
Testing Concurrent Objects with
Application-Specific Schedulers�

Rudolf Schlatte 1,2, Bernhard Aichernig 1,2, Frank de Boer 3,
Andreas Griesmayer 1, and Einar Broch Johnsen 4

1 International Institute for Software Technology, United Nations University
(UNU-IIST), Macao S.A.R., China

{agriesma,bka,rschlatte}@iist.unu.edu
2 Institute for Software Technology, Graz University of Technology, Austria

aichernig@ist.tugraz.at
3 CWI, Amsterdam, Netherlands

frb@cwi.nl
4 Department of Informatics, University of Oslo, Norway

einarj@ifi.uio.no

Abstract. In this paper, we propose a novel approach to testing exe-
cutable models of concurrent objects under application-specific schedul-
ing regimes. Method activations in concurrent objects are modeled as a
composition of symbolic automata; this composition expresses all pos-
sible interleavings of actions. Scheduler specifications, also modeled as
automata, are used to constrain the system execution. Test purposes are
expressed as assertions on selected states of the system, and weakest
precondition calculation is used to derive the test cases from these test
purposes. Our new testing technique is based on the assumption that we
have full control over the (application-specific) scheduler, which is the
case in our executable models under test. Hence, the enforced scheduling
policy becomes an integral part of a test case. This tackles the problem
of testing non-deterministic behavior due to scheduling.

1 Introduction

In this paper we address the problem of testing executable high-level behavioral
models of concurrent objects. In contrast to multi-threaded execution models for
object-oriented programs such as, e.g., the Java model for the parallel execution
of threads, we consider in this paper a model of object-oriented computation
which describes a method call in terms of the generation of a corresponding
process in the callee. The concurrent execution of objects then naturally arises
from asynchronous method calls, which do not suspend while waiting for the
return value from the method calls. Objects execute their internal (encapsulated)
processes in parallel. In this setting, the scheduling of the internal processes of
an object directly affects its behavior (both its functional and non-functional
� This research was carried out as part of the EU FP6 project Credo: Modeling and

analysis of evolutionary structures for distributed services (IST-33826).

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 319–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

320 R. Schlatte et al.

behavior). Therefore, a crucial aspect of the analysis of concurrent objects is
the analysis of the intra-object scheduling of processes. In contrast to scheduling
on the operating-system level, the object-level scheduling policies will be fine-
tuned according to the application requirements. We call this application-specific
scheduling. In this paper we introduce a novel testing technique for concurrent
objects under application-specific scheduling regimes.

We develop a testing technique for concurrent objects in the context of Creol
[9, 4], a high-level modeling language which allows for the abstraction from im-
plementation details related to deployment, distribution, and data types. The
semantics of this language is formalized in rewriting logic [11] and executes on
the Maude platform [3]. As such the Creol modeling language also allows for the
simulation, testing, and verification of properties of concurrent object models,
based on execution on the Maude platform as described by formal specifications.
One of the main contributions of this paper is a formal testing technique for this
language which integrates formal specifications of application-specific scheduling
regimes at an abstraction level which is at least as high as that of the modeling
language. The novelty of this approach is that it takes the scheduling policy as
an integral part of a test case in order to control its execution.

In order to specify test cases in our formal testing technique, we first de-
velop suitable behavioral abstractions of the mechanisms for synchronizing the
processes within an object, as featured by the modeling language. The integra-
tion of these behavioral abstractions and the formal specification of a particular
scheduling regime provides the formal basis for the generation of test cases. For
the formal specification of test purposes we use assertions which express required
properties of the object state (or a suitable abstraction thereof). Test cases are
then generated by applying a weakest precondition calculus in order to find an
abstract behavior which satisfies the assertions [8]. The execution of a test case
on the Maude platform requires instrumenting the Maude interpreter of Creol’s
operational semantics such that it will enforce the embodied scheduling policy
on the processes of the particular concurrent object which is considered by the
test case. Particular test cases address the behavior of the concurrent object
model under a given, formally defined scheduling regime. If such a test case fails
to reach its goal (test purpose), this might indicate a problem with the given
scheduling policy. Hence, the relevance of this contribution for modeling object-
oriented systems in general is that it also allows the specification and analysis of
scheduling issues in an early stage of design, as an integral part of the high-level
models. However, in the following discussion we focus on the important aspect
of controlling test-case execution by enforcing a scheduling regime.
Paper overview. The rest of this paper is organized as follows: Section 2 intro-
duces the Creol language and executable modeling. Section 3 gives a high-level
overview and scope for our approach to testing. Section 4 explains the model-
ling approach used, including the high-level specification of scheduling policies.
Section 5 discusses the details of test case generation and execution. Finally,
Section 6 discusses related work and Section 7 concludes the paper.

Testing Concurrent Objects with Application-Specific Schedulers 321

sr::= s | s;return e L ::= class C(v) {T f ; M}
v ::= f | x M::= T m (T x) {T x; sr}
b ::= true | false | v e ::= v | new C(v) | e.get | e!m(e) | null | this | caller
T::= C | Bool | Void s ::= v := e | await g | skip | s; s
g ::= b | v? | g ∧ g | if g then s fi | release

Fig. 1. The language syntax. Variables v are fields (f) or local variables (x), and C is
a class name.

2 Creol and Executable Modeling

In the design of component-based or object-oriented systems, it may be desirable
to introduce a separation of concerns between business code, dealing with the
functionality of the software unit, and synchronization code, dealing with the
local scheduling of different computing activities. Creol is a high-level executable
modeling language for concurrent objects in which such scheduling may be left
underspecified [9]. The language has a formal semantics defined in rewriting
logic [11] and executes on the Maude platform [3]. This allows various analysis
techniques to be developed and applied to the Creol models, including, e.g.,
pseudo-random simulation and breadth-first search through the execution space.

In contrast to, e.g., Java, each Creol object encapsulates its state; i.e., all
external manipulation of the object state happens through calls to the object’s
methods. Each process corresponds to the activation of one of the object’s meth-
ods. In addition, objects execute concurrently: each object has a processor dedi-
cated to executing the processes of that object, so processes in different objects
execute in parallel. In Creol, method calls are asynchronous and assigned to so-
called futures [4]. Only one process may be active in an object at a time; the
other processes in the object are suspended. We distinguish between blocking a
process and releasing a process. Blocking causes the execution of the process to
stop, but does not let a suspended process resume. Releasing a process suspends
the execution of that process and lets another (suspended) process resume. Thus,
if a process is blocked there is no execution in the object, whereas if a process is
released another process in the object may execute. Although processes need not
terminate, the execution of several processes within an object may be combined
using release points within method bodies. Release points may include polling
operations on futures, to check for the arrival of replies to asynchronous method
calls. At a release point, the active process may be released and some suspended
process may resume.

Syntax. The language syntax of the subset of Creol used in this paper is pre-
sented in a Java-like style in Fig. 1. For the purpose of this paper, we emphasize
the differences with Java and focus on the specification of a single class. At
present, we omit some features of Creol, including inheritance and method calls.
Expressions e are standard apart from the asynchronous method call e!m(e), the
(blocking) read operation v.get, and the pseudo-variable caller which refers
to the caller of the current method activation. Statements s are standard apart

322 R. Schlatte et al.

class batch_queue(Nat x) {
Nat wc, batch, comein // waiting clients, barrier size
Seq[Object] display // queue of registered client objects

Void batch_queue() { batch := x; wc := 0; comein := 0 }

Void register() {
wc := wc+1;
if wc ≥ batch then comein := batch fi;
await comein > 0;
comein := comein - 1;
wc := wc-1;
display := (display;caller);

}
}

Fig. 2. Motivating example: The batch queue class

from release points await g and release. Guards g are conjunctions of Boolean
expressions b and polling operations v? on futures v. When the guard in an
await statement evaluates to false, the statement becomes a release, other-
wise a skip. A release statement suspends the active process and another
suspended process may be rescheduled.

Example. We consider a version of barrier synchronization given by the class
batch queue in Fig. 2.. In a batch queue object, clients are processed in batches
(of size batch, the parameter x to the constructor sets the size of the batches).
A client which registers must wait until enough clients have registered before
getting assigned a slot in the queue. For simplicity, we represent the queue as a
local variable display, which is a sequence of clients (semicolon is the append
operator on sequences). Before any call to register will return, the object will
contain batch processes.When enough calls are waiting to be registered, the next
batch of processes may proceed by assigning the value of batch to display. It
is easy to see that the order in which callers are added to the display sequence
depends on the internal scheduling of processes in the object.

Once more, we mention that only a subset of Creol is presented in this paper;
the interested reader is referred to e.g. [9].

3 Testing and Testing Methodology

The executable formal semantics of the Creol language allows the application
of different analysis techniques. In this section we briefly sketch our proposed
methodology for testing Creol applications on the Maude platform.

Our methodology focuses on testing run-time properties of Creol objects. By
the very nature of Creol objects, of particular interest is to test run-time prop-
erties of the object state under different possible interleavings of its processes.

Testing Concurrent Objects with Application-Specific Schedulers 323

In order to specify and execute such tests we need an appropriate abstraction of
processes which focuses on their interleavings as described by the control struc-
ture of their release points. We do so by modeling the internal flow of control
within a process between its release points into atomic blocks consisting of se-
quences of assignments. The release points of a process themselves then can be
represented by the states of a finite automaton, also called a method automaton
(because processes are generated by method calls). The transitions of a method
automaton involve the assignments and a guard on the object state which spec-
ifies the enabling condition of the corresponding atomic block. We assume given
a finite set of internal processes in an object, reflecting the message queue of
incoming method calls for the object. The possible interleavings of this initially
given finite set of processes is thus abstracted into the interleavings of their
automata representations.

Scheduler automata further constrain the possible interleavings by means of
abstract representations of the enabling conditions of the method automata. The
automatically generated scheduled system automaton representing the possible
interleavings of the method automata and the scheduler automaton is instru-
mented with test purposes, expressed as Boolean conditions over the method
automata’s state variables, that are attached to states.1

To compute test cases for a test purpose we search for paths that reach and
fulfill the test purpose. We generate a set of such test cases by computing a test
“harness” describing all paths in the model that will reach the test purpose. To
this end, we use weakest precondition computation to propagate the conditions
to the initial state of the system. The condition at the initial state describes the
values that state variables can take for executing that test case, reflecting the
actual parameters to the method calls in the message queue. Each possible path
that reaches the condition(s) is its own test case.

The execution of a test on the Maude platform then checks whether the par-
ticular interleaving of the method automata described by the path in the system
automaton can be realized by the Maude implementation of the Creol object
such that it satisfies the conditions.

4 Combining Method Automata and Scheduling Policies

In this section, we present the symbolic transition system construction used to
specify the system’s behavior. We adapt the symbolic transition systems of [13],
using shared variables for communication instead of input/output actions.

Syntax. A Symbolic Transition System is a tuple 〈Q, q0, T, V 〉, where:

– Q is a finite set of locations qi, i ≥ 0
– q0 ∈ Q is the initial location
– V is a set of variables

1 Computing test cases that reach a certain condition in the program can be done
with conditions that are simply true .

324 R. Schlatte et al.

wc := wc + 1
comein :=
 (wc >= batch) ?
 batch : comein

comein := comein - 1
wc := wc - 1
display := (display ; caller)

a b c
[comein > 0]

Fig. 3. Method Automaton of the register() method

– T is a set of transitions of the form 〈q, g, S, q′〉, where
• q ∈ Q is the source location
• g is a Boolean guard expression over V
• S is a sequence of assignment statements changing the value of some

v ∈ V
• q′ ∈ Q is the target location

Semantics. A state is a pair 〈q, v〉 consisting of a location q and a valuation v
for the variables. For the initial state, q = q0. Let eval be the function mapping
an expression and a valuation to a result2. Then, for a state 〈q, v〉, executing a
transition 〈q, g, S, q′〉 results in a new state 〈q′, v′〉 where the new valuation v′

is the result of evaluating all assignment statements in S, using eval with the
former valuation v to calculate new values for the affected variables, provided
that eval(g, v) = true.

4.1 Modeling Method Invocations: Method Automata

Invocations of methods on Creol objects are modeled by Method Automata, a
slight extension of the symbolic transition systems described above.

A method automaton is a tuple 〈m, Qm, qm
0 , Tm, Vm,Valm〉 so that m is a

unique identifier, Q is a set of locations qm
i etc. Other than the systematic

renaming of locations, the semantics are the same as for symbolic transition
systems. Additionally, Valm is a mapping v ∈ Vm �→ x giving initial values x to
all variables v. (Conceptually, Valm models parameters passed to the method as
well as initial values of local variables.)

A Creol method without release points is modeled as a method automaton
with only beginning and end state. Each release point is modeled as an interme-
diate state where execution can switch to another running method.

By convention, the names of the local variables in a method automaton are
prefixed with the unique identifier m of the automaton, so that the names are
unique in the presence of multiple instances of the automaton. This approach
is sufficient since each invocation of a Creol method is modeled by its own au-
tomaton. Names of instance variables, such as wc and display in Fig. 3 are
not prefixed in this way, since every method automaton has access to the same
instance variables.
2 In this paper, we use expressions over the integer and Boolean domains with the

usual operations and semantics.

Testing Concurrent Objects with Application-Specific Schedulers 325

4.2 Modeling Parallelism: The System Automaton

A configuration of multiple method invocations running in parallel is modeled
as a symbolic transition system as well. We shall refer to such an automaton as
a system automaton.

Definition 1. Let Ai = 〈mi, Qmi , q
mi
0 , Tmi, Vmi ,Valmi〉 be method automata

(for 1 ≤ i ≤ n). Define the composition of A1, . . . , An as a system automaton
A = 〈Q, q0, T, V,Val〉 such that

Q = {〈mi, q
m1 , . . . , qmn〉 | ∀0 < j ≤ n : qmj ∈ Qmj}

qo = 〈m1, q
m1
0 , . . . , qmn

0 〉

T =

⎧
⎨

⎩
〈q, g, S, q′〉

∣
∣
∣
∣
∣
∣

q = 〈ml, q
m1 , . . . , qmi , . . . , qmn〉 ∧

q′ = 〈mi, q
′m1 , . . . , q′mi , . . . , q′mn〉 ∧

〈qmi , g, S, q′mi〉 ∈ Tmi ∧ ∀j �= i : q′mj = qmj

⎫
⎬

⎭

V =
⋃

0<i≤n Vmi

Val =
⋃

0<i≤n Valmi

The semantics of executing a transition of the system automaton is that of
executing the transition of one of the participating method automata (qmi �

q′mi), leaving the state of all other method automata invariant (q′mj = qmj).
Further note that the first element of the system automaton’s state designates the
method automaton which did the previous transition (for the initial state, it is
arbitrarily set to m1). Because of this, the transitions of the system automaton
can be attributed back to a particular method automaton; this will become
important in scheduling.

4.3 Modeling Schedulers: The Scheduler Automata

The system automaton as defined in Section 4.2 does not place restrictions on
which method automaton executes at each step beyond the guards of the method
automata transition themselves. We use a scheduler automaton to express addi-
tional restrictions on method automata execution in the system automaton.

A scheduler automaton is modeled as a labeled transition system. It is used
to strengthen the guards on the transitions of a system automaton composed of
method automata m1 . . . mn, and hence, restrict which method(s) are allowed
to run.

Definition 2. Let A be a system automaton for methods m1, . . . , mn. Define a
scheduler for A as an automaton S = 〈Q, q0, T 〉 such that

Q = {mi | 1 ≤ i ≤ n}
q0 = m1
T = {〈q, g, q′〉 | q ∈ Q ∧ q′ ∈ Q ∧ g ∈ G(A)}

The transitions on a scheduler automaton have guards g ∈ G(A) in the form of
readiness predicates that are defined in the following way: Given a system au-
tomaton A for methods m1, . . . , mn, G(A) is defined inductively by ready(mi) ∈

326 R. Schlatte et al.

m1 m2

ready(m1)

ready(m1)

¬ready(m1)

¬ready(m1)

m1 m2

¬ready(m2)

ready(m1)

ready(m2)

¬ready(m1)

Fig. 4. Example scheduler automata: priority (left), round-robin (right)

G(A) and ¬ready(mi) ∈ G(A) for 1 ≤ i ≤ n, and g1 ∧ g2 ∈ G(A) and g1 ∨ g2 ∈
G(A) if g1, g2 ∈ G(A). The expression ready(mi) denotes a predicate which is
true whenever the method automaton mi has at least one enabled transition
(i.e., whose guard evaluates to true) in the current state of A.

The scheduler automaton has n states, one for each method automaton in the
system automaton. Each scheduler state is labeled with one method automaton’s
unique identifier mi. The label on the current state of the scheduler automaton
names the method automaton that executed the most recent transition of the
system automaton. By definition, m1 is the scheduler automaton’s initial state.

Figure 4 shows two scheduling automata, both for a system automaton with
two method automata m1 and m2: a simple priority scheduler that always gives
preference to m1 over m2, and a round-robin scheduler.

4.4 Integration of the Scheduler and the System Automaton

The scheduling of tasks in a system automaton according to the policy expressed
by a specific scheduler automaton is done in the following way:

For each state q = 〈mk, . . .〉 of the system automaton, find the corresponding
state mk of the scheduler automaton. For each transition t = 〈q, g, S, q1〉 in the
system automaton, take the scheduler automaton’s transition that enables t, i.e.
the transition that leads to the scheduler state mi if q1 = 〈mi, . . .〉. If there is
no such scheduler transition, remove the transition from the system automaton
(since the scheduler does not allow the method automaton mi to run after mk).
Otherwise, strengthen the guard on the transition t by the guard expression on
the scheduler transition from mk and mi, replacing all sub-expressions ready(mx)
with the disjunction of the guards on all transitions of method automaton mx

in its current state.
We refer to a system automaton which is scheduled by a scheduler automaton

as a scheduled system automaton. Formally, we define the expansion of readiness
predicates for specific states of a system automaton and a scheduled system
automaton as follows.

Definition 3. Let A = 〈Q, q0, T, V,Val〉 be a system automaton for the methods
m1, . . . , mn. For a state q ∈ Q and a scheduler guard g ∈ G(A), scheduler guard
expansion is a function [[g]]q, inductively defined as follows:

Testing Concurrent Objects with Application-Specific Schedulers 327

[x = 5]

[x = 5]

[¬(x = 5)]
x := 5

[¬(x = 5)]
x := 5

[¬(x = 5)]
x := 5

[¬(x = 5)]
x := 5

[x = 5]

[x = 5]

A

B

[x = 5]

c

d

x := 5

1,A,c 1,A,d

2,A,c 2,A,d

1,B,c 1,B,d

2,B,c 2,B,d

Fig. 5. Two simple method automata and a system automaton consisting of the two
automata running in parallel under the priority scheduler of Figure 4 (guards in bold
added by the scheduler)

[[ready(mi)]]q =
∨

{g | 〈q, g, S, q1〉 ∈ T ∧ q1 = 〈mi, q
m1 , . . . , qmn〉}

[[¬ready(mi)]]q = ¬[[ready(mi)]]q
[[g1 ∨ g2]]q = [[g1]]q ∨ [[g2]]q
[[g1 ∧ g2]]q = [[g1]]q ∧ [[g2]]q

In the first part of Definition 3, we use the disjunction on a set to denote the
disjunction of all the elements in the set.

Definition 4. Let A = 〈QA, qA
0 , TA, VAValA〉 be a system automaton for meth-

ods m1, . . . , mn and let S = 〈QS , qS
0 , TS〉 be a scheduler. Define a scheduled

system as an automaton SA = 〈Q, q0, T, V,Val〉 such that

Q = QA

q0 = qA
0

T =
{

〈q, g, S, q′〉
∣
∣
∣
∣
q = 〈ml, q

m1 , . . . , qmn〉 ∧ q′ = 〈mi, q
′m1 , . . . , q′mn〉

∧〈q, g′, S, q′〉 ∈ TA ∧ 〈ml, g
′′, mi〉 ∈ TS ∧ g = (g′ ∧ [[g′′]]q)

}

V = VA

Val = ValA

For example, if the transition guard on the scheduler is [¬ready(m)] and au-
tomaton m in its current state has two transitions with the guards [x <= 5] and
[x > 5], then relevant guards on the transitions in the system automaton will be
strengthened with ¬(x <= 5 ∨ x > 5). Transitions whose guards reduce to false
(as in this example) can be eliminated from the system automaton.

5 Test Case Generation with WP and Schedulers

We use a scheduled system automaton SA (see Definition 4) to test the Creol
object it represents. SA contains all runs an object can perform for a given

328 R. Schlatte et al.

reg1

[false]
reg2

[comein>0]
reg2

[comein>0]
reg2

[¬ comein>0]
reg1

reg1

[comein>0]
reg2

reg1

[comein > 0]
reg2 [comein > 0]

reg2

reg1

[false]
reg1

reg2
reg2

[comein>0 ¬ comein>0]
reg2

a,a m2,a,b m2,a,c

m1,b,a

m1,c,a

m2,b,b m1,b,b m2,b,c m1,b,c

m2,c,b m1,c,b m2,c,c m1,c,c

{ display = (caller1; caller2) }{ display = (caller1) } { display = (caller1) }{ display = (caller1) }

{ display = () } { display = () }

{ display = () }

reg1 ::= wc := wc + 1
 comein := (wc >= 2) ? 2 : comein

reg2 ::= comein := comein - 1
 wc := wc - 1
 display := (display ; caller)

Fig. 6. A scheduled system automaton with two method automata for the register
method, under priority scheduling and with batch size 2. Guard terms in bold are added
by the scheduler, states that are unreachable under priority scheduling are dashed.

initial message queue and scheduler. In the following, we give an approach to
computing test cases of interest from this automaton.

Specifically, we define how to compute the weakest precondition (WP) for
a scheduled system automaton and use this technique to generate test cases
according to a test purpose.

The intention of the test cases to generate is captured by test purposes, which
are abstract specifications of actual test cases. In conformance testing, the notion
of a test purpose has been standardized [7]:

Definition 5 (Test purpose, general). A description of a precise goal of
the test case, in terms of exercising a particular execution path or verifying the
compliance with a specific requirement.

In our setting, these requirements are expressed by assert statements in a system
automaton. The condition p of an assert has to be fulfilled in all possible runs
leading to the assert. (For simplicity, we will use p to refer to the assertion and
its condition synonymously.) To compute test cases for a test purpose, we search
for paths that reach and comply with all its assert statements. Intuitively, this
corresponds to computing the weakest precondition for p. In the following we will,
without loss of generality, concentrate on test purposes that can be specified with
a single assertion. Conditions for the general case are computed by combining
the results from the single conditions.

Figure 6 shows the graph of a system automaton that models two invoca-
tions of the register method and batch size 2, scheduled with the priority
scheduler from Figure 4. This scheduler removes the edge from the initial state
(a,a) to (m2,a,b) because both processes are enabled (with m1 having priority).

Testing Concurrent Objects with Application-Specific Schedulers 329

Consequently, a portion of the state space of the system automaton becomes
unreachable in the scheduled system automaton and can be removed.

Figure 6 also shows the additional conditions from scheduling on the edges.
E.g., in state (m1,b,a) process m2 is only enabled if comein is not > 0. The test
purpose is to compute test cases to reach state (m2,c,c) with display = (caller1 ;
caller2). We constrain ourselves to only illustrate the WP computation for the
display variable, whose computed value is depicted in curly brackets. Computing
the WP to the initial state results in an empty display variable, for which all
paths reach the desired state3. The actual implementation must not block for
this input and must satisfy the assertion.

To test the intermediate and final assertions on the Creol model, we create
a test harness H . The harness is constructed from the system automaton A as
H = 〈QA, qA

0 , TA, VA, c(QA)〉, with QA, qA
0 , TA and VA reflecting the system

automaton, and c(QA) a condition defined for each location of A, representing
those valuations in a location that only occur in runs that eventually will reach
and comply with p. Thus, for every valuation in c(QA) two properties hold:
(1) there is a transition such that the destination is again in c(QA) and (for
determinism) (2) there is no transition such that the destination is not in c(QA).
Using standard weakest-precondition predicate transformers wp for our simple
statements S (assignments and sequential composition only), we have:

cp(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, c(q′)) ∧ g (1)

c¬p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, ¬c(q′)) ∧ g (2)

c(q) = cp(q) ∧ ¬c¬p(q) (3)

We compute c(QA) iteratively by setting c0(q) = p for q = qp and c0(q) = false
for all other locations. The first iteration will result in all states that reach p
in one step, then those with distance two and so forth. The iteration steps are
sound: each iteration results in valuations that give valid test cases. This is an
important observation because although this process always results in a fixed
point for finite state systems (cf. CTL model checking of AF p [2]), the state
space for STS is infinite and the iteration might not terminate. Soundness allows
us to stop computation after a certain bound or amount of time even if no fixed
point is reached yet. Any initial state in c(q0) gives valid test cases even if no
fixed point can be computed.

The test case for the scenario of Figure 6 consists of the following:

– A list of method invocations (〈m1,register()〉, 〈m2,register()〉)
– The priority scheduler from Figure 4
– The initial value () for the instance variable display
– The test harness H , giving verdicts at each scheduling decision point

3 The representation is strongly simplified, exact computation will give more condi-
tions on the states and unveils that only the path using the edge (m1,b,a)(m2,b,b)
is feasible.

330 R. Schlatte et al.

5.1 Test Case Execution

The test driver in Creol uses the scheduler to guide the Creol model and the test
harness H to arrive at test verdicts. The initial values and method parameters
are chosen such that condition c(q0) is fulfilled, at each release point of the
Creol object, the conditions on the harness are checked. At each release point,
the scheduler chooses among the enabled processes to continue the execution.
There are two different ways of arriving at a test verdict of Fail :

– If the Creol object does not fulfill the current condition of the harness, the
implementation of the last executed basic block violates the specification by
the method automaton.

– If the condition is fulfilled but no process is enabled (the test process dead-
locks), the implementation fails to handle all the valuations that are required
by the model.

If the test harness arrives at the terminating state and the condition is fulfilled,
a test verdict of Success is reached.

Strengthening the Guards of the Harness. The computation as shown
above uses the weakest precondition to reach the test purpose p, or, in other
words, the set of initial states that reach the test purpose in every legal run.
Input values that might miss p due to non-determinism are ignored. To achieve
optimal test coverage, however, it is desirable to search for all input values that
can fulfill the test purpose and add enough information to H for the test driver
to guide the run to the desired state. In other words, instead of computing those
initial states that will reach p in every run, we want to compute states for which
a run exists.

The annotated automaton provides us with a simple mechanism to achieve this
goal. For the necessary adjustments we have a second look at the computation
of c(QA). Formula (1) represents the states that can reach p, while those states
that can avoid p are removed using Formula (2). If we don’t consider c¬p in
Formula (3), we compute all valuations for which a run to p exists, but the test
driver has to perform the run on a trial an error basis: executing a statement
and checking if the result still can reach p, backtracking otherwise. To avoid this
overhead, we add new guards g′ to H to restrict the runs to those valuations
that always can reach p:

g′(< q, g, S, q′ >) = g ∧ wp(S, c(q′))

Using g′ for the computation of c(QA) results in all states for which a run to p
exists, which easily can be seen by inserting g with g ∧ wp(S, c(q′)) in formulae
(1) and (2):

c′p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, c(q′)) ∧ g ∧ wp (S, c(q′)) = cp(q)

c′¬p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, ¬c(q′)) ∧ g ∧ wp (S, c(q′)) = false

c′(q) = c′p(q)

Testing Concurrent Objects with Application-Specific Schedulers 331

Using g′ as guards for the test driver excludes all transitions to states that
cannot reach p. This allows to avoid unnecessary backtracking while examining
all paths that can be extended to reach the test purpose, resulting in a larger
variety of possible runs and better coverage. The approach does not come without
obstacles though, g′ only points to states that can reach p — the test driver needs
to be able to detect loops to make sure to finally reach it. Furthermore, a path
to p might not be available in the implementation. If the only available path
avoids p, the test driver has to backtrack to find a path to p.

6 Related Work

With the growing dependency on distributed systems and the arrival of multicore
computers, concurrent object-oriented programs form a research topic of increas-
ing importance. Automata-based approaches have previously been used to model
concurrent object-oriented systems; for example, Kramer and Magee’s FSP [10]
use automata to represent both threads and objects, abstracting from specific
synchronization mechanisms. However, they do not address the issue of repre-
senting specific scheduling policies that we consider in this paper. Schönborn
and Kyas [14] use Streett Automata to model fair scheduling policies of external
events, with controlled scheduler suspension for configurations that deadlock the
scheduler.

A lot of work is done in the area of schedulability which mainly deals with
the question if a scheduler exists which is able to meet certain timing constraints
(e.g., [12, 6]), but does not look into the functional changes imposed by differ-
ent application-level scheduling policies. Established methods for testing object-
oriented programs like unit-testing, on the other hand, deal with the functional-
ity on a fine grained level, but fail to check for the effects of different schedulers
(see e.g., [18]). Instead, the main challenge for testing concurrent programs is
to show that the properties of interest hold independent of the used scheduler.
In contrast, the approach we have taken in this paper is to test properties of a
program under a specific scheduling regime.

Stone [15] was the first proposing the manipulation of the schedules to iso-
late failure causes in concurrent programs. Her idea was to reduce the non-
determinism due to scheduling by inserting additional break points at which a
process waits for an event of another process. In Creol, this could be achieved by
inserting additional await-statements. However, dealing with a modeling lan-
guage, we prefer the more explicit restriction of non-determinism by modeling
the scheduling policy directly. More recently, Edelstein et al. [5] manipulated
the scheduler in order to gain higher test coverage of concurrent Java programs.
They randomly seeded sleep, yield or priority statements at selected points
in order to alter the scheduling during testing. This approach is based on the
observation that a given scheduler behaves largely deterministic under constant
operating conditions; by running existing tests under other scheduling strategies,

332 R. Schlatte et al.

additional timing-related errors are uncovered. Choi and Zeller [1] change sched-
ules of a program to show the cause of a problem for a failing test case. They use
DEJAVU, a capture/replay tool that records the thread schedule and allows the
replay of a concurrent Java program in a deterministic way. Delta-debugging is
used to systematically narrow down the difference between a passing and failing
thread schedule. This approach helps in order to check if programs work under
different schedules, but unlike the method shown in this paper do not help in
the actual generation of the test case.

Jasper et al. [8] use weakest precondition computation to generate test cases
especially tailored for a complex coverage criterion in single threaded ADA pro-
grams. Rather than augmenting the model, they generate axioms describing the
program and use a theorem prover to compute its feasibility. More recently, [17]
use weakest precondition to identify cause-effect chains in failing test cases to
localize statements responsible for the error (fault localization). WP computa-
tion is furthermore used in several abstraction algorithms to identify relevant
predicates for removing infeasible paths in abstract models. In [16], Tillmann
and Schulte introduce “parametrized unit tests”, which serve as specifications
for object oriented programs. They use symbolic execution to generate the in-
put values for the actual test cases. However, none of these approaches use WP
computation for test case generation in concurrent systems.

7 Conclusion and Future Work

This paper presents an approach to generating test cases for concurrent, object-
oriented programs with application-specific schedulers. The scheduling policy
becomes part of the test case in order to control its execution. We therefore
introduce an automaton approach for specifying the behavior of both the sys-
tem and the scheduler, as well as its composition and extension to a harness
for a test driver. Enforcing a scheduling regime limits the non-deterministic in-
terleavings of behavior, a well-known problem in testing and debugging of con-
current systems. A further important aspect is that the separation of concerns
between functionality and scheduling allows scheduling issues, which are crucial
in concurrent programs, to be specified and tested at the abstraction level of the
executable modeling language.

In this paper, we expect the method automata and scheduler to be given
as specifications, and check for compliance with a given Creol implementation.
A natural extension for future work is to automatically construct the method
automata from the Creol code and check against different schedulers for com-
pliance. The test driver will be implemented within the Maude interpreter for
Creol, which allows the test driver to influence the scheduling.

Further future work comprises the extension to schedulers with internal state
to express more involved scheduling strategies and to extend our approach with
further features of object-oriented languages.

Testing Concurrent Objects with Application-Specific Schedulers 333

References

1. Choi, J.-D., Zeller, A.: Isolating failure-inducing thread schedules. In: International
Symposium on Software Testing and Analysis, pp. 210–220. ACM Press, New York
(2002)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285, 187–243 (2002)

4. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

5. Edelstein, O., Farchi, E., Nir, Y., Ratzaby, G., Ur, S.: Multithreaded Java program
test generation. IBM Systems Journal 41(1), 111–125 (2002)

6. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

7. ISO/IEC 9646-1: Information technology - OSI - Conformance testing methodology
and framework - Part 1: General Concepts (1994)

8. Jasper, R., Brennan, M., Williamson, K., Currier, B., Zimmerman, D.: Test data
generation and feasible path analysis. In: Proceedings of the International sympo-
sium on Software testing and analysis (ISSTA 1994), pp. 95–107. ACM Press, New
York (1994)

9. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

10. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs, 2nd edn.
Wiley, Chichester (2006)

11. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

12. Nigro, L., Pupo, F.: Schedulability analysis of real time actor systems using
coloured petri nets. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) APN
2001. LNCS, vol. 2001, pp. 493–513. Springer, Heidelberg (2001)

13. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp.
338–357. Springer, Heidelberg (2000)

14. Schönborn, J., Kyas, M.: A theory of bounded fair scheduling. In: Fitzgerald, J.,
Haxthausen, A. (eds.) International Colloquium on Theoretical Aspects of Com-
puting (ICTAC). LNCS, vol. 5160, pp. 334–348. Springer, Heidelberg (2008)

15. Stone, J.M.: Debugging concurrent processes: A case study. In: Proceedings SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
1988), June 1988, pp. 145–153. ACM Press, New York (1988)

16. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of the 10th
European Software Engineering Conference / 13th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2005), pp. 253–262. ACM
Press, New York (2005)

17. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Whodunit? Causal analysis for coun-
terexamples. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp.
82–95. Springer, Heidelberg (2006)

18. Weyuker, E.J.: Testing component-based software: A cautionary tale. IEEE Soft-
ware, pp. 54–59 (September 1998)

	Testing Concurrent Objects with Application-Specific Schedulers
	Introduction
	Creol and Executable Modeling
	Testing and Testing Methodology
	Combining Method Automata and Scheduling Policies
	Modeling Method Invocations: Method Automata
	Modeling Parallelism: The System Automaton
	Modeling Schedulers: The Scheduler Automata
	Integration of the Scheduler and the System Automaton

	Test Case Generation with WP and Schedulers
	Test Case Execution

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

