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Abstract. In this paper, we present a symbolic reachability algorithm
for process algebras with recursive data types. Like the various saturation
based algorithms of Ciardo et al, the algorithm is based on partitioning
of the transition relation into events whose influence is local. As new fea-
tures, our algorithm supports recursive data types and allows unbounded
non-determinism, which is needed to support open systems with data.
The algorithm does not use any specific features of process algebras.
That is, it will work for any system that consists of a fixed number of
communicating processes, where in each atomic step only a subset of
the processes participate. As proof of concept we have implemented the
algorithm in the context of the μCRL toolset. We also compared the per-
formance of this prototype with the performance of the existing explicit
tools on a set of typical case studies.

1 Introduction

High level formalisms, such as Petri Nets and Process Algebras are powerful lan-
guages for specifying systems. When combined with recursive data types, they be-
come even more powerful. However, we have to pay a price for this expressiveness.
Analyzing these specifications with symbolic techniques is difficult, because it is
not easy to translate them to a formalism where the state is a vector of booleans.
Thus, toolsets for process algebras with data, such as CADP [1,2], FDR [3] and
μCRL [4] rely on explicit state techniques. The former two exploit compositional
techniques to extend the size of the state space that canbe dealtwith. For the latter,
we present a symbolic technique based on decision diagrams in this paper.

Computing the set of reachable states is a good way to perform model checking
tasks such as the verification of safety properties. But it can be an expensive
computation. Therefore much work has gone into avoiding doing so. The entire
fields of bounded model checking and on-the-fly model checking are devoted to
developing methods that can give useful results without having to perform a
complete reachability analysis. However, any exhaustive technique will need to
perform a reachability analysis somehow, so we use this as a first step towards
building a complete symbolic tool chain.
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Contribution and related work. In the area of quantitative evaluation, symbolic
techniques already exist. The Petri Net based tool SMART [5] implements a pow-
erful technique called saturation [6]. Also, symbolic techniques have been devel-
oped for a stochastic process algebra and implemented in the tool CASPA [7,8].
The most general algorithm is the one used in SMART. But, it does not have
support for two features that are fundamental for the process algebra μCRL and
an optional extension for Petri Nets: infinite data types and non-deterministic
events.

Infinite data types are due to the fact that in μCRL one can define recursive
data types. Non-deterministic events arise if one needs to model a random input
while modeling an open system. For example, in μCRL, we can write a 1-place
buffer as follows:

X =
∑

x∈N

read(x).write(x).X where N ::= 0 | succ(N) .

If a read-event happens then the argument must be chosen from an infinite set.
In practice, choices like this will be from a finite set, which is not known a priori.
Thus, we do not know a priori a limit on the branching degree. In a classical
Petri Net, events are deterministic: once an event is chosen the result is fixed
because no matter which tokens are selected the result will be identical. In a
colored Petri Net, events can also be non-deterministic. If an event is chosen
then selecting tokens with different colors can still lead to different results. If a
finite superset of the used colors is known in advance a colored Petri Net can be
encoded as a monochrome Petri Net. The algorithms, which are implemented in
SMART rely on deterministic events. In our tool we extend the algorithms to
deal with non-deterministic events. As the underlying data structure, we do not
use MDDs with in-place updates, as in [9]. We use a decision diagram formalism
which mixes features from MDDs and ZDDs instead. Moreover, we use a classical
BDD style next state computation rather than in-place updates.

Overview. The remainder of this paper is organized as follows. In the next
section, we discuss some of the basics of explicit state space generation and
symbolic reachability analysis. In Sect. 3 we discuss the principle of event locality
and how that notion leads to a partitioning of the symbolic transition relation
and a refactoring of the next state code for explicit tools. This is followed by a
presentation of our grey box reachability algorithm. The next section contains
some remarks on how this algorithm was implemented for the μCRL toolset.
Section 6 presents the results of a few experiments performed with that prototype
and we conclude with a discussion of the results so far and future work.

2 Preliminaries

The semantics of modeling formalisms used in model checking are always some
form of transition system. The basic structure of a transition system is defined
below.
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Definition 1. A transition system (TS) is a tuple 〈S, R, s0〉, where S is a set
of states, R ⊆ S × S is the transition relation and s0 ∈ S is the initial state

For practical purposes, one needs to attach labels to either states (e.g. atomic
propositions) or the transitions (e.g. actions) or both. These labels are not es-
sential to the presentation in this paper, so we omit them. What is essential is
that states have a vector structure. In this paper, we assume that a state is a
fixed length vector. From now on N will stand for the length of the vector and
Di for i = 1 · · ·N will be the domain of the ith element. Thus the set of states
S is given as

S = D1 × · · · × DN .

When the set of states is defined as a tuple like this, it is inevitable that not
all states are reachable. In fact, for μCRL many sets Di are the semantics of
a recursive data type and hence infinite. In the remainder, we assume a single
initial state and a finite set of reachable states.

Definition 2. Given a transition system L ≡ 〈S, R, s0〉. The set of reachable
states is

V = {s ∈ S | s0 R∗ s} .

A state s ∈ S is reachable if s ∈ V .

Usually, we build the set of reachable states using a breadth first strategy. Thus,
we define level i (denoted Li) as the set of states whose distance to the initial
state is i. The set of states at distance less than or equal to i is denoted Vi. The
union of all Vi is V :

Proposition 1. Given a transition system L ≡ 〈S, R, s0〉. Let

L0 = {s0} V0 = {s0}
Li+1 = {s′ ∈ S | ∃s ∈ Li : s R s′ ∧ s′ 	∈ Vi} Vi+1 = Vi ∪ Li+1

then

V =
∞⋃

i=0

Vi .

A simple algorithm that computes the set of reachable states is given in Table
1. How this algorithm is implemented depends on how the transition system is
given. Next, we shortly review explicit state space generation from an on-the-fly
interface and symbolic reachability.

For explicit state model checking, the fundamental way of implementing a
transition system is by implementing the two functions in Table 2. The first
function simply returns the initial state and the second returns the set of suc-
cessors {s′ | s R s′} of a given state s as a list. The data structure used to
implement sets is typically a hash table. Using this representation, the imple-
mentation of line 5 of Table 1 boils down to a simple loop that calls GetNext
many times. Because this interface does not give away any details about the
internal structure, we call it a black box interface.
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Table 1. Basic reachability algorithm

1 proc reach ( )
2 V := {s0}
3 L := V
4 while L �= ∅ do
5 L := {y | ∃x ∈ L : x R y}
6 L := L \ V
7 V := V ∪ L
8 end
9 return V

10 end

Table 2. Black Box on-the-fly API

s t a t e Ge t I n i t i a l ( ) ;
s t a t e l i s t GetNext( s t a t e s ) ;

For symbolic reachability, the data structures for both sets and the transition
relation are some form of decision diagram. That is, a set S′ ⊆ S is represented
by a boolean expression S′(x) such that

x ∈ S′ ⇔ S′(x)

where the expression is stored as a decision diagram and x stands for the vec-
tor x1, · · · xn. Similarly the transition relation is stored as a boolean expression
R(x, x′), such that

x R x′ ⇔ R(x, x′)

Given a level as a formula L(x), we can compute the next level using the ex-
pression:

(∃x.(L(x) ∧ R(x, x′)))[x′ := x]

Which provides us with the symbolic implementation of line 5.
The major advantage of symbolic techniques is that the representation of a

set of states can be very compact. For example, the set of bit vectors with even
parity can be represented by a decision diagram with a number of nodes that
is linear in the length of the vector. The same holds for transition relations. Of
course not every relation is represented easily. For example, multiplication of
two n-bit numbers will produce a diagram that is exponential in n. (See [10].)

Although it is easy to apply explicit techniques to a symbolic model, it is not
so easy to apply symbolic techniques to a given explicit model. The problem is
that to compute a symbolic version of the transition relation, we must basically
enumerate all possible transitions and collect them in a symbolic structure. In
the next section, we explain how to modify the explicit interface in such a way
that symbolic techniques can be applied efficiently.
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3 Locality

The key to applying symbolic techniques to on-the-fly models is event locality.
The notion of event locality refers to the fact that even though in a state several
events could be enabled, each event separately affects just a small part of the
state vector. For example, if one has a system which is composed of several
processes running in parallel then in many models there are just two kinds of
events: events in which one of the processes performs a step and events in which
two of the processes synchronize to perform a step. In these cases, the enabledness
and result of steps is decided by looking at the global variables (if any) and the
local variables of the processes involved.

As an example, let us consider two ways of solving the 8-queens problem. The
efficient way of solving the problem with a non-deterministic program is

for i = 1 to 8 do
put queen i in any row in column i
i f for some 0 < j < i queen i on the same row or diagonal as queen j then

f a i l
end

end
s u c c e s s

A solution to the problem is a path that ends in success. Putting the first queen
is a very local event: we just put the queen somewhere in the first column. This
affect the counter i and the position of the first queen only. The 8th step however
is completely non-local: we need to check the counter i, test the positions of
queens 1, · · · , 7 and write the position of queen 8.

To get event locality, we may rewrite the problem as follows:

for i = 1 to 8 do put queen i on row 1 of column i end
while true

i f ∃0 < i, j ≤ 8: queen i on the same row or diagonal as queen j then
move queen i to any row in column i

end
end

A solution to the problem is a path to deadlock: if no two queens are in the same
row, the same diagonal or the same column then no move is possible. However,
every step is local: every move requires testing the positions of two queens and
if enabled writing one of them.

To exploit event locality, one can partition the set of possible transitions into
groups of transitions, such that each group affects part of the state only.

For the algorithm we present in the next section, we need to extend the black
box interface to support group information. Because the extension exposes more
structure than the black box interface, we have called it the grey box interface.
The grey box interface is presented in Table 3 and uses five functions. The first
function returns the length of the state vector (N). The second returns the
number of groups, which from now on we will refer to as K. The third function
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Table 3. Grey Box State Space API

in t GetStateLength ( ) ;
i n t GetGroupCount ( ) ;
i n t l i s t GetGroupInfluenced ( i n t group ) ;
data l i s t Ge t I n i t i a l S t a t e ( ) ;
data l i s t l i s t GetNext( data l i s t src , i n t group ) ;

returns (a list representation of) the set of indices that is influenced (either read
or written) while computing the enabledness and next states of the given group.
This set of indices will be referred to as Ig , for any group g. The fourth function
returns the initial state as a list of length N . The fifth function returns a list of
projected next states, given a projected state and a group. That is, the length
of src and each of the next states is the size of Ig if the group is g.

In terms of symbolic algorithms, event locality means that we can partition the
transition relation into a disjunction (over the separate groups) of conjunctions
(collections of local transitions) as follows:

R(x, x′) =
K∨

g=1

Dg(x, x′) =
K∨

g=1

⎛

⎝Rg(πg(x), πg(x′)) ∧
∧

i�∈Ig

[xi = x′
i]

⎞

⎠ ,

where we define the projection to a group as πg(x) = (xj)j∈Ig .

4 Grey Box Reachability Algorithm

In this section, we describe our symbolic reachability algorithm for grey box
models. The variables and constant used are listed in Table 4. The set operations
are listed in Table 5 and the algorithm itself is presented as Table 6.

The algorithm performs a breadth first analysis. That is, the visited set and
the current level are set to singleton initial state and the visited part of each
group is set to empty. Next, we repeat the main loop in which we replace the
current level by the new states reachable from that level until the current level
is empty.

In each iteration of the main loop we first extend the local symbolic transition
relations of the groups to include all necessary transitions. (See lines 9-15.) That
is, for every group we project the current level to the sub-vector used by the
group and for all of the new sub-vectors we explore the next states and insert
any transition found into the local transition relation. The second half of the
main loop is building the new level by computing the next states of the level
set according to each of the group relations. (See lines 16-21.) This involves a
symbolic next state computation for each group that changes the members of
the sub-vector and leaves all other variables unchanged. From this the next level
is then computed.



Symbolic Reachability for Process Algebras with Recursive Data Types 87

Table 4. Reachability Variables and Constants

K Number of groups constant number
Ii Indices in the state vector, which are Influenced by group i explicit list
V Visited states symbolic
L current Level symbolic
Lp projection of current level to influenced variables of current group symbolic
V p

i projected states Visited for group i symbolic
Rp

i projected transition Relation for group i symbolic
N Next level symbolic
sp projected state explicit vector

Table 5. Operations on sets

· \ · set minus symbolic
· ∪ · set union symbolic
project(·,·) projection to a sub-vector symbolic
step(·,·,·) result of one step in a relation applied to a sub-vector symbolic
nextp

i (·) next state function of the ith group explicit
{· | ·} building a set by inserting elements one element at a time mixed

The set operations project and step can be written as symbolic set operations
as follows:

project(S(x), I) = ∃(xi)i�∈I .S(x)
step(S(x), R((xi)i∈I , (x′

i)i∈I), I) =
(∃(xi)i∈I(S(x) ∧ R((xi)i∈I , (x′

i)i∈I)))[x′
i := xi|i ∈ I]

The function call nextp
i (s) is shorthand for the call GetNext(s,i).

5 Implementation

We have implemented a prototype of the algorithm presented in the previous
section on top of the μCRL tool set ([4],[11]). The concept of this toolset is to
take a specification and compile it into a linear process equation (LPE). An LPE
is a process given as an initial state and a recursive equation:

X(x) =
K∑

i=1

∑

ei∈Ei

Ci ⇒ a(ti,0).X(ti,1, · · · , ti,n)

︸ ︷︷ ︸
summand i

where Ci and ti,j are expressions over ei, x1, · · · , xn. The intended meaning of
this equation is that to perform a step, one has to first non-deterministically
select 1 ≤ i ≤ K (determining a summand), then non-deterministically select
some e ∈ Ei, evaluate the condition Ci to see if the step is enabled and if it is
enabled then the label of the step is the result of the expression a(ti,0) and the
next state is ti,1, · · · , ti,n.
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Table 6. Symbolic reachability algorithm for grey box models

1 proc mixed reach ( )
2 V := {s0}
3 L := V
4 for i = 1 to K do
5 V p

i := ∅
6 Rp

i := ∅
7 end
8 while L �= ∅ do
9 for i = 1 to K do

10 Lp := project(L ,Ii )
11 for sp in Lp \ V p

i do
12 Rp

i := Rp
i ∪ {(sp, dp) | dp ∈ nextp

i (sp)}
13 end
14 V p

i := V p
i ∪ Lp

15 end
16 N := ∅
17 for i = 1 to K do
18 N := N ∪ step (L ,Rp

i ,Ii )
19 end
20 L := N \ V
21 V := V ∪ N
22 end
23 return V
24 end

Hence, an LPE has a natural partitioning into groups by treating each sum-
mand as a group. Selecting this partitioning, the influenced variables of each
summand are as follows:

IX
i = {xj | tj,k 	= xj ∨ ∃k 	= j : xj occurs in Cj or tj,k}

We implemented this natural partitioning and we used it for the tests presented
in this paper.

The μCRL toolset uses the ATerm library ([12]). To make interfacing with the
decision diagrams easy we used a simple decision diagram library for manipulating
sets, which we implemented on top of the ATerm library. The ATerm library was
developed for the manipulation of large terms. It uses maximal sub-term sharing
to keep its memory footprint minimal, which is the equivalent of a global unique
table. It also provides garbage collection, but it does not provide advanced caching
strategies. The resulting data structure for sets of vectors is a form of multi-way
decision diagram (MDD). We call it List Decision Diagram (LDD), because in-
stead of having one node with many edges we have a linked list.

By using the ATerm library, we automatically get maximal sharing (a global
unique table), so there are no duplicate nodes. We can further classify our struc-
ture as a quasi-reduced version [13] rather than the fully-reduced version [14].
This choice was made because the set of possible values at each level is dynamic.
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Fig. 1. The set {dd,de,ed,ee} as LDD and MDD
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Fig. 2. The set {def,eef,fef,ddf,dff,ded,dee} as LDD and MDD

In a fully-reduced setting every extension of the set of values requires an update
of every diagram, in the quasi-reduced setting this operation has no impact at
all. For the same reason we do not use nodes with multiple successors, but just
nodes with 2 successors that form a sorted list.

An LDD is a DAG. In this dag we have three types of nodes. The node types
{ε} (or true) and ∅ (or false) do not have successors. That is, they are constants.
The third type of node has a label (a) and two successors (n1, n2) and is written
as node(a, n1, n2). The semantics [[S]] of an LDD S is as follows:

[[{ε}]] = {ε}
[[∅]] = ∅
[[node(a, n1, n2)]] = {a w | w ∈ [[n1]]} ∪ [[n2]]

To illustrate the relation between MDDs and our own LDDs, we have drawn the
set {dd, de, ed, ee} ({d, e} × {d, e}) and the set {def, eef, fef, ddf, dff, ded, dee}
(Hamming distance to def no more than 1) in both formats in Fig. 1 and 2
respectively. The MDD’s are over the domain D = {d, e, f}. To make these four
diagrams easier to read, we have added edge labels that allow us to check for
membership of a vector by checking if there is a path from the root to {ε} or 1
such that the string of edge labels along the path is the vector. To save clutter
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Table 7. Reachability for Distributed Lift

legs states mem time mem/state states/sec
2 391 30,668 1.08 80,317.22 362.04
3 7,369 56,236 4.32 7,814.58 1,705.79
4 129,849 79,820 29.48 629.47 4,404.65
5 2,165,446 181,592 250.10 85.87 8,658.32
6 33,949,609 661,724 2,344.03 19.96 14,483.44
7 501,505,138 2,246,788 17,995.72 4.59 27,868.02

an edge labeled d, e means two edges, one labeled d and one labeled e. Note that
the edges without label in the LDDs correspond to the linked lists ”building“
the MDD nodes.

The sizes of LDDs and MDDs can only differ by a constant: it can be proven
that the number of nodes in an MDD is less than or equal to the number of nodes
in the corresponding LDD, which is in turn less than or equal to the number of
edges in the MDD.

6 Experiments

In this section, we describe two sets of experiments that have been carried out.
The first set of experiments measures the performance of our symbolic reachability
analysis on two parametrized problems. The second set of experiments compares
the performance of state space generation for a set of five problems and three tools.

To test the performance of our symbolic reachability analysis, we used two
series of problems:

– A distributed lift system [15]. This model describes a system that can lift
large vehicles by using one leg for each wheel of the vehicle. These legs are
connected in a ring topology. The number of legs is a parameter.

– A version of the sliding window protocol [16]. This model is parametrized
by both the number of data elements in the alphabet and the windows size.
(The buffer is a fixed 1 place lossy buffer.)

To test theperformance for thesemodels,weusedadual IntelXeonE5335 (2.0GHz)
machine with Intel 5000P chipset and 8GB memory. We ran one experiment at a
time. The results for the lift problem are in Table 7. Those for the sliding window
protocol are in Table 8. Both tables contain the number of states in each of the
models and the time and memory usage. Time is measured in time elapsed and in
number of states processed per second. Memory is measured in maximum resident
set (RSS) in kB and in number of bytes per state. The first table contains both
forms, the second table has just the second form of the time and memory numbers.

The explicit state space generator of the μCRL has a lower bound of 16
bytes per state, excluding hash tables and other overhead. Since a hash table
easily accounts for another 8 bytes per state, anything below 24 is good. The
reason for these high numbers is that we have used the ATerm library in 64-bit
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Table 8. Reachability for Sliding Window Protocol

states → windows size
mem/state (B)

1 2 3 4 5 6 7 8
states/sec

→
elem

ents

156 1,860 10,608 43,320 146,740 442,524 1,235,528 3,269,680
1 36,785.23 6,355.41 1,749.53 499.90 149.17 50.05 20.62 12.32

111.43 1,273.97 6,548.15 20,826.92 48,589.40 83,652.93 110,020.30 109,171.29
390 10,156 126,138 1,132,248 8,487,750 56,793,060 351,503,922

2 28,262.40 1,821.34 174.08 24.31 7.28 4.79 9.79
267.12 6,269.14 46,545.39 114,600.00 140,688.71 96,365.59 34,239.62

708 32,124 719,460 12,075,000 174,187,380
3 15,955.89 657.04 34.54 5.55 5.19

468.87 18,149.15 125,779.72 189,560.44 89,441.99
1,110 78,156 2,829,570 79,474,200

4 9,819.33 280.12 10.87 3.31
760.27 37,575.00 201,536.32 189,694.00
1,596 161,812 8,746,248 375,691,704

5 7,114.11 135.50 5.88 6.91
1,093.15 67,421.67 269,945.93 113,410.54

2,166 299,820 22,789,098
6 5,137.96 73.29 4.28

1,483.56 103,030.93 301,802.38
2,820 512,076 52,280,988

7 3,683.50 43.42 3.45
1,931.51 139,530.25 314,094.25

3,558 821,644 108,715,890
8 3,143.95 30.87 2.52

2,356.29 179,398.25 294,822.75

mode which uses about twice as much memory as in 32-bit mode. A carefully
designed symbolic set library should work with half the memory or less. The
rate of state exploration in the purely explicit instantiator is typically around a
few thousand states per second. Values of over 100,000 obtained for some sliding
window protocol instances are therefore a big improvement.

Our second experiment used the same set of 5 problems that we used in
an earlier paper where we studied the performance of distributed state space
generators [17]. We list the number of levels (iterations needed), the size of the
state space and a brief description of each problem:

lift5. This model has 103 levels, 2,165,446 states and 8,723,465 transitions. It
describes an elevator system with 5 legs in order to lift large vehicles [15].

SWP. This model has 61 levels, 19,466,100 states and 93,478,264 transitions.
It is a version of the sliding window protocol [16]. This instance has 3 data
elements, window size 2 and 3-place lossy buffers for communication.

1394fin. This model has 170 levels, 88,221,818 states and 152,948,696 transi-
tions. It describes the physical layer service of the 1394 or firewire protocol
and also the link layer protocol entities. [18,19] We use an instance with 3
links and 1 data element.

franklin53. This model has 82 levels, 84,381,157 states and 401,681,445 transi-
tions. It describes a leader election protocol for anonymous processes along
a bidirectional ring of asynchronous channels, which terminates with proba-
bility one [20,21]. We chose an instance with 5 nodes and 3 identities.
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Table 9. Comparison of state space generation tools

problem/order symbolic mixed explicit
time(s) mem(kB) time(s) mem(kB) time(s) mem(kB)

lift5 G 861 378 535 195 408 230
lift5 R 217 181 398 101 319 226
swp G 30,322 345 2,073 111 1,426 1,308
swp R 29,232 342 1,850 107 1,264 1,308
1394fin G 768 214 46,787 2,356 41,560 5,592
franklin53 G out of memory 97,005 23,875 6,745 7,844
franklin53 R1 4,970 2,187 17,649 653 6,557 5,533
franklin53 R2 12,712 6,989 15,448 662 6,565 5,529
ccp33 G out of memory out of memory 44,855 7,741
ccp33 R 146,127 44,214 82,379 2,895 46,092 6,419

CCP33. This model has 297 levels, 97,451,014 states and 1,061,619,779 tran-
sitions. It describes and instance of the cache coherence protocol Jackal for
Java programs with 3 processes and 3 threads [22].

The main goal of this test was to compare the performance of our symbolic
prototype and the sequential state space generator of the μCRL toolset. However,
we also wanted to have an indication of the memory cost of the operations on
decision diagrams. Thus, we implemented a mixed state space generator. This
mixed tool is a direct implementation of reachability in which we enumerate
the successors of each state explicitly, but which uses the symbolic set structure
instead of a hashtable for the set of visited states and the level sets.

All three tools were using version 2.18.0 of the μCRL toolset. To run these
tests, we used a server with dual Intel Xeon X5365 (3.00GHz) processor and an
Intel 5000P chipset with 64GB memory. We ran one experiment at a time.

The problems as they were formulated for the testing of the distributed tools,
could only be dealt with by the symbolic tool in 3 out of 5 cases. The remaining
cases ran out of memory. To fix this, we reordered the variables using the heuristic
that the distance between variables that interact should be low.

The data collected in this test is summarized in Table 9. For each of the tools,
we have two columns: time (in seconds) and maximum memory (in kB). The
first column of the table indicates the problem, the second column contains the
variable order, where G means given and R means reordered.

The given variable ordering of the franklin problem was first all processes
then all channels. We changed this to process variables and channel variables
interleaved, either starting with a process (R1) or starting with a channel (R2).
While the reordering didn’t affect the mixed tools very much, it did have a large
influence on the symbolic tool. It is left as future work to find out if a reason for
this difference can be found.

To compare the performance of the various tools, we compare the best runs for
each tool within each of the groups for lift5, swp, 1394fin, franklin and ccp33. For
memory the score (symbolic vsmixedvs explicit) is 1-4-0.For time the score is 3-0-2.
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What can we learn from these experiments? Looking at the data of the first
test, it seems that the bigger the model the better the performance in both
states/sec and mem/state of the symbolic tools. This is a clear improvement
over the explicit tools where performance usually decreases slightly as the models
grow. It should be noted however, that this trend is broken for the three largest
instances of SWP. We think that this is due to performance issues in our symbolic
set implementation, but that is a conjecture only.

From the second test, we get some data to compare approaches. If we compare
the memory usage of the symbolic tool with the mixed tool then we see that
with one exception, the mixed tool uses less memory. This is to be expected
because the mixed tool uses the symbolic sets for storage only, whereas the
symbolic tool computes with these sets, which requires additional memory for
the operation cache and intermediate results. If we compare the mixed tool
and the explicit tool on time then the mixed tool looses. This is not surprising
because insert/lookup is much more expensive for the symbolic set than for the
hash table set. Comparing the symbolic tool with the explicit tool, then we get a
mixed result. In two cases (lift5,franklin) the results do not differ substantially.
In the other three cases the symbolic tool is substantially better in memory
and time (1394fin), substantially worse in time but better in memory (swp) and
substantially worse in both time and memory (ccp33). The conclusion is that the
symbolic tool even in its current form is a very useful addition, but not capable
of replacing the explicit tool. Replacing the explicit tool will not be an option
for some time anyway, as there are a number of issues left open, which will be
discussed in the next section.

7 Conclusion

In this section, we discuss some of the open issues that need to be solved to
make the symbolic tool more useful and summarize the results.

On the implementation side, the most important task is to replace the cur-
rent ATerm based symbolic set implementation with a much higher performance
decision diagram package. This is needed not only for performance, but also to
allow our back-end to interface with other modeling formalisms. For example,
we plan on writing an interface to NIPS (see [23]) which is a virtual machine
which is compatible with SPIN (see [24]). To do this, we also need to extend the
implementation from fixed vector length to variable vector length.

Independently, we will investigate the effects of the search order on the size
of the intermediate structures. So far, we have used a breadth first search (BFS)
strategy. One of the strategies we need to look at is saturation. Ciardo et al.
have shown that this strategy is much better for Petri Nets. As explanation they
state that it reduces the difference between the size (in numbers of nodes) of the
reachable state space and the peak size of the set of visited states considerably.
If we look at the peak/final differences for our typical models then we find they
are small. Thus, it is not a priori clear if saturation will work well.
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By implementing a symbolic tool for a modeling language that has until now
had support for explicit exploration only, we are in a situation where we can
compare the performance of explicit and symbolic tools. One of the things that
we need to do is see how far we can get with applying the symbolic tool to existing
models. We have started this in the second test by looking at five models, but
all five of the problems were message passing systems. Such systems have a high
degree of locality. This is not always the case. In timed systems one usually
has global synchronisation steps which involve nearly the entire state. We will
study examples with global steps in order to find common features that allow
an efficient embedding into our tool.

Another issue is that so far, we have written models in a way that is optimized
for explicit enumeration. For example consider the 8-queens problem. Finding
all solutions using the first algorithm (directed search) requires looking at 2,058
states. If we use the second algorithm (random moves) we get 16,777,216 states.
Using explicit tools we would never consider the second approach for practical
purposes. However, the worst size of the diagram representing the set of states
for the first approach is 2,655 nodes and the worst size for the second approach
is 166. And there are many other modeling techniques that are good for explicit
exploration but bad for symbolic techniques, such as path reduction by making
sequences of steps atomic.

We have shown that a generalized version of the conjunctive/disjunctive par-
titioning scheme implemented in SMART for Petri nets can be successfully ex-
tended to allow non-deterministic transitions and implemented for the process
algebra μCRL. The initial results with the prototype show that symbolic explo-
ration should be a part of the future of process algebra’s, but also that retiring
the explicit tools is not an option yet.
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