will assume the form A = 〈Q,Σ, Γ,H, q0, {qf}, h〉.

Definition 3. The size of a constant height npda A = 〈Q,Σ, Γ,H, q0, {qf}, h〉
is the ordered triple size(A) = (|Q|, |Γ |, h).

Observe that this definition immediately gives that the size of an nfa is com-
pletely determined by the number of its states, since it is (|Q|, 0, 0).

3 From a Constant Height npda to an slp

In this section, we show how to convert a constant height npda into an equivalent
slp. Yet, we focus on the cost of such a conversion and prove that the size of the
resulting slp is polynomial in the size of the original npda.

In what follows, to simplify our notation, a “long” regular expression r1+r2+
· · ·+rn will also be written as

∑n
i=1 ri. We define an “empty sum” as the regular

expression ∅.
Let A = 〈{q1, . . . , qk}, Σ, Γ,H, q1, {qk}, h〉 be a constant height npda. For each

i, j ∈ {1, . . . , k}, s ∈ {0, . . . , k}, and t ∈ {0, . . . , h}, we define [qi, s, t, qj] to be
the set of strings x ∈ Σ∗ such that, for each of them, there exists at least one
computation with the following properties.

– The computation begins in the state qi, with the pushdown empty.
– After reading the entire string x from the input, the computation ends in

the state qj , with the pushdown empty again.
– Any time the pushdown is empty during this computation, the current finite

control state is from the set {q1, . . . , qs}. (This restriction does not apply to
qi, qj themselves.) For s = 0, the pushdown is never empty in the meantime.

– During this computation, the pushdown height never exceeds t.

More Concise Representations of Regular Languages 365

We are now going to give an algorithm, consisting of two phases, which dy-
namically constructs regular expressions describing all sets [qi, s, t, qj]. The ulti-
mate goal is to obtain [q1, k, h, qk], the regular expression for the language L(A).
First, we easily construct [qi, 0, 0, qj] for each qi, qj , basically by a direct inspec-
tion of the transitions in H . After that, we gradually increment the parameter s
from 1 to k, thus obtaining [qi, k, 0, qj] for each qi, qj . Second, we show how to
upgrade from the parameters k, t−1 to parameters 0, t, and then from parameters
s, t to s+1, t, which leads up to [qi, k, h, qj] for each qi, qj .

For any 1 ≤ i, j ≤ k, we let Ψ0(qi, qj) = {α ∈ Σ ∪ {ε} : (qi, α, qj) ∈ H} ∪Δi,j ,
where Δi,j is ∅ if i �= j, or {ε} if i = j. Thus, Ψ0(qi, qj) consists of the input
symbols, possibly with ε, taking A from qi to qj in at most one computation
step, without involving the pushdown.

phase i:

for each 1 ≤ i, j ≤ k do
[qi, 0, 0, qj] =

∑
α∈Ψ0(qi,qj)

α ;
for s = 0 to k−1 do
for each 1 ≤ i, j ≤ k do

[qi, s+1, 0, qj] = [qi, s, 0, qj] + [qi, s, 0, qs+1]·[qs+1, s, 0, qs+1]
∗·[qs+1, s, 0, qj] ;

Actually, [qi, 0, 0, qj] is the regular expression representing the set Ψ0(qi, qj) by a
formal sum of its elements, if any, otherwise by ∅. After that, this phase computes
the regular expression [qi, s+1, 0, qj] by adding to [qi, s, 0, qj] the strings which
enable A to use also the state qs+1, without using the pushdown. This is exactly
the Kleene’s recursion for computing regular expressions from nfas [6].

Then the second phase starts, for which we need some more notation. For
any 1 ≤ i, j ≤ k and X ∈ Γ , we let: Ψ+(qi, X) = {q ∈ Q : (qi,+X, q) ∈ H},
and Ψ−(X, qj) = {q ∈ Q : (q,−X, qj) ∈ H}. Thus, Ψ+(qi, X) is the set of
states reachable by A from qi while pushing the symbol X onto the stack, and
Ψ−(X, qj) is the set of states from which A reaches qj while popping X .

phase ii:

for t = 1 to h do begin
for each 1 ≤ i, j ≤ k do

(.) [qi, 0, t, qj] = [qi, 0, t−1, qj] +
∑

X∈Γ

∑
p∈Ψ+(qi,X)

∑
q∈Ψ−(X,qj)[p, k, t−1, q];

for s = 0 to k−1 do
for each 1 ≤ i, j ≤ k do
[qi, s+1, t, qj] = [qi, s, t, qj] + [qi, s, t, qs+1]·[qs+1, s, t, qs+1]

∗·[qs+1, s, t, qj];
end;
return [q1, k, h, qk]

For this phase, the construction marked by (.) is worth explaining. By definition,
[qi, 0, t, qj] consists of [qi, 0, t−1, qj] plus the set of all strings x such that:

– starting in the state qi with empty pushdown, A pushes some symbol X on
the stack in the first move— the first two summands in (.),

– pops this symbol X in the last move only, by entering the state qj with
empty pushdown— third summand in (.)— and,

366 V. Geffert, C. Mereghetti, and B. Palano

– during the computation processing the input string x, A pushes no more
than t−1 symbols over X , so that globally the pushdown height is at least 1
and never exceeds t— variables [p, k, t−1, q] in (.).

Notice that our algorithm can be easily regarded to as a straight line pro-
gram PA for L(A). Informally, we can consider all [qi, s, t, qj]’s as the variables
of PA. Before phase i, we need to define some input variables, by instructions
xα := α of the form (i), at most one per each α ∈ Σ ∪ {ε, ∅}. (See the definition
of slps in Section 2.1.) Then, we easily unroll the for-cycles and sums, which
translates the two phases into a finite sequence of instructions. To keep all such
instructions in the form (ii), we only have to introduce some new auxiliary vari-
ables. Clearly, the output variable is [q1, k, h, qk]. The correctness can formally
be proved by a double-induction on parameters s, t in [qi, s, t, qj].

Concerning the length of PA, there exist no more than |Σ|+2 input instruc-
tions, while those of phase i do not exceed k2·|Σ|+k3·4. Finally, phase ii requires
no more than h·k3 ·(k ·|Γ |+4) instructions, using also the fact that the number
of variables involved in the triple sum of (.) is bounded by |Γ |·k2. Summing up,
we get length(PA) ≤ O(h·k4·|Γ |+k2·|Σ|). Moreover, the fan-out of any variable
in PA does not exceed k2+1. Formally, we have shown:

Theorem 1. Let A = 〈Q,Σ, Γ,H, q0, {qf}, h〉 be a constant height npda. Then
there exists an slp PA such that reg-exp(PA) denotes L(A), with length(PA) ≤
O(h·|Q|4·|Γ |+|Q|2·|Σ|) and fan-out(PA) ≤ |Q|2+1. That is, for regular languages
over a fixed alphabet, the size of PA is polynomial in the size of A.

4 From an slp to a Constant Height npda

Let us now show the converse result, namely, that any slp can be turned into an
equivalent constant height npda whose size is polynomial in the size of the slp.

Let P be an slp with variables {x1, . . . , x�} on Σ. We consider the associated
dag DP , as described in Section 2.1, where the vertex vi corresponds to the
variable xi. The enumeration of the variables in P induces a topological ordering
on the vertices of DP . Now we proceed as follows.

For i = 1, . . . , �, we construct an npda Ai = 〈Qi, Σ, Γi, Hi, q0,i, {qf,i}〉 such
that L(Ai) is exactly the language denoted by reg-exp(xi), a regular expression
obtained by expanding the dag rooted in vi. For a source node vi, we define
an “elementary” npda without a pushdown store— actually an nfa. An npda
for an inner node is constructed inductively, using, as subprograms, npdas for
vertices that are topologically smaller. The desired npda is A�. We start with
the construction for sources.

sources: let the source node vi be labeled by α ∈ Σ ∪ {ε, ∅}. If α �= ∅, the
single-transition npda recognizing α is defined as

Ai = 〈{q0,i, qf,i}, Σ, ∅, {(q0,i, α, qf,i)}, q0,i, {qf,i}〉.
For α = ∅, we define the transition-free npda

Ai = 〈{q0,i, qf,i}, Σ, ∅, ∅, q0,i, {qf,i}〉.

More Concise Representations of Regular Languages 367

In this latter case, the final state qf,i is settled only for technical reasons, but
actually it cannot be reached. This is the basis of our inductive construction.

Now, let us define the inductive step. Let vi be an internal node in the dag DP .
The constructionofAi dependson the label ofvi,and sowehave the following cases:

label ‘+’: vi is a vertex labeled by ‘+’, with two ingoing arcs from vertices va

and vb, for 1 ≤ a, b < i, representing the instruction xi := xa+xb. Define

Ai = 〈Qa ∪Qb ∪ {q0,i, qf,i}, Σ, Γa ∪ Γb ∪ {Xi}, Hi, q0,i, {qf,i}〉 , with
Hi = Ha ∪Hb ∪

{(q0,i,+Xi, q0,a), (qf,a,−Xi, qf,i), (q0,i,+Xi, q0,b), (qf,b,−Xi, qf,i)} .

Basically, Ai nondeterministically chooses to activate either the npda Aa or the
npda Ab. Before activation, Ai pushes the symbol Xi onto the pushdown, and
pops it right at the end of the processing of the activated npda.

label ‘·’: vi is a vertex labeled by ‘·’, with two ingoing arcs from va and vb, for
1 ≤ a, b < i, representing the instruction xi := xa ·xb. Define

Ai = 〈Qa ∪Qb ∪ {q0,i, qm,i, qf,i}, Σ, Γa ∪ Γb ∪ {Li, Ri}, Hi, q0,i, {qf,i}〉 , with
Hi = Ha ∪Hb ∪

{(q0,i,+Li, q0,a), (qf,a,−Li, qm,i), (qm,i,+Ri, q0,b), (qf,b,−Ri, qf,i)} .

Here Ai sequentially activates Aa and Ab. Before activating Aa, it pushes the
symbol Li onto the pushdown, and pops it out at the end of Aa-processing, by
reaching the state qm,i. From this state, Ai pushes another symbol Ri onto the
pushdown, thus activating Ab, and pops it out at the end of Ab-processing.

label ‘∗’: vi is a vertex labeled by ‘∗’, with a single ingoing arc from the
vertex va, for 1 ≤ a < i, representing the instruction xi := x∗

a. Define

Ai = 〈Qa ∪ {q0,i, qf,i}, Σ, Γa ∪ {Xi}, Hi, q0,i, {qf,i}〉 , with
Hi = Ha ∪ {(q0,i, ε, qf,i), (q0,i,+Xi, q0,a), (qf,a,−Xi, q0,i)} .

Here Ai nondeterministically chooses to activate Aa a certain number of times,
including zero. In case Aa is going to be activated, Ai pushes the symbol Xi

onto the pushdown, and pops it out at the end of Aa-processing by returning to
the state q0,i. In the state q0,i, Ai can also terminate the iteration by reaching
the state qf,i with an ε-move.

Informally, for parsing an input string, A� verifies matching with reg-exp(P)
by starting from the source node of DP and traveling along the arcs. When
traveling towards sources, one symbol per each visited vertex is pushed onto
the pushdown. Vice versa, when traveling back towards the sink, pushdown
symbols are popped. These operations are needed to record the sequence of
visited vertices, since some of them are shared (i.e., their fan-out is greater
than 1). By induction on the depth of DP , one may formally prove that L(A�) is
the language denoted by reg-exp(P).

368 V. Geffert, C. Mereghetti, and B. Palano

Let us measure the size of the npda A�. In the construction of each Ai, at most
3 new states and 2 new pushdown symbols are used, if vi is an inner node, but
only 2 states with no pushdown symbols, if it is a source node. Hence, |Q�| < 3�
and |Γ�| < 2�. Finally, the pushdown height of A� is easily seen to be equal to
depth(DP) < �.

Actually, some improvements on the size of A� can be obtained. Given the dy-
namics of A� above described, the use of the pushdown turns out to be necessary
only for shared vertices, so that the machine can identify the proper ancestor by
popping a symbol from the pushdown. Thus, by renaming the pushdown sym-
bols, we can reduce the size of the pushdown alphabet to fan-out(P). Moreover,
for vertices with fan-out equal to 1, the moves involving the pushdown can be
transformed into ε-moves, thus reducing the pushdown height. Clearly, one may
also eliminate ε-moves, possibly reducing the number of states. In conclusion

Theorem 2. Let P be an slp. Then there exists a constant height npda AP =
〈Q,Σ, Γ,H, q0, {qf}, h〉 such that L(AP) is denoted by reg-exp(P) and the size
of AP is linear in the size of P . In particular, |Q| < 3 · length(P), |Γ | =
fan-out(P), and h < length(P). More precisely, h equals to the maximum num-
ber of vertices with fan-out greater than 1 along paths from sources to the sink.

5 Constant Height pdas Versus Finite State Automata

Here we compare the sizes of constant height pushdown automata and the stan-
dard finite state automata. In what follows, npdas (but not dpdas) are in the
form stated in Lemma 1, i.e., they accept by entering a unique final state with
empty pushdown. First of all, we prove an exponential upper bound on the size
of nfas (dfas) simulating constant height npdas (dpdas, respectively).

Proposition 3. For each constant height npda A = 〈Q,Σ, Γ,H, q0, {qf}, h〉,
there exists an equivalent nfa A′ = (Q′, Σ,H ′, q′0, {q′f}) with |Q′| ≤ |Q| · |Γ≤h|.
If B = 〈Q,Σ, Γ,H, q0, F, h〉 is a constant height dpda, we can construct an equiv-
alent dfa with no more than |Q|· |Γ≤h| states.

By Proposition 3 and the usual subset construction, one immediately gets:

Corollary 1. Let A = 〈Q,Σ, Γ,H, q0, {qf}, h〉 be a constant height npda. Then
there exists an equivalent dfa with no more than 2|Q|·|Γ ≤h| states.

We are now going to show that the simulation costs in Proposition 3 and Corol-
lary 1 are optimal by exhibiting two witness languages with matching exponen-
tial and double exponential gaps. For a string x = x1 · · ·xn, let xR = xn · · ·x1

denote its reverse. Given an h > 0, an alphabet Γ , and two separator symbols
%, $ �∈ Γ , we define the language

LΓ,h = {%w1%w2% · · · %wm$w : w1, . . . , wm∈Γ ∗, w∈Γ≤h, and w∈
⋃m

i=1{wR
i }} .

We begin by providing upper bounds on the size of machines accepting LΓ,h:

More Concise Representations of Regular Languages 369

h-npda

nfa

h-dpda slp

dfa reg-ex

�

exp

�

exp

�

exp

�
exp

�exp

�
lin

�
�

�
�

�
�

��

double
exp

�
≥exp

�≤poly
�

≤poly

Fig. 2. Costs of simulations among different types of formalisms defining regular lan-
guages. Here h-dpda (h-npda) denotes constant height dpda (npda, respectively). An
arc labeled by lin (poly, exp, double exp) from a vertex A to a vertex B means that,
given a representation of type A, we can construct an equivalent representation of
type B, paying by a linear (polynomial, exponential, double exponential, respectively)
increase in the size. For clarity, some trivial linear conversions are omitted.

Lemma 2. For each h > 0 and each alphabet Γ : (i) The language LΓ,h can
be accepted by an npda with O(1) states, pushdown alphabet of size |Γ |, and
constant height h. (ii) The language LΓ,h can also be accepted by an nfa (or dfa)
with O(|Γ≤h|) states (or 2O(|Γ ≤h|) states, respectively).

Now we show that the sizes for LΓ,h stated in Lemma 2 (ii) are optimal.

Lemma 3. For each h > 0 and each alphabet Γ , any dfa (or nfa) accepting the
language LΓ,h must use at least 2|Γ

≤h| states (or |Γ≤h| states, respectively).

Let us now show the optimality of the exponential simulation cost of constant
height dpdas by dfas presented in Proposition 3. Consider the following witness
language: given an h > 0, an alphabet Γ , and a separator symbol % �∈ Γ , let

DΓ,h = {w%wR : w ∈ Γ≤h} .

Lemma 4. For each h > 0 and each alphabet Γ : (i) The language DΓ,h is
accepted by a dpda with O(1) states, pushdown alphabet Γ and constant height h,
and also by a dfa with 2·|Γ≤h|+1 states. (ii) Any dfa accepting the language DΓ,h

must have at least |Γ≤h| states.

6 The Final Picture

In conclusion, in Figure 2, we sum up the main relations on the sizes of the
different types of formalisms defining regular languages we considered in this
paper. Let us briefly discuss the simulation costs displayed in this figure. The
costs of the following simulations are asymptotically optimal:

– h-dpda → dfa: the exponential cost comes from Proposition 3, while its
optimality follows from Lemma 4.

– h-npda → nfa: exponential cost, by Proposition 3 and Lemmas 2 (i) and 3.

370 V. Geffert, C. Mereghetti, and B. Palano

– slp → reg-ex: the exponential cost comes from Proposition 2, while its opti-
mality follows, e.g., from Example 3 in Section 2.1.

– h-npda → dfa: the double exponential cost was presented by Corollary 1, its
optimality follows from Lemmas 2 (i) and 3.

– nfa → dfa: the exponential cost is known from [10], its optimality from [8].
– nfa ↔ reg-ex: the linear cost for the “←” conversion comes directly from the

Kleene’s Theorem (see also [2,3] for more sophisticated translations), while
its optimality follows trivially by considering, e.g., the regular expression an,
for a fixed n > 0. The exponential cost for the converse direction and its
optimality is from [5].

The costs of the following simulations are not yet known to be optimal:
– h-npda ↔ slp: Theorems 1 and 2 prove polynomial upper bounds for both

directions.
– h-npda → h-dpda: the exponential lower bound comes from the following

consideration: a sub-exponential cost of h-npda → h-dpda conversion to-
gether with the optimal exponential cost for h-dpda → dfa would lead to
a sub-double exponential cost of h-npda → dfa, thus contradicting the op-
timality of the double exponential cost. In general, for h-npda → h-dpda
conversion, we conjecture a double exponential optimal cost.

Acknowledgements. The authors wish to thank the anonymous referees for
useful and kind comments.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120, 197–213 (1993)

3. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoretical Com-
puter Science 233, 75–90 (2000)

4. Chandra, A., Kozen, D., Stockmeyer, L.: Alternation. J. ACM 28, 114–133 (1981)
5. Ehrenfeucht, A., Zieger, P.: Complexity measures for regular expressions. J. Com-

puter and System Sciences 12, 134–146 (1976)
6. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, Reading (2001)
7. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,

C., McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press,
Princeton (1956)

8. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: IEEE 12th Symp. Switching and Automata Theory, pp. 188–
191 (1971)

9. Rabin, M.: Probabilistic automata. Information and Control 6, 230–245 (1963)
10. Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res.

Develop. 3, 114–125 (1959)
11. Shepherdson, J.C.: The reduction of two–way automata to one–way automata.

IBM J. Res. Develop. 3, 198–200 (1959)
12. Valiant, L.G.: Regularity and related problems for deterministic pushdown au-

tomata. J. ACM 22, 1–10 (1975)

A Taxonomy of

Deterministic Forgetting Automata

Jens Glöckler

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

Jens.Gloeckler@math.uni-giessen.de

Abstract. We investigate deterministic forgetting automata, i.e., de-
terministic linear bounded automata which can only use the operations
‘move’, ‘erase’ (rewrite with a blank symbol) and ‘delete’ (remove com-
pletely). We give a taxonomy of deterministic forgetting automata and
draw comparisons to other kinds of automata (namely deterministic one-
turn pushdown automata and one-way one-counter automata).

1 Introduction

Forgetting automata were introduced by Jančar, Mráz, and Plátek in [1] and have
been studied further in a number of papers ([2,3,4,5,6]). They were introduced to
model certain strategies from linguistics, e.g., the analysis by reduction: An input
string is shortened repeatedly in order to finally decide whether the obtained short
string (and consequently the original string) is syntactically correct or not.

In order to model this reduction, the operations erase and delete – as well as
the operation move – were utilized. The erase operation originates from the work
on erasing automata that was initiated in [7] (as a special case of finite change
automata) and continued in [8,5]. The erase operation allows the automaton to
rewrite the content of a tape field with an auxiliary blank symbol and thereby
to irreversibly destroy the original information stored there. Nevertheless this
operation turns out to be surprisingly powerful.

The delete operation, on the other hand, originates from the work on list
automata that have been investigated in [9]. List automata work on a doubly
linked list and can move around on the input list (this operation is called move),
rewrite input symbols (write), remove entries from the list (delete) and insert
new elements into the list (insert). The data structure of a doubly linked list
and the associated operations seem very natural from a computational point of
view. Moreover, the four levels of the Chomsky hierarchy can be represented
in a uniform machine model via list automata (and certain restrictions on the
operations available, see [10]).

An automaton that is allowed to use one or more of the operations move (in
the following denoted by MV), erase (ER) and delete (DL) is called forgetting
automaton. If we now consider the possible directions left and right for each of
the given operations, we will get the following six operations in total:

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 371–382, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

372 J. Glöckler

• MVL, MVR: move head to the left and right, resp.,
• ERL, ERR: erase current field with �� and move head to the left and right, resp.
• DLL, DLR: delete current field and move head to the left and right, resp. (i.e.,

completely remove the current field and let the head reach the field originally
on the left and on the right side of the head, respectively).

As any subset (except the empty set) of this set of operations can be exam-
ined, we have 26 − 1 = 63 different automata models (and language families,
respectively) to consider. We use the possible operations to denote the type
of automaton considered, e.g., an (MVR, ER, DLR)-automaton1. The language
family accepted by a certain type of automaton is denoted accordingly, e.g.,
L (MVR, ER, DLR).

Many of these language families, however, coincide trivially as certain lacking
operations can be directly simulated by consecutively performing other opera-
tions. The series of operations ERL → MVR → MVR, for example, corresponds
to ERR and therefore L (MV, ERL) = L (MV, ER). Other types of automata
like (DLR)-automata and (MV)-automata characterize the family of regular lan-
guages as they are in fact nothing else but one-way and two-way finite automata,
respectively.

In this paper we compare deterministic (ERR, DL)- and (MVR, DL)-automata
to the class of deterministic linear languages characterized by linear LR(1) gram-
mars and deterministic one-turn pushdown automata. Moreover the inclusions
of Ldet(MVR, DL) in Ldet(MVR, ER) and Ldet(MVR, ERR, DL) are both shown
to be strict – a question that has been left open in [1]. The main result, however,
is the separation of Ldet(ER, DL) and Ldet(MVL, ER, DL) which solves another
open problem from [1].

Furthermore we revise known results from the nondeterministic case to hold
in the deterministic case (if possible) and quote recent results on deterministic
forgetting automata from [11] to complete the taxonomy.

The remainder of this paper is organized as follows: In Section 2 some ba-
sic notations are introduced and the types of automata and grammars used in
the paper are defined. In Section 3 the taxonomy of deterministic forgetting
automata is examined. Finally, in Section 4 some open problems are presented.

2 Preliminaries

Let A∗ denote the set of all words over the finite alphabet A. The empty word
is denoted by ε. The reversal of a word w is denoted by wR and the length of
w by |w|. The number of occurrences of an alphabet symbol a ∈ A in a word
w ∈ A∗ is denoted by |w|a. Set inclusion and strict set inclusion are denoted by
⊆ and ⊂, respectively.

1 The missing subscript for an operation indicates that both directions are allowed
(i.e., ER stands for ERL and ERR).

A Taxonomy of Deterministic Forgetting Automata 373

We use the following notations of language families: REG (regular languages),
DCFL (deterministic context-free languages) and DCSL (deterministic context-
sensitive languages).

We write L (X) for the family of languages accepted by devices of type X
and Ldet(X) for the family of languages accepted by deterministic devices X.
Furthermore let IN denote the set of positive natural numbers and IN0 the set of
natural numbers including zero.

Forgetting Automata

A forgetting automaton is a system A = 〈S,A,�,�, ��, O, δ, s0, F 〉, where S is
a finite set of states, A is the input alphabet, �,� /∈ A are the left and the
right sentinels, �� /∈ A is the blank symbol used for erasing, O is a subset of
the set {MVL,MVR,ERL,ERR,DLL,DLR}, δ : S × (A ∪ {�,�, ��})→ 2S×O is the
transition function, s0 ∈ S is the initial state and F ⊆ S is the set of final
states. If A reads � (or �, respectively), it always implies an MVR-operation
(or MVL-operation, respectively), even if MVR,MVL /∈ O. Generally, a forget-
ting automaton is nondeterministic. A forgetting automaton is deterministic if
|δ(s, x)| ≤ 1 for all s ∈ S and x ∈ (A ∪ {�,�, ��}).

A configuration of a forgetting automaton A is a string w1sw2, where the
word w1w2 ∈ �(A ∪ {��})∗� is the content of the list, s is the current state and
A reads the first symbol of w2. By & we denote the relation which describes the
change of configurations according to δ; &∗ is the reflexive, transitive closure of
&. An input word w is accepted by A if there is a computation, starting in the
initial configuration s0 � w�, which reaches a configuration with an accepting
state.

In case O contains both versions XL and XR of an operation, we write X
for short. A forgetting automaton with a certain set of operations, e.g., MVR

and DL, is called (MVR, DL)-automaton. For the family of languages accepted
by such automata we write L (MVR, DL).

Counter Automata

A one-way one-counter automaton (1CA) is a pushdown automaton (PDA)
which accepts by final state and is allowed to use one pushdown symbol only
(except for the bottom marker).

Linear LR(1) Grammars and One-Turn Pushdown Automata

A linear grammar is a context-free grammar G = 〈N,T, S, P 〉, where all pro-
ductions in P are of the form

A→ u1Bu2 | u3

for A,B ∈ N and u1, u2, u3 ∈ T ∗.

374 J. Glöckler

A linear LR(1) grammar is a linear grammar G = 〈N,T, S, P 〉 where for the
sentential forms v1yaw1 and v1yaw2, with v1, v2, w1, w2 ∈ T ∗, y ∈ (N ∪T)∗, and
a ∈ T , the derivations

S ⇒∗ v1Aaw1⇒ v1yaw1

S ⇒∗ v2Bw ⇒ v1yaw2

imply that
v1 = v2, A = B,w = aw1.

Furthermore N contains no useless symbols and S does not appear on the right
side of any rule.

A deterministic one-turn pushdown automaton is a deterministic pushdown
automaton M = 〈S,A, Γ, δ, s0, Z0, F 〉 for which each series of instantaneous de-
scriptions (si1 , w1, y1) &∗ · · · &∗ (sik

, wk, yk) on an accepted word has the follow-
ing property: There exists an i ∈ {1, . . . , k} such that

|y1| ≤ · · · ≤ |yi−1| ≤ |yi| > |yi+1| ≥ · · · ≥ |yk|.

The class of languages generated by linear LR(1) grammars coincides with
the class of languages accepted by deterministic one-turn pushdown automata
(see [12]). In the following we will denote it by DetLIN.

3 The Hierarchy of Deterministic Forgetting Automata

For known results in the nondeterministic case see [2,11]; many of the results
given there are also valid for the deterministic case. We will, however, state these
results here for the sake of completeness.

At the bottom of the classification2 of deterministic forgetting automata (for
a preview, see Figure 2 at the end of the paper) we find the class of regular
languages, characterized, for example, by automata with right-moving operations
only or only with one type of operation (MV, ER or DL).

In [11] the first language class above REG was shown to coincide with the
class of languages accepted by deterministic one-way one-counter automata:

Proposition 1. Ldet(ERR, DL) = Ldet(1CA)

Ldet(ERR, DL) is obviously a superset of the family of regular languages; witness
languages for the strictness of the inclusion are, e.g., {anbn | n ∈ IN} and

{
w ∈

{0, 1}∗
∣
∣ |w|0 = |w|1

}
.

When comparing the language classes between REG and DCFL to the class of
deterministic linear languages we get results very similar to the nondeterministic
case:

Lemma 1. DetLIN is incomparable to Ldet(ERR, DL).

2 We omit the trivial classes Ldet(MVL), Ldet(ERL) and Ldet(MVL, ERL) below REG.

A Taxonomy of Deterministic Forgetting Automata 375

Proof. On the one hand
{
w ∈ {0, 1}∗

∣
∣ |w|0 = |w|1

}
∈ Ldet(ERR, DL) is not

(deterministic) linear, on the other hand
{
wcwR

∣
∣w ∈ {a, b}∗

}
/∈ Ldet(ERR, DL)

([2]) is a deterministic linear language. !

The next language family in the hierarchy however contains all deterministic
linear languages:

Theorem 1. DetLIN ⊂ Ldet(MVR, DL)

Proof. Let a one-turn pushdown automaton A be given. First of all we convert
A into a linear grammar G = 〈N,T, S, P 〉 using the method described in [13,
Theorem 5.7.1]. As pointed out in [12], this construction leads to a linear LR(1)
grammar.

The processing of a given input word w by a deterministic (MVR, DL)-
automaton B consists of two phases: In the first phase the pushdown automaton
A is simulated up to its first pop move (i.e., the move that decreases the stack
height for the first time); in the second phase the grammar rules are processed
successively by deleting symbols from the inside to the outside according to the
given linear productions.

The pushdown automaton A can easily be simulated by the forgetting
automaton B up to the first pop move as B only needs to move right and remem-
ber the top symbol of the stack. When the first pop move is reached during the
simulation, B switches to the second phase where the grammar rules of G are
applied. As a result of the construction of G the pop move occurs at the position
of the input word at which a string that consists only of terminal symbols is
generated in the last derivation step.

From that point on B can stepwise determine the nonterminal occurring in
the preceding sentential form as there is only one nonterminal at a time (due
to the linearity) and the nonterminal used afore is uniquely determined (due
to the LR(1) condition). In order to be able to use the LR(1) condition, B
needs to read the following terminal symbol (with an MVR and an DLL step)
and to store it in its internal states. As the right hand sides of the productions
in P have a maximum length of two (cf. the above mentioned proof on the
construction of G), B knows about the substring ya of the current sentential
form uyaw1 and thus can uniquely determine the preceding nonterminal A such
that uAaw1 ⇒ uyaw1. In this way B can stepwise delete the appropriate symbols,
backtrack the (possible) derivation of grammar G and finally accept the input
if the start symbol S can be obtained.

Furthermore the language
{
w ∈ {0, 1}∗

∣
∣ |w|0 = |w|1

}
∈ Ldet(MVR, DL) is not

(deterministic) linear and therefore the inclusion is strict. !

The next results from [2] likewise hold in the deterministic case as the given
witness languages can equally be accepted by deterministic automata of the
corresponding classes:

Proposition 2. Ldet(ERR, DL) ⊂ Ldet(MVR, DL)

376 J. Glöckler

Proof. The proof of the inclusion in [2] also holds for the deterministic case.
Furthermore the witness language {wcwR | w ∈ {a, b}∗} for the separation can
likewise be accepted by a deterministic (MVR, DL)-automaton. !

Proposition 3. Ldet(ERR, DL) ⊂ Ldet(ER, DL)

Proof. The inclusion holds in any case as merely the ERL-operation is added.
The strictness of the inclusion holds as the witness language {a2n | n ∈ IN}
given for the nondeterministic case in [2] can also be accepted by a deterministic
(ER, DL)-automaton. !

Lemma 2. Ldet(MVR, DL) is incomparable to Ldet(ER, DL).

Proof. The language L1 = {wcwR | w ∈ {a, b}∗} ∈ Ldet(MVR, DL) cannot
be accepted by any deterministic (ER, DL)-automaton ([1]). Furthermore the
language L2 = {a2n | n ∈ IN} ∈ Ldet(ER, DL) cannot be accepted by any
deterministic (MVR,DL)-automaton as L2 is not context-free and Ldet(MVR,DL)
is contained in DCFL (see below). !

Using the same languages as in the preceding proof we get:

Corollary 1. Ldet(MVR, ER), Ldet(MVR, ERR,DL) and DCFL, respectively, are
incomparable to Ldet(ER, DL).

While the strict inclusion of Ldet(MVR,DL) in DCFL was shown in [9], the ques-
tion whether the inclusions Ldet(MVR, ER) ⊆ DCFL and Ldet(MVR, ERR, DL) ⊆
DCFL are strict, was left open in [8,1,6]. We here show that the inclusions
Ldet(MVR, DL) ⊆ Ldet(MVR, ER) and Ldet(MVR, DL) ⊆ Ldet(MVR, ERR, DL)
are both strict.

Theorem 2. Ldet(MVR, DL) ⊂ Ldet(MVR, ER).

Proof. In [9] it was shown that the deterministic context-free language

L = {an1ban1an2ban2 · · · anlbanlcbl | l, n1, . . . , nl ∈ IN}

cannot be recognized by a deterministic (MVR, DL)-automaton. In the following
we will show that L can, however, be recognized by a deterministic (MVR, ER)-
automaton.

A deterministic (MVR, ER)-automaton A can accept L as follows: A first
moves to the first b and thereby uses MVR-steps for all but the second symbol,
whereas the second symbol is erased and later serves as a delimiter. Subsequently
A erases one a at a time on the right hand and left hand side of the position
reached (initially marked with b). In order to be able to distinguish the delimiter
constructed before, A performs the erasing of the symbols on the left hand side
via ERL-operations and then moves back with MVR. A can thus detect whether
the delimiter is reached or not and can therefore prevent the first field of the
tape from being erased. As soon as the delimiter is reached, A moves rightwards
and erases two more a’s.

A Taxonomy of Deterministic Forgetting Automata 377

tim
e

−→

� a a a a b a a a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� a a b a a a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� a a �� a a a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� a a �� �� a a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� a �� �� �� a a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� a �� �� �� �� a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� a a a a a b a a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� a a a a b a a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a a a b a a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� a b a a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� a �� a a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� a �� �� a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� a a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� a a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� a a a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� a �� a a a b a a a a a c b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� a �� a a a �� a a a a a c b b b �

...
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� a �� �� �� �� �� �� �� �� �� �� c b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� a �� �� �� �� �� �� �� �� �� �� �� b b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� a �� �� �� �� �� �� �� �� �� �� �� �� b b �
� a �� �� �� �� �� �� �� �� a �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� b b �
� a �� �� �� �� �� �� �� �� a �� b �
� a �� b �
� a �� �
� �

Fig. 1. Exemplary processing of the word a4ba7ba8ba5cb3 = a4ba4a3ba3a5ba5cb3 by the
deterministic (MVR, ER)-automaton from the proof of Theorem 2

At this point A has changed the first subword an1ban1 to a��2n1 and can
continue with processing the second block. By iterating this procedure, every
subword anibani is changed to a��2ni . Figure 1 gives an example of how A pro-
cesses the word a4ba7ba8ba5cb3 = a4ba4a3ba3a5ba5cb3; here every line shows the
contents of the tape after the erasure of another field. As soon as A reaches the
first c, the tape contains one a for each block anibani on the left side of the head
and A can therefore compare the a’s with the b’s on the right side (by alternately
erasing one a and one b). A finally accepts the input if and only if all symbols
have been erased after this comparison. !

Theorem 3. Ldet(MVR, DL) ⊂ Ldet(MVR, ERR, DL).

Proof. In analogy to the proof of Theorem 2, a deterministic (MVR, ERR, DL)-
automaton A can compare the number of symbols to the left and to the right
of each marker b and spare one a per block; here each block anibani is rewritten
into a single a. !

378 J. Glöckler

In [9] Plátek and Vogel showed that (MV, DL)-automata are able to recognize
all deterministic context-free languages. Furthermore non-context-free languages
like {a2n | n ∈ IN} can be accepted; therefore we have:

Proposition 4. DCFL ⊂ Ldet(MV, DL)

In [11] an open problem from [2] was solved for the deterministic case, namely
the question of an equality or strict inclusion of the families Ldet(MV, DL) and
Ldet(MV, ER). In the nondeterministic case, however, the problem remains open.

Proposition 5. Ldet(MV, DL) ⊂ Ldet(MV, ER)

The next two results relate to (ER, DL)-automata, which in Proposition 3 were
already shown to be more powerful than one-way one-counter automata:

Theorem 4. Ldet(ER, DL) = Ldet(ER, DLR)

Proof. Although the proof of L (ER, DL) ⊆ L (ER, DLR) in [2] uses nondeter-
minism, the inclusion (and therefore the equality) holds in the deterministic case
as well. The missing DLL-operation (in both cases) can be simulated by consec-
utively performing ERL and DLR. !

Proposition 6. Ldet(ER, DL) ⊂ Ldet(MVR, ER, DL)

Proof. The proof from [2] also holds in the deterministic case as the witness
language {wcwR | w ∈ {a, b}∗} /∈ L (ER, DL) can also be accepted by a deter-
ministic (MVR, ER, DL)-automaton. !

When comparing the models of (ER,DL)-automata and (MVL,ER,DL)-automata,
one finds out that (MVL, ER, DL)-automata by means of the additional MVL-
operation are merely able to leave the first input symbol (i.e., the first symbol
not yet erased or deleted) to the left without changing it.

An (ER, DL)-automaton can leave an input symbol to the left only via ERL

or DLL. If the processing of a certain subword v requires several movements
back and forth on v, an (ER, DL)-automaton cannot perform these movements
without deleting or erasing further symbols to the right of v. On the one hand,
this is the case when some nonregular property needs to be checked. On the
other hand such a property can only concern the length of a substring as an
(ER, DL)-automaton can only read each symbol once before erasing or deleting
it. We therefore require the length of the first subword of the input to be a power
of two.

By adding another nonregular property on a second subword – separated by
an otherwise unused marker symbol – we obtain a language suitable for fooling
a deterministic (ER, DL)-automaton and we can thus separate Ldet(ER, DL) and
Ldet(MVL, ER, DL):

Theorem 5. Ldet(ER, DL) ⊂ Ldet(MVL, ER, DL)

A Taxonomy of Deterministic Forgetting Automata 379

Proof. For the separation of the two families we use the following language:

L :=
{
a2n

cambm
∣
∣ n,m ∈ IN

}

A deterministic (MVL, ER, DL)-automaton can first check whether the length
of the first string of a’s is a power of two (by stepwise halving the number of
symbols; here the MVL-operation is crucial for not destroying the separator c),
then the second block can be checked whether it has the form anbn.

In order to show that L /∈ Ldet(ER, DL) holds, we assume the contrary and
regard a deterministic (ER, DL)-automaton A = 〈S,A,�,�, ��, O, δ, s0, F 〉 with
L(A) = L.

Let s = |S| and w = a22n

canbn ∈ L with n > 2s be an input word. If we
observe A’s computation on w, the following cases can be distinguished:

1. A reaches a loop of the form ���kxaicanbn� &∗ ���kxaicanbn�
In this case A never reaches c and therefore accepts w if and only if it accepts
wb = a22n

canbn+1 /∈ L. This is a contradiction to the assumption L(A) = L.
2. A reaches a loop of the form ���kxaicanbn� &∗ ���kxajcanbn� with i > j

and i− j ≤ s
Here A reaches c in a configuration ���k′

x′canbn� with x′ ∈ S and k′ < s.
A therefore accepts w if and only if it accepts ai−jw.

3. A reaches a loop of the form ���kxaicanbn� &∗ ���lxajcanbn� with k <
l, i > j and k + i ≥ l + j
We regard the minimal number of configuration changes for which this con-
dition holds. Then A deletes 0 ≤ i+k− (j + l) ≤ s symbols in each loop and
moves right, up to c. At this point, again three cases can be distinguished:

(a) A reaches the first b before it reaches � (or never reaches �)
Here A enters a loop of the form ���k′

yai′
bn� &∗ ���l′yaj′

bn� with
i′ > j′. A therefore accepts w if and only if it accepts

a22n
−(l′−k′)(i−j)can+(l−k)(i′−j′)bn /∈ L,

because it reaches the first b in the same configuration for both words:
The first subword a22n

is shortened by a multiple of i− j and A reaches
c in the same state as on w – whereas it leaves (l′ − k′)(l − k) less
blanks behind. The subword an is extended by a multiple of i′ − j′ and
A therefore reaches the first b in the same state as on w – whereas it
leaves (l − k)(l′ − k′) more blanks behind.

(b) A never reaches a b or � again
In this case A accepts w if and only if it accepts wb = a22n

canbn+1 /∈ L.
(c) A reaches � before it reaches the first b (or never reaches a b)

In this case A can delete or erase at most s symbols near the first b
before entering a loop that leads back to the left sentinel. After reaching
� again, the cases 1-3 need to be considered iteratedly. The cases 1, 2,
3 (a) and 3 (b) need only to be considered after at most s iterations of

380 J. Glöckler

case 3 (c), i.e., at most s movements between � and the next a in loops
that include at least one erase operation:
— If at some point the next ‘a’ will not be reached again (this corre-
sponds to case 1), the above reasoning is still valid as A accepts w if and
only if accepts wb.
— If A leaves less than s blanks on the tape before the first b is reached
(for at most s iterations this corresponds to case 2), the first subword
w can be extended in order to fool automaton A: An input word leads
A to the same state – before entering the loop that shortens the input
as in case 2 – if it is contained in N := {aτcanbn | τ ∈ αIN + β} (for
some α, β ∈ IN). Here αIN + β is the set of solutions of the simultaneous
congruences that are defined by the ‘sweeps’ leading to the same state
from � to the first unerased symbol and vice versa. As one solution exists
(namely for w), there exist infinitely many due to the Chinese remainder
theorem.
As at most s iterations have been performed, α is smaller than 22n

and
there exists a word an′

canbn ∈ N such that n′ is not a power of two and
A accepts an′

canbn if and only if it accepts w.
— If A reaches the first b after at most s iterations of case 3 (c) – this
corresponds to case 3 (a) – there again exists some set N ′ := {aτcanbn |
τ ∈ α′IN+β′} of input words that lead A to the same state in which the
loop directing to the first b is started. Therefore there exist n′ ∈ IN0 and
n′′ ∈ IN such that A accepts w if and only if it accepts a22n

−n′
can+n′′

bn.
— If after at most s iterations of case 3 (c) A reaches the situation of
case 3 (b), i.e., if it never reaches a b or � again, A can still be fooled
with the input word wb.
— If loops as in case 3(c) are iterated until the first b is reached, a series
z1, z2, . . . of states – in which the first unerased a is reached in each loop
– will occur. Due to the choice of n there exist p and q with p < q such
that zp = zq holds. If only ER-operations are used in the loops (leading
from � to an a and vice versa) after the appearance of zp, there exist
n′, n′′ ∈ IN such that A reaches the same configuration at the first b when
processing w and a22n

+n′
can−n′′

bn /∈ L. If, however, some DL-operations
occur, there exist n′, n′′ ∈ IN such that A reaches the same configuration
at the first b when processing w and a22n

+n′
can+n′′

bn /∈ L.

For all cases a contradiction to the assumption L(A) = L was reached and
therefore the separation of Ldet(ER, DL) and Ldet(MVL, ER, DL) follows. !
The preceding proof also gives a solution to an open problem from [14] where
all deterministic classes except for Ldet(ER, DL) were shown to be closed under
marked concatenation; note that both {a2n | n ∈ IN} and {ambm | m ∈ IN} can
be accepted by a deterministic (ER, DL)-automaton:

Corollary 2. Ldet(ER, DL) is not closed under marked concatenation.

In [11] the following inclusion was shown to hold; it is another example of how
surprisingly powerful the erase operation can be:

A Taxonomy of Deterministic Forgetting Automata 381

Proposition 7. Ldet(MVL, ER, DL) ⊂ Ldet(MV, ER)

Finally, the last propositions deal with the family of languages accepted by
deterministic forgetting automata equipped with all six possible operations:

Proposition 8. Ldet(MVR, ER, DL) ⊂ Ldet(MV, ER, DL)

Proof. The proof from [2] also holds in the deterministic case as the witness
language {wcw | w ∈ {a, b}∗} /∈ L (MVR, ER, DL) can also be accepted by a
deterministic (MV, ER, DL)-automaton. !

The integration into the Chomsky hierarchy at the top of the hierarchy was
shown in [3]:

Proposition 9. Ldet(MV, ER, DL) ⊂ DCSL

For an overview of the classification of deterministic forgetting automata see
Figure 2.

REG = Ldet(MV) = · · ·

Ldet(ERR, DL) = Ldet(1CA)

Ldet(MVR, DL)

Ldet(MVR,ER) Ldet(MVR, ERR, DL)

DCFL

DetLIN

Ldet(MV,DL)

Ldet(ER,DL) = Ldet(ER,DLR)

Ldet(MV,ER)

Ldet(MVL, ER, DL)
Ldet(MVR, ER, DL) =
Ldet(MVR, ER, DLR)

Ldet(MV,ER,DL)

DCSL

Fig. 2. The classification of deterministic forgetting automata. Here =⇒ denotes inclu-
sion and −→ stands for strict inclusion, while dotted lines · · · mark incomparability.

382 J. Glöckler

4 Open Problems

The main open problems left concerning deterministic forgetting automata are
probably the inclusions depicted in Figure 2 which are not known to be strict.
As (MV, ER)-automata have turned out to be very powerful, there is no evidence
that the inclusion Ldet(MV, ER) ⊆ Ldet(MV, ER, DL) is strict.

In the nondeterministic case L (MVR, ER) and L (MVR, ERR, DL) coincide
with the family of context-free languages; the question whether the deterministic
classes Ldet(MVR, ER) and Ldet(MVR, ERR,DL) likewise coincide with the family
of deterministic context-free languages (DCFL) remains open, however.

References

1. Jančar, P., Mráz, F., Plátek, M.: Forgetting automata and the Chomsky hierar-
chy. In: Proc. SOFSEM 1992, pp. 41–44. Masaryk University, Brno, Institute of
Computer Science (1992)

2. Jančar, P., Mráz, F., Plátek, M.: A taxonomy of forgetting automata. In:
Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 527–
536. Springer, Heidelberg (1993)

3. Jančar, P.: Nondeterministic forgetting automata are less powerful than deter-
ministic linear bounded automata. Acta Mathematica et Informatica Universitatis
Ostraviensis 1, 67–74 (1993)

4. Mráz, F., Plátek, M.: A remark about forgetting automata. In: Proc. SOFSEM
1993, pp. 63–66. Masaryk University, Brno, Institute of Computer Science (1993)

5. Mráz, F., Plátek, M.: Erasing automata recognize more than context-free lan-
guages. Acta Mathematica et Informatica Universitatis Ostraviensis 3, 77–85
(1995)

6. Jančar, P., Mráz, F., Plátek, M.: Forgetting automata and context-free languages.
Acta Informatica 33, 409–420 (1996)

7. von Braunmühl, B., Verbeek, R.: Finite change automata. In: Weihrauch, K. (ed.)
GI-TCS 1979. LNCS, vol. 67, pp. 91–100. Springer, Heidelberg (1979)

8. Jančar, P., Mráz, F., Plátek, M.: Characterization of context-free languages by
erasing automata. In: Havel, I.M., Koubek, V. (eds.) MFCS 1992. LNCS, vol. 629,
pp. 305–314. Springer, Heidelberg (1992)

9. Plátek, M., Vogel, J.: Deterministic list automata and erasing graphs. The Prague
bulletin of mathematical linguistics 45, 27–50 (1986)

10. Chytil, M.P., Plátek, M., Vogel, J.: A note on the Chomsky hierarchy. Bulletin of
the EATCS 27, 23–30 (1985)

11. Glöckler, J.: Forgetting automata and unary languages. International Journal of
Foundations of Computer Science 18, 813–827 (2007)

12. Holzer, M., Lange, K.J.: On the complexities of linear LL(1) and LR(1) grammars.
In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg
(1993)

13. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

14. Glöckler, J.: Closure properties of the families of languages accepted by forgetting
automata. In: Proc. MEMICS 2007, pp. 51–58 (2007)

Provably Shorter Regular Expressions from

Deterministic Finite Automata

(Extended Abstract)

Hermann Gruber1 and Markus Holzer2

1 Institut für Informatik, Ludwig-Maximilians-Universität München,
Oettingenstraße 67, D-80538 München, Germany

gruberh@tcs.ifi.lmu.de
2 Institut für Informatik, Technische Universität München,

Boltzmannstraße 3, D-85748 Garching bei München, Germany
holzer@in.tum.de

Abstract. Westudy theproblemoffindinggood eliminationorderings for
the state eliminationalgorithm,which is oneof themost popularalgorithms
for the conversion of finite automata into equivalent regular expressions.
Based on graph separator techniques we are able to describe elimination
strategies that remove states in large induced subgraphs that are “simple”
like, e.g., independent sets or subgraphs of bounded treewidth, of the un-
derlying automaton, that lead to regular expressions of moderate size. In
particular, we show that there is an elimination ordering such that every
language over a binary alphabet accepted by an n-state deterministic finite
automaton has alphabetic width at most O(1.742n),which is, to our knowl-
edge, the algorithm with currently the best known performance guarantee.
Finally, we apply our technique to the question on the effect of language op-
erations on regular expression size. In case of the intersection operation we
prove an upper bound which matches, up to a small factor, a lower bound
recently obtained in [9,10], and thus settles an open problem stated in [7].

1 Introduction

One of the most basic theorems in formal language theory is that every regular
expression can be effectively converted into an equivalent finite automaton, and
vice versa [14], and algorithms accomplishing these tasks have been known since
the beginning of automata theory, see, e.g., [17]. While regular expressions can
be converted efficiently into nondeterministic finite automata, the other direction
necessarily leads to an exponential blow-up in size [6]. Some very recent results on
this problem imply an increase of 2Ω(n) in size, even given a deterministic finite
automaton over a binary alphabet [9,10,11]. In spite of these strong negative
results, already early authors noticed that, at least in many cases, it may be
possible to improve the standard state elimination algorithm: The authors of
the seminal work [17] noticed that the ordering in which the states of the given
automaton are processed can greatly influence the size of the resulting regular
expression, and an implementation study appearing in the 1960s notes [16]:

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 383–395, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

384 H. Gruber and M. Holzer

“. . . a basic fault of the method is that it generates such cumbersome
and so numerous expressions initially.” . . .

But only the last few years have seen a renewed interest in heuristic algorithms
that produce, at least in some cases, shorter regular expressions than the stan-
dard, non-optimized textbook procedure, see, e.g., [3,7,12,18]. However, none
of the mentioned algorithms is known to have a better performance guarantee
than O(4n) in the worst case, which is (roughly) the guarantee of the standard
textbook algorithms. It is worth mentioning that in [7] a recursive algorithm for
converting planar n-state finite automata into regular expressions with a non-
trivial performance guarantee of 2O(

√
n) was presented. As proved in [10], this

bound is asymptotically optimal for the planar case. The mentioned algorithm
exploits the separator theorem for planar graphs [15]. This was the starting point
of our investigations.

The main idea underlying the graph separator technique is to identify large
induced substructures that are “simple” that lead to regular expressions of mod-
erate size or alphabetic width. Such a procedure is seemingly more difficult to
implement than a mere state elimination strategy, but we will show how the idea
of using separators can be generalized and implemented simply in a divide-and-
conquer fashion. The difficulty when applying this idea is that on the one hand
large or omnipresent substructures are needed, such that the algorithm can be
applied successfully, and on the other hand, these substructures have to produce
small regular expressions. These two conditions seem to clash at first thought.
Nevertheless, we present two algorithms, one that uses independent sets, the
other one induced subgraphs of bounded undirected treewidth, as basic building
blocks for a strategy computing a good ordering on the states for the state elim-
ination scheme. Both algorithms when applied to an n-state deterministic finite
automata attain regular expressions with a performance guarantee of O(cn), for
constants c < 2.602 and c < 1.742, respectively. As a side result, we identify a
structural restriction, namely bounded treewidth, on the transition structure of
the given finite automata that guarantees a polynomial upper bound on the re-
sulting regular expression. These new insights on the conversion problem can be
applied to some questions regarding the effect of language operations on regular
expression size, too. Namely, we present a new algorithm computing a regular
expression denoting the intersection of two regular languages. The performance
guarantee is proved to be 2O(n log m

n), where m and n ≤ m are sizes of the given
regular expressions. This matches, up to a small factor,1 a lower bound of 2Ω(n)

recently established in [10]. We thus settle a question stated in [7] and com-
plement previous lower bounds from [8,9,10]. We also prove a nontrivial upper
bound for the alphabetic width of the language operation of half-removal, whose
descriptional complexity in terms of finite automata was studied recently in [4].

1 For example, assuming that storing a regular expression of alphabetic width k takes k
bytes, and the larger expression is stored in an enormous plain text file taking
1MByte = 210 KByte disk space, while the smaller one needs only 1 KByte, we
still have log m

n
= 10.

Provably Shorter Regular Expressions from Deterministic Finite Automata 385

2 Basic Definitions

We introduce some basic notions in formal language and automata theory—for
a thorough treatment, the reader might want to consult a textbook such as [21].
In particular, let Σ be a finite alphabet and Σ∗ the set of all words over the
alphabet Σ, including the empty word ε. The length of a word w is denoted
by |w|, where |ε| = 0.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite set of input symbols, δ : Q×Σ → 2Q

is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. The language accepted by the finite automaton A is defined
as L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ }, where δ is naturally extended to a
function Q×Σ∗ → 2Q. A NFA A = (Q,Σ, δ,Q0, F) is deterministic, for short
a DFA, if |δ(q, a)| ≤ 1, for every q ∈ Q and a ∈ Σ. In this case we simply write
δ(q, a) = p instead of δ(q, a) = {p}. Two finite automata are equivalent if they
accept the same language. Without loss of generality we assume throughout this
paper, that every finite automaton accepting a nonempty language has useful
states only, i.e., every state is accessible from the initial state and co-accessible
from some accepting state—this assumption is compatible with the definition of
deterministic finite automata given above.

It is well known that finite automata and regular expressions are equally
powerful, i.e., for every finite automaton on can construct an equivalent regular
expression. Let Σ be an alphabet. The regular expressions over Σ are defined
recursively in the usual way:2 ∅, ε, and every letter a with a ∈ Σ is a regular
expression, and if r1 and r2 are regular expressions, then (r1 + r2), (r1 · r2),
and (r1)∗ are also regular expressions. The language defined by a regular expres-
sion r, denoted by L(r), is defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a},
L(r1 + r2) = L(r1) ∪ L(r2), L(r1 · r2) = L(r1) · L(r2), and L(r∗1) = L(r1)∗. The
size or alphabetic width of a regular expression r over the alphabet Σ, denoted
by alph(r), is defined as the total number of occurrences of alphabet symbols
of Σ in r. For a regular language L, we define its alphabetic width, alph(L), as
the minimum alphabetic width among all regular expressions describing L. As
with finite automata, the notion of equivalence is defined based on equality of
the described language.

In the remainder of this section we fix some basic notations from graph the-
ory. A directed graph, or digraph, G = (V,E) consists of a finite set of vertices V
with an associated set E ⊆ V × V of edges. If the edge relation E is symmetric,
the digraph is said to be symmetric. Intuitively, a symmetric digraph is obtained
by forgetting the orientation of the original edges in G. A digraph H = (U,F)
is a subdigraph, or simply subgraph, of a digraph G = (V,E), if U ⊆ V and for

2 For convenience, parentheses in regular expressions are sometimes omitted and the
concatenation is simply written as juxtaposition. The priority of operators is specified
in the usual fashion: Concatenation is performed before union, and star before both
product and union.

386 H. Gruber and M. Holzer

each edge (u, v) ∈ F with u, v ∈ U , the pair (u, v) is an edge in E. For a subset
U ⊆ V , the subgraph induced by U is the subgraph G[U] = (U,E ∩ (U × U)).

Finally, a hammock is a digraph G = (V,E) having two distinguished vertices s
and t satisfying the properties (1) that the indegree of s and the outdegree of t is
zero, and (2) for every vertex v in G, there is both a path from s to v and a path
from v to t. Here s is referred to as the start vertex and t as the terminal vertex
of the hammock G. The remaining set of vertices Q = V \ {s, t} is called the
set of internal vertices. It is thus convenient to specify a hammock as a 4-tuple
H = (Q,E, s, t). With the finite automaton A = (Q,Σ, δ, q0, F) we naturally
associate a hammock H(A) = (Q,E, s, t), where s and t are designated vertices
not appearing in Q that play the role of the initial and a single final state, and
E = {(s, q0)}∪{ (q, t) | q ∈ F }∪{ (p, q) ∈ Q2 | q ∈ δ(p, a), for some a ∈ Σ }. Due
to the “dualism” of computations in A and walks in H(A) one can reconstruct the
language accepted by A from the walks in H(A)—a walk in H(A) is a (possibly
empty) sequence of edges along a path, with repeated edges allowed. To this
end define the substitution σ : E → Σ∗ by (p, q) 	→ { a ∈ Σ | q ∈ δ(p, a) }, if
p, q ∈ Q, (s, q0) 	→ {ε}, and (q, t) 	→ {ε}, for q ∈ F , which naturally extends
to words and languages over E. It is easy to see that L(A) = σ(LQ

st); here LZ
xy,

for x, y ∈ Q ∪ {s, t} and Z ⊆ Q, refers to the set of all walks in H(A) from
vertex x to vertex y whose internal vertices are all in Z—the internal vertices of
a walk denote those that are visited by the walk after the leaving x and before
entering y. This notion naturally extends to LZ

XY for sets X,Y ⊆ Q∪ {s, t} and
Z ⊆ Q. The above definitions are particularly useful in connection with regular
expressions because of the following well-known fact (see also [21]).

Lemma 1. Let Γ and Σ be finite alphabets and r be a regular expression over Γ .
Moreover, let ρ : Γ → 2Σ∗

be a regular substitution, i.e., a substitution satisfying
ρ(a) = L(ra), for some regular expression ra, for each a ∈ Γ . Then a regular expres-
sion describingρ(L(r)) is obtained fromr by substitutingra for each lettera ∈ Σ. !

Thus, it suffices to describe the conversion to regular expressions from finite
automata on the basis of the associated digraphs, which we will do in the forth-
coming. Because our proofs and algorithmic ideas are mainly drawn from graph
theory, this proves to be notationally more convenient.

3 Choosing a Good Elimination Ordering for the State
Elimination Technique

The state elimination technique is an optimized version of the McNaughton-
Yamada algorithm, avoiding the unnecessary computation of subexpressions. A
detailed description of the state elimination algorithm can be found in [21]. Here
we only introduce the necessary background and notations. For the hammock
H(A) = (Q,E, s, t) that is associated to a finite automaton A = (Q,Σ, δ, q0, F)
both algorithms compute regular expressions rS

jk from the regular expression
matrix RS = (rS

jk)j,k∈Q∪{s,t} satisfying L(rS
jk) = LS

jk, for every j, k ∈ Q ∪ {s, t}

Provably Shorter Regular Expressions from Deterministic Finite Automata 387

and a fixed ordering S ⊆ Q; it is convenient to write a total order on a fi-
nite set as a word, where the relative positions of the letters specify the order.
Since any path from vertex j to k whose internal vertices are in S ∪ {i} can
be written as L

S∪{i}
jk = LS

jk + LS
ji · (LS

ii)
∗ · LS

ik, we are led to define the identity
rS·i
jk = rS

jk+rS
ji ·(rS

ii)
∗ ·rS

ik on regular expressions, for every j, k ∈ Q∪{s, t} and S ·i
prefix of the ordered set Q, which is the basic recurrence of both algorithms. Af-
ter applying these rules for all pairs (j, k) with j, k �= i for an inner vertex i it
becomes isolated and thus can safely be eliminated. This explains the term state
elimination algorithm, because during the computation of the expressions rS

jk

we are led to the hammock HS(A) = (Q \ S,ES , s, t), with ES = { (j, k) |
there is a path from vertex j to k in H(A) with internal vertices from S }. Ob-
serve that the choice of the elimination order on Q can greatly influence the
size of the resulting regular expression rQ

st. A further slight enhancement on the
algorithm concerns the usage of the similarity relation.3 With a straightforward
implementation one can ensure that rS

jk = ∅ if and only if LS
jk = ∅.

The size of the regular expression resulting from applying the McNaughton-
Yamada algorithm has been analyzed in [7]. There it was shown that the algo-
rithm produces a regular expression of alphabetic width at most |Σ| ·n ·4n. Here,
state elimination is better by a factor of n, paradoxically because we enlarged
the automaton, in adding an (n + 1)th state as single final state.

Theorem 2. Let A be an n-state finite automaton. Then the state elimination
algorithm produces for any ordering on the states a regular expression describ-
ing L(A) of alphabetic width at most |Σ| · 4n. !

Previous accounts on choosing elimination orderings can be naturally put into
two groups: In the first group, we find algorithms that have a tail-recursive
specification, and are most easily implemented by an iterative program
[3,6,7,11,17,18], the others are based on the divide-and conquer paradigm [7,12],
suggesting a recursive implementation. We present a lemma that proves useful
for designing algorithms in both groups. The lemma gives rise to two algorithms
for choosing good elimination orderings yielding nontrivial performance guaran-
tees for deterministic finite automata, one of which gives polynomial-size regular
expressions for a restricted yet large class of finite automata.

3.1 The Main Lemma

As before, for a finite automaton A, let H(A) = (Q,E, s, t) be the hammock asso-
ciated with A, and let S denote a subset ofQ. We begin with an observation on the
3 Two regular expressions r and s are called similar, in symbols r ∼= s, if r and s can

be transformed into each other by repeatedly applying one of the following rules to
their subexpressions: (1) r + r ∼= r, (2) (r + s)+ t ∼= r + (s+ t), (3) r + s ∼= s+ r, (4)
r + ∅ ∼= r ∼= ∅ + r, (5) r · ∅ ∼= ∅ ∼= ∅ · r, (6) r · ε ∼= r ∼= ε · r, and (7) ∅∗ ∼= ε ∼= ε∗. The
first three rules above define the notion of similarity introduced by Brzozowski [1],
and the remaining three have been added because of their usefulness in the context
of converting regular expressions into finite automata.

388 H. Gruber and M. Holzer

expressions rS
jk resulting from eliminating S in case the induced subgraph H [S]

falls apart into mutually disjoint components.

Lemma 3. Let H = (Q,E, s, t) be a hammock. Assume S ⊆ Q can be parti-
tioned into two sets T1 and T2 such that the induced subgraph H [S] falls apart
into mutually disconnected components H [T1] and H [T2]. Let j and k be vertices
with j, k ∈ (Q \ (T1 ∪ T2)) ∪ {s, t}. Then for the expression obtained by elimina-
tion of the the vertices in T1 followed by elimination of the vertices in T2 holds
rT1·T2
jk

∼= rT1
jk + rT2

jk .

Proof. We prove the statement by induction on |T1| + |T2|. The induction is
rooted at |T1| + |T2| = 0. For the case T2 is empty, we have in general rT1T2

jk =
rT1
jk

∼= rT1
jk + rε

jk, as desired. For the induction step, let |T1| + |T2| = n, with
T2 �= ∅. Let t be the last element in T2, that is, T2 = T t for some prefix T of T2.
Then rT1T2

jk
∼= rT1T

jk + rT1T
jt · (rT1T

tt)∗ · rT1T
tk . Since |T1|+ |T | = n−1, for the first of

the four subexpressions on the right-hand side the induction hypothesis applies:
rT1T
jk

∼= rT1
jk + rT

jk. For the last three subexpressions, we claim that rT1T
jt

∼= rT
jt,

as well as (rT1T
tt)∗ ∼= (rT

tt)
∗, and rT1T

tk = rT
tk. We only prove the first congruence,

the others are dealt with in a similar manner. It suffices to prove rT1
jt

∼= rε
jt,

since the both sides of the former congruence are obtained from the latter by
eliminating T , and state elimination preserves similarity of expressions. If there
is an edge (j, t) ∈ E, then it is already described by rε

jt. It only remains to
show that no further words are introduced by eliminating T1. So we may as well
assume that (j, t) /∈ E and prove the congruence for this case. This can be done
as follows: Consider the subgraph H [S]. By assumption of the lemma, t ∈ T2 is
not reachable from any vertex in T1, thus no walk from j to t can visit a vertex
in T1, and since there is no direct connection from j to t, the language LT1

jt is
empty. Every regular expression describing the empty set is similar to ∅, hence
rT1
jt
∼= ∅, provided (j, t) /∈ E. This completes the proof of the congruence for this

subexpression. Plugging in the four subexpression congruences we just found
that rT1T2

jk
∼= rT1

jk + rT
jk + rT

jt(r
T
tt)

∗rT
tk = rT1

jk + rT2
jk . !

3.2 Eliminating Independent Sets

The following theorem shows that eliminating an independent set from the ver-
tex set before eliminating the remaining vertices produces intermediate regular
expressions which are short and easy to understand.

Lemma 4. Let H = (Q,E, s, t) be a hammock. Assume I ⊆ Q is an independent
set in H. Let j and k be vertices with j, k ∈ (Q \ I) ∪ {s, t}. Then for the regular
expression rI

jk obtained after elimination of I holds rI
jk
∼= rε

jk+
∑

i∈I r
ε
ji ·(rε

ii)
∗ ·rε

ik.

Proof. By induction on |I|, making repeated use of Lemma 3: The statement
holds true in the case |I| = 1. For |I| > 1, in the notation of Lemma 3, set

Provably Shorter Regular Expressions from Deterministic Finite Automata 389

S = I, let t be the last element in I, and assume that T is a suitable prefix such
that I = T t. Then H [I] falls apart into mutually disjoint components H [T] and
H [{t}]. Thus, Lemma 3 is applicable, and rI

jk
∼= rT

jk + rt
jk = rT

jk + rε
jk + rε

jt ·
(rε

tt)
∗ · rε

tk. By induction hypothesis, rT
jk
∼= rε

jk +
∑

i∈T rε
ji · (rε

ii)
∗ · rε

ik . Since the
notion of similarity allows to suppress the multiple appearance of rε

jk in a sum
of subexpressions, the expression rT

jk + rε
jk + rε

jt · (rε
tt)

∗ · rε
tk is similar to the right

hand side of the congruence in the statement of the lemma. !

The next observation is that we can use Lemma 4 repeatedly.

Lemma 5. Let H = (Q,E, s, t) be a hammock, and let S be an ordered subset
of Q Assume I ⊆ Q \ S is an independent set in HS. Let j and k be vertices
with j, k ∈ (Q \ (S ∪ I)) ∪ {s, t}. Then for the regular expression rSI

jk obtained
after elimination of SI holds rSI

jk
∼= rS

jk +
∑

i∈I r
S
ji ·

(
rS
ii

)∗ · rS
ik. !

This gives an algorithm for computing a good elimination ordering as follows:
Choose a large independent set I1 in H = H(A), then choose an independent
set I2 in HI1 , choose an independent set I3 in HI1I2 , and so on. To estimate
the performance of the independent set elimination approach, we have to find
a large independent set Ik+1 in the hammock HI1I2...Ik . The cardinality of the
maximum independent set in some intermediate graph GS obtained after elim-
inating S = I1I2 . . . Ik can be estimated using Turán’s Theorem from graph
theory [20]. The latter gives an estimate in terms of the average degree of a sym-
metric digraph G = (V,E), the latter being defined as d(G) = |E|/|V |—recall
that each unordered pair {u, v} forming an “undirected edge” is counted as two
edges in E.

Theorem 6 (Turán). If G is a symmetric digraph of average degree d with n
vertices, then G has an independent set of size at least n/(d + 1).

In spite of the well known fact that finding a maximum independent set is
computationally hard, the proof of the above theorem implies that such a large
independent set can also be found efficiently using a simple greedy
algorithm. Due to lack of space we have to omit the proof of the following
theorem.

Theorem 7. Let A be an n-state deterministic finite automaton with input al-
phabet Σ. Then there exists an ordering on the states such that the state elimina-
tion algorithm produces a regular expression describing L(A) of alphabetic width
at most |Σ| · nO(1) · 4c·n, where c = 2|Σ|·2|Σ|2·2|Σ|4

(2|Σ|+1)(2|Σ|2+1)(2|Σ|4+1) . !

For the case of a binary alphabet, we have c = 1024
1485 and 4c .= 2.601, thus giving

a worst-case upper bound of, say, O(2.602n). This appears reasonable at once
in presence of a worst-case lower bound of γn for the case of deterministic finite

390 H. Gruber and M. Holzer

automata over binary alphabets, proved recently in [10]. Here, γ > 1 is a fixed
constant4 that is independent of n.

3.3 From Automata of Small Treewidth to Regular Expressions

We show that finite automata whose transition structure forms a graph of
bounded undirected treewidth can be converted into regular expressions of poly-
nomial size.

Definition 8. Let G = (V,E) be a digraph, and let S ⊆ V be a set of vertices.
A set of vertices X is a balanced k-way separator for S if the induced subgraph
G[S \X] falls apart into k mutually disjoint subgraphs G[Ti], for 1 ≤ i ≤ k, with
0 ≤ |Ti| ≤ 1

2 |S \X |.

It is known that for digraphs of undirected treewidth w, every nontrivial subset
of the vertex set admits a small balanced k-way separator of size at most w + 1,
for some k [19]. An elementary observation on sums of integers shows that we
can always set k = 3, by grouping the disjoint subgraphs together in a suitable
manner. Together with the mentioned result from [19], we thus have:

Lemma 9. Let G = (V,E) be a digraph of undirected treewidth at most w.
Then for every subset S of V , there exists a balanced 3-way separator of size at
most w + 1. !

This separation property can be used to convert finite automata of small undi-
rected treewidth into relatively short regular expressions:

Theorem 10. Let A = (Q,Σ, δ, q0, F) be an n-state nondeterministic finite au-
tomaton, H its associated hammock, and let w denote the undirected treewidth
of H [Q]. Then the there exists a ordering on the states such that the state
elimination algorithm produces a regular expression describing language L(A) of
alphabetic width at most |Σ| · n2w+2+log 3.

Proof. We devise a recursive algorithm for finding an elimination ordering such
that the size of the resulting regular expression obeys the desired bound as
follows: By Lemma 9 for each set of states S ⊆ Q, we can find a balanced 3-way
4 By tracking the size of the constants used in the chain of reductions used in that

proof, one can deduce a concrete value for the constant γ. For alphabets of size � ≥ 3,

we get expression size at least 2

√
�(n−1)

3·2·(�+1)2 , for infinitely many values of n. Here we
exploited the fact from spectral graph theory that, using definitions and notation
from [2], for the vertex expansion of �-regular Ramanujan graphs G holds gG ≥
hG ≥ λ1/2 ≥

√
�

2(�+1) , in particular for � = 3. Using a binary encoding that increases
the size of the input deterministic finite automaton to m = 10n whilst preserving
star-height, the very same lower bound (but still in terms of n = 1

10m) is proved
for binary alphabets. Thus we obtain γ

.
= 1.013 for alphabet size at least 3, and

γ
.
= 1.001 for binary alphabets. This estimate is most likely very loose, since the

main goal in in [10] was merely to bound the value of γ away from 1.

Provably Shorter Regular Expressions from Deterministic Finite Automata 391

separator X , such that |X | ≤ w + 1, and the induced subgraph H [S \X] falls
apart into three mutually disjoint subgraphs H [Ti], for 1 ≤ i ≤ 3. For each of the
individual sets Ti, Lemma 3 ensures that for every ordering, rT1T2T3

jk
∼=
∑3

i=1 r
Ti

jk ,
for all j, k ∈ (Q\(T1∪T2∪T3))∪{s, t}. Then we recursively compute an ordering
for each Ti, placing a separator for H [Ti] at the end of that ordering, and so on.

Since for each S ⊆ Q the alphabetic width of rS
jk is at most 4|X|

∑3
i=1 alph(rTi

jk), for some X , T1, T2, and T3 with |X | ≤ w+1 and |Ti| ≤ 1
2 |S|, for

1 ≤ i ≤ 3. Moreover, the alphabetic width of the expression rS
jk is bounded above

by the recurrence R(1) ≤ 1 and R(n) ≤ 4w+1 · 3 · R
(

n
2

)
, for n ≥ 2. We obtain

R(n) ≤ 4(w+1) log n3log n. Applying the substitution σ increases the expression
size by a factor of at most |Σ|. Thus we have an expression of alphabetic width
|Σ| · n2w+2+log 3 for the language L(A). !

3.4 Eliminating Subgraphs of Small Treewidth

Now we present a fusion of our previous ideas: Instead of an independent set, we
look for a large induced subgraph whose structure is “simple” in the sense that
eliminating the states in the subgraph leads to a regular expression of moderate
size. As we have seen in the previous section, one such example are induced
subgraphs of small undirected treewidth. A very recent result states that every
graph with bounded average degree has a large induced subgraph of treewidth
at most two [5]:

Theorem 11. Let G be a connected graph with average degree at most d ≥ 2.
Then there is a polynomial-time algorithm which finds an induced subgraph with
undirected treewidth at most two of size at least 3n

d+1
. !

This gives rise to an algorithm with improved performance guarantee.

Theorem 12. Let A be an n-state deterministic finite automaton with input
alphabet Σ. Then there exists a ordering on the states such that the state elim-
ination algorithm produces a regular expression describing L(A) of alphabetic
width at most |Σ| · nO(1) · 4c·n, where c = 2|Σ|−2

2|Σ|+1 .

Proof. Let H = H(A) = (Q,E, s, t) be the hammock associated with the au-
tomaton A. Note that the average outdegree of H [Q] is at most |Σ| so the average
degree of its undirected version is at most 2|Σ|. By Theorem 11, we can find a
subset S of Q having size 3n

2|Σ|+1 = (1 − c) · n, for suitably chosen c, such that
the induced subgraph H [S] has undirected treewidth at most 2. The remaining
states in Q \ S are placed at the end of the elimination ordering. We set up a
regular expression matrix (rε

jk)j,k, whose rows j and columns k range over the
set (Q \ S) ∪ {s, t}. The algorithm from the proof of Theorem 10 can be used
to compute an elimination ordering for S such that the set of walks from j to k
using internal states only from H [S] is described by the regular expression rS

jk.
One observes that, since this ordering does not depend on j or k, that the same
result is obtained by eliminating S from the larger graph H by using that very

392 H. Gruber and M. Holzer

ordering. As the size of the intermediate expressions after this phase is bounded
by |S|6+log 3, and eliminating the remaining states in Q \ S incurs a blow-up by
a factor of 4c·n, we obtain that the alphabet with of rQ

st is at most nO(1) · 4c·n.
Finally we apply the substitution σ to obtain a regular expression for L(A) that
has alphabetic width at most |Σ| · nO(1) · 4c·n, for c = (2|Σ| − 2)/(2|Σ|+ 1). !

In the case of a binary input alphabet, we obtain that the maximum blow-up
arising in the conversion from deterministic finite automata to regular expres-
sions is at most nO(1) · 42/5·n, where 42/5 .= 1.741.

4 Language Operations and Regular Expression Size

Studying descriptional complexity of language operations on regular expressions
was first suggested in [7]. Lower bounds for the intersection and shuffle, and
a tight lower bound for complementation were found recently in [8,9,10]. We
are able to contrast these negative results with a comparable upper bound for
intersection. A similar approach works for the half-removal operation.

Theorem 13. Let L1, L2 ⊆ Σ∗ be regular languages with alphabetic width at
most m and n, respectively. Then alph(L1 ∩ L2) ≤ |Σ| · 2O(1+log m

n)min{m,n}.
Note that this bound is best possible for the case m = Θ(n) and |Σ| = O(1).

Proof. A regular expression of size m can be converted into an equivalent nonde-
terministic finite automaton A with at most m+1 states such that the digraph of
the underlying transition structure has undirected treewidth at most two [13]—
this nondeterministic finite automaton will in general have ε-transitions, but
these do not cause any trouble when we treat them just like normal transitions.
The construction ensures that the transition structure of the that automaton is
a hammock with at most m− 1 internal vertices.

Let A1 and A2 be finite automata thus obtained from suitable regular ex-
pressions of alphabetic width m and n describing the languages L1 and L2,
respectively. Moreover, let Q1 and Q2 denote their respective state sets of A1

and A2, respectively. By applying the standard product construction for the in-
tersection of regular languages, we obtain a nondeterministic finite automaton
A1×A2 with (m+1)(n+1) states accepting the language L1∩L2, by appropri-
ately defining the initial state of A1×A2 and the accepting states of the product
automaton. With G1 and G2 denoting the digraphs underlying each transition
structure of the automata, the digraph underlying A1 × A2 is (a subgraph of)
the categorical product G1 × G2. Let H = H(A1 × A2) denote the hammock
associated with finite automaton A1 × A2, where s and t are the distinguished
vertices of H . The following claim is immediate from the definition of balanced
3-way separators (Definition 8) and the definition of categorical product:

Claim. Let G1 = (V1, E1) and G2 = (V2, E2) be digraphs, and S1 ⊆ V1, S2 ⊆ V2.
Assume X is a balanced separator for S1, such that the digraph G[S1 \ X]
falls apart into the mutually disjoint subgraphs G[Ti], for 1 ≤ i ≤ 3, with

Provably Shorter Regular Expressions from Deterministic Finite Automata 393

0 ≤ |Ti| ≤ 1
2 |S1 \ X |. Then X × S2 is a balanced 3-way separator for S1 × S2

in the product graph G1 × G2, and the digraph (G1 × G2)[(S1 \X) × S2] falls
apart into the mutually disjoint subgraphs G[Ti × S2], for 1 ≤ i ≤ 3, with
0 ≤ |Ti × S2| ≤ 1

2 |(S1 \X)× S2|. !

We proceed in a similar way as in the proof of Theorem 10, by recursively
computing regular expressions rS1×S2

jk for S1 ⊆ Q1, S2 ⊆ Q2 and all j, k ∈
((Q1×Q2) \ (S1×S2))∪ {s, t}. This time we always choose a suitable separator
according to the above stated claim. This is done as follows: If |S1| < |S2|,
then exchange the roles of G1 and G2, and of S1 and S2, respectively. This is
admissible by the symmetry of the categorical product. Afterwards, choose a
3-way separator X for G1[S1] of size at most 3—recall that, by Lemma 9 such a
separator exists, since both factor graphs have undirected treewidth at most 2.
Let T1, T2, and T3 be the disjoint subgraphs constituting G1[S1 \ X] as given
by Definition 8. Eliminating (S1 \X)× S2 gives regular expressions r

(S1\X)×S2
jk ,

with j and k ranging over all states not in (S1 \X)× S2.
By the above claim and Lemma 3, we have r

(S1\X)×S2
jk

∼=
∑3

i=1 r
Ti×S2
jk . To

recursively assign an elimination ordering to each of the subsets Ti × S2, we
find next a balanced 3-way separator for the larger of the two graphs G1[Ti]
and G2[S2], which amounts to a corresponding separator in the product graph
G1×G2[Ti×S2], and recursively proceed to assign elimination orderings to such
subsets until the subset sizes reach the value 1.

In order to get an upper bound on alph(L1 ∩ L2) ≤ alph(rS1×S2
st), define

A(β, η) = max
S1⊆V1,|S1|≤β
S2⊆V2,|S2|≤η

{ alph(rS1×S2
jk) | j, k ∈ ((Q1 ×Q2) \ (S1 × S2)) ∪ {s, t} }.

An easy observation is that for the degenerate case, where S1 and S2 have both
at most one element, we have A(1, 1) ≤ 4. An upper bound is obtained thus by
solving the recurrence A(β, η) = A(η, β), if 1 < β < η, A(β, η) = 4, if β = η = 1,
and A(β, η) = 3 ·A

(⌊
β
2

⌋
, η
)
· 43η, otherwise. This leads to the stated bound on

alph(L1 ∩ L2). The analysis of the recurrence is omitted. !

Basically the same technique can be used for the half-removal operation, defined
as 1

2L = { x ∈ Σ∗ | there exists y ∈ Σ∗ with |x| = |y| such that xy ∈ L }. The
state complexity of this operation was studied in [4]. The theorem reads as
follows—due to lack of space we omit the proof.

Theorem 14. Let L ⊆ Σ∗ be a regular language of alphabetic width at most n.
Then alph

(
1
2L

)
≤ |Σ| · 2O(n). !

Thus, the technique used above is applicable for certain language operations that
can be implemented on nondeterministic finite automata using a special kind of
product construction. But there are also limitations: For instance, the authors
failed to use the above technique to produce a nontrivial upper bound for the
shuffle of two regular languages.

394 H. Gruber and M. Holzer

References

1. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481–494 (1964)

2. Chung, F.R.K.: Spectral Graph Theory. In: CBMS Regional Conference Series in
Mathematics, vol. 92. American Mathematical Society (1997)

3. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a
given regular language. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.)
CIAA 2004. LNCS, vol. 3317, pp. 312–314. Springer, Heidelberg (2005)

4. Domaratzki, M.: State complexity of proportional removals. Journal of Automata,
Languages and Combinatorics 7(4), 455–468 (2002)

5. Edwards, K., Farr, G.E.: Planarization and fragmentability of some classes of
graphs. Discrete Mathematics 308(12), 2396–2406 (2008)

6. Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. Journal
of Computer and System Sciences 12(2), 134–146 (1976)

7. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: New results
and open problems. Journal of Automata, Languages and Combinatorics 10(4),
407–437 (2005)

8. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. In: Proceedings of the 33rd International Symposium on Mathematical
Foundations of Computer Science, Turoń, Poland, August 2008. LNCS. Springer,
Heidelberg (to appear, 2008)

9. Gelade, W., Neven, F.: Succinctness of the complement and intersection of reg-
ular expressions. In: Albers, S., Weil, P. (eds.) Proceedings of the 25th Sym-
posium on Theoretical Aspects of Computer Science, Bordeaux, France, Febru-
ary 2008. Dagstuhl Seminar Proceedings, vol. 08001, pp. 325–336. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany (2008)

10. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular ex-
pression size. In: Aceto, L., Damgaard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walkuwiewicz, I. (eds.) Proceedings of the 35th International
Colloquium on Automata, Languages and Programming, Reykjavik, Iceland, July
2008. Springer, Heidelberg (2008)

11. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using
communication complexity. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962,
pp. 273–286. Springer, Heidelberg (2008)

12. Han, Y.-S., Wood, D.: Obtaining shorter regular expressions from finite-state au-
tomata. Theoretical Computer Science 370(1-3), 110–120 (2007)

13. Ilie, L., Yu, S.: Follow automata. Information and Computation 186(1), 140–162
(2003)

14. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies,
pp. 3–42. Princeton University Press, Princeton (1956)

15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal
on Applied Mathematics 36(2), 177–189 (1979)

16. McIntosh, H.V.: REEX: A CONVERT program to realize the McNaughton-
Yamada analysis algorithm. Technical Report AIM-153, MIT Artificial Intelligence
Laboratory (January 1968)

17. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRA Transactions on Electronic Computers 9(1), 39–47 (1960)

Provably Shorter Regular Expressions from Deterministic Finite Automata 395

18. Morais, J.J., Moreira, N., Reis, R.: Acyclic automata with easy-to-find short reg-
ular expressions. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 349–350. Springer, Heidelberg (2006)

19. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309–322 (1986)

20. Turán, P.: On an extremal problem in graph theory (in Hungarian). Matematicko
Fizicki Lapok 48, 436–452 (1941)

21. Wood, D.: Theory of Computation. John Wilet & Sons (1987)

Large Simple Binary Equality Words

Jana Hadravová� and Štěpán Holub��

Faculty of Mathematics and Physics, Charles University
186 75 Praha 8, Sokolovská 83, Czech Republic

holub@karlin.mff.cuni.cz, hadravova@ff.cuni.cz

Abstract. Let w be an equality word of two nonperiodic binary
morphisms g, h : {a, b}∗ → Δ∗. Suppose that no overflow occurs twice
in w and that w contains at least 9 occurrences of a and at least 9
occurrences of b.

Then either w = (ab)ia, or w = aibj with gcd(i, j) = 1, up to the
exchange of letters a and b.

1 Introduction

An equality word, also called a solution, of morphisms g, h : Σ∗ → Δ∗ is a word
satisfying g(w) = h(w). All equality words of the morphisms g, h constitute the
set Eq(g, h), which is called the equality language of g and h. Natural concept
of equality languages was introduced in [1], and since then it has been widely
studied. It turns out that the equality languages are very rich objects; for exam-
ple, each recursively enumerable language can be obtained as a morphic image
of generating words of a set Eq(g, h), see [2].

It is also well known, due to [3], that it is undecidable whether an equality
language contains a nonempty word (an algorithmic problem known as the Post
Correspondence Problem, or the PCP).

A lot of attention has been paid to the binary case, that is, when |Σ| =
2. This is the smallest domain alphabet for which the structure of Eq(g, h) is
not completely trivial, and in the same time the largest for which there is any
reasonable knowledge about the structure of the equality set. For |Σ| = 3 it is
already a long-standing open problem whether the equality set has to be regular,
see [4] and [5].

The structure of binary equality languages has been first studied in [6] and
[7] and later in a series of papers [8,9,10]. It has been shown that binary equality
languages are always generated by at most two words, provided that both mor-
phisms are nonperiodic (the periodic case being rather easy). It is also known
that if the set Eq(g, h) is generated by two distinct generators, then these gen-
erators are of the form bai and aib. Bi-infinite binary words were studied for
example in [11]. It should be also mentioned that the binary case of the PCP is
decidable, even in polynomial time ([12,13]).
� Supported by Hlavka’s Foundation.

�� Supported by the research project MSM 0021620839.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 396–407, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Large Simple Binary Equality Words 397

However, very little is known so far about words which are single genera-
tors of binary equality languages. In this paper we make a step towards a
characterization of such words. Our research will be limited only to so-called
simple solutions, that is, to solutions that do not have the same overflow
twice.

It is well known, since the proof of the decidability of the binary PCP, that
each binary equality word can be divided into a sequence of so-called blocks,
which are simple in the aforementioned sense. Simple solutions therefore repre-
sent a natural starting point of the research. We characterize all simple solutions
that are long enough, more precisely all such solutions that contain each of the
letters a and b at least nine times. Due to space limits we do not prove all de-
tails, we rather explain the main ideas, and include proofs that, instead of being
purely technical, illustrate the underlying concepts.

2 Basic Concepts and Ideas

We shall mostly use standard notation and terminology of combinatorics of words
(see for example [14] and [15]). We suppose that the reader is familiar with basic
folklore facts concerning periods and primitive words. In particular, let us recall
the Periodicity lemma, which can be formulated in the following way. If p and
q are two primitive words such that the words pω and qω have a common factor
of length at least |p|+ |q| − 1, then p and q are conjugate.

We shall write u ≤p w to denote that u is a prefix of w. If, in addition, u �= w,
then we write u <p w. Similarly, we use u ≤s w and u <s w for suffixes.

Let two binary morphisms g, h : {a, b}∗ → Δ∗ be given. We suppose that both
morphisms are nonperiodic, that is, g(a) and g(b) (h(a) and h(b) resp.) do not
commute.

A word w is called a solution of g and h if g(w) = h(w). A solution w is called
simple if whenever w1, w1u, w2 and w2u

′ are prefixes of wω such that

g(w1)z = h(w2), and g(w1u)z = h(w2u
′)

for some word z, then |u| = |u′| = k|w|, for some k ∈ N+. We shall be interested
only in simple solutions.

It is easy to see that if w is a simple solution, then it is a primitive word, that
is, it is not a power of a shorter word.

Example 1. Trivial examples of non-simple solutions are words composed of
shorter solutions. Apart from these, we can also find non-simple solutions that
are minimal, that is, they cannot be decomposed into shorter solutions. As an
example, consider morphisms

g(a) = bba, g(b) = bb,

h(a) = b, h(b) = abbabb.

They have a solution aab, which is not simple since

398 J. Hadravová and Š. Holub

g(ε)bb = h(aa) and g(aa)bb = h(aab).

We now formulate our main result.

Theorem 1. Let g, h : {a, b}∗ → Δ∗ be nonperiodic morphisms, and let w be
their simple solution. If |w|b ≥ 9 and |w|a ≥ 9, then, up to the exchange of the
letters a and b, either

w = (ab)ia

or
w = ajbi

with gcd(i, j) = 1.

Example 2. Each word mentioned in Theorem 1 is indeed a simple solution for a
pair of morphisms g and h. The word w = (ab)ia is a simple solution for example
of morphisms:

g(a) = (ab)ia, g(b) = b,

h(a) = a, h(b) = (ba)i+1b.

The word ajbi is a simple solution for example of morphisms:

g(a) = pl, g(b) = a,

h(a) = aibai, h(b) = sm

where

p = (aibai)j−1aib, s = bai(aibai)j−1

and lj −mi = 1.

It turns out that a lot of technical complications can be avoided if we work with
cyclic words and cyclic solutions instead of ordinary ones. This motivates the
following terminology.

Let u = u0 . . . un−1 be a finite word of length n, and let (i, j) ∈ Zn × Zn,
i �= j, be an ordered pair. We define an interval u[i, j] by

u[i, j] =
(j−i−1) mod n∏

k=0

u(i+k) mod n.

Note that ui = u[i, i + 1], and u[i, i] is a word conjugate with u.
We denote an infinite word starting at the i-th position of u by

u[i,∞] = uiui+1 . . . un−1u0u1

We have the following crucial definition.

Large Simple Binary Equality Words 399

Definition. Let g, h : {a, b}∗ → Δ∗ be morphisms. A cyclic solution of g, h is
an ordered quadruple (w, c, G,H) where w = w0w1 · · ·w|w|−1 ∈ {a, b}+, c ∈ Δ+,
|c| = |g(w)| = h(w) and G,H : Z|w| → Z|c| are injective mappings such that

c[G(i), G(i + 1)] = g(wi) and c[H(i), H(i + 1)] = h(wi),

for all i ∈ Z|w|.

The concept of a simple solution is extended to cyclic solutions in the following
definition.

Definition. Let (w, c, G,H) be a cyclic solution of g, h. We say that (w, c, G,H)
is simple if

c[G(r1), H(t1)] = c[G(r2), H(t2)]

implies (r1, t1) = (r2, t2).

The prior definitions can be better understood if we use the informal concept
of an overflow. Given two prefix comparable words u and v, we have either an
overflow v−1u of u, or an overflow u−1v of v, depending on whether v is prefix
of u, or the other way round. Since the role of an overflow is played by the word
z in the definition of a simple solution and by the word c[G(r1), H(t1)] in the
definition of a simple cyclic solution, one can see that both definitions are in
fact expressing the same thing: the solution does not contain the same overflow
twice. Notice also that if (w, c, G,H) is a simple cyclic solution, then w has to
be primitive, similarly as in the case of an (ordinary) simple solution.

We now wish to define p-synchronized overflows. We have already mentioned
that overflows in a cyclic solution (w, c, G,H) are words c[G(r), H(t)] given
uniquely by pairs (r, t) ∈ Z|w|. Therefore, p-synchronized overflows will be k-
tuples of overflows with some additional properties. Although our definition is
slightly technical, we will see later on that this concept plays very important
role in the proof of the theorem.

Definition. We say that a cyclic solution (w, c, G,H) of morphisms g, h has k
p-synchronized overflows if there is a k-tuple

((r1, t1), . . . , (rk, tk)) ∈ (Z|w| × Z|w|)k

which has the following properties:

1. for all i ∈ {1, . . . , k − 1} there is li ∈ N+ such that

c[G(ri), H(ti)] = plic[G(ri+1), H(ti+1)];

2. ri are pairwise distinct and ti are pairwise distinct;
3. the word c[G(rk), H(tk)] is a nonempty prefix of pω;
4. for each i ∈ {1, . . . , k} there is some 0 ≤ m < |h(b)| such that

G(ri) = H(ti − 1) + m mod |c| ,

and wti−1 = b.

The following example illustrates the previous definitions.

400 J. Hadravová and Š. Holub

Example 3. Let g, h be morphisms given by:

g(a) = (aab)2a, g(b) = ab,

h(a) = a, h(b) = (baa)3ba.

They have a simple cyclic solution ((ab)2a, c, G,H) where c = (aab)8a, and the
mappings G,H : Z5 → Z25 are given by:

G(0) = 0, G(1) = 7, G(2) = 9 G(3) = 16, G(4) = 18,
H(0) = 1, H(1) = 2, H(2) = 13, H(3) = 14, H(4) = 0.

The cyclic solution is depicted in Figure 1.
It is possible to verify that g and h have no equality word. Notice, on the other

hand, that if w is an equality word for some morphisms g′ and h′, then we can
find mappings G′ and H ′ with G′(0) = H ′(0) = 0 such that (w, g′(w), G′, H ′)
is a cyclic solution. This example therefore shows that the concept of a cyclic
solution generalizes nontrivially the concept of an equality word.

The example also features two aab-synchronized overflows, which are empha-
sized in Figure 1. They are given by pairs (2, 2) and (4, 4) since

c[G(2), H(2)] = c[9, 13] = (aab)a and c[G(4), H(4)] = c[18, 0] = (aab)(aab)a.

Notice that the cyclicity of the solution allows to speak easily for example
about the overflow (aab)2a(aab)4a, which is given as c[G(4), H(2)]. One of the
main advantages of simple cyclic solutions in comparison with (ordinary) simple
solutions is that the definition of a simple cyclic solution does not need to employ
infinite words.

It is not difficult to see the following properties of p-synchronized overflows.
First, we have either

p ≤p c[G(ri), H(ti)], or p ≤s c[H(ti), G(ri)], (*)

for all i ∈ {1, . . . , k}.
Second, if we define s by

s = c[G(r1), H(t1)]−1p c[G(r1), H(t1)], (**)

then the following equations hold for all i ∈ {1, . . . , k}:

c[G(ri),∞] ∧ pω = c[G(ri), H(ti)](c[H(ti),∞] ∧ sω). (***)

A morphism g is called marked if the first letter of g(x) is distinct from
the first letter of h(y) as long as x, y are two distinct letters. Advantages of
marked morphisms are well known in the theory of equality languages, as well
as of the PCP. The crucial advantage is that if both morphisms are marked, the
continuation of a solution is uniquely determined by any nonempty overflow.

Large Simple Binary Equality Words 401

a
a

b

a

a

b

a

a

b
a

aba
a

b

a

a

b

a

a

b

a
a b a

1

2

3

4

5

6

8

10111213

14

15

17

19

20

21
22

23

24

3

4

5

6

7

8

9

101112

15

16

17

18

19

20

21

22

23

24
G

(0
)=

0

G(1)=7

G
(2)=

9

16=
G(3)

18=G(4)

0=
H

(4
)

1=
H

(0
)

2=
H(

1)

H
(2

)=
13

H
(3

)=
14

g(a)

g(b)

g(a)

g(b)

g(a)

h(a)

h(a)

h(b)

h(a)

h(b)

Fig. 1. Simple cyclic solution ((ab)2a, (aab)8a, G, H)

Fortunately, each binary morphism has a so-called marked version, defined
by:

gm(x) = z−1
g g(x)zg, (1)

for each x ∈ Σ with
zg = g(ab) ∧ g(ba).

It is an important property of binary morphisms that gm is well defined by (1),
which, moreover, holds for any word x ∈ Σ∗.

It is not difficult to see that marked morphisms have the following property.

Lemma 1. Let g be a marked morphism and u, v, w be words satisfying

g(u) ∧ w <p g(v) ∧ w.

Then g(u) ∧ w = g(u ∧ v).

Working with the cyclic solution allows to switch easily between any of the given
morphisms and its marked version, which is another very convenient property
of cyclic solutions.

402 J. Hadravová and Š. Holub

3 Properties of Cyclic Solutions

3.1 Many bs Induce Rich Synchronized Overflows

The first step of the proof of Theorem 1 is to show that long words have to
contain many synchronized overflows.

Let us adopt a convention. We use the symmetry of g and h, and a and b,
and henceforth we shall assume that h(b) is the longest of all four image words,
that is,

|g(a)| ≤ |h(b)|, |g(b)| ≤ |h(b)|, and |h(a)| ≤ |h(b)|.

A complicated combinatorial analysis, which we omit, yields that nine occur-
rences of the letter b are enough to enforce five p-synchronized overflows. This is
formulated in the following lemma. Notice that we will be working with marked
morphisms.

Lemma 2. Let (w, c, G,H) be a simple cyclic solution of marked morphisms
g, h : {a, b}∗ → Σ∗. If |w|b ≥ 9, then there is a primitive word p such that

– (w, c, G,H) has five p-synchronized overflows;
– h(b) is a factor of pω; and
– at least one of the words g(a) or g(b) is longer than p.

To give here just a basic hint of how the lemma is proved, we sketch the proof
for a much more generous bound, namely |w|b ≥ 25.

We shall study the occurrences of h(b) in c, which are of the form c[H(i), H(i+
1)], with wi = b. We call them true h-occurrences of b. True g-occurrences are
defined similarly.

Consider now the way a given true h-occurrence of b is covered by true g-
occurrences of a and b. Since we are working with a simple cyclic solution, it is
easy to see that if there are five distinct h-occurrences of b that are covered by
the same pattern of g-occurrences of as and bs, then they produce the desired
five p-synchronized overflows for a primitive word p.

It remains to show that only the following six types of covers are possible:

a+ b+ a+b+ b+a+ a+b+a+ b+a+b+. (2)

The desired result is then obtained easily by the pigeonhole principle.
In order to prove the remaining part, we look at the starting and ending

positions of true g-occurrences of b. We are interested in situations when these
occurrences start (end resp.) in some true h-occurrence of b.

Suppose, for a contradiction, that there is a true h-occurrence of b that is
covered by a sequence of g(a)s and g(b)s that is not listed in (2). Inspection of
the list shows that in such case there is a true h-occurrence of b in which at least
two true g-occurrences of b start, or end. Let us discuss the first case, the second
being similar.

Since the number of true g-occurrences of b equals the number of true h-
occurrences of b, we deduce that there is a true h-occurrence of b in which no

Large Simple Binary Equality Words 403

true g-occurrence of b starts. That occurrence is then covered either by a+ or by
ba+, which implies that a word from g(a+)pref1(g(b)) is a factor of g(a)ω. We
get a contradiction with g marked. !
It should not be too surprising that a much more detailed analysis of covers is
possible, which leads eventually to the bound 9.

3.2 Impact of Five Synchronized Overflows

The next step is to employ the existence of five synchronized overflows in order
to obtain information about the word w. Its structure is revealed in the following
three lemmas.

Lemma 3. Let (w, c, G,H) be a simple cyclic solution that has five p-synchro-
nized overflows. Then the primitive root of c is not conjugate with p.

Proof. Suppose, for a contradiction, that the primitive root of c and p are con-
jugate. Note that h(b) is a factor of pω greater than |p| by the existence of the
synchronized overflows. It is not difficult to see that if baib and bajb are two inter-
vals in w, then i = j, unless h(a) commutes with p. But if h(a) commutes with p,
then also h(b) does, a contradiction. Therefore w is a power of ai1bai2 . This is a
contradiction since w has to be primitive because (w, c, G,H) is simple. !

The next lemma is a consequence of Lemma 1 and is presented without proof.

Lemma 4. Let (w, c, G,H) be cyclic solution of binary marked morphisms g,
h that has three p-synchronized overflows via ((r1, t1), (r2, t2), (r3, t3)). Suppose
that

c[G(r1),∞] ∧ pω = c[G(r2),∞] ∧ pω = c[G(r3),∞] ∧ pω. (3)

Then (w, c, G,H) is not simple.

The following characterization of w is already quite strong.

Lemma 5. Let (w, c, G,H) be a simple cyclic solution of binary marked mor-
phisms g, h that has five p-synchronized overflows. Then there are words e and
f conjugate with w, and primitive words u and v such that

1. g(e) = h(f);
2. u is conjugate with a suffix of e and g(u) ∈ p+; and
3. v is conjugate with a suffix of f and h(v) ∈ s+, where s is given by (**).

Proof. Let ((r1, t1), . . . , (r5, t5)) be a pentuple inducing p-synchronized over-
flows.

(1) Let m ∈ {1, . . . , 5} be chosen such that

|c[G(rm),∞] ∧ pω| = max
k∈{1,...,5}

{|c[G(rk),∞] ∧ pω|}.

404 J. Hadravová and Š. Holub

According to Lemma 4, each three words c[G(rk),∞]∧pω are of different lengths.
Then, by the pigeonhole principle, we obtain inequalities

c[G(rkj),∞] ∧ pω <p c[G(rm),∞] ∧ pω

for three different indices k1, k2, k3 ∈ {1, . . . , 5}; indeed, in the “maximal length
hole” just two out of five lengths can be placed by Lemma 4.

Observe that
∣
∣c[G(rkj),∞] ∧ pω

∣
∣ < |c|, otherwise p and the primitive root of

c are conjugate, which we excluded by Lemma 3. By Lemma 1, we can find
�1, �2, �3 ∈ Z|w| such that

c[G(rkj),∞] ∧ pω = c[G(rkj), G(�j)],

for all j ∈ {1, 2, 3}.
Since the cyclic solution is simple, words c[H(tkj), G(�j)], j ∈ {1, 2, 3}, are all

of different lengths, and are prefix comparable, see (***). We can suppose that

c[H(tk1), G(�1)] <p c[H(tk2), G(�2)] <p c[H(tk3), G(�3)].

Consequently, by Lemma 1, there are n1, n2 such that H(n1) = G(�1) and
H(n2) = G(l2). Thus

g(w[�1, �1]) = h(w[n1, n1]).

The first part of the lemma has been proved.
(2) Since H(n1) = G(�1) and H(n2) = G(l2), we have from the definition

of p-synchronized overflow n1 = n2 and l1 = l2. Therefore, c[G(rk1), G(�1)] and
c[G(rk2), G(�1)] are both prefixes of pω. Since they are also suffix comparable, it
can be inferred from primitivity of p and (*) that

c[G(rk1), G(rk2)] ∈ p+.

Consequently, g(u) ∈ p+ where u is found as the primitive root of the word
w[rk1 , rk2]. Since the morphism g is marked, there is a word u1 ≤p u and j ∈ N
such that

u ≤p w[rk1 , �1] = uju1.

The word u−1
1 uu1 is then a suffix of w[�1, �1], which completes the proof of the

second part.
(3) The proof of the third part can be approached in a similar way. !

In view of the previous lemma it is reasonable to investigate the structure of
words (e, f) since the word w is their conjugate. The claims 2 and 3 of the
lemma imply that there is a suffix ũ of e and a suffix ṽ of f , such that g(ũ) and
h(ṽ) commute and their common primitive root is conjugate with p.

It is interesting to note that, in particular, there are positive integers i and j
such that

g(ũi) = h(ṽj).

However, the pair (ũi, ṽj) is not the one we are looking for, because the primitive
root of c is not conjugate with p, as shown in Lemma 3.

We now have a piece of powerful information about the structure of w, which
leads to the following claim.

Large Simple Binary Equality Words 405

Lemma 6. Let (w, c, G,H) be a simple cyclic solution of binary marked mor-
phisms g, h : {a, b}∗ → Δ∗. If |w|b ≥ 9, then there are words e, f conjugate with
w such that g(e) = h(f) and

e = f = (ab)ia or e=f =(ba)ib or e=f =abi or (e, f)=(biaj , ajbi)

with gcd(i, j) = 1 and j > i.

Notice that in the foregoing lemma the condition |w|a ≥ 9 of Theorem 1 is
missing. This is due to the fact that h(b) is supposed to have the maximal
length among the words g(a), g(b), h(a) and h(b). This distinguishes letters a
and b and allows to drop the assumption on |w|a.

Relaxing the assumptions of the theorem has impact on the final set of so-
lutions. We can see from the previous lemma that the words conjugate with
abi, that is, words bi−jabj are brought into question in the case that we do not
suppose that |w|a ≥ 9.

Example 4. The word w = bi−jabj , j ≤ i ∈ N, is a solution for example of

g(a) = bi−jabj, g(b) = bi,

h(a) = a, h(b) = bi+1.

The proof of the lemma, which we omit, is achieved by a combinatorial analysis,
which is not very deep, but rather complicated and tedious.

3.3 From Marked Morphisms to Ordinary Morphisms

We will finally proceed to prove Theorem 1. With help of Lemma 6 it should not
be difficult. Note that there are two differences between Theorem 1 and Lemma
6, which are counterparts of each other:

– The lemma requires that the morphisms are marked, while the theorem
speaks about general morphisms.

– The theorem requires that the morphisms agree on the same word, while the
lemma only guarantees that e and f are conjugate.

Suppose that we are given a pair of (not necessarily marked) morphisms g
and h, with a simple solution w. Consider marked versions gm and hm of g
and h. Clearly, w can be seen as a cyclic solution (w, g(w), G,H) satisfying in
addition that G(0) = H(0). Morphisms (gm, hm) now have a cyclic solution
(w, g(w), Gm, Hm) given by

Gm(j) = (G(j) + |zg|) mod |g(w)| ,
Hm(j) = (H(j) + |zh|) mod |g(w)| .

(4)

Notice that (w, g(w), Gm, Hm) is a simple cyclic solution.

406 J. Hadravová and Š. Holub

Lemma 6 yields that if |w|a ≥ 9 and |w|b ≥ 9, then w is a conjugate (up to
the exchange of letters of alphabet) with (ab)ia or aibj with gcd(i, j) = 1. It
remains to exclude all conjugate words other than trivial. Therefore, in order to
complete the proof, we need the following two claims.

Claim 1. If e = f = (ab)ia, i ≥ 9, then w = (ab)ia.

Claim 2. If (e, f) = (biaj , ajbi) with i, j ≥ 9, then w = ajbi or w = biaj .

We prove only the former one.

Proof (of Claim 1). Since i ≥ 9, the Periodicity lemma together with

gm((ab)ia) = hm((ab)ia)

implies that the words gm(ab) and hm(ab) have the same primitive root t. Hence
there are nonempty words t1, t2 such that t1t2 = t and

gm(a) = ti1t1, gm(b) = t2t
i2 ,

hm(a) = tj1t1, hm(b) = t2t
j2 .

(5)

Primitivity of t implies that the longest common suffix of gm(ab) and gm(ba)
is shorter than |t|. Since gm is by definition equal to z−1

g gzg, we obtain that
|zg| < |t|. Similarly |zh| < |t|.

Suppose that the word w is conjugate with (ab)ia in a nontrivial way. There-
fore (ab)ia = e1e2 = f1f2 such that w = e2e1 = f2f1. It is obvious that e1 = f1

and e2 = f2 since (ab)ia is a primitive word. Then Gm(k) = Hm(k), where
k = |e2| = |f2|. Equalities (4) imply that

G(k) −H(k) = |zg| − |zh| mod |g(w)| ,

and therefore
G(k)−H(k) < |t| mod |g(w)| .

However, from (5) it is easy to infer that G(k) − H(k) is a multiple of |t|, a
contradiction. (Note that if G(k) −H(k) = 0 we obtain a contradiction as well
since w is a simple solution.) !

4 Towards a Complete Characterization

The main obstacle for the generality of our result is the assumption that the
solution is simple. As noted in the introduction, a general solution is composed
of blocks, which are simple. Blocks of marked morphisms are pairs (e, f) that
satisfy g(e) = h(f) where e is not necessarily equal to f . The techniques used
in this paper can be applied also for blocks. The missing assumption that e = f
or, more precisely, that e and f are conjugate, makes the classification more
complicated, but not essentially different. Investigation of blocks is therefore a
necessary further step towards a complete characterization of binary equality
words.

Large Simple Binary Equality Words 407

Another missing part are the words with small number of one of the letters.
This will probably require some ad hoc case analysis. It should be noted in this
respect, that our proof requires essentially only |w|b ≥ 9 as soon as b is identified
as the letter with the image of the maximal length, that is, as soon as g(b) or h(b)
is the longest of the words g(a), g(b), h(a) and h(b). This makes the necessary
case analysis of the short solutions a bit easier.

References

1. Salomaa, A.: Equality sets for homomorphisms of free monoid. Acta Cybern. 4,
127–139 (1980)

2. Čuĺık II, K.: A purely homomorphic characterization of recursively enumerable
sets. J. ACM 26(2), 345–350 (1979)

3. Post, E.: A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society 52, 264–268 (1946)

4. Karhumäki, J.: On recent trends in formal language theory. In: Ottmann, T. (ed.)
ICALP 1987. LNCS, vol. 267, pp. 136–162. Springer, Heidelberg (1987)

5. Karhumäki, J.: Open problems and exercises on words and languages (invited talk).
In: Proceedings of Conference on Algebraic Information, Aristotle University of
Thessaloniki, pp. 295–305 (2005)

6. Čuĺık, I.K., Karhumäki, J.: On the equality sets for homomorphisms on free
monoids with two generators. ITA 14(4), 349–369 (1980)

7. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: On binary equality sets and a
solution to the test set conjecture in the binary case. J. Algebra 85(1), 76–85
(1983)

8. Holub, Š.: Binary equality sets are generated by two words. Journal of Algebra 259,
1–42 (2003)

9. Holub, Š.: A unique structure of two-generated binary equality sets. In: Develop-
ments in Language Theory, pp. 245–257 (2002)

10. Holub, Š.: Binary equality languages for periodic morphisms. In: Huang, C.-H.,
Sadayappan, P., Sehr, D. (eds.) LCPC 1997. LNCS, vol. 1366, pp. 52–54. Springer,
Heidelberg (1998)

11. Maňuch, J.: Defect effect of bi-infinite words in the two-element case. Discrete
Mathematics and Theoretical Computer Science 4(2), 273–290 (2001)

12. Ehrenfeucht, A., Karhumäki, J., Rozenberg, G.: The (generalized) Post Correspon-
dence Problem with lists consisting of two words is decidable. Theor. Comput.
Sci. 21, 119–144 (1982)

13. Halava, V., Holub, Š.: Binary (generalized) Post Correspondence Problem is in P.
Technical Report 785, TUCS (September 2006)

14. Lothaire, M.: Combinatorics on words. Addison-Wesley, Reading (1983)
15. Rozenberg, G., Salomaa, A. (eds.): Handbook of formal languages. word, language,

grammar, vol. 1. Springer, New York (1997)

On the Relation between Periodicity and

Unbordered Factors of Finite Words�

Štěpán Holub1 and Dirk Nowotka2

1 Department of Algebra, Charles University in Prague, Czech Republic
holub@karlin.mff.cuni.cz

2 Institute for Formal Methods in Computer Science,
University of Stuttgart, Germany
nowotka@fmi.uni-stuttgart.de

Abstract. Finite words and their overlap properties are considered in
this paper. Let w be a finite word of length n with period p and where
the maximum length of its unbordered factors equals k. A word is called
unbordered if it possesses no proper prefix that is also a suffix of that
word. Suppose k < p in w. It is known that n ≤ 2k − 2, if w has an
unbordered prefix u of length k. We show that, if n = 2k − 2 then u
ends in abi, with two different letters a and b and i ≥ 1, and bi occurs
exactly once in w. This answers a conjecture by Harju and the second
author of this paper about a structural property of maximum Duval
extensions. Moreover, we show here that i < k/3, which in turn leads us
to the solution of a special case of a problem raised by Ehrenfeucht and
Silberger in 1979.

1 Introduction

Overlaps are one of the central combinatorial properties of words. Despite the
simplicity of this concept, its nature is not very well understood and many fun-
damental questions are still open. For example, problems on the relation between
the period of a word, measuring the self-overlap of a word, and the lengths of
its unbordered factors, representing the absence of overlaps, are unsolved. The
focus of this paper is on the investigation of such questions. In particular, we
consider so called Duval extensions by solving a conjecture [6,4] about the struc-
ture of maximum Duval extensions. This result leads us to a partial answer of a
problem raised by Ehrenfeucht and Silberger [5] in 1979.

When repetitions in words are considered then two notions are central: the
period, which gives the least amount by which a word has to be shifted in order to
overlap with itself, and the shortest border, which denotes the least (nonempty)
overlap of a word with itself. Both notions are related in several ways, for exam-
ple, the length of the shortest border of a word w is not larger than the period
of w, and hence, the period of an unbordered word is its length, moreover, the

� The work on this article has been supported by the research project MSM
0021620839.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 408–418, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On the Relation between Periodicity and Unbordered Factors 409

shortest border itself is always unbordered. Deeper dependencies between the
period of a word and its unbordered factors have been investigated for decades;
see also the references to related work below.

Let a word w be called a Duval extension of u, if w = uv such that u is
unbordered and for every unbordered factor x of w holds |x| ≤ |u|. Let π(w)
denote the shortest period of a word w. A Duval extension is called nontrivial if
|u| < π(w). It is known that |v| ≤ |u| − 2 for any nontrivial Duval extension uv
[8,9,10]. This bound is tight, that is, Duval extensions with |v| = |u| − 2 exist.
Let those be called maximum Duval extensions. The following conjecture has
been raised in [6]; see also [4].

Conjecture 1. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and a and b are different letters. Then bi occurs only once in uv.

This conjecture is answered positively by Theorem 3 in this paper. Moreover, we
show that i < |u|/3 in Theorem 4, which leads us to the result that a word z with
unbordered factors of length at most k and π(z) > k that contains a maximum
Duval extension uv with |u| = k is of length at most 7k/3 − 2. This solves
a special case of a conjecture in [5,1].

Previous Work. In 1979 Ehrenfeucht and Silberger [5] raised the problem about
the maximum length of a word w, w.r.t. the length k of its longest unbordered
factor, such that k is shorter than the period π(w) of w. They conjectured that
|w| ≥ 2k implies k = π(w) where |w| denotes the length of w. That conjecture was
falsified shortly thereafter by Assous and Pouzet [1] by the following example:

w = anban+1banban+2banban+1ban

where n ≥ 1 and k = 3n + 6 and π(w) = 4n + 7 and |w| = 7n + 10, that is,
k < π(w) and |w| = 7k/3 − 4 > 2k. Assous and Pouzet in turn conjectured
that 3k is the bound on the length of w for establishing k = π(w). Duval [3]
did the next step towards solving the problem. He established that |w| ≥ 4k− 6
implies k = π(w) and conjectures that, if w possesses an unbordered prefix
of length k, then |w| ≥ 2k implies k = π(w). Note that a positive answer to
Duval’s conjecture yields the bound 3k for the general question. Despite some
partial results [11,4,7] towards a solution, Duval’s conjecture was only solved in
2004 [8,9] with a new proof given in [10]. The proof of (the extended version of)
Duval’s conjecture lowered the bound for Ehrenfeucht and Silberger’s problem to
3k−2 as conjectured by Assous and Pouzet [1]. However, there remains a gap of
k/3 between that bound and the largest known example, which is given above.
With this paper we take the next step towards the solution of the problem
by Ehrenfeucht and Silberger by establishing the optimal bound of 7k/3 for
a special case.

2 Notation and Basic Facts

Let us fix a finite set A, called alphabet, of letters. Let A∗ denote the monoid of all
finite words over A including the empty word denoted by ε. In general, we denote

410 Š. Holub and D. Nowotka

variables over A by a, b, c, d and e and variables over A∗ are usually denoted by f ,
g, h, r through z, and α, β, and γ including their subscripted and primed versions.
The letters i through q are to range over the set of nonnegative integers.

Let w = a1a2 · · · an. The word anan−1 · · ·a1 is called the reversal of w denoted
by w. We denote the length n of w by |w|, in particular |ε| = 0. If w is not empty,
then let •w = a2 · · · an−1an and w• = a1a2 · · · an−1. We define •ε = ε• = ε. Let
0 ≤ i ≤ n. Then u = a1a2 · · · ai is called a prefix of w, denoted by u ≤p w, and
v = ai+1ai+2 · · ·an is called a suffix of w, denoted by v ≤s w. A prefix or suffix is
called proper when 0 < i < n. An integer 1 ≤ p ≤ n is a period of w if ai = ai+p

for all 1 ≤ i ≤ n− p. The smallest period of w is called the period of w, denoted
by π(w). A nonempty word u is called a border of a word w, if w = uy = zu
for some words y and z. We call w bordered, if it has a border that is shorter
than w, otherwise w is called unbordered. Note that every bordered word w has
a minimum border u such that w = uvu, where u is unbordered.

Let � be a total order on A. Then � extends to a lexicographic order, also
denoted by �, on A∗ with u � v if either u ≤p v or xa ≤p u and xb ≤p v and
a � b. Let � denote a lexicographic order on the reversals, that is, u � v if
u � v. Let �a and �b and �a

b denote lexicographic orders where the maximum
letter or the minimum letter or both are fixed in the respective orders on A. We
establish the following convention for the rest of this paper: in the context of a
given order � on A, we denote the inverse order of � by �. A �-maximal prefix
(suffix) α of a word w is defined as a prefix (suffix) of w such that v � α (v � α)
for all v ≤p w (v ≤s w).

The notion ofmaximum pre- and suffix are symmetric. It is general practice that
facts involving the maximum ends of words are mostly formulated for maximum
suffixes. The analogue version involving maximum prefixes is tacitly assumed.

Remark 1. Any maximum suffix of a word w is longer than |w|−π(w) and occurs
only once in w.

Indeed, let α be the �-maximal suffix of u for some order �. Then u = xαy and
α � αy implies y = ε by the maximality of α. If w = uvα with |v| = π(w), then
uα ≤p w gives a contradiction again.

Let an integer q with 0 ≤ q < |w| be called point in w. A nonempty word
x is called a repetition word at point q if w = uv with |u| = q and there exist
words y and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length
of the shortest repetition word at point q in w. We call π(w, q) the local period
at point q in w. Note that the repetition word of length π(w, q) at point q
is necessarily unbordered and π(w, q) ≤ π(w). A factorization w = uv, with
u, v �= ε and |u| = q, is called critical, if π(w, q) = π(w), and if this holds, then
q is called a critical point.

Let � be an order on A. Then the shorter of the �-maximal suffix and the �-
maximal suffix of some word w is called a critical suffix of w. Similarly, we define
a critical prefix of w by the shorter of the two maximum prefixes resulting from
some order and its inverse. This notation is justified by the following formulation
of the so called critical factorization theorem (CFT) [2], which relates maximum
suffixes and critical points.

On the Relation between Periodicity and Unbordered Factors 411

Theorem 1 (CFT). Let w ∈ A∗ be a nonempty word and γ be a critical suffix
of w. Then |w| − |γ| is a critical point.

Let uv be a Duval extension of u if u is an unbordered word and every factor
in uv longer than |u| is bordered. A Duval extension uv of u is called trivial if
v ≤p u. The following fact was conjectured in [3] and proven in [8,9,10].

Theorem 2. Let uv be a nontrivial Duval extension of u. Then |v| ≤ |u| − 2.

Following Theorem 2 let a maximum Duval extension of u be a nontrivial Duval
extension uv with |v| = |u| − 2. This length constraint on v will often tacitly be
used in the rest of this paper.

Let wuv be an Ehrenfeucht-Silberger extension of u if both uv and wu are
Duval extensions of u and u, respectively, moreover, uv and wu are called the
Duval extensions corresponding to the Ehrenfeucht-Silberger extension of u.

Ehrenfeucht and Silberger were the first to investigate the bound on the length
of a word w, w.r.t. the length k of its longest unbordered factors, such that
k < π(w). Some bounds have been conjectured. The latest such conjecture is
taken from [9].

Conjecture 2. Let wuv be a nontrivial Ehrenfeucht-Silberger extension of u.
Then |wv| < 4

3 |u|.

3 Periods and Maximum Suffixes

Note the following simple but noteworthy fact.

Lemma 1. Let u be an unbordered word, and let v be a word that does not
contain u. Let α be the �-maximal suffix of u. Then any prefix w of uv such
that α is a suffix of w, is unbordered.

Proof. Certainly, |w| ≥ |u| by Remark 1. Suppose that w has a shortest border h.
Then |h| < |u| otherwise u ≤p h and u occurs in v since h is the shortest border;
a contradiction. But now, h is a border of u; again a contradiction. !
This implies immediately the following version of Lemma 1 for Duval extensions,
which will be used frequently further below.

Lemma 2. Let uv be a nontrivial Duval extension of u, and let α be the �-
maximal suffix of u. Then uv contains just one occurrence of α.

The next lemma highlights an interesting fact about borders involving maxi-
mum suffixes. It will mostly be used on maximum prefixes of words, the dual
to maximum suffixes, in later proofs. However, it is general practice to reason
about ordered factors of words by formulating facts about suffixes rather than
prefixes. Both ways are of course equivalent. We have chosen to follow general
practice here despite its use on prefixes later in this paper.

Lemma 3. Let αa be the �-maximal suffix of a word wa where a is a letter.
Let u be a word such that αa is a prefix of u and wb is a suffix of u, with b �= a
and b � a. Then u is either unbordered, or its shortest border has the length at
least |w|+ 2.

412 Š. Holub and D. Nowotka

Proof. Suppose that u has a shortest border hb. If |h| < |α| then hb ≤p α and
h ≤s α and hb � ha contradict the maximality of αa. Note that |h| �= |α| since
a �= b. If |α| < |h| ≤ |w| then αa ≤p h, and hence, αa occurs in w contradicting
the maximality of αa again; see Remark 1. Hence, |hb| ≥ |w|+ 2. !

The next lemma is taken from a result in [7] about so called minimal Duval exten-
sions. However, the shorter argument given here (including the use of Lemma 3)
gives a more concise proof than the one in [7].

Lemma 4. Let uv be a nontrivial Duval extension of u where u = xazb and
xc ≤p v and a �= c. Then bxc occurs in u.

Proof. Let ya be the �a-maximal suffix of xa. Consider the factor yazbxc of uv,
which is longer than u and therefore bordered with a shortest border r. Now,
Lemma 3 implies that |r| > |xc|, and hence, bxc ≤s r occurs in u. !

4 Some Facts about Certain Suffixes of a Word

This section is devoted to the foundational proof technique used in the remainder
of this paper. The main idea is highlighted in Lemma 5, which identifies a certain
unbordered factor of a word.

Lemma 5. Let α be the �-maximal suffix and β be the �-maximal suffix of a
word u, and let v be such that neither α nor β occur in uv more than once.
Let a be the last letter of v and b be the first letter of x where x ≤s αv• and
|x| = π(αv•).

If π(αv) > π(αv•), then αv is unbordered, in case a � b, and βv is unbordered,
in case b � a.

Proof. Let γ be the longest border of αv•. Note that |γ| < |α| since •αv does not
contain the critical suffix of u, by assumption. We have α = γbα′ and αv = v′γa.
Note that π(αv•) = |v′|, and the inequality π(αv) > π(αv•) means a �= b.

Suppose that a � b. We claim that αv is unbordered in this case. Suppose
the contrary, and let αv have a shortest border ha. Then |h| < |γ| otherwise
either a = b, if |h| = |γ|, or γ is not the longest border of αv•, if |h| > |γ|;
a contradiction in both cases. But now α � hbα′ since ha ≤p α and a � b
contradicting the maximality of α because hbα′ ≤s α.

Suppose that b � a. In this case the word βv is unbordered. To see this
suppose that βv has a shortest border ha. The assumption that uv contains
just one occurrence of the maximal suffixes implies that ha is a proper prefix
of β. If |h| ≥ |γ| then γa occurs in u contradicting the maximality of α since
γb ≤p α � γa. But now ha ≤p β � hbα′ (since b � a) contradicting the
maximality of β. !

Proposition 1. Let uv be a nontrivial Duval extension of u, and let α be a crit-
ical suffix w.r.t. an order �. Then |v| < π(αv) ≤ |u|.

On the Relation between Periodicity and Unbordered Factors 413

Proof. If |v| ≥ π(αv) then α occurs twice in αv contradicting Lemma 2. Sup-
pose that π(αv) > |u|, and let z be the shortest prefix of v such that already
π(αz) > |u|. Then π(αz) > π(αz•), and Lemma 5 implies that either αz or βz is
unbordered, where β is the �-maximal suffix of u. This contradicts the assump-
tion that uv is a Duval extension, since both the candidates are longer than u,
which follows from π(αz) > |u| and |β| > |α|. !

5 About Maximum Duval Extensions

In this section we consider the general results of the previous section for the
special case of Duval extensions, which leads is to the main results, Theorem 3
and 4. Theorem 3 confirms a conjecture in [6]. Theorem 4 constitutes a further
step to answer Conjecture 2.

Definition 1. Let uv be a Duval extension of u. The suffix s of uv is called a
trivial suffix if π(s) = |u| and s is of maximum length.

Note that s = uv, if uv is a trivial Duval extension, and as ≤s uv with π(as) >
|u|, if uv is a nontrivial Duval extension. Moreover, Proposition 1 implies that
|s| ≥ |αv| where α is any critical suffix of u.

Let us begin with considerations about the periods of suffixes of maximum
Duval extensions.

Lemma 6. Let uv be a maximum Duval extension of u, and let � be an order
such that the �-maximal suffix α is critical. Then π(αv) = |u|.

Proof. It follows from Proposition 1 that |u|−1 ≤ π(αv) ≤ |u| since |v| = |u|−2.
Suppose π(αv) = |u| − 1. Let wα be the longest suffix of u such that π(wαv) =
|u| − 1. We have wα �= u since u is unbordered. We can write wαv = wαv′wα•,
where v′ is a prefix of v such that |wαv′| = |u|−1. The maximality of wα implies
that awα is a suffix of u, and bwα• is a suffix of αv, with a �= b.

Choose a letter c in wα• such that c �= a. Such a letter exists for otherwise
awα• ∈ a+ and α is just a letter, different from a. But this implies u ∈ a+α
and v �∈ a+ for uv to be nontrivial, that is, v′d ≤p v with d �= a; a contradiction
since uv′d is unbordered in this case.

Consider the �c-maximal prefix of bwα• denoted by bt. Note that |t| ≥ 1. We
claim that awαv′t is unbordered. Suppose on the contrary that r is the shortest
border of awαv′t. By Lemma 3 applied to the reversal of awαv′t, the border r is
longer than bwα•. Hence, r contains α contradicting Lemma 2. But now, since
|wαv′| = |u| − 1 and |t| ≥ 1, the unbordered factor awαv′t is longer than u;
a contradiction. !

Lemma 7. Let uv be a maximum Duval extension of u, let a be the last letter
of u, and let xv be the trivial suffix of uv. Then |α| ≤ |x| for the �a-maximal
suffix α of any order �a.

414 Š. Holub and D. Nowotka

Proof. Suppose on the contrary that |α| > |x|, which implies that the �a-
maximal suffix β is critical and β ≤s x by Lemma 6. Since uv is nontrivial,
we can write u = u′cwba and v = v′dw where wba = x.

Consider the maximum prefix t of dw with respect to any order on the reversals
where d is maximal. Note that d ≤s t. The word cwbav′t is longer than u,
therefore it is bordered. Let r be its shortest border. By Lemma 3, we have
|cw| < |r|. Lemma 2 implies that r = cwb, and we have d = b since d ≤s t.
Note that |t| < |bw| otherwise t = bw = wb, which implies |u| = π(xv) =
π(wbav′bw) = π(bwav′bw) ≤ |v| + 1 < |u|; a contradiction. Hence, te ≤p bw for
some letter e �= b. Moreover, e �= a since β• ≤s r and β does occur only once in
βv by Lemma 2.

Consider the factor αv′te, which is longer than u, and hence, bordered. Let s be
the shortest border of αv′te. Note that |s| < |β| otherwise β•e ≤s s contradicting
the maximality of β since β = β•a �a β•e. Let s = β′e where β′ ≤s β•. But
then β′e ≤p α �a β′a and β′a ≤s u contradicting the maximality of α. !

Lemma 8. Let uv be a maximum Duval extension of u = u′ab where a and b
are letters. Then a occurs in u′.

Proof. Suppose on the contrary that a does not occur in u′. Note that b occurs
in u′ by Lemma 4. So, we may assume that a �= b. Moreover, we have that
also a letter c different from a and b has to occur in u′ otherwise u = biab and
v = bjdv′ for some d �= b and j < i, but then ubjd is unbordered; a contradiction.

Let β be the maximum suffix of u w.r.t. some order �b
c, and let α be a max-

imum suffix of u w.r.t. the order �b
c. Let γ be the shorter of the two suffixes α

and β, and note that |γ| > 2.
Lemma 6 implies π(γv) = |u|. Let wγv be the trivial suffix of uv. We have that

u �= wγ since uv is a nontrivial Duval extension of u. Therefore, we can write
u = u′dwγ and v = v′ewγ•• where d and e are different letters and |wγv′e| = |u|.
Note that e occurs in u•• otherwise uv′e is unbordered; a contradiction. Consider
an order �e and let t be the �e-maximal prefix of ewγ••.

The word dwγv′t is longer than u, therefore it is bordered. Let r be its shortest
border. By Lemma 3, we have |dwγ|−2 < |r|. Lemma 2 implies that |r| is exactly
|dwγ| − 1, whence r = dwγ•. Clearly, the letter e is a suffix of t, and thus also
of r, which implies that e is a suffix of u•; a contradiction since e �= a. !

The following example shows that the requirement of a maximum Duval exten-
sion is indeed necessary in Lemma 8.

Example 1. Let a, b, and c be different letters, and consider u = aibai+jbcb and
v = ai+jbai−1 with i, j ≥ 1. Then u.v = aibai+jbcb.ai+jbai−1 is a nontrivial
Duval extension of length 2|u| − 4 such that c occurs only in the second last
position of u. However, a maximum Duval extension of a word |u| has length
2|u| − 2.

The next lemma highlights a relation between the trivial suffix of a maximum
Duval extension uv and the set alph(u) of all letters occurring in u.

On the Relation between Periodicity and Unbordered Factors 415

Lemma 9. Let uv be a maximum Duval extension of u and wxw be the trivial
suffix of uv where |wx| = |u|. Then either alph(w) = alph(u) or there exists
a letter b such that alph(w) = alph(u) \ {b} and u = u′bb and bb does not occur
in u′.

Proof. Suppose contrary to the claim that |alph(w)| < |alph(u)| and for any
b ∈ alph(u) \ alph(w) we have bb is not a suffix of u or bb occurs in u••.

Let btwac ≤s u where a, b, c ∈ alph(u) and b does not occur in tw. Consider
btwxw, which is longer than u and therefore has to be bordered. Let r be the
shortest border of btwxw. Certainly, |w| < |r| since b ≤p r and b �∈ alph(w).
Moreover, btw ≤p r implies π(btwxw) ≤ |u| contradicting the maximality of
wxw. So, we note that |w| < |r| < |btw|.

Suppose a �= b. Let v = v′r and consider the factor twacv′b, which has to
be bordered since |twacv′b| = |twacv| − |r| + 1 > |acv| = |u|. Let s be the
shortest border of twacv′b. We have |s| > |twa| because b is a suffix of s and
does not occur in tw and a �= b by assumption. But now, twac ≤p s contradicting
Lemma 2 since wac contains a maximum suffix of u.

Suppose a = b. This is the only case where we need to consider that either
bb �≤s u or bb occurs at least twice in u. Let d ∈ alph(u) be such that d = c, if
c �= b, and d be an arbitrary letter different from b otherwise. Consider an order
�b

d on alph(u). Let α be the �b
d-maximal suffix of u. Note that |α| > |wbc| since

either c = b or c = d. If c = b then bb ≤p α occurs in u• by assumption. If
c = d then be occurs in u• for some letter e by Lemma 8 where we have be ≤p α
since either d �b

d e or e = d. Since every critical suffix of u is a suffix of wbc by
Lemma 6 and α �≤s wbc, we have that the �b

d-maximal suffix β is critical and
β ≤s wbc. Moreover, |β| > 2 since bc ≤s u and d occurs in u• by Lemma 4. We
have that β•• ≤s w, and hence, β•• ≤s r. From |r| < |btw| follows that β••c′

occurs in tw where c′ is a letter in tw, and therefore c′ �= b. But this contradicts
the maximality of β since β••b �b

d β••c′. !

The next two results, Lemma 10 and 11, constitute a case split of the proof
of Theorem 3. Namely, the cases when exactly two or more than two letters
occur in a maximum Duval extension.

Lemma 10. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and |alph(u)| > 2 and a �= b. Then u′ does not contain the factor bi.

Proof. Suppose, contrary to the claim, that bi occurs in u′. Consider the triv-
ial suffix wcbv′dw of uv where |cbv′dw| = |u| and c ∈ {a, b}. We can write
u = u′ewcb with d �= e since |u| > |wcb|. We have that alph(w) = alph(u)
by Lemma 9. Choose a letter f in dw such that f �= e and f �= c. Let �f

e be
an order. Let dt be the �f

e -maximal prefix of dw. The word ewcbv′t is longer
than u, therefore it is bordered. Let r be its shortest border. By Lemma 3, we
have |dw| < |r|. Lemma 2 implies that |r| is exactly |dwc|, and hence, r = ewc.
Clearly, the letter f is a suffix of t, and thus also of r, which implies that f = c;
a contradiction. !

416 Š. Holub and D. Nowotka

Lemma 11. Let uv be a maximum Duval extension of u = u′abi over a binary
alphabet where i ≥ 1 and a �= b. Then u′ does not contain the factor bi and
awbb ≤s u and v = v′bw where wbbv is the trivial suffix of uv.

Proof. Let s be the trivial suffix of uv, and let u = u0cwdb and v = v′ew where
wdbv′ew = s. Note that c �= e by the maximality of s. Let � be the order such
that a � b.

Suppose c = b and e = a. Let t be the �-maximal prefix of aw. Consider the
factor bwdbv′t, which is longer than |u| and hence bordered. Let r be its shortest
border. Lema 3 implies that |bw| < |r|. Lemma 2 implies that r = bwd, in fact,
r = bwa since a ≤s t. Note that |t| ≤ |w| otherwise r = bwa = baw = ba|w|+1

contradicting Lemma 9. So, we have tb ≤p aw by the maximality of t. But now
wab occurs in v, and hence, the critical suffix of u occurs in v by Lemma 6
contradicting Lemma 2.

We conclude that c = a and e = b. Consider the �-maximal suffix β of u.
Suppose contrary to the claim that bi occurs in u′. Then bja ≤p β for some
j ≥ i.

Let t be the �-maximal prefix of bw. Similarly to the reasoning above, we
consider the factor awdbv′t and conclude that it has the border r = awb and
d = b and ta ≤p bw. Lemma 7 implies that β ≤s wbb. Note that bj is a power of
b in u of maximum size and occurs in w by assumption, and hence, bj ≤s t. But
now, bj ≤s r and bj+1 ≤s u; a contradiction. !

The main result follows directly from the previous two lemmas.

Theorem 3. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and a �= b. Then bi occurs only once in uv.

Indeed, bi does not occur in u′ by Lemma 10 and 11. If bi occurs in bi−1v, that
is, bi−1v = wbiv′, then u′abwbi is unbordered; a contradiction.

Let us consider the results obtained so far for the special case of a binary
alphabet in the following remark.

Remark 2. Let uv ∈ {a, b}+ be a maximum Duval extension with b ≤s u, and
let wv be the trivial suffix of uv.

Theorem 3 implies that the �b
a-maximal suffix of u is critical and equal to bi.

Lemma 4 implies that i ≥ 2. Lemma 9 implies that a occurs in w, and in
particular, w ∈ a+bb, if i = 2. Lemma 11 implies that axbi ≤s u and bxbi−2 ≤s v,
where w = xbi.

Theorem 4. Let uv be a maximum Duval extension of u = u′abi where i ≥ 1
and a �= b. Then 3i ≤ |u|.

Proof. The shortest possible maximum Duval extension of a word u is of the
form uv with u = abaabb and v = aaba. This proves the claim for i ≤ 2. Assume
i > 2 in the following.

Let cbk ≤s v with c �= b. Lemma 6 implies that k ≥ i− 2, and Lemma 2 yields
k ≤ i− 1. Consider the shortest border h of uv. Then |h| < |u| − 2 otherwise uv

On the Relation between Periodicity and Unbordered Factors 417

is trivial. Let h = gbk, and let j be the maximum integer such that gbj ≤p u.
Clearly, k ≤ j ≤ i− 1 since bi occurs only as a suffix of u. Let u = gbjfbi. Note
that

b �∈ {pref1(g), pref1(f), suff1(g), suff1(f)} . (1)

Next we show that bk occurs in g or f . Suppose the contrary, that is, neither
g nor f contains bk. Consider the shortest border x of fbiv. We have |x| <
|fbi|, since bi does not occur in v. Property (1) and the assumption that bk

does not occur in f imply that x = fbk. Let v = v′fbk. Consider the shortest
border y of bjfbiv′f . Again, we have |y| < |bjfbi| since bi does not occur in v,
and property (1) implies that y = bjh. Let v = v′′bjfbk. Finally, consider the
shortest border z of uv′′bj . Property (1) and the assumption that bk does not
occur in g or f imply that either z = gbj or z = gbjfbj. The former implies
that uv = gbjfbigbjfbk is a trivial Duval extension, and the latter implies that
|u| < |v|; a contradiction in both cases.

We conclude that bk occurs in g or f . Let u = u1b
mu2b

nu3b
i where u1, u2,

and u3 are not empty and neither begin nor end with b and k ≤ m,n ≤ i − 1.
The claim is proven if |u1u2u3| > 3 or m = i − 1 or n = i − 1. Suppose the
contrary, that is, u1, u2, and u3 are letters and m = i − 2 and n = i − 2 and
k = i− 2.

Let us consider the shape of v next. Note that every factor of length 2 in v
contains b otherwise there exists a prefix w of v that ends in two letters not
equal to b and uw is unbordered; a contradiction. Moreover, for every power bk′

in v holds i− 1 ≤ k′ otherwise w′cbk′
d is a prefix of v where c and d are letters

different from b and bmu2b
nu3b

iw′cbk′
d is unbordered; a contradiction. Consid-

ering possible borders of words uv1b
i−2, uv1b

i−2v2b
i−2, u2b

i−2u3b
iv1b

i−2v2b
i−2

and u3b
iv1b

i−2v2b
i−2v3b

i−2 we deduce that v1 = u1, v2 = u2 and v3 = u3; a con-
tradiction since uv is assumed to be nontrivial. This proves the claim. !

Corollary 1. Let w be a nontrivial Ehrenfeucht-Silberger extension of u such
that one of its corresponding Duval extensions is of maximum length. Then |w| <
7
3 |u| − 2.

Indeed, suppose on the contrary that w = xuv and uv is a maximum Duval
extension with abi ≤s u and |x| ≥ i where a �= b. The case where xu is a
maximum Duval extension is symmetric. Now, either bi ≤s x or ebj ≤s x with
j < i and e �= b. If ebj ≤s x with j < i and e �= b, then ebju is unbordered;
a contradiction. If bi ≤s x then biub−i is unbordered by Theorem 3, and its
Duval extension biuv is trivial, since it is too long; a contradiction.

The following example is taken from [1].

Example 2. Consider the following word xuv where we separate the factors x,
u, and v for better readability

x.u.v = bi−2.abi−1abi−2abi.abi−2abi−1abi−2

418 Š. Holub and D. Nowotka

where i > 2. We have that the largest unbordered factors of xuv are of length 3i,
namely the factors u = abi−1abi−2abi and biabi−2abi−1a, and π(xuv) = 4i− 1,
and hence, xuv is a nontrivial Ehrenfeucht-Silberger extension of u. Note that
uv is a maximum Duval extension. We have |xuv| = 7i− 4 = 7

3 |u| − 4.

References

1. Assous, R., Pouzet, M.: Une caractérisation des mots périodiques. Discrete
Math. 25(1), 1–5 (1979)

2. Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 651–675
(1991)

3. Duval, J.-P.: Relationship between the period of a finite word and the length of its
unbordered segments. Discrete Math. 40(1), 31–44 (1982)

4. Duval, J.-P., Harju, T., Nowotka, D.: Unbordered factors and Lyndon words. Dis-
crete Math. 308(11), 2261–2264 (2008)

5. Ehrenfeucht, A., Silberger, D.M.: Periodicity and unbordered segments of words.
Discrete Math. 26(2), 101–109 (1979)

6. Harju, T., Nowotka, D.: Duval’s conjecture and Lyndon words. TUCS Tech. Rep.
479, Turku Centre of Computer Science, Finland (2002)

7. Harju, T., Nowotka, D.: Minimal Duval extensions. Internat. J. Found. Comput.
Sci. 15(2), 349–354 (2004)

8. Harju, T., Nowotka, D.: Periodicity and unbordered words. In: Diekert, V., Habib,
M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 294–304. Springer, Heidelberg (2004)

9. Harju, T., Nowotka, D.: Periodicity and unbordered words: A proof of the extended
Duval conjecture. J. ACM 54(4) (2007)

10. Holub, Š.: A proof of the extended Duval’s conjecture. Theoret. Comput. Sci.
339(1), 61–67 (2005)

11. Mignosi, F., Zamboni, L.Q.: A note on a conjecture of Duval and Sturmian words.
Theor. Inform. Appl. 36(1), 1–3 (2002)

Duplication in DNA Sequences�

Masami Ito1, Lila Kari2, Zachary Kincaid2, and Shinnosuke Seki2

1 Department of Mathematics, Faculty of Science, Kyoto Sangyo University,
Kyoto, Japan, 603-8555

ito@ksuvx0.kyoto-su.ac.jp
2 Department of Computer Science, University of Western Ontario, London,

Ontario, Canada, N6A 5B7
{lila,sseki}@csd.uwo.ca, zkincaid@uwo.ca

Abstract. Duplication and repeat-deletion are the basic models of er-
rors occurring during DNA replication from the viewpoint of formal lan-
guages. During DNA replication, subsequences of a strand of DNA may
be copied several times (duplication) or skipped (repeat-deletion). Iter-
ated duplication and repeat-deletion have been well-studied, but little is
known about single-step duplication and repeat-deletion. In this paper,
we investigate properties of these operations, such as closure properties of
language families in the Chomsky hierarchy, language equations involv-
ing these operations. We also make progress towards a characterization of
regular languages that are generated by duplicating a regular language.

1 Introduction

Duplication grammars and duplication languages have recently received a great
deal of attention in the formal language theory community. Duplication gram-
mars, defined in [12], model duplication using string rewriting systems. Several
properties of languages generated by duplication grammars were investigated in
[12] and [13]. Another prevalent model for duplication is a unary operation on
words [1], [2], [5], [7], [8], [9]. The biological phenomenon which motivates the
research on duplication is a common error occurring during DNA replication:
the insertion or deletion of repeated subsequences in DNA strands, [3].

A DNA single strand is a string over the DNA alphabet of bases {A, C, G, T}.
Due to the Watson-Crick complementarity A−T, C−G, two complementary DNA
single strands of opposite orientation can bind to each other to form a DNA
double strand. DNA replication is the process by which given a “template”
DNA strand, an enzyme called DNA polymerase creates a new “nascent” DNA
strand that is a complement of the template. To be more precise, a special short
DNA single strand called a “primer” is attached to the template as a toe-hold,
and then DNA polymerase adds complementary bases to the template strand,
one by one, until the entire template strand becomes double-stranded.
� This research was supported by Grant-in-Aid for Scientific Research No. 19-07810 by

Japan Society for the Promotion of Sciences and Research Grant No. 015 by Kyoto
Sangyo University to M. I., and The Natural Sciences and Engineering Council of
Canada Discovery Grant and Canada Research Chair Award to L.K.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 419–430, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

420 M. Ito et al.

It has been observed that errors can happen during this process, the most
common of them being repeat insertions and deletions of bases. The “strand
slippage model” that was proposed as an explanation of these phenomena sug-
gests that these errors are caused by misalignments between the template and
nascent strands during replication. DNA polymerase is not known to have any
“memory” to remember which base on the template has been just copied onto
the nascent strand, and hence the template and nascent strands can slip. As
such, the DNA polymerase may copy a part of the template twice (resulting in
an insertion) or forget to copy it (deletion). These errors occur most frequently
on repeated sequences so that they are appropriately modelled by the rewriting
rules u→ uu and uu→ u.

The rule u → uu is a natural model for duplication, and the rule uu → u mod-
els the dual of duplication, which we call repeat-deletion. Since strand slippage is
responsible for both these operations, it is natural to study both duplication and
repeat-deletion. Repeat-deletion has already been extensively studied, e. g. , in [6].
However, the existing literature addresses mainly the iterated application of both
repeat-deletionandduplication.Thispaper investigates theeffectsofa single dupli-
cation or repeat-deletion. This restriction introduces subtle new complexities into
languages that can be obtained as a duplication or repeat-deletion of a language.

The paper is organized as follows: In Section 2 we define the terminology and
notations we use. Section 3 is dedicated to the closure properties of language fam-
ilies of the Chomsky hierarchy under duplication and repeat-deletion. In Section
4, we present and solve language equations based on these operations, and give a
constructive method for obtaining maximal solutions. In Section 5 we introduce
a generalization of duplication, namely controlled duplication, and investigate
characterizations of regular languages that can be obtained by the duplication of
a regular language. Lastly, we present some results on the relationship between
duplication and primitive words.

2 Preliminaries

We provide definitions for terms and notations to be used throughout the paper.
For basic concepts in formal language theory, we refer the reader to [4], [16], [18].

Let Σ be a finite alphabet, Σ∗ be the set of words over Σ, and Σ+ = Σ∗\{λ},
where λ is the empty word. The length of a word w ∈ Σ∗ is denoted by |w|. For
a non-negative integer n ≥ 0, let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n =

⋃n
i=0 Σ

i.
A language over Σ is a subset of Σ∗. For a language L ⊆ Σ∗, the set of all
(internal) factors (resp. prefixes, suffixes) of L, are denoted by F(L) (Pref(L),
Suff(L)). The complement of a language L ⊆ Σ∗, denoted by Lc, is defined as
Lc = Σ∗ \ L. We denote the families of all finite languages, regular languages,
context-free languages, and context-sensitive languages by FIN, REG, CFL, and
CSL, respectively. Note that FIN � REG � CFL � CSL.

A word w ∈ Σ+ is said to be primitive if w = vn implies that n = 1, i.e.,
w = v. A word v ∈ Σ+ is called a conjugate of w if v = xy and w = yx for some
x, y ∈ Σ∗.

Duplication in DNA Sequences 421

For a finite automaton A = (Q,Σ, δ, s, F) (where Q is a state set, δ : Q×Σ →
2Q is a transition function, s ∈ Q is the start state, and F ⊆ Q is a set of final
states), let L(A) denote the language accepted by A. We extend δ to δ̂ : Q×Σ∗ →
2Q as follows: (1) δ̂(q, λ) = {q} for q ∈ Q and (2) δ̂(q, wa) = ∪p∈δ̂(q,w)δ(p, a) for
q ∈ Q, w ∈ Σ∗, and a ∈ Σ. For P1, P2 ⊆ Q, we define an automaton A(P1,P2) =
(Q ∪ s0, Σ, δ′, s0, P2), where s0 �∈ Q is a new start state and δ′ = δ ∪ (s0, λ, P1).
Hence, L(A(P1,P2)) = {w | δ̂(p1, w) ∩ P2 �= ∅ for some p1 ∈ P1}. If Pi is the
singleton set {pi}, then we may simply write pi for i ∈ {1, 2}.

The aim of this paper is to investigate two operations that are defined on
words and languages: duplication and repeat-deletion. The unary duplication
operation is defined for a word u ∈ Σ∗ as follows:

u♥ = {v | u = xyz, v = xyyz for some x, z ∈ Σ∗, y ∈ Σ+}.

The duplication operation is extended to a language L ⊆ Σ∗ as L♥ =
⋃

u∈L u♥.
Some authors, e.g., [2] require the duplicated factor y to be in a finite set of
words called the duplication scheme. We discuss a generalization of duplication
schemes which we call controlled duplication in Section 5.

We also define another unary operation based on the dual of the ♥ operation.
We call this operation repeat-deletion and denote it by ♠, which is defined for a
word v ∈ Σ∗ as follows:

v♠ = {u | v = xyyz, u = xyz for some x, z ∈ Σ∗, y ∈ Σ+}.

As above, for a given language L ⊆ Σ∗, we define L♠ =
⋃

v∈L v♠.
Previous work focused on the reflexive transitive closure of the duplication

operation, which we will refer to as duplication closure. In this paper, all oc-
currences of ♥ and ♠ refer to the single step variations of the duplication and
repeat-deletion, respectively.

3 Closure Properties

Much of the work on duplication closure has been concerned with determining
which of the families of languages on the Chomsky hierarchy are closed under this
operation. It is known that on a binary alphabet the family of regular languages
is closed under duplication closure. In contrast, on a bigger alphabet it is still
closed under n-bounded duplication closure for n ≤ 2 but not closed under n-
bounded operation closure for any n ≥ 4. The family of context-free languages is
closed under (uniformly) bounded duplication closure. The readers are referred
to [5] for these results.

It is a natural first step to determine these closure properties under (single
step) duplication. In this section, we show that the family of regular languages
is closed under repeat-deletion but not duplication, the family of context-free
languages is not closed under either operation, and the family of context-sensitive
languages is closed under both operations.

422 M. Ito et al.

The following two propositions are due to [17] (without proofs).

Proposition 1. REG is not closed under duplication.

Proposition 2. CFL is not closed under duplication.

The proof of Proposition 1 requires an alphabet that is at least binary. As we
shall see in Section 5, this bound is strict. That is, the family of regular languages
over a unary alphabet is closed under duplication. In addition, we have:

Proposition 3. CSL is closed under duplication.

In the following, we consider the closure properties of the language families on
the Chomsky hierarchy under repeat-deletion. Our first goal is to prove that the
family of regular languages is closed under repeat-deletion. For this purpose, we
define the following binary operation & on languages L,R ⊆ Σ∗:

L&R = {xyz | xy ∈ L, yz ∈ R, y �= λ}.

Proposition 4. REG is closed under &.

Proof. Let L1, L2 ∈ REG. Let # �∈ Σ and let h be defined by h(a) = a for
a ∈ Σ∗ and h(#) = λ. Let L′

1 = L1 ← {#} = {u#v | uv ∈ L1} (← denotes the
insertion operation) and L′

2 = L2 ← {#}. Moreover, let L1 = L′
1#Σ∗ and let

L2 = Σ∗#L′
2. Then L1&L2 = h(L1 ∩ L2). Since REG is closed under insertion,

concatenation, intersection, and homomorphism, L1&L2 is regular. !

For a regular language L, there is a finite automaton A = (Q,Σ, δ, s, F) such
that L(A) = L. Recall that for any state q ∈ Q, L(A(s,q)) = {w | q ∈ δ̂(s, w)}
and L(A(q,F)) = {w | δ̂(q, w) ∩ F �= ∅}. Intuitively, L(A(s,q)) is the set of words
accepted “up to q”, and L(A(q,F)) is the set of words accepted “after q” so that
L(A(s,q))L(A(q,F)) ⊆ L is the set of words in L which have a derivation that
passes through state q.

Lemma 1. Let L be a regular language and A = (Q,Σ, δ, s, F) be a finite au-
tomaton accepting L. Then L♠ =

⋃
q∈Q L(A(s,q))&L(A(q,F)).

Proof. Let L′ =
⋃

q∈Q L(A(s,q))&L(A(q,F)). First we prove that L♠ ⊆ L′. Let
α ∈ L♠. Then there exists a decomposition α = xyz for some x, y, z ∈ Σ∗ such
that xyyz ∈ L and y �= λ. Since A accepts xyyz, there exists some q ∈ Q such
that q ∈ δ̂(s, xy) and δ̂(q, yz) ∩ F �= ∅. By construction, xy ∈ L(A(s,q)) and
yz ∈ L(A(q,F)). This implies that xyz ∈ L(A(s,q))&L(A(q,F)), from which we
have L♠ ⊆ L′.

Conversely, if α ∈ L′, then there exists q ∈ Q such that α∈L(A(s,q))&L(A(q,F)).
We can decompose α into xyz for some x, y, z ∈ Σ∗ such that xy ∈ L(A(s,q)),
yz ∈ L(A(q,F)), and y �= λ. Since L(A(s,q))L(A(q,F)) ⊆ L, we have that xyyz

belongs to L. It follows that α = xyz ∈ L♠ and L′ ⊆ L♠. !

The following is an immediate consequence of Proposition 4 and Lemma 1.

Duplication in DNA Sequences 423

Proposition 5. REG is closed under repeat-deletion.

In contrast, the family of context-free languages is not closed under repeat-
deletion, despite the following proposition.

Proposition 6. CFL is closed under & with regular languages.

Lemma 2. CFL is not closed under &.

Proof. Let L1 = {ai#bi$ | i ≥ 0} and L2 = {#bj$cj | j ≥ 0}. Although L1 and
L2 are CFLs, L1&L2 = {ai#bi$ci | i ≥ 0}, which is not context-free. !

Proposition 7. CFL is not closed under repeat-deletion.

Proof. Let L = {ai#bi#bjcj | i, j ≥ 0}, which is context-free. Then L♠ ∩
a∗#b∗c∗ = {ai#bjcj | i, j ≥ 0, i ≤ j}, which is not context free. Since CFL is
closed under intersection with regular languages, and since L♠ ∩ a∗#b∗c∗ is not
context-free, we conclude that L♠ is not context-free. !

Proposition 8. CSL is closed under repeat-deletion.

In summary, the following closure properties of duplication, repeat-deletion, and
the & operation hold:

♥ ♠ & & with regular
FIN Y Y Y N
REG N Y Y Y
CFL N N N Y
CSL Y Y Y Y

4 Language Equations

We now consider the language equation problem posed by duplication: for a
given language L ⊆ Σ∗, can we find a language X ⊆ Σ∗ such that X♥ = L? In
the following, we show that if L is a regular language and there exists a solution
to X♥ = L, then we can compute a maximal solution. We note that the solution
to the language equation is not unique in general.

Example 1. {aaa, aaaa, aaaaa}♥ = {aaa, aaaaa}♥ = {ai : 4 ≤ i ≤ 10}

In view of the fact that a language equation may have multiple solutions, we
define an equivalence relation ∼♥ on languages as follows:

X ∼♥ Y ⇔ X♥ = Y ♥.

For the same reason, we define an equivalence relation ∼♠ as follows:

X ∼♠ Y ⇔ X♠ = Y ♠.

424 M. Ito et al.

Lemma 3. The equivalence classes of ∼♥ are closed under arbitrary unions.
That is, if [X] ∈ 2Σ∗

/ ∼♥ and if Ξ ⊆ [X] (Ξ �= ∅), then
⋃

L∈Ξ L ∈ [X].

Corollary 1. For an equivalence class [X] ∈ 2Σ∗
/ ∼♥, there exists a unique

maximal element Xmax with respect to the set inclusion partial order defined as
follows:

Xmax =
⋃

L∈[X]

L.

We provide a way to construct the maximum element of a given equivalence
class. First, we prove a more general result.

Proposition 9. Let L ⊆ Σ∗, and let f, g : Σ∗ → 2Σ∗
be any functions such

that u ∈ g(v) ⇔ v ∈ f(u) for all u, v ∈ Σ∗. If a solution to the language
equation

⋃
x∈X f(x) = L exists, then the maximum solution (with respect to the

set inclusion partial order) is given by Xmax =
(⋃

y∈Lc g(y)
)c.

Proof. For two languages X,Y ⊆ Σ∗ such that
⋃

x∈X f(x) = L and
⋃

y∈Y f(y) =
L,

⋃
z∈X∪Y f(z) = L holds. Hence the assumption implies the existence of Xmax.

(⊆) Suppose ∃w ∈ g(v) ∩Xmax for some v ∈ Lc. This means that v ∈ f(w).
However, f(w) ⊆

⋃
x∈Xmax

f(x) = L, and hence v ∈ L, a contradiction. (⊇)
Suppose that ∃w ∈ Xc

max ∩ (
⋃

y∈Lc g(y))c. If f(w) ⊆ L, then w ∈ Xmax (by
the maximality of Xmax). Otherwise, ∃v ∈ f(w) ∩ Lc. This implies that w ∈
g(v) ⊆

⋃
y∈Lc g(y). In both cases, we have a contradiction. Therefore, we have

Xc
max =

⋃
y∈Lc g(y), i.e., Xmax = (

⋃
y∈Lc g(y))c. !

Lemma 4. Let u, v ∈ Σ∗. Then u ∈ v♥ if and only if v ∈ u♠.

Proof. (⇒) If u ∈ v♥, then there exist x, z ∈ Σ∗ and y ∈ Σ+ such that v = xyz
and u = xyyz. Then u♠ contains xyz = v. (⇐) If v ∈ u♠, then there exist
x′, z′ ∈ Σ∗ and y′ ∈ Σ+ such that v = x′y′z′ and u = x′y′y′z′. Then x′y′y′z′ =
u ∈ v♥. !

Proposition 9 and Lemma 4 imply the following corollaries.

Corollary 2. Let L ⊆ Σ∗. If there exists a language X ⊆ Σ∗ such that X♠ = L,
then the maximum element Xmax of [X]∼♠ is given by ((Lc)♥)c.

Corollary 3. Let L ⊆ Σ∗. If there exists a language X ⊆ Σ∗ such that X♥ = L,
then the maximum element Xmax of [X]∼♥ is given by ((Lc)♠)c.

Proposition 10. Let L,X be regular languages satisfying X♥ = L. Then it is
decidable whether X is the maximal solution for this language equation.

Proof. Since REG is closed under repeat-deletion and complement, the maxi-
mum solution of X♥ = L given in Corollary 3, ((Lc)♠)c, is regular. Since the
equivalence problem for regular languages is decidable, it is decidable whether a
given solution to the duplication language equation is maximal. !

Duplication in DNA Sequences 425

Due to the fact that the family of regular languages is not closed under du-
plication, we cannot obtain a similar decidability result for the repeat-deletion
language equation, X♠ = L. This motivates our investigation in the next section
of a necessary and sufficient condition for the duplication of a regular language
to be regular.

5 Controlled Duplication

In Section 4 we showed that for a given language L ⊆ Σ∗, the maximal solution
of the repeat-deletion language equation X♠ = L is given by ((Lc)♥)c. However,
unlike the duplication language equation, we do not have an efficient algorithm
to compute this language due to the fact that the family of regular languages
is not closed under duplication. This motivates “controlling” the duplication in
such a manner that duplications can occur only for some specific words. In this
section, we first introduce a controlled duplication, together with some of its basic
properties. Then we propose a possible way of characterizing regular languages
whose duplication can be controlled so as to generate regular languages, and
give partial answers in several particular cases.

For languages L,C ⊆ Σ∗, we define the duplication of L using the control set
C as follows:

L♥(C) =
{
xyyz | xyz ∈ L, y ∈ C

}
.

Note that this “controlled” duplication operation can express two variants of du-
plication that appear in previous literature ([8], [9]), namely uniform and length-
bounded duplication. Indeed, using the notations in [8], we have D1

{n}(L) =

L♥(Σn) and D1
{0,1,...,n}(L) = L♥(Σ≤n).

The following two lemmata are basic properties of controlled duplication.

Lemma 5. Let L,C1, C2 ⊆ Σ∗. If C1 ⊆ C2, then L♥(C1) ⊆ L♥(C2).

Lemma 6. Let L,C1, C2 ⊆ Σ∗. Then L♥(C1∪C2) = L♥(C1) ∪ L♥(C2).

Let L be a language and C be a control set. We say that a word w ∈ C is useful
with respect to L if w ∈ F(L); otherwise, it is called useless with respect to L. The
control set C is said to contain an infinite number of useful words with respect
to L if |F(L) ∩C| = ∞.

Lemma 7. Let L ⊆ Σ∗ be a language, C ⊆ Σ∗ be a control set, and C′ be the
set of all useless words in C with respect to L. Then L♥(C) = L♥(C\C′).

Proposition 11. For a regular language L ⊆ Σ∗ and a regular control set C ⊆
Σ∗, it is decidable whether C contains an infinite number of useful words with
respect to L.

For a regular language L and a control set C, we now investigate a necessary and
sufficient condition for L♥(C) to be regular. A sufficient condition is a corollary of
the following result in [2]. A family of languages is called a trio if it is closed under

426 M. Ito et al.

λ-free homomorphism, inverse homomorphisms, and intersections with regular
languages. Note that both the families of regular languages and of context-free
languages are trio.

Theorem 1 ([2]). Any trio is closed under duplication with a finite control set.

Corollary 4. Let L ⊆ Σ∗ be a regular language and C ⊆ Σ∗. If there exists a
finite control set C′ ⊆ Σ∗ such that L♥(C) = L♥(C′), then L♥(C) is regular.

Results in [15] that state that infinite repetitive languages cannot be even
context-free indicate that the converse of Corollary 4 may also be true. Hence,
in the remainder of this section we shall investigate the following claim:

Claim. Let L ⊆ Σ∗ be a regular language and C ⊆ Σ∗ be a control set. If L♥(C)

is regular then there exist a finite control set C′ ⊆ Σ∗ such that L♥(C) = L♥(C′).

As shown in the following example, this claim generally does not hold.

Example 2. Let Σ = {a, b}, L = ba+b, and C = ba+ ∪ a+b. We can duplicate a
prefix bai of a word bajb ∈ L (i ≤ j) to obtain a word baibajb ∈ L♥(C). In the
same way, the duplication of a suffix a�b of a word bakb (k ≥ �) results in a word
bakba�b ∈ L♥(C). Thus L♥(C) = ba+ba+b. Note that L and L♥(C) are regular.
However there exists no finite control set C′ satisfying L♥(C) = L♥(C′). This is
because ba+ba+b can have arbitrary long repetitions of a’s, and hence arbitrary
long control factors are required to generate it.

Nevertheless this claim holds for several interesting cases: the case where L is
finite or C contains at most a finite number of useful words with respect to L,
the case of a unary alphabet Σ = {a}, the case L = Σ∗, and the case where the
control set is “marked”, i.e. there exists a ∈ Σ such that C ⊆ a(Σ \ {a})∗a. In
the following, we prove the direct implication of the claim for these cases (the
reverse one is clear from Corollary 4).

The first case we consider is when L is finite. Then L♥(C) is finite and hence
regular. Since F(L) is finite, by letting C′ = C∩F(L), L♥(C) = L♥(C′). Thus the
claim holds in this case. Moreover, even for an infinite L, we can reach the same
conclusion if C contains at most a finite number of useful words with respect to
L because C′, defined as above, is finite.

Next, we consider the case of a unary alphabet. We omit the proof that is
mainly based on number theory arguments.

Proposition 12. Let Σ = {a} be a unary alphabet, L ⊆ Σ∗ be a regular lan-
guage, and C ⊆ Σ∗ be an arbitrary language. Then L♥(C) is regular, and there
exists a finite control set C′ ∈ FIN such that L♥(C) = L♥(C′).

By letting C = Σ∗, Proposition 12 implies that the family of regular languages
is closed under duplication when Σ is unary.

Thirdly we prove that the claim holds for the case when L = Σ∗ (Corollary
5). This requires the following known two lemmata.

Lemma 8 ([10]). For a primitive word p, any conjugate word of p is primitive.

Duplication in DNA Sequences 427

Lemma 9 ([11]). Let p and q be primitive words with p �= q and let i, j ≥ 2.
Then piqj is primitive.

For a language C ⊆ Σ∗, we define Dup(C) = {ww | w ∈ C}.
Proposition 13. Let C ⊆ Σ∗. Then Σ∗Dup(C)Σ∗ is regular if and only if
there exists a finite language C′ such that Σ∗Dup(C′)Σ∗ = Σ∗Dup(C)Σ∗.

Proof. The proof of ’if’-part is obvious since Σ∗Dup(C′)Σ∗ is regular. Now con-
sider the proof of ’only if’-part. Assume L = Σ∗Dup(C)Σ∗ is regular and
consider the regular language L ∩ (Σ∗ \ LΣ+) ∩ (Σ∗ \ Σ+L). All words in
this language have a representation ww for some w ∈ C. Hence there exists
C′ ⊆ C such that Dup(C′) = L∩ (Σ∗ \LΣ+)∩ (Σ∗ \Σ+L). Notice that for any
w ∈ C there exist w′ ∈ C′ and x, y ∈ Σ∗ such that ww = xw′w′y. Therefore,
Σ∗Dup(C)Σ∗ = Σ∗Dup(C′)Σ∗.

Suppose C′ is infinite. Then there exists a word uu ∈ Dup(C′) with length
twice that of the pumping lemma constant for Dup(C′). So by the pumping
lemma, there exists a decomposition uu = u1u2u3u1u2u3, of uu such that
u1, u3 ∈ Σ∗, u2 ∈ Σ+ and u1u

i
2u3u1u2u3 ∈ Dup(C′) for any i ∈ N. Notice

that for any i ∈ N, u1u
i
2u3u1u2u3 is not primitive because it is in Dup(C′). Con-

sider the case i ≥ 3. By Lemma 8, ui−1
2 (u2u3u1)2 is not primitive. Then Lemma

9 implies that u2 and u2u3u1 share a primitive root, say p ∈ Σ+. We may now
write u2 = pn and u2u3u1 = pm for some n,m ≥ 1. Hence ui−1

2 (u2u3u1)2 =
pn(i−1)+2m. From Lemma 8, it follows that u1u

i
2u3u1u2u3 = qn(i−1)+2m, where

q is a conjugate word of p. Now we have that u1u
i
2u3u1u2u3 = qn(i−1)+2m is a

proper prefix (and suffix) of u1u
i+1
2 u3u1u2u3 = qni+2m, which contradicts the

definition of Dup(C′). Thus C′ must be finite. !
Lemma 10. Let C ⊆ Σ∗. Then (Σ∗)♥(C) = Σ∗Dup(C)Σ∗.

Proof. Let w ∈ (Σ∗)♥(C). Then there exist x, y, z ∈ Σ∗ such that y ∈ C and
w = xyyz. Thus, w ∈ Σ∗Dup(C)Σ∗. Conversely, let v ∈ Σ∗Dup(C)Σ∗. Then
v is of the form xyyz such that x, z ∈ Σ∗ and yy ∈ Dup(C) (so, y ∈ C). The
duplication of y in xyz ∈ Σ∗ results in xyyz = v, and hence v ∈ (Σ∗)♥(C). !
The following corollary is a consequence of Proposition 13 and Lemma 10. In
fact, this corollary asserts the claim in the case when L = Σ∗.

Corollary 5. Let C ⊆ Σ∗. Then (Σ∗)♥(C) is regular if and only if there exists
a finite subset C′ ⊆ C such that (Σ∗)♥(C′) = (Σ∗)♥(C).

The last case we consider is that of marked duplication, where given a word w
in L♥(C), we can deduce or at least guess the factor whose duplication generates
w from a word in L according to some mark of a control set C. Here we consider
a mark which shows the beginning and end of a word in C, that is, C ⊆ #(Σ \
{#})∗# for some character #. For a strongly-marked duplication, where # /∈ Σ
and L ⊆ Σ∗#Σ∗#Σ∗, we can easily show that the existence of a finite control
set provided L♥(C) is regular using the pumping lemma for the regular language.
Hence we consider the case when the mark itself is a character in Σ, say # = a
for some a ∈ Σ.

428 M. Ito et al.

We introduce several needed notions related to controlled duplication. Let
L ⊆ Σ∗ be a language and C ⊆ Σ∗ be a control set. For a word w ∈ L♥(C), we
call a tuple (x, y, z) a dup-factorization of w with respect to L and C if w = xyyz,
xyz ∈ L, and y ∈ C. When L and C are clear from the context, we simply say
that (x, y, z) is a dup-factorization of w. For y ∈ C, if there are x, z ∈ Σ∗ such
that (x, y, z) is a dup-factorization of w, then we call y a dup-factor of w.

Proposition 14. Let Σ be a finite alphabet of more than one character, L ⊆ Σ∗

be a regular language, and C ⊆ a(Σ \ {a})∗a for some a ∈ Σ. Then L♥(C) is
regular if and only if there exists a finite language C′ such that L♥(C) = L♥(C′).

Proof. We consider following two syntactic equivalence relations:

≡L = {(u, v) | ∀x, y ∈ Σ∗, xuy ∈ L⇔ xvy ∈ L},
≡♥ = {(u, v) | ∀x, y ∈ Σ∗, xuy ∈ L♥(C) ⇔ xvy ∈ L♥(C)},

and define ≡ = ≡L ∩ ≡♥. Since both L and L♥(C) are regular, C/≡ is finite.
Let Γ2 = {[c] ∈ C/ ≡ | |[c]| ≤ 2}. Using induction on the number of dup-
factorizations, we prove that (i) Γ2 �= ∅, and (ii) any word in L♥(C) has a
dup-factor which is in an equivalence class in Γ2.

Firstly, we consider a word w in L♥(C) which has the smallest number of
dup-factorizations among the elements of L♥(C). Suppose that no dup-factor
of w is in equivalence classes in Γ2. Let (x, aya, z) be a dup-factorization of
w for some x, y, z ∈ Σ∗. Then there exists ay′a ∈ C such that ay′a ≡ aya,
y′ �= y, and ay′a �∈ Suff(x). Let w′ = xay′aayaz. This is in L♥(C), and hence
w′ must have a dup-factorization, say (α, aβa, γ) for some α, β, γ ∈ Σ∗. Due to
the fact that y′, y, β do not contain any a, (aβa)2 is either (1) a factor of x, (2)
a factor of z, or (3) β = y and aβa ∈ Pref(z). Here we consider only the case
(1), and let x = α(aβa)2γ′, γ = γ′ay′aayaz. Then w′ = α(aβa)2γ ∈ L♥(C) ⇒
αaβaγ′ay′aayaz ∈ L ⇒ αaβaγ′(aya)2z ∈ L ⇒ α(aβa)2γ′(aya)2z = w ∈ L♥(C),
and hence α, aβa, γ′(aya)2z) is a dup-factorization of w. This means that a dup-
factorization (α, aβa, γ) of w′ induces a dup-factorization (α0, aβa, γ0) of w,
where a single occurrence of y′ in either α or γ is replaced by y to obtain α0 and
γ0. The original dup-factorization (x, aya, z) of w cannot be obtained this way.
Hence w′ has a smaller number of dup-factorizations than w, a contradiction.
Thus w has a dup-factor which is in an equivalence class in Γ2, and hence Γ2 �= ∅.

Now we assume that all words in L♥(C) with at most n dup-factorizations
have a dup-factor which is in an equivalence class in Γ2. Suppose that there
were v ∈ L♥(C) with n+1 dup-factorizations and without any dup-factor which
is in the equivalence class of size at most 2. Then we can construct a word
v′ as above which has at most n dup-factorizations but does not satisfy the
assumption, which is a contradiction. !

Note that the property of a control set required in this proof is that none of its
elements “overlap” with each other. That is, we can use a similar proof to settle
a more general case where a control set is non-overlapping and an infix code.
(See [18] for definitions.)

Duplication in DNA Sequences 429

Corollary 6. Let L be a regular language and C be a control set such that L♥(C)

is regular. If C is non-overlapping and an infix code, then there exists a finite
control set C′ such that L♥(C) = L♥(C′).

Moreover, the proof of Proposition 14 shows that if we let m = |C/ ≡ |, the
size of finite control set C′ given there is at most 2|Γ2|, which is not bigger
than 2(m− 1) because at least one equivalence class in C/≡ must have infinite
cardinality. Finally, we provide a result slightly stronger than Corollary 6.

Corollary 7. Let L be a regular language and C be a control set. If there exists
a finite set C1 ⊂ C such that C \ C1 is non-overlapping and an infix code, then
the regularity of L♥(C) implies the existence of a finite control set C′ such that
L♥(C) = L♥(C′).

6 Duplication and Primitivity

There is evidently a connection between duplication, repeat-deletion, and primi-
tive words, but the nature of this relationship is unclear. This section elucidates
some of the properties of this relationship.

Proposition 15 (see, for instance, [14]). Let u, v ∈ Σ+ such that uv is
primitive. Then both u(uv)n and v(uv)n are primitive for any n ≥ 2.

Proposition 16. Let w ∈ Σ∗ be a non-primitive word. If we duplicate a factor
of w which is properly shorter than the primitive root of w, then the resulting
word is primitive.

We can derive the following proposition from Lemma 9.

Proposition 17. Let x, y, z ∈ Σ∗. If xyz is primitive and xyyz is not primitive,
then xz is primitive.

7 Discussion and Future Work

In this paper, we studied duplication and repeat-deletion, two formal language
theoretic models of insertion and deletion errors occurring during DNA replica-
tion. Specifically, we obtained the closure properties of the families of languages
in the Chomsky hierarchy under these operations, the language equations of
the form X♥ = L and X♠ = L for a given language L, and the operation of
controlled duplication. In addition, we made steps towards finding a necessary
and sufficient condition for a controlled duplication of a regular language to be
regular.

Two problems for further investigation are: the problem of how to decide for
a given language L whether the language equation X♥ = L has a solution, and
the problem of finding a necessary condition for the controlled duplication of a
regular language to be regular in the general case.

430 M. Ito et al.

Acknowledgements

We wish to express our gratitude to Dr. Zoltán Ésik for the concise proof of
Proposition 4. We would also like to thank Dr. Helmut Jürgensen for discussions
about the claim and Dr. Kathleen Hill for extended discussions on the biological
motivation for duplication and repeat-deletion.

References

1. Dassow, J., Mitrana, V., Păun, G.: On the regularity of duplication closure. Bull.
EATCS 69, 133–136 (1999)

2. Dassow, J., Mitrana, V., Salomaa, A.: Operations and language generating devices
suggested by the genome evolution. Theoretical Computer Science 270, 701–738
(2002)

3. Garcia-Diaz, M., Kunkel, T.A.: Mechanism of a genetic glissando: structural biol-
ogy of indel mutations. Trends in Biochemical Sciences 31(4), 206–214 (2006)

4. Ito, M.: Algebraic Theory of Automata and Languages. World Scientific Pub. Co.
Inc., Singapore (2004)

5. Ito, M., Leupold, P., S-Tsuji, K.: Closure of language classes under bounded dupli-
cation. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 238–247.
Springer, Heidelberg (2006)

6. Leupold, P.: Duplication roots. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
DLT 2007. LNCS, vol. 4588, pp. 290–299. Springer, Heidelberg (2007)

7. Leupold, P.: Languages generated by iterated idempotencies and the special case
of duplication. Ph.D. thesis, Department de Filologies Romaniques, Facultat de
Lletres, Universitat Rovira i Virgili, Tarragona, Spain (2006)

8. Leupold, P., Mitrana, V., Sempere, J.: Formal languages arising from gene repeated
duplication. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular
Computing. LNCS, vol. 2950, pp. 297–308. Springer, Heidelberg (2003)

9. Leupold, P., M-Vide, C., Mitrana, V.: Uniformly bounded duplication languages.
Discrete Applied Mathematics 146(3), 301–310 (2005)

10. Lothaire, M.: Combinatorics on Words, Encyclopedia of Mathematics and its Ap-
plications 17. Addison-Wesley Publishing Co., Reading (1983)

11. Lyndon, R.C., Schützenberger, M.P.: On the equation aM = bNcP in a free group.
Michigan Mathematical Journal 9, 289–298 (1962)

12. M-Vide, C., Păun, G.: Duplication grammars. Acta Cybernetica 14, 151–164 (1999)
13. Mitrana, V., Rozenberg, G.: Some properties of duplication grammars. Acta Cy-

bernetica 14, 165–177 (1999)
14. Reis, C.M., Shyr, H.J.: Some properties of disjunctive languages on a free monoid.

Information and Control 37, 334–344 (1978)
15. Ross, R., Winklmann, K.: Repetitive strings are not context-free. R.A.I.R.O infor-

matique théorique / Theoretical Informatics 16(3), 191–199 (1982)
16. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Hei-

delberg (1997)
17. Searls, D.B.: The computational linguistics of biological sequences. In: Hunter, L.

(ed.) Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press, The
MIT Press (1993)

18. Yu, S.S.: Languages and Codes. Lecture Notes, Department of Computer Science,
p. 402. National Chung-Hsing University, Taichung (2005)

On the State Complexity of Complements,

Stars, and Reversals of Regular Languages�

Galina Jirásková

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice,
Slovakia

jiraskov@saske.sk

Abstract. We examine the deterministic and nondeterministic state
complexity of complements, stars, and reversals of regular languages.
Our results are as follows:
1. The nondeterministic state complexity of the complement of an

n-state NFA language over a five-letter alphabet may reach each
value in the range from log n to 2n.

2. The state complexity of the star (reversal) of an n-state DFA lan-
guage over a growing alphabet may reach each value in the range
from 1 to 3

42n (from log n to 2n, respectively).
3. The nondeterministic state complexity of the star (reversal) of an

n-state NFA binary language may reach each value in the range
from 1 to n + 1 (from n − 1 to n + 1, respectively).

We also obtain some partial results on the nondeterministic state com-
plexity of the complements of binary regular languages. As a bonus, we
get an exponential number of values that are non-magic, which improves
a similar result of Geffert (Proc. 7th DCFS, Como, Italy, 23–37).

1 Introduction

Regular languages and finite automata are among the oldest and simplest topics
in formal language theory. They have been intensively studied since the forties.
Nevertheless, some important problems are still open. The most famous is the
question of how many states are sufficient and necessary for two-way determinis-
tic finite automata to simulate two-way nondeterministic finite automata [1,17].

Recently, there have been a new interest in automata theory; for a discus-
sion, we refer to [10,20]. Many researchers have investigated various problems
concerning descriptional complexity which studies the costs of description of
languages by different formal systems. Here we focus on the deterministic and
nondeterministic state complexity of complements, stars, and reversals of regular
languages.

In 1997, at the 3rd Conference on Developments in Language Theory, Iwama
at al. [11] stated the question of whether there always exists a minimal nonde-
terministic finite automaton (NFA) of n states whose equivalent minimal deter-
ministic finite automaton (DFA) has exactly α states for all integers n and α

� Research supported by the VEGA grant 2/6089/26.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 431–442, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

432 G. Jirásková

satisfying that n 	 α 	 2n. The question has also been considered in [12], where
an integer Z with n < Z < 2n is called a “magic number” if no DFA of Z states
can be simulated by any NFA of n states. In [13] it has been shown that there
are no magic numbers, that is, appropriate automata have been described for all
integers n and α. However, the constructions have used a growing alphabet of
size 2n−1 + 1. Later, in [5], the size of the alphabet has been decreased to n+ 2,
and finally, in [16], the result has been proved for a fixed four-letter alphabet.
On the other hand, there are a lot of magic numbers in a unary case [6]. The
problem remains open for binary and ternary alphabets.

A similar question for complements of regular languages has been examined
in [15]. Using a growing alphabet of size 2n+1 it has been proved that all values
in the range from logn to 2n can be obtained as the nondeterministic state
complexity of an n-state NFA language. Here we improve this result by showing
that it still holds for a fixed five-letter alphabet. We also consider a binary case,
and, as a bonus, we get an exponential number of so called “non-magic” values.

We next investigate the deterministic and nondeterministic state complexity
of stars and reversals of regular languages. In all cases, we show that the whole
range of complexities up to the known upper bounds can be obtain. To prove the
results on state complexity we use growing alphabets. In the nondeterministic
case, a binary alphabet is enough to describe appropriate automata.

To conclude this section let us mention some other related works. Magic num-
bers for symmetric difference NFAs have been studied by Zijl [22]. In [9], it has been
shown thatthedeterministicandnondeterministicstatecomplexityofunionand in-
tersection of regular languagesmay reach each value from 1 up to the upper bounds
mn orm+n+1.Similar results for the nonterminal complexity of some operations
on context-free languages have been recently obtained by Dassow and Stiebe [4].

2 Preliminaries

In this section, we give some basic definitions, notations, and preliminary results
used throughout the paper. For further details, we refer to [18,19].

Let Σ be a finite alphabet and Σ∗ the set of all strings over the alphabet
Σ including the empty string ε. The length of a string w is denoted by |w|. A
language is any subset of Σ∗. The complement of a language L is denoted by
Lc, its star by L∗, and it reversal by LR. We denote the cardinality of a finite
set A by |A| and its power-set by 2A.

A deterministic finite automaton (DFA) is a 5-tuple M = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite input alphabet, δ is the transition
function that maps Q×Σ to Q, q0 is the initial state, q0 ∈ Q, and F is the set
of accepting states, F ⊆ Q. In this paper, all DFAs are assumed to be complete,
that is, the next state δ(q, a) is defined for each state q in Q and each symbol a
in Σ. The transition function δ is extended to a function from Q×Σ∗ to Q in
a natural way. A string w in Σ∗ is accepted by the DFA M if the state δ(q0, w)
is an accepting state of the DFA M . The language accepted by the DFA M,
denoted L(M), is the set of strings {w ∈ Σ∗ | δ(q0, w) ∈ F}.

On the State Complexity of Complements, Stars, and Reversals of RL 433

A nondeterministic finite automaton (NFA) is a 5-tuple M = (Q,Σ, δ, q0, F),
where Q,Σ, q0 and F are defined in the same way as for a DFA, and δ is the
nondeterministic transition function that maps Q × Σ to 2Q. The transition
function can be naturally extended to the domain Q×Σ∗. A string w in Σ∗ is
accepted by the NFA M if the set δ(q0, w) contains an accepting state of the
NFA M. The language accepted by the NFA M is the set of strings L(M) =
{w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}.

Two automata are said to be equivalent if they accept the same language. A
DFA (an NFA) M is called minimal if all DFAs (all NFAs, respectively) that
are equivalent to M have at least as many states as M . It is well-known that
a DFA M = (Q,Σ, δ, q0, F) is minimal if (i) all its states are reachable from
the initial state, and (ii) no two its different states are equivalent (states p
and q are said to be equivalent if for all strings w in Σ∗, the state δ(p, w) is
accepting iff the state δ(q, w) is accepting). Each regular language has a unique
minimal DFA, up to isomorphism. However, the same result does not hold for
NFAs.

The (deterministic) state complexity of a regular language is the number of
states in its minimal DFA. The nondeterministic state complexity of a regu-
lar language is defined as the number of states in a minimal NFA accepting
this language. A regular language with deterministic (nondeterministic) state
complexity n is called an n-state DFA language (an n-state NFA language,
respectively).

Every nondeterministic finite automaton M = (Q,Σ, δ, q0, F) can be con-
verted to an equivalent deterministic finite automaton M ′ = (2Q, Σ, δ′, q′0, F

′)
using an algorithm known as the “subset construction” in the following way. Ev-
ery state of the DFA M ′ is a subset of the state set Q. The initial state of the DFA
M ′ is the set {q0}. The transition function δ′ is defined by δ′(R, a) =

⋃
r∈R δ(r, a)

for each state R in 2Q and each symbol a in Σ. A state R in 2Q is an accepting
state of the DFA M ′ if it contains at least one accepting state of the NFA M.
The DFA M ′ need not be minimal since some states may be unreachable or
equivalent. Sometimes, also NFAs with a set of initial states are considered. In
such a case, the subset construction starts with this set being the initial state of
an equivalent DFA.

To prove that an NFA is minimal we use a fooling-set lower-bound technique
[2,3,7]. After defining a fooling set, we recall the lemma from [2] describing this
lower-bound technique.

Definition 1. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is said to be
a fooling set for a regular language L if for every i and j in {1, 2, . . . , n},

(1) the string xiyi is in the language L, and
(2) if i �= j, then at least one of the strings xiyj and xjyi is not in L.

Lemma 1 (Birget [2]). Let a set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n}
be a fooling set for a regular language L. Then every NFA for the language L
needs at least n states. !

434 G. Jirásková

3 Complements

We start with the complements of regular languages. In the deterministic case,
there is not much to say. The state complexity of a language and its complement
is the same since to get a DFA for the complement we can simply exchange the
accepting and the rejecting states in a DFA for the given language. The nonde-
terministic case is completely different. Given an n-state NFA we can apply the
subset construction, and then exchange the accepting and the rejecting states,
which gives an upper bound 2n on the size of an NFA for the complement. This
upper bound is known to be tight [17,3], and can be reached by the complement
of a binary regular language [14].

Here we deal with the question of what values can be reached as the size
of a minimal NFA accepting the complement of an n-state NFA language. In
[15] it has been shown that all values from logn to 2n can be reached, however,
appropriate automata have been defined over a growing alphabet of size 2n+1. In
this section, we prove that this result still holds for a fixed five-letter alphabet.
For each α with logn 	 α 	 2n, we describe a minimal n-state NFA M with a
five-letter input alphabet such that every minimal NFA for the complement of
the language L(M) has exactly α states. In the second part of this section, we
study a binary case, and show that here the whole range of complexities from
3 logn to n + 2n/3 can be obtained. As a bonus, we get an exponential number
of so called non-magic values, which improves a similar result of Geffert [5].

The first two lemmata solve special cases of α = n and α = 2n. The next one
has been recently proved in [16].

Lemma 2 ([15]). For every n
 1, there exists a minimal binary NFA M of n
states such that every minimal NFA for the complement of the language L(M)
has n states. !
Lemma 3 ([14]). For every n
 1, there exists a minimal binary NFA M of n
states such that every minimal NFA for the complement of the language L(M)
has 2n states. !
Lemma 4 ([16], Theorem 1). For all integers n and α with n < α < 2n,
there exists a minimal NFA of n states with a four-letter input alphabet whose
equivalent minimal DFA has exactly α states. !
We use the automata from the lemma above to prove the next result which shows
that the nondeterministic state complexity of the complement of an
n-state NFA language over a five-letter alphabet may reach an arbitrary value
from n + 1 to 2n − 1.

Lemma 5. For all integers n and α with n < α < 2n, there exists a minimal
NFA M of n states with a five-letter input alphabet such that every minimal NFA
for the complement of the language L(M) has α states.

Proof. Let n < α < 2n. Then there is an integer k such that 1 	 k 	 n− 1 and
n− k + 2k 	 α < n− (k + 1) + 2k+1. It follows that α = n− (k + 1) + 2k + m,
where m is an integer such that 1 	 m < 2k.

On the State Complexity of Complements, Stars, and Reversals of RL 435

Let C = Cn,k,m = (Q, {a, b, c, d}, δC, q0, {k}), where Q = {0, 1, . . . , n− 1}, be
the n-state NFA from Lemma 4 whose minimal DFA has α states.

Now, let M = Mn,k,m = (Q, {a, b, c, d, f}, δ, q0, {k}) be an n-state NFA ob-
tained from the NFA C by adding transitions on a new symbol f so that by f ,
state i with 0 	 i 	 k− 1 goes to {i+ 1}, state k goes to {0, 1, . . . , k}, and each
other state goes to the empty set.

Let M ′ be the DFA obtained from the NFA M by the subset construction.
It can be shown that the DFA M ′ has α reachable states. After exchanging the
accepting and the rejecting states we get a DFA of the same number of states for
the language L(M)c. To prove the lemma it is sufficient to show that every NFA
for the language L(M)c needs at least α states. This can be shown by describing
a fooling set for the language L(M)c of size α. !

As a corollary of Lemmata 2, 3, and 5, and taking into account that (Lc)c = L,
we get the following result.

Theorem 1. For all integers n and α with logn 	 α 	 2n, there exists a
minimal nondeterministic finite automaton M of n states with a five-letter in-
put alphabet such that every minimal nondeterministic finite automaton for the
complement of the language L(M) has exactly α states. !

The second part of this section is devoted to the nondeterministic state com-
plexity of the complements of binary regular languages. The first lemma deals
with values from n + 4 up to 2�n/3� − 1, the second one covers the remaining
cases.

Lemma 6. For all integers n and α with n + 4 	 α < n + 2�n/3�, there exists
a minimal binary NFA M of n states such that every minimal NFA for the
complement of the language L(M) has α states.

Proof. Let n+4 	 α < n+2�n/3� and let k = �n/3�. Then α can be expressed as
α = n +

∑k−1
i=0 ci · 2i, where ci ∈ {0, 1} for i = 0, 1, . . . , k − 1. Denote by

m = max{i | ci = 1} and � = |{i > 0 | ci = 1}|. Since α
 n + 4, we have
m
 2.

Define an n-state NFA M = (Q, {a, b}, δ, p1, {1}), where Q = {p1, p2, . . . , pk}∪
{s1, s2, . . . , sk} ∪ {1, 2, . . . , n − 2k}, and δ is defined as follows (see Fig. 1). If
1 	 i < k and ci = 0, then δ(pi, a) = {si}, δ(si, a) = {pi+1}, and δ(pi, b) =
δ(si, b) = ∅. If 1 	 i < k and ci = 1, then δ(pi, a) = {pi+1}, δ(pi, b) = {si},
δ(si, a) = {si, i}, and δ(si, b) = {si}. Next, δ(pk, a) = {sk}, δ(pk, b) = {�, �− 1},
δ(sk, a) = {n − 2k}, and δ(sk, b) = ∅ if c0 = 0 and δ(sk, b) = {� + 1, �} if
c0 = 1. Finally, δ(q, a) = δ(q, b) = {q − 1} if 2 	 q 	 n − 2k, δ(1, a) = {sm} ∪
{1, 2, . . . ,m + 1}, and δ(1, b) = ∅.

Notice that there is a chain of a’s going from state p1 to state 1, which goes
through all pi’s, those si’s with ci = 0, and states n − 2k, n − 2k − 1, . . . , 2, 1.
The length of this chain is n − 1 − �, i.e., the string an−1−� is in L(M). Next,
for all i with ci = 1, all strings with an a in the i-th position from the end are
accepted by M from state si, and no string in b∗ is accepted from si.

436 G. Jirásková

......

......

......

a,ba,ba,ba,ba,ba,b a,b a,b

..
. a,b

a,b

{l,l−1}

aaa

a
a

a aa aa

a

a

a
a

a
a

a,b
bbb

a,b

a

a
a

a

a
b

12mm+1k

s s1ss 234smsm+1s

p

k

k pm+1 pm p4 p
3

p
2

p
1

n−2k

34

a,b

a

Fig. 1. The nondeterministic finite automaton M

It can be shown that the NFA M is minimal, the DFA M ′ obtained from the
NFA M by the subset construction has α reachable states, and there is a fooling
set for the language L(M)c of size α. !

Lemma 7. For all integers n and α with n+1 	 α 	 2n, there exists a minimal
binary NFA M of n states such that every minimal NFA for the complement of
the language L(M) has α states. !

By Lemmata 2, 6, 7, and the fact that (Lc)c = L, we have the next result.

Theorem 2. For all integers n and α with 3 logn 	 α < n + 2�n/3�, there
exists a minimal binary NFA M of n states such that every minimal NFA for
the complement of the language L(M) has exactly α states. !

As a corollary, we get an exponential number of non-magic values in a binary
case, which improves the current number 2Ω(n1/3 ln2/3 n) obtained by Geffert [5]
using binary bounded languages.

Corollary 1. For every n
 1, all values from n to n + 2�n/3� are non-magic
in a binary case, that is, for each integer α with n 	 α < n+ 2�n/3�, there exists
a minimal binary NFA of n states whose equivalent minimal DFA has α states.

Proof. Consider a binary NFA M described in Lemmata 2, 6, 7, for a given α.
The DFA obtained from this NFA by the subset construction has α reachable
sets. These sets must be inequivalent because otherwise we would have a smaller
DFA for the language L(M), and so, also a smaller DFA for the language L(M)c.
However, every NFA for the language L(M) needs at least α states, a contradic-
tion. Thus the minimal DFA for the language L(M) has α states as desired. !

4 Stars

This section deals with the deterministic and nondeterministic state complexity
of stars of regular languages.

On the State Complexity of Complements, Stars, and Reversals of RL 437

The upper bound on the state complexity of star operation is known to be
3
42n [21]. In the first part of this section, we show that each value from 1 to
this upper bound can be reached as the state complexity of the star of an
n-state DFA language. With an upper bound n + 1, we prove a similar result
for the nondeterministic state complexity of stars in the second part of this sec-
tion. To get the result in the deterministic case we use a growing alphabet. In
the nondeterministic case, a binary alphabet is enough to describe appropriate
automata.

Let us start with recalling binary languages that reach the upper bound on
the state complexity of star operation. Let k
 2 and let Ak be the binary k-state
DFA depicted in Fig. 2. The following result has been shown by Yu, Zhuang and
Salomaa [21].

2
a,b

1 k
a a,b ... a,b

3

a
bb

Fig. 2. The deterministic finite automaton Ak

Lemma 8 ([21]). For every k
 2, the minimal DFA for the language L(Ak)∗

has 3
42k states. !

Using automata Ak described above we prove the folloving lemma.

Lemma 9. For all integers n and k with 2 	 k 	 n, there exists a minimal DFA
Bn,k of n states with a four-letter input alphabet such that the minimal DFA for
the language L(Bn,k)∗ has n− k + 3

42k states.

Proof. If k = n, then take the DFA An from Lemma 8. Let 2 	 k 	 n− 1 and
let Σ = {a, b, c, d}.

Let us construct an n-state DFA Bn,k with the input alphabet Σ from the
k-state DFA Ak by adding new states k + 1, k + 2, . . . , n, which go to itself
by a, b, c except for state k + 1 which goes to state 1 by a, b, c. Each of the
states in {1, 2, . . . , k} goes to state k + 1 by c and to state k + 2 by d. By d,
state n goes to state 1, and state q with k + 1 	 q 	 n − 1 to state q + 1.
The DFA Bn,k is shown in Fig. 3 and is minimal since no two of its states
are equivalent. If k = n − 1, then the DFA Bn,k is defined over the alphabet
{a, b, c}.

Construct an NFA B′ be for the language L(Bn,k)∗ from the DFA Bn,k by
adding a new initial (and accepting) state q0 which goes to state 2 by a, to state
1 by b, to state k + 1 by c, and to state k + 2 by d. Next, add transitions by a
and by b from state k − 1 to state 1.

Let B′′ be the DFA obtained from the NFA B′ by the subset construction.
The DFA B′′ has n − k + 3

42k reachable and pairwise inequivalent states, and
the lemma follows.

 !

438 G. Jirásková

k
a

21
a,b ... a,b

k+2... k+1n
ddd

a,b,c

a,b,c

da,b,c b

d

d
d

c
c

c

ba

Fig. 3. The deterministic finite automaton Bn,k

Using automataBn,k we prove the following result showing that the state complex-
ity of the star of an n-state DFA language may be arbitrary from n + 1 to 3

42n.

Lemma 10. For all n and α with n+1 	 α 	 3
42n, there is a minimal DFA M

of n states such that the minimal DFA for the language L(M)∗ has α states.

Proof. If α = n − k + 3
42k, where 2 	 k 	 n, then take the n-state DFA Bn,k

from Lemma 9. Otherwise, let k be an integer such that n − k + 3
42k < α <

n − (k + 1) + 3
42k+1. Then α = n − k + 3

42k + m for some integer m with
1 	 m 	 2k−1 + 2k−2 − 2.

Let S1, S2, . . . , S�, where � = 2k−1 +2k−2−2, be all subsets of {1, 2, . . . , k−1}
and all subsets {1, k} ∪ T with T ⊆ {2, 3, . . . , k − 1}, except for the empty-
set and the set {1, 2, . . . , k}, ordered in such a way that S1 = {1}, and the
sets of a smaller cardinality precede the sets with a larger cardinality. Now let
S1, S2, . . . , Sm be the first m sets in the sequence.

Construct the DFA M = Mn,k,m from the DFA Bn,k by adding transitions
on m new symbols f1, f2, . . . , fm so that by symbol fi (1 	 i 	 m), each state q
in Si goes to itself, and each state q in {1, 2, . . . , n} \ Si goes to state k + 1.

Let M ′ be an NFA for the language L(M)∗ obtained from the DFA M by
adding a new initial (and accepting) state q0 as in Lemma 9. By fi (1 	 i 	 m),
state q0 goes to state 1 if 1 ∈ Si, and to state k + 1 if 1 /∈ Si. If the accepting
state k is in Si, then we add the transition by fi from state k to state 1.

Let M ′′ be the DFA obtained from the NFA M ′ by the subset construction.
The DFA M ′′ has n − k + 3

42k + m reachable and pairwise inequivalent states,
which proves the lemma. !

The next lemma shows that sometimes even less than n states are sufficient to
accept the star of an n-state DFA language. To describe appropriate automata
it uses unary or binary alphabets.

Lemma 11. For all integers n and k with and 1 	 k 	 n, there exists a minimal
binary DFA M of n states such that the minimal DFA for the language L(M)∗

has k states. !

Let us summarize the above results in the following theorem.

On the State Complexity of Complements, Stars, and Reversals of RL 439

Theorem 3. For all integers n and α with either 1 = n 	 α 	 2, or n
 2
and 1 	 α 	 3

42n, there exists a minimal DFA M of n states with a 2n-letter
input alphabet such that the minimal DFA for the star of the language L(M) has
exactly α states. !

The upper bound on the nondeterministic state complexity of stars of n-state
NFA languages is known to be n+1 [8]. The next theorem shows that each value
from 1 to n + 1 can be reached as the nondeterministic state complexity of the
star of an n-state binary NFA language.

Theorem 4. The nondeterministic state complexity of the star of each 1-state
NFA language is 1. If n
 2, then for every k with 1 	 k 	 n + 1, there exists a
minimal NFA M of n states with a binary input alphabet such that every minimal
NFA for the star of the language L(M) has exactly k states. !

5 Reversals

This section studies the deterministic and nondeterministic state complexity of
reversals of regular languages.

If a regular language is accepted by an n-state DFA, then an n-state NFA
for its reversal can be obtained from this DFA by interchanging the initial and
the accepting states, and by reversing all transitions. By applying the subset
construction to this NFA, we get a DFA for the reversal of at most 2n states.
Since the reversal of the reversal of a language is the same language, the lower
bound on the size of the minimal DFA for the reversal of an n-state DFA language
is logn (whenever n
 3; note that the reversal of an 1-state DFA language is the
same language). In this section, we show that each value from logn to 2n can be
reached as the state complexity of the reversal of an n-state DFA language. In the
second part of this section, we deal with the nondeterministic state complexity
of reversals.

We start with the following lemma showing that all values from n to 2n can
be reached as the state complexity of the reversal of an n-state DFA binary
language.

Lemma 12. For all integers n and α with 2 	 n 	 α 	 2n, there exists a
minimal binary DFA A of n states such that the minimal DFA for the language
L(A)R has α states. !

The next lemma describes an n-state DFA language over an (n−1)-letter alpha-
bet such that the state complexity of its reversal is 2n+1. We use this automaton
later in our constructions.

Lemma 13. Let n
 3 and let Σ = {a1, . . . , an−1} be an (n−1)-letter alphabet.
There exists a minimal DFA B of n states with the input alphabet Σ such that
the minimal DFA for the language L(B)R has 2n + 1 states.

440 G. Jirásková

Proof. Define an n-state DFA B = (Q,Σ, δ, n, {1}), where Q = {1, 2, . . . , n}, and
for all q = 1, 2, . . . , n and all i = 1, 2, . . . , n− 1, δ(i + 1, ai) = i and δ(q, ai) = n
if q �= i + 1, that is, by ai, state i + 1 goes to state i and each other state
goes to state n. The DFA B is minimal since if 1 	 i < j 	 n, then the string
ai−1ai−2 · · ·a1 is accepted by the DFA B from state i but not from state j.

Let B′ be the NFA for the language L(B)R obtained from the DFA B by
interchanging the accepting and the rejecting state and by reversing all transi-
tions. Let B′′ be the DFA obtained from the NFA B′ by the subset construction.
The DFA B′′ has 2n+1 reachable and pairwise inequivalent states, which proves
the lemma. !

The next lemma deals with the case, when α is between 2n+ 2 and 2n, and uses
a growing alphabet of size n + �α/2� to describe appropriate automata.

Lemma 14. For all integers n and α with n
 3 and 2n + 2 	 α 	 2n, there
exists a minimal DFA C of n states such that the minimal DFA for the language
L(C)R has α states.

Proof. Let α = 2n + 1 + m, where 1 	 m 	 2n − 2n− 1.
Let k = �m/2� and let Σm = {a1, a2, . . . , an−1, b1, b2, . . . , bk} if m is even,

and Σm = {a1, a2, . . . , an−1, b1, b2, . . . , bk, c} if m is odd.
Let Q = {1, 2, . . . , n} and T = {2, 3, . . . , n}. Now take all subsets of Q with

cardinality more than 1, and order them in a sequence

S1, Q \ S1, S2, Q \ S2, . . . , Sk, Q \ Sk, . . . , S2n−1−n−1, Q \ S2n−1−n−1,

(that is, each odd set of size at least two is followed by its complement in Q).
Define an n-state DFA C = (Q,Σm, δ, n, {1}), in which for all i = 1, . . . , n−1,

the transitions by symbol ai are the same as in the DFA B described in the proof
of Lemma 13. Next, for all j = 1, 2, . . . , k, by symbol bj , each state in Sj goes
to state 1, and each state in Q \ Sj goes to state n. If m is odd, then, moreover,
by symbol c, state 1 goes to state n, and each other state goes to state 1.

Let C′ be the NFA for the language L(C)R obtained from the DFA C by
interchanging the accepting and the rejecting state and by reversing all transi-
tions. Let C′′ be the DFA obtained from the NFA C′ by the subset construction.
The DFA C′′ has 2n + 1 + m reachable and pairwise inequivalent states, which
completes the proof of the lemma. !

As a corollary of the three lemmata above and using the fact that (LR)R = L
we get the following result.

Theorem 5. For all integers n and α with n
 3 and logn 	 α 	 2n, there
exists a minimal DFA M of n states with a 2n-letter input alphabet such that the
minimal DFA for the reversal of the language L(M) has exactly α states. The
minimal DFA for the reversal of a 2-state DFA language may have 2, 3, or 4
states, and the reversal of a 1-state DFA language is a 1-state DFA language. !

On the State Complexity of Complements, Stars, and Reversals of RL 441

We now turn our attention to the nondeterministic state complexity of reversals
of regular languages represented by NFAs. The reversal of each 1-state NFA lan-
guage is the same language. For n
 2, the upper bound on the nondeterministic
state complexity of an n-state NFA language is known to be n+1 [8], and can be
reached by the reversal of a binary language [14]. By the reversal of this binary
language, in the case of n
 3, the lower bound n− 1 is reached. The reversal of
the n-state NFA language {w ∈ {a, b} | |w| ≡ 0 mod n} is the same language.
Thus, the nondeterministic state complexity of a 2-state NFA language is 2 or
3, and for n
 3, we get the following result.

Theorem 6. Let n
 3. Then the nondeterministic state complexity of the re-
versal of an n-state NFA binary language is either n− 1, or n, or n + 1. !

6 Conclusions

We have investigated the deterministic and nondeterministic state complexity
of complements, stars, and reversals of regular languages. In all cases, we have
shown that the whole ranges of complexities up to the known upper bounds can
be obtained. Our results are summarized in the following tables (where [r .. s]
denotes the set of all integers α with r 	 α 	 s).

State Complexity Alphabet Size
Lc {n} trivial arbitrary
L∗ [1 .. 3

42n] Theorem 3 2n

LR [logn .. 2n] Theorem 5 2n

Nondeterministic State Complexity Alphabet Size
Lc [logn .. 2n] Theorem 1 5
L∗ [1 .. n + 1] Theorem 4 2
LR {n− 1, n, n + 1} Theorem 6 2

To prove the results on nondeterministic state complexity we have used a
fixed five-letter alphabet in the case of complements, and a binary alphabet in
the case of stars and reversals. The results on the state complexity of stars and
reversals have been shown for a growing alphabet. Whether or not they still hold
for a fixed alphabet remains open. We also have proved some partial results on
complements in a binary case, and, as a corollary, we have obtained exponentially
many “non-magic” numbers, which improves a similar result of Geffert [5].

References

1. Berman, P., Lingas, A.: On the complexity of regular languages in terms of finite
automata. Technical Report 304, Polish Academy of Sciences (1977)

2. Birget, J.C.: Intersection and union of regular languages and state complexity.
Inform. Process. Lett. 43, 185–190 (1992)

442 G. Jirásková

3. Birget, J.C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theoret. Comput. Sci. 119, 267–291 (1993)

4. Dassow, J., Stiebe, R.: Nonterminal complexity of some operations on context-
free languages. In: Geffert, V., Pighizzini, G. (eds.) 9th International Workshop on
Descriptional Complexity of Formal Systems, pp. 162–169. P. J. Šafárik University
of Košice, Slovakia (2007)

5. Geffert, V. (Non)determinism and the size of one-way finite automata. In:
Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) 7th International
Workshop on Descriptional Complexity of Formal Systems, pp. 23–37. University
of Milano, Italy (2005)

6. Geffert, V.: Magic numbers in the state hierarchy of finite automata. In: Královič,
R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 412–423. Springer, Hei-
delberg (2006)

7. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

8. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Internat. J. Found. Comput. Sci. 14, 1087–1102 (2003)

9. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular lan-
guages and descriptional complexity. In: Mereghetti, C., Palano, B., Pighizzini,
G., Wotschke, D. (eds.) 7th International Workshop on Descriptional Complexity
of Formal Systems, pp. 170–181. University of Milano, Italy (2005)

10. Hromkovič, J.: Descriptional complexity of finite automata: Concepts and open
problems. J. Autom. Lang. Comb. 7, 519–531 (2002)

11. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of
DFAs that are equivalent to n-state NFAs. Theoret. Comput. Sci. 237, 485–494
(2000); Preliminary version In:Bozapalidis, S. (ed.) 3rd International Conference
on Developments in Language Theory. Aristotle University of Thessaloniki (1997)

12. Iwama, K., Matsuura, A., Paterson, M.: A family of NFAs which need 2n − α
deterministic states. Theoret. Comput. Sci. 301, 451–462 (2003)

13. Jirásková, G.: Note on minimal finite automata. In: Sgall, J., Pultr, A., Kolman,
P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 421–431. Springer, Heidelberg (2001)

14. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330, 287–298 (2005)

15. Jirásek, J., Jirásková, G., Szabari, A.: State complexity of concatenation and com-
plementation. Internat. J. Found. Comput. Sci. 16, 511–529 (2005)

16. Jirásek, J., Jirásková, G., Szabari, A.: Deterministic blow-ups of minimal nondeter-
ministic finite automata over a fixed alphabet. In: Harju, T., Karhumäki, J., Lepistö,
A. (eds.) DLT 2007. LNCS, vol. 4588, pp. 254–265. Springer, Heidelberg (2007)

17. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: 10th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, pp. 275–286 (1978)

18. Sipser, M.: Introduction to the theory of computation. PWS Publishing Company,
Boston (1997)

19. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, ch. 2, vol. I, pp. 41–110. Springer, Heidelberg (1997)

20. Yu, S.: A renaissance of automata theory? Bull. Eur. Assoc. Theor. Comput.
Sci. 72, 270–272 (2000)

21. Yu, S., Zhuang, Q., Salomaa, K.: The state complexity of some basic operations
on regular languages. Theoret. Comput. Sci. 125, 315–328 (1994)

22. Zijl, L.: Magic numbers for symmetric difference NFAs. Internat. J. Found. Com-
put. Sci. 16, 1027–1038 (2005)

On the State Complexity of Operations

on Two-Way Finite Automata�

Galina Jirásková1 and Alexander Okhotin2,3

1 Mathematical Institute, Slovak Academy of Sciences, Košice, Slovakia
jiraskov@saske.sk

2 Academy of Finland
3 Department of Mathematics, University of Turku, Finland

alexander.okhotin@utu.fi

Abstract. The number of states in two-way deterministic finite au-
tomata (2DFAs) is considered. It is shown that the state complexity
of basic operations is: at least m + n − o(m + n) and at most 4m + n + 1
for union; at least m+n−o(m+n) and at most m+n+1 for intersection;

at least n and at most 4n for complementation; at least Ω(m
n

) + 2Ω(n)

log m

and at most 2mm+1 · 2nn+1
for concatenation; at least 1

n
2

n
2 −1 and at

most 2O(nn+1) for both star and square; between n and n + 2 for rever-
sal; exactly 2n for inverse homomorphism. In each case m and n denote
the number of states in 2DFAs for the arguments.

1 Introduction

State complexity of one-way deterministic finite automata (1DFA) has been
studied very well. In particular, the state complexity of virtually all reasonable
operations on regular languages has now been determined, and techniques for
obtaining such results have been perfected. However, by now, most problems of
interest have been researched, and there seem to be no more applications for
these techniques apart from formulating and solving artificial problems.

The goal of this paper is to apply the methods for dealing with 1DFAs to
begin the study of the state complexity of another important model: the two-
way deterministic finite automaton (2DFA). These automata, in which the head
may move over the tape in both directions, were introduced by Rabin and Scott
[11], who proved that every n-state 2DFA can be simulated by a 1DFA with
(n + 1)n+1 states. The exact tradeoff, recently established by Kapoutsis [7], is
n(nn − (n− 1)n) states, which was proved by a precise construction of a 1DFA
and a matching lower bound argument for 1DFAs.

Another important recent result on 2DFAs is the theorem by Geffert et al. [5]
stating that every n-state 2DFA can be converted to a 2DFA with 4n states rec-
ognizing the same language, which halts on every input, that is, never goes into

� Supported by VEGA grant 2/6089/26 and by Academy of Finland grant 118540.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 443–454, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

444 G. Jirásková and A. Okhotin

an infinite loop. This result implies an upper bound of 4n on the state complex-
ity of complementation for 2DFAs. Unfortunately, no lower bound arguments
applicable to 2DFAs are known yet, and probably this is why no study of the
state complexity of operations on 2DFAs has been undertaken.

This paper proposes a straightforward technique of proving lower bounds on
the number of states in 2DFAs recognizing a language L: first establish a lower
bound on the number of states in a 1DFA recognizing L, and then apply the
inverse of the function f(n) = n(nn − (n − 1)n) to this number. This gives a
lower bound on the size of any 2DFA recognizing L. The effectiveness of this
method relies on having really high lower bounds for 1DFAs, and this is where
the methods developed in the recent years come to use.

The above approach is used to prove lower bounds on the state complexity of
several operations on 2DFAs: union, intersection, concatenation, star and square.
For intersection, the resulting lower bound m+n−o(m+n) is asymptotically the
same as the straightforward upper bound m+n+ 1; for union, the lower bound
m+n−o(m+n) is of the same order of magnitude as the upper bound 4m+n+1.
For concatenation and related operations the lower bound is exponential, while
the upper bound is double exponential.

A few more operations are handled using different methods. For complementa-
tion and reversal, lower bounds of n are obtained by straightforward arguments
based on the size of 1DFAs. For the inverse homomorphism, a different argument
based upon 1DFAs establishes that its state complexity is exactly 2n.

2 Finite Automata and Tradeoffs between Them

Definition 1. A two-way deterministic finite automaton (2DFA) is a quintuple
(Q,Σ, δ, q0, F), in which Q is a finite set of states, Σ is a finite alphabet with
&,9 /∈ Σ, q0 ∈ Q is the initial state, δ : Q × (Σ ∪ {&,9}) → Q × {−1,+1} is
a partially defined transition function, and F ⊆ Q is the set of accepting states
(effective at the right end marker).

For an input string w = a1 . . . a� ∈ Σ∗, let a0 = & and let a�+1 = 9.
The computation of a 2DFA on w is the longest, possibly infinite, sequence
(p0, i0), . . . , (pj , ij), . . ., in which pj ∈ Q, 0 	 ij 	 � + 1, and

– (p0, i0) = (q0, 0);
– δ(pj−1, aij−1) = (pj , dj) and ij = ij−1 + dj .

If the sequence is infinite, the automaton is said to loop on w. If the sequence
is finite, ending with (pj , ij), then the automaton is said to accept w if ij =
� + 1 and pj ∈ F , otherwise, the automaton is said to reject w. Define L(A) =
{w | A accepts w}.

This definition of a computation has a convenient interpretation it terms of
directed graphs with out-degree 1, which was proposed by Sakoda and Sipser [13].
Consider a graph (V,E), with V = Q×{0, . . . , �+1} and E =

{
〈(q, i), (q′, i + d)〉∣

∣ δ(q, ai) = (q′, d)
}
. Every vertex (q, i) represents the automaton being in state

On the State Complexity of Operations on Two-Way Finite Automata 445

q, with its head in position i over the input string. The initial vertex is (q0, 0),
and at every step the automaton follows the unique outgoing arc. The accepting
vertices are (q, � + 1) with q ∈ F .

Note that the transition table by each symbol ai produces the subgraph of
nodes Q×{i} and their outgoing arc. The whole graph is a composition of such
subgraphs, and it can be said that every 2DFA solves the reachability problem
in a graph induced by the subgraphs in its alphabet. This graph interpretation
will be used in the following to explain several constructions.

A 2DFA is one-way (1DFA; that is, a standard deterministic finite automaton)
if δ(q0,&) = q0, δ(q, a) = (q′,+1) and δ(q,9) is undefined for all q. Nondeter-
ministic variants of these models (2NFA and 1NFA) can be defined by letting
δ : Q× (Σ∪{&,9}) → 2Q×{−1,+1}; then there may be multiple computations for
a single input string, and if at least one of them is accepting, the string is said
to be accepted.

All four models recognize only regular languages. However, the number of
states required to recognize the same language by different types of finite au-
tomata may be significantly different. In particular, simulating 2DFAs by 1DFAs
involves a superexponential blowup in the worst case.

Lemma 1. For every language L recognized by a 2DFA with n states there exists
a partial 1DFA with n(nn − (n − 1)n) states recognizing L, as well as a partial
1DFA with (n + 2)n − (n + 1)n states recognizing LR.

The first upper bound is known from Kapoutsis [7], and the construction is
by having states of the form (q, ϕ), where q ∈ Q is a state of the 2DFA and
ϕ : Q → Q is a function mapping states to states. The constructed 1DFA
reaches a state (q, ϕ) on a string w, for which (1) the 2DFA executed on &w first
comes to the right of the last symbol of w in state q; (2) if the 2DFA starts on
the rightmost symbol of &w in state q̃, then it eventually goes to the right of
this rightmost symbol in state ϕ(q̃). By the construction, the image of ϕ must
contain q, which accounts for −(n− 1)n in the expression.

The second upper bound can be established by a similar construction. This
time the states will be functions ψ : Q→ Q ∪ {Acc,Rej} whose image contains
Acc. The 1DFA for LR reaches a state ψ on w if, for every state q̃, the 2DFA,
having started on the leftmost symbol of wR9 in state q̃ eventually goes to the
left of this leftmost symbol in state ψ(q̃) (or, depending on the value of ψ, accepts
or rejects).

Kapoutsis [7] has also proved that his n(nn − (n − 1)n) upper bound of the
2DFA–1DFA tradeoff is precise. Our upper bound (n+2)n− (n+1)n on the size
of LR is precise as well, and furthermore, both bounds are reached on a single
witness automaton.

Lemma 2. For every n there exists an alphabet Σn and a language L ⊆ Σ∗
n

recognized by an n-state 2DFA, such that every partial 1DFA for L must have
at least n(nn − (n− 1)n) states, while every partial 1DFA for LR must have at
least (n + 2)n − (n + 1)n states.

The following tradeoff between 1DFAs and 2DFAs is thus established:

446 G. Jirásková and A. Okhotin

Theorem 1 (Kapoutsis [7]). For every n
 2, a language recognized by an
n-state 2DFA can be represented by a 1DFA with n(nn − (n− 1)n) states. This
size is in the worst case necessary, with witness languages given over a growing
alphabet of size Θ(nn).

The following lemma represents a reverse application of this tradeoff. It is based
upon the fact that log k

log log k is a lower bound on the inverse of the function f(n) =
n(nn − (n− 1)n).

Lemma 3. Let L be a regular language, let k
 4. Then, if L requires a 1DFA
with at least k states, then L requires a 2DFA with at least log k

log log k states.

Proof (sketch). If there is a 2DFA with n < log k
log log k states for such a language,

then, by Lemma 1, there is a 1DFA with n(nn − (n− 1)n) states recognizing L.
It can be shown that n(nn − (n − 1)n) < k, which contradicts the assumption
that k states are necessary for a 1DFA to accept L. !

Although two-way automata are generally much more succinct than their one-
way counterparts, for some languages two-way motion is useless, and the size of
1DFAs and 2DFAs is the same:

Proposition 1 (Geffert [3,4]). For every n
 1, the singleton language {an−1}
requires a 2DFA of n states.

Finally, let us note the following property of the state complexity of 1DFAs under
injective homomorphisms (codes).

Lemma 4. Let h : Σ∗ → Γ ∗ be a code. Then, if a language L ⊆ Σ∗ requires a
1DFA of at least n states, then each language K ⊆ Γ ∗ with K ∩ h(Σ∗) = h(L)
requires a 1DFA of at least n states.

3 Complementation

Complementation is a trivial operation for 1DFAs, where it can be performed by
inverting the set of accepting states. In contrast, the complement of a language
recognized by an n-state 1NFA may require as many as 2n states [1]. For 2DFAs
this operation is also non-trivial, because a 2DFA may reject by an undefined
transition or, more importantly, by looping.

Accordingly, a 2DFA for the complement of a language recognized by a given
2DFA can be constructed by first reconstructing the given 2DFA to make it halt
on every input. The best known construction is the following:

Theorem 2 (Geffert et al. [5]). For every n-state 2DFA there exists an equiv-
alent 2DFA with 4n states that halts on every input.

This implies that the complement can always be recognized by a 2DFA with 4n
states. A straightforward lower bound of n states can also be proved, which gives
the following theorem:

On the State Complexity of Operations on Two-Way Finite Automata 447

Theorem 3. For every n
 2, the state complexity of complementation for n-
state 2DFAs is at least n and at most 4n.

Proof (sketch). If for any single value of n, the complement of every n-state
2DFA language could be represented with n − 1 states, then the size of the
lower bound 1DFAs in Theorem 1 could be reduced for this n, contradicting the
theorem. !

4 Union and Intersection

With respect to 1DFAs, both union and intersection have state complexity
mn [9]. The straightforward upper bounds for the 2DFA state complexity of
these operations are the following:

Proposition 2. For every 2DFA A with m states and 2DFA B with n states
there exists a 2DFA for the language L(A) ∩ L(B) with m + n + 1 states and a
2DFA for L(A) ∪ L(B) with 4m + n + 1 states.

A 2DFA C recognizing the intersection will first simulate A (if A does not accept
the input, neither will C), and once A accepts, C will return to the left end
marker in a special state and then proceed with simulating B. This gives m+n+1
states.

For union, the first step is to convert A to an equivalent 2DFA A′ with 4m
states that halts on every input, which can be done by Theorem 2. Now a 2DFA
D recognizing the union will first simulate A′, and if A′ accepts, it will accept
as well, and otherwise, if A′ halts and rejects, then D returns to the beginning
of the tape and starts simulating B. So 4m + n + 1 states are enough.

In order to establish lower bounds on the size of a 2DFA recognizing union
or intersection, let us first obtain lower bounds on the size of 1DFAs for these
languages.

Lemma 5. For every m,n
 2, there exists an alphabet Σm,n and languages
K,L ⊆ Σ∗

m,n recognized by m-state and n-state 2DFAs, respectively, such that the
smallest 1DFA recognizing K∪L (K∩L, respectively) has at least mm ·nnstates.

The proof proceeds by taking alphabets Σm and Σn from Lemma 2 and con-
sidering the alphabet Σm,n = Σm × Σn. Then two automata Am and Bn are
defined similarly to the automata from Lemma 2, which require 1DFAs of size
mm and nn, respectively. When reading a symbol from Σm,n, Am considers only
its first component, while Bn works on the second components. Then a 1DFA
for the union L(Am) ∪ L(Bn) or for the intersection L(Am) ∩ L(Bn) basically
has to simulate both 2DFAs in parallel, which gives the lower bound.

It remains to infer a lower bound on the number of states in a 2DFA recog-
nizing union and intersection from the above lower bound on the size of a 1DFA.
Using Lemma 3, this gives m + n − o(m + n) states, so the following theorem
can be stated:

448 G. Jirásková and A. Okhotin

Theorem 4. The state complexity of union (intersection) with respect to 2DFAs
is at least m+ n− o(m+ n) and at most 4m+ n (m+ n+ 1, respectively), with
the witness languages given over a growing alphabet.

5 Concatenation

The next operation to consider is concatenation of two regular languages repre-
sented by 2DFAs. A string w is in L(A) ·L(B) if and only if it can be factorized
as w = uv with u ∈ L(A) and v ∈ L(B). A 2DFA recognizing L(A) · L(B)
should somehow simulate A on the first part and B on the second part. How-
ever, there is no evident way for these simulated computations to detect the
boundary between u and v. Because of this, the only known way of recognizing
such a concatenation by a 2DFA is by first converting both A and B to 1DFAs
and then using the known construction for a concatenation of two 1DFAs, which
yields a 1DFA with (2m−1)2n−1 states. This results in the following huge 1DFA
for the concatenation:

Proposition 3. For every 2DFAs A with m states and 2DFA B with n states
there exists a 1DFA for the language L(A)·L(B) containing the following number
of states:

(2m(mm − (m− 1)m)− 1) · 2n(nn−(n−1)n)−1 = 2O(m log m+nn+1).

The goal of this section is to establish a comparable lower bound on the size of
a 1DFA recognizing a concatenation of two 2DFAs. Such a lower bound is first
established for the special case of a fixed A.

Lemma 6. For every n
 2, there exists a language L over an alphabet Σn =
{aj |1 	 j 	 �n−1

2 �}∪{c} recognized by an n-state 2DFA, such that every 1DFA

for Σ∗
nc · L requires at least 22

n−2
2 states.

Proof. Let k = �n−1
2 �
 n−2

2 . The language L is defined as
{w | for every j ∈ {1, . . . , k}, |w|aj is even}. A 2DFA can recognize it by mak-
ing k passes over the string. This is done by a 2DFA Bn = ({1, 2, . . . , 2k −
1, 2k, 2k + 1}, Σn, δB, 1, {2k + 1}), in which the states are arranged into pairs
{2i− 1, 2i} with 1 	 i 	 k, and there is one extra state 2k + 1. In each j-th pair
of states Bn checks the number of aj modulo 2; if j is odd, the direction of its
motion is from left to right, and if j is even, the automaton goes from right to
left. Accordingly, denote d(j) = +1 for j odd and d(j) = −1 for j even.

The transitions are defined as follows. Over the left end marker,

δB(1,&) = (1,+1)
δB(2i− 1,&) = (2(i + 1)− 1,+1) (1 	 i 	 k, i is even)

and the rest of transitions at & are undefined. The transitions by c are:

δB(2i− t, c) = (2i− t, d(i)) (1 	 i 	 k, t ∈ {0, 1})

On the State Complexity of Operations on Two-Way Finite Automata 449

For each symbol aj, most transitions are the same as for c, with the exception
of the j-th pair of wires, which gets crossed:

δB(2j − 1, aj) = (2j, d(j))
δB(2j, aj) = (2j − 1, d(j))

δB(2i− t, aj) = (2i− t, d(i)) (1 	 i 	 k, i �= j, t ∈ {0, 1})

The following transitions are defined at the right end marker:

δB(2i− 1,9) = (2(i + 1)− 1,−1) (1 	 i 	 k, i is odd)

Finally, in state 2k + 1 the automaton always goes to the right: δB(2k + 1, s) =
(2k + 1,+1) for all s ∈ Σn.

These transitions are illustrated in the graph representation of a sample string
given in Figure 1. Symbols from Σn form subgraphs, and the string w in Σ∗

n is
in the language L(Bn) if the graph formed by & w 9 has a path from the node 1
in the leftmost column to the node 2k + 1 in the rightmost column. The symbol
c effectively acts as an identity, since it preserves the connectivity of the graph.

Fig. 1. ca1a3a4a3ca4a1 ∈ L(B9)

A 1DFA B′
n simulating the 2DFA Bn needs to count the parity of each symbol

at once, which requires storing k bits. It can be defined with a set of states Bk,
the set of all Boolean vectors of length k. The initial and the sole accepting state
is (0, 0, . . . , 0). Each state (b1, b2, . . . , bk) goes to state (b1, b2, . . . , bj−1,¬bj , bj+1,
. . . , bk) on aj , and to itself on c.

The difficulty of recognizing Σ∗
nc · L by an 1DFA lies with the uncertainty of

when to start counting the parity of the number of letters. This can be guessed
nondeterministically. Construct a 1NFA M ′ for the language Σ∗

nc·L(Bn) from the
1DFA B′

n by adding a new initial state q0, which goes to itself on aj (1 	 j 	 k),
and goes to {q0, (0, 0, . . . , 0)} on c.

Let M = (Q,Σn, δ, {q0}, F), where Q = 2{q0}∪B
k

, be the 1DFA obtained from
the 1NFA M ′ by the subset construction. It will be shown that the 1DFA M

has 22k

reachable states, which are pairwise inequivalent.
The first claim is that for every set of Boolean vectors S ⊆ Bk, the set {q0}∪S

is a reachable state in the 1DFA M . The proof is by induction on the size of a set.

450 G. Jirásková and A. Okhotin

The basis, S = ∅, holds true since {q0} is the initial state of M . For the induction
step, let S ∪ {(σ1, σ2, . . . , σk)} be any subset with (σ1, σ2, . . . , σk) /∈ S. For each
vector x = (x1, x2, . . . , xk) in S, construct the vector x′ = (x′

1, x
′
2, . . . , x

′
k), such

that x′
i = xi if σi = 0, and x′

i = ¬xi if σi = 1. Let S′ = {x′ | x ∈ S}.
Then the set {q0} ∪ S′ is reachable by induction. Now take the string w =
cai1ai2 · · · air , where 1 	 i1 < i2 < · · · < ir 	 k are all numbers, for which
σij = 1. Each x′ in S′ goes to x by w, while state q0 goes to {q0, (0, 0, . . . , 0)} by
c and then to {q0, (σ1, σ2, . . . , σk)} by ai1ai2 · · · air . Thus, the set {q0} ∪ S′ goes
to {q0} ∪ S ∪ {(σ1, . . . , σk)} by w, which concludes the proof of reachability.

To prove inequivalence, for each state σ = (σ1, σ2, . . . , σk) of the 1NFA M ′,
consider the string w(σ) = ai1ai2 · · · air , where 1 	 i1 < i2 < · · · < ir 	 k are
all numbers, for which σij = 1. The string w(σ) is accepted by the 1NFA M ′

from state σ, but is not accepted by M ′ from any other state. Now, if {q0} ∪ S
and {q0}∪ T are two different states of the 1DFA M , they must differ in a state
σ ∈ Bk, and so the string w(σ) distinguishes them. !

For the next step, let us prove a stronger statement, where the language L is
defined over a fixed 5-letter alphabet. This is done by encoding the symbols used
in the previous construction over these five symbols.

Lemma 7. Let Σ = {a, b, a′, b′, c}. For every n
 1, there exists a language
L ⊆ Σ∗ recognized by an n-state 2DFA, such that every 1DFA for Σ∗c · L
requires at least 22

n−2
2 states.

Proof (sketch). Let k = �n−1
2 �. The automaton B′

n to be constructed is very
similar to the one in Lemma 6 and will be explained in terms of the previous
construction. It again has 2k+1 	 n states, and its transitions by c and by both
markers remain the same as in the proof of Lemma 6.

The transitions by a are the same as the transitions for a1 in the above
construction: they cross the first pair of wires going forward. The transitions by
a′ cross the second pair of wires (which go backward), that is, a′ is the same as
a2 in the previous automaton.

The symbols b and b′ have the following transitions, for all i ∈ {1, . . . , k} and
for all j ∈ {1, 2}:

δB′(2(i− 1) + j, b) =
{

(2(i + 1) + j,+1), if i + 2 < k
(j,+1), if i + 2
 k

(for odd i)

δB′(2(i− 1) + j, b) = (2(i− 1) + j,−1) (for even i)
δB′(2(i− 1) + j, b′) = (2(i− 1) + j,+1) (for odd i)

δB′(2(i− 1) + j, b′) =
{

(2(i + 1) + j,−1), if i + 2 < k
(j,−1), if i + 2
 k

(for even i)

δB′(2k + 1, b) = δB(2k + 1, b′) = (2k + 1,+1)

Basically, b performs a cyclic shift of all pairs of forward wires, while b′ does the
same for backward wires. This allows putting an arbitrary pair in the topmost
position, and thus each symbol a2i−1 in the above construction is simulated by

On the State Complexity of Operations on Two-Way Finite Automata 451

Fig. 2. Simulation of a3 by bbab

a string bjabi (for an appropriate j), as shown in Figure 2, while each symbol
a2i is simulated by (b′)ja′(b′)i, again for some appropriate j.

Formally, define a code h : Σn → Σ by h(a2i−1) = bjabi and h(a2i) =
(b′)ja′(b′)i as above, and with h(c) = c. Since each codeword h(ai) forms a
subgraph with the same connectivity as ai in the original automaton, it follows
that L(B′) ∩ h(Σ∗

n) = h(L(Bn)). Then the same lower bound 22k

follows by
Lemma 4. !

Now, once the methods of extracting many states from the second argument
of concatenation have been developed, let us allow its first argument to be an
arbitrary 2DFA. Then the following lower bound on the size of a 1DFA can be
established.

Lemma 8. For every m,n
 1 there exist languages K and L over a 9-letter
alphabet, recognized by m-state and n-state 2DFAs, respectively, such that every

1DFA for K · L requires at least
(

m−3
2

)m−3
2 ·

(
22

n−2
2 − 1

)
states.

The alphabet is Σ = {a, b, a′, b′, c, d, f1, f2, f3}, where the first five symbols are
the same as in the previous construction, and the second automaton operates in
exactly the same way. The new symbols d, f1, f2, f3 are identities for the second
automaton in the same way as the symbol c. The first automaton, which replaces
the language Σ∗c, accepts a string if the graph formed by symbols d, f1, f2, f3

contains a certain path; this condition requires
(

m−3
2

)m−3
2 states in a 1DFA to

check.
This lower bound on the size of a 1DFA representing the concatenation implies

the following lower bound on the size of a 2DFA:

Theorem 5. The state complexity of concatenation of 2DFAs is at least Ω(m
n)+

2Ω(n)

log m and at most 2mm+1 · 2nn+1
with the lower bound languages defined over a

9-letter alphabet.

452 G. Jirásková and A. Okhotin

6 Square and Star

Let us consider two more operations related to concatenation. One of them is
Kleene star, which has state complexity of 3

42n for 1DFAs [9], while for 1NFAs it
requires exactly n+1 states [6]. The other operation, the so-called square, is the
concatenation of a language with itself. It has state complexity of n · 2n − 2n−1

for 1DFAs [12] and 2n for 1NFAs [2].
For 2DFAs, like in the case of concatenation, the only evident method of

constructing a 2DFA for square or star of a given language is by first converting
the given 2DFA to a 1DFA. This gives the following upper bound:

Proposition 4. For every 2DFA A with n states there exists a 1DFA for the
language L(A)2 with

(2n(nn − (n− 1)n)− 1) · 2n(nn−(n−1)n)−1 = 22Θ(n log n)

states, as well as a 1DFA for the language L(A)∗ containing the following number
of states:

3
42n(nn−(n−1)n) = 22Θ(n log n)

.

Let us now establish a lower bound on the number of states in this 1DFA.

Lemma 9. For every n
 1 there exists a language L ⊆ {a, b, a′, b′, c, d, e}∗
recognized by an n-state 2DFA, such that every 1DFA for L2 and every 1DFA

for L∗ requires at least 22
n−4

2 states.

The proof is similar to that of Lemma 7, though the construction of a 2DFA
has to be elaborated. For L · L, the same 2DFA is naturally used twice: as
the first argument of concatenation, it is used to recognize strings of the form
d{a, b, a′, b′, cc}∗c; as the second argument, it works basically as the 2DFA in
Lemma 7. In this way the general outline of the proof is preserved. It is extended
to the case of star by preventing a concatenation of more than two strings using
a special symbol e.

This lower bound on the size of a 1DFA implies a lower bound on the number
of states in a 2DFA according to Lemma 3. Thus the following bounds are
obtained:

Theorem 6. The state complexity of square and star of a 2DFAs is at least
1
n2

n
2 −1 and at most 2O(nn+1), with the lower bound languages defined over a

7-letter alphabet.

7 Reversal

Consider the operation of reversal of a regular language. Unlike complementa-
tion, it is expensive for 1DFAs, where it requires 2n states [8]. For 1NFAs, only
n + 1 states are needed [6]. For 2DFAs, the reversal of a given language can be
recognized by adding two extra states:

On the State Complexity of Operations on Two-Way Finite Automata 453

Proposition 5. For every 2DFAs A with n states there exists an (n + 2)-state
2DFA recognizing the language L(A)R.

A 2DFA B recognizing this language first goes to the end of the input string in a
special state and then simulates A with the direction of its movement reversed.
The simulated A accepts over the left end marker, and once this happens, B
proceeds to the right end marker in another special state.

A close lower bound follows from Proposition 1, which states that the language
{an−1} requires exactly n states of a 2DFA. Since {an−1}R = {an−1}, this gives
a lower bound of n states for the reversal. In overall, the state complexity of
reversal for 2DFAs lies within the following bounds:

Theorem 7. For every n
 4, the state complexity of reversal of an n-state
2DFA is between n and n + 2, with the witness languages given over a unary
alphabet.

8 Inverse Homomorphism

Let Σ and Γ be two alphabets. A homomorphism is a mapping h : Σ∗ → Γ ∗

that satisfies the conditions h(uv) = h(u)h(v) for all u, v ∈ Σ∗ and h(ε) = ε. It
is completely defined by the images of letters from Σ.

For every regular language L ⊆ Γ ∗, the pre-image {w | h(w) ∈ L} ⊆ Σ∗ with
respect to h is regular as well. Its state complexity for 1DFAs is known to be n.
It will now be proved that with respect to 2DFAs its state complexity is exactly
2n.

Lemma 10. For every homomorphism h : Σ∗ → Γ ∗ and for every n-state
2DFA A over Γ , there exists a 2n-state 2DFA for h−1(L(A)).

The construction uses twice as many states in order to remember, besides a state
of the original automaton, the current direction of its motion.

It turns out that 2n states are necessary in the worst case. To see this, it
will be established that a smaller 2DFA for an inverse homomorphic image of a
language L allows one to construct a 1DFA for the language L or for the language
LR that has fewer states than the worst-case bound established in Lemma 2.

Lemma 11. Let Σ be an alphabet, let c /∈ Σ and define a homomorphism h :
(Σ ∪ {c})∗ → Σ∗ by h(a) = a for all a ∈ Σ and h(c) = ε. Then for every
language L ⊆ Σ and for every n
 3, if h−1(L) is recognized by a 2DFA with
2n−1 states, then L is recognized by a 1DFA with nn states or LR is recognized
by a 1DFA with (n + 1)n−1 states.

Now the state complexity of h−1 can be established as follows:

Theorem 8. The state complexity of inverse homomorphisms with respect to
2DFAs is 2n, with the lower bound defined over a growing alphabet.

Proof. To show the lower bound, for every n
 3, let L be as defined in Lemma 2
and suppose h−1(L) is recognized by a (2n−1)-state 2DFA. Then, by Lemma 11,
there is an nn-state 1DFA for L or an (n + 1)n−1-state 1DFA for LR. In each
case this contradicts Lemma 2. !

454 G. Jirásková and A. Okhotin

9 Summary

The state complexity of basic operations on regular languages with respect to
1DFAs, 1NFAs and 2DFAs is compared in the following table:

1DFA 1NFA 2DFA
∪ mn [9] m + n + 1 [6] m + n− o(m + n) 	 · 	 4m + n + 1
∩ mn [9] mn [6] m + n− o(m + n) 	 · 	 m + n + 1
∼ n 2n [1] n 	 · 	 4n
· m · 2n − 2n−1 [9] m + n [6] Ω(m

n) + 2Ω(n)

log m 	 · 	 2mm+1 · 2nn+1

2 n · 2n − 2n−1 [12] 2n [2] 1
n2

n
2 −1 	 · 	 2O(nn+1)

∗ 3
42n [9] n + 1 [6] 1

n2
n
2 −1 	 · 	 2O(nn+1)

R 2n [8] n + 1 [6] n 	 · 	 n + 2
h−1 n ? 2n

References

1. Birget, J.C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theoretical Computer Science 119, 267–291 (1993)

2. Domaratzki, M., Okhotin, A.: State complexity of power, TUCS Technical Report
No 845, Turku Centre for Computer Science, Turku, Finland (January 2007)

3. Geffert, V.: Nondeterministic computations in sublogarithmic space and space con-
structibility. SIAM Journal on Computing 20(3), 484–498 (1991)

4. Geffert, V.: Personal communication (March 2008)
5. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite au-

tomata. Information and Computation 205(8), 1173–1187 (2007)
6. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-

guages. International Journal of Foundations of Computer Science 14, 1087–1102
(2003)

7. Kapoutsis, C.A.: Removing bidirectionality from nondeterministic finite automata.
In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–
555. Springer, Heidelberg (2005)

8. Leiss, E.L.: Succinct representation of regular languages by Boolean automata.
Theoretical Computer Science 13, 323–330 (1981)

9. Maslov, A.N.: Estimates of the number of states of finite automata. Soviet Math-
ematics Doklady 11, 1373–1375 (1970)

10. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Transactions
on Computers 20, 1211–1214 (1971)

11. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3, 114–125 (1959)

12. Rampersad, N.: The state complexity of L2 and Lk. Information Processing Let-
ters 98, 231–234 (2006)

13. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: 10th ACM Symposium on Theory of Computing (STOC 1978), pp. 275–286
(1978)

14. Sipser, M.: Halting space-bounded computations. Theoretical Computer Sci-
ence 10(3), 335–338 (1980)

On the Size Complexity of

Rotating and Sweeping Automata�

Christos Kapoutsis, Richard Královič, and Tobias Mömke

Department of Computer Science, ETH Zürich

Abstract. We examine the succinctness of one-way, rotating, sweeping,
and two-way deterministic finite automata (1dfas, rdfas, sdfas, 2dfas).
Here, a sdfa is a 2dfa whose head can change direction only on the
endmarkers and a rdfa is a sdfa whose head is reset on the left end
of the input every time the right endmarker is read. We introduce a list
of language operators and study the corresponding closure properties of
the size complexity classes defined by these automata. Our conclusions
reveal the logical structure of certain proofs of known separations in
the hierarchy of these classes and allow us to systematically construct
alternative problems to witness these separations.

1 Introduction

One of the most important open problems in the study of the size complexity
of finite automata is the comparison between determinism and nondetermin-
ism in the two-way case: Does every two-way nondeterministic finite automaton
(2nfa) with n states have a deterministic equivalent (2dfa) with a number of
states polynomial in n? [6,5] Equivalently, if 2n is the class of families of lan-
guages that can be recognized by families of polynomially large 2nfas and 2d

is its deterministic counterpart, is it 2d = 2n? The answer is conjectured to be
negative, even if all 2nfas considered are actually one-way (1nfas). That is, even
2d � 1n is conjectured to be true, where 1n is the one-way counterpart of 2n.

To confirm these conjectures, one would need to prove that some n-state 2nfa

or 1nfa requires superpolynomially (in n) many states on every equivalent 2dfa.
Unfortunately, such lower bounds for arbitrary 2dfas are currently beyond reach.
They have been established only for certain restricted special cases. Two of them
are the rotating and the sweeping 2dfas (rdfas and sdfas, respectively).

A sdfa is a 2dfa that changes the direction of its head only on the input
endmarkers. Thus, a computation is simply an alternating sequence of rightward
and leftward one-way scans. A rdfa is a sdfa that performs no leftward scans:
upon reading the right endmarker, its head jumps directly to the left end. The
subsets of 2d that correspond to these restricted 2dfas are called sd and rd.

Several facts about the size complexity of sdfas have been known for quite
a while (e.g., 1d � sd [7], sd � 2d [7,1,4], sd � 1n [7], sd � 1n ∩ co-1n [3])
and, often, at the core of their proofs one can find proofs of the corresponding
� Work supported by the Swiss National Science Foundation grant 200021-107327/1.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 455–466, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

456 C. Kapoutsis, R. Královič, and T. Mömke

facts for rdfas (e.g., 1d � rd, rd � 2d, etc.). Overall, though, our study of
these automata has been fragmentary, exactly because they have always been
examined only on the way to investigate the 2d vs. 2n question.

In this article we take the time to make the hierarchy 1d ⊆ rd ⊆ sd ⊆ 2d

itself our focus. We introduce a list of language operators and study the closure
properties of our complexity classes with respect to them. Our conclusions allow
us to reprove the separation of [3], this time with a new witness language fam-
ily, which (i) is constructed by a sequence of applications of our operators to a
single, minimally hard, ‘core’ family and (ii) mimicks the design of the original
witness. This uncovers the logical structure of the original proof and explains
how hardness propagates upwards in our hierarchy of complexity classes when
appropriate operators are applied. It also enables us to construct many other
witnesses of the same separation, using the same method but a different se-
quence of operators and/or a different ‘core’ family. Some of these witnesses are
both simpler (produced by operators of lower complexity) and more effective
(establish a greater exponential gap) than the one of [3].

More generally, our operators provide a systematic way of proving separations
by building witnesses out of simpler and easier ‘core’ language families. For
example, given any family L which is hard for 1dfas reading from left to right
(as usual) but easy for 1dfas reading from right to left (L �∈ 1d but LR ∈ 1d), one
can build a family L′ which is hard for sdfas but easy for 1nfas, easy for 1nfas
recognizing the complement, and easy for 2dfas (L′ ∈ (1n∩ co-1n∩ 2d) \ sd), a
simultaneous witness for the theorems of [7,3,1,4]. We believe that this operator-
based reconstruction or simplification of witnesses deepens our understanding of
the relative power of these automata.

The next section defines the objects that we work with. Section 3 introduces
two important tools for working with parallel automata and uses them to prove
hardness propagation lemmata. These are then applied in Sect. 4 to establish
the hierarchy and closures map of Fig. 1. Section 5 lists our final conclusions.

2 Preliminaries

Let Σ be an alphabet. If z ∈ Σ∗ is a string, then |z|, zt, zt, and zR are its
length, t-th symbol (if 1 ≤ t ≤ |z|), t-fold concatenation with itself (if t ≥ 0),
and reverse. If P ⊆ Σ∗, then P R := {zR | z ∈ P}.

A (promise) problem over Σ is a pair L = (Ly, Ln) of disjoint subsets of Σ∗.
The promise of L is Lp := Ly∪Ln. If Lp = Σ∗, then L is a language. If Ly, Ln �= ∅,
then L is nontrivial. We write w ∈ L iff w ∈ Ly, and w �∈ L iff w ∈ Ln. (Note
that “x �∈ L” is equivalent to the negation of “x ∈ L” only when x ∈ Lp.) To
solve L is to accept all w ∈ L but no w �∈ L (and decide arbitrarily on w �∈ Lp).

A family of automata M = (Mn)n≥1 solves a family of problems L = (Ln)n≥1

iff, for all n, Mn solves Ln. The automata of M are ‘small ’ iff, for some polyno-
mial p and all n, Mn has at most p(n) states.

On the Size Complexity of Rotating and Sweeping Automata 457

Problem Operators. Fix a delimiter # and let L,L1, L2 be arbitrary problems.
If #x1# · · ·#xl# denotes strings from #(Lp#)∗ and #x#y# denotes strings from
#(L1)p#(L2)p#, then the following pairs are easily seen to be problems, too:

¬L := (Ln, Ly) LR := (LR
y
, LR

n
)

L1 ∧ L2 := ({#x#y# | x ∈ L1 ∧ y ∈ L2}, {#x#y# | x �∈ L1 ∨ y �∈ L2})
L1 ∨ L2 := ({#x#y# | x ∈ L1 ∨ y ∈ L2}, {#x#y# | x �∈ L1 ∧ y �∈ L2})
L1 ⊕ L2 := ({#x#y# | x ∈ L1⇔y �∈ L2}, {#x#y# | x ∈ L1⇔y ∈ L2})

∧
L := ({#x1# · · ·#xl# | (∀i)(xi ∈ L)}, {#x1# · · · #xl# | (∃i)(xi �∈ L)})

∨
L := ({#x1# · · ·#xl# | (∃i)(xi ∈ L)}, {#x1# · · · #xl# | (∀i)(xi �∈ L)})

⊕
L := ({#x1# · · ·#xl# | the number of i such that xi ∈ L is odd},

{#x1# · · ·#xl# | the number of i such that xi ∈ L is even})

(1)

over the promises, respectively: Lp, (Lp)R, #(L1)p#(L2)p# (for L1 ∧ L2, L1 ∨ L2,
L1 ⊕ L2) and #(Lp#)∗ (for the rest). We call these problems, respectively: the
complement and reversal of L; the conjunctive, disjunctive, and parity concate-
nation of L1 with L2; the conjunctive, disjunctive, and parity star of L.

By the definitions, we easily have ¬(LR) = (¬L)R, and also:

¬(L1 ∧ L2) = ¬L1 ∨ ¬L2

¬(L1 ∨ L2) = ¬L1 ∧ ¬L2

¬(L1 ⊕ L2) = ¬L1 ⊕ L2

¬(
∧
L) =

∨
¬L

¬(
∨
L) =

∧
¬L

(
∧
L)R =

∧
LR

(
∨
L)R =

∨
LR

(L1 ∧ L2)R = LR
2 ∧ LR

1

(L1 ∨ L2)R = LR
2 ∨ LR

1

(L1 ⊕ L2)R = LR
2 ⊕ LR

1.

(2)

Our definitions extend naturally to families of problems: we just apply the
problem operator to (corresponding) components. E.g., if L,L1,L2 are families
of problems, then ¬L = (¬Ln)n≥1 and L1 ∨ L2 = (L1,n ∨ L2,n)n≥1. Clearly, the
identities of (2) remain true when we replace L,L1, L2 with L,L1,L2.

Finite Automata. Our automata are one-way, rotating, sweeping, or two-way.
We refer to them by the naming convention bdfa, where b = 1,r, s, 2. E.g., rdfas
are rotating (r) deterministic finite automata (dfa). We assume the reader is
familiar with all these machines. This section simply fixes some notation.

A sdfa [7] over an alphabet Σ and a set of states Q is a triple M = (qs, δ, qa)
of a start state qs ∈ Q, an accept state qa ∈ Q, and a transition function δ
which partially maps Q× (Σ ∪ {&,9}) to Q, for some endmarkers &,9 /∈ Σ. An
input z ∈ Σ∗ is presented to M surrounded by the endmarkers, as &z9. The
computation starts at qs and on &. The next state is always derived from δ and
the current state and symbol. The next position is always the adjacent one in
the direction of motion; except when the current symbol is 9 and the next state
is not qa or when the current symbol is &, in which two cases the next position is
the adjacent one towards the other endmarker. Note that the computation can
either loop, or hang, or fall off 9 into qa. In this last case, we say M accepts z.

More generally, for any input string z ∈ Σ∗ and state p, the left computation
of M from p on z is the unique sequence lcompM,p(z) := (qt)1≤t≤m where:

458 C. Kapoutsis, R. Královič, and T. Mömke

q1 := p; every next state is qt+1 := δ(qt, zt), provided that t ≤ |z| and the value
of δ is defined; and m is the first t for which this provision fails. If m = |z|+ 1,
we say the computation exits z into qm or results in qm; otherwise, 1 ≤ m ≤ |z|
and the computation hangs at qm and results in ⊥; the set Q⊥ := Q ∪ {⊥}
contains all possible results. The right computation of M from p on z is denoted
by rcompM,p(z) and defined symmetrically, with qt+1 := δ(qt, z|z|+1−t).

We say M is a rdfa if its next position is decided differently: it is always
the adjacent one to the right, except when the current symbol is 9 and the next
state is not qa, in which case it is the one to the right of &.

We say M is a 1dfa if it halts immediately after reading 9: the value of δ on
any state q and on 9 is always either qa or undefined. If it is qa, we say q is a
final state; if it is undefined, we say q is nonfinal. The state δ(qs,&), if defined,
is called initial. If M is allowed more than one next move at each step, we say
it is nondeterministic (a 1nfa).

Parallel Automata. The following additional models will also be useful.
A (two-sided) parallel automaton (p21dfa) [7] is any triple M = (L,R, F)

where L = {C1, . . . , Ck}, R = {D1, . . . , Dl} are disjoint families of 1dfas, and
F ⊆ QC1

⊥ ×· · ·×QCk

⊥ ×QD1
⊥ ×· · ·×QDl

⊥ , where QA is the state set of automaton A.
To run M on z means to run each A ∈ L∪R on z from its initial state and record
the result, but with a twist: each A ∈ L reads from left to right (i.e., reads z),
while each A ∈ R reads from right to left (i.e., reads zR). We say M accepts z
iff the tuple of the results of these computations is in F . When R = ∅ or L = ∅,
we say M is left-sided (a pl1dfa) or right-sided (a pr1dfa), respectively.

A parallel intersection automaton (∩21dfa, ∩l1dfa, or ∩r1dfa) [5] is a parallel
automaton whose F consists of the tuples where all results are final states. If
F consists of the tuples where some result is a final state, the automaton is a
parallel union automaton (∪21dfa, ∪l1dfa, or ∪r1dfa) [5]. So, a ∩21dfa accepts
its input iff all components accept it; a ∪21dfa accepts iff any component does.

We say that a family of parallel automata M = (Mn)n≥1 are ‘small’ if for
some polynomial p and all n, each component of Mn has at most p(n) states.
Note that this restricts only the size of the components—not their number.

Complexity Classes. The size-complexity class 1d consists of every family of
problems that can be solved by a family of small 1dfas. The classes rd, sd, 2d,
∩l1d, ∩r1d, ∩21d, ∪l1d, ∪r1d, ∪21d, pl1d, pr1d, p21d, and 1n are defined similarly,
by replacing 1dfas with rdfas, sdfas, etc. The naming convention is from [5];
there, however, 1d, 1n, and 2d contain families of languages, not problems.

If C is a class, then re-C consists of all families of problems whose reversal is
in C and co-C consists of all families of problems whose complement is in C. Of
special interest to us is the class 1n ∩ co-1n; we also denote it by 1Δ.

The following inclusions are easy to verify, by the definitions and by [7,
Lemma 1], for every side mode σ = l, r, 2 and every parallel mode π = ∩,∪, p :

co-∩σ1d = ∪σ1d

re-πl1d = πr1d

∩σ1d,∪σ1d ⊆ pσ1d

πl1d, πr1d ⊆ π21d

1d ⊆ ∩l1d,∪l1d,rd ⊆ pl1d

rd ⊆ sd ⊆ p21d, 2d.
(3)

On the Size Complexity of Rotating and Sweeping Automata 459

A Core Problem. Let [n] := {1, . . . , n}. All witnesses in Sect. 4 will be derived
from the operators of (1) and the following ‘core’ problem: “Given two symbols
describing a set α ⊆ [n] and a number i ∈ [n], check that i ∈ α.” Formally,

Jn := ({αi | α ⊆ [n] & i ∈ α}, {αi | α ⊆ [n] & i ∈ α}). (4)

Lemma 1. J := (Jn)n≥1 is not in 1d but is in re-1d, 1n, co-1n, ∩l1d, ∪l1d.

3 Basic Tools and Hardness Propagation

To draw the map of Fig. 1, we need several lemmata that explain how the
operators of (1) can increase the hardness of problems. In turn, to prove these
lemmata, we need two basic tools for the construction of hard inputs to parallel
automata: the confusing and the generic strings. We first describe these tools
and then use them to prove the hardness propagation lemmata.

Confusing Strings. Let M = (L,R) be a ∩21dfa and L a problem. We say a
string y confuses M on L if it is a positive instance but some component hangs
on it or is negative but every component treats it identically to a positive one:

y ∈ L & (∃A ∈ L ∪R)
(
A(y) = ⊥

)

or
y �∈ L & (∀A ∈ L ∪R)(∃ỹ ∈ L)

(
A(y) = A(ỹ)

) (5)

where A(z) is the result of lcompA(z), if A ∈ L, or of rcompA(z), if A ∈ R. It
can be shown that, if some y confuses M on L, then M does not solve L. Note,
though, that (5) is independent of the selection of final states in the components
of M . So, if F(M) is the class of ∩21dfas that may differ from M only in the
selection of final states, then a y that confuses M on L confuses every M ′ ∈
F(M), too, and thus no M ′ ∈ F(M) solves L, either. The converse is also true.

Lemma 2. Let M = (L,R) be a ∩21dfa and L a problem. Then, strings that
confuse M on L exist iff no member of F(M) solves L.

Proof. [⇒] Suppose some y confuses M on L. Fix any M ′ = (L′,R′) ∈ F(M).
Since (5) is independent of the choice of final states, y confuses M ′ on L, too.
If y ∈ L: By (5), some A ∈ L′ ∪R′ hangs on y. So, M ′ rejects y, and thus fails.
If y �∈ L: If M ′ accepts y, it fails. If it rejects y, then some A ∈ L′ ∪R′ does
not accept y. Consider the ỹ guaranteed for this A by (5). Since A(ỹ) = A(y),
we know ỹ is also not accepted by A. Hence, M ′ rejects ỹ ∈ L, and fails again.

[⇐] Suppose no string confuses M on L. Then, no component hangs on a
positive instance; and every negative instance is ‘noticed’ by some component,
in the sense that the component treats it differently than all positive instances:

(∀y ∈ L)(∀A ∈ L ∪R)
(
A(y) �= ⊥

)

and
(∀y �∈ L)(∃A ∈ L ∪R)(∀ỹ ∈ L)

(
A(y) �= A(ỹ)

)
.

(6)

This allows us to find an M ′ ∈ F(M) that solves L, as follows. We start with
all states of all components of M unmarked. Then we iterate over all y �∈ L. For

460 C. Kapoutsis, R. Královič, and T. Mömke

each of them, we pick an A as guaranteed by (6) and, if the result A(y) is a state,
we mark it. When this (possibly infinite) iteration is over, we make all marked
states nonfinal and all unmarked states final. The resulting ∩21dfa is our M ′.

To see why M ′ solves L, consider any string y. If y �∈ L: Then our method
examined y, picked an A, and ensured A(y) is either⊥ or a nonfinal state. So, this
A does not accept y. Therefore, M ′ rejects y. If y ∈ L: Towards a contradiction,
suppose M ′ rejects y. Then some component A∗ does not accept y. By (6),
A∗(y) �= ⊥. Hence, A∗(y) is a state, call it q∗, and is nonfinal. So, at some point,
our method marked q∗. Let ŷ �∈ L be the string examined at that point. Then,
the selected A was A∗ and A(ŷ) was q∗, and thus no ỹ ∈ L had A∗(ỹ) = q∗. But
this contradicts the fact that y ∈ L and A∗(y) = q∗. !

Generic Strings [7]. Let A be a 1dfa over alphabet Σ and states Q, and
y, z ∈ Σ∗. The (left) views of A on y is the set of states produced on the right
boundary of y by left computations of A:

lviewsA(y) := {q ∈ Q | (∃p ∈ Q)[lcompA,p(y) exits into q]}.

The (left) mapping of A on y and z is the partial function

lmapA(y, z) : lviewsA(y) → Q

which, for every q ∈ lviewsA(y), is defined only if lcompA,q(z) does not hang
and, if so, returns the state that this computation exits into. It is easy to verify
that this function is a partial surjection from lviewsA(y) to lviewsA(yz). This
immediately implies Fact 1. Fact 2 is equally simple.

Fact 1. For all A, y, z as above: |lviewsA(y)| ≥ |lviewsA(yz)|.

Fact 2. For all A, y, z as above: lviewsA(yz) ⊆ lviewsA(z).

Now consider any pl1dfa M = (L, ∅, F) and any problem L which is infinitely
right-extensible, in the sense that every u ∈ L can be extended into a uu′ ∈ L.
By Fact 1, if we start with any u ∈ L and keep right-extending it ad infinitum
into uu′, uu′u′′, uu′u′′u′′′, · · · ∈ L then, from some point on, the corresponding
sequence of tuples of sizes (|lviewsA(·)|)A∈L will become constant. If y is any
of the extensions after that point, then y satisfies

y ∈ L & (∀yz ∈ L)(∀A ∈ L)
(
|lviewsA(y)| = |lviewsA(yz)|

)
(7)

and is called l-generic (for M) over L. The next lemma uses such strings.

Lemma 3. Suppose a pl1dfa M = (L, ∅, F) solves
∧
L and y is l-generic for M

over
∧
L. Then, x ∈ L iff lmapA(y, xy) is total and injective for all A ∈ L.

Proof. [⇒] Let x ∈ L. Then yxy ∈
∧
L (since y ∈

∧
L and x ∈ L). So, yxy right-

extends y inside
∧
L. Since y is l-generic, |lviewsA(y)| = |lviewsA(yxy)|, for all

A ∈ L. Hence, each partial surjection lmapA(y, xy) has domain and codomain
of the same size. This is possible only if the function is both total and injective.

On the Size Complexity of Rotating and Sweeping Automata 461

[⇐] Suppose each partial surjection lmapA(y, xy) is total and injective. Then
it bijects the set lviewsA(y) into the set lviewsA(yxy), which is actually a
subset of lviewsA(y) (Fact 2). Clearly, this is possible only if this subset is the
set itself. So, lmapA(y, xy) is a permutation πA of lviewsA(y).

Now pick k ≥ 1 so that each πk
A is an identity, and let z := y(xy)k. It is easy

to verify that lmapA

(
y, (xy)k

)
equals lmapA(y, xy)k = πk

A, and is therefore the
identity on lviewsA(y). This means that, reading through z, the left computa-
tions of A do not notice the suffix (xy)k to the right of the prefix y. So, no A can
distinguish between y and z: it either hangs on both or exits both into the same
state. Thus, M does not distinguish between y and z, either: it either accepts
both or rejects both. But M accepts y (because y ∈

∧
L), so it accepts z. Hence,

every #-delimited infix of z is in L. In particular, x ∈ L. !

If M = (L,R, F) is a p21dfa, we can also work symmetrically with right com-
putations and left-extensions: we can define rviewsA(y) and rmapA(z, y) for
A ∈ R, derive Facts 1, 2 for rviewsA(y) and rviewsA(zy), and define r-generic
strings. We can then construct strings, called generic, that are simultaneously
l- and r-generic, and use them in a counterpart of Lemma 3 for p21dfas:

Lemma 4. Suppose a p21dfa M = (L,R, F) solves
∧
L and y is generic for M

over
∧
L. Then, x ∈ L iff lmapA(y, xy) is total and injective for all A ∈ L and

rmapA(yx, y) is total and injective for all A ∈ R.

Hardness Propagation. We are now ready to show how the operators of (1)
can allow us to build harder problems out of easier ones.

Lemma 5. If no m-state 1dfa can solve problem L, then no ∩l1dfa with m-
state components can solve problem

∨
L. Similarly for

⊕
L.

Proof. Suppose no m-state 1dfa can solve L. By induction on k, we prove that no
∩l1dfa with k m-state components can solve

∨
L (the proof for

⊕
L is similar).

If k = 0: Fix any such ∩l1dfa M = (L, ∅). By definition, # �∈
∨
L. But M

accepts #, because all components do (vacuously, since L = ∅). So M fails.
If k ≥ 1: Fix any such ∩l1dfa M = (L, ∅). Pick any D ∈ L and remove it

from M to get M1 = (L1, ∅) := (L − {D}, ∅). By the inductive hypothesis, no
member of F(M1) solves

∨
L. So (Lemma 2), some y confuses M1 on

∨
L.

Case 1: y ∈
∨
L. Then some A ∈ L1 hangs on y. Since A ∈ L, too, y confuses

M as well. So, M does not solve
∨
L, and the inductive step is complete.

Case 2: y �∈
∨
L. Then every A ∈ L1 treats y identically to a positive instance:

(∀A ∈ L− {D})(∃ỹ ∈
∨
L)
(
A(y) = A(ỹ)

)
. (8)

Let M2 be the single-component ∩l1dfa whose only 1dfa, call it D′, is the one
derived from D by changing its initial state to D(y). By the hypothesis of the
lemma, no member of F(M2) solves L. So (Lemma 2), some x confuses M2 on
L. We claim that yx# confuses M on

∨
L. Thus, M does not solve

∨
L, and the

induction is again complete. To prove the confusion, we examine cases:

462 C. Kapoutsis, R. Královič, and T. Mömke

Case 2a: x ∈ L. Then yx# ∈
∨
L, since y ∈ (

∨
L)p and x ∈ L. And D′ hangs on

x (since x is confusing and D′ is the only component), thus D(yx#) = D′(x#) =
⊥. So, component D of M hangs on yx# ∈

∨
L. So, yx# confuses M on

∨
L.

Case 2b: x �∈ L. Then yx# �∈
∨
L, because y �∈

∨
L and x ∈ Lp. And, since x

is confusing, D′ treats it identically to some x̃ ∈ L: D′(x) = D′(x̃). Then, each
component of M treats yx# identically to a positive instance of

∨
L:

• D treats yx# as yx̃# : D(yx̃#) = D′(x̃#) = D′(x#) = D(yx#). And we know
yx̃# ∈

∨
L, because y ∈ (

∨
L)p and x̃ ∈ L.

• each A �= D treats yx# as ỹx#, where ỹ the string guaranteed for A by (8):
A(ỹx#) = A(yx#). And we know ỹx# ∈

∨
L, since ỹ ∈

∨
L and x ∈ Lp.

Overall, yx# is again a confusing string for M on
∨
L, as required. !

Lemma 6. If L1 has no ∩l1dfa with m-state components and L2 has no ∩r1dfa

with m-state components, then L1∨L2 has no ∩21dfa with m-state components.
Similarly for L1 ⊕ L2.

Proof. Let M = (L,R) be a ∩21dfa with m-state components. Let M1 := (L′, ∅)
and M2 := (∅,R′) be the ∩21dfas derived from the two ‘sides’ of M after chang-
ing the initial state of each A ∈ L ∪R to A(#). By the lemma’s hypothesis, no
member of F(M1) solves L1 and no member of F(M2) solves L2. So (Lemma 2),
some y1 confuses M1 on L1 and some y2 confuses M2 on L2. We claim that
#y1#y2# confuses M on L1 ∨ L2 and thus M fails. (Similarly for L1 ⊕ L2.)

Case 1: y1 ∈ L1 or y2 ∈ L2. Assume y1 ∈ L1 (if y2 ∈ L2, we work similarly).
Then #y1#y2# ∈ L1 ∨ L2 and some A′ ∈ L′ hangs on y1. The corresponding
A ∈ L has A(#y1#y2#) = A′(y1#y2#) = ⊥. So, #y1#y2# confuses M on L1 ∨ L2.

Case 2: y1 �∈ L1 and y2 �∈ L2. Then #y1#y2# �∈ L1 ∨ L2, and each component
of M1 treats y1 identically to a positive instance of L1, and same for M2, y2, L2:

(∀A′ ∈ L′)(∃ỹ1 ∈ L1)
(
A′(y1) = A′(ỹ1)

)
, (9)

(∀A′ ∈ R′)(∃ỹ2 ∈ L2)
(
A′(y2) = A′(ỹ2)

)
. (10)

It is then easy to verify that every A ∈ L treats #y1#y2# as #ỹ1#y2# ∈ L1∨L2 (ỹ1

as guaranteed by (9)), and every A ∈ R treats #y1#y2# as #y1#ỹ2# ∈ L1∨L2 (ỹ2

as guaranteed by (10)). Therefore, #y1#y2# confuses M on L1 ∨ L2, again. !

Lemma 7. Let L′ be nontrivial, π ∈ {∩,∪, p}, σ ∈ {l, r,2}. If L has no πσ1dfa

with m-state components, then neither L∧L′ has. Similarly for ¬L and L⊕L′.

Proof. We prove only the first claim, for π = ∩ and σ = l. Fix any y′ ∈ L′. Given
a ∩l1dfa M ′ solving L ∧ L′ with m-state components, we build a ∩l1dfa M
solving L with m-state components: We just modify each component A′ of M ′

so that the modified A′ works on y exactly as A′ on #y#y′#. Then, M accepts y
⇔ M ′ accepts #y#y′# ⇔ y ∈ L. The modifications are straightforward. !

Lemma 8. If L has no ∩l1dfa with
(
m
2

)
-state components, then

∧
L has no

pl1dfa with m-state components.

On the Size Complexity of Rotating and Sweeping Automata 463

Proof. Let M = (L, ∅, F) be a pl1dfa solving
∧
L with m-state components. Let

y be l-generic for M over
∧
L. We will build a ∩l1dfa M ′ solving L.

By Lemma 3, an arbitrary x is in L iff lmapA(y, xy) is total and injective for
all A ∈ L; i.e., iff for all A ∈ L and every two distinct p, q ∈ lviewsA(y),

lcompA,p(xy) and lcompA,q(xy) exit xy, into different states. (11)

So, checking x ∈ L reduces to checking (11) for each A and two-set of states
of lviewsA(y). The components of M ′ will perform exactly these checks. To
describe them, let us first define the following relation on the states of an A ∈ L:

r :A s ⇐⇒ lcompA,r(y) and lcompA,s(y) exit y, into different states,

and restate our checks as follows: for all A ∈ L and all distinct p, q ∈ lviewsA(y),

lcompA,p(x) and lcompA,q(x) exit x, into states that relate under :A. (11′)

Now, building 1dfas to perform these checks is easy. For each A ∈ L and p, q ∈
lviewsA(y), the corresponding 1dfa has 1 state for each two-set of states of A.
The initial state is {p, q}. At each step, the automaton applies A’s transition
function on the current symbol and each state in the current two-set. If either
application returns no value or both return the same value, it hangs; otherwise,
it moves to the resulting two-set. A state {r, s} is final iff r :A s. !

Lemma 9. If L has no ∩21dfa with
(
m
2

)
-state components, then

∧
L has no

p21dfa with m-state components.

4 Closure Properties and a Hierarchy

We are now ready to confirm the information of Fig. 1. We start with the positive
cells of the table, continue with the diagram, and finish with the negative cells
of the table. On the way, Lemma 11 proves a few useful facts.

Lemma 10. Every ‘+’ in the table of Fig. 1b is correct.

Proof. Each closure can be proved easily, by standard constructions. We also
use the fact that every m-state rdfa (resp., sdfa) can be converted into an
equivalent one with O(m2) states that keeps track of the number of rotations
(resp., sweeps), and thus never loops. Similarly for 2dfas and O(m) [2]. !

Lemma 11. The following separations and fact hold:

[i] ∩l1d � re-1d, [iii] ∩21d � ∪l1d ∩ rd, [v] there exists L ∈ ∪l1d ∩ rd

[ii] pl1d � re-1d, [iv] ∩l1d ∪ ∩r1d � ∩21d ∩ sd such that
∧
L �∈ p21d.

Proof. [i] Let L :=
∨
J . We prove L is a witness. First, J �∈ 1d (Lemma 1)

implies
∨
J �∈ ∩l1d (Lemma 5). Second, J R ∈ 1d (Lemma 1) implies

∨
J R ∈ 1d

(by A7 of Fig. 1b), and thus (
∨
J)R ∈ 1d (by (2)).

464 C. Kapoutsis, R. Královič, and T. Mömke

+

2

3

4

5

6

7

8

A B C D E F G H

¬

∧
∨
⊕

·R

2dsd∪21d∩21drd∪l1d∩l1d1d

+

−
+

+

+

+

+

+

−
−

+

−

−

−
−
+

+

−

−

+

−
+

+

+

−
−
?

−
+

−

−

−
+

−

−

+

+

+

+

+

−
−
?

+

+

+

+

+

+

+

+1d

2d

(b)(a)

− + −
+−+ −

+

−
+ −

+

∩l1d ∪l1d

∩21d rd ∪21d

sd

g
dc

m

i

fhe

a b

jk l

n

p

q

r 1

Fig. 1. (a) A hierarchy from 1d to 2d: a solid arrow C → C′ means C ⊆ C′ & C � C′;
a dashed arrow means the same, but C ⊆ C′ only for the part of C that can be solved
with polynomially many components; a dotted arrow means only C � C′. (b) Closure
properties: ‘+’ means closure; ‘−’ means non-closure; ‘?’ means we do not know.

[ii] Let L :=
∧∨

J . We prove L is a witness. First,
∨
J �∈ ∩l1d (by i) implies∧∨

J �∈ pl1d (Lemma 8). Second, (
∨
J)R ∈ 1d (by i) implies

∧
(
∨
J)R ∈ 1d

(by A6 of Fig. 1b), and thus (
∧∨

J)R ∈ 1d (by (2)).
[iii] Let L := (

∨
J)∨(

∨
J R). We prove L is a witness. First,

∨
J �∈ ∩l1d (by i)

implies (
∨
J)R �∈ re-∩l1d or, equivalently,

∨
J R �∈ ∩r1d (by (2), (3)). Overall, both∨

J �∈ ∩l1d and
∨
J R �∈ ∩r1d, and thus L �∈ ∩21d (Lemma 6). Second, J ∈ ∪l1d

via ∪l1dfas with few components (Lemma 1) and thus
∨
J ∈ ∪l1d also via

∪l1dfas with few components (by C7); therefore
∨
J ∈ rd via the rdfa that

simulates these components one by one. Hence,
∨
J ∈ ∪l1d ∩ rd. In adddition,

J R ∈ 1d (Lemma 1) implies
∨
J R ∈ 1d (by A7), and thus

∨
J R ∈ ∪l1d ∩ rd as

well (since 1d ⊆ ∪l1d,rd). Overall, both
∨
J and

∨
J R are in ∪l1d∩rd. Hence,

L ∈ ∪l1d ∩ rd as well (by C4,D4).
[iv] Let L := (

∨
J) ∧ (

∨
J R). We prove L is a witness. However, given that

LR = (
∨
J R)R∧(

∨
J)R =

∨
(J R)R∧

∨
J R = L, we know L ∈ ∩l1d ⇐⇒ L ∈ ∩r1d,

and thus it enough to prove only that L ∈ (∩21d∩ sd)\∩l1d. Here is how. First,∨
J �∈ ∩l1d (by i) and

∨
J R is nontrivial, so L �∈ ∩l1d (by Lemma 7). Second,∨

J R ∈ 1d (by i) implies (
∨
J)R ∈ ∩21d ∩ sd (since 1d ⊆ ∩21d, sd) and thus∨

J ∈ ∩21d ∩ sd as well (by E2,G2). Since both
∨
J and

∨
J R are in ∩21d ∩ sd,

the same is true of L (by E3,G3).
[v] Let L := (

∨
J) ∨ (

∨
J R). By iii, L ∈ (∪l1d ∩ rd) \ ∩21d. By Lemma 9,

L �∈ ∩21d implies
∧
L �∈ p21d. !

Lemma 12. Every arrow in the hierarchy of Fig. 1a is correct.

Proof. All inclusions are immediate, either by the definitions or by easy con-
structions. Note that g, h, m, n refer only to the case of parallel automata with
polynomially many components. The non-inclusions are established as follows.

[a,b] By Lemma 1. [d,k,m] By iii. [c,l,n] By d,k,m, respectively, and (3),D1,G1.
[g,p,h] By k,l. [e] By i, since re-1d ⊆ ∩21d. [f] By e and (3). [i,q,j] By ii and since

On the Size Complexity of Rotating and Sweeping Automata 465

re-1d ⊆ ∩21d,∪21d, sd and rd ⊆ pl1d. [r] Pick L as in v. Then
∧
L �∈ sd (since

sd ⊆ p21d) but
∧
L ∈ 2d (by H6 and since L ∈ rd ⊆ 2d). !

Lemma 13. Every ‘−’ in the table of Fig. 1b is correct.

Proof. We examine the cells visiting them row by row, from top to bottom.
[B1] By C1 and (3). [C1] Pick L as in iii. Then L ∈ ∪l1d but L �∈ ∩21d, so

¬L �∈ ∪21d and thus ¬L �∈ ∪l1d. [E1] Pick L as in iii. Then L �∈ ∩21d. But
¬L ∈ ∩21d (because L ∈ ∪l1d, so ¬L ∈ ∩l1d). [F1] By E1 and (3).

[A2] By Lemma 1, J R ∈ 1d but J �∈ 1d. [B2] Pick L as in i. Then L �∈ ∩l1d

but LR ∈ 1d ⊆ ∩l1d. [C2] Pick L as in i. Since L �∈ ∩l1d, we know ¬L �∈ ∪l1d.
Since LR ∈ 1d, we know ¬(LR) ∈ 1d (by A1) and thus (¬L)R ∈ ∪l1d. [D2] Pick L
as in ii. Then LR ∈ 1d ⊆ rd but L �∈ pl1d ⊇ rd.

[F3] Let L1,L2 be the witnesses for E4. Then L1,L2 ∈ ∩21d, hence ¬L1,¬L2 ∈
∪21d. But L1∨L2 �∈ ∩21d, hence ¬(L1∨L2) �∈ ∪21d or, equivalently ¬L1∧¬L2 �∈
∪21d. [E4] Pick L as in i. Then LR ∈ 1d, hence LR ∈ ∩21d (since 1d ⊆ ∩21d), and
thus L ∈ ∩21d (by E2). But L ∨ LR �∈ ∩21d (by iii).

[B5,E5] Let L be the complement of the family of iii. Then L ∈ ∩l1d ⊆ ∩21d.
But ¬L �∈ ∩21d, and thus L ⊕ L �∈ ∩21d ⊇ ∩l1d (Lemma 7). [C5,F5] Pick L
as in iii. Then L ∈ ∪l1d ⊆ ∪21d. But L �∈ ∩21d, hence ¬L �∈ ∪21d, and thus
L ⊕ L �∈ ∪21d ⊇ ∪l1d (Lemma 7).

[C6,D6,F6,G6] Pick L as in v. Then L ∈ ∪l1d∩rd ⊆ ∪21d, sd. But
∧
L �∈ p21d

and thus
∧
L �∈ ∪l1d,rd,∪21d, sd. [B7,D7,E7,G7] Let L be the complement of

the family of v. Then L ∈ ∩l1d ∩ rd (by D1), and thus also L ∈ ∩21d, sd. But
¬
∨
L =

∧
¬L �∈ p21d, so ¬

∨
L �∈ ∩l1d,rd,∩21d, sd, and same for

∨
L (by D1,G1).

[B8,C8,E8,F8] By B5,C5,E5,F5. The witnesses there, are problems of the form
L ⊕ L, for some L. Such problems simply restrict the corresponding

⊕
L. !

5 Conclusions

For each n ≥ 1, let Sn be the problem: “Given a set α ⊆ [n] and two numbers
i, j ∈ [n] exactly one of which is in α, check that the one in α is j.” Formally:

Sn := ({αij | α ⊆ [n] & i ∈ α & j ∈ α}, {αij | α ⊆ [n] & i ∈ α & j ∈ α}).

For S := (Sn)n≥1 the corresponding family, consider the family

R = (Rn)n≥1 :=
∧(

(
⊕
S)⊕ (

⊕
SR)

)
.

It is easy to see that S ∈ 1Δ = 1n∩co-1n and that 1Δ is closed under ·R,
⊕

,⊕,
∧

.
Hence, R ∈ 1Δ as well. At the same time, S �∈ 1d (easily), so

⊕
S �∈ ∩l1d

(Lemma 5) and
⊕
SR = (

⊕
S)R �∈ ∩r1d, which implies (

⊕
S) ⊕ (

⊕
SR) �∈ ∩21d

(Lemma 6) and thus R �∈ p21d (Lemma 9). Hence, R �∈ sd either. Overall, R
witnesses that 1Δ � sd. This separation was first proven in [3]. There, it was
witnessed by a language family (Πn)n≥1 that restricted liveness [5].

We claim that, for all n, Πn and Rn are ‘essentially the same’: For each di-
rection (left-to-right, right-to-left), there exists a O(n)-state one-way transducer

466 C. Kapoutsis, R. Královič, and T. Mömke

that converts any well-formed instance u of Πn into a string v in the promise
of Rn such that u ∈ Πn ⇐⇒ v ∈ Rn. Conversely, it is also true that for each
direction some O(n)-state one-way transducer converts any v from the promise
of Rn into a well-formed instance u of Πn such that u ∈ Πn ⇐⇒ v ∈ Rn.

Therefore, using our operators, we essentially ‘reconstructed’ the witness of [3]
in a way that identifies the source of its complexity (the witness of 1Δ � 1d at
its core) and reveals how its definition used reversal, parity, and conjuction to
propagate its deterministic hardness upwards from 1d to sd without increasing
its hardness with respect to 1Δ.

At the same time, using our operators, we can easily show that the witness
of [3] is, in fact, unnecessarily complex. Already from the proof of Lemma 11[v]
(and the easy closure of 1Δ under ·R,

∨
,∨,

∧
), we know that even

L = (Ln)n≥1 :=
∧(

(
∨
J) ∨ (

∨
J R)

)

witnesses 1Δ � sd. Indeed, L is both simpler than R (uses J ,
∨
,∨ instead of

S,
⊕

,⊕) and more effective (we can prove it needs O(n) states on 1nfas and co-
1nfas and Ω(2n/2) states on sdfas, compared toR’s O(n2) and Ω(2n/2/

√
n) [3]).

Finally, using our operators, we can systematically produce many different
witnesses for each provable separation. The following corollary is indicative.

Corollary 1. Let L by any family of problems.
• If L ∈ 1Δ \ 1d, then

∧∨
L ∈ 1Δ \ rd.

• If L ∈ 1Δ \ (1d ∪ re-1d), then
∧∨

L ∈ 1Δ \ sd.
• If L ∈ re-1d \ 1d, then

∧∨
(L ∨ LR) ∈ (1Δ ∩ 2d) \ sd.

Note how the alternation of
∧

and
∨

(in ‘conjunctive normal form’ style)
increases the hardness of a core problem; it would be interesting to further un-
derstand its role in this context. Answering the ?’s of Fig. 1b would also be very
interesting—they seem to require tools other than the ones currently available.

References

1. Berman, P.: A note on sweeping automata. In: de Bakker, J.W., van Leeuwen, J.
(eds.) ICALP 1980. LNCS, vol. 85, pp. 91–97. Springer, Heidelberg (1980)

2. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata.
Information and Computation 205(8), 1173–1187 (2007)

3. Kapoutsis, C., Královič, R., Mömke, T.: An exponential gap between LasVegas and
deterministic sweeping finite automata. In: Hromkovič, J., Královič, R., Nunkesser,
M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol. 4665, pp. 130–141. Springer, Hei-
delberg (2007)

4. Micali, S.: Two-way deterministic finite automata are exponentially more succinct
than sweeping automata. Information Processing Letters 12(2), 103–105 (1981)

5. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two way finite automata.
In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, San
Diego, California, USA, May 1-3, 1978. ACM, New York (1978)

6. Seiferas, J.I.: Untitled manuscript. Communicated to Michael Sipser (October 1973)
7. Sipser, M.: Lower bounds on the size of sweeping automata. Journal of Computer

and System Sciences 21(2), 195–202 (1980)

An Analysis and a Reproof of Hmelevskii’s

Theorem�

(Extended Abstract)

Juhani Karhumäki and Aleksi Saarela

Department of Mathematics and Turku Centre for Computer Science TUCS,
University of Turku, 20014 Turku, Finland

karhumak@utu.fi, amsaar@utu.fi

Abstract. We analyze and reprove the famous theorem of Hmelevskii,
which states that the general solutions of constant-free equations on three
unknowns are finitely parameterizable, that is expressible by a finite
collection of formulas of word and numerical parameters. The proof is
written, and simplified, by using modern tools of combinatorics on words.
As a new aspect the size of the finite representation is estimated; it is
bounded by a double exponential function on the size of the equation.

1 Introduction

Theory of word equations is a fundamental part of combinatorics on words. It
plays an essential role in a number of areas of mathematical research, such as
in representation results of algebra, theory of algorithms and pattern matching.
During the few last decades it has provided several challenging problems as well
as fundamental, or even breakthrough, results in discrete mathematics.

Remarkable achievements of the topic are the decidability of the satisfiability
problem for word equations, and the compactness result of systems of word
equations, see [9] for the first and [1] and [4] for the second. The first result was
reproved and sharpened to a PSPACE algorithm in [10]. For the latter one the
question of bounding the size of an equivalent finite subset is still a challenge.

In the case of word equations with only three unknowns fundamental re-
sults have also been achieved. In one direction Hmelevskii [6] proved already
in 1970 that any such constant-free equation is finitely parameterizable, that is
the general solution can be expressed as a finite formula on word and numerical
parameters. On other direction Spehner [11,12] classified all sets of relations a
given solution, that is a triple of words, can satisfy. A remarkable thing is that
both of these results have only very complicated proofs. This, if any, is a splen-
did example of a challenging nature of word problems. Indeed, even the basic
question of finding any upper bound for the maximal size of independent system
of word equations on three unknowns is still open, see [5] and [3].

The goal of this paper is to analyze the proof of Hmelevskii’s theorem. The
result itself is, of course, very well known, see e.g. [8]. However, a compact and
� Supported by the Academy of Finland under grant 8121419.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 467–478, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

468 J. Karhumäki and A. Saarela

readable presentation of it seems to be lacking. We hope to fill this gap. In
other words, we search for a self-contained proof using achievements and tools
of combinatorics on words obtained over the last 30 years. The hope will be
completed only in the full paper, but we do believe that already this presentation
will give the reader justified impression of the proof. In addition, we conclude,
for the first time, an upper bound for the size of the formula giving the general
solution of a constant-free equation on three unknowns. Our bound is double
exponential in terms of the length of the equation – and thus not likely to be
even close to the optimal one.

In this extended abstract the proof is outlined in modern terms and tools of
combinatorics on words, but many details are left to the final version of the full
paper [7].

2 Definitions and Basic Results

In this section we fix the terminology and state the basic auxiliary results needed,
for more see [2].

We consider word equations U = V , where U, V ∈ Ξ∗ and Ξ is the alphabet
of unknowns. A morphism h : Ξ∗ → Σ∗ is a solution of this equation, if h(U) =
h(V). We also consider one-sided equations xU ⇒ yV . A morphism h : Ξ∗ → Σ∗

is a solution of this equation, if h(xU) = h(yV) and |h(x)| ≥ |h(y)|.
A solution h is periodic, if there exists such t ∈ Σ∗ that every h(x), where

x ∈ Ξ, is a power of t. Otherwise h is nonperiodic. Periodic solutions are easy to
find and represent, so in many cases it is enough to consider nonperiodic ones.

If a word u is a prefix of a word v, that is v = uw for some w, the notation
u ≤ v is used. If also u �= v, then u is a proper prefix ; this is denoted by u < v.

Let w = a1 . . . an. Its reverse is wR = an . . . a1, and its length is |w| = n. The
number of occurrences of a letter a in w is denoted by |w|a.

If Σ = {a1, . . . , an}, then U ∈ Σ∗ can be denoted U(a1, . . . , an), and its image
under a morphism h can be denoted h(U) = U(h(a1), . . . , h(an)). If u ∈ Σ∗, then
the morphism a1 	→ u means the morphism, which maps a1 	→ u and ai 	→ ai,
when i = 2, . . . , n.

The following theorems and lemmas are easy to prove by using standard
methods for solving equation. They give solutions to some simple equations.
These solutions will be the basis of parametric solutions of all equations with
three unknowns. We start with the well known lemmata, see [2].

Theorem 2.1. Let U, V ∈ {x, y}∗ and U �= V . Assume that |U |x = a, |U |y = b,
|V |x = c and |V |y = d. The solutions of the equation U = V are x = ti, y = tj,
where t ∈ Σ∗, ai + bj = ci + dj and i, j ≥ 0.

Theorem 2.2. The solutions of the equation xz = zy are x = pq, y = qp,
z = p(qp)i or x = y = 1, z = p, where p, q ∈ Σ∗ and i ≥ 0.

Lemma 2.3. The nonperiodic solutions of the equation xyz = zyx are x =
(pq)ip, y = q(pq)j , z = (pq)kp, where p, q ∈ Σ∗, i, j, k ≥ 0, pq �= qp and pq can
be assumed to be primitive.

An Analysis and a Reproof of Hmelevskii’s Theorem 469

Lemma 2.4. The nonperiodic solutions of the equation xyz = zxy are x =
(pq)ip, y = q(pq)j , z = (pq)k, where p, q ∈ Σ∗, i, j, k ≥ 0 and pq �= qp.

Lemma 2.5. Let a ≥ 2. The nonperiodic solutions of the equation xzx = ya

are x = (pq)ip, y = (pq)i+1p, z = qp((pq)i+1p)a−2pq, where p, q ∈ Σ∗, i ≥ 0 and
pq �= qp.

Lemma 2.6. Let a ≥ 2. The nonperiodic solutions of the equation xyaz = zyax
are x = (pqa)ip, y = q, z = (pqa)jp or

⎧
⎪⎨

⎪⎩

x = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)i,

y = (pq)k+1p,

z = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)j ,

where p, q ∈ Σ∗, i, j, k ≥ 0 and pq �= qp.

Lemma 2.7. The nonperiodic solutions of the equation xyxz ⇒ zx2y are x =
(pq)ip, y = qp((pq)i+1p)jpq, z = pq, where p, q ∈ Σ∗, i, j ≥ 0 and pq �= qp.

Lemma 2.8. Let a, b ≥ 1 and U, V ∈ Ξ∗. If h is a solution of the equation
xayU = ybxV , then h(x) and h(y) commute.

The following corollary of the graph lemma is also useful. A proof can be found
in [2]. This result simplifies the original proof of Hmelevskii in several places.

Theorem 2.9. Let A,B,C,D ∈ {x, y, z}∗. If h is a solution of the pair of
equations xA = yB, xC = zD, then h is periodic or one of h(x), h(y), h(z)
equals 1.

3 Parametric Words

In this section, we define the central notions of this presentation, namely para-
metric words, parameterizability and parametric solutions.

Fix the alphabet of word parameters Δ and the set of numerical parameters
Λ. Now parametric words are defined inductively as follows:

(i) if a ∈ Δ ∪ {1}, then (a) is a parametric word,
(ii) if α and β are parametric words, then so is (αβ),
(iii) if α is a parametric word and i ∈ Λ, then (αi) is a parametric word,

The set of parametric words is denoted by P(Δ,Λ). The sets of parameters are
always denoted by Δ and Λ.

When there is no danger of confusion, unnecessary parenthesis can be omitted
and notations like αiαj = αi+j and (αi)j = αij can be used. Then parametric
words form a monoid, if the product of α and β is defined to be αβ.

If f is a function Λ → IN0, we can abuse the notation and use the same
symbol for the function, which maps parametric words by giving values for the
numerical parameters with f : if a ∈ Δ∪{1}, then f((a)) = a; if α, β ∈ P(Δ,Λ),

470 J. Karhumäki and A. Saarela

then f((αβ)) = f(α)f(β); if α ∈ P(Δ,Λ) and i ∈ Λ, then f((αi)) = f(α)f(i).
A parametric word is thus mapped by f to a word of Δ∗. This can be further
mapped by a morphism h : Δ∗ → Σ∗ to a word of Σ∗. The mapping h ◦ f is a
valuation of a parametric word into Σ∗, and f is its valuation to the set Δ∗.

We define the length of a parametric word: the length of 1 is zero; if a ∈ Δ,
then the length of a is one; if α, β ∈ P(Δ,Λ), then the length of αβ is the sum
of lengths of α and β; if α ∈ P(Δ,Λ) � {1} and i ∈ Λ, then the length of αi is
the length of α plus one.

Next we define the height of a parametric word: if a ∈ Δ∪{1}, then the height
of a is zero; if α, β ∈ P(Δ,Λ), then the height of αβ is the maximum of heights of
α and β; if α ∈ P(Δ,Λ) � {1} and i ∈ Λ, then the height of αi is the height of α
plus one. Parametric words of height zero can be considered to be words of Δ∗.

A linear Diophantine relation R is a disjunction of systems of linear Diophan-
tine equations with lower bounds for the unknowns. For example,

((x + y − z = 0) ∧ (x ≥ 2)) ∨ ((x + y = 3) ∧ (x + z = 4))

is a linear Diophantine relation over the unknowns x, y, z. We are only interested
in the nonnegative values of the unknowns. If Λ = {i1, . . . , ik}, f is a function
Λ→ IN0 and f(i1), . . . , f(ik) satisfy R, then the notation f ∈ R can be used.

Let S be a set of morphisms Ξ∗ → Σ∗, Λ = {i1, . . . , ik}, hj a morphism from
Ξ∗ to parametric words and Rj a linear Diophantine relation, when j = 1, . . . ,m.
The set {(hj , Rj) : 1 ≤ j ≤ m} is a parametric representation of S, if

S = {h ◦ f ◦ hj : 1 ≤ j ≤ m, f ∈ Rj} ,

where h ◦ f runs over all valuations to Σ∗. The linear Diophantine relations
are not strictly necessary, but they make some proofs easier. A set can be pa-
rameterized, if it has a parametric representation. The length of the parametric
representation is the sum of the lengths of all hj(x), where j = 1, . . . ,m and
x ∈ Ξ.

It follows immediately that if two sets can be parameterized, then also their
union can be parameterized.

Let S, S1, . . . , Sn be sets of morphisms Ξ∗ → Σ∗. The set S can be parame-
terized in terms of the sets S1, . . . , Sn, if there exists such morphisms h1, . . . , hn

from Ξ∗ to P(Ξ,Λ) that

S = {g ◦ f ◦ hj : 1 ≤ j ≤ n, g ∈ Sj} ,

where f runs over functions Λ→ IN0.
Again it is a direct consequence of the definitions that the parameterizability is

preserved in compositions. Namely, if S can be parameterized in terms of the sets
S1, . . . , Sn and every Si can be parameterized in terms of the sets Si1, . . . , Sini ,
then S can be parameterized in terms of the sets Sij .

We conclude these definitions by saying that solutions of an equation can be
parameterized, if the set of its all solutions can be parameterized. A parametric
representation of this set is a parametric solution of the equation.

An Analysis and a Reproof of Hmelevskii’s Theorem 471

These definitions can be generalized in an obvious way for systems of equa-
tions. Theorems 2.1 and 2.2 and Lemmas 2.3 – 2.7 give parametric solutions
for some equations. The following theorem states that the basic tool in solving
equations, namely the cancellation of the first variable, preserves the parame-
terizability of solutions.

Theorem 3.1. Let U, V ∈ Ξ∗, x, y ∈ Ξ and x �= y. Let h : Ξ∗ → Ξ∗ be the
morphism x 	→ yx. If the equation xh(U) = h(V) has a parametric solution,
then so does the equation xU ⇒ yV .

Let α and β be parametric words. The pair (α, β) can be viewed as an equation,
referred to as an exponential equation. The height of this equation is the height
of αβ. The solutions of this equation are the functions f : Λ → IN0 that satisfy
f(α) = f(β).

If we know some parametric words, which give all solutions of an equation, but
which also give some extra solutions, then often the right solutions can be picked
by adding some constraints for the numerical parameters. These constraints can
be found by exponential equations, and the following theorems prove that they
are in our cases equivalent with linear Diophantine relations.

Theorem 3.2. Let E be an exponential equation of height one. There exists a
linear Diophantine relation R such that a function f : Λ → IN0 is a solution of
E if and only if f ∈ R.

In some cases Theorem 3.2 can be generalized for exponential equations of height
two.

Theorem 3.3. Let Λ = {i, j} and let s0, . . . , sm, t1, . . . , tm, u0, . . . , un and
v1, . . . , vn be parametric words of height at most one, with no occurrences of pa-
rameter j. Assume that i occurs at least in the words t1, . . . , tm and v1, . . . , vn.
Let α = s0t

j
1s1 . . . t

j
msm and β = u0v

j
1u1 . . . v

j
nun. Now there exists a linear

Diophantine relation R such that a function f : Λ → IN0 is a solution of the
exponential equation E : α = β if and only if f ∈ R.

The parametric words in the next theorem come from Lemma 2.6.

Theorem 3.4. Let Δ = {p, q}, Λ = {i, j, k} and a ≥ 2. Let α = (pqa)ip, β = q,
γ = (pqa)jp, or

⎧
⎪⎨

⎪⎩

α = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)i,

β = (pq)k+1p,

γ = qp((pq)k+1p)a−2pq(((pq)k+1p)a−1pq)j .

Let A,B ∈ {x, y, z}∗ and let h be the morphism mapping x 	→ α, y 	→ β, z 	→ γ.
Now there exists a linear Diophantine relation R such that a function f : Λ→ IN0

is a solution of the exponential equation E : h(A) = h(B) if and only if f ∈ R.

472 J. Karhumäki and A. Saarela

4 Basic Equations

From now on we only consider equations with three unknowns. The alphabet of
unknowns is Ξ = {x, y, z}. The left-hand side of an equation can be assumed to
begin with x. We can also assume that x occurs on the right-hand side, but not
as the first letter.

Periodic solutions and solutions, where some unknown has the value 1, are
called trivial. These are easy to parameterize by Theorem 2.1.

An equation is a basic equation, if it is a trivial equation U = U , where
U ∈ Ξ∗, if it has only trivial solutions, or if it is of one of the following forms,
where a, b ≥ 1, c ≥ 2 and t ∈ {x, z}:

B1. xay . . . = ybx . . .

B2. x2 . . . ⇒ yax . . .
B3. xyt . . . ⇒ zxy . . .

B4. xyt . . . ⇒ zyx . . .

B5. xyz . . . = zxy . . .
B6. xyz . . . = zyx . . .

B7. xycz . . . = zycx . . .

B8. xyt . . . ⇒ zaxy . . .
B9. xyxz . . . ⇒ zx2y . . .

The parameterizability of basic equations is easy to prove with the help of
previous lemmas and theorems.

Theorem 4.1. Every basic equation has a parametric solution of bounded length.

Proof. For equations U = U and for equations with only trivial solutions the
claim is clear. We prove it for equations B1 – B9. First we reduce equations to
other equations by Theorem 3.1. The equation B2 is reduced by the substitution
x 	→ yx to the equation xyx . . . = yax . . ., which is of the form B1. The equations
B3 and B4 are reduced by the substitution x 	→ zx to the equations xyz . . . =
zxy . . . and xyz . . . = yzx . . ., which are of the form B5. The equation B8 is
reduced by the substitution x 	→ zx to the equation xyzA = zaxyB for some
A,B ∈ Ξ∗. By Lemma 2.8, this is equivalent with the equation xyzxyzA =
zxyzaxyB, which is of the form B5.

Consider the equations B1, B5, B6, B7 and B9. Their solutions are also so-
lutions of xy = yx, xyz = zxy, xyz = zyx, xycz = zycx and xyxz ⇒ zx2y, re-
spectively. For B1 this follows from Lemma 2.8, otherwise by a length argument.
By Lemmas 2.1, 2.4, 2.3, 2.6 and 2.7, these latter equations have parametric
solutions over word parameters p, q and numerical parameters i, j, k. By substi-
tuting the parametric words from these solutions to the original basic equations,
we get exponential equations, which are equivalent with linear Diophantine re-
lations by Theorems 3.2, 3.3 and 3.4. The parametric solutions with these linear
Diophantine relations, together with parametric representations for the periodic
solutions, determine parametric solutions for these equations. !

An Analysis and a Reproof of Hmelevskii’s Theorem 473

5 Images and θ-Images

In this section we define images and θ-images of equations and prove some results
about them. If h is a solution of the equation xU ⇒ yV , then h(y) ≤ h(x). This
fact was already behind Theorem 3.1. This will be generalized.

Let t1, . . . , tn ∈ {y, z} and V = t1 . . . tn. Let tn+1 = t1. If a morphism h is a
solution of the equation E : xU ⇒ V xW , then

h(x) = h(V kt1 . . . ti)u (1)

for some numbers k, i and word u satisfying k ≥ 0, 0 < i ≤ n and h(ti+1) � u.
On the other hand, a morphism h satisfying (1) is a solution of E iff uh(U) =

h(ti+1 . . . tnt1 . . . ti)uh(W). We can write h = g ◦ f , where f is the morphism
x 	→ V kt1 . . . tix and g is the morphism for which g(x) = u, g(y) = h(y) and
g(z) = h(z). Now h is a solution of E iff g is a solution of

xf(U) ⇔ f(ti+1 . . . tnt1 . . . ti)xf(W).

An image of an equation xU(x, y, z) ⇒ V (y, z)xW (x, y, z) under the mor-
phism x 	→ V kPx, where k ≥ 0, V = PQ and Q �= 1, is

xU(V kPx, y, z) ⇔ QPxW (V kPx, y, z).

If V contains only one of y, z or if P = 1, the image is degenerated.
Images are needed in the most important reduction steps used in the proof

of parameterizability of equations with three unknowns. The solutions of an
equation are easily acquired from the solutions of its images, so it is enough to
consider them. There are infinitely many images, but a finite number is enough,
if one of them is turned from a one-sided equation to an ordinary equation.

Equation E is reduced to the equations E1, . . . , En by an n-tuple of substitu-
tions, if E is of the form xU(x, y, z) ⇒ t1 . . . tkxV (x, y, z), where 1 ≤ n ≤ k and
t1, . . . , tk ∈ {y, z}, equation Ei is

xU(t1 . . . tix, y, z) ⇔ ti+1 . . . tkt1 . . . tixV (t1 . . . tix, y, z),

when 1 ≤ i < n, and equation En is

xU(t1 . . . tnx, y, z) = tn+1 . . . tkt1 . . . tnxV (t1 . . . tnx, y, z).

By the above, Theorem 3.1 can be generalized.

Theorem 5.1. Let E be an equation of length n. If E is reduced to the equations
E1, . . . , Em by an m-tuple of substitutions, and if E1, . . . , Em have parametric
solutions of length at most c, then E has a parametric solution of length O(mn)c.

Reductions with n-tuples of substitutions are not sufficient. Other ways to re-
strict the considerations to a finite number of images are needed.

Equation
xU(x, y, z) ⇒ V (y, z)xW (x, y, z)

474 J. Karhumäki and A. Saarela

is of type I, if both unknowns y, z occur in V . Equation

xybU(x, y, z) ⇒ zcxV (x, z)yW (x, y, z),

where b, c ≥ 1, is of type II, if b > 1 or V �= 1.

Theorem 5.2. The solutions of an equation of type I of length n can be param-
eterized in terms of the solutions of O(n2) of its images of length O(n3).

Theorem 5.2 can be generalized by defining θ-images.
A sequence of equations E0, . . . , En is a chain, if Ei is an image of Ei−1 for all

i, 1 ≤ i ≤ n. Then En is an image of order n of E0. If every Ei is a degenerated
image, then the chain is degenerated and En is a degenerated image of order n.

We define θ-images of equations of type I and II. For equations of type I all
images are θ-images. For equations of type II the degenerated images of order 2
and nondegenerated images of order 3 are θ-images.

The proofs of the following three lemmas, and also the proof of Theorem 5.2,
consist of examining images and their solutions and using exponential equations.
Especially the proof of Lemma 5.4 is somewhat complicated. We consider an
equation of type II

xybA(x, y, z) ⇒ zcxB(x, z)yC(x, y, z), (2)

where b, c ≥ 1 and b > 1 or B �= 1. Its images are degenerated and of the form

xybA(zix, y, z) ⇔ zcxB(zix, z)yC(zix, y, z).

Lemma 5.3. The solutions h of (2) satisfying |h(y)| ≤ |h(z)| can be parame-
terized in terms of the solutions of O(n17) of its θ-images of length O(n18).

Lemma 5.4. If x occurs in B, then the nonperiodic solutions of (2), and some
periodic solutions, can be parameterized in terms of the solutions of O(n17) of
its θ-images of length O(n18).

Lemma 5.5. If B = zd, where d ≥ 1, then the solutions of (2) can be parame-
terized in terms of the solutions of O(n26) of its θ-images of length O(n27).

We define a complete set of θ-images of an equation of type I or II. For equations
of type I it is the set of Theorem 5.2. For equations of the form (2) it is the set
of Lemma 5.3, if B = 1, the set of Lemma 5.4, if x occurs in B, and the set of
Lemma 5.5, if B = zd, d ≥ 1. The next theorem follows immediately from this
definition.

Theorem 5.6. Every equation of type I or II of length n has a complete set of
θ-images consisting of O(n26) equations of length O(n27).

We assume that every complete set of θ-images satisfies the conditions of Theo-
rem 5.6. The next theorem requires only little extra work.

Theorem 5.7. Let E be a word equation of length n. If {E1, . . . , Em} is a com-
plete set of θ-images of E and every Ei has a parametric solution of length at
most c, then E has a parametric solution of length O(mn26)c.

An Analysis and a Reproof of Hmelevskii’s Theorem 475

6 Trees of Equations

The proof of the parameterizability of equations with three unknowns consists
mainly of reducing equations to other equations. This forms a tree-like structure.
The intention is to make all leaf equations in this tree to be basic equations. The
possible reduction steps are given in the definition of a neighborhood.

Lemma 6.1. Let E0 be the equation xyazyps . . . ⇒ zybxyqt . . . , where s, t ∈
{x, z} and a+p �= b+q. Let k ≥ 8+ |p−q| be even, Ek be the equation xP ⇒ zQ
and E0, . . . , Ek be a degenerated chain. Now the solutions of Ek satisfying y �= 1
are also solutions of the equation xyazyb ⇒ zybxya.

The equations E1, . . . , En form a neighborhood of an equation E, if one of the
following conditions holds:

N1. E1, . . . , En form a complete set of θ-images of E,
N2. E reduces to E1, . . . , En with an n-tuple of substitutions,
N3. E is the equation U = V , U and V begin with different letters, n = 2, and

E1 and E2 are equations U ⇒ V and V ⇒ U ,
N4. n = 1 and E is the equation U = V and E1 is the equation UR = V R,
N5. E is the equation SU = TV , |S|t = |T |t for all t ∈ Ξ, n = 1 and E1 is the

equation US = V T ,
N6. n = 1 and E1 is E reduced from the left or multiplied from the right,
N7. n = 1 and, with the assumptions of lemma 6.1, E is the equation xP ⇒ zQ

and E1 the equation xyazybxP ⇒ zybxyazQ.

Theorem 6.2. Let E be a word equation of length n and let E1, . . . , Em be its
neighborhood. If each Ei has a parametric solution of length at most c, then E
has a parametric solution of length O(mn26)c.

Proof. For N1 this follows from Theorem 5.7, for N2 from Theorem 5.1 and for
N7 from Lemma 6.1. The other cases are clear. !

Directed acyclic graph, whose vertices are equations, is a tree of E, if the follow-
ing conditions hold:

(i) only vertex with no incoming edges is E,
(ii) all other vertices have exactly one incoming edge,
(iii) if there are edges from E0 to exactly E1, . . . , En, then these equations form

a neighborhood of E.

Theorem 6.3. Let E be a word equation of length n. If E has a tree of height
k, then all equations in the tree are of length O(n)27

k

. If each leaf equation in
this tree has a parametric solution of length at most c, then E has a parametric
solution of length O(n)52·27

k

c.

476 J. Karhumäki and A. Saarela

Proof. In the case N1 the first claim follows directly from Theorem 5.6, and for
the other cases the bound O(n)27

k

is more than enough. Now, by Theorem 6.2,
there exists a constant a such that E has a parametric solution of length

a(an)52 · a((an)27)52 · a((an)27
2
)52 · · · · · a((an)27

k−1
)52 · c

<ak(an)52·27
k

c = O(n)52·27
k

c. !

A tree in which all leaves are basic equations is a basic tree.
If every θ-image of an equation of type I or II has a basic tree, then the

equation has a basic tree, because it has a complete set of θ-images. The rule N1
is used this way instead of explicitly selecting some complete set of θ-images.

The main theorem is proved by a sequence of lemmas. The lemmas are proved
by using the rules of the definition of a neighborhood in various ways.

Lemma 6.4. The equation xyz2A(x, y, z) = yz2xB(x, y, z) has a basic tree.

Lemma 6.5. The equation x2yz . . . ⇒ zyxy . . . has a basic tree.

Lemma 6.6. Let s �= x and t �= y. The following equations have basic trees:

(a) xy2z . . . ⇒ zx2y . . .,
(b) xyzs . . . ⇒ zx2y . . .,
(c) xy2z . . . ⇒ zxyt . . .,
(d) xyzt . . . ⇒ zy2x . . .,
(e) xyz . . . ⇒ zy2x

Let 1 ≤ a, b ≤ 2, d ≥ 1 and t �= y. The equations xaybt . . . ⇒ zyx . . ., xaybt . . . ⇒
zxy . . . and xaybt . . . ⇒ z(yz)dx . . . are supporting equations.

Lemma 6.7. Every supporting equation has a basic tree.

Lemma 6.8. The equation xyazyps . . . ⇒ zybxyqt . . ., where a > 0, a+p = b+q
and s, t �= y, has a basic tree.

The next proof contains maybe the most critical part of the construction, because
very long chains of images are considered. Similar construction was needed also
in the proof of Lemma 6.6.

Lemma 6.9. The equation xyaz . . . ⇒ zybx . . ., where a > 0, has a basic tree.

Proof. The equation can be written in the form E0 : xyazypu . . . ⇒ zybxyqv . . .,
where u, v �= y. If a+ p = b+ q, then the claim follows from Lemma 6.8. Assume
that a+p �= b+ q. Let l ≥ 8+ |p− q| be even. Form a complete set of θ-images of
E0, a complete set of θ-images of these, and so on l times. These θ-images form
chains E0, . . . , El. We show that each chain has an equation with a basic tree;
this proves the claim.

First, consider chains of degenerated θ-images. There is a corresponding chain
of ordinary images and we can use the rule N7. The equation El is replaced by
the equation xyazybxP ⇒ zybxyazQ, which has a basic tree by Lemma 6.8.

An Analysis and a Reproof of Hmelevskii’s Theorem 477

Second, consider nondegenerated chains. Assume that the part E0, . . . , Ej−1

of the chain is degenerated and that Ej is a nondegenerated θ-image of Ej−1.
If b = 0, the equation E0 is of the form xyaz . . . ⇒ zx . . ., and Ej−1 is of the
same form. The equation Ej can be seen to be a supporting equation and thus
it has a basic tree. If b > 0, then E0 is of the form xyaz . . . ⇒ zybx Equation
Ej−1 is of the same form. Now Ej is of the form yczydx . . . ⇒ xyaz . . ., where
c + d = a and c ≥ 1. If c > 1, then Ej is basic of the form B2. If c = 1, then all
θ-images of Ej can be seen to have basic trees by Lemmas 6.6 and 6.7. !

Lemma 6.10. The equation xyat . . . ⇒ zcxB(x, z)y . . ., where a, c ≥ 1 and
t �= y, has a basic tree.

Lemma 6.11. The equation xnymt . . . ⇒ zyA(y, z)x . . ., where n,m ≥ 1 and
t �= y, has a basic tree.

The proof of the next theorem finally gathers the previous results together and
gives the idea of how the height of the tree can be estimated.

Theorem 6.12. Every equation of length n with three unknowns has a basic
tree of height O(n).

Proof. The trivial equation U = U is a basic equation. All other equations can
be reduced from the left and split into one-sided equations. By multiplication
from the right, every one-sided equation can be turned into one of the equations

x2 . . . ⇒ ycx . . . (3)
xy . . . ⇒ ycx . . . (4)

xzat . . . ⇒ ycxB(x, y)z . . . (5)

xaybs . . . ⇒ yczB(y, z)x . . . (6)

xazbt . . . ⇒ yzB(y, z)x . . . (7)

xazbt . . . ⇒ ydzB(y, z)x . . . , (8)

where a, b, c ≥ 1, d > 1, t �= z and s �= y. We prove that these have basic trees.
Equation (3) is basic of the form B2. Equation (4) is reduced by the substi-

tution x 	→ yx to the equation xy . . . = ycx . . ., which is basic of the form B1.
Equation (5) is the equation of Lemma 6.10. Equation (7) is the equation of
Lemma 6.11.

The equation (6) is of type I and its images are of the form xy . . . ⇔ Dx . . .,
where D is a conjugate of yczB. If y2 ≤ D, then this is of the form (3), if yz ≤ D,
then of the form (5), and if z ≤ D, then of the form (7). So every image of (6)
and thus the equation itself has a basic tree.

The equation (8) is of type I and its images are of the form x(y . . .)a−1zby . . . ⇔
Dx . . ., where D is a conjugate of ydzB. Again it is of the form (3), (5) or (7).
So every image of (6) and thus the equation itself has a basic tree.

The constructions of trees in the lemmas produce trees of bounded height with
two exceptions: Lemmas 6.6 and 6.9, where a tree with height of order |p− q| is
constructed for the equation

478 J. Karhumäki and A. Saarela

xyazyp . . . ⇒ zybxyq (9)

We prove that the powers of y here cannot be more than n, which proves this
theorem. In the definition of neighborhood, the rules N1, N2, N5 and N6 can
produce higher powers than those in the initial equation. There is no need to use
N6 to generate high powers and N5 is only used in 6.4, 6.6 and 6.8, where it does
not generate high powers. Consider N1 and N2. Here an equation xU(x, y, z) ⇒
yaxV (x, y, z) can be turned into xU(yix, y, z) ⇔ yaxV (yix, y, z) for high values
of i. But in order for y to be in the position of (9), the rules N1 or N2 must be
used again. Then y is replaced by xuy for some u ∈ {x, z}∗ and the powers of y
disappear. The claim is proved. !

In the next theorem exp2 denotes the double exponential function exp ◦ exp.

Theorem 6.13. Every equation of length n with three unknowns has a para-
metric solution of length exp2(O(n)).

Proof. By Theorem 6.12 every equation has a basic tree of height O(n). By
Theorem 4.1 the leaf equations have parametric solutions of bounded length.
Now from Theorem 6.3 it follows that E has a parametric solution of length
O(n)52·27

k

, where k = O(n), that is of length exp2(O(n)). !

References

1. Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s Conjecture. Theoret. Comput.
Sci. 41, 121–123 (1985)

2. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages. Springer, Heidelberg (1997)

3. Czeizler, E., Karhumäki, J.: On non-periodic solutions of independent systems of
word equations over three unknowns. Internat. J. Found. Comput. Sci. 18, 873–897
(2007)

4. Guba, V.S.: Equivalence of infinite systems of equations in free groups and semi-
groups to finite subsystems. Mat. Zametki 40, 321–324 (1986)

5. Harju, T., Karhumäki, J., Plandowski, W.: Independent system of equations. In:
Lothaire, M. (ed.) Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

6. Hmelevskii, Y.I.: Equations in free semigroups. Proc. Steklov Inst. of Math. 107
(1971); Amer. Math. Soc. Translations (1976)

7. Karhumäki, J., Saarela, A.: A Reproof of Hmelevskii’s Theorem (manuscript)
8. Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)
9. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mat.

Sb. 103, 147–236 (1977); English transl. in Math. USSR Sb. 32, 129–198
10. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.

ACM 51, 483–496 (2004)
11. Spehner, J.-C.: Quelques Problemes d’extension, de conjugaison et de presentation

des sous-monoides d’un monoide libre. Ph.D. Thesis, Univ. Paris (1976)
12. Spehner, J.-C.: Les presentations des sous-monoides de rang 3 d’un monoide libre.

In: Semigroups, Proc. Conf. Math. Res. Inst., pp. 116–155 (1978)

Hierarchies of Piecewise Testable Languages

Ondřej Kĺıma and Libor Polák�

Department of Mathematics, Masaryk University
Janáčkovo nám 2a, 662 95 Brno, Czech Republic

Abstract. The classes of languages which are boolean combinations of
languages of the form

A∗a1A
∗a2A

∗ . . . A∗a�A
∗, where a1, . . . , a� ∈ A, � ≤ k ,

for a fixed k ≥ 0, form a natural hierarchy within piecewise testable
languages and have been studied in papers by Simon, Blanchet-Sadri,
Volkov and others. The main issues were the existence of finite bases of
identities for the corresponding pseudovarieties of monoids and generat-
ing monoids for these pseudovarieties.

Here we deal with similar questions concerning the finite unions and
positive boolean combinations of the languages of the form above. In the
first case the corresponding pseudovarieties are given by a single iden-
tity, in the second case there are finite bases for k equal to 1 and 2 and
there is no finite basis for k ≥ 4 (the case k = 3 remains open). All the
pseudovarieties are generated by a single algebraic structure.

Keywords: varieties of languages, piecewise testable languages,
syntactic monoid.

1 Introduction

A language L over an alphabet A is called piecewise testable if it is a finite
boolean combination of languages of the form

A∗a1A
∗a2A

∗ . . . A∗a�A
∗, where a1, . . . , a� ∈ A, � ≥ 0 . (∗)

A characterization of piecewise testable languages was given by Simon [18]
who proved that a language L is piecewise testable if and only if its syntactic
monoid is J -trivial. Note that nowadays there exist several proofs of this deep
result [1,7,19,22]. See survey papers [11,13] for more information and connections
to concatenation hierarchies.

The Simon theorem was one of the first deep examples of Eilenberg’s cor-
respondence [5] between boolean varieties of languages and pseudovarieties of
monoids. The correspondence uses the concept of the syntactic monoid of a lan-
guage. Pin’s modification [12,13] of Eilenberg’s result gives a correspondence
� Both authors were supported by the Ministry of Education of the Czech Republic

under the project MSM 0021622409 and by the Grant no. 201/06/0936 of the Grant
Agency of the Czech Republic.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 479–490, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

480 O. Kĺıma and L. Polák

between positive varieties of languages and pseudovarieties of finite ordered
monoids. For example, finite unions of languages of the form (∗) form a positive
variety of languages P which corresponds to the pseudovariety of all ordered
monoids satisfying the identity x ≤ 1 [14].

Later on Polák [15] presented another modification of Eilenberg’s correspon-
dence: conjunctive varieties are related to pseudovarieties of finite idempotent
semirings. The difference is that conjunctive varieties of languages are not closed,
in general, under complements and unions and one uses a stronger notion of
preimages. Note that there is a dual version. Namely, the so-called disjunctive
varieties which can be obtained from conjunctive varieties in the following way:
for a conjunctive variety V, we consider the class V c of complements of languages
from V (see [16] for more details).

Next stepswere the literal varieties of languages by Ésik and Ito (see [6]), Straub-
ing’s C-varieties of languages (see [21]), and more generallyPolák’sD-varieties (see
[16]). We make use of all mentioned modifications of Eilenberg’s correspondence
in this paper. We slightly modify the definition of a semiring (no zero element is
postulated) and D-varieties of languages are present in our paper only implicitely.

We are interested in piecewise testable languages. If we fix a number k then
we can consider boolean combinations of languages of the form (∗), where � ≤
k. The resulting class is a boolean variety of languages, which is denoted BVk.
These k-levels in the hierarchy of piecewise testable languages were considered by
I. Simon [18], who found a simple characterization by identities for levels 1 and 2.
A lot of work was done by Blanchet-Sadri [3,4] who found a basis of identities for
the level 3 and proved that there is no finite basis of identities for k > 3.

In this paper we consider similar levels of positive varieties PVk and disjunc-
tive varieties DVk of piecewise testable languages. Here PVk is formed by finite
intersections of finite unions of languages of the form (∗), where � ≤ k, and DVk

is formed by finite unions of languages of the form (∗), where � ≤ k.
After introductory Sections 1 and 2 we discuss the identity problem for the

pseudovarieties corresponding to BVk,PVk and DVk in Section 3. In Section 4
we obtain a characterization of DVk for arbitrary k ≥ 1, PV1 and PV2 in terms
of a basis of identities for the corresponding pseudovariety of semirings (resp.
monoids) and we show that such a finite basis does not exist for PVk for k > 3.
The characterization of PV3 by a finite basis of identities is stated as an open
problem. Note that we do not reprove the results of Simon or Blanchet-Sadri.

In [23] Volkov showed that the pseudovariety of monoids corresponding to
BVk is generated by a single monoid for each k. He proved that in order to
get this result we can use any of the three different series of monoids described
by Straubing [20] and Pin [10]. In Section 5 we present an alternative proof
concerning one of the series and we show that also PVk and DVk are generated
by a single ordered monoid and by a single idempotent semiring, respectively.
Finally, in the last section we state among others that the pseudovarieties BVk

and PVk for k ≥ 4 have no finite bases of pseudoidentities.
Due to the space limitations certain parts of proofs are placed into Appendix

(see [9]).

Hierarchies of Piecewise Testable Languages 481

2 Eilenberg Type Correspondences

Let A be a finite alphabet, let A∗ be the set of all words over A with the operation
of concatenation ·, i.e. A∗ is the free monoid over A. The empty word is denoted
by λ. A language over an alphabet A is a subset of A∗. A language is regular if
it is accepted by a finite automaton – see, for instance, [2] or [13]. We will work
with certain classes of (regular) languages.

2.1 Boolean and Positive Varieties of Languages

We recall here the basics concerning the Eilenberg type theorems. The boolean
case was invented by Eilenberg [5] and the positive case by Pin [12].

A boolean variety of languages V associates to every finite alphabet A a class
V(A) of regular languages over A in such a way that

– V(A) is closed under boolean operations (in particular ∅, A∗ ∈ V(A)),
– V(A) is closed under derivatives, i.e.

L ∈ V(A), u, v ∈ A∗ implies u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),
– V is closed under preimages in morphisms, i.e.

f : B∗ → A∗, L ∈ V(A) implies f−1(L) ∈ V(B).

To get the notion of a positive variety of languages, we use in the first item
only intersections and unions (not complements).

A pseudovariety of finite monoids is a class of finite monoids closed under
submonoids, morphic images and products of finite families. Similarly for ordered
monoids (see [13]).

For a regular language L ⊆ A∗, we define the relations ∼L and �L on A∗ as
follows: for u, v ∈ A∗ we have

u ∼L v if and only if (∀ p, q ∈ A∗) (puq ∈ L ⇐⇒ pvq ∈ L) ,

u �L v if and only if (∀ p, q ∈ A∗) (pvq ∈ L =⇒ puq ∈ L) .

The relation ∼L is a congruence on A∗ of finite index (i.e. there are only
finitely many classes) and the quotient structure M(L) = A∗/∼L is called the
syntactic monoid of L.

The relation �L is a preorder (i.e. a reflexive and transitive relation) on A∗

and the corresponding equivalence relation is ∼L. Hence �L induces an order
on M(L) = A∗/∼L, namely: u∼L ≤ v∼L if and only if u �L v. Then we speak
about a syntactic ordered monoid of L and we denote the structure by O(L).

Result 1. (Eilenberg [5], Pin [12]) Boolean varieties (positive varieties) of
languages correspond to pseudovarieties of finite monoids (ordered monoids).
The correspondence, written V ←→ V (P ←→ P), is given by the following
relationship: for L ⊆ A∗ we have

L ∈ V(A) ⇐⇒ M(L) ∈ V (L ∈ P(A) ⇐⇒ O(L) ∈ P) .

482 O. Kĺıma and L. Polák

The pseudovarieties can be characterized by pseudoidentities (see e.g. [2], [13]).
The classes we consider here are equational – they are given by identities. For a
set X , an identity is a pair u = v (u ≤ v) of words over X , i.e. u, v ∈ X∗. An
identity u = v (u ≤ v) is satisfied in a finite monoid M (ordered monoid (M,≤))
if for each morphism φ : X∗ → M we have φ(u) = φ(v) (φ(u) ≤ φ(v)). In such
a case we write M |= u = v, and for a set of identities Π , we define Mod(Π) =
{M | (∀ π ∈ Π) M |= π }. For a class M of monoids, the meaning of M |= Π
is that, for each M ∈ M, we have M |= Π . Similarly for the ordered case.

2.2 Disjunctive Varieties of Languages

Conjunctive (and dually disjunctive) varieties of languages were introduced by
the second author [15]. In the definition of such classes of languages union (or
dually intersection) is omitted but morphisms are from a larger class. Motivated
by Straubing [21] the second author [16] generalized conjunctive varieties to D-
conjunctive varieties where semiring morphisms can be taken from a fixed class
of morphisms D. As our application uses the non-killing morphisms from [8], we
modify mentioned definitions without using a concept of D-conjunctive varieties.
We even modify also the basic definition of idempotent semiring to make the
presentation more clear, namely we omit a neutral element with respect to the
second operation, and finally we will consider the dual version, i.e. disjunctive
varieties.

An idempotent semiring is a structure (S, ·,+, 1) where

– (S, ·) is a monoid with the neutral element 1,
– (S,+) is a semilattice,
– (∀ a, b, c ∈ S) (a(b + c) = ab + ac, (a + b)c = ac + bc).

A pseudovariety of finite idempotent semirings is a class of finite idempotent
semirings closed under sub-semirings, morphic images and finite products.

Let A∪ denote the set of all finite non-empty subsets of A∗. For U, V ∈ A∪,
we define U · V = {uv | u ∈ U, v ∈ V }. Then (A∪, ·,∪, {λ}) is a free idempotent
semiring over A. For sets A, B, a language L ⊆ A∗ and idempotent semiring
morphism f : B∪ → A∪ we define f−1(L) = { u ∈ B∗ | f(u) ∩ L �= ∅ }.

An identity is a pair U = V of elements of X∪. An identity U = V is satisfied
in a finite idempotent semiring S if for each morphism φ : X∪ → S we have
φ(U) = φ(V). In such a case we write S |= U = V and for a set of identities Π
we define Mod(Π) = {S | (∀ π ∈ Π) S |= π }.

A disjunctive variety of languages D associates to every finite alphabet A
a class D(A) of regular languages over A in such a way that

– A∗ ∈ D(A),
– D(A) is closed under finite unions (in particular ∅ ∈ D(A)),
– D(A) is closed under derivatives,
– D is closed under preimages in semiring morphisms, i.e.

f : B∪ → A∪, L ∈ D(A) implies f−1(L) ∈ D(B).

Hierarchies of Piecewise Testable Languages 483

Let L ⊆ A∗ be a regular language. We define the relation ≡L on A∪ as follows:
for U, V ∈ A∪ we have

U ≡L V if and only if (∀ p, q ∈ A∗) (pUq ∩ L �= ∅ ⇐⇒ pV q ∩ L �= ∅).

This relation has a finite index and the quotient structure S(L) = A∪/ ≡L is
called the syntactic semiring of L. Notice that we are using the syntactic semiring
from [15,16] for the complement of L.
Result 2. (Polák [16]) Disjunctive varieties of languages correspond to pseu-
dovarieties of idempotent semirings. The correspondence, written D ←→ D, is
given by the following relationship: for L ⊆ A∗ we have

L ∈ D(A) ⇐⇒ S(L) ∈ D .

3 Hierarchies of Piecewise Testable Languages

For a word u = a1a2 . . . an, where a1, a2, . . . , an ∈ A, we define the language

Lu = A∗a1A
∗ . . . A∗anA

∗

and we denote by |u| the length of the word u, i.e. |u| = n. Note that the
length of the empty word λ is |λ| = 0 and Lλ = A∗. For a fixed k ≥ 0, we
define the classes DVk, PVk and BVk as follows. For each finite alphabet A, we
have

– L ∈ DVk(A) if L is a finite union of languages of the form Lu, where u ∈ A∗,
|u| ≤ k;

– L ∈ PVk(A) if L is a finite intersection of finite unions of languages of the
form Lu, where u ∈ A∗, |u| ≤ k;

– L ∈ BVk(A) if L is a boolean combination of languages of the form Lu,
where u ∈ A∗, |u| ≤ k.

Proposition 1. Let k ≥ 0. Then
(i) DVk is a disjunctive variety of languages,
(ii) PVk is a positive variety of languages,
(iii) BVk is a boolean variety of languages.

Proof. All statements are straightforward. !

We say that a word u = b1b2 . . . bm, where b1, . . . , bm ∈ A, is a subword of a
word v = c1c2 . . . cn, where b1, . . . , cn ∈ A, if b1 = ci1 , . . . , bm = cim for some
1 ≤ i1 < i2 < · · · < im ≤ n. We write u (v in this case. Note that for u ∈ A∗,
we have Lu = { v ∈ A∗ | u (v }.

For u ∈ A∗, we define Subk(u) as the set of all subwords of u of length
at most k and Sub(u) =

⋃
k≥0 Subk(u). For U ∈ A∪, we define Subk(U) =⋃

u∈U Subk(u).
Next, we define relations ∼A

k , ≺A
k on A∗ and ≡A

k on A∪ as follows: for u, v ∈
A∗, U, V ∈ A∪, we have

484 O. Kĺıma and L. Polák

u ∼A
k v if and only if Subk(u) = Subk(v) ,

u �A
k v if and only if Subk(v) ⊆ Subk(u) ,

U ≡A
k V if and only if Subk(U) = Subk(V) .

We write only ∼k, �k and ≡k when the alphabet A is known from the context.
The first item of the following lemma is due to Simon [17] and this is a basic

step in every paper concerning piecewise testable languages (see e.g. [1,18,23]).

Proposition 2. Let k ≥ 0. Then for L ⊆ A∗, we have
(i) L ∈ BVk if and only if ∼k ⊆ ∼L,
(ii) L ∈ PVk if and only if �k ⊆ �L,
(iii) L ∈ DVk if and only if ≡k ⊆ ≡L.

The proof is placed into Appendix (see [9]).

By Proposition 2 the quotient structures A∗/ ∼k, A∗/ �k, A∪/ ≡k are free
objects in the (equational) pseudovarieties BVk,PVk and DVk over the set A.
Since the equivalence relations ∼k and ≡k have finite indices the correspond-
ing pseudovarieties are locally finite. This is not a surprise because for a given
alphabet A there are only finitely many languages of the form (∗) with � ≤ k,
hence BVk(A) (PVk(A) and DVk(A), respectively) are finite.

This proposition also solves the identity problem for the pseudovarieties BVk,
PVk and DVk. But the solution of the identity problem is not a solution of the
membership problem. Only if we have a finite basis of identities we can test
them. Our goal is to find such bases for the mentioned classes.

From another point of view the proposition solves the membership problem
too. One can compute the finite free structure A∗/∼k (or A∗/�k, or A∪/≡k)
and check whether the syntactic monoid (ordered monoid, semiring) of a given
language L is a quotient of this free structure.

We already stated that the classes BVk were studied in many contributions.
The first two items of the following lemma are due to Simon [18], the third can
be found in [3]. The last item is proved in [4].
Result 3. Let k ≥ 0. Then (i) BV1 = Mod(xy = yx, x2 = x),

(ii) BV2 = Mod((xy)2 = (yx)2, xyzx = xyxzx),
(iii) BV3 = Mod((xy)3 = (yx)3, xzyxvxwy = xzxyxvxwy, ywxvxyz =

ywxvxyxzx),
(iv) BVk is not finitely based for k ≥ 4.
Up to our knowledge there are no similar results for the hierarchies PVk and

DVk. These will be established in the next section.

4 Bases of Identities for PVk and DVk

4.1 Disjunctive Varieties DVk

It is not hard to see that the disjunctive variety DV1 corresponds to the pseudova-
riety of idempotent semirings Mod(xy = x + y). The next theorem establishes
the result for an arbitrary k. We consider

Hierarchies of Piecewise Testable Languages 485

x1x2 . . . xk+1 =
k+1∑

i=1

x1 . . . xi−1xi+1 . . . xk+1 . (πk)

Theorem 1. Let k ≥ 0. Then DVk = Mod(πk).

Proof. It is easy to see that both sides of πk have the same set of subwords
of length at most k. With respect to Proposition 2 we have to show that each
identity U = V such that Subk(U) = Subk(V) is a consequence of the identity
πk. If we put in the identity πk all variables equal to 1 with exception of the
variable x1, then we obtain the identity x1 = x1 + 1. From this identity we have
xy = (x + 1)(y + 1) = xy + x + y + 1 and more generally u = Sub(u) for each
word u. Now using the identity πk we can rewrite each word in Sub(u) by all its
subwords of length at most k. Hence we obtain the identity u = Subk(u). The
identity U = Subk(U) follows and from that we obtain each identity U = V such
that Subk(U) = Subk(V). !

4.2 Positive Varieties PVk

We prove a certain analogue of the characterizations from Result 3.Recall that
the positive variety P =

⋃
k≥0 PVk is characterized by the identity x ≤ 1.

When we study the positive varieties PVk then it is natural to consider the
classes BVk ∩ P and ask whether the equality PVk = BVk ∩ P holds. The
inclusion PVk ⊆ BVk ∩P is trivial but the opposite one is much more delicate
as the next result shows.

Theorem 2. (i) PV1 = BV1 ∩P, i.e. PV1 = Mod(xy = yx, x2 = x, x ≤ 1).
(ii) PV2 = BV2 ∩P, i.e. PV2 = Mod((xy)2 = (yx)2, xyzx = xyxzx, x ≤ 1).
(iii) For k ≥ 3, PVk �= BVk ∩P.
(iv) For k ≥ 4, PVk has no finite basis of identities.

Proof. Part (i). Let u ≤ v be an identity satisfied in PV1. This means that
u �1 v, i.e. Sub1(v) ⊆ Sub1(u). Then uv ∼1 u and v (uv. Hence BV1 |= u = uv
and P |= uv ≤ v and the identity u ≤ v is a consequence of identities satisfied
in BV1 and P. This implies BV1 ∩P ⊆ PV1. The statement follows.

Part (ii). We start with a technical lemma which we use inductively afterwards.

Lemma 1. Let u, v ∈ A∗ be such that u �2 v and u �∼2 v. Then there exists
w ∈ A∗ such that u �2 w �2 v and at least one of the following two conditions
happens: i) v (w and v �∼2 w or ii) w (u and w �∼2 u.

The proof is placed into Appendix (see [9]).

Claim 1. PV2 = BV2 ∩P.

Proof. We show that each identity u ≤ v which is satisfied in PV2 is a conse-
quence of identities satisfied in BV2 and the identity x ≤ 1. We show this by an
induction with respect to the cardinality of the set M = Sub2(u) \ Sub2(v).

486 O. Kĺıma and L. Polák

If M = ∅ then u ∼2 v and the statement is clear.
If M �= ∅ then the assumptions of Lemma 1 are valid. So, there exists w such

that u �2 w �2 v, v (w and v �∼2 w (or w(u and w �∼2 u which can be proved in
a similar way). Then Sub2(v) ⊂ Sub2(w) ⊆ Sub2(u) and Sub2(u) \ Sub2(w) ⊂M
follows. By an induction assumption the identity u ≤ w is a consequence of the
identities satisfied in BV2 and the identity x ≤ 1. Because v (w, the identity
w ≤ v is a consequence of the identity x ≤ 1. This implies that u ≤ v is a
consequence of the identities satisfied in BV2 and the identity x ≤ 1. !

Part (iii).
Claim 2. For k ≥ 3, it holds PVk �= BVk ∩P.

Proof. We show that the identity (xy)k−1 ≤ xk−1yk−1 is satisfied in PVk but
it is not satisfied in BVk ∩P.

The first observation is clear since Subk(xk−1yk−1) ⊆ Subk((xy)k−1).
For the second part, we assert first that there is no word v different from

(xy)k−1 such that v ∼k (xy)k−1. Indeed, if Subk(v) = Subk((xy)k−1) then v
contains exactly k − 1 occurrences of variable x and the same number of occur-
rences of y. Now yxk−1 �∈ Subk(v) and yk−1x �∈ Subk(v) hence the first letter
of v is x and the last letter of v is y. Moreover, xiyxk−1−i ∈ Subk(v) for each
i = 1, . . . , k − 2, so, between i-th and (i + 1)-th occurrence of x in v has to be
some y. We can conclude with v = (xy)k−1.

Now we assert that there is no proper subword v of (xy)k−1 such that v �k

xk−1yk−1. Assume that there is some word v with this property. Then from
Subk(xk−1yk−1) ⊆ Subk(v) we can deduce that v contains exactly k − 1 oc-
currences of variable x and the same number of occurrences of y, which is a
contradiction.

Our two assertions imply the statement, since there is no proof of (xy)k−1 ≤
xk−1yk−1 using the identity x ≤ 1 and the identities which are satisfied in BVk.

 !

Remark 1. The idea from our proof of Claim 2 can be also used for direct
construction of a language L with the properties: L ∈ BVk ∩P, L �∈ PVk. We
show such an example for the case k = 3.

We consider the following language L over A = {a, b}

L = Laaa ∪ Lbbb ∪ {aabb} (1)
= Laaa ∪ Lbbb ∪ Laabb (2)
= Laaa ∪ Lbbb ∪ (Laa ∩ Lbb ∩ Lc

ba) . (3)

The fact L ∈ P follows from (2) and the fact L ∈ BV3 follows from (3). On the
other hand, we can show that L �∈ PV3. Assume, for a moment, that L ∈ PV3.
Then �3 ⊆ �L by Proposition 2. It is clear that abab �3 aabb, so we have
abab �L aabb which is a contradiction with aabb ∈ L and abab �∈ L.

Part (iv). This part of the theorem is proved for k = 4 first.
Claim 3. There is no finite basis of identities for the pseudovariety PV4.

Hierarchies of Piecewise Testable Languages 487

Proof. Assume that PV4 has a finite basis Π of identities. Let n be the number
of variables used in Π . We consider the identity u ≤ v where

u = x y xX y Y y , v = xx y X y Y y with X = z1z2 . . . zn and Y = zn . . . z2z1 .

One can show that this identity is satisfied in PV4 and it is not a consequence
of identities in Π . A full proof is placed into appendix (see [9]). !
The previous proposition can be easily modified for every k > 4. The change is
that we multiply the words u and v by xk−4 from left. Hence we have

u = xk−3 y xX y Y y , v = xk−2y X y Y y .

This ends the sketch of the proof of Theorem 2. !

For the last case k = 3, the proof of Claim 3 does not work. The easiest example
of the identity which is satisfied in PV3 but which is not a consequence of the
identities from BV3 and the identity x ≤ 1 is the identity xz1yxz2y ≤ xz1xyz2y.
It seems that this identity is strong enough as we did not find some identity which
is not a consequence of this one. This leads us to the following conjecture about
finite basis of identities for PV3.

Conjecture. PV3 = BV3 ∩P ∩Mod(xz1yxz2y ≤ xz1xyz2y).

5 Generating by a Single Monoid and Semiring

Volkov in [23] proved that each pseudovariety BVk is generated by a single
monoid. We show an alternative proof of this fact and we will prove the similar
results concerning the pseudovarieties PVk and DVk. The idea is that we will
generate the varieties of languages BVk, PVk and DVk by a single language
instead of generating the pseudovarieties of monoids and semirings.

Volkov used three types of monoids which were introduced by Straubing and
Pin, namely the monoid Rk of all reflexive binary relations (viewed as a sub-
monoid of the monoid of all (k+1)× (k+1) matrices over the Boolean semiring
B = ({0, 1},∧,∨)), its submonoid Uk of all upper unitriangular matrices (i.e.
there are only zeros under the main diagonal and all diagonal entries are 1), and
the monoid Ck of all order preserving and extensive transformations of a chain
with k + 1 elements. We identify such transformation φ with the matrix C(φ)
having exactly one non-zero entry in each row, namely at the position (i, φ(i))
for i = 1, . . . , k + 1. Clearly, the composition of transformations corresponds to
the multiplication of matrices.

The last monoid we will use, denoted Sk, is the submonoid of Uk consisting
of all stair triangular matrices, i.e. matrices satisfying: if ai,j = 1, i < j then

ai,i = ai,i+1 = · · · = ai,j = 1, ai,j = ai+1,j = · · · = aj,j = 1 .

The monoids Rk,Uk and Sk are idempotent semirings with respect to ∨ taken
componentwise.

488 O. Kĺıma and L. Polák

Notice that the mapping φ 	→ S(φ), φ ∈ Ck, where (S(φ))i,j = 1 if and only
if j ∈ {i, i + 1, . . . , φ(i)}, induces a monoid isomorphism of Ck onto Sk.

For each k, we fix the k-element alphabet B = {b1, b2, . . . , bk} and the lan-
guage

L(k,B) = B∗b1B
∗b2B

∗ . . . B∗bkB
∗ .

A crucial property of L(k,B) is the following lemma.

Lemma 2. For every finite alphabet A and a word u ∈ A∗ of length k, there
exists a morphism f : A∗ → B∗ such that f−1(L(k,B)) = Lu.

Proof. Let u = a1a2 . . . ak, where ai ∈ A. For each a ∈ A we consider the
sequence of indices i1 < i2 < · · · < i� such that ai1 = ai2 = · · · = ai�

= a and
define f(a) = bi�

. . . bi2bi1 .
An example for a better understanding: if k = 8, A = {c1, . . . , c4} and u =

c4c3c1c4c1c3c1c4 then f : c1 	→ b7b5b3, c2 	→ λ, c3 	→ b6b2, c4 	→ b8b4b1.
Note that bibi+1 . . . bi+j (f(a) implies j = 0; in other terms Sub(f(a)) ∩

Sub(b1b2 . . . bk) ⊆ B. So, we have defined f : A∗ → B∗ morphism and we have
to check that f−1(L(k,B)) = Lu.

“⊆” : Let w ∈ f−1(L(k,B)), w = c1c2 . . . cm, where c1, . . . cm ∈ A. Then there
exist indices j1 < j2 < · · · < jk such that f(cji) contains bi for all i = 1, . . . , k.
Hence cji = ai for all i = 1, . . . , k. This means u = a1a2 . . . ak (w, i.e. w ∈ Lu.

“⊇” : Now, let w ∈ Lu. Then f(u) (f(w). From the definition of images of
letters we have bi(f(ai) for all i = 1, . . . , k and we can conclude with b1b2 . . . bk (
f(w), i.e. w ∈ f−1(L(k,B)). !

Lemma 3. For the language L(k,B) over the alphabet B the following is true.
(i) If a boolean variety of languages B satisfies L(k,B) ∈ B(B), then BVk ⊆ B.
(ii) If a positive variety of languages V satisfies L(k,B) ∈ V(B), then PVk ⊆ V.
(iii) If a disjunctive variety D satisfies L(k,B) ∈ D(B), then DVk ⊆ D.

Proof. In all cases the classes are closed under the preimages in morphisms. If we
apply the previous lemma we see that for any alphabet A and the word u of length
k we have Lu ∈ B(A) (and Lu ∈ V(A) and Lu ∈ D(A), respectively). The classes
are also closed under derivatives since a−1Lav = Lv and Lvaa

−1 = Lv. Hence,
for any alphabet A and the word u of length at most k, we have Lu ∈ B(A) (and
Lu ∈ V(A) and Lu ∈ D(A), respectively). Now the statements are consequences
of the definitions of the classes BVk, PVk, DVk. !

Proposition 3. For each k ≥ 1, we have:
(i) BVk is generated by the syntactic monoid B∗/∼L(k,B).
(ii) PVk is generated by the syntactic ordered monoid B∗/�L(k,B).
(iii) DVk is generated by the syntactic semiring B∪/≡L(k,B).

Proof. It is a direct consequence of Lemma 3. !

Now we present natural models of the syntactic structures of the language
L(k,B). We define μ : B → Sk as follows: the only non-zero non-diagonal entry
in the matrix μ(bi) is (μ(bi))i,i+1 = 1 for i = 1, . . . , k. This mapping naturally
extends to B∗ and B∪.

Hierarchies of Piecewise Testable Languages 489

Proposition 4. The structures (Sk, ·), ((Sk, ·,≤) and (Sk, ·,∨), respectively) are
isomorphic to the syntactic monoid (ordered syntactic monoid and syntactic
semiring, respectively) of the language L(k,B).

Proof. Indeed, using the induction with respect to the lengths of words we see
that the extension μ : B∗ → Sk is given by (μ(u))i,j = 1 if and only if i ≤ j and
bi . . . bj−1 (u for each u ∈ A∗.

For a matrix S ∈ Sk with non-zero entries s1,1, . . . , s1,p1 , . . . , sk,k, . . . , sk,pk
,

sk+1.k+1, we see that μ(bk . . . bpk−1 . . . b1 . . . bp1−1) = S and thus μ is surjective.
Further, for each u, v ∈ A∗, U, V ∈ A∪, we have u ∼L(k,B) v if and only if

μ(u) = μ(v), u �L(k,B) v if and only if μ(u) ≥ μ(v), and finally U ≡L(k,B) V if
and only if μ(U) = μ(V). !

6 Final Remarks

Remark 2. 1 We know that the pseudovarieties BVk and PVk, for k ≥ 4, have
no finite bases of identities. A natural question is whether there exist finite bases
of pseudoidentities for these classes. (One can consult the background concerning
pseudoidentities in Almeida’s book [2].)

By Proposition 3 or by [23] each pseudovariety BVk is generated by a single
monoid and such a pseudovariety admits a finite basis of identities if and only if it
admits a finite basis of pseudoidentities (see Corollary 4.3.8 in the book [2]). The
same arguments can be used in the case of the pseudovarieties PVk. Therefore
the pseudovarieties BVk and PVk have no finite bases of pseudoidentities.
Remark 3. Our goal was to get a better understanding of languages of level 1
in Straubing-Thérien hierarchy. We expect that some results from the present
paper can be extended also to other hierarchies. For example, it could be inter-
esting to study hierarchies based of locally testable languages, group languages
or languages of the form

B∗
0a1B

∗
1a2B

∗
2 . . . a�B

∗
� , where a1, . . . , a� ∈ A, B0, . . . , B� ⊆ A, � ≤ k, k fixed .

We also have formulated the conjecture that PV3 is finitely based.

References

1. Almeida, J.: Implicit operations on finite J -trivial semigroups and a conjecture of
I. Simon. J. Pure Appl. Algebra 69, 205–218 (1990)

2. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore
(1994)

3. Blanchet-Sadri, F.: Games, equations and the dot-depth hierarchy. Comput. Math.
Appl. 18, 809–822 (1989)

4. Blanchet-Sadri, F.: Equations and monoids varieties of dot-depth one and two.
Theoret. Comput. Sci. 123, 239–258 (1994)

1 We express here our gratitude to Jorge Almeida for a discussion on the topic.

490 O. Kĺıma and L. Polák

5. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New
York (1976)

6. Ésik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybernetica 16, 1–28 (2003)

7. Higgins, P.: A proof of Simon’s Theorem on piecewise testable languages. Theoret.
Comput. Sci. 178, 257–264 (1997)

8. Kĺıma, O., Polák, L.: Classes of meet automata. Theoret. Comput. Sci. (to appear)
9. Kĺıma, O., Polák, L.: Hierarchies of piecewise testable languages, a version con-

taining also Appendix, http://www.math.muni.cz/∼polak
10. Pin, J.-E.: Varieties of Formal Languages. North Oxford Academic, Plenum (1986)
11. Pin, J.-E.: Finite semigroups and recognizable languages: an introduction. In: Foun-

tain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and
Groups, pp. 1–32. Kluwer Academic Publisher, Dordrecht (1995)

12. Pin, J.-E.: A variety theorem without complementation. Russian Mathem (Iz.
VUZ) 39, 74–83 (1995)

13. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, ch. 10. Springer, Heidelberg (1997)

14. Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.
Syst. 30, 1–39 (1997)

15. Polák, L.: A classification of rational languages by semilattice-ordered monoids.
Arch. Math. (Brno) 40, 395–406 (2004)

16. Polák, L.: On pseudovarieties of semiring morphisms. In: Fiala, J., Koubek, V.,
Kratochv́ıl, J. (eds.) MFCS 2004. LNCS, vol. 3153, pp. 635–647. Springer, Heidel-
berg (2004)

17. Simon, I.: Hierarchies of events of dot-depth one, Ph.D. thesis, University of Wa-
terloo (1972)

18. Simon, I.: Piecewise testable events. In: Proc. ICALP 1975. LNCS, vol. 33, pp.
214–222. Springer, Heidelberg (1975)

19. Stern, J.: Characterization of some classes of regular events. Theoret. Comput.
Sci. 35, 17–42 (1985)

20. Straubing, H.: On finite J -trivial monoids. Semigroup Forum 19, 107–110 (1980)
21. Straubing, H.: On logical description of regular languages. In: Rajsbaum, S. (ed.)

LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)
22. Straubing, H., Thérien, D.: Partially ordered finite monoids and a theorem of

I. Simon. J. Algebra 119, 393–399 (1988)
23. Volkov, M.V.: Reflexive relations, extensive transformations and piecewise testable

languages of a given height. Internat. J. Algebra Comput. 14, 817–827 (2004)

http://www.math.muni.cz/~polak

Construction of Tree Automata from Regular
Expressions

Dietrich Kuske and Ingmar Meinecke�

Institut für Informatik, Universität Leipzig, Germany
{kuske,meinecke}@informatik.uni-leipzig.de

Abstract. Since recognizable tree languages are closed under the rational oper-
ations, every regular tree expression denotes a recognizable tree language. We
provide an alternative proof to this fact that results in smaller tree automata. To
this aim, we transfer Antimirov’s partial derivatives from regular word expres-
sions to regular tree expressions. For an analysis of the size of the resulting au-
tomaton as well as for algorithmic improvements, we also transfer the methods
of Champarnaud and Ziadi from words to trees.

1 Introduction

One of the most prominent topics in formal language theory is the comparison of
different finite descriptions for potentially infinite objects – the languages. The result of
Kleene [13] states the equivalence between finite automata and regular expressions for
languages of finite words. The transformation of a finite automaton into an equivalent
regular expression is a prototypical example of dynamic programming. The converse
transformation is of direct practical consequence e.g. in text processing. For this reason,
several methods were proposed within the last decades to find more efficient algorithms,
see [15,16] for surveys. For teaching purposes, one often uses an inductive construction.
The most common construction is the standard or position automaton (Glushkov [9] and
McNaughton and Yamada [14]). Brzozowski’s construction [3] of a deterministic finite
automaton uses derivates of regular expressions. This approach was modified by An-
timirov [1] who defined partial derivatives to construct a non-deterministic automaton
from a regular expression E.

Kleene’s theorem was lifted to the setting of trees [17], also cf. [8,7], which are
one of the most fundamental concepts in computer science. A regular tree expression
defines a language of ordered trees. An inductive construction even produces a tree
automaton accepting this language. The number of states of this automaton is exactly
the number of iterations in E plus ‖E‖ where ‖E‖ is the number of occurrences of
symbols from the ranked alphabet in E. In this paper, we define partial derivatives for
regular tree expressions and build by their help a non-deterministic finite tree automa-
ton recognizing the language denoted by the regular expression. The concept of partial
derivatives will yield a tree automaton with at most ‖E‖ states and ‖E‖2 transitions.
The construction of this tree automaton and the correctness proof is combined with al-
gorithmic considerations to build this automaton. We adapt and modify the approach

� The second author was supported by the German Research Foundation (DFG).

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 491–503, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

492 D. Kuske and I. Meinecke

by Champarnaud and Ziadi [5,6] in the word case who extended work of Berry and
Sethi [2]. Here, we use linearizations of regular tree expressions. The main idea is to
distinguish occurrences of the same symbol at different positions in the regular expres-
sion. By doing so, we can ensure a certain uniqueness of the partial derivatives. As it
turns out, the partial derivatives of the original regular expression are just projections
of the partial derivatives of the linearized regular expression. This approach results in
two main advantages: Firstly, the desired automaton is in fact a quotient of an automa-
ton that stems from the linearized regular expression. This way we also get the upper
bound on the number of transitions mentioned above. Secondly, the theoretical results
allow for an efficient algorithm working in the syntax-tree of E. We obtain an algo-
rithm with O(R · |E|2) space and time complexity where R is the maximal rank of
a symbol occuring in the finite ranked alphabet Σ and |E| is the size of the regular
expression.

Beside the standard and the partial derivative construction there are other proposals
in the literature how to obtain an automaton from a regular expression. Especially, it
would be interesting whether the construction of the follow automaton [11,12,4] carries
over to the setting of trees. In this paper we consider ranked trees. However, regular
expressions were explored for unranked trees in connection with XML. They are used
in pattern matching, see e.g. [10]. We wonder whether the concept of partial derivatives
can lead to fruitful results and algorithms in this area.

2 Trees, Automata, and Regular Expressions

Throughout this paper, we fix a finite ranked alphabet Σ = (Σm)m≥0. The set TΣ of
trees over Σ is defined by the syntax

t = f(t, t, . . . , t
︸ ︷︷ ︸

m times

)

where f ∈ Σm. A subset L ⊆ TΣ is called a tree language.
A tree automaton over Σ is a tuple A = (Q,Σ, F,Δ) where Q is a set of states,

F ⊆ Q is the set of final states, and Δ = (Δm)m∈N is the set of transitions such that
Δm ⊆ Q × Σm × Qm for every m ∈ N.1 Especially, Δ0 ⊆ Q × Σ0. A finite tree-
automaton (or FTA) is a tree automatonA with only finitely many states and, thus, only
finitely many transitions (note that there are only finitely many m with Σm �= ∅).

As to whether a tree t is accepted by a tree automaton A = (Q,Σ, F,Δ) is defined
inductively along the construction of the tree t: if t = c ∈ Σ0, then t is accepted by A
iff there exists a transition (q, c) ∈ Δ0 with q ∈ F . For f ∈ Σm with m > 0, the tree
f(t1, . . . , tm) is acccepted by A iff there exists a transition (q, f, q1, . . . , qm) ∈ Δm

such that q ∈ F and, for 1 ≤ i ≤ m, the tree ti is accepted by the tree automaton
(Q,Σ, {qi}, Δ). The language L(A) recognized by A is the set of all trees t that are
accepted by A. A tree language L is recognizable if there is a FTA A with L(A) = L.

1 In the term-rewriting terminology employed by [7], Δ is the set of rules
f(q1(x1), . . . , qm(xm)) → q(f(x1, . . . , xm)).

Construction of Tree Automata from Regular Expressions 493

We next introduce some constructions of tree languages that extend the rational op-
erations on word languages. Let f ∈ Σm and L,L1, . . . , Lm ⊆ TΣ . Then we put

f(L1, . . . , Lm) = {f(t1, . . . , tm) | ti ∈ Li for i = 1, . . . ,m}.

For L ⊆ TΣ and c ∈ Σ0 we define for every t ∈ TΣ inductively the non-uniform
substitution t[c← L]:

– c[c← L] = L and d[c← L] = {d} for every d ∈ Σ0 with d �= c,
– f(t1, . . . , tm)[c← L] = f(t1[c← L], . . . , tm[c← L]).

Then the c-product of L1, L2 ⊆ TΣ is the language L1 ·c L2 =
⋃

t∈L1
t[c← L2]. Now

the iterated c-products are defined for L ⊆ TΣ by

L0,c = {c} and Ln+1,c = Ln,c ∪ L ·c Ln,c .

The c-iteration of L is defined as L∗c =
⋃

n≥0 L
n,c.

It is well-known that a tree language L is recognizable if and only if it can be denoted
by a regular expression. These regular expressions are defined by the following syntax

E = f(E,E, . . . , E
︸ ︷︷ ︸

m times

) | E + E | E ·c E | E∗c

where f ∈ Σm and c ∈ Σ0.
The semantics �E� of a regular expression E is defined inductively by

�f(E1, E2, . . . , Em)� = f(�E1�, �E2�, . . . , �Em�), �E + F � = �E� ∪ �F �,

�E ·c F � = �E� ·c �F �, and �E∗c� = �E�∗c .

For a set M of regular expressions, we put �M� =
⋃

E∈M�E�.
The set of all regular expressions over the ranked alphabet Σ is denoted by EXP(Σ).

Let |E|f denote the number of occurrences of the letter f ∈ Σ in E. The alphabetic
width ‖E‖ of E is the number

∑
f∈Σ |E|f of occurrences of symbols from Σ in E.

The size |E| of E is defined inductively by: |c| = 1 for c ∈ Σ0, |f(E1, . . . , Em)| =∑m
i=1 |Ei|+1, |E+F | = |E ·cF | = |E|+ |F |+1, and |E∗c| = |E|+1. Every regular

expression E can be understood as a tree over the ranked alphabet Σ ∪ {+, ·c, ∗c | c ∈
Σ0} where + and ·c have rank 2 and ∗c has rank 1. This tree is called the syntax-tree tE
of E.

3 A Direct Construction

In this section, we will construct from a regular expression E a tree automatonAE that
accepts �E�. The finiteness of this automaton will only be proved later. Our construction
is based on partial derivates that we have to define and investigate first.

Let M be a set of regular expressions, F some regular expression, and c ∈ Σ0. Then
M ·c F denotes the set

M ·c F = {E ·c F | E ∈M} .

494 D. Kuske and I. Meinecke

Similarly, we put for a set M of m-tuples of regular expressions

M ·c F = {(E1 ·c F,E2 ·c F, . . . , Em ·c F) | (E1, E2, . . . , Em) ∈M} .

Let Σ≥1 =
⋃

m≥1 Σm = Σ \ Σ0 denote the set of non-constant symbols from the
ranked alphabet Σ.

Definition 3.1. For g ∈ Σ≥1 and a regular expression E, we define the sets g−1(E) of
m-tuples of regular expressions inductively by

– g−1(f(E1, E2, . . . , En)) =

{
{(E1, E2, . . . , En)} if f = g

∅ if f �= g

– g−1(E + F) = g−1(E) ∪ g−1(F)

– g−1(E ·c F) =

{
g−1(E) ·c F if c /∈ �E�

g−1(E) ·c F ∪ g−1(F) otherwise

– g−1(E∗c) = g−1(E) ·c E∗c.

Following Antimirov, we define further functions ∂w for finite words w ∈ Σ∗
≥1 over the

alphabet Σ≥1. By ε we denote the empty word.

Definition 3.2. Let E be a regular expression. Then ∂ε(E) = {E} and, for w ∈ Σ∗
≥1

and g ∈ Σ≥1, the set ∂wg(E) consists of all regular expressions F that appear in some
tuple from g−1(E′) for some E′ ∈ ∂w(E). For a set of words W ⊆ Σ∗

≥1 and a regular
expression E, we put ∂W (E) =

⋃
w∈W ∂w(E).

The function ∂w is called the partial derivative w.r.t. w.

Note that ∂wg(E) = ∂g(∂w(E)) =
⋃

E′∈∂w(E) ∂g(E′) for all w ∈ Σ∗
≥1 and g ∈ Σ≥1.

Further note that we consider derivatives with respect to words over the non-constant
symbols from Σ and not with regard to trees.

A symbol f ∈ Σ occurs unguarded in E if no ancestor in the syntax tree tE is
labeled by an element of Σ. We will be interested in the number 〈E〉f of unguarded
occurrences of f in E that can be computed inductively:

– 〈f(E1, . . . , Em)〉f = 1 and 〈g(E1, . . . , Em)〉f = 0 for g �= f ,
– 〈E1 + E2〉f = 〈E1 ·c E2〉f = 〈E1〉f + 〈E2〉f , and
– 〈E∗c〉f = 〈E〉f .

Proposition 3.3. Let E be a regular expression and g ∈ Σ≥1. Then |g−1(E)| ≤ 〈E〉g .
Especially, if |E|g = 0 then g−1(E) = ∂g(E) = ∅.

Next, we express the semantics of a regular expression �E� in terms of the semantics of
the tuples from g−1(E).

Proposition 3.4. For any regular expression E, we have

�E� =
⋃
{g(�G1�, . . . , �Gm�) | g ∈ Σ≥1, (G1, . . . , Gm) ∈ g−1(E)}

∪ {c ∈ Σ0 | c ∈ �E�} . (1)

Construction of Tree Automata from Regular Expressions 495

Let E be a regular expression and let QE = ∂Σ∗
≥1

(E). Then we define a set of transi-
tions ΔE as

{(F, f, (G1, G2, . . . , Gm)) | F ∈ QE , f ∈ Σm,m ≥ 1, (G1, . . . , Gm) ∈ f−1(F)}
∪ {(F, c) | F ∈ QE, c ∈ Σ0, c ∈ �F �} .

Furthermore, let AE = (QE , Σ, {E}, ΔE) denote the tree automaton whose only final
state is the regular expression E.

Theorem 3.5. Let E be a regular expression over the ranked alphabet Σ. Then AE is
a tree automaton that accepts �E�.

Proof. We show by induction on n ∈ N: for all trees t = f(s1, . . . , sm) of size n and
all regular expressions F , the tree automatonAF accepts t iff t ∈ �F �.

Since there are no trees of size 0, the base case is trivial. So let t = f(s1, . . . , sm)
for some m ≥ 0. For m = 0 we have t = c ∈ Σ0. Now c is accepted by AF iff there is
a transition (F, c) ∈ ΔF . But this is the case iff c ∈ �F �. Now suppose m > 0. Then
t is accepted by AF iff there exists a transition (F, f, (G1, . . . , Gm)) ∈ ΔF such that
si is accepted by the tree automaton (QF , Σ, {Gi}, ΔF) for all 1 ≤ i ≤ m. Note that
the reachable part of the automaton (QF , Σ, {Gi}, ΔF) is the set of states QGi . Hence,
si is accepted by this automaton iff it is accepted by AGi . By the induction hypothesis,
this is equivalent to saying si ∈ �Gi�. Since this holds for all 1 ≤ i ≤ m, we have that
t is accepted by AF iff there exists (G1, . . . , Gm) ∈ f−1(F) with si ∈ �Gi� which is,
by Proposition 3.4, equivalent to saying t ∈ �F �. !

So far, we did not prove that the tree automaton AE has only finitely many states, i.e.,
that �E� is recognizable. Theorem 4.14 will show that the number of states is linear and
that the number of transitions is quadratic in the size of E. This will only be achieved
after going through the following two constructions.

4 An Indirect Construction Via Linearizations

The idea of the indirect construction is as follows: In a regular expression E, uniquely
mark the occurrences of letters from Σ≥1. Then apply our direct construction to the
resulting regular expression E. The projection of this automaton accepts �E�. As it
turns out, a quotient of the automaton one obtains this way is isomorphic to the result
of the direct construction.

4.1 Linear Regular Expressions

A regular expression E is linear if every letter f ∈ Σ≥1 occurs at most once in E. Note
that c ∈ Σ0 may occur more than once. The following proposition is a consequence of
Proposition 3.3.

Proposition 4.1. Let E be a linear regular expression and g ∈ Σm for m ≥ 1. Then
|g−1(E)| ≤ 1 and therefore |∂g(E)| ≤ m.

496 D. Kuske and I. Meinecke

We consider partial derivatives w.r.t. non-empty words for linear regular expressions:

Proposition 4.2. Let E,F be linear regular expressions over the alphabet Σ such that
also E + F and E ·c F are linear. Let w ∈ Σ∗

≥1 and g ∈ Σ≥1. Then the following hold
true:

– g−1(∂w(E + F)) =

{
g−1(∂w(E)) if |E|g > 0,

g−1(∂w(F)) otherwise.

– g−1(∂w(E ·c F)) =

⎧
⎪⎨

⎪⎩

g−1(∂w(E)) ·c F if |E|g > 0
⋃
{g−1(∂v(F)) | ∃u ∈ Σ∗

≥1 : w = uv & c ∈ �∂u(E)�}
otherwise.

– There are suffixes v1, . . . , vk of w such that

g−1(∂w(E∗c)) =
⋃

1≤i≤k

g−1(∂vi(E)) ·c E∗c .

Proof (Idea). The claim for the sum is shown easily. For the product and the iteration
we proceed by induction on |w|. For the product, we have to perform an elaborate case
distinction. !

Proposition 4.3. Let E be a linear regular expression, u,w ∈ Σ∗
≥1, and g ∈ Σ≥1. Then

we have:

1. |g−1(∂w(E))| ≤ 1,
2. if ∂ug(E) �= ∅ and ∂wg(E) �= ∅, then ∂ug(E) = ∂wg(E),
3. if g−1(∂u(E)) �= ∅ and g−1(∂w(E)) �= ∅, then g−1(∂u(E)) = g−1(∂w(E)).

Proof. Note that the second claim is a consequence of the third one. The proof of the
first statement can easily be extracted from our proof of the third one.

First consider the case E = f(E1, . . . , En). Since E is linear, there is at most one i
with |Ei|g > 0, if no such i exists, set i = 1. Then we have

g−1∂u(E) =

⎧
⎪⎨

⎪⎩

g−1∂u′({E1, . . . , En}) = g−1∂u′(Ei) if u = fu′,

{(E1, . . . , En)} if u = ε & f = g,

∅ otherwise

where the first case is due to |Ej |g = 0 for j �= i, and, similarly for g−1∂w(E).
Recall that by assumption g−1∂u(E) �= ∅ and g−1∂w(E) �= ∅. If f = g is the

first letter of u = fu′, then ∅ �= g−1∂u(E) = g−1∂u′(Ei) = ∅ since E is linear,
a contradiction. Hence either f �= g is the first letter of u or f = g and u is empty.
Since the analogous holds for w, we obtain u = ε iff w = ε. Now the claim follows
immediately from the induction hypothesis.

For E = E1 + E2 the claim is immediate by the last proposition and the induction
hypothesis.

Let E = E1 ·c E2. If |E1|g > 0, then g−1∂u(E) = g−1∂u(E1) ·c E2 as well
as g−1∂w(E) = g−1∂w(E1) ·c E2. Since these two sets are non-empty, so are the

Construction of Tree Automata from Regular Expressions 497

sets g−1∂u(E1) and g−1∂w(E1). Hence, by the induction hypothesis, the claim fol-
lows. Suppose now |E1|g = 0. Then g−1∂u(E) is a finite union of sets of the form
g−1∂u′(E2) where every u′ is a suffix of u. The induction hypothesis implies that any
two non-empty of them are equal, i.e., g−1∂u(E) = g−1∂u′(E2) for some u′. Simi-
larly, g−1∂w(E) = g−1∂w′(E2) for some word w′. Now the claim follows from the
induction hypothesis.

A similar argument can be applied in case E = F ∗c with g−1∂u′(F) · F ∗c in place
of g−1∂u′(E1). !

By Propositions 4.2 and 4.3 we conclude

Corollary 4.4. For a linear regular expression E and w ∈ Σ+
≥1 we have ∂w(E∗c) =

∂u(E) ·c E∗c for some non-empty suffix u of w.

Next, we bound the number of partial derivatives of a linear regular expression.

Proposition 4.5. Let E be a linear regular expression. Then |∂Σ+
≥1

(E)| ≤ ‖E‖ − 1

and |∂Σ∗
≥1

(E)| ≤ ‖E‖.

Proof. Note that ∂Σ∗
≥1

(E) = ∂Σ+
≥1

(E) ∪ {E}. By induction on E we get: For E =

f(E1, . . . , En), g ∈ Σ≥1, and u ∈ Σ∗
≥1

∂gu(E) =

{
∂u({E1, . . . , En}) if g = f ,

∅ if g �= f .

Hence, |∂Σ+
≥1

(E)| ≤
∑n

i=1 |∂Σ∗
≥1

(Ei)| ≤
∑n

i=1‖Ei‖ = ‖E‖ − 1. For E = E1 + E2

we use Proposition 4.2 and the induction hypothesis and obtain the assumption. If E =
E1 ·c E2, then again by Proposition 4.2: |∂Σ+

≥1
(E)| ≤ |∂Σ+

≥1
(E1)| + |∂Σ+

≥1
(E2)| ≤

‖E1‖−1+‖E2‖−1 < ‖E‖−1. Finally, we conclude by Corollary 4.4 |∂Σ+
≥1

(E∗c)| ≤
|∂Σ+

≥1
(E)| ≤ ‖E‖ − 1 = ‖E∗c‖ − 1. !

4.2 The Projection Construction

Recall that Theorem 3.5 provides a possibly infinite tree automaton AE that accepts
�E�. Assuming E to be linear, we are now in the position to improve this result:

Corollary 4.6. Let E be a linear regular expression over the ranked alphabet Σ. Then
AE is a finite tree automaton with at most ‖E‖ many states and ‖E‖ · |Σ| many tran-
sitions that accepts �E�.

Proof. The equality L(AE) = �E� was shown in Theorem 3.5. Since the set of states of
AE equals ∂Σ∗

≥1
(E), the finite tree automaton has at most ‖E‖ many states by Propo-

sition 4.5. For f ∈ Σ≥1 and D ∈ QE , there is at most one transition of the form
(D, f, (G1, . . . , Gm)) by Proposition 4.3(1), i.e., there are at most ‖E‖ · |Σ≥1| many
transitions whose label belongs to Σ≥1. In addition, there can be |QE×Σ0| ≤ ‖E‖·|Σ0|
many transitions of the form (D, c) with c ∈ Σ0. !

498 D. Kuske and I. Meinecke

Remark 4.7. We even proved for a linear regular expression E thatAE is a determinis-
tic top-down automaton which implies the number of transitions given in the corollary.

Note that given two alphabets Γ and Σ with Γ0 ⊆ Σ0 and a mapping η : Γ → Σ with
η(Γm) ⊆ Σm for every m ∈ N, we can extend η naturally to η : EXP(Γ) → EXP(Σ)
by:

– η(f(E1, . . . , Em)) = η(f)(η(E1), . . . , η(Em)),
– η(E + F) = η(E) + η(F), η(E ·c F) = η(E) ·c η(F), and η(E∗c) = (η(E))∗c.

Definition 4.8. Let E be a regular expression over the ranked alphabet Σ. A linear
regular expression E is a linearization of E w.r.t. η over the ranked alphabet Σ if
η : Σ → Σ is a mapping with η(Σm) ⊆ Σm such that η(c) = c for every c ∈ Σ0 and
η(E) = E.

Note that both the constants from Σ0 and the operations ·c and ∗c remain unchanged.
By abuse of notation, we denote also the two natural continuations of η to Σ

∗
and to

TΣ by η. The following lemma is easily shown:

Lemma 4.9. Let E be a regular expression and E a linearization of E w.r.t. η. Then
η(�E�) = �E�.

Let E be an arbitrary regular expression. Then one can construct a small finite tree
automaton AE accepting �E� as follows: firstly, construct some linearization E of E
w.r.t. η (we can assume that every symbol from Σ appears in E and therefore |Σ| ≤
‖E‖ = ‖E‖). Secondly, build the finite tree automaton AE which then has at most
‖E‖ = ‖E‖ many states and ‖E‖ · |Σ| ≤ ‖E‖2 many transitions. Thirdly, replace the
transitions (F , f, (G1, . . . , Gm)) of this automaton by (F , η(f), (G1, . . . , Gm)). Then,
by Lemma 4.9, the following is immmediate:

Corollary 4.10. Let E be a regular expression. ThenAE is a finite tree automaton with
at most ‖E‖ many states and ‖E‖2 many transitions that accepts �E�.

4.3 The Quotient Construction

We will now collapse some of the states of the automatonAE . The resulting automaton
will turn out to be isomorphic to the automatonAE from our first construction.

We define the following equivalence relation ∼ on QE:

F ∼ H : ⇐⇒ η(F) = η(H) .

Let Gi, Hi ∈ QE with Gi ∼ Hi for i = 1, . . . ,m and f1, f2 ∈ Σ≥1 with η(f1) =
η(f2) = f . Then f1(G1, . . . , Gm) ∼ f2(H1, . . . , Hm). Hence, ∼ is a congruence
relation. We denote the congruence class of G ∈ QE by [G]. Since ∼ is a congruence,

the following quotient FTA is well-defined: ÃE =
(
QE/∼, Σ, {[E]}, Δ′

E

)
where

Δ′
E =

{(
[F], f, ([G1], . . . , [Gm])

)
|
(
F , f, (G1, . . . , Gm)

)
∈ ΔE

}
.

Construction of Tree Automata from Regular Expressions 499

We will show that the FTA ÃE is isomorphic to AE and, thus, in particular accepts
the language �E�. Therefor, we have to clarify that η(F) ∈ QE = ∂Σ∗

≥1
(E) for every

F ∈ QE . The following fundamental relation between the partial derivatives of E
and of E is shown for partial derivatives w.r.t. a single letter g by an induction on the
construction of E:

Proposition 4.11. Let E be a regular expression over the ranked alphabet Σ and E
a linearization of E w.r.t. η. Then we have for every g ∈ Σ≥1

g−1(E) =
⋃

g∈η−1(g)

η(g−1(E)) and ∂g(E) =
⋃

g∈η−1(g)

η(∂g(E)) .

Now we lift this result to arbitrary partial derivatives w.r.t. arbitrary words.

Theorem 4.12. Let E be a regular expression over the ranked alphabet Σ and E
a linearization of E w.r.t. η. Then we have for every w ∈ Σ∗

≥1

∂w(E) =
⋃

w∈η−1(w)

η(∂w(E)) .

Proof. We proceed by induction on the length of w where the case w = ε is trivial.
By Proposition 4.11, the assumption holds for |w| = 1. Now consider w = ug with
u ∈ Σ∗

≥1 and g ∈ Σ≥1. Using the induction hypothesis and Proposition 4.11 we get:

∂ug(E) = ∂g(∂u(E)) = ∂g

(⋃

u∈η−1(u)

η
(
∂u(E)

))
= ∂g η

⎛

⎝
⋃

u∈η−1(u)

∂u(E)

⎞

⎠ (#)

Consider the set H =
⋃
{∂u(E) | u ∈ η−1(u)}. Since it consists of finitely many

regular expressions, there exists a set of linear regular expressions H ′ over some ranked
alphabet Σ′ and a function θ : Σ′ → Σ such that θ(H ′) = H. In other words, H ′

consists of linearizations of the regular expressions in H w.r.t. θ. Then the regular ex-
pressions from H ′ are also linearizations of the regular expressions in H = η(H) w.r.t.
α = ηθ. Hence we get from Proposition 4.11 and the above

∂ug(E) = ∂g(H) =
⋃

g′∈α−1(g)

α
(
∂g′(H ′)

)

=
⋃

g∈η−1(g)

η

⎛

⎝
⋃

g′∈θ−1(g)

θ∂g′ (H ′)

⎞

⎠ =
⋃

g∈η−1(g)

η

⎛

⎝∂g

⎛

⎝
⋃

u∈η−1(u)

∂u(E)

⎞

⎠

⎞

⎠

=
⋃

g∈η−1(g)

⋃

u∈η−1(u)

η
(
∂ug(E)

)
=

⋃

w∈η−1(ug)

η
(
∂w(E)

)
.

 !

Now we can identify the result of the quotient construction.

500 D. Kuske and I. Meinecke

Theorem 4.13. The finite tree automaton ÃE is isomorphic to AE .

Proof. The state isomorphism is given by ϕ : QE/∼ → QE : [G] 	→ η(G). Firstly,
ϕ really maps into QE . Indeed, G = ∂w(E) for some w. By Theorem 4.12, η(G) ∈
∂Σ∗

≥1
(E) = QE . Injectivity of ϕ is obvious by the definition of ∼. Surjectivity follows

from Theorem 4.12. Certainly, ϕ([E]) = E. Now, suppose
(
[F], f, ([G1], . . . , [Gm])

)
∈

Δ′
E . Then there is a f such that

(
F , f, (G1, . . . , Gm)

)
∈ ΔE which means

(G1, . . . , Gm) ∈ f
−1

(F). But due to Proposition 4.11, (G1, . . . , Gm) ∈ f−1(F)
where Gi = η(Gi) and F = η(F). Vice versa, if (G1, . . . , Gm) ∈ f−1(F), then

there is an f ∈ Σ≥1(E) with (G1, . . .Gm) ∈ f
−1

(F). Moreover, we have for c ∈ Σ0:

([F], c) ∈ Δ′
E ⇐⇒ c ∈ �F � ⇐⇒ c ∈ �η(F)� ⇐⇒ (η(F), c) ∈ ΔE . !

Now we will show that the FTA AE from Theorem 3.5 is finite. The number of transi-
tions of AE is obviously bounded from above by |QE| · |Σ| · |QE |R ≤ ‖E‖R+1 · |Σ|
where R is the maximal rank appearing in Σ. However, as we will show next, there is a
much smaller bound.

Theorem 4.14. Let E be a regular expression. ThenAE is a finite tree automaton with
at most ‖E‖ many states and ‖E‖2 many transitions that accepts �E�.

Proof. The equality L(AE) = �E� was shown in Theorem 3.5. The numbers of states
and transitions of AE equal those of ÃE by Theorem 4.13. Since ÃE is a quotient of
AE , the result follows from the estimates in Corollary 4.10. !

Compare this to the inductive construction of a finite tree automaton accepting �E�: For
union and c-product, one takes the disjoint union of the argument automata and adds
some transitions. For c-iteration, one has to add one new state in order to accept the
tree c. Hence, the inductive construction yields a finite tree automaton whose number
of states equals ‖E‖ plus the number of c-iterations applied in the construction. The
number of transitions of that automaton is very difficult to analyse.

5 Algorithmic Issues

Due to Theorem 4.13, we can construct the FTA ÃE to get the automaton AE . Fol-
lowing this line, Champarnaud and Ziadi [5] gave in the case of words an algorithm
with an O(‖E‖ · |E|2) space and time complexity. By algorithmic refinements they en-
hanced the algorithm to one with anO(|E|2) space and time complexity. We can mainly
adapt this algorithm for the construction of the FTA AE from a regular tree expression
E. Since the algorithm is based on a more detailed analysis of the structure of partial
derivatives, we first prove some more facts about them.

5.1 Form of Partial Derivatives

Positions p of a tree are defined as usually as finite words over N where ε is the position
of the root. Positions of an expression E are understood as those in the syntax-tree tE .
Every position p denotes a sub-expression of E.

Construction of Tree Automata from Regular Expressions 501

Theorem 5.1. LetE ∈ EXP(Σ) andD ∈ ∂w(E). Then there exist positions p1, . . . , pn

in the syntax tree tE of E and constant symbols c1, . . . , cn ∈ Σ0 such that

– D = H1 ·c1 H2 . . . Hn−1 ·cn−1 Hn where Hi is the sub-expression of E at pi,
– the number n is bounded by the number of products ·c and stars ∗c appearing in E,
– if pi is a prefix of pj , then i ≥ j.

Proof (Sketch). It follows immediately from Proposition 4.2, Corollary 4.4, and Theo-
rem 4.12 that every partial derivative D is a product of sub-expressions of E and that
n is bounded by the number of products and stars in E. The last claim is proven by
induction on the length of w. It is trivial for w = ε. For w = f ∈ Σ≥1 we proceed
by induction on the construction of E. For |w| > 1 the claim follows easily from the
induction hypothesis when considering partial derivatives of a product. !

5.2 An Algorithm for Computing the Automaton

We only give a sketch of the algorithm. Details of the algorithm for word expressions
are given in [5]. The adaption to tree expressions does not cause much trouble.

Firstly, compute the syntax-tree tE of E. Note that the syntax-tree of a linearization
E is obtained from tE by labelling each g ∈ Σ≥1 additionally with its position. In the
sequel, we will mainly work within the syntax-tree.

Computing the States. Recall that the partial derivatives of E are projections of the
partial derivatives of the linearization E, cf. Theorem 4.12. Moreover, due to Propo-
sition 4.3 the nonempty partial derivatives ∂wg(E) depend just on the last symbol g,
i.e., the unique position in the syntax-tree labelled by g. Now we calculate the par-
tial derivatives of E. Afterwards we identify partial derivatives that describe the same
partial derivative of E.

1. Computing the Linearized Partial Derivatives. For every position in the syntax-tree
tE labelled by some g ∈ Σ≥1 calculate the partial derivatives ∂...g(E) by following
the path from the respective position of g to the root of tE . Hereby, we have to
collect at every node on this path labeled by a product or a star the factors of the
partial derivative, cf. Theorem 5.1. Moreover, if we pass a ·c-node from the right,
then we have to check whether c is in the semantics of the sub-expression to the
left of this node. Note that for g ∈ Σm we have up to m partial derivatives. We do
not just save the set ∂...g(E) but also the respective tuple, i.e., the ordering of the
partial derivatives which stems from the ordering of the sons of the g-node.

2. Identification of Partial Derivatives. This step is done by a lexicographic ordering
and an identification of consecutive partial derivatives.

Computing the Transitions (D, c) for c ∈ Σ0. We compute for every sub-expression
F of E the set �F � ∩ Σ0 which can be easily done in the syntax-tree. Afterwards we
calculate for every partial derivative D the set �D� ∩ Σ0 which can be done using the
product structure of D, cf. Theorem 5.1.

502 D. Kuske and I. Meinecke

Computing the Transitions for f ∈ Σ≥1. We can calculate for every linearized sub-
expressionF the so-called FIRST-sets, i.e., those f ∈ Σ≥1 such that f has an unguarded
occurrence in F . Now we can compute from those sets the respective FIRST-sets for
every linearized partial derivative D. But for every linearized symbol f in the FIRST-set
we obtain the unique f -transition from D by the unique tuple of the linearized partial
derivatives from ∂...f (E). Note that this tuple was obtained already in the computation
of states. A projection gives the transitions for f .

Complexity. The algorithm for word expressions has an O(‖E‖ · |E|2) space and time
complexity, cf. [5]. The algorithm for regular tree expressions as sketched above follows
exactly the same lines but has to keep track of tuples of partial derivatives instead of
singletons as it is the case for words. Hence, the algorithm has an O(R · ‖E‖ · |E|2)
space and time complexity where R ≥ 1 is the maximal rank appearing in the ranked
alphabet Σ (and at least 1).

The improvements suggested by Champarnaud and Ziadi, mainly a preprocessing
of star sub-expressions of E and an improved computation of the FIRST-sets in the
syntax-tree, carry over to the above algorithm. Hence, we shall get for such an improved
algorithm an O(R · |E|2) space and time complexity.

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions.
Theoretical Computer Science 155, 291–319 (1996)

2. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoretical Com-
puter Science 48, 117–126 (1986)

3. Brzozowski, J.A.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11, 481–494
(1964)

4. Champarnaud, J.-M., Nicart, F., Ziadi, D.: Computing the follow automaton of an expression.
In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317,
pp. 90–101. Springer, Heidelberg (2005)

5. Champarnaud, J.-M., Ziadi, D.: From c-continuations to new quadratic algorithms for au-
tomaton synthesis. Intern. J. of Algebra and Computation 11(6), 707–735 (2001)

6. Champarnaud, J.-M., Ziadi, D.: Canonical derivatives, partial derivatives and finite automa-
ton constructions. Theoretical Computer Science 289, 137–163 (2002)

7. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (October 2007) (release October
12, 2007), http://www.grappa.univ-lille3.fr/tata

8. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, ch. 1, vol. 3,
pp. 1–68. Springer, Heidelberg (1997)

9. Glushkov, V.M.: The abstract theory of automata. Russian Mathematical Surveys 16, 1–53
(1961)

10. Hosoya, H., Pierce, B.: Regular expression pattern matching for XML. SIGPLAN Not. 36(3),
67–80 (2001)

11. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small ε-free non-
deterministic finite automata. J. Comput. System Sci. 62, 565–588 (2001)

12. Ilie, L., Yu, S.: Constructing NFAs by optimal use of positions in regular expressions. In:
Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol. 2373, pp. 279–288. Springer, Hei-
delberg (2002)

http://www.grappa.univ-lille3.fr/tata

Construction of Tree Automata from Regular Expressions 503

13. Kleene, S.E.: Representations of events in nerve nets and finite automata. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies, pp. 3–42. Princeton University Press, Princeton (1956)

14. McNaughton, R.F., Yamada, H.: Regular expressions and state graphs for automata. IEEE
Transactions on Electronic Computers 9, 39–57 (1960)

15. Sakarovitch, J.: Éléments de théorie des automates. Vuibert (2003)
16. Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré, J.,

Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer, Hei-
delberg (2006)

17. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with application to a deci-
sion problem of second-order logic. Math. Systems Theory 2(1), 57–81 (1968)

Balance Properties and Distribution of Squares

in Circular Words

Roberto Mantaci1, Sabrina Mantaci2, and Antonio Restivo2

1 LIAFA - Université Denis Diderot - Paris 7
Case 7014

75205 Paris Cedex 13, France
mantaci@liafa.jussieu.fr

2 Dipartimento di Matematica ed Applicazioni
Università di Palermo Via Archirafi, 34

90123 Palermo, Italy
sabrina, restivo@math.unipa.it

Abstract. We study balance properties of circular words over alphabets
of size greater than two. We give some new characterizations of balanced
words connected to the Kawasaki-Ising model and to the notion of deriva-
tive of a word. Moreover we consider two different generalizations of the
notion of balance, and we find some relations between them. Some of our
results can be generalised to non periodic infinite words as well.

Introduction

In this paper we deal mostly with the characterization of balanced finite circular
words over an alphabet of any size. Informally, a word w is said balanced if for
any letter a in the alphabet, and for any two factors u and v of w having the
same length, the number of occurrences of a’s in u and v are “almost” the same,
i.e. they can differ at most by 1.

Throughout the last fifty years, this subject has been widely developed in
literature for two-letter alphabets. In fact, for binary alphabets, the infinite
non periodic balanced words coincides with the Morse and Hedlund’s Sturmian
words (cf. [9]), defined as the infinite sequences having exactly n + 1 distinct
factors of length n. Because of their numerous properties, Sturmian words have
applications in several fields of research. Such a versatility explains also the
existence of many equivalent definitions. Unfortunately, this is not the case when
we generalize to alphabets of size greater than two. In fact, each generaliza-
tion to larger alphabets of the different definitions of Sturmian words gener-
ates a different set of words. This is also why a theory of balanced words over
general alphabets is a very difficult topic and has not been totally investigated
yet.

In this paper we are interested in periodic balanced sequences vω. For
two-letter alphabets, it is proved that vω is balanced if and only if v is a con-
jugate of one of the Standard words, the finite “bricks” of Sturmian words (cf.
[2]). We note that the notion of balanced periodic words over an alphabet of

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 504–515, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Balance Properties and Distribution of Squares in Circular Words 505

size larger than two also appears in the statement of the Fraenkel conjecture
(cf. [7]). As a direct consequence of a result of Graham, one can prove that
balanced sequences on a set of letters having different frequencies must be peri-
odic (cf. [14]). The problem of characterizing balanced words over any alphabet
has been developed by Altman, Gaujal and Hordijk [1] in the field of optimal
routing in queuing networks. Hubert in [11] proves the existence of balanced
periodic words for any alphabet and gives an algorithm for their construction.
Moreover, he also proves that for alphabets of size greater than three there exist
balanced words that are not obtained by this construction. Vuillon in [14] pro-
vides a thorough survey on the topic. The reader can also look at the references
therein.

Notice that a way to deal with infinite periodic words, is to represent them
as a circular (finite) word. This approach, that we have decided to use in
this paper, is also connected with the interest recently devoted to circular
words, since they have important applications in some data compression al-
gorithms, such as the ones using the Burrows-Wheeler Transform [12], in com-
binatorics [3], and in automata theory [6]. We remark that the recent
interest to circular words also comes from molecular biology, since mitochon-
drial DNA, as well as the genome of bacteria, are actually circular sequences of
nucleotides [8].

In this paper we consider some new approaches for dealing with circular
balanced words. In Section 2, we present one of these approaches, connected
with the characterization of balanced sequences given by Cameron and Wu in
[4] using the Kawasaki-Ising model. We show that this characterization can be
expressed more simply only in terms of combinatorial properties of the word it-
self, namely by the combinatorial object that we call square vector. Furthermore,
such characterization is more suitable for generalizations to larger alphabets. In
Section 3 we introduce the notion of derivative of a word, that allows to give a
new characterization of balanced words and that suggest also a new method for
their construction knowing the number of occurrences of each letter in the word
(when a balanced word with such a letter distribution exists). In Section 4 we
apply the notions and the tools that we have introduced in the previous section
to the study of two more general notions of balance. The first is the notion of
m-balance, formally introduced by Cassaigne, Ferenczi and Zamboni [5] or by
Heinis [10]. A word w is called m-balanced if for any letter a and for any two
factors of w of the same length, the difference of the numbers of a’s in the two
factors is at most m. A complementary concept, introduced by Sano, Miyoshi
and Kataoka [13] is the notion of m-uniformly distributed words. Informally, a
word w is m-uniformly distributed if for any letter a, and for any two factors of
the form aua in w having the same number of a’s, the lengths of the two factors
may differ at most by m. The notion of derivative allows us to find some con-
nections between these two notion of balance. We conclude the paper by noting
that several of the results contained herein are easily extended to non periodic
infinite words and we highlight some open problems.

506 R. Mantaci, S. Mantaci, and A. Restivo

1 Definitions and Notations

Let Σ be an alphabet and let Σ∗ denote the set of words over Σ. Let w ∈ Σ∗

be a word and let wi denote the i-th character of w. As usual, |w| denotes the
length of w, and |w|a the number of occurrences of the letter a in w; we will
sometimes refer to this integer as the a-length of the word w.

In what follows, w will be always considered as a circular word, that is, the
end of the word is connected with its beginning. Actually, the circular word w is
a way to represent the class of conjugates of w, or also the infinite periodic word
wω . In this paper our focus is on the balance property of circular words. We
recall that a word w is said to be balanced with respect to a letter a if and only if
for any two factors u and u′ of w such that |u| = |u′|, one has ||u|a − |u′|a| ≤ 1.
A word is said to be balanced if it is balanced with respect to all the letters of
the alphabet. For a two-letter alphabet, being balanced is equivalent to being
balanced with respect to one letter. It is proved that balanced circular words
over two letters alphabets are exactly the conjugacy classes of Standard words
(cf. [2], [3]). Notice that balanced circular words correspond to balanced infinite
words that are called periodic in literature (see [1]).

2 Squares and Kawasaki-Ising Model

Let us recall the definition of the Kawasaki-Ising model, used in [4] in order to
characterize circular balanced words over two-letter alphabets. In the general
Ising model on a graph G, each vertex i of G is assigned a spin, denoted by σ(i)
or σi, which is either +1 (called up) or −1 (down). An assignment of spins to all
the vertices of G is called a configuration and is denoted by σ. The number of
vertices in the up spin in a configuration σ, denoted by |σ|+, is called the weight
of σ. The Kawasaki-Ising model KI(k, n) on a cycle graph Cn with n vertices
consists of the configurations σ such that |σ|+ = k for a given number k.

Here we assume V (Cn) = {0, . . . , n − 1} and the vertices are consecutively
labelled, then a configuration can be represented as (σ0, . . . , σn−1) (see Fig. 1).

Among all configurations in KI(k, n), one special important class is the class
of regular configurations. Roughly speaking, they are the configurations that are
close to the random ones. In the words model, they correspond to Standard
words, the finite version of Sturmian words [9]. One important feature of regular
configurations is that they provide some good extremal properties, which have
important applications in many fields.

For a configuration σ = (σ0, . . . , σn−1) and for an integer p ∈ {1, . . . , n− 1},
Cameron and Wu in [4] define the Hamiltonian of order p of σ as:

Hp(σ) =
1

(2n)p

n−1∑

i=0

σiσi+p

and then define the Hamiltonian of σ as:

H(σ) =
n−1∑

p=1

Hp(σ)

Balance Properties and Distribution of Squares in Circular Words 507

1

1

1

1

1

1

1

−1

−1

−1
−1

−1

a

a

a

a

a

a

a

b

b

b

bb

1

0

2

4

5
6

9

10

11

3

7

8

Fig. 1. The configuration σ = (1, −1, 1, 1, −1, 1, −1, −1, 1, 1, 1, −1) ∈ KI(12, 7) and its
corresponding word T (σ) = abaababbaaab

Cameron and Wu also defined a bijection T between the set Wk,n of all circular
words on the alphabet {a, b} of length n having exactly k occurrences of a and
the set of configurations KI(k, n). Such a bijection associates a word w with a
configuration σ such that σi = 1 if and only if wi = a (see again Figure 1). The
main result of Cameron and Wu in [4] is that a word w in Wk,n is balanced if
and only if T (w) is a configuration of minimum Hamiltonian in KI(k, n). They
also note that for two configurations σ and τ , H(σ) < H(τ) if and only if there
exists an integer l ∈ {1, . . . , n− 1} such that

Hi(σ) = Hi(τ) for 1 ≤ i ≤ l − 1 and Hl(σ) < Hl(τ).

In other words, a configuration σ has minimal Hamiltonian if and only if its
Hamiltonian vector H(σ) = {H1(σ), H2(σ), . . . , Hn−1(σ)} is minimal according
to the lexicographic order.

On the other hand, for a circular word w = w0w1 . . . wn−1 of length n over
any alphabet and an integer p ∈ {1, . . . , n− 1}, one can define :

Sp(w) = |{j | 0 ≤ j ≤ n− 1 and wj = wj+p}|.

The integer Sp(w) counts the number of “squares” (in the sense of pairs of
identical letters) at distance p. The square vector S of the word w is then defined
as:

S(w) = (S1(w), . . . , Sn−1(w)).

For a circular word w ∈ Wk,n, there is a simple relation between the vector S(w)
and the Hamiltonian vector H(T (w)). Indeed, if we note σ = T (w), then

n−1∑

i=0

σiσi+p = |{j | 0 ≤ j ≤ n− 1 and wj = wj+p}|+

−|{j | 0 ≤ j ≤ n− 1 and wj �= wj+p}|
= Sp(w)− (n− Sp(w))
= 2Sp(w) − n

508 R. Mantaci, S. Mantaci, and A. Restivo

Therefore, Sp(w) = 1
2 [(2n)pHp(σ)+n] and hence the vector S(w) is lexicograph-

ically minimum among all the square vectors of words in Wk,n if and only if the
vector H(T (w)) is lexicographically minimum among all Hamiltonian vectors of
configurations in KI(k, n). This remark allows to characterize balanced words
only in terms of their square vector.

Proposition 1. A word w in Wk,n is balanced if and only if its square vector
S(w) is lexicographically minimum among the square vectors of all words in
Wk,n.

We will show that this characterization of balanced words can be extended to
the case of alphabets of any size. Let Σ = {a1, a2, . . . , ak} be an alphabet. We
recall that by definition a word is balanced if and only if it is balanced with
respect to each letter of the alphabet.

For a circular word w ∈ Σ∗ and for a letter ai ∈ Σ, we define ϕai(w) the
image of w under the morphism ϕai such that :

ϕai(x) =
{
ai if x = ai

b otherwise .

The following lemma is straightforward.

Lemma 1. A word w ∈ Σ∗ is balanced if and only if ϕai(w) is balanced (in the
binary alphabet {ai, b}) for all ai ∈ Σ.

We recall that the Parikh vector for a word w ∈ Σ∗ is a vector P of length |Σ|
such that for all i, the i-th component Pi is the number of occurrences of the
letter ai in the word w. We note W(P) the set of all words whose Parikh vector
is P . We also recall that when k > 2 a balanced word having a given Parikh
vector P may not exist. For instance, there is no balanced word having (3, 2, 1)
as Parikh vector. In the following theorem we give a characterization of balanced
words having a fixed Parikh vector (if it exists), in terms of their square vector.

Theorem 1. Let P be a Parikh vector such that a balanced word in W(P) exists.
Then w ∈ W(P) is balanced if and only if S(w) is the lexicographically minimum
among all square vectors of words in W(P).

We note that if two words w and w′ are obtained one from the other by a
combination of the operations of letter renaming and word reversal, they satisfy
the same balance properties and have the same square vectors.

We would also like to remark that the square vector S(w) does not characterize
the word w not even up to word reversal and letter renaming, as the following
example shows it:

Example 1. Consider the circular words w = aaabbacb and w′ = aabaacbb. One
can verify that both w and w′ have the same square vector, i.e. S(w) = S(w′) =
(3, 1, 3, 2, 3, 1, 3) and they are not equivalent up to word reversal and letter re-
naming. Also note that the square vector is symmetric, therefore half of it is
somewhat redundant.

Balance Properties and Distribution of Squares in Circular Words 509

One could also define the square vector S(w)a of a word w with respect to a
letter a as the integer vector whose p-th component is

|{j | 0 ≤ j ≤ n− 1 and wj = wj+p = a}|.

The collection of all square vectors with respect to each of the letters does not
characterize the word w in W(P) either. The two words in the preceding example
have the same square vector, both with respect to a and with respect to b, i.e.
S(w)a = S(w′)a = (2, 1, 2, 0, 2, 1, 2) and S(w)b = S(w′)b = (1, 0, 1, 1, 1, 0, 1).

A natural question is to ask whether this may happen when one takes the
minimal square vector in the class W(P) and, in particular, whether two non-
equivalent balanced words may exist in W(P). It is known that when the al-
phabet has size 2 or 3, the balanced word having a given Parikh vector, if it
exists, is unique (cf. [1]). Hovever, this is false in general and in particular for
|Σ| = 5. The words abcaebacbad and abcaebacabd have the same Parikh vector
(4, 3, 2, 1, 1), the same square vector (0, 1, 4, 2, 3) and they are both balanced. It
is unknown to us what the answer is when the size of the alphabet is 4.

3 Balance Properties and Distances

By distance of two letters wi and wj of a word w = w0 w1 . . . wn−1 we mean
the difference i− j, this difference being computed modulo n.

Definition 1. Given a circular word w and a letter a, we define derivative word
of w with respect to the letter a as the circular sequence of integers (a word on
the alphabet N) corresponding to the distances of all pairs of consecutive a’s in
w. The derivative word of w with respect to a is denoted by ∂a(w) and clearly
has length |w|a.

Example 2. Consider the word w = abaabbbabba. Then ∂a(w) = 21431.

The derivative of w with respect to a letter “contains more information” than
the square vector with respect to such letter, indeed it is clearly possible to
reconstruct the square vector from the derivative.

We will show that it is possible to characterize balanced words in terms of
their derivative. Before doing that, we will introduce a definition.

Definition 2. We say that a factor v of a word w is an a-chain if v = aua,
where u ∈ Σ∗.

An a-chain is then just a factor that begins and ends with an a. Notice that
the derivative word of w is obtained by subtracting 1 from the lengths of the
a-chains aua factors of w such that u has a-length equal to 0.

For the remainder of the paper, it will be convenient to define by analogy
the derivative with respect to a of a factor of w that is also an a-chain aua. By
doing this, we will commit a little abuse of notation since aua will not be seen in
this case as a circular word, that is, the a-chain created from the concatenation

510 R. Mantaci, S. Mantaci, and A. Restivo

of the last letter with the first letter of aua will not be taken into account in
the computation of the derivative ∂a(aua). The advantage resulting from this
little abuse is that ∂a(aua) is then a (circular) factor of ∂a(w). For instance, the
derivative with respect to a of the a-chain abbaaba, factor of w = abaabbbabba,
is 312, which is a factor of the (circular) word ∂a(w) = 21431.

The main result of this section is the following theorem, stating a characteriza-
tion of balanced words with respect to a fixed letter in terms of their derivatives.

Theorem 2. Let w be a circular word over an alphabet Σ and a ∈ Σ a letter,
then w is balanced with respect to the letter a if and only if there exists an integer
d such that ∂a(w) is a balanced word over the two letters {d, d + 1}.

Remark 1. The integer d in Theorem 2 is only a function of the Parikh vector of
the word w. It is simply the value of the integer division �|w|/|w|a�. The number
of occurrences of the letter d in ∂a(w) is |w|a− (|w| mod |w|a), while the number
of occurrences of the letter d + 1 is (|w| mod |w|a).

Given a Parikh vector P , it is then always possible to compute the derivative
words with respect to each letter of the balanced word in W(P) (if it exists).
For each letter a, it suffices to compute d = �|w|/|w|a� and then write the
balanced word on the two-letter alphabet {d, d + 1} containing |w|a − (|w| mod
|w|a) occurrences of the letter d and (|w| mod |w|a) occurrences of the letter
d+ 1. It is indeed well known that on an alphabet of size 2, a balanced word for
a given distribution of the two letters always exists and is unique (up to letter
renaming), cf. [3].

However, when the number of letters of the alphabet is greater than 2, and
analogously to multi-variable differential equations theory, “integrating” the sys-
tem obtained from the values of all partial derivatives (that is, determining a
balanced word w whose partial derivatives are given with the method just de-
scribed) is a very difficult problem.

From the partial derivative with respect to a letter a, one can determine (up
to a shift modulo n = |w|) the sequence of positions where the occurrences of the
letter a are to be placed. If the partial derivative ∂a(w) is the word d1 d2 . . . dl

and the first occurrence of a is placed at position 0, then the j-th occurrence
of a is to be placed at position

∑j−1
i=1 di. The difficulty consists in determining

appropriate (circular) shifts for the position sequence for each letter in such a
way that the obtained shifted sequences are pairwise disjoint and cover the entire
integer interval {0, 1, . . . , n− 1}.

This problem is just a different formalization of the well-known problem of
covering the set of natural integers with so-called Beatty sequences, that is, with
sequences of the form {�αn + β� | n ∈ N}. The position sequences for a letter a
obtained using the derivative as described in the previous paragraph are indeed
Beatty sequences where

α =
|w|
|w|a

and β = − |w|
|w|a

.

Interestingly, much more is known about the problem of covering the integers
with Beatty sequences with irrational coefficient α (corresponding to infinite non

Balance Properties and Distribution of Squares in Circular Words 511

periodic words) than it is when the coefficients are rational (corresponding to
infinite periodic words, that is, to circular words, the case that we deal with
here) and it appears that, while it is possible to determine the conditions on
α1, β1, α2 and β2 so that the two Beatty sequences {�α1n + β1� | n ∈ N} and
{�α2n + β2� | n ∈ N} are disjoint when the coefficient αi’s are irrational, there
is no analogous result when the αi’s are rational. This is somewhat surprising
since in this case, because of the periodicity, the problem can be reduced to the
covering of the integer interval {0, 1, . . . , n− 1}.

From the algorithmic point of view, this means that we do not know any
algorithm to compute the appropriate shifts of the position sequence of a given
letter that is substantially more efficient than the naive algorithm that tries all
possible shifts and verifies if a certain shift is “good”. Note that such an algorithm
may also need to use backtracking. In fact, after determining an appropriate shift
for the position sequence of the b’s in such a way that the resulting sequence does
not intersect the position sequence of the a’s, one may realize that the choice
of this shift does not leave any possible choice for an appropriate shift for the
position sequence of the c’s. The only improvement that we have determined to
this algorithm is that shifts obtained as sums of consecutive integers occurring
in the derivative with respect to another letter are certainly “bad” (in the sense
that the resulting sequences would not be disjoint) and do not need to be tested.

Example 3.

Consider the Parikh vector P = (7, 7, 5).
Therefore, the derivatives of the balanced word in W(P) (if it exists) with re-

spect to a and to b are equal to the balanced word on the alphabet {� 19
7 �, �

19
7 �+1}

(that is, on the alphabet {2, 3})having 7−(19 mod 7) = 2 occurrences of the letter
2 and (19 mod 7) = 5 occurrences of the letter 3. This is the word 2 3 3 2 3 3 3.

The derivative with respect to c is the balanced word on {� 19
5 �, �

19
5 �+1} (that

is, on the alphabet {3, 4}) having 5− (19 mod 5) = 1 occurrences of the letter 3
and (19 mod 5) = 4 occurrences of the letter 4. This is the word 3 4 4 4 4.

If we choose to place the first occurrence of a at position 0, then from the
derivative with respect to a we can deduce the following position sequence for a:
0, 2, 5, 8, 10, 13, 16. Note that this sequence coincides with the Beatty sequence
an = � 19

7 n − 19
7 �. Since the derivatives with respect to a and b are equal, the

position sequence of the b’s is the same and hence needs to be appropriately
shifted in order to make it disjoint from the sequence of the a’s. A shift equal
to 1 does that : 1, 3, 6, 9, 11, 14, 17, however this choice turns out to be bad, as
the sequence of positions left free : 4, 7, 12, 15, 18 is not compatible with the
derivative with respect to c (which would have to be 3 5 3 5 5). Then we need
to try a different shift for the position sequence of b. The shift equal to 2 is
certainly bad because 2 is one of the partial sums of integers appearing consec-
utively in the derivative with respect to a (it is one of the letter occurring in
the derivative and hence it is a sum of one term). The same can be said of the
shift equal to 3. The shift equal to 4 gives the sequence 4, 6, 9, 12, 14, 17, 1 leaving
free the positions 3, 7, 11, 15, 18 which are compatible with the derivative with
respect to c.

512 R. Mantaci, S. Mantaci, and A. Restivo

Hence, we have been able to reconstruct a balanced word for the Parikh vector
P = (7, 7, 5). This word is:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
a b a c b a b c a b a c b a b c a b c

4 Other Balance Properties

The following definition, which can be found in Cassaigne, Ferenczi and Zamboni
[5] or in Heinis [10], is a natural generalization of the notion of balance.

Definition 3. Let w be a circular word over Σ and let m be a nonnegative
integer. We say that w is m-balanced if for any letter a ∈ Σ, and for any pair
of factors u and v of w having the same length, we have ||u|a − |v|a| ≤ m.

Obviously, if a word w is m-balanced, then it is also m′-balanced for all m′ > m.
In [13] Sano, Miyoshi and Kataoka introduced another balance property gener-

alizing the definition of balanced words, which they also called m-balance before
realizing that such terminology had already been used in literature. They even-
tually reserved the term m-balance for the notion they introduce, and create a
new term for the already known notion of m-balance (as in Definition 3). In this
paper we choose to maintain the term m-balance for the notion in Definition 3
and introduce the term m-uniform distribution for the notion of Sano et al. [13].

Definition 4. For a nonnegative integer m and a word w on Σ, a letter a is
m-uniformly distributed in w if it satisfies the following: whenever there exists
an a-chain aua in w, any factor u′ in w such that |u′| = |u| + m + 1 satisfies
|u′|a ≥ |u|a+1. A word w is m-uniformly distributed if each letter is m-uniformly
distributed in w.

As for m-balance, if a word w is m-uniformly distributed, then it is also m′-
uniformly distributed for all m′ > m.

Sano et al. provide a necessary and sufficient condition for a word to be m-
uniformly distributed. In our opinion this characterization is clearer and more
intuitive than the original definition and we would like to take it as an alternate
definition of m-uniformly distributed word.

Definition 5. A word w on Σ is m-uniformly distributed if (i.) each letter in w
appears either at most once or infinitely often and (ii.) for each letter a having at
least two occurrences in w, any two a-chains aua and au′a such that |u|a = |u′|a
satisfy ||u| − |u′|| ≤ m.

Note that in case of periodic infinite words, this definition is equivalent to con-
dition (ii.) alone.

In a certain sense, the notion of m-balance and the notion of m-uniform
distribution are symmetrical to each other. In the former, one compares factors
of w having equal length and verifies that the difference of the numbers of occur-
rences of a letter is less than or equal to m. In the latter, one compares factors of

Balance Properties and Distribution of Squares in Circular Words 513

w having the same number of occurrences of a letter (starting and ending with
that letter) and verifies that the difference of the length of the two factors is less
than or equal to m.

Both notions of m-balance and of m-uniform distribution are generalizations
of the balance property. Indeed, when m = 1 both definitions are equivalent to
the definition of balanced words. However, as Sano et al. note in their paper, the
notion of m-uniform distribution is stronger than the notion of m-balance .

Theorem 3. [Sano, Miyoshi, Kataoka] If a word w is m-uniformly dis-
tributed, then it is also m-balanced. If m = 1 then the converse also holds.

Sano et al. also note that the converse of this theorem does not hold for m ≥ 2
and provide the example of the word w = cbcbaca, which is 2-balanced, but
not 2-uniformly distributed. Indeed bcb and bacacb are two b-chains where the
internal factors u = c and u′ = acac contain no b’s and |u′| − |u| = 3.

Furthermore, we would like to note that if a word w is m-balanced, this
does not imply that w is k-uniformly distributed for some k larger than m.
For instance for any integer k, one can consider the word ak+1bb, which is 2-
balanced, but is not k-uniformly distributed, as it contains a b-chain of length 2
and a b-chain of length k + 3.

In the previous section we have given a characterization of balanced words in
terms of their derivatives. In the remainder of this section we will present some
results relating the two notions of m-balance and m-uniform distribution with
properties of the derivative (and its “iterations”, which we will define next).

We note that the derivative word with respect to a letter a is obtained by
subtracting one from the lengths of the a-chains aua of w with |u|a = 0. By
generalization, we give the following

Definition 6. For an integer k ≥ 1, for a word w on Σ and for a letter a in Σ,
we call k-th (partial) derivative of w with respect to a (noted ∂k

a(w)), the word
of length |w|a obtained by subtracting 1 from the lengths of the a-chains aua of
w with |u|a = k − 1.

For instance, ∂2
a(abaabbbabba) = 35743.

Note that the k-th (partial) derivative of w with respect to a can be easily
computed from the (first) derivative with respect to a. Indeed, if t = |w|a and
∂a(w) = i0 i1 . . . it−1 then ∂k

a(w) is the word of length t whose j-th letter is
obtained as

∑k−1
p=0 ij+p (the sums j + p being computed modulo t).

Returning to the same example, we had ∂a(abaabbbabba) = 21431, and indeed
: 3 = 2 + 1; 5 = 1 + 4; 7 = 4 + 3; 4 = 3 + 1; 3 = 1 + 2.

The following proposition is simply an immediate consequence of the alternate
definition of m-uniformly distributed words.

Proposition 2. A letter a is m-uniformly distributed in the word w if and only
if for all k, there exists an integer dk such that ∂k

a (w) ∈ {dk, dk +1, . . . , dk +m}∗.

We recall our characterization of balanced words in terms of properties of the
derivative : a circular word w is balanced with respect to the letter a if and only if

514 R. Mantaci, S. Mantaci, and A. Restivo

1. ∂a(w) is a word on the two-letter alphabet {d, d + 1} for a given integer d;
2. ∂a(w) is balanced.

We would like to study what kind of balance properties are satisfied by a
word characterized by weaker conditions than these two. We start by weakening
condition 2 and suppose that the word ∂a(w) is m-balanced.

Proposition 3. Let w be a circular word over an alphabet Σ and a ∈ Σ a letter.
If there exist an integer d such that ∂a(w) is an m-balanced word over the two
letters {d, d + 1} then the letter a is m-uniformly distributed in w.

When m = 1, the converse of the proposition obviously holds (it just becomes
Theorem 2), while it certainly does not hold when m ≥ 2. For instance, for
m = 2, there exist 2-uniformly distributed words whose partial derivative re-
spect to a given letter is a word over an alphabet of kind {d, d + 1, d + 2}.

We will weaken now condition 1.

Proposition 4. Let w be a circular word over an alphabet Σ and a ∈ Σ a letter.
If there exist an integer d and an integer m such that ∂a(w) is a balanced word
over the m + 1 letters {d, d + 1, . . . , d + m} then the letter a is m′-uniformly
distributed in w, with

m′ =

⎧
⎨

⎩

(
m+1

2

)2 if m is odd

m2+2m
4 if m is even

.

Note that the converse of this proposition does not hold when m ≥ 2. Indeed
it is false that for a 2-uniformly distributed letter a in a word w, the derivative
∂a(w) is a balanced word on an alphabet {d, d+ 1, d+ 2}. Take for instance the
word w = a ∗ a ∗ a ∗ ∗a ∗ ∗ (where the symbol ∗ stands for any letter different
from a). The letter a is 2-uniformly distributed in this word as ∂a(w) = 2 2 3 3,
∂2

a(w) = 4 5 6 5 and ∂3
a(w) = 7 8 8 7 are all words on alphabets Σ such that

max(Σ) − min(Σ) ≤ 2, but ∂a(w) is not a balanced word, as it contains the
factors 2 2 and 3 3.

5 Conclusions

While our work focuses on balance properties of finite circular words, it is im-
portant to note that several of our results apply to infinite words of any kind
(periodic or not). With a little tweaking, it is indeed possible to define the
derivative of any infinite word (in this case the derivative is infinite as well) and
basically extend Theorem 2 and the results of Section 4 to non periodic words.

Before closing this article, we would like to briefly highlight a few open ques-
tions and possible developments.

As we stressed in Section 2, it is unknown to us how to characterize Parikh
vectors for which a balanced word exists. The algorithmic aspects of this prob-
lem boils down to finding an efficient algorithm to generate balanced words

Balance Properties and Distribution of Squares in Circular Words 515

given their Parikh vector. Finally, Propositions 3 and 4 define a subclass of m-
uniformly distributed words. It would be interesting to find out if the words
belonging to such class can be characterized combinatorially.

References

1. Altman, E., Gaujal, B., Hordijk, A.: Balanced sequences and optimal routing.
Journal of the ACM 47(4), 752–775 (2000)

2. Berstel, J., Seebold, P.: Sturmian words. In: Lothaire, M. (ed.) Algebraic Com-
binatorics on Words, ch. 2, pp. 45–110. Cambridge University Press, Cambridge
(2002)

3. Borel, J.P., Reutenauer, C.: On Christoffel classes. RAIRO-Theoretical Informatics
and Applications 40, 15–28 (2006)

4. Cameron, P.J., Wu, T.: A new characterization of balanced words. In: Proceedings
of the 6th International Conference on Words, Marseille, France, pp. 63–71 (2007)

5. Cassaigne, J., Ferenczi, S., Zamboni, L.Q.: Imbalances in Arnoux-Rauzy sequences.
Ann. Inst. Fourier (Grenoble) 50(4), 1265–1276 (2000)

6. Castiglione, G., Restivo, A., Sciortino, M.: Circular words and automata mini-
mization. In: Proceedings of the 6th International Conference on Words, Marseille,
France, pp. 79–89 (2007)

7. Fraenkel, A.S.: Complementing and exactly covering sequences. J. Combin. Theory,
Ser. A 14, 8–20 (1973)

8. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, Cambridge (1997)

9. Hedlund, G.A., Morse, M.: Symbolic dynamics ii. Sturmian trajectories. Amer. J.
Math. 62 (1940)

10. Heinis, A.: On low-complexity bi-infinite words and their factors. Journal de théorie
des nombres de Bordeaux 13(2), 421–442 (2001)

11. Hubert, P.: Suites équilibrées. Theoretical Computer Science 242, 91–108 (2000)
12. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian

words. Informat. Proc. Lett. 86, 241–246 (2003)
13. Sano, S., Miyoshi, N., Kataoka, R.: m-Balanced words: a generalization of balanced

words. Theor. Comput. Sci. 314(1), 97–120 (2004)
14. Vuillon, L.: Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10(5), 787–805

(2003)

MSO Logic for Unambiguous Shared-Memory Systems�

Rémi Morin

Aix-Marseille université — UMR 6166 — CNRS
Laboratoire d’Informatique Fondamentale de Marseille

163, avenue de Luminy, F-13288 Marseille Cedex 9, France

Abstract. Shared-memory systems appear as a generalization of asynchronous
cellular automata. In this paper we relate the partial-order semantics of shared-
memory systems to Mazurkiewicz trace languages by means of a new refinement
construction. We show that a set of labeled partial orders is recognized by some
unambiguous shared-memory system if and only if it is definable in monadic
second-order logic and media-bounded.

Introduction

Partially ordered multisets (for short, pomsets) are a usual setting to describe the
concurrent behaviors of a distributed or parallel system [1,10,12,16,21]. For the
communication paradigm based on messages, the standard notation of message se-
quence charts has been investigated intensively in the past years, see e.g. [5,12,14].
The somewhat simpler paradigm of communication by means of synchronizations is
illustrated by asynchronous automata [24] and corresponds to the classical framework
of Mazurkiewicz traces [9]. The variant of asynchronous cellular automata is a kind of
shared-memory systems where each process communicates with a fixed set of neighbors
[8]. Similarly to [11] we study here a more general model where the communication
connectivity evolves dynamically along executions. As a result the pomsets accepted
by this kind of shared-memory systems are no longer Mazurkiewicz traces.

In the deterministic case, we showed in [19] that shared-memory systems
recognize precisely the sets of pomsets that are consistent and regular, two notions bor-
rowed from [3]. In this paper we investigate the more general setting of unambiguous
shared-memory systems. Roughly speaking, a shared-memory system is unambiguous
if any behaviour can be executed in only one way. We characterize the class of pomset
languages that arise from unambiguous shared-memory systems. For this we introduce
the notion of a media-bounded set of pomsets. Our main result asserts that a set of
pomsets is recognized by some unambiguous shared-memory system if and only if it is
media-bounded and definable in monadic second-order logic (Theorem 3.4).

In this work we present a new refinement construction that allows us to represent
media-bounded sets of pomsets by Mazurkiewicz trace languages (Theorem 2.11).
Moreover this refinement preserves MSO-definability (Theorem 3.2). As a consequence
we get a kind of generalization of the main result from [3] that asserts that any regu-
lar consistent set of pomsets can be refined onto a regular set of Mazurkiewicz traces.
Moreover this result is optimal because only media-bounded sets of pomsets can be
refined onto a set of Mazurkiewicz traces (Cor. 2.12).
� Supported by the ANR project SOAPDC.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 516–528, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

MSO Logic for Unambiguous Shared-Memory Systems 517

Preliminaries. A pomset (or partially ordered multiset) over an alphabet Σ is a triple
t = (E,, ξ) where (E,) is a finite partial order and ξ is a mapping from E to
Σ without autoconcurrency: ξ(x) = ξ(y) implies x y or y x for all x, y ∈
E. A pomset can be seen as an abstraction of an execution of a concurrent system
[16,20,21,10]. In this view, the elements e of E are events and their label ξ(e) describes
the action that is performed in the system by the event e ∈ E. Furthermore, the order
describes the dependence between events. We denote by P(Σ) the class of all pomsets
over Σ.

Let t = (E,, ξ) be a pomset and x, y ∈ E. Then y covers x (denoted x−≺y) if
x ≺ y and x ≺ z y implies y = z. An order extension of a pomset t = (E,, ξ) is
a pomset t′ = (E,′, ξ) such that ⊆′. A linear extension of t is an order extension
that is linearly ordered. It corresponds to a sequential view of the concurrent execution
t. Linear extensions of a pomset t over Σ can naturally be regarded as words over Σ.
By LE(t) ⊆ Σ�, we denote the set of linear extensions of a pomset t over Σ. Two
isomorphic pomsets admit the same set of linear extensions. Noteworthy the converse
property holds [22]: If LE(t) = LE(t′) then t and t′ are two isomorphic pomsets. In
the sequel of this paper we do not distinguish between isomorphic pomsets.

An ideal of a pomset t = (E,, ξ) is a subset H ⊆ E such that x ∈ H ∧ y x ⇒
y ∈ H . The restriction t′ = (H, ∩(H ×H), ξ ∩ (H ×Σ)) is then called a prefix of
t and we write t′ 	 t. For all z ∈ E, we denote by ↓z the ideal of events below z, i.e.
↓z = {y ∈ E | y z}. For any set of pomsets L, Pref(L) denotes the set of prefixes
of pomsets from L. The language L is called prefix-closed if Pref(L) = L.

1 A Generalization of Asynchronous Cellular Automata

Throughout the paper we fix some finite alphabet Σ. The notion of a shared-memory
system studied in this work is based on a set I of processes together with a distribution
Loc : Σ → 2I which assigns to each action a ∈ Σ a subset of processes Loc(a) ⊆ I.
Intuitively each occurrence of action a induces a synchronized step of all processes from
Loc(a). For that reason we assume that Loc(a) is non-empty for all a ∈ Σ. The pair
(Σ,Loc) is often called a distributed alphabet.

1.1 Shared-Memory Systems

Processes of a shared-memory system can communicate by means of a set R of shared
variables (or registers) taking values from a common set of data D; in particular the
initial contents of this shared memory is formalized by a memory-state χinit : R → D
that associates to each register r ∈ R a value χinit(r) ∈ D. Intuitively each action
corresponds to the reading of the values of a subset of registers (a guard) and the writing
of new values in some other registers. A valuation is a partial function ν : R ⇀ D; it
will correspond to the reading or the writing of some values in a subset of registers. The
domain dom(ν) of a valuation ν is the set of registers r such that ν(r) is defined. We
denote by V the set of all valuations.

Now each process i ∈ I is provided with a set of local states Si together with an
initial local state ıi ∈ Si. A global state s = (si)i∈I consists of one local state si for

518 R. Morin

each process i ∈ I and a configuration q = (χ, s) is a pair made of a memory-state
χ : R → D and a global state s. We let the Cartesian product Q = DR ×

∏
i∈I Si

denote the set of all configurations. The initial configuration ı = (χinit, s) corresponds
to the initial memory-stateχinit and the initial global state s = (ıi)i∈I . Given a memory-
state χ : R → D and a subset of registers R ⊆ R, we let χ|R denote the valuation with
domain R such that χ|R(r) = χ(r) for all r ∈ R. Given some action a, some process
j and some global state s = (si)i∈I , we denote by s|a the partial state (si)i∈Loc(a)

and by s|j the local state sj . For each a ∈ Σ we denote by Sa the set of partial states
Sa =

∏
i∈Loc(a) Si. A transition rule is a quintuple (ν, s, a, ν′, s′) where a ∈ Σ, ν, ν′ ∈

V are two valuations and s, s′ ∈ Sa are two partial states. For convenience we put
ρ = (νρ, sρ, aρ, ν

′
ρ, s

′
ρ), Rρ = dom(νρ) and Wρ = dom(ν′ρ) for each transition rule ρ.

DEFINITION 1.1. A shared-memory system (for short, an SMS) over some distributed
alphabet (Σ,Loc), some initial memory-state χinit : R → D, and local states
(Si, ıi)i∈I consists of a subset of transition rules Δ together with a subset F ⊆ Q
of final (or accepting) configurations.

Intuitively action a can occur synchronously on all processes from Loc(a) in some
configuration q = (χ, s) if there exists a transition rule ρ ∈ Δ such that aρ = a,
νρ = χ|Rρ, and sρ = s|a. In that case processes from Loc(a) may perform a joint
move to the new partial state s′ρ and write the new values ν′ρ(r) in registers from Wρ.
The step consisting of all these moves and all these changes is considered atomic.

1.2 Partial Order Semantics of Shared-Memory Systems

Following a classical trend in concurrency theory [16,20,21] we want to describe the
concurrent executions of a shared-memory system S by means of labeled partial orders
in such a way that the ordering of events represents the must-happen-before relation
between occurrences of actions. Since each process works sequentially, events occur-
ring on the same process must be comparable. Furthermore any two events that change
the value of some register should be comparable, that is, we consider Exclusive-Write
systems. Now if one event writes a new value in some register read by another event
then these two events should be comparable as well; otherwise it would be unclear
which value is actually read by the second event. In that way we have characterized
which pairs of transition rules may occur concurrently. We formalize this May-Occur-
Concurrently relation by means of a binary relation ‖ ⊆ Δ×Δ. For any two transitions
rules ρ, ρ′ ∈ Δ we put ρ‖ρ′ if Loc(aρ) ∩ Loc(aρ′) = ∅, Wρ ∩ (Rρ′ ∪ Wρ′) = ∅, and
Wρ′ ∩ (Rρ ∪Wρ) = ∅.

In order to reason about which registers are read by each event and how events
change the local states of processes and the values of registers, we make use of the
notion of run. Let t = (E,, ξ) be a pomset over Σ. A run of t over S is a mapping
ρ : E → Δ which maps each event e from E to some transition rule ρ(e) ∈ Δ such
that aρ(e) = ξ(e). In order to reflect the May-Occur-Concurrently relation, two events
are incomparable in t only if their transition rules are independent. This is formalized
by Axiom V1 below. The partial order of events in t results from the transitive closure
of the covering relation −≺ and can be represented by its Hasse diagram. Since we

MSO Logic for Unambiguous Shared-Memory Systems 519

want the partial order to reflect the Must-Happen-Before relation, any edge from the
covering relation must represent some dependence between the corresponding transi-
tion rules. This is formalized by Axiom V2 below. As a consequence the run ρ is called
valid if V1 and V2 are satisfied:

V1: For all events e1, e2 ∈ E with ρ(e1)� ‖ρ(e2), we have e1 e2 or e2 e1;
V2: For all events e1, e2 ∈ E with e1−≺e2, we have ρ(e1)� ‖ρ(e2).

We assume now that ρ is a valid run for t. Let H ⊆ E be an ideal of t. The configura-
tion qρ,H at H corresponds intuitively to a snapshot of the system after all events from
H have occurred along the execution of t w.r.t. ρ: The value of each register is the value
written by the last event that has modified this value and the local state of each process
is the local state reached after the last joint move performed by that process. Formally
qρ,H is the configuration qρ,H = (χρ,H , sρ,H) defined by the next two conditions:

– For all registers r ∈ R, we put χρ,H(r) = ν′ρ(e)(r) if e is the greatest event in H

such that r ∈ Wρ(e), and χρ,H(r) = χinit(r) if there is no such event.
– For all i ∈ I, we put sρ,H |i = s′ρ(e)|i if e is the greatest event in H such that

i ∈ Loc(ξ(e)), and sρ,H |i = ıi if there is no such event.

Due to V1 events satisfying r ∈ Wρ(e) are totally ordered so there exists at most one
maximal event satisfying this condition. A similar observation holds for events satis-
fying i ∈ Loc(ξ(e)). Therefore qρ,H is well-defined. Note here that qρ,∅ corresponds
to the initial configuration ı. Now we say that a valid run ρ is compatible with S if the
configuration reached after all events below e enables the execution of the transition
rule ρ(e). Formally a valid run ρ of t is compatible with S if for all events e ∈ E the
configuration (χ, s) at ↓e \ {e} satisfies χ|Rρ(e) = νρ(e) and s|ξ(e) = sρ(e). A pomset
that admits a compatible run corresponds to a potential execution of S.

DEFINITION 1.2. A pomset t = (E,, ξ) is accepted by S if it admits a compatible run
ρ such that the configuration qρ,E belongs to F . The languageL(S) ⊆ P(Σ) recognized
by S collects all pomsets accepted by S. The SMS S is called unambiguous if each
t ∈ Pref(L(S)) admits a unique compatible run.

In this paper we focus on unambiguous shared-memory systems: Roughly speaking
each prefix of a pomset from L(S) can be executed in only one way. This definition
is somewhat more restrictive than the classical notion of unambiguity [2,7,25] because
we consider all prefixes of L(S) instead of L(S) itself and moreover we assume that
shared-memory systems have a single initial state.

EXAMPLE 1.3. Our running example corresponds to a Producer-Consumer system. Its
alphabet is Σ = {p, c} where p represents a production of one item and c a consump-
tion. Its behaviour consists of all ladders, that is, pomsets over Σ that consist of a chain
of n production events and a chain of n consumption events and such that the kth con-
sumption covers the kth production and no consumption is below any production. An
example of a ladder is depicted in Figure 1. We leave it to the reader to find some un-
ambiguous shared-memory system over Σ that accepts precisely the set of all ladders.
With no surprise such an SMS needs infinitely many registers.

520 R. Morin

Fig. 1. A ladder Fig. 2. A broken ladder Fig. 3. A very broken ladder

In the rest of this paper we consider finite shared-memory systems, only: The set of reg-
isters R, the set of values D and the set of processes I and the sets of local states Si of
any SMS are finite.

1.3 Partial Commutations and Asynchronous Cellular Automata

Let us recall some basic definitions from Mazurkiewicz trace theory [9]. The concur-
rency of a distributed system is often represented by an independence relation over
the set of actions Σ, that is a binary, symmetric and irreflexive relation ‖ ⊆ Σ × Σ.
The associated trace equivalence is the least congruence ∼ over Σ� such that for all
a, b ∈ Σ, a‖b implies ab ∼ ba. A trace [u] is the equivalence class of a word u ∈ Σ�.
We denote by M(Σ, ‖) the set of all traces w.r.t. (Σ, ‖). Let u ∈ Σ�; then the trace [u]
is precisely the set of linear extensions LE(t) of a unique pomset t = (E,, ξ), that is,
[u] = LE(t). Moreover t satisfies the following additional properties:
M1: For all events e1, e2 ∈ E with ξ(e1)� ‖ξ(e2), we have e1 e2 or e2 e1;
M2: For all events e1, e2 ∈ E with e1−≺e2, we have ξ(e1)� ‖ξ(e2).
Conversely the linear extensions of a pomset satisfying these two axioms form a trace
of M(Σ, ‖). Thus one usually identifies M(Σ, ‖) with the class of pomsets satisfying
M1 and M2. Note that these requirements are similar to the criteria of a valid run.

Now an interesting particular case of shared-memory systems from the literature is
provided by the notion of an asynchronous cellular automaton [8,25].

DEFINITION 1.4. Let ‖ ⊆ Σ × Σ be some independence relation. An asynchronous
cellular automaton over (Σ, ‖) (for short, an ACA) is a shared-memory system such that
Σ = I = R and for all a ∈ Σ: Loc(a) = {a}, Sa = {ıa} is a singleton and moreover
(ν, ıa, a, ν′, ıa) ∈ Δ implies dom(ν) = {b ∈ Σ | b � ‖a} and dom(ν′) = {a}.

Intuitively each action corresponds to a process which owns a register whose value
describes its current local state. Moreover these systems are Owner-Write: No process
may write in the register of some other process. On the other hand, two processes read
the values of each other if they are dependent w.r.t. the given independence relation.

Observe now that the May-Occur-Concurrently relation ‖ ⊆ Δ×Δ and the given in-
dependence relation ‖ ⊆ Σ×Σ match each other: ρ‖ρ′ if and only if aρ‖aρ′ for any two
transitions rules ρ, ρ′ ∈ Δ. As a consequence the pomsets accepted by an ACA accord-
ing to Definition 1.2 are Mazurkiewicz traces from M(Σ, ‖). Actually Definition 1.2
coincides with the usual semantics of an ACA.

MSO Logic for Unambiguous Shared-Memory Systems 521

Consider now some asynchronous cellular automaton S such that each transition rule
occurs in at least one compatible run. Then S is unambiguous if and only if for each
a ∈ Σ and each configuration q = (χ, s) there exists at most one transition rule ρ
such that aρ = a and νρ = χ|Rρ. Thus unambiguity and determinism coincide in the
particular case of asynchronous cellular automata.

2 Media-Bounded Pomset Languages

In this section we introduce the notion of a media-bounded set of pomsets. We observe
that the language of any (finite) unambiguous shared-memory system is media-bounded
(Prop. 2.4). Moreover we show that a set of pomsets is media-bounded if and only if it
can be refined onto a set of Mazurkiewicz traces (Cor. 2.12).

2.1 Media-Bound of a Set of Pomsets

In this subsection we fix a set of pomsets L and define its media-bound.

DEFINITION 2.1. Let t = (E,, ξ) be a pomset over Σ and e ∈ E be an event of t.
Let a, b ∈ Σ be two distinct actions. Then e activates (a, b) in t if ξ(e) = a and there
exists a pomset t◦ = (E◦,◦, ξ◦) in L satisfying the two following conditions:

– t is a prefix of t◦, and
– there is some event f ∈ E◦ \ E such that e−≺◦f and ξ◦(f) = b.

Thus an event e ∈ E labeled by a activates (a, b) in t if t is a prefix of some pomset
t◦ from L in which e is covered by some event labeled by b. Observe that if e activates
(a, b) in t then e activates (a, b) in the prefix ↓te, too. Moreover no event from t activates
(a, b) if t is not a prefix of some pomset from L.

EXAMPLE 2.2. We continue Example 1.3 and consider again the set L of all ladders.
We call broken ladder any prefix of a ladder. The broken ladder t of Figure 2 consists
of 5 production events and 3 consumption events. Among all production events there
are three events that are covered by consumption events. These production events do
not activate (p, c) in t. The other two production events do activate (p, c) in t since
we can complete the pomset t with two consumption events that will cover these two
production events and get a pomset from L.

DEFINITION 2.3. For any pomset t over Σ we let αa,b(t) denote the number of events
in t that activate (a, b). The media-bound ofL is the least upper bound B ∈ N∪{∞} of
all αa,b(t) where t ∈ P(Σ) and (a, b) is a pair of distinct actions from Σ. The language
L is called media-bounded if its media-bound is finite.

It is clear that the set of all ladders from Examples 1.3 and 2.2 is not media-bounded.
The next result proves that this language is recognized by no unambiguous SMS.

PROPOSITION 2.4. The language of any unambiguous SMS is media-bounded.

522 R. Morin

For latter purposes, we observe also here that any Mazurkiewicz trace language is
media-bounded and its media-bound is at most 1.

LEMMA 2.5. Let ‖ ⊆ Σ × Σ be an independence relation. If L ⊆ M(Σ, ‖) then the
media-bound of L is at most 1.

2.2 The Notion of Refinement

A characterization of media-bounded sets of pomsets relies on the notion of refinement
that we introduce now. Let Σ1 and Σ2 be two alphabets and π : Σ1 → Σ2 a mapping
from Σ1 to Σ2. This mapping extends into a map from Σ�

1 to Σ�
2 . It extends also in

a natural way into a function that maps each pomset t = (E,, ξ) over Σ1 to the
structure π(t) = (E,, π ◦ ξ). The latter might not be a pomset over Σ2 in case some
autoconcurrency appears in it (see preliminaries). This situation can occur if π(a) =
π(b) for two distinct actions a, b ∈ Σ while there are two events e and f in t that are
labelled by a and b and that are not comparable.

Refinements allow to relate sets of pomsets L1 and L2 that are identical up to some
relabeling. We require that the relabeling π : Σ1 → Σ2 induces a bijection from L1

onto L2 and a bijection from Pref(L1) onto Pref(L2).

DEFINITION 2.6. Let L1 and L2 be two sets of pomsets over Σ1 and Σ2 respectively.
A mapping π : Σ1 → Σ2 from Σ1 to Σ2 is a refinement from L2 onto L1 if π(t) is a
pomset for each t ∈ L1, π(L1) = L2 and π : Pref(L1) → Pref(L2) is one-to-one.

Note that the requirement π(L1) = L2 implies that π induces a map from L1 onto
L2. It follows that π induces a map from Pref(L1) onto Pref(L2), too. The latter is a
bijection since we require also that it should be one-to-one. It follows that the mapping
π : L1 → L2 is a bijection, too. The next result shows that refinements preserve media-
boundedness.

PROPOSITION 2.7. Let π : Σ1 → Σ2 be a refinement from L2 onto L1. If L1 is media-
bounded then L2 is media-bounded.

As observed above in Lemma 2.5, any set of Mazurkiewicz traces is media-bounded.
Thus if a set of pomsets can be refined onto a set of Mazurkiewicz traces then it is
media-bounded. In the next section we establish the converse property (Cor. 2.12).

2.3 A Characterization of Media-Bounded Sets of Pomsets

Let L be a set of pomsets over Σ and B ∈ N ∪ {∞} be its media-bound. For each
pomset t = (E,, ξ) over Σ such that t admits a unique maximal event emax, we
define the activated number κa,b(t) ∈ N∪{⊥} by induction on the number n of events
labelled by a in t. First, in case n = 0, we put κa,b(t) = ⊥. The induction step proceeds
as follows. First, if emax does not activate (a, b) in t then κa,b(t) = ⊥. We assume
now that emax activates (a, b) in t. In particular we have ξ(emax) = a and n
 1.
Let E′ be the subset of events e ∈ E \ {emax} that activate (a, b) in t. Then we put
κa,b(t) = min(N \ {κa,b(↓e) | e ∈ E′}).

MSO Logic for Unambiguous Shared-Memory Systems 523

We stress that the activated number κa,b(t) equals ⊥ if and only if emax does not
activate (a, b) in t. Furthermore for each event e ∈ E′, we have κa,b(↓e) �= ⊥ because
e activates (a, b) in ↓e. Note also that κa,b(t) = ⊥ if t �∈ Pref(L).

LEMMA 2.8. The media-bound of L is an upper bound of all κa,b(t) + 1 where a and
b are two distinct actions of Σ and t is a pomset over Σ that admits a unique maximal
event which activates (a, b) in t.

Thus for all pomsets t ∈ P(Σ) with a unique maximal event emax and for all pairs (a, b)
of distinct actions from Σ, κa,b(t) �= ⊥ implies κa,b(t) < B.

In the rest of this section we assume that L is media-bounded, i.e. B < ∞. We
denote by X the set of all partial functions from Σ to {0, 1, ..., B− 1}. For x ∈ X and
a ∈ Σ, we write x(a) = ⊥ to denote that x is undefined for a. We consider the alphabet
Γ = Σ×X×X provided with the independence relation ‖ such that (a, x, y)� ‖(b, x′, y′)
if a = b or x(b) = y′(a) �= ⊥ or x′(a) = y(b) �= ⊥. Clearly the binary relation ‖ is
irreflexive and symmetric. Note here that Γ is a finite alphabet because B <∞. We let
π1 denote the first projection from Γ to Σ: We put π1(a, x, y) = a. The next definition
explains how a pomset t from L is refined into a Mazurkiewicz trace β(t) ∈ M(Γ, ‖).

DEFINITION 2.9. Let t = (E,, ξ) be a pomset over Σ. For each event e ∈ E labelled
by ξ(e) = c, we put γ(e) = (c, x, y) ∈ Γ where

– x(c) = ⊥ and x(b) = κc,b(↓e) for all b ∈ Σ \ {c},
– y(c) = ⊥ and for all a ∈ Σ \ {c}:

y(a)=

{
κa,c(↓f) if ∃f ∈E, f−≺e ∧ ξ(f)=a

⊥ otherwise
We write β(t) = (E,, γ).

Recall that t has no autoconcurrency. It follows that y(a) is well-defined because such
an event f is unique if it exists. Clearly π1(β(t)) = t for all pomsets t ∈ P(Σ).

EXAMPLE 2.10. We continue Examples 1.3 and 2.2. Since Σ = {p, c}we can identify
a function x ∈ X or y ∈ X in a labeling (c, x, y) with an element from N ∪ {⊥}. Then
Figure 4 shows a broken ladder t ∈ L and the associated pomset β(t).

Now it is easy to check that for each pomset t ∈ L, the pomset β(t) satisfies the two
characteristic properties M1 and M2 of Mazurkiewicz traces (cf. Subsection 1.3).

Fig. 4. A broken ladder t and its associated Mazurkiewicz trace β(t)

524 R. Morin

THEOREM 2.11. The first projection π1 : Γ → Σ is a refinement from L onto the
subset of Mazurkiewicz traces β(L) ⊆ M(Γ, ‖).

As an immediate consequence of Lemma 2.5, Proposition 2.7 and Theorem 2.11, we
get the expected characterization of media-bounded sets of pomsets.

COROLLARY 2.12. A set of pomsets L is media-bounded if and only if it admits a
refinement π : L′ → L onto a set of Mazurkiewicz traces L′.

3 Expressive Power of Unambiguous Shared-Memory Systems

In this section we characterize the class of pomset languages that are recognized by
some unambiguous shared-memory system. We show that these languages are exactly
the set of pomsets that are media-bounded and definable in Monadic Second-Order
(MSO) logic (Theorem 3.4).

3.1 SMS Languages Are MSO-Definable

Formulae of the MSO logic that we consider involve first-order variables x, y, z... for
events and second-order variables X,Y, Z... for sets of events. They are built up from
the atomic formulae Pa(x) for a ∈ Σ (which stands for “the event x is labeled by the
action a”), x y, and x ∈ X by means of the boolean connectives ¬,∨,∧,→,↔ and
quantifiers ∃, ∀ (both for first order and for set variables). We denote by MSO(Σ) the
set of all formulae of MSO. Formulae without free variables are called sentences.

The satisfaction relation |= between pomsets and sentences is defined canonically
with the understanding that first order variables range over events of E and second
order variables over subsets of E. The set of pomsets which satisfy a sentence ϕ is
denoted by Mod(ϕ). We say that a set of pomsets L is MSO-definable if there exists a
sentence ϕ such that L = Mod(ϕ).

It is straightforward but a bit tedious to establish that the language of any SMS is
MSO-definable by means of somewhat classical techniques [23,9,11].

LEMMA 3.1. The language of any shared-memory system is MSO-definable.

3.2 Main Result

The main technical contribution of this section lies in the following result which shows
that the refinement π1 : β(L) → L defined in the previous section preserves MSO-
definability.

THEOREM 3.2. Let L be a media-bounded set of pomsets. If L is MSO-definable then
β(L) is MSO-definable, too.

Proof sketch. Since L is MSO-definable, the subset L′ = {t ∈ M(Γ, ‖) | π(t) ∈ L}
is MSO-definable, too. Clearly β(L) ⊆ L′. We claim that there exists some sentence ϕ
such that for all t ∈ L′, we have t ∈ β(L) iff t |= ϕ, that is, we can check whether the
relabeling of a trace t ∈ M(Γ, ‖) corresponds to the definition of β.

MSO Logic for Unambiguous Shared-Memory Systems 525

We adapt now to the present setting the main technical lemma from [19]. A shared-
memory system is called singular if the set of local states of each process i ∈ I is
a singleton Si = {ıi}. Furthermore a singular SMS is called cellular if Σ = I and
Loc(a) = {a} for each a ∈ Σ.

LEMMA 3.3. Let L and L′ be some sets of pomsets over Σ and Σ′ respectively such
that there exists a refinement π : Σ′ → Σ from L onto L′. If L′ is the language of
a cellular unambiguous SMS S′ then there exists a singular unambiguous SMS S that
accepts L. Moreover S and S′ share the same configurations.

Proof sketch. We consider an SMS S over Σ with the same processes, local states,
registers and data as S′. In particular S is singular since each process has a single local
state. The SMS S is defined by the two following requirements:

– For each a ∈ Σ, we put Loc(a) = π−1(a). Observe here that Loc(a) ⊆ Σ′ = I.
– (ν, ı|a, a, ν′, ı|a) ∈ Δ if there is x ∈ Loc(a) such that (ν, ı|x, x, ν′, ı|x) ∈ Δ′.

Note that S and S′ share a common set of configurations Q: If S′ is finite then S is finite,
too. We claim that the shared-memory system S is unambiguous and recognizes L.

By Proposition 2.4 and Lemma 3.1, the set of pomsets accepted by an unambiguous
shared-memory system is media-bounded and MSO-definable. Our main result below
asserts the converse property.

THEOREM 3.4. Let L be a set of pomsets. The following conditions are equivalent:
(i) L is recognized by some unambiguous shared-memory system.
(ii) L is media-bounded and definable in MSO logic.
(iii) there exists a refinement from L onto a regular set of Mazurkiewicz traces.

Proof. Let L be an MSO-definable and media-bounded set of pomsets over Σ. By
Theorems 2.11 and 3.2, there exists a refinement π : Γ → Σ from L onto an MSO-
definable set of Mazurkiewicz traces L′ ⊆ M(Γ, ‖). By [23], L′ is a regular set of
Mazurkiewicz traces. It follows from [8] that L′ is accepted by some unambiguous
asynchronous cellular automaton S◦ over Γ , I, R and D (Def. 1.4). By Lemma 3.3, L
is recognized by some unambiguous SMS.

3.3 Comparisons with Generalized Asynchronous Cellular Automata

The model of shared-memory systems we have considered in this paper is similar to the
notion of generalized asynchronous cellular automata investigated in [11]. This model
can be identified with a shared-memory system such that I = R, Si = {ıi} for each
process i ∈ I (that is, each process owns a register whose value describes its current
state), Loc(a) is a singleton for each action a (so processes never synchronize) and
moreover (ν, ıa, a, ν′, ıa) ∈ Δ implies that dom(ν′) = {Loc(a)} which means that
each process writes only in its own register. Then the set of transition rules of each ac-
tion a can be represented by a mapping δa : V → 2D . It is easy to see that these shared-
memory systems form another generalization of asynchronous cellular automata.

Let us consider now the set Lvbl of all very broken ladders: A very broken ladder
is a pomset t that consists of a chain of n
 1 production events and a single con-
sumption event that covers one production event (Fig. 3). It is clear that Lvbl is not

526 R. Morin

t1 t2

Fig. 5. A non-consistent set of pomsets

media-bounded. Consequently it is not recognized by some unambiguous SMS. Ob-
serve here that the notion of of media-bound is different from the prime-bound intro-
duced in [15] (see also [11, Section 6]) because Lvbl is prime-bounded but not media-
bounded. MoreoverLvbl is accepted by some (unambiguous) generalized asynchronous
cellular automaton according to any of the semantics studied in [11]. Thus the accep-
tance condition adopted in Def. 1.2 differs from the one investigated in [11].

Similarly to [11], it is possible to restrict the logic to existential formulae and get
similar results. This means that MSO is equivalent to EMSO for media-bounded sets
of pomsets. This follows actually from Theorem 3.2: If L is media-bounded and MSO-
definable then the set of Mazurkiewicz traces β(L) is MSO-definable, hence EMSO-
definable; since L = π ◦ β(L), L is EMSO-definable, too.

Conclusion

As opposed to [19], we have considered in this paper non-deterministic shared-memory
systems: A shared-memory system is called deterministic if for all actions a ∈ Σ and all
reachable configurations q = (χ, s) there is at most one transition rule ρ ∈ Δ such that
aρ = a, νρ = χ|Rρ and sρ = s|a. Intuitively this means that there is at most one rule
that allows an occurrence of action a in each configuration. Any deterministic SMS
is unambiguous but the converse fails. Actually determinism reduces the expressive
power of shared-memory systems: We showed in [19] that deterministic finite shared-
memory systems accept precisely the set of pomsets that are regular and consistent, two
notions borrowed from [3]. A set of pomsets L is called consistent if any two distinct
prefixes of pomsets from L have disjoint sets of linear extensions. In particular any set
of Mazurkiewicz traces is consistent. As observed in [13] the class of regular consistent
sets of pomsets is closely related to the semantics of stably concurrent automata [6]. By
Theorem 3.4 any finite non-consistent set of pomsets is accepted by some unambiguous
SMS, but no deterministic one. For instance the set of pomsets L = {t1, t2} depicted
in Figure 5 is recognized by some unambiguous non-deterministic SMS.

Given an MSO-definable and media-bounded set of pomsets L, the new refinement
presented in Section 2 yields a Mazurkiewicz trace language β(L). We established in
Theorem 3.2 that β(L) is MSO-definable, too. This theorem is the key ingredient of a
new proof of the main result from [3] which asserts that any regular consistent set of
pomsets can be refined onto a regular set of Mazurkiewicz traces. This result was proved
to be crucial for applications in several frameworks such that concurrent automata and
event structures [13,18] and also deterministic shared-memory systems [19]. Since we
deal in this paper with non-consistent sets of pomsets, we had to establish a kind of
generalization of that powerful result.

MSO Logic for Unambiguous Shared-Memory Systems 527

Message Sequence Charts (MSCs) are a popular model often used for the docu-
mentation of telecommunication protocols. An MSC gives a graphical description of
message exchanges between processes in the form of a labeled partial order. For few
years several papers have developped the theory of MSCs [5,12,14] at some abstract
and somewhat simplified level. In particular all these studies rely on the assumption
that channels are reliable. As a consequence the MSC languages accepted by message-
passing systems form a consistent set of pomsets. On the other hand Kuske’s lemma
[14] allows us to refine any regular set of message sequence charts onto a regular set
of Mazurkiewicz traces. This rather simple observation turned out to be quite powerful
to transfer results from the theory of Mazurkiewicz traces to the framework of MSC
languages [4,14,17]. However this connection fails if we consider MSCs with message
loss. Still the new refinement construction presented in Section 2 applies in that set-
ting. For that reason we are applying at present this refinement construction in order to
develop a language theory for bounded lossy-channel systems.

References

1. Alur, R., Grosu, R.: Shared Variables Interaction Diagrams. In: 16th IEEE Int. Conf. on Au-
tomated Software Engineering, pp. 281–288. IEEE Computer Society, Los Alamitos (2001)

2. Arnold, A.: Rational ω-languages are non-ambiguous. TCS 26, 221–223 (1983)
3. Arnold, A.: An extension of the notion of traces and asynchronous automata. RAIRO, Theo-

retical Informatics and Applications, Gauthiers-Villars 25, 355–393 (1991)
4. Baudru, N., Morin, R.: Safe Implementability of Regular Message Sequence Charts Specifi-

cations. In: Proc. of the ACIS 4th Int. Conf. SNDP, pp. 210–217 (2003)
5. Bollig, B., Leucker, M.: Message-passing automata are expressively equivalent to EMSO

logic. TCS 358, 150–172 (2006)
6. Bracho, F., Droste, M., Kuske, D.: Representations of computations in concurrent automata

by dependence orders. TCS 174, 67–96 (1997)
7. Carton, O., Michel, M.: Unambiguous Büchi automata. TCS 297, 37–81 (2003)
8. Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous cellular au-

tomata. I&C 106, 159–202 (1993)
9. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific, Singapore (1995)

10. Diekert, V., Métivier, Y.: Partial Commutation and Traces. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. 3, pp. 457–534 (1997)

11. Droste, M., Gastin, P., Kuske, D.: Asynchronous cellular automata for pomsets. TCS 247,
1–38 (2000)

12. Henriksen, J.G., Mukund, M., Narayan Kumar, K., Sohoni, M., Thiagarajan, P.S.: A Theory
of Regular MSC Languages. I&C 202, 1–38 (2005)

13. Husson, J.-F., Morin, R.: On Recognizable Stable Trace Languages. In: Tiuryn, J. (ed.) FOS-
SACS 2000. LNCS, vol. 1784, pp. 177–191. Springer, Heidelberg (2000)

14. Kuske, D.: Regular sets of infinite message sequence charts. I&C 187, 80–109 (2003)
15. Kuske, D.: Asynchronous cellular automata and asynchronous automata for pomsets. In: San-

giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 517–532. Springer,
Heidelberg (1998)

16. Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM 21, 558–565 (1978)

17. Morin, R.: On Regular Message Sequence Chart Languages and Relationships to
Mazurkiewicz Trace Theory. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS,
vol. 2030, pp. 332–346. Springer, Heidelberg (2001)

528 R. Morin

18. Morin, R.: Concurrent Automata vs. Asynchronous Systems. In: Jedrzejowicz, J., Szepi-
etowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 686–698. Springer, Heidelberg (2005)

19. Morin, R.: Semantics of Deterministic Shared-Memory Systems. In: CONCUR 2008. LNCS,
vol. 5201, pp. 36–51. Springer, Heidelberg (2008)

20. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, events structures and domains, part 1.
TCS 13, 85–108 (1981)

21. Pratt, V.: Modelling concurrency with partial orders. International Journal of Parallel Pro-
gramming 15, 33–71 (1986)

22. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389 (1930)
23. Thomas, W.: On logical definability of trace languages Technical University of Munich, re-

port. TUM-I9002, 172–182 (1990)
24. Zielonka, W.: Notes on finite asynchronous automata. RAIRO, Theoretical Informatics and

Applications 21, 99–135 (1987)
25. Zielonka, W.: Safe executions of recognizable trace languages by asynchronous automata.

In: Meyer, A.R., Taitslin, M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 278–289.
Springer, Heidelberg (1989)

Complexity of Topological Properties

of Regular ω-Languages

Victor L. Selivanov1,� and Klaus W. Wagner2

1A.P. Ershov Institute of Informatics Systems, Siberian Division of the Russian
Academy of Sciences
vseliv@nspu.ru

2 Institut für Informatik, Julius-Maximilians-Universität Würzburg
wagner@informatik.uni-wuerzburg.de

Abstract. We determine the complexity of topological properties of
regular ω-languages (i.e., classes of ω-languages closed under inverse
continuous functions). We show that they are typically NL-complete
(PSPACE-complete) for the deterministic Muller, Mostowski and Büchi
automata (respectively, for the nondeterministic Rabin, Muller,
Mostowski and Büchi automata). For the deterministic Rabin and Streett
automata and for the nondeterministic Streett automata upper and lower
complexity bounds for the topological properties are established.

1 Introduction

The study of decidability and complexity questions for properties of regular lan-
guages is a central research topic in automata theory. Its importance stems from
the fact that finite automata are fundamental to many branches of computer sci-
ence, e.g., databases, operating systems, verification, and hardware and software
design.

For properties of regular languages, many decidablity and complexity results
were obtained. However, for properties of regular ω-languages, only a couple of
facts about their complexity (recalled below) seems to be known so far.

In this paper we determine the complexity of topological properties of regu-
lar ω-languages given by different types of ω-automata. Topological properties
are classes of ω-languages which are closed under inverse continuous functions.
Defining the Wadge reducibility ≤w on the Cantor space as the many-one re-
ducibility via continuous functions, the topological properties are the classes of ω-
languages which are closed under Wadge reducibility. The classes {L′ | L′ ≤w L}
for ω-languages L are called elementary topological properties; every topological
property is the union of elementary topological properties. Obviously, there is a
bijection between the elementary topological properties and the Wadge degrees.

To explain our results, let us recall some facts from [Wag79] where the Wadge
degrees of regular ω-languages (over any alphabet A with at least two symbols)
were determined, in particular the following results were established:
� Supported by DFG Mercator program and by RFBR grant 07-01-00543a.

M. Ito and M. Toyama (Eds.): DLT 2008, LNCS 5257, pp. 529–542, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

530 V.L. Selivanov and K.W. Wagner

1. The structure (R;≤w) of regular ω-languages under the Wadge reducibility
is almost well-ordered with order type ωω, i.e., for each ordinal α < ωω

there is a regular ω-language Aα ∈ R, such that Aα <w Aα ⊕Aα <w Aβ for
α < β < ωω, and any regular set is Wadge-equivalent to one of the sets Aα,
Aα, and Aα ⊕Aα where α < ωω (here ⊕ denotes the marked union).

2. The elementary topological properties of regular ω-languages are Rα =def

{L | L ≤w Aα}, co-Rα =def {L | L ≤w Aα}, and Rα+1 ∩ co-Rα+1 = {L |
L ≤w Aα ⊕Aα}, for α < ωω.

3. The Wadge-degrees of regular ω-languages are R′
α =def {L | L ≡w Aα} =

Rα � co-Rα, co-R′
α =def {L | L ≡w Aα} = co-Rα � Rα, and R̃α =def

(Rα+1 ∩ co-Rα+1)� (Rα ∪ co-Rα), for α < ωω.
4. All elementary topological properties of regular ω-languages and all Wadge-

degrees of regular ω-languages are decidable (the regular ω-languages given
by deterministic Muller automata).

A natural question is to determine the complexity of the classes listed under 2.
for different popular types of ω-automata such as deterministic or nondetermin-
istic Büchi, Muller, Rabin, Streett and Mostowski (or parity) automata. To our
knowledge, only a couple of results in this direction were established so far.

Theorem 1. 1. [KPB95, WY95] For every α < ωω, given a deterministic
Muller automaton M, one can decide in polynomial time whether Lω(M) ∈
Rα.

2. [SVW87] The problem of deciding, given a nondeterministic Büchi automa-
ton M with input alphabet A, whether Lω(M) = Aω, is PSPACE-complete.

3. [SVW87] The problem of deciding, given a nondeterministic Büchi automa-
ton M, whether Lω(M) = ∅, is NL-complete.

The Statements 2 and 3 above are related to the classesRα because R0 coincides
with {∅} = {L | L ≤w ∅} and the dual class co-(R0) for R0 coincides with
{Aω} = {L | L ≤w Aω}.

We will determine the complexity of all elementary topological properties
of regular ω-languages and all Wadge-degrees of regular ω-languages w.r.t. the

deterministic nondeterministicautomata type C
lower bound upper bound lower bound upper bound

= R0 NL NL NL NLMuller �= R0 NL NL PSPACE PSPACE
= R0 NL NL NL NL

Rabin �= R0 P PNP PSPACE PSPACE
= co-R0 NL NL P co-NP

Streett �= co-R0 P PNP PSPACE EXPSPACE
= R0 NL NL NL NLMostowski �= R0 NL NL PSPACE PSPACE
= R0 NL NL NL NLBüchi �= R0 NL NL PSPACE PSPACE

Complexity of Topological Properties of Regular ω-Languages 531

mentioned types of ω-automata. Our results are represented in the following
table. Let C be an elementary topological property of regular ω-languages, or
a Wadge-degree of regular ω-languages. For deterministic Büchi automata this
is restricted to C ⊆ Rω because they can accept only such regular ω-languages
from Rω . The lower bounds mean hardness for the complexity class in question.

Due to the page restriction we had to omit most of the proofs in this extended
abstract.

2 ω-Languages and Topology

For a set S, let P (S) be the class of subsets of S. For a class C ⊆ P (S), let co-C
be the dual class {C | C ∈ C}, and let BC(C) be the Boolean closure of C.

Fix a finite alphabet A containing more than one symbol. Let A∗ and Aω

denote respectively the sets of all words and of all ω-words (i.e. sequences α :
N → A) over A. The empty word is denoted by ε. Let A+ = A∗ � {ε} and
A≤ω = A∗ ∪ Aω. For n ∈ N, let An be the set of words of length n. Note that
all our results are formulated for arbitrary fixed alphabet A.

The set Aω carries the Cantor topology with the open sets W · Aω, where
W ⊆ X∗. Let B denote the class of Borel subsets of Aω, i.e. the least class
containing the open sets and closed under complement and countable union.
Borel sets are organized in a hierarchy the lowest levels of which are as follows: G
and F are the classes of open and closed sets, respectively; Gδ (Fσ) is the class of
countable intersections (unions) of open (resp. closed) sets; Gδσ (Fσδ) is the class
of countable unions (intersections) of Gδ- (resp. of Fσ-) sets, and so on. In the
modern notation of hierarchy theory, Σ0

1 = G, Σ0
2 = Fσ, Σ0

3 = Gδσ , Σ0
4 = Fσδσ

and so on, Π0
n =def co-Σ0

n is the dual class for Σ0
n, and Δ0

n = Σ0
n ∩Π0

n. The
sequence {Σ0

n+1}n<ω is known as the finite Borel hierarchy. It may be in a
natural way extended on all countable ordinals. The resulting sequence called
the Borel hierarchy exhausts the class B. For any n > 0, the class Σ0

n contains
∅, Aω and is closed under countable unions and finite intersections, while the
class Δ0

n is closed under complement and finite unions. For any n > 0, we have
the strict inclusions Σ0

n ∪Π0
n ⊂ BC(Σ0

n) ⊂ Δ0
n+1.

For L,K ⊆ Aω, L is said to be Wadge reducible to K (in symbols L ≤w K),
if L = g−1(K) for some continuous function g : Aω → Aω. The Wadge re-
ducibility on P (Aω) is a preorder. By ≡w we denote the induced equivalence
relation which gives rise to the corresponding quotient partial ordering. Fol-
lowing a well established jargon, we call this ordering the structure of Wadge
degrees [Wa72, Wa84]. The operation L ⊕ K = {0 · ξ ∪ i · η | 0 < i < k, ξ ∈
L, η ∈ K} on subsets of Aω

k induces the operation of least upper bound in
the structures of Wadge degrees. Any level of the Borel hierarchy is closed
under the Wadge reducibility in the sense that every set reducible to a set
in the level is itself in that level. Moreover, every Σ-level C (and also ev-
ery Π-level) of the Borel hierarchy has a Wadge complete set C which means
that C = {L | L ≤w C}. For additional information on ω-languages see e.g.
[Sta97, Th90, Th96].

532 V.L. Selivanov and K.W. Wagner

3 Finite Automata Accepting ω-Languages

Finite automata may accept ω-languages in different ways. Here we briefly recall
some acceptance modes and corresponding facts that will be used later.

By deterministic pre-automaton (over A) we mean a triple M = (S,A, δ)
consisting of a finite non-empty set S of states, an input alphabet A and a
transition function δ : S × A → S. The transition function is naturally ex-
tended to the function δ : S × A∗ → S defined by induction δ(s, ε) =def s and
δ(s, xa) =def δ(δ(s, x), a) where x ∈ A∗ and a ∈ A. For input sequences from Aω

define the function δ : S × Aω → Sω by δ(s, ξ)(n) = δ(s, ξ[n]) where ξ[n] is the
prefix of ξ of length n.

Nondeterministic pre-automata are defined in the same way only now the
transition function is of the form δ : S × A → P (S) which is extended to the
function δ : S×A∗ → P (S) by δ(s, ε) =def {s} and δ(s, xa) =def

⋃
s′∈δ(s,x) δ(s

′, a)
where x ∈ A∗ and a ∈ A. For input sequences from Aω define the function
δ : S ×Aω → P (Sω) by δ(s, ξ) =def {η | η(0) = s ∧ ∀i(η(i + 1) ∈ δ(η(i), ξ(i)))}.

Unlike automata on finite words, for automata on ω-words the acceptance
conditions were defined in different way by different authors. As a result, there
are several notions of automata accepting ω-words (which we generally call ω-
automata). For η ∈ Sω, let inf(η) be the set of all s ∈ S which occur infinitely
often in η.

Let (S,A, δ) be a deterministic pre-automaton and s0 ∈ S. The quintuple
M = (S,A, δ, s0,F) is called a deterministic

– Büchi automaton if F ⊆ S; it recognizes the set
Lω(M) = {ξ ∈ Aω | inf(δ(s0, ξ)) ∩ F �= ∅},

– Muller automaton if F ⊆ P (S); it recognizes the set
Lω(M) = {ξ ∈ Aω | inf(δ(s0, ξ)) ∈ F},

– Rabin automaton if F ⊆ P (S)2; it recognizes the set
Lω(M) = {ξ ∈ Aω | ∃((E,F) ∈ F)(inf(δ(s0, ξ))∩E = ∅∧ inf(δ(s0, ξ))∩F �=
∅)},

– Mostowski automaton (known also as Rabin chain automaton or parity au-
tomaton) if it is a deterministic Rabin automaton such that F = {(E1, F1),
(E2, F2), . . . , (Em, Fm)} satisfies E1 ⊆ F1 ⊆ E2 ⊆ F2 ⊆ · · · ⊆ Em ⊆ Fm,

– Streett automaton if F ⊆ P (S)2; it recognizes the set
L′

ω(M) = {ξ ∈ Aω | ∀((E,F) ∈ F)(inf(δ(s0, ξ))∩E �= ∅∨ inf(δ(s0, ξ))∩F =
∅)}.

Deterministic Streett automata and deterministic Rabin automata are for-
mally the same objects, and L′

ω(M) = Aω � Lω(M) for every deterministic
Rabin automaton M.

The nondeterministic versions of the introduced types of automata are defined
in the usual way: We start with a nondeterministic pre-automaton and instead of
the acceptance condition H(inf(δ(s0, ξ))) we use the acceptance condition ∃η(η ∈
δ(s0, ξ) ∧ H(inf(η))), i.e. there is an infinite run such that the corresponding
sequence of states satisfies the acceptance condition.

Complexity of Topological Properties of Regular ω-Languages 533

Theorem 2. For any ω-language L ⊆ Aω the following statements are equiva-
lent:

1. L is recognized by a deterministic Muller (Rabin, Mostowski, Streett) au-
tomaton.

2. L is recognized by a nondeterministic Büchi (Muller, Rabin, Mostowski,
Streett) automaton.

3. L is a finite union of sets U · V ω where U ⊆ A∗ and V ⊆ A+ are regular
languages.

The ω-languages satisfying the assertions above are called regular ω-languages.
Let R be the class of regular ω-languages.

Theorem 3. 1. R ⊂ BC(Σ0
2).

2. [La69, SW74] The deterministic Büchi automata accept exactly the regular
Π0

2-sets.

For the above defined types of automata we introduce the abbreviations B, M,
R, P, and S for Büchi, Muller, Rabin, Mostowski (parity), and Streett automata,
resp., and D and N stand for deterministic and nondeterministic, resp. In this
way, for example, NB is the name for nondeterministic Büchi automata. Let C
be a class of ω-languages, and let T be a type of automata. We consider the

Problem (C)T :
Given: An automaton M of type T .
Question: Does M accept an ω-language in C?

Because of the duality of the deterministic Rabin acceptance and the deter-
ministic Streett acceptance we have (where ≡log

m denotes the many-one logspace
equivalence)

Proposition 1. If C is a class of ω-languages then (C)DS ≡log
m (co-C)DR.

By Theorem 2 all the introduced classes of ω-automata (besides deterministic
Büchi automata) are equivalent in the sense that they recognize the same ω-
languages. Moreover, the well known proofs of these equivalences are effective,
i.e. from a given automaton of some type one can compute an equivalent au-
tomaton of any other type. When one is interested in complexity considerations
(as we are here), the computational resources needed for finding the equivalent
automaton and its size become important. For types T, T ′ of ω-automata we
write T ≤p

m T ′ if there exists a polynomial time computable function f such
that, for every automaton M of type T , the result f(M) is an automaton of
type T ′ which accepts the same ω-language as M. The following relationship to
decision problems is obvious:

Proposition 2. Let T and T ′ be two types of ω-automata, and let C be a class
of ω-languages. Then T ≤p

m T ′ implies (C)T ≤p
m (C)T ′ .

Unfortunately, some of the well known reductions in Theorem 2 do not work in
polynomial time. For some cases one can even prove that this is not possible. In

534 V.L. Selivanov and K.W. Wagner

[Sa88] an overview on possibility or impossibility of polynomial time reductions
between different types of ω-automata is given (for more recent papers on this
see also [Lo99, Ya06]).

Theorem 4. [Sa88] The following figure represents some results on polynomial
time reductions between different types of ω-automata. A solid line means that
there exists a polynomial time reduction from the notion below to the notion
above. A dotted arc means that polynomial time reduction in this direction is
not proved and not disproved. Moreover, there are no further polynomial time
reductions between these types of ω-automata which do not already follow from
the solid lines and dotted arcs.

DB

NB = NR = NP

NS

NMDS DR

DP DM

4 Topological Properties of Regular ω-Languages

Topological properties are classes of ω-languages which are closed under Wadge
reducibility, i.e., under inverse continuous functions. Theses are just the classes
{L | ∃L′(L′ ∈ C ∧L ≤w L′)} where C ⊆ P (Aω). We are interested in topological
properties of regular ω-languages, these are just the classes Ĉ =def {L | ∃L′(L′ ∈
C ∧ L ≤w L′)} ∩ R where C ⊆ R. If [L]w is the ≡w-equivalence class which
includes L ⊆ Aω (the Wadge degree of L) then we have Ĉ =

⋃
L∈C [̂L]w for every

C ⊆ R. That means: we know all topological properties of regular ω-languages
if we know all elementary topological properties [̂L]w of regular ω-languages L.
Furthermore, we know these, if we know all regular Wadge degrees [L]w ∩R. We
define the family T =def {[L]w ∩ R | L ∈ R} of all regular Wadge degrees and
the family T̂ =def {[̂L]w | L ∈ R} of all elementary topological properties of
regular ω-languages.

These families of classes were completely characterized in [Wag79] by some
invariants of deterministic Muller automata. We recall in this section the def-
initions and results from this paper which we need here. In what follows let
M = (S,A, δ, s0,F) be a deterministic Muller automaton.

A subset S′ ⊆ S is called a loop if there exist an s ∈ S and x, z ∈ A∗ such
that δ(s0, x) = δ(s, z) = s and {δ(s, y) | y is an initial part of z} = S′. A loop

Complexity of Topological Properties of Regular ω-Languages 535

S2 is reachable from a loop S1 if there exists an s ∈ S1 and an x ∈ A∗ such that
δ(s, x) ∈ S2.

For m ≥ 1, an m+chain is a sequence (S1, S2, . . . , Sm) of loops such that
S1 ⊂ S2 ⊂ · · · ⊂ Sm, S1, S3, · · · ∈ F , and S2, S4, · · · ∈ P (S)�F . An m−chain is
a sequence (S1, S2, . . . , Sm) of loops such that S1 ⊂ S2 ⊂ · · · ⊂ Sm, S1, S3, · · · ∈
P (S)� F , and S2, S4, · · · ∈ F .

For m,n ≥ 1, an (m,n)+superchain is a sequence (T1, T2, ..., Tn) such that
T1, T3, . . . are m+chains, T2, T4, . . . are m−chains, and the loops from Ti+1 are
reachable from the loops of Ti for i = 1, 2, . . . , n − 1. An (m,n)−superchain
is a sequence (T1, T2, . . . , Tn) such that T1, T3, . . . are m−chains, T2, T4, . . . are
m+chains, and the loops from Ti+1 are reachable from the loops from Ti for
i = 1, 2, . . . , n− 1.

Now define the characteristics
m+(M) =def max{m | there exists an m+chain in M},
m−(M) =def max{m | there exists an m−chain in M},
m(M) =def max{m+(M),m−(M)}},
n+(M) =def max{n | there exists an (m(M), n)+superchain in M},
n−(M) =def max{n | there exists an (m(M), n)−superchain in M}, and
n(M) =def max{n+(M), n−(M)}.

The characteristics m+(M), m−(M), n+(M), and n−(M), are invariants
of all automata accepting the same language:

Theorem 5. For deterministic Muller automata M,M′, if Lω(M) = Lω(M′)
then m+(M) = m+(M′), m−(M) = m−(M′), n+(M) = n+(M′), and n−(M)
= n−(M′).

Theorem 5 justifies the following definition. Let L be an ω-language and let M
be a deterministic Muller automaton such that Lω(M) = L. Then m+(L) =def

m+(M), m−(L) =def m−(M), n+(L) =def n+(M), and n−(L) =def n−(M).
For m,n ≥ 1, define the classes

Cn
m =def {L | m(L) = m ∧ n+(L) = n− 1 ∧ n−(L) = n},

Dn
m =def {L | m(L) = m ∧ n+(L) = n ∧ n−(L) = n− 1},

En
m =def {L | m(L) = m ∧ n+(L) = n−(L) = n},

Ĉn
m =def {L | m(L) < m ∨ (m(L) = m ∧ n+(L) < n)},

D̂n
m =def {L | m(L) < m ∨ (m(L) = m ∧ n−(L) < n)}, and

Ên
m =def {L | m(L) < m ∨ (m(L) = m ∧ n(L) ≤ n)}.

Some important relations between these classes are given by the following
theorem.

Theorem 6. Let m,n ≥ 1.
1. Dn

m = co-Cn
m and D̂n

m = co-Ĉn
m.

2. Ĉn
m ∪ D̂n

m ⊂ Ên
m = Ĉn+1

m ∩ D̂n+1
m .

3. Ĉ1
m+1 ∩ D̂1

m+1 =
⋃

n≥1 Ĉn
m =

⋃
n≥1 D̂n

m =
⋃

n≥1 Ên
m = {L | m(L) ≤ m}.

4. The classes Cn
m, Dn

m, and En
m form a partition of the class of regular ω-

languages.
5. Cn

m = Ĉn
m� D̂n

m, Dn
m = D̂n

m� Ĉn
m, and En

m = Ên
m� (Ĉn

m ∪ D̂n
m).

536 V.L. Selivanov and K.W. Wagner

The following theorem shows the topological nature of the classes Ĉn
m, D̂n

m and Ên
m.

Theorem 7. 1. For m,n ≥ 1, there hold Ĉn
m = Ĉn

m, D̂n
m = D̂n

m and Ên
m = Ên

m.
Hence these classes are topological properties of regular ω-languages.

2. Ĉ1
1 = {∅} and D̂1

1 = {Aω}.
3. Ĉ2

1 is the class of regular open languages, and D̂2
1 is the class of regular closed

languages.
4. Ĉ1

2 is the class of regular Gδ-languages, and D̂1
2 is the class of regular Fσ-

languages.
5. For m,n ≥ 1, the classes Cn

m and Dn
m are regular Wadge degrees.

6. For n ≥ 1, the class En
1 is a regular Wadge degree.

From this theorem we know that the classes Ĉn
m and D̂n

m for m,n ≥ 1, and the
classes Ên

1 for n ≥ 1 are elementary topological properties of regular ω-languages.
So one has to look at the classes Ên

m for m ≥ 2 and n ≥ 1, how they split into
elementary topological properties of regular ω-languages. For this reason define
d+S =def {s | s ∈ S and an (m(M), n(M))+superchain can be reached from s}
andd−S =def {s | s ∈ S and an (m(M), n(M))−superchain can be reached from
s}. Notice that d+S �= ∅ implies s0 ∈ d+S, that d−S �= ∅ implies s0 ∈ d−S, and
that the defining conditionm(M) = m∧n+(M) = n−(M) = n of En

m is equivalent
to m(M) = m ∧ n(M) = n ∧ d+S ∩ d−S �= ∅.

The derivation dM of a Muller automaton M = (S,A, δ, s0,F) is defined as
follows. If m(M) = 1 or n+(M) �= n−(M) then dM =def M. Otherwise dM is
defined as the Muller automaton dM =def ((d+S∩d−S)∪{s+, s−}, A, dδ, s0,F∩
P (d+S ∩ d−S)) where s+, s− �∈ d+S ∩ d−S and

dδ(s, a) =def

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ(s, a), if s, δ(s, a) ∈ d+S ∩ d−S,
s+, if s ∈ d+S ∩ d−S and δ(s, a) ∈ d+S� d−S,
s−, if s ∈ d+S ∩ d−S and δ(s, a) �∈ d+S,
s+, if s = s+,
s−, if s = s−.

For r ≥ 1, define the r-th derivation of M by d0M =def M and dr+1M =def

d(drM).

Theorem 8. For deterministic Muller automataMandM′, ifLω(M) = Lω(M′)
then Lω(dM) = Lω(dM′), i.e., the derivation is an invariant of all automata
accepting the same language.

Theorem 8 justifies the following definition. Let L be an ω-language and let M
be a deterministic Muller automaton such that Lω(M) = L. Then d(L) =def

Lω(dM). For C ⊆ R define d(C) =def {d(L) | L ∈ C} and d−1(C) =def {L |
d(L) ∈ C}.

Theorem 9. 1. If L ∈ En
m for m ≥ 2, n ≥ 1 then d(L) ∈ C1

m ∩D1
m.

2. If L ∈ Cn
m or L ∈ Dn

m for m,n ≥ 1 or L ∈ En
1 for n ≥ 1 then d(L) = L.

Complexity of Topological Properties of Regular ω-Languages 537

For a class C ⊆ R and m,n ≥ 1 we define En
mC =def {L | L ∈ En

m ∧ d(L) ∈ C} =
En

m∩d−1(C). Now the family T of all regular Wadge degrees can be characterized
as follows.

Theorem 10
T={En1

m1
En2

m2
. . .Enr−1

mr−1Cnr
mr
|r ≥ 1,m1 > m2 > · · · > mr≥ 1, n1, n2, . . . , nr≥ 1}∪

{En1
m1

En2
m2

. . .Enr−1
mr−1Dnr

mr
|r ≥ 1,m1 > m2 > · · · > mr≥ 1, n1, n2, . . . , nr≥ 1}∪

{En1
m1

En2
m2

. . .Enr−1
mr−1E

nr
1 |r≥ 1,m1 > m2 > · · · > mr−1>1, n1, n2, . . . , nr ≥ 1}.

For our decision algorithms the following theorem will be important.

Theorem 11. For m ≥ 2 and n ≥ 1, if C ⊆ C1
m ∩D1

m then Ên
mC = Ĉn

m ∪ D̂n
m ∪

En
mĈ.

An interesting relationship between the structure of T and T̂ , resp., and the
ordinal numbers below ωω should be mentioned. It is well-known that every
non-zero ordinal α < ωω can be presented in the form α = n1 ·ωm1 +n2 ·ωm2 +
· · · + nr · ωmr where r ≥ 1, m1 > m2 > · · · > mr ≥ 0 and n1, n2, . . . , nr ≥ 1
(*). This gives a bijection between the ordinals below ωω and the classes of type
En1

m1
En2

m2
. . .Enr−1

mr−1Cnr
mr

. If α is presented in the form (*) then we define R′
α =def

En1
m1+1E

n2
m2+1 . . . Enr−1

mr−1+1C
nr+1
mr+1. Then co-R′

α=En1
m1+1E

n2
m2+1 . . .E

nr−1
mr−1+1D

nr+1
mr+1.

For α = n1 ·ωm1 +n2 ·ωm2 +· · ·+nr−1 ·ωmr−1 +nr where r ≥ 1, m1 > m2 > · · · >
mr−1≥1 and n1, n2, . . . , nr ≥ 1 we obtain R̃α+1=En1

m1+1E
n2
m2+1 . . .E

nr−1
mr−1+1E

nr+1
1

where R̃α+1 =def (Rα+1 ∩ co-Rα+1)� (Rα ∪ co-Rα) and Rα =def R̂′
α. Thus we

have T = {R′
α, co-R′

α, R̃α+1 | α < ωω} and T̂ = {Rα, co-Rα,Rα+1 ∩ co-Rα+1 |
α < ωω}.

We have Rα ∪ co-Rα ⊆ Rα+1 ∩ co-Rα+1 for α < ωω. Hence, (T ;≤w) and
(T̂ ;⊆) have a quasi-linear structure.

5 Upper Bounds for Deterministic Automata

Let M = (S,A, δ, s0, E) be a deterministic ω-automaton of some type,
where E describes an acceptance condition for this type. Obviously, M is
equivalent to the deterministic Muller automaton M̃ = (S,A, δ, s0,

{S′ | S′ satisfies condition E}), i.e., we have Lω(M) = Lω(M̃). In fact, deter-
ministic ω-automata of arbitrary types can be considered as succinct
presentations of deterministic Muller automata. Hence the definitions of chains,
superchains, and the characteristics m+, m−, n+, and n− apply also to these
types of ω-automata. For X ∈ {M,R, S,P,B}, let

ChainDX =def {(M, m, s, +) | M is a deterministic X-automaton, m ≥ 1,
and s belongs to an m+chain of M} ∪

{(M, m, s, −) | M is a deterministic X-automaton, m ≥ 1,
and s belongs to an m−chain of M},

538 V.L. Selivanov and K.W. Wagner

SuperDX =def {(M, m,n, s, +) | M is a deterministic X-automaton, m, n ≥ 1, and
an (m, n)+superchain of M is reachable from s} ∪

{(M, m,n, s, −) | M is a deterministic X-automaton, m, n ≥ 1, and
an (m, n)−superchain of M is reachable from s}

Proposition 3. Let M be a deterministic X-automaton, and let m,n ≥ 1.
1. m+(M) ≥ m⇐⇒ there exists an s ∈ S such that (M,m, s,+) ∈ ChainDX.
2. m−(M) ≥ m⇐⇒ there exists an s ∈ S such that (M,m, s,−) ∈ ChainDX.
3. n+(M) ≥ n⇐⇒ (M,m(M), n, s0,+) ∈ SuperDX.
4. n−(M) ≥ n⇐⇒ (M,m(M), n, s0,−) ∈ SuperDX.

It turns out that, for deciding the topological degrees, the complexity of Chain
plays a central role. Knowing its complexity, the complexity of the topological
properties follows in a uniform way. (As to the notation in the following theorem:
If K is the class of all languages accepted by machines of a certain type, and L
is an arbitrary language class, then KL is the class of all languages which can be
accepted by machines of the given type when using oracles from L. If L = {A}
is a singleton then we write KA rather than KL. For a standard textbook on
complexity see e.g. [BDG95].)

Lemma 1. Let X ∈ {M,R, S,P,B}.

1. SuperDX ∈ NLChainDX.
2. There exists an LNLChainDX -algorithm which, given a deterministic X-

automaton M, computes the characteristics m+(M), m−(M), n+(M), and
n−(M).

3. There exists an LNLChainDX -algorithm which, given a deterministic X-
automaton M, computes dM.

4. For every C ⊆ R, if (C)DX ∈ NLChainDX then (d−1C)DX ∈ NLChainDX.

Theorem 12. For X ∈ {M,R, S,P,B} and C ∈ T , the problems (Ĉ)DX and
(C)DX are in NLChainDX.

6 Deterministic Muller Automata

In this section, let M = (S,A, δ, s0,F) be a deterministic Muller automaton
where F = {S1, S2, . . . , Sr}. We define a few problems needed for our algorithm.
Let m,n ≥ 1.

(M, i, j) ∈ Subset ⇔def Si ⊂ Sj

(M, i, j) ∈ Subseteq ⇔def Si ⊆ Sj

(M, s, s′) ∈ Reach ⇔def ∃x(x ∈ A∗ ∧ δ(s, x) = s′)
(M, i) ∈ Loop ⇔def Si is a loop of M

(M, i, j) ∈ Between+ ⇔def ∃k(Sk is a loop of M and Si ⊂ Sk ⊂ Sj)
(M, i, j) ∈ Between− ⇔def (M, i, j)
∈ Between+∧∃S′(S′ is a loop of M∧Si ⊆S′ ⊆Sj)

(M, i) ∈ Outside+ ⇔def ∃k(Sk is a loop of M and Si ⊂ Sk)
(M, i) ∈ Outside− ⇔def (M, i)
∈ Outside+ ∧ ∃S′(S′ is a loop of M and Si ⊆ S′)
(M, i) ∈ Inside+ ⇔def ∃k(Sk is a loop of M and Sk ⊂ Si)
(M, i) ∈ Inside− ⇔def (M, i)
∈ Inside+ ∧ ∃S′(S′ is a loop of M and S′ ⊆ Si)

Complexity of Topological Properties of Regular ω-Languages 539

Lemma 2. 1. The problems Subset, Subseteq,Reach,Loop,Between+,Between−,
Outside+, Outside−, Inside+, and Inside− are in NL.

2. ChainDM ∈ NL.

Lemma 2 provides the upper bound of the main result of this section.

Theorem 13. For C ∈ T , the problems (Ĉ)DM and (C)DM are NL-complete.

7 Deterministic Mostowski and Büchi Automata

Here we can prove the same results as for deterministic Muller automata.

Lemma 3. The problems ChainDP and ChainDB are in NL.

To understand the following theorem remember that deterministic Büchi au-
tomata can accept just the sets from Ĉ1

2, i.e., from C1
2, Cn

1 , Dn
1 , and En

1 for
n ≥ 1.

Theorem 14. 1. For every C ∈ T , the problems (Ĉ)DP and (C)DP are NL-
complete.

2. The problems (C1
2)DB, (Ĉn

1)DB, (Cn
1)DB, (D̂n

1)DB, (Dn
1)DB, (Ên

1)DB, and (En
1)DB

are NL-complete for n ≥ 1.

8 Deterministic Rabin and Streett Automata

We start with the complexity of chains and superchains. Just by guessing a
possible chain or superchain and testing whether it is really one we obtain

Proposition 4. The problems ChainDR, ChainDS, SuperDR, and SuperDS are
in NP.

From Theorem 12 we obtain immediately that the problems (Ĉ)DR and (C)DR

are in PNP for all C ∈ T . However, in some cases there are better upper bounds
in terms of the Boolean hierarchy {NP(n)}n≥1 over NP (see e.g. [We85]); recall
that NP(1) coincides with NP, NP(2) is the class of differences of NP-sets and
NP(3) is the class of sets (A�B)∪C where A,B,C are NP-sets. Unfortunately,
in most cases there remains a gap between upper bound and lower bound. We
consider Rabin automata first.

Theorem 15. 1. The problem (C1
1)DR is NL-complete.

2. The problem (D1
1)DR is P-hard and in co-NP.

3. The problems (Cn
m)DR and (Dn

m)DR for m+n > 2, and the problems (En
m)DR

for m,n ≥ 1 are P-hard and in NP(2).
4. The problems (Ĉn

m)DR and (D̂n
m)DR for m+n > 2, and the problems (Ên

m)DR

for m,n ≥ 1 are P-hard and in co-NP(3).
5. For every C ∈ T�

⋃
m,n≥1{Cn

m,Dn
m,En

m}, the problems (Ĉ)DR and (C)DR are
P-hard and in PNP.

540 V.L. Selivanov and K.W. Wagner

Because of Proposition 1 we obtain

Theorem 16. 1. The problem (D1
1)DS is NL-complete.

2. The problem (C1
1)DS is P-hard and in co-NP.

3. The problems (Cn
m)DS and (Dn

m)DS for m+n > 2, and the problems (En
m)DS

for m,n ≥ 1 are P-hard and in NP(2).
4. The problems (Ĉn

m)DS and (D̂n
m)DS for m+n > 2, and the problems (Ên

m)DS

for m,n ≥ 1 are P-hard and in co-NP(3).
5. For every C ∈ T �

⋃
m,n≥1{Cn

m,Dn
m,En

m}, the problems (Ĉ)DS and (C)DS are
P-hard and in PNP.

It should be noticed that we would obtain exact complexity results for determin-
istic Rabin and Streett automata if we could show that ChainDR (or, equivalently,
ChainDS) is in P. By Theorem 12, Theorem 15, and Theorem 16 we obtain

Theorem 17. Assume ChainDR ∈ P.
1. For all C ∈ T � {C1

1}, the problems (Ĉ)DR and (C)DR are P-complete.
2. For all C ∈ T � {D1

1}, the problems (Ĉ)DS and (C)DS are P-complete.

However, we even do not know the complexity of the problem (D1
1)DR, that is

the problem of whether every loop of a given deterministic Rabin automaton
satisfies the acceptance condition of this automaton. We know that this problem
is P-hard and in co-NP, but we do not know whether this problem is in P or
co-NP-complete.

9 Nondeterministic Automata

Let M = (S,A, δ, s0, E) be a nondeterministic ω-automaton of some type. A set
S′ ⊆ S is a loop ofM if there are l ≥ 1, x ∈ A∗, a1, . . . , al ∈ A, and s1, . . . , sl ∈ S
such that {s1, . . . , sl} = S′, s1 ∈ δ(s0, x), sj+1 ∈ δ(sj , aj) for j = 1, . . . , l − 1,
and s1 ∈ δ(sl, al).

Theorem 18. Let T ∈ {NR,NM,NP,NB}.
1. The problem (C1

1)T is NL-complete.
2. For every C ∈ T�{C1

1}, the problems (C)T and (Ĉ)T are PSPACE-complete.

This PSPACE-upper bound is established by the use of determinization. In-
stead one could use the algebraic characterization of the hierarchy of regular
ω-languages [PP04, Wi93, Pi97, CP97, CP99, DR06, Ca07]. W.l.o.g. it suffices
to show that (Rα)NB ∈ PSPACE for each α < ωω. In the algebraic approach, one
associates to any nondeterministic Büchi automaton M = (Q,A, δ, i, F) a finite
ω-semigroup (S+, Sω), a set P ⊆ Sω and a morphism ϕ : (A+ ∪Aω) → (S+, Sω)
of ω-semigroups such that Lω(M) = ϕ−1(P) and Lω(M) ∈ Rα iff P has no
μα-alternating tree. The last notion is formulated similar to the corresponding
notions in [Wag79, Se98] in terms of two preorders on the so called linked pairs
of S+ (most explicitly the details are written in [Ca07]). It is not hard to see that
checking the last condition yields a desired PSPACE-algorithm for Lω(M) ∈ Rα.

Complexity of Topological Properties of Regular ω-Languages 541

Theorem 19. 1. The problem (C1
1)NS is P-hard and in co-NP.

2. For every C ∈ T � {C1
1} the problems (C)NS and (Ĉ)NS are PSPACE-hard

and in EXPSPACE.

References

[BDG95] Balcazar, J.L., Diaz, J., Gabarro, J.: Structural Complextiy I. Springer,
Heidelberg (1995)

[Ca07] Cabessa, J.: A Game Theoretic Approach to the Algebraic Counterpart of
the Wagner Hierarchy. PhD Thesis, Universities of Lausanne and Paris-7
(2007)

[CP97] Carton, O., Perrin, D.: Chains and superchains for ω-rational sets, au-
tomata and semigroups. International Journal of Algebra and Computa-
tion 7(7), 673–695 (1997)

[CP99] Carton, O., Perrin, D.: The Wagner hierarchy of ω-rational sets. Interna-
tional Journal of Algebra and Computation 9(7), 673–695 (1999)

[DR06] Duparc, J., Riss, M.: The missing link for ω-rational sets, automata, and
semigroups. International Journal of Algebra and Computation 16(1), 161–
185 (2006)

[KPB95] Krishnan, S., Puri, A., Brayton, R.: Structural complexity of ω-automata.
In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE
1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 143–156. Springer, Heidel-
berg (1995)

[La69] Landweber, L.H.: Decision problems for ω-automata. Math. Systems The-
ory 4, 376–384 (1969)

[Lo99] Löding, C.: Optimal bounds for the transformation of omega-automata.
In: Pandu Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999.
LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999)

[MS72] Meyer, A., Stockmeyer, L.J.: The equivalence problem for regular expres-
sions with squaring requires exponential time. In: Proc. of the 13th IEEE
Symp. on Switching and Automata Theory 1972, pp. 125–129 (1972)

[Pi97] Pin, J.-E.: Syntactic semigroups. In: Handbook of Formal Languages, pp.
679–746. Springer, Heidelberg (1997)

[PP04] Perrin, D., Pin, J.-E.: Infinite Words. Pure and Applied Math, vol. 141.
Elsevier, Amsterdam (2004)

[Sa88] Safra, S.: On the complexity of ω-automata. In: Proc. of the 29th IEEE
FOCS 1988, pp. 319–327 (1988)

[Se98] Selivanov, V.L.: Fine hierarchy of regular ω-languages. Theoretical Com-
puter Science 191, 37–59 (1998)

[SVW87] Sistla, A.P., Vardi, M.Y., Wolper, P.: The complementation problem for
Büchi automata with applications to temporal logic. Theoretical Computer
Science 49, 217–237 (1987)

[SW74] Staiger, L., Wagner, K.: Automatentheoretische und automatenfreie Char-
acterisierungen topologischer Klassen regulärer Folgenmengen. Elektronis-
che Informationsverarbeitung und Kybernetik 10, 379–392 (1974)

[Sta97] Staiger, L.: ω-Languages. In: Handbook of Formal Languages, vol. 3, pp.
339–387. Springer, Heidelberg (1997)

[Th90] Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical
Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

542 V.L. Selivanov and K.W. Wagner

[Th96] Thomas, W.: Languages, automata and logic. In: Handbook of Formal
Languages, vol. 3, pp. 133–191. Springer, Heidelberg (1997)

[Wa72] Wadge, W.: Degrees of complexity of subsets of the Baire space. Notices
AMS 19, 714–715 (1972)

[Wa84] Wadge, W.: Reducibility and determinateness in the Baire space. PhD
thesis, University of California, Berkely (1984)

[Wag79] Wagner, K.: On ω-regular sets. Information and Control 43, 123–177 (1979)
[Wi93] Wilke, T.: An algebraic theory for for regular languages of finite and infinite

words. Int. J. Alg. Comput. 3, 447–489 (1993)
[We85] Wechsung, G.: On the Boolean closure of NP. In: Budach, L. (ed.) FCT

1985. LNCS, vol. 199, pp. 485–493. Springer, Heidelberg (1985)
[WY95] Wilke, T., Yoo, H.: Computing the Wadge degree, the Lipschitz degree,

and the Rabin index of a regular language of infinite words in polynomial
time. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995,
FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 288–302. Springer,
Heidelberg (1995)

[Ya06] Yan, Q.: Lower Bounds for Complementation of omega-Automata Via the
Full Automata Technique. In: Bugliesi, M., Preneel, B., Sassone, V., We-
gener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 589–600. Springer, Hei-
delberg (2006)

Author Index

Ada, Anil 96
Allauzen, Cyril 108
Atig, Mohamed Faouzi 121

Bassino, Frédérique 134
Bollig, Benedikt 121
Bordihn, Henning 146
Bucci, Michelangelo 158

Calude, Cristian S. 170, 183
Carpi, Arturo 240
Cassaigne, Julien 196
Crochemore, Maxime 206
Csima, Barbara F. 216
Csuhaj-Varjú, Erzsébet 228

D’Alessandro, Flavio 84, 240
Dassow, Jürgen 228
De Luca, Alessandro 158
de Luca, Aldo 158
Dennunzio, Alberto 264
de Souza, Rodrigo 252
Durand, Bruno 276

Engelfriet, Joost 289
Ésik, Zoltán 1
Esparza, Javier 301

Fazekas, Szilárd Zsolt 206
Filiot, Emmanuel 314
Formenti, Enrico 264
Freydenberger, Dominik D. 327

Gawrychowski, Pawe�l 339
Geffert, Viliam 359
Giambruno, Laura 134
Glöckler, Jens 371
Gruber, Hermann 383

Habermehl, Peter 121
Hadravová, Jana 396
Hirvensalo, Mika 21
Holub, Štěpán 396, 408
Holzer, Markus 383
Hromkovič, Juraj 34

Iliopoulos, Costas 206
Ito, Masami 419

Jančar, Petr 56
Jayasekera, Inuka 206
Jirásková, Galina 431, 443

Kapoutsis, Christos 455
Karhumäki, Juhani 467
Kari, Lila 419
Kärki, Tomi 196
Khoussainov, Bakhadyr 216
Kiefer, Stefan 301
Kincaid, Zachary 419
Kĺıma, Ondřej 479
Královič, Richard 455
Krieger, Dalia 339
Kuske, Dietrich 491
Kutrib, Martin 146

Lilin, Eric 289
Luttenberger, Michael 301

Malcher, Andreas 146
Maletti, Andreas 289
Mantaci, Roberto 504
Mantaci, Sabrina 504
Meinecke, Ingmar 491
Mereghetti, Carlo 359
Mohri, Mehryar 108
Mömke, Tobias 455
Morin, Rémi 516

Nicaud, Cyril 134
Nies, André 170
Nowotka, Dirk 408

Okhotin, Alexander 443

Palano, Beatrice 359
Polák, Libor 479

Rampersad, Narad 339
Rastogi, Ashish 108
Reidenbach, Daniel 327

544 Author Index

Restivo, Antonio 504
Romashchenko, Andrei 276

Saarela, Aleksi 467
Schnitger, Georg 34
Seki, Shinnosuke 419
Selivanov, Victor L. 529
Shallit, Jeffrey 72, 339
Shen, Alexander 276
Staiger, Ludwig 170
Stephan, Frank 170

Talbot, Jean-Marc 314
Tison, Sophie 314

Varricchio, Stefano 84
Vaszil, György 228

Wagner, Klaus W. 529

Zamboni, Luca Q. 196
Zimand, Marius 183

	Title Page
	Preface
	Organization
	Table of Contents
	Iteration Semirings
	Introduction
	Preliminaries
	Polynomial Semirings and Power Series Semirings
	Matrix Semirings

	Conway Semirings
	Iteration Semirings
	Partial Iterative Semirings
	ω-Complete *-Semirings

	Kleene Theorem
	Completeness
	Ordered Iteration Semirings
	ωContinuous *-Semirings
	Inductive *-Semirings

	Completeness, again
	References

	Various Aspects of Finite Quantum Automata
	Introduction
	Variants of Finite Automata
	Probabilistic Automata
	Quantum Automata

	Quantum Mechanics: Formalism
	Pure States
	Mixed States

	Quantum Automata (Continued)
	Measure-Once Automata
	Measure-Many Quantum Automata
	Latvian Quantum Automata

	Some Decidability Properties
	Quantum Automata with Open Time Evolution
	References

	On the Hardness of Determining Small NFA’s and of Proving Lower Bounds on Their Sizes
	Introduction
	The Complexity of Determining Small NFA’s
	Small NFA’s from NFA’s
	Small NFA’s from DFA’s

	Communication Complexity and Proving Lower Bounds on the Size of NFA’s
	NFAs and Related Nondeterministic Formalisms
	Ambiguity
	ϵ-Transitions and Succinctness

	References

	Selected Ideas Used for Decidability and Undecidability of Bisimilarity
	Introduction
	Bisimulation Equivalence
	Rewrite Systems as LTSs Generators
	Some Ideas for Decidability
	Finite LTSs
	A General Decidability Scheme for Infinite State Systems
	BPA (Sequential Context-Free Processes)
	BPP (Parallel Context-Free Processes)
	PDA

	Some Ideas for Undecidability
	A Variant of Post Correspondence Problem
	Type -1 Systems
	A Reduction of inf-PCP to Bisimilarity on Type -1 Systems
	Petri Nets

	Some Open Problems
	References

	The Frobenius Problem and Its Generalizations
	Introduction
	Brief History of the Frobenius Problem
	Research on the Frobenius Problem
	Explicit Formulas for g
	Upper and Lower Bounds for g
	Formulas for g in Special Cases
	Computational Complexity of g

	Applications of the Frobenius Number
	The Frobenius Problem and NFA to DFA Conversion

	Related Problems
	The Local Postage Stamp Problem
	The Global Postage-Stamp Problem
	The Optimal Coin Change Problem
	Improving the Current Coin System

	Generalizing the Frobenius Problem to Words
	Other Possible Generalizations
	Computational Complexity
	OpenProblems
	References

	Well Quasi-orders in Formal Language Theory
	Introduction
	Preliminaries
	Generalized Myhill-Nerode Theorem and Highman Theorem
	Copying Systems
	Well Quasi-orders and Unitary Grammars
	On Other Well Quasi-orders
	Well Quasi-orders and Shuffle Closure of Finite Languages
	References

	On the Non-deterministic Communication Complexity of Regular Languages
	Introduction
	Algebraic Automata Theory
	Communication Complexity
	Algebraic Approach to Communication Complexity
	Bounds for Regular Languages and Monoids
	References

	General Algorithms for Testing the Ambiguity of Finite Automata
	Introduction
	Preliminaries
	Characterization of Infinite Ambiguity
	Algorithms
	Intersection of Finite Automata
	Epsilon-Filtering
	Ambiguity Tests

	Application to Entropy Approximation
	Conclusion
	References

	Emptiness of Multi-pushdown Automata Is 2ETIME-Complete
	Introduction
	Multi-pushdown Automata and Depth-n-grammars
	Emptiness of MPDA is in 2ETIME
	Emptiness of MPDA Is 2ETIME-Hard
	Comparison to Bounded-Phase Multi-stack Pushdown Automata
	Conclusion
	References

	The Average State Complexity of the Star of a Finite Set of Words Is Linear
	Introduction
	Preliminary
	Definitions and Constructions
	Enumeration

	MainResult
	Proof for an Alphabet of Size at Least 3
	Proof for an Alphabet of Size 2

	Average Time Complexity of the Determinization
	Minimal Automata
	Random Generation and Experimental Results
	References

	On the Computational Capacity of Parallel Communicating Finite Automata
	Introduction
	Preliminaries and Definitions
	Deterministic Non-returning Versus Returning
	Deterministic Non-centralized Versus Centralized
	Determinism Versus Nondeterminism
	References

	On a Generalization of Standard Episturmian Morphisms
	Introduction
	Standard Episturmian Words and Morphisms
	Involutory Antimorphisms and Pseudopalindromes
	Overlap-Free and Normal Codes
	Standard ϑ -Episturmian Words

	Characteristic Morphisms
	MainResult
	References

	Universal Recursively Enumerable Sets of Strings
	Introduction
	Universal r.e. Prefix Codes
	Plain Versus Prefix-Free Description Complexity
	Discussion
	References

	Algorithmically Independent Sequences
	Introduction
	Preliminaries

	Defining Independence
	Properties of Independent and Finitary-Independent Sequences

	Examples of Independent and Finitary-Independent Sequences
	Effective Constructions of Finitary-Independent Sequences
	If We Have One Source
	If We Have Two Sources
	Producing Independence: The Finite Case

	References

	Relationally Periodic Sequences and Subword Complexity
	Introduction
	Similarity Relations
	Relational Periods
	Relational Subword Complexity
	Future Work
	References

	Bounds on Powers in Strings
	Introduction
	Preliminaries
	A Bound on Repeats with Exponent e, with $1 < e < 2$
	A Bound on Primitively Rooted Cubes
	Conclusion
	References

	When Is Reachability Intrinsically Decidable?
	Introduction
	Graphs with Computable Size Functions
	Counterexample
	Locally Finite Graphs
	Application
	References

	Some New Modes of Competence-Based Derivations in CD Grammar Systems
	Introduction
	Definitions
	The Case of Maximal Final Competence
	The Case of Strongly Maximal Final Competence
	The Case of Comparing Competence
	Conclusions
	References

	The Synchronization Problem for Strongly Transitive Automata
	Introduction
	Preliminaries
	Strongly Transitive Automata
	Unambiguous Automata
	References

	On the Decidability of the Equivalence for k-Valued Transducers
	Introduction
	Preliminaries
	The Lead or Delay Valuation
	The Lexicographic Covering
	Putting Everything Together to Decide the Equivalence
	References

	Decidable Properties of 2D Cellular Automata
	Introduction and Motivations
	Basic Definitions
	MainResults
	Closingness
	Openness
	Permutivity

	Constructions
	Conclusions
	References

	Fixed Point and Aperiodic Tilings
	Introduction
	Macro-Tiles
	Simulating a Tile Set
	Simulating Itself
	Substitution System and Tilings
	Strong Version of Aperiodicity
	Filling Holes
	Tilings with Errors
	Islands of Errors
	Other Applications of Fixed Point Self-similar Tilings
	References

	Extended Multi Bottom-Up Tree Transducers
	Introduction
	Preliminaries
	Extended Multi Bottom-Up Tree Transducers
	Composition Construction
	Relation to Top-Down Tree Transducers
	References

	Derivation Tree Analysis for Accelerated Fixed-Point Computation
	Introduction
	Preliminaries
	Derivation Trees
	Derivation Tree Analysis

	Bamboos and Their Yield
	Star-Distributive Semirings
	The (min, +)-Semiring
	Throughput of Grammars

	Lossy Semirings
	1-Bounded Semirings
	Conclusion
	References

	Tree Automata with Global Constraints
	Introduction
	Trees and TAGED
	Closure Properties of TAGEDs and Decision Problems
	Emptiness of Positive and Negative TAGEDs
	Emptiness When Mixing Equality and Disequality Constraints
	Applications
	MSO with Tree Isomorphism Tests
	Unification with Membership Constraints

	Future Work
	References

	Bad News on Decision Problems for Patterns
	Introduction
	Preliminaries
	The Inclusion of Pattern Languages over Fixed Alphabets
	Proof of Theorem \ref{thmInclE}

	The Inclusion of Similar E-Pattern Languages
	References

	Finding the Growth Rate of a Regular of Context-Free Language in Polynomial Time
	Introduction
	Regular Languages
	Polynomial vs. Exponential Growth
	Finding the Exact Order of Polynomial Growth
	An Algebraic Approach for DFA’s

	Context-Free Languages
	References

	More Concise Representation of Regular Languages by Automata and Regular Expressions
	Introduction
	Preliminaries
	Straight Line Programs for Regular Expressions
	Constant Height Pushdown Automata

	From a Constant Height npda to an slp
	From an slp to a Constant Height npda
	Constant Height pdas Versus Finite State Automata
	The Final Picture
	References

	A Taxonomy of Deterministic Forgetting Automata
	Introduction
	Preliminaries
	The Hierarchy of Deterministic Forgetting Automata
	OpenProblems
	References

	Provably Shorter Regular Expressions from Deterministic Finite Automata
	Introduction
	Basic Definitions
	Choosing a Good Elimination Ordering for the State Elimination Technique
	The Main Lemma
	Eliminating Independent Sets
	From Automata of Small Treewidth to Regular Expressions
	Eliminating Subgraphs of Small Treewidth

	Language Operations and Regular Expression Size
	References

	Large Simple Binary Equality Words
	Introduction
	Basic Concepts and Ideas
	Properties of Cyclic Solutions
	Many bs Induce Rich Synchronized Overflows
	Impact of Five Synchronized Overflows
	From Marked Morphisms to Ordinary Morphisms

	Towards a Complete Characterization
	References

	On the Relation between Periodicity and Unbordered Factors of Finite Words
	Introduction
	Notation and Basic Facts
	Periods and Maximum Suffixes
	Some Facts about Certain Suffixes of a Word
	About Maximum Duval Extensions
	References

	Duplication in DNA Sequences
	Introduction
	Preliminaries
	Closure Properties
	Language Equations
	Controlled Duplication
	Duplication and Primitivity
	Discussion and Future Work
	References

	On the State Complexity of Complements, Stars, and Reversals of Regular Languages
	Introduction
	Preliminaries
	Complements
	Stars
	Reversals
	Conclusions
	References

	On the State Complexity of Operations on Two-Way Finite Automata
	Introduction
	Finite Automata and Tradeoffs between Them
	Complementation
	UnionandIntersection
	Concatenation
	Square and Star
	Reversal
	Inverse Homomorphism
	Summary
	References

	On the Size Complexity of Rotating and Sweeping Automata
	Introduction
	Preliminaries
	Basic Tools and Hardness Propagation
	Closure Properties and a Hierarchy
	Conclusions
	References

	An Analysis and a Reproof of Hmelevskii’s Theorem
	Introduction
	Definitions and Basic Results
	Parametric Words
	BasicEquations
	Images and θ-Images
	Trees of Equations
	References

	Hierarchies of Piecewise Testable Languages
	Introduction
	Eilenberg Type Correspondences
	Boolean and Positive Varieties of Languages
	Disjunctive Varieties of Languages

	Hierarchies of Piecewise Testable Languages
	Bases of Identities for \n{PV}_k and \n{DV}_k
	Disjunctive Varieties \n{DV}_k
	Positive Varieties \n{PV}_k

	Generating by a Single Monoid and Semiring
	FinalRemarks
	References

	Construction of Tree Automata from Regular Expressions
	Introduction
	Trees, Automata, and Regular Expressions
	A Direct Construction
	An Indirect Construction Via Linearizations
	Linear Regular Expressions
	The Projection Construction
	The Quotient Construction

	Algorithmic Issues
	Form of Partial Derivatives
	An Algorithm for Computing the Automaton

	References

	Balance Properties and Distribution of Squares in Circular Words
	Introduction
	Definitions and Notations
	Squares and Kawasaki-Ising Model
	Balance Properties and Distances
	Other Balance Properties
	Conclusions
	References

	MSO Logic for Unambiguous Shared-Memory Systems
	Introduction
	A Generalization of Asynchronous Cellular Automata
	Shared-Memory Systems
	Partial Order Semantics of Shared-Memory Systems
	Partial Commutations and Asynchronous Cellular Automata

	Media-Bounded Pomset Languages
	Media-Bound of a Set of Pomsets
	The Notion of Refinement
	A Characterization of Media-Bounded Sets of Pomsets

	Expressive Power of Unambiguous Shared-Memory Systems
	SMS Languages Are MSO-Definable
	Main Result
	Comparisons with Generalized Asynchronous Cellular Automata

	Conclusion
	References

	Complexity of Topological Propertiesof Regular ω-Languages
	Introduction
	ω-Languages and Topology
	Finite Automata Accepting ω-Languages
	Topological Properties of Regular ω-Languages
	Upper Bounds for Deterministic Automata
	Deterministic Muller Automata
	Deterministic Mostowski and B¨uchi Automata
	Deterministic Rabin and Streett Automata
	Nondeterministic Automata
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

