

Lecture Notes in Computer Science 5160
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

John S. Fitzgerald Anne E. Haxthausen
Husnu Yenigun (Eds.)

Theoretical Aspects
of Computing -
ICTAC 2008

5th International Colloquium
Istanbul, Turkey, September 1-3, 2008
Proceedings

13

Volume Editors

John S. Fitzgerald
Newcastle University, School of Computing Science
Newcastle NE1 7RU, UK
E-mail: John.Fitzgerald@ncl.ac.uk

Anne E. Haxthausen
Technical University of Denmark
Informatics and Mathematical Modelling
2800 Lyngby, Denmark
E-mail: ah@imm.dtu.dk

Husnu Yenigun
Sabanci University, Faculty of Engineering and Natural Sciences 2094
Orhanli, Tuzla 34956, Istanbul, Turkey
E-mail: yenigun@sabanciuniv.edu

Library of Congress Control Number: 2008933379

CR Subject Classification (1998): F.1, F.3, F.4, F.2, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-85761-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85761-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12458417 06/3180 5 4 3 2 1 0

Preface

Research on theoretical aspects of computing has a direct impact on the prac-
tice of computer systems development. Over many decades, fundamental the-
ories have emerged to describe functionality, temporal behavior and resource
consumption. Theories of application domains are beginning to be exploited for
modelling and analyzing intended computing systems before the expensive com-
mitment is made to real programs and hardware. Recent years have seen major
improvements in the cost-effectiveness of tools supporting the exploitation of
theories through proof, model-checking and testing. Against this encouraging
background, we are pleased to present papers that show something of the liveli-
ness and diversity of research in theoretical aspects of computing today.

ICTAC 2008, the 5th International Colloquium on Theoretical Aspects of
Computing, was held on 1-3 September 2008 in Istanbul, Turkey, hosted by Sa-
bancı University. The ICTAC series was founded by the International Institute
for Software Technology of the United Nations University (UNU-IIST). It brings
together practitioners and researchers from academia, industry and government
to present results and to exchange ideas and experience addressing challenges in
both theoretical aspects of computing and in the exploitation of theory through
methods and tools for system development. The series also promotes cooperation
in research and education between participants and their institutions, from de-
veloping and industrial countries, in accordance with the mandate of the United
Nations University. The previous ICTAC colloquia were held in Guiyang, China
(2004, LNCS 3407), Hanoi, Vietnam (2005, LNCS 3722), Tunis, Tunisia (2006,
LNCS 4281) and Macau SAR, China (2007, LNCS 4711).

This year, over 70 submissions were received and each paper had three re-
views. We thank the members of the Program Committee and the other special-
ist referees for the effort and skill that they invested in the review and selection
process, which was managed using easychair. Some 27 papers were accepted
to accompany keynote talks from three invited speakers: Jean-Raymond Abr-
ial, Jan Peleska and Bill Roscoe. Each invited speaker also offered a tutorial
on their work, and these were held at Sabancı University on 31 August. Co-
located workshops included the International Workshop on Quality Aspects of
Coordination (QAC 2008), chaired by Sun Meng and Farhad Arbab; the 2nd
International Workshop on Harnessing Theories for Tool Support in Software,
chaired by Jianhua Zhao and Volker Stolz; and the International Workshop on
Foundations of Computer Science as Logic-Related, chaired by Walter Carnielli.

Events such as ICTAC are community efforts and can not succeed without
the generosity of sponsors. ICTAC 2008 was kindly supported by UNU-IIST,
Sabancı University and the Scientific and the Technological Research Council
of Turkey (TUBITAK). Prof. Peleska’s lecture was made possible by financial
support from Formal Methods Europe.

VI Preface

We are grateful to our publisher, especially to Alfred Hofmann and Nicole
Sator at Springer’s Computer Science Editorial, for their help in creating this
volume. Finally, we would like to thank our fellow organizers of ICTAC 2008:
our colleagues in Istanbul, our Publicity Chair Jeremy Bryans and, at UNU-
IIST, Kitty Chan and Clark Chan. We have been greatly helped by the advice,
experience and enthusiasm of Zhiming Liu, Mike Reed (Director of UNU-IIST),
and the ICTAC Steering and Advisory Committees.

June 2008 J. S. Fitzgerald
A. Haxthausen

H. Yenigun

Organization

ICTAC 2008 was organized by Sabancı University in cooperation with the United
Nations University International Institute for Software Technology.

Conference Committee

General Chair George Michael Reed (UNU-IIST, Macau)
Program Chairs John S. Fitzgerald (Newcastle University, UK)

Anne Haxthausen (Technical University of
Denmark)

Organization Chair Husnu Yenigun (Sabancı University, Turkey)
Publicity Jeremy Bryans (Newcastle University, UK)

ICTAC Steering Committee

John S. Fitzgerald (Newcastle University, UK)
Martin Leucker (Technische Universität München, Germany)
Zhiming Liu (Chair) (UNU-IIST, Macao)
Tobias Nipkow (Technische Universität München, Germany)
Augusto Sampaio (Universidade Federal de Pernambuco, Brazil)
Natarajan Shankar (SRI, USA)
Jim Woodcock (University of York, UK)

Program Committee

Keijiro Araki
Jonathan Bowen
Michael Butler
Ana Cavalcanti
Patrice Chalin
Christine Choppy
Jim Davies
Jin Song Dong
George Eleftherakis
Esra Erdem
Wan Fokkink
Marcelo Frias
Kokichi Futatsugi
Chris George

Lindsay Groves
Michael R. Hansen
Ian Hayes
Dang Van Hung
Tomasz Janowski
He Jifeng
Joe Kiniry
Maciej Koutny
Kung-Kiu Lau
Martin Leucker
Peter Mosses
Ernst-Rdiger Olderog
Paritosh K Pandya
Anders Ravn

Wolfgang Reisig
Augusto Sampaio
Bernhard Schaetz
Natarajan Shankar
Serdar Tasiran
Helen Treharne
Ji Wang
Alan Wassyng
Jim Woodcock
Husnu Yenigun
Naijun Zhan

VIII Organization

External Reviewers

Marco Aiello
Yuji Arichika
Rilwan Basanya
Anirban Bhattacharyya
Jens Calamé
Sagar Chaki
Yuki Chiba
Robert Colvin
Phan Cong-Vinh
Marcio Cornelio
Charles Crichton
Kriangsak Damchoom
Zhe Dang
Brijesh Dongol
Elsa Estevez
Radu Grigore
Alexander Gruler
Tingting Han
Benjamin Hummel
Ryszard Janicki
Mikolas Janota
Christian Damsgaard Jensen
Christophe Joubert
Weiqiang Kong
Kemal Kilic
Daniel Klink
Alexander Knapp
Istvan Knoll
Stephan Korsholm
Shigeru Kusakabe
Edmund Lam
Wanwei Liu
Xiaodong Ma
Nicolas Markey
Manuel Mazzara
Michael Meier
Roland Meyer

Hiroshi Mochio
Sotiris Moschoyiannis
Alexandre Mota
Mohammad Reza Mousavi
Masaki Nakamura
Viet Ha Nguyen
Ioannis Ntalamagkas
Kazuhiro Ogata
Adegboyega Ojo
Joseph Okika
Yoichi Omori
Elisabeth Pelz
Franck Pommereau
Rodrigo Ramos
Tauseef Rana
Wolfgang Reisig
Markus Roggenbach
David Rydeheard
Lily Safie
Mar Yah Said
Cesar Sanchez
Jeff Sanders
Cem Say
Jun Sun
Cuong Minh Tran
Anh Hoang Truong
Robert Walters
Zhaofei Wang
Michael Weber
James Welch
Kirsten Winter
Stephen Wright
Berrin Yanikoglu
Naijun Zhan
Wenhui Zhang
Xian Zhang

Table of Contents

Using Design Patterns in Formal Methods: An Event-B Approach
(Extended Abstract) . 1

J.-R. Abrial and Thai Son Hoang

A Unified Approach to Abstract Interpretation, Formal Verification
and Testing of C/C++ Modules . 3

Jan Peleska

The Three Platonic Models of Divergence-Strict CSP 23
A.W. Roscoe

Monotonic Abstraction in Action (Automatic Verification of Distributed
Mutex Algorithms) . 50

Parosh Aziz Abdulla, Giorgio Delzanno, and Ahmed Rezine

Non-interleaving Semantics with Causality for Nondeterministic
Dataflow . 66

Oana Agrigoroaiei and Gabriel Ciobanu

Symbolic Reachability for Process Algebras with Recursive Data
Types . 81

Stefan Blom and Jaco van de Pol

Inclusion Test Algorithms for One-Unambiguous Regular Expressions . . . 96
Haiming Chen and Lei Chen

Refinement of Kripke Models for Dynamics . 111
Francien Dechesne, Simona Orzan, and Yanjing Wang

Tomorrow and All our Yesterdays: MTL Satisfiability over the
Integers . 126

Carlo A. Furia and Paola Spoletini

A Theory of Pointers for the UTP . 141
Will Harwood, Ana Cavalcanti, and Jim Woodcock

Recasting Constraint Automata into Büchi Automata 156
Mohammad Izadi and Marcello M. Bonsangue

A Complete Realisability Semantics for Intersection Types and
Arbitrary Expansion Variables . 171

Fairouz Kamareddine, Karim Nour, Vincent Rahli, and J.B. Wells

X Table of Contents

Towards Efficient Verification of Systems with Dynamic Process
Creation . 186

Hanna Klaudel, Maciej Koutny, Elisabeth Pelz, and
Franck Pommereau

An Observational Model for Transactional Calculus of Services
Orchestration . 201

Jing Li, Huibiao Zhu, and Jifeng He

Everything Is PSPACE-Complete in Interaction Systems 216
Mila Majster-Cederbaum and Christoph Minnameier

A New Approach for the Construction of Multiway Decision Graphs 228
Y. Mokhtari, Sa’ed Abed, O. Ait Mohamed, S. Tahar, and X. Song

Congruence Results of Scope Equivalence for a Graph Rewriting Model
of Concurrent Programs . 243

Masaki Murakami

Guided Test Generation from CSP Models . 258
Sidney Nogueira, Augusto Sampaio, and Alexandre Mota

Relaxing Goodness Is Still Good . 274
Gordon J. Pace and Gerardo Schneider

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time . . . 290
Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro

Formal Analysis of Workflows Using UML 2.0 Activities and Graph
Transformation Systems . 305

Vahid Rafe and Adel T. Rahmani

Testing Concurrent Objects with Application-Specific Schedulers 319
Rudolf Schlatte, Bernhard Aichernig, Frank de Boer,
Andreas Griesmayer, and Einar Broch Johnsen

A Theory of Bounded Fair Scheduling . 334
Jens Schönborn and Marcel Kyas

Fair Exchange Is Incomparable to Consensus . 349
Simona Orzan and Mohammad Torabi Dashti

Automatic Generation of CSP || B Skeletons from xUML Models 364
Edward Turner, Helen Treharne, Steve Schneider, and Neil Evans

Bounded Model Checking for Partial Kripke Structures 380
Heike Wehrheim

Verification of Linear Duration Invariants by Model Checking CTL
Properties . 395

Miaomiao Zhang, Dang Van Hung, and Zhiming Liu

Table of Contents XI

Exact Response Time Scheduling Analysis of Accumulatively
Monotonic Multiframe Real Time Tasks . 410

Areej Zuhily and Alan Burns

Endomorphisms for Non-trivial Non-linear Loop Invariant
Generation . 425

Rachid Rebiha, Nadir Matringe, and Arnaldo Vieira Moura

Instantiation for Parameterised Boolean Equation Systems 440
A. van Dam, B. Ploeger, and T.A.C. Willemse

Author Index . 455

Using Design Patterns in Formal Methods:

An Event-B Approach

(Extended Abstract)

J.-R. Abrial and Thai Son Hoang

ETH Zurich
{jabrial,htson}@inf.ethz.ch

Motivation. Formal Methods users are given sophisticated languages and tools
for constructing models of complex systems. But quite often they lack some
systematic methodological approaches which could help them. The goal of in-
troducing design patterns within formal methods is precisely to bridge this gap.

A design pattern is a general reusable solution to a commonly occurring prob-
lem in (software) design . . . It is a description or template for how to solve a
problem that can be used in many different situations (Wikipedia on “Design
Pattern”).

The usage of design patterns in Object Oriented technology results (in
its simplest form) in adapting and incorporating some pre-defined pieces of codes
in a software project.

The usage of design patterns in Formal Methods technology will follow
a similar strategy, namely to adapt and incorporate a pre-defined proved and
refined mini-model into a larger one. Such an incorporation would not only save
re-inventing something that already exist but also save re-doing the correspond-
ing refinements and proofs of correctness.

Typical examples of design patterns are the notions of actions and reactions
(and chains thereof) in reactive systems, or the notions of message transmission,
acquisition, and response in synchronous as well as asynchronous protocols. In
such systems, there are many instances of such patterns. Of course, modelling
and proving such systems without design patterns is possible (this has been
done for many years) but the usage of such patterns results in very systematic
constructions, which can also be explained in a far easier way than without them.

In this presentation, we propose to explain how to introduce this technology
within Event-B, which is the name of a mathematical (set-theoretic) approach
used to develop complex discrete systems, be they computerized or not. This will
be done within the framework of the Rodin Platform.

The Rodin platform is an open tool set devoted to supporting the develop-
ment of such systems. It contains a modeling database surrounded by various
plug-ins: static checker, proof obligation generator, provers, model-checkers, an-
imators, UML transformers, requirement document handler, etc. The database

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 1–2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 J.-R. Abrial and T.S. Hoang

itself contains the various modeling elements needed to construct discrete tran-
sition system models: essentially variables, invariants, and transitions (events).

Formal development. With the help of this palette, users can develop math-
ematical models and refine them. In doing so, they are able to reason, modify,
and decompose their models before starting the effective implementation of the
corresponding systems. Such an approach is well known and widely used in many
mature engineering disciplines where reasoning on a abstract representation of
the future system is routine. Just think of the usage of blueprints made by
architects within a building construction process.

An Event-B formal development is made of a sequence of models, where each
model is a refinement of the previous one (if any) in the sequence. A refinement
corresponds to an enrichment of the more abstract model. Each refined model
is subjected to proofs showing that it is not contradictory with its abstraction.
This is precisely in such a refinement process that one can incorporate some
predefined patterns.

An Event-B design pattern is a small model (with constants, variables, in-
variants, and events) devoted to formalise a typical well known sub-problem.
The idea is to have a library of such design patterns which could be either
quite general or domain dependent. Each design pattern will be stored with the
corresponding refinements and proofs.

The adaptation of an Event-B design pattern essentially consists in instan-
tiating (repainting) its constants, variables and events in order to have them
corresponding to some elements of the problem at hand.

The incorporation of an Event-B design pattern within a larger model whose
construction is in progress consists in composing the design pattern events within
some existing events of the model so that the resulting effect is a refinement of
the large model. This is to be done in a completely syntactic way so that no
refinement proofs are necessary.

Tool. As the Rodin Platform is implemented on top of Eclipse, it is intended
to construct on Eclipse a design pattern repository (the library) as well as a
design pattern plug-in to facilitate the systematic adaptation and incorporation
of Event-B design patterns. This work is presently in progress.

Result. Two case studies have been developed which are very encouraging: a reac-
tive system and a business system. They will be incorporated in this presentation.

A Unified Approach to Abstract Interpretation,

Formal Verification and Testing of C/C++
Modules

Jan Peleska

Department of Mathematics and Computer Science
University of Bremen

Germany
jp@tzi.de

Abstract. In this paper, a unified approach to abstract interpretation,
formal verification and testing is described. The approach is applicable
for verifying and testing C/C++ functions and methods and complies
with the requirements of today’s applicable standards for the develop-
ment of safety-critical systems in the avionics and railway domains. We
give an overview over the techniques required and motivate why an in-
tegrated approach is not only desirable from the verification specialists’
perspective, but also from the tool builders’ point of view. Tool support
for our approach is available, and it is currently applied in industrial
verification projects for railway control systems. All techniques can be
adapted to model-based testing in a straightforward way. The objective of
this article is to describe the interplay between the methods, techniques
and tool components involved; we give references to more comprehensive
descriptions of the underlying technical details.

1 Introduction

1.1 Overview

Starting from the perspective of safety-critical systems development in avion-
ics, railways and the automotive domain, we advocate an integrated verification
approach for C/C++ modules1 combining abstract interpretation, formal veri-
fication by model checking and conventional testing. It is illustrated how testing
and formal verification can benefit from abstract interpretation results and, vice
versa, how test automation techniques may help to reduce the well known prob-
lem of false alarms frequently encountered in abstract interpretations. As a con-
sequence, verification tools integrating these different methodologies can provide
a wider variety of useful results to their users and facilitate the bug localisation
processes involved. From the practitioners’ point of view, our approach is driven
by the applicable standards for safety-critical systems development in the rail-
way and avionic domains: The methods and techniques described should help
1 We use the term module to denote both C functions and C++ methods.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 3–22, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

4 J. Peleska

to (1) fulfil the software-quality related requirements of these standards more
efficiently and (2) facilitate the formal justification that these requirements have
been completely fulfilled.

We present an overview of the methods required to achieve these goals for
C/C++ code verification. The tasks involved can be roughly structured into six
major building blocks (see Figure 1): (1) A parser front-end is required to trans-
form the code into an intermediate model representation which is used for the
analyses to follow. The intermediate model representation contains a suitably
abstracted memory model which helps us to cope with the problems of aliasing,
type casts and mixed arithmetic and bit operations typically present in C/C++
code. (2) Verification tasks have to be decomposed into sub-tasks investigating
sub-models. A sub-model selector serves for this purpose. (3) Concrete, symbolic
and abstract interpreters are required to support the process of constraint gener-
ation, the abstract interpreter serving the dual purpose of runtime error checking
and of constraint simplification. (4) A constraint generator prepares the logical
conditions accumulated by the interpreters for the (5) constraint solver which is
needed to calculate concrete solution vectors as well as over and under approxi-
mations of the constraint solution sets. (6) For automated test case generation,
test data is constructed as solutions to the constraints associated with a specific
reachability goal. The test data has to be integrated in test procedures automat-
ically invoking the tested modules, feeding the input data to their interfaces and
checking the modules’ behaviour against expected results specifications. Test
procedures are internally represented as abstract syntax trees, so that different
syntax requirements of test execution environments can be conveniently met.

Our presentation focuses on the interplay between these building blocks and
provides references to more detailed elaborations of the technical problems
involved.

In section 2 the requirements of standards related to safety-critical systems
development are sketched. Section 3 contains the main part of this paper. It
describes the work flow between the tool components listed above which conforms

Constraint
Generator

Interval
Analysis

Linear
Arithmetic

Bit−
Vector

String

Boolean

In
te

rm
ed

ia
te

 M
o

d
el

 R
ep

re
se

n
ta

ti
o

n

S
U

T
 −

 M
em

o
ry

 M
o

d
el

S
U

T
 −

 A
b

st
ra

ct
 M

o
d

el

Constraint Solver

S
U

T
 C

o
d

e/
M

o
d

el
 P

ar
se

rs

C
++

 M
o

d
u

le
+S

p
ec

if
ic

at
io

n
U

M
L

2.
0

S
ta

te
ch

ar
ts

Sub−Model Selector

Interpreters

AbstractSymbolic
Concrete

A
S

T
 T

es
t

P
ro

ce
d

u
re

 R
ep

re
se

n
ta

ti
o

n

C
o

n
cr

et
e

T
es

t
P

ro
ce

d
u

re
 B

ac
ke

n
d

s

Test Procedures

Test Case Specifications

Concrete Test Data

Fig. 1. Building blocks of test automation, static analysis and property verification
tool platform

A Unified Approach to Abstract Interpretation 5

to these standards. Moreover, the methods used to implement the component
functionality are sketched. Section 4 presents a conclusion.

1.2 Related Work

The work presented here summarises and illustrates results previously published
by the author and his research team in cooperation with Verified Systems Inter-
national GmbH [3,17,19,16,15].

Many authors point out that the syntactic richness and the semantic ambigu-
ities of C/C++ present considerable stumbling blocks when developing analysis
tools for software written in these languages. Our approach is similar to that
of [11] in that we consider a simplified syntactic variant – the GIMPLE code –
with the same expressive power but far more restrictive syntax than the original
language: GIMPLE [10] is a control flow graph representation using 3-address
code in assignments and guard conditions. Since the gcc compiler transforms
every C/C++ function or method into a GIMPLE representation, this seems to
be an appropriate choice: If tools can handle the full range of GIMPLE code,
they can implicitly handle all C/C++ programs accepted by gcc. Therefore we
extract type information and GIMPLE code from the gcc compiler; this tech-
nique has been described in [14]. In contrast to [11], where a more abstract
memory model is used, our approach can handle type casts.

The full consideration of C/C++ aliasing situations with pointers, casts and
unions is achieved at the price of lesser performance. In [6,5], for example, it is
pointed out how more restrictive programming styles, in particular, the avoid-
ance of pointer arithmetics, can result in highly effective static analyses with
very low rates of false alarms. Conversely it is pointed out in [25] that efficient
checks of pointer arithmetics can be realised if only some aspects of correctness
(absence of out-of-bounds array access) are investigated. As another alternative,
efficient static analysis results for large general C-programs can be achieved if a
higher number of false alarms (or alternatively, a suppression of potential fail-
ures) is acceptable [8], so that paths leading to potential failures can be identified
more often on a syntactic basis without having to fall back on constraint solving
methods.

On the level of binary program code verification impressive results have been
achieved for certain real-world controller platforms, using explicit representation
models [22]. These are, however, not transferable to the framework underlying
our work, since the necessity to handle floating point and wide integer types
(64 or 128 bit) forbids the explicit enumeration of potential input values and
program variable states.

All techniques described in this paper are implemented in the RT-Tester tool
developed by the author and his research group at the University of Bremen in co-
operation with Verified Systems International GmbH [26]. The approach pursued
with the RT-Tester tool differs from the strategies of other authors [6,5,25]: We ad-
vocate anapproachwhereverificationactivities focuson smallprogramunits (a few
functions or methods) and should be guided by the expertise of the development
or verification specialists. Therefore the RT-Tester tool provides mechanisms for

6 J. Peleska

specifying preconditions about the expected or admissible input data for the unit
under inspection as well as for semi-automated stub (“mock-object”) generation
showing user-defined behaviour whenever invoked by the unit to be analysed. As
a consequence, programmed units can be verified immediately – this may be ap-
pealing to developers in favour of the test-driven development paradigm [4] – and
interactive support for bug-localisation and further investigation of potential fail-
ures is provided: A debugger supports various abstract interpretation modes (in
particular, interval analysis) and the test case generator can be invoked for gener-
ating explicit input data for reaching certain code locations indicating the failure
of assertions.

With the recent progress made in the field of Satisfiability Modulo Theory [20]
powerful constraint solvers are available which can handle different data types,
including floating point values and associated non-linear constraints involving
transcendent functions. The solver implemented in the tool relies on ideas devel-
oped in [9] as far as Boolean and floating point constraints are involved, but uses
additional techniques and underlying theories for handling linear inequations, bit
vectors, strings and algebraic reasoning, see, e. g. [23]. Most methods for solving
constraints on interval lattices used in our tool are based on the interval analysis
techniques described in [12].

2 Background and Motivation: Industrial Safety-Critical
Systems Development and the Deployment of Formal
Methods

According to the standards [21,7,1] the generation of 100% correct software code
is not a primary objective in the development of safety-critical systems. This
attitude is not unjustified, since code correctness will certainly not automatically
imply system safety. Indeed, safety is an emergent property [13, p. 138], resulting
from a suitable combination of (potentially failing) hardware and software layers.
As a consequence, the standards require that

– the contribution of software components to system safety (or, conversely, the
hazards that may be caused by faulty software) shall be clearly identified,
and

– the software shall be developed and verified with state-of-the art techniques
and with an effort proportional to the component’s criticality.

Based on the criticality, the standards define clearly which techniques are
considered as appropriate and which effort is sufficient. The effort to be spent
on verification is defined most precisely with respect to testing techniques: Tests
should (1) exercise each functional requirement at least once, (2) cover the code
completely, the applicable coverage criteria (statement, branch, modified condi-
tion/decision coverage) again depending on the criticality, (3) show the proper
integration of software on target hardware. Task (3) is of particular importance,
since analyses and formal verifications on source code level cannot prove that
the module will execute correctly on a specific hardware component.

A Unified Approach to Abstract Interpretation 7

These considerations motivate the main objectives for the tool support we
wish to provide:

1. Application of the tool and the results it provides have to be associated
clearly with the development phases and artifacts to be produced by each
activity specified in the applicable standards.

2. Application of the tool should help to produce the required results – tests,
analysis and formal verifications – faster and at least with the same quality
as could be achieved in a manual way.

Requirement 1 is obviously fulfilled, since the tool functionality described here
has been explicitly designed for the module verification phase, as defined by the
standards mentioned above. Requirement 2 motivates our bug finder approach
with respect to formal verification and static analysis: These techniques should
help to find errors more quickly than would be possible with manual inspec-
tions and tests alone – finding all errors of a certain class is not an issue. As a
consequence the tool can be designed in such a way that state explosions, long
computation times, false alarms and other aspects of conventional model check-
ers and static analysis tools, usually leading to user frustration and rejection of
an otherwise promising method, simply do not happen: Instead, partial verifica-
tion results are delivered, and these – in combination with the obligatory tests
– are usually much better than what a manual verification could produce within
affordable time.

3 Abstract Interpretation, Formal Verification and
Testing – An Integrated Approach

3.1 Specification of Analysis, Verification and Test Objectives

In our approach functional requirements of C/C++ modules are specified by
means of pre- and post-conditions (Fig. 2). Optionally, additional assertions can
be inserted into an “inspection copy” of the module code. The Unit Under Test
(UUT)2 is registered by means of its prototype specification preceded by the
@uut keyword and extended by a {@pre: ... @post}; block. Pre- and post-
conditions are specified as Boolean expressions or C/C++ functions, so that –
apart from a few macros like @pre, @post, @assert and the utilisation of the
method name as place holder for return values – no additional assertion language
syntax is required. The pre-condition in Fig. 2, for example, states that the spec-
ified module behaviour is only granted if input i is in range 0 ≤ i ≤ 9 and inputs
x, y satisfy exp(y) < x. The post-condition specifies assertions whose applica-
bility may depend on the input data: The first assertion globx == globx@pre
states that the global variable globx should always remain unchanged by an
execution of f(). The second assertion (line 9) only applies if the input data
satisfies −10.0 < y ∧ exp(y) < x. Alternatively (line 12), the return value of f()
shall be negative.
2 We use this term in general for any module to be analysed, verified and/or tested.

8 J. Peleska

1 double globx;

2
3 @uut double f(double x, double y, int i) {

4 @pre:

5 0 <= i and i <= 9 and exp(y) < x;

6 @post:

7 @assert(globx == globx@pre);

8 if (-10.0 < y and exp(y) < x) {

9 @assert(f == 1.0/(x - exp(y)));

10 }

11 else {

12 @assert(f < 0);

13 }

14 };

15

Fig. 2. Example: Module specification by pre- and post-conditions

It is well-known that pre-/post-condition specifications are considerably facili-
tated by the optional utilisation of auxiliary variables [2, p. 192]: These variables
are characterised by the fact that they are never read in control conditions or
assignments to non-auxiliary variables. As a consequence, the existence of aux-
iliary variables and their associated assignments does not change the (untimed)
behaviour of the UUT. Assignments can either be directly inserted into the UUT
code (so-called code instrumentation) or into the UUT specification by way of
pre- and post-processing statements.

Since module behaviour is not only defined by its input-output relation but
also by the sequence of sub-function and method invocations, it is necessary to
specify

– the expected number and sequence of sub-function invocations,
– the expected input data to be passed by the UUT to its sub-functions,
– constraints about the sub-function behaviour, depending on the input data

it receives.

Sub-functions are specified in the same way as the UUT itself. Using auxiliary
variables and associated assignments recording the calls and their parameters, the
assertions related to sequencing of sub-function calls can be expressed by means
of predicates referring to these auxiliary variables. For test purposes, our system
automatically generates test stubs (also called mock objects in object-oriented set-
tings): These are functions replacing the original sub-functions invoked by the
UUT, and showing the specified sub-function behaviour. The utilisation of stubs
has the advantage, that exceptional behaviour which rarely occurs in the orig-
inal sub-function (e. g. report of an arithmetic exception or a hardware error)

A Unified Approach to Abstract Interpretation 9

can easily be simulated in the stub, so that execution of the associated code sec-
tions in the UUT can be triggered in a simple way.

Complementary to functional testing, it is required to perform structural test-
ing. The goal of structural testing consists in covering the UUT control struc-
tures, statements, calls to sub-functions and interfaces, while still checking that
the functional requirements are met. Currently, we support the coverage criteria
required in the standards [21,7]:

– Statement coverage (C0): Every statement is executed at least once.
– Decision coverage (C1): C0 coverage plus the requirement that every decision

is evaluated at least once with result true and at least once with result false.
This is required, for example, for testing avionic software of criticality level
B (A = highest criticality level).

– Multiple condition/decision coverage (MC/DC): C1 coverage plus the re-
quirement that every condition in a decision in the module has taken all
possible outcomes at least once, and each condition in a decision has been
shown to independently affect that decision’s outcome. A condition is shown
independently to affect a decision’s outcome by varying just that condition
while holding fixed all other possible conditions. This is required, for exam-
ple, for testing avionic software of criticality level A.

The specification of pre-/post-conditions and internal assertions, in combi-
nation with the optional utilisation of auxiliary variables, allows to specify
safety conditions about the module behaviour. As a consequence, the verifi-
cation goals are represented by reachability problems which are very similar
to the structural coverage test goals: If we consider augmented module ver-
sions where each safety condition ψ is represented by an auxiliary code branch
if (¬ψ) then { raiseError(); } located at the appropriate place in the code,
a test reaching the raiseError()-statement would uncover the violation of ψ
and at the same time provide a counter example. Conversely, if this statement
can be proven to be “dead code”, this proves validity of ψ.

Furthermore, the objective to achieve functional test coverage can also be
reduced to the problem of achieving structural test coverage, that is, it can also
be transformed into a set of reachability problems. To illustrate this we consider
a typical post-condition pattern

Q ≡
∧

i

(Ci(v,v′)⇒ Qi(v,v′))

Given variable vector pre-states v and post-states v′, this post-conditions states
a number of conditions Ci(v,v′) about the situations to be distinguished. De-
pending on the applicable situation Ci(v,v′), additional assertionsQi(v,v′) shall
also hold. Functional test coverage would now require to create each of the situ-
ations Ci(v,v′), so that the expected outcome Qi(v,v′) can be checked. Instead
of UUT f(), we now consider the augmented function faug() shown in Fig. 3.
Obviously, statement coverage of faug() implies functional coverage of f() in the
sense exemplified above.

10 J. Peleska

1 void f_aug(t1 x1, ..., tn xn) {

2 t r;

3 if (P(v)) {

4 // This branch is entered when input data

5 // satisfied pre-condition P(v)

6
7 v0 = v; // Create copy of pre-states

8 r = f(x1, ...,xn); // Call the UUT

9
10 // Post-state has changed variable vector v,

11 // pre-state is saved in auxiliary variable v0.

12
13 if (C_1(v0,v)) {

14 assert(Q_1(v0,v));

15 }

16 ...

17 if (C_k(v0,v)) {

18 assert(Q_k(v0,v));

19 }

20 }

21 }

22

Fig. 3. Branch coverage of f aug() implies functional test coverage of f()

For the abstract interpretation objective “absence of run-time errors” no user-
defined specifications are required, since the analysis obligations can be directly
extracted from the code. It is possible, however, to choose between bug finder
mode and proof mode: The former mode only uncovers run-time errors along the
module paths which have been investigated in order to reach the specified test
coverage and verification goals. Each uncovered run-time error is associated with
a test case uncovering the erroneous module state; potential runtime errors for
which no test cases could be constructed are not reported. The proof mode tries
to prove the absence of any runtime error within the module, provided that the
specified pre-conditions are met.

3.2 Transformation into an Intermediate Model Representation

To facilitate the re-use of algorithms for testing and verifying programs writ-
ten in other programming languages and to support model-based testing and
verification approaches, all algorithms operate on an intermediate model repre-
sentation IMR. Conceptually, IMRs consist of collections of transition systems
T = (S, S0,−→) which may be connected by a decomposition relation (e. g. tran-
sition system state s ∈ S is decomposed into one or more sub-ordinate transition

A Unified Approach to Abstract Interpretation 11

systems T1, . . . , Tn) and a parallelism relation (transition system T1 is executed
in parallel to T2).

Since we do not impose any restrictions on the size of the data types involved,
explicit transition system state space representations of C/C++ modules in the
IMR would be impossible. Instead, the IMR encodes the transition relation,
using a combined explicit and symbolic technique: The full transition system
state space S is structured into locations Loc and variable valuations V �→ D,
i. e., S = Loc× (V �→ D), where V denotes the set of symbols and D a suitable
domain capturing all symbol types involved. Note that the valuation mappings
are partial, because at different states different symbols may be present in the
state-dependent scope. Moreover, V may be infinite to allow for symbols specified
by de-referenced pointer expressions (such as *(p->next->...->next->x)) or
array elements with arbitrary index expressions (like a[i0 + . . .+ in]).

A directed location graph L = (Loc,−→L⊆ Loc× Label× Loc) with labelled
edges explicitly represents an abstraction of the transition system. The abstrac-
tion hides all concrete symbol valuations. The Edges e = l0 −→L l1 of L may
be labelled by guard conditions g(e), that is, predicates with symbols from V as
free variables. The guard conditions specify the constraints on variables valua-
tions to be fulfilled for having an associated transition in the concrete transition
system T = (Loc × (V �→ D), S0,−→). Furthermore, edges e can be anno-
tated with symbolic transition relations specifying actions ε(e), that is, changes
σ1 = ε(e)(σ0) on symbol valuations accompanying a (l0, σ0) −→L (l1, σ1)-
transition in the concrete transition system T . Similarly, nodes l1 of the lo-
cation graph can be annotated by entry actions α(l1), specifying changes on
symbol valuations occurring when entering location l1. Furthermore, they can
be labelled with invariants inv(l) and do-actions δ(l) to encode models specified
in timed, potentially hybrid, formalisms and supporting urgent and non-urgent
transitions.

A pre-requisite for a concrete transition (l0, σ0) −→ (l1, σ1) to take place

in T is that there exists an edge l0
[g]/a−→L l1 in the location graph such that

σ0 |= g, that is, g(σ0(x0)/x0, . . . , σ0(xn)/xn) evaluates to true. This is obvi-
ously independent on the concrete formalism encoded in the IMR. The more
specific rules for deriving possible T -transitions depend on the underlying for-
malism. As a consequence, we instantiate specific interpreters implementing the
concrete transition rules with each supported formalism. This necessity suggests
an object-oriented approach for the IMR.

For C/C++ module testing, each module f() corresponds to one transition
system T (f) and transition system states correspond to computation states of
the module. A call from f() to a sub-module h() corresponds to a state s repre-
senting the call which is related to a sub-ordinate transition system T (h). The
IMR uses GIMPLE control flow graphs (CFG) as location graphs for C/C++
modules (see [10]). These graphs have one dedicated entry node BLOCK 0 and
one exit node EXIT. Each location is associated with an entry action, and these
are the only actions defined for CFGs; do-actions, invariants and actions associ-
ated with edges are not needed. Actions are defined in imperative programming

12 J. Peleska

language style according to the GIMPLE syntax and in 3-address code3. Each

CFG node l has at most two outgoing edges l
[g0]−→L l

′, l
[g1]−→L l

′′ corresponding
to if-else-conditions, so g1 = ¬g0. The symbol set V consists of the variable
symbols occurring in f() plus additional atomic variables introduced to support
the 3-address code representation. Each concrete transition of T can be derived
from the rule

l0
[g]−→L l1, σ0 |= g

(l0, σ0) −→ (l1, α(l1)(σ0))

A run of a C/C++ module is a finite computation, that is, a sequence

r = 〈(l0, σ0), . . . , (ln, σn)〉

such that (l0, σ0) ∈ S0 and

∀ i ∈ {0, . . . , n− 1} : ∃ li
[gi]−→L li+1 : σi |= gi ∧ σi+1 = α(li+1)(σi)

A path l0 −→ l1 −→, . . . ,−→ ln through the location graph L(T) is called
feasible if an associated run in T can be constructed, otherwise the path is
infeasible.

If the entry action of the target node consists of a function call then the
following rule for the calculation of α(l1)(σ0) is applied:

α(l1) = {x0 = h(x1, . . . , xn);}, (BLOCK 0, σ0|h) −→∗
h (EXIT, σ1)

α(l1)(σ0) = (σ1|f)[x0 �→ σ1(hreturn)]

This rule is interpreted as follows: If T (f) may perform a transition into location
l1 which has a function call as entry action, then the effect of this action is
defined by T (h). If T (h) transforms entry valuation σ0|h into exit valuation σ1

then the symbols still visible at the level of f() (that is, everything but the formal
parameters and stack variables of h()) carry the new valuation σ1, and the return
value of h() is assigned to the target variable x0 of the assignment. The symbol
| in σ0|h denotes (1) the extension of dom σ0 to the scope of h(): dom σ0 is now
extended by the formal parameters and stack variables of h(). (2) The assignment
of actual parameter values used in the call to h to formal parameter valuations
visible inside h. Observe that for reference parameters the formal parameter gets
an address assignment from the associated actual parameter. Conversely, σ1|f
denotes (1) the domain restriction of valuation function σ1; formal parameters
and local variables of h() are no longer visible, and (2) the assignment of the
return value of h() to an intermediate variable hreturn visible at the level of f().

Due to the aliasing effects possible in C/C++, the sub-function h() may in-
directly change local variables of f() via assignments to de-referenced pointers.
As a consequence, the effect of the h()-execution on symbol valuations “appar-
ently” outside the scope of h() can be quite complex. The memory model and
the associated valuation rules described below have been designed to cope with
these problems. For the moment it suffices to observe that an assignment to a
3 Exceptions are calls to modules with more than 3 parameters y = f(x1, . . . , xn) and

access to multi-dimensional array y = a[x1] . . . [xn], n > 2.

A Unified Approach to Abstract Interpretation 13

symbol inside the scope of h() may implicitly change the valuation of (due to
recursive data structures and pointer de-referencing) possibly infinitely many
other symbols which may even be outside the scope of h().

3.3 The Sub-model Generator

The reason for using a mixed explicit (location graph) and symbolic (specifica-
tion of transition effects on valuations) intermediate model representation lies in
the fact that this allows us to distribute the elaboration of reachability strategies
onto two tool components – the solver and the sub-model generator – instead
of only one (the solver). It has been pointed out in [3] that the reachability
goals associated with structural test coverage and with the verification of safety
properties can always be expressed as a goal to cover specific edges in a location
graph; for C/C++ this is the GIMPLE CFG or a semantically equivalent trans-
formation thereof. The task of the sub-model generator is therefore to restrict
the complete transition system collection representing the UUT into a collection
of restricted sub-systems by eliminating as many original transitions that will
never be visited by any path leading to the destination edges as possible. Since
this should be performed in an efficient manner before a constraint solver is in-
volved, the sub-model generator performs a conservative approximation based
on the location graph alone, that is, without calculating symbol valuations. Fur-
thermore, the sub-model generator receives feed-back from the constraint solver
about infeasible paths through the location graph and applies learning strate-
gies for avoiding to pass infeasible sub-models to the solver. Finally, this tool
component keeps track of the location graph coverage achieved.

The simplest sub-models are paths through the location graph, more complex
ones are

– trees leaving a higher degree of freedom for the solver in order to construct
runs to the destination edges, and

– sub-graphs representing if-else branches both leading back to the same path
to the destination edge.

Example 1. Consider a C/C++-UUT whose transition relation is encoded by
the CFG depicted in Fig. 4. For structural testing it is useful to know all paths
up to a certain depth leading to any given edge. For this purpose, the sub-model
generator maintains a tree of depth k as depicted in Fig. 5, associated with a
function φk mapping edges e of the location graph to lists of nodes n in the
tree, such that a path in the tree from root to n corresponds to a path trough
the transition graph reaching e. For the configuration described by Fig. 4 and 5
we have, for example, φ6(f) = 〈(l5, 3), (l5, 5), (l5, 4), (l5, 7)〉. If one path, say, the
one specified by (l5, 3), to the destination edge is identified by the solver to be
infeasible, the tree is pruned at the target node of the destination edge. In our
example, edges in the sub-tree starting at (l5, 3) would never be suggested again
by the sub-model generator. If all paths specified by φk(f) turned out to be
infeasible, the tree can be expanded if possible, but only at leaves which do not
reside in sub-trees already pruned.

14 J. Peleska

For structural testing it will be too costly to expand the tree of Fig. 5 further,
if most of the edges have already been covered. The sub-model generator now
constructs another tree structure capturing all (still potentially feasible) paths
to an edge still uncovered.

More details about the algorithms for generating sub-models can be found
in [3]. �

�

� �
�

�

�

�
���

�
���

�
���

�
��

�

�

���

�.............................

.....................................�

.............................

.....................................�

a b

c d

f

l2

l4
e

g

l3

l6

h k

l5

l1

Fig. 4. Location graph example

3.4 Interpreters

Symbolic Interpretation. Given the IMR of a spcification or C/C++ mod-
ule, the symbolic interpreter performs symbolic computation of runs through
a sub-model of the location graph. This interpreter is the core component for
generating the constraints to be solved for the inputs of a module, in order to
reach a given edge.

As a consequence of the aliasing problems of C/C++ it may be quite complex
to determine the valuation of a variable in a given module state: the memory
location associated with the variable may have been changed not only by direct
assignments referring to the variable name, but also indirectly by assignments
to de-referenced pointers and memory copies to areas containing the variable.
Therefore we introduce a memory model that allows us to identify the pres-
ence of such aliasing effects with acceptable effort. Computations are defined as
sequences of memory configurations, and the memory areas affected by assign-
ments or function/method executions are specified by means of base addresses,
offsets and physical length of the affected area. Moreover, the values written
to these memory areas are only specified symbolically by recording the value-
defining expression (e. g. right-hand side of an assignment or output parameter

A Unified Approach to Abstract Interpretation 15

�
� �

�
�

� �

�

�
� �

� �

��
��

� � � �
� �

� �

� � �

�

�
���

.....................................�
.....................................�.....................................�

��� ���

���

��� ���
�

�

�

��� ���.........................

�

.........................

�

�
�

�
���

�
�� � ����

�
�

�

�
�

�

�
��

�
��

�

�
���

�

�
���

c

(l1, 1)

(l2, 2)

(l4, 2)

(l5, 3)

(−, 0)

ba

d g

ef

f

h k

d g

(l5, 2)

(l3, 2)

(l6, 3)(l6, 2)e

(l4, 4) (l5, 5)

(l3, 3)

(l6, 4) (l6, 5)

ef h k

(l5, 5) (l3, 5) (l6, 8) (l6, 9)
h k

(l3, 4)

d g

(l4, 5)

e

(l5, 6)

h k
(l6, 11)

(l6, 10)

(l4, 3)

(l6, 6) (l6, 7) (l5, 7)

kh

(l5, 4)

f

(l3, 6)

Fig. 5. Tree sub-model with paths to all edges in the location graph

of a procedure call) without resolving them to concrete or abstract valuations.
This motivates the term symbolic interpretation. Global, static and stack vari-
ables x induce base addresses &x in the data and stack segment, respectively.
Dynamic memory allocation (malloc(), new ...) creates new base addresses
on the heap. A memory configuration mem consists of a collection of memory
items, each item m specified by base address, offset, length and and value ex-
pression (Fig. 6). Since some statements will only conditionally affect a memory
area, it is necessary to associate memory items with constraints specifying the
conditions for the item’s existence.

m.v0 | m.v1 | m.a | m.t | m.o | m.l | m.val | m.c

m.v0 First computation step number where m is valid
m.v1 Last computation step number where m is valid or ∞ for items valid beyond the

actual computation step
m.a Symbolic base address
m.t Type of specified value m.val
m.o Start offset from base address in bits, where value is stored
m.l Offset from base address to first bit following the stored value, so m.l−m.o specifies

the bit-length of the memory location represented by the item
m.val Value specification
m.c Validity constraint

Fig. 6. Structure of a memory item m

16 J. Peleska

Symbolic computations – that is, sequences of memory configurations related
by transition relations – are recorded as histories, in order to reduce the required
storage space: Memory items are associated with a validity interval [m.v0,m.v1]
whose boundaries specify the first and last computation step where the item was
a member of the configuration.

Example 2. Suppose that variables float x, y, z; are defined in the stack frame of
the UUT on a 32-bit architecture, and the current computation step n performs
an assignment x = y + z. This leads to the creation of a new memory item

m =def n | ∞ | &x | float | 0 | 32 | yn + zn | true

Item m is first valid from step n on, and has not yet been invalidated by other
writes affecting the memory area from start address &x to &x+ 31. The value
depends on the valuation of y and z, taken in step n. This is denoted by the
version index n in the value expression yn + zn. �

For the representation of large memory areas carrying identical or inter-dependent
values it is useful to admit additional bound parameters in the offset, value and
constraint specifications:

mp0,...,pk
=

v0 | v1 | a | t | o(p0, . . . , pk) | l(p0, . . . , pk) | val(p0, . . . , pk) | c(p0, . . . , pk)

defines a family of memory items by means of the definition

mp0,...,pk
=def {m′ | m′.v0 = v0 ∧m′.v1 = v1 ∧m′.a = a ∧m′.t = t ∧

(∃p′0, . . . , p′k : m′.o = o[p′0/p0, . . . , p
′
k/pk] ∧

m′.l = l[p′0/p0, . . . , p
′
k/pk] ∧

m′.val = val[p′0/p0, . . . , p′k/pk] ∧
m′.c = c[p′0/p0, . . . , p

′
k/pk])}

Example 3. Suppose that array float a[10]; is defined in the stack frame of
the UUT on a 32-bit architecture, and is currently represented by a family of
memory items

mp =def

n | ∞ | &a[0] | float | 32 · p | 32 · p+ 32 | sinf((float)p) | 0 ≤ p ∧ p < 10

Family m specifies one memory item for each p ∈ {0, . . . , 9}, each item located
at a p-dependent offset from the base address &a[0] and carrying a p-dependent
value. �

Symbolic interpretation (denoted below by transition relation −→G, “G”
standing for “GIMPLE operational semantics”) is performed according to rules
of the pattern

n1
g−→CF G n2

(n1, n, mem) −→G (n2, n + 1, mem′)
,

A Unified Approach to Abstract Interpretation 17

so a transition can be performed on symbolic level whenever a corresponding
edge exists in the control flow graph (

g−→CFG denotes the edge-relation in the
module’s CFG, with guard condition g as label). It may turn out, however, on
abstract or concrete interpretation level, that such a transition is infeasible be-
cause no valuation of inputs exists where the constraints of all memory items
involved evaluate to true. Informally speaking, a statement changing the mem-
ory configuration is processed according to the following steps: (1) For every base
address and offset possibly affected by the statement, create a new memory item
m′, to be added to the resulting configuration. (2) For each new item m′ check
which existing items m may be invalidated: Invalidation occurs, if m′ refers to
the same base address asm and the data area ofm′ has a non-empty intersection
with that of m. (3) For each invalidated item m create new ones m′′ specifying
what may still remain visible of m: m′′ equals to m if m′ does not exist at all
(i. e., constraintm′.c evaluates to false), orm′ andm do not overlap. Moreover,
m′′ specifies the resulting value representation of m in memory for the situation
where m′ and m only partially overlap.

In [16,15], formal transition rules have been specified for −→G, as well as the
algorithms required for rule application. Here we will only present an example,
in order to illustrate the effect of these rules on the symbolic memory state.

Example 4. A stack declaration int a[10]; followed by assignments a[i] = m
+ n; a[j] = 0; is represented in GIMPLE as

1 int a[10];

2 i_0 = i;

3 D_4151 = m + n;

4 a[i_0] = D_4151;

5 j_1 = j;

6 a[j_1] = 0;

After having processed lines 1 — 6, the associated computation results in the
following history of memory items:

m1
p = (1, 3, &a[0], 32 · p, 32 · p + 32, int, Undef, 0 ≤ p ∧ p < 10)

m2 = (2,∞, &i 0, 0, 32, int, i1, true)

m3 = (3,∞, &D 4151, 0, 32, int, m2 + n2true)

m4
p = (4, 5, &a[0], 32 · p, 32 · p + 32, int, Undef, 0 ≤ p ∧ p < 10 ∧ p �= i 02)

m5 = (4, 5, &a[0], 32 · i 02, 32 · i 02 + 32, int, D 41513, 0 ≤ i 02 ∧ i 02 < 10)

m6 = (5,∞, &j 1, 0, 32, int, j4, true)

m7
p = (6,∞, &a[0], 32 · p, 32 · p + 32, int, Undef, 0 ≤ p ∧ p < 10 ∧ p �= i 02 ∧ p �= j 15)

m8 = (6,∞, &a[0], 32 · i 02, 32 · i 02 + 32, int, D 41513 ,

0 ≤ i 02 ∧ i 02 < 10 ∧ i 02 �= j 15)

m9 = (6,∞, &a[0], 32 · j 15, 32 · j 15 + 32, int, 0, 0 ≤ j 15 ∧ j 15 < 10)

18 J. Peleska

Initially, the declared array a is undefined because it resides in the stack segment
where no variable initialisation takes place (memory item m1

p). The assignment
to a[i 0] in line 4 invalidates the original item m1

p representing the symbolic
valuation of a, so m1

p.v1 = 3. This leads to the creation of two new items:
m5 specifies the effect of the assignment in line 4, and m4

p specifies the array
elements which are still undefined. A further invalidation of m4

p,m
5 is caused

by the assignment in line 6 and generates the new items m7
p,m

8,m9. Item m8,
for example, specifies the situation where the original value written to a[i 0] in
line 4 is still visible after the new assignment in line 6. �

Abstract Interpretation. The abstract interpreters evaluate one or more ab-
stractions of the memory model. Starting with (lattice) abstractions of the mod-
ule’s input data, they operate on abstractions of the symbolic memory model.
The purpose of this activity is threefold:

– Identification of runtime errors.
– Using over-approximation, an abstract interpreter can find sufficient condi-

tions to prove that a computation “suggested” by path generator and sym-
bolic interpreter is infeasible. Since abstract interpretation can be performed
at comparably low cost this is more effective than waiting for the constraint
solver to find out that a path cannot be covered.

– Using under-approximation, the abstract interpreters speed up the solution
process for non-linear constraints involving floating point variables and tran-
scendent functions.

Concrete Interpretation. The concrete interpreter applies concrete GIMPLE
semantics [16] in order to find out the paths through the IMR that are covered
with concrete sets of input data. It is applied

– in verification to present counter examples,
– in structural testing to determine the location graph edges following a reach-

able destination edge which are also covered before the exit point of a module
execution is reached.

3.5 Constraint Generation

As we have seen in the previous section, the guard conditions to be fulfilled in
order to cover a specific path or a sub-graph of a module’s CFG are already
encoded in the memory items associated with the symbolic memory configura-
tions involved. The most important task for the constraint generator is now to
resolve the value components of the memory items involved, so that the resulting
expressions are free of pointer and array expressions, and are represented in an
appropriate format for the solver.

Example 5. Let us extend Example 4 by two additional statements

7 D_4160 = a[i_0];
8 if (D_4160 < 0) { ...(*)... }

A Unified Approach to Abstract Interpretation 19

and suppose we wish to reach the branch marked by (*). The constraint generator
now proceeds as follows: (1) Initialise constraint Φ as Φ := D 4160 < 0.

(2) Resolve D 4160 to a[i 0], as induced by the memory item resulting from
the assignment in line 7. Since a[i 0] is an array expression, we have to resolve
it further, before adding the resolution results to Φ.

(3) a7[i 07] matches with items m7
p,m

8,m9 for a and m2 for i 0 in Exam-
ple 4, since the other items with base address &a[0] are already outdated at
computation step 7; this leads to resolutions

Φ = D 4160 < 0 ∧ ((D 4160 = Undef ∧ i 07 = p ∧ 0 ≤ p ∧ p < 10 ∧ p �= i 02 ∧ p �= j 15) ∨
(D 4160 = D 41513 ∧ i 07 = i 02 ∧ 0 ≤ i 02 ∧ i 02 < 10 ∧ i 02 �= j 15) ∨
(D 4160 = 0 ∧ i 07 = j 15 ∧ 0 ≤ j 15 ∧ j 15 < 10)) ∧
i 07 = i 02 ∧ i 02 = i1 ∧ j 05 = j4 ∧ j4 = j1

Observe that at this stage Φ has been completely resolved to atomic data
types: The references to array variable a have been transformed into offset re-
strictions (expressions over i 07, i 02, j 15, . . .), and the array elements involved
(in this example a[i 0]) have been replaced by atomic variables representing
their values (D 4160). References to C-structures would be eliminated in an anal-
ogous way, by introducing address offsets for each structure component and using
atomic variables denoting the component values.

Further observe that we have already eliminated the factors 32 in Φ, initially
occurring in expressions like 32 · i 07 = 32 · j 15. These factors are only rele-
vant for bit-related operations; for example, if an integer variable is embedded
into a C-union containing a bit-field as another variant, and a memory item
corresponding to the integer value is invalidated by a bit operation.

(4) Simplify by means of abstract interpretation: Using interval analysis for
symbols of numeric type, some atoms of the constraint can be quickly verified or
falsified, in order to simplify the constraint finally passed to the solver. Suppose,
for example, that i, j were inputs to the module and fulfilled the pre-conditions
0 ≤ i < 2, 2 ≤ j < 10 The interval analysis would yield true for condition
i 02 �= j 15 for all elements i, j satisfying the pre-condition, so conjunct i 02 �=
j 15 could be deleted in Φ.

(5) Prepare the constraint for the solver: Following the restrictions for ad-
missible constraints described in [9], our solver requires some pre-processing of
Φ: (a) Inequalities like i 02 �= j 15 are replaced by disjunctions involving <,>,
e. g. i 02 < j 15 ∨ i 02 > j 15. (b) Inequalities a < b are only admissible if a or
b is a constant. Therefore atoms like i 02 < j 15 are transformed with the aid
of slack variables s, so that non-constant symbols are always related by equality.
For example, the above atom is transformed into i 02 + s = j 15 ∧ 0 < s. (c)
Three-address-code is enforced, so that – with the exception of function calls
y = f(x0, . . . , xn) and array expressions y = a[x1] . . . [xn] – each atom refers to
at most 3 variables. Since the introduction of slack variables may lead to four
variables in an expression originally expressed with three symbols only, auxil-
iary variables are needed to reinstate the desired three-address representation.
For example, x + y < z leads to x + y = z + s ∧ s < 0 which is subsequently

20 J. Peleska

transformed into aux = z+ s∧ x+ y = aux∧ s < 0. (d) The constraint is trans-
formed into conjunctive normal form CNF. Constraint Φ in this example already
indicates a typical problem to be frequently expected when applying the stan-
dard CNF algorithm: Some portions of Φ resemble a disjunctive normal form.
This is caused by the necessity to consider alternatives – that is, ∨-combinations
– of memory items, where the validity of each item is typically specified by a
conjunction. As a consequence, the standard CNF algorithm may result in a
considerably larger formula. Therefore we have implemented both the standard
CNF algorithm and the Tseitin algorithm [24] as an alternative, together with a
simple decision procedure indicating which algorithm will lead to better results.

3.6 Constraint Solver

The solver handling the conditions prepared by the constraint generator has been
developed according to the Satisfiability Modulo Theory (SMT) paradigm [20].
It uses a combination of techniques for solving partial problems of specific type
(e. g., constraints involving bit vector arithmetic, strings, or floating point cal-
culations). For the solution of constraints involving floating point expressions
and transcendent functions the solver applies interval analysis [12] and learning
strategies designed by [9], see also [3] for more details of solver application in
the context of test automation.

4 Conclusion

We have described an integrated approach for automated testing, static analysis
by abstract interpretation and formal verification by model checking (reacha-
bility analysis for safety properties). The main focus of the presentation was
on the verification of C/C++ modules. It has been indicated, however, how
more abstract specification models can be encoded in the same intermediate
model representation IMR used for code verification. As a consequence, the al-
gorithms operating on the IMR can be directly applied to model-based testing
and model verification. The techniques described in this paper, together with
the tool support provided by the test automation system RT-Tester [26] are ap-
plied in industrial projects in the fields of railway control systems and avionics,
the model-based approach is currently applied in the railway and automotive
domains. More details about model-based testing can be found in [18].

References

1. IEC 61508 Functional safety of electric/electronic/programmable electronic safety-
related systems. International Electrotechnical Commission (2006)

2. Apt, K.R., Olderog, E.R.: Verification of Sequential and Concurrent Programs.
Springer, Heidelberg (1991)

3. Badban, B., Fränzle, M., Peleska, J., Teige, T.: Test automation for hybrid systems.
In: Proceedings of the Third International Workshop on SOFTWARE QUALITY
ASSURANCE (SOQUA 2006), Portland Oregon, November 2006, USA (2006)

A Unified Approach to Abstract Interpretation 21

4. Beck, K.: Test-Driven Development. Addison-Wesley, Reading (2003)
5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.:

Combination of abstractions in the Astrée static analyzer. In: Okada, M., Satoh,
I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 1–24. Springer, Heidelberg (2008)

6. Blanchet., B., et al.: Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software. In: Mogensen, T.A., et
al. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer,
Heidelberg (2002)

7. European Committee for Electrotechnical Standardization. EN 50128 – Railway
applications – Communications, signalling and processing systems – Software for
railway control and protection systems. CENELEC, Brussels (2001)

8. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Goanna - a static
model checker. In: Proceedings of 11th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS), Bonn, Germany (2006)

9. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
Journal on Satisfiability, Boolean Modeling and Computation (2007)

10. GCC, the GNU Compiler Collection. The GIMPLE family of intermediate repre-
sentations, http://gcc.gnu.org/wiki/GIMPLE

11. Goubault-Larrecq, J., Parrennes, F.: Cryptographic protocol analysis on real C
code. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 363–379. Springer,
Heidelberg (2005)

12. Jaulin, L., Kieffer, M., Didrit, O., Walter, É.: Applied Interval Analysis. Springer,
London (2001)

13. Leveson, N.G.: Safeware. Addison-Wesley, Reading (1995)
14. Löding, H.: Behandlung komplexer Datentypen in der automatischen Testdaten-

generierung. Master’s thesis, University of Bremen (May 2007)
15. Peleska, J.: Integrated and automated abstract interpretation, verification and

testing of C/C++ modules. In: Dams, D.R., Hannemann, U., Steffen, M. (eds.)
Correctness, Concurrency and Compositionality – Festschrift for Willem-Paul de
Roever. LNCS Festschrift series. Springer, Heidelberg (2008)

16. Peleska, J., Löding, H.: Symbolic and abstract interpretation for c/c++ programs.
In: Proceedings of the 3rd intl Workshop on Systems Software Verification (SSV
2008), February 2008. Electronic Notes in Theoretical Computer Science, Elsevier,
Amsterdam (2008)

17. Peleska, J., Löding, H., Kotas, T.: Test automation meets static analysis. In:
Koschke, R., Rödiger, K.-H., Herzog, O., Ronthaler, M. (eds.) Proceedings of the
INFORMATIK 2007, Band 2, Bremen, Germany, September 24-27, pp. 280–286
(2007)

18. Peleska, J., Möller, O., Löding, H.: Model-based testing for model-driven develop-
ment with uml/dsl. In: Proceedings of the Software & Systems Quality Conference
(SQC 2008) (to appear, 2008), http://www.informatik.uni-bremen.de/agbs/
agbs/jp/jp papers e.html

19. Peleska, J., Zahlten, C.: Integrated automated test case generation and static analy-
sis. In: Proceedings of the QA+Test 2007 International Conference on QA+Testing
Embedded Systems, Bilbao (Spain), October17 - 19 (2007)

20. Ranise, S., Tinelli, C.: Satisfiability modulo theories. TRENDS and
CONTROVERSIES–IEEE Magazine on Intelligent Systems 21(6), 71–81 (2006)

21. SC-167. Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA (1992)

http://gcc.gnu.org/wiki/GIMPLE
http://www.informatik.uni-bremen.de/agbs/
agbs/jp/jp_papers_e.html

22 J. Peleska

22. Schlich, B., Salewski, F., Kowalewski, S.: Applying model checking to an automo-
tive microcontroller application. In: Proc. IEEE 2nd Int’l Symp. Industrial Em-
bedded Systems (SIES 2007), IEEE, Los Alamitos (2007)

23. Strichman, O.: On solving presburger and linear arithmetic with sat. In: Aagaard,
M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 160–170. Springer,
Heidelberg (2002)

24. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
Part 2, Consultants Bureau, New York, p. 115 (1962)

25. Venet, A., Brat, G.: Precise and efficient static array bound checking for large
embedded c programs. In: Proceedings of the PLDI 2004, Washington, DC, June
9-11, 2004, ACM Press, USA (2004)

26. Verified Systems International GmbH, Bremen. RT-Tester 6.2 – User Manual
(2007)

The Three Platonic Models of Divergence-Strict

CSP

A.W. Roscoe

Oxford University Computing Laboratory
Bill.Roscoe@comlab.ox.ac.uk

Abstract. In an earlier paper [13], the author proved that there were
three models of CSP that play a special role amongst the ones based on
finite observations: the traces (T), stable failures (F) and stable revivals
(R) models are successively more refined, but all further models refine R.
In the present paper we prove the corresponding result for the divergence-
strict models: ones that treat any process that can diverge immediately as
the least in the refinement order. We define what it is to be a divergence-
strict model, both for general and finitely nondeterministic CSP, and find
that in order to get our result we need to add a new but natural operator
into the language.

1 Introduction

The process algebra CSP [5,10] is traditionally studied via behavioural models,
namely combinations of sets of linear observations that might be made of them.
The reference point for making these observations is CSP’s standard LTS-based
operational semantics as set out in Chapter 7 of [10] (perhaps with definitions
for operators not considered there). In order to be a model, a representation has
to be a congruence (it must be possible to deduce the observations of the result
of applying any CSP operator from the observations of its arguments) and there
must be a way of working out the operationally correct value of any recursive
term from the function the recursion represents over the model.

One can divide the models of CSP into three categories:

– The models such as finite traces T and stable failures F (representing a
process as its sets of finite traces, and stable failures (s ,X) where the process
can, after trace s , reach a state in which neither an internal τ action nor a
member of X is possible). All the observations made of processes in this class
of models are finite: they can be completed in a finite time.

– The divergence-strict models such as failures/divergences N in which, in ad-
dition to some finite observations, we are allowed to record some behaviours
that take infinitely long. At any time when we are recording an observation,
we will record the process diverging if it does, and furthermore we choose not
to care about what our process might do on any observation that extends
such a divergence. (A process diverges when it performs an infinite unbroken
sequence of τ actions.)

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 23–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

24 A.W. Roscoe

This class is particularly important since N and its extension to include
infinite traces are the simplest that allow (respectively for finitely nondeter-
ministic and general processes) one to specify that a process, offered a set
X of events, must accept one of them. They also give the expressive power
to define the concept of determinism [10].

Divergence strictness is useful for two reasons: firstly it permits (as we
shall see later) the modelling of finitely branching processes without a sep-
arate representation of infinite traces, and secondly because it enormously
simplifies the semantics of recursion. If one always regards divergence as an
error, there is no need for models that distinguish beyond it.

– Models that record infinite behaviour but are not subject to divergence strict-
ness. The first examples of these that are not just Cartesian products of the
other two types were demonstrated in [12].

In [13], the author introduced a new family of models based on observing
slightly more than in failures-based models and less than in either ready-set
(sometimes termed acceptance-set) models or refusal testing models. In this fam-
ily, we choose to observe not only failures (s ,X) (where our process can perform
the trace s and then stably refuse X) but also, when X is not the set of all
visible events, single actions a that the state witnessing the refusal of X can
perform. Thus processes include in their representations their deadlock traces
(representing the traces on which the process can refuse anything) and their
revivals (s ,X , a). This family of models was inspired by the conformance equiv-
alence of Fournet et al [1].

We discovered there that the stable failures model plays a special role in the
van Glabbeek hierarchy [2,3], since it was shown to complete a fundamental
initial sequence. Specifically, we showed that, with respect to the CSP language
used in that paper, any non-trivial finite observation model that is not one of
the increasingly refined sequence T , N and R must refine R. Furthermore there
is no model R ≺M such that every CSP model strictly refining R must refine
M. (For one congruence B to refine another A means that any pair of processes
identified by B are identified by A. We will sometimes write this A � B.) These
three initial models are seemingly forced on us and can be compared (perhaps
fancifully) to the Platonic solids of geometry.

In that paper the author conjectured that essentially the same result would
hold in the class of divergence-strict models. The purpose of the present paper
is to resolve that conjecture: in fact it is true, but not quite in the terms that
the author envisaged, since the language needs to be extended in a subtle way.
The main structural result of this paper is the following theorem.

Theorem 1. For a suitably extended (see Section 5) language CSP+, the three
congruences T ⇓ω, F⇓ω and R⇓ω (i.e. the finite observation models extended by
strict divergence traces and infinite traces) are more abstract than every other
nontrivial model of this language.

The first thing we need to do, even to fully understand this statement, is decide
what qualifies as a divergence-strict CSP model. We establish this via the cre-
ation of the most refined such model of them all. We also establish relationships

The Three Platonic Models of Divergence-Strict CSP 25

between models for the full CSP language and ones for finitely nondeterministic
CSP – which we abbreviate fCSP and whose standard models are denoted T ⇓

etc – that allow us to restrict our attention for the rest of the paper to the
latter. This is a considerable bonus since we only have to consider behaviours
over which we can use induction, and find we can restrict attention to finite
restrictions of processes.

Having done this we are able to prove the first stage of the main result,
namely that the divergence-strict traces model T ⇓ is refined by every nontrivial
such CSP congruence, with respect to the same language used in [13].

It came as a surprise to the author that, with this same dialect of CSP, there is a
curious congruence that is not quite as refined as the failures-divergencesmodelN .
The discovery of this congruence (previously noted in [9]) leads to the observation
that no CSP operator treats processes in a specific way that seems operationally
natural, namely for someaction of a givenprocessP leading directly to the operator
turning P off. We therefore add such an operator to the language, obtaining a lan-
guage we term CSP+. We show that there is a surprisingly stark contrast between
the relative roles of our new operator – P Θa Q that allows P to throw control to
Q by communicating a – and the more usual interrupt operator P � Q .

With this enhanced language we are able to complete the proof of the main
result in two steps, one to prove that N is the weakest proper refinement of T ⇓,
and the second to prove that the divergence-revivals model R⇓ is the weakest
proper refinement of this.

There is an appendix of notation. We do not give detailed descriptions in this
paper of well-established CSP models or the semantics of CSP over them. The
interested reader can easily find these in [10] or [13].

2 Background

In this paper, as in [13], we restrict ourselves to the study of models where the
overall alphabet Σ is finite. However we only consider potential models that
make sense for any size of Σ and have the property that a pair of processes
defined over Σ1 are equivalent over a model defined over Σ1 if and only if they
are equivalent over the same model defined over every larger Σ2, because the
model over Σ1 is a natural restriction of the larger one. This means, for example,
that we can establish properties of an equivalence between processes defined over
Σ1 by introducing a finite number of extra events and studying the equivalence
over the resulting larger Σ2. We might also note the following:

– The CSP renaming operator – with its ability to apply an arbitrary permu-
tation to a process’s alphabet – implies that any congruence for CSP must
be essentially symmetric in events.

– Combinations of prefixing, renaming, parallel and hiding allow CSP to bring
differences between processes forward or to postpone them. This suggests
that CSP congruences must discriminate behaviours happening at any point
in a process’s execution uniformly.

Certainly all established models obey these two principles.

26 A.W. Roscoe

2.1 The CSP Language

Our starting point for CSP in this paper is the same language as in [13], but
without the two (SKIP and ;) related to successful termination. This latter
omission is just to make our arguments simpler1 – the results of this paper are
still valid with them added. The constant processes are thus

– STOP which does nothing – a representation of deadlock.
– div which performs (only) an infinite sequence of internal τ actions – a

representation of divergence or live-lock.
– CHAOS which can do anything except diverge.
– RUN (A) which always offers the actions A.

and the operators

– a → P communicates the event a ∈ Σ before behaving like P . This is
prefixing.

– ?x : A → P(x) communicates any event from A ⊆ Σ and then behaves like
the appropriate P(x). This is prefix choice.

– P � Q lets the process decide to behave like P or like Q : this is nondeter-
ministic or internal choice. It can be used as a binary operator like this or
over nonempty sets of processes �S . The only difference between CSP and

fCSP is that in the latter we may not use � over infinite sets.
– P � Q offers the environment the choice between the initial Σ-events of P

and Q . If the one selected is unambiguous then it continues to behave like
the one chosen; if it is an initial event of both then the subsequent behaviour
is nondeterministic. The occurrence of τ in one of P and Q does not resolve
the choice (unlike CCS +), and if one of P and Q can terminate then so can
P � Q . This is external choice.

– P � Q may choose to offer the visible actions of P but, unless one of these
is followed, must offer the initial choices of Q . This is asymmetric or sliding
choice and can be said to give an abstract (and untimed) representation of
P timing out, if none of its initial actions are accepted, and becoming Q .
This is considered primitive for reasons set out in [13].

– P ‖
X

Q runs P and Q in parallel, allowing each of them to perform any

action in Σ −X independently, whereas actions in X must be synchronised
between the two. It terminates when both P and Q have, a rule which is
equivalent to stating that � is synchronised like members of X . All other
CSP parallel operators can be defined in terms of this one.

– P \ X , for X ⊆ Σ, hides X by turning all P ’s X -actions into τs.
– P [[R]] applies the renaming relation R ⊆ Σ × Σ to P : if (a, b) ∈ R and P

can perform a, then P [[R]] can perform b.

1 The chief benefit is that we do not have to allow for processes terminating in the
many contexts we create for them in this paper. The reader can see this effect
in [13].

The Three Platonic Models of Divergence-Strict CSP 27

– P � Q runs like P but if at any time the environment communicates an
initial visible action of Q , then (nondeterministically if that event is also
currently offered by P) P shuts down and the process continues like Q . This
is the interrupt operator.

We will discover some interesting things about � in Section 5.
The final CSP construct is recursion: this can be single or mutual (including

mutual recursions over infinite parameter spaces), can be defined by systems of
equations or (in the case of single recursion) in line via the notation μ p.P , for
a term P that may include the free process identifier p.

2.2 The Hierarchy of CSP Models

CSP models traditionally represent processes by sets of observations which can
be made of a process. These observations are always ones that it is reasonable
for someone interacting with the process to see in some finite or infinite linear
interaction with it (in other words things are seen in some definite succession,
with no branching). We work here under the same postulates as in [13], namely
that the things that our observer can see are:

(a) Visible actions from Σ.
(b) The fact that a process is stable (is unable to perform any further actions

without the co-operation of its environment), and then
(i) whether it refuses a set of actions X ⊆ Σ it is offered and
(ii) the actual set of actions from Σ it is offering.

We note here that the ability to observe refusal sets is implied by the ability to
observe acceptance (sometimes called ready set) information.

We specifically exclude the possibility that our observer might see that some
action happens when the process is unstable. It is hard to justify that one
could observe that some τ action was possible without actually following it,
and such observations would imply some highly undesirable inequalities between
processes.

This means that the most refined model for CSP based on finite observations
is FL, in which behaviours of the form

〈A0, a0,A1, a2, . . . ,An−1, an−1,An〉

are recorded, with the ai visible events and the Ai generalised acceptances, being
either •, meaning that stability was not observed at this point, or the acceptance
set of the stable state that occurred at the relevant point. In this second case
we expect ai ∈ Ai . The set of all such sequences will be termed FLO (finite
linear observations). We will denote them by Greek letters β, γ, . . ., which will
also sometimes denote the same sort of alternating sequence beginning or ending
in an event rather than a generalised acceptance, and even infinite sequences of
these forms.

The healthiness conditions are that (the representation of) a process P must
satisfy

28 A.W. Roscoe

FL0 P is nonempty: specifically 〈•〉 ∈ P
FL1 P is prefix closed: if β γ̂ ∈ P and β ends in a generalised acceptance, then

β ∈ P .
FL2 P is closed under observing less stability: if β 〈̂A〉̂ γ ∈ P , then so is β 〈̂•〉̂ γ.
FL3 All proper acceptances can be realised: if β 〈̂A〉 ∈ P and A �= •, then

β 〈̂A, a, •〉 ∈ P for all a ∈ A.

It is straightforward to construct semantic clauses for all operators in our lan-
guage over this model.

In [13], the author defined a finite-observation CSP model to be any model
that represents a process as a finite tuple of relational images of its image in FL.
The number of such relations needs to be independent of the size of the alphabet
Σ, and the equivalences induced over processes over Σ must be independent of
which Σ′ ⊇ Σ is used to construct the model. We can also expect, thanks to the
observations at the start of Section 2, that all the relations will be symmetric
under permutations of Σ. All the standard models fit comfortably into this
definition. We will find in this paper, however, that we can generalise it a little.
The finite observation models other than FL that were studied in [13] were

T the finite trace model [4],
F the stable failures model [10], which records a process’s finite traces and

stable failures,
R the stable revivals model, which records a process’s finite traces, deadlock

traces and stable revivals as described above,
A the stable acceptances model (based on [7]), which records finite traces and

pairs (s ,A) in which A is a stable acceptance set at the end of the trace s ,
and

RT the stable refusal testing model (based on [8,6]), in which behaviours have
the same appearance as for FL, but where (subset closed) refusal sets re-
place acceptances.

Each of the above models can be extended to a divergence-strict one in two
ways: one that handles only fCSP and an extension which handles the whole
language. For a given finite-observation model M, these two divergence-strict
analogues are written M⇓ and M⇓ω respectively. These notations are explained
thus:

– A divergence-strict model’s role is much more about telling us when a process
must stabilise if left alone, rather than when it diverges. After all, the basic
assumption of the model is that once a process can diverge we don’t care
what else it does. In other words, every trace that is not a divergence is
one on which the process definitely converges or becomes stable. P ⇓ often
means “P is convergent” in the literature.

– Aω is a common notation for infinite sequences of members of A, and it is
necessary to include infinite sequences of actions etc explicitly in models to
deal with the combination of divergence and the CSP hiding operator.

The Three Platonic Models of Divergence-Strict CSP 29

M⇓ simply adds a component of “divergences” toM. A divergence is generally
anything thatM allows us to record during an incomplete behaviour after which
the observed process might diverge (perform an infinite unbroken series of τs).
Thus, for T ⇓, F⇓ (= N), R⇓ and A⇓, a divergence is a trace, for RT ⇓ it is a
refusal trace ending in • and for FL⇓ it is an acceptance trace ending in •. It
turns out that the addition of the divergences component to F , R and A allows
the removal of the finite traces component: after any finite trace a process must
either diverge or become stable.

In each case the model is made divergence strict by including a healthiness
condition that says that if β is any divergence recorded in the model M, then
every extension of β (whether a divergence or another type of behaviour) is
automatically included in a process P ’s representation whether the operational
P can actually be observed performing this extension or not.

A process’s representation in FL⇓ therefore takes the form of a pair (B ,D)
of subsets of FLO , with every member of D ending in •: B represents those
that can be observed of the process, and D represents the ones on which it
can diverge. Both, of course, are extended by extensions of divergences. The
healthiness conditions FL0–FL3 still apply, as do:
FLD1 β 〈̂•〉 ∈ D imples β γ̂ ∈ B for all suitably-formed γ.
FLD2 β 〈̂•〉 ∈ D imples β γ̂ ′̂ 〈•〉 ∈ D for all suitably-formed γ′.
FLD3 β 〈̂•〉 ∈ B −D implies that there is A �= • such that β 〈̂A〉 ∈ B .

The first two of these impose divergence strictness, and the last says that after
any observation a process either eventually becomes stable or diverges.

We can represent (B ,D) either explicitly like this or as a single set in which
the two forms of behaviour are both present, only with the final compulsory •
of each divergence replaced by ⇑. These two are clearly equivalent, and we will
move between them as convenient.

The following property of FL⇓ makes the close relationship between it and
the CSP language clear, and also clarifies the meaning of some of our later
arguments.
Theorem 2. Every member of FL⇓ is the semantics of a CSP process.
proof. The author proved a number of similar results for other models in [13].
The construction we use here is similar to that used for other divergence-strict
models there.

Before we start we will observe the following: if (B ,D) ∈ FL⇓ and β ∈ B ,
then we can define a process (B ,D)/β – the behaviour after β by the following,
where β = β ′̂ 〈A〉 for some A.

div if β ′̂ 〈•〉 ∈ D , and otherwise

({γ | β ′̂ γ ∈ B}, {γ | β ′̂ γ ∈ D}) if A = •
({〈A′〉̂ γ | β γ̂ ∈ B ∧ A′ ∈ {•,A}}, {〈A′〉̂ γ | β γ̂ ∈ D ∧ A′ ∈ {•,A}}) if A �= •

We can now define a process INT (B ,D) that represents a formal interpreter
for an arbitrary member of FL⇓. If 〈•〉 ∈ D (i.e. the process can diverge im-
mediately) then IND(B ,D) = div. Otherwise, by FLD3 we know that the set

30 A.W. Roscoe

ACCS = {A �= • | 〈A〉 ∈ B} is nonempty, so we can define INT (B ,D) to be as
follows, where B0 = {a | 〈•, a, •〉 ∈ B}.

?x : B0 → INT ((B ,D)/〈•, a, •〉)
� �{?x : A→ INT ((B ,D)/〈A, a, •〉) | A ∈ ACCS}

Note that this can perform every action that the target (B ,D) can initially,
unstably. Also for every stable acceptance A that the target has initially, our
interpreter can offer A and then carry on in any way that (B ,D) can after
observatiing 〈A〉.. This completes the proof of Theorem 2.

As discussed in [10,12], in models that involve strict divergence it works far better
(for example in finding the fixed points of recursions) to approximate processes
from below in the refinement order, or even the “strong order” described in
[11] in which the only way to move up (at least amongst models that do not
model infinite behaviours other than divergences) is to convert some divergent
behaviour into non-divergent.

In a related fashion, all of the known finite-nondeterminism models of CSP are
naturally turned into (ultra) metric spaces by considering the restriction P ↓ n
of any process to n ∈ N to be all behaviours of P up to and including the nth
events in its traces, with the P ↓ n becoming divergent after these nth events.
So P ↓ 0 is equivalent to the immediately divergent process div. The distance
between a pair of processes P and Q is

d(P ,Q) = inf {2−n | P ↓ n = Q ↓ n}

Noting that a process’s image in FL⇓ is already a divergence-strict construc-
tion, we can expect that it will usually not be necessary to re-inforce this once
more. We can therefore specify that a natural divergence-strict model M for
fCSP is formed from a finite number of components, the observations of each of
which are either a relational image of B or of D , where the process’s value in
FL⇓ is (B ,D). We can describe these two collections of images as NB and ND .
These must satisfy:

(i) The induced equivalence is a congruence, with � (i.e. reverse containment)
giving a congruent least-fixed-point semantics for recursion.

(ii) The images of of B and D are separate components of the image.
(iii) If P �=M Q then there exists n ∈ N such that P ↓ n �=M Q ↓ n

We view (ii) as a clarity assumption: since D ⊂ B it avoids ambiguity over how
to create members of NB . (iii) holds automatically provided (as in all known
models) the behaviours of M partition into lengths that correspond (even to
within a constant factor) to the lengths of their pre-images in FL⇓.

The above definition can be generalised in the following way that, as we will
find later, allows the concept of divergence strictness to be interpreted more
liberally. In other words it will allow a model to be more divergence strict than
a simple image of FL⇓ would allow.

The Three Platonic Models of Divergence-Strict CSP 31

A general divergence-strict model identifies each process P with f (B ,D),
where (B ,D) is its image in FL⇓ and f is a ⊆-continuous function from FL⇓

to a partial order O. Here, by ⊆-continuous, we mean that if C is any linearly
ordered set of processes over FL⇓, then f (

⋃
C) = �({f (P) | P ∈ C}, where

this greatest lower bound exists in the range of f . The choice of � rather than⊔
here is a convention – it says that we associate the direction of the order on O

with the refinement order on processes, and indeed will think of it as refinement.
This last continuity property is always true of the relational image definition

by construction, and it implies that f is monotone. The resulting model M (a
subset of O) is {f (P) | P ∈ FL⇓}: it must be a congruence for fCSP with
�-least fixed points giving the congruent denotation for recursions, and satisfy
P �=M Q ⇒ ∃n.f (P ↓ n) �= f (Q ↓ n).

Note that, as a result of Theorem 2 and our definition above, every member
of every general divergence-strict model is expressible in CSP.

We can similarly generalise the definition of finite observation models, again
using the ⊆-continuity property. The proofs in [13] still work, with little alter-
ation. The author has yet to find a good reason for wanting this generalisation
from plain relational images over finite-observation models, however. If we are
to model a process as one or more classes of individual finitely and linearly ob-
servable things, it is hard to see why these should need to be inferred from sets
of members of FLO as opposed to individual ones.

3 Finitary Versus General Models of CSP

The metric described above works because all the behaviours in FL⇓ have a
finite length: the best definition for this is the number of visible actions in the
corresponding trace if it ends in divergence, and this number plus one otherwise.
The range of behaviours we allow our notional observer to see in constructing
FL⇓ do not cover all possibilities, since they do not include the records of inter-
actions that take infinitely long and include an infinite number of visible actions
rather than ending in permanent stable refusal or divergence. To create a full
record in the spirit of FL⇓ we could also record ones taking the form of sequences
〈A0, a0,A1, a1,A2, . . .〉 that have the same structure as the FL behaviours FLO
except that they go on for ever.

There is an important reason for this omission: all fCSP processes, like the
finitely branching LTS’s that are their operational semantics, have a natural
closure property. Their infinite behaviour can be deduced from the behaviours
we record in models like T ⇓ and FL⇓ that only explicitly record finite traces
and similar; a summary proof of this follows below (for FL⇓).

Suppose γ is an infinite behaviour of the above form, all of whose prefixes
belong to some node P of a finitely branching LTS. Consider the tree formed
by unrolling the behaviour of P , with all parts not reachable in a prefix of γ
pruned away. By assumption, since γ has arbitrarily long prefixes, this tree is
infinite; it is also finitely branching by assumption. König’s Lemma tells us there
is an infinite path through it. We consider two possibilities: either the actions

32 A.W. Roscoe

of that path contain an infinite sequence of consecutive τs or they do not. If
they do then there is a prefix of γ that is divergent in P . γ is then a member of
P ’s FL⇓ω by closure under divergence strictness. If they do not then the nodes
in this sequence are easily seen to be witnesses of the full behaviour γ. This
completes our proof.

This is not true if we extend our interest to general CSP, and we therefore take
the obvious step of adding such infinite behaviours into the representation of a
process in the extended model FL⇓ω. Each process becomes a triple (B ,D , I)
with I consisting of these infinite behaviours.

The next natural question to ask is when such a triple is the representation of
a reasonable process – or, in other words, how to formulate natural healthiness
conditions. Fortunately we have a well-established way of determining this via
the principle that

(*) every CSP process is equivalent to the nondeterministic choice of all its finitely
nondeterministic refinements, or equivalently its set of closed refinements.

Here, a process (B ,D , I) is closed if and only if I consists precisely of those
infinite behaviours all of whose finite prefixes belong to B . Refinement, as ever,
is defined by superset.

To understand this condition, note first that any process of the form of such a
nondeterministic composition is, by Theorem 2 and one use of nondeterministic
choice, expressible in CSP. To prove that every process’s representation can be
expressed thus, consider any behaviour γ of the node P of an arbitrary LTS. As
above, we can unroll P ’s behaviour into a tree T (where no node is reachable
in more than one way, or from itself through a non-empty path). Identify an
infinite path through the tree that either witnesses γ or some divergent prefix.
Now systematically prune the tree subject to two constraints:

– In the resulting tree T ′ no node has more than one outward action with any
particular label from Σ ∪ {τ}, but always has exactly the same set of initial
actions as the corresponding node in T .

– All nodes of T no longer reachable from its root are discarded.
– Every node and action on the path identified above is preserved.

The behaviour of the root state of T ′ is a process that (a) has the behaviour
γ, (b) refines the original process P , and (c) is finitely branching and therefore
has a closed image in our model. This means that every behaviour of P is one of
a closed refinement of P , justifying our assertion that every process is just the
sum of the behaviours of its closed refinements.

Infinite behaviours make no contribution to the calculation of the restrictions
P ↓ n over FL⇓ω, although these processes do have infinite behaviours thanks to
divergence strictness. Closed processes are precisely those such that P =

⊔
{P ↓

n | n ∈ N}.
We can now define a divergence-strict natural model of full CSP to be a finite

tuple of relational images of a process’s image in FL⇓ω satisfying the following:

The Three Platonic Models of Divergence-Strict CSP 33

(i) It provides a congruence.
(ii) The images of the three components (B ,D , I) are disjoint, and the images of

the components (B ,D) provide a natural divergence-strict model for fCSP
that gives the same congruence as M itself over these processes and which
satisfies our definition of such models above

The rationale behind (ii) is much the same as in the earlier definition: it
ensures that the infinite behaviours of FL⇓ω are not used to reveal details that
could equally have been deduced from the finite behaviour components.

The properties of relational imaging guarantee that every such model M
satisfies property (*), so that with respect to the particular infinite details that
have been recorded, the congruence on finitely nondeterministic CSP determines
that on the full language.

Given that every model of full CSP is a model of fCSP, and the strong results
we will prove later showing that there are no interesting general, as opposed to
natural, models for an extended fCSP that interfere with our structural result,
we choose not to attempt a generalisation of the concept of a “general model”
involving infinite behaviours.

It is highly relevant to the subject matter of this paper to ask whether any any
finitary model F can have more than one extension to the full language, through
the use of different sets of infinite behaviours. By this, of course, we mean sets
of infinite behaviours that give rise to different equivalences over CSP. The main
determining factor in this is the semantics of hiding.

We can show that every divergence-strict model of full CSP must distinguish
processes based on their infinite traces:

Lemma 1. Suppose thatM is a divergence-strict congruence for full CSP. Then
two processes that have different infinite traces as judged in T ⇓ω must be mapped
to different processes in M. Furthermore, each such natural model for full CSP
has a distinct relational image or images for each infinite trace u.

proof. Suppose P and Q are processes with different sets of infinite traces but
are identified by M. We can assume that P has an infinite trace u that Q lacks.
(And for any given u we could easily create a specific P and Q for this u.) We
can create a special process XIu that has every possible behaviour that does not
imply the presence of u:

XIu =�{V | V is a closed process without the trace u}

We can also create a process that performs u but only in unstable states USu :

US〈a 〉̂ u = (a → USu) � STOP

Let PT = (P ‖
Σ

USu) � XIu and QT = (Q ‖
Σ

USu) � XIu . These two

processes are equivalent in all their finitely observable and deadlock behaviour,
and cannot perform the infinite trace u except that PT can do so from unstable
states all the way along the trace if it cannot diverge on a prefix of u.

34 A.W. Roscoe

Let Tu be the process that simply steps in turn through the events of u (each
offered stably). Consider the context C [X] = (X ‖

Σ
Tu) \ Σ. Operationally, it is

clear that C [PT] can diverge immediately, but C [QT] cannot: in fact the latter
process is equivalent to STOP .

Since R � div = div and R � STOP = R for all CSP processes R in all
CSP models, it follows that our model M must distinguish div and STOP .
Therefore (from the action of C [·] and the fact that M is a congruence), it must
also distinguish PT and QT ; and P and Q in turn. However the only recordable
behaviour on which PT and QT differ is the everywhere unstable infinite trace u.
It follows that the relations that create M from FL⇓ω must map this behaviour
to an image that is distinct from those of all other behaviours other than ones
that also contain the same infinite trace.

We can therefore conclude thatMmust contain enough information to deduce
what all the infinite traces of a process are. This concludes the proof of Lemma 1.

Now suppose that γ0 is the infinite FL⇓ω behaviour representing the observation
of the whole of u performed unstably (i.e. the events of the trace u with •s
between), and that γ1 is any other behaviour in which u is performed: necessarily
γ1 has some first observation of stability (via a particular acceptance set) in it.
We can write γ1 as 〈•, a1, •, . . . , ar−1,Ar , ar 〉̂ ξ.

There are processes that contain γ0 in their FL⇓ω representation but not γ1:
an example is the process USu as defined above.

The following technical lemma is what will allow us to achieve the main result
of this section, namely proving that, as far as the main structural result of this
paper is concerned, we can restrict our attention to models of fCSP.

Lemma 2. Suppose that γ0 and γ1 are as specified above. Then we can find
a pair of finitely nondeterministic, closed and divergence-free processes P and
Q that are equivalent up to the acceptance set model A⇓ω, where P has the
behaviour γ1, and Q has γ0 but not γ1.

proof. We can straightforwardly define a process that has any infinite FL⇓ω

behaviour η as follows:

II (〈•, a 〉̂ η) = a → II (η) � STOP

II (〈A, a 〉̂ η) = STOP � (a → II (η) �?x : A− {a} → STOP

In the second case necessarily a ∈ A. These behaviours have been designed so
that when η1 ≤ η2 (i.e. η1 is obtained from η2 by replacing some Ai with •), we
have II (η2) � II (η1).

The following process does not have η unless all the “acceptances” are •, but
it does have the associated infinite trace and all the trace/acceptance pairs (s ,A)
that the presence of η implies.

FSI (〈•, a 〉̂ η) = a → FSI (η) � STOP

FSI (〈A, a 〉̂ η) = a → FSI (η) � (STOP � (?x : A→ STOP))

FSI (η) is equivalent, in the finite acceptances model A, to II (η):

The Three Platonic Models of Divergence-Strict CSP 35

– Clearly they have the same finite traces: the finite prefixes of η’s trace ex-
tended by any event a that belongs to an acceptance of η in the appropriate
place.

– They have the same infinite traces, namely {u}.
– Both can deadlock after any trace.
– Both can offer any proper acceptance offered by η at the appropriate point

in the trace.

Since these processes are both divergence free and finitely nondeterministic,
this equivalence extends to A⇓ω.

The lemma is therefore established by setting P = II (γ1) and Q = FSI (γ1).
We are now in a position to prove a strong result about the infinite extensions of
a class of models that includes all those that are central to our main structural
result.

Theorem 3. Each of the models T ⇓, F⇓ = N , R⇓ and A⇓ has, judging by the
equivalence represented on processes and transition systems, a unique extension
to become a natural infinitary model.

proof. We know [13] that each of them can be so extended by the addition of
the component of infinite traces. By Lemma 1 we know that any such extension
contains a distinct relational image for each infinite trace. If any infinite behav-
iour γ1 had a relational image distinct from the corresponding infinite trace, then
the finitary processes P and Q created by Lemma 2 would be distinguished by
our hypothetical extension, even though they are equivalent in A⇓ and hence in
each of T ⇓, F⇓ and R⇓. This would contradict the fact that an extension must
yield the same equivalence on finitary terms as the model being extended.

It follows from this, and Lemma 1, that if our main structural result holds for
finitary models, then it also holds for general models: any non-trivial model of
full CSP must refine T ⇓ω, and so on.

We note in passing that Theorem 3 does not extend to models of finitary CSP
that are richer than those listed. Specifically it does not seem to hold for models
where an arbitrarily long series of refusals and/or acceptances are recorded. It
turns out, for example, that FL⇓ has at least three different extensions: we can
choose to record

– As many as infinitely many acceptance sets in a trace, as in FL⇓ω.
– An arbitrarily large finite number of acceptance sets in a trace, so that any

infinite behaviour has an infinite tail of •s.
– An arbitrarily long finite string of acceptance sets or •, followed by an infinite

string of refusal sets or •.

4 Stage 1: Every Model Refines T ⇓

What we now seek to prove is that every nontrivial general model of fCSP
satisfies one of the following:

36 A.W. Roscoe

– It represents the same equivalence as T ⇓.
– It represents the same equivalence as F⇓ = N .
– It refines R⇓.

We break our analysis of this into three stages:

1. Showing that every such model refines T ⇓.
2. Showing that every such model that is not T ⇓ refines F⇓.
3. Showing that every such model that is not T ⇓ or F⇓ refines R⇓.

In [13], the author used two different patterns of proof for the corresponding
results. In each case he was proving that every congruence M for CSP that
strictly refines some congruence A, must also refine some second congruence B.
(Stage 1 has this form if we allow A to be the trivial congruence that identifies
all processes.) In both styles of proof we can start out by assuming that there
are a pair of processes P and Q such that P �=M Q but P =A Q . From this it is
easily deduced, by considering P � Q (which cannot be M-equivalent to both
P and Q), that without loss of generality we can assume P �M Q .

In the first pattern of proof we assume we have a pair of processes such
that V ��B U and U =A V , and construct a context such that C [U] = P
and C [V] = Q (equality holding in all models of the class being considered,
so certainly M). Since P and Q are being mapped to those processes that are
distinct in M, it follows that P and Q are themselves distinct in M, which is
what we wanted to prove.

The second pattern, which we will see in Sections 6 and 7, operates on similar
principles but depends on showing by technical analysis that we can choose very
special P and Q that make a more difficult construction of C [·] possible.

In [13], the first style of proof was used for the first two steps of the overall
result, namely proving that T is the unique minimally refined finite-observation
model and that F is uniquely minimal amongst the rest of this class of models.

In the case of divergence-strict models, the author has only found a way of
doing this for the first stage, though this is remarkably straightforward. In-
deed it follows from an argument essentially the same as our proof of Lemma 1
above.

Theorem 4. IfM is a non-trivial divergence-strictmodel forCSP, thenT ⇓ �M.

proof. We will follow the first pattern above. However the fact that M is
divergence strict allows us to be specific about P : we can clearly set it equal to
div and choose Q to be any process that is not M-equivalent to div.

If U and V are processes that are distinguished by T ⇓, then without loss
of generality we can assume that V ��TD U . In other words either U has a
divergence trace s not in V , or the divergence sets are equal and U has a trace
t not in V .

In the first case let D [X] = (T (s) ‖ X) \ Σ where T (〈〉) = STOP and
T (〈a 〉̂ s) = a → T (s). It is easy to see that in general D [X] = STOP unless X

The Three Platonic Models of Divergence-Strict CSP 37

has s as a divergent trace, in which case D [X] = div, this equality holding in
FL⇓ and hence in all divergence-strict models.

In the second let D [X] = (T⇑(t) ‖
Σ

X) \ Σ where T⇑(〈〉) = div and

T⇑(〈a 〉̂ t) = a → T⇑(t). Again, it is easy to see that D [X] = STOP if X
does not have the trace t , and D [X] = div if it does.

In either case let C [X] = D [X] � Q . C [U] can diverge immediately be-
cause D [U] can. As all immediately divergent processes are equivalent to div in
divergence-strict models, this tells us that C [U] = div in all of them. On the
other hand C [V] = STOP � Q , and since STOP � Q = Q in all known CSP
models including FL⇓, we have C [V] = Q .

Thus the CSP context C [·] maps U and V to two processes that are distinct
in M. We can deduce from the fact that M is a congruence that U and V must
themselves be distinct in M. This completes the proof of Theorem 4.

5 An Unexpected Congruence and How to Avoid It

After establishing Theorem 4, the author moved on to try to prove that every
model for fCSP that properly refines T ⇓ in turn refines F⇓ = N . These efforts
failed, and he was disappointed to discover that there is a model that lies strictly
between these two models.

The language as defined in Section 2.1 has a modified – and slightly more
abstract – version of N as a model. This has all the usual healthiness conditions
plus one more:

(s ,X) ∈ F ∧ s 〈̂a〉 ∈ D ⇒ (s ,X ∪ {a}) ∈ F

The interpretation of this is that we choose not to care about whether events
that lead immediately to divergence are refused or not. The resulting extended
refusals are included in the model rather than excluded so as to make the theory
of refinement as set containment work: this decision is analogous to the one to
include rather than exclude all post-divergence behaviours.

For example this model identifies a → div with STOP � a → div, which are
distinct in N .

It is not a natural model in the sense described earlier for two reasons. Firstly,
the extra refusals each depend on an arbitrary number of divergences. Secondly
there is more cross play between the divergence and non-divergence behaviours
than is allowed in the definition of a natural model. What it creates is a strangely
amplified notion of divergence strictness: to create this we need to use the ma-
chinery set out in the definition of a general model.

The immediate question that comes to mind when seeing this model, which
we will call N−, is “How can this be a congruence?” To answer this we need to
look to the operational semantics of CSP (viewable online at [10], Chapter 7).
All of the operators in the usual language, and hence the whole language, satisfy
the following principle:

38 A.W. Roscoe

– Suppose the context C [P] can perform the initial action a and become
the process Q , and P itself performs some action P b−→ P ′ that is part
of a (i.e. the operational rules that generate a depend on P performing b).
Then the term Q always involves P ′ and is divergence strict in it – in other
words, if P ′ can perform an infinite sequence of τs then so can Q .

Putting it another way, no CSP operator ever allows an argument to perform an
action and then immediately disposes of that argument. (A number of operators
including � dispose of other arguments when one performs a visible action.)

What this means is that if the argument P of C [P] performing b leads im-
mediately to divergence, then so does the derived action a of C [P]. Clearly we
would expect the issue of whether P can refuse b or not to affect whether C [P]
can refuse a – but what we have discovered is that:

– The refusal by P of an action that leads immediately to divergence can only
affect the refusal by C [P] of actions that lead immediately to divergence.

Another way of reading this is that discarding the information about whether
P can refuse b or not can only mean that we are unable to discover information
about whether C [P] can refuse other actions that lead directly to divergence. It
should therefore not come as too much of a surprise to discover that throwing
away all such information from all processes (which is what N− does) yields a
congruence for fCSP.

This congruence had previously been identified for a sub-language in [9], but
the author was not aware of it until the failure of the proof of the natural step
2 of the structural theorem forced him to rediscover it.

There seems no good reason at all why there is no operator in CSP that throws
away a process as soon as it has performed an action. (Actually, in a sense, the
sequential composition operator ; does, but the assumptions and restrictions con-
ventionally placed on the termination signal � mean that this exception is not
decisive.) Implementing such an operator would not cause any particular prob-
lem. Evidently there is just no such concept in concurrency that Hoare thought
was necessary to include in CSP. In fact, given the importance of operating system
ideas in Hoare’s initial work (see, for example [5], Chapters 5–7) including excep-
tion handling (Chapter 5), the author expected to find that Hoare had discussed
an operator that allowed a process to throw an exception and pass on control to
a second process or some external context. In fact there is no such operator, since
all the exceptions that Hoare’s operators handle are triggered by external events
rather than internally generated ones. Correspondence between the author and
Hoare ensued, during which we were unable to discover any such operator in pre-
vious work but agreed that it would be perfectly natural to add one.

In particular the following exception throwing operator seems very natural:
P Θa Q behaves like P until P communicates a, at which point it starts Q :

P x−→ P ′

P Θa Q x−→ P ′Θa Q
(x �= a)

P a−→ P ′

P Θa Q a−→ Q

We will add it to the language: we will call the result CSP+.

The Three Platonic Models of Divergence-Strict CSP 39

N− is not a model for CSP+ because it is not a congruence: recall that
a → div and STOP � a → div are identified by N−. On the other hand
(a → div)Θa STOP = a → STOP and (STOP � a → div)Θa STOP =
STOP � a → STOP , and these two processes are not equivalent over N−,
which they would have to be if it was a congruence.

In a subsequent paper, the author will demonstrate that in an important sense
Θa can be said to complete the CSP language, since it means that every operator
which is expressible in a natural class of operational semantics can be expressed
in CSP+. For the time being, however, we will examine its relationship with the
CSP language described in [13].

In fact, it has a very interesting relationship with �. Recall that it was nec-
essary to include � in the CSP language in [13] to obtain the structural result
for finite-observation models. This very fact means that � cannot be expressed
in terms of the rest of the language in a general finite-observation model. It
therefore comes as something of a surprise to discover the following result.

Lemma 3. In FL⇓ω, and therefore in every divergence-strict model, � can be
expressed using the other operators of CSP.

proof. The easiest way to prove this lemma is to give the equivalent expression:
extend the alphabet from Σ0 to Σ = Σ0 ∪ Σ1 where Σ1 = {a′ | a ∈ Σ0} (the
map from a to ′ being injective and Σ0 ∩ Σ1 = ∅). The relations Prime and
Unprime respectively map every member a of Σ0 to a′, and every a′ ∈ Σ1 to a,
leaving other events unchanged.

P �′ Q = (P ||| Q [[Prime]]) ‖
Σ

Reg)[[Unprime]], where

Reg = (?x : Σ0 → Reg) � (?x : Σ1 → RUN (Σ1))

What this construct does is to allow P to proceed until Q communicates an
event, at which point P is blocked (by Reg) from performing any further actions.
This is, of course, very nearly the desired effect of the interrupt operator�. The
only difference is that after Q has performed a visible action, P can still perform
internal actions in the above construct whereas in P � Q it is actually turned
off. This can make the difference between a process being stable or unstable:
div �′ Q can never be stable – and therefore have stable acceptances – and
div � Q can. These two versions are different in any finite observation model
that is richer than traces. The difference with divergence-strict models, however,
is that for the two versions to be semantically different in finite observation
models, P has to be in a state where it can diverge at the point where it is
interrupted. It follows that the interruption must be of a potentially divergent
state of P � Q also. Thus the differences only appear beyond the point where
P � Q can diverge, and so they are eliminated by divergence strictness, which
obliterates such distinctions.

So in fact, over divergence-strict models, � and �′ are equivalent. This com-
pletes the proof of Lemma 3.

P Θa Q can be defined correctly over all standard CSP models. For example,
over FL⇓ we can define:

40 A.W. Roscoe

P Θa Q = {β ∈ P | trace(β) ∈ (Σ − {a})∗}
∪ {β γ̂ | β 〈̂•〉 ∈ P , γ ∈ Q , trace(β) ∈ (Σ − {a})∗{a}}
∪ {β γ̂ | β 〈̂⇑〉 ∈ P , trace(β) ∈ (Σ − {a})∗}

Here, we are using the representation of processes as single sets containing
both ordinary and divergent behaviours, and trace(β) is the sequence of visible
events in β. The third line is needed to achieve divergence strictness.

It is possible, in general, to define � in terms of Θa . Define

P �′′ Q = (((P ||| a′ → STOP)Θa′ STOP)[[R]]) ‖
Σ1

Q [[Prime]])[[Unprime]]

where a′ is an arbitrary member of Σ1 and R = {(a′, x) | x ∈ Σ1}.
The N− model shows that one cannot in general express Θa in terms of the

other operators, but interestingly one can over finite observation models:

Lemma 4. The following operator is equivalent to Θa over FL, and hence over
every finite observation model.

P Θa
′ Q = ((P � (c → Q [[Prime]])) ‖

Σ0

Regθ)[[Unprime]] \ {c}

Regθ = ?s : (Σ0 − {a} → Regθ) � (a → c → STOP)

where c is an event not in either Σ0 or Σ1.

proof. This construction allows P to proceed normally until it has performed
an a, whereupon (i) Regθ blocks P from further visible actions, (ii) the event
c is allowed which permits the interrupt to occur and (iii) after this event Q
runs. Since the c is the only event available when it happens, and it is hidden,
its effects from the outside are invisible. This behaviour is exactly like that of
P Θa Q except that the argument P is discarded at the point when the hidden-c τ
occurs, just after the a when it is discarded in P Θa Q . Since that τ can certainly
happen, P Θa

′ Q has all the real, externally-visible behaviours of P Θa Q in any
of our models. The only thing that P Θa

′ Q can do extra is have P perform τs
between the a and the hidden c. This creates a real difference in models where
divergence is recorded, since these τs might create divergence. No extra finitely
observable behaviour is created however, since P Θa

′ Q cannot become stable or
perform any visible action after the a until the hidden c has occurred.

This last result is reassuring, since it shows us that adding Θa gives no extra
expressibility over finite-observation models, the domain where [13] succeeded
without it.

From now on in this paper we will be considering the language CSP+, and can
be safe in the knowledge that adding an extra operator (with respect to which
T ⇓ is a congruence) cannot invalidate Theorem 4: that result remains true with
fCSP replaced by fCSP+.

The Three Platonic Models of Divergence-Strict CSP 41

6 Stage 2: N Is the Weakest Proper Refinement of T ⇓

For this step of the proof it is clear (thanks to the existence of N−) that Θa will
need to play a role. As stated earlier, we will use a more technical style of proof
since the author has failed to find a way of following the first proof outline here.

We begin with a lemma that has much in common with the ideas used to
prove full abstraction results.

In this section and the next, when we write “P = Q” or “P � Q” between
two fCSP terms or finitely branching transition system nodes, we will mean
equality or refinement as judged over FL⇓: the most refined relevant model. We
will write other forms as P =FD Q or similar (this meaning failures-divergences,
in other words equivalence over N). So, in particular, the “=” in the conclusion
of the following lemma means equivalence over FL⇓.

Lemma 5
If U =TD V but U ��FD V , then there is a context C [·] such that C [U] =
STOP � (a → STOP) and C [V] = a → STOP.
proof. Under these assumptions we know that U and V have the same
divergence-strict sets of traces and divergences, but that there is some failure
(s ,X) (necessarily with s not in the common divergence set and with X �= ∅)
such that (s ,X) is a failure of U but not V . We can assume that the event a can
never be communicated by either U or V other than through divergence strict-
ness, since if not we can apply a renaming (perhaps extending the alphabet) to
obtain U ′ and V ′ satisfying this. Let Σ0 = Σ − {a}.

Let IdDp = {(x , b), (x , c) | x ∈ Σ0} be the renaming that maps every member
of Σ0 to a fixed pair of further additional events b and c. Define

FT (∅,Y) = ?x : Σ0 −Y → STOP

FT (〈x 〉̂ t ,Y) = (x → FT (t ,Y)) � a → STOP

CF0(t ,Y)[P] = (FT (s ,Y) ‖
Σ0

P)[[IdDp]]

RegFT (0) = c → STOP and RegFT (n + 1) = b → RegFT (n)

CF1(t ,Y)[P] = (((CF0(t ,Y)[P] ‖
{b,c}

RegFT (#t)) \ {b})Θc STOP)[[a/c]]

CF2(t ,Y)[P] = CF1(t ,Y)[P] � a → STOP

CF2(s ,X) can serve as the context requiredby the lemma, as we now demonstrate.
Consider first CF0(s ,X)[V]. This process cannot diverge until perhaps after it

has performed one more event than #s , because we know that V cannot on any
prefix of s . Imagine the progress of the process V within this context. If it has
completed the trace s then, since it cannot then refuse X , it cannot deadlock with
FT (s ,X) when offered Σ0 − X . So in this state there is certainly an action in Σ0

available at the level of the parallel operator, meaning that some event(s) are of-
fered stably. Thus, after #s copies of b or c, CF0(s ,X)[V] definitely offers {b, c}.

The effect of CF1(s ,X)[V] is to hide the first #s of these, and only allow
the next one to be c, and then turn this into a through renaming. The effect of

42 A.W. Roscoe

the Θc operator is to cut off this behaviour immediately after this renamed c,
in particular ensuring that any divergence of V at that point does not map to
a divergence of the context. Any a’s arising from the choice in � not to pursue
a proper prefix of s remain available: whatever route of internal progress this
process follows, a will eventually be offered stably and the process will then
STOP . Thus CF1(s ,X)[V] = a → STOP and so CF2(s ,X)[V] = a → STOP
also.

On the other hand CF0(s ,X)[U] evidently can deadlock after the trace s
inside the renaming, so CF1(s ,X)[U] can deadlock on the empty trace thanks
to the hiding. Depending on whether s = 〈〉 and what other refusals U has
after s , CF1(s ,X)[U] may or may not be able to offer and perform an a. But
CF2(s ,X)[U] certainly can, meaning that CF2(s ,X)[U] = STOP � a → STOP
as required. This completes the proof of Lemma 5.

Without the Θc , we could have proved an analogous lemma mapping the two
processes to a → div and STOP � a → div but this would not have been strong
enough to use in our later proof. Note in particular that this pair of processes
are equivalent in N−.

We are now in a position to prove the main result of this section.

Theorem 5. Any divergence-strict model M of fCSP+ that is not T ⇓ is a
refinement of N : in other words if N distinguishes a pair of processes then so
does M.

proof. We may, following the outline proofs set out in Section 4, assume that
P and Q are a pair of processes that are identified by T ⇓, distinguished by M
and such that P � Q . By our assumptions about the nature of divergence-strict
models M, we can assume that P = P ↓ N and Q = Q ↓ N for some N ∈ N.
This means that every behaviour of P and Q that is longer than N is implied
by one of length N through divergence strictness.

There is a countable infinity of possible members of the two components of
a member of FL⇓ thanks to our assumption that the overall alphabet is finite,
and the fact that only finite traces are involved. Only finitely many of them have
length N or less.

We can therefore list the ones of length N or less that belong to P and not Q as
β1, β2 β3 . . . βK . To enable these behaviours to appear in a single list, we assume
the representation of processes as single sets with divergences ending in ⇑.

By our assumption that P and Q are equivalent in T ⇓, it is certain that
every βi contains at least one non-• acceptance. Denote the first position of one
in βi by fa(i) (i.e. if βi = 〈A1, a1, . . .Ar−1, ar−1,Ar 〉 then Afa(i) is a proper
acceptance and Aj = • for all j < fa(i).

We make a further assumption about this series: if fa(i) > fa(j) then j < i .
In other words we arrange this finite list so the ones with the most delayed first
acceptance come early. This means that if we take βi and replace the Afa(i) by
•, then either the resulting behaviour is in Q or it comes earlier in the list.

We will construct a series of processes Qi � P where Q0 = Q and Qn+1 � Qn

has the behaviour βn+1. We need to show how to build Qn+1 in general.

The Three Platonic Models of Divergence-Strict CSP 43

If Qn+1 already contains βn+1 then we need do nothing. Otherwise consider
the behaviours Ψn+1 of P that agree with βn+1 up to and including the accep-
tance at fa(n + 1).

We know by our choice of enumeration of the βi , the observation above and
elementary consequences of divergence strictness that Qn contains each γ ∈ Ψn+1

with the acceptance at fa(n + 1) replaced by •.
Let Qn+1 = Qn ∪ Ψn+1. This belongs to FL⇓ and contains βn+1. Theorem 2

means that we do not need to worry about giving a CSP construction for this
process, as there is one automatically. This completes our construction of the
Qi . Clearly QK = P .

Over M, the Qn cannot all be equivalent, by our assumption that P �=M Q .
So choose n so that Qn+1 is the first to be M-inequivalent to Q . It follows that
adding Ψn+1 to Qn creates a process that is different in M from it.

What we therefore have, in Qn+1 and Qn , are a pair of processes that are
differentiated by M, and identified by T ⇓, but where the relationship between
them is much more constrained than in a general pair such that P �M Q and
P =TD Q . Now that we have constructed them we will essentially run through
the same structure of proof as Theorem 4, with Qn+1 and Qn playing the roles
that div and Q did there.

We know that Qn has the behaviour γ which consists of all the actions before
fa(n + 1) (with all acceptances •).

Now add an extra element a to the alphabet of our processes, and let Q∗ be the
process as Qn+1 except that after γ, when offering Afa(n+1), it can additionally
perform a (as an addition to acceptance sets), and this a leads to the behaviour
Qn/γ.) Q∗ can be defined in terms of CSP operators, Qn+1 and Qn in a similar
fashion to our earlier constructions. This extra behaviour is not available if any
of the members of γ have been performed from stable states.

The crucial properties of Q∗ are (i) Q∗ ‖
{a}

STOP = Qn+1 because all the

extra behaviour is blocked, and (ii) Q∗ \ {a} = Qn because this process cannot
become stable after γ until after the hidden a.

Let Σ0 be all visible events other than a.
If U �=FD V but U =TD V then, by Lemma 5 we can assume without loss

of generality that there is C1[·] such that

C1[U] = STOP � a → STOP

C1[V] = a → STOP

Suppose X is either a → STOP or STOP � a → STOP in

C2[X] = ((Q∗ ‖
{a}

X) \ {a})

As Q∗ cannot perform a more than once, it is clear that Q∗ ‖
{a}

a → STOP =

Q∗. It follows by our earlier remarks about Q∗ \ {a} and Q∗ ‖
{a}

STOP that

– C2[a → STOP] = Q∗ \ {a} = Qn

44 A.W. Roscoe

– C2[STOP � a → STOP] = (Q∗ ‖
{a}

STOP) � Q∗ \ {a} = Qn+1 � Qn =

Qn+1

Let C [X] = C2[C1[X]]. Then, by what we have already shown, C [U] = Qn+1

and C [V] = Qn . So C [U] �=M C [V]. This completes the proof of Theorem 5.

7 Stage 3: Every Proper Refinement of N Refines R⇓

The final stage in our proof follows along very similar lines to the second, only just
a little bit more intricate. First we establish a lemma very similar to Lemma 5.

Lemma 6
If U =FD V but U ��RD V , then there is a context C [·] such that

C [U] = STOP � (a → STOP) and C [V] = (a → STOP) � STOP

proof Note that, as one would expect, the two result processes here are failures
but not revivals equivalent, just as the two used in Lemma 5 are traces but
not failures equivalent. These two processes are identical in FL⇓ except that
STOP � a → STOP has the observations 〈{a}, a, •〉 and 〈{a}, a, ∅〉 unlike
(a → STOP) � STOP , where a can only happen after •.

Since U and V are equivalent in N , it follows that they have the same sets
of traces, deadlock traces and divergence traces. We know, therefore, that there
is some revival (s ,X , b) of U but not V . (This means U can perform the trace
s , refuse the set X in a stable state, and then perform the visible action b �∈ X .)
On the other hand (s ,X) is certainly a failure of V .

The following context forces a process W down the trace s (which is hidden
from the outside), then offers both X and b. This may very well deadlock before
reaching the possibility of X and b.

CR1[W] = ((FT (s , Σ − (X ∪ {b})) ‖
Σ

W)[[D]] ‖
Σ

RegR(#s)) \ Σ0, where

Σ1 = {x ′ | x ∈ Σ0} Σ = Σ0 ∪Σ1

D = {(x , x ′), (x , x) | x ∈ Σ0}

RegR(0) = ?x : Σ0 → STOP RegR(n + 1) =?x : Σ1 → RegR(n)

If W ∈ {U ,V } then this process definitely has the trace 〈b〉, and does not
diverge on 〈〉. If W = V then it can definitely deadlock on the empty trace
(because, after s , V can refuse X but not offer b). In this case it might also be
able to offer some sets that include b′, but definitely not {b′} since V cannot
offer b without some member of X . If W = U then CR1[W] can definitely offer
{b′} on 〈〉, because W can refuse X and then perform b.

CR1[U] and CR1[V] might well diverge after a single event, because U or V
can diverge after a trace of the form s {̂x} for x ∈ X ∪ {b}. We can eliminate
this possibility using the Θa operator, as we had to in Section 6:

The Three Platonic Models of Divergence-Strict CSP 45

CR2[W] = (CR1[W][[R]]Θc STOP)Θa STOP , where

R = {(x ′, c) | x ∈ X } ∪ {(b′, a)}
This can now perform the event a from the statement of the lemma when W
performs its special b, and an arbitrary fixed event c when W accepts a member
of X . Observe that W [U] can offer just {a}, while if W [V] offers a stably its
acceptance set is {a, c}. Now let

CR3[W] = ((a → STOP) � STOP) � CR2[W] \ {c}

Every behaviour of CR2[V] \ {c} is one of (a → STOP) � STOP , but since

a → STOP � CR3[U] � STOP � a → STOP

and ((a → STOP) � STOP) � a → STOP = STOP � a → STOP we know
that CR3[U] = STOP � a → STOP . Thus CR3[·] is the context required by
the statement of our lemma.
Theorem 6. Every divergence-strict model M of fCSP+ that is a proper re-
finement of N is in turn a refinement of R⇓.

proof. This time we will have a pair of processes such that P =FD Q , P � Q
and Q �=M P . Again we can assume that P = P ↓ N and Q = Q ↓ N for some
N , so that the difference between the behaviour sets of P and Q is finite apart
from ones implied by divergence strictness. Once again we choose an enumeration
β1, β2, . . . , βK of this difference so that fa(i) > fa(j) ⇒ i < j .

Notice that, for each i , βi is a witness for P having the failure (s , Σ−Afa(i)),
where s are the events in βi preceding the first proper acceptance Afa(i). Since P
and Q are failures equivalent, it follows that Q must have a behaviour in which
the events of s are followed by a proper acceptance Bi ⊆ Afa(i).

We use exactly the same construction as in the proof of Theorem 5 to create
the series of processes Qi where Q0 = Q , Qn+1 � Qn contains βn+1 and QK = P .
Once again we can therefore concentrate on the first pair Qn and Qn+1 = Qn ∪
Ψn+1 of processes distinguished by M.

Let s be the trace represented by βn+1 up to the first non-• acceptance
A (= Afa(n+1)). Let γ be βn+1 up to and including this first acceptance A.
We know that all the differences between Qn+1 and Qn are extensions of γ, and
in particular all the behaviours obtained by changing the first A in a member of
Ψn+1 to • are already in Qn by the structure of our enumeration of the βi .

As we have done a number of times before, we will extend our alphabet to
Σ0 ∪ Σ1 where Σ1 = {x ′ | x ∈ Σ0} and Σ0 contains all the events used by our
processes. We extend the priming notation x ′ to sets, behaviours etc, simply
meaning it is applied to all their members.

Let ρ be the behaviour that consists of all the events of s preceded by •, with
the acceptance B at the end, namely the witness in Q of the failure (s , Σ0−A).
And let σ be the same except that the final acceptance is A′ ∪ B . Now define

R = Qn ∪ {σ ν̂† | γ ν̂ ∈ Qn+1} ∪ {σ ν̂ | ρ̂ ν ∈ Q}

where ν† is the same as ν except that the first event only is primed.

46 A.W. Roscoe

In other words, R behaves like Qn+1 except (i) that events picked from the
special acceptance A after s are primed and (ii) that it only has the option
to behave outside the range allowed by Qn when it has offered A′ ∪ B after
ρ, and selecting a member of B leads it to behave like Q would in analogous
circumstances.

Consider, then

C4[X] = (R ‖
Σ1

X [[AP]])[[Unprime]]

where AP = {(a, x ′) | x ∈ B} maps the event a from the statement of Lemma 6
to every member of A′. Note that the parallel composition allows R to run
completely freely except that any member of A′ is affected by how X offers a if
at all.

If X = (a → STOP) � STOP then we need to consider two cases of what
happens when R has completed s and is offering A′ ∪ B .

– X might deadlock, meaning that R is blocked from performing events from
A′. In this case the context just offers B and continues like Q would in the
same circumstances.

– X might perform a unstably, meaning that the offer of A′ ∪B becomes • in
the combination. The continuing behaviour is one of Q if a member of B is
chosen, or one of Qn with one event primed if a member of A′ is chosen, the
latter because of our choice of enumeration.

It follows easily from this that C4[(a → STOP) � STOP] = Qn .
On the other hand, if X = (a → STOP) � STOP , then X has the option

of offering a stably. This means that R’s complete offer of A′ ∪ B goes forward,
which becomes A after the Unprime renaming. Since this offer of A can be
followed by every behaviour Qn+1 can exhibit after γ, it follows that C4[(a →
STOP) � STOP] � Qn+1

It would be nice if this were an equality, but it may not be since Q may have
behaviours after ρ than Qn+1, and indeed P , need not have after γ. This does
not matter in the big picture of our proof, however, since

(P1 � P2 � P3 ∧ P2 �=M P3)⇒ P1 �=M P3

by the monotonicity of the assumed abstraction map from FL⇓ to M.
It follows that if U �=RD V then without loss of generality we can, using

C4[C3[·]], map U to C4[(a → STOP) � STOP] and Qn respectively, two
processes known to be distinct in M. Hence U �=M V , so M refines R⇓. This
completes the proof of Theorem 6.

8 Conclusions

In this paper we have given details of the most refined divergence-strict models
for both finitary fCSP and the language that allows infinite nondeterminism,

The Three Platonic Models of Divergence-Strict CSP 47

as well as proposing definitions for what a divergence-strict model looks like
in general. We found a rather counter-intuitive congruence that in essence is
created because CSP has no operator of a sort that seems, with the benefit of
hindsight, to be natural. We therefore added an extra operator Θa from this
extra class, creating CSP+. Interestingly, this new operator adds no semantic
expressive power over the class of finite observation models that the earlier paper
[13] considered.

We studied the relationship between finitary models such as T ⇓ and R⇓ and
their infinitary extensions, in particular proving the uniqueness of this extension
for some of more abstract models including all those that play a key role in our
structural theorem. We are therefore able to restrict attention, in the proof of
that theorem, to the finitary models.

This structural result was completed using three separate Theorems, each a
qualified uniqueness theorem for one of the three models we identify as “Pla-
tonic”. As one would expect, these arguments are sometimes delicate and require
many intricate CSP+ contexts to be created.

In [13], the author proved a further result, namely that the stable revivals
model R is the greatest lower bound (as a congruence) of the stable acceptances
model A and the stable refusal testing model RT . A corollary of this result is
that the initial linear sequence of models does not continue beyond R. The proof
of that result carries forward easily to the class of divergence-strict models, from
which we can deduce that the initial sequence is again limited to length 3.

In [13], the author conjectured that the classification problem for CSP mod-
els would become significantly more complex once one moves beyond the initial
three models, and if one ventures outside the relatively controlled and homoge-
neous worlds of finite-observation, and divergence-strict models. His suspicion
has only grown stronger during the investigations underlying the present paper,
both because of something we have written about and something we have not
mentioned yet. The first of these was the observation that beyond the realm of
Theorem 3 we can expect multiple infinitary extensions of a given fCSP model.
The second is that we may similarly have freedom to vary how much information
we record about divergences: for example, it seems likely that the variant of FL⇓

in which only trace divergences, as opposed to ones with acceptances too, would
be a congruence.

Since the results of the present paper and the corresponding ones from [13]
were largely unanticipated by the author, he does not exclude the possibility that
there may be nice classification results in the reaches beyond revivals. However,
he doubts there are!

There is no space in the present paper to report on a fascinating by-product of
our work here. That is the idea that our extended language CSP+ can be shown
to be a universal language for a wide class of languages of concurrency, namely
ones with CSP-like operational semantics. Thus, for any such language, all the
usual models of CSP together with their refinement properties, and susceptibility
to FDR and CSP compression functions, will apply just as much as they do for
CSP. The author expects to report on this further work soon.

48 A.W. Roscoe

Acknowledgements

This is one of a series of papers that was inspired by the work of Jakob Rehof,
Sriram Rajamani and others in deriving conformance, a revivals-like congruence
for a CCS-like language. My work on this paper benefited greatly from conver-
sations with Jakob, Antti Valmari and Tony Hoare.

References

1. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-free conformance.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114. Springer, Heidelberg
(2004)

2. van Glabbeek, R.J.: The linear time - Branching time spectrum I. In: The handbook
of process algebra. Elsevier, Amsterdam (2001)

3. van Glabbeek, R.J.: The linear time - Branching time spectrum I. In: Best, E. (ed.)
CONCUR 1993. LNCS, vol. 715. Springer, Heidelberg (1993)

4. Hoare, C.A.R.: A model for communicating sequential processes. In: On the con-
struction of programs, Cambridge University Press, Cambridge (1980)

5. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Englewood
Cliffs (1985)

6. Mukkaram, A.: A refusal testing model for CSP. D.Phil thesis. Oxford University,
Oxford (1993)

7. Olderog, E.R., Hoare, C.A.R.: Specification-oriented semantics for communicating
processes. Acta Informatica 23, 9–66 (1986)

8. Phillips, I.: Refusal testing. Theoretical Computer Science 50, 241–284 (1987)
9. Puhakka, A.: Weakest congruence results concerning “any-lock”. In: Kobayashi,

N., Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215. Springer, Heidelberg (2001)
10. Roscoe, A.W.: The theory and practice of concurrency. Prentice-Hall Inter-

national, Englewood Cliffs (1998), http://web.comlab.ox.ac.uk/oucl/work/
bill.roscoe/publications/68b.pdf

11. Roscoe, A.W.: An alternative order for the failures model, in ‘Two papers on CSP’,
technical monograph PRG-67; also appeared in Journal of Logic and Computation
2(5), 557–577 (1988)

12. Roscoe, A.W.: Seeing beyond divergence. In: Abdallah, A.E., Jones, C.B., Sanders,
J.W. (eds.) Communicating Sequential Processes. LNCS, vol. 3525. Springer, Hei-
delberg (2005)

13. Roscoe, A.W.: Revivals, stuckness and the hierarchy of CSP models (submitted),
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/105.pdf

http://web.comlab.ox.ac.uk/oucl/work/
bill.roscoe/publications/68b.pdf
http://www.comlab.ox.ac.uk/people/bill.roscoe/publications/105.pdf

The Three Platonic Models of Divergence-Strict CSP 49

Appendix: Notation

This paper follows the notation of [10], from which most of the following is taken.

Σ (Sigma): alphabet of all communications
τ (tau): the invisible action
Στ Σ ∪ {τ}
A∗ set of all finite sequences over A
〈〉 the empty sequence
〈a1, . . . , an〉 the sequence containing a1,. . . , an in that order
s t̂ concatenation of two sequences
s ≤ t (≡ ∃ u.s û = t) prefix order
• non-observation of stability
FLO the alternating sequences of acceptances/• and members of Σ.

Processes:

μ p.P recursion
a → P prefixing
?x : A→ P prefix choice
P � Q external choice
P � Q , �S nondeterministic choice
P ‖

X
Q generalised parallel

P \ X hiding
P [[R]] renaming (relational)
P [[a �→ A]] renaming in which a maps to every b ∈ A
P [[A �→ a]] renaming in which every member of A maps to a
P � Q “time-out” operator (sliding choice)
P � Q interrupt

P Θa Q exception throwing

P [x/y] substitution (for a free identifier x)
P a−→ Q (a ∈ Σ ∪ {τ}) single action transition in an LTS

Models:

T traces model
N failures/divergences model (divergence strict)
F stable failures model
R stable revivals model
A stable ready sets, or acceptances, model
RT stable refusal testing model
FL the finite linear observation model
M⇓ the model M extended by strict divergence information
M⇓,ω M extended by strict divergences and infinite traces or similar
M# M extended by non-strict divergences and infinite traces or similar
X � Y X identifies all processes identified by Y
� refinement (over FL⇓ω by default)

Monotonic Abstraction in Action

(Automatic Verification of Distributed Mutex Algorithms)

Parosh Aziz Abdulla1, Giorgio Delzanno2, and Ahmed Rezine1

1 Uppsala University, Sweden
{parosh, Rezine.Ahmed}@it.uu.se

2 Università di Genova, Italy
giorgio@disi.unige.it

Abstract. We consider verification of safety properties for parameter-
ized distributed protocols. Such a protocol consists of an arbitrary number
of (infinite-state) processes that communicate asynchronously over FIFO
channels. The aim is to perform parameterized verification, i.e., show-
ing correctness regardless of the number of processes inside the system.
We consider two non-trivial case studies: the distributed Lamport and
Ricart-Agrawala mutual exclusion protocols. We adapt the method of
monotonic abstraction that considers an over-approximation of the sys-
tem, in which the behavior is monotonic with respect to a given pre-order
on the set of configurations. We report on an implementation which is
able to fully automatically verify mutual exclusion for both protocols.

1 Introduction

In this paper, we consider automatic verification of safety properties for para-
meterized distributed protocols. Such a protocol consists of an arbitrary number
of concurrent processes communicating asynchronously. The aim is to prove cor-
rectness of the protocol regardless of the number of processes.

Several aspects of the behavior of distributed protocols make them extremely
difficult to analyze. First, the processes communicate asynchronously through
channels and shared variables. Each process may operate on heterogeneous data
types such as Boolean, integers, counters, logical clocks, time stamps, tickets, etc.
Furthermore, such protocols often involve quantified conditions. For instance, a
process may need to receive acknowledgments from all the other processes inside
the system, before it is allowed to perform a transition. Finally, these protocols
are often parameterized meaning we have to verify correctness of an infinite
family of systems each of which is an infinite-state system. Here, we refine the
method of [3,2] based on monotonic abstractions to perform fully automatic
verification of two difficult examples; namely the distributed mutual exclusion
algorithm by Lamport [17]; and its modification by Ricart and Agrawala [21].

We model a parametrized distributed system (or a distributed system for
short) as consisting of an arbitrary number of processes. Each process is an ex-
tended finite-state automaton which operates on a number of Boolean and nu-
merical (natural number) variables. Each pair of processes is connected through

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 50–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Monotonic Abstraction in Action 51

a number of bounded FIFO-channels which the processes use to interchange mes-
sages. A transition inside a process may be conditioned by the local variables and
the messages fetched from the heads of the channels accessible to the process.
The conditions on the numerical variables are stated as gap-order constraints.
Gap-order constraints [19] are a logical formalism in which we can express simple
relations on variables such as lower and upper bounds on the values of individual
variables; and equality, and gaps (minimal differences) between values of pairs
of variables. Also, as mentioned above, one important aspect in the behavior
of distributed protocols is the existence of quantified conditions. This feature is
present for instance in the Lamport and Ricart-Agrawala protocols. Here, the
process which is about to perform a transition needs to know (or receive) in-
formation (e.g., acknowledgments) from the other processes inside the system.
Since a process cannot communicate directly with the other processes, it keeps
instead information locally about them. This local information is stored through
a number of variables which we call record variables. A process has a copy of
each record variable corresponding to each other process inside the system. As
an example, consider a system with n processes. Suppose that, in the proto-
col, a process needs to receive acknowledgments from all the other processes.
The protocol then uses a Boolean variable ack to record information about re-
ceived acknowledgments. Then, a process (say process i) will have n− 1 copies
of the variable ack, where each copy corresponds to another process (the copy
corresponding to process j records whether process i has received an acknowledg-
ment from process j). When process i receives an acknowledgment from process
j through the relevant channel, it assigns true to its copy of ack corresponding
to process j. Process i performs the transition by universally quantifying over
all its copies of ack, i.e., checking that all of them are set to true. We can also
have existential quantification in which case the process checks that some local
copy has a certain value (rather than all local copies).

In this paper, we report on two case studies where we use our model of distrib-
uted systems to describe parameterized versions of the distributed Lamport and
Ricart-Agrawala protocols. We have verified fully automatically the protocols, us-
ing a tool which adapts the method of monotonic abstractions reported in [3,2].
The idea of monotonic abstraction is to make use of the theory of monotonic pro-
grams. In fact, one of the widely adopted frameworks for infinite-state verification
is based on the concept of transition systems which are monotonic with respect to
a given pre-order on the set of configurations. This framework provides a scheme
for symbolic backward reachability analysis, and it has been used for the design of
verification algorithms for various models including Petri nets, lossy channel sys-
tems, timed Petri nets, broadcast protocols, etc. (see, e.g., [5,12,13,1]). The main
advantage of the method is that it allows to work on (infinite) sets of configurations
which are upward closed with respect to the pre-order. These sets have often very
efficient symbolic representations (each upward closed set can be uniquely charac-
terized by its minimal elements)which makes them attractive to use in reachability
analysis. Unfortunately, many systems do not fit into this framework, in the sense
that there is no nontrivial (useful) ordering for which these systems are monotonic.

52 P.A. Abdulla, G. Delzanno, and A. Rezine

The idea of monotonic abstractions [3,2] is to compute an over-approximation of
the transition relation. Given a preorder�, we define an abstract semantics of the
considered systems which ensures their monotonicity. Basically, the idea is to con-
sider that a transition is possible from a configuration c1 to c2 if it is possible from c1
to a larger configuration c3 c2. The whole verification process is fully automatic
since both the approximation and the reachability analysis are carried out with-
out user intervention. Observe that if the approximate transition system satisfies
a safety property then we can safely conclude that the original system satisfies the
property, too. Based on the method, we have implemented a prototype and applied
it for fully automatic verification of the distributed Lamport and Ricart-Agrawala
protocols. Termination of the approximated backward reachability analysis is not
guaranteed in general.

Related Work. This paper gives detailed descriptions of two non-trivial case
studies, where we adapt monotonic abstraction [2,3,4] to the case of distributed
protocols. Compared to the methods of [3] and [2,4] which operate on simple
Boolean and integer variables respectively, our formalism allows the modeling
of heterogeneous data types such as FIFO queues, logical clocks, etc, which are
very common in the deigns of distributed protocols.

In [24], the authors consider distributed protocols with a bounded number
of processes, and also build for heterogeneous systems (e.g., with Booleans and
integers) on top of the Omega-based solver. Here, we have a tool for heteroge-
neous data types built on top of our verification method [2,3,4] which allows to
deal with unbounded numbers of components. There have been several works
on verification of parameterized systems of finite-state processes, e.g., regular
model checking [15,6,8] and counter abstraction methods [11,14,12,13]. In our
case, the processes are infinite-state, and therefore our examples cannot be an-
alyzed with these methods unless they are combined with additional abstrac-
tions. Furthermore all existing automatic parameterized verification methods
(e.g., [15,6,8,10,11,3,2]) are defined for systems under the (practically unreason-
able) assumption that quantified conditions are performed atomically (globally).
In other words, the process is assumed to be able to check the states of all the
other processes in one atomic step. On the other hand, in our quantified con-
ditions, the process can only check variables which are local to the process.
Non-atomic versions of parameterized mutual exclusion protocols such as the
Bakery algorithm have been studied with heuristics to discover invariants, ad-
hoc abstractions, or semi-automated methods in [7,16,18,9,10]. In contrast to
these methods, our verification procedure is fully automated and is based on a
more realistic model.

A parameterized formulation of the Ricart-Agrawala algorithm has been veri-
fied semi-automatically in [22], where the STeP prover is used to discharge some of
the verification conditions needed in the proof. We are not aware of other attempts
of fully automatic verification of parameterized versions of the Ricart-Agrawala al-
gorithm or of the distributed version of Lamport’s distributed algorithm.

Outline. In the next section, we give preliminaries, and in Section 3 we des-
cribe our model for distributed systems (protocols). In Section 4, we give the

Monotonic Abstraction in Action 53

operational semantics by describing the (infinite-state) transition system induced
by a distributed system. In Section 5, we introduce an ordering on the set of
configurations of the system, and explain how to specify safety properties (such
as mutual exclusion) as reachability of a set which is upward closed with respect
to the ordering. In Section 6 and 7 we give the modeling of the distributed
Lamport and the Ricart-Agrawala protocols respectively. In Section 8, we give an
overview of the method of monotonic abstractions used to perform reachability
analysis. Section 9 reports the result of applying our prototype on the two case
studies. Finally, we give some conclusions and directions for future research.

2 Preliminaries

We use B to denote the set {true, false} of Boolean values; and use N to denote
the set of natural numbers. We assume an element ⊥ �∈ B ∪ N and use B⊥ and
N⊥ to denote B ∪ {⊥} and N ∪ {⊥} respectively. For a natural number n, let
n denote the set {1, . . . , n}. We will work with sets of variables. Such a set A
is often partitioned into two subsets: Boolean variables AB which range over B,
and numerical variables AN which range over N . We denote by B(AB) the set of
Boolean formulas over AB. We will also use a simple set of formulas, called gap
formulas, to constrain the numerical variables. More precisely, we let G(AN) be
the set of formulas which are either of the form x = y or of the form x ∼k y where
∼∈ {<,≤}, x, y ∈ AN , and k ∈ N . Here x <k y stands for x + k < y. We use
F(A) to denote the set of formulas which has members of B(AB) and of G(AN)
as atomic formulas, and which is closed under the Boolean connectives ∧,∨. For
instance, if AB = {a, b} and AN = {x, y} then θ = (a ⊃ b) ∧ (x + 3 < y) is in
F(A). Sometimes, we write a formula as θ(y1, . . . , yk) where y1, . . . , yk are the
variables which may occur in θ; so we can write the above formula as θ(x, y, a, b).

A substitution is a set {x1 ← e1, . . . , xn ← en} of pairs where xi are variables,
and ei are all constants or all variables. For each i : 1 ≤ i ≤ n, ei is of the
same type as xi. Here, we assume that all the variables are distinct, i.e., xi �=
xj if i �= j. For a formula θ and a substitution S, we use θ[S] to denote the
formula we get from θ by simultaneously replacing all occurrences of the variables
x1, . . . , xn by e1, . . . , en respectively. Observe that, if e1, . . . , en are constants,
then all variables appearing in θ will be replaced. In such a case, the formula θ[S]
evaluates either to true or to false . Sometimes, we may write θ[S1][S2] · · · [Sm]
instead of θ[S1 ∪ S2 ∪ · · · ∪ Sm]. As an example, if θ = (x1 < x2) ∧ (x3 <2 x4)
then θ[x1 ← y2, x4 ← x3][x2 ← x3] = (y2 < x3) ∧ (x3 <2 x3).

3 Parameterized Distributed Systems

In this section, we introduce a basic model for parameterized distributed systems
with heterogeneous data types.

A parameterized distributed system (or distributed system for short) consists
of an arbitrary (but finite) number n of identical processes. Each process has
a number of local variables and communicates asynchronously with the other

54 P.A. Abdulla, G. Delzanno, and A. Rezine

processes through a set of bounded FIFO channels. To simplify, we assume, in
this and in the next section, that each channel is of size one. It is straightforward
to extend the results to the case of channels of any (finite) size. Furthermore, a
process maintains a number of record variables which are used to store informa-
tion about the local states and values of local variables of the other processes.
All the variables and channels are assigned either Boolean or integer variables.
A process is modeled as an extended finite-state automaton where the transi-
tions check and update the values of the variables and channels accessible to the
process. A transition is of one of three types. A local transition involves only
the local variables of the process. In a quantified transition, the process may
also check and update the values of the record variables. Such a transition is
called quantified since (as we shall see below) it may involve an arbitrary num-
ber of variables. Finally, in a communication transition, also the contents of the
channels can be checked and updated. A distributed system, described in this
manner, induces an infinite family of (infinite-state) systems, namely one for
each size n. The aim is to verify correctness of the systems for the whole family.

To simplify, we assume that each process is indexed by a natural number
i : 1 ≤ i ≤ n. The index of the process does not appear in the transition rules,
and hence has no relevance for the behavior of the process. Sometimes, we simply
write “process i” to refer to the process with index i. In the sequel, we assume
the sets L, R, and Ch of local, record, and channel variables, respectively. The
set L is partitioned into LB (which range over B) and LN (which range over N).
A variable in L assumes values in B or N depending on its type. Also, the other
sets R and Ch are partitioned in a similar manner. In case of a channel variable,
the variable will take values from B⊥ and N⊥ where the value ⊥ indicates that
the channel is empty. Each process i has one copy of the set L. Also, for each
record variable x ∈ R and pairs of processes i and j, process i has a local
copy of x corresponding to j. Process i then uses that particular copy of x to
record information about the state of process j. Finally, for each channel variable
x ∈ Ch and pairs of processes i and j, there is one copy of x which i can write
to and j can read from; and (symmetrically) another copy which j can write to
and i can read from. Notice that, for an instance of n processes, there will be n
copies of L and n(n− 1) copies of R and Ch.

To describe the transitions of the system, we introduce the set Lnext =
{xnext | x ∈ L} which contains the next-value versions of the variables in L. A
variable xnext ∈ Lnext represents the next value of x when performing a tran-
sition. The sets Rnext and Chnext are defined in a similar manner. Formally, a
distributed system D is a pair (Q, T), where Q is a finite set of local states, and
T is a finite set of transition rules. A transition is of the form

t :
[
q → q′ � θ

]
(1)

where q, q′ ∈ Q and θ is either a local, a quantified, or a communication condition.
Intuitively, the process which makes the transition changes its local state from
q to q′. In the meantime, the values of the variables and channels accessible to
the process are checked and updated according to θ. Below, we describe how we
define local, quantified, and communication conditions.

Monotonic Abstraction in Action 55

A local condition is a formula in F(L ∪ Lnext). The formula specifies how the
local variables of the process are updated with respect to their current values.
A quantified condition θ is either of the form ∀ · θ1 (i.e., it is universal), or of
the form ∃ · θ1 (i.e., it is existential), where θ1 ∈ F (L ∪ Lnext ∪R ∪Rnext). The
universal condition checks the local variables of the process (say with index i)
which is about to make the transition (through L), and the copies of the record
variables inside i corresponding to all the other processes (through R). It also
specifies how these variables are updated (through Lnext and Rnext). The ex-
istential case can be explained analogously, with the difference that the record
variables corresponding so some other (unspecified) process (rather than all other
processes) will be checked and updated. A communication condition θ is of the
form Com ·θ1 where θ1 belongs to F

(
L ∪ Lnext ∪R ∪Rnext ∪ Ch ∪ Chnext). Intu-

itively, the process (say with index i) chooses some other process (say with index
j). Process i performs the transition checking and updating its local variables
and its copies of the record variables corresponding to process j (in a similar
manner to above). Furthermore, process i can read the values of the channels
to which j can write and i can read (through Ch); and update the channels to
which i can write and j can read (through Chnext). Here, we assume that the
transition is enabled only if it does not try to read the value of an empty channel,
or to write to a channel which is full (occupied). Notice that the transition is
implicitly existentially quantified, in the sense that process i checks and updates
record variables and channel contents corresponding only to one other process.

Remark 1 (Finite Variables). The case where the variables range over finite do-
mains can be handled in a straightforward manner.

Example. Assume local states q1, q2 and q3, a local numerical variable clock,
a Boolean record variable checked and a numerical channel variable c. In the
rest of the paper, we introduce some syntactic sugar to improve readability.
We assume that non-mentioned next-value forms of local and record variables
equal their current value. Follow examples of local, universally quantified and
communication transitions.
Local. The process changes local state from q1 to q2. It assigns a new value to
the local (numerical) variable clock which is larger than its current value.

q1 → q2 � (clock < clock next)

Universally quantified. The process changes local state from q2 to q3. It also
changes the value of clock as above, and checks whether the values of all copies
of the record variable checked are equal to true. Furthermore, the process resets
all these values to false .

q2 → q3 � ∀ (clock < clock next ∧ checked ∧ ¬(checkednext))

Communication. A process (say with index i) at local state q2 changes the value
of clock as above, and chooses some other process (say with index j). Process i
checks whether its copy of checked corresponding to process j is false . In such

56 P.A. Abdulla, G. Delzanno, and A. Rezine

a case, it sets checked to true, and sends the value of its updated logical clock
to process j along the relevant copy of channel c (the copy to which process i
writes to and process j reads from).

q2 → q2 � Com ·
(

clock < clock next

∧ ¬checked ∧ checkednext ∧ cnext = clock next

)

4 Operational Semantics

In this section, we define the transition system associated with a distributed
system. In general, a transition system T is a pair (D,=⇒), where D is an
(infinite) set of configurations and =⇒ is a binary relation on D. A distributed
system D = (Q, T) induces a transition system T (D) = (C,−→) as follows. A
configuration is defined by the local states and the values of the local variables in
the processes, the values of the record variables, and the contents of the channels.
Formally, a configuration c (of size n) is a tuple (n, s, u, v, w) where

– s is a mapping n → Q. For each process (with index i) the value of s(i)
defines the local state of the process.

– u is a mapping n→ L→ (B ∪N). For each process (with index i) and local
variable x, the value of u(i)(x) defines the value of the copy of x in process
i. The value may be in B or N depending on the type of x.

– v is a mapping n→ n→ R→ (B∪N). For processes (with indices i and j),
and record variable x, v(i)(j)(x) defines the value of the copy of x in process
i corresponding to process j.

– w is a mapping n → n → Ch → (B⊥ ∪ N⊥). For processes (with indices i
and j), and channel variable x, the value of w(i)(j)(x) defines the content of
the copy of channel x to which i can write and j can read. If w(i)(j)(x) = ⊥
then the channel is empty.

Now, we are ready to define the transition relation −→. Consider two con-
figurations c1 = (n, s1, u1, v1, w1) and c2 = (n, s2, u2, v2, w2) of the same size n.
Consider a transition t rule of the form of (1) and a natural number 1 ≤ i ≤ n.
Intuitively, we will describe the effect of process i performing transition t. We
write c1

t, i−→ c2 to denote that the following conditions are satisfied:

– s2(j) = s1(j), u2(j) = u1(j), v2(j) = v1(j) for each j : 1 ≤ j �= i ≤ n.
Furthermore, w2(j)(k) = w1(j)(k), if 1 ≤ j �= i ≤ n and 1 ≤ k �= i ≤ n, and
j �= k. The other processes do not change their local states, local variables,
or their record variables. The channels which cannot be read from or written
to by process i are not changed either.

– s1(i) = q and s2(i) = q′. The current and new local states of process i should
be consistent with those given in the transition rule.

– One of the following conditions holds:
• θ is a local condition and the formula θ [ρ1] [ρ2] holds, where the sub-

stitutions are defined by ρ1 = {x← u1(i)(x)| x ∈ L}, and by ρ2 =
{xnext ← u2(i)(x)| x ∈ L}. Furthermore, v2 = v1 and w2 = w1. The
current and new values of the local variables of i are consistent with θ.

Monotonic Abstraction in Action 57

• θ = ∀ · θ1 is a universal quantified condition and θ1 [ρ1] [ρ2]
[
ρj
3

] [
ρj
4

]

holds for each j : 1 ≤ j �= i ≤ n. The substitutions ρ1 and ρ2 are
defined as in the previous case, while ρj

3 = {x← v1(i)(j)(x)| x ∈ R}, and
ρj
4 = {xnext ← v2(i)(j)(x)| x ∈ R}. Furthermore w2 = w1. In addition to

the local variables, process i may check and update the values of its
record variables. The manner in which the variables are changed should
be consistent with the condition for each other process j.

• θ = ∃ · θ1 is an existential quantified condition and θ1 [ρ1] [ρ2]
[
ρj
3

] [
ρj
4

]

holds for some j : 1 ≤ j �= i ≤ n. Furthermore w2 = w1. All the sub-
stitutions are defined as in the previous case. The difference is that the
variable changes should be consistent with the condition of the transition
for some other process j (rather than all other processes).

• θ = Com · θ1 is a communication condition. In this case, the formula
θ1 [ρ1] [ρ2]

[
ρj
3

] [
ρj
4

] [
ρj
5

] [
ρj
6

]
holds for some j : 1 ≤ j �= i ≤ n. The

substitutions ρ1, ρ2, ρ
j
3, and ρj

4 are defined as above, while ρj
5 is defined

by {x← w1(j)(i)(x)| x ∈ Ch} and ρj
6 by {xnext ← w2(i)(j)(x)| x ∈ Ch}.

Furthermore the following conditions are satisfied for each x ∈ Ch:
∗ either x does not occur in θ1 or both w1(j)(i)(x) �= ⊥ and w2(j)(i) =
⊥. The channel can be read only if it is not empty. After the reading
operation, the channel becomes empty.

∗ either xnext does not occur in θ1 or w1(i)(j)(x) = ⊥. A channel can
be written to only if it is empty.

We write c1 −→ c2 to denote that c1
t, i−→ c2 for some t and i.

5 Safety Properties

Following the methodology of [3,2], we introduce an ordering on configura-
tions, which we use to define the safety problem. Assume a distributed system
D = (Q, T). We assume that, the system starts executing from an initial con-
figuration, where each process starts running from an (identical) initial local
state, with predefined initial values in the local and record variables, and with
empty channels. In the induced transition system T (D) = (C,−→), we use Init
to denote the set of initial configurations. Notice that this set is infinite, since
there is a different initial configuration for each instance (size) of the system.

We define an ordering on configurations. To do that, we first introduce a
notation. Consider a configuration c = (n, s, u, v, w), a variable x ∈ L ∪R ∪Ch ,
and i, j where 1 ≤ i �= j ≤ n. Abusing notation, we define c(x)(i)(j) to be
u(i)(x) if x ∈ L, v(i)(j)(x) if x ∈ R, and w(i)(j)(x) if x ∈ Ch. Consider two
configurations c1 = (n1, s1, u1, v1, w1) and c2 = (n2, s2, u2, v2, w2). We write
c1 � c2 to denote that there is an injection h : n1 → n2 such that the following
conditions are satisfied for each i, j, l,m : 1 ≤ i, j, l,m ≤ n1:

1. s1(i) = s2(h(i)).
2. c1(i)(j)(x) = ⊥ iff c2(h(i))(h(j))(x) = ⊥ for all x ∈ Ch.

58 P.A. Abdulla, G. Delzanno, and A. Rezine

3. c1(i)(j)(x) = true iff c2(h(i))(h(j))(x) = true for all x ∈ LB ∪RB ∪ ChB.
4. c1(i)(j)(x) = c1(l)(m)(y) iff c2(h(i))(h(j))(x) = c2(h(l))(h(m))(y) for all
x, y ∈ LN ∪RN ∪ ChN .

5. c1(i)(j)(x) <k1 c1(l)(m)(y)1 implies that there is a k2 ≥ k1 such that
c2(h(i))(h(j))(x) <k2 c2(h(l))(h(m))(y) for all x, y ∈ LN ∪RN ∪ ChN .

A set of configurations D ⊆ C is upward closed (with respect to the ordering
�) if c ∈ D and c � c′ implies c′ ∈ D. For sets of configurations D,D′ ⊆ C we
use D −→ D′ to denote that there are c ∈ D and c′ ∈ D′ with c −→ c′.

The coverability problem for parameterized systems is defined as follows:

PAR-COV

Instance
– A distributed system D = (Q, T).
– Two sets of configurations Init and CF , with CF upward closed.

Question Init ∗−→ CF ?

It can be shown, using standard techniques (see e.g. [23]), that checking many
classes of safety properties, e.g. mutual exclusion, can be translated into instances
of the coverability problem. Therefore, checking safety properties amounts to
solving PAR-COV (i.e., to the reachability of upward closed sets).

6 Distributed Mutex by Lamport

We describe the distributed mutual exclusion algorithm by Lamport [17] in our
model. In this algorithm, a number of processes compete for a shared resource and
communicate by message passing. The protocol guaranteesmutual exclusion by al-
lowing only the process with the earliest request to access its critical section. Here,
earliest is defined by means of logical clocks [17], one per process. A logical clock
is a local numerical variable that is strictly increased each time a process performs
a transition. The value of the local logical clock is appended to each sent message.
Each time a process receives a time-stamped message, it updates its logical clock
to a value that is strictly larger than the maximum of the time stamp in the mes-
sage, and of the previous value of the clock. Ties are broken by giving priority to
the process to the left. Here we model the relative positions of the processes by in-
troducing a Boolean local variable right that is unmodified once initialized. This
gives a total ordering that uniquely defines the process with the earliest request.

In our model (table 1) of the algorithm, each process is in one of five local
states, namely idle, ask, wait, use and free. The logical clock of a process is
represented by a numerical local variable clock. The process has a local variable
last which it uses to record the value of its logical clock at the time when it
last started sending requests to other processes. The process has also a Boolean
record variable checked which it uses to keep track of other processes to (from)
which it has already sent (received) messages such as requests, acknowledgments,
1 Recall x <k1 y iff x + k1 < y.

Monotonic Abstraction in Action 59

etc. Another record variable, namely Queue, is used to store the time stamps
associated with the requests received from other processes. Finally, the system
has two channel variable c and ts. A process uses its copies of the channels to
send timed-stamped messages. For instance, when a process wants to send a
time-stamped request to another process, then it puts the message req to the
relevant copy of c (the one writable by the current process and readable by the
other process) and the time stamp to the relevant copy of ts.

Each time a process takes a transition, its logical clock is increased using the
formula clock < clock next. Initially, all processes are in their initial local state
idle. When a process wants to enter the critical section, it first sends requests to
all other processes. This is done in three steps (transitions t1, t2, and t3). In t1,
the process moves from local state idle to local state ask. In doing this, it also
records the new value of its logical clock in the local variable last. Notice that
t1 is a local transition. In ask, the process loops sending requests to the other
processes, one at a time. This is done through t2 which is a communication
transition. In each execution of t2, the process chooses another process , and
checks whether it has already sent a request to that process (using the record
variable checked). If this is not the case then it sets checked to true, and sends a
time-stamped request to the other process on channels c and ts. More precisely,
it sends the request message req through c and the new value of its logical clock
through ts. In t3, the process checks whether it has sent a request to all the
other processes, by testing that all its copies of the record variable checked are
equal to true. Observe that t3 is a universally quantified transition.

A process can at any time receive a request from another process. This is
done by transition t9 which is a communication transition. The process receives
a request from another process through channel c, and the associated time stamp
through channel ts. It assigns to its logical clock a new value which is strictly
larger than both the old value of the logical clock (the formula clock < clock next)
and the received time stamp (the formula ts < clock next). It assigns the time
stamp to the copy of the record variable Queue corresponding to the other
process; then it sends back an acknowledgment to the other process together
with a time stamp which is equal to the new value of its logical clock.

After sending the requests, a process starts collecting acknowledgments (in
state wait). This is done by the communication transition t4. The process re-
ceives an acknowledgment from the copy of channel c corresponding to another
process together with the corresponding time stamp from channel ts. It updates
its logical clock, and marks it has received an acknowledgment from the other
process in a similar manner to above (see e.g., the explanation of t2).

The process enters the critical section (transition t5) only if it has received
acknowledgments from all other processes, and if its request is the earliest among
the received requests. The process request is the earliest if for each other process
j in the system, one of the three following conditions holds; either (i) no re-
quest was received from process j (checked with Queue = zero); or the time
stamp associated with the received request (stored in Queue) is (ii) strictly

60 P.A. Abdulla, G. Delzanno, and A. Rezine

larger than last; or (ii) equal to last but process j is to the right of the current
process (right ∧ last = Queue).

Finally a process releases the resource by sending a release message to all the
other processes in the system. This is done in three steps (transitions t6, t7 and
t8).These steps are similar to the three steps of sending requests to the other
processes (transitions t1, t2 and t3). A process that receives a release message
(transition t10), updates its local clock, and removes from its local queue the
corresponding request.

Table 1. Lamport Distributed Mutex

States: Q = {idle, ask, wait, use, free} , any ∈ Q

Local: clock, last are naturals originally zero
Record: checked is a Boolean originally false

Queue is a natural originally zero
Channel: c is in {req, ack}⊥ originally ⊥

ts is in N⊥ originally ⊥

t1 : idle → ask �
�
clock < clock next

�
∧
�
last next = clock next

�

t2 : ask → ask � Com ·

�
�

�
clock < clock next

�
∧
�
c next = req

�
∧
�
ts next = clock next

�
∧
�
¬checked ∧ checked next

�
�
�

t3 : ask → wait � ∀
� �

clock < clock next
�

∧
�
checked ∧ ¬(checked next)

�
�

t4 : wait → wait � Com ·

�
�

�
clock < clock next

�
∧ (c = ack) ∧

�
ts < clock next

�
∧
�
¬checked ∧ checked next

�
�
�

t5 : wait → use � ∀

�
		�

�
clock < clock next

�
∧
�
checked ∧ ¬(checked next)

�
∧
�

(Queue = zero) ∨ (last < Queue)
∨ (right ∧ (last = Queue))

�
�

�

t6 : use → free �
�
clock < clock next

�

t7 : free → free � Com ·

�
�

�
clock < clock next

�
∧
�
c next = rel

�
∧
�
ts next = clock next

�
∧
�
¬checked ∧ checked next

�
�
�

t8 : free → idle � ∀
� �

clock < clock next
�

∧
�
checked ∧ ¬(checked next)

�
�

t9 : any → any � Com ·

�
		�

�
clock < clock next

�
∧ (c = req) ∧

�
ts < clock next

�
∧
�
Queue next = ts

�
∧
�
c next = ack

�
∧
�
ts next = clock next

�

�

�

t10 : any → any � Com ·

�
�

�
clock < clock next

�
∧ (c = rel) ∧

�
ts < clock next

�
∧
�
Queue next = zero

�
�
�

Monotonic Abstraction in Action 61

The set of configurations violating mutual exclusion is the set where at least
two processes are in state use.

7 Distributed Mutex by Ricart-Agrawala

The Ricart-Agrawala algorithm [21] is a modification of Lamport’s distributed
mutex. The modification aims at diminishing the number of exchanged messages

Table 2. Ricart-Agrawala Distributed Mutex

States: Q = {idle, ask, wait, use, free} ,
grant ∈ {idle, free} , hold ∈ {ask,wait, use}

Local: clock, last are naturals originally zero
Record: checked, deferred are Booleans originally false
Channel: c is in {req, ack}⊥ originally ⊥

ts is in N⊥ originally ⊥

t1 : idle → ask �
�
clock < clock next

�
∧
�
last next = clock next

�

t2 : ask → ask � Com ·

�
�

�
clock < clock next

�
∧
�
c next = req

�
∧
�
ts next = clock next

�
∧
�
¬checked ∧ checked next

�
�
�

t3 : ask → wait � ∀
� �

clock < clock next
�

∧ checked ∧ ¬(checked next)

�

t4 : wait → wait � Com ·

�
�

�
clock < clock next

�
∧ (c = ack) ∧

�
ts < clock next

�
∧
�
¬checked ∧ checked next

�
�
�

t5 : wait → use � ∀
��

clock < clock next
�
∧ checked ∧ ¬(checked next)

�
t6 : use → free �

�
clock < clock next

�

t7 : free → free � Com ·

�
�

�
clock < clock next

�
∧
�
c next = ack

�
∧
�
ts next = clock next

�
∧
�
deferred ∧ ¬(deferred) next

�
�
�

t8 : free → idle � ∀
��

clock < clock next
�
∧ (¬deferred)

�

t9 : grant → grant � Com ·

�
�

�
clock < clock next

�
∧ (c = req) ∧

�
ts < clock next

�
∧
�
c next = ack

�
∧
�
ts next = clock next

�
�
�

t10 : hold → hold � Com ·

�
		�

�
clock < clock next

�
∧ (c = req) ∧

�
ch1ts < clock next

�
∧ ((ts < last) ∨ (ts = last ∧ ¬right))
∧
�
c next = ack

�
∧
�
ts next = clock next

�

�

�

t11 : hold → hold � Com ·

�
		�

�
clock < clock next

�
∧ (c = req) ∧

�
ts < clock next

�
∧ ((last < ts) ∨ (ts = last ∧ right))
∧
�
¬deferred ∧ deferred next

�

�

�

62 P.A. Abdulla, G. Delzanno, and A. Rezine

per entry to the critical section. This is achieved by not sending release mes-
sages, and modifying the conditions for sending acknowledgment messages. In
a similar manner to our model of Lamport’s algorithm, each process can have
one of the five states: idle, ask, wait, use and free. We use two local numeri-
cal variables clock and last, three Boolean record variables checked, right and
deferred, and two channel variables c and ts. Except for deferred, all variables
play the same roles as in Lamport’s algorithm. This variable is used to remem-
ber the processes to which an acknowledgment should be sent when releasing
the critical section.

Like in Section 6, a process sends requests by means of three transitions (t1, t2
and t3). A process that receives a request while in state idle or free, updates its
logical clock and sends back an acknowledgment (transition t9). If a process
receives the request when in states ask, wait or use, then it may take one of
two actions. If the time stamp received with the request is (i) strictly smaller
than the value of the local variable last, or is (ii) equal to last and the sender
of the request is to the left of the receiver, then the receiver sends back an
acknowledgment (transition t10). Otherwise, this is deferred (transition t11).

After sending the requests, a process collects acknowledgments (transition
t4). A process that did receive acknowledgments from all other processes can
access its critical section (transition t5). Finally a process releases the resource
by sending an acknowledgment message to each other process with a deferred
request (transitions t6, t7 and t8).

The set of configurations violating mutual exclusion is the set where at least
two processes are in state use.

8 Approximation and Scheme Overview

In this section, we use a methodology introduced in [3,2] for solving PAR-

COV. The methodology consists in over-approximating the transition relation
−→ of Section 4 by a new monotonic transition relation � =−→ ∪ �1 .
Intuitively, the relation �1 corresponds to the deletion of all processes (to-
gether with the corresponding record and channel variables) violating a con-
dition θ1 when taking a quantified universal transition t = ∀ · θ1. Observe
that a negative answer to Init ∗

� CF implies a negative answer to PAR-

COV. We check Init ∗
� CF using a scheme based on backward reachabil-

ity analysis. The scheme symbolically represents sets of configurations by con-
straints. We write [[φ]] to refer to the (infinite) upward closed set of configura-
tions represented by a constraint φ. For a (finite) set of constraints Φ, we define
[[Φ]] =

⋃
φ∈Φ [[φ]]. We also write Pre(φ) to mean a set of constraints, such that

[[Pre(φ)]] = {c| ∃c′ ∈ [[φ]] . c� c′}. The set [[Pre(φ)]] needs to be upward closed in
order to be represented by a set of constraints. The monotonicity of � ensures
upward closedness.

Scheme. Given a finite set ΦF of constraints representing the set CF , we check
whether Init ∗

� [[ΦF]]. We perform backward reachability analysis, generating

Monotonic Abstraction in Action 63

a sequence [[Φ0]] ⊆ [[Φ1]] ⊆ [[Φ2]] ⊆ · · · , of finite sets of constraints such that
Φ0 = ΦF , and Φj+1 = Φj ∪ Pre(Φj). The procedure terminates when we reach
a point j where [[Φj]] ⊇ [[Φj+1]]. Notice that the termination condition implies
that Φj characterizes the set of all predecessors of [[φF]]. This means that Init ∗

�

[[ΦF]] iff (Init
⋂

[[Φj]]) �= ∅. Observe that, in order to implement the scheme (i.e.,
transform it into an algorithm), we need to be able (for any constraints φ, φ′)
to (i) check that (Init

⋂
[[φ]]) = ∅, (ii) compute the set Pre(φ); (iii) check that

[[φ]] ⊆ [[φ′]]. The definitions of constraints and the operations on them are similar
to [20] and are introduced in the appendix.

9 Experimental Results

The method has been implemented in a prototype. The tool starts from spec-
ifications of bad states (at least two processes in state use). We report on the
obtained results, using a 1.6 Ghz laptop with 1G of memory.

Mutual exclusion of both distributed algorithms has been checked fully au-
tomatically. We give the number of iterations and constraints (in the final set
resulting from the fixpoint analysis), together with the required time in seconds
and memory in megabytes.

Table 3. Obtained results

iterations # constraints time(sec) memory(MB)

Distr. Lamport 30 4676 85 18
Distr. Ricart-Agrawala 32 1205 13 < 5

10 Conclusions and Future Research

We have shown how to instantiate the monotonic abstraction scheme [3,2] for
automatic verification of parameterized distributed protocols. We have described
how the method works on two non-trivial case studies, namely the distributed
Lamport and the Ricart-Agrawala mutex protocols. Both protocols are verified
automatically in our prototype without the need for manual intervention.

An interesting direction for future work is to extend the method to systems
whose configurations can be modeled by graphs such as cache coherence pro-
tocols and dynamically allocated data structures. There are also several other
interesting classes on problems for which monotonic abstraction seems to be
relevant. For instance, we are currently working on applying monotonic abstrac-
tion to perform shape analysis on memory heaps. The idea is to find suitable
pre-orders which allow to perform an abstract (over-approximate) reachability
analysis using upward-closed sets of heap graphs.

64 P.A. Abdulla, G. Delzanno, and A. Rezine

References

1. Abdulla, P.A., Ċerāns, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of pro-
grams with wqo domains. Information and Computation 160, 109–127 (2000)

2. Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state
processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)

3. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Regular model checking
without transducers. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

4. Abdulla, P.A., Henda, N.B., Delzanno, G., Rezine, A.: Handling parameterized
systems with non-atomic global conditions. In: Logozzo, F., Peled, D.A., Zuck,
L.D. (eds.) VMCAI 2008. LNCS, vol. 4905. Springer, Heidelberg (2008)

5. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

6. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made
simple and efficient. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera, A. (eds.)
CONCUR 2002. LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)

7. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized Verification with
Automatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

8. Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large. In: Hunt,
J.W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer,
Heidelberg (2003)

9. Chkliaev, D., Hooman, J., van der Stok, P.: Mechanical verification of transaction
processing systems. In: ICFEM 2000 (2000)

10. Clarke, E., Talupur, M., Veith, H.: Proving ptolemy right: Environment abstraction
principle for model checking concurrent system. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963. Springer, Heidelberg (2008)

11. Delzanno, G.: Automatic verification of cache coherence protocols. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidel-
berg (2000)

12. Emerson, E., Namjoshi, K.: On model checking for non-deterministic infinite-state
systems. In: Proc. LICS, pp. 70–80 (1998)

13. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
Proc. LICS 1999 (1999)

14. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the ACM 39(3), 675–735 (1992)

15. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. TCS 256, 93–112 (2001)

16. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system ver-
ification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147.
Springer, Heidelberg (2004)

17. Lamport, L.: Time, clocks and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

18. Manna, Z., Anuchitanukul, A., Bjørner, N., Browne, A., Chang, E., Colón, M.,
de Alfaro, L., Devarajan, H., Sipma, H., Uribe, T.: STEP: the Stanford Temporal
Prover. Draft Manuscript (June 1994)

19. Revesz, P.: A closed form evaluation for datalog queries with integer (gap)-order
constraints. Theoretical Computer Science 116(1), 117–149 (1993)

Monotonic Abstraction in Action 65

20. Rezine, A.: Parameterized Systems: Generalizing and Simplifying Automatic Ver-
ification. PhD thesis, Uppsala University (2008)

21. Ricart, G., Agrawal, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM 24(1), 9–17 (1981)

22. Sedletsky, E., Pnueli, A., Ben-Ari, M.: Formal verification of the ricart-agrawala
algorithm. In: Proc. CFSTTCS 2000 (2000)

23. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. LICS, pp. 332–344 (June 1986)

24. Yavuz-Kahveci, T., Bultan, T.: A symbolic manipulator for automated verification
of reactive systems with heterogeneous data types. STTT 5(1) (2003)

Non-interleaving Semantics with Causality

for Nondeterministic Dataflow

Oana Agrigoroaiei1 and Gabriel Ciobanu1,2

1 Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

oanaag@iit.tuiasi.ro
2 “A.I.Cuza” University of Iaşi, Faculty of Computer Science

Blvd. Carol I no.11, 700506 Iaşi, Romania
gabriel@info.uaic.ro

Abstract. We present a denotational model of nondeterministic dataflow
in which an explicit notion of causality is introduced. We define a set of la-
belled flows over a set of fixed channels and two orders which induce cpo
structures. Labelled flows are based on a conflict relation which allows to
express several behaviours (configurations) at once. A netflow is a continu-
ous function over configurations used to represent a dataflow network. We
use a form of Galois connection in which such a function is the upper ad-
joint to correlate the possible outputswith their causes. The feedback oper-
ation is defined using a fixed point construction. Russell’s example is used
to show how this formal approach solves causal anomalies of nondetermin-
istic dataflow.

1 Introduction

Dataflow is a sound, simple, and powerful model of parallel computation. The
dataflow model describes computation in terms of locally controlled events; each
event corresponds to the “firing” of an action. Such an action can be a single
instruction, or a sequence of instructions, and an action fires when all the inputs
it requires are available. In a dataflow execution, many actions may be ready
to be executed simultaneously (locally controlled by their operand availability),
and thus these actions represent asynchronous concurrent computation events.

As a model of computation, dataflow has a long history. A history of the
evolution of the dataflow computation models and related architecture models
are presented in [9]. The Kahn process networks were defined in early 1970s,
and Kahn dataflow was used to model concurrency. In [8], Kahn has given a
fixed point denotational semantics; the central idea is that each Kahn dataflow
network can be described as a continuous function transforming a string of input
values into a string of output values. The relational generalisation of this model
to the nondeterministic case was shown not to be compositional by Brock and
Ackerman [3]. The example they use, simplified as in [7], is the following: consider
the dataflow networksNi, i ∈ {1, 2} and F , as pictured in Figure 1. The intuitive
description of the networks is: 5 5−merge takes the first data item from α, merges

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 66–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 67

it with the sequence 5 5 and outputs the resulting sequence on β; buf1 takes a
data item from β and outputs it on δ, repeats this behaviour once and then
stops; buf2 takes two data items from β and outputs them on δ, then stops;
fork takes a data item from δ and sends it on both δ1 and δ2; +1 adds 1 to each
data item from δ1, outputting it to α.

The input-output correspondence is a1a2 . . . an . . . �→ {5 5, 5 a1, a1 5} for both
N1 and N2. However, when N1 and N2 are placed in the context formed by
+1 linked with fork, forming networks M1 and M2, the input-output corre-
spondence is no longer the same. Note that since the input channel α of Ni is
connected to the output channel of +1, there is no input channel for Mi, so in
this case the correspondence is output related only. For M1 the output is 5 5 or
5 6 while forM2 the only possible output is 5 5. This discrepancy is caused by the
fact that the input-output relation does not take causality into consideration.

5 5−merge��α β �� bufi
δ ��

+1��
α

��
5 5−merge

β �� bufi
δ �� fork

δ2 ��
���

δ1��

Fig. 1. The dataflow networks Ni and Mi, i ∈ {1, 2}

In this paper we present a model of dataflow networks which is based on
labelled flows, which are a particular type of labelled event structures. We intro-
duce labelled flows to express the possible behaviours in a single mathematical
structure. Each element of a labelled flow represents a communication event on
a specific channel of the dataflow network, and it is labelled with a data value
which passes through that channel. An order relation and a conflict relation are
defined over the elements. The order relation represents temporal precedence
of data on a channel. The conflict relation expresses the fact that two commu-
nication events cannot both be a part of the same behaviour. We formalise a
behaviour by the notion of configuration (finite conflict-free labelled flow).

We represent graphically a labelled flow by a set of trees where the elements
are tree nodes, and the edges give the order relation over the elements: x < y in
a labelled flow if y is up on a branch starting from x.

We also define two orders � and ≤ over the labelled flows. Considering two
labelled flows f and g, by f � g we understand that the number of possible
behaviours expressed by f is smaller that the number of possible behaviours
expressed by g, and each behaviour expressed by f is a part of a behaviour
expressed by g. This is equivalent to the fact that the elements of f are also
elements of g and f has more conflicts than g. By f ≤ g we understand that
the elements of f are also elements of g and f has the same conflicts as g. The
set of labelled flows on a fixed set of channels is a bounded complete cpo with
respect to � and a cpo with respect to ≤. To model a dataflow network we
use a monotone function which takes configurations into labelled flows, which
respects a name invariance condition and behaves as the upper adjoint of a
Galois connection. The lower adjoint of the Galois connection is the causality

68 O. Agrigoroaiei and G. Ciobanu

map. The causality map applied to a configuration D from the output provides
the configuration C from the input which is the least input configuration for
which D is part of the output. In other words, the data carried by the elements
of C represents the data sequence which has to be read by the dataflow network
before the data sequence carried by D appears.

Name invariance is imposed to ensure that the function does not depend on
the names of the elements: when two labelled flows have the same structure, so
do their images by the function. The second condition provides a clear definition
of causality in terms of configurations. This function has an extension to labelled
flows which is continuous with respect to both ≤ and �.

We provide a non-interleaving compositional semantics for nondeterministic
dataflow whose strength resides in the approach of causality. Usually in event
structures the order relation is considered to provide causality: if x < y then
x causes y. To obtain this non-interleaving semantics we use a different vision
of causal correlation of input and output given by a Galois connection which is
based on more than simply temporal precedence.

The structure of the rest of the paper is as follows. In section 2 we define
labelled flows, present our motivation in using them to model nondeterminism,
and state some properties of the set of labelled flows over a set of channels. In
section 3 we introduce the dataflow model consisting of netflows, and we present
sequential and parallel composition together with feedback. We also prove that
in the deterministic case the model is in concordance with Kahn’s semantics.
Section 4 contains conclusions and directions for further research.

2 Labelled Flows

We begin by reviewing some notions from domain theory.
A subset S of a poset (partially ordered set) P is called a lower subset if

whenever x ≤ y in P and y ∈ S, then x ∈ S, where ≤ is the order relation on
P . S ⊆ P is called directed if any finite subset of S has a upper bound in S.

A poset P is called directed complete if any directed subset S has a supremum
in P and bounded complete if any bounded subset S has a supremum supS ∈ P .
A directed complete poset with a least element is called a cpo(complete partial
order). An element c of a cpo P is called compact if whenever S ⊆ P is directed
and c ≤ supS, then there exists s ∈ S such that c ≤ s. If P and Q are cpos, a
function f : P → Q is called (Scott-)continuous if f(supS) = sup f(S) for every
directed S ⊆ P . More information on these notions is available in [2].

We consider that all dataflow networks accept as input elements of a fixed
set V .

Definition 1. Given a finite set A, a labelled flow f on A is defined by:

1. a carrier set |f | ⊆ A× S, for some at most countable set S;
2. a labelling function lf : |f | → V ;
3. an order relation ≤f such that

(a) y ≤f x, z ≤f x⇒ z ≤f y or y ≤f z;

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 69

(b) {y | y ≤f x} is finite for all x ∈ |f |;
(c) (α, s) ≤f (α′, s′)⇒ α = α′;

4. a conflict relation #f , namely a symmetric irreflexive relation on |f |, such
that
(a) if a = (α, s), a′ = (α, s′) then either a ≤f a

′, a′ ≤f a or a#fa
′;

(b) if a ≤f b and a#fc then b#fc (conflict inheritance).

We denote by Lflow(A) the class of all labelled flows on A. We use the notation
[f] for the labelled poset structure (|f |,≤f , lf) of f . We denote by f(α) the
subset {a | a = (α, s)} of |f |, and by εA the empty labelled flow on A (|εA| = ∅).

The fact that |f | ⊆ A × S says that each element x ∈ |f | has a tag with
the channel on which the communication event represented by x takes place.
The labelling function lf gives the data lf(x) transmitted in the communication
event x. The order relation represents temporal precedence of communication
events. Condition 3a gives the graphical representation as a set of trees for a
labelled flow. We consider that elements with different channel tags are not
ordered (Definition 1, 3c) because we give a non-interleaving semantics. Note
that a labelled flow is also an event structure [10].

Why introduce a conflict relation? We use it to express the output of a non-
deterministic dataflow network as a set of possible outputs which may conflict,
in the sense that these outputs may not occur both. An example of such an
output is presented in Figure 2, where |f | = {(α, x), (α, y), (β, u), (β, v), (β,w)},
with (α, x) ≤f (α, y), (β, u) ≤f (β, v), (β, u) ≤f (β,w), (β, v)#f (β,w) (by defi-
nition), (α, x)#(β, v) and l(α, x) = l(β, u) = 1, l(α, y) = l(α, v) = 2, l(β,w) = 3.
The meaning is that the output on channel β is 1 followed by 2 or 3; if 2 follows
1 then there is no output on channel α; if 3 follows 1 then the output on channel
α is 1 followed by 2.

Fig. 2. The labelled flow f on A = {α, β}

If f and g are labelled flows on A, we say that q : f → g is an isomorphism
if q : |f | → |g| is a bijection such that x ≤f y iff q(x) ≤g q(y) and x#fy
iff q(x)#gq(y) and lf = lg ◦ q. For B ⊆ A we denote by f |B ∈ Lflow(B) the
restriction of f to B, i.e. |f |B| = ∪β∈Bf(β) with the order and conflict relations
induced by the inclusion |f |B| ⊆ |f |.

An element f of Lflow(A) is called a configuration if it is finite and conflict free:
#f = ∅. We denote by C(A) the class of all configurations in Lflow(A) and we use
C,D,E . . . to denote configurations.A configurationC is called prime if there exist
x, y ∈ C, not necessarily distinct, such that for all z ∈ C, z ≤ x or z ≤ y. In other
words, a prime configuration in Lflow(A) is one which has values on at most two

70 O. Agrigoroaiei and G. Ciobanu

channels α, β ∈ A. The definition of a prime configuration is due to the fact that
we work with the binary relation #; a configuration with values on more than three
channels is entirely determined by the prime configurations which it contains. We
use configurations to represent inputs for dataflow networks.

Definition 2. Let f, g be two labelled flows on A. We say that

– [f] ≺ [g] if:
• |f | ⊆ |g|;
• for each x ∈ |f |, lf (x) = lg(x);
• if x, y ∈ |f | then x ≤f y if and only if x ≤g y;
• |f | is a lower subset of |g|: if x ≤g y and y ∈ |f | then x ∈ |f |.

– f � g if [f] ≺ [g] and #f ⊇ #g||f |×|f | (in other words, g has less conflicts
than f on |f |, which means more possible combinations of received or sent
values);

– f ≤ g if f � g and #f = #g||f |×|f | (g can have more elements than f , but
has exactly the same conflicts as f on |f |).

Note that if C is a configuration (and so C is conflict free) and f a labelled flow,
then C � f iff C ≤ f . In such a situation we use the latter notation, in order to
underline that f has no conflicts on its subset |C|.

Proposition 3.

– (Lflow(A),�) is a bounded complete cpo, (C(A),≤) is bounded complete, and
(Lflow(A),≤) is a cpo which is not bounded complete.

– If {fi}i∈I is a directed family in (Lflow(A),≤) then the supremum of the
family in (Lflow(A),≤) is equal to its supremum in (Lflow(A),�).

Proof (Sketch). Let {fi}i∈I be a directed or bounded family in (Lflow(A),�).
Then supi fi = f where:

1. |f | := ∪i|fi|; lf(x) = lfi(x) if x ∈ |fi|;
2. x ≤f y iff ∃i ∈ I such that x ≤fi y;
3. x#fy iff x#fiy, for all i ∈ I such that x, y ∈ |fi|.

Let {gi}i∈I be a directed family in (Lflow(A),≤). Then the supremum of {gi}i∈I

in (Lflow(A),≤) is g where:

1. |gf | := ∪i|gi|; lg(x) = lgi(x) if x ∈ |gi|;
2. x ≤g y iff ∃i ∈ I such that x ≤gi y;
3. x#fy iff ∃i ∈ I such that x#giy

To prove that g = supigi (i.e. g is also the supremum of {gi} in (Lflow(A),�))
it is enough to see that because gi ≤ g, if x, y ∈ |gi| such that (x, y) ∈ #)gi then
for any j ∈ J such that x, y ∈ |gj| we also have (x, y) ∈ #)gj .

Let {Ci}i∈I be a bounded family in (C(A),≤). Then supiCi = C where:

1. |C| := ∪i|Ci|; lC(x) = lCi(x) if x ∈ |Ci|;
2. x ≤C y iff ∃i ∈ I such that x ≤Ci y;
3. #C = ∅. �(

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 71

Corollary 4. Restriction to a subset of channels preserves suprema of bounded
or directed families in (Lflow(A),�), of bounded families in (C(A),≤) and of
directed families in (Lflow(A),≤).
We denote by SupiCi and InfiCi the supremum and infimum, respectively of a
family {Ci}i∈I of configurations in (C(A),≤), to differentiate them from supi fi
and infi fi, which we use for the supremum and infimum of a family {fi}i∈I of
labelled flows in (Lflow(A),�).

Proposition 5. Configurations are compact elements in (Lflow(A),�): if C is
a configuration in Lflow(A) such that C ≤ h = supi hi and {hi}i∈I is a directed
family then ∃k ∈ I such that C ≤ hk. The same result holds if {hi}i∈I is just
bounded, case in which C should be prime.

Proposition 6. If f is a labelled flow in Lflow(A) then

f = sup {C | C ≤ f, C prime configuration }

3 Denotational Model of Dataflow Networks

In order to describe a dataflow network with input channels A and output chan-
nels B we consider a map which sends configurations on A into labelled flows on
B. Besides monotonicity, which is a natural requirement, we require a notion of
causality as a part of the map’s definition.

Definition 7. We call netflow a map ϕ : C(A) → Lflow(B) for which the fol-
lowing hold:

– ϕ is monotone with respect to ≤ : if C ≤ D then ϕ(C) ≤ ϕ(D) ;
– If {Ci}i∈I is a family of configurations, bounded in (Lflow(A),�), then the

family {ϕ(Ci)}i∈I is also bounded in (Lflow(A),�);
– there exists a map causeϕ : C(B)ϕ → C(A) such that ∀E ∈ C(A)

C ≤ ϕ(E) ⇔ causeϕ(C) ≤ E

where C(B)ϕ = {C ∈ C(B) | ∃D ∈ C(A) : C ≤ ϕ(D)};
We also require a name invariance property: if there exists an isomorphism r :
C → D then there exists an isomorphism q : ϕ(C) → ϕ(D) such that if C′ ≤ C
then ϕ(r(C′)) = q(ϕ(C′)).

Remark 8. We impose the name invariance condition to ensure that the behav-
iour of a netflow ϕ depends only on the sequence of labels of the input con-
figuration. Moreover, the condition is strong enough to prove that isomorphic
configurations have isomorphic causes:

if E ≤ ϕ(C) then r(causeϕ(E)) = causeϕ(q(E))

Remark 9. Note the similarity between the definition of causeϕ and the notion of
Galois connection [4]. Just like the lower adjoint of a Galois connection, causeϕ

preserves suprema: if {Ci}i∈I is a family of configurations in C(B)ϕ such that
∃SupiCi = C and C is in C(B)ϕ then ∃Supicauseϕ(Ci) = causeϕ(C).

72 O. Agrigoroaiei and G. Ciobanu

Remark 10. If ϕ : C(A) → Lflow(B) is a netflow and B′ ⊆ B then ϕ|B′ defined
by ϕ|B′(f) = ϕ(f)|B′ is a netflow.

The importance of the causality notion as part of the definition of a netflow can
be seen by looking at the Brock - Ackerman example presented in the introduc-
tion. Recall that the only difference between the dataflow networks N1 and N2

was given by the two processes buf1 and buf2. When presented with an input
sequence of length greater than 1, they both output the first two elements of
that sequence. The difference between them is given by causality, and we see
this in their netflow representations B1 and B2. The input sequence a1 . . . an . . .
of length greater than 1 is represented by a configuration C on α with elements
x1 < . . . < xn < . . . , lC(xk) = ak, ∀k. Let the configuration D on β denote
Bi(C). Then D is a configuration with two elements, y1 < y2, lD(y1) = lD(y2).
The action of the netflows B1 and B2 on the configuration C can be seen in
Figure 3. Let D1 ≤ D be the configuration with only one element: y1. Con-
sider the configurations C1, C2 ≤ C such that C1 has only the element x1, and
C2 has the elements x1 < x2. Then causeB1(D1) = C1 because B1(C1) = D1

and B1(ε{β}) = ε{δ}. However, causeB2(D1) = C2 because B2(C2) = D1 and
B2(C1) = ε{δ}. In other words, the first data item a1 produced as output by B2

is caused by the input sequence a1a2, not just by a1.

Fig. 3. The netflows B1 and B2

Let N (A,B) denote the class of netflows from C(A) to Lflow(B). The map ϕ
is also continuous with respect to ≤ because if C = SupiCi for a directed family
of configurations {Ci}, then (similarly to Proposition 5) it follows that C = Ci0

and so ϕ(C) is indeed the supremum of {ϕ(Ci)}i∈I in (Lflow(B),≤).
The following result will be used to extend ϕ to a map which takes labelled

flows into labelled flows.

Lemma 11. If C is a configuration and f is a labelled flow in Lflow(A) such
that C ≤ sup{ϕ(D) | D ≤ f}, then there exists a configuration E ≤ f such that
C ≤ ϕ(E).

Proof. If A = {α1, . . . , αn} and for i ∈ {1, . . . , n} let xi be the maximal ele-
ment in [C(αi)]. Let Ci = {y | y ≤C xi} and Cij = {y | y ≤C xi or y ≤C

xj} (such that Ci, Cij ≤ C). Since Ci, Cij are prime configurations and C ≤
sup{ϕ(D) | D ≤ f}, from Proposition 5 it follows that Cij , Ci ∈ C(B)ϕ and so
there exist Ei = causeϕ(Ci) and Eij = causeϕ(Cij). Since Cij = Sup{Ci, Cj}
we have Eij = Sup{Ei, Ej} (according to Remark 9). We prove now that there

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 73

exists SupiEi. Consider E given by E(αk) = ∪iEi(αk), with x ≤E y iff there
exists i such that x ≤Ei y, and #E = ∅. Then E is well defined (because
there exists Sup{Ei, Ej}), and it is the supremum of Ei in C(A). We prove that
C ≤ ϕ(E). Since Cij ≤ ϕ(E) it follows that |C| ≺ |ϕ(E)|. If x, y ∈ |C| such
that (x, y) ∈ #ϕ(E) then x ∈ C(αi1), y ∈ C(αi2) therefore x, y ∈ |Ci1i2 |, so
(x, y) ∈ #Ci1i2

. We have obtained that ϕ(E) has no conflicts in |C|, and thus
we reach the conclusion. �(

We build an extension of ϕ to Lflow(A) by

ϕ̄ : Lflow(A)→ Lflow(B), ϕ̄(f) = sup {ϕ(D) | D ≤ f}

Lemma 11 can be rephrased as: if C ≤ ϕ̄(f) then ∃ causeϕ(C) ≤ f .

Proposition 12. ϕ̄ is continuous with respect to both ≤ and �.

Proof. First, we prove that ϕ̄ is monotone with respect to ≤. Consider two
labelled flows f ≤ g in Lflow(A). By the definition of ϕ̄ it follows that ϕ̄(f) �
ϕ̄(g). We prove that #ϕ̄(g)||ϕ̄(f)|×|ϕ̄(f)| ⊇ #ϕ̄(f).

Consider x, y ∈ |ϕ̄(f)| such that (x, y) �∈ #ϕ̄(g). Let C be the labelled flow
C ≤ ϕ̄(g) with x, y the only maximal elements; C is a configuration because
(x, y) �∈ #ϕ̄(g). Let Cx be the labelled flow Cx ≤ ϕ̄(f) with x the only maximal
element and we define Cy similarly;Cx and Cy are also configurations. By Lemma
11 there exist E = causeϕ(C), Ex = causeϕ(Cx) and Ey = causeϕ(Cy). Since
ϕ̄(f) � ϕ̄(g) it follows that C = Sup{Cx, Cy}; then E = Sup{Ex, Ey} by Remark
9. Since f ≤ g and E ≤ g it follows that inf{E, f} is a configuration which we
denote by D. It follows that Ex, Ey ≤ D, so E ≤ D; therefore E ≤ f . We have
obtained that C ≤ ϕ̄(f), so (x, y) �∈ #ϕ̄(f).

Secondly, we prove that if {fi}i∈I is a directed family in (Lflow(A),�) then
ϕ̄(supi fi) = supi ϕ̄(fi). Clearly, ϕ̄ is monotone with respect to �, so ϕ̄(supi fi) �
supi ϕ̄(fi). Let C be a configuration such that C ≤ ϕ̄(supi fi). Then there exists
D ≤ supi fi such that C ≤ ϕ(D). Since {fi} is directed, by Proposition 5 it
follows that there exists i0 ∈ I such that D ≤ fi0 . We have obtained that
C ≤ supi ϕ̄(fi), hence the conclusion.

Thirdly, if {fi} is a directed family with supremum f in (Lflow(A),≤) then
{fi} is also a directed family with supremum f in (Lflow(()A),�).Moreover,
{ϕ̄(fi)}i∈I is directed in (Lflow(A),≤) and so it has a supremum g. Since g is
also the supremum of {ϕ̄(fi)} in (Lflow(()A),�) it follows by the continuity of
ϕ̄ with respect to � that g = ϕ̄(f). �(

The reason for introducing an extension is provided by the definition of sequential
composition. If ϕ ∈ N (A,A′) and ψ ∈ N (A′, A′′) we define their sequential
composition ψ ∗ ϕ : C(A)→ Lflow(A′′) by ψ ∗ ϕ = ψ̄ ◦ ϕ.

Proposition 13. The sequential composition of two netflows is a netflow. More-
over, the sequential composition ∗ is associative.

To prove name invariance for sequential composition we use the following result:

74 O. Agrigoroaiei and G. Ciobanu

Lemma 14. Consider ϕ ∈ N (A,B) and f, g ∈ Lflow(A). If r : f → g is an
isomorphism, then there exists an isomorphism q : ϕ̄(f)→ ϕ̄(g) such that f ′ ≤ f
implies q(ϕ(f ′)) = ϕ(r(f)).

To introduce parallel composition of netflows we first define the parallel compo-
sition of two labelled flows.

Definition 15. Let A1, A2 be two disjoint finite sets. If g1 ∈ Lflow(A1) and
g2 ∈ Lflow(A2) we denote by g1||g2 the labelled flow ∈ Lflow(A1 ∪A2) defined by

– |g1||g2| = |g1| ∪ |g2|;
– x ≤ y in [g1||g2] iff ∃ i such that x, y ∈ |gi| and x ≤gi y;
– x#y in g1||g2 iff ∃ i such that x, y ∈ |gi| and x#giy, for i ∈ {1, 2}.

Note that because A1 and A2 are disjoint the tags of elements from |g1| are
distinct from tags of elements from |g2| so |g1| ∩ |g2| = ∅.

Definition 16. Let A1, A2, B1, B2 be finite sets such that A1∩A2 = B1∩B2 = ∅.
The parallel composition of two netflows ϕi ∈ N (Ai, Bi), i ∈ {1, 2} is

ϕ1||ϕ2 : Lflow(A1 ∪A2) → Lflow(B1 ∪B2), ϕ1||ϕ2(C) = ϕ1(C1)||ϕ2(C2)

where Ci is the restriction C|Ai of the configuration C to the set of channels Ai.

Proposition 17. ϕ1||ϕ2 is a netflow. Moreover, parallel composition of netflows
is associative.

3.1 Feedback

Another operation on netflows is feedback, through which we infer the behaviour
of a dataflow network obtained by connecting some output channels to some
(corresponding) input channels starting from the behaviour of that dataflow
network. Let A,B,O be three sets such that O∩A = O∩B = ∅. For ϕ ∈ N (O+
A,O+B) we look for a netflow ↑Oϕ which behaves as ϕ with every output channel
ω ∈ O connected to the input channel with the same name. We start from the
deterministic case. A netflow is called deterministic if it takes configurations into
configurations. Since every netflow is name invariant, a deterministic netflow
is equivalent to a continuous function between sets of strings. Kahn’s principle
states that deterministic dataflow networks are modelled by continuous functions
between sets of strings over V and that feedback is obtained by setting ↑Of(t) =
f |B(st, t), where f is such a continuous function taking sets of strings indexed
by O ∪ A to sets of strings indexed by O ∩ B and st is the least fixed point of
the function s �→ f |O(s, t) (see Figure 4).

This procedure cannot be applied directly to the nondeterministic case; suppose
we consider gD the fixed point of the function g �→ ϕ̄|ω(g||D) and take ↑Oϕ(D) =
ϕ̄|B(gD||D). Then among the configurations of gD will be some which contain el-
ements which have appeared before the elements which cause them to appear (in
a previous iteration).

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 75

Fig. 4. Feedback in deterministic dataflow

Example 18. We consider a dataflow network which whenever receives two num-
bers (on channel ω or α) it outputs their sum on channel ω and their product on
channel β. Let ϕ ∈ N ({ω, α}, {ω, β}) be a netflow which models it. We look for
gD when the input D is the sequence 1-3-5-7, i.e. for example the configuration
D = {(α, x) < (α, y) < (α, z) < (α, t)} with l(α, x) = 1, l(α, y) = 3, l(α, z) = 5
and l(α, t) = 7 (recall that name invariance assures us it does not matter what
are the names of the elements of D). Then gD = sup{hn| hn = ϕ̄|O(hn−1||D)},
h0 = εO. We have h1 = {(ω, a) < (ω, b)| l(ω, a) = 4, l(ω, b) = 12 therefore in
h2 = ϕ̄|O(h1||D) the value 4+1 can appear as label for one of the elements. Since
h2 ≤ gD it follows that 5 can also appear as label in g0 which clearly should not
happen, since 4 is caused by 1 (see Figure 5).

Fig. 5. h2 = ϕ̄|O(h1||D)

To “prune” such configurations from the tree structure of gD we define ↑Oϕ
as follows:

Definition 19. Let ϕ : C(O ∪ A) → Lflow(O ∪ B) be a netflow. Let Fϕ̄ :
Lflow(O ∪A) → Lflow(O ∪B) be given by

Fϕ̄(f) = sup {C| C ≤ ϕ̄(f), C valid configuration }

where a configuration C is valid if (causeϕC)|O ≤ C|O.
For any configuration D in Lflow(A) let gD be the least fixed point of the

function g �→ Fϕ̄|O(g||D) and we define

↑Oϕ : C(A)→ Lflow(B), ↑Oϕ(D) = Fϕ̄|B(gD||D)

This definition ensures that all elements which appear in gD are preceded by their
cause. It also ensures that all elements which appear in ↑Oϕ(D) are obtained by
processing the input in the correct order - we select from ϕ̄|B(gD||D) only those

76 O. Agrigoroaiei and G. Ciobanu

configurations which are not in conflict with their own cause from Lflow(O),
cause which we already know is valid.

Let us look again at the previous example, that of the dataflow network which
adds and multiplies whichever two numbers it receives. First, we find the fixed
point gD. We have gD = sup{g1D, . . . , gn

D, . . .} where gn
D = Fϕ̄|O(gn−1

D ||D) and
g0D = εω. Then g1D = {(ω, a) < (ω, b)| l(ω, a) = 4, l(ω, b) = 12}. We have
g2D ≤ ϕ|ω(g1D||D). The reasoning by which we find g2D can be followed by looking
at Figure 6 (the elements in bold font are those which remain after discarding
non-valid configurations).

Let C be one of the configurations in ϕ|ω(g1D||D) that has 4+1 as label for the
first element x0. If C is valid then causeϕ(Cx0 ||εB)|ω ≤ Cx0 = {x0| l(x0) = 5}.
But causeϕ(Cx0 ||εB)|ω = {(ω, a)| l(ω, a) = 4}, which leads to a contradiction.
Similarly, any configuration on ω with label 4 + 12 for its first element can be
discarded. Therefore the only valid configurations can be found among those with
label 1+3 for the first element on the channel ω. The options for the label of the
second element are 4+12, 4+5 or 5+7. If a valid configuration has label 4+12
for its second element let C′ be the simple finite configuration formed of the first
and second element. But (causeϕC

′||εB)|ω = g1D and clearly g1D �≤ C′. Therefore
the label of the second element can only be 4 + 5 or 4 + 7. In the first case,
the only possibility for the label of a third element is 12 + 7 and that produces
a non-valid configuration. In the second case, the only possibility for the label
of a third element is 4 + 12 and that produces a valid configuration. There are
no more possibilities left, so g2D is given by g2D(ω) = {(ω, a), (ω, b), (ω, c), (ω, d)}
where l(ω, a) = 4, l(ω, b) = 12, l(ω, c) = 16, l(ω, d) = 9 and (ω, a) < (ω, b) <
(ω, c), (ω, a) < (ω, d), (ω, b)#(ω, d). By repeating this reasoning we find that
gD = g3D, where g3D is given by g3D(ω) = {(ω, a), (ω, b), (ω, c), (ω, d), (ω, e)} such
that g2D ≤ g3D and l(ω, e) = 16, (ω, d) < (ω, e).

Fig. 6. Finding g2
D

Let us look now at the output on channel β. The expected output is a labelled
flow with only two configurations, one with the string of labels 1·3 - 4·5 - 9·7 and
the other with the string of labels 1·3 - 5·7 - 4·12, which have the first element in
common. Let C1 = {(ω, a) < (ω, b) < (ω, c)} and C2 = {(ω, a) < (ω, d) < (ω, e)}
be the two maximal configurations of gD. The reasoning involved in finding all
valid configurations in ϕ(gD||D) can be followed by looking at Figure 7.

Let E be a valid configuration in ϕ(gD||D). Suppose the label of the first
element y1 of E|B is 4 · 1; then the label of the first element u1 of causeϕ(Cy1)|ω
is 4, which is obtained by adding 1 with 3 and is therefore in conflict with the

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 77

Fig. 7. Finding ↑Oϕ(D)

first element of E|B. Similarly we find out that the label of y1 cannot be 4 · 9
or 4 · 12, i.e. y1 = (β, a′). If E|B has a second element y2 its label can be 4 · 9,
4 · 12, 4 · 5 or 5 · 7. Suppose that label is 4 · 12. Then causeϕ(Cy2)|ω has a second
element u2 with label 12; u2 has been produced by adding 5 to 7 so it is in
conflict with y2. Similarly we prove that the label of y2 cannot be 4 · 12. If it is
4 · 5 or 5 · 7 then {y1 < y2} is a valid configuration. Suppose the label of y2 is
4 · 5, i.e. y2 = (β, d′). If E has a third element y3 then its label can be 9 · 7 or
12 ·7. If it is 12 ·7 then we should have causeϕ(Cy3)|ω = ({(ω, a) < (ω, d)} < E|ω
but (ω, d) is in conflict with (β, d′), the second element of E. Thus y3 = (β, e′).
Following a similar reasoning for the case y2 = (β, b′) we find that the output is
the expected one.

In these examples we have identified elements by their labels even if the labels
are not used in defining feedback in order to avoid complicating the explanation
by using a large number of names for the elements.

To prove the correctness of Definition 19 we need two lemmas.

Lemma 20. If C is a configuration such that C ≤ Fϕ̄(f) and there exists g ≤ f
such that C ≤ ϕ̄(g) and g|O ≤ ϕ̄|O(g) then C ≤ Fϕ̄(g).

Lemma 21. If f ≤ g and f |O ≤ ϕ̄|O(f) then Fϕ̄(f) ≤ Fϕ̄(g). Moreover, Fϕ̄
preserves suprema for directed families {fi} with respect to ≤ and � if every fi
has the property fi|O ≤ ϕ̄|O(fi).

Theorem 22. ↑Oϕ : C(A)→ Lflow(B) is correctly defined and is a netflow.

Proof. First, consider gD = supn g
n
D, where gn+1

D = Fϕ̄|O(gn
D||D) and g0D = εO.

We see that gn
D ≤ gn+1

D inductively because of Lemma 21 and because gn
D||D

verifies the condition. Therefore gD is the least fixed point of g �→ Fϕ̄|O(g||D),
also from Lemma 21. Moreover, ↑Oϕ is monotone with respect to ≤ because
D ≤ E implies gD ≤ gE, by induction.

Secondly, we prove the existence of cause↑Oϕ. Consider C such that
C ≤ Fϕ̄|B(gD||D). Then εO||C ≤ ϕ̄(gD||D) so, by Lemma 11, ∃ F0 =
causeϕ(εO||C) ≤ gD||D. Because gD ≤ ϕ̄|O(gD||D) we can define induc-
tively a sequence of configurations Fn such that Fn+1 = causeϕ(Fn|O||εB) and
Fn+1|O ≤ gD, Fn+1|A ≤ D. Then there exists G = SupnFn|A ≤ D and we
set cause↑Oϕ(C) = G. Note that G does not depend on D. We now prove that

78 O. Agrigoroaiei and G. Ciobanu

C ≤↑Oϕ(E) if and only if cause↑Oϕ ≤ E. The direct implication is immediate from
the mode of construction of G. To prove the reverse we show that C ≤↑Oϕ(G)
and we use the monotonicity of ↑Oϕ with respect to ≤. To this purpose note that
F0|O ≤ gD = sup gn

D and {gn
D}n is a directed family in (Lflow(O),≤). Therefore

there exists m such that F0|O ≤ gm
D ; we obtain inductively that Fn|O ≤ gm−n

D ,
for n ≤ m. This means that Fm|O = εB and so Fm ≤ gG||G. Therefore
Fm−1|O||εB ≤ ϕ(Fm) ≤ ϕ̄(gG||G). Using Lemma 20 and the fact that gG ≤ gD
and (gG||G)|O = gG ≤ ϕ̄(gG||G) we obtain that Fm−1|O||εB ≤ Fϕ̄(gG||G) i.e.
Fm−1|O ≤ gG. In the end we obtain εO||C ≤ ϕ(F0) ≤ ϕ̄(gG||G). The conclusion
follows from Lemma 20 and the fact that εO||C ≤ Fϕ̄(gD||D).

Thirdly, we prove name invariance. Let h0 : D → E be an isomorphism.
We construct inductively a sequence hn+1 : Fϕ̄(gn

D||D) → Fϕ̄(gn
E ||E) of iso-

morphisms such that hn+1(gn
D) = gn

E, ∀n ≥ 1, as follows. There exists h̄1 :
ϕ̄(εO||D) → ϕ̄(εO||E), by name invariance and since Fϕ̄(εO||D) = ϕ̄(εO||D),
there exists the isomorphism h1. Since h1|g1

D
: g1D → g1E is an isomor-

phism there exists h̄2 : ϕ̄(g1D||D) → ϕ̄(g1E ||E) isomorphism. We show that
h̄2(Fϕ̄(g1D||D)) = Fϕ̄(g1E ||E) and we set h2 to be the restriction of h̄2 to
Fϕ̄(g1D||D). We have h̄2(g1D) = ϕ̄|O(h1(g0D||D)) = g1E . Consider C ≤ ϕ̄(g1D||D).
Then C is valid if and only if h̄2(C) is valid because causeϕ(C)|O ≤ g1D, there-
fore causeϕ(C)|O ≤ C|O if and only if h1(causeϕ(C)|O) = h̄2(causeϕ(C)|O) ≤
h̄2(C|O) iff causeϕ(h2(C))|O ≤ h2(C)|O. We have proved the existence of h2;
the inductive construction is continued in the same manner. We now define an
isomorphism h : Fϕ̄(gD||D) → Fϕ̄(gE ||E) by setting h(x) = hn+1(x), where
x ∈ |Fϕ̄(gD||D)|. Then h is well defined because hn+1(gn

D) = hn(gn
D); by the

construction of suprema of directed labelled flows we see that h is a order and
conflict preserving bijection. �(

We now return to the deterministic case. It is clear that the sequential or par-
allel composition of deterministic netflows produce deterministic netflows. The
following proposition states that the fixpoint construction we have presented
coincides, in the deterministic case, with Kahn’s fixpoint construction.

Proposition 23. If ϕ is deterministic then ↑Oϕ(D) = ϕ|B(CD||D), where CD

is the least fixed point of the function g �→ ϕ|O(g||D).

Proof. Let Cn+1
D = ϕ|O(Cn||D), C0 = εO and gn+1

D = Fϕ̄|O(gn
D||D), g0D = εO.

Then CD = supn C
n
D and gD = supn g

n
D. We prove by induction on n that

gn
D = Cn

D for all n ≥ 0. We know that g0D = C0. If for some n we have
gn

D = Cn, then we prove that gn+1
D = Cn+1

D . Let E := ϕ(Cn
D||D); then E is

valid because causeϕ(E)|O =≤ Cn
D ≤ Cn+1

D = ϕ|O(Cn
D||D) = E|O. Therefore

Cn+1
D = Fϕ̄(gn

D||D) = gn+1
D . Therefore CD = gD. Then ϕ(CD||D) is valid and

so Fϕ̄(gD||D) = ϕ(CD||D), thus ↑ ϕ(D) = ϕ|B(CD||D). �(

The explicit notion of causality that we introduced is strong enough to ensure
that the well-known causal anomalies (like the one presented by Brock and Ack-
erman [3]) are avoided. Here we treat the example provided by Russell [11],
following the variant described in [12].

Non-interleaving Semantics with Causality for Nondeterministic Dataflow 79

Consider a dataflow network P1 which either outputs a token before receiving
any input token and stops, or outputs a token and when it receives an input
token outputs another token and stops. Consider also a dataflow network P2

which outputs a token before receiving any input token and stops, or when it
receives an input token, outputs two tokens and stops. Note that P1 and P2

have the same input-output relation: {(ε, t), (t, t), (t, tt)}, where t represents a
token. However, there exists a context which distinguishes between P1 and P2.
Let F be the fork network, which copies every input it receives on its two output
channels. If Qi is the network obtained by composing F with Pi and connecting
one of the output channels of F to the input channel of Pi, then Q1 outputs
one or two tokens while Q2 outputs only one token. This example shows that
a denotational semantics for nondeterministic dataflow must have a notion of
causality more descriptive than that given by the input/output relation.

We model each Pi by ξi : C({ω}) → Lflow({β}) and F by φ : C({β}) →
Lflow({ω, ω′}). Then φ is given by φ(D) = D1||D2 where D1 = D and D2 is in
C({ω′}) such that if (ω, u) is an element of D the corresponding element of D2 is
(ω′, u). Let C ∈ C({ω}) and hi, ki ∈ Lflow({β}) be as follows: |C| = C(ω) = {x};
|h1| = h1(ω) = {a, b} with a#b; |k1| = k1(ω) = {a, b, x′} with a#b, b < x′;
|h2| = h2(ω) = {a}; k2 = {a, x1, x2} with a#x1, x1 < x2. Then ξi are given by
ξ(εw) = hi and ξi(f) = ki for i ∈ {1, 2}; also, if D is a configuration with first
element x0 then ξi(D) = ξi(Cx0) which is isomorphic to ξi(C). The description
of ξi is also given graphically in Figure 8 (we omit the labels of the elements
since they are all t). Clearly, ξ1 �= ξ2. Moreover, by using definition 19 we obtain
the expected output: ↑ω φ ∗ ξ1 has two configurations, one with one element and
the other with two elements, while ↑ω φ ∗ ξ2 has only one configuration, that
being h2.

Fig. 8. ξ1 and ξ2

4 Conclusion

Labelled flows provide an intuitive way of expressing nondeterminism for
dataflow networks. The order relations defined on sets Lflow(A) yield a rich
mathematical structure for the model we present in this paper, which integrates
causality in a functional setting. To our knowledge such a representation of
causality is novel. The problem of expressing causality is not a trivial one; the
greatest difficulties appear when describing feedback. As can be seen in the proof
of Theorem 22, it is not easy to define the cause of a configuration which appears
in the output of ↑Oϕ in terms of its cause with respect to ϕ.

80 O. Agrigoroaiei and G. Ciobanu

There are several models describing the nondeterministic case, of which we
mention a few. Jonsson has presented a fully abstract interleaving semantics
based on traces (i.e., sequences of communication events) [7]. Gaifman and Pratt
have presented a semantics based on partially ordered multisets (pomsets) [6].
Abramsky has generalised Kahn’s principle to a family of models which include
both the trace and the pomset model [1]. Hildebrandt, Panangaden and Winskel
present the trace model as an instance of a traced monoidal category, using pro-
functors as generalisation of relations [5]. Saunders-Evans and Winskel describe
a model based on spans of event structures which are representations of certain
profunctors [12].

Several of these papers present interleaving semantics. The difference from
these papers is that we present a non-interleaving semantics. With respect to
the papers presenting non-interleaving semantics, the difference resides in the ex-
plicit treatment of causality. In this way we solve the well-known causal anom-
alies (e.g., Brock and Ackerman anomaly). We use the example provided by
Russell to show how our formal approach solves causal anomalies of nondeter-
ministic dataflow.

References

1. Abramsky, S.: A Generalized Kahn Principle for Abstract Asynchronous Networks.
In: Schmidt, D.A., Main, M.G., Melton, A.C., Mislove, M.W. (eds.) MFPS 1989.
LNCS, vol. 442, pp. 1–21. Springer, Heidelberg (1990)

2. Abramsky, S., Jung, A.: Domain Theory. In: Handbook of Logic in Computer
Science, vol. III, pp. 1–168. Clarendon Press (1994)

3. Brock, J., Ackerman, W.: Formalization of Programming Concepts. LNCS, vol. 107,
pp. 252–259. Springer, Heidelberg (1981)

4. Erné, M., Koslowski, J., Melton, A., Strecker, G.E.: A Primer on Galois Connec-
tions. In: Paulisch, F.N. (ed.) The Design of an Extendible Graph Editor. LNCS,
vol. 704, pp. 103–125. Springer, Heidelberg (1993)

5. Hildebrandt, T.T., Panangaden, P., Winskel, G.: A Relational Model of Non-
Deterministic Dataflow. Mathematical Structures in Computer Science 14, 613–649
(2004)

6. Gaifman, H., Pratt, V.R.: Partial Order Models of Concurrency and the Compu-
tation of Functions. Logic in Computer Science, 72–85 (1987)

7. Jonsson, B.: A Fully Abstract Trace Model for Dataflow Networks. Principles of
Programming Languages, 155–165 (1989)

8. Kahn, G.: The Semantics of a Simple Language for Parallel Programming. In: IFIP
Congress, pp. 471–475 (1974)

9. Najjar, W.A., Lee, E.A., Gao, G.R.: Advances in the Dataflow Computational
Model. Parallel Computing 25, 1907–1929 (1999)

10. Nielson, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains.
Rechnerstrukturen und Betriebsprogrammierung 13, 85–108 (1981)

11. Russell, J.R.: Full Abstraction for Nondeterministic Dataflow Networks. Founda-
tions of Computer Science, 170–175 (1989)

12. Saunders-Evans, L., Winskel, G.: Event Structure Spans for Nondeterministic
Dataflow. Electronic Notes of Theoretical Computer Science 175, 109–129 (2007)

Symbolic Reachability for Process Algebras with

Recursive Data Types

Stefan Blom and Jaco van de Pol�

Formal Methods and Tools, Department of Computer Science, University of Twente,
P.O. Box 217, 7500AE Enschede, The Netherlands

{sccblom,vdpol}@cs.utwente.nl

Abstract. In this paper, we present a symbolic reachability algorithm
for process algebras with recursive data types. Like the various saturation
based algorithms of Ciardo et al, the algorithm is based on partitioning
of the transition relation into events whose influence is local. As new fea-
tures, our algorithm supports recursive data types and allows unbounded
non-determinism, which is needed to support open systems with data.
The algorithm does not use any specific features of process algebras.
That is, it will work for any system that consists of a fixed number of
communicating processes, where in each atomic step only a subset of
the processes participate. As proof of concept we have implemented the
algorithm in the context of the μCRL toolset. We also compared the per-
formance of this prototype with the performance of the existing explicit
tools on a set of typical case studies.

1 Introduction

High level formalisms, such as Petri Nets and Process Algebras are powerful lan-
guages for specifying systems. When combined with recursive data types, they be-
come even more powerful. However, we have to pay a price for this expressiveness.
Analyzing these specifications with symbolic techniques is difficult, because it is
not easy to translate them to a formalism where the state is a vector of booleans.
Thus, toolsets for process algebras with data, such as CADP [1,2], FDR [3] and
μCRL [4] rely on explicit state techniques. The former two exploit compositional
techniques to extend the size of the state space that canbedealtwith. For the latter,
we present a symbolic technique based on decision diagrams in this paper.

Computing the set of reachable states is a good way to perform model checking
tasks such as the verification of safety properties. But it can be an expensive
computation. Therefore much work has gone into avoiding doing so. The entire
fields of bounded model checking and on-the-fly model checking are devoted to
developing methods that can give useful results without having to perform a
complete reachability analysis. However, any exhaustive technique will need to
perform a reachability analysis somehow, so we use this as a first step towards
building a complete symbolic tool chain.
� This work has been partially funded by the EU under grant number FP6-NEST

STREP 043235 (EC-MOAN).

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 81–95, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

82 S. Blom and J. van de Pol

Contribution and related work. In the area of quantitative evaluation, symbolic
techniques already exist. The Petri Net based tool SMART [5] implements a pow-
erful technique called saturation [6]. Also, symbolic techniques have been devel-
oped for a stochastic process algebra and implemented in the tool CASPA [7,8].
The most general algorithm is the one used in SMART. But, it does not have
support for two features that are fundamental for the process algebra μCRL and
an optional extension for Petri Nets: infinite data types and non-deterministic
events.

Infinite data types are due to the fact that in μCRL one can define recursive
data types. Non-deterministic events arise if one needs to model a random input
while modeling an open system. For example, in μCRL, we can write a 1-place
buffer as follows:

X =
∑

x∈N

read(x).write(x).X where N ::= 0 | succ(N) .

If a read-event happens then the argument must be chosen from an infinite set.
In practice, choices like this will be from a finite set, which is not known a priori.
Thus, we do not know a priori a limit on the branching degree. In a classical
Petri Net, events are deterministic: once an event is chosen the result is fixed
because no matter which tokens are selected the result will be identical. In a
colored Petri Net, events can also be non-deterministic. If an event is chosen
then selecting tokens with different colors can still lead to different results. If a
finite superset of the used colors is known in advance a colored Petri Net can be
encoded as a monochrome Petri Net. The algorithms, which are implemented in
SMART rely on deterministic events. In our tool we extend the algorithms to
deal with non-deterministic events. As the underlying data structure, we do not
use MDDs with in-place updates, as in [9]. We use a decision diagram formalism
which mixes features from MDDs and ZDDs instead. Moreover, we use a classical
BDD style next state computation rather than in-place updates.

Overview. The remainder of this paper is organized as follows. In the next
section, we discuss some of the basics of explicit state space generation and
symbolic reachability analysis. In Sect. 3 we discuss the principle of event locality
and how that notion leads to a partitioning of the symbolic transition relation
and a refactoring of the next state code for explicit tools. This is followed by a
presentation of our grey box reachability algorithm. The next section contains
some remarks on how this algorithm was implemented for the μCRL toolset.
Section 6 presents the results of a few experiments performed with that prototype
and we conclude with a discussion of the results so far and future work.

2 Preliminaries

The semantics of modeling formalisms used in model checking are always some
form of transition system. The basic structure of a transition system is defined
below.

Symbolic Reachability for Process Algebras with Recursive Data Types 83

Definition 1. A transition system (TS) is a tuple 〈S,R, s0〉, where S is a set
of states, R ⊆ S × S is the transition relation and s0 ∈ S is the initial state

For practical purposes, one needs to attach labels to either states (e.g. atomic
propositions) or the transitions (e.g. actions) or both. These labels are not es-
sential to the presentation in this paper, so we omit them. What is essential is
that states have a vector structure. In this paper, we assume that a state is a
fixed length vector. From now on N will stand for the length of the vector and
Di for i = 1 · · ·N will be the domain of the ith element. Thus the set of states
S is given as

S = D1 × · · · ×DN .

When the set of states is defined as a tuple like this, it is inevitable that not
all states are reachable. In fact, for μCRL many sets Di are the semantics of
a recursive data type and hence infinite. In the remainder, we assume a single
initial state and a finite set of reachable states.

Definition 2. Given a transition system L ≡ 〈S,R, s0〉. The set of reachable
states is

V = {s ∈ S | s0 R∗ s} .
A state s ∈ S is reachable if s ∈ V .

Usually, we build the set of reachable states using a breadth first strategy. Thus,
we define level i (denoted Li) as the set of states whose distance to the initial
state is i. The set of states at distance less than or equal to i is denoted Vi. The
union of all Vi is V :

Proposition 1. Given a transition system L ≡ 〈S,R, s0〉. Let

L0 = {s0} V0 = {s0}
Li+1 = {s′ ∈ S | ∃s ∈ Li : s R s′ ∧ s′ �∈ Vi} Vi+1 = Vi ∪ Li+1

then

V =
∞⋃

i=0

Vi .

A simple algorithm that computes the set of reachable states is given in Table
1. How this algorithm is implemented depends on how the transition system is
given. Next, we shortly review explicit state space generation from an on-the-fly
interface and symbolic reachability.

For explicit state model checking, the fundamental way of implementing a
transition system is by implementing the two functions in Table 2. The first
function simply returns the initial state and the second returns the set of suc-
cessors {s′ | s R s′} of a given state s as a list. The data structure used to
implement sets is typically a hash table. Using this representation, the imple-
mentation of line 5 of Table 1 boils down to a simple loop that calls GetNext
many times. Because this interface does not give away any details about the
internal structure, we call it a black box interface.

84 S. Blom and J. van de Pol

Table 1. Basic reachability algorithm

1 proc reach ()
2 V := {s0}
3 L := V
4 while L �= ∅ do
5 L := {y | ∃x ∈ L : x R y}
6 L := L \ V
7 V := V ∪ L
8 end
9 return V

10 end

Table 2. Black Box on-the-fly API

s t a t e Ge t I n i t i a l () ;
s t a t e l i s t GetNext(s t a t e s) ;

For symbolic reachability, the data structures for both sets and the transition
relation are some form of decision diagram. That is, a set S′ ⊆ S is represented
by a boolean expression S′(x) such that

x ∈ S′ ⇔ S′(x)

where the expression is stored as a decision diagram and x stands for the vec-
tor x1, · · ·xn. Similarly the transition relation is stored as a boolean expression
R(x,x′), such that

x R x′ ⇔R(x,x′)

Given a level as a formula L(x), we can compute the next level using the ex-
pression:

(∃x.(L(x) ∧R(x,x′)))[x′ := x]

Which provides us with the symbolic implementation of line 5.
The major advantage of symbolic techniques is that the representation of a

set of states can be very compact. For example, the set of bit vectors with even
parity can be represented by a decision diagram with a number of nodes that
is linear in the length of the vector. The same holds for transition relations. Of
course not every relation is represented easily. For example, multiplication of
two n-bit numbers will produce a diagram that is exponential in n. (See [10].)

Although it is easy to apply explicit techniques to a symbolic model, it is not
so easy to apply symbolic techniques to a given explicit model. The problem is
that to compute a symbolic version of the transition relation, we must basically
enumerate all possible transitions and collect them in a symbolic structure. In
the next section, we explain how to modify the explicit interface in such a way
that symbolic techniques can be applied efficiently.

Symbolic Reachability for Process Algebras with Recursive Data Types 85

3 Locality

The key to applying symbolic techniques to on-the-fly models is event locality.
The notion of event locality refers to the fact that even though in a state several
events could be enabled, each event separately affects just a small part of the
state vector. For example, if one has a system which is composed of several
processes running in parallel then in many models there are just two kinds of
events: events in which one of the processes performs a step and events in which
two of the processes synchronize to perform a step. In these cases, the enabledness
and result of steps is decided by looking at the global variables (if any) and the
local variables of the processes involved.

As an example, let us consider two ways of solving the 8-queens problem. The
efficient way of solving the problem with a non-deterministic program is

for i = 1 to 8 do
put queen i in any row in column i
i f for some 0 < j < i queen i on the same row or diagonal as queen j then

f a i l
end

end
s u c c e s s

A solution to the problem is a path that ends in success. Putting the first queen
is a very local event: we just put the queen somewhere in the first column. This
affect the counter i and the position of the first queen only. The 8th step however
is completely non-local: we need to check the counter i, test the positions of
queens 1, · · · , 7 and write the position of queen 8.

To get event locality, we may rewrite the problem as follows:

for i = 1 to 8 do put queen i on row 1 of column i end
while true

i f ∃0 < i, j ≤ 8: queen i on the same row or diagonal as queen j then
move queen i to any row in column i

end
end

A solution to the problem is a path to deadlock: if no two queens are in the same
row, the same diagonal or the same column then no move is possible. However,
every step is local: every move requires testing the positions of two queens and
if enabled writing one of them.

To exploit event locality, one can partition the set of possible transitions into
groups of transitions, such that each group affects part of the state only.

For the algorithm we present in the next section, we need to extend the black
box interface to support group information. Because the extension exposes more
structure than the black box interface, we have called it the grey box interface.
The grey box interface is presented in Table 3 and uses five functions. The first
function returns the length of the state vector (N). The second returns the
number of groups, which from now on we will refer to as K. The third function

86 S. Blom and J. van de Pol

Table 3. Grey Box State Space API

in t GetStateLength () ;
i n t GetGroupCount () ;
i n t l i s t GetGroupInfluenced (i n t group) ;
data l i s t Ge t I n i t i a l S t a t e () ;
data l i s t l i s t GetNext(data l i s t src , i n t group) ;

returns (a list representation of) the set of indices that is influenced (either read
or written) while computing the enabledness and next states of the given group.
This set of indices will be referred to as Ig , for any group g. The fourth function
returns the initial state as a list of length N . The fifth function returns a list of
projected next states, given a projected state and a group. That is, the length
of src and each of the next states is the size of Ig if the group is g.

In terms of symbolic algorithms, event locality means that we can partition the
transition relation into a disjunction (over the separate groups) of conjunctions
(collections of local transitions) as follows:

R(x,x′) =
K∨

g=1

Dg(x,x′) =
K∨

g=1

⎛

⎝Rg(πg(x), πg(x′)) ∧
∧

i∈Ig

[xi = x′i]

⎞

⎠ ,

where we define the projection to a group as πg(x) = (xj)j∈Ig .

4 Grey Box Reachability Algorithm

In this section, we describe our symbolic reachability algorithm for grey box
models. The variables and constant used are listed in Table 4. The set operations
are listed in Table 5 and the algorithm itself is presented as Table 6.

The algorithm performs a breadth first analysis. That is, the visited set and
the current level are set to singleton initial state and the visited part of each
group is set to empty. Next, we repeat the main loop in which we replace the
current level by the new states reachable from that level until the current level
is empty.

In each iteration of the main loop we first extend the local symbolic transition
relations of the groups to include all necessary transitions. (See lines 9-15.) That
is, for every group we project the current level to the sub-vector used by the
group and for all of the new sub-vectors we explore the next states and insert
any transition found into the local transition relation. The second half of the
main loop is building the new level by computing the next states of the level
set according to each of the group relations. (See lines 16-21.) This involves a
symbolic next state computation for each group that changes the members of
the sub-vector and leaves all other variables unchanged. From this the next level
is then computed.

Symbolic Reachability for Process Algebras with Recursive Data Types 87

Table 4. Reachability Variables and Constants

K Number of groups constant number
Ii Indices in the state vector, which are Influenced by group i explicit list
V Visited states symbolic
L current Level symbolic
Lp projection of current level to influenced variables of current group symbolic
V p

i projected states Visited for group i symbolic
Rp

i projected transition Relation for group i symbolic
N Next level symbolic
sp projected state explicit vector

Table 5. Operations on sets

· \ · set minus symbolic
· ∪ · set union symbolic
project(·,·) projection to a sub-vector symbolic
step(·,·,·) result of one step in a relation applied to a sub-vector symbolic

nextp
i (·) next state function of the ith group explicit

{· | ·} building a set by inserting elements one element at a time mixed

The set operations project and step can be written as symbolic set operations
as follows:

project(S(x), I) = ∃(xi)i∈I .S(x)
step(S(x),R((xi)i∈I , (x′i)i∈I), I) =

(∃(xi)i∈I(S(x) ∧R((xi)i∈I , (x′i)i∈I)))[x′i := xi|i ∈ I]

The function call nextp
i (s) is shorthand for the call GetNext(s,i).

5 Implementation

We have implemented a prototype of the algorithm presented in the previous
section on top of the μCRL tool set ([4],[11]). The concept of this toolset is to
take a specification and compile it into a linear process equation (LPE). An LPE
is a process given as an initial state and a recursive equation:

X(x) =
K∑

i=1

∑

ei∈Ei

Ci ⇒ a(ti,0).X(ti,1, · · · , ti,n)

︸ ︷︷ ︸
summand i

where Ci and ti,j are expressions over ei, x1, · · · , xn. The intended meaning of
this equation is that to perform a step, one has to first non-deterministically
select 1 ≤ i ≤ K (determining a summand), then non-deterministically select
some e ∈ Ei, evaluate the condition Ci to see if the step is enabled and if it is
enabled then the label of the step is the result of the expression a(ti,0) and the
next state is ti,1, · · · , ti,n.

88 S. Blom and J. van de Pol

Table 6. Symbolic reachability algorithm for grey box models

1 proc mixed reach ()
2 V := {s0}
3 L := V
4 for i = 1 to K do
5 V p

i := ∅
6 Rp

i := ∅
7 end
8 while L �= ∅ do
9 for i = 1 to K do

10 Lp := project(L ,Ii)
11 for sp in Lp \ V p

i do
12 Rp

i := Rp
i ∪ {(sp, dp) | dp ∈ nextp

i (sp)}
13 end
14 V p

i := V p
i ∪ Lp

15 end
16 N := ∅
17 for i = 1 to K do
18 N := N ∪ step (L ,Rp

i ,Ii)
19 end
20 L := N \ V
21 V := V ∪N
22 end
23 return V
24 end

Hence, an LPE has a natural partitioning into groups by treating each sum-
mand as a group. Selecting this partitioning, the influenced variables of each
summand are as follows:

IX
i = {xj | tj,k �= xj ∨ ∃k �= j : xj occurs in Cj or tj,k}

We implemented this natural partitioning and we used it for the tests presented
in this paper.

The μCRL toolset uses the ATerm library ([12]). To make interfacing with the
decision diagrams easy we used a simple decision diagram library for manipulating
sets, which we implemented on top of the ATerm library. The ATerm library was
developed for the manipulation of large terms. It uses maximal sub-term sharing
to keep its memory footprint minimal, which is the equivalent of a global unique
table. It also provides garbage collection, but it does not provide advanced caching
strategies. The resulting data structure for sets of vectors is a form of multi-way
decision diagram (MDD). We call it List Decision Diagram (LDD), because in-
stead of having one node with many edges we have a linked list.

By using the ATerm library, we automatically get maximal sharing (a global
unique table), so there are no duplicate nodes. We can further classify our struc-
ture as a quasi-reduced version [13] rather than the fully-reduced version [14].
This choice was made because the set of possible values at each level is dynamic.

Symbolic Reachability for Process Algebras with Recursive Data Types 89

x1 : d

d

��

�� e

e

����
��

��
��

�

��

x1

d

��
e

��
f

��

x2 : d

d

��

�� e

e

����
��

��
��

��

x2

d

��
e

��

f

��
{ε} ∅ 1 0

Fig. 1. The set {dd,de,ed,ee} as LDD and MDD

x1 : d

d

����

�� e

e

��

�� f
f

		

��

x1

d

��

e,f

�
��

��
��

��

x2 : d

d

����������������� �� e

e
����

��
��

��
�

�� f

f

��

��

e

e��

x2

e

��
d,f

�
��

��
��

��
x2

e

��
d,f

��

x3 : d

d

��

�� e

e

����
��

��
��

�
�� f

f

�����������������

��

x3

d,e,f

��

x3

f

����
��

��
��

�
d,e

��
{ε} ∅ 1 0

Fig. 2. The set {def,eef,fef,ddf,dff,ded,dee} as LDD and MDD

In a fully-reduced setting every extension of the set of values requires an update
of every diagram, in the quasi-reduced setting this operation has no impact at
all. For the same reason we do not use nodes with multiple successors, but just
nodes with 2 successors that form a sorted list.

An LDD is a DAG. In this dag we have three types of nodes. The node types
{ε} (or true) and ∅ (or false) do not have successors. That is, they are constants.
The third type of node has a label (a) and two successors (n1, n2) and is written
as node(a, n1, n2). The semantics [[S]] of an LDD S is as follows:

[[{ε}]] = {ε}
[[∅]] = ∅
[[node(a, n1, n2)]] = {aw | w ∈ [[n1]]} ∪ [[n2]]

To illustrate the relation between MDDs and our own LDDs, we have drawn the
set {dd, de, ed, ee} ({d, e} × {d, e}) and the set {def, eef, fef, ddf, dff, ded, dee}
(Hamming distance to def no more than 1) in both formats in Fig. 1 and 2
respectively. The MDD’s are over the domain D = {d, e, f}. To make these four
diagrams easier to read, we have added edge labels that allow us to check for
membership of a vector by checking if there is a path from the root to {ε} or 1
such that the string of edge labels along the path is the vector. To save clutter

90 S. Blom and J. van de Pol

Table 7. Reachability for Distributed Lift

legs states mem time mem/state states/sec
2 391 30,668 1.08 80,317.22 362.04
3 7,369 56,236 4.32 7,814.58 1,705.79
4 129,849 79,820 29.48 629.47 4,404.65
5 2,165,446 181,592 250.10 85.87 8,658.32
6 33,949,609 661,724 2,344.03 19.96 14,483.44
7 501,505,138 2,246,788 17,995.72 4.59 27,868.02

an edge labeled d, e means two edges, one labeled d and one labeled e. Note that
the edges without label in the LDDs correspond to the linked lists ”building“
the MDD nodes.

The sizes of LDDs and MDDs can only differ by a constant: it can be proven
that the number of nodes in an MDD is less than or equal to the number of nodes
in the corresponding LDD, which is in turn less than or equal to the number of
edges in the MDD.

6 Experiments

In this section, we describe two sets of experiments that have been carried out.
The first set of experiments measures the performance of our symbolic reachability
analysis on two parametrized problems. The second set of experiments compares
the performance of state space generation for a set of five problems and three tools.

To test the performance of our symbolic reachability analysis, we used two
series of problems:

– A distributed lift system [15]. This model describes a system that can lift
large vehicles by using one leg for each wheel of the vehicle. These legs are
connected in a ring topology. The number of legs is a parameter.

– A version of the sliding window protocol [16]. This model is parametrized
by both the number of data elements in the alphabet and the windows size.
(The buffer is a fixed 1 place lossy buffer.)

To test theperformance for thesemodels,weusedadual IntelXeonE5335 (2.0GHz)
machine with Intel 5000P chipset and 8GB memory. We ran one experiment at a
time. The results for the lift problem are in Table 7. Those for the sliding window
protocol are in Table 8. Both tables contain the number of states in each of the
models and the time and memory usage. Time is measured in time elapsed and in
number of states processed per second. Memory is measured in maximum resident
set (RSS) in kB and in number of bytes per state. The first table contains both
forms, the second table has just the second form of the time and memory numbers.

The explicit state space generator of the μCRL has a lower bound of 16
bytes per state, excluding hash tables and other overhead. Since a hash table
easily accounts for another 8 bytes per state, anything below 24 is good. The
reason for these high numbers is that we have used the ATerm library in 64-bit

Symbolic Reachability for Process Algebras with Recursive Data Types 91

Table 8. Reachability for Sliding Window Protocol

states → windows size
mem/state (B)

1 2 3 4 5 6 7 8
states/sec

→
elem

en
ts

156 1,860 10,608 43,320 146,740 442,524 1,235,528 3,269,680
1 36,785.23 6,355.41 1,749.53 499.90 149.17 50.05 20.62 12.32

111.43 1,273.97 6,548.15 20,826.92 48,589.40 83,652.93 110,020.30 109,171.29
390 10,156 126,138 1,132,248 8,487,750 56,793,060 351,503,922

2 28,262.40 1,821.34 174.08 24.31 7.28 4.79 9.79
267.12 6,269.14 46,545.39 114,600.00 140,688.71 96,365.59 34,239.62

708 32,124 719,460 12,075,000 174,187,380
3 15,955.89 657.04 34.54 5.55 5.19

468.87 18,149.15 125,779.72 189,560.44 89,441.99
1,110 78,156 2,829,570 79,474,200

4 9,819.33 280.12 10.87 3.31
760.27 37,575.00 201,536.32 189,694.00
1,596 161,812 8,746,248 375,691,704

5 7,114.11 135.50 5.88 6.91
1,093.15 67,421.67 269,945.93 113,410.54

2,166 299,820 22,789,098
6 5,137.96 73.29 4.28

1,483.56 103,030.93 301,802.38
2,820 512,076 52,280,988

7 3,683.50 43.42 3.45
1,931.51 139,530.25 314,094.25

3,558 821,644 108,715,890
8 3,143.95 30.87 2.52

2,356.29 179,398.25 294,822.75

mode which uses about twice as much memory as in 32-bit mode. A carefully
designed symbolic set library should work with half the memory or less. The
rate of state exploration in the purely explicit instantiator is typically around a
few thousand states per second. Values of over 100,000 obtained for some sliding
window protocol instances are therefore a big improvement.

Our second experiment used the same set of 5 problems that we used in
an earlier paper where we studied the performance of distributed state space
generators [17]. We list the number of levels (iterations needed), the size of the
state space and a brief description of each problem:

lift5. This model has 103 levels, 2,165,446 states and 8,723,465 transitions. It
describes an elevator system with 5 legs in order to lift large vehicles [15].

SWP. This model has 61 levels, 19,466,100 states and 93,478,264 transitions.
It is a version of the sliding window protocol [16]. This instance has 3 data
elements, window size 2 and 3-place lossy buffers for communication.

1394fin. This model has 170 levels, 88,221,818 states and 152,948,696 transi-
tions. It describes the physical layer service of the 1394 or firewire protocol
and also the link layer protocol entities. [18,19] We use an instance with 3
links and 1 data element.

franklin53. This model has 82 levels, 84,381,157 states and 401,681,445 transi-
tions. It describes a leader election protocol for anonymous processes along
a bidirectional ring of asynchronous channels, which terminates with proba-
bility one [20,21]. We chose an instance with 5 nodes and 3 identities.

92 S. Blom and J. van de Pol

Table 9. Comparison of state space generation tools

problem/order symbolic mixed explicit

time(s) mem(kB) time(s) mem(kB) time(s) mem(kB)

lift5 G 861 378 535 195 408 230

lift5 R 217 181 398 101 319 226

swp G 30,322 345 2,073 111 1,426 1,308

swp R 29,232 342 1,850 107 1,264 1,308

1394fin G 768 214 46,787 2,356 41,560 5,592

franklin53 G out of memory 97,005 23,875 6,745 7,844

franklin53 R1 4,970 2,187 17,649 653 6,557 5,533

franklin53 R2 12,712 6,989 15,448 662 6,565 5,529

ccp33 G out of memory out of memory 44,855 7,741

ccp33 R 146,127 44,214 82,379 2,895 46,092 6,419

CCP33. This model has 297 levels, 97,451,014 states and 1,061,619,779 tran-
sitions. It describes and instance of the cache coherence protocol Jackal for
Java programs with 3 processes and 3 threads [22].

The main goal of this test was to compare the performance of our symbolic
prototype and the sequential state space generator of the μCRL toolset. However,
we also wanted to have an indication of the memory cost of the operations on
decision diagrams. Thus, we implemented a mixed state space generator. This
mixed tool is a direct implementation of reachability in which we enumerate
the successors of each state explicitly, but which uses the symbolic set structure
instead of a hashtable for the set of visited states and the level sets.

All three tools were using version 2.18.0 of the μCRL toolset. To run these
tests, we used a server with dual Intel Xeon X5365 (3.00GHz) processor and an
Intel 5000P chipset with 64GB memory. We ran one experiment at a time.

The problems as they were formulated for the testing of the distributed tools,
could only be dealt with by the symbolic tool in 3 out of 5 cases. The remaining
cases ran out of memory. To fix this, we reordered the variables using the heuristic
that the distance between variables that interact should be low.

The data collected in this test is summarized in Table 9. For each of the tools,
we have two columns: time (in seconds) and maximum memory (in kB). The
first column of the table indicates the problem, the second column contains the
variable order, where G means given and R means reordered.

The given variable ordering of the franklin problem was first all processes
then all channels. We changed this to process variables and channel variables
interleaved, either starting with a process (R1) or starting with a channel (R2).
While the reordering didn’t affect the mixed tools very much, it did have a large
influence on the symbolic tool. It is left as future work to find out if a reason for
this difference can be found.

To compare the performance of the various tools, we compare the best runs for
each tool within each of the groups for lift5, swp, 1394fin, franklin and ccp33. For
memory the score (symbolicvsmixedvs explicit) is1-4-0.For timethe score is3-0-2.

Symbolic Reachability for Process Algebras with Recursive Data Types 93

What can we learn from these experiments? Looking at the data of the first
test, it seems that the bigger the model the better the performance in both
states/sec and mem/state of the symbolic tools. This is a clear improvement
over the explicit tools where performance usually decreases slightly as the models
grow. It should be noted however, that this trend is broken for the three largest
instances of SWP. We think that this is due to performance issues in our symbolic
set implementation, but that is a conjecture only.

From the second test, we get some data to compare approaches. If we compare
the memory usage of the symbolic tool with the mixed tool then we see that
with one exception, the mixed tool uses less memory. This is to be expected
because the mixed tool uses the symbolic sets for storage only, whereas the
symbolic tool computes with these sets, which requires additional memory for
the operation cache and intermediate results. If we compare the mixed tool
and the explicit tool on time then the mixed tool looses. This is not surprising
because insert/lookup is much more expensive for the symbolic set than for the
hash table set. Comparing the symbolic tool with the explicit tool, then we get a
mixed result. In two cases (lift5,franklin) the results do not differ substantially.
In the other three cases the symbolic tool is substantially better in memory
and time (1394fin), substantially worse in time but better in memory (swp) and
substantially worse in both time and memory (ccp33). The conclusion is that the
symbolic tool even in its current form is a very useful addition, but not capable
of replacing the explicit tool. Replacing the explicit tool will not be an option
for some time anyway, as there are a number of issues left open, which will be
discussed in the next section.

7 Conclusion

In this section, we discuss some of the open issues that need to be solved to
make the symbolic tool more useful and summarize the results.

On the implementation side, the most important task is to replace the cur-
rent ATerm based symbolic set implementation with a much higher performance
decision diagram package. This is needed not only for performance, but also to
allow our back-end to interface with other modeling formalisms. For example,
we plan on writing an interface to NIPS (see [23]) which is a virtual machine
which is compatible with SPIN (see [24]). To do this, we also need to extend the
implementation from fixed vector length to variable vector length.

Independently, we will investigate the effects of the search order on the size
of the intermediate structures. So far, we have used a breadth first search (BFS)
strategy. One of the strategies we need to look at is saturation. Ciardo et al.
have shown that this strategy is much better for Petri Nets. As explanation they
state that it reduces the difference between the size (in numbers of nodes) of the
reachable state space and the peak size of the set of visited states considerably.
If we look at the peak/final differences for our typical models then we find they
are small. Thus, it is not a priori clear if saturation will work well.

94 S. Blom and J. van de Pol

By implementing a symbolic tool for a modeling language that has until now
had support for explicit exploration only, we are in a situation where we can
compare the performance of explicit and symbolic tools. One of the things that
we need to do is see how far we can get with applying the symbolic tool to existing
models. We have started this in the second test by looking at five models, but
all five of the problems were message passing systems. Such systems have a high
degree of locality. This is not always the case. In timed systems one usually
has global synchronisation steps which involve nearly the entire state. We will
study examples with global steps in order to find common features that allow
an efficient embedding into our tool.

Another issue is that so far, we have written models in a way that is optimized
for explicit enumeration. For example consider the 8-queens problem. Finding
all solutions using the first algorithm (directed search) requires looking at 2,058
states. If we use the second algorithm (random moves) we get 16,777,216 states.
Using explicit tools we would never consider the second approach for practical
purposes. However, the worst size of the diagram representing the set of states
for the first approach is 2,655 nodes and the worst size for the second approach
is 166. And there are many other modeling techniques that are good for explicit
exploration but bad for symbolic techniques, such as path reduction by making
sequences of steps atomic.

We have shown that a generalized version of the conjunctive/disjunctive par-
titioning scheme implemented in SMART for Petri nets can be successfully ex-
tended to allow non-deterministic transitions and implemented for the process
algebra μCRL. The initial results with the prototype show that symbolic explo-
ration should be a part of the future of process algebra’s, but also that retiring
the explicit tools is not an option yet.

References

1. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

2. Fernandez, J.C., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu,
M.: CADP - A Protocol Validation and Verification Toolbox. In: Alur, R., Hen-
zinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 437–440. Springer, Heidelberg
(1996)

3. Roscoe, B.: The theory and practice of concurrency. Prentice-Hall, Englewood Cliffs
(amended, 1998) (2005)

4. Blom, S., Fokkink, W., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.:
μCRL: A Toolset for Analysing Algebraic Specifications. In: Berry, G., Comon, H.,
Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg
(2001)

5. Ciardo, G., Miner, A.S.: SMART: The Stochastic Model checking Analyzer for Reli-
ability and Timing. In: QEST, pp. 338–339. IEEE Computer Society, Los Alamitos
(2004)

6. Ciardo, G., Yu, A.J.: Saturation-Based Symbolic Reachability Analysis Using Con-
junctive and Disjunctive Partitioning. In: Borrione, D., Paul, W. (eds.) CHARME
2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005)

Symbolic Reachability for Process Algebras with Recursive Data Types 95

7. Kuntz, M., Siegle, M.: Deriving Symbolic Representations from Stochastic Process
Algebras. In: Hermanns, H., Segala, R. (eds.) PROBMIV 2002, PAPM-PROBMIV
2002, and PAPM 2002. LNCS, vol. 2399, pp. 188–206. Springer, Heidelberg (2002)

8. Kuntz, M., Siegle, M., Werner, E.: Symbolic Performance and Dependability Eval-
uation with the Tool CASPA. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi,
K., Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236, pp. 293–307. Springer, Hei-
delberg (2004)

9. Ciardo, G., Marmorstein, R.M., Siminiceanu, R.: The saturation algorithm for
symbolic state-space exploration. STTT 8, 4–25 (2006)

10. Bryant, R.E.: On the Complexity of VLSI Implementations and Graph Repre-
sentations of Boolean Functions with Application to Integer Multiplication. IEEE
Trans. Computers 40, 205–213 (1991)

11. Blom, S., Groote, J.F., van Langevelde, I., Lisser, B., van de Pol, J.: New devel-
opments around the μCRL tool set. In: Arts, T., Fokkink, W. (eds.) Eighth In-
ternational Workshop on Formal Methods for Industrial Critical Systems (FMICS
2003). ENTCS, vol. 80 (2003)

12. Brand, M.G.J.v.d., Jong, H.A.d., Klint, P., Olivier, P.A.: Efficient Annotated
Terms. Software – Practice & Experience 30, 259–291 (2000)

13. Kimura, S., Clarke, E.: A parallel algorithm for constructing binary decision dia-
grams. Computer Design: VLSI in Computers and Processors. Proceedings. ICCD
1990, 220–223 (1990)

14. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35, 677–691 (1986)

15. Groote, J.F., Pang, J., Wouters, A.G.: A Balancing Act: Analyzing a Distributed
Lift System. In: Gnesi, S., Ultes-Nitsche, U. (eds.) Proc. 6th Workshop on Formal
Methods for Industrial Critical Systems, pp. 1–12 (2001)

16. Badban, B., Fokkink, W., Groote, J.F., Pang, J., van de Pol, J.: Verification of
a sliding window protocol in μCRL and PVS. Formal Aspects of Computing 17,
342–388 (2005)

17. Blom, S., Lisser, B., van de Pol, J., Weber, M.: A database approach to distrib-
uted state space generation. In: Haverkort, B., Černa, I. (eds.) Proceedings of the
6th International Workshop on Parallel and Distributed Methods in verification,
vol. 198 (2007)

18. Luttik, S.: Description and formal specification of the link layer of P1394. In:
Technical Report SEN-R9706, Amsterdam, The Netherlands (1997)

19. Sighireanu, M., Mateescu, R.: Verification of the Link Layer Protocol of the IEEE-
1394 Serial Bus (FireWire). An Experiment with E-LOTOS. STTT 2, 68–88 (1998)

20. Bakhshi, R., Fokkink, W., Pang, J., van de Pol, J.: Leader Election in Anony-
mous Rings: Franklin Goes Probabilistic. In: Accepted for 5th IFIP International
Conference on Theoretical Computer Science (2008)

21. Franklin, W.R.: On an Improved Algorithm for Decentralized Extrema Finding in
Circular Configurations of Processors. Commun. ACM 25, 336–337 (1982)

22. Pang, J., Fokkink, W.J., Hofman, R.F., Veldema, R.: Model checking a cache co-
herence protocol of a Java DSM implementation. JLAP 71, 1–43 (2007)

23. Weber, M.: An Embeddable Virtual Machine for State Space Generation. In:
Bosnacki, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 168–186.
Springer, Heidelberg (2007)

24. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, Reading (2003)

Inclusion Test Algorithms for One-Unambiguous

Regular Expressions�

Haiming Chen and Lei Chen

State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

Beijing 100080, China
{chm,chl}@ios.ac.cn

Abstract. One-unambiguous regular expressions are used in DTD. It
is known that inclusion for one-unambiguous regular expressions is in
PTIME. However, there has been no study on algorithms for the inclu-
sion. In this paper we present algorithms for checking inclusion of one-
unambiguous regular expressions. A classical way is based on automata,
following which one algorithm is provided and improvements are given.
The other algorithm is based on derivatives, utilizing a property intro-
duced here that the number of derivatives of a one-unambiguous regular
expression is finite. We conducted preliminary experiments by imple-
menting typechecking of XML using the algorithms. The results show
that typechecking using the new algorithms is more efficient than the
typechecking used for XDuce.

Keywords: One-unambiguous regular expression, inclusion, algorithm.

1 Introduction

Extensible Markup Language (XML) is a simple, very flexible text format for
structured data, which becomes popular for the Web and other applications.
Usually in applications XML data are provided with schemas that the XML
data must conform to. These schemas are very helpful for XML processing. In
many tasks it is required to check inclusion of schemas, for example, in query
processing, schema update, typechecking, and so on. Since in many cases the
inclusion problem of XML schemas is closely related to the inclusion problem
of regular expressions [16], it is useful to study the inclusion problem of regular
expressions used in XML schemas.

Many results for the complexity of the inclusion problem for regular expres-
sions exist. For general regular expression, inclusion is PSPACE-complete [20].
Martins, Neven, and Schwentick [16] give complexity of decision problems for
several subclasses of regular expressions called simple regular expressions occur-
ring in practice in XML schemas. Their results show that inclusion is already
� Work supported by the National Natural Science Foundation of China under Grants

Nos. 60573013, 60721061.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 96–110, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 97

CONP-complete for very innocent expressions such as expressions with factors
of the form a or a∗. Several authors give complexity for regular expressions
with interleaving and/or numerical occurrence indicators [17,15,11]. Inclusion
for these expressions is in EXPSPACE. In order to get tractable inclusion check-
ing, Suzuki [21] proposes a polynomial-time algorithm for solving a subproblem
of the inclusion problem defined by edit operations.

The most commonly used XML schema languages are Document Type Defi-
nition (DTD) and XML Schema which are recommended by W3C [5,19]. One-
unambiguous regular expressions [7] are used in DTD. In particular, the complex-
ity of inclusion problem for DTDs reduces to the complexity of inclusion problem
of the corresponding regular expressions. For XML Schema, investigation reveals
that most definitions in XML Schema in practice are actually DTDs according
to [4]. Therefore algorithms for one-unambiguous regular expressions are useful
in practice. There are also some suggestions on using some other regular expres-
sions instead of one-unambiguous ones in DTDs mainly because the latter is not a
syntactic concept. However the complexity of inclusion problem will probably be-
come higher as well by this, and here we mainly focus on one-unambiguous regular
expressions. One-unambiguous regular expressions reflect the requirement that a
symbol in the input word be matched uniquely to a position in a regular expres-
sion without looking ahead in the word. Since one-unambiguous regular expres-
sions can be transformed to deterministic finite automata (DFA) in polynomial
time, inclusion for one-unambiguous regular expressions is in PTIME. However,
there has been no study on algorithms for the inclusion for this kind of regular
expressions in the literature.

In this paper we first present two algorithms for checking inclusion of one-
unambiguous regular expressions. A classical way to this problem is based on
automata. The Glushkov automaton for a one-unambiguous regular expression
is deterministic [7]. We have shown in [9] that for a one-unambiguous regular
expression in star normal form, the equation automaton [1] is deterministic, and
the Brzozowski’s deterministic automaton [8] can be easily computed. Hence
any one of the above DFA can be used in the algorithm. However here we just
use Glushkov DFA as example. It is easy to use other types of the above DFA.
One easy algorithm in this approach is provided. Improvements on the basic
algorithm are then given, which may reduce time and space requirements in
practice. Another algorithm is based on derivatives [8]. For one-unambiguous
regular expressions, we give an equivalent calculation of derivatives, and show
that the number of derivatives is finite, while this may be infinite for reg-
ular expressions. Then an algorithm for inclusion is given, which repeatedly
calculates the derivatives of the expressions and will give an answer in this
process.

Then we introduce experiments with the algorithms. We conducted some pre-
liminary experiments by implementing typechecking of XML using the algo-
rithms. The examples for running typechecking are from XDuce [23], an XML
processing language which supports regular tree languages as schemas. The

98 H. Chen and L. Chen

results show that typechecking using both algorithms are faster than the type-
checking of XDuce.

Section 2 introduces notations and notions required in the paper. Section 3
presents the automata-based algorithm. Section 4 gives the derivative-based al-
gorithm. Section 5 describes the experiments. Section 6 contains related work.
Section 7 gives concluding remarks.

2 Notations and Notions

We assume the reader to be familiar with basic regular language and automata
theory, e.g., from [22], so that we introduce here only some notations and notions
used later in the paper.

2.1 Regular Expressions

Let Σ be an alphabet of symbols. |Σ| denotes the size of Σ, ε denotes the
empty word. Σ∗ is the set of all words over Σ. A regular expression over Σ is
∅, ε or a ∈ Σ, or is obtained from these by applying the following rules finitely
many times: for two regular expressions E1 and E2, the union E1 + E2, the
concatenation E1E2, and the star E∗

1 are regular expressions. For a regular
expression E, the language specified by E is denoted by L(E). The size of E
is denoted by |E| and is the length of E when written in postfix (parentheses
are not counted). ‖E‖ denotes the number of symbol occurrences in E, or the
alphabetic width of E. ΣE denotes the symbols that occur in E, which is the
smallest alphabet of E.

2.2 One-Unambiguous Regular Expressions

One-unambiguous regular expressions are also called deterministic regular ex-
pressions, the name came from Brüggemann-Klein and Wood [7].

For a regular expression we can mark symbols with subscripts so that in the
marked expression each marked symbol occurs only once. For example (a1 +
b1)∗a2b2(a3 + b3) is a marking of the expression (a + b)∗ab(a + b). A marking
of an expression E is denoted by E′. The reverse of marking is the dropping of
subscripts from the marked symbols, denoted by �.

One-unambiguous expressions are defined as follows:

An expression E is one-unambiguous if and only if, for all words uxv, uyw ∈
L(E′) where |x| = |y| = 1, if x �= y then x� �= y�. A regular language is one-
unambiguous if it is denoted by some one-unambiguous expression.

As shown by Brüggemann-Klein [6], we have the following result.

Proposition 1. It can be decided in linear time whether a regular expression is
one-unambiguous.

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 99

2.3 Glushkov Automaton and Star Normal Form

The Glushkov automaton (or position automaton) is introduced independently
by Glushkov [13] and McNaughton and Yamada [18].

For a regular expression E over Σ, we define the following functions:

first(E) = {a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗}
last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈ Σ}
follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ}, for a ∈ Σ

The Glushkov automaton for E is defined as follows:

ME = (QE , Σ, δE, qE , FE)

1. QE = ΣE′ ∪ {qE}
2. δE(qE , a) = {x | x ∈ first(E′), x� = a}, for a ∈ Σ
3. δE(x, a) = {y | y ∈ follow(E′, x), y� = a}, for x ∈ ΣE′ and a ∈ Σ

4. FE =
{
last(E′) ∪ {qE}, if ε ∈ L(E),
last(E′), otherwise

��
��

��
���

��
���

��
��

	 	 	 	
�

a b c

a

a

�

Fig. 1. The Glushkov automaton corresponding to (ab(c + ε))∗

Example 1. The Glushkov automatonME1 of the regular expressionE1 = (ab(c+
ε))∗ is in Figure 1.

Let L(M) denote the language accepted by the automaton M . As shown by
Glushkov [13], McNaughton and Yamada [18] and Brüggemann-Klein and Wood
[7], we have the following properties.

Proposition 2. L(ME) = L(E).

Proposition 3. A regular expression E is one-unambiguous if and only if ME

is deterministic.

A naive algorithm to compute Glushkov automata takes time cubic in the size
of the expression. A quadratic time algorithm is given by Brüggemann-Klein
[6], which has linear running time for one-unambiguous regular expressions. The
algorithm uses the star normal form.

For a regular expression E over Σ, define

followlast(E) = {b | vbw ∈ L(E), v ∈ L(E), v �= ε, b ∈ ΣE}

100 H. Chen and L. Chen

Star normal form of regular expressions is defined as follows [6]:
A regular expression E is in star normal form if, for each starred subexpression

H∗ of E, followlast(H) ∩ first(H) = ∅ and ε /∈ L(H).
Brüggemann-Klein and Wood [7] prove each regular expression can be trans-

formed into star normal form.

3 Automata Based Method

3.1 The Algorithm

A classical way to check inclusion of regular expressions is to convert the regu-
lar expressions to automata and compare the automata. Since one-unambiguous
regular expressions can be directly converted to DFA, inclusion test in this way
is quite easy. We have shown in [9] that the equation automaton [1] for a one-
unambiguous regular expression in star normal form is deterministic, and the
Brzozowski’s deterministic automaton [8] can be easily computed for a one-
unambiguous regular expression in star normal form. Hence any one of the
Glushkov, Brzozowski’s, or equation DFA can be used in the algorithm. How-
ever here we just use Glushkov DFA as example. It is easy to use other types of
the above DFA. In this section we give a basic algorithm used in this approach.
Given two one-unambiguous regular expressions E1, E2, our aim is to deter-
mine whether the relation L(E1) ⊆ L(E2) is true or false. An automata based
method for this is as follows. In the method we first convert the expressions to
Glushkov automata, then check inclusion of the automata. Since ΣE1 �⊆ ΣE2

implies L(E1) �⊆ L(E2), we assume ΣE1 ⊆ ΣE2 in the following.

(1) Construct the corresponding automata from the expressions. The Glushkov
DFA can be computed by the algorithm in [6].ME1 = (QE1 , ΣE1 , δE1 , qE1 , FE1)
with ‖E1‖+ 1 states,ME2 = (QE2 , ΣE2 , δE2 , qE2 , FE2) with ‖E2‖+ 1 states.

(2) Compute the automaton for the complement of L(ME2).

We need first make ME2 complete if it is not. Suppose the complete one
is M ′

E2
= (Q′

E2
, ΣE2 , δ

′
E2
, qE2 , FE2), then M ′ = (Q′

E2
, ΣE2 , δ

′
E2
, qE2 , Q

′
E2
−

FE2), such that L(M ′) = L(M ′
E2

) = L(ME2).

(3) Construct an automaton B, such that L(B) = L(ME1) ∩ L(M ′).
The automaton is constructed by the product construction.
B = (QE1 × Q′

E2
, Σ, δ, (qE1 , qE2), FE1 × (Q′

E2
− FE2)), Σ = ΣE1 ∪

ΣE2 , δ((p, q), a) = (δE1(p, a), δ
′
E2

(q, a)).

(4) Check if L(B) = ∅?
This can be solved by a search on the graph G = (Q,E), where Q = QE1 ×
Q′

E2
, E is the set of transitions, or edges. If there is a path from the start

state to an accepting state then L(B) is not empty.
Then L(E1) ⊆ L(E2) ⇐⇒ L(B) = ∅.
Correctness of the algorithm: The overall process implements checking
L(E1) ∩ L(E2) = ∅.

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 101

In step (1), the computation of ME1 and ME2 can be done in O(|E1|) and
O(|E2|) time respectively [6]. This is due to the use of star normal form. In step
(2), the computation ofM ′

E2
can be done in O(|QE2 ||ΣE2 |) = O((‖E2‖+1)|ΣE2|)

time. The construction ofM ′ is in linear time. In step (3), the construction of B
can be computed in O((||E1|| + 1)(||E2||+ 2)(|ΣE1 ∪ΣE2 |)) = O(||E1|| · ||E2|| ·
|ΣE1 ∪ΣE2 |) time. In step (4), for a DFA B, |E| ≤ |Q| · |ΣE1 ∪ΣE2 |. It is known
that a search on G can be done in O(|Q|+ |E|) time ([10, p. 534]). Therefore the
time complexity is O(|Q|+|E|) = O(‖E1||·||E2||·|ΣE1∪ΣE2 |). The running time
of the overall computation is O(‖E1‖ · ‖E2‖ · |ΣE1 ∪ ΣE2 |). By the assumption
of ΣE1 ⊆ ΣE2 , O(‖E1‖ · ‖E2‖ · |ΣE1 ∪ΣE2 |) = O(‖E1‖ · ‖E2‖ · |ΣE2 |). The space
required by the algorithm is O(‖E1‖ · ‖E2‖ · |ΣE2 |).

3.2 Improvements

By using properties of the above automata, we can have a simpler construction
of B. Let us define a path in an automaton as a sequence x1y1x2y2 . . . xnynxn+1

where xi are states and yi are symbols, and there are transitions from xi to
xi+1 on input yi. Since M ′ is complete and deterministic and, by assumption,
ΣE1 ⊆ ΣE2 , we have

Property 1. Let P1 = {h | h is a path starting from (qE1 , qE2) in B}, P2 = {k | k
is a path starting from qE1 in ME1}, then P1[(p, q)\p] = P2, and |P1| = |P2|.

P1[(p, q)\p] denotes the set in which for any path h ∈ P1 every state (p, q) in h
is replaced by the left component p.

Proof. Given h ∈ P1, by the definition of B, h[(p, q)\p] ∈ P2. Given k ∈ P2,
since M ′ is complete and ΣE1 ⊆ ΣE2 , there exists a path h ∈ P1 such that
h[(p, q)\p] = k. So P1[(p, q)\p] = P2. Since M ′ is deterministic, the number of
paths in B could not be more than the number of paths in ME1 . On the other
hand, since M ′ is complete and ΣE1 ⊆ ΣE2 , the number of paths in B could not
be less than the number of paths in ME1 .

Property 2. Let P1 = {h | h is a path starting from (qE1 , qE2) and ending with
an accepting state in B}, P2 = {k | k is a path starting from qE1 and ending
with an accepting state in ME1}, then P1[(p, q)\p] ⊆ P2, and |P1| ≤ |P2|.

Proof. It follows from Property 1 and the fact of FE1×(Q′
E2
−FE2) ⊆ FE1×Q′

E2
.

An automaton is called a trim automaton if it only contains states reachable
from the start state. From the above, the transition function of the trim version
of B can be calculated from ME1 as follows.

Q = {(qE1 , qE2)},
For (p, q) ∈ Q and (p, q) is unmarked and δE1(p, a) is defined
δ((p, q), a) = (δE1(p, a), δ′E2

(q, a)),
Q = Q ∪ {(δE1(p, a), δ′E2

(q, a))},
mark (p, q) in Q

102 H. Chen and L. Chen

This is more efficient than the previous construction ofB. Denote the resulting
automaton as Bc. It is clear L(B) = L(Bc).

Then checking L(B) = ∅ can be done simply by checking if Bc contains an
accepting state. IfBc dose not contains accepting state, then L(B) = ∅, otherwise
L(B) �= ∅.

Since what we need is to check if there is no accepting state in B, we can have
further improvement of steps (3) to (4) by a ME1-directed search on ME1 and
M ′, without building the automaton for the intersection.

Q = {(qE1 , qE2)},
For (p, q) ∈ Q and (p, q) is unmarked and δE1(p, a) is defined

If both δE1(p, a) and δ′E2
(q, a)) are accepting states then return FALSE,

else
Q = Q ∪ {(δE1(p, a), δ′E2

(q, a))},
mark (p, q) in Q

return TRUE

In the search, if there is an accepting state, then it immediately returns FALSE
and stops. Only if there is no accepting state, a complete search will be done,
which equals to the construction of Bc. Therefore, it has the same time com-
plexity as the one using Bc if L(B) = ∅, and is more efficient otherwise. It is
more efficient in space since Bc is not constructed.

Example 2. Let E1 be the one from Example 1, E2 = (abc∗)∗, then the con-
structed Glushkov automatonME1 is shown in Figure 1, and Figure 2 shows the
computation by the algorithm.

In step (3), the construction of Bc can be computed in O((||E1|| + 1)(||E2|| +
2)|ΣE1 |) = O(||E1||·||E2||·|ΣE1 |) time. In step (4), checking an accepting state is
in linear time. Indeed, the accepting states have been marked in the construction
of automata. If in step (3) we use a variable to keep this information, then
whether there is an accepting state is already known and the checking is done in
constant time. The running time of the overall computation is O(‖E1‖ · ‖E2‖ ·
|ΣE1 |). The space complexity is O(‖E1‖ · ‖E2‖ · |ΣE1 |).

For theME1-directed search algorithm, the time complexity is O(‖E1‖·‖E2‖·
|ΣE1 |), but the space complexity is O(‖E1‖ · |ΣE1 |+ ‖E2‖ · |ΣE2 |).

4 Derivative Based Method

In this section an algorithm to determine the inclusion of two one-unambiguous
regular expressions, based on the derivatives of regular expressions, is presented.
This is inspired by the algorithm to determine inequalities of regular expressions
based on partial derivatives [2].

Derivatives of regular expressions were introduced by Brzozowski [8].
Given a regular expression E and a symbol a, the derivative da(E) of E with

respect to a is defined inductively as follows:

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 103

(a)

(b)

��
��

��
���

��
���

��
��

	 	 	 	
�

a b c

a

a

��

c

��
��

��
��

��
��

��
��

	 	 	 	
�

a b c

a

�

c

�

��
���

�
a, b, c

�

a

�
�

b, c
a, c

b
b

��
��

��
��

��
��

��
��

	 	 	 	
�

a b c

a

a

(c)

Fig. 2. (a) The Glushkov automaton corresponding to (abc∗)∗; (b) The automaton M ′;
(c) The automaton Bc

da(∅) = da(ε) = ∅

da(b) =
{
ε, if b = a
∅, otherwise

da(F +G) = da(F) + da(G)

da(FG) =
{
da(F)G+ da(G), if ε ∈ L(F)
da(F)G, otherwise

da(F ∗) = da(F)F ∗

Derivatives with respective to a word is dε(E) = E, dwa(E) = da(dw(E)).
As shown by Brüggemann-Klein and Wood [7], the derivatives of a one-

unambiguous regular expression in star normal form are also one-unambiguous
regular expressions in star normal form.
Proposition 4. ([7]) Let E be in star normal form.
E = ∅, E = ε, or E = a ∈ Σ: E is one-unambiguous.
E = F + G: E is one-unambiguous iff F and G are one-unambiguous and
first(F) ∩ first(G) = ∅.
E = FG: If L(E) = ∅, then E is one-unambiguous. If L(E) �= ∅ and
ε ∈ L(F), then E is one-unambiguous iff F and G are one-unambiguous,
first(F) ∩ first(G) = ∅, and followlast(F) ∩ first(G) = ∅. If L(E) �= ∅ and
ε /∈ L(F), then E is one-unambiguous iff F and G are one-unambiguous and
followlast(F) ∩ first(G) = ∅.

104 H. Chen and L. Chen

E = F ∗: E is one-unambiguous iff F is one-unambiguous and followlast(F)∩
first(F) = ∅.

When one-unambiguous expressions are concerned, we also have the following
construction of derivatives.

Proposition 5. For a one-unambiguous regular expression E in star normal
form, the derivative of E by a symbol a can be computed as follows:

da(∅) = da(ε) = ∅

da(b) =
{
ε, if b = a
∅, otherwise

da(F +G) =

⎧
⎨

⎩

da(F), if a ∈ first(F)
da(G), if a ∈ first(G)
∅, otherwise

da(FG) =

⎧
⎨

⎩

da(F)G, if a ∈ first(F)
da(G), if a ∈ first(G) and ε ∈ L(F)
∅, otherwise

da(F ∗) = da(F)F ∗

Proof. We need to prove only for E = F +G or FG.
If E = F + G, then first(F) ∩ first(G) = ∅ by Proposition 4. So if a ∈

first(F) then a /∈ first(G), then da(G) = ∅, da(E) = da(F). The same is for
a ∈ first(G). If both a /∈ first(F) and a /∈ first(G), then da(E) = ∅.

If E = FG, by definition da(E) = da(F)G + da(G) if ε ∈ L(F), or da(F)G
otherwise. First we show first(F) ∩ first(G) = ∅. If L(E) = ∅, obviously
first(F) ∩ first(G) = ∅, otherwise L(F), L(G) �= ∅ which means L(E) �= ∅.
If L(E) �= ∅, then from Proposition 4 first(F) ∩ first(G) = ∅. Then, the re-
maining proof is similar to that of the above for E = F +G.

Checking if ε ∈ L(E) for a regular expression E is simple.
For two one-unambiguous regular expressions E1, E2, to determine if L(E1) ⊆

L(E2), first transform E1, E2 into star normal forms respectively, then use the
following algorithm. In the algorithm A contains expression pairs and is set
initially to empty.

include(E1, E2, A)
(1) if ε ∈ L(E1) and ε /∈ L(E2) then return False
(2) if first(E1) �⊆ first(E2) then return False
(3) A = A ∪ {E1, E2}
(4) for all a ∈ first(E1) do
(5) t1 = da(E1), t2 = da(E2),
(6) if (t1, t2) /∈ A then
(7) if include(t1, t2, A)=False then return False
(8) return True

include(E1, E2, A) returns True if L(E1) ⊆ L(E2) and False otherwise.

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 105

Example 3. Let E1, E2 be the ones from Example 1, 2 respectively. We will
determine if L(E1) ⊆ L(E2). Since E1, E2 are in star normal form, we directly
go to the algorithm.

E1 = (ab(c+ ε))∗,
E2 = (abc∗)∗,
first(E1) = first(E2) = {a},
A = {(E1, E2)},
da(E1) = b(c+ ε)(ab(c+ ε))∗ r11,
da(E2) = bc∗(abc∗)∗ r21,
first(r11) = first(r21) = {b},
A = {(E1, E2), (r11, r21)},
db(r11) = (c+ ε)(ab(c+ ε))∗ r12,
db(r21) = c∗(abc∗)∗ r22,
first(r12) = first(r22) = {a, c},
A = {(E1, E2), (r11, r21), (r12, r22)},
da(r12) = r11,
da(r22) = r21,
(da(r12), da(r22)) ∈ A,
dc(r12) = E1,
dc(r22) = r22,
first(E1) = {a}, f irst(r22) = {a, c},
A = {(E1, E2), (r11, r21), (r12, r22), (E1, r22)},
da(E1) = r11,
da(r22) = r21,
(da(E1), da(r22)) ∈ A.

Therefore include returns True, so L(E1) ⊆ L(E2).

In general, the derivatives of a regular expression may constitute a infinite set
without some reduction by similarity. But in the case of one-unambiguous regular
expressions, the number of derivatives is finite, as shown below.

Theorem 1. For a one-unambiguous regular expression E in star normal form,
the cardinality of the set D(E) of derivatives is less than or equal to ‖E‖+ 1.

Proof. Since dε(E) = E, we only need to prove that the number of derivatives
of E with respect to non-empty words, denoted nd(E), is less than or equal to
‖E‖. We prove this by induction.

Base. If E = ∅, ε, or a, a ∈ Σ, the above is obvious.
Induction. 1. E = F +G. It is easily verified from definitions in Proposition 5

that, for a non-empty word w ∈ Σ+, (conditions of rhs are omitted in the sequel
of the proof)

dw(F +G) =

⎧
⎨

⎩

dw(F)
dw(G)
∅

Hence nd(F +G) ≤ nd(F) + nd(G) ≤ ‖F‖+ ‖G‖ = ‖E‖.

106 H. Chen and L. Chen

2. E = FG. Using the definitions in Proposition 5, we have

dw(FG) =

⎧
⎨

⎩

dw(F)G
dv(G) forall v ∈ Σ+ such that w = uv, u ∈ Σ∗

∅

So nd(FG) ≤ nd(F) + nd(G) ≤ ‖F‖+ ‖G‖ = ‖E‖.
3. E = F ∗. Similarly, we have

dw(F ∗) =

⎧
⎨

⎩dv(F)F ∗ forall v ∈ Σ+ such that w = uv, u ∈ Σ∗

Therefore nd(F∗) ≤ nd(F) ≤ ‖F‖ = ‖E‖. This concludes the inductive step.

The bound is worst case optimal, one example is the expression abc.
Therefore the number of pairs of expressions to be checked for inclusion in

include is bounded to ‖E1‖ · ‖E2‖; This ensures termination of the algorithm.
Although the algorithm is rather simple, the worst case complexity is higher

than the automata-based algorithm. Recall from [1], any partial derivative of E
is either ε or a subexpression of E or a concatenation of subexpressions where
the number of subexpressions is no greater than the number of occurrences of
concatenation and Kleene star appearing in E. Therefore, in the worst case, a
partial derivative of E may have a size up to |E|2. According to [9], deriva-
tives of a one-unambiguous regular expression has the same form as the partial
derivatives of the expression. In the above algorithm, consider the comparison in
(6), the worst-case time complexity is O((|E1|2 + |E2|2)‖E1‖2‖E2‖2). Also the
worst-case space complexity is O(|E1|2‖E1‖+ |E2|2‖E2‖). However, in practice,
computation rarely reaches the upper bounds. For example, in Example 3, there
could be up to 4×4 = 16 pairs of derivatives, but there are only 5 pairs in A and
5 comparisons done. In fact, as we will see in the next section, in the experiments
the derivative-based algorithm is faster than the automata-based one.

Virtually the search strategy of the algorithm is similar to the ME1-directed
search introduced in the previous section. However, here it is not needed to
compute all the derivatives in advance.

5 Experiments

The algorithms for the inclusion of one-unambiguous regular expressions can be
used in many tasks as mentioned in Section 1. We have conducted some pre-
liminary experiments where the algorithms introduced in previous sections are
applied to one of the tasks, i. e., typechecking. As a first step to this applica-
tion we have just implemented checking one-unambiguous regular expressions,
and some other work such as exhaustiveness checking was not integrated. In the
experiments the algorithms can be compared with each other, and our type-
checking implementations can be compared with other typechecking algorithm.

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 107

The examples for running typechecking are from XDuce [23], an XML process-
ing language which supports regular tree languages as schemas. Our typecheck-
ing implementations are restricted to one-unambiguous regular expressions. The
original examples may first be modified so that expressions that are not one-
unambiguous are filtered out.

The examples are as follows.
ex1: addrbook. The common example used in XDuce papers. Constructs a

new file which contains the name and the tel number by extracting from the
XML file which contains the address information.

ex2: bookmarks. Takes a Netscape bookmarks file as input file which is a
subset of type HTML and extracts a file including contents, body and links
between them, which is the full HTML type.

ex3: html2latex. Imports an external DTD named xhtml1-transitional.dtd and
takes as input an HTML file(of type HTML) and converts it into LaTeX (a value
of type string).

ex4: ns2xbel. Imports an external DTD named xbel-1.0.dtd and takes as input
a bookmark file which is in the Netscape format and converts it into the XBEL
format.

In ex1 there is 1 regular expression which is not one-unambiguous and the
corresponding equation which contains this expression is removed from the ex-
ample. In ex2 there are 2 regular expressions which are not one-unambiguous
and the corresponding equations are removed. In ex3 and ex4 there is no such
regular expression and the examples need no modification.

ex1, ex4 : millisecond

ex2, ex3 : 100 milliseconds

Fig. 3. Results of the experiments

Figure 3 shows the concrete results from the experiments. The examples are
taken from XDuce [23], therefore the typechecking algorithm of XDuce is also
used in the experiments. Some examples are small in size, and some are not.

108 H. Chen and L. Chen

XDuce [14] is a typed XML processing language which supports regular ex-
pression types. Its typechecking algorithm is based on tree automata.

The time in the figure indicates the time of the process to, given two expres-
sions, check the inclusion of the expressions. In the experiments the time used
for other operations such as checking exhaustiveness of pattern matching by the
type checker of XDuce was not counted. The environment of the experiments is
as follows: Intel Pentium 4 CPU 3.0GHz, 512MB RAM, Ubuntu 7.04-alternate-
i386, XDuce 0.5.0, OCaml 3.10.0.

The results of the experiments show that our typechecking implementations
both are more efficient than XDuce, and that the derivative-based algorithm
is more efficient than the automata-based one. Of course the experiments we
did are still very preliminary; more examples would be very useful, and the
implementations of the two inclusion algorithms can still be improved.

Of course, the algorithms are targeted to applications which use DTDs. As
mentioned before, most XML schemas used in practice are DTDs. Furthermore,
when more general schemas are supported, it is possible to use our algorithms
for checking inclusion of DTDs and more general algorithms for other schemas.

6 Related Work

A schema S2 includes a schema S1 if for any document d that is valid against
S1, d is valid against S2. For DTD, the inclusion problem reduces to the in-
clusion problem of the corresponding regular expressions. Martins, Neven, and
Schwentick [16] study the relations between complexity for decision problems
for DTD and XML Schema (single-type SDTD) and complexity for decision
problems for the corresponding regular expressions, and show that for inclu-
sion the complexity bounds for the regular expressions carry over to DTD and
XML Schema, so it suffices to restrict attention to the complexity of regular
expressions to derive complexity bounds for XML schema languages.

Martins, Neven, and Schwentick [16] give complexity of decision problems for
several subclassesof regular expressions called simple regular expressionsoccurring
in practice in XML schemas. Their results show that inclusion is already CONP-
complete forvery innocent expressions suchas expressionswith factorsof the forma
or a∗. If the number of occurrences of the same symbol in expressions is bounded by
some k (RE≤k), inclusion is in PTIME. Several authors give complexity for regular
expressions with interleaving and/or numerical occurrence indicators [17,15,11].
These expressions are allowed in schema languages like XML Schema and Relax
NG. Inclusion for these expressions is in EXPSPACE.

One-unambiguous regular expressions are used inDTD.Since one-unambiguous
regular expressions canbe transformed toDFA in linear time, inclusion for this kind
of expressions is in PTIME. However, there has been no algorithm for the inclusion.

For DTD inclusion, Suzuki [21] proposes a polynomial-time algorithm for
solving a subproblem of the inclusion problem for regular expressions defined by
edit operations. However, the algorithm does not cover the inclusion problem for
one-unambiguous regular expressions.

Inclusion Test Algorithms for One-Unambiguous Regular Expressions 109

Ghelli, Colazzo, and Sartiani [12] propose a restricted class of regular expres-
sions with interleaving and counting, for which inclusion is in PTIME. The class
also dose not cover one-unambiguous regular expressions.

Typechecking algorithms are proposed in languages like XDuce, CDuce [3],
and so on. These algorithms solve the inclusion problem for regular tree lan-
guages. Inclusion is EXPTIME-complete in general, and there is no complexity
results for the algorithms in the case of DTD or XML Schema.

A rewriting method to determine inequalities of regular expressions, based
on partial derivatives, has been proposed [2]. It rewrites an inequality to a set
of subinequalities. The derivative-based algorithm is inspired by and similar in
spirit to it. We can use derivatives here, and hence make a simpler algorithm,
because the number of derivatives of a one-unambiguous expression is finite.

7 Concluding Remarks

We presented two algorithms for checking inclusion of one-unambiguous regular
expressions. One algorithm is based on automata. The other one is based on
derivatives. We also conducted some experiments by applying the algorithms
to typechecking of XML. The results show that both the algorithms are quite
efficient. Of course the algorithms are targeted to applications which use DTDs.
As discussed in Section 5, when more general schemas are supported, it is pos-
sible to integrate our algorithms with more general algorithms. In the exper-
iments the automata-based algorithm is slower than the derivative-based one.
This may partly be because in practice usually the number of pairs of derivatives
to be checked is very small. In addition, derivatives often are subexpressions of
a regular expression, since actual DTDs usually contain very simple regular ex-
pressions. Thus derivatives often are smaller in size than the regular expression.
Also, it is not needed to compute all of the derivatives in advance, whereas the
whole automata have to be built in advance. Of course, the experiments are
preliminary, more experiments are very useful.

Future work includes: experiments with more examples; a complete type
checker for regular tree languages, which uses the above algorithms. Compar-
ison with other typed XML processing languages like CDuce [3] are useful. The
algorithms can also be used to other tasks of XML processing that require check-
ing inclusion of schemas.

Acknowledgement. We thank Zheng Lixiao for her careful reading and helpful
comments on the writing of the paper.

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theoretical Computer Science 155, 291–319 (1996)

2. Antimirov, V.: Rewriting regular inequalities. In: FCT 1995. LNCS, vol. 965, pp.
116–125. Springer, Heidelberg (1995)

110 H. Chen and L. Chen

3. Benzaken, V., Castagna, G., Frisch, A.: CDuce: An XML centric general-purpose
language. In: ACM SIGPLAN International Conference on Functional Program-
ming (ICFP), Uppsala, Sweden, pp. 51–63 (2003)

4. Bex, G.J., Neven, F., Bussche, J.V.: DTDs versus XML schema: a practical study.
In: WebDB 2004, pp. 79–84 (2004)

5. Bray, T., et al.: XML 1.1, W3C Recommendation, 2nd edn. (2006)
6. Bruggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-

puter Science 120, 197–213 (1993)
7. Bruggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-

tion and Computation 142(2), 182–206 (1998)
8. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
9. Chen, H.: Derivatives and automata of one-unambiguous regular expressions (sub-

mitted, 2008)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

MIT Press, Cambridge (2001)
11. Gelade, W., Martens, W., Neven, F.: Optimizing schema languages for xml: numer-

ical constraints and interleaving. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007.
LNCS, vol. 4353. Springer, Heidelberg (2006)

12. Ghelli, G., Colazzo, D., Sartiani, C.: Efficient inclusion for a class of XML types
with interleaving and counting. In: Arenas, M., Schwartzbach, M.I. (eds.) DBPL
2007. LNCS, vol. 4797, pp. 231–245. Springer, Heidelberg (2007)

13. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53
(1961)

14. Hosoya, H., Pierce, B.: XDuce: a statically typed XML processing language. ACM
Transactions on Internet Technology 3(2), 117–148 (2003)

15. Kilpelainen, P., Tuhkanen, R.: Regular expressions with numerical occurrence in-
dicators - preliminary results. In: SPLST 2003, pp. 163–173 (2003)

16. Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for simple
regular expressions. In: Fiala, J., Koubek, V., Kratochv́ıl, J. (eds.) MFCS 2004.
LNCS, vol. 3153, pp. 889–900. Springer, Berlin (2004)

17. Mayer, A.J., Stockmeyer, L.J.: Word problems - this time with interleaving. Infor-
mation and Computation 115(2), 293–311 (1994)

18. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Trans. on Electronic Computers 9(1), 39–47 (1960)

19. Sperberg-McQueen, C.M., Thompson, H.: XML Schema,
http://www.w3.org/XML/Schema

20. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Pre-
liminary report. In: STOC 1973, pp. 1–9. ACM Press, New York (1973)

21. Suzuki, N.: An edit operation-based approach to the inclusion problem for DTDs.
In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 482–488.
Springer, Heidelberg (2007)

22. Yu, S.: Regular Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer, Berlin (1997)

23. XDuce Webpage, http://xduce.sourceforge.net/

http://www.w3.org/XML/Schema
http://xduce.sourceforge.net/

Refinement of Kripke Models for Dynamics

Francien Dechesne1, Simona Orzan1, and Yanjing Wang2

1 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600MB, Eindhoven, The Netherlands

2 Centrum voor Wiskunde en Informatica,
P.O. Box 94079, NL-1090 GB Amsterdam, The Netherlands

Abstract. We propose a property-preserving refinement/abstraction
theory for Kripke Modal Labelled Transition Systems incorporating not
only state mapping but also label and proposition lumping, in order to
have a compact but informative abstraction. We develop a 3-valued ver-
sion of Public Announcement Logic (PAL) which has a dynamic operator
that changes the model in the spirit of public broadcasting. We prove
that the refinement relation on static models assures us to safely reason
about any dynamic properties in terms of PAL-formulas on the abstrac-
tion of a model. The theory is in particular interesting and applicable for
an epistemic setting as the example of the Muddy Children puzzle shows,
especially in the view of the growing interest for epistemic modelling and
(automatic) verification of communication protocols.

1 Introduction

Epistemic logics are modal logics for reasoning about knowledge, traditionally
used to describe the distribution of information among parties. Recently, these
logics have become interesting also from a more practical perspective, i.e. for
modelling knowledge development during communication protocols, by the ad-
dition of dynamics: mathematical constructions that enable to reason about
knowledge and information change [8,1,2]. Methods based on epistemic logics
have been developed for the analysis of complex communication protocols: e.g.
BAN logic [4], the theory of function views [13] and interpreted systems [8,10,19].
These approaches are also more and more tool-supported, and interesting proto-
col properties are assessed or discarded by (automatic) model checking [11,19,22].

The structures on which epistemic formulas can be evaluated are Kripke models
as in usual modal logic, with multiply labelled transitions representing different
agents’ uncertainties. Inevitably, when epistemic modelling is applied to complex
situations, very large epistemic models can be expected. One way to deal with this,
is to import the refinement and abstraction techniques developed for labelled tran-
sition systems (LTS), e.g. [16,15,20]. The refinement method intuitively relates a
detailed model (refined model) with a coarser one (abstract model) in which some
information may be lost, but the information kept is faithful to the detailed model.
In the Kripke models of the epistemic setting, there are often transitions with dif-
ferent labels that might be similar to each other — for instance if they express

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 111–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

112 F. Dechesne, S. Orzan, and Y. Wang

uncertainties of agents playing similar roles in a multi-agent system. Another spe-
cific characteristic of epistemic Kripke models is that in modelling practical sit-
uations, numerous different basic propositions might be used. We may expect to
lump some of those transitions with different labels or combine states with dif-
ferent propositional valuations to obtain a more compact abstraction. However,
the traditional LTS abstraction techniques do not perform this type of reductions,
so an adaptation is needed. Moreover, when we include the dynamic modalities,
which essentially change the model, into the language (e.g announcements or ac-
tions, cf. [8,1,12,7]), it is a challenge to adapt the LTS abstraction theory such
that a suitable abstraction relation will preserve the truth values of the dynamic
formulas on the abstract model.

In this paper, we extend the refinement theory for Kripke Modal Labelled
Transition Systems (KMLTSs), incorporating not only state mapping but also
label- and proposition lumping, in order to obtain compact but informative ab-
stractions. We develop a 3-valued Public Announcement Logic (PAL) and prove
that the refinement relation on static models can assure us to safely verify any
dynamic properties in terms of PAL-formulas on the abstractions of a KMLTS.
Thus the theory can be used to abstract Kripke models, since Kripke models can
be regarded as special case of KMLTSs. This theory is in particular applicable
for an epistemic setting as the example of the Muddy Children shows.

In the flourishing field of abstraction techniques, to the best of our knowledge,
no work on the abstraction of Kripke models exists yet reducing both the number
of labels and of basic propositions. The literature related most closely to the
current paper is the work on abstraction of LTSs [20] in which the labels could
be grouped. Since both temporal and knowledge properties can be expressed
using box- and diamond modalities of modal languages, model checkers on LTSs
are sometimes employed to verify epistemic properties [11,19,22]. However, LTS
abstractions were never used in this context. A complementary technique for
escaping the epistemic explosion problem is symbolic model checking discussed
in [17].

Section 2 introduces Kripke Modal Labelled Transition Systems, together with
a 3-valued interpretation of PAL. In Section 3, the notions of refinement and
abstraction are introduced and the preservation results are proven. Section 4
contains two examples of applying abstraction to some real epistemic models.
We conclude in Section 5.

2 Preliminaries

In this section we introduce the 3-valued Public Announcement Logic (PAL)
interpreted on 3-valued Kripke Modal Labelled Transition Systems.

2.1 Kripke Modal Labelled Transition System

A standard Kripke model consists of a set of states S, the labelled relations
R among them and a 2-valued valuation V which assigns a truth value to each

Refinement of Kripke Models for Dynamics 113

basic proposition in each state1. In order to define abstractions of Kripke models
the standard definition is extended in the following sense:

– To incorporate the approximation of propositional information in the ab-
stract model, we use 3-valued valuations instead of 2-valued ones. Besides
true and false, atomic propositions can now have a third truth value ⊥ which
is intended to mean unknown.

– To incorporate the approximation of relations, two types of relations must
and may are introduced as in Modal Transition Systems [16], where must
transitions are under-approximations (the relations are necessarily there in
the concrete model) and may for over-approximations (there are possibly
such relations). Since necessarily existent relations should be at least possi-
ble, we require that the must relations are included in the may relations.

Formally, similar to the definition of Kripke Modal Transition Systems in [14,9],
we have:

Definition 1 (Kripke Modal Labelled Transition System). A Kripke
Modal Labelled Transition System (KMLTS) is a tupleM = (I, P ;S,→�,→�, V)
where:

– I is a non-empty set of labels;
– P is a set of basic propositions;
– S is a non-empty set of states;

– →� is a set of transitions of the form s
i→� s

′ where i ∈ I;
– →� is a set of transitions of the form s

i→� s
′ where i ∈ I;

– V is a valuation function: V : S → {true, false,⊥}P .

We require that →�⊆→� .We call (I, P) the signature of M. A pointed KMLTS
(M, s) is a pair of a KMLTS M and a distinguished state s in it.

We include the signature (I, P) in the specification of the models as, in general,
the signatures of a model and its abstraction will be different.

A standard Kripke model can be regarded as a special kind of KMLTS, where
must and may coincide and the valuation is essentially 2-valued:

Definition 2 (Concrete model). A KMLTS M = (I, P ;S,→�,→�, V) is a
concrete model if:

– →�=→�;
– for all s ∈ S, all p ∈ P : V (s)(p) �= ⊥.

1 In an epistemic setting, the states (also called “possible worlds”) are interpreted as
states of affairs that may be considered possible by agents: an i-relation from one
state to another means that at the first state agent i considers the second possible.

114 F. Dechesne, S. Orzan, and Y. Wang

2.2 Public Announcement Logic

Public Announcement Logic (PAL) initiated in [18] is a convenient language to
describe announcements and their informational consequences for (a group of)
agents. Based on the standard language of epistemic logic (logic of knowledge), a
new modality [φ] is introduced into the language, with [φ]ψ intended to express
“if φ is true then after the announcement of φ, ψ is true.”. Various case studies
showed this logic to be powerful in helping to understand complicated higher
order reasoning about knowledge and announcements such as in the cases of
Muddy Children, Sum and Product and the protocol of Dining Cryptographers
(we refer interested readers to [21] for detailed explanations).

Formally, given a signature (I, P), the formulas of the Public Announcement
Logic LI,P are defined by

φ, ψ ::= p | φ ∧ ψ | ¬φ | �iφ | [φ]ψ

where p ∈ P , i ∈ I. As usual, we define φ ∨ ψ, φ→ ψ and �iφ as abbreviations
of ¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ and ¬�i¬φ respectively.

As we will see in the next section, our overall approach is not constrained to
be used only in epistemic settings, as it does not require the model to be S5.2

Not constrained within S5 models, we will have more freedom to find suitable
abstractions, as we will see in the Muddy Children example.

2.3 Semantics

The semantics for 2-valued public announcement logic is the extension of stan-
dard modal logic with relativization operators [φ]: M, s � [φ]ψ ⇐⇒ [M, s � φ
implies M|φ, s � ψ], where the relativized model M|φ is the restriction of M to
the states where φ holds. We extend such relativization, which we call “update”
in the context of PAL, to the 3-valued case and take the usual semantics for �

as in the logics on Modal Transition Systems:

Definition 3 (3-valued Semantics). The truth value of a LI,P formula φ in
a state s of a KMLTS M = (I, P ;S →�,→�, V), written �φ�M,s, is defined by:

�p�M,s = V (s)(p)
�¬φ�M,s = ¬3�φ�

M,s

�φ ∧ ψ�M,s = �φ�M,s ∧3 �ψ�M,s

��iφ�
M,s =

⎧
⎪⎨

⎪⎩

true if ∀s′ : s i→� s
′ =⇒ �φ�M,s′

= true
false if ∃s′ : s i→� s

′ and �φ�M,s′
= false

⊥ otherwise

�[φ]ψ�M,s =

⎧
⎨

⎩

true if �φ�M,s = false or �ψ�M|φ,s = true
false if �φ�M,s = true and �ψ�M|φ,s = false
⊥ otherwise

2 S5 is a set of formulas axiomatizing the reading of � as knowledge. S5 characterizes
models in which the relations are equivalence relations.

Refinement of Kripke Models for Dynamics 115

where:

– ¬3(true) = false,¬3(false) = true and ¬3(⊥) = ⊥, and for any x, y ∈
{true, false,⊥}: x ∧3 y = min(x, y) w.r.t. ≤v: false ≤v ⊥ ≤v true.

– M|φ = (I, P ;S′ →′
�,→′

�, V
′) is defined as follows:

• S′ = {s ∈ S | �φ�M,s �= false};
• →′

�=→� |S′×S′ ;
• →′

�=→� ∩(S′ × {s ∈ S′ | �φ�M,s = true});
• V ′(s) = V (s) for s ∈ S′.

The intuitive idea behind the semantics of � is that �φ is true if all the possible
(may) relations lead to φ-true states, and is false if there exists a necessary (must)
relation leading to a φ-false state.

The updated model M|φ keeps all φ-not-false states and all the relations
among them, except for the must relations directed at a φ-unknown state.3

Note that M|φ is still a KMLTS since →′
�⊆→′

� by definition. It is not hard to
check that this three valued semantics “coincides” with the standard 2-valued
semantics on concrete models. Formally, for any LI,P formula φ, any concrete
model M :

�φ�M,s = true ⇐⇒ M′, s � φ �φ�M,s = false ⇐⇒ M′, s �� φ

where M′ is the standard Kripke model converted fromM by lumping may and
must relations together. For 2-valued Public Announcement Logic the following
reduction axioms hold:

(At) [φ]p ↔ φ→ p
(PF) [φ]¬ψ ↔ φ→ ¬[φ]ψ
(Dist) [φ](ψ1 ∧ ψ2) ↔ [φ]ψ1 ∧ [φ]ψ2

(Seq) [φ][ψ]χ ↔ [φ ∧ [φ]ψ]χ
(KA) [φ]�iψ ↔ φ→ �i[φ]ψ

In the 3-valued case, there are a few cases where the left hand side of ↔ gives
false while the right hand side gives ⊥, all involving the valuation of φ to be ⊥.
So if we only consider concrete models then the evaluation of φ is either true or
false and the above equivalences hold.

Although our concern in this paper is primarily to develop the theory of epis-
temic abstrcations, the ultimate goal is to enable automatic verification of large
epistemic models. Designing efficient algorithms for checking the satisfaction of
3-valued PAL formulae on KLMTSs, based on the definition above, is an interest-
ing topic in itself and we leave it as further work. We now only note that, looking
at similar results in the literature [3], it is to expect that such a model checking
algorithm will not be more complex than the ones for checking (2-valued) PAL
on KMs or LTSs.
3 The must-relations signify necessary relations. However, a φ-unknown state s is not

necessarily there in the updated model, as unknown leaves the possibility open that
φ could ‘actually’ be false, in which case s would not be in the updated model.
A relation directed at a possibly but not necessarily existent state, cannot be a
necessary relation, so must-relations to φ-unknown states are removed.

116 F. Dechesne, S. Orzan, and Y. Wang

3 Refinement and Logical Characterization

In this section we extend the classic definition of refinement with label and
proposition mapping in order to reduce the number of labels and possibly achieve
smaller abstraction models. We show that we can reason about properties of the
more refined model by model checking the more abstract model.

3.1 Refinement and Abstraction

As observed in [20], to do model checking on infinitely-labelled systems, one
needs abstraction to obtain a model with a reduced number of labels. We aim
for an abstraction method to reduce the labels also in the finite case, by lumping
similar transitions with different labels together into a unified one. This is often
applicable in the epistemic case, as several agents may play a similar role and
therefore have similar uncertainties. On the other hand, different propositions
may also have a similar role on different states, in which case abstractions may
combine propositions together as well. In the following, we use two mappings
from one signature to the other to capture the above intuitions of lumping labels
and propositions. It is important to note that these abstractions produce models
with a different signature.

Notation For a function h and x in its range, we use h−1[x] to denote the
preimage of x.

Definition 4 (Refinement and Abstraction). Given two KMLTSs M =
(I, P ;S,→�,→�, V) and N = (I ′, P ′;T,→′

�,→′
�, V

′) and two surjective func-
tions f : I ′ → I and g : P ′ → P , a binary relation R ⊆ T × S is called an
f, g-refinement relation between N and M, if for all t ∈ T, s ∈ S with (t, s) ∈ R
the following hold:

– for any p ∈ P : V (s)(p) �= ⊥ implies for all p′ ∈ g−1[p] : V ′(t)(p′) = V (s)(p);

– t i′
→� t

′ implies ∃s′ ∈ S: s
f(i′)→� s

′ and R(t′, s′);

– s i→� s
′ implies ∀i′ ∈ f−1[i] : ∃t′ ∈ T such that t i′

→� t
′ and R(t′, s′).

We say N is a f, g-refinement ofM (notation: N �f,g M) if there exists an f, g-
refinement relation R between N and M. We say (N , t) is an f, g-refinement of
(M, s) (notation: (N , t) �f,g (M, s)) if there exists an f, g-refinement relation
R between N and M such that (t, s) ∈ R.

Correspondingly, (M, s) is called an f, g−abstraction of (N , t) iff (N , t) is an
f, g-refinement of (M, s).

The first condition says that the valuation in the more abstract model can be
less informative by making some propositions unknown (⊥), but never unfaithful.
The intuition behind the requirement of must is that an i-must relation in the
more abstract model is like an intersection of corresponding i′-must for i′ ∈
f−1[i]. For may, an f(i′)-may relation in the more abstract model is like a union
of those i′′-may relations in the more refined model for which f(i′′) = f(i′).

Refinement of Kripke Models for Dynamics 117

11 2
1,2

1

1

2,4

34

3,4

2,3,
4

3

b

pq
a

a

(1) KMLTS M

a, b

a, b

p

b

(2) Id, Id-abstraction of M

a, b
a, b

b

q

a, b

q/

pq/

a, b

b
a

b

pq

(3) Id, Id-abstraction of M

a, b a, b c

c

c

c

c
r

p/q/ r/

-abstraction of M
(4) ({a, b} �→ c, {p, q} �→ r)

Fig. 1. A pointed KMLTS and three possible abstractions of it. Dot lines are for may
relations and solid lines for must. May relations that coincide with corresponding must
ones are omitted. If there is no arrow on a relation then it is bidirectional. p/ is to

mean the value of p is unknown (⊥) at the current state. For clarity, the states of M
are numbered and the numbers on the states of the abstracted models indicate which
original states they represent. In (2), the mappings are the identity functions, and the
valuation of proposition q is mapped to ⊥ for all worlds. In (3), the abstraction is
given by the identity functions as well, but collapsing different worlds. In (4), there’s
an abstraction obtained by lumping both agents and both propositions.

Note that for two 2-valued Kripke models with the same signature (I, P), N is
a refinement ofM in the classical sense of [15] iff N is an (IdI , IdP)−refinement
of M where IdX is identity function on the domain X .

Fig. 1 shows an example of a KMLTS M and some abstractions of it.
Since →�⊆→�, we can make a concrete refinement of any KMLTS by drop-

ping may relations that do not have a must counterpart (i.e.→′
�,→′

�:=→�) and
by adapting the valuation to become two-valued (e.g. by defining V ′(s)(p) = false
whenever V (s)(p) = ⊥ and V ′(s)(p) = V (s)(p) otherwise). Therefore:

Proposition 1. A KMLTS M always has a concrete refinement.

3.2 Logical Characterization

We will prove a preservation result of satisfaction of formulas between a pointed
model (N , t) and its abstraction (M, s). Intuitively we want a formula to be
true/false atN if it is true/false atM respectively, such that we can safely model
check the more abstract model to get the information of the more refined one.
However, as these models may have different signatures due to the f, g mappings
attached to the refinement relation, we need to check different formulas on these
two models. Given two pointed models (M, s), (N , t), and two formulas φ, ψ, we
say �ψ�M,s ≤ �φ�N ,t if the following hold:

1. �ψ�M,s = true =⇒ �φ�N ,t = true;
2. �ψ�M,s = false =⇒ �φ�N ,t = false.

118 F. Dechesne, S. Orzan, and Y. Wang

Then our goal is to check whether (N , t) �f,g (M, s) implies for all φ:
��φ	�M,s ≤ �φ�N ,t where �φ	 is a formula in the signature of M correspond-
ing to φ. To pinpoint the right formulas to check, we introduce the following
translation:

Definition 5 (Translation of formulas). Given signatures (I ′, P ′), (I, P),
and surjective functions f : I ′ → I, g : P ′ → P , we define the translation of
an LI′,P ′-formula φ into an LI,P -formula �φ	f,g inductively as follows:

�p′	f,g = g(p′)
�¬ψ	f,g = ¬�ψ	f,g

�ψ1 ∧ ψ2	f,g = �ψ1	f,g ∧ �ψ2	f,g

��i′ψ	f,g = �f(i′)�ψ	f,g

�[χ]ψ	f,g = [�χ	f,g]�ψ	f,g

Before proving the main result of this paper, we first prove a result establishing
the refinement relation between the updated models (N|χ, t) and (M|�χ�f,g

, s)
for some LI,P -formula χ, given that (N , t) �f,g (M, s)

Lemma 1. Suppose (N , t), (M, s) are pointed KMLTSs with signatures (I ′, P ′)
and (I, P) and set of states T and S respectively, such that (N , t) �f,g (M, s).
Then for any LI′,P ′ formula χ such that t ∈ N|χ and s ∈ M|�χ�f,g

, we have
(N|χ, t) �f,g (M|�χ�f,g

, s) if for each t′ ∈ T, s′ ∈ S the following condition holds:

(N , t′) �f,g (M, s′) =⇒ ��χ	f,g�
M,s′

≤ �χ�N ,t′
(�)

Proof. Suppose (N , t) �f,g (M, s) then there is a relation R which constitutes
an f, g-refinement between N and M with (t, s) ∈ R. We claim that R′ =
R ∩ (N|χ ×M|�χ�f,g

) is an f, g-refinement relation between N|χ and M|�χ�f,g
.

Note that (t, s) ∈ R′ since t ∈ N|χ and s ∈ M|�χ�f,g
. Now we check the three

conditions of the refinement relation:

– for the condition on p: follows from this property of R and the fact that the
valuation of an updated model is just the restriction of the original valuation
to the remaining states.

– Suppose t i′
→� t′ in N|χ, then t i′

→� t′ in N according to the definition

of the update. Since (N , t) �f,g (M, s), there exists s′ ∈ M: s
f(i′)→� s′

and (t′, s′) ∈ R. Remains to show that s′ ∈ M|�χ�f,g
. Suppose not, then

��χ	f,g�
M,s′

= false. Because (t′, s′) ∈ R ensures (N , t′) �f,g (M, s′), it
then follows from condition (�) that �χ�N ,t′

= false. But then t′ �∈ N |χ,
contradiction.

– Suppose s i→� s
′ in M|�χ�f,g

, then ��χ	f,g�
M,s′

= true and s i′
→� s

′ in M.
BecauseR is an f, g-refinement between (N , t) and (M, s), for any i′ ∈ f−1[i]

there exists t′ ∈ N such that t i′
→� t

′ and (t′, s′) ∈ R. To show that (t′, s′) ∈
R′ for such t′, it remains to show that t′ ∈ N|χ. Since ��χ	f,g�

M,s′
= true

and (t′, s′) ∈ R, it then follows from condition (�) that �χ�N ,t′
= true. Hence,

t′ ∈ N|χ.

Refinement of Kripke Models for Dynamics 119

Theorem 1. Suppose N ,M are KMLTSs w.r.t. I ′, P ′ and I, P respectively. s
and t are two worlds in M and N respectively. Then (N , t) �f,g (M, s) implies
for all φ ∈ LI′,P ′ : ��φ	f,g�

M,s ≤ �φ�N ,t.

Proof. We prove the theorem by induction on the structure of φ :

– φ = p′ : trivial, follows from the first condition of the definition of refinement.
– φ = ¬ψ : suppose ��φ	f,g�

M,s = true then according to the semantics
��ψ	f,g�

M,s = false. Thus by induction hypothesis �ψ�N ,t = false. Therefore
�φ�N ,t = true. For the case ��φ	f,g�

M,s = false, similar.
– φ = ψ1 ∧ ψ2 :

• suppose ��φ	f,g�
M,s = true then by the semantics: ��ψ1	f,g�

M,s = true
and ��ψ2	f,g�

M,s = true. Thus by induction hypothesis �ψ1�
N ,t = true

and �ψ2�
N ,t = true. Therefore �φ�N ,t = true.

• suppose ��φ	f,g�
M,s = false then by the semantics either ��ψ1	f,g�

M,s =
false or ��ψ2	f,g�

M,s = false. Without loss of generality, suppose the lat-
ter. Thus by induction hypothesis �ψ2�

N ,t = false. Therefore �φ�N ,t =
false.

– φ = �i′ψ : then �φ	f,g = �f(i′)�ψ	f,g.
• suppose ��φ	f,g�

M,s = true then according to the semantics for all s′

with s
f(i′)→� s′ we have ��ψ	f,g�

M,s′
= true. Suppose in N there is a

world t′ such that t i′
→� t

′ then according to the definition of refinement,

there is a s′′ ∈ M such that s
f(i′)→� s

′′ and (N , t′) �f,g (M, s′′). Thus
��ψ	f,g�

M,s′′
= true. By induction hypothesis, �ψ�N ,t′

= true. Therefore
��i′ψ�N ,t = true.

• suppose ��φ	f,g�
M,s = false then according to the semantics, there is s′

with s
f(i′)→� s

′ such that ��ψ	f,g�
M,s = false. By definition of refinement,

for any i′′ ∈ f−1[f(i′)] there is a t′ ∈ N such that t i′′
→� t

′ and (N , t′) �f,g

(M, s′). By induction hypothesis, for all such t′ : �ψ�N ,t′
= false. Thus for

all i′′ ∈ f−1[f(i′)] : ��i′′ψ�N ,t = false. In particular: ��i′ψ�N ,t = false.
– φ = [χ]ψ

• if ��φ	f,g�
M,s = true then ��χ	f,g�

M,s = false or ��ψ	f,g�
M|�χ�f,g

,s =
true. If ��χ	f,g�

M,s = false then �χ�N ,t = false by induction hypoth-
esis, hence �φ�N ,t = true. Otherwise, ��ψ	f,g�

M|�χ�f,g
,s = true and

��χ	f,g�
M,s �= false, so s ∈ M|�χ�f,g

. Now suppose �χ�N ,t �= false, so:
t ∈ N|χ.We need to show that �ψ�N|χ,t = true. By induction hypothesis
(N , t′) �f,g (M, s′) =⇒ ��χ	f,g�

M,s′ ≤ �χ�N ,t′
for each s′ ∈ S, t′ ∈ T .

Therefore from Lemma 1 we have (N|χ, t) �f,g (M|�χ�f,g
, s). By induc-

tion hypothesis, �ψ�N|χ,t = true. Thus �φ�N ,t = true.
• if ��φ	f,g�

M,s = false then ��χ	f,g�
M,s = true and ��ψ	f,g�

M|�χ�f,g
,s =

false. Since ��χ	f,g�
M,s = true then �χ�N ,t = true by induction hypoth-

esis. We only need to show �ψ�N|χ,s = false. It is clear that t ∈ N|χ and
s ∈ M|�χ�f,g

, then by the induction hypothesis the condition of Lemma 1
holds, and it follows that (N|χ, t) �f,g (M|�χ�f,g

, s). Thus by the induc-
tion hypothesis we have �ψ�N |χ,t = false. Therefore: �φ�N ,t = false.

120 F. Dechesne, S. Orzan, and Y. Wang

Corollary 1. Suppose (N , t), (M, s) are two pointed KMLTSs w.r.t. (I ′, P ′)
and (I, P) respectively. If (N , t) �f,g (M, s) and N is a Kripke model converted
from a concrete KMLTS then for any formula φ ∈ LI′,P ′ :

– ��φ	f,g�
M,s = true =⇒ N , t � φ

– ��φ	f,g�
M,s = false =⇒ N , t � ¬φ

By the above corollary, to know whether φ is satisified at a pointed Kripke model,
we can instead model check �φ	f,g on its f, g−abstraction.

To justify the logical characterization, we prove the converse of Theorem 1.

Theorem 2. Suppose (N , t) and (M, s) are pointed KMLTS models with sig-
natures (I ′, P ′) and (I, P), and suppose they enjoy image finiteness (i.e. every
transition relation has most finitely many successors at any state). If for every
formula φ ∈ LI′,P ′ : ��φ	f,g�

M,s ≤ �φ�N ,t then (N , t) �f,g (M, s).

Proof. Assume: for every formula φ ∈ LI′,P ′ : ��φ	f,g�
M,s ≤ �φ�N ,t, and let

R = {(t′, s′) | for every φ : ��φ	f,g�
M,s′ ≤ �φ�N ,t′}. Then (t, s) ∈ R, and we

check the three conditions of definition 4 for R. Suppose (t′, s′) ∈ R, then:

– The first condition follows from ��p′	f,g�
M,s′ ≤ �p′�N ,t′

for p′ ∈ P ′.

– Suppose towards contradiction that ∃t′′ : t′ i′
→� t

′′ in N but for any s′′ ∈ S:

s′
f(i′)→� s

′′ implies (t′′, s′′) �∈ R. According to image finiteness, we have only fi-
nitely many such s′′; call them s′′0 . . . s

′′
n. For each s′′k, since (t′′, s′′k) �∈ R, there

must be a formula ψs′′
k

such that ��ψs′′
k
	f,g�

M,s′′
k = true but �ψs′′

k
�N ,t′ �=

true.4 Now �f(i′)(
∨n

k=0�ψs′′
k
	f,g) is true at s′ but �i′(

∨n
k=0 ψs′′

k
) is not true

at t′, contradicting the assumption that (t′, s′) ∈ R.

– Suppose towards contradiction that s′
f(i′)→� s′′ in M, but there exists

i′′ ∈ f−1[f(i′)] such that ∀t′′ ∈ T : t′ i′′
→� t′′ implies (t′′, s′′) �∈ R.

According to image finiteness, there are only finitely many such t′′; call
them t′′0 . . . t

′′
n. For each t′′k , since (t′′k , s

′′) �∈ R, there must be a formula
ψt′′

k
such that ��ψt′′

i
	f,g�

M,s′′
= false but �ψt′′

i
�N ,t′′

i �= false. Note that
�f(i′)(

∨n
k=0�ψt′′

i
	f,g) is false at s′ but �i′′ (

∨n
k=0 ψt′

i
) is not false at t′, con-

tradicting the assumption that (t′, s′) ∈ R.

4 Examples

4.1 The Muddy Children

A standard example demonstrating the effect of updates on the knowledge within
a group of agents, is the epistemic modelling of the Muddy Children Puzzle
(cf. the seminal work on reasoning about knowledge [8]). The setting is as follows:
out of n children, k > 1 got mud on their foreheads while playing. They can see

4 If ��ψs′′
k
	f,g�M,s′′

= false but �ψs′′
k
�N ,t′′ �= false then ��¬ψs′′

k
	f,g�M,s′′

= true but

�¬ψs′′
k
�N ,t′′ �= true.

Refinement of Kripke Models for Dynamics 121

D1D2D3////

[D1 ∨ D2 ∨ D3]

⇓

D2D3

D1D3

D1D2D3D1D2

D1D2D3 D1D2D3////

D2D3

D3

D1D3

3

D1

D2

D1D2 D1D2D3

D2D3////

D1D2D3////

D1D3////

D3 1

1

2

2

D1D2D3////

D1D3////

3
1

2
2

D3

1 2

D2D3////

D2D3////

D1D2D3////

D1D3////

1

2

An Id, Id-abstraction

[D1 ∨ D2 ∨ D3]

⇓

[¬�1D1 ∧ ¬�2D2 ∧ ¬�3D3]

⇓

[¬�1D1 ∧ ¬�2D2 ∧ ¬�3D3]

⇓

[D1 ∨ D2 ∨ D3]

⇓

[¬�1D1 ∧ ¬�2D2 ∧ ¬�3D3]

⇓

[¬�1D1 ∧ ¬�2D2 ∧ ¬�3D3]

⇓
[¬�AD1 ∧ ¬�AD2 ∧ ¬�3D3]

⇓

[¬�AD1 ∧ ¬�AD2 ∧ ¬�3D3]

⇓

D1D2D3 D1D2D3////

D1D3////

3

A

D3

D2D3////

An f, Id-abstraction with f(1) = f(2) = A

D2D3////

D1D2D3////

D1D3////

The concrete model

A A

A

A

D2D3////

D1D2D3////

D1D3////

D3 A

A

A

A

A

A

A

3D2 D2D3

D3

D1D3

1

2

D1

D1D2

1

3

1

2

2

3
2

1

Fig. 2. Abstractions of the Muddy Children for n = 3 children. Each world has reflexive
may-relations for each i ∈ I , some have reflexive must-relations, but for simplicity of
presentation, all reflexive relations are omitted; D3//// means proposition D3 has valuation

⊥ in the current state.

whether other kids are dirty, but there is no mirror for them to discover whether
they are dirty themselves. Then father walks in and states: “At least one of you
is dirty!” Then he requests “If you know you are dirty, step forward now.” If
nobody steps forward, he repeats his request: “If you now know you are dirty,
step forward now.” After exactly k requests to step forward, the k dirty children
suddenly do so (assuming they are honest and perfect reasoners).

The left column of Fig. 2 shows the standard epistemic model for this setting
with three children. Proposition Di signifies “child i is dirty”. After the first
update formula (“At least one of you is dirty”), all updates are of the form
“nobody knows (yet) he is dirty” (by showing no move). One can check that if
only one child is dirty, it will know after the first update. In that case a world
satisfying only one Di is the actual world; from this world in the updated model,
child i considers no other worlds possible anymore. If nobody steps forward after
the first request (implying nobody knows yet whether he is dirty), and a child

122 F. Dechesne, S. Orzan, and Y. Wang

sees only one other muddy child, it will know that he himself must be dirty as well
(otherwise this other child would have known previously). This is modelled by the
fact that after the second update the worlds with only one dirty child disappear
in the updated model (they are no longer considered possible by anybody). If
then nothing happens (third update), it must be the case that all three are dirty
(and everybody knows this).

The middle and right columns of Fig. 2 show abstracted versions of the con-
crete model on the left. The refinement relation underlying both abstractions
relates three pairs of worlds in the concrete model to three single worlds in the
abstraction, while the world with all propositions false and the world with only
D3 true are kept (for example, the world with D2 true and the world with D2, D3

true in the concrete model are related to the one world in the abstracted model
where D2 is true and D3 unknown). In the middle column, the parameters f, g
for the refinement are identities, in the right column f maps both 1 and 2 to
abstract label A. Let D be the abbreviation of the first update (D1 ∨D2 ∨D3)
and K be the abbreviation of the next ones (¬�1D1 ∧¬�2D2 ∧¬�3D3). Notice
the following significant properties can be verified to be true in the two ab-
stractions: (1) In both abstractions, �[D][K][K](�1D1∧�2D2)	f,g is true at the
worlds that correspond to the world which makesD1, D2 andD3 true in the orig-
inal model. Thus [D][K][K](�1D1 ∧ �2D2) is true in that world in the original
model. Namely, in the case all three children are dirty, children 1 and 2 will know
they are dirty after three updates. (2) In both abstractions, �[D][K]�1D1	f,g is
true at the worlds that correspond to the world which makes D1 and D3 true.
Namely in the case children 1 and 3 are dirty, child 1 will know he is dirty after
2 updates. (3) �[D]�3D3	f,g is true at the worlds with only D3 true. Namely
when only child 3 is dirty, he will know after the first announcement. For the
generalization to the n children case, similar abstractions can be made.

Note that whereas all relations in the concrete model are equivalence relations
(S5), this is no longer the case for the abstractions: in the middle abstraction, the
must relations can be seen to be non-symmetric, and in the right abstraction, the
relation labelled A is no longer transitive (in general the union of two equivalence
relations is not necessarily transitive). In terms of the axiom set S5: some of the
axioms are unknown rather than true in the non-S5 abstractions of this example.

4.2 Encoded Broadcast

Consider the following simple situation: a television sender wants to broadcast
its programs (i.e., streams of bits) only to paying viewers. Therefore, it encodes
the stream with a boolean function, let us consider negation. The encoding
function has been shared to the registered clients, indexed 1 . . . n, while some
other unregistered parties, indexed n+ 1 . . . n+m, do not know it and it should
be the case that they do not get access to the programs. A model of this situation
can be seen in Figure 3 (up). b1 . . . bn+m are the bits located at the sites of the
n + m viewers, currently waiting to be set to the value of the next bit in the
stream. The broadcast, to both registered and unregistered users, will consist
of one bit c, which is the encoding of the actual next bit. In the actual world

Refinement of Kripke Models for Dynamics 123

· · ·
1 . . . n + m

c bn+1bn+3 . . . bn+m

· · ·1 . . . n + m

c b1bn+1 . . . bn+m

1 . . . n + m

1 . . . n + m
· · ·

· · ·

n + 1 . . . n + m

n + 1 . . . n + m

b2 . . . bnbn+1 . . . bn+m

c

b1 . . . bnbn+1bn+3 . . . bn+m b1 . . . bn

1 . . . n + m 1 . . . n + m

n + 1 . . .
n + m

b1 . . . bnbn+1 . . . bn+m

n + 1 . . .
n + m

c bn+1 . . . bn+m

u u

u u

c ba///bu///c ba///buc bu///

ba/// ba///bu///babu///

a, u a, u a, u

(1)A concrete epistemic model representing the information state before the bit broadcast:

(2)Abstraction of (1), according to the agent mapping f :{1 . . . n} �→ a,{n+ 1 . . . n+m} �→ u
and the proposition mapping g: c �→ c, {b1 . . . bn} �→ ba, {bn+1 . . . bn+m} �→ bu:

Fig. 3. Epistemic modelling of encoded broadcasting. To keep a clear overview, not
all arrows were drawn; the transitive and reflexive closure of the arrow relation forms
the intended equivalence. (up): on each row, the first dots stand for a continuation
of the sequence of indistinguishable worlds where the valuations range through all the
subsets of {bn+1 . . . bn+m}. The second dots stand for sequences of worlds where the
valuations range through all the subsets of {b1 . . . bn+m} with at least one positive
(on top) or negative (on bottom) bi, with i ∈ {1 . . . n}. In the possible worlds on the
top row, c = true and on the bottom row, c = false. The registerd users know that
the encoding algorithm ensures

�
i∈{1...n} c ↔ ¬bi, therefore their indistinguishability

relations do not reach worlds where this formula is false. The unregisterd users are not
able to distinguish between any two possible valuations. (down): ba and bu can be
seen as the receiving bits of a symbolic registered user a and a symbolic unregistered
user u, respectively. The abstraction in (2) is obtained by mapping all concrete states
where c is true and b1 . . . bn are false to the abstract state cbu///, all other concrete states

where c is true and bn+1 . . . bn+m are true to cba///bu, and the rest of the concrete states

where c is true to the abstract state cba///bu/// (a similar mapping for states with c is false).

(marked with a circle), let us assume that the next bit in the stream is false and
hence its encoding is c = true. We are interested in checking that, after a bit
has been broadcasted, (only) the authorized users have received it correctly.

The size of the epistemic model varies obviously with m and n and can be
huge, but it is also very regular. The uncertainty relation for every unauthorized
agent i ∈ {n + 1 . . . n + m} is the complete graph. Intuitively, this is because
such an agent does not hold any information on the encoding function or on
any of the waiting bits b1 . . . bn+m, so it considers all valuations as possible. An
abstraction of this concrete model can be seen in Figure 3 (down). Broadcasting
the encoded bit c can be simply modelled by the public announcement of c. The
abstract version of this announcement �c	f,g is still c.

The correct receive property by authorized viewers might be formalized as:∧
i∈{1...n}[c]�i¬bi (since the transmitted bit was false). Its translation to the

124 F. Dechesne, S. Orzan, and Y. Wang

abstract context is [c]�a¬ba, which is true on model (2) in Figure 3. Therefore,
according to Theorem 1, all original formulas are true.

The other desired property is that unauthorized users will not receive the
intended bit, that is

∧
i∈{n+1...n+m}[c]¬�i(¬bi). The translation of this formula,

[c]¬�u¬bu can also be evaluated to true on model (2), meaning, again via The-
orem 1, that the value of b doesn’t leak to the unauthorized agents. Note that
must relations are needed in order to establish satisfiability of such negative
knowledge properties. An interesting observation is that, due to the enormous
density of arrows in an epistemic model, must relations will occur often enough
in abstracted models. This is quite different than the case of LTSs, where most
relations in abstracted models are of the may type.

5 Conclusion

We proposed a refinement/abstraction framework for KMLTSs, which allows
reasoning on small coarse abstract models and transfer the results on refined de-
tailed models. In particular, if the concrete Kripke models are epistemic models,
interesting knowledge properties are preserved by refinements and abstractions
as shown by two examples.

The theoretical novelty of this work is the extension of traditional abstraction
techniques to both the label and proposition mapping, and to a logic containing
a dynamic public announcement modality. Both features are of fundamental im-
portance in (epistemic) modelling and verification, which is the main motivation
of our work. In order to incorporate the full power of dynamic epistemic mod-
elling, more research is needed on integrating general update constructions as
formalized by action models [1]. The abstraction of action models is also practi-
cally interesting, as it is shown in [6] that they can be of huge size when modelling
protocols. Another goal is to adapt this framework to Interpreted Systems [8,19],
which combines both epistemic and temporal characteristics.

On a practical side, our framework opens the way to automatic epistemic
verification of large or even infinite models. Future research should be dedicated
to practical problems like generating abstract models directly from textual or
formal, but compact, protocol specifications. A possible starting point is the
process algebra language of [5].

Acknowledgement. We thank the anonymous referees for their detailed comments.
The authors are supported by Dutch NWO project VEMPS (612.000.528).

References

1. Baltag, A., Moss, L.S.: Logics for epistemic programs. Synthese 139(2), 165–224
(2004)

2. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change.
Information and Computation (2006)

Refinement of Kripke Models for Dynamics 125

3. Bruns, G., Godefroid, P.: Model checking with multi-valued logics. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142.
Springer, Heidelberg (2004)

4. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. In: Practical
Cryptography for Data Internetworks. IEEE Computer Society Press, Los Alamitos
(1996)

5. Dechesne, F., Mousavi, M., Orzan, S.M.: Operational and epistemic approaches to
protocol analysis: Bridging the gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790. Springer, Heidelberg (2007)

6. Dechesne, F., Wang, Y.: Dynamic epistemic verification of security protocols:
framework and case study. In: A Meeting of the minds: Proceedings LORI work-
shop. Texts in Computer Science, pp. 129–144 (2007)

7. van Eijck, J.: DEMO program and documentation (2005),
http://www.cwi.nl/∼jve/demo/

8. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

9. Godefroid, P., Jagadeesan, R.: Automatic abstraction using generalized model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
137–150. Springer, Heidelberg (2002)

10. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. Journal of Computer Security, 483–514 (2005)

11. van der Hoek, W., Wooldridge, M.: Model checking knowledge and time. In:
Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer,
Heidelberg (2002)

12. Hommersom, A., Meyer, J.-J., de Vink, E.P.: Update semantics of security proto-
cols. Synthese 142, 229–267 (2004); Knowledge, Rationality and Action subseries

13. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: A modular
approach. Journal of Computer Security 12(1), 3–36 (2004)

14. Huth, M., Jagadeesan, R., Schmidt, D.: Modal transition systems: A foundation for
three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028.
Springer, Heidelberg (2001)

15. Larsen, K.G.: Modal specifications. In: Automatic Verification Methods for Finite
State Systems, pp. 232–246 (1989)

16. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings LICS, pp. 203–
210 (1988)

17. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining
cryptographers. In: Proc. CSFW 2004, pp. 280–291. IEEE, Los Alamitos (2004)

18. Plaza, J.A.: Logics of public communications. In: Proceedings ISMIS 1989, pp.
201–216 (1989)

19. Raimondi, F., Lomuscio, A.: Automatic verification of deontic interpreted systems
by model checking via OBDD’s. Journal of Applied Logic (2006)

20. van de Pol, J.C., Valero Espada, M.: Modal abstractions in μCRL∗. In: AMAST,
pp. 409–425 (2004)

21. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamnic Epistemic Logic. Syn-
these Library, vol. 337. Springer, Heidelberg (2008)

22. van Eijck, J., Orzan, S.M.: Epistemic verification of anonymity. ENTCS, 168 (2007)

http://www.cwi.nl/~jve/demo/

Tomorrow and All our Yesterdays:

MTL Satisfiability over the Integers�

Carlo A. Furia1 and Paola Spoletini2

1 DEI, Politecnico di Milano, Milano, Italy
2 DSCPI, Università degli Studi dell’Insubria, Como, Italy

Abstract. We investigate the satisfiability problem for metric temporal
logic (MTL) with both past and future operators over linear discrete
bi-infinite time models isomorphic to the integer numbers, where time is
unbounded both in the future and in the past. We provide a technique
to reduce satisfiability over the integers to satisfiability over the well-
known mono-infinite time model of natural numbers, and we show how
to implement the technique through an automata-theoretic approach.
We also prove that MTL satisfiability over the integers is EXPSPACE-
complete, hence the given algorithm is optimal in the worst case.

1 Introduction

Temporal logic has become a very widespread notation for the formal specifica-
tion of systems, temporal properties, and requirements. Its popularity is signifi-
cantly due to the fact that it provides highly effective conceptual tools to model,
specify, and reason about systems [7], and it is amenable to fully automated
verification techniques, the most notable being model-checking [4].

In temporal logic frameworks it is customary to model time as infinite in the
future and finite in the past, i.e., with an origin; in other words, time is mono-
infinite. On the contrary, models where time is infinite both in the future and in
the past — i.e., it is bi-infinite [12] — have been routinely neglected. The reasons
for this strong preference are mainly historical, as it has been pointed out by
various authors [7,13]. Namely, temporal logic has been originally introduced for
the purpose of reasoning about the behavior of “ongoing concurrent programs”
[7], hence a model of time with an origin is appropriate since “computation
begins at an initial state” [7]. However, there are various motivations in favor
of the adoption of bi-infinite time models [13] as well, and they go beyond the
obvious theoretical interest.

The first of such reasons has to do with the usage of temporal logics with
operators that reference to the past of the current instant. If past is bounded,
we may have to deal with past operators referring to instants that are before
the origin of time: this gives rise to so-called border effects [5]. For instance,
consider yesterday operator Y of LTL1: Yp evaluates to true at some instant t
� Work partially supported by the MIUR FIRB ArtDeco project.
1 Throughout the paper we assume temporal logics with past operators.

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 126–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 127

if and only if its argument p holds at the previous instant t− 1. Then, consider
formula Yalarm which models an alarm being raised at the previous instant. If
we evaluate the formula at the origin, the reference to the “previous” instant
of time is moot as there is no such instant, and whether the evaluation should
default to true or to false depends on the role the formula plays in the whole
specification. A possible solution to these problems is to introduce two variants
of every past operator, one defaulting to true and the other to false [5]; however,
this is often complicated and cumbersome, especially in practical applications.
On the contrary, the adoption of bi-infinite time gets rid of such border effects
single-handedly, in a very uniform and natural manner, because there are simply
no “inaccessible” instants of time.

The second main motivation for considering bi-infinite time models is derived
from a reason for adopting mono-infinite time models: the fact that ongoing non-
terminating processes are considered. Similarly, when modeling processes that
are “time invariant” (whose behavior does not depend on absolute time values)
and where initialization can be abstracted away, a time model which is infinite
both in the past and in the future is the most natural and terse assumption.

This paper investigates temporal logic over bi-infinite discrete-time models.
More precisely, we consider a linear-time model which is isomorphic to the in-
teger numbers. Correspondingly, Metric Temporal Logic (MTL) [1] is taken as
temporal logic notation. It will be clear that, over the adopted discrete-time
model, MTL boils down to LTL with a succinct encoding of constants in for-
mulas. Hence, our results will be easily stateable in terms of LTL as well. The
main contributions are as follows. First, we present a general technique to re-
duce the satisfiability problem for MTL over the integers to the same problem
over the more familiar mono-infinite time model isomorphic to the natural num-
bers. Second, we show how the technique can be practically implemented with
an automata-theoretic approach — derived from previous work of ours [15] —
which can work on top of the Spin model-checker [10]. Third, the complexity
of the MTL satisfiability problem over the integer is assessed, and it is shown
that, unsurprisingly, it matches the well-known upper and lower bounds for
the same problem over mono-infinite discrete time domain [1]. To the best of
our knowledge, this is the first work which analyzes the complexity of MTL
(and LTL) satisfiability over bi-infinite time and provides a practical algorithm
for it.

For the sake of space limits, we omit some proofs and inessential details, while
providing some intuitive examples. Missing details can be found in [8].

2 Definitions and Preliminaries

The symbols Z and N denote respectively the set of integer numbers and the
set of nonnegative integers. For greater clarity, connectives and quantifiers of the
meta-language are typeset in a bold underlined font.

128 C.A. Furia and P. Spoletini

2.1 Metric Temporal Logic

We define Metric Temporal Logic (MTL) [1] over mono-infinite and bi-infinite
linear discrete time. We always consider the variant with both past and future
operators (called MTLP by some authors [1]).

Syntax. Let Π = {p, q, . . .} be a finite set of propositions. MTL formulas are
given by φ ::= p | ¬φ | φ1 ∧φ2 | φ1 UI φ2 | φ1 SI φ2, where p ∈ Π, I is an interval
of the naturals (possibly unbounded to the right), and the symbols UI , SI

denote the bounded until and since operator, respectively.
Standard abbreviations are assumed such as -,⊥,∨,⇒,⇔. In addition, we

introduce some useful derived temporal operators: eventually FIφ = - UI φ;
always GIφ = ¬FI¬φ; next Xφ = ⊥ Uφ; release φ1 RI φ2 = ¬(¬φ1 UI ¬φ2).
Each of these operators has its past counterpart; that is, respectively: eventually
in the past PIφ = - SI φ; historically HIφ = ¬PI¬φ; previous or yesterday
Ykφ = P[k,k]φ; trigger φ1TI φ2 = ¬(¬φ1SI ¬φ2). Note that, whenever no interval
is specified, I = (0,∞) is assumed for all operators; also, the singleton interval
[k, k] is abbreviated by = k.

Precedence of operators is defined as follows: ¬ has the highest binding power,
then we have the temporal modalities UI , SI and derived ones, then ∧ and ∨,
⇒, and finally ⇔. φ̃ denotes the formula obtained from φ by switching every
future operator with its past counterpart, and vice versa.

The size |φ| of a formula φ is given by the product of its number of connectives
|φ|# times the size |φ|M of the largest constant used in its formulas, succinctly
encoded in binary. A future formula φ is a formula which does not use any
past operator; conversely, a past formula π is a formula which does not use any
future operator. A formula ψ is flat if it does not nest temporal operators.2 A
flat formula is propositional if it does not use temporal operators at all.

Words and operations on them. For a finite alphabet Σ, we introduce the sets of
right-infinite words (called ω-words), of left-infinite words (called ω̃-words), and
of bi-infinite words (called Z-words) over Σ, and we denote them as Σω, ωΣ, and
ΣZ, respectively. Correspondingly, an ω-language (resp. ω̃-language, Z-language)
is a subset of Σω (resp. ωΣ, ΣZ).

Given an ω-word w = w0w1w2 · · · , w̃ denotes the ω̃-word · · ·w−2w−1w0

defined by the bijection w−k = wk for k ∈ N. The same notation is used
for the inverse mapping from ω̃-words to ω-words. The mapping is also ex-
tended to languages as obvious, with the same notation. Given a Z-word x =
· · ·x−2x−1x0x1x2 · · · and k ∈ Z, xk denotes the ω-word obtained by truncating
x at xk on the left, i.e., xk = xkxk+1xk+2 · · · ; similarly, kx denotes the ω̃-word
obtained by truncating x at xk on the right, i.e., kx = · · ·xk−2xk−1xk.

The operations of intersection (∩), union (∪), and concatenation (.) for words
and languages are defined as usual. Let w and w be an ω- and an ω̃-word,
respectively. The Z-word w � w (right join) is defined as −1w.w, and the Z-
word w � w (left join) is defined as w.w1. The join operations are extended to
2 In the literature, there exist also different definitions of flatness, e.g., [3].

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 129

languages as obvious, with the same notation. Also, ↓Σ denotes the projection
homomorphism over Σ.

Semantics. We define the semantics of MTL formulas for infinite words over 2Π,
where Π is a finite set of atomic propositions. As it is standard, every letter yk ∈
2Π in such words represents the set of atomic propositions that are true at integer
time instant k (also called position). We introduce the predicate valid(y, i) which
holds iff i is a valid position in the infinite word y, i.e., iff y is a Z-word and
i ∈ Z, or y is an ω-word and i ∈ N, or y is an ω̃-word and −i ∈ N.

Let φ be an MTL formula, y a generic infinite word over 2Π, and i an integer
such that valid(y, i). The satisfaction relation |= is defined inductively as:

y, i |= p ⇔ p ∈ yi
y, i |= ¬φ ⇔ y, i �|= φ
y, i |= φ1 ∧ φ2 ⇔ y, i |= φ1 ∧ y, i |= φ2

y, i |= φ1 UI φ2 ⇔ ∃d ∈ I: (valid(y, i+ d) ∧
y, i+ d |= ψ2∧∀0 < u < d : y, i+ u |= ψ1)

y, i |= φ1 SI φ2 ⇔ ∃d ∈ I: (valid(y, i− d) ∧
y, i− d |= ψ2∧∀0 < u < d : y, i− u |= ψ1)

y |= φ ⇔ ∀i ∈ Z : (valid(y, i) ⇒ y, i |= φ)

Note that we defined y |= φ to denote “global satisfiability”, i.e., the fact that
φ holds at all valid positions of y. This definition is especially natural over bi-
infinite words, where there is no initial instant at which to evaluate formulas.
On the contrary, “initial satisfiability” is more common over mono-infinite words
where an origin is unambiguously fixed. However, the global satisfiability prob-
lem is easily reducible to the initial satisfiability problem, as ∀i : y, i |= φ iff
y, 0 |= Alw(φ), where Alw(φ) ≡ Gφ ∧ φ ∧ Hφ denotes that φ holds always.

For instance, consider formula ν = H[0,3]p and its interpretation over ω-word
w+ in Figure 1. According to the semantics defined above, ν is true at 1 because
p holds for all valid positions between 1 and 1− 3 = −2. However, there may be
justifications in favor of evaluating ν false at 1: there is no complete interval of
size 4 where p holds continuously. This is an example of so-called border effect :
what is a “reasonable” evaluation of formulas near the origin is influenced by
the role the formulas play in a specification.

There is an interesting relation between the reverse φ̃ of a formula φ and the
reverse w̃ of ω-words w that are models of φ, as the following example shows.
Consider formula θ = H[0,3]p ⇒ Fq and its reverse θ̃ = G[0,3]p ⇒ Pq. θ asserts
that whenever p held continuously for 4 time units, q must hold somewhere in
the future (excluding the current instant), hence θ is true at position 4 and false
at position 11 over ω-word w+ in Figure 1. If we consider ω̃-word w− obtained
by reversing w+ (also in Figure 1), we see that θ̃ is true at position −4 and false
at position −11 over w−.

By generalizing the example, we have the following proposition.

Proposition 1. Let w+ ∈
(
2Σ

)ω be an ω-word, φ be an MTL formula, and
i ∈ N. Then w+, i |= φ iff w̃+,−i |= φ̃.

130 C.A. Furia and P. Spoletini

p p p p p p p pq

0 4 6 11
p p p p p p p pq

0−4−6−11

w+

w−

p

p

1

−1

Fig. 1. ω-word w+ (above) and its reverse �ω-word w− (below)

Satisfiability and language of a formula. Satisfiability is the following problem:
“given a formula φ is there some word y such that y |= φ ?”. It is the verification
problem we consider in this paper. For an MTL formula φ, let Lω

0 (φ) denote the
set of ω-words w such that w, 0 |= φ, let Lω(φ) denote the set of ω-words w such
that w |= φ, and let LZ(φ) denote the set of Z-words x such that x |= φ. Then,
the satisfiability problem for a formula φ is equivalent to the emptiness problem
for the corresponding language.

LTL and expressiveness. LTL is a well-known linear temporal logic based on
the unique modality U. We will consider the past-enhanced variant of the logic,
and call it simply LTL. For the time models we consider in this paper, MTL is
simply LTL with an exponentially succinct encoding (see [8] for a translation):
every MTL formula μ can be translated into an LTL formula λμ such that
|λμ| = |λμ|# = exp O(|μ|# |μ|M).

2.2 Automata over Infinite Words

Languages definable in MTL can also be described as languages accepted by
finite state automata such as Büchi automata (BA) [16]. The size |A| of a BA
A is defined as the number of its finite states.

Alternating automata (AA, [17]) are an equally expressive but possibly more
concise version of BA. AA have two kinds of transitions: nondeterministic tran-
sitions (also called existential, corresponding to ∨) just like vanilla BA, and
parallel transitions (also called universal, corresponding to ∧). Alternation can
represent concisely the structure of an LTL formula [17], avoiding the expo-
nential blow-up. In [15] we introduced Alternating Modulo Counting Automata
(AMCA), an enriched variant of AA which makes use of (bounded) counters; this
new feature can represent succinctly MTL formulas as well, i.e., it can encode
succinctly constants used in MTL modalities.

Definition 1 (Alternating Modulo Counting Automaton (AMCA)
[15]). An Alternating Modulo Counting Automaton is a tuple 〈Σ,Q, μ, q0, δ, F 〉
where:

– Σ is a finite alphabet,
– Q is a set of states,
– μ ∈ N≥1 such that C = [0..μ] denotes a modular finite counter,

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 131

– q0 ∈ Q is the initial state,
– δ : Q× C ×Σ → B+(Q× C) is the transition relation,3

– F ⊆ Q is a set of accepting states.

For the sake of readability when indicating the elements in B+(Q× C) we will
use the symbol / to separate the component in Q from the component in C.

A run of an AMCA is defined as follows.

Definition 2 (Run of an AMCA). A run (T, ρ) of an AMCA A on the ω-
word w = w0w1 · · · ∈ Σω is a (Q × C ×N)-labeled tree, where ρ is the labeling
function defined as: ρ(ε) = (q0/0, 0); for all x ∈ T , ρ(x) = (q/k, n); and the set
{(q′/h, 1) | c ∈ N, x.c ∈ T, h ∈ C, ρ(x.c) = (q′/h, n + 1)} satisfies the formula
δ(q/k, wn).

The acceptance condition for AMCA is defined similarly as for regular BA:
a path is accepting iff it passes infinitely many times on at least one state in
F . Formally, for a sequence P ∈ Nω and a labeling function ρ, let inf(ρ, P) =
{s | ρ(n) ∈ {s} × N for infinitely many n ∈ P}. A run (T, ρ) of an AMCA is
accepting iff for all paths P of T it is inf(ρ, P)|Q ∩ F �= ∅.

The size |A| of an AMCA A can be defined as the product of |Q| times the size
of the counter, succinctly encoded in binary: |A| = O(|Q| logμ). With the usual
notation, Lω(A) denotes the set of all ω-words accepted by an automaton A.

3 Automata-Based MTL Satisfiability over the Naturals

A widespread approach to testing the satisfiability of an MTL (or LTL) formula
over mono-infinite time models isomorphic to the natural numbers relies on the
well-known tight relationship between LTL and finite state automata. In order to
test the satisfiability of an MTL formula μ, one translates it into an LTL formula
λμ, and then builds a nondeterministic BAAλμ that accepts precisely the models
of λμ, hence of μ. Correspondingly, an emptiness test on Aλμ is equivalent to a
satisfiability check of μ. This procedure, very informally presented, relies on the
following two well-known results.

Proposition 2 ([17]). (1) The emptiness problem for (nondeterministic) BA
of size n is decidable in time O(n) and space O(log2 n). (2) Given an LTL
formula φ, one can build a (nondeterministic) BA Aφ with |Aφ| = exp O(|φ|)
such that Lω(Aφ) = Lω(φ) and Lω

0 (Aφ) = Lω
0 (φ).

In practice, however, this unoptimized approach is inconvenient, because the
BA representing an MTL formula is in general doubly-exponential in the size of
the formula, hence algorithmically very inefficient. On the contrary, we would
like to exploit more concise classes of automata (such as AMCA) to represent
MTL formulas more efficiently in practice. With this aim, in [15] we proposed a
novel approach to model-checking and satisfiability checking over discrete mono-
infinite time domains for a propositional subset of the TRIO metric temporal
3 B+(S) denotes the set of all positive Boolean combinations of elements in S.

132 C.A. Furia and P. Spoletini

logic. It is clear that the subset of TRIO considered in [15] corresponds to MTL
as we defined it in this paper. Hence, let us recall from [15] the following result
about the translation of MTL formulas in BA and AMCA over the naturals.

Proposition 3 ([15]). Given a past MTL formula π, one can build two deter-
ministic BA Aπω and Aπ0 such that Lω(Aπ0) = Lω

0 (π), Lω(Aπω) = Lω(π),
and the size of both Aπ0 and Aπω is expO(|π|). Given a future MTL for-
mula ϕ, one can build two AMCA Aϕω and Aϕ0 such that Lω

(
Aϕ0

)
= Lω

0 (ϕ),
Lω(Aϕω) = Lω(ϕ), and the size of both Aϕ0 and Aϕω is O(|ϕ|).

More precisely, future formulas are translated into AMCA according to the fol-
lowing schema: the AMCA for a future formula ϕ over alphabet Π is Aϕ =
〈Σ,Q, μ, q0, δ, F 〉 where:

– Σ = 2Π,
– Q = {ν | ν is a subformula of ϕ} ∪ {¬ν | ν is a subformula of ϕ},
– μ = |ϕ|M,
– q0 = ϕ,
– the transition relation δ is defined as follows:

• δ(χ/0, p) = -/0 for χ ∈ Π and χ = p,
• δ(χ/0, p) = ⊥/0 for χ ∈ Π and χ �= p,
• δ(ψ ∧ υ/0, p) = δ(ψ/0, p) ∧ δ(υ/0, p),
• δ(¬ψ/0, p) = dual(δ(ψ/0, p)), where dual(φ) is a formula obtained from φ

by switching - and ⊥, ∧ and ∨, and by complementing all subformulas
of φ,

• δ(ψ U[a,b] υ/k, p) =⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ U[a,b] υ/k + 1 k = 0

δ(ψ/0, p) ∧
(
ψ U[a,b] υ/k + 1

)
0 < k < a

δ(υ/0, p) ∨
(
δ(ψ/0, p) ∧

(
ψ U[a,b] υ/k + 1

))
a ≤ k ≤ b

⊥ k > b

for a ≤ b <∞,
• δ(ψ U υ/k, p) = δ(υ/0, p) ∨ (δ(ψ/0, p) ∧ (ψ U υ/0)),

– F = {ξ | ξ ∈ Q and ξ has the form ¬(ψ U υ)}

In the remainder we will show how to exploit such satisfiability checking pro-
cedures over the naturals to perform satisfiability checking over the integers.

4 Automata-Based MTL Satisfiability over the Integers

This section presents the main contribution of the paper: a technique to reduce
the satisfiability problem for MTL formulas over the integers to the same problem
over the naturals, and an automata-based implementation thereof.

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 133

Flat normal form. We introduce a suitable normal form where each application
of temporal operators can be analyzed in isolation, and we show that any MTL
formula can be rendered into this normal form by introducing auxiliary atomic
proposition but without changing the asymptotic size of the formula.

An MTL formula φ is in flat normal form when it is written as:4 φ′ = β ∧∧n
k=1 Alw(pk ⇔ ψk), where β ∈ B(Π) and ψk is a flat formula, for all k =

1, . . . , n. In addition, if every ψk is a pure past formula or a pure future formula,
φ′ is named flat separated normal form (FSNF).

Theorem 1. Let φ be an MTL formula over Π; a φ′ in FSNF can be built
efficiently such that LZ(φ) =↓ΠLZ(φ′), |φ′|M = |φ|M, and |φ′|# = O(|φ|#).

For example, considering formula θ = H[0,3]p⇒ Fq, we can build θ′ by replacing
H[0,3]p and Fq with two new Boolean literals p′ and q′ respectively. Hence, θ′ =

(p′ ⇒ q′) ∧Alw
(
p′ ⇔ H[0,3]p

)
∧Alw(q′ ⇔ Fq).

4.1 Splitting the Evaluation about the Origin

Let φ′ be an MTL formula in FSNF. The satisfiability of φ′ can be analyzed
by considering each of the n + 1 subformulas β, pk ⇔ ψk|1≤k≤n separately. In
fact, x |= φ′ iff x |= β and ∀k = 1, . . . , n : x |= pk ⇔ ψk. Hence, without loss
of generality, we focus on studying the satisfiability of formulas in the form β,
p ⇔ ψ+, and p ⇔ ψ−, where ψ+ and ψ− are flat until and since formulas,
respectively.

More precisely, let us start with the future formula: ψ = f ⇔ p UI q ≡
(¬f ∨ p UI q) ∧ (f ∨ ¬p RI ¬q) In turn, x |= ψ iff x |= ¬f ∨ p UI q and x |=
f ∨¬pRI ¬q. Correspondingly, we now focus on studying the satisfiability of the
simple formula ¬f ∨ p UI q over the integers. Then it will be straightforward to
extend it to handle the other formula f ∨¬pRI ¬q, as well as the corresponding
past formula f ⇔ p SI q.

Behavior about the origin. Let us consider a Z-word x such that x |= p U[l,u] q

for some 0 ≤ l ≤ u <∞. We aim at splitting the evaluation of x |= pU[l,u] q into
the evaluation of other related formulas over mono-infinite words x0 and 0x.

pp

4 6

p, q p p p p p pq qqppp

0 10 1 2 3 5 7 8 9−1−2−3−4−5−6−7−8−9

p

pU[3,7]q pU[3,7]q pU[3,7]q

x00̃x

Fig. 2. Splitting the evaluation of p U[3,7] q about the origin

4 B(Π) denotes the set of all Boolean combinations of elements in Π.

134 C.A. Furia and P. Spoletini

Before introducing the formal results, let us provide some intuition about our
technique, and let l = 3, u = 7. First of all, x |= p U[3,7] q requires in particular
that x0 |= p U[3,7] q: until is a future operator, thus its evaluation over x0 is
independent of all instant before the origin, hence x0 |= p U[3,7] q iff ∀k ≥ 0 :
x, k |= p U[3,7] q. For instance this is the case of instant 3 in Figure 2. Similarly,
let us consider any position k of x such that the interval (k, k + 7] ⊂ (−∞, 0] is
contained completely to the left of the origin, such as position −8 in Figure 2.
The evaluation of p U[3,7] q at k is independent of all instants after the origin,
hence x, k |= pU[3,7] q iff 0x, k |= pU[3,7] q, for all k+ 7 ≤ 0, i.e., k ≤ −7. Finally,
let us consider what happens to the evaluation of p U[3,7] q at instants k such
that the interval (k, k + 7] . 0 contains the origin; for instance let k = −4 and
consider again Figure 2. Hence, there exists a h ∈ [−1, 3] such that x, h |= q
and for all −4 < j < h it is x, j |= p. Here, we have to distinguish two cases
and handle them differently. If h ≤ 0 such as for h = −1 in Figure 2, the
evaluation of p U[3,7] q at −4 is still independent of instants after the origin,
hence x, k |= p U[3,7] q iff 0x, k |= p U[3,7] q. Otherwise, if h > 0 such as for h = 2
in Figure 2, we consider separately the adjacent intervals (k, 0] and (0, k+7]. The
fact that p holds throughout (k, 0] is independent of instants after the origin,
so x, k |= G(0,−k]p iff 0x, k |= Gp. Moreover, p UI q holds at the origin for the
“residual” interval (0, 3], thus x, 0 |= p U[1,3] q iff x0, 0 |= p U[1,3] q.

By generalizing the above informal reasoning, we get the following.

Lemma 1. For x ∈ (2Π)Z, 0 ≤ l ≤ u <∞ such that u �= 0,5 1− u ≤ i ≤ −1:

x, i |= p U[l,u] q ⇔
x, i |= p U[l,−i] q

∨(
x, i |= G[1,−i]p ∧ x, 0 |= p U[max(1,i+l),i+u] q

) (1)

Proof. Let us start with the ⇒ direction: assume x, i |= p U[l,u] q. Hence, there
exists a d ∈ [l, u] such that x, i+ d |= q and for all i < j < i+ d it is x, j |= p. If
i+ d ≤ 0 then 0 ≤ d ≤ −i, hence x, i |= pU[l,−i] q holds. Otherwise, i+ d > 0; in
this case, p holds throughout (i, 0] and thus x, i |= G[1,−i]p holds. In addition, let
d′ = i+d; note that 1 ≤ d′ ≤ i+u and also i+l ≤ d′, so x, 0 |= pU[max(1,i+l),i+u] q
holds.

Let us now consider the ⇐ direction. If x, i |= pU[l,−i] q, from 1− u ≤ i ≤ −1
we get 1 ≤ −i ≤ u−1, thus [l,−i] ⊆ [l, u] which entails x, i |= pU[l,u] q. Otherwise,
let x, i |= G[1,−i]p and x, 0 |= p U[max(1,i+l),i+u] q. That is, p holds throughout
(i, 0], and there exists a k ∈ [max(1, i+ l), i+ u] such that x, k |= q and p holds
throughout (0, k). Let d = −i+ k; from k ∈ [max(1, i+ l), i+u] we get d ∈ [l, u],
which establishes x, i |= p U[l,u] q. �(

Lemma 1 shows how to “split” the evaluation of an until formula into the eval-
uation of two derived formulas, one to be evaluated to the left of the origin, and
5 This restriction is clearly without loss of generality, as φ1 U[0,0] φ2 ≡ φ2.

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 135

one to its right. Next, we use that result to express the satisfiability of a formula
of the form ¬f ∨ pU[l,u] q over a bi-infinite word x as the satisfiability of several
different formulas, each evaluated separately either on the whole mono-infinite
word x0 or on the whole mono-infinite word 0̃x.6

Lemma 2. Let x ∈ (2Π)Z and 0 ≤ l ≤ u <∞ such that u �= 0; then:

x |= ¬f ∨ p U[l,u] q ⇔

x0 |= ¬f ∨ p U[l,u] q ∧ �0x |= ¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)

∧

∀1 ≤ i ≤ u − 1 :

�
��
�0x |= P=i� ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

∨
x0, 0 |= p U[max(1,−i+l),−i+u] q

�
��

(2)

Let ΦL and ΦR be the sets of all MTL formulas appearing in left- and right-
hand side of Formula (2), respectively (for all values of 1 ≤ i ≤ u−1). Note that
u = exp O(|ΦL|M), due to the succinct encoding of constants assumption. Then,
|ΦR|M = O(|ΦL|M) and |ΦR|# = O(u · |ΦL|#) = |ΦL|# exp O(|ΦL|M).

It is not difficult to show that the equivalence of Formula (2) can be exploited
to derive an equivalent formulation of the bi-infinite languageLZ

(
¬f ∨ p U[l,u] q

)

in terms of mono-infinite ω-languages and composition operations on them.

Theorem 2. Let 0 ≤ l ≤ u <∞ and u �= 0; then:

LZ
(
¬f ∨ p U[l,u] q

)
=

�Lω
�
¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)

	
� Lω

�
¬f ∨ p U[l,u] q

	
∩

u−1
i=1

�
���
�Lω
�
P=i� ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

	
�
�
2Π
	ω

∪
ω
�
2Π
	

� Lω
0

�
p U[max(1,−i+l),−i+u] q

	
�
���

(3)

Other operators. So far, we have provided a characterization of flat formu-
las only in the form ¬f ∨ p U[l,u] q, for finite l ≤ u. In order to handle every
possible subformula in FSNF, we have to present similar characterizations for
the subformulas: (1) ¬f ∨ p U[l,∞) q; (2) f ∨ p RI q, for any interval I; (3)
f ⇔ p SI q ≡ (¬f ∨ p SI q) ∧ (f ∨ ¬p TI ¬q), for any interval I; (4) β ∈ B(Π′).
Such characterizations are derivable similarly as for the bounded until. Hence,
in the following we just collect the final results for (1) and (2), while the easily
derivable results for past operators are provided only in [8].

LZ(¬f ∨ p U q) =
L̃ω(¬f ∨ p S q ∨Hp) � Lω(¬f ∨ p U q)

∩(
L̃ω(¬f ∨ p S q) �

(
2Π

)ω ∪ ω
(
2Π

)
� Lω

0 (p U q)
) (4)

LZ
(
f ∨ p R[l,u] q

)
=

�Lω
�

f ∨ p T[l,u] q
	

� Lω
�

f ∨ p R[l,u] q
	

∩

u−1
i=1

�
���
�Lω
�
P=i� ∧ H=i+1⊥ ⇒ Pp

�
�
�
2Π
	ω

∪
ω
�
2Π
	

� Lω
0

�
p R[max(1,−i+l),−i+u] q

	
�
���

(5)

6 Note that H=k⊥ holds exactly at all positions j < k of any ω-word.

136 C.A. Furia and P. Spoletini

LZ(f ∨ p R q) =
L̃ω(f ∨ (p T q ∧ Pp)) � Lω(f ∨ p R q)

∪
L̃ω(f ∨ p T q) � (Lω

0 (p R q) ∩ Lω(f ∨ p R q))
(6)

In fact, to give some intuition about the formulas for the past operators,
consider the example of formula θ = H[0,3]p ⇒ Fq. θ in separated normal form
becomes θ′ = (p′ ⇒ q′) ∧ (p′ ⇔ H[0,3]p) ∧ (q′ ⇔ Fq). Then, subformula λ =
p′ ∨ ¬H[0,3]p = p′ ∨ P[0,3]¬p = p′ ∨ - S[0,3] ¬p can be directly decomposed into:

x |= p′ ∨ P[0,3]¬p ⇔

�x0 |= p′ ∨ F[0,3]¬p ∧ x0 |= p′ ∨ P[0,3]¬p ∨ H=u⊥
∧

∀1 ≤ i ≤ 2 :

�
��

x0 |= P=i� ∧ H=i+1⊥ ⇒ p′ ∨ P[0,3]¬p

∨�0x, 0 |= F[1,−i+3]¬p

�
��

(7)

4.2 From Languages to Automata (to ProMeLa)

In Section 3 we recalled that one can build an automaton that accepts any
given MTL ω-language. On the other hand, in the previous section we showed
how to reduce MTL satisfiability over Z-languages to MTL satisfiability over
ω-languages composed through the operations of �, �, ∪, ∩, and ↓Π.

Indeed, the reduction can be fully implemented. In fact, in [8] we substantiate
the claim that both BA and AMCA are closed under intersection and union, in
such a way that if A1 and A2 are two automata (either BA or AMCA), then
|A1 ∪ A2| = O(|A1|+ |A2|) and |A1 ∩ A2| = O(|A1| · |A2|).

Moreover, consider � and let L be a Z-language defined as L̃1 �L2. Then a Z-
word x is in L iff −̃1x ∈ L1 and x0 ∈ L2. Hence, if we have two automata A1,A2

such that Lω(A1) = L1 and Lω(A2) = L2 the emptiness of L can be checked
noting that L = ∅ iff Lω(A1) = ∅ or Lω(A2) = ∅. A very similar reasoning
holds for �. Finally consider the projection: for any MTL formula φ over Π let
φ′ be an equi-satisfiable MTL formula over Π′ ⊇ Π. Then, ↓ΠLZ(φ′) = LZ(φ),
and LZ(φ) = ∅ iff LZ(φ′) = ∅. Correspondingly, the technique to check the
satisfiability over the extended alphabet suffices to complete the satisfiability
check on the original formula.

Implementing automata. In [2] we presented TRIO2ProMeLa, a tool that trans-
lates TRIO formulas (or, equivalently, MTL formulas) into a ProMeLa represen-
tation of the automata presented in Section 3. ProMeLa is the input language to
the Spin model-checker [10], hence the tool allows one to check the satisfiability
of an MTL formula on top of Spin. This approach is very efficient in prac-
tice, since it translates directly compositions (through union and intersection)
of BA and AMCA to ProMeLa, obtaining a code of the same size as the origi-
nal automata composition description. In a nutshell, every state of an AMCA is
implemented with a ProMeLa process, existential transitions are implemented
as nondeterministic choices, and universal transitions as the parallel run of con-
current processes. The tool also introduces some useful optimizations, such as

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 137

merging processes when possible. When Spin is run on the automata described
in ProMeLa, it unfolds them on-the-fly. This unfolding may lead to a blow-up
in the dimension of the automata but it is performed by the model-checker only
when needed. This approach is convenient, since in many practical cases, when
the original formulas are large, the direct translation to BA and then to ProMeLa
is simply unfeasible. We refer the reader to [2,15] for a detailed description of
the translation from AMCA and BA to ProMeLa code.

TRIO2ProMeLa can be reused to provide an implementation of our satisfia-
bility checking procedure over the integers. Once a formula is decomposed as ex-
plained in the previous sections, each component is translated into the ProMeLa
process that represents the equivalent automaton. All the obtained processes are
then suitably composed and coordinated by starting them together at time 0.
The results of the various emptiness checks are then combined to have a response
about the satisfiability of the original formula.

4.3 Summary and Complexity

Let us briefly summarize the satisfiability checking technique we presented in
this section and let us analyze its worst-case asymptotic complexity.

Summary of the satisfiability checking algorithm. Given an MTL formula φ over
Π, the satisfiability over Z-words is checked according to the following steps.

1. From φ, build a formula φ′ in FSNF such thatLZ(φ) =↓ΠLZ(φ′) (Theorem 1).
2. For each subformula φ′i of φ′, build a set of formulas {φ′i,j}j, whose combined

satisfiability over ω-words is equivalent to the satisfiability of φ′i over Z-words
(e.g., according to (3) for the bounded until). Let φ′′i =

⋃
j{φ′i,j}.

3. Translate each subformula φ′i,j into an automaton Ai,j according to what is
described in Section 3.

4. For each i, compose the various automata Ai,j according to the structure
of the corresponding language equivalences (e.g., according to (3) for the
bounded until). In practice, for every i we can assume to have two automata
A+

i ,A−
i such that L̃ω

(
A−

i

)
∼ Lω

(
A+

i

)
= LZ(φ′i), where ∼ is � or �.

5. Let A+,A− be the automata resulting from the intersection of the various
A±

i ’s according to the structure of LZ(φ′).
6. Since the equivalence ↓ΠLZ(φ′) = LZ(φ) holds by construction, the empti-

ness test on Lω(A+) and on Lω(A−) is equivalent to the satisfiability check
of φ over Z-words.

Let us go back to our previous example of θ = H[0,3]p ⇒ Fq, and let θ′

be θ in FSNF. One of the subformulas in θ′ is λ = p′ ∨ P[0,3]p, which can be
decomposed according to the left-hand side of 2. Correspondingly, we would
build the following automata: A1 for p′ ∨ P[0,3]¬p; A2 for p′ ∨ P[0,3]¬p ∨ H=u⊥;

Aj
3 for P=j-∧H=j+1⊥ ⇒ p′∨P[0,3]¬p, j = 1, 2; Aj

4 for F[1,−j+3]¬p, j = 1, 2. The

automata would then be composed into: A−
λ = A1; A+

λ = A2∩
⋂2

j=1

(
Aj

3 ∪ A
j
4

)
.

138 C.A. Furia and P. Spoletini

Overall, we build two such automata A−
i and A+

i for each of the 5 subformulas θ′

can be decomposed into. Let A+ =
⋂5

i=1A
+
i and A− =

⋂5
i=1A

−
i . We conclude

that θ is satisfiable iff Lω(A+) is non-empty and Lω(A−) is non-empty.

Complexity of satisfiability checking over the integers. Let us now evaluate an
upper bound on the complexity of the above procedure. The worst-case occurs
when overall automata A± are expanded entirely into nondeterministic BA,
thus losing entirely the conciseness of AMCA and the implicit representation of
intersections.

First of all, let us estimate the size of every Ai,j with respect to the size of φ′i.
In Proposition 2 we recalled that the size |B| of a Büchi automaton B encoding
an LTL formula θ of size |θ| is exp O(|θ|). Also, every MTL formula η can be
translated into an equivalent LTL formula of size expO(|η|# |η|M). In our case,
every formula φ′i,j is translated into an automaton of size:

|Ai,j | = exp exp O
(∣∣φ′i,j

∣∣
#

∣∣φ′i,j
∣∣
M

)
= exp exp O

(∣∣φ′i,j
∣∣
M

)

because every subformula φ′i,j has a constant (i.e., independent of |φ|) number
of connectives. Also, we noted that

∣∣φ′i,j
∣∣
M

= |φ′i|M, so:

|Ai,j | = exp exp O (|φ′i|M)

Next, let us estimate the size of A±
i . Roughly, A±

i is the intersection
⋂

j Ai,j ,
hence its size is upper-bounded by the product of the sizes |Ai,j |:

∣∣A±
i

∣∣ =
∏

j

|Ai,j | ≤
(

max
j
|Ai,j |

)|φ′′
i |

= (exp exp O(|φ′i|M))exp O(|φ′
i|M)

where the equivalence between |φ′′i | and exp O(|φ′i|M) was highlighted in Section
4.1. After some manipulation, we get:

∣∣A±
i

∣∣ = exp
(

(exp O(|φ′i|M)) (exp O(|φ′i|M))
)

= exp exp O (|φ′i|M)

Then, the overall size of A+ and A− can be computed as:

��A+��+ ��A−�� = O(
��A±��) =

�
i

��A±
i

�� ≤ �
max

i
|Ai|

�|φ′|# = exp
� ��φ′��

#
expO(

��φ′��
M

)
�

thanks to the equivalence between |φ′i|M and O(|φ′|M) stated in Remark 4.1.
Finally, Theorem 1 relates the size of φ′ to that of the original formula φ, so

we have: ∣∣A+
∣∣+

∣∣A−∣∣ = exp
(
|φ|# expO(|φ|M)

)

From the well-known result that emptiness check of a Büchi automaton takes
time polynomial (actually, linear) in the size of the automaton (see Proposition 2),
we have established the following.

Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers 139

Theorem 3 (Upper-bound complexity). The verification algorithm of this
paper can check the satisfiability of an MTL formula φ over Z-words in time
doubly-exponential in the size |φ| of φ.
The doubly-exponential time performance is worst-case optimal, because the sat-
isfiability problem for MTL over the integers is an EXPSPACE-complete problem,
as it is over the naturals [1].

Theorem 4 (Complexity of MTL over the integers). The satisfiability
problem for MTL over the integers is EXPSPACE-complete.

Proof (sketch). From the upper-bound analysis and Proposition 2 it follows also
that the problem is is decidable in nondeterministic (singly) exponential space,
hence it is in EXPSPACE. For the EXPSPACE-hardness proof, one reduces from
the satisfiability of future-MTL over integer-timed ω-words, which is also EX-
PSPACE-complete [1]. See [8] for details. �(

5 Discussion

As we discussed in the Introduction, bi-infinite time models for temporal logic
have been studied very rarely. Let us briefly consider a few noticeable exceptions.

On the more practical side, Pradella et al. [13] recently developed a tool-
supported technique for bounded model-checking of temporal logic specifications
over the integers. Bounded model-checking is a verification technique based on
reduction to the propositional satisfiability (SAT) problem, for which very ef-
ficient off-the-shelf tools exist. The technique is however incomplete, as it only
looks for words of length up to a given bound k, where k is a parameter of the
verification problem instance. [13] describes a direct encoding of MTL bounded
satisfiability as a SAT instance and reports on some interesting experimental
results with an implementation. [13] also discusses the appeal of bi-infinite time
from a system modeling perspective; some of its considerations are also discussed
in the Introduction of the present paper.

In the area of automata theory and formal languages, there exist a few works
considering bi-infinite time models. For instance Perrin and Pin [12] introduce
bi-infinite words and automata on them, and extend some classical results for
mono-infinite words to these new models. In the same vein, Muller et al. [11]
establish the decidability of LTL over the integers. However, to the best of our
knowledge the complexity of temporal logic over bi-infinite time has never been
investigated in previous work.

On the contrary, temporal logic over mono-infinite time models has been ex-
tensively studied, and it has been the object of an impressive amount of both
practical and theoretical research (e.g., [7,9,17,1,6]). Satisfiability of both LTL
[14] and MTL [1] — also with past operators — over mono-infinite discrete time
models has been thoroughly investigated. Sistla and Clarke [14] proved that LTL
satisfiability over the naturals is PSPACE-complete, with a (singly) exponential
time algorithm. Correspondingly, Alur and Henzinger [1] proved that MTL sat-
isfiability over mono-infinite integer timed words is EXPSPACE-complete, and

140 C.A. Furia and P. Spoletini

provided a doubly-exponential time algorithm. The same holds for bi-infinite
discrete time, as we showed in this paper.

In the future, we plan to work on the implementation of an automated trans-
lator from integer-time MTL specifications to Spin models, and to experiment
with it to assess the practical feasibility of the approach, also in comparison
with similar tools for mono-infinite time models. Also, the related MTL model-
checking problem over integer time will be investigated.

References

1. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Infor-
mation and Computation 104(1), 35–77 (1993)

2. Bianculli, D., Morzenti, A., Pradella, M., San Pietro, P., Spoletini, P.: Trio2Promela:
A model checker for temporal metric specifications. In: ICSE Companion, pp. 61–62
(2007)

3. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Pro-
ceedings of LICS 2007, pp. 109–120. IEEE Computer Society Press, Los Alamitos
(2007)

4. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

5. Coen-Porisini, A., Pradella, M., San Pietro, P.: A finite-domain semantics for test-
ing temporal logic specifications. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998.
LNCS, vol. 1486, pp. 41–54. Springer, Heidelberg (1998)

6. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics
in simple cases. Information and Computation 174(1), 84–103 (2002)

7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 996–1072. Elsevier Science, Amsterdam
(1990)

8. Furia, C.A., Spoletini, P.: MTL satisfiability over the integers. Technical Report
2008.2, DEI, Politecnico di Milano (2008)

9. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic: mathematical foun-
dations and computational aspects, vol. 1. Oxford University Press, Oxford (1994)

10. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual (2003)
11. Muller, D.E., Schupp, P.E., Saoudi, A.: On the decidability of the linear Z-temporal

logic and the monadic second order theory. In: Proc. of ICCI 1992, pp. 2–5 (1992)
12. Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141.

Elsevier, Amsterdam (2004)
13. Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the

future. In: Proceedings of ESEC/FSE 2007, pp. 312–320 (2007)
14. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.

Journal of the ACM 32(3), 733–749 (1985)
15. Spoletini, P.: Verification of Temporal Logic Specification via Model Checking.

PhD thesis, DEI, Politecnico di Milano (May 2005)
16. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of

Theoretical Computer Science, vol. B, pp. 133–164. Elsevier Science, Amsterdam
(1990)

17. Vardi, M.Y.: Handbook of Modal Logic. In: Automata-Theoretic Techniques for
Temporal Reasoning, pp. 971–990 (2006)

A Theory of Pointers for the UTP

Will Harwood1, Ana Cavalcanti2, and Jim Woodcock2

1 Citrix Systems (R & D) Ltd, Venture House, Cambourne Business Park
Cambourne, Cambs, UK

2 University of York, Department of Computer Science
York, UK

Abstract. Hoare and He’s unifying theories of programming (UTP)
provide a collection of relational models that can be used to study and
compare several programming paradigms. In this paper, we add to the
UTP a theory of pointers and records that provides a model for ob-
jects and sharing in languages like Java and C++. Our work is based
on the hierarchical addressing scheme used to refer to record fields (or
object attributes) in conventional languages, rather than explicit notions
of location. More importantly, we support reasoning about the structure
and sharing of data, as well as their, possibly infinite, values. We also
provide a general account of UTP theories characterised by conjunctive
healthiness conditions, of which our theory is an example.

Keywords: semantics, refinement, relations, object models.

1 Introduction

Interest in reasoning about pointers is not recent [4], and has been renewed by
the importance of sharing in object-oriented languages [1,16]. The classic model
of pointers [17] uses two functions: one associates memory addresses to values,
and the other associates names to memory addresses. Similarly, most models use
indexes to represent memory locations or embed a heap [13,24]. Modern object-
oriented languages, however, do not directly support manipulation of addresses.

The unifying theories of programming (UTP) [11] provide a modelling frame-
work for several programming paradigms. It is distinctive in that its uniform
underlying alphabetised relational model allows the combination of constructs
from different theories, and supports comparison and combination of notations
and techniques. Currently, there are UTP theories for imperative languages,
functional languages, CSP, timed notations, and so on.

In this paper, we present a UTP theory for pointers based on the hierarchical
addressing created by data types defined by recursive records. For example, for
a variable l , we have the address l itself, and possibly addresses like l .label and
l .next .item, if the object value of l contains attributes label and next , and the
value of l .next is another object with an attribute item.

We have three components in our model: a set of (hierarchical) addresses, a
function that associates the addresses of attributes that are not object valued
to their primitive values, and a sharing relation. Our addresses are particular

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 141–155, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

142 W. Harwood, A. Cavalcanti, and J. Woodcock

to each variable, and we abstract from the notion of specific locations. This
simplifies our theory, as compared, for example, to our own previous work [5].

We assume that all values have a location, including primitive values. Vari-
ables are names of locations, as are attribute access expressions like l .next , which
define composed names of locations. These names, however, also have a value.
A distinguishing feature of our model is that it represents sharing in a program
as an updatable automaton that also associates (some) addresses to values. This
allows us to define a simple de-referencing operator to tie the values in the au-
tomaton to those of the programming variables and of attribute accesses. In this
way, we can, to a large degree, separate specifications into pure logical expres-
sions on values, and update expressions involving pointers.

We do not assume strong typing, and so can cater for the use of pointers in
languages like Lisp and, to some extent, C, although we do not cover pointer
arithmetic. Infinite values are constructible by loops in pointer references; they
are explicitly definable by fixed points and are generally represented by partial
functions. In our model, de-referencing a pointer yields a partial function that can
represent an infinite value. Finally, we do not model unreachable locations: we
have automatic garbage collection. The only way of naming a location is by a
path (composed name) that leads (refers) to it; if there is no path to a location, it
does not exist. This does mean that we cannot reason about issues like memory
leakage, but have a simpler model to reason about the functionality of a program.

In this paper, we also define a few constructs related to creation and assign-
ment of records. We give their predicate model, and establish the adequacy of the
definitions by proving that the predicates are healthy. The reasoning technique
encouraged by the UTP is based on algebraic laws of refinement; our theory,
however, can also be used to justify the soundness of techniques based on Hoare
triples, for example. An account of Hoare logic in the UTP is available in [11].

Our long-term goal is to provide a pointer semantics for an object-oriented
language for refinement that supports the development of state-rich, concurrent
programs. In particular, we are interested in OhCircus [6]; it combines Z and
CSP, with object-oriented constructs in the style of Java, and, as such, it has
in the UTP an appropriate choice of semantic model. Following the UTP style,
we are considering individual aspects of the OhCircus semantics separately. The
theory presented here will be integrated with the copy semantics of OhCircus.

The UTP relational models are defined in a predicative style similar to that
adopted in Z or VDM, for example. They comprise a collection of theories that
model specifications, designs, and programs; a theory is characterised by a set
of alphabetised predicates that satisfy some healthiness conditions.

There is a subtle difficulty in defining a pointer theory that can be easily
combined with the existing UTP theories: the UTP is a logical language where
variables range over values. To illustrate the issue, we consider a variable l that
holds a value of a type List ::= (label : Z; next : List) of recursive records with
fields label and next . After the assignments l .label := 1 and l .next := l , the
value of l is an infinite list, but it is constructed as a pointer structure. Pointers
are used for two distinct purposes: to construct infinite values by self-reference,

A Theory of Pointers for the UTP 143

and to share storage. We need a model that records the sharing, but allows
appropriate reasoning about values, to simplify specification.

A simple solution is to model storage as a graph and to use fixed points to
handle self-references when constructing the denotation of a value. In this case,
however, the update operations explicitly use fixed points (for the values) and
reasoning is cumbersome. Instead, we create a model where updates act directly
on the values associated with the graph as well as on its structure.

A large number of healthiness conditions used to characterise UTP theories are
defined by a conjunction. In this case, a function H from predicates to predicates
is defined as H(P) = P ∧ ψ, for some predicate ψ; the healthy predicates are
the fixed points of H: those for which H(P) = P . A number of properties are
satisfied by these predicates, independently of the particular definition of ψ. We
present and prove some of these results; they simplify proof in our theory.

In [5], we also present a theory of pointers and records for the UTP. It is
based on the model of entity groups in [21] to formalise rules of a refinement
calculus for Eiffel [15]. In that work, the complications of an explicit model of
the memory are also avoided; each entity (variable) is associated with the set of
variables that share its location (entity group). Here, we use a binary relation to
model sharing, and record the set of valid names and values explicitly to simplify
definitions and proof. This is in addition to the simplification that arises from
the separate treatment of healthiness conditions defined by conjunction.

In the next section, we describe the UTP. Section 3 describes our model
informally. In Section 4, we present general results about theories characterised
by healthiness conditions defined by conjunctions, before we formalise our theory
in Section 5. A model for usual programming constructs is presented in Section 6.
Finally, in Section 7 we consider some related and future work.

2 Unifying Theories of Programming

In the unifying theories of programming, relations are defined by predicates over
an alphabet (set) of observational variables that record information about the
behaviour of a program. In the simplest theory of general relations, these include
the programming variables v , and their dashed counterparts v ′, with v used to
refer to an initial observation of the value of v , and v ′ to a later observation. In
the sequel, we use v to stand for the list of all programming variables, and v ′ to
the corresponding list of dashed variables. The set of undecorated (unprimed)
variables in the alphabet αP of a predicate P is called its input alphabet inαP ,
and the set of dashed variables is its output alphabet outαP . A condition is a
predicate whose alphabet includes only input variables.

Theories are characterised by an alphabet and by healthiness conditions de-
fined by monotonic idempotent functions from predicates to predicates. The
predicates of a theory with an alphabet A are all the predicates on A which are
fixed points of the healthiness conditions. As an example, we consider designs.

144 W. Harwood, A. Cavalcanti, and J. Woodcock

The general theory of relations does not distinguish between terminating and
non-terminating programs. This distinction is made in the UTP in a theory
of designs, which includes two extra boolean observational variables to record
the start and the termination of a program: ok and ok ′. All designs can be
split into precondition/postcondition pairs, making them similar to specification
statements of a refinement calculus. The monotonic idempotents used to define
the healthiness conditions for designs can be defined as follows, where P is a
relation (predicate) with alphabet {ok , ok ′, v , v ′}.

H1(P) =̂ ok ⇒ P H2(P) =̂ P ; J , where J =̂ (ok ⇒ ok ′) ∧ v ′ = v

If P is H1-healthy, then it makes no restrictions on the final value of variables
before it starts. If P is H2-healthy, then termination must be a possible outcome
from every initial state. The functional composition of H1 and H2 is named H.
Our definition of H2 is different from that in [11], but it is equivalent [7]; it uses
the sequence operator that we define below.

Typically, a theory defines a number of programming operators of interest.
Common operators like assignment, sequence, and conditional, are defined for
general relations. Sequence is relational composition.

P ; Q =̂ ∃w0 • P [w0/w ′] ∧ Q [w0/w], where outα(Q) = inα(Q)′ = w ′

The relation P ; Q is defined by a quantification that relates the intermediate
values of the variables. It is required that outα(P) is equal to inα(Q)′, which is
named w ′. The sets w , w ′, and w0 are used as lists that enumerate the variables
of w and the corresponding decorated variables in the same order.

A conditional is written as P
 b �Q ; its behaviour is (described by) P if the
condition b holds, else it is defined by Q .

P
 b � Q =̂ (b ∧ P) ∨ (¬b ∧ Q), where α(b) ⊆ α(P) = α(Q).

A central concern of the UTP is refinement. A program P is refined by a pro-
gram Q , which is written P � Q , if, and only if, P ⇐ Q , for all possible values
of the variables of the alphabet. The set of alphabetised predicates form a com-
plete lattice with this ordering. Recursion is modelled by weakest fixed points
μX • F (X), where F is a monotonic function from predicates to predicates.

The programming operators of a theory need to be closed: they need to take
healthy predicates to healthy predicates. In Section 4, we provide some general
results for healthiness conditions defined by conjunctions.

3 A Model for Pointers

In this section we introduce a straightforward and intuitive model of a storage
graph that we call a pointer machine. Afterwards, in Section 3.2 we introduce
an alternative representation for a pointer machine that is easier to model in the
UTP. The new UTP theory itself is presented in Section 5.

A Theory of Pointers for the UTP 145

3.1 The Pointer Machine

A simple model for storage is a labelled graph, in which the labels are names of
attributes, and terminal nodes hold values. It is useful to think of this graph as
a particular kind of automaton, a pointer machine that accepts addresses (at-
tribute by attribute) and produces values when you reach a terminal node.

Intuitively, arcs represent pointers, internal nodes represent storage locations
for pointers, and terminal nodes, storage locations for values. A mapping assigns
attribute names to arcs for selecting pointers and values, and another gives the
values stored at a terminal node. For example, Figure 1 gives a pointer machine
for the variable l defined in Section 1. There is only one internal node X , the
initial node, and one terminal node, Y . The arcs are {X �→ X ,X �→ Y }; we
write a �→ b to describe the pair (a, b). The set of labels is {l , label ,next}, and
the labelling functions are { (X �→ X) �→ next , (X �→ Y) �→ label } for the arcs,
and just {Y �→ 1 } for the terminal node.

X

Y
1

l

label

next

Fig. 1. A labelled graph representation for a pointer machine

In fact, a pointer machine naturally represents a structure in which there is
a single entry point.Conceptually, we regard the start node as a fictional root of
all memory, whose arcs correspond to simple variable names.

3.2 A Simpler Model

We represent pointer machines by a triple 〈A,V ,S 〉, where A is the set of
addresses that the machine accepts, V is a partial function mapping addresses
to primitive values, and S is an equivalence relation on addresses, recording
that two addresses lead to the same node. The addressing map V defines which
addresses yield values: the difference between A and domV is the set of addresses
that are accepted by the machine, but do not yield a primitive value. The set
A defines the valid addresses. The storage map S records the sharing. For the
pointer machine in Figure 1, A contains l , all the addresses formed only by
accesses to next (l .next , l .next .next , and so on), and those that end with an
access to label , possibly after (repeated) accesses to next (l .label , l .next .label ,
l .next .next .label , and so on). The V function maps all accesses to label to 1.
Finally, S relates l to all (repeated) accesses to next , all these addresses to each
other, and all accesses to label to each other as well.

The set of finite addresses FAd =̂ (seqLabel) \ { 〈 〉 } contains the non-empty
sequences of labels. An infinite address is an element of seq∞ =̂ N1 → Label ,
that is, a total function from the positive natural numbers to Label . Finally, an
address in Ad =̂ FAd ∪ seq∞ can be finite or infinite.

146 W. Harwood, A. Cavalcanti, and J. Woodcock

Equality. Two equalities are definable: value equality, written =v , and pointer
equality, which is written =p . The former holds for pointers that have the same
value. It establishes that, if you follow the pointers, and use the nodes you arrive
at as the start nodes of two pointer machines, say 〈A1,V1,S1 〉 and 〈A2,V2,S2 〉,
then A1 = A2 and V1 = V2, that is, the domains of definition and the addressing
map of the machines are the same. This means that two pointers are equal if
further addressing off these pointers leads to the same values (and the same fail-
ures). Pointer equality holds for pointers that point to exactly the same location.

For a finite p, we define the p-projection 〈A.p,V .p 〉 of the machine with
A.p =̂ { q : Ad | p.q ∈ A } and V .p =̂ { q : Ad | p.q ∈ domV • q �→ V (p.q) }.
We use the dot operator to combine addresses, as well as to append an attribute
name to the end of an address. The value associated with the object pointed
by p is the tree coded by 〈A.p,V .p 〉. Value equality is defined by equality of
pointer projections, and pointer equality is defined by the storage map.

p =v q =̂ (A.p = A.q ∧ V .p = V .q) p =p q =̂ (p, q) ∈ S

For our simple example, we have that l .next is both value and pointer equal to
l . The l -projection of the machine described above is formed by stripping off the
leading l in all addresses in A and domV .

4 Conjunctive Healthiness Conditions

We refer to a healthiness condition that is, or can be, defined in terms of con-
junction as a conjunctive healthiness condition. In this section, we consider an
arbitrary conjunctive healthiness condition CH(P) = P ∧ ψ, for some predicate
ψ. All the healthiness conditions of our theory are conjunctive.

Conjunction, disjunction, and conditional are closed with respect to CH.

Theorem 1. If P and Q are CH-healthy predicates, then P ∧ Q, P ∨ Q, and
P � c � Q are CH-healthy.

The proof of this and every other result in this paper can be found in [10].
To establish closedness for sequence, we consider a specific kind of conjunctive

healthiness condition: those in which ψ is itself the conjunction of conditions
ψi and ψ′

i over the input and output alphabets, respectively. In this case, CH
imposes similar restrictions on the input and output alphabets. (As expected,
the predicate P ′ is that obtained by dashing all occurrences of the observational
variables in P .) With these results, we can prove closedness of sequence.

Theorem 2. If P and Q are CH-healthy, where CH(P) = P ∧ ψ ∧ ψ′, for
some condition ψ on input variables, then P ; Q is CH-healthy as well.

The set of CH-healthy predicates is a complete lattice, since it is the image
of a monotonic idempotent healthiness condition [11]. So, recursion can still be
defined using weakest fixed points; closedness is established by the next theorem.

A Theory of Pointers for the UTP 147

Theorem 3. If F is a monotonic function from CH-healthy predicates to CH-
healthy predicates, then μch X • F (X) = CH(μX • F (X)), where μch X • F (X)
is the least fixed point of F in the lattice of CH-healthy predicates.

This states that a recursion is a CH-healthy predicate, if, for instance, its body
is built out of CH-healthy predicates itself using closed constructors.

Designs. In general, a theory of CH-healthy predicates is disjoint from the the-
ory of designs: on abortion, a design provides no guarantees, but a CH-healthy
predicate requires ψ to hold. Of course, if ψ is true, in which case CH is the iden-
tity, we do not have a problem, but for interesting CH, there is a difficulty. We
follow the UTP approach used to combine the theory of reactive processes and
designs to combine the theory of designs with a theory of CH-healthy predicates.
We take CH as a link that maps a design to a CH-healthy predicate.

What we have is an approximate relationship between the two theories: for
a CH-healthy relation P , CH ◦ H1(P) � P . This is a property of a Galois
connection that translates between the theories. The healthiness condition H2
is not a problem: it commutes with CH, provided ψ does not refer to ok ′.

Theorem 4. CH ◦ H2 = H2 ◦ CH, provided ok ′ is not free in ψ.

Galois connection. Our proof of the existence of a Galois connection between
the theories of CH-healthy predicates and designs relies on two simple lemmas
about H1, CH, and refinement. In fact, instead of considering H1 in particular,
we consider an arbitrary implicational healthiness condition IH(P) = φ⇒ P .

Lemma 1 (IH-refinement). IH(P) � IH(Q) if, and only if, IH(P) � Q.

This lemma lets us cancel an application of IH on the right-hand side of the
refinement. This works because IH(P) is a disjunction, and the cancellation
strengthens the implementation. Something similar can be done with CH, but
since CH is a conjunction, the cancellation takes place on the specification side.

Lemma 2 (CH-refinement). P � CH(Q) if, and only if, CH(P) � CH(Q).

Applications of the above lemmas justify the main result for a combination of
the theories of IH-healthy and CH-healthy predicates.

Theorem 5. There is a Galois connection between IH-healthy and CH-healthy
predicates, where CH is the right adjoint and IH is the left one.

P � IH(Q) if, and only if, CH(P) � Q .

Here, P is IH-healthy, and Q is CH-healthy.

For designs, more specifically, we have the result below.

Theorem 6. CH and H form a Galois connection between designs and CH-
healthy predicates.

D � H(P) if, and only if, CH(D) � P .

Here, D is a design, and P is CH-healthy.

Proof of closedness of the operators in the combined theories is simple.

148 W. Harwood, A. Cavalcanti, and J. Woodcock

5 Pointers and Records in the UTP

The alphabet of our theory includes three new observational variables A, V , and
S that record separately the components of the pointer machine.

The first healthiness condition, named HP1, guarantees that A is prefix closed.
We write x < y when x is a (finite) strict prefix of the address y.

HP1 P = P ∧ ∀ a1 : A; a2 : FAd | a2 < a1 • a2 ∈ A

This means that if x .y.z , for instance, is a valid address, then x .y and x must be
as well. As already said, the healthiness conditions are characterised by functions,
so in accordance with the UTP style, we use the name of the healthiness condition
as the name of the corresponding function. In the case of HP1, for example, we
have a function HP1(P) =̂ P ∧ ∀ a1 : A; a2 : FAd | a2 < a1 • a2 ∈ A.

To formalise HP2, we define the subset term(A) of addresses of terminal
nodes. In general, term(X) =̂ { x : X ∩ FAd | ¬ ∃ y : X • x < y}, that is,
a terminal address is finite and has no valid extensions. In HP2, we connect
domV and A by requiring each terminal in A to have a value defined by V .

HP2 P = P ∧ domV = term(A)

The third healthiness condition HP3 connects the programming variables in the
alphabet to pointers in the pointer machine. For every variable x , we use ′x to
refer to its name. We require in HP3 that ′x is a variable in the pointer machine,
and that the value of x is consistent with that assigned by V . The variables of
the pointer machine are the first elements of the addresses: for a set of addresses
X , the variables are vars(X) =̂ {x : X • x (1)}. If ′x is a terminal, then x must
have value V (′x). If ′x is not a terminal, then the value of x is a partial function
that maps addresses to values defined by the projection of V at ′x , that is,
V .(′x). For every x in inα(P) \ {A,V ,S}, we define the de-referencing operator
!x as follows: !x =̂ if x ∈ term(A) then V (x) else V .x . For a dashed variable,
the definition is !(x ′) =̂ if x ∈ term(A′) then V ′(x) else V ′.x . In HP3 we use
this operator to constrain the values of the input variables.

HP3 P = P ∧ v1 = ! ′v1 ∧ . . . ∧ vn = ! ′vn ∧ {′v1, . . . ,
′ vn} = vars(A)

where {′v1, . . . ,
′ vn} = inα(P) \ {A,V ,S}

The remaining healthiness conditions are related to S . It should involve only
addresses in A and should be an equivalence relation. We use R∗ to describe the
reflexive, symmetric, and transitive closure of R.

HP4 P = P ∧ S ∈ (A↔ A) ∧ S = S ∗

Also, if two addresses are equivalent under S , then any extension by the same
address should be equivalent. We define an equivalence relation E between ad-
dresses to be forward closed with respect to a set of addresses A to mean that once
two addresses are equivalent, then their common extensions are equivalent, that

A Theory of Pointers for the UTP 149

is fclosA E =̂ ∀ x , y, a : Ad | (x , y) ∈ E ∧ (x .a ∈ A ∨ y.a ∈ A) • (x .a, y.a) ∈ E .

HP5 P = P ∧ fclosA S

Finally, if two terminals share a location, then they have the same value.

HP6 P = P ∧ ∀ a, b :Ad | (a, b) ∈ S ∧ a ∈ domV • b ∈ domV ∧V (a) = V (b)

We also have extra healthiness conditions HP7-HP12 that impose the same re-
strictions on the dashed variables. Our theory is characterised by the healthiness
condition HP, the functional composition of all these healthiness conditions.

All our healthiness conditions are conjunctive; consequently, HP is conjunc-
tive, and moreover, it imposes the same restrictions on S , V , and A, and on S ′,
V ′ and A′, as studied in Section 4. So, we can conclude, based on Theorems 1,
2, and 3, that the usual specification and programming constructs are closed
with respect to HP. In addition, HP and H are adjuncts of a Galois connection
that defines a theory of pointers for terminating programs. We only need to be
careful with the definition of HP2. In the theory of pointer designs, ok and ok ′

are not programming variables, and just like A, V , and S , they are not to have
space allocated in the pointer machine. So, ok is not to be included in the vector
v of variables considered in HP2, and ok ′ is not to be included in v ′ in HP8.

In the sequel, we define some programming constructs; for that, it is useful to
define HPI =̂ HP1 ◦ HP2 ◦ HP3 ◦ HP4 ◦ HP5 ◦ HP6. It imposes restrictions
only on the input variables. These definitions illustrate the use of the healthiness
conditions also to simplify definitions; in particular HP9 is very useful, as it
relates changes in the machine to changes in values of variables. Most of the
healthiness conditions are restrictions that characterise the automata that model
pointer machines. In the case of HP3, and the corresponding HP9, however,
we have healthiness conditions that unify the structural and logical views of
variables. They are the basis for a reasoning technique that copes in a natural
way with (infinite) values whose storage structure is also of interest.

6 Programming Constructs

We can update the pointer machine using a value assignment, which we write
x := e for a finite address x in A, or a pointer assignment x :− y, where both x
and y are finite addresses in A. Both types of assignment may change an internal
or a terminal node, and consequently alter A, V , and S .

6.1 Value Assignment

We define, for an address x , the set share(x) =̂ S (| {x} |) of addresses that share
its location; S (| {x} |) is the relational image of {x} through S : all elements
related to x in S . A value assignment to a terminal address is defined as follows.

x := e =̂ HPI ◦ HP9(A′ = A ∧ V ′ = V ⊕ {a : shareS (x) • a �→ e}) ∧ S ′ = S)
provided x ∈ domV

The symbol ⊕ is used for the functional overriding operator. In the new value

150 W. Harwood, A. Cavalcanti, and J. Woodcock

of V , x and all the addresses that share its location are associated with the
value e. The application of the healthiness condition HPI ensures that the input
variables are healthy; HP9 ensures that the values of the programming variables
are updated in accordance with the changes to V .

For an internal address, the definition of assignment is a generalisation of
that above. Before we present it, we define the set ext(x) =̂ shareS (x)↑ of all
addresses that extend x or any of the other addresses that share the location
of x . The set X ↑ =̂

⋃
{x : X ∩ FAd • x∞} contains all addresses that extend

those in a set X , and x∞ =̂ { a : Ad • x .a } contains all the extensions of the
finite address x . All the addresses in ext(x) become invalid if x is assigned a
value; they are removed from A, from the domain of V , and from the domain
and range of S . The operators for domain and range subtraction are −
 and −�.

x := e =̂

HPI ◦ HP9

⎛

⎝
A′ = A \ extS (x) ∧
V ′ = (extS (x)−
 V) ∪ {a : (shareS (x) \ extS (x)) • a �→ e} ∧
S ′ = extS (x)−
 S −� extS (x)

⎞

⎠

provided x ∈ A and x /∈ domV .

For a terminal address x , the set x∞ ∩ A is empty, and so is extS (x) ∩ A. So,
in the definition of assignment to a terminal address, we do not change A and
S . In V , we include the addresses that share a location with x according to the
new storage map S ′, that is, shareS (x) \ extS (x).

As an example, we consider again the variable l in Figure 1; after the assign-
ment l .next := 3, all extensions of l .next become invalid. The set shareS (l .next)
contains l and all accesses to next ; so, ext(l .next) contains all addresses in A,
except l . So, after l .next := 3, A contains only l , S only associates l to itself,
and finally, the domain of V is wiped out, and l is added: it is mapped to 3.

The proofs of HP-healthiness [10] provide validation for our definitions.

6.2 Pointer Assignment

We present here just the definition of pointer assignment to an internal address.
As a motivating example, we consider the variables l , m, and n depicted in
Figure 2(a). After the assignment l :− m.link , the value and sharing properties
of l and its extensions are completely changed, but no other variable is affected: l
now points to the same location as m.link , but n, for example, does not change.
The address l is still valid, but its extensions, like l .next , l .label , and so on, cease
to exist. Instead, all addresses formed by concatenating a suffix of m.link to l
are now valid. For example, l .value, l .link , l .link .link and so on become valid.

Accordingly, in the definition of x :− y, we remove x∞ from A, and add the
set {a : A.y • x .a } of new addresses. In the case of V , we remove x∞ from its
domain, and give x and its new extensions the values defined by y, if any. In our
example, after the assignment l :− m.value, since m.value is a terminal, with
value 3, then l also becomes a terminal with the same value. On the other hand,

A Theory of Pointers for the UTP 151

(a)

l

label

next
n

m

value

link

1 3

(b)
l

stepstep step

Fig. 2. Two pointer machines

after l :− m.link , the new terminal locations correspond to those of m.link .
Namely, we have new terminals l .value, l .link .value and so on, all with value 3.

If x and y share the same location, the pointer assignment x :− y has no
effect and, in particular, S does not change. If, however, they point to different
locations, the sharing information for x and all elements of x∞ change. To
simplify the definition of S ′, we define the set bsh(x) =̂ {x} ∪ x∞ of addresses
whose sharing is broken. The existing sharing information about these addresses
is eliminated, and their new sharing with y and its extensions is recorded.

Conditional expressions are used below: the value of e1
 b � e2 is e1 if the
condition b holds, otherwise its value is e2.

x :− y =̂

HPI ◦HP9

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A′ = A \ x∞∪ {a : A.y • x .a } ∧

V ′ =

⎛

⎝
(x∞−
 V) ∪
({x �→ V (y)}
 y ∈ domV � ∅) ∪
{ a : domV .y • x .a �→ V (y.a) }

⎞

⎠ ∧

S ′ =

⎛

⎜⎜⎝

S
 (x , y) ∈ S�⎛

⎝
(bsh(x)−
 S −� bsh(x)) ∪
({x} × ((S (| {y} |) \ x∞) ∪ {x})) ∪⋃
{a : A.y • {x .a} × ((S (| {y.a} |) \ bsh(x)) ∪ {x .a})}

⎞

⎠
∗

⎞

⎟⎟⎠

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

provided x /∈ domV and x is a simple name.

The address x now shares its location with y and all the addresses that already
share a location with y: those in S (| {y} |). It may be the case, however, that y
shares a location with an extension of x , and in this case that address does not
exist anymore, and needs to be eliminated. In our example, after l :− n.label ,
l should be associated with n.label , n.next .label , n.next .next .label and so on;
however S (| {n.label} |) also includes l .label , l .next .label , and all other accesses to
label via l ; these need to be excluded. The same comment applies to the sharing
information related to the new extensions l .a of x ; they should be related to
S (| {y.a} |), but the extensions of x should be eliminated. If present, x should
also be eliminated, as information about it in S is no longer valid. In the case of
S (| {y} |), we know that x does not belong to this set, since (x , y) /∈ S .

Finally, we need to consider the cases in which S (| {y} |) is contained in
x∞, so that S (| {y} |) \ x∞ is empty, or S (| {y.a} |) is contained in bsh(x),
so that S (| {y.a} |) \ bsh(x) is empty. The machine in Figure 2(b) gives us an
example: after l :− l .step, the valid addresses are l and l .step, and S ′ should
be the identity. When we eliminate l and all its extensions from S , however,
we get the empty relation; furthermore, S (| {l .step} |) contains only l .step, and

152 W. Harwood, A. Cavalcanti, and J. Woodcock

similarly, S (| {l .step.step} |) is {l .step.step}. To guarantee that S ′ includes all
valid addresses, we explicitly associate x and each new x .a to themselves.

A value assignment x := y affects the value of all addresses that share the
location of x . In the case of a pointer assignment, however, not all of them are
affected. For example, as we discussed above, even if the variables x and z share
a location, x :− y does not affect z . On the other hand, x .a :− y affects both x .a
and z .a, since x .a is an attribute of both x and z . The definition of x .a :− y is
similar to that of x :− y, but it takes into account the fact that other addresses,
and not only x .a and x .a∞ are affected. Details are in [10].

6.3 Object Creation

New structures are created in programming languages by allocating storage. The
effect in the pointer machine is to make new addresses available.

In our untyped theory, we define that the attributes of newly created objects
have an unspecified value. We introduce a construct x : new(a), which allocates
new storage for an object that becomes accessible from x ; here a is a list of
the attribute names. We use the notation {x .ai} to refer to the set of addresses
formed by appending an attribute ai in a to x . Similarly, we write {x .ai �→ vi}
to denote the set of pairs that associate each x .ai to the corresponding element
of a list v of values; similarly {x .ai �→ x .ai} associates each address x .ai to itself.
The definition of x : new(a) is much like that of a pointer assignment to x , and
we consider below the case in which x is a simple name.

x : new(a) =̂ HPI ◦ HP9

⎛

⎜⎜⎝

A′ = (A \ x∞) ∪ {x .ai} ∧
∃ v • V ′ = ((x∞∪ {x})−
 V) ∪ {x .ai �→ vi} ∧

S ′ =
(

((x∞∪ {x})−
 S −� (x∞∪ {x})) ∪
{x �→ x} ∪ {x .ai �→ x .ai}

)

⎞

⎟⎟⎠

provided x ∈ A and x is a simple name.

Its proof of healthiness is similar to that for assignment.

6.4 Variable Declaration and Undeclaration

Pointer variables can be introduced by the operator begin(x) and removed by
end(x).

begin(x) =̂ HPI ◦ HP9

⎛

⎝
A′ = A ∪ { x } ∧
∃ v • V ′ = V ⊕ { x �→ v } ∧
S ′ = S ∪ {x �→ x}

⎞

⎠ provided x �∈ A

In this case HP9 guarantees that the output alphabet includes x ′, corresponding
to the new variable x , which is now in A.

end(x) =̂ HPI ◦ HP9

⎛

⎝
A′ = A \ (x∞∪ { x }) ∧
V ′ = (x∞∪ { x })−
 V) ∧
S ′ = (x∞∪ { x })−
 S −� (x∞∪ { x })

⎞

⎠

These constructs correspond to the (var x) and (end x) operators of the UTP;
they do not create a variable block.

A Theory of Pointers for the UTP 153

7 Conclusions

We have presented a UTP theory of programs with variables whose object values
and their attributes may share locations. We capture an abstract memory model
of a modern object-oriented language based on (mutually) recursive records.

These have also been considered by Naumann in the context of higher-order
imperative programs and a weakest precondition semantics [19]. In that work,
many of the concerns are related to record types, and the possibility of their
extension, as achieved by class inheritance in object-oriented languages. Here,
we are only concerned with record values. We propose to handle the issue of
inheritance separately, in a theory of classes with a copy semantics [25].

The idea of avoiding the use of explicit locations was first considered in [3]
for an Algol-like language. The motivation was the definition of a fully abstract
semantics, which does not distinguish programs that allocate variables to differ-
ent positions in memory. In that work, sharing is recorded by a function that
maps each variable to the set of variables that share its location; a healthiness
condition ensures that variables in the same location have the same value. A
stack of functions is used to handle nested variable blocks and redeclaration. We
do not consider redeclarations, but we handle the presence of record variables,
and sharing between record components, not only variables.

Hoare & He present in [12] a theory of pointers and objects using an analogy
with process algebras. They draw attention to the similarities between pointer
structures, automata and processes, and use of trace semantics and bisimulation
in discussing pointers. They use a graph model based on a trace semantics: a set
of sets of traces, each set of traces describing the paths that may be used to access
a particular object. This work, however, stops short of providing a specification
or refinement framework for pointer programs. We take the view that pointer
structures are not just like automata, they are automata; this leads naturally to
the view that updatable pointer structures are updatable automata. We handle
the correspondence between the values of object variables and attribute accesses,
and the sharing structure of these variables and their components in the unified
context of a programming theory. To manage complexity, we use healthiness
conditions to factor out basic properties from definitions.

Work on separation logic [23] and local reasoning [20] also provided inspira-
tion for our work. These approaches establish a system of proof rules to address
the frame problem. When a change is made to a data structure, variables not
affected by the change maintain their values; standard approaches to reasoning
require explicit invariants for every variable that does not change its value, with
a large overhead in specification and reasoning. Any effective theory must ad-
dress this problem in some way. Our work builds a semantic view of pointers
which we believe supports derived rules of inference that mirror those used in
local reasoning. At the moment, we are concerned with local reasoning, rather
than separation logic, because we want to work with classical logic to simplify
connection with other UTP theories.

Chen and Sanders’ work [8] lifts and extends combinators of separation logic to
handle modularisation and abstraction at the levels of specification and design.

154 W. Harwood, A. Cavalcanti, and J. Woodcock

This work is based on the model in [12], and as such it also does not consider
the relationship between the pointer structure and the values of programming
variables and attribute accesses. On the other hand, they present a number of
operators and laws to support reasoning about the graph structures.

Möller [18] uses relations to represent pointer graphs; the extension of this
work to Kleene algebra [9] provides a natural formalism to capture self-referential
structures. Since we adopt the automaton view of pointers, there is inevitably a
correspondence with Kleene algebras: all our constructions could be expressed in
terms of an updatable Kleene algebra. The difference is one of perspective: if we
were concerned with data structures, our work would provide results similar to
Möller’s, although expressed in terms of automata. We aim, however, at a theory
for specification and refinement, so our model is directly linked to the UTP
framework via the healthiness conditions that connect the updatable automaton
to the program variables.

Bakewell, Plump, and Runciman [2] suggest the explicit use of a graph model
to reason about pointers. With this perspective, it is natural to talk about in-
variants of the graph and about pointer structure manipulations in terms of
invariant preservation. This is at the heart of the work in [2], in which a set
of invariants are defined for pointer graphs and program safety is defined in
terms of preservation of suitable sets of these invariants. The technique would
be directly applicable to automaton models, including ours.

The refinement calculus for object systems (rCOS) [14] and TCOZ [22], an
object-oriented language that combines Object-Z [26], CSP, and timing con-
structs, have been given a UTP semantics. In both works, objects have identities
which are abstract records of their location in memory. Object identities refer
explicitly to storage and, as already discussed, prevent full abstraction.

In the short term, we plan to investigate refinement laws of our theory, and
explore its power to reason about pointer programs in general, and data struc-
tures and algorithms typically used in object-oriented languages in particular.
After that, we want to go a step further in our combination of theories and
consider a theory of reactive designs with pointers.

References

1. Back, R.J., Fan, X., Preoteasa, V.: Reasoning about Pointers in Refinement Calcu-
lus. In: APSEC 2003, p. 425. IEEE Computer Society Press, Los Alamitos (2003)

2. Bakewell, A., Plump, D., Runciman, C.: Specifying Pointer Structures by Graph
Reduction. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS,
vol. 3062, pp. 30–44. Springer, Heidelberg (2004)

3. Brookes, S.D.: A Fully Abstract Semantics and a Proof System for an Algol-like
Language with Sharing. In: Melton, A. (ed.) MFPS 1985. LNCS, vol. 239, pp.
59–100. Springer, Heidelberg (1986)

4. Burstall, R.M.: Some techniques for proving correctness of programs which alter
data structures. Machine Intelligence 7, 23–50 (1972)

5. Cavalcanti, A.L.C., Harwood, W., Woodcock, J.C.P.: Pointers and Records in the
Unifying Theories of Programming. In: Dunne, S., Stoddart, B. (eds.) UTP 2006.
LNCS, vol. 4010, pp. 200–216. Springer, Heidelberg (2006)

A Theory of Pointers for the UTP 155

6. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: Unifying Classes and
Processes. SoSyM 4(3), 277–296 (2005)

7. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction to CSP in Unifying
Theories of Programming. In: Cavalcanti, A., Sampaio, A., Woodcock, J. (eds.)
PSSE 2004. LNCS, vol. 3167, pp. 220–268. Springer, Heidelberg (2006)

8. Chen, Y., Sanders, J.: Compositional Reasoning for Pointer Structures. In: Uustalu,
T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 115–139. Springer, Heidelberg (2006)

9. Desharnais, J., Möller, B., Struth, G.: Modal Kleene Algebra and applications a
survey. Methods in Computer Science 1, 93–131 (2004)

10. Harwood, W., Cavalcanti, A.L.C., Woodcock, J.C.P.: A Model of Point-
ers for the Unifying Theories of Programming – Extended Version. Techni-
cal report, University of York, Department of Computer Science, UK (2008),
www-users.cs.york.ac.uk/∼alcc/publications/HCW08.pdf

11. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. In: Unifying Theo-
ries of Programming. Prentice-Hall, Englewood Cliffs (1998)

12. Hoare, C.A.R., Jifeng, H.: A trace model for pointers and objects. Programming
methodology, 223 – 245 (2003)

13. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.
In: POPL. ACM Press, New York (2001)

14. Liu, Z., He, J., Li, X.: rCOS: Refinement of Component and Object Systems. In:
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2004.
LNCS, vol. 3657, Springer, Heidelberg (2005)

15. Meyer, B.: Eiffel: the language. Prentice-Hall, Englewood Cliffs (1992)
16. Meyer, B.: Towards practical proofs of class correctness. In: Bert, D., P. Bowen,

J., King, S. (eds.) ZB 2003. LNCS, vol. 2651, pp. 359–387. Springer, Heidelberg
(2003)

17. Milne, R., Strachey, C.: A Theory of Programming Language Semantics. Chapman
and Hall, Boca Raton (1976)

18. Möller, B.: Calculating with pointer structures. In: IFIP TC 2 WG 2.1 International
Workshop on Algorithmic Languages and Calculi, pp. 24–48. Chapman & Hall, Ltd,
Boca Raton (1997)

19. Naumann, D.A.: Predicate Transformer Semantics of a Higher Order Imperative
Language with Record Subtypes. SCP 41(1), 1–51 (2001)

20. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

21. Paige, R.F., Ostroff, J.S.: ERC – An object-oriented refinement calculus for Eiffel.
Formal Aspects of Computing 16(1), 5 (2004)

22. Qin, S., Dong, J.S., Chin, W.N.: A Semantic Foundation for TCOZ in Unifying
Theories of Programming. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 321–340. Springer, Heidelberg (2003)

23. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: IEEE
Symposium on Logic in Computer Science, pp. 55–74. IEEE Press, Los Alamitos
(2002)

24. Reynolds, J.C.: Intuitionistic reasoning about shared mutable data structure. In:
Millenial Perspectives in Computer Science. Palgrave (2001)

25. Santos, T.L.V.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: Object Orientation in the
UTP. In: Dunne, S., Stoddart, B. (eds.) UTP 2006. LNCS, vol. 4010, pp. 18–37.
Springer, Heidelberg (2006)

26. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers,
Dordrecht (1999)

www-users.cs.york.ac.uk/~alcc/publications/HCW08.pdf

Recasting Constraint Automata into

Büchi Automata

Mohammad Izadi1,3,4 and Marcello M. Bonsangue1,2

1 LIACS - Leiden University, The Netherlands
2 Centrum voor Wiskunde en Informatica (CWI), The Netherlands

3 Dept. of Computer Engineering, Sharif University of Technology, Tehran, Iran
4 Research Institute for Humanities and Cultural Studies, Tehran, Iran

Abstract. Constraint automata have been proposed as the operational
semantics of Reo, a glue-code language for the exogenous composition
and orchestration of components in a software system. In this paper we
recast the theory of constraint automata into that of Büchi automata
on infinite strings of records. We use records to express simultaneity
constraints of I/O operations and show that every constraint automaton
can be expressed as a Büchi automaton on an appropriate alphabet of
records. Further, we give examples of component compositions that are
expressible as Büchi automata but not as constraint automata. Finally,
we show that the join composition operator for constraint automata and
its counterpart for Büchi automata of records can be expressed as two
basic operations on Büchi automata: alphabet extension and product.

1 Introduction

Component-based software development is concerned with software development
by using pieces of software, the components, produced independently by each
other [15]. Components are integrated into a functioning system using glue-code,
another piece of software that is not intended to contribute to the functionality
of the system, but instead serves to contribute to the data communications and
to coordinate the control flow among the components.

A generic way to depict component-based systems is by blocks diagrams [10].
Blocks represent software components, that communicate with the environment
solely through ports. Ports are related by a network of connectors that specifies
the glue code. These connectors build together what is called the coordination
system. Timed data streams [4] form an appropriate model for the specification
of event-based communications through this network. A timed data stream for
a port A is a pair of infinite streams of time and data. Each pair in a timed
data stream denotes an event, that is, the occurrence of a data communication
at the port A at a certain time. Two events are said to be synchronous when
they occurs at the same time, otherwise they are asynchronous.

Constraint automata are acceptors of timed data streams [6], just like finite
automata are models for recognizing finite strings [12]. Constraint automata are
labeled transition systems where constraints label transitions and influence their

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 156–170, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Recasting Constraint Automata into Büchi Automata 157

firing. There are two kinds of constraints: port constraints define those events
that must happen synchronously when a transition is executed, whereas data
constraints restrict the data that can flow through the ports involved in the
transition.

Constraint automata have been introduced in [6] as models of Reo connector
circuits. Reo is an exogenous glue-code language which is based on a calculus
of channels [1]. By using Reo specifications, complex component connectors can
be organized in a network of channels and build in a compositional manner.
A channel is an abstract model for any kind of peer-to-peer communication: it
has two channel ends, declared to be sink or source ends. At source ends data
items enter the channel while they are delivered at sink ends. The behavior of a
channel is user defined, and can be given, for example, by a constraint automata.
Channel ends can be composed into a node by Reo’s join operator. A node serves
as routers selecting data from a source channel ends and copying it to all sink
channel ends.

Although constraint automata are acceptor of timed data streams, there is
an huge abstraction gap between the two models. Timed data streams are very
concrete. They associate to each event not only the data communicated through
a port, but also the precise time of its occurrence. On the other hand, constraint
automata are much more abstract as they specify only the relative order of
occurrence among events instead of their time. The concrete time-values play no
role in the automata. This abstraction is enough for a compositional operational
semantics of an important subset of the language Reo [6].

The main contribution of our work presented in this paper is a novel approach
to specify the behavior of a network of components. We use records as data struc-
tures for modeling the simultaneous executions of events: ports in the domain
of the record are allowed to communicate simultaneously the data assigned to
them, while ports not in the domain of the record are blocked so that no com-
munication can happen. The behavior of a network of components is given in
terms of (infinite) sequences of records, so to specify the order of occurrence
of the events. Standard operational models can be used to recognize such lan-
guages. For example, we use ordinary Büchi automata as operational devices for
recognizing languages of streams of records.

Our main result is that every constraint automaton can be translated into an
essentially equivalent Büchi automaton. The construction of the Büchi automa-
ton is straightforward and the result may appear as not surprising at all. But
beware! The languages recognized by the two type of automata have a different
structure. In fact it is easy to embed a language on streams of records into a
language of timed data streams, but not viceversa. Despite these structural dif-
ferences, we show that the converse also holds without losing any information
as far as constraint automata is concerned. An immediate consequence of this
result is that, since Büchi automata enjoy closure properties that constraint au-
tomata do not have, our model is more expressive. In fact we give few concrete
examples of realistic connectors (not considered in the Reo language until now)
that can be specified in our model but not with constraint automata.

158 M. Izadi and M.M. Bonsangue

The main reason for having time information in the timed data streams is
compositionality with respect to the Reo join operator. We introduce a join
composition operator for Büchi automata on streams of records and show that
it is correct with respect to the join operator for constraint automata. Finally,
we presenting a method to recast this join operation using the standard product
operator of Büchi automata.

Much work has been done on constraint automata for the verification of prop-
erties of Reo circuits through model-checking [5], to synthesize Reo circuits and
executable code from constraint automata [2], and to automatically compose con-
straint automata. Further, several extensions of constraint automata have been
defined to cover probabilities [7], real-time [5], and other quality of services of
connectors [3]. On the other hand, since the definition of constraint automata [6],
there has been no expressivity results with respect to existing automata models.
In this paper we recast the theory of constraint automata into that of ordinary
Büchi automata. The latter is especially important because many of the results,
tools and extensions of actual interest for Reo and constraint automata have
already been developed [11,16].

The remainder of this paper is organized as follows. In Section 2 we recall
the basic theory of constraint automata as acceptors of timed data streams. We
continue in Section 3, by introducing records as data structure for representing
snapshots of a networks of components. Full behavior is represented as languages
of streams of records, or, more operationally, by Büchi automata on streams of
records. Our main result is that every constraint automaton is equivalent to
a Büchi automaton on streams of records. In Section4 we introduce a novel
composition operator for Büchi automata on streams of records, and we show
its correctness with respect to the join of constraint automata. In Section 4.1, we
recast the above composition operator in the theory of ordinary Büchi automata.
In fact we show that it can be decomposed into two operators: record extension
and ordinary Büchi automata product. We conclude in Section 5 with a discuss
about the benefits of seing constraint automata as Büchi automata.

2 Basic Theory of Constraint Automata

Constraint automata are a formalism introduced in [6] for describing all possible
data flow among the ports of an open components-based software system. For
example, a compositional semantics for a large subset of the glue-code language
Reo [1] can be given in terms of constraint automata [6]. In this section we present
the basic theory of constraint automata as acceptors of timed data streams.

2.1 Timed Data Streams

To begin with, we recall the notion of time data stream presented in [4]. Let S
be any set. The set of all finite sequences (words) over S is denoted by S ∗. We
define the set Sω of all streams (infinite sequences) over S as the set of functions
w :N → S . For a stream w ∈ Sω we call w(0) the initial value of w . The (stream)
derivative w ′ of a stream w is defined as w ′(k) = w(k + 1). We write w (i) for

Recasting Constraint Automata into Büchi Automata 159

the i-th derivative of w which is defined by w (0) = w and w (i+1) = w (i)′. Note
that w (i)(k) = w(i + k), for all k , i ≥ 0. Now, let N be a fixed finite set of port
names and D be a non-empty set of data that can be communicated through
those ports. The set of all (infinite) timed data streams over D is given by:

TDS = {〈α, a〉 ∈ Dω × R
ω
+|∀k ≥ 0 [a(k) =∞∨ (a(k) < a(k + 1) ∧ lim

k→∞
a(k) =∞)]} ,

where Rω
+ = [0,∞] is the set of all positive real numbers including zero and

infinity. Informally, a timed data stream consists of an infinite stream of data
together with a time stamp consisting of increasing positive real numbers that
go to infinity. The time stamp indicates for each data item α(k) the moment
a(k) at which it is communicated.

With each port n ∈ N , we associate a timed data stream recording both the
data communicated and the time when the communication happen. That is, we
define TDSN as the set of all TDS-tuples consisting of one timed data stream
for each port in N . We use a family-notation θ = (θ|n)n∈N for the elements
of TDSN , where θ|n stands for the projection of θ along the port n. A TDS-
language for N is any subset of TDSN .

Simultaneous exchange of data between a set of ports can be detected by
inspecting the time when communications happens. For this purpose, for θ ∈
TDSN we define θ.time to be a stream in Rω

+ obtained by merging the streams
(θ|n)r in increasing order. More formally,

θ.time(0) = min{πr (θ|n)(0) | n ∈ N}
θ.time(i + 1) = min{πr (θ|n)(k) | πr (θ|n)(k)〉θ.time(i), k ∈ N,n ∈ N}.

Next we define the stream θ.N over 2N by setting

θ.N (k) = {n | ∃i ∈ N:πr (θ|n)(i) = θ.time(k)} .

Intuitively, the above set consists of all the ports exchanging a data item at time
θ.time(k). We denote the data communicated by a port n ∈ θ.N (k) by

θ.δ(k)n = πl (θ|n)(i)

for the unique index i such that πr (θ|n)(i) = θ.time(k).

2.2 Constraint Automata and Their Composition

A constraint automaton is a labeled transition system in which each transition
label contains two parts: a set N of port names and a proposition g on the data.
Both parts act as constraints: the set of ports N constraints which ports of the
system should be active if the transition is taken, whereas the proposition g
constraints the data that could be communicated through the ports in N .

The set DC (N ,D) of data constraint over a finite set N of port names and a
finite set D of data is defined by the following grammar:

g :: = true | dA = d | g1 ∨ g2 | ¬g d ∈ D, A ∈ N .

Now we can define the notion of constraint automaton formally.

160 M. Izadi and M.M. Bonsangue

Definition 1. A constraint automaton over finite data set D is a quadruple
A = 〈Q ,N ,−→,Q0〉 where, Q is a set of states, N is a finite set of names,
−→⊆ Q × 2N × DC (N ,D) × Q is a set of transitions and Q0 ⊆ Q is a set of
initial states.

We write p
N ,g−→ q instead of (p,N , g, q) ∈−→ and call N the name set and g

the guard of the transition. For every transition label (N , g), it is required that
N �= ∅ and g ∈ DC (N ,Data).

A constraint automaton is said to be finite if its sets of states and transitions
are finite, and to be deterministic if its set of initial states Q0 is a singleton and
for each state q, set of port names N and data assignment δ:N → D there is at
most one transition q

N ,g−→ q ′ with δ |= g.
Like ordinary automata are acceptors of finite strings, constraint automata

are acceptors of tuples of timed data streams. Informally, each element of the
tuple is associated to a port of the system and corresponds to the streams of
observed data communicated through this port together with the time when the
data has been observed.

Definition 2. Let A = 〈Q ,N ,−→,Q0〉 be a constraint automaton and ϕ ∈
TDSN be a TDS-tuple.

(i) An infinite computation for ϕ in A is an infinite sequence of alternating
states and transition labels π = q0, (N0, g0), q1, (N1, g1), ..., in which, for all

i, qi ∈ Q and qi
Ni ,gi−→ qi+1 such that Ni = ϕ.N (i), ϕ.δ(i) |= gi . Also, π is an

initial infinite computation, if q0 ∈ Q0.
(ii) A TDS-tuple ϕ is accepted by A if and only if there is an initial infinite

computation for ϕ in A. The language of constraint automaton A is

L(A) = {ϕ ∈ TDSN | A accepts ϕ}.

Using the Rabin-Scott powerset construction as for finite automata, it is easy to
see that for every constraint automaton A there is a deterministic constraint au-
tomaton A′ such that L(A) = L(A′) [6]. Further, in a finite constraint automaton
A all transitions with unsatisfiable guards can be removed without any effect on
the TDS language accepted by A, where a guard g of a transition p

N ,g−→ q is said
to be semantically unsatisfiable for N if there is no data assignment for elements
of N which satisfies g (take, for example, g to be ¬true). In the rest of this
paper we assume without any loss of generality that all guards in a constraint
automaton are satisfiable with respect to the set of names of the transition they
belongs to.

Differently from finite and Büchi automata on languages, the simplicity of a
constraint automaton is not reflected in the TDS language it recognizes. Consider
for example the following constraint automaton on two ports A and B over a
singleton data set:

����	
���s
A ����	
���t

B

��

Recasting Constraint Automata into Büchi Automata 161

While the automaton describes only a single event happening at port A, a TDS-
tuple θ accepted by the automaton consists a pair of two infinite sequence of
events θA and θB , one describing the data flow at port A and the other the flow
at port B , such that all events in θB happen between the first and the second
event in θA. All event but the first in θA are not really relevant, yet one needs
to describe them all.

Constraint automata can be composed by means of a join operator, the se-
mantic counterpart of the join operator in Reo [6]. Differently from the ordinary
product for finite automata, the composition of two constraint automata is al-
lowed even if they have different alphabets. In fact, the resulting constraint
automaton has transitions when data occur at the ports belonging to only one
of the automaton, without involving the transitions or states that it inherits
from the other automaton (because at that point in time, there is no data on
any of its corresponding ports). More formally, the join operation for constraint
automata is defined as follows:

Definition 3. Let A1 = 〈Q1,N1,−→1,Q01〉 and A2 = 〈Q2,N2,−→2,Q02〉 be
two constraint automata both over data set D. The join of A1 and A2 produces a
constraint automaton A1 ��C A2 = 〈Q1 ×Q2,N1 ∪N2,−→,Q01×Q02〉 in which
transition relation −→ is defined using the follow rules:

s
N1,g1−→1 s ′, t

N2,g2−→2 t ′,N1 ∩ N2 = N2 ∩N1

〈s , t〉 N1∪N2,g1∧g2−→ 〈s ′, t ′〉
,

s
N1,g1−→1 s ′,N1 ∩ N2 = ∅
〈s , t〉 N1,g1−→ 〈s ′, t〉

,
t

N2,g2−→1 t ′,N2 ∩ N1 = ∅
〈s , t〉 N2,g2−→ 〈s , t ′〉

.

The join of two constraint automata using the operation defined in Defini-
tion 3 induces the join of their accepted TDS-languages, where the join of two
TDS-languages is basically the same as defined in the theory of relational data
bases [6].

Constraint automata are, in general, not closed under complement. Informally
this is due to the fact that constraint automata do not have ”final” states. If we
augment the definition of constraint automaton by a set of final states and use
Büchi acceptance condition (a timed data stream is accepted if at least one of the
correspondent runs for it contains one of the final states infinitely many times),
we refer to the resulting automaton as a Büchi constraint automaton. Obviously,
a constraint automaton is a Büchi constraint automaton in which all states are
accepting. Its complement, however do not need to satisfy this property.

3 Büchi Automata of Record Languages

Constraint automata are acceptors of timed data streams. However, timed data
streams are much more concrete than constraint automata because they record
the actual times when communications happen, whereas constraint automata

162 M. Izadi and M.M. Bonsangue

record just the temporal order of data communications and not their times. In
this section, we introduce an alternative way to model temporal ordering of data
occurrences using streams of records. After introducing the notion of record, we
use Büchi automata to accept streams of records. We show that as far as we are
interested in the temporal order of data communications, constraint automata
are semantically equivalent to Büchi automata on streams of records.

3.1 Streams and Languages of Records

Let N be a finite nonempty set of (port) names and D be a finite nonempty set of
data. We write RecN (D) = N ⇀ D for the set of records with entries from a set
of data D and labels from a set of port nameN , consisting of all partial functions
from N to D. For a record r ∈ RecN (D) we write dom(r) for the domain of r .
Sometimes we use the more explicit notation r .= [n1 = d1, . . . ,nk = dk] for a
record r ∈ RecN (D), with dom(r) = {n1, . . . ,nk} and r(ni) = di for 1 ≤ i ≤ k .
Differently from a tuple, the order of the components of a record is irrelevant
and its size is not fixed a priori. We denote by τ the special record with empty
domain, that is dom(τ) = ∅.

We use records as data structures for modeling constrained synchronization
of ports in N . Following [14], we see a record r ∈ RecN (D) as carrying both
positive and negative information: only the ports in the domain of r have the
possibility to exchange the data assigned to them by r , while the other ports
in N \ dom(r) are definitely constrained to not perform any communication.
This intuition is formalized by the fact that only for ports n ∈ dom(r) data can
be retrieved, using record selection r .n. Formally, r .n is just (partial) function
application r(n).

Further, positive information may increase by means of the update (and ex-
tension) operation r [n: = d], defined as the record with domain dom(r) ∪ {n}
mapping the port n to d and remaining invariant with respect to all other
ports. The hiding operator ’\’ is used to increase the negative information.
For n ∈ N , the record r \ n hides the port n to the environment by setting
dom(r \ n) = dom(r) \ {n}, and (r \ n).m = r .m.

Definition 4. Let r1 ∈ RecN1(D) and r2 ∈ RecN2(D). We say that records r1
and r2 are compatible, if dom(r1) ∩ N2 = dom(r2) ∩ N1 and ∀n ∈ dom(r1) ∩
dom(r2):r1.n = r2.n. The union of compatible records r1 and r2, denoted by
r1∪r2, is a record over port names N1∪N2, such that, ∀n ∈ dom(r1):(r1∪r2).n =
r1.n and ∀n ∈ dom(r2):(r1 ∪ r2).n = r2.n.

Let us compare the expressiveness of TDS-languages with that of languages of
streams of records. Given a TDS-language L for N we can abstract from its
timing information to obtain a set of streams over RecN (D). For a TDS-tuple
θ ∈ TDSN , the idea is to construct a stream of records Υ (θ) ∈ RecN (D)ω ,
where, for each k , the record Υ (θ)(k) contains all ports and data exchanged at
time θ.time(k). In fact, we define for each n ∈ θ.N (k) and k ∈ N,

Υ (θ)(k).n = θ.δ(k)n .

Recasting Constraint Automata into Büchi Automata 163

Note that dom(Υ (θ)(k)) = θ.N (k). As usual, we extend this construction to sets,
namely, for every L ⊆ TDSN ,

Υ (L) =
⋃
{Υ (θ) | θ ∈ L} .

Conversely, any stream of records ρ ∈ RecN (D)ω generates a TDS-language
Θ(ρ) by guessing the time when data is exchanged so to respect the relative
order of communication imposed by ρ. Formally,

Θ(ρ) = {θ | ∀k ≥ 0:(θ.N (k) = dom(ρ(k)) and ∀n ∈ dom(ρ(k)):θ.δ(k)n = ρ(k).n)} .

We extend Θ to languages L ⊆ RecN (D)ω by setting

Θ(L) =
⋃
{Θ(ρ) | ρ ∈ L}.

The function Θ:2RecN (D)ω → 2TDSN
is an embedding of languages over records

into TDS-languages for N .

Lemma 1. For each L ⊆ RecN (D)ω, L = Υ (Θ(L)).

The counterpart of the above lemma for TDS-languages does not hold, because a
tuple of time data stream θ ∈ TDSN may contain specific time information that
get lost when mapped into a stream of record Υ (θ). In the next section we will
see that for constraint automata the information lost in the above translation is
never used.

3.2 Büchi Automata of Records

Sets of streams of records are just languages of infinite strings, and as such some
of them can be recognized by ordinary Büchi automata. Next we recall some
basic definitions and facts on Büchi automata [16].

Definition 5. A Büchi automaton is a tuple B = 〈Q , Σ,Δ,Q0,F 〉 where, Q
is a finite set of states, Σ is a finite nonempty set of symbols called alphabet,
Δ ⊆ (Q ×Σ ×Q) is a transition relation, Q0 ⊆ Q is a nonempty set of initial
states and F ⊆ Q is a set of accepting (final) states.

An infinite computation for a stream ω = a0, a1, · · · ∈ Σω in B is an infinite
sequence q0, a0, q1, a1, ..., of alternating states and alphabet symbols in which
q0 ∈ Q0 and (qi , ai , qi+1) ∈ Δ for all i . The language accepted by a Büchi
automaton B consists of all streams ω ∈ Σω such that there is an infinite com-
putation for ω in B with at least one of the final states occurring infinitely
often. The language of a Büchi automaton B , denoted by L(B), is the set of all
streams accepted by it. We say that two Büchi automata B1 and B2 are language
equivalent if L(B1) = L(B2).

In this paper we are interested in Büchi automata with as alphabet a subset
of RecN (D), for some finite set of port names N and finite set of data D. We
refer to such an automaton as a Büchi automaton (on streams) of records.

164 M. Izadi and M.M. Bonsangue

In general, a Büchi automaton of records may contain transitions labeled by
τ . These can be considered as internal actions, as no port of the system can be
involved in a communication. Since they are externally invisible we may ignore
them. However, if we remove all τ symbols from a stream of records ω, the
resulting sequence need not to be infinite anymore. For example, removing all
τ ’s from the stream consisting of only τ symbols will result in the empty (and
hence finite) string.

Definition 6. Let B be a Büchi automaton of records. The visible language of
B is defined as:

Lvis(B) = {ρ ∈ RecN (D)ω | ∃ω ∈ L(B):ρ = vis(ω)},

where vis(ω) denote the sequence obtained by removing all τ symbols from ω.
We say that automata B1 and B2 are visibly equivalent if Lvis(B1) = Lvis(B2).

Note that Lvis(B) contains only infinite sequences and therefore is a subset of
the set of sequences obtained from removing the τ ’s from the streams in L(B).
Clearly, Lvis(B) = L(B) if B does not have τ -transitions. By a simple general-
ization of the standard algorithm for eliminating the ε-transitions of an ordinary
finite automaton over finite words [12], we can construct a Büchi automaton
recognizing Lvis(B).

Lemma 2. For every Büchi automaton of records B there is a Büchi automaton
of records B ′ (without τ-transition) such that, Lvis(B) = L(B ′)

Now we show that for every constraint automaton A over name set N and data
set D we can construct a Büchi automaton of records. The key observation is that
for each transition labeled (N , g) in A, there is a set of (total) data assignments
{δ:N → D | δ |= g}. Every data assignment in this set can be seen as a partial
function from N to D, with as domain N ⊆ N , that is, it is a record in RecN (D).
We can thus construct a Büchi automaton of records B(A) with the same (initial)
states as A, with all states as final, and with transitions labeled by each of the
above data assignment for every transition in A.

Definition 7. For every constraint automaton A = 〈Q ,N ,−→,Q0〉 over finite
data set D and finite name set N , we define B(A) to be the Büchi automaton of
records 〈Q ,RecN (D), Δ,Q0,Q〉, where

Δ = {(q , r , q ′) | ∃q (N ,g)−→ q ′,∃δ:N → D:δ |= g , dom(r) = N and∀n ∈ N :r .n = δ(n)}.

For example, consider the constraint automaton depicted in Figure 1(a). It mod-
els a lossy synchronous communication channels between the ports A ad B :
data in D either flows from the port A to the port B or it get lost after it
is output by A. We used the data constraint dA = dB as an abbreviation for
∨d∈D(dA = d ∧dB = d). Figure 1(b) shows the corresponding Büchi automaton
on streams of records. To simplify the figure, we supposed that the data set is
the singleton set D = {d} and used transition label A as a simplified expression
for record [A = d] and also AB for record [A = d ,B = d].

The following theorem shows that timed data streams are not different from
streams of records, at least as for finite constraint automata is concerned.

Recasting Constraint Automata into Büchi Automata 165

����	
���s

{A,B},dA=dB

��

{A}

��
����	
�����������s
AB

��

A

��
����	
�����������s
AB

�� A ����	
���t

A

��

AB

�� ����	
�����������s
AB

�� A ����	
���t

A

��
AB��

AB

����	
�����������q

AB

��

a b c d

Fig. 1. Models of a lossy synchronous communication channel

Theorem 1. For every finite constraint automaton A = 〈Q ,N ,−→,Q0〉,

Υ (L(A)) = L(B(A)) and Θ(L(B(A)) = L(A)).

It follows that Büchi automata of records are at least as expressive as constraint
automata. They are actually more expressive, because Büchi automata of records
are closed under complement while constraint automata are not.

As an example of a ”realistic” connector between two ports A and B not
expressible in ordinary constraint automata, consider the one modeled by the
Büchi automaton of records depicted in Figure 1(c). It is a connector similar to
the lossy synchronous channel depicted in (b), but with this extra property that
it is not possible which all data can be lost. As a more realistic example, the
Büchi automaton of records depicted in Figure 1(d) is also a lossy synchronous
channel with the possibility of loosing only finitely many data at the port A.

Also, because Büchi automata of records are Büchi automata, we can ex-
press unconditional fairness condition [13]: in each infinite execution of the sys-
tem, some actions should occur infinitely many times. For example, consider the
merger connector among two with two source ports A and B and one sink port
C (see Figure 2(a)). Intuitively, it transmits synchronously data item from either
A or B to the port C . If both the source ports A and B are offering data at the
same time than only one of them is chosen non-deterministically. The Büchi au-
tomaton of records corresponding to its constraint automaton model introduced
in [6] is shown in Figure 2(b). Both models allow unfair executions where data
from the same source is always preferred if both A and B are always offering
data simultaneously. Figure 2(c) shows a Büchi automaton that disallows those
unfair executions. It can be shown that this kind of fairness conditions cannot
be expressed by ordinary constraint automaton as its author also say in [6].

4 Joining Büchi Automata on Streams of Records

In this section we define a join operator for Büchi automata of records and shows
that it is correct with respect to the join of constraint automata. First let us

166 M. Izadi and M.M. Bonsangue

A

�
��

��
��

��

Merger �� C ����	
�����������s
AC

��

BC

��
����	
�����������s

AC ��

BC

��

��	
���t

AC

��

BC

��

B

����������� ��	
���q

BC

��

AC

��

a b c

Fig. 2. Models of a merger connector

recall the definition of product of Büchi automata which, for simplicity, is given
in terms of generalized Büchi automata [16].

A generalized Büchi automaton is a Büchi automaton B = 〈Q , Σ,Δ,Q0,F〉
but for the set of final states, that now is a set of sets, that is, F ⊆ 2Q . A stream
ω ∈ Σω is accepted by generalized Büchi automaton B if and only if there is
an infinite computation π for ω in B such that for every F ∈ F at least one of
the states in F occurs in π infinitely often. Clearly, every Büchi automaton is a
generalized Büchi automaton with a singleton set of final states, containing the
original set of of final states.

Definition 8. Let B1 = 〈Q1, Σ,Δ1,Q01,F1〉 and B2 = 〈Q2, Σ,Δ2,Q02,F2〉 be
two Büchi automata on the same alphabet. We define the product of B1 and B2

to be the generalized Büchi automaton:

B1 ×B B2 = 〈Q1 × Q2, Σ,Δ,Q01 ×Q02, {F1 ×Q2,Q1 × F2}〉

where (〈s , t〉, a, 〈s ′, t ′〉) ∈ Δ if and only if (s , a, s ′) ∈ Δ1 and (t , a, t ′) ∈ Δ2.

To obtain an ordinary Büchi automaton for the product, one can use the fact that
for each generalized Büchi automaton B there is an ordinary Büchi automaton
B ′ such that a stream ω ∈ Σω is accepted by B if and only if it is accepted by
B ′. For the construction of such an automaton we refer to [16]. The language
of the product of two Büchi automata is the intersection of their respective
languages [16].

Using the richer structure of the alphabet of Büchi automata of records, we
can give a more general definition of product that works even if the alphabets
of the two automata are different.

Definition 9. Let B1 = 〈Q1,RecN1(D), Δ1,Q01,F1〉 and B2 = 〈Q2,RecN2(D),
Δ2,Q02,F2〉 be two Büchi automata of records. We define the join of B1 and B2

to be the generalized Büchi automaton:

B1 ��B B2 = 〈Q1 ×Q2,RecN1∪N2(D), Δ,Q01 ×Q02, {F1 ×Q2,Q1 × F2}〉

Recasting Constraint Automata into Büchi Automata 167

where the transition relation Δ is defined by the following rules:

1. if (s , r1, s ′) ∈ Δ1, (t , r2, t ′) ∈ Δ2 and r1 and r2 are compatible then (〈s , t〉,
r1 ∪ r2, 〈s ′, t ′〉) ∈ Δ;

2. if (s , r1, s ′) ∈ Δ1 with dom(r1) ∩ N2 = ∅ then (〈s , t〉, r1, 〈s ′, t〉) ∈ Δ;
3. dually, if (t , r2, t ′) ∈ Δ2 with dom(r2) ∩ N1 = ∅ then (〈s , t〉, r2, 〈s , t ′〉) ∈ Δ.

For Büchi automata without τ -transitions, the join operator coincides with the
product in case both automata have the same alphabet. In this case, the language
of the product is just the intersection.

Lemma 3. Let B1 and B2 be two Büchi automata of records with the same
alphabet and without τ-transitions. Then, L(B1 ��B B2) = L(B1) ∩ L(B2).

This implies that our definition of join is correct with respect to the product of
ordinary Büchi automata (up to τ -transitions). On the other hand, our definition
of join is correct (even structurally, and not only language theoretically) also with
respect to the join of constraint automata.

Theorem 2. Let A1 and A2 be two constraint automata. Then,

B(A1) ��B B(A2) = B(A1 ��C A2).

For example, Figure 3(a) shows the Büchi automaton of records model of a FIFO
queue with a buffer of capacity one between ports A and B (using as data set
D = {d}) and (b) a FIFO1 between ports B and C over the same data set. The
join of these automata obtained using definition 9 is shown in (c). In Figure 3(c)
the generalized set of final states is {{st , st ′}, {st , s ′t}}.

4.1 Splitting the Join

Next we give an alternative way to calculate the join of two Büchi automata
of records. The idea is to use the standard product after we have extended the
alphabets of the two automata to a minimal common alphabet. First of all we
concentrate on how to extend a Büchi automata of records B with an extra
port name, not necessarily present in the alphabet of B . If the port is new, the
resulting automata will have to guess the right behavior non-deterministically,
by allowing or not the simultaneous exchange of data with the other ports known
by the automata.

Definition 10. Let B = 〈Q ,RecN (D), Δ,Q0,F 〉 be a Büchi automaton of records
andn bea (port) name.Wedefine the extensionofB with respect ton as the following
Büchi automaton of records:

B↑n = 〈Q ,RecN∪{n}(D), Δ′,Q0,F 〉

where Δ′ = Δ if n ∈ N and otherwise

Δ′ = Δ ∪ {(q , [n = d], q)|q ∈ Q ,d ∈ D} ∪ {(q , r [n: = d], q ′)|(q , r , q ′) ∈ Δ, d ∈ D}.

168 M. Izadi and M.M. Bonsangue

A � �� B B � �� C A � �� B � �� C

����	
�����������s
A �� ��	
���s ′

B

�� ����	
�����������t
B �� ��	
���t ′

C

�� �� ��	
���st
A �� ��������s ′t

B

��

(a) (b)

��������st ′
A

��

C

��

AC

��������s ′t ′

C

��

����	
�����������s
A/AC

��

C

�� ��	
���s ′

B/BC

��

C

��
����	
�����������t

B/AB
��

A

�� ��	
���t ′

C/AC

��

A

��
(c)

(d) (e)

Fig. 3. Direct and indirect joining of two FIFO1 buffers
.

Intuitively, to extend Büchi automaton of records B using one extra port
name n, we use the same structure of B and add only some new transitions to it
representing the guesses of the new behavior of the automaton with respect to
the new port n. There are three kind of guess: the environment does not use the
name n in a communication (explaining why Δ ⊆ Δ′), or the environment use
the name n for a communication but no other port of B is used (explaining the
addition of a new loop transition on each state labeled by a record with n as the
only name in the domain), or the environment use the name n in combination
with the name constrained by B (corresponding to the new transitions of the
form (q,r[n:=d],q’) in Δ′. Recall here that r [n: = d] is the extension of record r
by adding the new field n = d to it).

For example, in Figure 3(d) we show the extension of the automaton has
been shown in Figure 3(a) with respect to the new port name C . In this figure,

s
A/AC−→ s ′ means that there are two transitions s A−→ s ′ and s AC−→ s ′. Also,

Figure 3(e) is the extension of Figure 3(b) with A.
The operation of name extension is not sensible with respect to the order of

different applications, in the sense that (B↑n)↑m = (B↑m)↑n, for two names
n and m. Therefore we can define the extension of a Büchi automaton with
respect to a finite set of name N , denoted by B↑N by inductively extending the
automaton B by one name in N at a time.

Given two Büchi automata of records B1 and B2 we can extend each them
with respect to the port names of the other, so that they become two Büchi

Recasting Constraint Automata into Büchi Automata 169

automata over the same alphabet. We can thus take their ordinary product,
obtaining as result the join of the two Büchi automata B1 and B2.

Theorem 3. Let B1 and B2 be two Büchi automata of records over alphabet
sets RecN1(D) and RecN2(D) respectively. Then,B1↑N2×B B2↑N1 = B1 ��B B2.

Therefore, to join two Büchi automata of records, one can first extend them to a
common set of ports and then compose the resulting Büchi automaton using the
standard Büchi product operation. Based on the previous theorem, the automata
produced by both methods are structurally, and thus also language theoretically,
the same.

For example, the join of the Büchi automata of records shown in Figures 3(a)
and 3(b) is the automaton shown in 3(c). In 3(c) F = {{st , st ′}, {st , s ′t}. This
automaton, in turn, is the product of the automata depicted in 3(d) and 3(e).
The resulting automaton models a two-cells queue. Note that one of the diagonal
transitions corresponds to the move of data from one cell to the other, while the
other diagonal models the simultaneous consumption of data from port C and
the insertion of a new data to the port A.

5 Concluding Remarks

In this paper, we introduced Büchi automata of records as an alternative op-
erational semantics for component connectors. The model is at the same ab-
straction level of the language they recognize, a property satisfied by ordinary
deterministic finite automata but unfortunately not by constraint automata. The
model proposed is even more expressive than constraint automata. In fact every
constraint automaton can be translated into a Büchi automaton on streams of
records, but not viceversa. This generality asked for a novel definition of the
join composition operator, that we have shown to be correct with respect to the
original one for constraint automata. We have given also a new algorithm to
calculate the join of Büchi automata that is based on the standard product of
Büchi automata.

The main benefits of using Büchi automata for modeling networks of compo-
nent connectors, like those specified by constraint automata and the Reo lan-
guage, come from the area of model checking. We can use Büchi automata for
expressing properties (directly or after translating from linear temporal log-
ics [17,9]). Existing model checkers for Büchi automata, such as SPIN [11] and
NuSMV [8], could be used directly for networks of connectors instead of re-
inventing similar tools for constraint automata. It is our plan to investigate this
direction in the near future.

Another area of interest, that we leave for future work, is the study of how
existing extensions of Büchi automata can be reflected in a specification lan-
guage for component connectors. For example, one could use Büchi automata on
streams of records with state labeled by sets of ports to model context sensitive
connectors, like the lossy synchronous channel of Reo [1].

170 M. Izadi and M.M. Bonsangue

References

1. Arbab, F.: Reo: A Channel-based Coordination Model for Component Composi-
tion. Math. Struc. in Computer Science 14(3), 329–366 (2004)

2. Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo circuites
for implementation of component-connector automata specifications. In: Jacquet,
J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251.
Springer, Heidelberg (2005)

3. Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component Connectors with QoS
Guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS,
vol. 4467. Springer, Heidelberg (2007)

4. Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors.
In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755,
pp. 35–56. Springer, Heidelberg (2003)

5. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed
component connectors. In: Proc. of the IEEE International Conference SEFM, pp.
198–207. IEEE Computer Society Press, Los Alamitos (2004)

6. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modelling Component Connectors
in Reo by Constraint Automata. Science of Computer Programming 61, 75–113
(2006)

7. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component con-
nectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS,
vol. 4038, pp. 1–15. Springer, Heidelberg (2006)

8. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

9. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

10. Hayes, J.P.: Computer Architecture and Organization, 2nd edn. McGraw Hill Pub-
lishing Company, New York (1998)

11. Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on software engi-
neering 23(5), 279–295 (1997)

12. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Addison-Wesley, Reading (2006)

13. Kupferman, O., Vardi, M.: Verification of Fair Transition Systems. In: Alur, R.,
Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)

14. Remy, D.: Efficient representation of extensible records. In: Proc. ACM SIGPLAN
Workshop on ML and its applications, pp. 12–16 (1994)

15. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. Addison-Wesley, Reading (2002)

16. Thomas, W.: Automata on Infinite Objects. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)

17. Vardi, M.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

A Complete Realisability Semantics for

Intersection Types and Arbitrary Expansion
Variables

Fairouz Kamareddine1, Karim Nour2, Vincent Rahli1, and J.B. Wells1

1 ULTRA Group (Useful Logics, Types, Rewriting, and their Automation)
http://www.macs.hw.ac.uk/ultra/

2 Université de Savoie, Campus Scientifique, 73378 Le Bourget du Lac, France
nour@univ-savoie.fr

Abstract. Expansion was introduced at the end of the 1970s for calcu-
lating principal typings for λ-terms in intersection type systems. Expan-
sion variables (E-variables) were introduced at the end of the 1990s to
simplify and help mechanise expansion. Recently, E-variables have been
further simplified and generalised to also allow calculating other type
operators than just intersection. There has been much work on seman-
tics for intersection type systems, but only one such work on intersection
type systems with E-variables. That work established that building a se-
mantics for E-variables is very challenging. Because it is unclear how to
devise a space of meanings for E-variables, that work developed instead
a space of meanings for types that is hierarchical in the sense of hav-
ing many degrees (denoted by indexes). However, although the indexed
calculus helped identify the serious problems of giving a semantics for
expansion variables, the sound realisability semantics was only complete
when one single E-variable is used and furthermore, the universal type ω
was not allowed. In this paper, we are able to overcome these challenges.
We develop a realisability semantics where we allow an arbitrary (possi-
bly infinite) number of expansion variables and where ω is present. We
show the soundness and completeness of our proposed semantics.

1 Introduction

Expansion is a crucial part of a procedure for calculating principal typings and
thus helps support compositional type inference. For example, the λ-term M =
(λx.x(λy.yz)) can be assigned the typing Φ1 = 〈(z : a) 0 (((a→b)→b)→c)→c〉,
which happens to be its principal typing. The term M can also be assigned the
typing Φ2 = 〈(z : a1 � a2) 0 (((a1 → b1)→ b1) � ((a2 → b2)→ b2)→ c)→ c〉, and
an expansion operation can obtain Φ2 from Φ1. Because the early definitions of
expansion were complicated [4], E-variables were introduced in order to make the
calculations easier to mechanise and reason about. For example, in System E [2],
the above typing Φ1 is replaced by Φ3 = 〈(z : ea) 0 (e((a→ b)→ b)→ c)→ c)〉,
which differs from Φ1 by the insertion of the E-variable e at two places, and Φ2

can be obtained from Φ3 by substituting for e the expansion term:
E = (a := a1, b := b1) � (a := a2, b := b2).

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 171–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

172 F. Kamareddine et al.

Carlier and Wells [3] have surveyed the history of expansion and also E-
variables. Kamareddine, Nour, Rahli and Wells [13] showed that E-variables pose
serious challenges for semantics. In the list of open problems published in 1975 in
[6], it is suggested that an arrow type expresses functionality. Following this idea,
a type’s semantics is given as a set of closed λ-terms with behaviour related to
the specification given by the type. In many kinds of semantics, the meaning of
a type T is calculated by an expression [T]ν that takes two parameters, the type
T and a valuation ν that assigns to type variables the same kind of meanings
that are assigned to types. In that way, models based on term-models have been
built for intersection type systems [7,14,11] where intersection types (introduced
to type more terms than in the Simply Typed Lambda Calculus) are interpreted
by set-theoretical intersection of meanings. To extend this idea to types with
E-variables, we need to devise some space of possible meanings for E-variables.
Given that a type e T can be turned by expansion into a new type S1(T) �
S2(T), where S1 and S2 are arbitrary substitutions (or even arbitrary further
expansions), and that this can introduce an unbounded number of new variables
(both E-variables and regular type variables), the situation is complicated.

This was the main motivation for [13] to develop a space of meanings for
types that is hierarchical in the sense of having many degrees. When assigning
meanings to types, [13] captured accurately the intuition behind E-variables by
ensuring that each use of E-variables simply changes degrees and that each E-
variable acts as a kind of capsule that isolates parts of the λ-term being analysed
by the typing.

The semantic approach used in [13] is realisability semantics along the lines
in Coquand [5] and Kamareddine and Nour [11]. Realisability allows showing
soundness in the sense that the meaning of a type T contains all closed λ-
terms that can be assigned T as their result type. This has been shown useful
in previous work for characterising the behaviour of typed λ-terms [14]. One
also wants to show the converse of soundness which is called completeness (see
Hindley [8,9,10]), i.e., that every closed λ-term in the meaning of T can be
assigned T as its result type. Moreover, [13] showed that if more than one E-
variable is used, the semantics is not complete. Furthermore, the degrees used
in [13] made it difficult to allow the universal type ω and this limited the study
to the λI-calculus. In this paper, we are able to overcome these challenges. We
develop a realisability semantics where we allow the full λ-calculus, an arbitrary
(possibly infinite) number of expansion variables and where ω is present, and
we show its soundness and completeness. We do so by introducing an indexed
calculus as in [13]. However here, our indices are finite sequences of natural
numbers rather than single natural numbers.

In Section 2 we give the full λ-calculus indexed with finite sequences of nat-
ural numbers and show the confluence of β, βη and weak head reduction on the
indexed λ-calculus. In Section 3 we introduce the type system for the indexed
λ-calculus (with the universal type ω). In this system, intersections and expan-
sions cannot occur directly to the right of an arrow. In Section 4 we establish that
subject reduction holds for 0. In Section 5 we show that subject β-expansion

A Complete Realisability Semantics for Intersection Types 173

holds for 0 but that subject η-expansion fails. In Section 6 we introduce the
realisability semantics and show its soundness for 0. In Section 7 we establish
the completeness of 0 by introducing a special interpretation. We conclude in
Section 8. Due to space limitations, we omit the details of the proofs. Full proofs
however can be found in the expanded version of this article (currently at [12])
which will always be available at the authors’ web pages.

2 The Pure λLN-Calculus

In this section we give the λ-calculus indexed with finite sequences of natural
numbers and show the confluence of β, βη and weak head reduction.

Let n,m, i, j, k, l be metavariables which range over the set of natural numbers
N = {0, 1, 2, . . .}. We assume that if a metavariable v ranges over a set s then
vi and v′, v′′, etc. also range over s. A binary relation is a set of pairs. Let rel
range over binary relations. We sometimes write x rel y instead of 〈x, y〉 ∈ rel .
Let dom(rel) = {x / 〈x, y〉 ∈ rel} and ran(rel) = {y / 〈x, y〉 ∈ rel}. A function
is a binary relation fun such that if {〈x, y〉, 〈x, z〉} ⊆ fun then y = z. Let fun
range over functions. Let s → s′ = {fun / dom(fun) ⊆ s ∧ ran(fun) ⊆ s′}. We
sometimes write x : s instead of x ∈ s.

First, we introduce the set LN of indexes with an order relation on indexes.

Definition 1. 1. An index is a finite sequence of natural numbersL = (ni)1≤i≤l.
We denote LN the set of indexes and 1 the empty sequence of natural numbers.
We let L,K,R range over LN.

2. If L = (ni)1≤i≤l and m ∈ N, we usem :: L to denote the sequence (ri)1≤i≤l+1

where r1 = m and for all i ∈ {2, . . . , l + 1}, ri = ni−1.
In particular, k :: 1 = (k).

3. If L = (ni)1≤i≤n and K = (mi)1≤i≤m, we use L :: K to denote the sequence
(ri)1≤i≤n+m where for all i ∈ {1, . . . , n}, ri = ni and for all i ∈ {n +
1, . . . , n+m}, ri = mi−n. In particular, L :: 1 = 1 :: L = L.

4. We define on LN a binary relation � by:
L1 � L2 (or L2 L1) if there exists L3 ∈ LN such that L2 = L1 :: L3.

Lemma 1. � is an order relation on LN.

The next definition gives the syntax of the indexed calculus and the notions of
reduction.

Definition 2. 1. Let V be a countably infinite set of variables. The set of terms
M, the set of free variables fv(M) of a term M ∈ M, the degree function
d : M → LN and the joinability M 2 N of terms M and N are defined by
simultaneous induction as follows:
– If x ∈ V and L ∈ LN, then xL ∈ M, fv(xL) = {xL} and d(xL) = L.
– If M,N ∈ M, d(M) � d(N) and M 2 N (see below), then M N ∈ M,

fv(MN) = fv(M) ∪ fv(N) and d(M N) = d(M).
– If x ∈ V, M ∈ M and L d(M), then λxL.M ∈ M, fv(λxL.M) =

fv(M) \ {xL} and d(λxL.M) = d(M).

174 F. Kamareddine et al.

2. – Let M,N ∈M. We say that M and N are joinable and write M 2N iff
for all x ∈ V, if xL ∈ fv(M) and xK ∈ fv(N), then L = K.

– If X ⊆M such that for all M,N ∈ X ,M 2N , we write, 2X .
– If X ⊆M and M ∈M such that for all N ∈ X ,M 2N , we write, M 2X .

The 2 property ensures that in any term M , variables have unique degrees.
We assume the usual definition of subterms and the usual convention for
parentheses and their omission (see Barendregt [1] and Krivine [14]). Note
that every subterm of M ∈ M is also in M. We let x, y, z, etc. range over V
and M,N,P range over M and use = for syntactic equality.

3. The usual simultaneous substitution M [(xLi

i := Ni)n] of Ni ∈ M for all
free occurrences of xLi

i in M ∈ M is only defined when 2{M} ∪ {Ni /
i ∈ {1, . . . , n}} and for all i ∈ {1, . . . , n}, d(Ni) = Li. In a substitution,
we sometimes write xL1

1 := N1, . . . , x
Ln
n := Nn instead of (xLi

i := Ni)n. We
sometimes write M [(xLi

i := Ni)1] as M [xL1
1 := N1].

4. We take terms modulo α-conversion given by:
λxL.M = λyL.(M [xL := yL]) where for all L, yL �∈ fv(M).
Moreover, we use the Barendregt convention (BC) where the names of bound
variables differ from the free ones and where we rewrite terms so that not
both λxL and λxK co-occur when L �= K.

5. A relation rel on M is compatible iff for all M,N,P ∈ M:
– If M rel N and λxL.M, λxL.M ∈M then (λxL.M) rel (λxL.N).
– If M rel N and MP,NP ∈ M (resp. PM,PN ∈ M), then (MP) rel

(NP) (resp. (PM) rel (PN)).
6. The reduction relation �β on M is defined as the least compatible relation

closed under the rule: (λxL.M)N �β M [xL := N] if d(N) = L
7. The reduction relation �η on M is defined as the least compatible relation

closed under the rule: λxL.(M xL) �η M if xL �∈ fv(M)
8. The weak head reduction �h on M is defined by:

(λxL.M)NN1 . . . Nn �h M [xL := N]N1 . . .Nn where n ≥ 0
9. We let �βη = �β ∪�η. For r ∈ {β, η, h, βη}, we denote by �∗

r the reflexive
and transitive closure of �r and by 3r the equivalence relation induced by
�∗

r.

The next theorem whose proof can be found in [12] states that free variables and
degrees are preserved by our notions of reduction.

Theorem 1. Let M ∈M and r ∈ {β, βη, h}.

1. If M �∗
η N then fv(N) = fv(M) and d(M) = d(N).

2. If M �∗
r N then fv(N) ⊆ fv(M) and d(M) = d(N).

As expansions change the degree of a term, indexes in a term need to in-
crease/decrease.

Definition 3. Let i ∈ N and M ∈ M.

1. We define M+i by:
•(xL)+i = xi::L •(M1 M2)+i =M+i

1 M+i
2 •(λxL.M)+i = λxi::L.M+i

Let M+� =M and M+(i::L) = (M+i)+L.

A Complete Realisability Semantics for Intersection Types 175

2. If d(M) = i :: L, we define M−i by:
•(xi::K)−i = xK •(M1 M2)−i = M−i

1 M−i
2 •(λxi::K .M)−i =

λxK .M−i

Let M−� =M and if d(M) i :: L then M−(i::L) = (M−i)−L.
3. Let X ⊆M. We write X+i for {M+i / M ∈ X}.

Normal forms are defined as usual.

Definition 4
1. M ∈M is in β-normal form (βη-normal form, h-normal form resp.) if there

is no N ∈M such that M �β N (M �βη N , M �h N resp.).
2. M ∈ M is β-normalising (βη-normalising, h-normalising resp.) if there is

an N ∈ M such that M �∗
β N (M �βη N , M �h N resp.) and N is in

β-normal form (βη-normal form, h-normal form resp.).

The next theorem states that all of our notions of reduction are confluent on our
indexed calculus. For a proof see [12].

Theorem 2 (Confluence). Let M,M1,M2 ∈M and r ∈ {β, βη, h}.
1. IfM�∗

rM1 andM�∗
rM2, then there isM ′ such thatM1�∗

rM
′ andM2�∗

rM
′.

2. M1 3r M2 iff there is a term M such that M1 �∗
r M and M2 �∗

r M .

3 Typing System

This paper studies a type system for the indexed λ-calculus with the universal
type ω. In this type system, in order to get subject reduction and hence com-
pleteness, intersections and expansions cannot occur directly to the right of an
arrow (see U below).

The next two definitions introduce the type system.

Definition 5. 1. Let a range over a countably infinite set A of atomic types
and let e range over a countably infinite set E = {e0, e1, ...} of expansion
variables. We define sets of types T and U, such that T ⊆ U, and a function
d : U → LN by:
– If a ∈ A, then a ∈ T and d(a) = 1.
– If U ∈ U and T ∈ T, then U → T ∈ T and d(U → T) = 1.
– If L ∈ LN, then ωL ∈ U and d(ωL) = L.
– If U1, U2 ∈ U and d(U1) = d(U2), then U1 � U2 ∈ U and d(U1 � U2) =

d(U1) = d(U2).
– U ∈ U and ei ∈ E, then eiU ∈ U and d(eiU) = i :: d(U).

Note that d remembers the number of the expansion variables ei in order to
keep a trace of these variables.
We let T range over T, and U, V,W range over U. We quotient types by
taking � to be commutative (i.e. U1 � U2 = U2 � U1), associative (i.e. U1 �
(U2�U3) = (U1�U2)�U3) and idempotent (i.e. U�U = U), by assuming the
distributivity of expansion variables over � (i.e. e(U1�U2) = eU1�eU2) and
by having ωL as a neutral (i.e. ωL �U = U). We denote Un �Un+1 . . .�Um

by �m
i=nUi (when n ≤ m). We also assume that for all i ≥ 0 and K ∈ LN,

eiω
K = ωi::K.

176 F. Kamareddine et al.

2. We denote ei1 . . . ein by eK , where K = (i1, . . . , in) and Un �Un+1 . . . �Um

by �m
i=nUi (when n ≤ m).

Definition 6
1. A type environment is a set {xL1

1 : U1, . . . , x
Ln
n : Un} such that for all

i, j ∈ {1, . . . , n}, if xLi

i = xLj

j then Ui = Uj. We let Env be the set of environ-
ments, use Γ,Δ to range over Env and write () for the empty environment.
We define dom(Γ) = {xL / xL : U ∈ Γ}. If dom(Γ1) ∩ dom(Γ2) = ∅, we
write Γ1, Γ2 for Γ1 ∪ Γ2. We write Γ, xL : U for Γ, {xL : U} and xL : U for
{xL : U}. We denote xL1

1 : U1, . . . , x
Ln
n : Un by (xLi

i : Ui)n.
2. If M ∈ M and fv(M) = {xL1

1 , . . . , x
Ln
n }, we denote envω

M the type environ-
ment (xLi

i : ωLi)n.
3. We say that a type environment Γ is OK (and write OK(Γ)) iff for all
xL : U ∈ Γ , d(U) = L.

4. Let Γ1 = (xLi

i : Ui)n, Γ
′
1 and Γ2 = (xLi

i : U ′
i)n, Γ

′
2 such that dom(Γ ′

1) ∩
dom(Γ ′

2) = ∅ and for all i ∈ {1, . . . , n}, d(Ui) = d(U ′
i). We denote Γ1 � Γ2

the type environment (xLi

i : Ui � U ′
i)n, Γ

′
1, Γ

′
2. Note that Γ1 � Γ2 is a type

environment, dom(Γ1�Γ2) = dom(Γ1)∪dom(Γ2) and that, on environments,
� is commutative, associative and idempotent.

5. Let Γ = (xLi

i : Ui)n We denote ejΓ = (xj::Li

i : ejUi)n.
Note that eΓ is a type environment and e(G1 � Γ2) = eΓ1 � eΓ2.

6. We write Γ1 2 Γ2 iff xL ∈ dom(Γ1) and xK ∈ dom(Γ2) implies K = L.
7. We follow [3] and write type judgements as M : 〈Γ 0 U〉 instead of the tradi-

tional format of Γ 0M : U , where 0 is our typing relation. The typing rules
of 0 are given on the left hand side of Figure 7. In the last clause, the binary
relation � is defined on U by the rules on the right hand side of Figure 7.
We let Φ denote types in U, or environments Γ or typings 〈Γ 0 U〉. When
Φ � Φ′, then Φ and Φ′ belong to the same set (U/environments/typings).

8. If L ∈ LN, U ∈ U and Γ = (xLi

i : Ui)n is a type environment, we say that:
– d(Γ) L if and only if for all i ∈ {1, . . . , n}, d(Ui) L and Li L.
– d(〈Γ 0 U〉) L if and only if d(Γ) L and d(U) L.

To illustrate how our indexed type system works, we give an example:

Example 1. Let U = e3(e2(e1((e0b → c) → (e0(a � (a → b)) → c)) → d) →
(((e2d→ a) � b)→ a)) where a, b, c, d ∈ A,
L1 = 3 :: 1 � L2 = 3 :: 2 :: 1 � L3 = 3 :: 2 :: 1 :: 1 � L4 = 3 :: 2 :: 1 :: 0 :: 1
and
M = λxL2 .λyL1 .(yL1 (xL2 λuL3 .λvL4 .(uL3 (vL4 vL4)))).
We invite the reader to check that M : 〈() 0 U〉.
Just as we did for terms, we decrease the indexes of types, environments and

typings.

Definition 7
1. If d(U) L, then if L = 1 then U−L = U else L = i :: K and we inductively

define the type U−L as follows:
(U1 � U2)−i::K = U−i::K

1 � U−i::K
2 (eiU)−i::K = U−K

We write U−i instead of U−(i).

A Complete Realisability Semantics for Intersection Types 177

x	 : 〈(x	 : T) � T 〉
(ax)

M : 〈envω
M � ωd(M)〉

(ω)

M : 〈Γ, (xL : U) � T 〉
λxL.M : 〈Γ � U → T 〉

(→I)

M : 〈Γ � T 〉 xL �∈ dom(Γ)

λxL.M : 〈Γ � ωL → T 〉
(→′

I)

M1 : 〈Γ1 � U → T 〉 M2 : 〈Γ2 � U〉 Γ1 � Γ2

M1M2 : 〈Γ1 � Γ2 � T 〉
(→E)

M : 〈Γ � U1〉 M : 〈Γ � U2〉
M : 〈Γ � U1 � U2〉

(�I)

M : 〈Γ � U〉
M+j : 〈ejΓ � ejU〉

(e)

M : 〈Γ � U〉 〈Γ � U〉 � 〈Γ ′ � U ′〉
M : 〈Γ ′ � U ′〉

(�)

Φ � Φ
(ref)

Φ1 � Φ2 Φ2 � Φ3

Φ1 � Φ3
(tr)

d(U1) = d(U2)

U1 � U2 � U1
(�E)

U1 � V1 U2 � V2

U1 � U2 � V1 � V2
(�)

U2 � U1 T1 � T2

U1 → T1 � U2 → T2
(→)

U1 � U2

eU1 � eU2
(�e)

U1 � U2

Γ, yL : U1 � Γ, yL : U2
(�c)

U1 � U2 Γ2 � Γ1

〈Γ1 � U1〉 � 〈Γ2 � U2〉
(�〈〉)

Fig. 1. Typing rules / Subtyping rules

2. If Γ = (xLi

i : Ui)k and d(Γ) L, then for all i ∈ {1, . . . , k}, Li = L :: L′
i

and d(Ui) L and we denote Γ−L = (xL′
i : U−L

i)k.
We write Γ−i instead of Γ−(i).

3. If U is a type and Γ is a type environment such that d(Γ) K and d(U)
K, then we denote (〈Γ 0 U〉)−K = 〈Γ−K 0 U−K〉.

The next lemma is informative about types and their degrees.

Lemma 2

1. If T ∈ T, then d(T) = 1.
2. Let U ∈ U. If d(U) = L = (ni)1≤i≤m, then U = ωL or U = eL �p

i=1 Ti where
p ≥ 1 and for all i ∈ {1, . . . , p}, Ti ∈ T.

3. Let U1 � U2.
(a) d(U1) = d(U2).
(b) If U1 = ωK then U2 = ωK.
(c) If U1 = eKU then U2 = eKU

′ and U � U ′.
(d) If U2 = eKU then U1 = eKU

′ and U � U ′.
(e) If U1 = �p

i=1eK(Ui → Ti) where p ≥ 1 then U2 = ωK or U2 =
�q

j=1eK(U ′
j → T ′

j) where q ≥ 1 and for all j ∈ {1, . . . , q}, there exists
i ∈ {1, . . . , p} such that U ′

j � Ui and Ti � T ′
j.

4. If U ∈ U such that d(U) = L then U � ωL.

178 F. Kamareddine et al.

5. If U � U ′
1 � U ′

2 then U = U1 � U2 where U1 � U ′
1 and U2 � U ′

2.
6. If Γ � Γ ′

1 � Γ ′
2 then Γ = Γ1 � Γ2 where Γ1 � Γ ′

1 and Γ2 � Γ ′
2.

The next lemma says how ordering or the decreasing of indexes propagate to
environments.

Lemma 3
1. OK(envω

M).
2. If Γ � Γ ′, U � U ′ and xL �∈ dom(Γ) then Γ, (xL : U) � Γ ′, (xL : U ′).
3. Γ � Γ ′ iff Γ = (xLi

i : Ui)n, Γ ′ = (xLi

i : U ′
i)n and for every 1 ≤ i ≤ n,

Ui � U ′
i .

4. 〈Γ 0 U〉 � 〈Γ ′ 0 U ′〉 iff Γ ′ � Γ and U � U ′.
5. If dom(Γ) = fv(M) and OK(Γ) then Γ � envω

M
6. If Γ 2Δ and d(Γ), d(Δ) K, then Γ−K 2Δ−K .
7. If U � U ′ and d(U) K then U−K � U ′−K .
8. If Γ � Γ ′ and d(Γ) K then Γ−K � Γ ′−K.
9. If OK(Γ1), OK(Γ2) then OK(Γ1 � Γ2).

10. If OK(Γ) then OK(eΓ).
11. If Γ1 � Γ2 then (d(Γ1) L iff d(Γ2) L) and (OK(Γ1) iff OK(Γ2)).

The next lemma shows that we do not allow weakening in 0.
Lemma 4
1. For every Γ and M such that OK(Γ), dom(Γ) = fv(M) and d(M) = K, we

have M : 〈Γ 0 ωK〉.
2. If M : 〈Γ 0 U〉, then dom(Γ) = fv(M).
3. If M1 : 〈Γ1 0 U〉 and M2 : 〈Γ2 0 V 〉 then Γ1 2 Γ2 iff M1 2M2.

Proof 1. By ω, M : 〈envω
M 0 ωK〉. By Lemma 3.5, Γ � envω

M . Hence, by � and
�〈〉, M : 〈Γ 0 ωK〉.
2. By induction on the derivation M : 〈Γ 0 U〉.
3. If) Let xL ∈ dom(Γ1) and xK ∈ dom(Γ2) then by Lemma 4.2, xL ∈ fv(M1)
and xK ∈ fv(M2) so Γ1 2 Γ2. Only if) Let xL ∈ fv(M1) and xK ∈ fv(M2) then
by Lemma 4.2, xL ∈ dom(Γ1) and xK ∈ dom(Γ2) so M1 2M2. �
The next theorem states that typings are well defined and that within a typing,
degrees are well behaved.
Theorem 3
1. The typing relation 0 is well defined on M× Env × U.
2. If M : 〈Γ 0 U〉 then OK(Γ), and d(Γ) d(U) = d(M).
3. If M : 〈Γ 0 U〉 and d(U) K then M−K : 〈Γ−K 0 U−K〉.

Proof. We prove 1. and 2. simultaneously by induction on the derivation M :
〈Γ 0 U〉. We prove 3. by induction on the derivation M : 〈Γ 0 U〉. Full details
can be found in [12]. �
Finally, here are two derivable typing rules that we will freely use in the rest of
the article.

Remark 1. 1. The rule
M : 〈Γ1 0 U1〉 M : 〈Γ2 0 U2〉

M : 〈Γ1 � Γ2 0 U1 � U2〉
�′

I is derivable.

2. The rule
xd(U) : 〈(xd(U) : U) 0 U〉

ax′ is derivable.

A Complete Realisability Semantics for Intersection Types 179

4 Subject Reduction Properties

In this section we show that subject reduction holds for 0. The proof of subject
reduction uses generation and substitution. Hence the next two lemmas.

Lemma 5 (Generation for 0)

1. If xL : 〈Γ 0 U〉, then Γ = (xL : V) and V � U .
2. If λxL.M : 〈Γ 0 U〉, xL ∈ fv(M) and d(U) = K, then U = ωK or U =
�p

i=1eK(Vi → Ti) where p ≥ 1 and for all i ∈ {1, . . . , p}, M : 〈Γ, xL : eKVi 0
eKTi〉.

3. If λxL.M : 〈Γ 0 U〉, xL �∈ fv(M) and d(U) = K, then U = ωK or U =
�p

i=1eK(Vi → Ti) where p ≥ 1 and for all i ∈ {1, . . . , p}, M : 〈Γ 0 eKTi〉.
4. If M xL : 〈Γ, (xL : U) 0 T 〉 and xL �∈ fv(M), then M : 〈Γ 0 U → T 〉.

Lemma 6 (Substitution for 0). If M : 〈Γ, xL : U 0 V 〉, N : 〈Δ 0 U〉 and
M 2N then M [xL := N] : 〈Γ �Δ 0 V 〉.

Since 0 does not allow weakening, we need the next definition since when a term
is reduced, it may lose some of its free variables and hence will need to be typed
in a smaller environment.

Definition 8. If Γ is a type environment and U ⊆ dom(Γ), then we write Γ �U
for the restriction of Γ on the variables of U . If U = fv(M) for a term M , we
write Γ �M instead of Γ �fv(M).

Now we are ready to prove the main result of this section:

Theorem 4 (Subject reduction for 0). If M : 〈Γ 0 U〉 and M �∗
βηN , then

N : 〈Γ �N0 U〉.

Proof. By induction on the length of the derivation M �∗
βη N . Case M �βη N

is by induction on the derivation M : 〈Γ 0 U〉. �

Corollary 1. 1. If M : 〈Γ 0 U〉 and M �∗
β N , then N : 〈Γ �N0 U〉.

2. If M : 〈Γ 0 U〉 and M �∗
h N , then N : 〈Γ �N0 U〉.

5 Subject Expansion Properties

In this section we show that subject β-expansion holds for 0 but that subject
η-expansion fails.

The next lemma is needed for expansion.

Lemma 7. If M [xL := N] : 〈Γ 0 U〉 and xL ∈ fv(M) then there exist a type V
and two type environments Γ1, Γ2 such that:
M : 〈Γ1, x

L : V 0 U〉 N : 〈Γ2 0 V 〉 Γ = Γ1 � Γ2

Since more free variables might appear in the β-expansion of a term, the next
definition gives a possible enlargement of an environment.

180 F. Kamareddine et al.

Definition 9. Let m ≥ n, Γ = (xLi

i : Ui)n and U = {xL1
1 , ..., x

Lm
m }. We write

Γ↑U for xL1
1 : U1, ..., x

Ln
n : Un, x

Ln+1
n+1 : ωLn+1, ..., xLm

m : ωLm . Note that Γ↑U is a
type environment. If dom(Γ) ⊆ fv(M), we write Γ↑M instead of Γ↑fv(M).

We are now ready to establish that subject expansion holds for β (next theorem)
and that it fails for η (Lemma 8).

Theorem 5 (Subject expansion for β). If N : 〈Γ 0 U〉 and M �∗
β N , then

M : 〈Γ↑M 0 U〉.

Proof. By induction on the length of the derivation M �∗
β N using the fact that

if fv(P) ⊆ fv(Q), then (Γ↑P)↑Q = Γ↑Q. �

Corollary 2. If N : 〈Γ 0 U〉 and M �∗
h N , then M : 〈Γ↑M 0 U〉.

Lemma 8 (Subject expansion fails for η). Let a be an element of A. We
have:

1. λy�.λx�.y�x� �η λy
�.y�

2. λy�.y� : 〈() 0 a→ a〉.
3. It is not possible that
λy�.λx�.y�x� : 〈() 0 a→ a〉.
Hence, the subject η-expansion lemmas fail for 0.

Proof. 1. and 2. are easy. For 3., assume λy�.λx�.y�x� : 〈() 0 a→ a〉.
By Lemma 5.2, λx�.y�x� : 〈(y : a) 0→ a〉. Again, by Lemma 5.2, a = ω� or
there exists n ≥ 1 such that a = �n

i=1(Ui → Ti), absurd. �

6 The Realisability Semantics

In this section we introduce the realisability semantics and show its soundness
for 0.

Crucial to a realisability semantics is the notion of a saturated set:

Definition 10. Let X ,Y ⊆M.

1. We use P(X) to denote the powerset of X , i.e. {Y / Y ⊆ X}.
2. We define X+i = {M+i / M ∈ X}.
3. We define X � Y = {M ∈M / M N ∈ Y for all N ∈ X such that M 2N}.
4. We say that X 4 Y iff for all M ∈ X � Y, there exists N ∈ X such that
M 2N .

5. For r ∈ {β, βη, h}, we say that X is r-saturated if whenever M �∗
r N and

N ∈ X , then M ∈ X .

Saturation is closed under intersection, lifting and arrows:

Lemma 9. 1. (X ∩ Y)+i = X+i ∩ Y+i.
2. If X ,Y are r-saturated sets, then X ∩ Y is r-saturated.
3. If X is r-saturated, then X+i is r-saturated.

A Complete Realisability Semantics for Intersection Types 181

4. If Y is r-saturated, then, for every set X , X � Y is r-saturated.
5. (X � Y)+i ⊆ X+i � Y+i.
6. If X+i 4 Y+i, then X+i � Y+i ⊆ (X � Y)+i.

We now give the basic step in our realisability semantics: the interpretations and
meanings of types.

Definition 11. Let V1, V2 be countably infinite, V1 ∩ V2 = ∅ and V = V1 ∪ V2.

1. Let L ∈ LN. We define ML = {M ∈M / d(M) = L}.
2. Let x ∈ V1. We define NL

x = {xL N1...Nk ∈ M / k ≥ 0}.
3. Let r ∈ {β, βη, h}. An r-interpretation I : A �→ P(M�) is a function such

that for all a ∈ A:
• I(a) is r-saturated and • ∀x ∈ V1. N�

x ⊆ I(a).
We extend an r-interpretation I to U as follows:
• I(ωL) = ML • I(eiU) = I(U)+i

• I(U1 � U2) = I(U1) ∩ I(U2) • I(U → T) = I(U) � I(T)
Let r-int = {I / I is an r-interpretation}.

4. Let U ∈ U and r ∈ {β, βη, h}. Define [U]r, the r-interpretation of U by:
[U]r = {M ∈ M / M is closed and M ∈

⋂
I∈r-int I(U)}

Lemma 10. Let r ∈ {β, βη, h}.

1. (a) For any U ∈ U and I ∈ r-int, we have I(U) is r-saturated.
(b) If d(U) = L and I ∈ r-int, then for all x ∈ V1, NL

x ⊆ I(U) ⊆ML.
2. Let r ∈ {β, βη, h}. If I ∈ r-int and U � V , then I(U) ⊆ I(V).

Here is the soundness lemma.

Lemma 11 (Soundness). Let r ∈ {β, βη, h}, M : 〈(xLj

j : Uj)n 0 U〉, I ∈ r-int

and for all j ∈ {1, . . . , n}, Nj ∈ I(Uj). IfM [(xLj

j := Nj)n] ∈ M then M [(xLj

j :=
Nj)n] ∈ I(U).

Proof. By induction on the derivation M : 〈(xLj

j : Uj)n 0 U〉. �

Corollary 3. Let r ∈ {β, βη, h}. If M : 〈() 0 U〉, then M ∈ [U]r. �

Proof. By Lemma 11, M ∈ I(U) for any r-interpretation I. By Lemma 4.2,
fv(M) = dom(()) = ∅ and hence M is closed. Therefore, M ∈ [U]r. �

Lemma 12 (The meaning of types is closed under type operations).
Let r ∈ {β, βη, h}. On U, the following hold:

1. [eiU]r = [U]+i
r

2. [U � V]r = [U]r ∩ [V]r
3. If I ∈ r-int and U, V ∈ U, then I(U) 4 I(V).

Proof. 1. and 2. are easy. 3. Let d(U) = K, M ∈ I(U) � I(V) and x ∈ V1 such
that for all L, xL �∈ fv(M), then M 2 xK and by lemma 10.1b, xK ∈ I(U). �

The next definition and lemma put the realisability semantics in use.

182 F. Kamareddine et al.

Definition 12 (Examples). Let a, b ∈ A where a �= b. We define:

– Id0 = a→ a, Id1 = e1(a→ a) and Id′1 = e1a→ e1a.
– D = (a � (a→ b)) → b.
– Nat0 = (a→ a)→ (a→ a), Nat1 = e1((a→ a)→ (a→ a)),

and Nat′0 = (e1a→ a)→ (e1a→ a).

Moreover, if M,N are terms and n ∈ N, we define (M)n N by induction on n:
(M)0 N = N and (M)m+1 N =M ((M)m N).

Lemma 13

1. [Id0]β = {M ∈ M� / M is closed and M �∗
β λy

�.y�}.
2. [Id1]β = [Id′1]β = {M ∈ M(1) / M is closed and M �∗

β λy
(1).y(1)}. (Note

that Id′1 �∈ U.)
3. [D]β = {M ∈M� / M is closed and M �∗

β λy
�.y�y�}.

4. [Nat0]β = {M ∈ M� / M is closed and M �∗
β λf

�.f� or M �∗
β

λf�.λy�.(f�)ny� where n ≥ 1}.
5. [Nat1]β = {M ∈ M(1) / M is closed and M �∗

β λf
(1).f (1) or M �∗

β

λf (1).λx(1).(f (1))ny(1) where n ≥ 1}.
6. [Nat′0]β = {M ∈ M� / M is closed and M �∗

β λf
�.f� or M �∗

β

λf�.λy(1).f�y(1)}.

7 The Completeness Theorem

In this section we set out the machinery and prove that completeness holds for 0.
We need the following partition of the set of variables {yL/y ∈ V2}.

Definition 13

1. Let L ∈ LN. We define UL = {U ∈ U/d(U) = L} and VL = {xL/x ∈ V2}.
2. Let U ∈ U. We inductively define a set of variables VU as follows:

– If d(U) = 1 then:
• VU is an infinite set of variables of degree 1.
• If U �= V and d(U) = d(V) = 1, then VU ∩ VV = ∅.
•
⋃

U∈U� VU = V�.
– If d(U) = L, then we put VU = {yL / y� ∈ VU−L}.

Lemma 14

1. If d(U), d(V) L and U−L = V −L, then U = V .
2. If d(U) = L, then VU is an infinite subset of VL.
3. If U �= V and d(U) = d(V) = L, then VU ∩ VV = ∅.
4.

⋃
U∈UL VU = VL.

5. If yL ∈ VU , then yi::L ∈ VeiU .
6. If yi::L ∈ VU , then yL ∈ VU−i .

Proof 1. If L = (ni)m, we have U = en1 . . . enmU
′ and V = en1 . . . enmV

′. Then
U−L = U ′, V −L = V ′ and U ′ = V ′. Thus U = V . 2. 3. and 4. By induction on
L and using 1. 5. Because (eiU)−i = U . 6. By definition. �

A Complete Realisability Semantics for Intersection Types 183

Our partition of the set V2 as above will enable us to give in the next definition
useful infinite sets which will contain type environments that will play a crucial
role in one particular type interpretation.

Definition 14

1. Let L ∈ LN. We denote GL = {(yL : U) / U ∈ UL and yL ∈ VU} and
H

L =
⋃

K�L G
K. Note that G

L and H
L are not type environments because

they are infinite sets.
2. Let L ∈ LN, M ∈ M and U ∈ U, we write:

– M : 〈HL 0 U〉 if there is a type environment Γ ⊂ HL where M : 〈Γ 0 U〉
– M : 〈HL 0∗ U〉 if M �∗

βη N and N : 〈HL 0 U〉

Lemma 15

1. If Γ ⊂ HL then OK(Γ).
2. If Γ ⊂ HL then eiΓ ⊂ Hi::L.
3. If Γ ⊂ Hi::L then Γ−i ⊂ HL.
4. If Γ1 ⊂ HL, Γ2 ⊂ HK and L � K then Γ1 � Γ2 ⊂ HL.

Proof 1. Let xK : U ∈ Γ then U ∈ UK and so d(U) = K. 2. and 3. are by
lemma 14. 4. First note that by 1., Γ1 � Γ2 is well defined. H

K ⊆ H
L. Let (xR :

U1 �U2) ∈ Γ1 � Γ2 where (xR : U1) ∈ Γ1 ⊂ HL and (xR : U2) ∈ Γ2 ⊂ HK ⊆ HL,
then d(U1) = d(U2) = R and xR ∈ VU1 ∩ VU2 . Hence, by lemma 14, U1 = U2

and Γ1 � Γ2 = Γ1 ∪ Γ2 ⊂ HL. �

For every L ∈ LN, we define the set of terms of degree L which contain some
free variable xK where x ∈ V1 and K L.

Definition 15. For every L ∈ LN, let OL = {M ∈ ML / xK ∈ fv(M), x ∈ V1

and K L}. It is easy to see that, for every L ∈ LN and x ∈ V1, NL
x ⊆ OL.

Lemma 16
1. (OL)+i = Oi::L.
2. If y ∈ V2 and (MyK) ∈ OL, then M ∈ OL

3. If M ∈ OL, M 2N and L � K = d(N), then MN ∈ OL.
4. If d(M) = L, L � K, M 2N and N ∈ OK , then MN ∈ OL.

The crucial interpretation I for the proof of completeness is given as follows:

Definition 16
1. Let Iβη be the βη-interpretation defined by: for all type variables a, Iβη(a) =
O� ∪ {M ∈M� / M : 〈H� 0∗ a〉}.

2. Let Iβ be the β-interpretation defined by: for all type variables a, Iβ(a) =
O� ∪ {M ∈M� / M : 〈H� 0 a〉}.

3. Let Ih be the h-interpretation defined by: for all type variables a, Ih(a) =
O� ∪ {M ∈M� / M : 〈H� 0 a〉}.

The next crucial lemma shows that I is an interpretation and that the inter-
pretation of a type of order L contains terms of order L which are typable in
these special environments which are parts of the infinite sets of Definition 14.

184 F. Kamareddine et al.

Lemma 17. Let r ∈ {βη, β, h} and r′ ∈ {β, h}

1. If Ir ∈ r-int and a ∈ A then Ir(a) is r-saturated and for all x ∈ V1,N�
x ⊆

Ir(a).
2. If U ∈ U and d(U) = L, then Iβη(U) = OL ∪ {M ∈ML / M : 〈HL 0∗ U〉}.
3. If U ∈ U and d(U) = L, then Ir′(U) = OL ∪ {M ∈ML / M : 〈HL 0 U〉}.

Now, we use this crucial I to establish completeness of our semantics.

Theorem 6 (Completeness of 0). Let U ∈ U such that d(U) = L.

1. [U]βη = {M ∈ML / M closed, M �∗
βη N and N : 〈() 0 U〉}.

2. [U]β = [U]h = {M ∈ML / M : 〈() 0 U〉}.
3. [U]βη is stable by reduction. I.e., IfM ∈ [U]βη andM�∗

βηN then N ∈ [U]βη.

Proof. Let r ∈ {β, h, βη}.

1. LetM ∈ [U]βη. ThenM is a closed term andM ∈ Iβη(U). Hence, by Lemma
17, M ∈ OL ∪ {M ∈ ML / M : 〈HL 0∗ U〉}. Since M is closed, M �∈ OL.
Hence,M ∈ {M ∈ML /M : 〈HL 0∗ U〉} and so,M�∗

βηN and N : 〈Γ 0 U〉
where Γ ⊂ HL. By Theorem 1, N is closed and, by Lemma 4.2, N : 〈() 0 U〉.
Conversely, take M closed such that M �∗

β N and N : 〈() 0 U〉. Let I ∈
βη-int. By Lemma 11, N ∈ I(U). By Lemma 10.1, I(U) is βη-saturated.
Hence, M ∈ I(U). Thus M ∈ [U].

2. Let M ∈ [U]β. Then M is a closed term and M ∈ Iβ(U). Hence, by Lemma
17, M ∈ OL ∪ {M ∈ ML / M : 〈HL 0 U〉}. Since M is closed, M �∈ OL.
Hence, M ∈ {M ∈ ML / M : 〈HL 0 U〉} and so, M : 〈Γ 0 U〉 where
Γ ⊂ HL. By Lemma 4.2, M : 〈() 0 U〉.
Conversely, takeM such that M : 〈() 0 U〉. By Lemma 4.2, M is closed. Let
I ∈ β-int. By Lemma 11, M ∈ I(U). Thus M ∈ [U]β .
It is easy to see that [U]β = [U]h.

3. Let M ∈ [U]βη and M �∗
βηN . By 1, M is closed,M �∗

βη P and P : 〈() 0 U〉.
By confluence Theorem 2, there is Q such that P �∗

βη Q and N �∗
βη Q. By

subject reduction Theorem 4, Q : 〈() 0 U〉. By Theorem 1, N is closed and,
by 1, N ∈ [U]βη. �

8 Conclusion

Expansion may be viewed to work like a multi-layered simultaneous substitu-
tion. Moreover, expansion is a crucial part of a procedure for calculating principal
typings and helps support compositional type inference. Because the early de-
finitions of expansion were complicated, expansion variables (E-variables) were
introduced to simplify and mechanise expansion. The aim of this paper is to give
a complete semantics for intersection type systems with expansion variables.

The only earlier attempt (see Kamareddine, Nour, Rahli and Wells [13]) at
giving a semantics for expansion variables could only handle the λI-calculus, did
not allow a universal type, and was incomplete in the presence of more than one

A Complete Realisability Semantics for Intersection Types 185

expansion variable. This paper overcomes these difficulties and gives a complete
semantics for an intersection type system with an arbitrary (possibly infinite)
number of expansion variables using a calculus indexed with finite sequences of
natural numbers.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North-Holland,
Amsterdam (revised edn.) (1984)

2. Carlier, S., Polakow, J., Wells, J.B., Kfoury, A.J.: System E: Expansion variables for
flexible typing with linear and non-linear types and intersection types. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986. Springer, Heidelberg (2004)

3. Carlier, S., Wells, J.B.: Expansion: the crucial mechanism for type inference with
intersection types: A survey and explanation. In: Proc. 3rd Int’l Workshop Inter-
section Types & Related Systems (ITRS 2004), July 19, 2005. The ITRS 2004
proceedings of Elec. Notes in Theoret. Comp. Sci., vol. 136 (2005)

4. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Principal type schemes and λ-
calculus semantics. In: Hindley, J.R., Seldin, J.P. (eds.) To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus, and Formalism. Academic Press, London
(1980)

5. Coquand, T.: Completeness theorems and lambda-calculus. In: Urzyczyn, P. (ed.)
TLCA 2005. LNCS, vol. 3461. Springer, Heidelberg (2005)

6. Goos, G., Hartmanis, J. (eds.): λ - Calculus and Computer Science Theory. LNCS,
vol. 37. Springer, Heidelberg (1975)

7. Hindley, J.R.: The simple semantics for Coppo-Dezani-Sallé types. In: Dezani-
Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137. Springer,
Heidelberg (1982)

8. Hindley, J.R.: The completeness theorem for typing λ-terms. Theoretical Computer
Science 22 (1983)

9. Hindley, J.R.: Curry’s types are complete with respect to F-semantics too. Theo-
retical Computer Science 22 (1983)

10. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Com-
puter Science, vol. 42. Cambridge University Press, Cambridge (1997)

11. Kamareddine, F., Nour, K.: A completeness result for a realisability semantics for
an intersection type system. Ann. Pure Appl. Logic 146(2-3) (2007)

12. Kamareddine, F., Nour, K., Rahli, V., Wells, J.B.: A complete realisabil-
ity semantics for intersection types and infinite expansion variables (2008),
http://www.macs.hw.ac.uk/∼fairouz/papers/drafts/compsem-big.pdf

13. Kamareddine, F., Nour, K., Rahli, V., Wells, J.B.: Realisability semantics for inter-
section type systems and expansion variables. In: ITRS 2008 (2008), http://www.
macs.hw.ac.uk/∼fairouz/papers/conference-publications/semone.pdf

14. Krivine, J.: Lambda-Calcul : Types et Modèles. Etudes et Recherches en Informa-
tique. Masson (1990)

http://www.macs.hw.ac.uk/~fairouz/papers/drafts/compsem-big.pdf
http://www.
macs.hw.ac.uk/~fairouz/papers/conference-publications/semone.pdf

Towards Efficient Verification of Systems with

Dynamic Process Creation

Hanna Klaudel1, Maciej Koutny2, Elisabeth Pelz3, and Franck Pommereau3

1 IBISC, University of Evry, bd F. Mitterrand, 91025 Evry, France
hanna.klaudel@ibisc.fr

2 SCS, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
maciej.koutny@newcastle.ac.uk

3 LACL, University of Paris Est, 61 av. du général de Gaulle, 94010 Créteil, France
{pelz,pommereau}@univ-paris12.fr

Abstract. Modelling and analysis of dynamic multi-threaded state sys-
tems often encounters obstacles when one wants to use automated ver-
ification methods, such as model checking. Our aim in this paper is to
develop a technical device for coping with one such obstacle, namely that
caused by dynamic process creation.

We first introduce a general class of coloured Petri nets—not tied to
any particular syntax or approach—allowing one to capture systems with
dynamic (and concurrent) process creation as well as capable of manipu-
lating data. Following this, we introduce the central notion of our method
which is a marking equivalence that can be efficiently computed and then
used, for instance, to aggregate markings in a reachability graph. In some
situations, such an aggregation may produce a finite representation of an
infinite state system which still allows one to establish the relevant be-
havioural properties. We show feasibility of the method on an example
and provide initial experimental results.

Keywords: Petri nets, multi-threaded systems, marking symmetries,
state-space generation.

1 Introduction

Multi-threading is a programming feature with an ever increasing presence due
to its central role in a broad range of application areas, including web services,
business computing, virtual reality, pervasive systems, and networks-on-a-chip.
Given this and the widely acknowledged complexity of multi-threaded designs,
there is a growing demand to provide methods supporting the highest possi-
ble confidence in their correctness. In a multi-threaded (or multi-process) pro-
gramming paradigm, sequential code can be executed repeatedly in concurrent
threads interacting through shared data and/or rendezvous communication. In
this paper, we consider a Petri net model that captures such a scheme in a gen-
eral fashion: programs are represented by Petri nets, and the active threads are
identified by differently coloured tokens which use, in particular, thread iden-
tifiers. Such programs and their corresponding representation in coloured Petri

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 186–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Towards Efficient Verification of Systems with Dynamic Process Creation 187

nets may be obtained compositionally from algebras of Petri nets (e.g., [19])
which ensures that several behavioural properties of the resulting nets may be
validated automatically and/or syntactically (i.e., by construction). The corre-
sponding class of nets may also be characterised using a suitable combination of
structural properties. The latter approach is used in this paper in order to avoid
dealing with a concrete net algebra.

The presence of thread identifiers in net markings has the potential of ac-
celerating the state space explosion, and so poses an additional threat for the
efficiency of verification. However, thread identifiers are arbitrary (anonymous)
symbols whose sole role is to ensure a consistent (i.e., private or local) execution
of each thread. The exact identity of an identifier is basically irrelevant, and
what matters are the relationships between such identifiers, e.g., being a thread
created by another thread. As a result, (sets of) identifiers may often be swapped
with other (sets of) identifiers without changing the resulting execution in any
essential way. Moreover, an infinite state system can sometimes be reduced to
a finite representation which in turn allows one to model check the relevant be-
havioural properties (e.g., mutual exclusion or deadlock freeness). This leads to
the problem of identifying symmetric executions, which must be addressed by
any reasonable verification and/or simulation approach to multi-threaded pro-
gramming schemes.

In this paper, we propose a method that contributes towards an efficient ver-
ification approach for multi-threaded systems modelled using a class of coloured
Petri nets. At its core lies a marking equivalence that identifies global states
which have essentially isomorphic future behaviour up to renaming of thread
identifiers. The equivalence can be computed efficiently and then it may be used
to aggregate nodes in a marking graph, or to find cut-offs during the unfolding of
a Petri net [14]. The proposed method is complemented with a generation scheme
for concrete values of thread identifiers that is both distributed and concurrent.

An important feature of the method is that it is parameterised by a set of
operations that can be applied to thread identifiers. For instance, it may or may
not be allowed to test whether one thread is a direct descendant of another
thread, and the proposed method takes this into account.

Context and Related Works. The difficulty of reasoning about the behaviour
of multiple threads operating on shared data has motivated the development of a
variety of formalisms and methods for the modelling and detecting various kinds
of errors, e.g., data races, deadlocks and violations of data invariants.

In proof based methods, such as the recent approaches in [11,23], the model is
described by means of axioms, and properties are theorems to be verified using
a theorem prover. These techniques have the advantage of being applicable to
infinite state systems, but the use of theorem provers can be a deeply technical
task which is hard to automate.

As an alternative approach, model checking techniques (see [5]) allow one
to achieve a high degree of confidence in system correctness in an essentially
automatic way. This is done by exhaustively checking a finite system model for

188 H. Klaudel et al.

violations of a correctness requirement specified formally as, e.g., a temporal
logic formula [16]. However, this makes model checking sensitive to the state
explosion problem, and so it may not be well suited to tackle real-life systems. A
variety of methods (see, e.g., [18] for a recent survey) address the state explosion
problem by exploiting, for instance, symmetries in the system model, in order to
avoid searching parts of the state space which are equivalent to those that have
already been explored. Several techniques have been implemented in widely used
verification tools, such as [3,13,17], and proved to be successful in the analysis
of complex communication protocols and distributed systems.

When dealing with multi-threaded systems, model checking typically involves
manual definition of models using low-level modelling means, such as pseudo pro-
gramming languages, Petri nets or process algebras. Some recent methodologies
(e.g. [24,6,1]) allow one to verify (Java or C) program invariants by combining
model checking and abstract interpretation [8], while others (e.g. [9]) propose
dedicated high-level input languages (a combination of multiset rewriting and
constraints) allowing one to use verification techniques employing symbolic repre-
sentations of infinite state spaces. In the domain of coloured Petri nets, extensive
work has been conducted to make model checking efficient through the use of
symbolic reachability graph constructions [4,25], and by exploiting various kinds
of partial order reductions [10,14].

Being general purpose techniques rather than designed specifically for multi-
threaded systems, the above approaches do not exploit explicitly symmetries
related to thread identifiers. An example of work which addresses expressivity
and decidability aspects of various extensions of P/T Petri nets allowing, in
particular, fresh name generation and process replication is [22]. However, it
only allows equality tests on process identifiers, and does not deal with aspects
related to the efficiency of verification.

Outline of the Paper. After introducing basic concepts concerning thread
identifiers, we present a class of Petri nets used to model multi-threaded systems
and establish some relevant properties of their reachable markings. We then de-
fine an equivalence relation on markings abstracting from the identities of thread
identifiers and discuss its main features. The paper ends with a procedure for
checking the equivalence, supported by an example and some initial experimental
results. All proofs and auxiliary results are provided in the technical report [15].

2 Process Identifiers

We denote by D the set of data values which, in particular, contains all integers.
We then denote by V the set of variables such that V ∩ D = ∅. The set P,
disjoint with D ∪ V, is the set of process identifiers, (or pids) that allow one to
distinguish different concurrent threads during an execution. We assume that
there is a set I ⊂ P of initial pids, i.e., threads active at the system startup.
To keep the formal treatment simpler, we assume throughout this paper that at
the beginning there is just one active thread, and so |I| = 1. This is a harmless

Towards Efficient Verification of Systems with Dynamic Process Creation 189

restriction since any non-trivial initial marking (with several active threads) can
be created from a restricted one by firing an initialisation transition.

Operations on Process Identifiers. It is possible to check whether two pids
are equal or not since different threads must be distinguished. Other operations
may also be applied to thread identifiers, in particular:

– π 1 π
′ checks whether π is the parent of π′ (i.e., thread π spawned thread

π′ at some point of its execution).
– π π′ checks whether π is an ancestor of π′ (i.e., is +

1).
– π �1 π

′ checks whether π is a sibling of π′ and π was spawned immediately
before π′ (i.e., after spawning π, the parent of π and π′ did not spawn any
other thread before spawning π′).

– π � π′ checks whether π is an elder sibling of π′ (i.e., � is �+
1).

Throughout the paper, we will denote by Ωpid the set of the four relations
introduced above, as yet informally, together with the equality. In particular,
only the operators in Ωpid can be used to compare pids in the annotations used
in Petri nets. Crucially, it is not allowed to decompose a pid (to extract, for
example, the parent pid of a given pid) which is considered as an atomic value
(or black box), and no literals nor concrete pid values are allowed in Petri net
annotations (i.e., in guards and arc labels) involving the pids.

The resulting formalism is rich while still being decidable. Indeed, it can be
shown that the monadic second order theory of P equipped with 1 and �1 can
be reduced to the theory of binary trees equipped with the left-child and right-
child relation which, in turn, has been shown to be exactly as expressive as the
tree automata [21]. Having said that, many simple extensions of the formalism
based on pids (de)composition are undecidable.

Thread Implementation. We assume that there exists a function ν generating
the i-th child of the thread identified by a pid π, and that there is no other way
to generate a new pid. In order to avoid creating the same pid twice, each thread
is assumed to maintain a count of the threads it has already spawned.

Apossibleway of implementing dynamic pids creation—adopted in this paper—
is to consider them as finite strings of positive integers written down as dot-
separated sequences. Then we take I

df= {1} and, for all π and i, we set ν(π, i−1) df=
π.i (i.e., the i-th pid generated from π is π.i, and i − 1 is the number of pids gen-
erated so far from π). With such a representation, the relations inΩpid other than
equality are given by:

– π 1 π
′ iff (∃i ∈ N+) π.i = π′

– π π′ iff (∃n ≥ 1) (∃i1, . . . , in ∈ N+) π.i1. · · · .in = π′
– π �1 π

′ iff (∃π′′ ∈ P) (∃i ∈ N+) π = π′′.i ∧ π′ = π′′.(i+ 1)
– π � π′ iff (∃π′′ ∈ P) (∃i < j ∈ N+) π = π′′.i ∧ π′ = π′′.j

Such a scheme has several advantages: (i) it is deterministic and allows for distrib-
uted generation of pids; (ii) it is simple and easy to implement without re-using
the pids; and (iii) it may be bounded by restricting, e.g., the length of the pids,
or the maximum number of children spawned by each thread.

190 H. Klaudel et al.

3 Coloured Petri Nets

We start with a general definition of coloured Petri nets and their dynamic be-
haviour. More details about this particular formalism and, in particular, variable
bindings and operations on multisets, can be found in [2].

Definition 1 (Petri net graph). A Petri net graph is a tuple (S, T, #) where
S is a finite set of places, T is a finite set of transitions (disjoint from S), and
is a labelling of places, transitions and arcs (in (S × T) ∪ (T × S)) such that:

– For each place s ∈ S, #(s) is a Cartesian product of subsets of pids and data,
called the type of s.

– For each transition t, #(t) is a computable Boolean expression, called the
guard of t.

– For each arc α, #(α) is a finite set of tuples of values and/or variables. �

Since we allow tuples as token values, it is possible to represent complex data
structures in a flattened form (as Cartesian products). In what follows, the set
of all finite tuples beginning with a value or variable x will be denoted by Tx.

Definition 2 (Petri net and its behaviour). A marking M of a Petri net
graph (S, T, #) is a mapping that associates with each s ∈ S a finite multiset of
values in #(s). A Petri net is then defined as N df= (S, T, #,M0), where M0 is the
initial marking.

A transition t ∈ T is enabled at a marking M if there exists a binding σ :
V → D such that σ(#(t)) evaluates to true and, for all s ∈ S, σ(#(s, t)) ≤ M(s)
and σ(#(t, s)) is a multiset over #(s). (In other words, there are enough tokens
in the input places, and the types of the output places are being respected.)

An enabled t may fire producing the marking M ′, defined for all s ∈ S by
M ′(s) df=M(s)− σ(#(s, t)) + σ(#(t, s)). We denote this by M [t, σ〉M ′.

We also denote M0 →∗ M if M is produced from M0 through the firing of a
finite sequence of transitions, i.e., if the marking M is reachable (from M0). �

We will use a specific family of Petri nets respecting structural restrictions de-
tailed below. Throughout the rest of this section, N is as in definition 2.

Assumption 1 (places). The set of places is partitioned into a unique gener-
ator place sgen , a possibly empty set of data places Sdata , and a nonempty set
of control-flow places Sflow , i.e., S df= {sgen} 5 Sdata 5 Sflow . It is assumed that:

1. The generator place sgen has the type P× N.
2. Each control-flow or data place s has the type P×P

ks×Ds where Ds ⊆ D
ms ,

for some ks,ms ≥ 0. �

The typing discipline for places ensures that we can talk about each token 〈π, · · ·〉
being owned by a thread, the pid π of which is the first component of the token.
A pid is active at a marking if it owns a token in the generator place.

Data places store, for different threads, tuples of data and/or pids owned by
currently and previously active threads.

Towards Efficient Verification of Systems with Dynamic Process Creation 191

Control-flow places indicate where the control of active threads resides. When
a control-flow place s is such that ks + ms ≥ 1, the information following the
pid of the owner provides the status of the execution; for instance, allowing one
to find out whether an exception has been raised (like in [19]).

The generator place sgen is needed by the underlying scheme for the dynamic
creation of fresh pids. For each active thread π, it stores a generator token 〈π, i〉
where i is the number of threads already spawned by π. Thus the next thread
to be created by π will receive the pid π.(i+ 1).

Assumption 2 (initial marking). The initial marking is such that:

1. All data places are empty.
2. The generator place contains exactly one token, 〈1, 0〉.
3. There is exactly one control-flow place that is non-empty, its type is P and

it contains exactly one token, 〈1〉. �

Firing a transition t captures a progression of one or several threads which meet
at a rendezvous. Below, the threads entering the rendezvous belong to a finite
non-empty set E ⊂ V. Some of them (in the set X ⊆ E) may exit the rendezvous,
others may terminate (in E \ X), and new ones may be created (in the set
N). Each of the created threads is spawned by one of the threads entering the
rendezvous. Without lost of generality, if all the entering threads terminate, we
assume that at least one is created (in order to ensure that each transition has
at least one output arc to a control-flow place).

Each thread e entering the rendezvous creates ke ≥ 0 children. Their pids are
generated using the generator place sgen that holds a counter g ∈ N for e (as for
all active pids). This counter for e stored in sgen is incremented by ke when the
transition fires, and the pids of the generated threads are e.(g+1), . . . , e.(g+ke).

At the same time, e may access data using the get operation, which consumes
a token from a data place, or the put operation, which produces a token and
inserts it into a data place. If the tokens involved are owned by e, this corresponds
to data management for e. For example, getting and putting the same value into
the same data place corresponds to reading, while getting one value and putting
another one into the same data place corresponds to an update (the computation
of the new value may be expressed through the guard of t). If the tokens involved
are not owned by e, this corresponds to asynchronous communication through
shared variables. In such a case, the put operation corresponds to the sending
of a message, while the get corresponds to the receiving of a value deposited by
another thread.

The purely syntactic restrictions on arcs and guards given below ensure that
pids are not treated as (transformable) data. Markings are not involved, and so
each thread will be identified by the variable bound to an actual pid at firing
time. This will not cause any confusion as each active pid will always appear
only once in exactly one control-flow place.

Assumption 3 (transitions, arcs and guards). For each transition t ∈ T ,
the following specifies all the arcs, arc annotations and guard components.

192 H. Klaudel et al.

t
∧

e∈E

goute = gine + ke

new threads: N

〈n1, 0〉 〈n|N |, 0〉. . .

terminated threads (τ df= |E \ X |)
. . .

〈f1, g
inf1 〉 〈fτ , ginfτ 〉

. . .

〈e, gine〉

〈e, goute〉

generator updates
(for all e such that ke > 0)

...

...

(a)

t
∧

e∈E
1≤je≤ke

ne

je
= e.(gine + je)

entering threads: E

〈e1, · · ·〉 〈e|E|, · · ·〉
. . .

exiting threads: X ⊆ E

〈x1, · · ·〉 〈x|X |, · · ·〉. . .

new threads: N
(for e ∈ E)

〈ne

1, · · ·〉

〈ne

ke
, · · ·〉

...

...

(b)

tget operations

〈a′
1, · · ·〉

〈a′
g
, · · ·〉

... put operations

〈a1, · · ·〉

〈ap, · · ·〉

...

(c)

Fig. 1. Parts of the guard and the shape of arcs for assumption 3. In (a) the arcs are
connected to the generator place, in (b) to control-flow places, and in (c) to data places.
The ai’s and a′

j ’s are variables.

1. The sets of threads E, X and N are defined as:

E df= {e | s ∈ Sflow ∧ #(s, t) ∩ Te �= ∅} ,
X df= {x | s ∈ Sflow ∧ #(t, s) ∩ Tx �= ∅} ∩ E ,
N df= {n | s ∈ Sflow ∧ #(t, s) ∩ Tn �= ∅} \ E =

⊎
e∈E{ne

1, . . . , n
e
ke
} .

It is assumed that E, X and N are subsets of V and E �= ∅ �= X ∪N .
2. t is connected to the control-flow places as shown in figure 1(b), where:

– For each e ∈ E, there exists exactly one control-flow place s such that
#(s, t) ∩ Te �= ∅. Moreover, |#(s, t) ∩ Te| = 1.

– For each x ∈ X , there exists exactly one control-flow place s such that
#(t, s) ∩ Tx �= ∅. Moreover, |#(t, s) ∩ Tx| = 1.

– For each n ∈ N , there exists exactly one control-flow place s such that
#(t, s) ∩ Tn �= ∅. Moreover, |#(t, s) ∩ Tn| = 1.

3. t is connected to the generator place sgen as shown in figure 1(a), where:
– For each f ∈ E \ X , #(sgen , t) ∩ Tf = {〈f, ginf 〉} where ginf ∈ V.
– For each n ∈ N , #(t, sgen) ∩ Tn = {〈n, 0〉}.

Towards Efficient Verification of Systems with Dynamic Process Creation 193

– For each e ∈ E with ke > 0, #(sgen , t) ∩ Te = {〈e, gine〉} and #(t, sgen) ∩
Te = {〈e, goute〉} where gine , goute ∈ V.

– For each e ∈ E with ke = 0, #(sgen , t) ∩ Te = #(t, sgen) ∩ Te = ∅.
4. There is no restriction on how t is connected to the data places. As illustrated

in figure 1(c), each put operation corresponds to a tuple in the label of an arc
from t to a data place while each get operation corresponds to a tuple in the
label of an arc from a data place to t.

5. The variables occurring in the annotations of the arcs adjacent to t can
be partitioned into pid variables and data variables, as follows: for each
place s ∈ S which has the type P × Pks × D1 × · · · × Dms , for each tu-
ple 〈x0, x1, . . . , xks , y1, . . . ,yms〉 ∈ #(s, t) ∪ #(t, s), the xi’s are pid variables
and the yj’s are data variables. In other words, locally to each transition, a
variable cannot be used simultaneously for pids and data.

6. The guard of t is a conjunction of the formulas corresponding to:
– The creation of the new pids:

∧

e∈E,1≤je≤ke

ne
je

= e.(gine + je).

– The updating of counters of spawned threads:
∧

e∈E
goute = gine + ke.

– A Boolean formula expressing a particular firing condition and data manip-
ulation, where only the operations fromΩpid are allowed on pid variables.�

Finally, any N obeying the above assumptions is a thread Petri net (or t-net).

4 Properties of Reachable Markings

We want to capture some useful properties of t-net behaviours. First, we intro-
duce control safeness and consistent thread configurations which will be used to
characterise pids occurring in reachable t-net markings.

Definition 3 (control safe markings). A t-net marking M is control safe if,
for each pid π ∈ P, one of the following holds:

– There is exactly one token owned by π in the generator place and exactly
one token owned by π in exactly one of the control-flow places (note that this
unique place may contain tokens not owned by π).

– Tokens owned by π (if any) appear only in the data places. �

Control safeness ensures that each thread is sequential, and that there is no
duplication of control-flow tokens.

Definition 4 (ct-configuration). A consistent thread configuration (or ct-
configuration) is a pair ctc df= (G,H), where G ⊂ P × N and H ⊂ P are finite
sets. Assuming that pidG

df= {π | 〈π, i〉 ∈ G} and pid ctc
df= pidG∪H, the following

are satisfied, for all 〈π, i〉 ∈ G and π′ ∈ pid ctc:

1. 〈π, j〉 /∈ G, for every j �= i.
2. If π π′ then there is j ≤ i such that π.j = π′ or π.j π′.

194 H. Klaudel et al.

We also denote nextpidctc
df= {π.(i+ 1) | 〈π, i〉 ∈ G}. �

Intuitively, G represents tokens held in the generator place, pidG comprises pids
of active threads, and H keeps record of all the pids that might occur in the
data tokens of some reachable t-net marking.

Definition 5 (ctc of a marking). Given a reachable t-net marking M , we
define ctc(M) df= (M(sgen), H), where H is the set of all the pids occurring in
the tokens held in the data and control-flow places at M . �

We can now characterise reachable markings of t-nets.

Theorem 1. Let M be a reachable t-net marking.

1. M is control safe.
2. ctc(M) is a ct-configuration. �

Knowing that all reachable t-net markings are control safe will allow us to iden-
tify those which admit essentially the same future behaviour. We start with an
auxiliary definition at the level of ct-configurations (see [15] for its soundness).

Definition 6 (isomorphic ct-configurations). Two ct-configurations, ctc =
(G,H) and ctc′ = (G′, H ′), are h-isomorphic, denoted by ctc ∼h ctc′, if there is
a bijection h : (pid ctc ∪ nextpidctc)→ (pid ctc′ ∪ nextpidctc′) such that:

1. h(pidG) = pidG′ .
2. For all 〈π, i〉 ∈ G and 〈h(π), j〉 ∈ G′, h(π.(i+ 1)) = h(π).(j + 1).
3. For ≺ in {1,} and π, π′ ∈ pid ctc: π ≺ π′ iff h(π) ≺ h(π′).
4. For � in {�1,�} and π, π′ ∈ pid ctc ∪ nextpidctc: π � π′ iff h(π) � h(π′). �

We now can introduce the central notion of this paper.

Definition 7 (marking equivalence). Let M and M ′ be reachable markings
of a t-net such that ctc(M) ∼h ctc(M ′). Then M and M ′ are h-isomorphic if:

– For each control-flow or data place s, M ′(s) can be obtained from M(s) by
replacing each pid π occurring in the tuples of M(s) by h(π).

– h({π | 〈π, i〉 ∈M(sgen)}) = {π′ | 〈π′, i′〉 ∈M ′(sgen)}.
We denote this by M ∼h M

′ or simply by M ∼M ′. �

The equivalence M ∼h M
′ means that pids are related through h, and data in

tokens in control-flow and data places remain unchanged. As far as the generator
tokens are concerned, the only requirement is that they involve h-corresponding
pids.

As shown in [15], ∼ is an equivalence relation. It follows from the next result
that it captures a truly strong notion of marking similarity.

Theorem 2. Let M and M ′ be h-isomorphic reachable markings of a t-net, and
t be a transition such that M [t, σ〉M̃ . Then M ′[t, h ◦ σ〉M̃ ′, where M̃ ′ is a mark-
ing such that M̃ ∼

�h M̃
′ for a bijection h̃ coinciding with h on the intersection

of their domains. �

Moreover, the above result still holds if Ωpid is restricted to any of its subsets
that includes pid equality.

Towards Efficient Verification of Systems with Dynamic Process Creation 195

5 Checking Marking Equivalence

We check marking equivalence in two steps. First, markings are mapped to three-
layered labelled directed graphs, and then the graphs are checked for isomorphism.

The three-layered graphs are constructed as follows. Layer-I nodes are labelled
by places, layer-II by (abstracted) tokens and layer-III by (abstracted) pids. The
arcs are of two kinds: those going from the container object toward the contained
object (places contain tokens which in turn contain pids), and those between the
vertices of layer-III reflecting the relationship between the corresponding pids
through the comparisons in Ωpid other than equality, denoted below as �j (see
figure 4).

Definition 8 (graph representation of markings). Let M be a reachable
marking of a t-net N . The corresponding graph representation

R(M) df= (V ;A,A�1 , . . . , A��
;λ) ,

where V is the set of vertices, A, A�1 , . . . , A��
are sets of arcs and λ is a labelling

of vertices and arcs, is defined as follows:

1. Layer-I: for each control-flow or data place s in N such that M(s) �= ∅, s is
a vertex in V labelled by s.

2. Layer-II: for each control-flow or data place s, and for each token v ∈M(s),
v is a vertex in V labelled by 6v7 (which is v with all pids replaced by
epsilon’s) and there is an unlabelled arc s −−−−−−−−→ v in A.
Note: separate copies of node v are created for different occurrences of v in
case M(s)(v) > 1.

3. Layer-III:
– for each vertex v added at layer-II, for each pid π in v at the position n

(in the tuple), π is an ε-labelled vertex in V and v n−−−−−−−−→ π an arc in A.
– for each token 〈π, i〉 ∈M(sgen), π.(i+1) (that is, the potential next child

of π) is a vertex in V labelled by ε.
– for all vertices π, π′ added at layer-III, for all 1 ≤ j ≤ #, there is an arc
π

�j−−−−−−−−→ π′ in A�j iff π �j π
′ (that is, A�j defines the graph of the relation

�j on V ∩ P).
4. There is no other vertex nor arc in R(M). �

To gain efficiency, R(M) may be optimised by removing some vertices and arcs,
e.g., each subgraph 〈π〉 0−−−−−−−−→ π can be replaced by π.

Theorem 3. Let M1 and M2 be two reachable markings of a t-net. R(M1) and
R(M2) are isomorphic iff M1 ∼M2. �

5.1 Example

In order to illustrate the proposed approach, we consider a simple server system
with a bunch of threads waiting for connections from clients (not modelled).

196 H. Klaudel et al.

〈1〉 s0

init

s1

wait π 1 π′

spawnc < m 〈1, 0〉

sgen

s2

comp

s3

call

s4

retπ 1 π′

s5

s6

fun

s7

π

P

〈π, g〉/P

〈π, c〉/〈π, c − 1〉

π′

π

π

π

π

π.(g + 1)

π

π

π

π
π′

〈π, g〉

〈π, g + 1〉

〈π, g〉

〈π, g + 1〉

〈π, c + 1〉

〈π, c〉

π.(g + 1)

Fig. 2. The example Petri net, where P
df
= {〈π.(g + 1), 0〉, . . . , 〈π.(g + k), 0〉}. An arc

with an arrow at both sides and labelled by a/b denotes that a is consumed and b
is produced. All places but sgen are control-flow ones. Places sgen and s1 have type
P× N and all the other places have type P. The angle brackets around singletons and
true guards are omitted. Finally, we may write an expression E on an output arc as a
shorthand for a fresh variable y instead of E, together with the condition y = E in the
guard of the adjacent transition.

Whenever a new connection is made, a handler is spawned to process it. The
handler performs some unspecified computation and then calls an auxiliary func-
tion. Terminated handlers are awaited for by the thread that spawned them. The
example illustrates two typical ways of calling a subprogram: either asynchro-
nously by spawning a thread, or synchronously by calling a function. In our
setting, both ways result in creating a new thread, the only difference is that
a function call is modelled by spawning a thread and immediately waiting for
it. In order to simplify the presentation, data is not being modelled, only the
control-flow. Moreover, for this particular example, we can take Ωpid without
the relations and �.

The whole system is modelled by the Petri net depicted in figure 2. The main
process corresponds to the transitions init, spawn and wait :

Towards Efficient Verification of Systems with Dynamic Process Creation 197

s0 : 〈1〉 s1 : 〈1.1, 0〉 s1 : 〈1.1, 1〉
s2 : 〈1.1.1〉

s1 : 〈1.1, 1〉
s3 : 〈1.1.1〉

s1 : 〈1.1, 1〉
s4 : 〈1.1.1〉

s6 : 〈1.1.1.1〉

s1 : 〈1.1, 1〉
s4 : 〈1.1.1〉

s7 : 〈1.1.1.1〉

s1 : 〈1.1, 1〉
s5 : 〈1.1.1〉

init spawn comp

call

funret

wait

Fig. 3. The state graph of N1,1 where the marking of sgen has not been represented

– Upon firing init, the initial thread 1 terminates and creates k children that
carry out the actual spawning/waiting for handler threads. The place s1
holds pairs (pid, counter) in order to allow each thread to remember the
number of handlers it has spawned.

– spawn creates one handler child and increments the counter. The maximum
number of active children is bound by m due to the guard c < m.

– wait terminates one of the children (this is verified by the guard) and decre-
ments the counter.

A handler process corresponds to the transitions comp, call and ret : comp models
the computation performed by the handler; call creates one child in order to
start an instance of the function; immediately after that wait awaits for its
termination. The function itself is modelled by a single transition fun. The net
is parameterised by two constants k and m, and so we denote it by Nk,m.

Bounding the Executions. Our approach allows to find a finite state space of
the system by detecting loops in the behaviour, i.e., parts of the execution that
are repeated with new pids. This can be illustrated using N1,1: its state space
is infinite if we use the standard Petri net transition rule. But if we identify
markings that are equivalent, it only has 7 states, as shown in figure 3.

The overall behaviour is clearly looping but, without using marking equiva-
lence, there is no cycle in the state space. Indeed, the execution of wait produces
the marking {s1 : 〈1.1, 0〉; sgen : 〈1.1, 1〉} instead of 〈1.1, 0〉 in sgen that was cre-
ated by the firing of init. From here, a second execution of spawn would produce
a new pid 1.1.2 instead of 1.1.1 that was used in the first loop. By incorporating
the proposed marking equivalence, the exact values of pids are abstracted as well
as the marking of the generator place, which allows to detect a state which is
basically the same and thus to stop the computation.

Handling Symmetries. Another advantage of our approach can be illustrated
using N2,1: two main threads are started and each can have at most one active
handler child. This system exhibits symmetric executions since the behaviour of
both threads is concurrent but is interleaved in the marking graph. For instance,
the state space has a diamond when the two threads spawn concurrently one child
each. The markings corresponding to the intermediate states of the diamond are

198 H. Klaudel et al.

pid:1.2

pid:1.1

<b

pid:1.2.2

<c

pid:1.2.1

<c

pid:1.1.2

<c<b

pid:1.2.1.1

<c

(pid:1.2, 1)

0

s1

(pid:1.1, 0)

0

s2

pid:1.2

pid:1.1

<b

pid:1.2.2

<c

pid:1.1.2

<c

pid:1.1.1

<c

(pid:1.2, 0)

0

s1

(pid:1.1, 1)

0

pid:1.1.1.1

<b

<c

s2 pid:1.2

pid:1.2.2

<c

pid:1.2.1

<c

pid:1.2.1.1

<c

(pid:1.2, 1)

0

s1

(pid:1.1, 0)

pid:1.1

0

pid:1.1.2

<c

s2

Fig. 4. Graph representations of states of N2,1. On the right, the same states reduce to
isomorphic ones when �1 is not taken into account (and so only one is depicted). The
circle, square and diamond vertices depict respectively layer-I, layer-II and layer-III
vertices. Gray vertices are those added on the basis of sgen . 1 is depicted by <c and
�1 by <b.

depicted in figure 4. Because the relation �1 has been taken into account, the two
markings are clearly not equivalent. But, when this relation is not considered,
the markings become equivalent, as shown on the right of figure 4. In the state
spaces such diamonds are removed and only one interleaving preserved.

5.2 Experimental Results

We have implemented a prototype of the proposed method using SNAKES [20]
and NetworkX [12], for the Petri net and graph part, respectively. The latter
implements VF2 [7] that is considered to be one of the fastest algorithms for
checking graph isomorphism. We have generated several state spaces, using var-
ious values of k and m and considering various Ωpid ’s. The global execution
times are not relevant since our implementation is not yet optimised. However,
we measured the time spent on computing the graph isomorphism (this part is
implemented efficiently) with respect to the size of the graphs representing t-net
markings (measured as the product of the number a of arcs and the number
v of vertices in the union of the graphs being compared). The result shows a
progression that appears to be linear (see figure 6 in [15]). This suggests that
the heuristics in VF2 are efficient for the kind of graphs involved in the checking
of marking equivalence. Considering that a ≤ v2, the experimentally observed
performance appears to be at worst v3 or, equivalently, a3/2.

Towards Efficient Verification of Systems with Dynamic Process Creation 199

6 Conclusions

Working within the context of coloured Petri nets, we proposed a technical de-
vice for coping with dynamic and concurrent creation of processes capable of
manipulating data encountered, e.g., in multi-threaded systems. The method
introduced in this paper defines and efficiently exploits an equivalence relation
on markings with essentially isomorphic future behaviours. It can be used, in
particular, to aggregate nodes in a state graph. As demonstrated by the initial
experiments, this may produce efficiently a finite representation of an infinite
state systems that is reduced with respect to symmetric executions.

Acknowledgements. We would like to thank Alexis Bes, Patrick Cegielski,
Christian Laforest and Victor Khomenko for their comments on the earlier ver-
sions of this paper. This research was supported by Nsfc Grant 60433010.

References

1. Ball, T., Chaki, S., Rajamani, S.K.: Parameterized Verification of Multithreaded
Software Libraries. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031,
pp. 158–173. Springer, Heidelberg (2001)

2. Best, E., et al.: M-Nets: An Algebra of High-Level Petri Nets, with an Application
to the Semantics of Concurrent Programming Languages. Acta Informatica 35,
813–857 (1998)

3. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric Spin. International Journal
on Software Tools for Technology Transfer 4, 92–106 (2002)

4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A Symbolic Reachability
Graph for Coloured Petri Nets. Theoretical Computer Science 176, 39–65 (1997)

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

6. Corbett, J.C., et al.: Bandera: Extracting Finite-state Models from Java Source
Code. In: Proc. ICSE 2000, pp. 439–448. ACM, New York (2000)

7. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (Sub)Graph Isomorphism
Algorithm for Matching Large Graphs. IEEE Transactions on Pattern Analysis
and Machine Intelligence 26, 1367–1372 (2004)

8. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Sta-
tic Analysis of Programs by Construction or Approximation of Fixpoints. In:
Proc. POPL 1977, pp. 238–252. ACM, New York (1977)

9. Delzanno, G.: Constraint-based Automatic Verification of Abstract Models of Mul-
tithreaded Programs. Journal of Theory and Practice of Logic Programming 7
(2007)

10. Evangelista, S.: High Level Petri Nets Analysis with Helena. In: Ciardo, G., Daron-
deau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg
(2005)

11. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular Verification of Mul-
tithreaded Programs. Theoretical Computer Science 338, 153–183 (2005)

12. Hagberg, A., Schult, D., Swart, P.: NetworkX, High Productivity Software for Com-
plex Networks, http://networkx.lanl.gov

 http://networkx.lanl.gov

200 H. Klaudel et al.

13. Hendriks, M., et al.: Adding Symmetry Reduction to Uppaal. In: Larsen, K.G.,
Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 46–59. Springer, Heidel-
berg (2004)

14. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
Thesis, School of Computing Science, University of Newcastle (2003)

15. Klaudel, H., Koutny, M., Pelz, E., Pommereau, F.: Towards Efficient Verifica-
tion of Systems with Dynamic Process Creation. LACL Technical Report (2008),
http://lacl.univ-paris12.fr

16. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems
Specification. Springer, Heidelberg (1991)

17. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht
(1993)

18. Miller, A., Donaldson, A., Calder, M.: Symmetry in Temporal Logic Model Check-
ing. ACM Comput. Surv. 38 (2006)

19. Pommereau, F.: Versatile Boxes, a Multi-Purpose Algebra of High-Level Petri Nets.
In: DADS/SCSC 2007, SCS/ACM (2007)

20. Pommereau, F.: Quickly Prototyping Petri Net Tools with Snakes. In: Proc. PN-
TAP 2008, ACM Digital Library (2008)

21. Rabin, M.O.: Decidability of Second-order Theories and Automata on Infinite
Trees. Transactions of the American Mathematical Society 141 (1969)

22. Rosa-Velardo, F., de Frutos-Escrig, D.: Name Creation vs. Replication in Petri Net
Systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp.
402–422. Springer, Heidelberg (2007)

23. Stärk, R.F.: Formal Specification and Verification of the C# Thread Model. The-
oretical Computer Science 343, 482–508 (2005)

24. Stoller, S.D.: Model-Checking Multi-threaded Distributed Java Programs. In:
Havelund, K., Penix, J., Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 224–244.
Springer, Heidelberg (2000)

25. Thierry-Mieg, Y., Dutheillet, C., Mounier, I.: Automatic Symmetry Detection in
Well-Formed Nets. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS,
vol. 2679, pp. 82–101. Springer, Heidelberg (2003)

http://lacl.univ-paris12.fr

An Observational Model for Transactional

Calculus of Services Orchestration�

Jing Li, Huibiao Zhu, and Jifeng He

Software Engineering Institute
East China Normal University

Shanghai, China, 200062
{jli, hbzhu, jifeng}@sei.ecnu.edu.cn

Abstract. The notion of web services orchestration provides a mean
to specify a process model governing business rules to provide a value-
added service. The task of building orchestrations requires mechanisms
to deal with business transactions so as to truly increase the consistency
and reliability of services. Business transactions have distinguishable fea-
tures from traditional transactions, such as autonomous and interactive,
so that it is highly suggested to be constructed by compensable transac-
tions. In this paper, we formally address the problem for orchestrating
services, with particular attention to the transaction issue. We enhance
our past work t-calculus by expanding the descriptions of basic actions
which include data computations and communications. On the other
hand, the enriched calculus is equipped with an observational semantics
which is more suitable to characterize transactions with several behav-
ioral aspects. Under this model, we are able to investigate the equivalence
relation for justifying algebraic laws, as well as refinement relation for
supporting stepwise service development.

1 Introduction

The notion of web services orchestration has been proposed to deal with web
services composition so as to provide a value-added service composed by sev-
eral existing services. Correspondingly, industrial consortia have developed sev-
eral proposals for describing orchestration in the recent years, such as BPML,
WSFL, XLANG and BPEL. The orchestration provides a mean to specify a
process model governing business rules for gluing service operations together.
These operations include both internal computations and externally visible in-
teractions. Specifically, web services orchestration targets a variety of aspects,
including interaction patterns, flow coordination, timing issues, session manage-
ment and so on. In particular, specifying transactions is important as well so as
to truly increase the reliability of business processes for composite services.
� Supported by National Basic Research Program of China (No.2005CB321904),

National High Technology Research and Development Program of China
(No.2007AA010302), National Natural Science Foundation of China (No.90718004)
and Shanghai STCSM Project (No.067062017).

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 201–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

202 J. Li, H. Zhu, and J. He

Transaction processing techniques play a major role in preserving consistency
in many types of applications. Likewise, web services orchestration requires to
coordinate loosely coupled services into a unit of work performed as a busi-
ness transaction to ensure a correct composition and a reliable execution. In the
environment of web services, business transactions are accompanied by several
distinct features. At first, they usually have long running duration which may
cause severe performance problems. Secondly, services involved in a business
transaction possibly belong to different and even competing companies, where
security and inventory control policies prevent intentional locking of local re-
sources. Lastly, communications between different services disable the outcome
of interactions to be physically undone, where the pure rollback mechanism is not
applicable at all. Therefore, the conventional automatic techniques to guarantee
atomicity become infeasible for business transactions.

In this context, business transactions relax the degree of atomicity relying on
the concept of compensation introduced by Sagas [7]. A compensation is a part
of business logic so as to recover from failure in a semantic manner. In our former
work, we proposed a transactional language t-calculus which provided a variety
of ways to set up business transactions in terms of compensable transactions so
as to enhance its flexibility and reliability. In fact, this calculus simply speci-
fies transaction flow in a high level of granularity abstracting away from data
states and service interactions, which hinders it from describing real case stud-
ies regarding service orchestration. From the semantic view, the algebraic and
operational semantics for t-calculus have been studied [11,12]. However, these
semantic models are good for optimization and simulation but not well suitable
for verifying properties and bridging specifications and implementations.

In this paper, we propose a new transactional language TCOS which is an ex-
tension of t-calculus by expanding the descriptions of basic actions which include
data computations and communications. Correspondingly, traditional constructs
depending on data state like conditional choice and condition based iteration
are actually included. In order to truly describe service behavior, we cannot just
focus on high level transactions, we should also record data state and communi-
cation traces. For this purpose, an observational semantics is established which
has its root to the seminal work of UTP [9]. Based on this model, the equiva-
lence relation between compensable transactions is investigated formally. Thus
all the algebraic laws derived before can be justified by strict proof in the case of
involving low level details. Moreover, the refinement relation between compens-
able transactions is similarly explored, which is useful for reasoning properties
and supporting stepwise service design.

This paper is organized as follows. The next section presents the syntax of
TCOS and informally expresses the meaning for each construct. Section 3 in-
troduces the semantic model with its ingredients and configurations to provide
a complete semantic view. Further, the equivalence and refinement relations for
compensable transactions are well defined. Afterwards, the observational seman-
tics for this calculus is explored in Section 4, where each transactional construct
is explained formally. Section 5 presents a set of algebraic laws with simple

An Observational Model for Transactional Calculus 203

illustration on how to set up proof in this model. The last section draws conclu-
sion with some points touching upon comparisons with some related work.

2 TCOS

We first introduce TCOS (Transactional Calculus for Orchestrating Services)
which is an extension of t-calculus. The main syntactic categories are basic ac-
tions and compensable transactions. Its syntax is summarized below.

A,B ::= x := e | rec a x | sed a x | 0 | ♦
BT ::= A÷B | Skip | Abort | Fail
S, T ::= BT | b?S :T | S � T | b ∗ T | S;T | S ‖T |

S ⊗ T | S�T | S � T | S � T | S � T
TT ::= {T }

Basic actions in t-calculus are simply denoted by symbols which lack expres-
siveness of describing low level details. Here, basic actions are expanded in detail
dealing with both internal computations and external communications. x := e is
an assignment which first evaluates the expression e and then sets the value to
variable x. However, when the expression is unsuccessfully evaluated, the oper-
ation of assignment is aborted and its context is informed of this error. Services
need to exchange messages with its partners so as to collaborate together for ful-
filling a certain task. rec a x denotes a message receipt through the channel a,
where x here is a container to store the transmitted value. Contrarily, a sending
message is represented by sed a x which forwards the value of x via the channel
a. However, network is an unstable environment under which the message may
fail to transport, thus communicating operations cannot always succeed. Overall,
basic actions are treated as atomic transactions which either succeed or abort
during a short period. In particular, the two actions 0 and ♦ denote an always
committed transaction and an aborted transaction respectively.

Compensable transactions are main blocks to build business transactions. A
compensable transaction is different from traditional transactions. Its effect can
be semantically removed even after it has committed. Basically, a compensable
transaction is composed of two parts. One part is the forward behavior denoting
the normal business logic required by applications. Another part is referred as
the compensation behavior devised to reverse the effect of its associated forward
behavior. The compensation behavior can only be activated on the successful
completion of its forward behavior. Whenever some failure arises during normal
flow, the compensation is enabled immediately to recover from this failure. The
transactional pair A ÷ B is the primary construct used to constitute a simple
compensable transaction whose both parts are basic actions, where A denotes the
forward behavior and B stands for its compensation behavior. In case of failure,
completely successful compensation renders the whole transaction aborted since
all the partial effects have been semantically undone. However, the compensation
behavior may fail halfway so that some partial effects still exist, thus leading
to an inconsistent state. We mark the inconsistent state produced by partial
compensation as fail. Thus, compensable transactions have three distinct final

204 J. Li, H. Zhu, and J. He

states: committed, aborted and failed. There are three more variations (Skip,
Abort and Fail) corresponding to the three states separately.

Compensable transactions encourage composition so that a composite trans-
action is still a compensable one on the basis of smaller ones. First of all, standard
composition manners are supported, such as conditional choice b?S : T , nonde-
terministic choice S � T , iteration b ∗ T , sequential and parallel compositions.
Particularly, the meaning for sequential and parallel compositions has been ex-
tended to orchestrate compensations. For sequential composition S;T , the com-
pensations of both branches are organized in a reverse order as opposed to their
forward behavior. In case of failure, this arrangement for compensation helps to
guarantee that the last exposed effect is first removed and the first exposed effect
is last undone, similarly to operating stacks. As for parallel composition S ‖T ,
both forward and compensation behavior are arranged in parallel. It is worth
noting that, if one branch in parallel composition fails to complete, the other
branch would not commit but terminates early by enabling its installed compen-
sation immediately. This can be warranted by the underlying mechanisms. One
mechanism is called forced termination which has been adopted by BPEL.

Apart from standard compositions, five more transaction featured operators
have been investigated for building a whole business transaction (denoted as
{T }) with a higher quality. First of all, flexibility is enforced by allowing users
to provide functionally equivalent sub-transactions for a given objective. These
equivalent transactions may have different or even priorities. Transactions with
even priorities are arranged to run in parallel, denoted as S ⊗ T . Otherwise,
the transaction with higher priority is executed first and the one with lower
priority is activated when the higher one is aborted, denoted as S � T . Secondly,
reliability is enhanced by properly dealing with partial compensations. We have
mentioned that half compensation flow will cause inconsistency for some partial
effects have been not canceled yet. In order to keep consistency, the mechanism
of exception handling (S � T and S � T) is introduced to offer further remedy.
At last, specialization is added by offering specialized compensations for specific
applications (S � T). Initially, the compensation of a composite transaction is
constructed by the accumulation of those of its sub-transactions. Concerning the
requirement of a concrete application, it is more satisfactory for developers to
directly define an appropriate compensation according to specific business logic.

3 Semantic Model

This section presents the observational semantic model for TCOS. This model
carefully selects several pairs of non-programmable variables to represent differ-
ent behavioral aspects. Each pair of variables hold the initial and later values
during the execution of a transactional service. This semantic model explores the
relation between each pair of variables so as to reflect behavioral transformation.

First of all, the data state should be recorded in order to display the actual
business information. Let V ar be the set of data variables ranged over by x, y.
Each data variable x has a counterpart x′, where x and x′ stand for the initial

An Observational Model for Transactional Calculus 205

and final values for the same data item respectively. Data state is also important
to control business flow. It decides branch selection with a condition and mul-
tiple execution within an iteration. Except for data variables, the trace variable
is needed to register what happened between collaborating services. In other
words, the sequence of communicating events is required to record for interac-
tive systems. Hence, a pair of trace variables tr and tr′ have been introduced.
tr denotes the initial trace before a transaction starts, while tr′ represents the
final trace after the transaction ends. The element in a trace has the form of a.v
denoting that a value v is transmitted through the channel a.

In order to represent the execution state of a transaction, we use the pair
of state variables st, st′ to stand for its initial and final execution states. As
mentioned before, when a compensable transaction finishes, it ends with one
of three different states: committed, aborted and failed. st′ = cmt states that
the current transaction has achieved its business target. st′ = abt says that the
current transaction has encountered a failure but its compensation successfully
undoes all the partial effects. st′ = fal tells that the compensation for the current
transaction has been activated but it is unable to complete its compensation work
by leaving some partial effects behind. Contrarily, different values of st denote
distinct execution states of the previous transaction. Basic actions are treated
as atomic transactions with two execution states: committed and aborted. Here,
abortion for atomic transactions means nothing has really happened.

A transaction may perform infinite computations or interactions, thus making
it divergent. To distinguish this chaotic behavior from terminated ones, we in-
troduce boolean variables ok, ok′ into the semantic model. ok = false indicates
the anterior transaction is divergent, thus it definitely disables the current trans-
action to start. While ok′ = true states the current transaction has terminated
with either committed, aborted or failed outcome.

For compensable transactions, the compensation is useless when its related
forward behavior does not commit. For some constructs, success of either branch
leads to achievement of its objective. In this context, we need a manner to judge
which branch is finally successful, thus the compensation for which can be de-
termined to reserve. For this purpose, we introduce a pair of variables trans
and trans′ to separately record the initial and final set of completed transaction
names. Given a transaction T , the function N (T) returns a unique name for this
transaction. For instance, two transactions with same syntax but different loca-
tions should be assigned different names. Not all successful transaction names
need to be recorded in this transaction list. Only those causing nondeterminacy
for choosing compensation should be managed in this way. Whenever such type
of transaction T succeeds, its name is put into the completed transaction list by
doing this: trans′ = trans∪{N (T)}. Different from other variables, this variable
dose not represent a kind of behavior, thus this variable should be hidden when
comparing transactions behavior.

In what follows, the observational semantics of atomic transactions is ex-
pressed in the following form:

true 0 P,Q

206 J. Li, H. Zhu, and J. He

The semantic configuration of compensable transactions is explicitly composed of
two parts expressed as follows. The upper part F 0 P,Q,R denotes the forward
behavior, denoted as Fbeh(T). Whereas the lower part F ′ 0 P ′, Q′, R′ stands
for the compensation behavior, denoted as Cbeh(T).

(
F 0 P,Q,R
F ′ 0 P ′, Q′, R′

)

where

F 0P,Q � F 0 (P ∧ st′=cmt) ∨ (Q ∧ st′=abt)
F 0P,Q,R � F 0 (P ∧ st′=cmt) ∨ (Q ∧ st′=abt) ∨ (R ∧ st′=fal)
F 0 E � (F ∧ ok ⇒ E ∧ ok′) ∧ Inv(tr, trans)
Inv(tr, trans) � tr � tr′ ∧ trans ⊆ trans′

Above, F is a predicate which only refers to initial values of variables. If F is
not satisfied, the transaction may turn into divergence. P,Q,R do not mention
any variable in {ok, ok′, st′, st}. They stand for committed behavior, aborted
behavior, and failed behavior respectively. Besides, by attaching such an invari-
ance Inv(tr, trans), the transactional behavior guarantees that the final trace
tr′ cannot be shorten and the final value of trans′ can only be expanded. Here
tr � tr′ indicates that tr is a prefix of tr′.

At last, we define the equivalence and refinement relations for two arbitrary
compensable transactions. Firstly, we define some new predicates:

P � ∃trans,trans′• P↓� P ; (true 0 true)
[P] � ∀x,y,... • P P ;Q � ∃m • (P [m/v′] ∧Q[m/v])

The predicate P is used for hiding the pair of variables trans, trans′. P↓ allows
to change data variables to any values, but the invariance Inv(tr, trans) still
holds. While [P] denotes universal quantification over all the variables in P . At
last, P ;Q indicates that the final values of variables in P are passed to Q as
the initial values of the corresponding variables. Thus, this predicate is used to
model sequential composition. Besides, we stipulate that this boolean operator
; has a lower priority than other boolean operators, such as ∧,∨,⇒.

Definition 3.1 (Equivalence). Two arbitrary transactions S, T are said to be
equivalent (written as S = T) if and only if the following formula is satisfied.

[Fbeh(S) = Fbeh(T)] ∧ [(true 0 P1)↓;Cbeh(S) = (true 0 P2)↓;Cbeh(T)]

where Fbeh(S) = F1 0 P1, Q1, R1, F beh(T) = F2 0 P2, Q2, R2

Two equivalent compensable transactions not only have equal forward behav-
ior but also have equal compensation behavior. Specially, compensation is only
activated after its forward behavior commits. However, the values of variables
in its forward behavior may be changed by following programs before the con-
trol is passed to the compensation. Here, the predicate (true 0 P1)↓;Cbeh(S)

An Observational Model for Transactional Calculus 207

clearly manifests the execution dependence between forward behavior and its
compensation. In addition, the pair of variables trans, trans′ has been hidden
since this kind of variable does not represent any kind of behavior. Similarly, the
refinement relation is defined below.

Definition 3.2 (Refinement). S is said to be a refinement of T (written as
S � T) if and only if the following formula is satisfied.

[Fbeh(S)⇒ Fbeh(T)] ∧ [(true 0 P1)↓;Cbeh(S)⇒ (true 0 P2)↓;Cbeh(T)]

where Fbeh(S) = F1 0 P1, Q1, R1, F beh(T) = F2 0 P2, Q2, R2

The refinement relation given above is quite useful for supporting stepwise service
development since it builds a link between specifications and implementations.

4 Observational Semantics for TCOS

There are two types of transactions, i.e., atomic transactions and compensable
transactions. For any transaction T , we use �T � to represent its observational
semantics. Firstly, we define the exact behavior for atomic ones.

4.1 Atomic Transactions

Assignment x := e is the primary way for internal computation. If the expression
e is well defined, the value of variable x is updated while other variables remain
unaltered. Otherwise, this operation is aborted with all the variables unchanged.
The boolean function D(e) is used to judge whether an expression is well defined
or not. It returns true if e is well defined, otherwise false is returned.

�x := e� � true 0 x′ = e ∧ II({x}) ∧D(e), II ∧ ¬D(e)

where

Col � V ar ∪ {tr, trans} II � ∀z∈Col • z′ = z II(E) � ∀z∈Col−E • z′ = z

Communications with other services are expressed as simple sending and re-
ceiving actions. The send action sed a x delivers the message stored in x to its
partner, either to invoke a remote operation or to respond upon a former request.
The receive action rec a x gets a message from its partner and stores this message
in the variable x. This type of action contributes to a recent interactive event.
Besides, the receive action changes the data state. However, an unfavorable en-
vironment of network will disable communications between services. G(net) is a
predicate to show the capability of network for interactions.

�sed a x� � true � tr′ = tr·〈a.x〉 ∧ II({tr}) ∧G(net), II ∧ ¬G(net)

�rec a x� � true � ∃v • (x′ =v ∧ tr′ = tr·〈a.v〉) ∧ II({tr, x}) ∧G(net), II ∧ ¬G(net)

where s · t denotes the concatenation for two traces s, t.
Finally, the two special actions 0 and ♦ stand for the committed and aborted

transactions respectively. Thus, the aborted behavior for 0 is always false, and
the committed behavior for ♦ is false too.

�0� � true 0 II, false �♦� � true 0 false, II

208 J. Li, H. Zhu, and J. He

4.2 Compensable Transactions

The transactional pair A÷B is the simplest form of compensable transactions.
It is composed of two atomic transactions, provided that:

�A� = true 0 P1, Q1 �B� = true 0 P2, Q2

Since atomic transactions never fail, the failed behavior for the transactional
pair is equal to false.

�A÷B� �
(
true 0 P1, Q1, false
true 0 P2, Q2, false

)

Similarly, it is easy to give the behavioral definition for Skip whose behavior is
equivalent to 0÷ 0.

�Skip� � �0÷ 0� =
(
true 0 II, false, false
true 0 II, false, false

)

As for Abort, Fail, they lead to the aborted and failed state respectively without
changing anything. Thus, the relevant part of behavior is denoted as II and the
irrelevant part is false.

�Abort� �
(
true 0 false, II, false
true 0 II, II, II

)
�Fail� �

(
true 0 false, false, II
true 0 II, II, II

)

In fact, the compensation parts for Abort and Fail can be arbitrarily chosen,
since their forward behavior has no chance to commit and the compensation will
be never activated.

In the following, we consider composition constructs for compensable trans-
actions. Suppose that the behavior for sub-transactions are given below:

�S� =

(
F1 0 P1, Q1, R1

F ′
1 0 P ′

1, Q
′
1, R

′
1

)
�T � =

(
F2 0 P2, Q2, R2

F ′
2 0 P ′

2, Q
′
2, R

′
2

)

There are two kinds of selective structures, conditional choice and nondeterminis-
tic choice. The conditional b?S :T chooses S to start if b is satisfied. Otherwise, it
executes T instead. In addition, only the compensation for the successful branch
is reserved by checking the completed transaction list.

�b?S :T �

�
�

(Fbeh(S); (III
 st �=cmt �Add(S)))
 b �(Fbeh(T); (III
 st �=cmt �Add(T)))
Cbeh(S)
 Ck(S) � Cbeh(T)

�

=

�
F1
 b � F2 � PS
 b � PT , Q1
 b � Q2, R1
 b � R2

F ′
1
 Ck(S) � F ′

2 � P ′
1
 Ck(S) � P ′

2, Q
′
1
 Ck(S) � Q′

2, R
′
1
 Ck(S) � R′

2

�

where

III � true 0 II ∧ st′ = st
PS � P1; trans′= trans ∪ {N (S)} ∧ II({trans})
PT � P2; trans′= trans ∪ {N (T)} ∧ II({trans})

Ck(S) � N (S) ∈ trans
Add(S) � true 0 trans′= trans ∪ {N (S)} ∧ II({trans}), false, false

P
 b�Q � (P ∧ b) ∨ (Q ∧ ¬b)

An Observational Model for Transactional Calculus 209

Analogously, the semantics for nondeterministic choice is defined below.

�S � T �

�
�

(Fbeh(S); (III
 st �=cmt �Add(S)))∨(Fbeh(T); (III
 st �=cmt �Add(T)))
Cbeh(S)
 Ck(S) � Cbeh(T)

�

=

�
F1 ∧ F2 � PS ∨ PT , Q1 ∨Q2, R1 ∨R2

F ′
1
 Ck(S) � F ′

2 � P ′
1
 Ck(S) � P ′

2, Q
′
1
 Ck(S) � Q′

2, R
′
1
 Ck(S) � R′

2

�

For sequential composition S;T , T is activated when S has succeeded. The
compensations for both branches are arranged in a reverse order. If T is aborted,
S will be compensated instantly. In this case, the whole composition is aborted
when the compensation of S completes, otherwise failed.

�S;T �

�
(
Fbeh(S);(III
 st �=cmt�(Fbeh(T); (III
 st �=abt�(Cbeh(S);ChSt))))
Cbeh(T);(III
 st �=cmt�Cbeh(S))

)

=
(
DSeq 0 P1;P2, Q1 ∨ (P1;Q2;P ′

1), R1 ∨ (P1;R2) ∨ (P1;Q2; (Q′
1 ∨R′

1))
F ′

2 ∧ ¬(P ′
2;¬F ′

1) 0 P ′
2;P

′
1, Q

′
2 ∨ (P ′

2;Q
′
1), R

′
2 ∨ (P ′

2;R
′
1)

)

where

DSeq � F1 ∧ ¬(P1;¬F2) ∧ ¬(P1;Q2;¬F ′
1)

ChSt � (true 0 st′= abt ∧ II)
st=cmt�(true 0 st′=fal ∧ II)

The iteration is a combination of sequential and conditional composition. The
forward behavior and compensation behavior of iteration are defined as the weak-
est fixed point of specific functions.

�b ∗ T � �
(
μY • F(Y)
μY • G(Y)

)

where
F(Fbeh(X)) � Fbeh(b?(T ;X) :Skip)
G(Cbeh(X)) � Cbeh(b?(T ;X) :Skip)

Here μY • F(Y) stands for the weakest fixed point of F in the set of solutions
of the equation Y = F(Y).

Parallel composition S ‖ T starts both branches concurrently. Two branches
may exchange message with each other through shared channels. However, S
and T do not share any data variables over V ar. Likewise, their compensations
are installed concurrently for later use. Notice that if one branch aborts or fails,
the other branch is willing to disrupt its flow and yield to this failure. Hence,
two branches must both commit or both not.

�S ‖T � �
(
Fbeh(S)‖Fbeh(T)
Cbeh(S)‖Cbeh(T)

)

=
(
F1 ∧ F2 0 P1 ‖ε P2, Q1 ‖εQ2, (Q1 ‖εR2) ∨ (R1 ‖εQ2) ∨ (R1 ‖ε R2)
F ′

1 ∧ F ′
2 0 P ′

1 ‖ε P ′
2, Q

′
1 ‖εQ′

2, (Q
′
1 ‖εR′

2) ∨ (R′
1 ‖εQ′

2) ∨ (R′
1 ‖ε R′

2)

)

210 J. Li, H. Zhu, and J. He

where

(F1 0 E1)‖(F2 0 E2) � F1 ∧ F2 0 E1 ‖ME2

P ‖MQ �∃ tr′1, tr′2, st′1, st′2,
trans′1, trans

′
2

•

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(P [tr′1/tr
′, st′1/st

′, trans′1/trans
′] ∧

Q[tr′2/tr
′, st′2/st

′, trans′2/trans
′] ∧

tr′−tr∈(tr′1−tr)‖C (tr′2−tr) ∧
∃s,s1,s2 •(s=s1 ∪ s2 ∧ trans′1 = trans ∪ s1 ∧
trans′2 = trans ∪ s2 ∧ trans′= trans ∪ s) ∧

st′1 = cmt ∧ st′2 = cmt⇒ st′ = cmt ∧
st′1 = abt ∧ st′2 = abt⇒ st′ = abt ∧
st′1 = abt ∧ st′2 = fal⇒ st′ = fal ∧
st′1 = fal ∧ st′2 = abt⇒ st′ = fal ∧
st′1 = fal ∧ st′2 = fal⇒ st′ = fal);

(st1 =cmt ∧ st2 =cmt ∨
st1 �=cmt ∧ st2 �=cmt)�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P ‖εQ �∃tr′
1,tr′

2,trans′
1,trans′

2
•

⎛

⎜⎜⎜⎜⎝

P [tr′1/tr
′, trans′1/trans

′] ∧
Q[tr′2/tr

′, trans′2/trans
′] ∧

tr′−tr∈(tr′1−tr)‖C (tr′2−tr) ∧
∃s,s1,s2 • (s=s1∪s2 ∧ trans′1 = trans∪s1
∧ trans′2 = trans∪s2 ∧ trans′= trans∪s)

⎞

⎟⎟⎟⎟⎠

Above, s−t denotes the last part of s by cutting down its prefix t. s‖C t represents
the set of all traces which are mergence of s and t with synchronization on shared
channels. Here, C is the set of shared channels through which parallel branches
exchange messages.

One more important concept is referred as assurance (b�) whose definition
is given below:

b� � (II ∧ st′ = st)
 b� false

Hence,((st1 =cmt∧ st2 =cmt)∨(st1 �=cmt∧ st2 �=cmt))� warrants that branches
in the parallel composition both commit or both not.

Speculative choice S⊗T arranges two functionally equivalent branches to run
in parallel. However, only one branch is finally selected to fulfill its objective.
When one branch commits successfully, the other cannot commit but aborts
either internally or forcibly. Especially, if either branch fails halfway, the other
should yield to this failure. Hence, the whole composition cannot end in the
case that one branch is committed and another is failed. In addition, only the
compensation for the finally completed branch is installed.

�S ⊗ T �

�
�

Fbeh(S);(III
st �=cmt�Add(S))⊗ Fbeh(T);(III
st �=cmt�Add(T))
Cbeh(S)
 Ck(S) � Cbeh(T)

�

=

�
F1∧F2 � (PS ‖ε Q2)∨(Q1 ‖ε PT), Q1 ‖ε Q2, (Q1 ‖ε R2)∨(R1 ‖ε Q2)∨(R1 ‖ε R2)
F ′

1
 Ck(S) � F ′
2 �P ′

1
 Ck(S) � P ′
2, Q

′
1
 Ck(S) � Q′

2, R
′
1
 Ck(S) � R′

2

�

An Observational Model for Transactional Calculus 211

where

(F1 � E1)⊗ (F2 � E2) � F1 ∧ F2 � E1 ⊗M E2

P ⊗M Q �∃
tr′

1, tr
′
2, st

′
1, st

′
2,

trans′
1, trans′

2

•

�
���������������������

(P [tr′
1/tr′, st′

1/st′, trans′
1/trans′] ∧

Q[tr′
2/tr′, st′

2/st′, trans′
2/trans′] ∧

tr′−tr∈(tr′
1−tr)‖C (tr′

2−tr) ∧
∃s,s1,s2 •(s=s1 ∪ s2 ∧ trans′

1= trans ∪ s1 ∧
trans′

2= trans ∪ s2 ∧ trans′ = trans ∪ s) ∧
st′

1 = cmt ∧ st′
2 = abt ⇒ st′ = cmt ∧

st′
1 = abt ∧ st′

2 = cmt ⇒ st′ = cmt ∧
st′

1 = abt ∧ st′
2 = abt⇒ st′ = abt ∧

st′
1 = abt ∧ st′

2 = fal ⇒ st′ = fal ∧
st′

1 = fal ∧ st′
2 = abt⇒ st′ = fal ∧

st′
1 = fal ∧ st′

2 = fal ⇒ st′ = fal);
(¬(st1 =cmt ∧ st2 =cmt ∨
st1 =cmt ∧ st2=fal ∨ st1 =fal ∧ st2=cmt))�

�
���������������������

Note that speculative choice is such a construct that behaves partially like par-
allel composition by allowing concurrent executions and partially like internal
choice by choosing one branch to achieve the objective.

Alternative forwarding S � T provides a forward recovery technique to re-
cover from failure. The higher priority branch S is executed first and its backup
T is activated when S aborts. The objective is realized when either branch is
successful at last.

�S �T �

�
�

Fbeh(S);(III�st =cmt�Add(S));(III�st =abt�(Fbeh(T);(III�st =cmt�Add(T))))
Cbeh(S) � Ck(S) � Cbeh(T)

�

=

�
F1 ∧ ¬(Q1;¬F2) � PS ∨ (Q1; PT), Q1; Q2, R1 ∨ (Q1; R2)
F ′

1 � Ck(S) � F ′
2 � P ′

1 � Ck(S) � P ′
2, Q′

1 � Ck(S) � Q′
2, R′

1 � Ck(S) � R′
2

�

Backward handling S � T is a construct that provides a backward handler T
to remedy the failure thrown by S. The handler tries to undo all the remaining
effects which are not covered by partial compensation of S. T is triggered on
the failure of S, and the whole composition is treated as aborted when T is
successful. Whether T is aborted or failed, the whole transaction is failed. In
addition, the compensation for S will be remembered since only the success of
S can lead to the success of the overall transaction.

�S � T � �
(
Fbeh(S); (III
 st �=fal�(Fbeh(T);ChSt))
Cbeh(S)

)

=
(
F1 ∧ ¬(R1;¬F2) 0 P1, Q1 ∨ (R1;P2), R1; (Q2 ∨R2)
F ′

1 0 P ′
1, Q

′
1, R

′
1

)

Forward handling S � T is another manner to deal with partial compensation
apart from backward handling. T is the forward handler to fix the failure thrown
by S. Different from backward handling, this construct adopts the forward recov-
ery technique trying to fulfil the business objective in the presence of failure. In

212 J. Li, H. Zhu, and J. He

other words, if the forward handler completes, the whole composition is regarded
as success though some error has occurred previously. Likewise, this handler T
is activated by the failure of S. Since the success of either branch makes the
objective realized, the compensation of the successful branch is reserved.

�S � T �

�
�

Fbeh(S);(III�st =cmt�Add(S));(III�st =fal�(Fbeh(T);(III�st =cmt�Add(T))))
Cbeh(S) � Ck(S) � Cbeh(T)

�

=

�
F1 ∧ ¬(R1;¬F2) � PS ∨ (R1; PT), Q1 ∨ (R1; Q2), R1; R2
F ′

1 � Ck(S) � F ′
2 � P ′

1 � Ck(S) � P ′
2, Q′

1 � Ck(S) � Q′
2, R′

1 � Ck(S) � R′
2

�

As for a composite transaction, developers sometimes need to program a new
compensation so as to satisfy specific application requirements. The construct
of S � T is introduced to meet this demand. Here, T is the newly programmed
compensation for S, while the original one is simply discarded.

�S � T � �
(
Fbeh(S)
Fbeh(T)

)
=
(
F1 0 P1, Q1, R1

F2 0 P2, Q2, R2

)

5 Algebraic Laws

Based on the equivalence definition for compensable transactions, we are able to
verify a set of algebraic laws explored before. We will see that all these laws are
still proved to be true while introducing data computations and communications.
Due to space limitation, we only present two proofs for simple illustration.

Conditional choice is skew symmetric and associative. Nondeterministic choice
is idempotent, commutative, associative and distributes through itself. Moreover,
all the transactional operators distribute through it. The related algebraic laws
are simply omitted.

Sequential composition is associative and has Skip as its left unit, Abort and
Fail as its left zeros.

(; -1) Abort;T = Abort (; -2) Fail;T = Fail
(; -3) Skip;T = T (; -4) (T1;T2);T3 = T1; (T2;T3)

Parallel composition is commutative and associative.

(‖ -1) S ‖T = T ‖S (‖ -2) (T1 ‖T2)‖T3 = T1 ‖(T2 ‖T3)

Speculative choice is commutative, associative and has Abort as its unit.

(⊗ -1) S ⊗ T = T ⊗ S (⊗ -2) (T1 ⊗ T2) ⊗ T3 = T1 ⊗ (T2 ⊗ T3) (⊗ -3) Abort ⊗ T = T

Proof of (⊗ -3): Let �T � =

(
F1 0 P1, Q1, R1

F ′
1 0 P ′

1, Q
′
1, R

′
1

)

An Observational Model for Transactional Calculus 213

From the definitions of �S ⊗ T � and �Abort�, we get:

�Abort⊗ T �

=

�
true ∧ F1 � II ‖ε (P1; trans′ = trans∪{N (T)}∧II({trans})), II ‖ε Q1, II ‖ε R1

true
 ¬Ck(T) �F ′
1 �II
 ¬Ck(T) �P ′

1, II
 ¬Ck(T) �Q′
1, II
 ¬Ck(T) �R′

1

�

{II ‖ε P = P, P
 b � Q = Q
 ¬b � P}

=

�
F1 � P1; trans′ = trans ∪ {N (T)} ∧ II({trans}),Q1, R1

F ′
1
 Ck(T) � true �P ′

1
 Ck(T) � II,Q′
1
 Ck(T) � II,R′

1
 Ck(T) � II

�

According to Definition 3.1, we need to verify the following formula:

[Fbeh(Abort⊗ T) = Fbeh(T)] ∧
[(true 0 P1; trans′= trans∪{N (T)}∧II({trans}))↓; Cbeh(Abort⊗ T) = (true 0 P1)↓; Cbeh(T)]

Since P hides the variables trans, trans′, we easily have:

Fbeh(Abort⊗ T) = Fbeh(T)

Relying on definitions of P↓ and P ;Q, it is easy to derive that the value of trans
in Cbeh(Abort⊗T) has the element of N (T), that is, Ck(T) is satisfied. Hence:

(true 0 P1; trans′= trans ∪ {N (T)} ∧ II({trans}))↓;Cbeh(Abort⊗ T)
= (true 0 P1; trans′= trans ∪ {N (T)} ∧ II({trans}))↓;Cbeh(T)

By using the hiding predicate again, we further have:

(true 0 P1; trans′= trans ∪ {N (T)} ∧ II({trans}))↓; Cbeh(Abort⊗ T) = (true 0 P1)↓; Cbeh(T)

Therefore, Abort⊗ T = T �
Alternative forwarding is associative and has Skip and Fail as its left zeros.

Besides, Abort is its left unit.

(�-1) Skip�T = Skip (�-2) Fail�T = Fail
(�-3) Abort�T = T (�-4) (T1 �T2)�T3 = T1 �(T2 �T3)

Exception handling has Skip and Abort as its left zeros. The handler is limited
to the area which may raise failure. We use 9 to stand for � or �.

(9 -1) Skip9 T = Skip (9 -2) Abort9 T = Abort
(� -3) (Fail� S);T = Fail� S (� -4) (Fail� S);T = Fail� (S;T)
(� -5) T1 � (T2 � T3) = T1 � T2 (� -6) (T1 � T2) � T3 = T1 � (T2 � T3)

Programmable compensation has Abort and Fail as its left zeros. Moreover, it
has several other interesting properties shown below.

(� -1) Abort�T = Abort (� -2) Fail�T = Fail
(� -3) (T1�T2)�T3 = T1�T3 (� -4) T1�(T2�T3) = T1�T2

(� -5) (T1 9 T2)�T3 = (T1�T3)9 (T2�T3) (� -6) (T1 �T2)�T3 = (T1�T3)�(T2�T3)
(� -7) (T1�T ′

1); (T2�T ′
2) = (T1; T2)�(T ′

2; T
′
1) (� -8) (T1�T ′

1)‖(T2�T ′
2) = (T1 ‖T2)�(T ′

1 ‖T ′
2)

214 J. Li, H. Zhu, and J. He

Proof of (� -3): Based on the definition of S � T , we get that:

�T1 � T2� =
(
Fbeh(T1)
Fbeh(T2)

)

�(T1 � T2) � T3� =
(
Fbeh(T1 � T2)
Fbeh(T3)

)
=
(
Fbeh(T1)
Fbeh(T3)

)
= �T1 � T3� �

6 Conclusion

A key problem of orchestration is about the treatment of business transactions.
In this paper, we continue our former works devoted to lay a formal foundation
for orchestrating services, with particular attention to the transactional aspect.
At first, we extend the transactional language by explicitly describing low level
details which is essential to specify real case studies. Secondly, we establish a to-
tally different semantic model from our previous work. Meanwhile, this semantic
view is useful for describing transactional properties while several behavioral as-
pects are needed to consider. Under this model, the equivalence and refinement
relations between them are formally investigated.

There are other works which exploit formal models to represent service or-
chestrations but not deal with transactional behavior. The calculus introduced
in [10] called COWS allows modeling multiple start activities, receive conflicts
and message routing. Orc [16] is an abstract orchestration language providing a
basic programming model for structured orchestration of services, where service
invocations are considered as function calls. As far as correlation sets exploited
by BPEL are concerned, Viroli [17] proposed a formal framework for defining
a business process as the concurrent behavior of several process instances. The
work in [2] presented a name passing process calculus with explicit notions for
service definition and session handling. SOCK [8] is a three-layered calculus
aiming to cover different service features separately and orthogonally.

Recently, business transactions have been studied based on process algebra to
provide a precise semantics. Bocchi [1] took the well known π-calculus [15] as a
starting point and added to it a new construct to address the transactional issue.
However, this new construct is relatively complex with some underlying opera-
tions in it. For example, the repository called failure bag to store enclosed com-
pensations seems improper to appear in the syntax. An event based framework
was suggested in [13] to provide a generic error handling mechanism. The event
calculus is expressive enough to encode compensation handling at a low level
description. However, it is inadequate to describe transactional structures and
their properties. Danos [6] proposed a formalization of backtracking transactions
using a variant of CCS [14]. Backtracking has similar effect to compensation, but
compensation is more powerful by virtue of its programmable trait.

The line of our work has been inspired by Sagas Calculi [3] and cCSP [4,5]
which have explicitly mentioned the notion of compensable transactions. On
their basis, we go further intending to study more features of compensable trans-
actions by investigating distinct compositional structures. Compensation itself is

An Observational Model for Transactional Calculus 215

treated as a compensable transaction too, thus we are able to provide a uniform
manner to manage both the forward and compensation behavior. In the future,
the complete framework equipped with underlying mechanisms will be provided.

References

1. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In:
Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp.
124–138. Springer, Heidelberg (2003)

2. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F.,
Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a
service centered calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

3. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM Press,
New York (2005)

4. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transaction.
In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential
Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

5. Butler, M., Ripon, S.: Executable semantics for compensating CSP. In: Bravetti,
M., Kloul, L., Zavattaro, G. (eds.) EPEW/WS-EM 2005. LNCS, vol. 3670, pp.
243–256. Springer, Heidelberg (2005)

6. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

7. Garcia-Molina, H., Salem, K.: Sagas. In: Proc. of ACM SIGMOD 1987, pp. 249–
259. ACM Press, New York (1987)

8. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

9. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall, Engle-
wood Cliffs (1998)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

11. Li, J., Zhu, H., He, J.: Algebraic Semantics for Compensable Transactions. In:
Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 306–
321. Springer, Heidelberg (2007)

12. Li, J., Zhu, H., Pu, G., He, J.: A Formal Model for Compensable Transactions. In:
Proc. of ICECCS 2007, pp. 64–73. IEEE Computer Society Press, Los Alamitos
(2007)

13. Mazzara, M., Lucchi, R.: A framework for generic error handling in business
processes. In: Proc. of WS-FM 2004. ENTCS, vol. 105, pp. 133–145. Elsevier,
Amsterdam (2004)

14. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
15. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)
16. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area comput-

ing. Journal of Software and Systems Modeling (May 2006)
17. Viroli, M.: Towards a formal foundation to orchestration languages. In: Proc. of

WS-FM 2004. ENTCS 105, Elsevier, Amsterdam (2004)

Everything Is PSPACE-Complete

in Interaction Systems

Mila Majster-Cederbaum and Christoph Minnameier�

Institut für Informatik
Universität Mannheim, Germany
cmm@informatik.uni-mannheim.de

Abstract. We study complexity issues for interaction systems, a gen-
eral model for component-based systems that allows for a very flexi-
ble interaction mechanism. We present complexity results for important
properties of interaction systems such as local/global deadlock-freedom,
progress and availability of components.

1 Introduction

First introduced by Sifakis et al. [GS03], interaction systems are a general model
for component-based systems. Its main features can be summarized as follows.
The description of a component is hidden to any other component, in particular
a component does not refer to methods or operations of other components. Com-
ponents offer ports for cooperation with other components. Components are put
together by some kind of a (separate) gluing mechanism in a such way that the
identity of each component is maintained. Components and the glue can thus
be modified freely. The gluing is realized via connectors, that consist of ports
of various components. Connectors can be of different size and each port can
participate in more than one connector.

The model has been discussed in [GS03, Sif05, GS05, GGM+07]. In [GQ07]
the model has been enriched by hierarchical connectors. A version including
variables and value passing was implemented in the BIP-project [BBS06] and in
the Prometheus-project [Goe06] and was used to implement and study a variety
of component-based systems. The relevance of the model is also stressed by the
fact that it is used as a common semantic framework in the European SPEEDS-
project [GO07].

Interaction systems can be viewed as a generalization of interface automata
[dAH01] as well as of input/output automata [LT89].

Given that interaction systems are a suitable and comfortable framework to
model component-based systems it is interesting to investigate their properties.

Here, we study algorithmic properties of interaction systems, in particular
reachability, local and global deadlock-freedom, progress and availability of com-
ponents. These properties are defined on the global state space which is expo-
nentially large in the number of components. We show that deciding either of
� Corresponding author.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 216–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Everything Is PSPACE-Complete in Interaction Systems 217

the mentioned properties is PSPACE-complete. To do so we build on a connec-
tion between interaction systems and 1-safe Petri nets that was first presented in
[MM08b] and yields PSPACE-hardness for reachability in interaction systems.

This paper is organized as follows. In Section 2 we give the basic definitions
for interaction systems and the various properties we are going to discuss and
point out the advantages of interaction systems over the closely-related models
of 1-safe Petri nets. Section 3 presents the polynomial reductions that show that
all discussed behavioral questions are PSPACE-complete. In Section 4 we give a
short conclusion and discuss related work.

2 Interaction Systems

2.1 Syntax and Semantics

An interaction system is a tuple Sys = (K, {Ai}i∈K , C,Comp, {Ti}i∈K), where
K is the set of components. Often, we assume K = {1, . . . , n}.

Each component i ∈ K offers a finite, nonempty set of ports (resp. actions)
Ai for cooperation with other components. The port sets Ai are pairwise dis-
joint.

Cooperation is described by connectors and complete interactions. A connec-
tor is a finite, nonempty set of actions c ⊆

⋃
i∈K Ai, subject to the

constraint that for each component i at most one action ai ∈ Ai is in c. A
connector c = {ai1 , . . . , aik

} with aij ∈ Aij describes the fact that the compo-
nents i1, . . . , ij may cooperate via these ports. A connector set C is a finite
set of connectors, s.t. every action of every component occurs in at least one
connector and no connector contains any other connector. We define the set of
interactions Int := {α | ∃c ∈ C, s.t. α ⊆ c}. In some cases we want to allow
that a connector is performed only partially, e.g. if not all components involved
in a connector are ready to perform their respective action. For this we may
designate certain interactions as complete interactions. Let Comp ⊆ Int be
a designated set of complete interactions. Comp has to be upwards-closed w.r.t.
C, i.e. ∀α ∈ Comp ∀α′ ∈ Int : ((α ⊂ α′)⇒ α′ ∈ Comp).

The local behavior of each component i is described by Ti = (Qi, Ai,→i, q
0
i),

where Qi is a finite set of local states, →i⊆ Qi × Ai × Qi the local transition
relation and q0i ∈ Qi is the local starting state. We assume that the Ti’s are
non-terminating, i.e. each qi ∈ Qi has at least one outgoing edge.

We call the class of all interaction systems IS.
The global behavior TSys = (Q,C ∪Comp,→Sys, q

0) of Sys (henceforth also
referred to as the global transition system) is obtained from the behaviors of the
individual components, given by the transition systems Ti, and the interactions
in C ∪ Comp in a straightforward manner:

– Q :=
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, . . . , qn) and call them
global states.

218 M. Majster-Cederbaum and C. Minnameier

– the relation →Sys ⊆ Q× (C ∪Comp)×Q, defined by
∀α ∈ (C ∪ Comp) ∀q, q′ ∈ Q q = (q1, . . . , qn) α→Sys q

′ = (q′1, . . . , q
′
n) iff

∀i ∈ K (qi
ai→i q

′
i if α ∩Ai = {ai} and q′i = qi otherwise).

– q0 := (q01 , . . . , q0n) is the starting state for Sys.

Less formally, a transition labeled by α may take place in the global transition
system when all ports occuring in α are offered by the respective components.

Example 1. The following interaction system Count (3,4) demonstrates the ca-
pability of interaction systems to synchronize with different numbers of partici-
pants. Count(3,4) = ({1, 2, 3, 4}, {Ai}1≤i≤4, C,Comp, {Ti}1≤i≤4), where
Ai = {inci, deci} (1 ≤ i ≤ 3), A4 = {inc4, dummy4},
C = {{inc1, dummy4},{inc2, dec1},{inc3, dec2, dec1},{inc4, dec3, dec2, dec1}},

Comp= {{inc1}, {inc1, dummy4}}, and the Ti’s are given in Figure 1.

q0
1

q1
1

q2
1

inc1

dec1

T1:

inc1

q0
2

q1
2

q2
2

inc2

dec2

T2:

inc2

q0
3

q1
3

q2
3

inc3

dec3

T3:

inc3

q0
4

q1
4

q2
4

inc4

T4:

inc4dummy4

Fig. 1. The local transition systems for Count(3,4)

The behavior1 of our example system Count (3,4) is as follows: It performs a
deterministic computation starting in (q01 , q02 , q03 , q04). The system describes a 34-
counter that counts from 0 to 34-1=80 and then cannot perform any further
interaction.

We refer to the local transition system Ti of a component i of some previously
defined system Sys by Ti[Sys]. The same notation is used for the other elements of
the interaction system tuple. E.g. Comp[Count(3,4)] = {{inc1}, {inc1, dummy4}}.
Whenever it is obvious by the context to which system we refer (as e.g. in the next
subsection), we may simply write Q instead ofQ[Sys], etc. for ease of notation.

2.2 Properties of Interaction Systems

For the following definitions let Sys ∈ IS :

– For local states qi ∈ Qi we define the set of enabled actions ea(qi) :=
{ai ∈ Ai | ∃q′i ∈ Qi, s.t. qi

ai→i q
′
i}.

1 Note that dummy4 is introduced only to ensure that T4 is non-terminating.

Everything Is PSPACE-Complete in Interaction Systems 219

– For q, q′ ∈ Q we say that there is a path from q to q ′ if q = q′ or
∃k ∈ N0 ∃q1, . . . , qk ∈ Q ∃α0, . . . , αk ∈ (C ∪ Comp) s.t. q α0→Sys q

1 α1→Sys

. . .
αk−1→ Sys q

k αk→Sys q
′. Such a transition sequence is called a path φ from q

to q′.
– We call an infinite transition sequence q α0→Sys . . . a run ρ from q .
– For a system Sys ∈ IS and a global state q ∈ Q we define reach(q) := {q′ ∈
Q | ∃ a path φ from q to q′}. Note that the existence of a run from q implies
(together with the finiteness of the global transition system) the existence
of a cycle that is reachable from q.

– We define the set of reachable states of Sys (with global starting state q0)
by reach(Sys) := reach(q0).

– For α ∈ Int, k ∈ K we say that k participates in α if k(α) := α ∩Ak �= ∅.
If we have k(α) = {ak} we say that k participates in α with ak. Otherwise,
we say that k does not participate in α.

– A global state q enables an interaction α ∈ (C ∪ Comp) if ∃q′ ∈ Q:
q

α→ q′. We write q �→ if q does not enable any α ∈ (C ∪ Comp).
– A global state q enables a component k ∈ K if q enables some interaction
α in which k participates. q enables an action ak of some component
k ∈ K (resp. ak is enabled in q) if q enables an interaction α in which k
participates with ak.

– Let q = (q1, . . . , qn) ∈ Q be a global state. We say that some non-empty set
K̃ = {j1, j2, . . . , j|K̃|} ⊆ K of components is in local deadlock in q if
∀i ∈ K̃ ∀α ∈ (C ∪ Comp): (α ∩ ea(qi) �= ∅)⇒ (∃j ∈ K̃ j(α) �⊆ ea(qj)).

– A global deadlock is a special case of a local deadlock, when K̃ = K.
– For a system Sys that has no global deadlock, we define that k ∈ K does

progress in Sys if k occurs infinitely often in every run from q0.
– For a system Sys that has no global deadlock, we define that k ∈ K is

available in Sys if k is enabled infinitely often in (states occuring in) every
run from q0.

We define in the following a list of decidability problems:
Reachability := {(Sys, q) | Sys ∈ IS and q ∈ reach(Sys)}.
LDIS := {Sys ∈ IS |∃q ∈ reach(Sys) ∃ K̃⊆K s.t. K̃ is in local deadlock in q}.
GDIS := {Sys ∈ IS | ∃q ∈ reach(Sys), s.t. q �→}.
Progress := {(Sys, k) | Sys ∈ (IS\GDIS) and k ∈ K[Sys] does progress in Sys}.
Availability := {(Sys, k) |Sys∈(IS \GDIS) and k ∈K[Sys] is available in Sys}.

2.3 Interaction Systems and 1-Safe Petri Nets

In this subsection we give a short discussion of interaction systems versus 1-safe
Petri-nets. As we showed in [MM08b] we can translate a 1-safe Petri net into
an interaction system in time polynomial in the size of the input such that the
property of reachability is preserved. This will be the basis for our PSPACE-
hardness results. On the other hand one can show that there is no general trans-
lation from interaction systems to 1-safe Petri nets that yields bisimilarity for

220 M. Majster-Cederbaum and C. Minnameier

the global transition systems and that there is no polynomial translation that
yields isomorphy even for the unlabeled versions of the global transition systems.

Still one might want to ask for further motivation why one should deal with
interaction systems instead of using Petri nets.

Our first argument concerns the fact that we want to model and investigate
component-based systems. In a component-based system it should be possible
to freely combine components in a very flexible way, substitute a component by
another one or change the glue code by which components are put together. As
we argue interaction systems are a model that satisfies these needs.

There have been attempts to use Petri nets for the analysis of component-
based systems. In [BB04, BB06] the model CompoNets based on colored Petri
nets is proposed. In this model every component offers a set of ports. Its behavior
is described by a Petri net. There is a set of syntactic rules that regulate how
components are glued together via their port sets. However there is no formalism
that allows to determine the behavior of the global system. Moreover when
components are put together the identity of a component is lost and hence
substituting one component for another one in the composed systems or asking
for the liveness of a component is not feasible. Other approaches using Petri
nets to model component-based systems can be found in [AS99, AS02, PK07,
SVvdW]. General problems with Petri nets approaches are that Petri nets lack
full compositionality and the loss of the identity of components in the composed
system which is needed for reconfiguration of systems.

Given this situation one could think of modeling components systems by inter-
action systems and then transforming the interaction system by our translation
into a 1-safe Petri net which could then be analyzed by a Petri net tools or
submitted to a model checker. When however trying to translate an interaction
system into a 1-safe Petri net one can show that there are simple interaction
systems for which no bisimilar 1-safe Petri exists. In a context of model checking
e.g. with respect to modal μ-calculus bisimilarity is however very important as
two processes satisfy the same set of formulae if and only if they are bisimilar.
Hence if we are interested in general properties as expressed by modal μ-calculus
this approach does not work.

3 The Polynomial Time Reductions

In [MM08b], we gave a polynomial translation from 1-safe Petri nets to interaction
systems, which yielded PSPACE-hardness for reachability in interaction systems.
In this section, we give four polynomial reductions f1, . . . , f4 that build a reduction
chain as depicted in Figure 2. The chain allows us to derive the PSPACE-hardness
result from reachability for all considered properties as well as PSPACE-solvability
from availability for all properties in the chain. Hence we prove all problems in
the chain to be PSPACE-complete. Although the reductions vary strongly in their
degree of difficulty they also have some basic idea in common. In each of the re-
ductions, we add a component main to the system. However, the local transition
system of main will be a different one for each reduction.

Everything Is PSPACE-Complete in Interaction Systems 221

Reachability Progress
f1

GDIS
f2

LDIS
f3

Availability
f4

PSPACE-hard ∈ PSPACE

[MM08b]

Fig. 2. The Polynomial Time Reductions fi (1 ≤ i ≤ 4)

For each reduction, we present its formal definition followed by a short ex-
planation. Explicit formal proofs have been omitted for better readability. The
proofs for the reductions are sketched in the various following subsections and
the verification of their logspace computability is left to the reader.

We will now give a short reasoning why Availability is in PSPACE :
Given an interaction system and one of its components k we want to decide

whether from every reachable global state we will, - no matter in which way we
continue our transition sequence - eventually reach a state that enables k.

Note that Availability is the question whether there exists a reachable global
state q, from which q itself is reachable by a non-empty transition sequence
q → q′ → . . .→ q such that none of the global states q, q′, . . . enables k.

To solve Availability we first guess our way from the global starting state q0 to
some q as described above. It is easy to verifiy in each step in polynomial space
that we follow indeed an allowed edge in the global transition system. Next,
once we reach q, we store it and guess the cycle described above back to q. It is
possbile in polynomial space to verifiy that the cycle is non-empty, that none of
the visited states enables k and that we do indeed reach q after all.

So Availability is in NPSPACE and thus Availability is in co-NPSPACE which
equals PSPACE due to Savitch [Sav70].

3.1 Reachability Is Polynomially Reducible to Progress

Theorem 1. Reachability is polynomially reducible to Progress

Proof. Let Sys ∈ IS and q = (q1, . . . , qn) ∈ Q[Sys]. We associate with (Sys,q)
an interaction system f1(Sys, q) (which is free of global deadlocks) s.t.

((Sys,q) ∈ Reachability) ⇔ ((f1(Sys,q),main) �∈ Progress).

Formal definition of f1.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then
f1(Sys, q) = {K ′, {A′

i}i∈K′ , C′,Comp′, {T ′
i}i∈K′}, where

K ′ := K ∪ {main},
For i∈K:A′

i := Ai ∪ {runi},
A′

main := {dummymain, checkmain},

222 M. Majster-Cederbaum and C. Minnameier

For i∈K:T ′
i := (Qi, A

′
i,→′

i, q
0
i), where

→′
i :=→i ∪{(qi, runi, qi)},

T ′
main := ({q0main}, A′

main,→′
main, q

0
main), where

→′
main := {(q0main, checkmain, q

0
main), (q0main, dummymain, q

0
main)}.

C ′ := {c ∪ {checkmain}|c ∈ C}∪{{runi |1 ≤ i ≤ n}}∪{{dummymain}},
Comp ′ := {α ∪ {checkmain} | α ∈ Comp}.

Explanation. We add a component main whose local transition system consists
of a single state with two loops. Also, for each local transition system Ti we add
a loop in the state qi labeled by runi. Clearly f1(Sys, q) ∈ IS holds. The loop of
main labeled by dummymain can be performed independently (i.e. {dummymain}
is a connector) and assures that f1(Sys,q) �∈ GDIS (which is a precondition for
asking for progress). The second loop is labeled by the action checkmain, which
is added to every interaction α ∈ C ∪ Comp. Hence, the only interaction in
C ∪Comp in which main does not participate is {run1, . . . , runn}.

This fact, together with the obvious observation that q is reachable in Sys
iff q extended by q0main is reachable in f1(Sys, q) allows us to conclude that in
f1(Sys, q) there is a run from q in which main does not participate iff q is reach-
able in Sys.

3.2 Progress Is Polynomially Reducible to GDIS

Preliminaries. The construction applied in Example 1 in Section 2.1 can easily
be parameterized in order to build an interaction system for an mn-counter,
m,n ∈ N:
Count(m,n) = ({n+ 1, . . . , 2n}, {Ai}n+1≤i≤2n, C, Comp, {Ti}n+1≤i≤2n),
where Ai = {inci, deci} for n+ 1 ≤ i ≤ 2n− 1 and A2n = {inc2n, dummy2n}

C = {{incn+1, dummy2n}} ∪
⋃2n

i=n+2{c(inci)}
where c(inci) = {inci} ∪

⋃i−1
j=n+1{decj},

Comp = {{incn+1}, {incn+1, dummy2n}},
Ti = (Qi, Ai,→i, q

0
i), where Qi = {q0i , . . . , qm−1

i } and

→i=
{
{(qji , inci, q

j+1
i) | 0 ≤ j ≤ m− 2} ∪ {(qm−1

i , deci, q
0
i)} ;n+ 1 ≤ i≤2n−1

{(qji , inci, q
j+1
i) | 0 ≤ j ≤ m− 2} ∪ {(qm−1

i , dummy2n, q
m−1
i)} ; i = 2n

As already pointed out in Section 2.1, such a system behaves deterministically
and simply performs mn − 1 (“counting”) interactions before stopping.

Theorem 2. Progress is polynomially reducible to GDIS2.

Proof. Let Sys ∈ (IS \ GDIS) and k ∈ K[Sys]. In case k participates in every
α ∈ C ∪Comp, k does progress3. Otherwise, we associate with (Sys,k) an inter-
action system f2(Sys, k) s.t.

((Sys,k) ∈ Progress) ⇔ (f2(Sys,k) �∈ GDIS).

In the following, let m := max{|Qi| | i ∈ K[Sys]}.
2 Please note that an alternative proof of PSPACE-hardness of GDIS is given in

[MM08b]. Thus f2 mainly serves to establish PSPACE-completeness.
3 We have to consider this case explicitly because f2(Sys, k) �∈ IS for such an input.

Everything Is PSPACE-Complete in Interaction Systems 223

q0
main q1

main q3
main

q2
main

excludemain checkmain

excludemain countmain

checkmaincheckmain

Fig. 3. The local transition system T ′
main

Formal definition of f2.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then
f2(Sys, k) = {K ′, {A′

i}i∈K′ , C′,Comp’, {T ′
i}i∈K′}, where

K ′ := K ∪ {n+ 1, . . . , 2n,main},
For i ∈ K: A′

i := Ai,
For i ∈ {n+ 1, . . . , 2n}: A′

i := Ai[Count(m,n)],
A′

main := {checkmain, excludemain, countmain},
For i ∈ K: T ′

i := Ti,
For i ∈ {n+ 1, . . . , 2n}: T ′

i := Ti[Count(m,n)],
and T ′

main is depicted in Figure 3.
Ccheck := {c ∪ {checkmain} | c ∈ C}

Compcheck := {α ∪ {checkmain} | α ∈ Comp}
Cexclude := {c ∪ {excludemain} | c ∈ C ∧ k(c) = ∅}

Compexclude := {α ∪ {excludemain} | α ∈ Comp ∧ k(α) = ∅}
Ccounter := {c ∪ {countmain} | c ∈ C[Count(m,n)]}

Compcounter := {α ∪ {countmain} | α ∈ Comp[Count(m,n)]}
(= {{incn+1, countmain}, {incn+1, dummy2n, countmain}})

C ′ := Ccheck ∪ Cexclude ∪ Ccounter

Comp ′ := Compcheck ∪ Compexclude ∪ Compcounter

Explanation. First, we observe that f2(Sys, k) ∈ IS holds. Sys is globally
deadlock-free and we want to know whether it contains a run from q0, in which
k does not participate infinitely often. This amounts to the question, whether
there is a reachable global state, that lies on a cycle that does not involve k. As
mn is an upper bound for the size of the global state space of Sys, this is equiv-
alent to asking whether it is possible to perform mn consecutive interactions in
which k does not participate.

3.3 GDIS Is Polynomially Reducible to LDIS

Theorem 3. GDIS is polynomially reducible to LDIS

Proof. Let Sys ∈ IS. We associate with Sys an interaction system f3(Sys) s.t.
(Sys ∈ GDIS) ⇔ (f3(Sys) ∈ LDIS).

224 M. Majster-Cederbaum and C. Minnameier

Formal definition of f3.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then
f3(Sys) = {K ′, {A′

i}i∈K′ , C′,Comp′, {T ′
i}i∈K′}, where

K ′ := K ∪ {main},
For i∈K:A′

i := Ai ∪ {dummyi},
A′

main := {dummymain, checkmain},
For i∈K:T ′

i := (Qi, A
′
i,→′

i, q
0
i), where

→′
i := →i ∪{(qi, dummyi, qi) | qi ∈ Qi}.

T ′
main := ({q0main, q

1
main}, A′

main,→′
main, q

0
main), where

→′
main := {(q0main, checkmain, q

1
main), (q1main, dummymain, q

0
main)},

C ′ := {c ∪{checkmain}|c ∈C}∪{{dummy1, . . . ,dummyn,dummymain}},
Comp ′ := {α ∪ {checkmain} | α ∈ Comp}.

Explanation. Clearly, f3(Sys) ∈ IS. We add an additional component main
which alternatingly accompanies orignal interactions of Sys in one step and then
allows the system to perform a connector including all components in a second
step. This preserves global deadlocks but resolves local ones.

3.4 LDIS Is Polynomially Reducible to Availability

Theorem 4. LDIS is polynomially reducible to Availability

Proof. Let Sys ∈ IS. We associate with Sys an interaction system f4(Sys) (which
is free of global deadlocks) s.t.

(Sys ∈ LDIS) ⇔ ((f4(Sys),main) �∈ Availability).

Formal definition of f4.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K},
then f4(Sys) = {K ′, {A′

i}i∈K′ , C′,Comp′, {T ′
i}i∈K′}, where4

K ′ := K ∪ {n+1} ∪ {main}
For i∈K:A′

i := Ai ∪ {âi | ai ∈ Ai} ∪ {locki, unlocki, di, di, cleari}
A′

n+1 := {dummyn+1, lockn+1, unlockn+1}
A′

main := {lockmain, unlockmain, clearmain, progressmain}
For i∈K:T ′

i := (Q′
i, A

′
i,→′

i, q
0
i), where

Q′
i :=

⋃
qi∈Qi

{qi, q̂i, qDi , q̂Di , qDi , q̂Di , qclr
i }

→′
i :=

⋃
qi∈Qi

{ (qi, locki, q̂i), (q̂i, di, q
D
i), (qDi , unlocki, q̂

D
i), (q̂i, di, q

D
i),

(qDi , unlocki, q̂
D
i), (q̂Di ,

⋃
ai∈ea(qi)

{ai, âi}, qclri),
(q̂Di , Ai ∪ {alli}, q̂Di), (qclri , cleari, q

clr
i)}

∪ →i

T ′
n+1 and T ′

main are given in Figure 5.

4 For ease of notation we use sets of actions as edge labels in the definition of →′
i as

well as in Figure 4. When we write (q, A, q′) ∈→′
i we mean (q, a, q′) ∈→′

i ∀a ∈ A.
Note that by ea(qi) we refer to the enabled actions of the local state qi in Sys (not
in f4(Sys)).

Everything Is PSPACE-Complete in Interaction Systems 225

qi

locki

locki
q̂i

locki

qD
i

qD
i

di

di

q̂D
i

q̂D
i

unlocki

unlocki
Ai ∪ {alli}

qclr
i

⋃
ai∈ea(qi)

{ai, âi}
cleari

T ′

i :

Fig. 4. The modification for a local state qi in the local transition system T ′
i

q0
main q1

main q2
main

lockmain unlockmain

q3
main

progress
main

clearmain

T ′

main :

q0
n+1

dummy
n+1

T ′

n+1 :

q1
n+1 q2

n+1

dummy
n+1

lockn+1 unlockn+1

Fig. 5. The local transition system T ′
main

The result of our modifications is sketched for a single state qi ∈ Qi in Figure 4.

C ′ := {{dummyn+1}, {lock1, . . . , lockn, lockn+1, lockmain}}
∪ {{unlock1, . . . ,unlockn,unlockn+1,unlockmain}}
∪ {{d1}, . . . , {dn}, {d1}, . . . , {dn}}
∪ {{all1, . . . , alln, clearmain}}
∪ {{clear1, clearmain}, . . . , {clearn, clearmain}}
∪ {{progressmain}}
∪ C ∪ Cclear, where

Cclear := {{clearmain, â} ∪ (c \ a) | a ∈ c ∈ C}
Comp ′ := Comp ∪ Compclear, where

Compclear := {{clearmain, â} ∪ (α \ a) | a ∈ α ∈ Comp}

Explanation. Clearly, f4(Sys) ∈ IS holds. Component n+1 guarantees f4(Sys)
�∈ GDIS. The idea of our reduction is as follows: In the beginning main offers
in any reachable state an action lockmain, which can participate in the lock -
interaction which includes all components. As a result, main will always be
enabled as long as this action is not performed. Now in any reachable state
q of Sys we want to be able to check whether there is a local deadlock in q.
For this purpose in any reachable state (q1, . . . , qn, q0n+1, q

0
main), the interaction

{lock1, . . . , lockn, lockn+1, lockmain} can be performed leading to a state where
for every i ∈ K a choice between di and di takes place. Those components j
that select dj form a subset K̃ ⊆ K. If and only if K̃ is in local deadlock in
(q1, . . . , qn) in Sys, the component main will not be able to participate in any
further interaction.

226 M. Majster-Cederbaum and C. Minnameier

4 Conclusion and Related Work

We give a complete complexity-theoretic characterization of the most relevant be-
havioral questions in interaction systems. Similar results have been proved for
1-safe Petri nets in [CEP93]. The PSPACE-hardness results motivate other ap-
proaches to guarantee the discussed properties. One approach is to establish con-
ditions that can be tested in polynomial time and imply the desired properties
[MMM07, MMM, IU01, BHH+06]. Another approach exploits compositionality
[AB03, GGM+07]. Further, one may put restrictions on the communication struc-
ture of the interaction system [MM08a, BCD02]. The aim of all these approaches
is to derive global properties from local information as much as possible.

References

[AB03] Aldini, A., Bernardo, M.: A General Approach to Deadlock Freedom Ver-
ification for Software Architectures. In: Araki, K., Gnesi, S., Mandrioli,
D. (eds.) FME 2003. LNCS, vol. 2805, pp. 658–677. Springer, Heidelberg
(2003)

[AS99] Aoumeur, N., Saake, G.: Towards an Object Petri Nets Model for Specify-
ing and Validating Distributed Information Systems. In: Jarke, M., Ober-
weis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 381–395. Springer, Hei-
delberg (1999)

[AS02] Aoumeur, N., Saake, G.: A Component-based Petri Net Model for Spec-
ifying and Validating Cooperative Information Systems. Data Knowl.
Eng. 42(2), 143–187 (2002)

[BB04] Bastide, R., Barboni, E.: Component-based Behavioural Modelling with
High-Level Petri Nets. In: Proceedings of MOCA 2004, pp. 37–46 (2004)

[BB06] Bastide, R., Barboni, E.: Software Components: a Formal Semantics Based
on Coloured Petri Nets. In: Proceedings of FACS 2005. ENTCS, vol. 160,
pp. 57–73 (2006)

[BBS06] Basu, A., Bozga, M., Sifakis, J.: Modeling Heterogeneous Real-time Com-
ponents in BIP. In: Proceedings of SEFM 2006, pp. 3–12. IEEE Computer
Society Press, Los Alamitos (2006)

[BCD02] Bernardo, M., Ciancarini, P., Donatiello, L.: Architecting Families of Soft-
ware Systems with Process Algebras. ACM Trans. on Software Engineer-
ing and Methodology 11, 386–426 (2002)

[BHH+06] Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.:
A Component Model for Architectural Programming. In: Proceedings of
FACS 2005. ENTCS, vol. 160, pp. 75–96 (2006)

[CEP93] Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-safe Nets.
In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 326–
337. Springer, Heidelberg (1993)

[dAH01] de Alfaro, L., Henzinger, T.: Interface Automata. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 109–120. Springer, Heidelberg (2002)

[GGM+07] Goessler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis,
J.: Ensuring Properties of Interaction Systems. In: Reps, T., Sagiv, M.,
Bauer, J. (eds.) Wilhelm Festschrift. LNCS, vol. 4444, pp. 201–224.
Springer, Heidelberg (2007)

Everything Is PSPACE-Complete in Interaction Systems 227

[GO07] Graf, S., Ober, I.: Modelling and Validation of Software and Architecture
with Omega-UML and the IF Validation Toolbox. In: Genie Logiciel (to
appear, 2007), http://www.speeds.eu.com

[Goe06] Goessler, G.: Component-based Design of Heterogeneous Reactive Sys-
tems in Prometheus. Technical report 6057, INRIA (December 2006)

[GQ07] Graf, S., Quinton, S.: Contracts for BIP: Hierarchical Interaction Models
for Compositional Verification. In: Derrick, J., Vain, J. (eds.) FORTE
2007. LNCS, vol. 4574, pp. 1–18. Springer, Heidelberg (2007)

[GS03] Goessler, G., Sifakis, J.: Component-based Construction of Deadlock-
free Systems. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003.
LNCS, vol. 2914, pp. 420–433. Springer, Heidelberg (2003)

[GS05] Goessler, G., Sifakis, J.: Composition for Component-based Modeling. Sci.
Comput. Program. 55(1-3), 161–183 (2005)

[IU01] Inverardi, P., Uchitel, S.: Proving Deadlock Freedom in Component-Based
Programming. In: Hussmann, H. (ed.) FASE 2001. LNCS, vol. 2029, pp.
60–75. Springer, Heidelberg (2001)

[LT89] Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata.
In: CWI-Quarterly, pp. 219–246 (1989)

[MM08a] Majster-Cederbaum, M., Martens, M.: Compositional Analysis of Tree-
Like Component Architectures (submitted for publication, 2008)

[MM08b] Majster-Cederbaum, M., Minnameier, C.: Deriving Complexity Results
for Interaction Systems from 1-safe Petri Nets. In: Geffert, V., Karhumäki,
J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM
2008. LNCS, vol. 4910, pp. 352–363. Springer, Heidelberg (2008)

[MMM] Majster-Cederbaum, M., Martens, M., Minnameier, C.: Liveness in Inter-
action Systems. In: Proceedings of FACS 2007. ENTCS (2007)

[MMM07] Majster-Cederbaum, M., Martens, M., Minnameier, C.: A Polynomial-
time Checkable Sufficient Condition for Deadlock-Freedom of Component-
based Systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362,
pp. 888–899. Springer, Heidelberg (2007)

[PK07] Padberg, J., Kuessel, U.: A Component-based Verification Approach based
on Petri Net Components. In: Proceedings of FORMS/FORMAT 2007,
pp. 40–50 (2007)

[Sav70] Savitch, W.: Relationships between Nondeterministic and Deterministic
Tape Complexities. Journal of Computer and System Sciences 4, 177–192
(1970)

[Sif05] Sifakis, J.: A Framework for Component-based Construction. In: Proceed-
ings of the Third IEEE International Conference on Software Engineering
and Formal Methods, pp. 293–300. IEEE Computer Society Press, Los
Alamitos (2005)

[SVvdW] Sidorova, N., Voorhoeve, M., van der Woude, J.C.S.P.: A Calculus of Petri
Net Components. In: Proceedings of MOCA 2001, pp. 121–132 (2001)

http://www.speeds.eu.com

A New Approach for the Construction of

Multiway Decision Graphs

Y. Mokhtari1, Sa’ed Abed1, O. Ait Mohamed1, S. Tahar1, and X. Song2

1 Dept. of ECE, Concordia University, Canada
{mokhtari,s abed,ait,tahar}@ece.concordia.ca

2 Dept. of ECE, Portland State University, USA
song@ee.pdx.edu

Abstract. Multiway Decision Graphs (MDGs) are a canonical represen-
tation of a subset of many-sorted first-order logic. It generalizes classical
BDDs with abstract data and uninterpreted functions. In this paper, we
describe a new MDG construction based on the Generalized-If-Then-Else
(GITE) operator. Consequently, we review the main algorithms used for
verification techniques i.e. relational product and pruning by subsump-
tion. Unlike an earlier version of the MDG package, basic MDG algorithms
are defined uniformly through this single GITE operator which will lead
to a more efficient implementation. The new tool, called NuMDG, accepts
an extended SMV language, supporting abstract data sorts.

1 Introduction

Reduced and Ordered Binary Decision Diagrams (ROBDDs) [1] have been widely
studied due to their successful use in automated hardware verification. The key
of the success is a canonical representation and easy manipulation of Boolean
functions. Most BDD packages provide an efficient implementation based on
recursive operations using a three operand function commonly known as ITE.
Moreover, they provide many operations that are extensively used in automated
verification methods. However, these methods suffer from the drawback that
they require a binary representation of the circuit. Every individual bit of every
data signal must be encoded by a separate Boolean variable, while the size of
ROBDD grows, sometimes exponentially, with the number of variables. This
leads to a state explosion problem when ROBDD-based methods are applied to
circuits with complex datapath.

Multiway Decision Graphs (MDGs) [2] have been proposed to overcome this
limitation. MDGs are a canonical representation of a certain class of many-sorted
first-order logic formulae, where data values and operations are represented by
abstract variables and uninterpreted functions, respectively. Therefore, especially
for circuits having a complex datapath, MDGs are much more compact than
ROBDDs and enhance the capability to verify a broader range of circuits [3].
In MDG-based verification, abstract description of states machines (ASM) are
used for modeling systems. In contrast to ordinary Finite State Machines (FSM),
the ASM supports non-finite state machines as models in addition to their in-
tended interpretations. The intent is to rise the abstraction level of automated

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 228–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Approach for the Construction of Multiway Decision Graphs 229

verification methods to approach those of interactive theorem proving methods
without sacrificing automation. MDGs have been investigated from different an-
gles and it culminated in a MDG tool providing Prolog-style MDG-HDL for
modeling and different verification techniques including sequential and combi-
national equivalence checking, invariant checking and a subset of first-order LTL
model checking [4,5].

The work presented here mainly reviews the previous work [2] in one respect.
The set of basic operations on MDGs was implemented separately, while ROBDD
operations are implemented using a single generic algorithm ITE. This is because
the two edges that issue from an ROBDD node labeled x span the ranges of values
{F,T} that x can take, and this makes it possible to reason by case analysis.
Consequently, MDGs do not enjoy this property due to abstract variables. The
GITE operation can be considered to be a functionally complete three-input
logic gate that implements the expression GITE = (P ∧ Q) ∨ (¬P ∧ H). If P
is an abstract variable, then there is no MDG representing the formula ¬P . In
this paper, we claim that it is possible to use the GITE operation to produce an
MDG R that is logically equivalent to (P ∧Q)∨ (¬P ∧H) except for some cases
that will be discussed later. This leads to improve the efficiency of the existing
basic MDG algorithms.

Finally, we provide an architecture for our new tool. The goal here is to build
a robust model checking tool that accepts an extended SMV input language and
supports an abstraction mechanism through abstract sorts and uninterpreted
functions. Indeed, more work should be spent in implementing and developing
the tool in order to enhance the performance.

The paper is organized as follows: Section 2 reviews the closest related work.
Section 3 introduces a subset of many-sorted first-order logic that gives MDGs
their meaning. Section 4 describes basic MDG algorithms, their optimization
and their correctness proof. Section 5 introduces the architecture of NuMDG.
Finally, Section 6 concludes our paper and presents the future work.

2 Related Work

Approaches that capture non-finite aspects of the system, by using uninterpreted
functions or similar notion like first-order formulae with quantification, are more
closely related work.

Burch and Dill [6] have proposed a verification method that uses uninterpreted
functions to denote data operations and a decision procedure as a theorem-
proving search method. Compared to MDG, their method does not support
representation of a set of states, fixpoint calculation and the transition relation
can be applied only a given number of times. Since then, uninterpreted functions
have generated a considerable interest in two respects: integration into a symbolic
model checkers [7,8] or developing BDD-based decision procedures [9,10].

More recently,Bryant et al. [11] translate a formulawith uninterpreted functions
to propositional formula within the theory of equality while preserving validity.

230 Y. Mokhtari et al.

Therefore, the resulting formula can be checked efficiently either by a BDD or SAT
solver. This reduction is based on Ackermann’s approach [12] that consists of re-
placing each occurrence of a function with a new (domain) variable and adding
functional consistency constraints in the formula. A similar approach is also pro-
posed by Pnueli et al. [13] where the key differences are emphasized in [11].

These approaches are applicable when data operations can be viewed as black-
boxes, i.e., the correctness of the system being modeled does not depend on the
meaning of these operations. This is usually the form of RTL designs generated
by high-level synthesis algorithms that schedule and allocate data operations
without being concerned with the specific nature of the operations. However,
ignoring properties of data operations leads sometimes to false negatives. For
example, a multiplier can be abstracted away when one of its inputs is 0 or 1. In
MDG, a simple rewriting system is used to deal with such cases. In [14], Velev
combines rewriting rules and Burch and Dill’s method [6] to verify out-of-order
processors that have a Reorder Buffer.

3 Multiway Decision Graphs Overview

3.1 Sorted Signature

A sorted signatureΣ(V ,L,S) consists of an infinite set of variables V , partitioned
into a set Vabs of abstract variables and a set Vcon of concrete variables, a set of
symbols L, partitioned into a set LCO of cross-operators and a set LF of function
symbols and a set of sort symbols S, partitioned into a set Scon of concrete sorts
and a set Sabs of abstract sorts. All these sets are disjoint. Furthermore there is:

– An arity function that associates to each symbol in L a natural number.
Constant symbols are 0-ary function symbol.

– A function η : V → S which gives a sort to each variable symbol.
– A set of sort declarations for terms. A sort declaration for a term is a tuple
t : S , where t is a non-variable term and S ∈ Sabs is a sort symbol. We
sometimes abbreviate sort declaration f(x1, . . . , xn) : S as f : S1×. . .×Sn →
S where Si is the sort of the variable xi.

– A set of sort declaration for cross-operators. A sort declaration for a cross-
operator is of the form p : S1 × . . . × Sn → S where the Si are sorts and
S ∈ Scon

3.2 Well Sorted Terms

The set of well sorted terms T (Σ,S) of sort S in signature Σ is the smallest set
such that:

– x ∈ T (Σ,S) if x ∈ V and η(x) ∈ S
– f(t1, . . . , tn) ∈ T (Σ,S) if ti ∈ T (Σ,Si) for i = 1, . . . , n and f : S1 × . . . ×
Sn → S is a term sort declaration in Σ

The set T (Σ) of all well sorted terms is defined as the union
⋃
{T (Σ,S) : S ∈ S}.

If V = ∅, then TG(Σ,S) denotes a set of ground terms i.e. terms that are not

A New Approach for the Construction of Multiway Decision Graphs 231

containing variables. A substitution σ is represented as a set {x1 �→ t1, . . . , xn �→
tn} where Dom(σ) = {x1, . . . , xn} and is defined on terms as usual. Its extension
by another substitution σ′, written σ ⊕ σ′, is another substitution such that:

– Dom(σ) ∩ Dom(σ′) = ∅ and
– for every variable x ∈ Dom(σ ⊕ σ′):

(σ ⊕ σ′)(x) =
{
σ(x) if x ∈ Dom(σ)
σ′(x) if x ∈ Dom(σ′)

3.3 Well Formed Directed Formulae (DFs)

The set of well formed formulae F(Σ,S) of sort S in signature Σ is the smallest
set such that:

– x = t if x ∈ T (Σ,S), t ∈ TG(Σ,S) and S ∈ Scon.
– x = t if x, t ∈ T (Σ,S) and S ∈ Sabs.
– p(t1, . . . , tn) = t if p : S1 × . . . × Sn → S is a cross-operator declaration in
Σ, either ti ∈ T (Σ,Si) and Si ∈ Sabs or ti ∈ TG(Σ,Si) and Si ∈ Scon for
i = 1, . . . , n and t ∈ TG(Σ,S).

– ¬P is a formula if Vars(P) ∩ Vabs = ∅.
– P ∧Q is a formula if Vars(P) ∩ Vars(Q) = ∅.
– P ∨Q is a formula if Vars(P)∩Vabs = Vars(Q)∩Vabs and for each variable
x ∈ Vars(P) either it occurs as a primary or secondary occurrence but not
both.

– (∃x : S)P is a formula where x can be both primary and secondary occur-
rence in P .

where further connectives like T F ⇒, ⇔ and ∀ are defined as the standard ab-
breviations. Vars(P) denotes the variables occurring in P . The occurrence of the
variable x in a LHS of the formula x = t is called a primary occurrence, otherwise
it is a secondary occurrence. Note that by our syntax definition, only abstract vari-
ables have secondary occurrences. We say a DF formula P is of type U → V iff
(i) the set of abstract primary variables of P is equal to Vabs, (ii) the set of sec-
ondary abstract variables is a subset of Uabs and (iii) the concrete variables have
occurrences in a set Ucon ∪ Vcon. Intuitively, the set U represents the independent
variables while V represents the dependent variables1. In the absence of abstract
variables, the sets of variables U and V play symmetrical roles.

3.4 Semantics

A Σ-structure M consists of:

– D is a carrier set defined as the union of the denotations for each Sort S i.e.
D =

⋃
{DS : S ∈ S} such that if S ∈ Sabs then DS is non-empty set and if

S ∈ Scon then DS = {a1, . . . , an} where ai �= aj for 1 ≤ i < j ≤ n.
1 The definition of dependent/independent notion is related to the case statement not

with respect to classical function dependency.

232 Y. Mokhtari et al.

– a n-ary function M(f) : Dn → D for every n-ary function symbol f .
– a n-ary cross-operator M(p) : Dn → D for every n-ary cross-operator

symbol p.

We say a partial mapping φ : V → D is a partial Σ-assignment iff φ(x) ∈ Dη(x)

for every variable x ∈ Dom(φ). We assume that the structure M is fixed and
the formal definition of the semantics relative to the mapping φ is:

[[x]]φ = φ(x) for x ∈ V
[[f(t1, . . . , tn)]]φ = M(f)([[t1]]φ, . . . , [[tn]]φ)

[[x = t]]φ = tt iff [[x]]φ = [[t]]φ

[[p(t1, . . . , tn)]]φ = tt iffM(p)([[t1]]φ, . . . , [[tn]]φ) = tt
[[¬P]]φ = tt iff [[P]]φ = ff

[[P ∧Q]]φ = tt iff [[P]]φ = tt and [[Q]]φ = tt
[[(∃x : S)P]]φ = tt iff [[P]]φ[c/x] = tt

for some c ∈ DS

such that φ[c/x] is like φ
but maps x to c

The remaining logical connectives are interpreted as usual.

3.5 MDG Structure

An MDG of type U→V is a directed acyclic graph (DAG) G with one root and
ordered edges, such that:

1. Every leaf node is labeled by the formula T, except if G has a single node,
which may be labeled T or F.

2. For every internal node N , either
(a) N is labeled by T (U ∪ Vcon,LCO,S) and the edges that issue from N

are labeled by TG(Scon), or
(b) N is labeled by a variable in Vabs and the edges that issue from N are

labeled by T (Uabs,LF ,S)

MDG is a canonical representation of DFs and therefore must be reduced and
ordered like ROBDD [1]. Consequently, DFs must obey a set of well-formedness
conditions given in [2]. Some of them are already stated above. Intuitively, these
conditions represent pre-conditions for some basic MDG algorithms which are
mainly disjunction, relational product and pruning by subsumption. We will
investigate these algorithms in next Section. In order to illustrate the above
definitions, we consider the following example DF of type {u1, u2} → {v1, v2},
where u1 and v1 are variables of a concrete sort bool with enumeration {0, 1}
while u2 and v2 are variables of an abstract sort α, g is an abstract function
symbol of type α→ α and f is a cross-operator of type α→ bool . The MDG of
this formula is as follows:

A New Approach for the Construction of Multiway Decision Graphs 233

((f(u2) = 0) ∧ (v2 = u2)) ∨
((f(u2) = 1)∧(u1 = 0)∧(v1 = 0)∧(v2 = g(u2)))
((f(u2) = 1)∧(u1 = 1)∧(v1 = 1)∧(v2 = g(u2)))

f(u2)

v2

0

u1

1

T

u2

v1

0

v1

1

v2

0 1

g(u2)

4 MDG Construction

Let P be an MDG of the form:

MDG(x, {a1, . . . , am}, {l1, . . . , ln}, {m1, . . . ,mn})

then top(P) denotes the root node x, arg(P) denotes the set {a1, . . . , am} (even-
tually empty) of the cross-operator arguments, edges(P) denotes a non-empty set
{l1, . . . , ln} of labels (edges), and childs(P) denotes a non-empty set {m1,. . . ,mn}
of sub-MDGs.

In a ROBDD, Boolean variables are used to encode the enumerated types.
This can be done by simply using a recursive function that divides the values
into two subsets of roughly equal size, creates a variable to distinguish between
them, and then recurses on the two subsets. It results in an Algebraic Decision
Diagram (ADD) [16] that extends BDD’s by allowing values from arbitrary finite
domain to be associated with the terminal nodes. Then this ADD is translated
to ROBDD. Due to the presence of abstract sorts, this approach cannot be
used for MDG. Therefore, an equation (atomic formula with equality) is used
to represent directly the MDG without encoding the concrete domains. We will
use the notation Eq(x, {a1, . . . , an}, l) to denote an MDG such that (i) the root
node is labeled with x and the (eventually empty) set {a1, . . . , an} (ii) the edge
is labeled with l and (iii) the terminal node is labeled with T.

4.1 Generalized-If-Then-Else (GITE)

Given a ROBDD b, a boolean function f represented by b is recursively defined
by:

f = (¬x ∧ fx=0) ∨ (x ∧ fx=1)

where x is the variable in b’s root node and the cofactor function fx=0 is de-
fined by the reachable subgraph of b’s 0-branch child. Similarly, fx=1 is re-
cursively defined by the reachable subgraph of b’s 1-branch child. Therefore a
ROBDD node can be naturally represented by an If-Then-Else statement, i.e.
ITE(x, fx=1, fx=0).

234 Y. Mokhtari et al.

Given a variable ordering and three ROBDDs f, g and h, the ROBDD result
of f, g and h is easily constructed by Shannon’s expansion in the depth-first
manner. This expansion process repeats recursively following the given variable
order for the Boolean variables in f , g, and h. The base case (also called the
terminal case) is when f , g or h are representing a terminal node (i.e. Tor F
node). For example, ITE(T, g, h) can be trivially evaluated to g. The recursive
process will terminate because restricting all the variables of functions produces
constant functions T or F. At the end of the expansion phase, the uniqueness
of ROBDD representation is ensured by reducing expressions like ITE(x, f, f)
to f . This bottom-up reduction phase is performed in the reverse order of the
expansion phase. Finally, since all the boolean connectives can be expressed
as If-Then-Else statement, this construction provides a uniform way to build
arbitrary Boolean functions.

Similarly, our goal is to provide the same construction for MDGs. The defin-
ition of the cofactor function is made upon the following observation. Assuming
that x ranges over {0, 1, 3} and that there could be, say, only three edges issuing
from the root, as in the following graph:

x

G1

0

G2

1

G3

3

and G1, G2 and G3 represent the formulae P1, P2 and P3 respectively, then this
MDG could represent the formula

(x = 0 ∧ P1) ∨ (x = 1 ∧ P2) ∨ (x = 3 ∧ P3)

When x denotes 2, this formula is simply a false sentence. Therefore, the cofactor
Px=l,arg(x) with respect to a (concrete or abstract) variable x restricted to label
l and a set of the cross-operator arguments arg(x) (possibly empty) is defined as
follows:

Px=l,arg(x) =

⎧
⎨

⎩

P if x < top(P)
mi if ∃i(l = li) ∧ (arg(P) = arg(x))
F otherwise

While concrete sorts have enumerations, abstract sorts do not. To overcome this
problem, we can collect all the labels of the abstract variable x from the MDGs
involved in the construction. This task is achieved by the function enum which
is defined as:

enum(x, P) =
{
Scon if x ∈ Scon and top(P) = x
edges(P) if x ∈ Sabs and top(P) = x

A New Approach for the Construction of Multiway Decision Graphs 235

This function exploits the variable ordering, hence there is no need to traverse
all the children of P to collect the edges. The generalization of this function to
a set of MDGs is defined as usual. Moreover, we assume that the set of edges
are ordered.

Our GITE algorithm takes as input three MDGs P,Q and H of type Ui → Vi

for i = 1..3 respectively and produces an MDG R = GITE(P,Q,H) of type⋃
1≤i≤3 Ui →

⋃
1≤i≤3 Vi such that |= R ⇔ (P ∧ Q) ∨ (¬P ∧H). Such MDG R

does not always exist due to abstract variables. For example, let x be an abstract
variable and a be an abstract generic constant. Let P be x = a (i.e., an MDG
with a root node labeled x and a single edge labeled a leading to T), then there
is no MDG representing the formula ¬(x = a). Thus there can be no algorithm
for general negation. On the other hand, it is easy to compute a formula logically
equivalent to ¬P that has no nodes labeled by abstract variables. Similarly, there
does not always exist an MDG R such that |= R ⇔ (P ∨ Q). For example, let
x and y be distinct abstract variables, and a and b distinct abstract generic
constants, then there exists no well-formed MDG representing the formula x =
a∨y = b. Finally, it may be impossible to compute the conjunction of two MDGs
whose root nodes have the same label, if that label is an abstract variable (i.e.,
x = a ∧ x = b). Note all these formulae are not DFs since they do not respect
the syntax constraints defined in Section 3. Moreover, we claim that the logical
equivalence between R and (P ∧Q)∨ (¬P ∧H) can be shown independent of the
negation of P , particularly when the top symbol of P is an abstract variable.
For example, it is easy to show that |= (x = a ∨ x = b) ⇔ (x = a ∧ T) ∨ (¬(x =
a) ∧ x = b) in classical logic. The detailed algorithm is given below:

GITE(P,Q,H)
1. if (terminal case) then
2. return (R = trivial result);
3. else
4. if (computed table has entry {(P,Q,H), R}) then
5. return R from computed table ;
6. else
7. x = top variables of P , Q and H ;
8. S = enum(x, P,Q,H);
9. a = arg(x);
10. l,m = ∅;
11. for (each s s.t. s ∈ S) do
12. R = GITE(Px=s,a, Qx=s,a, Hx=s,a);
13. if (R �= F) then
14. append(l,s); append(m,R);
15. endif
16. endfor
17. if(l = ∅) then (R = F);
18. else R = find or add unique(x, a, l,m);
19. endif
20. insert (P,Q,H,R) in the computed table

236 Y. Mokhtari et al.

21. return R;
22. endif
23. endif

The result MDG is constructed by recursively performing Shannon’s expan-
sion. This recursive expansion ends when a terminal node is reached (lines 1
and 2) or when it is found in the computed table (line 4 and 5). A computed
table stores previously computed results to avoid repeating work that was done
previously. Line 7 determines the top variable of P,Q and H . Line 8 extracts
a set of labels (edges) S according to the top variable sort. When this sort is
concrete, then S is equal to the enumeration of this sort. Otherwise, we collect
the labels from the MDGs involved in the construction. Line 9 and 10 extract
eventually the arguments if the top variable is a cross-operator and initialize
the new set of labels and MDGs to be constructed. Lines 11 to 16 recursively
perform Shannon’s expansion on the cofactor in respect to S and computes the
new edges and MDGs by discarding the elements of S that result in a terminal
MDG F. At the end of the expansion (line 17), either the resulting MDG is F
or the reduction step and uniqueness of the resulting MDG are performed (line
18). The reduction step is applied only on the concrete sorts. Therefore a node
is redundant if all the edges are in the enumeration of the concrete sort and the
corresponding MDGs are the same.

Theorem 1. The GITE algorithm is correct and terminates2.

4.2 Relational Product (RelP)

The relational product combines conjunction and existential quantification in one
step. We provide an algorithm that extends the ROBDD relational product. It
takes the conjunction of two MDGs having disjoint sets of abstract primary vari-
ables and existentially quantifies with respect to some abstract or concrete vari-
ables that have primary occurrence in at least one of the MDGs. The primary oc-
currence of an abstract variable in one MDG can be a secondary occurrence in
the other MDG. For this reason, we have introduced a substitution that includes
those variables during the construction (i.e., the secondary variables are implic-
itly quantified). The substitution is applied in the reverse order of the expansion
phase on the edges labeledwith secondary occurrencevariables and cross-operators
arguments. However, while the ordering variable cannot be preserved in case of
cross-operators, there may exist redundant or contradictory MDG result during
intermediate steps. For example, let x < m < M be an ordering variables and
let P be leq(x,m) = 1 ∧ leq(x,M) = 0 where x, m and M are secondary ab-
stract variables that having primary occurrences in another MDG, say, Q, and
σ = {x �→ x#3,m �→ x#2,M �→ x#1}, then the resultingMDG leq(x#3, x#2) =
1∧leq(x#3, x#1)) = 0 does not preserve the order3. Therefore, we will distinguish
the case of the cross-operator and provide a special construction for it.
2 The correctness proof of all the algorithms is included in a technical report[19].
3 Thevariablex#i serves as a symbolic value ofx at the ith step and i < j ⇒ x#i < x#j.

A New Approach for the Construction of Multiway Decision Graphs 237

Let E be the set of quantified variables, our algorithm takes two MDGs P , Q
of type Ui → Vi for i = 1..2 and a substitution σ with Dom(σ) = E and returns
an MDG R = RelP(P,Q,E, σ) of type (

⋃
1≤i≤2 Ui \

⋃
1≤i≤2 Vi) → (

⋃
1≤i≤2 Vi \⋃

1≤i≤2 Ui) such that |= R⇔ ∃E(P ∧Q).

RelP(P,Q,E, σ)
1. if (terminal case) then
2. return (R = trivial result);
3. else
4. if (computed table has entry {(P,Q,E, σ), R}) then
5. return R from computed table ;
6. else
7. x = top variables of P , Q
8. S = enum(x, P,Q);
9. a = arg(x);
10. l,m = ∅;
11. for (each s s.t. s ∈ S) do
12. R = RelP(Px=s,a, Qx=s,a, E,Extend(σ, x, s, E));
13. if (R �= F) then
14. append(l,s); append(m,R);
15. endif
16. endfor
17. if(l = ∅) then (R = F);
18. else
19. if(x ∈ E) then
20. R = Or(m)
21. else
22. if(a = ∅) then
23. R = find or add unique(x, a, σ(l),m);
24. else
25. R = F
26. for (each li ∈ l and mi ∈ m)
27. R = Or(R,And(Eq(x, σ(a), li),mi))
28. endfor
29. endif
30. endif
31. endif
32. insert (P,Q,E, σ,R) in the computed table
33. return R
34. endif
35. endif

Like ROBDD relational product algorithm, RelP uses a result cache. If the entry
(P,Q,E, σ) is in the cache, then it means that a previous call to RelP(P,Q,E, σ)
returned R as result. Lines 7 and 16 apply recursively the relational product with
respect to a top symbol x where Extend(σ, x, s, E) returns σ ⊕ {s/x} if x ∈ E

238 Y. Mokhtari et al.

otherwise it returns σ. Lines 19 to 31 apply either quantification or conjunction
depending whether the variable x occurs in E or not. As explained above, we dis-
tinguish the cross-operators case (lines 25 to 28), where we construct a new MDG
that respects the ordering variable, thus avoiding any contradictions.

Theorem 2. The RelP algorithm is correct and terminates.

4.3 Pruning by Subsumption (PbyS)

The pruning by subsumption algorithm approximates the difference of sets rep-
resented by MDGs (i.e. DFs). We propose a new algorithm which uses restricted
operators and builds an MDG in a similar manner as GITE does. The proposed
algorithm improves the original one in many ways. First, the expansion is done
only on the first argument i.e., P rather than on P and Q. Indeed, we can view
each disjunct of DF as a state description. Without loss of generality, we can
assume that P and Q contain only one disjunct. Then, we can say that P is
subsumed by Q if and only if there exists a substitution σ such that the state
description of Qσ is a subset of the state description of P . Therefore the size of
P should be at least equal to the size of Q. Next, when the top variable of Q is
less than the top variable of P , it is obvious that the state description of Q is
not a subset of P . Hence, the cofactor of Q should be F, which improves drasti-
cally the original algorithm. Finally, when P and Q have the same top symbol
cross-operator but there is a mismatch either on the edges or on the arguments,
the cofactor of Q is Q itself and we discard the substitution if any resulting from
the unification of their arguments. These observations lead to a new restricted
operator defined as follows.

Given an MDG Q, the restriction of Q with respect to a variable x, an
edge l, a set of cross-operator arguments arg(x) and a substitution σ, written
Q|x=l,arg(x),σ, returns a pair of MDG-substitution 〈m,σ′〉 as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Q, σ〉 if x < top(Q)
〈F , σ〉 if top(Q) < x
〈mi, σ

′〉 if (∃i)(l = liσ′) ∧ arg(Q) = arg(x) = ∅
〈Q, σ〉 if (� ∃i)(l = liσ′) ∧ arg(Q) = arg(x) = ∅
〈mi, σ

′′〉 if ∃i(l = liσ′′) ∧ (arg(Q)σ′′ = arg(x))
〈Q, σ〉 if � ∃i(l = liσ′′) ∨ (arg(Q)σ′′ �= arg(x))
〈F , σ〉 otherwise

where σ′ = σ ⊕ {li �→ l} and σ′′ = σ ⊕ {arg(Q) �→ arg(x)}.
Our PbyS algorithm takes two MDGs P and Q of type U → V1 and U → V2

and a substitution σ initially equal to the identity and produces an MDG P ′ of
type U → V1 such that P ′ is derivable from P by pruning some paths such that
|= P ∨ (∃U)Q ≡ P ′ ∨ (∃U)Q. The paths that are removed from P are subsumed
by Q, hence the name of the algorithm. If P ′ = F then, we can view P ′ as a
logical difference of P and (∃U)Q i.e. |= P ⇒ (∃U)Q. The detailed algorithm is
given below:

A New Approach for the Construction of Multiway Decision Graphs 239

PbyS(P,Q, σ)
1. if (terminal case) then return (P ′ = trivial result);
2. else if (pbys table has entry {(P,Q, σ), P ′}) then
3. return P ′ from pbys table ;
4. else
5. x = top(P); l,m = ∅; a = arg(P);
6. for (each s ∈ edges(P)) do
7. P ′ = Px=s,a;
8. stack = Q|x=s,a,σ;
9. while stack is not empty;
10. 〈m′, σ′〉= pop stack;
11. P ′ = PbyS(P ′,m′, σ′);
12. if (P ′ = F) break;
13. endwhile;
14. if(P ′ �= F) then
15. append(l,s); append(m,P’);
16. endif
17. endfor;
18. if(l = ∅) then (P ′ = F);
19. else P ′ = find or add unique(x, a, l,m);
20. update pbys table ({(P,Q, σ), P ′}) ;
21. return P ′;
22. endif

The result MDG is constructed by recursively performing the restricted op-
erators introduced on P and Q until a terminal node is reached (line 1) or when
it is found in the pbys table (line 2). Line 5 determines the top variable of P
and the cross-operator arguments (if possible) and initializes the new edges and
children to be constructed. Then from each edge issuing from the node x (line
6), we extract the cofactors of P and Q where the cofactors of Q are pairs of
MDG-substitution stored in a stack. Lines 9 to 13 check whether the cofactors
of P , written P ′, is subsumed by one of the Q paths. If so (line 12) then there
is no need to try the other cofactors of Q and therefore we continue with the
remaining cofactors of P and we discard P ′. Otherwise, the edge and this cofac-
tor are added to the corresponding table (lines 14-16). When we have processed
all the cofactors of P (line 18) either all the paths of P are subsumed by P and
thus the result MDG is F, or the reduction step and uniqueness of the resulting
MDG are performed (line 20) with all or some paths of P that not subsumed.

Theorem 3. The PbyS algorithm is correct and terminates.

5 NuMDG Structure

A high level description of NuMDG is given in Figure 1. In the future, we will
provide an open source tool with many functionalities independent of the model
checking engine used. Like NuSMV [17], the tool will be able to process files

240 Y. Mokhtari et al.

FLATTENING & DFs

P1,.......,Pn M

Pf1,.......,Pfn Mf

Mf (Pfi)

MDG PACKAGE

MDG BASED MODEL

CONSTRUCTION

REWRITING ENGINE

MDG VERIFICATION

CTL, LTL, BMC Model Checking

Subset FO-LTL Model Checking

CONE OF INFLUENCE

Fig. 1. Internal structure of NuMDG

written in an extension of the SMV language with abstract sort and uninter-
preted functions. In this language, finite state machines are described by using
instantiation mechanism of modules and processes, corresponding to synchro-
nous and asynchronous composition respectively. The requirements are written
in CTL, LTL or in a first-order subset of temporal logic.

An (extended) SMV file is processed in several phases. The first phase analyzes
the input file with different layers in order to construct an internal representa-
tion of the model. The construction starts from modular description of a model
M and of a set of properties P1, . . . Pn. The flattening step consists of eliminat-
ing modules and processes and producing a synchronous flat model, where each
variable is given an absolute name. The second step, called DF, maps each ex-
pression in the flat model to a directed formula, thus obtaining the corresponding
flattened directed modelMf . Compared to SMV-based tools, there is no boolean
encoding. Hence, some interpreted predicates and arithmetic functions are not
supported in a straightforward manner. The same reduction is applied to the
properties Pi, thus obtaining the corresponding flattened directed formula Pif .
By cone of influence, we restrict the analysis of each property to the relevant
parts of the model Mf (Pif).

After the preprocessing phase, the user can choose the model checking en-
gine to be used for verification. The choice is restricted by the nature of the
model being described i.e. whether it supports abstract sorts and uninterpreted
functions or not. In the absence of the latter, NuMDG is acting like NuSMV
and should provide the same facilities including MDG-based, SAT-based model
checking and different partitioning methods. For the time being, MDG-based
verification includes reachability analysis and fair CTL model checking.

The rewriting engine is used during the MDG-verification if necessary when
the reachability analysis does not terminate due to the presence of abstract
sort and uninterpreted functions. In this case we can interpret partially some

A New Approach for the Construction of Multiway Decision Graphs 241

functions or predicates in order to cope with this non termination [18]. The
input language supports a rewriting layer which is extracted and feeded to the
rewriting engine. Currently, we are working to complete the infrastructure shown
in Figure 1.

6 Conclusion and Future Work

We have described the basic MDG algorithms that incorporated many optimiza-
tions that will yield further improvements in the performance of MDG package.
The efficiency is achieved through the use of the generalization of the If-Then-
Else (ITE) operator defined in the BDD package. Consequently, we have rede-
fined the main algorithms on which the MDG verification techniques are based,
i.e, relational product and pruning by subsumption. These new algorithms de-
scriptions are based mainly on the ROBDD ones and lifted to the realm of
abstract sorts and uninterpreted functions.

We have also presented the internal architecture of the NuMDG tool and
identified a number of open issues and future work directions. We need to com-
plete the implementation and confirm that NuMDG can be used to check SMV
specifications. However, the effect of cache and the garbage collection should be
characterized according to a rigorous evaluation methodology. Also case studies
and experiments are required to check the new tool and compare the results with
SMV.

References

1. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers 35(8), 677–691 (1986)

2. Corella, F., Zhou, Z., Song, X., Langevin, M., Cerny, E.: Multiway Decision Graphs
for Automated Hardware Verification. Formal Methods in System Design 10(2), 7–
46 (1997)

3. Tahar, S., Song, X., Cerny, E., Zhou, Z., Langevin, M., Ait Mohamed, O.: Modeling
and Verification of the Fairisle ATM Switch Fabric using MDGs. IEEE Transactions
on CAD of Integrated Circuits and Systems 18(7), 956–972 (1999)

4. Xu, Y., Cerny, E., Song, X., Corella, F., Ait Mohamed, O.: Model Checking for
A First-Order Temporal Logic using Multiway Decision Graphs. The Computer
Journal 47(1), 71–84 (2004)

5. Zhou, Z.: Mutliway Decision Graphs and Their Applications in Automatic Formal
Verification of RTL Designs, PhD thesis, Montréal University (1997)

6. Burch, J.R., Dill, D.L.: Automatic Verification of Pipelined Microprocessor Con-
trol. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994)

7. Damm, W., Pnueli, A., Ruah, S.: Herbrand Automata for Hardware Verification.
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 67–83.
Springer, Heidelberg (1998)

8. Berezin, S., Biere, A., Clarke, E.M., Zhu, Y.: Combining Symbolic Model Check-
ing with Uninterpreted Functions for Out-of-Order Processor Verification. Formal
Methods in Computer Aided Design 1522, 187–201 (1998)

242 Y. Mokhtari et al.

9. Hojati, R., Kuehlmann, A., German, S., Brayton, R.K.: Validity Checking in the
Theory of Equality with Uninterpreted Functions using Finite Instantiations. In:
The International Workshop on Logic Synthesis (1997)

10. Goel, A., Sajid, K., Zhou, H., Aziz, A., Singhal, V.: BDD based Procedures for
A Theory of Equality with Uninterpreted Functions. In: Y. Vardi, M. (ed.) CAV
1998. LNCS, vol. 1427, pp. 244–255. Springer, Heidelberg (1998)

11. Bryant, R.E., German, S., Velev, M.N.: Processor Verification Using Efficient Re-
ductions of the Logic of Uninterpreted Functions to Propositional Logic. ACM
Transactions on Computational Logic 2(1), 93–134 (2001)

12. Ackermann, W.: Solvable Cases of the Decision Problem. North-Holland Pub. Co.,
Amsterdam (1954)

13. Pnueli, A., Rodeh, Y., Shitrichman, O., Siegel, M.: Deciding Equality Formulas
by Small Domain Instantiations. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 455–469. Springer, Heidelberg (1999)

14. Velev, M.N.: Using Rewriting Rules and Positive Equality to Formally VerifyWide-
issue Out-of-Order Microprocessors with Reorder Buffer. In: Proc. of DAC, pp.
28–35 (2002)

15. Clocksin, W., Mellish, C.: Programming in Prolog, 3rd edn. Springer, Heidelberg
(1987)

16. Bahar, R., Frohm, E., Gaona, C., Hatchel, G., Macii, E., Pardo, A., Sommenzi,
F.: Algebraic Decision Diagrams and their Applications. In: Proc. of International
Conference on Computer-Aided Design, pp. 188–191 (1993)

17. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
Springer, Heidelberg (2002)

18. Ait Mohamed, O., Song, X., Cerny, E.: On the Non-termination of MDG-based
Abstract State Enumeration. Theoretical Computer Science 300, 161–179 (2003)

19. Mokhtari, Y., Abed, S., Ait Mohamed, O., Tahar, S., Song, X.: A New Approach
for the Construction of Multiway Decision Graphs. Technical Report 2008-3-Abed,
ECE Department, Concordia University, Montreal, Canada (June 2008)

Congruence Results of Scope Equivalence for a

Graph Rewriting Model of Concurrent Programs

Masaki Murakami

Mathematical Science and Electronic Technology,
Graduate School of Natural Science and Technology, Okayama University

3-1-1 Tsushima-Naka, Okayama, 700-0082, Japan
murakami@momo.cs.okayama-u.ac.jp

Abstract. This paper presents a formal model of concurrent systems
based on graph rewriting to represent scopes of communication channel
names precisely. A bipartite directed acyclic graph represents a concur-
rent system consists of a number of processes and messages. Each process
or message corresponds to a source node of the graph. Names of commu-
nication channel in the system are sink nodes. The edges of the graph
represent the scopes of the names in the system. The operational se-
mantics of the system is given as a labeled transition system. The model
presented here makes it possible to represent local names that their scope
are not nested. We define an equivalence relation that two systems are
equivalent not only in their behavior but in extrusions of scopes of names.
We show that the equivalence relation is a congruence relation wrt prefix,
new-name, replication and composition.

1 Introduction

A number of formal models of concurrent systems that are based on communi-
cation using channel names such as [5,10,12] are reported. Operations to restrict
the scopes of channel names such as ν-operations[10] are introduced many of
them. It is essential to describe which process is in the scope of each name in
the system for models of distributed systems.

However, as we reported in [6,8], it is difficult to represent the scopes of names
of communication channels using models based on process algebra. In many
existing models based on process algebra, the scope of a name is represented
using a binary operation as the ν-operation[10]. Thus the scope of a name is a
subterm of an expression representing a system. For example, in a π-calculus
term: νa2(νa1(b1|b2)|b3), the scope of the name a2 is the subterm (νa1(b1|b2)|b3)
and the scope of the name a2 is the subterm (b1|b2). However, this method has
problems as followings.

For example, consider a system S consisting of a server and two clients. A client
b1 communicates with the server b2 using a channel a1 whose name is known only
by b2 and oneself, and a client b3 communicates with b2 using a channel a2 that is
known only by b2 and oneself. In this system a1 and a2 are local names. As b2 and
b1 knows the name a1 but b3 does not, then the scope of a1 includes b1 and b2 and
the scope of a2 includes b3 and b2. Thus the scopes of a1 and a2 are not nested as
shown in Fig.1.

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 243–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

244 M. Murakami

Fig. 1. Scopes of names in S

The method denoting local names as bound names using ν-operator cannot
represent the scopes of a1 and a2 precisely because the scope of a name is a sub-
term of a term and then the scopes of bound variable are nested (or disjoint) in
any π-calculus term. In order to represent the situation above using ν-operator,
the scopes must be ‘encoded’ into the nested scopes. For example, we must denote
the above example as νa1(b1|νa2(b2|b3)) or νa2(b3|νa1(b1|b2)). Then we require
a number of inferences to ‘decode’ the system using the structural congruence
rules to see the scope for each name. And we must regard νa1(b1|νa2(b3|b2)) and
νa2(b3|νa1(b1|b2)) equivalent because both of them represents the same system
S shown in Fig.1. Then it is impossible to represent scopes of a1 and a2 with
just one expression precisely.

Furthermore, it is sometimes impossible to represent the scope even for one
name precisely with ν-operator. Consider the example, νa(v̄a.P) | v(x).Q where
x does not occur in Q. In this example, a is a local name and its scope is v̄a.P .
The scope of a is extruded by communication with prefixes v̄a and v(x). Then
the result of the action is νa(P |Q) and Q is in the scope of a. However, as a
does not occur in Q, it is equivalent to (νaP)|Q by the rules of the structural
congruence. We cannot see the fact that a is ‘leaked’ to Q from the resulting
expression: (νaP)|Q. Thus we must keep the trace of communication for the
analysis of scope extrusion. This makes difficult to analyze extrusions of scopes
of names by executions.

We presented a model based on graph rewriting[6,8] instead of process algebra
as a solution for the problem on representation of scopes of names and defined an
equivalence relation scope equivalence in that two systems are equivalent not only
in their behavior but extrusions of scopes of names. And we presented examples
that are equivalent in their behavior but not scope equivalent. We reported the
congruence results of the bisimulation equivalence relation on the model[7]. This
paper presents congruence results for of the scope equivalence.

Congruence results on bisimilarity based on graph rewriting models are re-
ported in [1,11]. Those studies adopts graph transformation approach for proof
techniques. In this paper, graph rewriting is introduced to extend the model for
the representation of name scopes.

2 Basic Idea

The model presented here is based on graph rewriting system such as [4,5,9,12].
We represent a concurrent program consists of a number of processes (and

Congruence Results of Scope Equivalence for a Graph Rewriting Model 245

Fig. 2. Bipartite Directed Acyclic Graph

Fig. 3. A Message Node

messages on the way) using a bipartite directed acyclic graph. A bipartite graph
is a graph whose nodes are decomposed into two disjoint sets: source nodes and
sink nodes such that no two graph nodes within the same set are adjacent. Every
edge is directed from a source node to a sink node. The system S shown in Fig.1.
is represented with a graph as Fig.2.

Processes and messages on the way are represented with source nodes. We
call source nodes as behaviors. In Fig. 2., b1, b2 and b3 are behaviors. A behavior
node has a nested structure in general. Namely, a behavior has a graph structure
of a program inside. Then the structure of a program is a recursive graph. Scopes
of names are represented edges of the graph.

Message. A behavior node that represents a message is a node labeled with a
name of the recipient n (it is called the subject of the message) and the object
of the message o (Fig.3). The object of the message is a name.

Fig. 4. A Process Node

Message receiving. A message is received by a receiver process. A process that
receives a message execute an input action and then continue the execution. We
denote such receiver process with a node consists of its epidermis that denotes the
first input action and its content that denotes the continuation. For example, a
receiver that executes an input action α and then become a program P (denoted
as α.P in CCS term), it is denoted with the epidermis labeled with α and the
content P (Fig.4). As the continuation P is a concurrent program, then it has a
graph structure inside of the node. Thus the receiver process also has the nested
structure.

246 M. Murakami

Fig. 5. Message Receiving

Fig. 6. Message Sending

Message receiving is represented as follows. Consider a message to send an
name n to a recipient with name m and the receiver of the message(Fig.5. a).
The execution of the input action is represented by “peeling” the epidermis of
the receiver process node. When the message is received then it vanishes and
the epidermis of the receiver is removed and the content is exposed (Fig.5. b).
Now the continuation P is activated. The received name n is substituted to the
name x in the content P .

Message sending. In asynchronous π-calculus, message sending is represented
in the same way to process activation. We adopt the similar idea. Consider an
example that executes an input action α and send a message m (Fig.6. left).
When the action α is executed, then the epidermis is peeled and the message
m is exposed as Fig.6. right. Now the message m is transmitted and m can be
received by the receiver. And the execution of Q continues.

Scopes of names. Names of communication channel in the system are sink
nodes of the graph in this model. We represent the scopes of the local names using
edges of the graph. Consider a system consists of three processes (behaviors)
b1, b2 and b3 and two names a1 and a2 as in Fig.1. Let b1 and b2 be in the scope
of a1 and b2 and b3 be in the scope of a2. We represent such system with a
directed acyclic graph (DAG) such as Fig.2. A process (or a message) is inside of
the scope of a name if and only if there is an edge to the name from the process
in the DAG. In Fig.2., as a1 is reachable from b1 and b2, then b1 and b2 are
in the scope of a1, and b2 and b3 are in the scope of a2 as the sink node a2 is
reachable from b2 and b3. It is possible to represent local names that their scope
are not nested with the model. It is difficult to represent this situation precisely
with restriction operation, which is commonly used in models based on process
algebra.

Congruence Results of Scope Equivalence for a Graph Rewriting Model 247

3 Formal Definitions

3.1 Programs

First, a countably-infinite set of names is presupposed as other formal models
based on process algebra.

Definition 3.1 (program, behaviours) Let a1, . . . , ak are distinct names.

(i) A program is a a bipartite directed acyclic graph with source nodes b1, . . . , bm
and sink nodes a1, . . . , ak such that

– Each source node bi(1 ≤ i ≤ m) is a behaviour. Multiple occurrences of the
same behavior are allowed.

– Each sink node is a name aj(1 ≤ j ≤ k). All aj ’s are distinct.
– Each edge is directed from a source node to a sink node. Namely, an edge is

an ordered pair (bi, aj) of a source node and a name. For any source node bi
and a name aj there is at most one edge from bi to aj .

For a program P , we denote the multiset of all source nodes of P as src(P), the
set of all sink nodes as snk(P) and the set of all edges as edge(P). Note that
the empty graph 0 such that src(0) = snk(0) = edge(0) = ∅ is a program, that
represents an inactive program just like 0 in π-calculus.

(ii) A behavior is a message or a node consists of the epidermis and the content
defined as follows. In the following of this definition, we assume that any element
of snk(P) ∪ {x} occurs only in P and does not occur anywhere else in the
programs.

1. A node labeled with a tuple of names n (called the subject of the message)
and o (called the object of the message) is a message and denoted as n〈o〉.

2. A node whose epidermis is labeled with ! and the content is a program P is
a replication, and denoted as !P .

3. An input prefix is a node (denoted as a(x).P) that the epidermis is labeled
with a tuple of a name a and a variable x and the content is a program P .

4. A τ-prefix is a node (denoted as τ.P) that the epidermis is labeled with a
silent action τ and the content is a program P .

The assumption for the elements of snk(P) ∪ {x} is from the idea that these
names are “private names” on P and they can be renamed if necessary. Note
that this assumption is assumed for the contents of some behaviours (input pre-
fixes, τ -prefixes or replications) in a program but not assumed for the whole of
the program.

Definition 3.2 (free name, bound name)

1. For a behavior b, the set of free names of b : fn(b) is defined as follows.
– fn(a〈o〉) = {a, o},

248 M. Murakami

– fn(!P) = fn(P),
– fn(τ.P) = fn(P) and
– fn(a(x).P) = (fn(P) \ {x}) ∪ {a}.

2. For a program P where src(P) = {b1, . . . , bm}, fn(P) =
⋃

i fn(bi) \ snk(P).

The set of bound names of P (denoted as bn(P)) is the set of all names that
occur in P (including elements of snk(P) even if they do not occur in any ele-
ment of src(P)) but not in fn(P). We can rename bound names as the case of
π-calculus. Renaming operation is defined as follow.

Definition 3.3 (renaming). For a program P , n ∈ bn(P) and a flesh name
n′ that does not occur in P , renaming n with n′ is the operation replacing all
occurrences of n in src(P), snk(P) and edge(P) with n′.

Definition 3.4 (locality condition). A program P is local if for any input prefix
c(x).Q that occurs in P , no input prefix in Q has the form of x(y).R.

Definition 3.5 (normal program). A program P is normal if for any pro-
gram Q occur in b ∈ src(P), for any b′ ∈ src(Q) for any n ∈ fn(b′) ∩ snk(Q),
(b′, n) ∈ edge(Q).

It is quite natural to assume the normality for a program, because anyone must
know the name to use it. The locality condition says that “anyone cannot use the
name given from other one as the name of itself to receive messages”. Though
this condition affects the expressive power of the model, in many practical ex-
amples, transfer of receiving capability is implemented with transfer of sending
capability. We do not consider that this restriction seriously damages the ex-
pressive power. So in this paper, we consider local and normal programs only.
Theoretical motivations of this restriction are discussed in [10].

Definition 3.6 (composition). Let P and Q be programs and src(P)∩src(Q) =
∅. The composition P‖Q of P and Q is the program such that:

– src(P‖Q) = src(P) ∪ src(Q).
– snk(P‖Q) = snk(P) ∪ snk(Q).
– edge(P‖Q) = edge(P) ∪ edge(Q).

Intuitively, P‖Q is the parallel composition of P and Q. Note that we do
not assume snk(P) ∩ snk(Q) = ∅. Obviously P‖Q = Q‖P and ((P‖Q)‖R) =
(P‖(Q‖R)) for any P,Q and R from the definition. The empty graph 0 is the
unit of “‖”. Note that src(P)∪src(Q) and edge(P)∪edge(Q) denote the multiset
unions while snk(P) ∪ snk(Q) denotes the set union.

Definition 3.7 (N -closure). For a normal program P and a set of names N
such that N ∩ bn(P) = ∅, the N -closure νN(P) is the program such that:

Congruence Results of Scope Equivalence for a Graph Rewriting Model 249

src(νN(P)) = src(P)
snk(νN(P)) = snk(P) ∪N
edge(νN(P)) = edge(P) ∪ {(b, n)|b ∈ src(P), n ∈ N}

Intuitively, N -closure corresponds to the the ν-operation of π-calculus.

Definition 3.8 (deleting a behaviour). For a normal program P and b ∈ src(P),
P \ b is a program that is obtained by deleting a node b and edges that are
connected with b from P . Namely,

src(P \ b) = src(P) \ {b}
snk(P \ b) = snk(P)
edge(P \ b) = edge(P) \ {(b, n)|(b, n) ∈ edge(P)}
Note that src(P)\{b} and edge(P)\{(b, n)|(b, n) ∈ edge(P)} denote the multiset
subtractions.

Definition 3.9 (context). Let P be a program and b ∈ src(P) where b is an
input prefix, τ -prefix or a replication and the content of b is 0. A simple context
is a graph P [] such that the contents 0 of b is replaced with a hole “[]”. We call
a simple context as a τ-context, an input context or replication context if the hole
is the contents of a τ -prefix, of an input prefix or of a replication respectively.

A context is a simple context or the graph P [Q[]] that is obtained by replac-
ing the hole of a simple context P [] replacing with a context Q[] (with some
renaming of the names occur in Q if necessary).

For a context P [] and a program Q, P [Q] is a program obtained by replacing
the hole in P [] by Q (with some renaming of the names occur in Q if necessary).

3.2 Operational Semantics

We define the operational semantics with a labeled transition system.

Definition 3.10 (substitution). The substitution of a name to a program or to
a behaviour is defined recursively as follows. Let p be a behavior or a program.
For a name a, we assume that a ∈ fn(p). The substitution of a name o(�∈ bn(p))
to name a in p is denoted as p[o/a] and defined as follows.

– for a name c, c[o/a] =
{
o if c = a
c otherwise

– (m〈n〉)[o/a] = m[o/a]〈n[o/a]〉,
– (!P)[o/a] =!(P [o/a]),
– (c(x).P)[o/a] = c(x).(P [o/a]),
– (τ.P)[o/a] = τ.(P [o/a]) and
– for a program P and a ∈ fn(P), P [o/a] = P ′ where P ′ is a program such

that

src(P ′) = {b[o/a]|b ∈ src(P)},
snk(P ′) = snk(P) and

edge(P ′) = {(b[o/a], n)|(b, n) ∈ edge(P)}.

250 M. Murakami

For the case of input prefix, note that we can assume x �= a because a ∈
fn(c(x).P) without losing generality. (We can rename x if necessary.) We can
also assume a �= c from the locality condition as substitutions are applied only
for the contents of input prefixes. We can also assume that o �∈ snk(P) because
we consider only the case that P is the contents of a input prefix (from the
definition of a program, elements of snk(P) do not occur in elsewhere as o).

Note that substitutions work only for the occurrences of names in src(P).
The elements of snk(P) are not affected by substitutions. On the other hand,
renameings affect elements of snk(P).

Definition 3.11 (action). An action is a silent action τ , an output action or an
input action. For a name a and o, an input action is a tuple a(o) and an output
action is a tuple a〈o〉.

Definition 3.12 (labeled transition). For an action α, α→ is the least binary
relation on normal programs that satisfies the following rules.

Input: if b ∈ src(P) and b = a(x).Q, then P
a(o)→ (P \ b)‖ν{n|(b, n) ∈

edge(P)} νoQ[o/x]

τ-Action: if b ∈ src(P) and b = τ.Q, then P τ→ (P \b)‖ν{n|(b, n) ∈ edge(P)}Q

Replication 1: P
α→ P ′ if !Q ∈ src(P), and P‖ν{n|(!Q,n) ∈ edge(P)}Q′ α→

P ′, where Q′ is a program obtained from Q by renaming all names in snk(R)
to distinct fresh names that do not occur in anywhere else, for all R’s where
each R is a program that occur in Q (including Q itself).

Replication 2: P τ→P ′ if !Q∈src(P) and P‖ν{n|(!Q,n) ∈ edge(P)}(Q′
1‖Q′

2)
τ→

P ′, where each Q′
i(i = 1, 2) is a program obtained from Q by renaming all

names in snk(R) to distinct fresh names that do not occur in anywhere else,
for all R’s where each R is a program that occur in Q (including Q itself).

Output: if b ∈ src(P), b = a〈v〉 then, P
a〈v〉→ P \ b

Communication: if b1, b2 ∈ src(P), b1 = a〈o〉, b2 = a(x).Q then,
P

τ→ ((P \ b1) \ b2)‖ν{n|(b2, n) ∈ edge(P)} νoQ[o/x]

The following propositions are straightforward from the definitions.

Proposition 3.1. For any programs P, P ′ and any action α such that P α→ P ′,

1. If P is local then P ′ is local.
2. If P is normal then P ′ is normal.

Proposition 3.1. arrows us to assume that every program is normal and local
if we start with such one.

Congruence Results of Scope Equivalence for a Graph Rewriting Model 251

Proposition 3.2. For any normal programs P, P ′ and Q, and any action α if
P

α→ P ′ then P‖Q α→ P ′‖Q.

Proposition 3.3. For any programs P, P ′, an action α and a set of names such
that N ∩ bn(P) = ∅, if νNP α→ P ′ then there exists P” such that P α→ P” and
νNP” = P ′.

From Proposition 3.2 to 3.3 correspond to the rules of restriction and paral-
lel composition of the structural operational semantics of π-calculus respectively.

Proposition 3.4. For any programs P, P ′, an action α and a set of names such
that N ∩ bn(P) = ∅, if P α→ P ′ the νNP α→ νNP ′.

Definition 3.13. For an action α and a substitution [o/x], α[o/x] is the action
defined as follows.

α[o/x] =

⎧
⎨

⎩

τ if α = τ
a[o/x](n)[o/x] if α = a(n)
a[o/x]〈n〉[o/x] if α = a〈n〉

Proposition 3.5. For a program P , an action α and a name o �∈ bn(P), if

P [o/x] α→ P ′, then there exists P” such that P α′
→ P”, α′[o/x] = α and P”[o/x] =

P ′ or exists P” such that P
a〈n〉→ b(m)→ P”, a[o/x] = b[o/x], n[o/x] = m[o/x] and

P”[o/x] = P ′.

Proposition 3.6. For a program P , an action α and a name o �∈ bn(P), if

P
α→ P ′ then P [o/x]

α[o/x]→ P ′[o/x].

Proposition 3.7. For a program P , an output action α, an input action β and
a substitution [o/x] such that α[o/x] = a〈n〉, β[o/x] = a(n) and o �∈ bn(P), if

P
α→ β→ P ′, then P [o/x] τ→ P ′[o/x].

From Proposition 3.5 to 3.7 will be used for showing congruence results of
behavioural equivalence wrt substitution. The proofs are analogues of those of
corresponding results in π-calculus.

4 Behavioral Equivalence

As usual, we denote P α⇒ P ′ if P τ→ · · · τ→ α→ τ→ · · · τ→ τ→ P ′. And we denote
P

α̂⇒ P ′ if P α⇒ P ′ when α �= τ and P τ̂⇒ P ′ if P τ→ · · · τ→ P ′. The definition of
weak bisimulation is as usual.

Definition 4.1 (weak bisimulation) A binary relation R on normal programs
is a weak bisimulation if: for any (P,Q) ∈ R, for any α and P ′ if P α→ P ′ then
there exists Q′ such that Q α̂⇒ Q′ and (P ′, Q′) ∈ R and vice versa.

252 M. Murakami

Definition 4.2 (weak bisimilarity). Weak bisimulation equivalence is defined as
follows.

3 =
⋃
{R|R is a weak bisimulation}

It is easy to show 3 is an equivalence relation.
We can show that congruence property of 3 wrt composition from the defin-

itions of “‖” and bisimilarity.

Proposition 4.1. For any program R, if P 3 Q then P‖R 3 Q‖R.

We have the following propositions for the congruence results of 3[7].

Proposition 4.2. For any P and Q such that P 3 Q and for any τ -context R[],
R[P] 3 R[Q].

Proposition 4.3. If !Q ∈ src(P) then, P‖Q′ 3 P where each Q′ is a program
obtained from Q by renaming a name in snk(Q) to a fresh name.

From Proposition 4.3, 4.1 and the transitivity of 3 , we have the following
congruence result wrt replication.

Proposition 4.4. For any P and Q such that P 3 Q and for any replication
context R[], R[P] 3 R[Q].

From Proposition 3.5, 3.6 and 3.7, we have the following proposition.

Proposition 4.5. For any P and Q such that P 3 Q and a name o �∈ bn(P) ∪
bn(Q), P [o/x] 3 Q[o/x].

From Proposition 4.5, we have the following proposition.

Proposition 4.6. For any P and Q such that P 3 Q and for any input context
R[], R[P] 3 R[Q].

From Proposition 4.1 ∼ 4.6, we have the following theorem.

Theorem 4.1[7]. For any P and Q such that P 3 Q and for any context R[],
R[P] 3 R[Q].

We considered the context consists of composition, prefix and replication for con-
gruence results. In asynchronous π-calculus[10], the congruence result wrt name
restriction “P 3 Q implies νxP 3 νxQ” is also reported. We can show the
corresponding result from Proposition 4.2. Consider a τ - context R[] that is
obtained from R such that src(R) = {τ.0}, snk(R) = {x}, edge(R) = {(τ.0, x)}.
From Proposition 4.2, P 3 Q implies R[P] 3 R[Q]. Then for P ′ such that

Congruence Results of Scope Equivalence for a Graph Rewriting Model 253

R[P] τ→ P ′, there exists Q′ such that R[Q] τ→ Q′ and P ′ 3 Q′. From τ -rule,
P ′ is ν{x}P . Similarly, only possible Q′ reachable with “ τ→” is ν{x}Q. Thus we
have that two programs ν{x}P and ν{x}Q are weak bisimilar. This implies the
congruence result wrt the closure operation.

Proposition 4.7. For any P and Q and a set of names N such that N∩(bn(P)∪
bn(Q)) = ∅, if P 3 Q then νNP 3 νNQ.

5 Scope Equivalence

5.1 Equivalence Relation

This section presents an equivalence relation on programs which ensures that
two systems are equivalent in their behavior and in the scopes of names. We
introduce preliminary notions first.

Definition 5.1 For a program P and a name n such that n ∈ snk(P), P/n is
the program defined as follows:

src(P/n) = {b|b ∈ src(P), (b, n) ∈ edge(P)}
snk(P/n) = snk(P) \ {n}
edge(P/n) = {(b, a)|b ∈ src(P/n), a ∈ snk(P/n), (b, a) ∈ edge(P)}

Intuitively P/n is the subsystem of P that consists of behaviors which are in the
scope of n. Let P be an example of Fig.2., P/a1 is a subgraph of Fig.2. obtained
by removing the node of b3. (and the edge from b3 to a2) and a1 (and the edges
to a1) as shown in Fig.7. It consists of behaviour nodes b1 and b2 and name
nodes a1 and a2.

Fig. 7. The graph P/a1

The following propositions are straightforward from the definitions. These
propositions are commutativity of /n and other operations on programs. We
will refer to these propositions in the proof of congruence results wrt to the
scope equivalence that will be defined below.

Proposition 5.1. For any P,Q and n ∈ snk(P) ∪ snk(Q),

(P‖Q)/n = P/n‖Q/n.

254 M. Murakami

Proposition 5.2 . For a program P , a set of names N such that N ∩bn(P) = ∅
and a name n ∈ snk(P),

(νN P)/n = νN(P/n).

Proposition 5.3. Let R[] be a context and P be a program. For any name
m ∈ snk(R),

(R[P])/m = R/m[P].

Proposition 5.4. For a program P , a name o such that o �∈ bn(P), a name
x ∈ fn(P) and a name m ∈ snk(P),

P [o/x]/m = (P/m)[o/x].

Definition 5.2 (scope bisimulation). A binary relation R on programs is scope
bisimulation if for any (P,Q) ∈ R,

1. src(P/n) = ∅ iff src(Q/n) = ∅ for any n ∈ snk(P) ∩ snk(Q),
2. P/n 3 Q/n for any n ∈ snk(P) ∩ snk(Q) and
3. R is a weak bisimulation.

It is easy to show that the union of all scope bisimulations is a scope bisimulation
and it is the unique largest scope bisimulation.

Definition 5.3 (scope equivalence). The largest scope bisimulation is scope
equivalence and denoted as ⊥.

It is obvious from the definition that ⊥ is an equivalence relation. The motiva-
tion and the background of the definition of ⊥ is reported in [6,8].As ⊥ is a weak
bisimulation from Definition 5.2. 3., P ⊥ Q implies P 3 Q.

Definition 5.4 (scope bisimulation up to ⊥). A binary relation R on programs
is scope bisimulation up to ⊥ if for any (P,Q) ∈ R,

1. src(P/n) = ∅ iff src(Q/n) = ∅ for any n ∈ snk(P) ∩ snk(Q),
2. P/n 3 Q/n for any n ∈ snk(P) ∩ snk(Q) and
3. R is a weak bisimulation up to ⊥, namely for any (P,Q) ∈ R, for any P ′

such that P α→ P ′, there exists Q′ such that Q α⇒ Q′ and P ′ ⊥R⊥ Q′ and
vice versa.

Proposition 5.5. If R is a weak bisimulation up to ⊥, then ⊥R⊥ is a scope
bisimulation.

5.2 Congruence Results

The next proposition says that ⊥ is a congruence relation wrt ‖.

Proposition 5.6. If P ⊥ Q then P‖R ⊥ Q‖R.

Congruence Results of Scope Equivalence for a Graph Rewriting Model 255

Proof(outline). We can show that the following relation is a scope bisimulation
from the definitions and Proposition 3.2 and 5.1.

{(P‖R,Q‖R)|P ⊥ Q}

The following proposition is also straightforward from the definitions.

Proposition 5.7. For any program P and Q, let P ′ and Q′ be programs ob-
tained from P and Q respectively by renaming n ∈ snk(P) ∩ snk(Q) to a fresh
name n′. If P ⊥ Q then P ′ ⊥ Q′.

Proposition 5.8. For any P and Q and a set of names N such that N∩(bn(P)∪
bn(Q)) = ∅, if P ⊥ Q then νNP ⊥ νNQ.
proof(outline): We show that the following relation is a scope bisimulation:

{(νNP, νNQ)|P ⊥ Q}.

It is straightforward from the definition to show Definition 5.2 1.. 2. is from
Proposition 5,2 and Proposition 4.7. 3. is from Proposition 3.3 and 3.4.

Remember that the congruence result of 3 wrt closure operation is implied from
the congruence wrt τ -context (Proposition 4.7). However we do not use the
similar argument here because we use Proposition 5.8 to prove the congruence
of ⊥ wrt τ -context.

Proposition 5.9. For any P and Q such that P ⊥ Q and for any τ -context R[],
R[P] ⊥ R[Q].
Proof (outline). We have the result by showing that the following relation is a
scope bisimulation.

{(R[P1], R[P2])|P1 ⊥ P2, R[] is a τ -context.}∪ ⊥ .

To show Definition 5.2, 1. is straightforward from the definitions. 2. is from
Proposition 5.3 and Proposition 4.2. 3. is from Definition 3.12, τ -rule
and Proposition 5.6 and 5.8.

Proposition 5.10. For any P and Q such that P ⊥ Q and for any replication
context R[], R[P] ⊥ R[Q].
Proof (outline) We can show the result with Proposition 5.5 by showing the
following relation is a scope bisimulation up to ⊥.

{(R[P1], R[P2])|P1 ⊥ P2, R[] is a replication context.}∪ ⊥ .

To show Definition 5.4, 1. is straightforward from the definitions. 2. is from
Proposition 5.3 and Proposition 4.4. 3. is by the induction on the number
of the replication rules to derive R[P1]

α→ R′ and Proposition 5.6 and 5.7.

256 M. Murakami

Proposition 5.11. For any P and Q such that P ⊥ Q and a name o �∈ bn(P)∪
bn(Q), P [o/x] ⊥ Q[o/x].

Proof (outline). We have the result by showing that the following relation is a
scope bisimulation.

{(P1[o/x], P2[o/x])|P1 ⊥ P2, o �∈ bn(P1) ∪ bn(P2)}

To show Definition 5.2, 1. is straightforward from the definitions. 2. is from
Proposition 4.5 and Proposition 5.4. 3. is similar to the proof of Proposi-
tion 4.5 as ⊥ is a weak bisimulation.

Proposition 5.12. For any P and Q such that P ⊥ Q and for any input context
R[], R[P] ⊥ R[Q].

Proof (outline). We have the result by showing that the following relation is a
scope bisimulation.

{(R[P1], R[P2])|P1 ⊥ P2, R[] is a input context.}∪ ⊥ .

Showing Definition 5.2 1. is similar to the case of τ -prefix. 2. is from Propo-
sition 4.6 and 5.3. 3. is from Proposition 5.11, 5.8 and 5.6.

From Proposition 5.9 ∼ 5.12, we have the following result.

Theorem 5.1. For any P and Q such that P ⊥ Q and for any context R[],
R[P] ⊥ R[Q].

6 Conclusions

We presented a model of concurrent system based on graph rewriting. The model
can represent the scopes of channel names of programs precisely. We defined
the equivalence relation for the scopes programs that are equivalent in their
behaviour but not in their scopes of names. The equivalence relation make it
possible to distinguish programs that are equivalent in their behaviour but not
equivalent on their treatment of the scopes of names.

This paper presented congruence results of scope equivalence wrt composition,
τ -context, input context and replication. Congruence properties of the equiva-
lence relation make it possible to verify if a program satisfies the given specifica-
tion in compositional way. Thus we can discuss how a program treats the scopes
of names by discussing for each component of a system.

References

1. Ehrig, H., König, B.: Deriving Bisimulation Congruences in the DPO Approach to
Graph Rewriting with Borrowed Contexts. Mathematical Structures in Computer
Science 16(6), 1133–1163 (2006)

2. Gadducci, F.: Term Graph rewriting for the π-calculus. In: Ohori, A. (ed.) APLAS
2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)

Congruence Results of Scope Equivalence for a Graph Rewriting Model 257

3. König, B.: A Graph Rewriting Semantics for the Polyadic π-Calculus. In: Proc. of
GT-VMT 2000 Workshop on Graph Transformation and Visual Modeling Tech-
niques, pp. 451–458 (2000)

4. Lafont, Y.: Interaction Nets. In: Proc. of POPL 1990, pp. 95–108. ACM, New York
(1990)

5. Milner, R.: Bigraphical Reactive Systems. In: Larsen, K.G., Nielsen, M. (eds.)
CONCUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001)

6. Murakami, M.: A Formal Model of Concurrent Systems Based on Bipartite Di-
rected Acyclic Graph. Science of Computer Programming 61, 38–47 (2006)

7. Murakami, M.: Congruence Results of Behavioral Equivalence for A Graph Rewrit-
ing Model of Concurrent Programs. In: Proc. of ICITA 2008 (to appear, 2008)

8. Murakami, M.: A Graph Rewriting Model of Concurrent Programs with Higher-
Order Communication. In Proc. of TMFCS 2008 (to appear, 2008)

9. Odersky, M.: Functional Nets. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782.
Springer, Heidelberg (2000)

10. Sangiorgi, D.: Asynchronous Process Calculi: The First- and Higher-order Para-
digms. Theoretical Computer Science 253, 311–350 (2001)

11. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS 2005,
pp. 311–320. IEEE, Los Alamitos (2005)

12. Ueda, K., Kato, N.: Programming with Logical Links: Design of the LMNtal lan-
guage. In: Proc. of PPL 2003. JSSST, pp. 20–31 (2003)

Guided Test Generation from CSP Models

Sidney Nogueira1,2, Augusto Sampaio1, and Alexandre Mota1

1 Centro de Informática, Universidade Federal de Pernambuco
Caixa Postal 7851 - 50732-970 - Recife/PE - Brazil
2 Mobile Devices R&D Motorola Industrial Ltda,

Rod SP 340 - Km 128, 7 A - 13820 000 - Jaguariuna/SP - Brazil

Abstract. We introduce an approach for the construction of feature test
models expressed in the CSP process algebra, from use cases described
in a controlled natural language. From these models, our strategy au-
tomatically generates test cases for both individual features and feature
interactions, in the context of an industrial cooperation with Motorola
Inc., where each feature represents a mobile device functionality. The
test case generation can be guided by test purposes, which allow selec-
tion based on particular traces of interest. More generally, we characterise
a testing theory in terms of CSP: test models, test purposes, test cases,
test execution, test verdicts and soundness are entirely defined in terms
of CSP processes and refinement notions. We have also developed a tool,
ATG, which mechanises the entire generation process.

1 Introduction

Some of the main problems of effective testing is the selection of a good set of
test cases and its automation [6], aiming at making the process more agile, less
susceptible to errors and less dependent on human interaction. Formal notations
like Finite State Machines (FSM) and Labelled Transition Systems (LTS) can
provide accurate models for software that can be processed by tools that au-
tomatise the test design activity. There are several test generation approaches
that use such models, as, for instance, [4,21].

While LTS and FSM are the main models used as basis to automate test
generation, they are very concrete models and often adopted as the operational
semantics of more abstract process algebras like CSP [15], CCS [11] and LOTOS
[10]. Contrasting with operational models, process algebra models can naturally
evolve to incorporate additional requirements; the operators of a process algebra
also allow complex models to be built from simpler ones, compositionally. Test
generation can take advantage of this modular structure, and can be formalised
in terms of the process algebra semantic models.

Particularly, CSP is the standard formalism of the Brazil Test Center (BTC)
research project [16], a cooperation between the Federal University of Pernam-
buco and Motorola Inc., in the context of testing embedded software that run
over mobile phones. The rich repertoire of CSP operators are used to model
individual features (mobile device functionalities) as well as several patterns of

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 258–273, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Guided Test Generation from CSP Models 259

feature interaction. The CSP models are automatically constructed [2] from use
cases described in a domain specific language [18,8] (a small subset of English
with a fixed grammar) for mobile applications.

The main contribution of this paper is a uniform strategy for generating test
cases from CSP models. Instead of devising explicit generation algorithms (for
instance, to deal separately with individual features and with feature interac-
tion), our approach is based on using the CSP model checker (FDR) [9] in
background. Test scenarios are incrementally generated as counter-examples of
refinement verifications using FDR. Test selection is captured by CSP processes
that describe the properties of interest, based on the concept of test purpose [7];
writing test purposes can also benefit from the expressiveness of CSP. The refine-
ment relations submitted to FDR involves the original model and an annotated
model obtained from the parallel composition of the original model and the test
purposes.

In our testing theory, we consider as test hypothesis that the class of imple-
mentations to be tested can be specified by some CSP process [3]. We introduce
an implementation relation, cspio, which defines the set of observations consid-
ered in testing: the implementation must produce a subset of the outputs for
the inputs that are specified; although CSP does not differentiate input and out-
put events, we make this distinction using separate input and output alphabets.
Moreover, assuming that implementations are input enabled (accept all inputs
from the alphabet) and output available (always produce an output for a given
input), we prove that test cases are sound in the sense that they do not reject
correct implementations according to cspio. All the elements of our approach
are entirely characterised in terms of CSP processes and refinement notions.

Some previous approaches have addressed test generation [13,17,3] in the con-
text of CSP. The focus of [17] is the formalisation of conformance relations, while
[13,3] also consider the generation of infinite test sets. Nevertheless, these works
do not distinguish input and output events nor address test purposes as selection
criteria.

Section 2 presents our application domain (mobile device software). Section 3
shows how CSP is used to construct test models, both for individual features
and for feature interaction. Section 4 addresses test scenario generation based
on process refinement, and test selection based on test purposes is the subject of
Section 5. Section 6 introduces our CSP characterization of conformance testing
and shows how to obtain sound test cases from a set of test scenarios. The final
section considers related and future work.

2 Application Domain

The development process of mobile phone software follows an iterative approach,
where sets of functionalities (known as features) are incrementally considered in
each development cycle. An example of a feature is the set of requirements for
sending a multimedia message. In general, new features are developed and tested,
firstly, in isolation, and later integrated with other features, giving rise to feature
interactions.

260 S. Nogueira, A. Sampaio, and A. Mota

Fig. 1. Test automation workflow

Figure 1 presents an overview of the automatic test generation approach in
the BTC project. The main inputs are use case documents that describe the
behaviour of the features to be tested, and selection criteria defined in terms of
test purposes; the output is a test case suite suitable for manual execution. In-
put and output templates obey a Controlled Natural Language (CNL) standard
[18,8] that can be translated to and from CSP. We have developed a tool, Ab-
stract Test Generator (ATG), which plays a central role in the automation flow;
ATG takes as input a test model (which is generated [2] from use cases in CNL)
and a set of test purposes. Internally, the tool generates a set of test scenarios
that satisfy the test purposes; the user can inform the number of scenarios to
be generated. The test scenarios are then used to generate sound test cases (still
expressed as CSP processes). Finally, the test cases are translated back to CNL
[18], yielding the test case suite.

In what follows, we overview the use case documents, see Figures 2 and 3.

Fig. 2. Main flow Fig. 3. Alternative and interaction flows

Feature Use Cases. A feature use case has a set of interconnected flows (main,
alternative and exception); each flow is a sequence of steps, and each step has an
identifier (Id) that is used for referencing (use cases can be shared by different
features and documents). Features and use cases also have unique identifiers. The
complete reference for a step has the form FEATURE ID#UC ID#STEP ID.
Moreover, each flow step specifies an user input action (User Action column),
the expected system output in the System Response column, and the (op-
tional) condition required to produce the expected system output (System State

Guided Test Generation from CSP Models 261

column). Figure 2 shows the main flow of the use case of the Important Mes-
sages Feature. Such a flow specifies the sequence of actions that the user must
perform to move a message from the Inbox to the Important Messages Folder.
For instance, in step 5M, to get a message dialog that confirms the success of
moving a message, the memory storage must not be full.

The fields ‘From Step’ and ‘To Step’ are used to indicate the set of steps
from where the flow must start and to where it must continue. As a default, the
main flow uses the constants START (no previous step) and END (no subsequent
step) for these fields. Alternative flows are simply defined by characterising where
(From Step) they can assume control and where they must resume (To Step),
with respect to the flows they are referencing. Figure 3 (top) shows a possible
alternative flow for the Important Messages use case. It specifies that, after
step 4M of the Feature main flow, if the memory storage is full, the selected
message is not moved because a clean up action is requested. After the clean
up the message is moved to the Important Messages Folder and the alternative
flow finalizes. The exception flows are similar to alternative flows, except for
representing exceptional behaviours.
Feature Interaction. Feature interactions are extensions of feature use cases by
introducing interaction points. Using the field Interaction Point one can indicate
a set of steps from which the interactive flow can assume and resume control to
the next step in the original flow. Figure 3 (bottom) shows the specification of a
flow that can interact after step 1M of the main flow. This interaction specifies
that after the main action “Go to Message Center”, the feature can continue
its main flow or verify the message storage status (interaction flow), and then
continue the main flow from step 2M.

3 Test Models as CSP Processes

A process is the central element of a CSP specification. Processes can offer
events from Σ (the set of possible events) to establish communication with the
environment or with other processes. The alphabet of a CSP process, say P , is
the set of events it can communicate, say αP , where αP ⊆ Σ. Furthermore, the
primitive process Stop specifies a broken process (deadlock), and the primitive
Skip a process that communicates an event � and terminates successfully.

Although there is no semantic distinction between input and output events
in CSP, we consider that Σ is split into three disjoint sets of events: inputs Σi ,
outputs Σo and conditionals Σc. In our application domain, input events rep-
resent user actions, the output events model system responses, and conditional
events abstract the system internal state. Then, Σ = Σi ∪ Σo ∪ Σc . Similarly,
the alphabets of the processes follow the same structure: αP = αPi ∪αPo ∪αPc .

The rest of this section shows how CSP operators are used to build test models
for our application domain. The operators are introduced by demand.
Modelling Individual Features. Basic CSP operators as prefix and external
choice are suitable to model feature use cases. The CSP prefix operator P =
ev → Q specifies that event ev is communicated by P , which then behaves as

262 S. Nogueira, A. Sampaio, and A. Mota

the process Q . The external choice operator P = Q � R indicates that the
process P can behave as Q or R; the choice is made by the environment.

As an example, applying the translation approach presented in [2] to the main
and alternative flows of the use case of Important Messages Feature (Figures 2
and 3) we obtain the model specified as follows. For conciseness, we abbreviate
the event names that represent the elements of the use case templates.

UC1 = goToMsgCenter → IMFolderIsDisp → goToInbox → inboxMsgsDisp →
scrollToAMsg → msgHighlighted → goToCSM → moveToIMOptDisp →
selMoveToIMOpt → (UC11 � UC12)

UC11 = msgStoIsNotFull → msgMovedToIMDisp → Skip
UC12 = msgStoIsFull → cleanUpReqDisp →

performCleanUp → msgMovedToIMDisp → Skip

The process UC1 specifies the main use case flow (Figure 2) up to Step 4M (event
selMoveToIMOpt). From this point, it behaves as the choice UC11 � UC12. The
process UC11 specifies Step 5M of the main flow, and UC12 the behaviour of the
alternative flow (Figure 3). Both main and alternative flows finish with success
(behave as Skip).
Modelling Feature Interactions. Now we show an approach to capture fea-
ture interactions using CSP, by combining the CSP processes that specify in-
teraction flows with the processes that specify main, alternative and exception
flows.

Consider the CSP notation P \ s that defines a process which behaves like P
communicates all its events, except the events that belong to s , which become
internal (invisible): \ stands for the hiding operator. The process P |[X]| Q
stands for the generalised parallel composition of the processes P and Q with
synchronisation set X . This expression states that P and Q must synchronize
on events that belong to X . Each process can evolve independently for events
that are not in X .

Figures 4 and 5 give a graphical overview on how to model feature interaction
by using CSP parallel composition. The top of Figure 4 represents the use cases
process UC1 modified with the insertion of one interaction point (the events
beginI .1 and endI .1 are control events). The bottom of the same figure illustrates
the interaction process for the interaction flow of Figure3. Finally, putting these
processes in parallel with synchronization set {beginI .1, endI .1} and hiding this
set, we obtain the model exhibited in Figure 5. The transition labelled as tau
in Figure 5 denotes invisible event and appears in the resulting model to allow
the interaction to occur optionally.

The rest of this section materializes the graphical modelling of interaction
shown in Figures 4 and 5 motivated above in terms of CSP. Consider the indexed
external choice construction of CSP � x : A • F (x), where x can be a value or an
event from set A, and F (x) any CSP term involving x . This construction behaves
as the external choice F (x1) � F (x2) � ... � F (xn) for A = {x1, x2, ..., xn}.

We define the auxiliary process InteractionPoint that is used to introduce
control points in the use case processes that are affected by interactions.

InteractionPoint(indices) = Skip � (� i : indices • beginI .i → endI .i → Skip)

Guided Test Generation from CSP Models 263

Fig. 4. Marked use case and interaction Fig. 5. Feature interaction model

The parameter indices is a set of interaction identifiers used to characterise
which interactions are allowed in the same point of a given use case. The events
from IntControl = {beginI .i , endI .i} are used to specify such points. For each
i ∈ indices the process InteractionPoint offers a choice with the prefix begin.i →
end .i → Skip. Furthermore, the external choice with Skip allows the original flow
to perform without any interaction.

Consider the CSP process P ; Q that behaves like P until it terminates suc-
cessfully, when the control passes to Q . The process UC ′

1 in Figure 4 (top) is
the process UC1 from the previous section modified by the insertion of an in-
teraction point after the step 1M. In UC ′

1 the processes UC11 and UC12 remain
unchanged because there are no interactions for them.

UC ′
1 = goToMsgCenter → IMFolderIsDisp → Skip; InteractionPoint({1});

goToInbox → inboxMsgsDisp → scrollToAMsg → msgHighlighted →
goToCSM → moveToIMOptDisp → selMoveToIMOpt → (UC11 � UC12)

The parameter {1} for the process InteractionPoint above is the index for the
interaction in Figure 3 whose CSP specification is the process

STORAGE STATUS = selStoStaOpt → stoStaDiaDisp →
dismStoStaDia → stoStaDiaClosed → Skip

In addition, we define the auxiliary process I that is similar to InteractionPoint
except that it handles a unique control point (instead of a set), and between the
beginI .index and endI .index events it includes the interaction flow itself.

I (index , interaction) = Skip � (beginI .index → interaction; endI .index → Skip)

Finally, the CSP interaction specification of the use case flows of Figures 2 and
3 is

UC1 I = (UC ′
1 |[IntControl]| I (1,STORAGE STATUS)) \ IntControl

where the process I (1,STORAGE STATUS) (represented in Figure 4, at bot-
tom) allows the flow STORAGE STATUS to occur in the point where Interaction
Point({1}) is included in UC ′

1. The events of IntControl are hidden from the model
since they only play the role of control events. Figure 5 shows a graphical view of
the process UC1 I . Note that the original flow can be interrupted at point 2, where
the subflow demarcated by 11, 12 and 13 is the interruption behaviour.

264 S. Nogueira, A. Sampaio, and A. Mota

The notation μX .F (X) stands for a nameless recursive CSP process. For
the general case, the CSP process below specifies the feature interaction model
for a set of independent feature model processes {UC ′

1, ...,UC ′
N } with a set of

independent interactions {I (1, inti), ..., I (n, intn)} that can occur in any point
of the feature models.

UC I = (� k : {1..N } • UC ′
k |[IntControl]|

μX .� i : {1..n} • I (i , inti); X) \ IntControl

On the left-hand side of the parallelism, the use cases are modelled as the
external choice of the respective processes; each process UC ′

k (1 ≤ k ≤ N)
stands for the use case UCk modified with the insertion of interaction points.
On the right-hand side, there is a choice among the possible interactions I (i , inti)
(1 ≤ i ≤ n) that recurs after successful termination. This recursion allows the
run of any interaction whenever the respective interaction points are reached in
the use cases.

A more elaborate model of feature interaction can be achieved using the in-
terleaving operator of CSP. We can define that the occurrences of the process
I (i , inti) are interleaved, and that each occurrence is itself recursive. Similarly,
the use case models can as well be combined using interleaving. This allows
multiple interactions to occur simultaneously, and is useful in the context of
concurrent features.
Semantic Models for CSP. Trace semantics is the simplest model for a CSP
process. The traces of a process P , given by traces(P), correspond to the set
of all possible sequences (even infinite) of events P can communicate. For the
process Stop, traces(Stop) = {〈〉}, and for Skip, traces(Skip) = {〈〉, 〈�〉}, where
� �∈ Σ. For prefix, traces(a → P) = ({〈〉, 〈a〉}) ∪ traces(P). Let P1 and P2 be
two CSP processes, then traces(P1 � P2) = traces(P1) ∪ traces(P2). For the
sequential composition, traces(P ; Q) = (traces(P) ∩ Σ∗) ∪ {s � t | s � 〈�〉 ∈
traces(P) ∧ t ∈ traces(Q)}. A complete definition for all CSP operators can be
found in [15].

It is possible to compare the traces semantics of two processes by refine-
ment verification using the FDR [9] tool. A process Q refines the process P
in the traces model, say P �τ Q , if and only if traces(P) ⊇ traces(Q). Oth-
erwise, FDR yields a trace (the shortest counter-example), say ce, such that
ce ∈ traces(Q) but ce �∈ traces(P). For instance, UC11 � UC12 �τ UC12 holds,
since traces(UC11 � UC12) ⊇ traces(UC12). However, the relation Skip �τ

Skip; accept .1 → Stop does not, since 〈accept .1〉 ∈ traces(accept .1 → Stop)
but 〈accept .1〉 �∈ traces(Skip). Thus, the trace 〈accept .1〉 is a counter-example.

Structuring the process UC I as explained previously, we have that UC I �τ

UC holds: the traces of the use case model without interactions is included in
the traces of the interaction model. For instance, UC1 I �τ UC1 holds.

Other more elaborate semantic models of CSP are the failures and the failures-
divergences models. The former captures deadlock situations, whereas the latter
captures livelocks as well. See [15] for further details.

Guided Test Generation from CSP Models 265

4 Test Scenario Generation

Given a test model S and a safety property Φ, we can obtain the traces of S
that satisfy Φ (e.g. traces from S that lead to a successful termination). We
call these traces test scenarios, say ts , when Φ describes some test selection
criteria. A test scenario is the central element used to construct a CSP test case.
This Section shows how to generate test scenarios as the counter-examples of
refinement verifications.

Consider the set MARK = {accept .n} for n ∈ N, the alphabet of mark
events used in our test generation approach. Let S be the process that specifies
the model we want to select tests from, then we define S ′ to be S with the
addition of mark events after test scenarios that satisfies Φ. The idea is to perform
refinement verifications of the form S �τ S ′ that generate the test scenarios as
counter-examples. Consider that s1 �s2 indicates the concatenation of sequences
s1 and s2, and 〈ev〉 a sequence containing the element e. Then, S ′ is defined in
such a way that for all test scenarios ts ∈ traces(S) that satisfies Φ, there is a
trace ts � 〈m〉 ∈ traces(S ′), such that m ∈ MARK and MARK ∩ αS = ∅. As
a consequence ts � 〈m〉 �∈ traces(S), so the relation S �τ S ′ does not hold and
the counter-examples are traces of the form ts � 〈m〉. The shortest test scenario,
say ts1, is retrieved by FDR when S �τ S ′ does not hold.

To illustrate the proposed test scenario generation approach, we show how
to generate a set of test scenarios (ts ∈ traces(S)) that lead the test model to
successful termination. Consider the process ACCEPT (id) = accept .id → Stop
that is used to mark test scenarios by communicating the mark event accept .id
(accept .id ∈ MARK). Thus, we define S ′ as the process (S ; ACCEPT (i)). This
process inserts marks (accept .i) after each successful termination of S . As a
consequence, the verification of relation (S �τ S ′) yields as counter-examples
the test scenarios that lead the specification to successful termination (if they
exist).

For example, checking the relation UC1 �τ UC1; ACCEPT (1) using FDR
results in the shortest counter-example, as displayed below.

UC1 ts1 = 〈goToMsgCenter , IMFolderIsDisp, goToInbox , inboxMsgsDisp,
scrollToAMsg , msgHighlighted , goToCSM ,moveToIMOptDisp, selMoveToIMOpt ,
msgStoIsNotFull , msgMovedToIMDisp, accept .1〉

The above trace (ignoring the marking event accept .1) is the shortest successful
termination test scenario to UC1. It corresponds to the main use case flow of
the Important Messages Feature (Figure 2).

To obtain from S subsequent test scenarios lengthier than a test scenario
ts1, we use the function Proc that receives as input a sequence of events and
generates a process whose maximum trace corresponds to the input sequence.
For instance, Proc(〈a, b, c〉) yields the process a → b → c → Stop. The reason
for using Stop, rather than Skip, is that Stop does not generate any visible event
in the traces model, while Skip generates the event �.

The second counter-example is generated from S using the previous refine-
ment, but the process formed by the counter-example ts1 (Proc(ts1)) as an

266 S. Nogueira, A. Sampaio, and A. Mota

alternative to S on the left-hand side. The second test scenario can then be
generated as the counter-example to the refinement S � Proc(ts1) �τ S ′. As
traces(S � Proc(ts1)) is equivalent to traces(S) ∪ ts1, ts1 cannot be a counter-
example of the second refinement iteration. Thus, if the refinement does not hold
again, then we have ts2 as the counter-example.

The iterations can be repeated until the desired set of test scenarios is obtained
(for instance, a fixed number of tests is generated). In general, the n + 1th test
scenario can be generated as a counter-example of the following refinement.

S � Proc(ts1) � Proc(ts2) � ... � Proc(tsn) �τ S ′ (1)

Continuing the selection of successful termination traces of UC1, checking the
relation UC1 � Proc(UC1 ts1) �τ UC1; ACCEPT (1) yields a second counter-
example.

UC1 ts2 = 〈goToMsgCenter , IMFolderIsDisp, goToInbox , inboxMsgsDisp,
scrollToAMsg , msgHighlighted , goToCSM ,moveToIMOptDisp, selMoveToIMOpt ,
msgStoIsFull , cleanUpReqDisp, performCleanUp, msgMovedToIMDisp, accept .1〉

The above trace is another successful termination test scenario for UC1. It
corresponds to the alternative flow of the Important Messages (Figure 3). Fi-
nally, since there is no more successful termination scenarios to generate from
UC1, the following refinement UC1 � Proc(UC1 ts1) � Proc(UC1 ts2) �τ

UC1; ACCEPT (1) holds.
This strategy applies both to feature models and to feature interaction models,

introduced in the previous section.

5 Test Scenario Selection

Although successful termination can itself be used as a selection criteria, as
illustrated in the previous section, this section shows a more flexible strategy for
selecting a set of test scenarios from a test model S based on the concept of a test
purpose TP , described as a CSP process. A CSP test purpose is based on the
notion introduced in [7]: a test purpose is a partial specification describing the
characteristics of the desired tests. The definition below formalizes the concept.

Definition 1. Let TP and S be CSP processes. The process TP is a test pur-
pose for S if it has deterministic behaviour and ∀ ts � 〈m〉 : traces(TP) • ts ∈
traces(S) ∧ m ∈ MARK.

A TP must be deterministic to avoid the selection of inconsistent test scenarios.
The other relevant property of a TP is that its traces (excluding the mark
event) must be traces of the specification model. To ease the task of writing TP
in CSP following Definition 1, we provide a set of primitive processes that can
be combined to design possibly complex test purposes.

The primitive ANY (evset ,next) = � ev : evset • ev → next performs basic
selection. It selects the events offered by the specification that belong to evset .
If any of these events can occur, it behaves as next . Otherwise, it deadlocks.

Guided Test Generation from CSP Models 267

Consider the process RUN (s) = � ev : s • ev → RUN (s) that continuously
offers the events from the set s , and P � Q which indicates that Q can inter-
rupt the behaviour of P if an event offered by Q is communicated. The process
UNTIL(αS , evset ,next) = RUN (αS − evset) � ANY (evset ,next) selects all se-
quences offered by the specification events until it engages on some event that
belongs to evset . In [12] one can find a comprehensive list of primitives.

The following is an example of a test purpose TP1 that is used to select
scenarios from UC1. The objective of TP1 is to select from UC1 test scenarios
whose final output is a message confirming that the selected important message
is moved to the folder (msgMovedToIMDisp), and at some point before the user
has performed a cleanup action (performCleanUp).

TP1 = UNTIL(αUC1 , {performCleanUp},
UNTIL(αUC1 , {msgMovedToIMDisp}, ACCEPT (1)))

The process TP1 offers the events of αUC1 until it engages on performCleanUp.
Next, it offers the events of αUC1 until it engages on msgMovedToIMDisp, when
it behaves as ACCEPT (1) that inserts the mark event accept .1.

Based on the test scenario generation approach from the previous section,
one can select test scenarios for a given CSP test purpose TP by defining the
process S ′ (here referred to as PP(S ,TP)) as the parallel product of S with a
test purpose TP with synchronisation set αS : PP(S ,TP) = S |[αS]|TP . The
process TP synchronises in all events offered by S until the test purpose that
follows Definition 1 matches a test scenario, when TP communicates an event
mark ∈ MARKS . At this point, the process TP deadlocks, and consequently
PP(S ,TP) deadlocks as well. This makes the parallel product to produce traces
ts � 〈mark〉, where ts are the test scenarios. If S does not contain scenarios
specified by TP , no mark event is communicated, the parallel product does not
deadlock and the relation S �τ PP(S ,TP) holds.

Considering again our example, the shortest test scenario from UC1 that
matches TP1 is obtained from a counter-example of the relation UC1 �τ PP
(UC1,TP1), where PP(UC1,TP1) = UC1 |[αUC1]|TP1. The counter-example is
given below.

UC1 TP1 ts1 = 〈goToMsgCenter , IMFolderIsDisp, goToInbox , inboxMsgsDisp,
scrollToAMsg , msgHighlighted , goToCSM ,moveToIMOptDisp, selMoveToIMOpt ,
msgStoIsFull , cleanUpReqDisp, performCleanUp, msgMovedToIMDisp, accept .1〉

Further test scenarios that satisfy a given test purpose can be generated incre-
mentally as explained in the previous section.

6 Constructing Sound Test Cases

In conformance testing, the minimum requirement for the generated test cases
is that they do not reject correct implementations; they must be sound. In this
section we show that our test case generation strategy always produces sound
test cases.
CSP Input-Output Conformance. To obtain soundness, conformance testing
[20] requires the definition of an implementation relation between the domain of

268 S. Nogueira, A. Sampaio, and A. Mota

specifications and the domain of implementations. In our work elements of such
domains are expressed as CSP processes. Thus, to present our definition for such
a relation we assume as test hypothesis [3] that there is a CSP process which
specifies an implementation under test (IUT), say IUTCSP .

We also assume that implementations are always able to accept any input
from the alphabet (input enabled), and always produce some output after a given
input (output available). These properties are formalized by the two following
definitions. An implementation is input enabled when the inputs communicated
after each of its traces equals its input alphabet.

Definition 2. Let IUTCSP be an implementation model. It is input enabled iff
∀ t : traces(IUTCSP) • {e : αIUTCSP i | t � 〈e〉 ∈ traces(IUTCSP)} = αIUTCSP i

An implementation is output available when we can always find an output event
immediately after each input event.

Definition 3. Let IUTCSP be an implementation model. It is output available
iff ∀ t : traces(IUTCSP); i : αIUTCSP i •

t � 〈i〉 ∈ traces(IUTCSP)⇒ (∃ o : αIUTCSPo • t � 〈i , o〉 ∈ traces(IUTCSP))

From now on we assume that any implementation model IUTCSP is both input
enabled and output available.

Our implementation relation cspio (CSP Input-Output Conformance), for-
malised in Definition 4, is the basis for our generation of sound CSP test cases.
Consider that initials(P) = {a | 〈a〉 ∈ traces(P)} yields the initial events
offered by the process P , and the function out(P , s) gives the set of output
events of P after the trace s . More precisely, out(P , s) = if s ∈ traces(P) then
initials(P/s) ∩ αPo else ∅. The relation cspio establishes that any output event
observed in an implementation model IUTCSP is also observed in the specifica-
tion S , after any trace of S . In this case, IUTCSP cspio S .

Definition 4. Let IUTCSP be an implementation model, and S a specification,
such that αSc = ∅, αSi ⊆ αIUTCSP i , αSo ⊆ αIUTCSPo. Then,

IUTCSP cspio S ⇔ ∀ s : traces(S) • out(IUTCSP , s) ⊆ out(S , s)

Consider the notation P ||| Q represents the interleaving between the processes
P and Q . In such a composition both processes communicate any event freely (no
synchronisation). The following theorem captures cspio using process refinement.

Theorem 1. Let IUTCSP be an implementation model, and S a specification,
such that αSc = ∅, αSi ⊆ αIUTCSP i and αSo ⊆ αIUTCSPo. The relation IUTCSP
cspio S holds iff the following refinement holds.

S �τ (S ||| RUN (αIUTCSPo)) |[αIUTCSP]| IUTCSP (2)

The intuition for this theorem is as follows. Consider an input event that occurs
in IUTCSP , but not in S . On the right-hand side of the refinement, the par-
allel composition cannot progress through this event, so it is refused. Because

Guided Test Generation from CSP Models 269

refused events are ignored in the traces model, new IUTCSP inputs are allowed
by the above refinement. The objective of the interleaving with the process
RUN (αIUTCSPo) is to avoid that the right-hand process refuses output events
that the implementation can perform but S cannot. Thus, RUN (αIUTCSPo) al-
lows that such outputs be communicated to IUTCSP . Finally, if IUTCSP can
perform such output events, then they appear in the traces of the right-hand
side process, which falsifies the traces refinement.

In summary, the expression on the right-hand side captures new inputs per-
formed by IUTCSP generating deadlock from the trace where the input has
occurred, in such a way that any event that comes after is allowed. Also, it keeps
in the traces all the output events of IUTCSP for the inputs from S , allowing a
comparison in the traces models. The proof of the previous theorem and of the
following ones can be found in [12].

If we know IUTCSP we can verify if IUTCSP cspioS by checking (using FDR)
the relation (2) directly. This is equivalent to generating all the traces of S and
exercising them against the implementation according to cspio. However, in
general we do not know IUTCSP and the number of traces of S is infinite.
Therefore, we need to exercise the implementation with a selected subset of test
cases and look for possible violations of IUT cspioS during the test execution.
Test Case and Successful Test Execution. We need to state what is the
meaning of a test execution and the verdicts it can produce. The execution of a
test TC against an implementation IUTCSP , named EX (IUTCSP ,TC), is the
parallel composition IUTCSP |[αIUTCSP]|TC . Such an execution must yield a
verdict event v ∈ VER = {pass , fail , inc}, which does not belong to αIUTCSP . To
check this in CSP, we need these verdict elements expressed as CSP processes.
Thus, we use process PASS = pass → Stop to express when the test passes in
the execution. Similarly INC = inc → Stop for an inconclusive execution, and
FAIL = fail → Stop for a failed execution.

A test execution EX (IUTCSP ,TC) for a given implementation IUTCSP and
a test case TC must always be successful. This is captured by the following
definition.

Definition 5. Let TC be a test case process, IUTCSP an implementation model
and T = traces(EX (IUTCSP ,TC)). The execution of TC against IUTCSP is a
successful test execution if the following holds.

∀ t : T | (¬∃ t ′ : T | t �= t ′ • t ≤ t ′) • last(t) ∈ {pass , inc, fail}

where last(s) yields the last element of the sequence s.

The above definition states that the last element of each execution trace, which
is not a prefix of any other execution trace, is a verdict event.
Constructing Sound Test Cases. To construct a test case from a test sce-
nario ts , first we create an output complete sequence lt that contains pairs
(evi , outsi) such that evi is the i th element of ts and outsi is the set of output
events after the specification performs the trace 〈ev1, ..., evi−1〉. Formally, outsi =

270 S. Nogueira, A. Sampaio, and A. Mota

out(S , 〈evi , ..., evi−1〉), for 1≤ i≤#ts , and lt=〈 (ev1, outs1), ..., (ev#ts , outs#ts)〉,
where #s yields the size of the sequence s .

The function TC BUILDER(lt) defines how a sound test case can be con-
structed from a test scenario.

TC BUILDER (〈〉) = PASS
TC BUILDER (〈(evi , outsi)〉� tail) = SUBTC ((evi , outsi)); TC BUILDER(tail)

where

SUBTC ((evi , outsi)) = if (evi ∈ αIUTCSP i) then ev → Skip
else (evi → Skip � ANY (outsi − {evi}, INC)

� ANY (αIUTCSPo − outsi , FAIL))

The process TC BUILDER(lt) recursively applies the process SUBTC for each
pair (evi , outsi) of lt and yields the process PASS when the last element of lt
is reached. The goal of the process SUBTC is to create the body of the test,
inserting the verdicts fail and inconclusive at intermediate points of the test case
according to the following.

If the event evi is an input, the test case communicates this event to the
implementation, and finishes the verification of this test fragment successfully
(Skip). Otherwise, if evi is an output, the test must be ready to synchronise
with any output response of the IUTCSP (output completeness), including evi .
If IUTCSP communicates evi , the test synchronises on this event and ends with
success (Skip). Case the IUTCSP communicates an event that belongs to outsi−
{evi}, the test reaches the verdict inconclusive since the IUTCSP response is
not exactly the one expected by the test scenario (evi), but it is a behaviour
foreseen by the specification. Otherwise, if the IUTCSP communicates an event
not foreseen by the specification the test reaches the verdict fail.

Before we address soundness of a test case, the following theorem states that
a test case constructed from TC BUILDER terminates successfully when exe-
cuted against an implementation model.

Theorem 2. Let IUTCSP be an implementation model, S a specification, ts a
test scenario from S, such that αSc = ∅, αSi ⊆ αIUTCSP i and αSo ⊆ αIUTCSPo . If
lt is an output complete sequence of ts and TC = TC BUILDER(lt), then the
execution of TC against IUTCSP is a successful test execution.

Soundness is stated as: if the test execution leads to a fail verdict then the
implementation does not conform to the specification. A CSP test execution
of a test TC with an implementation IUTCSP fails when the test execution
EX (IUTCSP ,TC) has the event fail as part of at least one of its traces.

Definition 6. Let IUTCSP be an implementation process, S the specification
and TC a test case process. Then TC is a sound test case if the following holds.

〈fail〉 ∈ traces(EX (IUTCSP ,TC) \ αIUTCSP) ⇒ ¬(IUTCSP cspio S)

A CSP test suite is sound if all its tests are also sound. The following theorem
states that a test case constructed from TC BUILDER is sound.

Guided Test Generation from CSP Models 271

Theorem 3. Let S be a specification, ts a test scenario from S and IUTCSP an
implementation model, such that αSc = ∅, αSi ⊆ αIUTCSP i and αSo ⊆ αIUTCSPo.
If lt is an output complete sequence of ts, then TC BUILDER(lt) is a sound
test case.

To exemplify the construction of a sound test case, we assume the test scenario
UC1 ts1 and build the process TC1 = TC BUILDER (lt ts1), where lt ts1 =
〈(goToMsgCenter , ∅), (IMFolderIsDisp, {IMFolderIsDisp}), (goToInbox , ∅),
(inboxMsgsDisp, {inboxMsgsDisp}), (scrollToAMsg, ∅),
(msgHighlighted , {msgHighlighted}), (goToCSM , ∅),
(moveToIMOptDisp, {moveToIMOptDisp}), (selMoveToIMOpt , ∅),
(msgMovedToIMDisp, {msgMovedToIMDisp})〉. The resulting process is

TC1 = goToMsgCenter → Skip;
(IMFolderIsDisp → Skip � ANY (αUC1o − {IMFolderIsDisp}, FAIL));
goToInbox → Skip;
(inboxMsgsDisp → Skip � ANY (αUC1o − {inboxMsgsDisp}, FAIL));
scrollToAMsg → Skip;
(msgHighlighted → Skip � ANY (αUC1o − {msgHighlighted}, FAIL));
goToCSM → Skip;
(moveToIMOptDisp → Skip � ANY (αUC1o − {moveToIMOptDisp}, FAIL));
selMoveToIMOpt → Skip;
(msgMovedToIMDisp → PASS � ANY (αUC1o − {moveToIMOptDisp}, FAIL));

According to Theorem 3 TC1 is a sound test case.

7 Conclusions

The main contribution of this paper is a uniform strategy for generating sound
test cases, based on the cspio conformance relation, from test scenarios extracted
from CSP test models. All the elements of our approach are entirely characterised
in terms of CSP processes and refinement notions. We have shown how to specify
test models both for individual features and for feature interaction, from use
case documents that are written in a controlled natural language (CNL). Test
scenarios are incrementally generated from the test models as counter-examples
of refinement verifications using the FDR tool; test selection is captured by CSP
processes based on the concept of test purpose.

Tretmans [20,21,19] outlines a formal testing theory and tool that is based on
IOLTS (Input-Output LTS) models and on the implementation relation named
ioco. Our relation cspio is similar to ioco; both use input and output events
to define conformance. However ioco is formulated in terms of IOLTS, while
cspio is defined in terms of the CSP denotational semantics. The relation ioco
considers quiescence behaviours, that we currently forbid by assuming that im-
plementations are both input enabled and output available; we plan to allow
quiescence in a future work. Based on the ioco relation, Jard and Jéron [5]
present the TGV tool that is able to select test cases based on test purposes
and uses a test generation approach that is close to ours, but based on IOLTS.

272 S. Nogueira, A. Sampaio, and A. Mota

Expressing test models (particularly feature interaction) and test purposes in a
process algebra has proved very convenient in our application domain.

Andrade et al. [1] made an alternative effort to capture the mobile devices
application domain based on LTS. This has demanded a strategy to deal with
individual features and a separate one to capture feature interaction. Our ap-
proach does not need explicit generation algorithms, and deals uniformly with
features and (flexible patterns of) interactions.

Cavalcanti and Gaudel [3] stated the testability hypothesis for CSP and pro-
posed a characterization of a test generation approach proved to be complete
with respect to their implementation relation that is based on traces and failures
refinement of CSP. However, they do not address test purposes; also, their work
does not distinguish inputs and outputs, and does not propose an automatic
approach to test generation.

Peleska and Siegel [13] present some implementation relations based on the
semantic models of CSP. Their definitions are based on several refinement rela-
tions that define the observations of testing; however, unlike our approach, input
and output are not observations. Scheneider [17] defines a partition that classifies
refusable and non-refusable events, and high-level and low-level events, for spec-
ifying fault-tolerance systems with CSP. He defines two conformance relations
and refinement is used to check whether conformance holds, but no approach for
test generation is proposed.

Based on our results on the formal composition of components and frameworks
[14] we plan to explore compositional test generation, which avoids the retesting
of already assembled components. We believe that this kind of application will
emphasise the distinguishing nature of our approach entirely based on a process
algebra, where we can make explicit the application architecture, including the
interaction patterns among components, unlike more operational models based
on LTS or FSM.

Acknowledgements

We would like to thank the feedback from the IFIP WG 2.3, from the UK Mo-
torola Labs, and from the members of the CIn-BTC Research Project. Also, we
want to thank Lars Frantzen for feedbacks in an earlier draft, and Jim Woodcock
for having suggested to us the relation (1).

References

1. Andrade, W., et al.: Interruption Test Case Generation for Mobile Phone Applica-
tions (in Portuguese). In: XXV Brazilian Symposium in Computer Networks and
Distributed Systems (2007)

2. Cabral, G., Sampaio, A.: Formal Specification Generation from Requirement Doc-
uments. Electron. Notes Theor. Comput. Sci. 195, 171–188 (2008); Best Paper
Award

Guided Test Generation from CSP Models 273

3. Cavalcanti, A., Gaudel, M.-C.: Testing for Refinement in CSP. In: Butler, M.,
Hinchey, M.G., Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp.
151–170. Springer, Heidelberg (2007)

4. Hierons, R.: Checking states and transitions of a set of communicating finite state.
Microprocessors and Microsystems, Special Issue on Testing and testing techniques
for real-time embedded software systems 24(9), 443–452 (2001)

5. Jard, C., Jéron, T.: TGV: theory, principles and algorithms: A tool for the auto-
matic synthesis of conformance test cases for non-deterministic reactive systems.
Int. J. Softw. Tools Technol. Transf. 7(4), 297–315 (2005)

6. Bogdanov, K., et al.: Working together: Formal Methods and Testing. ACM Com-
puting Surveys (December 2003)

7. Ledru, Y., et al.: Test Purposes: Adapting the Notion of Specification to Testing.
In: ASE 2000, p. 127 (2001)

8. Leitão, D., Torres, D., Barros, F.A.: Nlforspec: Translating natural language de-
scriptions into formal test case specifications. In: SEKE, Knowledge Systems In-
stitute Graduate School, pp. 129–134 (2007)

9. Formal Systems. Failures-Divergence Refinement - FDR2 User Manual. Formal
Systems (Europe) Ltd (June 2005)

10. ISO 8807:1989. LOTOS: A formal description technique based on the temporal
ordering of observational behaviour. ISO (1989)

11. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

12. Nogueira, S., Sampaio, A., and Mota, A. Guided Test Generation from CSP
Models. Tech. rep., CIn-UFPE (July 2007), http://www.cin.ufpe.br/∼scn/
reports/TR-Mar08.pdf

13. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. South
African Computer Journal 19, 53–77 (1997)

14. Ramos, R., Sampaio, A., Mota, A.: Framework composition conformance via re-
finement checking. In: SAC 2008: Proceedings of the, ACM symposium on Applied
computing, vol. 23, pp. 119–125 (2008)

15. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR (1997)

16. Sampaio, A., et al.: Software test program: a software residency experience. In:
ICSE 2005, pp. 611–612. ACM Press, New York (2005)

17. Schneider, S.: Abstraction and testing. In: Wing, J.M., Woodcock, J.C.P., Davies,
J. (eds.) FM 1999. LNCS, vol. 1708, pp. 738–757. Springer, Heidelberg (1999)

18. Torres, D., Leitão, D., Barros, F.A.: Motorola SpecNL: A Hybrid System to Gen-
erate NL Descriptions from Test Case Specifications. HIS 0, 45 (2006)

19. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence.
Software—Concepts and Tools 17(3), 103–120 (1996)

20. Tretmans, J.: Testing concurrent systems: A formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999)

21. Tretmans, J., Belinfante, A.: Automatic testing with formal methods. In: Eu-
roSTAR 1999: 7th European Int. Conference on Software Testing, Analysis & Re-
view, November 8–12, pp. 8–12 (1999)

http://www.cin.ufpe.br/~scn/
reports/TR-Mar08.pdf

Relaxing Goodness Is Still Good

Gordon J. Pace1 and Gerardo Schneider2

1 Dept. of Computer Science and AI, University of Malta, Msida, Malta
2 Dept. of Informatics, University of Oslo, Oslo, Norway

gordon.pace@um.edu.mt, gerardo@ifi.uio.no

Abstract. Polygonal hybrid systems (SPDIs) are planar hybrid sys-
tems, whose dynamics are defined in terms of constant differential in-
clusions, one for each of a number of polygonal regions partitioning the
plane. The reachability problem for SPDIs is known to be decidable, but
depends on the goodness assumption — which states that the dynamics
do not allow a trajectory to both enter and leave a region through the
same edge. In this paper we extend the decidability result to generalised
SPDIs (GSPDI), SPDIs not satisfying the goodness assumption, and give
an algorithmic solution to decide reachability of such systems.

1 Introduction

A hybrid system is one in which discrete and continuous behaviours interact.
Some systems are inherently hybrid — consider a robot, with differential equa-
tions determining its speed, together with an embedded computer taking dis-
crete decisions based on the continuous input values coming from sensors. In
other cases, a system consisting only of continuous behaviour, can be hybridised,
introducing discrete behaviour in order to facilitate the analysis. For example,
exact solutions can be difficult to obtain for a non-linear differential equation,
making a qualitative and approximative analysis necessary.

A class of hybrid systems for which the reachability question is known to
be decidable, are Polygonal Hybrid Systems (SPDIs) — a subclass of hybrid
systems on the plane whose dynamics is defined by constant differential inclu-
sions [ASY01,ASY07]. Informally, an SPDI consists of a partition of the plane
into polygonal regions, each of which enforces different dynamics given by two
vectors determining the possible directions a trajectory might take; a simple
SPDI is depicted in Fig. 1-(a). A constructive proof for deciding reachability on
SPDIs can be found in [ASY07]. The proof is restricted to SPDIs satisfying the
so-called goodness assumption — the dynamics of any region of the SPDI do
not allow a trajectory to traverse any edge of the polygonal region in opposite
directions. An SPDI without the goodness assumption is called a Generalised
SPDI (GSPDI).

Fig. 1-(b) shows an example of a good and a ‘bad’ region (here ‘bad’ indicates
that the region does not satisfy the goodness criterion). In the figure on the left
we can see a good region, where the two vectors a and b make it impossible for a
trajectory to enter and leave the region P through the same edge of the polygon

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 274–289, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Relaxing Goodness Is Still Good 275

Good region Bad region

e2

e3

e6

e1

e2

e5

e6

e4
e3

e4

P P
e5

e1

R3

R7
R1R5

e3R4

R6

e4

e5

e2

e6 e7

e8

e1

R8
(a)

b
a

b
a

(b)

R2

Fig. 1. (a) Example of an SPDI; (b) Good and bad regions

delimiting the region. On the other hand, the figure on the right shows a bad
region: Both e2 and e5 can be crossed in both directions by a trajectory entering
and leaving P . The algorithm presented in [ASY07] for deciding reachability
on SPDI depends on pre-processing of trajectory segments and a qualitative
analysis to guarantee that it is possible to review the behaviour of all the possible
signatures1, by looking at only a finite set of abstract signatures. Informally, this
is achieved as follows: (1) Trajectory segments are simplified — it is sufficient
to look at trajectories made up of straight segments across regions, and which
do not cross themselves; (2) Trajectory segments are abstracted into signatures,
based on the Poincaré map that relates n-dimensional continuous-time systems
with (n−1)-dimensional discrete-time systems; (3) It is shown that it is sufficient
to look at signatures which consist only of sequences of edges and simple cycles;
(4) Such signatures can be abstracted into types of signatures — signatures which
do not take into account the number of times each simple cycle is iterated.

Many of the lemmas for proving that the above guarantee the finiteness of types
of signatures critically depend on the goodness assumption, which propagate this
dependency to the constructive proof given for deciding reachability of SPDIs.

The restriction to “good” SPDIs is not justified by applications or inherent
interest, it was just a technical condition to facilitate the application of certain
techniques and prove decidability. In fact restricting oneself only to SPDIs satis-
fying the goodness assumption makes it very difficult to model real-life examples.
Unfortunately, extending the SPDI model in most ways, such as allowing jumps
with resets (from one edge to another remote one), increasing the number of
dimensions and allowing non-linear differential inclusions, have been shown to
make the model undecidable (see [AS02,MP05] and references therein).

A potentially interesting and useful application of SPDIs is that of the ap-
proximation and analysis of two-dimensional non-linear differential equations.
By splitting the plane into polygons, and by setting the dynamics of each poly-
gon to be over-approximations of the non-linear differential equation in that re-
gion, one can ask reachability questions about the equation, and obtain answers
accordingly. When over-approximating the dynamics, a negative reachability an-
swer implies a negative answer in the exact equation. Using more and smaller
polygons enables more precise approximations.

The problem with using this approach is that for most differential equations,
using a fixed partition breaks the goodness assumption, since some edges will

1 We call signature the sequence of traversed edges by the trajectory. A more formal
definition will be given in a later section.

276 G.J. Pace and G. Schneider

Fig. 2. Approximating a non-linear differential equation using different partitioning of
the plane

lie within the differential inclusion of that region. One solution would be to try
to derive an intelligent partition which maintains goodness, but which may be
impossible, or by extending the SPDI analysis algorithms to relax the goodness
assumption, thus enabling the modelling of non-linear differential equations in
a straightforward manner.

As a simple example, consider a pendulum with friction coefficient k, massM ,
pendulum length R and gravitational constant g. If θ is the angle subtended with
the vertical, the behaviour of the pendulum follows the differential equation:
MR2θ̈ + kθ̇ + MgR sin θ = 0. Taking x = θ, and y = θ̇, we get ẋ = y and
ẏ = − ky

MR2 − g sin(x)
R . Using these formulae, SPDIs expressing these constraints

can be constructed, possibly with different plane partitions. Fig. 2 gives two
such partitions for k = 1, R = 10, M = 10, and g = −10. Visual inspection
shows that various polygons are not good. By presenting an algorithm to decide
GSPDI reachability, we can automatically analyse such systems.

In this paper we present an algorithm for solving the reachability problem
for GSPDIs, contributing towards the narrowing of the undecidability frontier
of low dimension hybrid systems [AS02,MP05], and enabling the use of GSPDIs
to approximate planar non-linear differential equations.

In the next section we outline definitions and results about SPDIs, and then
extend them to enable the analysis of GSPDIs in section 3.

2 Polygonal Hybrid Systems (SPDIs)

In this section we recall the main definitions and concepts required in the rest of
the paper, and give an outline of the results for SPDIs, upon which the results pre-
sented in this paper are built. For a more detailed presentation see [ASY07]. In
what follows, we will use a = (a1, a2) and x = (x1, x2) to represent 2-dimensional
vectors (a,x ∈ R2). An angle ∠b

a on the plane, defined by two non-zero vectors a
and b is the set of all positive linear combinations x = α a + β b, with α, β ≥ 0,
and α + β > 0. We can always assume that b is situated in the counter-clockwise
direction from a.

Relaxing Goodness Is Still Good 277

Definition 1. A polygonal hybrid system (SPDI) is a pair H = 〈P, F〉, where
P is a finite partition of the plane (each P ∈ P being a convex polygon), called
the regions of the SPDI, and F is a function associating a pair of vectors to each
polygon: F(P) = (aP ,bP). In an SPDI every point on the plane has its dynamics
defined according to which polygon it belongs to: if x ∈ P , then ẋ ∈ ∠bP

aP
.

Example 1. Consider the SPDI illustrated in Fig. 1-(a), with eight regions
R1, R2, . . . , R8. A pair of vectors (ai,bi) is also associated to each region Ri:
a1 = b1 = (1, 5), a2 = b2 = (−1, 1

2), a3 = (−1, 11
60) and b3 = (−1,− 1

4),
a4 = b4 = (−1,−1), a5 = b5 = (0,−1), a6 = b6 = (1,−1), a7 = b7 = (1, 0),
a8 = b8 = (1, 1).

We define E(P) to be the set of edges of region P . We say that an edge e
(e ∈ E(P)) is an entry-only of P if for all x ∈ e and for all c ∈ ∠bP

aP
, x + cε ∈ P

for some ε > 0. We say that e is an exit-only of P if the same condition holds for
some ε < 0. Intuitively, an entry-only (exit-only) edge of a region P allows at least
a trajectory in P starting (terminating) on edge e, but allows no trajectories in P
terminating (starting) on edge e. We write In(P) (In(P) ⊆ E(P)) to denote the
set of all entry-only edges of P and Out(P)(Out(P) ⊆ E(P)) to denote the set
of exit-only edges of P . From the definition, it follows immediately that no edge
can be both an entry-only and an exit-only edge of a region: In(P)∩Out(P) = ∅.

A region P is said to be good, if all the edges of that region are either entry-
only or exit-only: E(P) = In(P)∪Out(P). An SPDI is said to be good, or satisfy
the goodness assumption, if it consists of only good regions: ∀P ∈ P · E(P) =
In(P) ∪Out(P).

Example 2. In Fig. 1-(b), the region P shown on the left is good since all edges
are either entry-only or exit-only. The region depicted on the right shows a region
that is not good, since neither edge e2 nor edge e5 are in In(P) ∪Out(P).

Note that though the definition of SPDIs does not exclude the possibility of
having dynamics with a and b co-linear (i.e., a = −b), this is excluded under
the goodness assumption. In what follows, ‘SPDI’ will always denote a good
SPDI, unless specified otherwise.

We will use the notation eP	 to indicate the directed edge e such that it follows
a clockwise direction around region P , and similarly eP
 to indicate the directed
edge e following an anti-clockwise direction around region P . Given a directed
edge e, its inverse will be written as e−1.

Definition 2. The set of directed edges of an SPDI H with partition P, written
Ed(H), is defined to be: Ed(H) = {eP	 | P ∈ P, e ∈ In(P)} ∪ {eP
 | P ∈ P, e ∈
Out(P)}. Similarly, we define Ind(P) and Outd(P) to correspond to In(P) and
Out(P) but with directed edges.

Since an edge appears in two adjacent regions, the direction induced in the
two regions may be different. However, it is easy to see that edges which are
entry-only in one region, and exit-only in the other, result in matching induced
directions: e ∈ Ed(H) or e−1 ∈ Ed(H), but not both [ASY01,MP93]. In an SPDI

278 G.J. Pace and G. Schneider

the only case where one can have both e and e−1 in a signature is when e is an
entry-only (or exit-only) edge in both adjacent regions it belongs to.

A trajectory segment of an SPDI H, is a continuous and almost-everywhere
(everywhere except on finitely many points) differentiable function ξ ∈ [0, T]→
R2 such that for all t ∈ [0, T], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ ∠bP

aP
.

The signature of a trajectory segment ξ, written Sig(ξ), is the sequence of edges
traversed by the trajectory, that is, e1, e2, . . . en resulting from ξ∩Ed(H), where
edges are arranged in the order they are “visited” by ξ.

One important result is that the behaviour of any trajectory is equivalent,
with respect to reachability, to the behaviour of some trajectory which does not
cross itself and follows straight-line segments within regions.

Lemma 1 ([ASY07]). Given a trajectory segment ξ ∈ [0, T] → R2, there
exists another trajectory segment ξ′ ∈ [0, T ′] → R2 starting and finishing at the
same points as ξ (ξ(0) = ξ′(0) and ξ(T) = ξ′(T ′)) such that (i) ξ′ does not cross
itself (ξ is injective); and (ii) ξ′ follows straight-line segments inside regions. �(

Though in general the reachability problem for an SPDI H may be considered
for region-to-region, for simplicity of presentation we define it as the following
predicate: Reach(H,x0,xf) ≡ ∃ξ ∃t ≥ 0 . (ξ(0) = x0 ∧ ξ(t) = xf). Lemma
1 shows that to decide reachability, it is sufficient to look at non-self-crossing
trajectories consisting of straight-line segments. In the rest of the discussion,
we will restrict our use of trajectory to mean ‘a non-self-crossing trajectory
composed of straight-line segments between edges’. Similarly, the term signature
will be used to indicate the signature of a trajectory with these constraints.

As usual in reachability analysis we need to compute successors, which are
built upon special kind of multi-valued functions introduced in what follows.

Truncated Affine Multi-Valued Functions. An affine function f ∈ R → R is such
that f(x) = ax+ b. If a > 0 we say that f is positive affine, and if a < 0 we say
that f is negative affine; we call this the parity of the affine function.

An affine multivalued function (AMF) F ∈ R → 2R, written F = 〈fl, fu〉,
is defined by F (x) = 〈fl(x), fu(x)〉 where fl and fu are positive affine and
〈·, ·〉 denotes an interval. For notational convenience, we do not make explicit
whether intervals are open, closed, left-open or right-open, unless required for
comprehension. For an interval I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉.
An inverted affine multivalued function F ∈ R → 2R, is defined by F (x) =
〈fu(x), fl(x)〉 where fl and fu are both negative affine and 〈·, ·〉 denotes an
interval.

Given an AMF F and two intervals S ⊆ R+ and J ⊆ R+, a truncated affine
multivalued function (TAMF) FF,S,J ∈ R → 2R is defined as follows: FF,S,J(x) =
F (x) ∩ J if x ∈ S, otherwise FF,S,J(x) = ∅. In what follows we will write F
instead of FF,S,J whenever no confusion may arise. Moreover, in the rest of the
paper F will always denote an AMF and F a TAMF. For convenience we write
F(x) = F ({x} ∩ S) ∩ J instead of F(x) = F (x) ∩ J if x ∈ S. We overload the
application of a TAMF on an interval I: F(I) = F (I ∩ S)∩ J . We say that F is
normalised if S = Dom(F) = {x | F (x) ∩ J �= ∅} and J = Im(F) = F(S).

Relaxing Goodness Is Still Good 279

As in the case of affine multivalued functions, an inverted truncated affine
multivalued function (inverted TAMF) is similar to a TAMF, but defined in
terms of an inverted affine multivalued function as opposed to a normal one. An
important result is that normal TAMFs are closed under composition.

Theorem 1 ([ASY07]). The functional composition of two normal TAMFs
F1(I) = F1(I ∩ S1) ∩ J1 and F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦
F1)(I) = F(I) = F (I ∩ S) ∩ J , where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and
J = J2 ∩ F2(J1 ∩ S2). �(

The following new corollary extends the above result.

Corollary 1. The composition of two inverted TAMFs gives a normal TAMF.
Conversely, the composition of one normal and one inverted TAMF (in either
order) gives an inverted TAMF. �(

To avoid having to reason about the length of every edge, we normalise every
edge e such that its TAMF has the domain [0, 1] (that is, the normalised version
of e has length 1, with 0 corresponding to the starting point of the directed edge,
and 1 to the end point).

Successors. Given an SPDI, we fix a one-dimensional coordinate system on each
edge to represent points lying on edges. For notational convenience, we will
use e to denote both the directed edge and its one-dimensional representation.
Accordingly, we write x ∈ e and x ∈ e, to mean “point x lies on edge e”
and “coordinate x in the one-dimensional coordinate system of e” respectively.
The same convention applied to sets of points of e represented as intervals (for
example, x ∈ I and x ∈ I, where I ⊆ e) and to trajectories (for example, “ξ
starting at x” or “ξ starting at x”).

Consider a polygon P ∈ P, with e0 ∈ Ind(P) and e1 ∈ Outd(P). For I ⊆ e0,
Succe0e1(I) is defined to be the set of all points lying on e1 reachable from some
point in I by a trajectory segment ξ ∈ [0, t]→ R2 in P (that is, ξ(0) ∈ I ∧ ξ(t) ∈
e1 ∧ Sig(ξ) = e0e1). Given I = [l, u], Succe0e1 (I) = F (I ∩ Se0e1) ∩ Je0e1 , where
Se0e1 and Je0e1 are intervals, F ([l, u]) = 〈fl(l), fu(u)〉 and fl and fu are positive
affine functions. Successors are thus normal TAMFs.

Qualitative analysis of simple edge-cycles. In what follows a sequence of edges in
parenthesis, σ = (e1 . . . ek), will denote a simple edge-cycle – that is, a signature
that can be repeated at least once, and such that all edges are distinct (ei �= ej
for all 1 ≤ i < j ≤ k). Given an SPDI, its topology determines when a sequence
of edges may form a simple cycle [ASY07]. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ with
F = 〈fl, fu〉, and Sσ and Jσ computed as in theorem 1.

We assume that neither of the two functions fl, fu is the identity function.
The following analysis, taken from [ASY01], allows us to calculate the behaviour
of cycles provided that the path along the cycle has a normal (not inverted)
TAMF. Since, in SPDIs, the TAMF between a pair of edges is normal, and the
composition of two normal TAMFs is itself a normal TAMF, this approach is
universally applicable as long as the goodness assumption holds.

280 G.J. Pace and G. Schneider

Let σ be a simple cycle, and l∗ and u∗ be the fix-points2 of fl and fu, respectively,
and Sσ ∩ Jσ = 〈L,U〉. It can be shown that σ is of one of the following kinds:
STAY: The cycle is not abandoned neither by the leftmost nor the rightmost
trajectory, that is, L ≤ l∗ ≤ u∗ ≤ U . DIE: The rightmost trajectory exits the
cycle through the left (consequently the leftmost one also exits) or the leftmost
trajectory exits the cycle through the right (consequently the rightmost one
also exits), that is, u∗ < L ∨ l∗ > U . EXIT-BOTH: The leftmost trajectory
exits the cycle through the left and the rightmost one through the right, that
is, l∗ < L ∧ u∗ > U . EXIT-LEFT: The leftmost trajectory exits the cycle
(through the left) but the rightmost one stays inside, that is, l∗ < L ≤ u∗ ≤ U .
EXIT-RIGHT: The rightmost trajectory exits the cycle (through the right)
but the leftmost one stays inside, that is, L ≤ l∗ ≤ U < u∗.

The classification above provides useful information about the qualitative be-
haviour of trajectories. Any trajectory that enters a cycle of kind DIE will even-
tually leave it after a finite number of turns. In a cycle of kind STAY, all trajecto-
ries that happen to enter it will keep turning inside it forever. In all other cases,
some trajectories will turn for a while and then exit, and others will continue turn-
ing forever. This information is crucial for solving the reachability problem for
SPDIs. Also note that the above analysis gives us a non-iterative solution of cy-
cle behaviour for most cycles; the theoretical algorithm [ASY07] as well as the
tool SPeeDI [Spe] uses such acceleration techniques. An important result to prove
the decidability of SPDIs is that any valid signature can be expressed in a normal
form, consisting of alternating sequential paths and simple cycles:

Theorem 2 ([ASY07]). Given an SPDI with the goodness assumption, any
edge signature σ = e1 . . . ep can be written as σA = r1s

k1
1 . . . rns

kn
n rn+1, where

for any 1 ≤ i ≤ n + 1, ri is a sequence of pairwise different edges and for all
1 ≤ i ≤ n, si is a simple cycle (no edges are repeated within si). �(

Let σ = e1 . . . ep be an edge signature and σA = r1s
k1
1 . . . rns

kn
n rn+1 be its

representation as in the above theorem. Then we define the type of a signature
σ as type(σ) = r1, s1, . . . , rn, sn, rn+1. We say that a signature σ is feasible if
and only if there exists a trajectory segment ξ with signature σ, i.e., Sig(ξ) = σ.

Types of signatures have the following properties:

Lemma 2 ([ASY07]). Given an SPDI, let σ = e0 . . . ep be a feasible signature,
then its type, type(σ) = r1, s1, . . . , rn, sn, rn+1 satisfies the following properties:
(i) every 1 ≤ i < j ≤ n+ 1, ri and rj are disjoint; (ii) every 1 ≤ i < j ≤ n, si
and sj are different. �(

The finiteness of types of signatures is the basis of the proof of decidability of
(good) SPDI reachability, and of the termination of the reachability algorithm
(together with acceleration results for simple cycles).

Theorem 3 ([ASY07]). Point-to-point, interval-to-interval and region-to-
region reachability for SPDIs is decidable. �(
2 The fix-point x∗ is the solution of f(x∗) = x∗, where f(·) is positive affine. The

existence and computation of such fix-points are detailed in [ASY07].

Relaxing Goodness Is Still Good 281

3 Relaxing Goodness: Generalised SPDIs

The original proof of the decidability of the reachability question for SPDIs, de-
pended on the concept of monotonicity of TAMFs and their composition. Before
starting the analysis, the algorithm fixed the direction of the edges separating
regions. An interesting result guaranteed that the orientation of the edges re-
sulted in each polygon split into two contiguous sequences of edges — one being
entry-only edges, the other being exit-only edges. Furthermore, the orientation
of an edge in one region is guaranteed to match the orientation of the same edge
in the adjacent region3, as shown in Fig. 3-(a). When one moves on to GSPDIs,
inout edges (those that may be traversed in both directions) break this result,
since the direction of an edge when considered as an input edge clashes with the
direction it is given when used as an output edge in the same region. The previ-
ous result however, still guaranteed that the entry-only edges and the exit-only
edges can be assigned in one fixed direction (see Fig. 3-(b)).

To solve this problem, we use directed edges, and differentiate between the
edge used as an input, and when it is used as an output, just as though they
were two different edges in the GSPDI. Fig. 3-(c) shows how an inout edge can
be seen in this manner. Note that depending on in which direction the trajectory
traverse the inout edge e1, it is an input edge in region R1, but an output edge
in region R2, and similarly, e−1

1 is an output edge in region R1 and an input edge
in region R2; that is why we did not draw the direction vector in the picture. In
other words, any path passing through the edge such as σ = e0e1e2 . . . e3e−1

1 e4
(see Fig. 3-(d)) can be analysed as before, and through monotonicity, one can
deduce that Succσ is a positive TAMF. e1 and e−1

1 are considered distinct edges,
and the above path contains no cycle.

It can be seen that the standard analysis for SPDIs works well for such cases.
However, paths can now ‘bounce’ off an edge. Recall that any pair of edges e0e1
is part of a path if e0 is an input edge of a region, and e1 is an output edge of
the same region. One can calculate the TAMF for such a trajectory. However,
ee−1 can now be a valid path, whose behaviour cannot be expressed as a normal
TAMF. This breaks the analysis used in SPDIs, to accelerate the analysis of
simple cycles. The standard SPDI analysis thus needs to be extended to handle
such ‘bounces’ in paths.

3.1 Preliminary Results

The goodness assumption was originally introduced to simplify treatment of tra-
jectories and to guarantee that each region can be partitioned into entry-only
and exit-only edges in an ordered way, a fact used in the proof of decidability of
the reachability problem. In this section, we will introduce further background,
and provide new results concerning GSPDIs, needed to prove our decidability
result.
3 There are special cases when an edge is an entry-only to a region and an exit-only

to an adjacent region. From the reachability point of view this does not cause any
problem as these cases can be identified and treated accordingly.

282 G.J. Pace and G. Schneider

(b)(a)

?

(c) (d)

R1

b a

R2

Out

In b

a

Out
Out

Out
b

a

R2

In

Out

Out

In

R1

In

Out

In

In

a

b

Out In

In

a

b

Out

Out

Out
R1

e1In

Out

Out

a

b

R2

e
−1
1

Out In

In

In
Out

Out

Out

In

In

In

a

b

R1

Out

Out

In

In

In

b

a

R2

In

In

Out

Fig. 3. (a) An SPDI with matching order of edges; (b) a GSPDI showing that the order
breaks the contiguity of the edge directions; (c) a GSPDI with a duplicated inout edge;
(d) a path through the GSPDI using edge e1 in both directions

Definition 3. An edge e ∈ P is an inout edge of P if e is neither an entry-only
nor an exit-only edge of P .

An SPDI without the goodness assumption is called a Generalised SPDI (GSPDI).
Thus, in GSPDIs there are three kinds of edges: inouts, entry-only and exit-only.

Self-crossing of trajectory (segments) of SPDIs can be eliminated, which al-
lows us to consider only non-crossing trajectory (segments). Standard algebraic
manipulation of vector suffices to show that lemma 1 [ASY07]) also applies to
GSPDIs. Therefore, in what follows, we will consider only trajectory segments
without self-crossings. Note that on GSPDIs, a trajectory can “intersect” an
edge at an infinite number of points by sliding along it. A trace is thus no longer
a sequence of points, but rather, a sequence of intervals.

Definition 4. The trace of a trajectory ξ is the sequence trace(ξ) = I0I1 . . . In
of the intersection intervals of ξ with the set of edges: Ii ⊆ ξ ∩Ed(H).

In Fig. 4-(a) we show a trajectory segment ξ, such that trace(ξ) = I0I1I2 . . . I3I4
I5 where I1, I2, I3, I4 and I5 are points.

Definition 5. An edge signature (or simply a signature) of a GSPDI is a se-
quence of edges. The edge signature of a trajectory ξ, Sig(ξ), is the sequence
of traversed edges by the trajectory segment, that is, Sig(ξ) = e0e1 . . . en, with
trace(ξ) = I0I1 . . . In and Ii ⊆ ei.

In Fig. 4-(a) the signature of the trajectory segment ξ is Sig(ξ) = ee′e′′ . . . e′′−1

e′−1e′′′ (to simplify the picture we do not draw the “duplicated” edges e′′−1 and
e′−1).

Note that, in many cases, the intervals of a trace are in fact points. We say
that a trajectory with edge signature Sig(ξ) = e0e1 . . . en and trace trace(ξ) =
I0I1 . . . In interval-crosses edge ei if Ii is not a point. Given a trajectory segment,
we will distinguish between proper inout edges and sliding edges.

Relaxing Goodness Is Still Good 283

(b)(a)

e
′′

I2I0

I1
I3

e

e
′′

e′
e′′′

I4

I1

e
′

I0

I5
e
′′′

e

I4

I2

I3

Fig. 4. (a) A sliding trajectory with a proper inout edge; (b) A sliding trajectory with
a proper inout edge and a bounce

Definition 6. Let ξ be a trajectory segment from point x0 ∈ e0 to xf ∈ ef , with
edge signature Sig(ξ) = e0 . . . ei . . . en, and ei ∈ E(P) be an edge of P . We say
that ei is a sliding edge of P for ξ if ξ interval-crosses ei, otherwise e is said to
be a proper inout edge of P for ξ.

We say that a trajectory segment ξ slides along an edge e, if e is a sliding edge
of P for ξ, and that ξ is a sliding trajectory if it contains at least one sliding
edge. Fig. 4-(a) shows a sliding trajectory, where e is a sliding edge while e′ and
e′′ are proper inout edges. The following is a useful property of inout edges.

Proposition 1. If e is an inout edge, then any trajectory reaching the edge can
always slide on the edge (in one or the other direction, or both). �(

Since inout edges may appear in different situations, we need to explain our
strategy to deal with them, for which we need some preliminaries. For a region
P let us say that a vector c is compatible with the orientation of P if c is a
positive combination of vectors a and b associated with P .

Let e be an edge separating two polygons P1 and P2. There are the following
four new cases in addition to those from [ASY07]: (1) e is an inout edge in P1

and an entry-only edge in P2; (2) e is an inout edge in P1 and an exit-only edge
in P2; (3) e is an inout edge in P1 and also an inout edge in P2

4; (4) e is an
inout edge in P1 and also an inout edge in P2 like in the previous case5. In all
these cases a trajectory may slide on the edge if at least one of the dynamics on
the region allows it. For instance, in case (4), the trajectory may slide in both
directions. The above cases are included in our reachability analysis.

As for SPDIs, we have the following property of Succ: for any edge signatures
σ1 and σ2 and edge e: Succeσ1 ◦ Succσ2e = Succσ2eσ1 .

The following lemma shows that the edge-to-edge successor function is a nor-
mal TAMF whenever the two edges are not the inverse of each other. It follows

4 If c1 is a vector compatible with the orientation of P1 and c2 a vector compatible
with the orientation of P2 (see definition above) such that c1 and c2 are parallel to
edge e then both vectors are oriented in the same direction.

5 In this case if c1 is a vector compatible with the orientation of P1 and c2 a vector
compatible with the orientation of P2 such that both c1 and c2 are parallel to edge
e then c1 and c2 are oriented in the opposite directions.

284 G.J. Pace and G. Schneider

directly from the similar result for SPDIs [ASY07], which makes no assumption
regarding goodness.6

Lemma 3. For any two edges e0 and e1, Succe0e1 is always a normal TAMF,
whenever e1 �= e−1

0 . �(

Besides sliding, the signatures that we will be analysing in GSPDIs may include
subsequences of the form ee−1. The behaviour between such edges does not
correspond to a normal TAMF, and thus has to be analysed separately. A bounce
is a part of a trajectory which crosses an edge twice in immediate succession.
More formally:

Definition 7. Given a signature σ = e0e1 . . . en, a pair of edges eiei+1 is said
to be a bounce if ei+1 = e−1

i . We say that a signature e0e1 . . . en contains m
bounces, if there are exactly m distinct indices I = {i1, i2, . . . im} such for every
i ∈ I, ei = e−1

i+1.

Fig. 4-(b) shows a sliding trajectory Sig(ξ) = ee′e′′e′′−1e′−1e′′′. There is only
one bounce, namely e′′e′′−1.

Let Flip[l, u] = [1 − u, 1 − l] be an interval function. The following result
establishes that the successor function for bounces can be defined in terms of
the Flip function. It is easy to prove that Succee−1 = Flip.

One of the useful properties of SPDIs is that the successor function of any given
signature is a normal TAMF. For GSPDIs, however, we need to take into account
bounces, and hence analyse the composition of normal TAMFs with Flip:

Lemma 4. Composing Flip with an inverted TAMF gives a normal TAMF and
an inverted TAMF if we compose it with a normal TAMF. �(

The parity of the number of bounces occurring in a given signature influences
the form of the underlying TAMF, as shown in the following result, whose proof
follows immediately by induction on the number of bounces.

Corollary 2. Any signature with an even number of bounces has its behav-
iour characterised by a normal TAMF, while a signature with an odd number
of bounces is characterised by an inverted TAMF. �(

Recall that the analysis of simple cycle behaviour given for SPDIs depends only
on the assumption that the TAMF of the cycle body is a normal one. From the
previous result, it thus follows that whenever the number of bounces is even on
a given cyclic signature, the composed TAMF is a normal one, so the analysis
of simple cycles can be conducted as for SPDIs:

Lemma 5. Given a simple cycle σ containing an even number of bounces, its
iterated behaviour can be calculated as for SPDIs. �(
6 Note that the underlying AMFs are not necessarily positive affine whenever applied

to an inout edge, since the leftmost (rightmost) function may give −∞ (+∞). How-
ever, this is not a problem for successors, as in this case the underlying TAMFs are
of the form [0, ax + b] or [ax + b, 1] due to sliding.

Relaxing Goodness Is Still Good 285

Since a trajectory slides only along inout edges, and can only bounce off inout
edges, we can prove that simple cycles which include at least one bounce are never
STAY cycles. This gives us the advantage of the use of acceleration techniques
already used for SPDIs.

Lemma 6. Simple cycles which include bounces are not STAY cycles. �(

From lemma 5 we have that only simple cycles with an odd number of bounces
need to be analysed. Considering the case when a bounce appears as the first pair
of elements of a simple cycle body, we can accelerate the analysis by running
through the simple cycle only once. The proof follows from the fact that the
initial bounce enables a slide, thus allowing us to identify the limits through
only one application of the simple cycle body:

Lemma 7. Given a signature σ = e0(e1e−1
1 e2 . . . en)ke1 (i) with only one simple

cycle; (ii) with k > 0; (iii) with an odd number of bounces; and (iv) starts
with a bounce; its behaviour is equivalent to following the simple cycle only once
σ′ = e0e1e−1

1 e2 . . . ene1. In other words: Succσ = Succσ′ . �(

Based on the above lemma, we can prove that any simple cycle containing an
odd number of bounces can be accelerated. The proof works by unwinding the
simple cycle body to push the first bounce to the beginning, and then applying
the previous lemma:

Lemma 8. Given a simple cycle s with an odd number of bounces, we can cal-
culate the limit of its iterated behaviour without iterating. �(

Therefore, we can now analyse any type of signature in GSPDIs using the results
from lemma 3 (to deal with inout edges), and lemmas 5 and 8 (to deal with
bounces). Given a simple cycle s, let s+ be the cycle iterated one or more times.

Theorem 4. We can (constructively) compute the behaviour of a signature r1s+1
r2s

+
2 . . . rn. �(

3.2 Decidability Results

The following lemma guarantees that it is sufficient to consider simple cycles
which occur in a type of signature with certain patterns. Any type of signature
containing two occurrences of the same simple cycle can be reduced to another
type of signature where the simple cycle s occurs only once, provided the cycle
with the edges in reverse order does not occur between them. The proof is based
on the fact that, assuming the trajectory does not cross itself, between two
instances of a repeated simple cycle, one can always find either the reverse of
the cycle or a bounce, in which case, the bounce can be eliminated to avoid
leaving the simple cycle.

Lemma 9. Given a GSPDI, and assuming only trajectories without self-crossing,
if there is a type of signature where a simple cycle s = (e0, e1, . . . , en) appears twice,
i.e. type(Sig(ξ)) = σ′σ′′σ′′′ with σ′′ = sk . . . sk

′′
, then if there is no reverse(s)

between the two occurrences of s, then type(Sig(ξ)) = σ′sk
′′′
σ′′′. �(

286 G.J. Pace and G. Schneider

We also prove that a trajectory which takes a simple cycle (any number of times),
then takes it again (any number of times) but in reverse order, and finally takes
it a number of times in the forward direction, can be simulated by another
trajectory which simply takes the simple cycle a number of times. The proof
is based on the fact that whichever direction the first edge of the simple cycle
under consideration allows sliding in, it is possible to obtain a type of signature
preserving reachability without such a pattern.

Lemma 10. Given a GSPDI, if there is a trajectory segment ξ : [0, T] →
R2, with ξ(0) = x and ξ(t) = x′ for some t > 0, such that type(Sig(ξ)) =
r1s

k1
1 r2s

k2
2 r3s

k3
3 r4, with s2 = s−1

1 and s3 = s1, then it is always possible to find
a trajectory segment ξ′ : [0, T]→ R2 such that ξ′(0) = x and ξ′(t) = x′ for some
t > 0, and type(Sig(ξ)) = r1s

k′
1

1 r
′
4. �(

Based on the above, we can conclude that for GSPDIs we can always transform
a type of signature into one where simple cycles are not repeated.

Corollary 3. Given a GSPDI, an edge signature σ can be written as σA =
r1s

k1
1 . . . rns

kn
n rn+1, where for any 1 ≤ i ≤ n + 1, si is a simple cycle (no

repetition of edges), and for every 1 ≤ i < j ≤ n, si and sj are different. �(

We can define the notion of type of signature as for SPDIs, abstracting the
number of times simple cycles are iterated on signatures of the kind shown on
the above corollary. Note that the statement of corollary 3 is weaker than the
corresponding result for SPDIs (theorem 2 and lemma 2) since it does not have
any restriction on the sequences of edges ri. However, the result is enough to
prove that there is only a finite number of types of signatures for a given GSPDI.

Corollary 4. A GSPDI has finitely many different types of signatures. �(

Given a type of signature σ where each edge is traversed in exactly one di-
rection, let Reachσ(x0,xf) be the SPDI reachability algorithm from [ASY07].
The reachability algorithm for a GSPDI H, Reach(H,x0,xf), works as follows:
(1) Generate the finite set of types of signatures Σ = {σ0, . . . , σn} (taking into
account e and e−1 as different edges), and such that the simple cycles are all
distinct; (2) Apply Reachσi(x0,xf) for each σi ∈ Σ; (3) Answer Yes if and only
if for some σi ∈ Σ, Reachσi(x0,xf) = Yes.

In step 2 we apply Succ progressively on the abstract signature, using lemmas
5 and 8 to compute the successor of a simple cycle with bounces, and the Succ
function as in the case of SPDIs for the rest. Based on these results, it is possible
to show termination, correctness and completeness of GSPDI reachability. From
this, the main theoretical result follows immediately:

Theorem 5. Reach(H,x0,xf) is a sound and complete algorithm calculating
GSPDI reachability. The reachability problem for GSPDIs is decidable. �(

Relaxing Goodness Is Still Good 287

4 Final Remarks

We have proved that the reachability question for GSPDIs is decidable. The
proof is constructive, extending the algorithm for SPDIs [ASY07]. The key lies in
showing that the previous analysis works in all cases except when a simple cycle
contains an odd number of bounces. The algorithm is extended to deal with such
cases, considering now inout edges which enable sliding, but the overall effect
is to accelerate the analysis of an SPDI, since at least one end of the edge is
immediately covered once the edge is reached.

Concerning complexity, the algorithm presented here has the same worst-
case space complexity as for SPDIs, with the only extra additional drawback of
eventually doubling the number of edges due to duplication of inout edges. Con-
cerning time complexity, the reachability algorithm developed for SPDIs makes
massive use of acceleration techniques, reducing the practical complexity of the
analysis. For GSPDIs acceleration is used even in more cases: every simple cycle
containing an inout edge can be accelerated. Overall, if compared with SPDI
reachability analysis, we have a slight increase on the size of the search state-
space, but a faster way of analysing simple cycles. Furthermore, we conjecture
that the techniques presented in [PS06b] for reducing the search state-space as
well as the compositional analysis introduced in [PS06a] for SPDIs could be
applied without further development for GSPDIs.

The main contribution of our paper is interesting in a theoretical sense since
it extends the class of decidable hybrid systems, narrowing further the gap be-
tween what is known to be be decidable and what is known to be undecid-
able [AS02, MP05]. The result is also interesting in a practical sense, since it
provides a good foundation to approximate planar non-linear differential equa-
tions, complementing other works using piecewise linear hybrid systems.

Reachability analysis of GSPDIs is not easy. An early (unsuccessful) attempt
to prove decidability of GSPDI reachability was presented in [Sch08] — in which
it is shown that no structure-preserving reduction of GPSDI reachability into
SPDI reachability is possible. Instead, a semi-test algorithm, which reduces
reachability of GSPDI into reachability of an exponential number of SPDIs was
developed. The main idea behind this algorithm is that in most cases reachability
is preserved when fixing inout edges as entry-only or exit-only edges, and con-
sidering all possible permutations of SPDIs generated from this pre-processing,
reducing then the problem to SPDI reachability. However, there are cases where
it is not possible to eliminate inout edges while preserving reachability. More-
over, the proposed algorithm introduces an extra exponential blow-up to the
analysis. The decidable algorithm presented in the present paper for GSPDIs
follows a completely different approach than the semi-test presented in [Sch08].

Reachability analysis over SPDIs converges in various cases in which semi-
algorithms for general n-dimensional hybrid systems diverge (eg. see [APSY02]
for a comparative analysis with HyTech [HHW95]) This extends for GSPDI
analysis. Decidability of low-dimensional hybrid systems is addressed in [AS02,
MP05]. In particular, in [AS02] it was shown that by slightly modifying PCDs to
obtain 2-dimensional linear hybrid automata, the reachability problem becomes

288 G.J. Pace and G. Schneider

undecidable, showing that GSPDIs really lies on the edge of decidability. The
relation between GSPDIs and rectangular hybrid automata [HM00] restricted to
2-dimensional systems, is that not all GSPDIs can be reduced into a rectangular
automaton, but on the other hand, no resets are allowed in GSPDIs — making
them incomparable.

Multi-affine functions have also been used in [KB06], in which the reach-
ability problem is translated into an abstract discrete system resulting in an
over-approximation. The notion of trace and edge signatures has also been
used in [BMRT04] to build a bisimulation relation for o-minimal hybrid sys-
tems [LPS00] — GSPDIs are not o-minimal systems since the flow is non-
deterministic.

Further comparison of other work with GSPDIs can be induced from their
comparison to SPDIs [ASY07]. A full version of this paper can be found in [PS08].

References

[APSY02] Asarin, E., Pace, G., Schneider, G., Yovine, S.: SPeeDI: a verification tool
for polygonal hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV
2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

[AS02] Asarin, E., Schneider, G.: Widening the boundary between decidable
and undecidable hybrid systems. In: Brim, L., Jančar, P., Křet́ınský, M.,
Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421. Springer, Heidelberg
(2002)

[ASY01] Asarin, E., Schneider, G., Yovine, S.: On the decidability of the reach-
ability problem for planar differential inclusions. In: Di Benedetto,
M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034.
Springer, Heidelberg (2001)

[ASY07] Asarin, E., Schneider, G., Yovine, S.: Algorithmic Analysis of Polygonal
Hybrid Systems. Part I: Reachability. TCS 379(1-2), 231–265 (2007)

[BMRT04] Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On o-minimal hybrid
systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993,
pp. 219–233. Springer, Heidelberg (2004)

[HHW95] Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: The next generation.
In: Proc. IEEE Real-Time Systems Symposium RTSS 1995 (1995)

[HM00] Henzinger, T.A., Majumdar, R.: Symbolic model checking for rectangu-
lar hybrid systems. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000.
LNCS, vol. 1785, pp. 142–156. Springer, Heidelberg (2000)

[KB06] Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In:
Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 348–
362. Springer, Heidelberg (2006)

[LPS00] Lafferriere, G., Pappas, G.J., Sastry, S.: O–Minimal hybrid systems. Math-
ematics of control, signals and systems 13, 1–21 (2000)

[MP93] Maler, O., Pnueli, A.: Reachability analysis of planar multi-linear systems.
In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg
(1993)

[MP05] Mysore, V., Pnueli, A.: Refining the undecidability frontier of hybrid au-
tomata. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821.
Springer, Heidelberg (2005)

Relaxing Goodness Is Still Good 289

[PS06a] Pace, G.J., Schneider, G.: A compositional algorithm for parallel model
checking of polygonal hybrid systems. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281. Springer, Heidelberg
(2006)

[PS06b] Pace, G.J., Schneider, G.: Static analysis for state-space reduction of
polygonal hybrid systems. In: Asarin, E., Bouyer, P. (eds.) FORMATS
2006. LNCS, vol. 4202. Springer, Heidelberg (2006)

[PS08] Pace, G.J., Schneider, G.: Relaxing Goodness is Still Good for SPDIs.
Technical Report 372, Dept. of Informatics, Univ. of Oslo, Norway (Feb-
ruary 2008)

[Sch08] Schneider, G.: Reachability analysis of Generalized Polygonal Hybrid Sys-
tems. In: ACM SAC-SV 2008, March 2008, pp. 327–332. ACM Press, New
York (2008)

[Spe] SpeeDI+, http://www.cs.um.edu.mt/speedi/

http://www.cs.um.edu.mt/speedi/

Benchmarking Model- and Satisfiability-Checking on
Bi-infinite Time�

Matteo Pradella1, Angelo Morzenti2, and Pierluigi San Pietro2

1 IEIIT, Consiglio Nazionale delle Ricerche, Milano, Italy
2 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

{pradella,morzenti,sanpietr}@elet.polimi.it

Abstract. Model checking techniques traditionally deal with temporal logic lan-
guages and automata interpreted over ω-words, i.e., where time is infinite in the
future but finite in the past. This is motivated by the study of reactive systems,
which are typically nonterminating: system termination may be abstracted away
by allowing an infinite future. In the same way, if time is infinite also in the past
one is allowed to ignore the complexity of system initialization. Specifications
may then be simpler and more easily understandable, because they do not neces-
sarily include the description of operations (such as configuration or installation)
typically performed at system deployment time. In this paper, we investigate the
feasibility of bounded model checking and bounded satisfiability checking when
dealing with bi-infinite automata and logics. We present a tool and we discuss its
application to a set of case studies, arguing that bi-infinite time does not entail
significant penalties in verification time and space.

Keywords: Bounded model checking, bi-infinite words and automata, metric
temporal logic.

1 Introduction

Temporal logics and automata models used in specification and verification usually
consider time to be finite in the past, i.e., with a “first” time instant. The reason is both
pragmatical and historical: finite automata and temporal logic were applied to model
programs or hardware, where often there is an initialization step. Hence, automata and
temporal logics (the latter also extended with past operators) on ω-words seemed ade-
quate for modeling and verification. The only concession to infinity was in the future:
a reactive system does not necessarily have a final state (i.e., it may not terminate). It
has been widely argued that allowing time to be infinite in the future is very conve-
nient when describing reactive systems and studying their properties (such as liveness
and fairness), even though obviously all real systems have to terminate, sooner or later.
For instance, the controller of a railroad crossing may be considered as nonterminating,
since one might simply not want to model explicitly the case when the controller is
stopped for failures, maintenance or replacement. Nontermination is only an abstrac-
tion, useful to write simpler models that avoid explicit consideration of the final dis-
posal of the analyzed system, and to verify and analyze properties that essentially refer
to infinite behaviors, such as fairness.
� Work partially supported by FME Small Project.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 290–304, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 291

However, philosophers and logicians such as Prior have always considered that time
may be bi-infinite, i.e., infinite both in the future and in the past. Also Automata Theory
has considered bi-infinite computations [10,22]. Actually, bi-infinity may be a useful
abstraction, too. Analogously to the mono-infinite case where termination may be ig-
nored, bi-infinite time is convenient for modeling systems where initialization may be
ignored. One can write specifications that are simpler and more easily understandable,
because they do not include the description of the operations (such as configuration,
installation, ...) typically performed at system deployment time. For instance, for reac-
tive systems embedded into devices that continuously monitor or control some process,
one may often focus only on regime behavior, ignoring initialization. As an example,
consider a simple mutual exclusion problem, where, say, three processes may need to
gain exclusive access to a shared resource R. A resource allocator might have a policy,
in case of conflicting resource requests, to allocate R first to the process, among those
that are currently requesting R, that accessed the resource least recently. This fairness
property may be formalized more easily by assuming that every request by a process
is preceded by a previous request by some other process, i.e., that the sequence of re-
quests extends indefinitely in the past (a property similar to this one will be formalized
in Section 5).

Recent developments in the research on Bounded Model Checking (BMC), a veri-
fication technique originally defined only for Linear Time Temporal Logic (LTL) [2],
have extended its applicability also to PLTL (LTL with Past time operators) [1,14]. In
these works, however, the time domain is infinite in the future only, so that the asym-
metrical definition of past and future in PLTL actually complicates the translation of
PLTL into a boolean formula. In our work [23] we presented a novel, bi-infinite en-
coding of PLTL for bounded model checking, which is significantly simpler than the
previous ones, because we consider past and future as completely symmetrical. Fur-
thermore, we introduced a variant of bounded model checking where both the system
under analysis and the property to be checked are expressed in a single uniform nota-
tion as formulae of temporal logic, without any reference to operational components. In
this novel setting, which we called bounded satisfiability checking (BSC), the system
under analysis is modeled through the set of all its fundamental properties as a formula
φ (that in all non-trivial cases would be of significant size) and the additional property
to be checked (e.g. a further desired requirement) is expressed as another (usually much
smaller) formula ψ. Aim of the verification activity is then to prove that any implemen-
tation of the system under analysis possessing the assumed fundamental properties φ
would also ensure the additional property ψ; in other terms, the verification tool would
prove that the formula φ→ ψ is valid, or equivalently that its negation is not satisfiable
(hence the term satisfiability checking).

The present paper provides two more contributions. First, the above outlined method
of satisfiability checking is generalized by permitting, also for the case of a bi-infinite
time, the more customary operation of bounded model checking, where the system un-
der analysis is modeled by means of a finite state automaton: to this end we provide
the definition of automata on bi-infinite strings and the encoding of the automaton on
bi-infinite time structures. Second, we validate our approach and the tool implemented
to support it by comparing the performance figures obtained on mono- and bi-infinite

292 M. Pradella, A. Morzenti, and P. San Pietro

time structures, by performing either model or satisfiability checking on a set of se-
lected case studies. The results allow us to state that the bi-infinite approach is feasible
and can be applied with no significant penalty, also when considering a mono-infinite
specification. Since bi-infinite time is also more natural and more expressive, we argue
that one may use a bi-infinite approach to specification and verification, even when the
system to be modeled is mono-infinite.

The paper is structured as follows: Section 2 provides definitions of bi-infinite words,
automata and logic, while Section 3 motivates the usefulness of a bi-infinite semantics.
Section 4 briefly describes a toolkit, called Zot, extended with the new encoding, trans-
lating models and formulae into boolean logic. Section 5 presents experimental results,
using Zot and MiniSat solver, comparing mono-infinite and bi-infinite verifications of
a set of case studies, showing the feasibility of bi-infinite bounded model checking.
Finally, Section 6 draws some conclusions.

2 Automata and Logics on Bi-infinite Words

Given a finite alphabetΣ,Σ∗ denotes the set of finite words overΣ. A bi-infinite word
w overΣ (also called a Z-word) is a functionw : Z −→ Σ. Hence,w(j) ∈ Σ for every
j. Word w is also denoted as . . . w(−1)w(0)w(1) . . . and each w(j) also as wj . The
set of all bi-infinite words over Σ is denoted by ΣZ. An ω-word over Σ is a function
from N → Σ, i.e., it has the form w(0)w(1) The shift function σ : ΣZ → ΣZ is
defined for every w ∈ ΣZ and for every n ∈ Z, by σ(w)(n) = w(n − 1). Given a
languageL ⊆ AZ, σ(L) = {σ(w) | w ∈ L}. L is said to be shift invariant if L = σ(L).
Shift invariance basically means that the instant 0 (the “origin” for ω-words) has no
special role. Finite automata and linear temporal logic may only define shift invariant
languages.

2.1 Automata on Bi-infinite Words

An automaton A is a five-tuple (Q,Σ, T, I, F), where Q is a finite set of states, T ⊆
Q×Σ×Q is the set of transitions, I ⊆ Q is the set of initial states and F ⊆ Q is the set
of final states. Two transitions (q, a, q′), (p, b, p′) are consecutive if q′ = p. A bi-infinite
path of A is a bi-infinite sequence of consecutive transitions. A path is successful if
qn ∈ I for infinitely many n ≤ 0, and if qn ∈ F for infinitely many n ≥ 0. For a
path . . . (q−1, a−1, q0)(q0, a0, q1)(q1, a1, q2) . . . , define its label as the bi-infinite word
. . . a−1a0a1 The language L(A) of A is the set of labels of successful bi-infinite
paths of A. It is easy to see that L(A) is shift-invariant.

A bi-infinite run is a bi-infinite word . . . q−1q0q1q2 . . . on QZ such that there exists
a bi-infinite path . . . (q−1, a−1, q0)(q0, a0, q1)(q1, a1, q2) . . . of A. The run is success-
ful if it corresponds to a successful path. In this paper, we are rarely interested in the
language of A, but rather we remove the input alphabet and add both a finite set Ap
of boolean propositions and an evaluation function S : Q → 2Ap. T is then a subset
of Q × Q. S indicates the set of propositions that are true in a state. For simplicity,
we still call this structure (Q,Ap, S, T, I, F) a bi-infinite automaton (although it is
a Kripke structure with bi-infinite fairness constraints). This form is especially conve-
nient for model checking. Given a run . . . q−1q0q1q2 . . . , the corresponding sequence of

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 293

assignments . . . S(q−1)S(q0)S(q1)S(q2) . . . is denoted with . . . S−1S0S1S2 For
simplicity, each Si may also be called a state of the automaton. No confusion can arise
since one can always assume, by extending Ap, that S(q) = S(q′) if, and only if,
q = q′.

2.2 A Temporal Logic on Bi-infinite Time

We define here Linear Temporal Logic with past operators (PLTL), in the version first
introduced by Kamp [12]. However, rather than using more traditionalω-words, seman-
tics will be defined on Z-words.

Syntax of PLTL. The alphabet of PLTL includes: a finite set Ap of propositional let-
ters; two propositional connectives¬,∨ (from which other traditional connectives such
as -,⊥,¬,∨,∧,→, . . . may be defined); four temporal operators (from which other
temporal operators can be derived): the “until” operator U , the “next-time” operator
◦, the “since” operator S and the “past-time” (or Yesterday) operator, • . Formulae
are defined in the usual inductive way: a propositional letter p ∈ Ap is a formula;
¬φ, φ∨ψ, φUψ, ◦φ, φSψ, •φ, where φ, ψ are formulae, are formulae; nothing else is a
formula.

The traditional eventually and globally operators may be defined as: ♦φ is -Uφ, �φ
is ¬♦¬φ. Their past counterparts are: �φ is-Sφ, �φ is ¬�¬φ. Another useful operator
for PLTL is the Always operator Alw, which can be defined by Alw φ := �φ ∧ �φ.
The intended meaning ofAlw φ is that φ must hold in every instant in the future and in
the past. Its dual is the Sometimes operator Som φ defined as ¬Alw¬φ.

Semantics of PLTL. The semantics of PLTL may be defined on Z-words. For all PLTL
formulae φ, for all w ∈ (2Ap)Z, for all integer numbers i, the satisfaction relation
w, i |= φ is defined as follows.
w, i |= p,⇐⇒ p ∈ w(i), for p ∈ Ap
w, i |= ¬φ⇐⇒ w, i �|= φ
w, i |= φ ∨ ψ ⇐⇒ w, i |= φ or w, i |= ψ
w, i |= ◦φ⇐⇒ w, i+ 1 |= φ
w, i |= φUψ ⇐⇒ ∃k ≥ 0 | w, i+ k |= ψ, and w, i+ j |= φ ∀0 ≤ j < k
w, i |= •φ⇐⇒ w, i− 1 |= φ
w, i |= φSψ ⇐⇒ ∃k ≥ 0 | w, i− k |= ψ, and w, i− j |= φ ∀0 ≤ j < k

2.3 A Bi-infinite Encoding

In [23] we defined how PLTL formulae may be encoded into boolean formulae. The
encoding includes additional information on the finite structure over which a PLTL
formula is interpreted, so that the resulting boolean formula is satisfied in the finite
structure if and only if the original PLTL formula is satisfied in a finite or possibly bi-
infinite structure. Our encoding is essentially a bi-infinite generalization of a classical
mono-infinite BMC encoding (see e.g. [3]). The interested reader can find its complete
description in [23].

The idea on which the encoding is based is graphically depicted in Figure 1(b). A
ultimately-periodic bi-infinite structure has a finite representation that includes a non-
periodic portion, and two periodic portions corresponding to two cycles that are encoded

294 M. Pradella, A. Morzenti, and P. San Pietro

Fig. 1. a) Mono-infinite and b) bi-infinite bounded paths

by having two pairs of equal states in the sequence: when the interpreter of the formula
(in our case, a SAT solver), needs the truth value of a subformula at a state beyond the
last state Sk, it follows a “backward link” (resp., “forward link”) and considers the states
Sl, Sl+1, ... as the states following Sk. Analogously, when it is necessary to evaluate a
subformula before the first state S0, then the interpreter follows a “forward link” and
considers the states Sl′ , Sl′−1, ... as the states preceding S0.

Coming to the automaton encoding, to perform bounded model checking, we repre-
sent symbolically the transition relation of the system M as a propositional formula,
where the states are represented as bit vectors. The k-times unrolling of the transition
relation represents all the finite paths of length k:

|[M]|k ⇐⇒
∧

0≤i<k

T (Si, Si+1)

where T is a total transition relation predicate. Notice that, being M a bi-infinite au-
tomaton, there is no initial state predicate.

2.4 Metric Temporal Operators

PLTL can also be extended by adding metric operators, on discrete time. Metric op-
erators are very convenient for modeling hard real time systems, whose requirements
include quantitative time constraints. We call the resulting logic Metric PLTL, although
it does not actually extend the expressive power of PLTL.

Metric PLTL extends the alphabet of PLTL with a bounded until operator U∼c and
a bounded since operator S∼c , where ∼ represents any relational operator (i.e., ∼∈
{≤,=,≥}), and c is a natural number. Also, we allow n-ary predicate letters (with
n ≥ 1) and the ∀, ∃ quantifiers as long as their domains are finite. Hence, one can write,
e.g., formulae of the form: ∃p gr(p), with p ranging over {1, 2, 3} as a shorthand for∨

p∈{1,2,3} grp.
The bounded globally and bounded eventually operators are defined as follows:

♦∼cφ is -U∼cφ, �∼cφ is ¬♦∼c¬φ. The past versions of the bounded eventually and
globally operators may be defined symmetrically to their future counterparts: �∼cφ is
-S∼cφ, �∼cφ is ¬�∼c¬φ.

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 295

In the following, as a useful shorthand, we will use also the versions of the bounded
operators with a strict bound. For instance, φU>0ψ stands for ◦(φU≥0ψ), and similarly
for the other ones.

The semantics of Metric PLTL may be defined by a straightforward translation τ of
its operators into PLTL:

τ(φ1U≤0φ2) := φ2

τ(φ1U≤tφ2) := φ2 ∨ φ1 ∧ ◦τ(φ1U≤t−1φ2),with t > 0
τ(φ1U≥0φ2) := φ1Uφ2

τ(φ1U≥tφ2) := φ1 ∧ ◦τ(φ1U≥t−1φ2),with t > 0
τ(φ1U=0φ2) := φ2

τ(φ1U=tφ2) := φ1 ∧ ◦τ(φ1U=t−1φ2),with t > 0

and symmetrically for the operators in the past.
Hence, in what follows we will consider Metric PLTL as a syntactically-sugared, but

considerably more succinct, version of PLTL.

3 Bi-infinite Time: A Short Motivation

It is widely recognized that allowing past operators in temporal logic, as in PLTL, makes
it possible to write specifications that are easier, shorter, and, in some significant cases
even exponentially more succinct than LTL specifications [16]. However, the ω-word
semantics of PLTL is asymmetric: past is treated differently from future. Asymmetry in
itself may seem a minor glitch, but it entails a problem: only a conventional value is re-
turned when the evaluation of past operators requires time instants before the origin. For
instance, consider the • operator: in a mono-infinite time domain, when •φ is evaluated
at instant i > 0, it returns the value of φ at instant i− 1; if i = 0, •φ is conventionally
evaluated to false. This ω-word semantics may easily lead to subtle specification errors,
since natural, “expected” properties of the temporal operators are violated. These prob-
lems are usually “fixed” by allowing two dual forms of the • operator, the second one
being defined to the default value true when its argument cannot be evaluated. This is-
sue is even worsened when considering metric time operators, to be used for specifying
real-time systems, since they may very easily refer to non-existent time instants in the
past. For example, one may describe a system having a fixed cycle of operation of m
time units by the formula �(shutdown ↔ �=mstartup) (i.e., a shutdown occurs if
and only if a startup took placem time units before), which could be rewritten (e.g., as
a consequence of some automatic transformation performed by some tool that analyzes
it) in the following, supposedly equivalent form:

�

⎛

⎝
(¬shutdown ∨ �=mstartup)

∧
(shutdown ∨ �=m¬startup)

⎞

⎠ .

Unfortunately, this latter, simple specification is unsatisfiable on a mono-infinite time
domain, because in the firstm−1 instants of thedomain,bothshutdown and¬shutdown
must be true, since both �=mstartup and �=m¬startup are (conventionally) false. This

296 M. Pradella, A. Morzenti, and P. San Pietro

effect is dependent on the syntax used: for instance, if the lower subformula (shutdown∨
�=m¬startup) is written in the apparently equivalent form:shutdown∨¬�=mstartup,
then the behavior becomes the intended one, because in this case the conventional false
value for �=m makes shutdown∨¬�=mstartup true in the firstm−1 instants. Clearly,
these subtle semantics issues may easily escape notice in a more complex specification.

By adopting bi-infinite time, where event sequences may extend indefinitely in the
past, past operators have a simple semantics that is symmetrical to that of the corre-
sponding future-time operators: they are always defined and there is no need to use
conventional values. Notice that the usage of bi-infinite time does not rule out the ex-
plicit modeling of the initial state of a system, and hence it incurs in no loss of expressive
power (e.g., just use a propositional symbol Start, with the additional constraint that
Start must occur exactly once). Hence, one may use a convenient bi-infinite semantics
even when specifying a mono-infinite system.

Throughout our past research, we have heavily dealt with temporal logic specifi-
cations and their application to industrial, critical real-time systems [5,20,17,4]. Our
approach has focused on using TRIO (a first order, linear-time temporal logic with a
quantitative metric on time) for requirements specifications, without relying on ma-
chine models such as automata. One of the main features of TRIO is its ability to deal
with different time domains: dense or discrete, finite or infinite [18]. In particular, most
TRIO specifications adopt a bi-infinite time domain, using both future and past time op-
erators. The application of the BMC techniques to a decidable fragment of TRIO was
one of our original motivations for dealing with bi-infinity.

4 The Zot Toolkit

Zot is an agile and easily extendible bounded model and satisfiability checker, which
can be downloaded at http://home.dei.polimi.it/pradella/, together with the case studies
and results described in Section 5.

The tool supports different logic languages through a multi-layered approach: its
core uses PLTL, and on top of it a decidable predicative fragment of TRIO [9] is defined
(essentially, equivalent to Metric PLTL). An interesting feature of Zot is its ability to
support different encodings of temporal logic as SAT problems by means of plugins.
This approach encourages experimentation, as plugins are expected to be quite simple,
compact (usually around 500 lines of code), easily modifiable, and extendible. At the
moment, a few variants of some of the encodings presented in [3] are supported, a
dense-time variant of MTL [8], and the bi-infinite encoding presented in [23].

Zot offers three basic usage modalities:

1. Bounded satisfiability checking (BSC): given as input a specification formula, the
tool returns a (possibly empty) history (i.e., an execution trace of the specified sys-
tem) which satisfies the specification. An empty history means that it is impossible
to satisfy the specification.

2. Bounded model checking (BMC): given as input an operational model of the system,
the tool returns a (possibly empty) history (i.e., an execution trace of the specified
system) which satisfies it.

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 297

3. History checking and completion (HCC): The input file can also contain a partial
(or complete) history H . In this case, if H complies with the specification, then a
completed version ofH is returned as output, otherwise the output is empty.

The provided output histories have temporal length ≤ k, the bound given by the
user, but may represent infinite behaviors thanks to the loop selector variables, marking
the start of the periodic sections of the history. The BSC/BMC modalities can be used
to check if a property prop of the given specification spec holds over every periodic
behavior with period ≤ k. In this case, the input file contains spec ∧ ¬prop, and, if
prop indeed holds, then the output history is empty. If this is not the case, the output
history is a counterexample, explaining why prop does not hold.

The tool and its plugins were validated on mono-infinite examples, such as the Mutex
examples included in the distribution of NuSMV. The results were exactly the same as
those obtained by using NuSMV [6] with the same encoding. On one hand, Zot is in
general slower than NuSMV, but being quite small and written in Common Lisp is quite
flexible, and promotes experimentation with different encodings and logic languages.
On the other hand, in practice its performances are usually acceptable, because for non-
trivial verifications the bottleneck typically resides in the SAT solver rather than in the
translator.

Zot supports the model checkers MiniSat [7], zChaff, [21], and the recent multi-
threaded MiraXT solver [15].

5 Case Studies and Experiments

To assess the actual feasibility of our approach, we applied it to some significant case
studies, illustrated in the following sections. For all examples we apply the tool with
reference to both mono- and bi-infinite structure, and then compare the results by com-
puting the ratio of the various (time and memory) figures obtained in the two cases.
We point out that some of the following case studies are framed as bounded satisfia-
bility checking problems (because the analyzed system is described by means of a set
of PLTL formulas without any constraint on their structure, and in particular on the
nesting of their temporal operators): this is the case of the In/out channel, the Kernel
Railway Crossing, and the Fischer’s protocol. Three case studies are instead expressed
as bounded model checking problems (the analyzed system is modeled through a set
of PLTL formulae that are at all similar to a finite state automaton, because they re-
late the system current state with its next state): the In/Out channel (the only one to
be considered in both ways), the simple mutual exclusion protocol, and the Real-time
allocator.

5.1 A Simple In/Out Channel

The simplest example on which we tested the tool is that of a transmission line where
any message entering at one end (represented by the predicate letter in) at any time is
emitted at the other end (predicate out) after k time units. No message is lost nor is
generated spuriously, so the transmission line is described by the formula:

Alw(in↔ ♦=kout).

298 M. Pradella, A. Morzenti, and P. San Pietro

We considered two possible values for the delay k, namely, 5 and 15 time units.
Moreover, to allow for bounded model checking, besides the above “descriptive” for-
malization, we used also a different, “operational” characterization of the transmission
line system, composed of constraints that refer only to “current” and the “next” time
instants. This requires the introduction of a counter to, which starts at value k when in
holds, and is then decremented at each successive time instant, until out holds. In the
tables reporting the experimentation results four versions of this examples are consid-
ered, corresponding to the descriptive or state-based style (suffix “d” or “s”) and to the
time bounds (5 or 15). For this simplest example the tool was only used to generate a
possible trace of execution, as opposed to the other examples, for which we also carried
out the proof of a few selected properties.

5.2 Kernel Railway Crossing

The Railway Crossing problem is a standard benchmark in real time systems verifica-
tion [11]. It considers a railway crossing composed of a sensor, a gate and a controller.
When a train is sensed to approach the crossing, a signal is sent to the controller. The
controller then sends a command to the gate, closing the railway crossing to cars. The
system operates in real time, ensuring safety (when the train is inside the railway cross-
ing then the bar gate is closed) while maximizing utility (the bar should be open as long
as possible). To this goal, there are various assumptions on the minimum and maximum
speed of trains (e.g., the minimum time it takes for a train to enter the crossing after be-
ing sensed) and on the bar speed (the time it takes for the bar to be moved up or down).
The Kernel Railroad crossing problem is a simplified version, where there is only one
track and hence only one train at a time may enter the crossing. The goal of the KRC
specification is twofold: a formal definition of the KRC system, and the proof of the
safety and utility properties.

KRC is a toy example per se, but in this case we are completely defining it with
a temporal logic specification, thus obtaining a logic formula much bigger and more
complex than those used in traditional model checking, where the KRC is defined with
an automaton and short temporal logic formulae are used only to model safety or utility
properties.

In our example we studied the KRC problem with two different sets of constants,
calling the two cases KRC1 and KRC2. Satisfiability of the specification, a safety prop-
erty and a utility property were considered for the experiments. A complete specifica-
tion, composed of a dozen axioms, of KRC1 and KRC2 and their properties can be
found in [19].

5.3 Fischer’s Protocol

As a third case study, we consider Fischer’s algorithm [13]. Fischer’s is a timed mu-
tual exclusion algorithm that allows a number of timed processes to access a shared
resource. These processes are usually described as timed automata, and are often used
as a benchmark for timed automata verification tools.

We considered a pure-logic description of the system in two variants. The first one,
called Fischer1, considers 2 processes with a delay after the request of 3 time units. The

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 299

second one, called Fischer2, considers 5 processes with a delay after the request of 6
time units.

We used the tool to check the safety property of the system (safety-m and safety-b in
the tables of the following section), i.e. it is never possible that two different processes
enter their critical sections at the same time instant.

As a last test for this system, we added a constraint to generate a behavior where
there is always at least an alive process (alive-m and alive-b in the tables).

5.4 Simple Mutual Exclusion Protocol

The fourth case study is a simple Mutual exclusion protocol for two processes, origi-
nally found in the distribution of NuSMV, which is called Mutex1. This was also ex-
tended to consider mutual exclusion with three processes, a model called Mutex2. Both
examples have been defined with an automaton model.

For Mutex1 we considered the following property (where, quite naturally, turn = i
means that it is the turn of process i):

Alw
(

(turn = 1 → ♦(turn = 2))∧
(turn = 2→ ♦(turn = 1))

)
.

This is the variant of the previous property that we considered for Mutex2:

Alw

⎛

⎝
(turn = 1→ ♦(turn = 2 ∨ turn = 3))∧
(turn = 2→ ♦(turn = 1 ∨ turn = 3))∧
(turn = 3 → ♦(turn = 2 ∨ turn = 3))

⎞

⎠ .

5.5 Real-Time Allocator

The last case study consists of a real-time allocator which serves a set of client processes,
competing for a shared resource. The system is a purely operational version of the one
presented in [23].

Each process p requires the resource by issuing the message rq(p), by which it iden-
tifies itself to the allocator. Requests have a time out: they must be served within Treq

time units, or else be ignored by the allocator. If the allocator is able to satisfy p’s re-
quest within the time-out, then it grants the resource to p by a gr(p) signal. Once a
process is assigned the resource by the allocator, it releases the resource, by issuing
a rel signal, within a maximum of Trel time units. The allocator grants the request to
processes according to a FIFO policy, considering only requests that are not timed out
yet and in a timely manner, i.e., no process will have to wait for the resource while it is
not assigned to any other process.

Two cases were considered in the following experiments: Alloc1 is the allocator
model with two processes and Trel = 2 and Treq = 3. Alloc2 is the allocator model
with two processes and Trel = 4 and Treq = 5.

Two hard real time properties p1 and p2 of Alloc1 and Alloc2 are considered in the
experiments.

The first is a simple fairness property p1. If a process that does not obtain the resource
always requests it again immediately after the request is expired, then if it requests the
resource it will eventually obtain it:

300 M. Pradella, A. Morzenti, and P. San Pietro

(p1) :
Alw

(
rq(p) ∧�≤Treq¬gr(p)→ ♦=Treq rq(p)

)

→
Alw (rq(p) → ♦gr(p))

A second, more complex property may be intuitively described as a sort of “con-
ditional fairness”. Let us first define the notion of “unconstrained rotation” among
processes: a process will require the resource only after all other ones have requested
and obtained it. Notice that this requirement does not impose any precise ordering
among the requests made by the processes (though, once requests take place in a given
order, the order remains unchanged from one round among processes to the next one).
This property is described by the following formula:

Alw

⎛

⎝
rq(p)→

∀q
(
q �= p→ ¬rq(p)S

(
rq(q)∧

♦≤Treq gr(q)

))
⎞

⎠

Under this assumption of “unconstrained rotation” the allocator system is fair for
all processes: if a process, when it requests the resource and does not obtain it, always
requests it again after the request is expired, then, when it requests the resource, it will
eventually obtain it. If for brevity we symbolically indicate the property of “uncon-
strained rotation” as UNROT, this conditional fairness property p2 may be stated as:

(p2) : UNROT →

⎛

⎝
Alw(rq(p) ∧�≤Treq¬gr(p) → ♦>0rq(p))

→
Alw(rq(p) → ♦>0gr(p))

⎞

⎠

By careful inspection, however, it can be found that in the mono-infinite case p2 is
only vacuously true, i.e., it corresponds to a run where no event occurs. In fact, the
property of unconstrained rotation, in the simple form of the above UNROT formula,
implies that any nonempty sequence of request events (and corresponding grant and
release) goes back indefinitely towards the past. Therefore it can be satisfied non vacu-
ously (i.e., with reference to behaviors that effectively include some events) only over
a structure which is infinite in the past.

5.6 Summary of Experimental Results

We report here and comment on the results of applying the tool to the selected bench-
marks and case studies. The experiments were run on a PC equipped with AMD Athlon
64 X2 4600+, 2 GB RAM, Linux OS. The SAT solver was MiniSat [7], version 2, along
with SAT2CNF, part of the Alloy Analyzer (http://alloy.mit.edu).

For most examples we considered both a mono-infinite and a bi-infinite time struc-
ture, trying various boundsT on the size of the structure: 30, 60, 120, and 240 time units.
For every example, the first basic experiment is checking satisfiability (non-emptiness)
of the specification, without considering any property. This operation is useful as a sort
of “sanity check” for a temporal logic specification, since it ensures that at least the for-
mula is not contradictory. For all examples, except for the simplest In/Out channel, we

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 301

Table 1. Summary of collected experimental data

302 M. Pradella, A. Morzenti, and P. San Pietro

also proved a few selected properties: the property holds if and only if the tool answers
UNSAT when applied to the specification conjoined with the negation of the property.

The entire collection of results is displayed in Table 1, which includes: translation
time (dominated by the conjunctive normal form translation performed by SAT2CNF),
SAT time and SAT memory (time and space taken by the SAT solver only), and the
number of clauses in the formula generated by SAT2CNF. Translation time, closely
related to the size of the original specification, changes in a quite regular way, and in
our experiments it appears to be quadratically related to the bound T . SAT time is much
less regular and predictable, as it may depend, in a very involved way, on the semantics
of the specification and of the property being checked and on the details of the solver
algorithms.

Certain data in Table 1 are denoted by u.p.. In these cases, MiniSat is able to deter-
mine unsatisfiability already during the parsing phase, using so-called unit propagation
technique. SAT memory in this case cannot be computed, since the SAT solver has not
really started a computation, and also SAT time is not very meaningful (it corresponds
only to parsing time, which is negligible and only related to the size of the boolean
formula fed to the solver). In two experiments, unit propagation occurred for both the
bi-infinite and the mono-infinite case; in one experiment it occurred only in the mono-
infinite case.

Table 1 also contains four columns labeled “ratio b/m”, which are more closely fo-
cused on the comparison between the figures for the mono and the bi-infinite case:
for each pair of such data (for the same example and the same property) it reports the
average, over the four values of T , of the ratio between the bi-infinite figure and the
corresponding mono-infinite one, together with its standard deviation.

A few values were left out of these columns, since they correspond to cases where
the comparison is not possible or would give misleading results:

– The property safety-b-b for both Mutex1 and Mutex2 is bi-infinite only, since it
does not hold on a mono-infinite domain (and hence it is difficult to be compared).

– All occurrences of unit propagation were ignored for SAT time and SAT memory,
since no meaningful measure can be used to make a comparison.

Also, Property p2 for the Allocator, as already pointed out, is only vacuously true on
a mono-infinite structure, so the SAT-solver can very easily prove unsatisfiability. This
explains the relatively large b/m ratio for SAT time.

As one can notice, standard deviations are typically small for all measures except
SAT time, which, as expected, shows more volatility. Hence, for all measures, except for
SAT time, the ratio is close to be a constant for the same case study, when considering
different bounds.

Overall, results are satisfactory. All measures, including SAT time, show a ratio be-
tween 1 and 3, except in the above reported special cases. SAT time shows more volatil-
ity than other measures, but it is still bounded and occasionally the ratio can even go
below 1, with 2 being the most typical value. Also, there does not appear to be any
significant difference in the ratios between cases where the specification is purely oper-
ational (Allocator, Mutex, io5d, io15d) or purely logical (Fischer, KRC, io5s, io15d).

Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time 303

6 Conclusions

In this paper we have argued that bi-infinite time in specifications is a useful abstraction,
allowing one to ignore the complexity of system initialization, and to express fairness
properties also in the past.

Bi-infinite time has certainly been used before in specification. For instance, our own
requirement specifications of industrial systems using TRIO temporal logic language
[9] most often adopted bi-infinite time. However, we are not aware of any other work
extending model checking to deal with bi-infinity, apart from our encoding of automata
and PLTL formulae [23] that includes additional information to represent bi-infinite
structures by means of finite ones having two cycles of states, one that unfolds in the
future and one for the past.

Our Zot tool incorporates the bi-infinite encoding and, by relying on standard satis-
fiability checkers, supports a variety of analysis and verification activities.

This paper investigated the tool and its application to many case studies, ranging
from simple to complex, in order to assess the feasibility of the approach, by com-
paring the performance of the same case when using a mono-infinite and a then a bi-
infinite structure. The experimental results show that, on these examples, tool perfor-
mance on bi-infinite structures is comparable to that on mono-infinite ones, suggesting
that adopting a bi-infinite notion of time does not impose very significant penalties to
the efficiency of bounded model checking and bounded satisfiability checking. On the
other hand, bi-infinite time is more natural than mono-infinite time in many cases and
it avoids subtle semantics problem with PLTL formulae.

Further work might consider various optimizations, such as incremental encodings,
and also deal with completeness issues [24,3]. These were ignored in this paper, where
we applied a standard, relatively simple encoding technique, since we were mainly
interested in comparing the performance of mono- and bi-infinite model checking.

References

1. Benedetti, M., Cimatti, A.: Bounded model checking for past LTL. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 18–33. Springer, Heidelberg (2003)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

3. Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded
LTL model checking. Logical Methods in Computer Science 2(5), 1–64 (2006)

4. Capobianchi, R., Coen-Porisini, A., Mandrioli, D., Morzenti, A.: A framework architecture
for supervision and control systems. ACM Comput. Surv. 32(1es), 26 (2000)

5. Ciapessoni, E., Mirandola, P., Coen-Porisini, A., Mandrioli, D., Morzenti, A.: From for-
mal models to formally based methods: An industrial experience. ACM Trans. Softw. Eng.
Methodol. 8(1), 79–113 (1999)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic model checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Hei-
delberg (2002)

304 M. Pradella, A. Morzenti, and P. San Pietro

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

8. Furia, C.A., Pradella, M., Rossi, M.: Dense-time MTL verification through sampling. In:
Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014. Springer, Heidelberg (2008)

9. Ghezzi, C., Mandrioli, D., Morzenti, A.: TRIO: A logic language for executable specifica-
tions of real-time systems. Journal of Systems and Software 12(2), 107–123 (1990)

10. Gire, F., Nivat, M.: Langages algébriques de mots biinfinis. Theoret. Comput. Sci. 86(2),
277–323 (1991)

11. Heitmeyer, C., Mandrioli, D.: Formal Methods for Real-Time Computing. John Wiley &
Sons, Inc., New York (1996)

12. Kamp, J.A.W.: Tense Logic and the Theory of Linear Order (Ph.D. thesis). University of
California at Los Angeles (1968)

13. Lamport, L.: A fast mutual exclusion algorithm. ACM TOCS-Transactions On Computer
Systems 5(1), 1–11 (1987)

14. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple is better: Efficient bounded model
checking for past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 380–395.
Springer, Heidelberg (2005)

15. Lewis, M., Schubert, T., Becker, B.: Multithreaded SAT solving. In: 12th Asia and South
Pacific Design Automation Conference (2007)

16. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The glory of the past. In: Proceedings of the Conf.
on Logic of Programs, London, UK, pp. 196–218. Springer, Heidelberg (1985)

17. Morasca, S., Morzenti, A., San Pietro, P.: A case study on applying a tool for automated
system analysis object oriented logic specification of time-critical systems. Based on modular
specifications written in TRIO. Autom. Softw. Eng. 7(2), 125–155 (2000)

18. Morzenti, A., Mandrioli, D., Ghezzi, C.: A model parametric real-time logic. ACM Trans.
Program. Lang. Syst. 14(4), 521–573 (1992)

19. Morzenti, A., Pradella, M., San Pietro, P., Spoletini, P.: Model-checking TRIO specifications
in SPIN. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp.
542–561. Springer, Heidelberg (2003)

20. Morzenti, A., San Pietro, P.: Object-oriented logical specification of time-critical systems.
ACM Trans. Softw. Eng. Methodol. 3(1), 56–98 (1994)

21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an
efficient SAT solver. In: DAC 2001: Proceedings of the 38th Conf. on Design automation,
pp. 530–535. ACM Press, New York (2001)

22. Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics, vol. 141. Elsevier, Am-
sterdam (2004)

23. Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the future: Bi-
infinite time in the verification of temporal properties. In: Proc. of The 6th joint meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering ESEC/FSE, Dubrovnik, Croatia (September 2007)

24. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a
SAT-solver. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp.
108–125. Springer, Heidelberg (2000)

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 305–318, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Formal Analysis of Workflows Using UML 2.0 Activities
and Graph Transformation Systems

Vahid Rafe and Adel T. Rahmani

Department of Computer Engineering
Iran University of Science and Technology

Tehran, Iran
{rafe,rahmani}@iust.ac.ir

Abstract. Graph transformation has recently become more and more popular as
a general visual language to formally state the dynamic semantics of the de-
signed models. Using this technique, we present a highly understandable yet
precise approach to formally model the behavioral semantics of UML 2.0 Ac-
tivity diagrams. Automated formal verification and analysis of UML Activities
is the main advantage of our approach. In our proposal, AGG toolset is used to
design Activities, then using our previous approach to model checking graph
transformation systems, designers can verify and analyze designed Activity
diagrams. One of the main application areas of the Activities is workflow mod-
eling; hence to illustrate our approach, we use our proposed semantics for mod-
eling and verification of workflows.

Keywords: Activity Diagram, Workflow, Graph Transformation, Verification,
Dynamic Semantics.

1 Introduction

UML Activity diagrams are suitable means to model dynamic parts of a system. They
allow modeling of complex and large processes or specifying workflows [1]. They
can be used to model the behavior of a system or to specify the global behavior of a
web service conversation [2]. Oftentimes, however, modeling must be complemented
with suitable analysis capabilities to let the user understand whether the designed
model fulfills the stated requirements. To have a precise analysis in an automated
way, design models like Activities should be stated with a formal language (i.e. a
language with a precise semantics).

Since the past decade, Unified Modeling Language (UML) has been a standard
modeling language to express models in a software development process. The major
drawback of UML and similar modeling languages are that they only define syntax
for modeling without a precise formal semantics. Formal methods are crucial in
automated software engineering. But the problem of formal methods is that they are
difficult to be understood by designers because there is a complex mathematics be-
hind them. Hence, our aim is to implement a precise semantics –based on UML 2.0
specification [3]-yet easily understandable for UML 2.0 Activities using graph trans-
formation systems [4,5].

306 V. Rafe and A.T. Rahmani

Graph transformation has recently become more and more popular as a general
formal modeling language. Many of the artifacts which software engineers are used to
deal with are nothing but suitable annotated graphs. Software architectures, class
diagrams, and version histories are only a few well-known examples in which graphs
have proven their usefulness in everyday software engineering. These models, and
many others, can easily be described by means of suitable graph transformation sys-
tems to formalize their syntax and define the formal semantics of used notations [6].
Hence, graph transformation is a natural formalism for languages which basically are
graphs and this motivates us to choose graph transformation as a semantic back-
ground for modeling Activities.

To analyze Activities –modeled by graph transformation system- we use model
checking. For doing so, based on our defined semantics, the transition system must be
generated. In the generated transition system states are graphs representing the current
state of the activity. Then it is possible to check specified properties of the model (e.g.
via temporal logics interpreted on the transition system). To implement semantics of
UML 2.0 Activity diagrams, we use AGG1 toolset [7]. AGG supports attributed typed
graphs and layered graph transformation systems. It is also possible to define desired
constraints using atomic constraints in AGG. As AGG cannot generate transition
systems, we use our previous approach to generate transition systems and to do model
checking [8]. We translate graph transformation systems designed in AGG to BIR
(Bandera Intermediate Language) –the input language of Bogor2 model checker [9]-.
Bogor generates the transition system and checks desired properties stated by LTL
(Linear Temporal Logic). This translation is done automatically and designers can use
this approach without any knowledge about the BIR or Bogor.

As it was mentioned before, one of the main application areas of the Activities is
“workflow modeling”. Hence, we use our proposed semantics of UML 2.0 Activity
diagrams for modeling workflows. To verify the correctness of workflows, we con-
sider several crucial properties of Activities modeling workflows. We describe how
our proposed semantics can be used automatically to verify workflows. In contrast to
previous approaches [10,11], our proposed semantics supports concepts defined in
UML 2.0 Activities (e.g. Petri-like semantics and traverse-to-completion). Further-
more, our approach can cover more elements of Activities (e.g. exception handling
and events) for modeling than [12] and it has more flexibility to check user defined
properties on the Activities. As we use traditional graph transformation systems (in
contrast to [12] which uses a new concept named rule invocation) it is easier for de-
signers to use our approach because the existing environments for modeling graph
transformation systems (e.g. AGG) do not support directly rule invocation.

The paper is organized as follows. Section 2 surveys the related work. Section 3
briefly introduces graph transformation systems. Section 4 describes our approach to
define a formal semantics for Activities. Section 5 shows our approach to verify mod-
eled workflows and section 6 concludes the paper.

2 Related Work

There is much research done about definition of formal semantics for Activity dia-
grams using different formal languages. In [13], Hausmann defines a concept named

1 http://tfs.cs.tu-berlin.de/agg/
2 http://bogor.projects.cis.ksu.edu/

 Formal Analysis of Workflows Using UML 2.0 Activities 307

Dynamic Meta Modeling (DMM) using graph transformation systems. He extends the
traditional graph rules by defining a new concept named rule invocation. In DMM
there are two kinds of rules: big-step and small-step rules. Big-step rules act as tradi-
tional rules but small-step rules should be invoked by big-step rules. Hausmann then
defines semantics for Activity diagrams using concept of DMM. Engels et al. [14] use
DMM and semantics defined by Hausmann for modeling and verification of work-
flows. For verification, they use GROOVE [15], but as GROOVE does not support
attributed typed graphs and rule invocation, they change the rules to be verifiable by
GROOVE. They check deadlock freeness and action reachability properties on the
modeled workflows. In contrast to this work, our approach has more flexibility to
support user defined properties. Furthermore, event and exception modeling can be
supported by our approach. Additionally, the extension defined by Hausmann
(small/big step rules and rule invocation) cannot be modeled directly in existing graph
transformation tools; hence it is not so easy for designers to use this approach.

Störrle et al. [16] use Petri-nets as the semantic background for the UML 2.0 Ac-
tivities. They examine Activities as described in the UML version 2.0 standard by
defining denotational semantics. It covers basic control flow and data flow, expansion
nodes and exception handling. They show that some of the constructs proposed in the
standard are not so easily formalized. Due to the traverse-to-completion semantics in
UML 2.0, they conclude that it is not possible to use Petri nets for this purpose. Al-
though we only consider control flow in our approach, but using graph transformation
we are capable to define many semantics which have been described in UML 2.0
standard.

Eshuis [17] defines a statechart-like semantics for UML 1.5 Activity diagrams. He de-
fines a property called strong fairness (the model should not have any infinite loops) to
verify functional requirements of the model. This approach uses NuSMV [18] model
checker to check the strong fairness property stated in LTL expression. He defines two
levels of formalisms: requirements level that is easy to analyze but somewhat abstract
and implementation level that is difficult to analyze but has an accurate representation.
This approach and others [11,19] do not treat UML 2.0 Activities, but its 1.5 predecessor.

Baldan et al. [20] use hyper graphs to show the behavior of a model (instance
graph) by using UML Activities (rather than to define semantics for Activities). They
use instance graph to show the static model of a system, then by defining a rule for
each Action in the Activity and using synchronized hypergraph rewriting, they control
the application of the rules. They present a variant of monadic second-order logic to
verify hyper graphs. But they do not introduce any tools to implement their ideas.
Furthermore, they do not use semantics defined by UML 2.0 (e.g token flow) to im-
plement their proposal.

3 Attributed Typed Graph Transformation Systems

The mathematical foundation of graph transformation systems returns to thirty years
ago in reaction to shortcomings in the expressiveness of classical approaches to rewrit-
ing (e.g. Chomsky grammars), to deal with non-linear grammars. In this subsection, we
describe graph transformation briefly, as a modeling means. For more information
about theoretical background and semantics of graph transformation, interested readers
can refer to [4,5].

308 V. Rafe and A.T. Rahmani

Graph transformation is a pattern and rule based formalism for the manipulation of
graph models. The abstract syntax of a modeling language is defined by a metamodel.
It can be represented formally as a type graph. The instance model or host graph is a
well-formed instance of the metamodel and describes concrete systems defined in the
modeling language. On rule application, a graph is transformed by replacing a part of
it by another graph. With the definition of a metamodel and a set of rules over that
metamodel the dynamic changes of an initial model can be described.

An attributed typed graph transformation system is a triple AGT=(TG,HG,R),
where TG is the type graph, HG is the host graph and R is the set of rules. Each type
graph is a pair TG=(NT, ET), NT is a set of node types and ET is a set of edge types.
Each node n in NT is a triple {Mult, Attr,O}, where Mult is the multiplicity of the
node, Attr is the set of its attributes and O is the set of its outgoing edges (associa-
tions) with corresponding multiplicity and destination node. Host graph H=(N, E) is
an instance graph typed over TG. N is the set of nodes, typed over NT and E is the set
of edges, typed over ET. Each rule r in R is a triple R=(LHS, NAC, RHS) where LHS,
NAC and RHS are graphs typed over TG. In a graph transformation rule LHS is the
left-hand side graph, RHS is the right-hand side graph and NAC is the negative appli-
cation condition graphs. The LHS and the NAC graphs are together called as the pre-
condition of the rule R.

The application of a rule to a host graph H (which is instance model of the meta-
model or type graph) replaces a matching of the LHS in H by an image of the RHS
(formally there is graph morphism between the LHS and the instance model H). This
is performed by (1) finding a matching of LHS in H, (2) checking the negative appli-
cation conditions NACs (which prohibit the presence of certain objects and links) (3)
removing a part of the host graph (that can be mapped to LHS but not to RHS) yield-
ing the context model, and (4) gluing the context model with an image of the RHS
together by adding new objects and links (that can be mapped to the RHS but not to
the LHS) and obtaining the derived model H’.

By recursively applying all enabled graph transformation rules to the start (host)
graph, a transition system can be generated. Transition systems are frequently used to
represent the behavior semantics of software systems. They divide the runtime evolu-
tion of a system into discrete states and use a binary transition relation to define pos-
sible state changes. In the case of graph transition systems, one considers graphs as
representations of system states. If used as operational model of a graph transforma-
tion model, its state space contains all reachable graphs of the transformation model.
If the resulting state space of the graph transition system is finite, we can easily check
different properties (e.g. reachability, safety, liveness, etc.), even for unrestricted
forms of graph transformation systems, by searching the state space.

We have proposed an innovative approach based on Bogor to model check AGG-
like graph transformation systems. We use AGG, because it supports attributed typed
graph transformation systems, hence we can analyze models that are rich enough to
render complex types (in contrast to GROOVE). We rely on Bogor to tackle dynamic
systems, i.e. systems whose nodes are added/deleted by transformation rules while the
system evolves (in contrast to CheckVML [21]).

 Formal Analysis of Workflows Using UML 2.0 Activities 309

4 Modeling Workflows

To ease modeling of workflows we only use a subset of UML 2.0 Activities, since
using this subset suffices to model many types of workflows. As our approach focuses
mainly on control flow perspective; therefore, to model workflows we consider these
parts of Activity diagrams: Init node, Final node, Action node, Fork node, Join node,
Merge node, Decision node and AcceptEvent node (to support event modeling in
workflows). Before we present our defined semantics for workflow modeling, we
need to show a basic idea of that. According to the UML 2.0 specification [3] “Activi-
ties have a Petri-like semantics”, i.e., the semantics is based on token flow. Before an
Activity is executed, only Init node has a token. Then based on our defined rules, this
token routed through the Activity.

Taking the semantics described above into account, we need to define an accurate
syntax for the models under design. For doing so, we define some constraints on the
models. These constraints are as following:

1- Each activity diagram must have exactly one Init node and one Final node.
2- Init node has no incoming edge and Final node has no outgoing edge.
3- Each Fork and Decision node should have exactly two outgoing edges. Note

that it is possible to have these nodes with more outgoing edges by cascading
them. Therefore, it has no restriction on our models.

4- Each Action, Merge, Init and Join node must have exactly one outgoing edge.
5- The source and target node of each edge should not be identical. (There must

not be any self-edge in the graphs.)
6- Each Final, Action, Fork, Decision node should have only one incoming edge.
7- Each Join and Merge node should have exactly two incoming edges. Note that

it is possible to have these nodes with more incoming edges by cascading
them.

8- Each Action node can have some outgoing edges to some different Accept
Event node and each Accept Event node should have exactly one outgoing
edge to an Action node (this kind of edges is different with other edges).

Note that in practice, constraints 1,3 and 7 do not restrict the modeler: more than one
Init node can be modeled equivalently by one Init node and one or more Fork node(s).
(Final and Join nodes accordingly). Fork (or Decision) nodes with more than two
outgoing edges can be modeled equivalently by cascading two or more Fork (Deci-
sion) nodes. (We use the same way for Join and Merge nodes). We have proposed
these constraints to have models with precise syntax and it is possible to draw many
of UML 2.0 Activities using these constructs3.

The class diagram shown in figure 1 represents a portion of UML 2.0 Activity dia-
grams’ metamodel [22]. This metamodel can be formally considered as an attributed
typed graph. As it mentioned in sec. 3, the abstract syntax of a modeling language is
defined by a metamodel and it can be represented formally as a type graph. Since
UML 2.0 specification stipulates that activities “use a Petri-like semantics” [22], we
will use token-flow semantics in our graphs. Therefore; to show tokens we add an

3 We do not consider labels or guards on the edges because it has not any effect on our ap-

proach for verification.

310 V. Rafe and A.T. Rahmani

Fig. 1. A small portion of UML 2.0 metamodel [22]

attribute to each node, named “token” with “boolean” type. Figure 2 shows the pro-
posed type graph for Activity diagrams.

Figure 2 shows the designed type graph based on mentioned constraints. This type
graph and other parts of proposed graph transformation system are designed in AGG
toolset. AGG checks automatically that each host graph (i.e. Activity diagram) and
rules should be consistent with its type graph and other constraints. Therefore, when
we model an Activity in AGG, we are sure it is syntactically consistent with type
graph and other constraints.

Fig. 2. Proposed type graph for UML 2.0 Activity diagram

The proposed type graph consists of one abstract type (i.e. Node), the star (*) sign
on the top right corner shows the multiplicity of these nodes in the models. Other
nodes (except AcceptEvent) have inherited it. It means all nodes have the Token field.
As it is shown, for Init and final nodes the multiplicity is one. Additionally, there are
two different kinds of edges, only Action nodes can use dashed edges with AcceptEvent

 Formal Analysis of Workflows Using UML 2.0 Activities 311

nodes and vice versa. We will use this kind of edge to support exception handling.
Each Action node may raise an exception and a handler node is needed for this pur-
pose. The dashed edge is used to show the handler node for an Action node which can
raise an exception.

The multiplicities of edges show the minimum and maximum edges that each node
can have as incoming or outgoing edges. This type graph does not satisfy all the
above constraints. Therefore, we need some more constraints besides this type graph.
For example, based on this type graph, it is possible to have host graphs (Activity
diagrams) with some Action nodes that have not any outgoing edge or incoming edge.
In AGG, using atomic graph constraint and formula constraint, we can define desired
constraints on the model. As an example consider figure 3.

It consists of two atomic graph constraints which have been described by two
rules. One of them depicts each Decision node should have exactly two outgoing
edges with different target nodes (the different numbers before Node show they are
different. These numbers are generated automatically by AGG). The other states the
same meaning for Fork nodes. Then the formula constraint: (1 && 2) shows that all
the host graphs (Activities) should follow these two constraints.

Fig. 3. Two atomic graph constraints

After adding other constraints to the graph transformation system, the static part
(metamodel) of the proposed formal semantics is completed. Now we can model
workflows (or Activities) directly as a host graph in graph transformation system.
Figure 4 shows a sample workflow modeled by an Activity diagram [3]. Dashed re-
gion shows the area that the event “Cancel Order Request” can be activated. All Ac-
tion nodes in this area can activate this event. We will use this Activity diagram as a
running example for the rest of this paper. It describes the processing of orders in a
company. The meaning of this diagram is supposed as follows:

When an order arrives, it might be accepted or rejected (the Decision node with
two guards shows this fact). In the case of acceptance, action Fill Order must be
done. Then to speed up the process, two actions Ship Order and Send Invoice are
performed in parallel. When either these two actions are terminated or in the case of
rejection, Order Close action is performed. Finally either by reaching the Final node
or raising the exception Cancel Order Request, the process is terminated.

312 V. Rafe and A.T. Rahmani

Fig. 4. A sample activity diagram [3]

This Activity diagram can be modeled as the host graph in figure 5. As it is shown,
this host graph is consistent with the type graph and constraints. Note that we have
modeled workflows directly as a host graph (Activity) in AGG, but it is possible to
draw the Activity in a desired UML editor. Then using a one to one mapping between
UML and AGG constructs, we can implement a transformer to automatically trans-
form Activities which have been designed in UML editor to host graphs in AGG. The
benefit is that non-expert designers do not need to learn graph transformation or to
work with AGG.

Fig. 5. The sample activity diagram in fig 4 as host graph in AGG

Most of the constraints formulated above put restrictions more on the syntax of Ac-
tivities rather than semantics. Since syntax restrictions are usually easy to verify, their
verifications will not be discussed further. The dynamic semantics are more impor-
tant. To verify them, at first we need a formal semantics of the behavior of Activity
diagrams. Hence, the next step is designing the dynamic semantics of the model by
defining graph transformation rules. The proposed rules show the token flow in the
host graphs. To define these rules we consider these definitions for token flow:

• In each workflow, at first, only the Init node has the token, i.e., the Token at-
tribute of Init node is true and this attribute is false for other nodes.

• Tokens can not get stuck on nodes, it means as soon as there is a suitable way,
the token should be routed. This is compliance with the UML specification
which states the traverse-to-completion semantics for tokens.

• The flow of tokens will be terminated when Token attribute of all nodes are
true, or when there is not any way for tokens to be routed (i.e. there is not any
rule to be applicable on the model). It means, it is possible that token reaches
the Final node before reaching to some other nodes. Therefore; our rules
should be designed in a way that consider this fact.

 Formal Analysis of Workflows Using UML 2.0 Activities 313

Based on these definitions and the desired behavior of Activity diagrams, we have
proposed 24 graph transformation rules as dynamic semantics for Activities. Due to
the lack of space, we can not explain all of them here, but we briefly describe some of
them. We have implemented the token flow semantics in a simple way: as soon as a
node receives the token, it offers the token to its following node(s) and the following
node(s) (except Join node) accepts the token. Figure 6 shows two example rules im-
plementing the semantics of the Init node. We have designed two rules to show this
semantics. NAC (Negative Application Condition) and LHS (Left Hand Side) de-
scribe the preconditions while RHS (Right Hand Side) shows the post-conditions of
the rules. We have used notation defined by AGG to show the rules. Rule (a) of figure
6 simply depicts that if Init node has the token but its following node has not the to-
ken, token must be routed to its following node. The NAC of this rule states that the
following node can not have any other predecessor node, i.e. the following node must
not be a Join node or Merge node because only these two kinds of nodes can have two
incoming edges. The main goal of this NAC is preventing the application of this rule
for cases that the following node of the Init node is a Join node, because the semantics
of Join nodes are different. We have designed other rules to show the semantics of the
Join nodes.

Fig. 6. Rules showing the semantics of Init node

Rule (b) in figure 6 shows the token flow from Init node to a Merge node. Note
that the NAC of rule (a) prevents this rule to be applicable for Merge nodes, hence we
have defined rule (b) for this purpose.

Figure 7 shows two another rules. Rule (a) of figure 7 shows a portion of semantics
for Join nodes. It has not any NAC; the only precondition for this rule is that both
predecessors of Join node must have the token; in this case the token will be routed to
the Join node.

Rule (b) of figure 7 shows a portion of semantics for Decision nodes. The NAC of
this rule states that both of the following nodes must not be Join or Merge nodes (it is
similar to NAC of rule (a) in figure 6). We have different rules for cases that the fol-
lowing nodes are Join or Merge nodes. The LHS shows the precondition of this rule.
If Decision node has the token and both of the following nodes have not any token,
then this rule can be applied on the model and token will be routed to only one of the
following nodes. As it is shown, the RHS says that token must be routed to only one
of the following nodes. Hence in the cases that there is a matching for this rule, appli-
cation of it will add two new different states on the transition system (because there
are two different situations for the following nodes to receive the token).

314 V. Rafe and A.T. Rahmani

Fig. 7. Rule (a) shows a portion of semantics for Join nodes, Rule (b) shows a portion of se-
mantics for Decision nodes

Figure 8 illustrates this process. Left rectangle shows a part of host graph (Activity
diagram) as a state in the transition system (“state i” in this case) which token has
arrived to the Decision node. It shows the matching of the LHS for rule (b) of figure
7. There are two matching for this rule. In one case “Action1” is the image of “node2”
and “Action2” is the image of “node3” of rule (b) in figure 7. In the other case, “Ac-
tion1” is the image of “node3” and “Action2” is the image of “node2”. Right top
rectangle (“state j”) shows that Activity after applying rule (b) of figure 7 in the first
case and right down rectangle (“state k”) shows the Activity after applying rule (b) of
figure 7 in the second case. The derived graphs represent two new generated states in
the transition system.

Fig. 8. A portion of transition system generated by applying rule (b) of figure 7

 Formal Analysis of Workflows Using UML 2.0 Activities 315

Applying all enabled rules to initial state (the Activity diagram which only its Init
node has the token) will result a transition system. This resulting transition system
represents the complete behavior of the Activity under consideration. It will be the
basis for analysis of the Activity, using model checking. In the next section, we show
our approach to verify an Activity using its transition system.

5 Verification and Validation

To analyze designed Activities we use our previous approach to verify graph trans-
formation systems [8]. Our verification approach gets the graph transformation
system (type graph, host graph and rules) and properties as input. The graph transfor-
mation system should be designed in AGG. Also properties should be defined by
some special rules. Then it gets a LTL expression with name of rules as atoms. These
rules that show the properties have the identical LHS and RHS. These kinds of rules
do not change the model (i.e. its application do not change the state, hence do not
change the transition system) and only represent the properties which must be
checked on the model (we mimic both GROOVE and CheckVML to state properties).
In cases which designers are expert in graph transformation, they can model directly
workflows by graph transformation (rather than UML), using rules to state properties
has this advantage that designers do not need to learn any other formal method, and
they can state properties by the same formalisms that they model the system (i.e.
graph transformation). In cases which designers are not familiar with graph transfor-
mation, they can model workflows by UML Activities4 (rather than graph transforma-
tion), in this case, they do not need define any rules for verification, because we have
designed some fixed properties, it means designers only model the workflow, and
then verification is done via our fixed designed properties automatically (without
intervention of designers). In addition, it is possible to define new properties by expert
designers (designers which are expert in graph transformation).

First, recall from section 4, which for an Activity to be supposed sound, a token
must finally arrive at the Final node. It means the Activity must be deadlock free. In
other words, there must not be any hanging path in the Activity. To verify this prop-
erty we should check that for all possible executions of the Activity Final node is
reachable. To state this property we have designed two rules: FinalWithoutToken and
FinalWithToken. Figure 9 shows these rules. They have not any NAC and as we men-
tioned in the beginning of this section, their LHS and RHS are identical. If a rule
matches a state, we know that the preconditions of that rule hold within the state. The
only precondition of FinalWithoutToken is that the Final node must be without token
(in contrast to FinalWithToken). Hence, we can state this property as the following
LTL expression: □(FinalWithoutToken → ◊(FinalWithToken)), where symbol “□”
means always, “◊” means finally and symbol “→” shows the implication. The result
of checking this property on the transition systems is true if in every possible execu-
tion of the Activity, there is a state in a path in which FinalWithoutToken is satisfied
(the token attribute of Final node is false) and then eventually there is a state in the

4 In this case, a transformer needed (as we referred to it in section 4) to automatically trans-

form UML Activities to graph transformation.

316 V. Rafe and A.T. Rahmani

postfix of that path, in which the token attribute of the Final node is true (i.e. Final-
WithToken is satisfied). It means always the token must arrive at Final node. As an
example which this property is satisfied by the Activity, consider Activity of figure 4.
In this Activity token always arrive at Final node. But as an example which the men-
tioned property is not satisfied consider Activity in figure 10 (a). This Activity shows
a workflow which contains a deadlock. In this diagram, there is a Join node immedi-
ately after Init node and it prevents token to be propagated from Init node. Therefore,
token never reaches to Final node and it causes a deadlock. Hence, the mentioned
property is never satisfied for this Activity.

Fig. 9. Rules FinalWithoutToken, FinalWithToken and ActionWithToken

Fig. 10. Two faulty Activities. (a) contains a deadlock. (b) contains an unreachable action node.

Another property which should hold for a sound workflow is that there must not be
any useless work (action) in it, i.e. for each Action node there should be at least one
execution which the token arrives at that node. In other words, each Action in a sound
workflow must be reachable. We can state this property as the following: each speci-
fied Action must be reachable, it means we should design a rule for each Action (using
its name) to check this property, figure 9 shows a rule (ActionWithToken) to state that
the Action “Ship Order” in the Activity of figure 4 is reachable. The following LTL
expression states this property: ¬□(¬ActionWithToken), this property is satisfied on the
Activity of figure 4. This LTL expression means that there must be an execution of the
Activity which the specified Action node (“Ship Order” in this case) has the token (i.e.
it is reachable). Now consider the Activity of figure 10 (b), if we replace the name of
Action node in figure 9 (ActionWithToken) with “Action4”, then check the property, it

 Formal Analysis of Workflows Using UML 2.0 Activities 317

is not satisfied. Because there is a Decision node before “Action1” and “Action2”,
according to the semantics of Decision nodes, token is routed to only one of them,
hence in all execution of this Activity, only one token will arrive at Join node before
“Action4”. Based on the semantics of Join nodes, token will never reach to the “Ac-
tion4”. Therefore, we can conclude that this property never is satisfied for this work-
flow. We can state this kind of property in a more general way by ignoring the name of
Action. In this case, checking the property only says that is there any unreachable Ac-
tion in the Activity or not, and it does not determine the unreachable Action.

6 Conclusions and Future Work

In this paper we have presented an approach to formally define a semantics for UML
2.0 Activities. We have defined this semantics based on “token flow” and “traverse-
to-completion” using graph transformation systems. To define static semantics, we
have defined a type graph and all Activities are modeled as a host graph. The host
graph must confirm to the type graph. To define dynamic semantics, we have defined
some graph transformation rules. We have used our previous approach to verify graph
transformations. As workflows are a typical modeling domain for UML 2.0 Activi-
ties, so we have illustrated our proposed verification approach to verify workflows by
defining some quality criterion. Non-expert designers can use our approach without
any knowledge about underlying formalisms (i.e. BIR and Bogor).

However, further research is required to model other required elements (e.g. Action
calls). We have a plan to model other elements and define semantics for them as some
graph transformation rules.

Acknowledgments. This research was partially done while the first author was in
university of Politecnico di Milano (Italy) as a visiting researcher and would like to
thank the supports provided by Professor Luciano Baresi and Dr. Paola Spoletini.

References

1. Eshuis, R., Jansen, D., Andwieringa, R.: Requirements-level Semantics and Model Check-
ing of Object-Oriented Statecharts. Requirements Eng. J. 7, 243–263 (2002)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures
and Applications. Springer, Heidelberg (2004)

3. Object Management Group: UML Specification V2.0. (2005), http://www.omg.
org/technology/documents/modelingspeccatalog.htm

4. Baresi, L., Heckel, R.: Tutorial Introduction to Graph Transformation: A Software Engi-
neering Perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)

5. Ehrig, H., Engels, G., Kreowski, H.j., Rozenberg, G. (eds.): Handbook on Graph Gram-
mars and Computing by Graph Transformation. Applications, Languages and Tools,
vol. 2. World Scientific, Singapore (1999)

6. Kuske, S.: A Formal Semantics of UML State Machines Based on Structured Graph
Transformation. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185.
Springer, Heidelberg (2001)

318 V. Rafe and A.T. Rahmani

7. Beyer, M.: AGG1.0 – Tutorial. Technical University of Berlin, Department of Computer
Science (1992)

8. Baresi, L., Rafe, V., Rahmani, A.T., Spoletini, P.: An Efficient Model Checking Approach
for Graph Transformation Systems. In: Proc. of 3th International Workshop on Graph
Transformation for Verification and Concurrency (GT-VC 2007)

9. Robby, D.M., Hatcliff, J.: Bogor: An Extensible and Highly-Modular Software Model
Checking Framework. In: Proc. of the 9th European software engineering Confference, pp.
267–276 (2003)

10. Eshuis, R.: Semantics and Verification of UML Activity Diagrams for Workflow Model-
ling, Ph.D. Thesis, University of Twente, Netherlands (2005)

11. Bolton, C., Davies, J.: On Giving a Behavioural Semantics to Activity Graphs. In: Evans,
A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939. Springer, Heidelberg (2000)

12. Soltenborn, C.: Analysis of UML Workflow Diagrams with Dynamic Meta Modeling
Techniques, Master’s Thesis, University of Paderborn, Germany (2006)

13. Hausmann, J.H.: Dynamic Meta Modeling: A Semantics Description Technique for Visual
Modeling Languages, Ph.D. Thesis, University of Paderborn, Germany (2005)

14. Engels, G., Soltenborn, C., Wehrheim, H.: Analysis UML Activities Using Dynamic Meta
Modeling. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468,
pp. 76–90. Springer, Heidelberg (2007)

15. Rensink, A.: The GROOVE Simulator: A Tool for State Space Generation, In Applica-
tions of Graph Transformations with Industrial Relevance (AGTIVE). In: Pfaltz, J.L.,
Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Hei-
delberg (2004)

16. Störrle, H., Hausmann, J.H.: Towards a Formal Semantics of UML 2.0 Activities. In: Lig-
gesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering. LNI., GI, vol. 64, pp.
117–128 (2005)

17. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transaction on
Software Engineering Methodology 15(1), 1–38 (2006)

18. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: A New Symbolic Model
Checker. International Journal on Software Tools for Technology Transfer 2(4), 410–425
(2000)

19. Börger, E., Cavarra, A., Riccobene, E.: An ASM Semantics for UML Activity Diagrams.
In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 293–308. Springer, Heidelberg
(2000)

20. Baldan, P., Corradini, A., Gadducci, F.: Specifying and Verifying UML Activity Diagrams
via Graph Transformation. In: Priami, C., Quaglia, P. (eds.) GC 2004. LNCS, vol. 3267,
pp. 18–33. Springer, Heidelberg (2005)

21. Schmidt, Á., Varró, D.: CheckVML: A tool for model checking visual modeling lan-
guages. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 92–
95. Springer, Heidelberg (2003)

22. Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities. In: N.N. (ed.) Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (2004)

Testing Concurrent Objects with

Application-Specific Schedulers�

Rudolf Schlatte 1,2, Bernhard Aichernig 1,2, Frank de Boer 3,
Andreas Griesmayer 1, and Einar Broch Johnsen 4

1 International Institute for Software Technology, United Nations University
(UNU-IIST), Macao S.A.R., China

{agriesma,bka,rschlatte}@iist.unu.edu
2 Institute for Software Technology, Graz University of Technology, Austria

aichernig@ist.tugraz.at
3 CWI, Amsterdam, Netherlands

frb@cwi.nl
4 Department of Informatics, University of Oslo, Norway

einarj@ifi.uio.no

Abstract. In this paper, we propose a novel approach to testing exe-
cutable models of concurrent objects under application-specific schedul-
ing regimes. Method activations in concurrent objects are modeled as a
composition of symbolic automata; this composition expresses all pos-
sible interleavings of actions. Scheduler specifications, also modeled as
automata, are used to constrain the system execution. Test purposes are
expressed as assertions on selected states of the system, and weakest
precondition calculation is used to derive the test cases from these test
purposes. Our new testing technique is based on the assumption that we
have full control over the (application-specific) scheduler, which is the
case in our executable models under test. Hence, the enforced scheduling
policy becomes an integral part of a test case. This tackles the problem
of testing non-deterministic behavior due to scheduling.

1 Introduction

In this paper we address the problem of testing executable high-level behavioral
models of concurrent objects. In contrast to multi-threaded execution models for
object-oriented programs such as, e.g., the Java model for the parallel execution
of threads, we consider in this paper a model of object-oriented computation
which describes a method call in terms of the generation of a corresponding
process in the callee. The concurrent execution of objects then naturally arises
from asynchronous method calls, which do not suspend while waiting for the
return value from the method calls. Objects execute their internal (encapsulated)
processes in parallel. In this setting, the scheduling of the internal processes of
an object directly affects its behavior (both its functional and non-functional
� This research was carried out as part of the EU FP6 project Credo: Modeling and

analysis of evolutionary structures for distributed services (IST-33826).

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 319–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

320 R. Schlatte et al.

behavior). Therefore, a crucial aspect of the analysis of concurrent objects is
the analysis of the intra-object scheduling of processes. In contrast to scheduling
on the operating-system level, the object-level scheduling policies will be fine-
tuned according to the application requirements. We call this application-specific
scheduling. In this paper we introduce a novel testing technique for concurrent
objects under application-specific scheduling regimes.

We develop a testing technique for concurrent objects in the context of Creol
[9,4], a high-level modeling language which allows for the abstraction from im-
plementation details related to deployment, distribution, and data types. The
semantics of this language is formalized in rewriting logic [11] and executes on
the Maude platform [3]. As such the Creol modeling language also allows for the
simulation, testing, and verification of properties of concurrent object models,
based on execution on the Maude platform as described by formal specifications.
One of the main contributions of this paper is a formal testing technique for this
language which integrates formal specifications of application-specific scheduling
regimes at an abstraction level which is at least as high as that of the modeling
language. The novelty of this approach is that it takes the scheduling policy as
an integral part of a test case in order to control its execution.

In order to specify test cases in our formal testing technique, we first de-
velop suitable behavioral abstractions of the mechanisms for synchronizing the
processes within an object, as featured by the modeling language. The integra-
tion of these behavioral abstractions and the formal specification of a particular
scheduling regime provides the formal basis for the generation of test cases. For
the formal specification of test purposes we use assertions which express required
properties of the object state (or a suitable abstraction thereof). Test cases are
then generated by applying a weakest precondition calculus in order to find an
abstract behavior which satisfies the assertions [8]. The execution of a test case
on the Maude platform requires instrumenting the Maude interpreter of Creol’s
operational semantics such that it will enforce the embodied scheduling policy
on the processes of the particular concurrent object which is considered by the
test case. Particular test cases address the behavior of the concurrent object
model under a given, formally defined scheduling regime. If such a test case fails
to reach its goal (test purpose), this might indicate a problem with the given
scheduling policy. Hence, the relevance of this contribution for modeling object-
oriented systems in general is that it also allows the specification and analysis of
scheduling issues in an early stage of design, as an integral part of the high-level
models. However, in the following discussion we focus on the important aspect
of controlling test-case execution by enforcing a scheduling regime.
Paper overview. The rest of this paper is organized as follows: Section 2 intro-
duces the Creol language and executable modeling. Section 3 gives a high-level
overview and scope for our approach to testing. Section 4 explains the model-
ling approach used, including the high-level specification of scheduling policies.
Section 5 discusses the details of test case generation and execution. Finally,
Section 6 discusses related work and Section 7 concludes the paper.

Testing Concurrent Objects with Application-Specific Schedulers 321

sr::= s | s;return e L ::= class C(v) {T f ; M}
v ::= f | x M::= T m (T x) {T x; sr}
b ::= true | false | v e ::= v | new C(v) | e.get | e!m(e) | null | this | caller
T::= C | Bool | Void s ::= v := e | await g | skip | s; s
g ::= b | v? | g ∧ g | if g then s fi | release

Fig. 1. The language syntax. Variables v are fields (f) or local variables (x), and C is
a class name.

2 Creol and Executable Modeling

In the design of component-based or object-oriented systems, it may be desirable
to introduce a separation of concerns between business code, dealing with the
functionality of the software unit, and synchronization code, dealing with the
local scheduling of different computing activities. Creol is a high-level executable
modeling language for concurrent objects in which such scheduling may be left
underspecified [9]. The language has a formal semantics defined in rewriting
logic [11] and executes on the Maude platform [3]. This allows various analysis
techniques to be developed and applied to the Creol models, including, e.g.,
pseudo-random simulation and breadth-first search through the execution space.

In contrast to, e.g., Java, each Creol object encapsulates its state; i.e., all
external manipulation of the object state happens through calls to the object’s
methods. Each process corresponds to the activation of one of the object’s meth-
ods. In addition, objects execute concurrently: each object has a processor dedi-
cated to executing the processes of that object, so processes in different objects
execute in parallel. In Creol, method calls are asynchronous and assigned to so-
called futures [4]. Only one process may be active in an object at a time; the
other processes in the object are suspended. We distinguish between blocking a
process and releasing a process. Blocking causes the execution of the process to
stop, but does not let a suspended process resume. Releasing a process suspends
the execution of that process and lets another (suspended) process resume. Thus,
if a process is blocked there is no execution in the object, whereas if a process is
released another process in the object may execute. Although processes need not
terminate, the execution of several processes within an object may be combined
using release points within method bodies. Release points may include polling
operations on futures, to check for the arrival of replies to asynchronous method
calls. At a release point, the active process may be released and some suspended
process may resume.

Syntax. The language syntax of the subset of Creol used in this paper is pre-
sented in a Java-like style in Fig. 1. For the purpose of this paper, we emphasize
the differences with Java and focus on the specification of a single class. At
present, we omit some features of Creol, including inheritance and method calls.
Expressions e are standard apart from the asynchronous method call e!m(e), the
(blocking) read operation v.get, and the pseudo-variable caller which refers
to the caller of the current method activation. Statements s are standard apart

322 R. Schlatte et al.

class batch_queue(Nat x) {
Nat wc, batch, comein // waiting clients, barrier size
Seq[Object] display // queue of registered client objects

Void batch_queue() { batch := x; wc := 0; comein := 0 }

Void register() {
wc := wc+1;
if wc ≥ batch then comein := batch fi;
await comein > 0;
comein := comein - 1;
wc := wc-1;
display := (display;caller);

}
}

Fig. 2. Motivating example: The batch queue class

from release points await g and release. Guards g are conjunctions of Boolean
expressions b and polling operations v? on futures v. When the guard in an
await statement evaluates to false, the statement becomes a release, other-
wise a skip. A release statement suspends the active process and another
suspended process may be rescheduled.

Example. We consider a version of barrier synchronization given by the class
batch queue in Fig. 2.. In a batch queue object, clients are processed in batches
(of size batch, the parameter x to the constructor sets the size of the batches).
A client which registers must wait until enough clients have registered before
getting assigned a slot in the queue. For simplicity, we represent the queue as a
local variable display, which is a sequence of clients (semicolon is the append
operator on sequences). Before any call to register will return, the object will
contain batch processes.When enough calls are waiting to be registered, the next
batch of processes may proceed by assigning the value of batch to display. It
is easy to see that the order in which callers are added to the display sequence
depends on the internal scheduling of processes in the object.

Once more, we mention that only a subset of Creol is presented in this paper;
the interested reader is referred to e.g. [9].

3 Testing and Testing Methodology

The executable formal semantics of the Creol language allows the application
of different analysis techniques. In this section we briefly sketch our proposed
methodology for testing Creol applications on the Maude platform.

Our methodology focuses on testing run-time properties of Creol objects. By
the very nature of Creol objects, of particular interest is to test run-time prop-
erties of the object state under different possible interleavings of its processes.

Testing Concurrent Objects with Application-Specific Schedulers 323

In order to specify and execute such tests we need an appropriate abstraction of
processes which focuses on their interleavings as described by the control struc-
ture of their release points. We do so by modeling the internal flow of control
within a process between its release points into atomic blocks consisting of se-
quences of assignments. The release points of a process themselves then can be
represented by the states of a finite automaton, also called a method automaton
(because processes are generated by method calls). The transitions of a method
automaton involve the assignments and a guard on the object state which spec-
ifies the enabling condition of the corresponding atomic block. We assume given
a finite set of internal processes in an object, reflecting the message queue of
incoming method calls for the object. The possible interleavings of this initially
given finite set of processes is thus abstracted into the interleavings of their
automata representations.

Scheduler automata further constrain the possible interleavings by means of
abstract representations of the enabling conditions of the method automata. The
automatically generated scheduled system automaton representing the possible
interleavings of the method automata and the scheduler automaton is instru-
mented with test purposes, expressed as Boolean conditions over the method
automata’s state variables, that are attached to states.1

To compute test cases for a test purpose we search for paths that reach and
fulfill the test purpose. We generate a set of such test cases by computing a test
“harness” describing all paths in the model that will reach the test purpose. To
this end, we use weakest precondition computation to propagate the conditions
to the initial state of the system. The condition at the initial state describes the
values that state variables can take for executing that test case, reflecting the
actual parameters to the method calls in the message queue. Each possible path
that reaches the condition(s) is its own test case.

The execution of a test on the Maude platform then checks whether the par-
ticular interleaving of the method automata described by the path in the system
automaton can be realized by the Maude implementation of the Creol object
such that it satisfies the conditions.

4 Combining Method Automata and Scheduling Policies

In this section, we present the symbolic transition system construction used to
specify the system’s behavior. We adapt the symbolic transition systems of [13],
using shared variables for communication instead of input/output actions.

Syntax. A Symbolic Transition System is a tuple 〈Q, q0, T, V 〉, where:

– Q is a finite set of locations qi, i ≥ 0
– q0 ∈ Q is the initial location
– V is a set of variables

1 Computing test cases that reach a certain condition in the program can be done
with conditions that are simply true .

324 R. Schlatte et al.

wc := wc + 1
comein :=
 (wc >= batch) ?
 batch : comein

comein := comein - 1
wc := wc - 1
display := (display ; caller)

a b c
[comein > 0]

Fig. 3. Method Automaton of the register() method

– T is a set of transitions of the form 〈q, g, S, q′〉, where
• q ∈ Q is the source location
• g is a Boolean guard expression over V
• S is a sequence of assignment statements changing the value of some
v ∈ V

• q′ ∈ Q is the target location

Semantics. A state is a pair 〈q, v〉 consisting of a location q and a valuation v
for the variables. For the initial state, q = q0. Let eval be the function mapping
an expression and a valuation to a result2. Then, for a state 〈q, v〉, executing a
transition 〈q, g, S, q′〉 results in a new state 〈q′, v′〉 where the new valuation v′

is the result of evaluating all assignment statements in S, using eval with the
former valuation v to calculate new values for the affected variables, provided
that eval(g, v) = true.

4.1 Modeling Method Invocations: Method Automata

Invocations of methods on Creol objects are modeled by Method Automata, a
slight extension of the symbolic transition systems described above.

A method automaton is a tuple 〈m,Qm, q
m
0 , Tm, Vm,Valm〉 so that m is a

unique identifier, Q is a set of locations qmi etc. Other than the systematic
renaming of locations, the semantics are the same as for symbolic transition
systems. Additionally, Valm is a mapping v ∈ Vm �→ x giving initial values x to
all variables v. (Conceptually, Valm models parameters passed to the method as
well as initial values of local variables.)

A Creol method without release points is modeled as a method automaton
with only beginning and end state. Each release point is modeled as an interme-
diate state where execution can switch to another running method.

By convention, the names of the local variables in a method automaton are
prefixed with the unique identifier m of the automaton, so that the names are
unique in the presence of multiple instances of the automaton. This approach
is sufficient since each invocation of a Creol method is modeled by its own au-
tomaton. Names of instance variables, such as wc and display in Fig. 3 are
not prefixed in this way, since every method automaton has access to the same
instance variables.
2 In this paper, we use expressions over the integer and Boolean domains with the

usual operations and semantics.

Testing Concurrent Objects with Application-Specific Schedulers 325

4.2 Modeling Parallelism: The System Automaton

A configuration of multiple method invocations running in parallel is modeled
as a symbolic transition system as well. We shall refer to such an automaton as
a system automaton.

Definition 1. Let Ai = 〈mi, Qmi , q
mi
0 , Tmi, Vmi ,Valmi〉 be method automata

(for 1 ≤ i ≤ n). Define the composition of A1, . . . , An as a system automaton
A = 〈Q, q0, T, V,Val〉 such that

Q = {〈mi, q
m1 , . . . , qmn〉 | ∀0 < j ≤ n : qmj ∈ Qmj}

qo = 〈m1, q
m1
0 , . . . , qmn

0 〉

T =

⎧
⎨

⎩〈q, g, S, q
′〉

∣∣∣∣∣∣

q = 〈ml, q
m1 , . . . , qmi , . . . , qmn〉 ∧

q′ = 〈mi, q
′m1 , . . . , q′mi , . . . , q′mn〉 ∧

〈qmi , g, S, q′mi〉 ∈ Tmi ∧ ∀j �= i : q′mj = qmj

⎫
⎬

⎭
V =

⋃
0<i≤n Vmi

Val =
⋃

0<i≤n Valmi

The semantics of executing a transition of the system automaton is that of
executing the transition of one of the participating method automata (qmi �

q′mi), leaving the state of all other method automata invariant (q′mj = qmj).
Further note that the first element of the system automaton’s state designates the
method automaton which did the previous transition (for the initial state, it is
arbitrarily set to m1). Because of this, the transitions of the system automaton
can be attributed back to a particular method automaton; this will become
important in scheduling.

4.3 Modeling Schedulers: The Scheduler Automata

The system automaton as defined in Section 4.2 does not place restrictions on
which method automaton executes at each step beyond the guards of the method
automata transition themselves. We use a scheduler automaton to express addi-
tional restrictions on method automata execution in the system automaton.

A scheduler automaton is modeled as a labeled transition system. It is used
to strengthen the guards on the transitions of a system automaton composed of
method automata m1 . . .mn, and hence, restrict which method(s) are allowed
to run.

Definition 2. Let A be a system automaton for methods m1, . . . ,mn. Define a
scheduler for A as an automaton S = 〈Q, q0, T 〉 such that

Q = {mi | 1 ≤ i ≤ n}
q0 = m1

T = {〈q, g, q′〉 | q ∈ Q ∧ q′ ∈ Q ∧ g ∈ G(A)}

The transitions on a scheduler automaton have guards g ∈ G(A) in the form of
readiness predicates that are defined in the following way: Given a system au-
tomaton A for methods m1, . . . ,mn, G(A) is defined inductively by ready(mi) ∈

326 R. Schlatte et al.

m1 m2

ready(m1)

ready(m1)

¬ready(m1)

¬ready(m1)

m1 m2

¬ready(m2)

ready(m1)

ready(m2)

¬ready(m1)

Fig. 4. Example scheduler automata: priority (left), round-robin (right)

G(A) and ¬ready(mi) ∈ G(A) for 1 ≤ i ≤ n, and g1 ∧ g2 ∈ G(A) and g1 ∨ g2 ∈
G(A) if g1, g2 ∈ G(A). The expression ready(mi) denotes a predicate which is
true whenever the method automaton mi has at least one enabled transition
(i.e., whose guard evaluates to true) in the current state of A.

The scheduler automaton has n states, one for each method automaton in the
system automaton. Each scheduler state is labeled with one method automaton’s
unique identifier mi. The label on the current state of the scheduler automaton
names the method automaton that executed the most recent transition of the
system automaton. By definition, m1 is the scheduler automaton’s initial state.

Figure 4 shows two scheduling automata, both for a system automaton with
two method automata m1 and m2: a simple priority scheduler that always gives
preference to m1 over m2, and a round-robin scheduler.

4.4 Integration of the Scheduler and the System Automaton

The scheduling of tasks in a system automaton according to the policy expressed
by a specific scheduler automaton is done in the following way:

For each state q = 〈mk, . . .〉 of the system automaton, find the corresponding
state mk of the scheduler automaton. For each transition t = 〈q, g, S, q1〉 in the
system automaton, take the scheduler automaton’s transition that enables t, i.e.
the transition that leads to the scheduler state mi if q1 = 〈mi, . . .〉. If there is
no such scheduler transition, remove the transition from the system automaton
(since the scheduler does not allow the method automaton mi to run after mk).
Otherwise, strengthen the guard on the transition t by the guard expression on
the scheduler transition frommk andmi, replacing all sub-expressions ready(mx)
with the disjunction of the guards on all transitions of method automaton mx

in its current state.
We refer to a system automaton which is scheduled by a scheduler automaton

as a scheduled system automaton. Formally, we define the expansion of readiness
predicates for specific states of a system automaton and a scheduled system
automaton as follows.

Definition 3. Let A = 〈Q, q0, T, V,Val〉 be a system automaton for the methods
m1, . . . ,mn. For a state q ∈ Q and a scheduler guard g ∈ G(A), scheduler guard
expansion is a function [[g]]q, inductively defined as follows:

Testing Concurrent Objects with Application-Specific Schedulers 327

[x = 5]

[x = 5]

[¬(x = 5)]
x := 5

[¬(x = 5)]
x := 5

[¬(x = 5)]
x := 5

[¬(x = 5)]
x := 5

[x = 5]

[x = 5]

A

B

[x = 5]

c

d

x := 5

1,A,c 1,A,d

2,A,c 2,A,d

1,B,c 1,B,d

2,B,c 2,B,d

Fig. 5. Two simple method automata and a system automaton consisting of the two
automata running in parallel under the priority scheduler of Figure 4 (guards in bold
added by the scheduler)

[[ready(mi)]]q =
∨
{g | 〈q, g, S, q1〉 ∈ T ∧ q1 = 〈mi, q

m1 , . . . , qmn〉}
[[¬ready(mi)]]q = ¬[[ready(mi)]]q
[[g1 ∨ g2]]q = [[g1]]q ∨ [[g2]]q
[[g1 ∧ g2]]q = [[g1]]q ∧ [[g2]]q

In the first part of Definition 3, we use the disjunction on a set to denote the
disjunction of all the elements in the set.

Definition 4. Let A = 〈QA, q
A
0 , TA, VAValA〉 be a system automaton for meth-

ods m1, . . . ,mn and let S = 〈QS , q
S
0 , TS〉 be a scheduler. Define a scheduled

system as an automaton SA = 〈Q, q0, T, V,Val〉 such that

Q = QA

q0 = qA0

T =
{
〈q, g, S, q′〉

∣∣∣∣
q = 〈ml, q

m1 , . . . , qmn〉 ∧ q′ = 〈mi, q
′m1 , . . . , q′mn〉

∧〈q, g′, S, q′〉 ∈ TA ∧ 〈ml, g
′′,mi〉 ∈ TS ∧ g = (g′ ∧ [[g′′]]q)

}

V = VA

Val = ValA

For example, if the transition guard on the scheduler is [¬ready(m)] and au-
tomaton m in its current state has two transitions with the guards [x <= 5] and
[x > 5], then relevant guards on the transitions in the system automaton will be
strengthened with ¬(x <= 5 ∨ x > 5). Transitions whose guards reduce to false
(as in this example) can be eliminated from the system automaton.

5 Test Case Generation with WP and Schedulers

We use a scheduled system automaton SA (see Definition 4) to test the Creol
object it represents. SA contains all runs an object can perform for a given

328 R. Schlatte et al.

reg1

[false]
reg2

[comein>0]
reg2

[comein>0]
reg2

[¬ comein>0]
reg1

reg1

[comein>0]
reg2

reg1

[comein > 0]
reg2 [comein > 0]

reg2

reg1

[false]
reg1

reg2
reg2

[comein>0 ¬ comein>0]
reg2

a,a m2,a,b m2,a,c

m1,b,a

m1,c,a

m2,b,b m1,b,b m2,b,c m1,b,c

m2,c,b m1,c,b m2,c,c m1,c,c

{ display = (caller1; caller2) }{ display = (caller1) } { display = (caller1) }{ display = (caller1) }

{ display = () } { display = () }

{ display = () }

reg1 ::= wc := wc + 1
 comein := (wc >= 2) ? 2 : comein

reg2 ::= comein := comein - 1
 wc := wc - 1
 display := (display ; caller)

Fig. 6. A scheduled system automaton with two method automata for the register
method, under priority scheduling and with batch size 2. Guard terms in bold are added
by the scheduler, states that are unreachable under priority scheduling are dashed.

initial message queue and scheduler. In the following, we give an approach to
computing test cases of interest from this automaton.

Specifically, we define how to compute the weakest precondition (WP) for
a scheduled system automaton and use this technique to generate test cases
according to a test purpose.

The intention of the test cases to generate is captured by test purposes, which
are abstract specifications of actual test cases. In conformance testing, the notion
of a test purpose has been standardized [7]:

Definition 5 (Test purpose, general). A description of a precise goal of
the test case, in terms of exercising a particular execution path or verifying the
compliance with a specific requirement.

In our setting, these requirements are expressed by assert statements in a system
automaton. The condition p of an assert has to be fulfilled in all possible runs
leading to the assert. (For simplicity, we will use p to refer to the assertion and
its condition synonymously.) To compute test cases for a test purpose, we search
for paths that reach and comply with all its assert statements. Intuitively, this
corresponds to computing the weakest precondition for p. In the following we will,
without loss of generality, concentrate on test purposes that can be specified with
a single assertion. Conditions for the general case are computed by combining
the results from the single conditions.

Figure 6 shows the graph of a system automaton that models two invoca-
tions of the register method and batch size 2, scheduled with the priority
scheduler from Figure 4. This scheduler removes the edge from the initial state
(a,a) to (m2,a,b) because both processes are enabled (with m1 having priority).

Testing Concurrent Objects with Application-Specific Schedulers 329

Consequently, a portion of the state space of the system automaton becomes
unreachable in the scheduled system automaton and can be removed.

Figure 6 also shows the additional conditions from scheduling on the edges.
E.g., in state (m1,b,a) process m2 is only enabled if comein is not > 0. The test
purpose is to compute test cases to reach state (m2,c,c) with display = (caller1 ;
caller2). We constrain ourselves to only illustrate the WP computation for the
display variable, whose computed value is depicted in curly brackets. Computing
the WP to the initial state results in an empty display variable, for which all
paths reach the desired state3. The actual implementation must not block for
this input and must satisfy the assertion.

To test the intermediate and final assertions on the Creol model, we create
a test harness H . The harness is constructed from the system automaton A as
H = 〈QA, q

A
0 , TA, VA, c(QA)〉, with QA, qA0 , TA and VA reflecting the system

automaton, and c(QA) a condition defined for each location of A, representing
those valuations in a location that only occur in runs that eventually will reach
and comply with p. Thus, for every valuation in c(QA) two properties hold:
(1) there is a transition such that the destination is again in c(QA) and (for
determinism) (2) there is no transition such that the destination is not in c(QA).
Using standard weakest-precondition predicate transformers wp for our simple
statements S (assignments and sequential composition only), we have:

cp(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, c(q′)) ∧ g (1)

c¬p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S,¬c(q′)) ∧ g (2)

c(q) = cp(q) ∧ ¬c¬p(q) (3)

We compute c(QA) iteratively by setting c0(q) = p for q = qp and c0(q) = false
for all other locations. The first iteration will result in all states that reach p
in one step, then those with distance two and so forth. The iteration steps are
sound: each iteration results in valuations that give valid test cases. This is an
important observation because although this process always results in a fixed
point for finite state systems (cf. CTL model checking of AF p [2]), the state
space for STS is infinite and the iteration might not terminate. Soundness allows
us to stop computation after a certain bound or amount of time even if no fixed
point is reached yet. Any initial state in c(q0) gives valid test cases even if no
fixed point can be computed.

The test case for the scenario of Figure 6 consists of the following:

– A list of method invocations (〈m1,register()〉, 〈m2,register()〉)
– The priority scheduler from Figure 4
– The initial value () for the instance variable display
– The test harness H , giving verdicts at each scheduling decision point

3 The representation is strongly simplified, exact computation will give more condi-
tions on the states and unveils that only the path using the edge (m1,b,a)(m2,b,b)
is feasible.

330 R. Schlatte et al.

5.1 Test Case Execution

The test driver in Creol uses the scheduler to guide the Creol model and the test
harness H to arrive at test verdicts. The initial values and method parameters
are chosen such that condition c(q0) is fulfilled, at each release point of the
Creol object, the conditions on the harness are checked. At each release point,
the scheduler chooses among the enabled processes to continue the execution.
There are two different ways of arriving at a test verdict of Fail :

– If the Creol object does not fulfill the current condition of the harness, the
implementation of the last executed basic block violates the specification by
the method automaton.

– If the condition is fulfilled but no process is enabled (the test process dead-
locks), the implementation fails to handle all the valuations that are required
by the model.

If the test harness arrives at the terminating state and the condition is fulfilled,
a test verdict of Success is reached.

Strengthening the Guards of the Harness. The computation as shown
above uses the weakest precondition to reach the test purpose p, or, in other
words, the set of initial states that reach the test purpose in every legal run.
Input values that might miss p due to non-determinism are ignored. To achieve
optimal test coverage, however, it is desirable to search for all input values that
can fulfill the test purpose and add enough information to H for the test driver
to guide the run to the desired state. In other words, instead of computing those
initial states that will reach p in every run, we want to compute states for which
a run exists.

The annotated automaton provides us with a simple mechanism to achieve this
goal. For the necessary adjustments we have a second look at the computation
of c(QA). Formula (1) represents the states that can reach p, while those states
that can avoid p are removed using Formula (2). If we don’t consider c¬p in
Formula (3), we compute all valuations for which a run to p exists, but the test
driver has to perform the run on a trial an error basis: executing a statement
and checking if the result still can reach p, backtracking otherwise. To avoid this
overhead, we add new guards g′ to H to restrict the runs to those valuations
that always can reach p:

g′(< q, g, S, q′ >) = g ∧wp(S, c(q′))
Using g′ for the computation of c(QA) results in all states for which a run to p
exists, which easily can be seen by inserting g with g ∧ wp(S, c(q′)) in formulae
(1) and (2):

c′p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S, c(q′)) ∧ g ∧ wp (S, c(q′)) = cp(q)

c′¬p(q) =
∨

∀〈q,g,S,q′〉∈T

wp (S,¬c(q′)) ∧ g ∧ wp (S, c(q′)) = false

c′(q) = c′p(q)

Testing Concurrent Objects with Application-Specific Schedulers 331

Using g′ as guards for the test driver excludes all transitions to states that
cannot reach p. This allows to avoid unnecessary backtracking while examining
all paths that can be extended to reach the test purpose, resulting in a larger
variety of possible runs and better coverage. The approach does not come without
obstacles though, g′ only points to states that can reach p— the test driver needs
to be able to detect loops to make sure to finally reach it. Furthermore, a path
to p might not be available in the implementation. If the only available path
avoids p, the test driver has to backtrack to find a path to p.

6 Related Work

With the growing dependency on distributed systems and the arrival of multicore
computers, concurrent object-oriented programs form a research topic of increas-
ing importance. Automata-based approaches have previously been used to model
concurrent object-oriented systems; for example, Kramer and Magee’s FSP [10]
use automata to represent both threads and objects, abstracting from specific
synchronization mechanisms. However, they do not address the issue of repre-
senting specific scheduling policies that we consider in this paper. Schönborn
and Kyas [14] use Streett Automata to model fair scheduling policies of external
events, with controlled scheduler suspension for configurations that deadlock the
scheduler.

A lot of work is done in the area of schedulability which mainly deals with
the question if a scheduler exists which is able to meet certain timing constraints
(e.g., [12, 6]), but does not look into the functional changes imposed by differ-
ent application-level scheduling policies. Established methods for testing object-
oriented programs like unit-testing, on the other hand, deal with the functional-
ity on a fine grained level, but fail to check for the effects of different schedulers
(see e.g., [18]). Instead, the main challenge for testing concurrent programs is
to show that the properties of interest hold independent of the used scheduler.
In contrast, the approach we have taken in this paper is to test properties of a
program under a specific scheduling regime.

Stone [15] was the first proposing the manipulation of the schedules to iso-
late failure causes in concurrent programs. Her idea was to reduce the non-
determinism due to scheduling by inserting additional break points at which a
process waits for an event of another process. In Creol, this could be achieved by
inserting additional await-statements. However, dealing with a modeling lan-
guage, we prefer the more explicit restriction of non-determinism by modeling
the scheduling policy directly. More recently, Edelstein et al. [5] manipulated
the scheduler in order to gain higher test coverage of concurrent Java programs.
They randomly seeded sleep, yield or priority statements at selected points
in order to alter the scheduling during testing. This approach is based on the
observation that a given scheduler behaves largely deterministic under constant
operating conditions; by running existing tests under other scheduling strategies,

332 R. Schlatte et al.

additional timing-related errors are uncovered. Choi and Zeller [1] change sched-
ules of a program to show the cause of a problem for a failing test case. They use
DEJAVU, a capture/replay tool that records the thread schedule and allows the
replay of a concurrent Java program in a deterministic way. Delta-debugging is
used to systematically narrow down the difference between a passing and failing
thread schedule. This approach helps in order to check if programs work under
different schedules, but unlike the method shown in this paper do not help in
the actual generation of the test case.

Jasper et al. [8] use weakest precondition computation to generate test cases
especially tailored for a complex coverage criterion in single threaded ADA pro-
grams. Rather than augmenting the model, they generate axioms describing the
program and use a theorem prover to compute its feasibility. More recently, [17]
use weakest precondition to identify cause-effect chains in failing test cases to
localize statements responsible for the error (fault localization). WP computa-
tion is furthermore used in several abstraction algorithms to identify relevant
predicates for removing infeasible paths in abstract models. In [16], Tillmann
and Schulte introduce “parametrized unit tests”, which serve as specifications
for object oriented programs. They use symbolic execution to generate the in-
put values for the actual test cases. However, none of these approaches use WP
computation for test case generation in concurrent systems.

7 Conclusion and Future Work

This paper presents an approach to generating test cases for concurrent, object-
oriented programs with application-specific schedulers. The scheduling policy
becomes part of the test case in order to control its execution. We therefore
introduce an automaton approach for specifying the behavior of both the sys-
tem and the scheduler, as well as its composition and extension to a harness
for a test driver. Enforcing a scheduling regime limits the non-deterministic in-
terleavings of behavior, a well-known problem in testing and debugging of con-
current systems. A further important aspect is that the separation of concerns
between functionality and scheduling allows scheduling issues, which are crucial
in concurrent programs, to be specified and tested at the abstraction level of the
executable modeling language.

In this paper, we expect the method automata and scheduler to be given
as specifications, and check for compliance with a given Creol implementation.
A natural extension for future work is to automatically construct the method
automata from the Creol code and check against different schedulers for com-
pliance. The test driver will be implemented within the Maude interpreter for
Creol, which allows the test driver to influence the scheduling.

Further future work comprises the extension to schedulers with internal state
to express more involved scheduling strategies and to extend our approach with
further features of object-oriented languages.

Testing Concurrent Objects with Application-Specific Schedulers 333

References

1. Choi, J.-D., Zeller, A.: Isolating failure-inducing thread schedules. In: International
Symposium on Software Testing and Analysis, pp. 210–220. ACM Press, New York
(2002)

2. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge (1999)

3. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and programming in rewriting logic. Theoretical
Computer Science 285, 187–243 (2002)

4. de Boer, F.S., Clarke, D., Johnsen, E.B.: A complete guide to the future. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 316–330. Springer, Heidelberg
(2007)

5. Edelstein, O., Farchi, E., Nir, Y., Ratzaby, G., Ur, S.: Multithreaded Java program
test generation. IBM Systems Journal 41(1), 111–125 (2002)

6. Fersman, E., Krcál, P., Pettersson, P., Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205(8), 1149–1172
(2007)

7. ISO/IEC 9646-1: Information technology - OSI - Conformance testing methodology
and framework - Part 1: General Concepts (1994)

8. Jasper, R., Brennan, M., Williamson, K., Currier, B., Zimmerman, D.: Test data
generation and feasible path analysis. In: Proceedings of the International sympo-
sium on Software testing and analysis (ISSTA 1994), pp. 95–107. ACM Press, New
York (1994)

9. Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. Software and Systems Modeling 6(1), 35–58 (2007)

10. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs, 2nd edn.
Wiley, Chichester (2006)

11. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96, 73–155 (1992)

12. Nigro, L., Pupo, F.: Schedulability analysis of real time actor systems using
coloured petri nets. In: Agha, G.A., De Cindio, F., Rozenberg, G. (eds.) APN
2001. LNCS, vol. 2001, pp. 493–513. Springer, Heidelberg (2001)

13. Rusu, V., du Bousquet, L., Jéron, T.: An approach to symbolic test generation. In:
Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp.
338–357. Springer, Heidelberg (2000)

14. Schönborn, J., Kyas, M.: A theory of bounded fair scheduling. In: Fitzgerald, J.,
Haxthausen, A. (eds.) International Colloquium on Theoretical Aspects of Com-
puting (ICTAC). LNCS, vol. 5160, pp. 334–348. Springer, Heidelberg (2008)

15. Stone, J.M.: Debugging concurrent processes: A case study. In: Proceedings SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI
1988), June 1988, pp. 145–153. ACM Press, New York (1988)

16. Tillmann, N., Schulte, W.: Parameterized unit tests. In: Proceedings of the 10th
European Software Engineering Conference / 13th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2005), pp. 253–262. ACM
Press, New York (2005)

17. Wang, C., Yang, Z., Ivancic, F., Gupta, A.: Whodunit? Causal analysis for coun-
terexamples. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp.
82–95. Springer, Heidelberg (2006)

18. Weyuker, E.J.: Testing component-based software: A cautionary tale. IEEE Soft-
ware, pp. 54–59 (September 1998)

A Theory of Bounded Fair Scheduling

Jens Schönborn1,� and Marcel Kyas2,��

1 Christian-Albrechts-Universität zu Kiel, Germany
jes@informatik.uni-kiel.de,

http://www.informatik.uni-kiel.de/~refism/refism.html
2 Department of Informatics, University of Oslo, Norway

kyas@ifi.uio.no,
http://credo.cwi.nl

Abstract. Modeling languages like UML use asynchronous communi-
cation but do not specify the order in which messages are received. A
simple language for specifying such orders declaratively is proposed that
ensures fair and bounded fair scheduling. Such scheduling specifications
are then translated to Streett automata that accept only and all infinite
runs satisfying the specification. Using the automaton as a scheduler
guarantees fairness and allows to analyze schedulability using standard
automata-theoretic algorithms. The formalism is extended to the case of
an uncooperative environment by “fall-back” scheduling specifications
when events required for progress are not provided by the environment.

1 Introduction

UML has become the standard modeling language for object-oriented systems.
UML state machines are among the most important constituents of UML, be-
cause they are widely used for modeling the reactive behavior of objects. The
UML 2.x standards give an informal semantics of UML state machines [1]: The
description assumes an event pool, where all incoming messages are stored. Then
a message is selected from that pool and processed for execution. Just the exact
mechanism for selecting the event is left unspecified in the UML standard.

We present a language that allows to specify, among others, in which order
events can be selected from the event pool in Sect. 2. The selection is intended
to be fair. Because general fairness cannot be implemented, the language is
designed with a focus on bounded fairness. Rules are the conjunction of clauses
of the form “at most k events from set F before any event from set E”.

Common fairness is robust (independent of the granularity of transitions) and
simple (abstracts complicated time bounds), but suffers from two major draw-
backs: First, it cannot be observed in finite time, though it is a mathematically

� J. Schönborn’s work has been supported by DFG-project FE 942/1-1 RO 1122/12-2
refism.

�� M. Kyas’ work has been supported by EU-project IST-33826 CREDO: Modeling and
analysis of evolutionary structures for distributed services.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 334–348, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Theory of Bounded Fair Scheduling 335

appealing assumption. Still, fairness proofs have to be conducted hands on. Sec-
ond, the time until good events happen may be unbounded, whereas we often
desire that such events happen within a bounded number of steps.

In Sect. 3 we show how one can compute a scheduler from these specifications.
The scheduler is a Streett automaton [2] that accepts exactly those infinite words
that satisfy our scheduling specifications.

Consistency properties and progress properties are decidable, because each
specification can be represented as a Streett automaton. These results are col-
lected in Sect. 4. The most important properties are consistency, which is equiv-
alent to emptiness of the language accepted by the automaton, and absence of
possible deadlock. The absence of possible deadlock implies that a system can
always proceed with an event in any state. Such schedulers can select events
without concern for the event pools content and will guarantee progress.

As the final and most important contribution, we extend the specification
language towards modal specifications, because we cannot assume that all events
will be provided by the environment. Since our formalism is untimed we need
to have other mechanisms of ensuring reasonable progress of the system, which
we achieve by a change of scheduling policies in situations where the system is
considered stuck. The details are described in Sect. 5.

Related Work. We are confident that modal specifications are of great impor-
tance, since they allow us to specify and implement scheduling strategies in the
presence of non-cooperating environments.

We have good hopes that our formalism can be used in a very wide context.
Other languages leave exact details of the order of event handling unspecified,
e.g., the experimental modeling language Creol [3]. Our scheduling automata
can be used to reduce the non-determinism exhibited by random scheduling and
to enable black-box testing.

Fair and bounded scheduling, which is called finitary fairness by R. Alur and
T.A. Henzinger, is especially important for the verification of distributed algo-
rithms with failures. They write about [4].: “This is illustrated by the celebrated
result of Fischer, Lynch, and Paterson that, under the standard fairness assump-
tion, processes cannot reach agreement in an asynchronous distributed system
if one process fails.” [5].

The use of fairness by means of explicit scheduling in program verification
was already suggested by K. Apt and E.-R. Olderog [6]. Their proposal uses a
program transformation to ensure that non-deterministic branches of a guarded-
command program are chosen fairly.

Bounded fairness plays an important role in telecommunication applications
and cryptographic protocols. Kang and Wilbur consider the scheduling of han-
dovers in cellular networks. They suggest time-bounds as one means to enforce
fairness of bandwidth allocation [7].

Tidwell et.al. suggest to enforce cyclic behavior of their schedulers to en-
force fairness [8]. Such cyclic structures have also been proposed by Ramanujam
and Lodaya [9] to prove fairness in programs. The latter paper inspired us to use

336 J. Schönborn and M. Kyas

Streett automata as a semantic model: Streett acceptance can be decided by
finding cycles in the automaton (as one necessary conditions).

Another application area are cryptographic protocols. For example, Backes
et.al. introduce polynomial fairness and polynomial liveness is introduced as
a means that good events will be scheduled after at most polynomial many
steps [10]. They justify the importance of polynomial fairness in cryptographic
protocols but fail to explain how polynomial fairness is to be achieved. Here,
scheduling specifications can be applied.

Our use of Streett automata is very similar to the use of edge Streett Au-
tomata [11]. Instead of selecting particular edges into the fairness sets, the sym-
bol and the specification decide on the edges in the fairness set. Using edge
Streett automata does therefore not offer any advantage in our setting.

2 Fair Scheduling

Let Σ be an alphabet of events, e.g., messages which are processed by some
component. Possible sequences, in which the components processes these events,
are from the ω-regular set Σω. These general infinite words do not capture a
notion of fairness. For example, given the alphabet {a, b}, the input sequence abω

can be served by the sequence bω, and never selecting a. Instead, constrains need
to be imposed on the way events are selected, such that application dependent
fairness properties are satisfied.

For any w ∈ Σω we write wk for the kth element of w, wk,m for the sub-word
from k to m, |w| for the length of the word w with |w| = ω if w is infinite,
and wA �

∑
k<|w|

∑
a∈A δ(wk, a), where δ(a, b) = 1 if a = b and δ(a, b) = 0

otherwise, for the number of occurrences of elements of A ⊆ Σ in w, where
wA � ∞ if these elements occur infinitely often. Note that

∑
a∈∅ δ(wk, a) = 0

for all w and therefore w∅ = 0. Note that A ⊆ B implies wA ≤ wB for all w.
Infinite words may be viewed as the concatenation of a finite word w and an
infinite word w′, where we write that concatenation as juxtaposition ww′.

Definition 1. Let Σ be an alphabet of events and I a finite set of indexes. A
scheduling specification is an indexed set {(Ei, Fi, Li) | i ∈ I} of constraints
(Ei, Fi, Li), where Ei ⊆ Σ, Fi ⊆ Σ, and Li ∈ IN ∪ {∞}.

The intuitive semantics of such a specification is, that for each i ∈ I with Li ∈ IN
at most Li occurrences of Fi occur before an occurrence of Ei. If Li = ∞, the
constraint means that if Fi occurs infinitely often, so must Ei.

Example 1. Consider a street crossing, where we specify a traffic light that allows
at most np pedestrians cross before each car and at most nc cars before each
pedestrian. The scheduling specification is P � {({p}, {c}, nc), ({c}, {p}, np)},
where c resp. p represent a car resp. a pedestrian and the alphabet is
Σ = {c, p}.

A Theory of Bounded Fair Scheduling 337

Definition 2. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification. A
word w ∈ Σω satisfies S, written w |= S, if and only if:

∀i ∈ I :
(
Li = ∞∧ wFi = ∞ =⇒ wEi = ∞

)
∧

,
(
Li
= ∞ =⇒ ∀m < ω : ∀k ≤ m : wFi

k,m > Li =⇒ wEi

k,m > 0
)

.

Remark 1. Let S be a scheduling specification that includes a constraint of the
form (E, F, 0). Then for all words that satisfy S no event of F is observed before
any event of E, that is no event of F occurs in w.

Example 2. Consider the specification in Example 1 with nc = 1 and np = 2. The
sequence of events (cpp)ω satisfies the specification P . The sequence ppp(cpp)ω

does not: Choose m = 2 and k = 0. Then (ppp){p} = 3 > 2 but (ppp){c} = 0.

Specifications can be written in many ways. The following lemmas describes
when specifications are semantically equivalent and how they can be simplified.

Definition 3. Let S and T be two specifications. We say that S is semantically
equivalent (or just equivalent) to T , written S ≡ T , if and only if ∀w ∈ Σω :
w |= S ⇐⇒ w |= T .

Lemma 1. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification. Let i ∈ I
such that Fi = ∅. Then S is equivalent to S \ {(Ei, Fi, Li)}.

Proof. Since wFi = w∅ and w∅ = 0, we neither have wFi = ∞ nor wFi > Li.
Then the constraint i is trivially valid according to Def. 2. ��

Lemma 2. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification. Let
i, j ∈ I such that i
= j, Ei ⊆ Ej, Fj ⊆ Fi, and Li ≤ Lj. Then S is equivalent to
S \ {(Ej , Fj , Lj)} and we say constraint i dominates constraint j.

Proof. Let S = {(Ei, Fi, Li) | i ∈ I}, i, j ∈ I such that i
= j, Ei ⊆ Ej , Fj ⊆ Fi,
and Li ≤ Lj and S′ = S \ {(Ej , Fj , Lj)}. Let w |= S. Then from Def. 2 and the
fact that S′ ⊆ S it obviously follows that w |= S′. Let w |= S′. Case Lj = ∞.
Let wFj = ∞. From Fj ⊆ Fi conclude wFi = ∞ and with Ei ⊆ Ej therefore
∞ = wEi = wEj . Thus w |= S. Case Lj < ∞. Let k ≤ m < ∞ such that
w

Fj

k,m > Lj . From Fj ⊆ Fi conclude wFi

k,m ≥ w
Fj

k,m > Lj ≥ Li. From Ei ⊆ Ej

conclude 0 < wEi

k,m ≤ w
Ej

k,m. Thus w |= S. ��

Lemma 3. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification and
T = {(Ei, Fi \ Ei, Li) | i ∈ I}. Then S is equivalent to T .

Proof. Let w ∈ Σω such that w |= S. We show w |= T . Let i ∈ I. By Def. 2 we
need to consider two cases. Assume Li = ∞ and assume wFi = ∞. If wFi\Ei =
∞, then wEi = ∞ holds, because w |= S. Otherwise, if wFi\Ei
= ∞, then still
wEi = ∞. Now assume Li
= ∞. Let m < ω and k < m. Then, wFi

k,m > Li

implies wEi

k,m > 0 because w |= S. If w
Fi\Ei

k,m ≤ Li, then there is nothing to prove.

So assume w
Fi\Ei

k,m > Li. But wEi

k,m > 0 still holds. In any case we have w |= T .

338 J. Schönborn and M. Kyas

To show the opposite direction, let w ∈ Σω such that w |= T . Let i ∈ I. If
Li = ∞ and wFi\Ei = ∞, then wEi = ∞. But we also have wFi = ∞, because
Fi \ Ei ⊆ Fi for all Ei. And we also still have wEi = ∞. If wFi\Ei
= ∞ but
wFi = ∞, then wFi∩Ei = ∞ and Fi∩Ei ⊆ Ei implies wEi = ∞. Now let Li
= ∞
and m < ω and k < m. If w

Fi\Ei

k,m > Li then we also have wFi

k,m > Li, and w |= T

implies wEi

k,m > 0. If w
Fi\Ei

k,m ≤ Li and wFi

k,m > Li, then wFi∩Ei

k,m > 0. But because
Fi ∩ Ei ⊆ Ei we have wEi

k,m > 0. In any case, we have w |= S. ��

Lemma 4. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification. Let i ∈ I
such that Fi ⊆ Ei. Then S is equivalent to S \ (Ei, Fi, Li) and we say that the
constraint i is vacuously satisfied.

Proof. Follows from Lemma 3 and Lemma 1 by observing that Fi \ Ei = ∅. ��

These lemmas allow us to define a normal form for specifications. These normal
forms allow us to simplify the following technical presentation.

Definition 4. A specification {(Ei, Fi, Li) | i ∈ I} is in normal form if:

– For all i ∈ I we have Fi
= ∅
– For all i ∈ I we have Ei ∩ Fi = ∅
– For all i ∈ I and all j ∈ I \ {i} with Ei ⊆ Ej, Fj ⊆ Fi we have Li > Lj.

Theorem 1. For each specification S there exists a unique (modulo permuta-
tions of indexes) specification S′ which is in normal form.

Proof. With applying Lemma 3, Lemma 1, and Lemma 2 any specification can
be converted to a specification in normal form. ��

Example 3. The specification S = {({a}, ∅, 2), ({a, b}, {b}, 1), ({b}, {a, b}, 2)} is
not in normal form. The specification T = {({b}, {a}, 2)} is. Moreover, S ≡ T .

Henceforth we will assume, that all specifications are in normal form, because
we can convert all specifications into ones in normal form.

The next lemma shows that specifications are “shift-invariant”: when we re-
move the first letter of a word that satisfies the specification, then the remainder
of the word still satisfies the specification. This lemma will be used to prove the
correctness of the automata construction in the following section.

Lemma 5. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification and
w′ ∈ Σω and a ∈ Σ with (aw′) |= S. Then w′ |= S.

Proof. Assume (aw′) |= S and let i ∈ I. If Li = ∞ and (aw′)Fi = ∞, then
awEi = ∞. But we also have w′Fi = ∞ and w′Ei = ∞. Now assume Li
= ∞
and prove ∀m < ω : ∀k ≤ m : w′Fi

k,m > 0 =⇒ w′Ei

k,m > 0. Let m < ω and k ≤ m.
Observe ∀A : (aw′)A

k+1,m+1 = w′A
k,m, from which we conclude the claim. ��

A Theory of Bounded Fair Scheduling 339

3 From Scheduling Specifications to Streett Automata

In the previous section we have introduced scheduling specifications and defined
their formal semantics. We continue to define automata which accept all infi-
nite words that satisfy a scheduling specification. We chose Streett automata [2],
because their acceptance conditions closely resemble the structure of our speci-
fications. We recall the definition of Streett automata.

Definition 5. A Streett automaton A is a tuple (Q, q0, Σ, ρ, Ω), where Q is
a non-empty, finite set of states, q0 ∈ Q the initial state, Σ an alphabet, ρ :
Q×Σ → 2Q a transition function, and Ω an indexed set {(Ei, Fi) | i ∈ I} called
acceptance condition. A trajectory τ of the Streett automaton A is a sequence
(si, λi)i<ω of states such that s0 = q0 and si+1 ∈ ρ(si, λi) for all i < ω. The
word of that trajectory is the sequence Word(τ) � (λi)i<ω. The set of states that
occur infinitely often in that trajectory, Inf(τ) � {s | ∀i < ω : ∃j > i : s = sj}.
A Streett automaton A accepts a word w, if and only if Word(τ) = w and:
∀i ∈ I : Inf(τ) ∩ Ei = ∅ =⇒ Inf(τ) ∩ Fi = ∅. In this case we call τ an accepting
trajectory. The language accepted by a Streett automaton A is called L(A). We
write w ∈ L(A) if A accepts the word w ∈ Σω.

For any scheduling specification we can build a Streett automaton that accepts
all infinite words which satisfy the scheduling specification. From that we can
conclude, that all scheduling specifications have a finite model.

Definition 6. Let S be a scheduling specification in normal form over the al-
phabet Σ and let 	
∈ Σ and

∈ Σ, i.e., 	 and
 cannot occur in any scheduling
specification. The closure C(S) of a specification S is the smallest set that sat-
isfies the following conditions:

1. S ∈ C(S).
2. If S′ ∈ C(S) and (E, F, L) ∈ S′ for L
= ∞ and L > 0, then S′ ∪{(E, F, L−

1)} \ {(E, F, L)} ∈ C(S).
3. If S′ ∈ C(S). (E, F,∞) ∈ S′ then S′∪{(E, F∪{	},∞)}\{(E, F,∞)} ∈ C(S)

and S′ ∪ {(E, F ∪ {
},∞)} \ {(E, F,∞)} ∈ C(S).

The closure characterizes the possible states of the automaton. The initial state
is the specification itself.

The second item decrements the limit of events from F down by one. Such a
state will be reached if an event of F is observed, and decrementing indicates,
that from now on the automaton is only allowed to observe one event of F less
until reset.

Finally, the last item covers the case of events which occur infinitely often.
The acceptance condition for constraints of the form (E, F,∞) is very similar
to the Streett acceptance condition, only that the Streett acceptance condition
refers to states and not to labels. We encode the condition on labels as follows:
Whenever we take a transition with a symbol in F , we visit a state containing
the symbol 	. Whenever we take a transition with a symbol in E, we visit a

340 J. Schönborn and M. Kyas

state containing the symbol
. Our intuition is, that infinitely many symbols
from F will cause the automaton to visit a state with the 	 label infinitely often.
Since the automaton accepts, it must visit a state labeled with
 infinitely often,
which are only visited by using a symbol of E. This intuition will be formalized
in Def. 7 below.

Example 4. Let Σ = {a, b, c} and S = {({a}, {b}, 1), ({b}, {c},∞)}. Then the
closure C(S) is:

C(S) = {S, {({a}, {b}, 0), ({b}, {c},∞)}, {({a}, {b}, 1), ({b}, {c},∞)},
{({a}, {b}, 0), ({b}, {c, 	},∞)}, {({a}, {b}, 1), ({b}, {c, 	},∞)},
{({a}, {b}, 0), ({b}, {c,
},∞)}, {({a}, {b}, 1), ({b}, {c,
},∞)},
{({a}, {b}, 0), ({b}, {c,
, 	},∞)}, {({a}, {b}, 1), ({b}, {c,
, 	},∞)}} .

Remark 2. Constraints of the form (E, F,∞) with {
, 	} ⊆ F are only reachable
if E and F are not disjoint. Thus the specification is not in normal form. If
specifications are in normal form, we can remove these from the closure.

Definition 7. Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification in
normal form. We define a Streett automaton A(S) for the specification S by
defining the set of states to be Q � C(S), the initial state by q0 � S, the
transition function by:
ρ({(Ei, Fi, L

′
i) | i ∈ I}, e) undefined if there exists m ∈ I where e ∈ Fm and

L′
m = 0 and otherwise:

ρ({(Ei, Fi, L
′
i) | i ∈ I}, e) � {{(Ei, Fi, Li) | i ∈ I ∧ e ∈ Ei ∧ Li
= ∞} ∪

{(Ei, (Fi ∪ {
}) \ {	}, Li) | i ∈ I ∧ e ∈ Ei ∧ Li = ∞} ∪
{(Ei, Fi, L

′
i − 1) | i ∈ I ∧ e ∈ Fi ∧ L′

i
= ∞} ∪
{(Ei, (Fi ∪ {	}) \ {
}, L′

i) | i ∈ I ∧ e ∈ Fi ∧ L′
i = ∞} ∪

{(Ei, Fi \ {	,
}, L′
i) | i ∈ I ∧ e
∈ Ei ∪ Fi}} .

Finally, the acceptance condition is defined to be Ω � {(Êi, F̂i) | i ∈ I∧Li = ∞},
where Êi � {S′ ∈ C(S) | (Ei, Fi ∪ {
},∞) ∈ S′} and F̂i � {S′ ∈ C(S) |
(Ei, Fi ∪ {	},∞) ∈ S′}.

Example 5. Reconsider Example 4 with the alphabet {a, b, c} and the specifica-
tion {({a}, {b}, 1), ({b}, {c},∞)}.

The resulting automaton is displayed in Fig. 1, where the events are elided
from the state label and only reachable states are depicted. Only the limits 0, 1
or whether a marker 	,
 is part of the state is shown. For example, the label
0, 	 refers to the state labeled {({a}, {b}, 0), ({b}, {c, 	},∞)}. The acceptance
condition of the corresponding Streett automaton is:

{({{({a}, {b}, 1), ({b}, {c,
},∞)}, {({a}, {b, }, 0), ({b}, {c,
},∞)}},
{{({a}, {b}, 1), ({b}, {c, 	},∞)}, {({a}, {b}, 0), ({b}, {c, 	},∞)}})} .

A Theory of Bounded Fair Scheduling 341

1 0, �1, � 0, �

a

b
c ca

c

a

c

a

b

Fig. 1. Streett automaton for Example 5

Note that the state labeled {{({a}, {b}, 1), ({b}, {c,
},∞)} is not reachable from
the initial state.

A soundness proof of our construction follows. First, we establish a “shift-
invariance” property similar to Lemma 5 for the language accepted by the Streett
automaton.

Lemma 6. Let S be a scheduling specification in normal form, A(S) its Streett
automaton, a ∈ Σ, and w′ ∈ Σω. If (aw′) ∈ L(A(S)) then w′ ∈ L(A(S)).

Proof (sketch). Let S = {(Ei, Fi, Li) | i ∈ I} be a scheduling specification, a ∈ Σ
and w′ ∈ Σω such that (aw′) ∈ L(A(S)), (λt)t<ω = (aw′), and (St, λt)t<ω an
accepting trajectory. Define a function ξ : Σ × Σ∗ × Q → Q as:

ξ(a, λ1,t+1, St+1) �
{(Ei, Fi, L

′
i) | (Ei, Fi, L

′
i) ∈ St+1 ∧ (λ0
∈ Fi ∨ L′

i = ∞∨ λEi
1,t+1 > 0)} ∪

{(Ei, Fi, L
′
i + 1) | (Ei, Fi, L

′
i) ∈ St+1 ∧ λ0 ∈ Fi ∧ L′

i
= ∞∧ λEi
1,t+1 = 0} .

Let S′
0 = S and S′

t = ξ(λ0, λ1,t+1, St+1) for all 0 < t < ω. We show w′ ∈
L(A(S)) by proving that (S′

t, λt+1)t<ω is an accepting trajectory on the word
w′. Apparently, w = (λt+1)t<ω.

We show ξ(λ0, λ1,t+1, St+1) ∈ ρ(S′
t, λt+1) with help of St+1 ∈ ρ(St, λt). Let

t < ω and (Ei, Fi, L
′
i) ∈ S′

t.

1. Case λ0 ∈ Fi ∧ L′
i
= ∞∧ λEi

1,t+1 = 0. Then (Ei, Fi, L
′
i − 1) ∈ St.

(a) If λt ∈ Ei then (Ei, Fi, Li) ∈ St+1. From λEi
1,t+2 > 0 follows (Ei, Fi, Li) ∈

ξ(λ0, λ1,t+1, St+1).
(b) If λt ∈ Fi then (Ei, Fi, L

′
i − 2) ∈ St+1. Then λEi

1,t+2 = 0 holds and we
conclude (Ei, Fi, L

′
i − 1) ∈ ξ(λ0, λ1,t+1, St+1).

(c) If λt
∈ Fi ∪ Ei, then (Ei, Fi, L
′
i − 1) ∈ St+1. Then λEi

1,t+2 = 0 holds and
we conclude (Ei, Fi, L

′
i) ∈ ξ(λ0, λ1,t+1, St+1).

2. Case λ0
∈ Fi ∨ Li = ∞∨ λEi
1,t+1 > 0. Then (Ei, Fi, L

′
i) ∈ St.

(a) Assume λt ∈ Ei. If Li = ∞ then (Ei, Fi ∪ {
}, Li) ∈ St+1. Otherwise
(Ei, Fi, Li) ∈ St+1. In either case λ0
∈ Fi∨Li = ∞∨λEi

1,t+1 > 0 holds and
therefore (Ei, Fi∪{
}, Li) ∈ ξ(λ0, λ1,t+1, St+1) respectively (Ei, Fi, Li) ∈
ξ(λ0, λ1,t+1, St+1).

342 J. Schönborn and M. Kyas

(b) Assume λt ∈ Fi. If Li = ∞ then (Ei, Fi ∪ {	}, Li) ∈ St+1. Otherwise
(Ei, Fi, L

′
i−1) ∈ St+1. In either case (Ei, Fi∪{	}, Li) ∈ ξ(λ0, λ1,t+1, St+1)

respectively (Ei, Fi, L
′
i) ∈ ξ(λ0, λ1,t+1, St+1).

(c) If λt
∈ Fi ∪ Ei then (Ei, Fi, L
′
i) ∈ St+1 and consequently (Ei, Fi, L

′
i) ∈

ξ(λ0, λ1,t+1, St+1).

Now we proceed to show acceptance. Let Ξ �
⋃

(Êi,F̂i)∈Ω{Êi, F̂i}. First we show:

∀X̂ ∈ Ξ : Inf((St, λt)t<ω) ∩ X̂
= ∅ ⇐⇒ Inf((S′
t, λt+1)t<ω) ∩ X̂
= ∅ . (1)

Let X̂ ∈ Ξ. Case Inf((St, λt)t<ω) ∩ X̂
= ∅ =⇒ Inf((S′
t, λt+1)t<ω) ∩ X̂
= ∅. Let

X ∈ (Inf((St, λt)t<ω) ∩ X̂). Let t < ω. Then ξ(λ0, λ1,t, X) ∈ Inf((S′
t, λt+1)t<ω)

and since ξ does not change (Ei, Fi, Li) when Li = ∞ we have ξ(λ0, λ1,t, X) ∈ X̂ .
Case Inf((S′

t, λt+1)t<ω) ∩ X̂
= ∅ =⇒ Inf((St, λt)t<ω) ∩ X̂
= ∅. Let t < ω,
X ′ ∈ Inf((S′

t, λt+1)t<ω) ∩ X̂ and X such that X ′ = ξ(λ0, λ1,t, X). Then X ∈
Inf((St, λt)t<ω) and since ξ does not change (Ei, Fi, Li) when Li = ∞ we have
X ∈ X̂.

By (1) and Inf((St, λt)t<ω)t<ω) ∩ Êi
= ∅ implies Inf((S′
t, λt+1)t<ω) ∩ Êi
= ∅.

Consequently, (S′
t, λt+1)t<ω is accepting.

Conversely, if Inf((St, λt)t<ω)t<ω) ∩ Êi = ∅, then Inf((S′
t, λt+1)t<ω) ∩ Êi = ∅

by (1). But Inf((St, λt)t<ω)t<ω) ∩ F̂i = ∅ holds, Inf((S′
t, λt+1)t<ω)t<ω) ∩ F̂i = ∅

also holds by (1). In any case, (S′
t, λt+1)t<ω is accepting. ��

We can now prove the soundness of the construction with the help of that prop-
erty.

Definition 8. An event e is called permitted by specification S = {(Ei, Fi, Li) |
i ∈ I} if and only if ∀i ∈ I : e ∈ Fi =⇒ Li > 0.

Theorem 2. The language accepted by the Street automaton A(S) is the same
as the language characterized by S.

Proof. The proof is by co-induction. Let (aw′) ∈ Σω. Assume (aw′) |= S ⇐⇒
(aw′) ∈ L(A(S)). Define

θ(S, S′, e) = {{(Ei, Fi, L
′′
i) | (Ei, Fi, Li) ∈ S ∧ (Ei, Fi, L

′
i) ∈ S′ ∧ L′

i > 0 ∧
(L′

i = ∞ =⇒ L′′
i = ∞) ∧ (e ∈ Ei =⇒ L′′

i = Li) ∧
(e ∈ Fi =⇒ L′′

i = L′
i − 1) ∧ (e
∈ Ei ∪ Fi =⇒ L′′

i = L′
i)}} .

By computation, we conclude that θ(S, S, a) = {(E, F \ {
, 	}, L) | (E, F, L) ∈
ρ(S, a)}. From Lemmas 5 and 6 we conclude w′ |= S ⇐⇒ w′ ∈ L(A(S)). ��

With this theorem, we have established that the construction of the automaton
is correct. We will now look at the complexity of our construction. We prove
that the size of the automaton is exponential in the number of constraints.

Lemma 7. The size of the Streett automaton A(S) which corresponds to a
scheduling specification S = {(Ei, Fi, Li) | i ∈ I} in normal form is |Q| ∈
O(L|I|), where L = max ({Li + 1 | i ∈ I ∧ Li
= ∞} ∪ {3 | i ∈ I ∧ Li = ∞}).

A Theory of Bounded Fair Scheduling 343

Proof. Since Q � C(S) we show |C(S)| ∈ O(L|I|). If I = ∅, then the automaton
has one state. Otherwise, Def. 6 implies that for every tuple in S there is exactly
one corresponding tuple in every element of C(S). At most L variations of each
tuple in S. Enumerating all solutions, we have

∏
i∈I L as the upper bound. ��

4 Consistency of Specifications

The automata model allows us to decide many properties of the scheduling
specifications. Here, the most important properties are shown.

Lemma 8. A scheduling specification S is consistent, if there exists w ∈ Σω

with w |= S. Whether S is consistent is decidable.

Proof. A scheduling specification is consistent, if the language accepted by A(S)
is not empty. The language emptiness problem is decidable [12]. ��

Finally, given finite state transition systems, like UML state machines, we can
decide schedulability of these machines by a scheduling specification.

Lemma 9. For finite state transition systems, the schedulability problem is
decidable.

Proof. Let P be a finite state process. That process can be represented by a
Streett automaton A(P). Let S be a scheduling specification. Schedulability
becomes L(A(p) ‖ A(S)) ?= ∅, where ‖ is the standard synchronous product. ��

Scheduling specifications may admit deadlocks, as Example 6 below shows. To
formalize the possibility of deadlocks, let the set of forbidden events Forb(S) and
the set of permitted events Perm(S) for states S be defined as:

Forb({(Ei, Fi, L
′
i) | i ∈ I}) �

⋃

i∈I∧L′
i=0

Fi

Perm({(Ei, Fi, L
′
i) | i ∈ I}) � Σ \ Forb({(Ei, Fi, L

′
i) | i ∈ I})

Example 6. Consider the specification S = {({a}, {b, c}, 1), ({b}, {a, c}, 1)} over
Σ = {a, b, c}. With S, infinite schedules involving only {a, b} are feasible. Any
occurrence of c moves A(S) into the state S′ = {({a}, {b, c}, 0), ({b}, {a, c}, 0)}
in which no event is permitted, because Forb(S) = Σ. The automaton A(S) is
displayed in Fig. 2, where the deadlock state is labelled 0, 0.

These deadlocks cannot be avoided, but they can be detected automatically.
Although these deadlocks states are reachable it is still possible that they are
never reached in real applications. Also, the approach described in Sect. 5 allows
us dealing with deadlocks.

Definition 9. We define function D(S) that yields all deadlocking states reach-
able in scheduling automaton A(S).

D(S) = {S′ | Perm(S′) = ∅ ∧ S′ reachable from S} .

344 J. Schönborn and M. Kyas

1, 1 0, 1 1, 00, 0
c

a

b

b

a

Fig. 2. Streett automaton for Example 6

Remark 3. Since automata states are closely related to the corresponding speci-
fications, they only differ in markers, D(S) also describes the deadlocking spec-
ifications reachable from specification S.

The set D(S) of deadlock states can be easily computed by first constructing
the scheduler automaton and then searching for all reachable states which do
not have outgoing transitions. Using breadth-first-search we can even determine
the shortest sequence of events leading to such a state. Breadth-first-search is
linear in the number of transitions and the number of states.

5 Suspending the Scheduler

So far we have assumed that the environment provides at least the events re-
quired for the inspected trajectories. In this section we drop this assumption.

To formalize the input of the environment we assume that each scheduling
automaton has access to an event pool P , or pool for short, that contains all
events currently available for scheduling. The pool is a multiset of events, i.e.,
P ∈ INΣ .1 The environment may add new events to be scheduled to the pool,
whereas the scheduling automaton will consume these events from the pool. The
automaton may choose any event, which is permitted in the current state of
scheduling. The set of events of pool P that are enabled in state S is defined by:

Enab(S, P) � {a ∈ Σ | a ∈ Perm(S) ∧ P (a) > 0}

In real situations we cannot assume that all events needed for the system to
progress are provided by the environment. Nevertheless we want that the system
will progress, i.e., it should not wait for any event which might never occur.

Example 7. Recall Example 1. We would consider this specification to be unrea-
sonable towards pedestrians on days on which no car crosses the street. Naturally,
pedestrians cross the traffic light if no car is in sight contrary to the red signal.

The formulation of that example assumes a notion of time: on days. We want to
suspend scheduling only temporarily. However, the formalism we present assumes
an untimed setting. We want that pedestrians cross the street as long as no car is
1 The notation INΣ represents the set of all functions of Σ into IN and is isomorphic

to the set of all multisets over Σ.

A Theory of Bounded Fair Scheduling 345

in sight (in the pool). The arrival of the first car shall indicate that the intended
scheduling is resumed. More formal: The question is, what the automaton does,
if Enab(S, P) = ∅, meaning that currently no permitted event is available in the
pool, especially if Perm(S)
= ∅?

First, the automaton may wait until the environment will provide a necessary
event. Such a strategy will lead us into assumption-commitment style reason-
ing. In principle, the system should be allowed to assume that it is always the
case that in every state a transition will eventually be enabled. However, this
assumption-commitment style reasoning is outside the scope of this paper. Here,
we want to focus on the situation that the environment is “demonic”. It need
not happen that it will provide one of the permitted events and the sched-
uler needs to choose an event contrary to its defining specification in order to
make progress. This is done by suspending the scheduling automaton in these
situations and switching to some different scheduling automaton. In terms of
assumption-commitment violation, our situation refers to the violation of the
assumption that the environment always provides necessary events (in time).
Then the scheduling automaton need not commit to anything.

The situation where no event at all is allowed in the current state of schedul-
ing, already addresses in the previous Sect. 4, can be handled by the approach
described in this section.

If we prioritize the scheduling automaton, we may on the other hand starve
other sub-specifications.

We have two cases:

1. Choosing one event may reset one of the limits and by this enable more
events in the next step. This causes a change of state in the automaton.
(a) a
∈ Perm(S) implies a ∈ Forb(S) and the situation is handled in the

preceding section.
(b) a ∈ Perm(S) but then P (a) > 0, then a ∈ Enab(S, P), in contradiction

to our assumption.
2. Choosing one event does not reset one of the limits of the automaton, because

it does not change the state.

Definition 10. A modal specification is a set of guarded and extended spec-
ifications of the form φ =⇒ (S, U), where φ is generated by the grammar
φ ::= � | a | ¬φ | φ∧φ | φ∨φ, where a ∈ Σ, S is a specification following Def. 1
and U ⊆ Σ is called exit-set.

A pool satisfies a condition (written P |= φ), if and only if:

1. P |= �.
2. P |= a if P (a) > 0
3. P |= ¬φ if not P |= φ.
4. P |= φ ∧ φ′ if P |= φ and P |= φ′.
5. P |= φ ∨ φ′ if P |= φ or P |= φ′.

Modal specifications are used to define how scheduling shall continue (P |= φ)
when it is required (there exists an event in the exit-set U which is in the pool),
once a policy cannot progress.

346 J. Schönborn and M. Kyas

(A(S), ∅) (A(∅), {p})(A(∅), {c})

c ∧ ¬p

¬c ∧ p

c ∨ p

c ∨ p

c ∧ ¬p

¬c ∧ p

Fig. 3. Automaton for Example 8

Example 8. A possible modal specification of the pedestrian/car scheduler is:

c ∨ p =⇒ ({({c}, {p}, lp), ({p}, {c}, lc)}, ∅)
c ∧ ¬p =⇒ (∅, {p})
¬c ∧ p =⇒ (∅, {c}) .

The resulting scheduling automaton is displayed in Fig. 3 where the histories
are not considered.

We refine the definition of enabledness for exit-sets:

Enab(S, U, P) �
{
∅ if ∃a : P (a) > 0 ∧ a ∈ U

{a ∈ Σ | a ∈ Perm(S) ∧ P (a) > 0} otherwise.

Now we can capture the intuition of scheduler suspension: if Enab(S, U, P) = ∅
and ∃l ∈ L : P |= φl, then we continue with the scheduling policy defined by
element l of the modal specification.

Definition 11. Let L be a finite set of indexes and {(φl =⇒ (Sl, Ul)) | l ∈ L}
a modal specification. We define the corresponding modal scheduling automaton
as follows: The set of states is in {(Al, Ul, H) | l ∈ L ∧ H ⊆ C(S)}, where
A(Sl) as defined in Def. 7. The initial state is defined to be (S : A(S), ∅) and
the transition function with respect to states (Aj , Uj, H) is defined as follows:

1. If ∃a : P (a) > 0, Enab(S, Uj , P) = ∅, P |= φl, Ql ∩ H = {S′}, then
(S : Aj , Uj , H) → (S′ : Al, Ul, (H \ {S′}) ∪ {S}),

2. If ∃a : P (a) > 0, Enab(S, Uj , P) = ∅, P |= φl, ∀k ∈ {l | P |= φl} : Qk ∩H =
∅, then (S : Aj , Uj, H) → (S0 : Ak, Uk, H ∪ {S}), and

Where Al denotes the automaton corresponding to modal specification l and Ql

denotes the states the automaton, where S : A denotes that execution continues
in state S and where S0 : A continuation in the initial state of automaton A.

Observe that Uj defines those events, which, when present in the pool, cause a
change of the scheduling mode. Thus we should have some distinguished modal

A Theory of Bounded Fair Scheduling 347

specification with Ul = ∅. This mode describes a normal mode of execution.
By condition Enab(S, U, P) = ∅ in every of the above cases we ensure that
scheduling automaton transitions have priority over modal scheduling automaton
transitions. Thus maximal progress in normal mode is ensured by U = ∅.

Example 9. We consider some special right-hand sides of modal specifications.

1. (∅, ∅) is the universal specification. It will never be changed and allows every
scheduling.

2. (S, ∅) for a non-empty scheduling specification S describes a scheduling pol-
icy which is only suspended if Enab(S, ∅, P).

3. (∅, U) where U
= ∅ describes a universal scheduling policy which allows any
event to be scheduled as long as there is no event of U in the pool.

Let us return to Example 8. The initial scheduling, which we already described in
Example 1 is maintained as long as we can choose events from the pool. Once only
events are available in the pool which are forbidden in the current configuration,
say cars c, a transition from the normal mode to the suspension mode (∅, {p}) is
permitted.When shouldwe change back?During the universal behavior, car events
maybe scheduled unless a pedestrian p is in the pool, because the exit set is {p}. The
behavior with which the scheduling will resume depends on the content of the pool:

1. If a car c is in the pool, then the automaton must resume with the initial
scheduling, because the guard p∨c holds and the guard p∧¬c does not hold.

2. If no car c is in the pool, then the automaton may choose between resuming
the initial specification or (∅, {c}), because both guards p∨c and p∧¬c hold.

Finally, the modal specification automata can be flattened to flat extended
transition systems with Streett fairness assumptions. The transition system uses
condition on event pools in addition to the currently scheduled event. The exact
details of that construction are standard and not described in this paper.

6 Conclusions and Future Work

We have described a simple language for specifying bounded and fair scheduling
constraints. We described a formal semantics for that language and showed how
we can obtain a Streett automaton that accepts only and all schedules that
satisfy the specification.

These automata can then be composed with a system, and if there are only
bounded requirements in the Street acceptance it is sufficient to examine the
composition of the system and the automaton, which is finite, in order to show
that the system is fair, i.e. fairness can then be proved automatically.

Finally, we addressed the issue of uncooperative environments. If the environ-
ment does not send expected messages, scheduling may be suspended until the
expected message arrives. We define a semantics of these transition systems.

Concerning future work, we point out that the presentation of this paper was
mostly focused on the semantics of our language. We will develop a concrete

348 J. Schönborn and M. Kyas

syntax as a next step, probably based on a variant of UML state machines,
whose hierarchicy looks well suited different modes of a specification.

Game based methods may provide more efficient means for finding possible
deadlocks, because the automaton need not be constructed completely. It may
even be possible to decide consistency and possible deadlocks statically.

The properties of modal scheduling will be investigated in the future.
Finally, we plan to integrate this language into the modeling language Creol,

which allows us to specify the scheduling of method activations. Similar to [13]
it may facilitate testing. Our notation is simpler, because we only order events,
but we believe that it is therefore more accessible.

Acknowledgments. We thank H. Fecher for pointing out the possibility of
deadlocks, H. Fecher and H. Schmidt for valuable insight provided during fruitful
discussions, and thank the anonymous reviewers for their valuable suggestions.

References

1. Object Management Group: UML 2.1.2 Superstructure Specification (2007),
http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

2. Streett, R.S.: Propositional dynamic logic of looping and converse is elementary
decidable. Information and Control 54(1/2), 121–141 (1982)

3. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for
distributed concurrent systems. TCS 365(1–2), 23–66 (2006)

4. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

5. Alur, R., Henzinger, T.A.: Finitary fairness. ACM Trans. Program. Lang.
Syst. 20(6), 1171–1194 (1998)

6. Apt, K.R., Olderog, E.R.: Proof rules dealing with fairness. In: Kozen, D. (ed.)
Logic of Programs, vol. 131, pp. 1–8. Springer, Heidelberg (1982)

7. Kang, M., Wilbur, S.: A fair guaranteed down-link sharing scheme for cellular
switched networks. In: GLOBECOM 1997, Phoenix, AZ, USA, vol. 2, pp. 1006–
1010. IEEE Computer Society Press, Los Alamitos (1997)

8. Tidwell, T., Gill, C., Subramonian, V.: Scheduling induced bounds and the ver-
ification of preemptive real-time systems. Technical Report 2007-34, Washington
University in St.Louis, Department of Computer Science & Engineering (2007)

9. Ramanujam, R., Lodaya, K.: Proving fairness of schedulers. In: Parikh, R. (ed.)
Logic of Programs 1985. LNCS, vol. 193, pp. 284–301. Springer, Heidelberg (1985)

10. Backes, M., Pfitzmann, B., Steiner, M., Waidner, M.: Polynomial fairness and
liveness. In: CSFW, pp. 160–174. IEEE Computer Society, Los Alamitos (2002)

11. Hojati, R., Singhal, V., Brayton, R.K.: Edge-streett/ edge-rabin automata environ-
ment for formal verification using language containment. Memorandum ERL-94-12,
University of California at Berkeley, Berkeley, CA, USA (1994)

12. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, pp. 165–191. MIT Press, Cambridge (1990)

13. Schlatte, R., Aichernig, B., de Boer, F., Griesmayer, A., Johnsen, E.B.: Testing con-
current objects with application-specific schedulers. In: Fitzgerald, J., Haxthausen,
A., Yenigün, H. (eds.) ICTAC. LNCS, vol. 5160, pp. 318–332. Springer, Heidelberg
(2008)

http://www.omg.org/cgi-bin/docs/formal/2007-11-02.pdf

Fair Exchange Is Incomparable to Consensus

Simona Orzan1 and Mohammad Torabi Dashti2

1 Technical University of Eindhoven, The Netherlands
2 ETH Zürich, Switzerland

Abstract. In asynchronous systems where processes are prone to crash
failures, we show that fair exchange is incomparable to distributed con-
sensus. By incomparability we mean there exist failure detector classes
that solve fair exchange and not distributed consensus, and vice versa.
Remarkably, this is in contrast to the folklore belief that solving fair
exchange is generally harder than solving distributed consensus.

1 Introduction

Distributed consensus (DC) is an essential building block for fault-tolerant dis-
tributed computing (e.g. see [27]). Fair exchange (FE) is a fundamental problem
in computer security, upon which various contract signing, certified email, and
non-repudiation protocols are built [5,14,1,28]. There are remarkable similari-
ties between these two problems, as observed by Tygar [38] and Pagnia and
Gärtner [30]. The goal of this paper is to give a formal comparison between FE
and DC in asynchronous multiparty settings. A clear picture of this relation has
two immediate benefits: (1) from a practical point of view, this would help in
translating efficient solutions of one to the other, as much research has been done
independently on these two problems so far, and (2) from a theoretical point of
view, this can give us a better understanding of the limits of solvability of FE,
as solvability for DC is to a great extent well understood.

(Un)solvability criteria for DC, such as [18,9,8], virtually define the boundaries
of what is possible in fault-tolerant distributed computing, and have therefore
been subject to intense research. Below, we give a chronological overview on
work dealing with solvability of FE (in deterministic systems):

In synchronous systems, Even and Yacobi [15] (1980), and independently Ra-
bin [34] (1981), informally argue that two processes cannot fairly exchange se-
crets, when one of them is prone to Byzantine failure. This negative result has
been later on formalized by DeMilo, Lynch and Merritt [12]. However, in fully
connected network topologies, the completeness theorems of Ben-Or, Goldwasser
and Wigderson [4] (independently derived in [10]) show that, in the presence of
t Byzantine processes, any secure n party computation, including FE and DC,
can be solved when t < n

3 .
In asynchronous systems, Pagnia and Gärtner show that when one process

is prone to crash failure, DC between two processes is reducible to FE, which
entails that FE is harder than DC [30]. This, along with the impossibility of DC
in such settings [18], establish the unsolvability of FE. It is worth noticing that

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 349–363, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

350 S. Orzan and M. Torabi Dashti

the unsolvability result of [15] (and [34,12]) is based on the malicious act of with-
holding (parts of) information, whereas in [30], inability to decide termination
in asynchronous systems when processes may crash is used to imply unsolvabil-
ity of FE. These, thus, establish their results based on orthogonal difficulties in
solving FE, and neither of them immediately follows from the other.

A natural question at this point is: Can we conclude that FE is solvable only
in the settings in which DC is solvable? In other words, is solving FE harder than
solving DC? The answer turns out to be negative, as we contend in this paper.

We show that the reduction of DC to FE in [30] is bound to two processes, and
does not hold in general. We prove that in asynchronous systems where partic-
ipating processes are prone to crash failures, while a majority of the processes
are correct, FE is incomparable to DC. That is, there exist failure detector classes
that solve FE and not DC, and vice versa. This is in contrast to the folklore belief
that solving FE is harder than solving DC (e.g. see [30,16]). To prove this re-
sult, we build upon Guerraoui’s work on incomparability of non-blocking atomic
commit (NBAC) to DC [25]. As a side note, we describe why in the special case
of only two participating processes, FE is indeed harder than DC, hence com-
ing to terms with the previous result of Pagnia and Gärtner [30]. We use an
LTL [33] formalization to define the DC, NBAC and FE problems. This removes
doubts about what textual requirements for FE, often found in the literature,
might mean. The LTL formulas are interpreted in the well-accepted finite state
machine model, widely used in the distributed computing literature (e.g. [9]).
This neatly places the FE security problem into a framework often used to reason
about distributed computing. Other approaches to formal definition of the FE
requirements, such as game theory, have been investigated in [32,30,31,6,22].

Our incomparability result is stated in asynchronous models, where processes
may crash. The choice of this model has certain implications: (1) It follows that
in more sophisticated models where faulty processes are allowed to misbehave
beyond benign crashes (such as crash-recovery, or Byzantine failure models), FE
and DC remain incomparable. Therefore, our result draws an incomparability
line in stronger failure models as well. (2) In practical terms, crash failures are
usually considered to be simplistic for design and analysis of security protocols.
Although this weakens the relevance of our result to some practical scenarios,
we point out that recent advances in trusted computing devices, and their use
in security protocols, allow for more restricted hostile environment models. In
particular, in section 4, we discuss how our model is related to the existing
literature on practical realizations of FE using guardians and TrustedPals.
Road map. We start with introducing the notions and notations used in the
paper in section 2. In section 3 we present our incomparability result. Section 4
discusses related work, while section 5 concludes the paper.

2 Preliminaries

We consider the asynchronous message passing model of [18], plus the failure
detector abstraction of [9]. A brief description of this model follows.

Fair Exchange Is Incomparable to Consensus 351

The System Model. We consider n processes, Ω = {p1, · · · , pn}, sitting on the
nodes of a fully connected communication graph. No bound is assumed on their
clock drifts, or the time needed to complete a local instruction. The bidirectional
channels that connect these processes are asynchronous, i.e. they guarantee to
eventually deliver sent messages, but no time bounds or specific ordering is
enforced. The processes are prone to crash failures, i.e. a failed process ceases to
act from the point of crash onwards. A process that does not crash is correct.

We assume a discrete global clock, which is not accessible to the participating
processes. The range of the clock, denoted Φ, is the set of natural numbers.

A failure pattern is a non-decreasing function F : Φ→ 2Ω, where F (t) contains
the set of crashed processes at time t. An environment E is a set of failure
patterns. Although processes do not have direct access to F , each process has
a local failure detector module which gives hints about the processes that are
suspected of crash. Failure detector modules can in general make mistakes. A
failure detector is intuitively such a distributed oracle. A failure detector history
is a function H : Ω × Φ → 2Ω. Intuitively, H(p, t) characterizes the output of
the failure detector module hosted in process p, at time t. A failure detector
class D is a function that maps any failure pattern to a set of failure detector
histories.

An algorithm assigns a finite state machine to each p ∈ Ω. At time t ∈ Φ,
three tasks are performed atomically: (1) p picks a message non-deterministically
from the set of buffered incoming messages, or receives the null message λ, (2) p
gets the value of H(p, t) from its local failure detector module, (3) p performs a
computation based on the values from (1) and (2) and its current state, selects
a next state, and sends out a message (possibly none) to another process q ∈ Ω.

A configuration is a pair (P,M), where P is the Cartesian product of the
states of elements of Ω, and M is a multiset of messages, containing the mes-
sages buffered for delivery. The initial configuration is (P0, ∅), where P0 is the
Cartesian product of the initial states of the elements of Ω. A transition is a
triple θ = (pi,m, d), where pi is the process that takes the transition, m is the
message that pi receives, and d is the value that pi reads off its local failure
detector module. Clearly, θ is applicable to (P,M) only if m ∈ M ∪ {λ}. The
unique configuration resulted is denoted θ((P,M)).

The Kripke structure resulting from the asynchronous interleaving of the tran-
sitions of processes in Ω, is a triple (C, ĉ0, R), where C is a countable set of con-
figurations, ĉ0 = (P0, ∅), and R ⊆ C×C is defined as: (c, c′) ∈ R iff c′ = θ(c), for
an applicable θ. c ∈ C is reachable iff (ĉ0, c) ∈ R∗, the reflexive transitive closure
of R. We only consider reachable configurations. A trace in K = (C, ĉ0, R) is an
infinite sequence of configurations γ = c0, c1, . . ., such that ∀i ≥ 0. (ci, ci+1) ∈ R.
We say γ is rooted iff c0 = ĉ0. When T = t0, t1, . . . is an increasing sequence of
natural numbers and γ is rooted, σ = (γ, T) is an execution in K. For σ = (γ, T),
we abuse the notation and write F (σ) = ∪t∈TF (t).

The LTL Logic. We use a subset of LTL [33] for describing properties of Kripke
structures. For a finite set of atomic propositions AP ,

352 S. Orzan and M. Torabi Dashti

– If a ∈ AP , then a is an LTL formula.
– If φ and φ′ are LTL formulas, then so are ¬φ, φ ∨ φ′ and �φ.

As shorthands, we write φ ∧ φ′ for ¬(¬φ ∨ ¬φ′), and �φ for ¬�(¬φ).
Given a Kripke structure K = (C, ĉ0, R), a labeling function [·] : C → 2AP

assigns propositions to the configurations. Intuitively, for a configuration c, the
set [c] is the set of atomic propositions (elements of AP) true at c. For example,
(yp �= yq) ∈ [c] iff the value of yp is different from yq at configuration c. Other
propositions are likewise interpreted in the natural way.

Kripke structures are models of LTL formulas. We say K satisfies formula φ
iff for all rooted traces γ in K, γ |= φ. For γ being a trace in K, and φ an LTL
formula, the relation γ |= φ is defined below. We let γ = c0, · · · , cn, cn+1, . . ., and
write γn = cn, cn+1,

– γ |= a, with a ∈ AP , iff a ∈ [c0].
– γ |= ¬φ, iff ¬(γ |= φ).
– γ |= φ ∨ φ′, iff γ |= φ or γ |= φ′.
– γ |= �(φ), iff ∃n ≥ 0. γn |= φ.

Intuitively, � expresses eventual reachability, while � is used for invariants.

Problem Definitions. We now specify the requirements of the DC, NBAC and
FE problems using LTL formulas. As a syntactic shorthand, we use quantifiers
inside the formulas. Since Ω is finite, existential (∃) and universal (∀) quantifiers
over elements of Ω can be rewritten into a finite number of disjunctions and
conjunctions, respectively. Therefore, these formulas remain inside LTL.

Definition 1 (DC). Consider a set of items V = {0, 1}. Each process p ∈ Ω
starts with a pair (xp, yp), where xp ∈ V is its input item, and yp ∈ V ∪ {b} is a
write-once buffer containing the process’s output item. We assume ∀p ∈ Ω. yp =
b at the initial state. An algorithm is said to solve DC using a failure detector
class D for environment E, iff, for any crash failure pattern F ∈ E and any
H ∈ D(F), every rooted execution σ = (γ, T) in the Kripke structure resulting
from the algorithm satisfies the following properties:

– Termination: ∀p �∈ F (σ). �(yp �= b). 1

– Agreement: ∀p, q �∈ F (σ). �((yp �= b ∧ yq �= b)⇒ yp = yq).
– Validity: ∀p �∈ F (σ). �(yp = b ∨ (∃q ∈ Ω. yp = xq)). 2

Definition 2 (NBAC). Consider a set of items V = {0, 1}. Each process p ∈ Ω
starts with a pair (xp, yp), where xp ∈ V is its input item (also called vote),
and yp ∈ V ∪{b} is a write-once buffer containing the process’s output item. We
assume ∀p ∈ Ω. yp = b at the initial state. An algorithm is said to solve NBAC
using a failure detector class D for environment E, iff, for any crash failure
pattern F ∈ E and any H ∈ D(F), every rooted execution σ = (γ, T) in the
Kripke structure resulting from the algorithm satisfies the following properties:
1 At configuration c, yp �= b holds (i.e. (yp �= b) ∈ [c]) iff process p has assigned a value

to its local yp that is different from b, and similarly for other propositions.
2 This variant of the validity condition is sometimes called uniform validity [9].

Fair Exchange Is Incomparable to Consensus 353

– Termination: ∀p �∈ F (σ). �(yp �= b).
– Agreement: ∀p, q �∈ F (σ). �((yp �= b ∧ yq �= b)⇒ yp = yq).
– A-validity: (∃q ∈ Ω. xq = 0)⇒ ∀p �∈ F (σ). �(yp �= b⇒ yp = 0).
– C-validity: (F (σ) = ∅ ∧ ∀q ∈ Ω. xq = 1)⇒ ∀p ∈ Ω. �(yp �= b⇒ yp = 1).

Intuitively, in NBAC processes aim for output 1. Each process has however a right
to veto the outcome, by voting 0. We note that when every process votes 1, and
then one crashes, A-validity and C-validity enforce no particular outcome for the
NBAC problem. Thus, in such cases, both 0 and 1 are legitimate outcomes.

Now, we turn to the requirements of FE. Fair exchange aims at exchanging
items in a fair manner. Informally, fair means that either all the participants
receive a desired item in exchange for their own, or none of them does so. In the
literature, there are various definitions for multiparty FE, depending on which
topology is chosen, whether one unit or more are exchanged, etc., see [21,29].

Below, we focus on ring exchange patterns [21], where processes are sitting in
a ring and each process p receives its desired item from its predecessor and sends
its item to its successor. The underlying communication network is nonetheless
a fully connected graph. Since any permutation can be decomposed into disjoint
cycles [21], this pattern can capture any exchange situation in which each process
has one unit of item to offer and expects one unit of item in exchange.

The ‘+’ and ‘-’ operators on indexes of Ω are calculated modulo n, the size of
Ω. We confine the items exchanged to single bits. Our results can naturally be
extended to the case in which arbitrary strings of bits are subject to exchange.

Definition 3 (FE). Consider a set of items V = {0, 1}. Each process p ∈ Ω
starts with a pair (xp, yp), where xp ∈ V is its input item, and yp ∈ V ∪ {b,⊥}
is a write-once buffer containing the process’s output item. We assume ∀p ∈
Ω. yp = b at the initial state. An algorithm is said to solve FE using a failure
detector class D for environment E, iff, for any crash failure pattern F ∈ E
and any H ∈ D(F), every rooted execution σ = (γ, T) in the Kripke structure
resulting from the algorithm satisfies the following properties:

– Soundness: ∀p �∈ F (σ). �(yp �= b⇒ (yp = ⊥ ∨ yp = xp−1)).
– Timeliness: ∀p �∈ F (σ). �(yp �= b).
– Effectiveness: F (σ) = ∅ ⇒ ∀p ∈ Ω. �(yp �= b⇒ yp = xp−1).
– Fairness: ∀p �∈ F (σ). �((yp+1 = xp ∧ yp �= b)⇒ yp = xp−1).
– Consistency: ∀p, q �∈ F (σ). �((yp = ⊥ ∧ yq �= b)⇒ yq = ⊥).

Intuitively, ⊥ is the mark of unsuccessful exchanges. The soundness requirement
enforces that all unsuccessful correct processes assign ⊥ to their output buffer.
Since we are in the crash failure model, when p receives an item from p − 1, it
can be sure that the received item is indeed xp−1. In the presence of Byzantine
failures, in order to recognize the right item, p is usually assumed to have a
description of xp−1, which characterizes xp−1 “with enough precision” [1].

Timeliness forces termination of non-faulty processes. Effectiveness is a sanity
check, ensuring that if every process is correct, the exchanges are indeed suc-
cessful. A weaker variant of effectiveness is used in [7], where if F (σ) = ∅, then

354 S. Orzan and M. Torabi Dashti

only one (as opposed to all) execution of the algorithm is required to satisfy
∀p ∈ Ω. �(yp �= b⇒ yp = xp−1). Fairness states that if a non-faulty process re-
veals its item to its successor, it will certainly receive the item of its predecessor.
The consistency condition guarantees that either all the non-faulty processes ter-
minate successfully, or none of them do so. In some applications, the consistency
requirement is deemed unnecessary for FE, e.g. fair certified email protocols typ-
ically allow some of the correct processes being excluded from the exchange,
while the rest exchange their items, cf. [23]. However, some protocols, such as
fair contract signing protocols, explicitly rely on consistency, cf. [24].

Note that if a crash occurs (i.e. F (σ) �= ∅), the FE requirements do not enforce
the exchange to be unsuccessful (or to be successful). This is because crashes
may occur after faulty processes have sent out their items to the corresponding
processes, thus potentially allowing correct process to terminate successfully.

Remark 1. If a process p crashes after it has completed its role in an execution σ,
i.e. it has assigned a value to yp, formally we have p ∈ F (σ). It is however
unreasonable to allow the behavior of p after it has left the protocol to affect the
algorithm (and the requirements of the problem). Therefore for any execution σ,
if p assigns a value to yp at time t and p �∈ F (t), we assume p �∈ F (σ).

Solvability and Comparability. We say that a failure detector class D solves
problem B in environment E, iff there exists an algorithm using D and its execu-
tion in E results in a Kripke structure that satisfies B’s specification. A problem
B1 is harder than problem B2 for E, denoted by E 0 B2 → B1, iff any failure de-
tector class D that solves B1 in E, also solves B2 in E. 3 When ¬(E 0 B1 → B2)
and ¬(E 0 B2 → B1), we say B1 and B2 are E-incomparable. Problems B1 and
B2 are incomparable if they are E-incomparable for some environment E. When
E 0 B1 → B2 and E 0 B2 → B1, B1 and B2 are E-equivalent.

A failure detector class D1 is said to be weaker than failure detector class D2

in environment E, denoted E 0 D1 � D2, iff there exists a distributed algorithm
that, given the information provided by D2, can emulate D1 in E.

Failure Detector Classes �S, P and B. Of particular interest in this paper
are the eventually strong failure detector class �S, the perfect failure detector
class P and the stillborn failure detector class B. The brief description below is
mainly borrowed from [37]. For extensive discussions we refer to [9,37,25].

A failure detector class D is strongly complete if every crashed process is
eventually suspected by (failure detector modules at) every correct process, that
is for each execution σ = (γ, T), we have ∃t.∀t′ ≥ t.∀p ∈ F (σ), q �∈ F (σ). p ∈
H(q, t′). The class D is strongly accurate if no process is ever suspected if it has
not crashed. More precisely, if for each execution σ = (γ, T), we have ∀t.∀p, q �∈
F (t). p �∈ H(q, t). The class D is eventually weakly accurate if there exist a time
and a correct process that is not suspected after that time. More precisely, if for
each execution σ = (γ, T), we have ∃t.∃p �∈ F (σ).∀t′ ≥ t.∀q �∈ F (σ). p �∈ H(q, t′).
3 To be precise, harder here stands for at least as hard as.

Fair Exchange Is Incomparable to Consensus 355

Eventually strong detectors (�S) are the class of strongly complete and even-
tually weakly accurate failure detectors. Perfect detectors (P) are the class of
strongly complete and strongly accurate failure detectors. The stillborn detec-
tors (B), originally introduced in [25], behave as perfect detectors P if no process
initially crashes, i.e. F (0) = ∅. However, if F (0) �= ∅, then every failure detector
module at every correct process permanently “suspects” its own host process.
More precisely, we have ∀t.∀p �∈ F (t). H(p, t) = {p}. This is a way to inform the
correct processes that some other process has initially crashed.

From a practical point of view, as noted in [25], B and P effectively require
the same underlying synchronization mechanism. However, B is formally weaker
than P , and can serve as a technical means to differentiate between synchrony
requirements of FE and DC, as shown below.

3 FE and DC Are Incomparable

We show that DC and FE are incomparable in asynchronous environments, where
a majority of processes are correct (that is, |F (σ)| < n

2 for each execution σ),
while at least two processes can crash. Below, the symbol E is fixed to refer to
such an environment.4

Theorem 1. FE is incomparable to DC.

Proof. To prove this theorem, it is shown that DC and FE are E-incomparable.
We follow the proof technique of [25]. The proof consists of two parts:

1. To establish ¬(E 0 FE → DC), it is enough to prove that the failure detector
class �S does not solve FE in E, as lemma 1 below shows. It is a well-known
result that �S does solve DC in E, see [9].

2. To establish ¬(E 0 DC → FE), we make use of the stillborn failure detector
B. Lemma 2 below proves that B does solve FE. As shown in [25] (lemma
3.4), ¬(E 0 �S � B). Since �S is the weakest failure detector that solves
DC [8], i.e. �S can be emulated by any failure detector that solves DC, hence
B does not solve DC in E.

This completes the proof. �(

Lemma 1. FE is not solvable using �S in E.

Proof. We prove this lemma by showing that E 0 NBAC→ FE. As NBAC cannot
be solved in E using �S (see [25], lemma 3.1), it follows that FE can also not
be solved using �S in E.

Algorithm 1 (specified for process p, which as input receives (xp, yp), where xp

is the initial vote of the process) solves NBAC, given that a black-box procedure
to solve FE is available to the processes. Translating this pseudo-code to a finite
state machine (cf. section 2) is straightforward. The proposed construct asserts
E 0 NBAC → FE.
4 The condition that at least two processes can crash in E is required to ensure the

validity of ¬(E � �S � B), needed in the proof of theorem 1.

356 S. Orzan and M. Torabi Dashti

Algorithm 1. E 0 NBAC→ FE
1: let ip := xp;
2: for cntrp := 1 to n− 1 do
3: let op := b;
4: FE(ip, op);
5: if op = ⊥ then
6: let yp := 0;
7: quit;
8: else if op �= ⊥ then
9: let ip := ip × op;

10: end if
11: end for
12: let yp := ip;
13: quit;

Intuitive description of algorithm 1: We think of the processes who want to per-
form NBAC as being placed on a ring (conforming to the ring exchange pattern
of the FE procedure available to the processes). The algorithm consists of n− 1
rounds, where n = |Ω|. In each round, each process receives the vote of its prede-
cessor, and sends its vote to its successor, both using the FE procedure available
to it. Each process updates its vote to the product of its vote and the value
it receives from its predecessor (here, we could in effect use the min function
instead of product).

If no failure occurs, after n − 1 rounds, the initial vote of each process is
propagated through the entire ring. Finally, for each p, yp is assigned with
Πq∈Ωxq = xp1 × · · · × xpn . If ∀q ∈ Ω. xq = 1, then each yp is assigned with 1.
However, if there exists a process whose initial vote is 0, thenΠq∈Ω = 0, resulting
in yp = 0 for all p ∈ Ω.

Correctness of algorithm 1:

– (termination) The termination of this algorithm relies on the timeliness prop-
erty of FE. Note that the only possible blocking point in the code is the call
to FE; the rest of the code is executed purely locally. However, from timeli-
ness of FE (see definition 3) we know that ∀p �∈ F (σ). �(op �= b), i.e. in each
FE call, any correct process p eventually assigns a value to op.

– (agreement) Let σ = (γ, T) be an execution of the algorithm. We distinguish
two possibilities for σ: (1) F (σ) = ∅, (2) F (σ) �= ∅. In case (1), due to
effectiveness of FE, all the processes assign yp := Πq∈Ω xq, thus yp = yq
for any two processes p and q for which yp �= b and yq �= b. Agreement is
therefore satisfied in this case.

In case (2), let us assume the first crash happens at time t. We distinguish
three cases for t: (a) t is before the last (i.e. the n− 1th) call to FE occurs,
(b) t is placed in the time interval in which the last call to FE has started,
but has not finishes yet, (c) the last call to FE has completed before t.

In case (a), observe that all correct processes will assign yp := 0. This
is because of fairness and consistency of FE that any p �∈ F (σ) will receive

Fair Exchange Is Incomparable to Consensus 357

op = ⊥ in its next FE call, which is definitely forthcoming. In case (b), both
outcomes op = ⊥ and op �= ⊥ are possible. However, the outcome would in
any event be consistent, due to consistency of FE. Therefore, in both these
situations, yp = yq for any two processes p, q �∈ F (σ) for which yp �= b and
yq �= b. In case (c), all the correct processes will assign yp := Πq∈Ω xq,
hence meeting agreement. This is due to effectiveness of FE that any process
receives op �= ⊥. We remark that a crash after the last call to FE is not
observed by the FE procedure (cf. remark 1). Agreement is thus satisfied in
case (2) as well.

– (A-validity) Consider an execution in which no process crashes and a correct
process votes 0. Then, due to effectiveness of FE, clearly Πq∈Ω xq = 0, hence
follows �(yp �= b ⇒ yp = 0) for any p. This proves A-validity. For the case
(at least) a process crashes, we reuse the proof of the agreement property
above. We note that for correct processes two outcomes are possible: (1)
all the correct processes assign yp := 0, thus meeting A-validity, or (2) all
the correct processes assign yp := Πq∈Ω xq. In the latter case, if there is a
process q with xq = 0, then clearly yp is assigned with 0 for all correct p,
thus satisfying A-validity. If there is no process who has voted 0 initially,
then the antecedent of the A-validity condition (i.e. ∃q ∈ Ω. xq = 0) is false.
A-validity holds for such an execution automatically.

– (C-validity) To check C-validity we only need to consider executions in which
F (σ) = ∅ ∧ ∀q ∈ Ω. xq = 1. Observe that if no process crashes and ∀q ∈
Ω. xq = 1, then Πq∈Ω xq = 1 due to effectiveness of FE, thus �(yp �= b ⇒
yp = 1) for any p. The C-validity condition follows from this.

This completes the proof of the correctness of algorithm 1. �(

Below, we use send→p(m) and recv←p(v) actions to indicate sending message
m to process p and receiving a message from process p and assigning the local
variable v with the received content, respectively. Since there is a designated
communication channel between every two processes (recall that the communi-
cation graphs are fully connected, section 2), no confusion may arise regarding
the source or destination of the messages exchanged using these actions.

Lemma 2. FE is solvable using B in E.

Proof. We prove this lemma by showing that E 0 FE → NBAC.5 As NBAC can
be solved in E using B (see [35], and lemma 3.3 in [25]), it follows that FE can
also be solved in E using B.

To solve FE, algorithm 2 is executed by each process p ∈ Ω. Note that this
algorithm assumes access to a black-box procedure for solving NBAC. Translating
this pseudo-code to a finite state machine (cf. section 2) is straightforward.

5 A reduction of FE to the biased consensus problem is given in [2], for synchronous
systems. We note that this reduction cannot be used here, because of asynchrony in
our model. In particular, recv actions may see only empty messages for an arbitrary
(though not infinite) number of times.

358 S. Orzan and M. Torabi Dashti

Algorithm 2. E 0 FE → NBAC
1: send→p+1(xp);
2: let wp := 1; let vp := λ;
3: repeat
4: recv←p−1(vp);
5: if vp = λ then
6: let ip := 0;
7: else
8: let ip := 1;
9: end if

10: if local time out is reached then
11: let wp := 0;
12: end if
13: until wp = 0 ∨ ip = 1
14: let zp := b;
15: NBAC(ip, zp);
16: if zp = 1 then
17: let yp := vp;
18: else
19: let yp := ⊥; % in case zp = 0
20: end if
21: quit;

Intuitive description of algorithm 2: Any correct process sends its item to its
successor, and waits to receive the item of its predecessor. If a process p does
not receive its desired item within a certain time interval, locally specified by p
itself, it will time out and stop waiting, reflected in the code by letting wp := 0
(over asynchronous channels, messages may be delivered with an arbitrary finite
delay). Any correct process, therefore, will eventually exit its repeat loop.

The call to the NBAC procedure, available to the processes, is meant to ensure
that if a correct process p has not received xp−1, then every correct process q
will respect fairness and consistency, and set yq := ⊥.

Notice that it cannot occur that a correct process p assigns λ to yp. This is
because if “let yp := vp;” (line 17 of the code) is executed by p, then p must have
set ip := 1, due to A-validity of NBAC. This, in turn, implies vp �= λ.

If no failure or time-out occurs, eventually all the items reach their destina-
tions, and only then does the call to NBAC return zp := 1 for all p ∈ Ω. This lets
all the participants assign the received items to their output buffers, and quit.

Correctness of algorithm 2: Below, we argue for the correctness criteria from
the view point of a correct process, called p. The arguments can naturally be
used for other correct processes as well.

– (soundness) Since yp is assigned only with either of ⊥ or vp, which contains
xp−1, the soundness requirement of FE is met. We emphasize that in the
crash failure model, the value sent by p − 1 to p, if it ever arrives, is xp−1.
This is simply because a faulty process in this model, by definition, does not
tamper with data.

Fair Exchange Is Incomparable to Consensus 359

– (timeliness) Timeliness for p hinges on the termination condition for NBAC.
Note that except for the NBAC call, all the actions (including setting a
definite time out) performed by p are local. From definition 2, we know that
�(zp �= b), i.e. p will eventually receive a value for zp. Process p would then
assign the proper value to yp, and quit the exchange. Therefore, γ |= �(yp �=
b) in all σ = (γ, T), where p �∈ F (σ) (recall that F (σ) ∈ E).

– (effectiveness) We only need to consider executions σ for which F (σ) = ∅.
Whennoprocess crashes andmessages are delivered in a timelymanner 6, there
is a point in time at which all the correct processes have received their desired
items. Then, any such correct process p calls the NBAC procedure by letting
ip := 1. Therefore, we have ∀q ∈ Ω. iq = 1. This, and F (σ) = ∅, according to
C-validity of NBAC, guarantee zp �= b⇒ zp = 1, for all p ∈ Ω. Since yp will be
assigned with vp in this case, we have ∀p ∈ Ω. �(yp �= b⇒ yp = xp−1).

– (fairness) To check fairness for process p, we need to consider only executions
σ = (γ, T) in which p �∈ F (σ). Now consider any configuration c on γ such that
(yp+1 = xp) ∈ [c] (i.e. process p + 1 has assigned xp to yp+1 in configuration
c). According to remark 1 we get p+ 1 �∈ F (σ). Two cases are then possible:

1. (yp �= b) ∈ [c]: This is the case in which p has assigned some value
to yp. According to soundness (see above), we have (yp = ⊥) ∈ [c]
or (yp = xp−1) ∈ [c]. The latter situation would immediately imply
fairness. However, the situation (yp = ⊥) ∈ [c] can only happen if (zp =
0) ∈ [c]. According to agreement of NBAC, this implies (zp+1 = 0) ∈ [c].
Consulting algorithm 2, this shows that process p+1 should have assigned
yp+1 := ⊥, contradicting the assumption that yp+1 = xp. Hence, the
situation (yp = ⊥) ∈ [c] cannot happen.

2. (yp = b) ∈ [c]: This is the case p has not yet assigned any value to yp. We
split this into two cases: (a) p has received xp−1, (b) p has not received
xp−1. Note that since p + 1 has yp+1 = xp, NBAC(ip, zp) should have
returned zp = 1 (a result of the agreement property of NBAC). Now, in
case (a), p can (and according to timeliness will eventually do) assign
yp := vp, where vp = xp−1. This shows that γ |= �(yp �= b⇒ yp = xp−1),
hence attaining fairness. In case (b), since p has not received xp−1, clearly
p has set ip := 0 in its call to NBAC. Since p + 1 �∈ F (σ), according to
A-validity of NBAC, γ |= �(zp+1 �= b ⇒ zp+1 = 0). This contradicts
(yp+1 = xp) ∈ [c], as zp+1 = 0 enforces yp+1 = ⊥ in algorithm 2.

This shows that the algorithm achieves fairness.
– (consistency) To check consistency, we confine to executions σ = (γ, T) in

which p, q �∈ F (σ), and yp �= b, yq �= b. Towards a contradiction, assume there

6 Although needed in this step of our proof, we note that effectiveness in definition 3
places no conditions on processes not timing out, or messages being delivered timely. In
general, if processes want to abandon the exchange, e.g. by early time-outs, no protocol
can achieve its goals. This is indeed reflected in the definition of effectiveness given by
Asokan (see page 9 in [1]). We feel putting the timeout condition in the formal definition
of FE would, however, unnecessarily clutter the presentation, and make the definition
rather low-level.

360 S. Orzan and M. Torabi Dashti

is a configuration c on γ, in which (yp = ⊥) ∈ [c] and (yq �= ⊥) ∈ [c]. According
to soundness, (yq = xq−1) ∈ [c]. Therefore, q should have received zq = 1 in its
NBAC call. The agreement property of NBAC, nevertheless, states that zp = 1
as well. Now, we distinguish two cases: (1) If (ip = 0) ∈ [c], then the A-validity
condition of NBAC has been violated by returning zp = 1, thus reaching a
contradiction. (2) If (ip = 1) ∈ [c], then p must have received xp−1. From the
argument above, we know (zp = 1) ∈ [c]. Therefore, p would, according to
algorithm 2, set yp := xp−1 in this situation, contradicting the assumption
that (yp = ⊥) ∈ [c]. This shows no such configuration c can belong to γ.

This completes the proof of the correctness of algorithm 2. �(

Remark 2. Suppose some process q crashes in algorithm 2, while all other pro-
cesses are correct. If q crashes after sending its item to q+1, the item may arrive
at q + 1 in time. We note that even if everything goes well with all the other
processes in this scenario (i.e. they all vote 1 by letting ip := 1), the outcome of
the NBAC call is not guaranteed to be 1 nor 0, because q has crashed, no correct
process has voted 0, while q could have voted 0 or 1. This may (wrongly) seem
to violate effectiveness of FE, since despite all the correct processes receiving
their desired items, the exchange may still terminate unsuccessfully (in case
NBAC returns zq+1 = 0). We remark that because F (σ) �= ∅ in this scenario, the
effectiveness condition does not enforce a successful exchange.

The following corollary is straightforward, hence we omit the proof.

Corollary 1. FE and NBAC are E-equivalent.

The connection between FE and NBAC has been noticed in previous studies,
such as [38] and [26]. These however rely only upon informal arguments.

4 Related Work

In this section we discuss how our incomparability result relates to the existing
literature on FE and DC.

The incomparability of FE to DC (theorem 1) may wrongly seem to contradict
the result of [30], where it is shown that in any asynchronous system of two
processes, while one process is prone to crash failure, FE is harder than DC (that
is DC → FE). The fact that theorem 1 assumes a majority of correct processes
should clarify this discrepancy from a technical point of view.

To give an intuitive reason for this distinction, let us proceed with consider-
ing a scenario in which one process crashes, and then all the correct processes,
using failure detectors, learn that this process has crashed. In FE, these correct
processes can all safely return ⊥ and quit the exchange, while in DC, they still
need to reach a consensus on what value they would return (they cannot all re-
turn 0, because it would violate the validity condition if they all had proposed 1,
and so forth). An interesting special case is when only two processes are engaged
in the protocol, while one process is prone to crash: The aforementioned diffi-
culty in DC does not arise, as the correct process can simply output its own input

Fair Exchange Is Incomparable to Consensus 361

value. This is exactly why the reduction given in [30] works for two processes
(and not more), when one process is prone to the crash failure.

The fair exchange problem in the security literature is usually studied in
the Dolev-Yao hostile environment model [13]. In this model, the attacker is a
(cryptographically bounded) Byzantine process, sitting in the center of a star-
like network. All the correct processes therefore communicate via the attacker.
The network connectivity 7 in such graphs is therefore 1. This implies DC and
FE are not solvable in such environment, as the attacker can simply drop all the
transmitted messages, preventing termination, cf. [36]. 8

A conventional way to circumvent this difficulty in deterministic systems 9 is to
assume trusted parties which are connected to other processes via resilient chan-
nels. A resilient channel guarantees to eventually deliver all the messages sub-
mitted through it. Note that adding resilient channels to the system weakens the
Dolev-Yao model, in the sense that the attacker node cannot indefinitely delay (or
completely suppress) certain messages. For more on this approach see, e.g., [1].

Another way to weaken the Dolev-Yao intruder is via introducing trusted
computing devices at each user node, in contrast to a central trustee. These
devices can then be used to perform distributed tasks, such as DC or FE. Al-
though these trusted devices are operated by non-trusted malicious entities, it
is assumed that they can establish secure channels between themselves, e.g. us-
ing encryption. In case the trusted devices are stateful, once the attacker drops
a message destined to one of them, the device will behave as if it has crashed
(i.e. does not receive or send any message or do any internal computation, unless
that particular message arrives). The model used in this paper potentially repre-
sents such environments. Practical implementations of such distributed systems
have recently attracted much interest; for instance see the literature on using
guardians [3,2] and TrustedPals [19,11] to realize FE.

5 Concluding Remarks

In this paper, we establish that solving the fair exchange problem is in general
not harder than reaching consensus in a distributed system. The model used for
proving this result consists of processes connected via asynchronous reliable chan-
nels, while processes are assumed to be prone to crash failures. As a side result, it
is also shown that in this model, fair exchange is equivalent to the non-blocking
atomic commit problem, i.e. any failure detector class that solves fair exchange,
also solves non-blocking atomic commit in this model, and vice versa.

7 A network has connectivity c iff at least c nodes need to be removed to disconnect
the network.

8 To solve DC in synchronous systems in presence of f Byzantine processes, the net-
work connectivity needs to be at least 2f + 1, e.g. see [17].

9 Probabilistic protocols were indeed among the first solutions proposed for the FE prob-
lem, e.g. see [5,14]. These are however beyond the scope of this paper; the reader is
instead referred to [20] for a comprehensive survey.

362 S. Orzan and M. Torabi Dashti

As future research, it must be interesting to explore the practical implications
of our incomparability result for solving FE. A related uninvestigated question
pertains to the existence of models in which fair exchange can be differentiated
from non-blocking atomic commit.

Acknowledgment. We are grateful to Wan Fokkink and Felix Freiling for many
helpful discussions. M. Torabi Dashti was partially supported by the FP7-ICT-
2007-1 Project no. 216471, “AVANTSSAR: Automated Validation of Trust and
Security of Service-oriented Architectures”.

References

1. Asokan, N.: Fairness in electronic commerce. PhD thesis, University of Waterloo,
Canada (1998)

2. Avoine, G., Gärtner, F., Guerraoui, R., Vukolić, M.: Gracefully degrading fair
exchange with security modules. In: Dal Cin, M., Kaâniche, M., Pataricza, A.
(eds.) EDCC 2005. LNCS, vol. 3463. Springer, Heidelberg (2005)

3. Avoine, G., Vaudenay, S.: Optimal fair exchange with guardian angels. In: Chae,
K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908. Springer, Heidelberg (2004)

4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988, pp. 1–10.
ACM Press, New York (1988)

5. Blum, M.: Three applications of the oblivious transfer: Part I: Coin flipping by
the telephone; part II: How to exchange secrets; part III: How to send certified
electronic mail. Technical report, Dept. EECS, UC Berkeley (1981)

6. Buttyán, L., Hubaux, J., Capkun, S.: A formal model of rational exchange and
its application to the analysis of Syverson’s protocol. Journal of Computer Secu-
rity 12(3-4), 551–587 (2004)

7. Chadha, R., Kanovich, M., Scedrov, A.: Inductive methods and contract-signing
protocols. In: CCS 2001, pp. 176–185. ACM Press, New York (2001)

8. Chandra, T., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

9. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

10. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols.
In: STOC 1988, pp. 11–19. ACM Press, New York (1988)

11. Cortiñas, R., Freiling, F., Ghajar-Azadanlou, M., Lafuente, A., Larrea, M., Draque
Penso, L., Soraluze Arriola, I.: Secure failure detection in TrustedPals. In: Masuzawa,
T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838. Springer, Heidelberg (2007)

12. DeMillo, R., Lynch, N., Merritt, M.: Cryptographic protocols. In: STOC 1982, pp.
383–400. ACM Press, New York (1982)

13. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. on Infor-
mation Theory IT-29(2), 198–208 (1983)

14. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

15. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
Report 175, Computer Science Dept., Technion, Haifa, Isreal (March 1980)

16. Ezhilchelvan, P., Shrivastava, S.: A family of trusted third party based fair-
exchange protocols. IEEE Trans. Dependable and Secure Computing 2(4) (2005)

Fair Exchange Is Incomparable to Consensus 363

17. Fischer, M., Lynch, N., Merritt, M.: Easy impossibility proofs for distributed con-
sensus problems. Distrib. Comput. 1(1), 26–39 (1986)

18. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

19. Fort, M., Freiling, F., Draque Penso, L., Benenson, Z., Kesdogan, D.: TrustedPals:
Secure multiparty computation implemented with smart cards. In: Gollmann, D.,
Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189. Springer, Heidel-
berg (2006)

20. Franklin, M., Galil, Z., Yung, M.: An overview of secure distributed computing.
Technical Report TR CUCS-008-92, Columbia University (March 1992)

21. Franklin, M., Tsudik, G.: Secure group barter: Multi-party fair exchange with semi-
trusted neutral parties. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465. Springer,
Heidelberg (1998)

22. Garbinato, B., Rickebusch, I.: A topological condition for solving fair exchange in
byzantine environments. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS,
vol. 4307. Springer, Heidelberg (2006)

23. Gomila, J., Capellà, M., Rotger, L.: A realistic protocol for multi-party certified
electronic mail. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433.
Springer, Heidelberg (2002)

24. González-Deleito, N., Markowitch, O.: Exclusion-freeness in multi-party exchange
protocols. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433. Springer,
Heidelberg (2002)

25. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems
with failure detectors. Distributed Computing 15(1), 17–25 (2002)

26. Liu, P., Ning, P., Jajodia, S.: Avoiding loss of fairness owing to failures in fair data
exchange systems. Decision Support Systems 31(3), 337–350 (2001)

27. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
28. Micali, S.: Simple and fast optimistic protocols for fair electronic exchange. In:

PODC 2003, pp. 12–19. ACM Press, New York (2003)
29. Mukhamedov, A., Kremer, S., Ritter, E.: Analysis of a multi-party fair exchange

protocol and formal proof of correctness in the strand space model. In: S. Patrick,
A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570. Springer, Heidelberg (2005)

30. Pagnia, H., Gärtner, F.: On the impossibility of fair exchange without a trusted
third party. Technical Report TUD-BS-1999-02, Department of Computer Science,
Darmstadt University of Technology, Germany (March 1999)

31. Pagnia, H., Vogt, H., Gärtner, F.: Fair exchange. Comput. J. 46(1), 55–75 (2003)
32. Pfitzmann, B., Schuner, M., Waidner, M.: Optimal efficiency of optimistic contract

signing. In: PODC 1998, pp. 113–122. ACM Press, New York (1998)
33. Pnueli, A.: The temporal logic of programs. In: FOCS 1977. IEEE, Los Alamitos

(1977)
34. Rabin, M.: How to exchange secrets with oblivious transfer. Technical Report TR-

81, Harvard University (May 1981)
35. Skeen, D.: Nonblocking commit protocols. In: SIGMOD Conference on Manage-

ment of Data, pp. 133–142. ACM Press, New York (1981)
36. Syverson, P.: A different look at secure distributed computation. In: CSFW 1997,

pp. 109–115. IEEE Computer Society Press, Los Alamitos (1997)
37. Tel, G.: Introduction to distributed algorithms, 2nd edn. Cambridge University

Press, Cambridge (2000)
38. Tygar, J.: Atomicity in electronic commerce. In: PODC 1996, pp. 8–26. ACM Press,

New York (1996)

Automatic Generation of CSP || B Skeletons

from xUML Models

Edward Turner, Helen Treharne, Steve Schneider1, and Neil Evans2

1 Department of Computing, University of Surrey
2 AWE plc Aldermaston

Abstract. CSP ‖ B is a formal approach to specification that combines
CSP and B. In this paper we present our tool that automatically trans-
lates a subset of executable UML (xUML) models into CSP ‖ B, for the
purpose of verification and increased validation at the early stages of a
software engineering development lifecycle. The tool is being developed
for our industrial collaborators, AWE plc, in order to strengthen their
software engineering process which uses xUML. As part of this process,
AWE and Kennedy Carter Ltd. have built an xUML to SPARK Ada
code generator, which is also employed to contribute a higher level of
safety assurance at the latter stages of the lifecycle. Our tool is based on
a model-text transformation strategy that uses the xUML meta-model to
map to CSP and B constructs. The tool generates machine readable CSP
and B; we present a simple example to demonstrate the transformation
strategy, and the analysis of the resulting specification.

1 Introduction

In this paper we discuss our approach to providing formal reasoning support for
UML platform-independent models. The approach is being developed as part
of a collaborative project with AWE plc. The application domain of interest is
safety critical and therefore it is essential to achieve a high level of assurance in
the safety of the models, i.e., they adhere to desirable behavioural properties and
are deadlock-free. Current industrial practice involves validating UML models
by examining and/or running numerous simulations. Our aim is to automatically
generate CSP ‖ B [1] specifications, from executable UML (xUML) models [2],
which can be formally analysed. The challenge is to identify an appropriate
translation mapping with tool support so that a specifier’s effort is spent on
conducting formal analysis rather than on defining formal models.

The project will consider two different routes for developing a CSP ‖ B spec-
ification generator. Firstly, we will develop a specification generator using the
xUML toolset provided by Kennedy Carter Ltd. (KC). The toolset offers the
capability of code generation into C, C++ or Java from platform independent
models. AWE have been working alongside Kennedy Carter to develop SPARK
Ada translators from xUML. Thus, our tool will enable formal analysis sup-
port to fit into the AWE software development life cycle. Secondly, we will also
investigate building a model generator using the Epsilon [3] toolset developed

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 364–379, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Generation of CSP || B Skeletons from xUML Models 365

at York University. The contribution of this paper is a description of the first
tool that we are currently building. The paper also demonstrates the need to
develop an analysis framework so that added value can be gained from gener-
ating the formal CSP ‖ B specification. The analysis framework is the way the
specifications are verified for deadlock freedom and consistency. The process of
generating the specifications themselves is also valuable because it forces us to
think about ambiguities within an xUML model and resolves what are often
implicit assumptions in xUML models.

We have chosen CSP ‖ B as the underlying formalism because it provides a
clean separation between control (in CSP [4]) and state (in B [5]). Moreover, its
decompositional verification framework [1,6] will be particularly relevant when
it comes to analysing large xUML models. Much research exists on developing
formal tool support for UML, including [7,8]. Nonetheless, few focus on what
else needs to be included in formalising large xUML models.

The paper begins with an overview of xUML and CSP ‖ B. Section 2.1 il-
lustrates a small running example. In Section 4 we present our tool which im-
plements a model-text transformation strategy from xUML models to CSP ‖ B
specifications. It takes as input an xUML model written using the KC toolset, it
is then invoked from within that toolset, and the output is a machine readable
CSP ‖ B specification. The strategy covers a large subset of concrete xUML and
throughout the paper we identify restrictions on this subset. In Section 5 we dis-
cuss what analysis framework could be appropriate for the generated CSP ‖ B
specifications and Section 6 concludes with related work.

2 Executable UML

xUML is a coherent subset of UML 2.0 and supports six diagrams: Use Case,
Domain Models, Sequence Diagrams, Class Diagrams, Collaboration Diagrams,
and State Charts. In this paper we focus on class diagrams and state charts, since
these are the main diagrams that are used when constructing xUML models using
the Kennedy Carter toolset. We will refer to an xUML model comprising the
class diagram and associated state charts as the model throughout the paper,
and the corresponding CSP ‖ B specification as the specification.

We also restrict ourselves to examining one domain within a model. Class
diagrams enable the classes of a model to be defined together with the rela-
tionships between them. We currently support associations in xUML, which are
binary by definition, but we do not handle generalisations. Class diagrams can
have at most one state chart. The behaviour of instances (objects) of classes are
described using state charts, each of which consists of a set of states and signals.
Each state can define an entry action, whereas exit actions are not permitted. An
action is defined by a sequence of statements described using the Action Speci-
fication Language (ASL) [9], which is a more low level language than OCL [10],
and whose statements have no side effects and execute immediately. ASL state-
ments can change the state of a system, be grouped into blocks, and execute
concurrently. Hence, state actions can interleave their statements.

366 E. Turner et al.

Fig. 1. Class diagram of the Lighting System

The ASL can be categorised into statements that perform object management,
relationship management, state chart communication, sequential logic and as-
signments. The ASL we use in this paper is given as follows: create and delete,
are used to create new instances and delete existing ones, respectively; link and
unlink, are used to link and unlink instances over a specified association, re-
spectively; -> (pronounced ‘navigate via’), is used to retrieve instance handles
over an association; generate, is used to send signals to a specified instance;
and <instance handle>.<attribute list> = <value list> is used for writ-
ing to attributes of objects. We do not support ASL statements that deal with
timers and access to methods from other domains.

Methods of class diagrams are also defined in terms of ASL. Currently, our
work allows only for the definition of object scoped methods, and we must restrict
the ASL they use, since methods will be mapped to B operations. For example,
ASL for-loops are not permitted in methods and attribute values can only be
written to once within an ASL block.

Traversing between states is achieved by processing signals on a queue, details
of which are given in Section 4.3. A signal emerging from an action cannot be
processed until the action has completed its execution (also known as run to
completion). To ensure a complete description of behaviour for a state chart,
xUML requires the specifier to define one of three effects of receiving any signal
in any state: a signal can cause a transition between states and the execution of
the entry action of the successor state; a signal can be ignored ; or it may cause
a run-time error (denoted a cannot happen effect).

2.1 Running Example

Consider an example lighting system consisting of two classes representing but-
tons and lights, shown in Figure 1. A button instance is paired with one light
instance, and vice-versa, such that when a button is switched on, its attached
light illuminates. Similarly, when a button is turned off, its light also turns off.
Larger examples provided by KC have also been examined.

The only data we model explicitly is the boolean attribute, status, in the
Light class, which denotes whether or not a light is illuminated. No object scoped
methods are defined (however, our tool does support generating operations cor-
responding to object scoped methods and attribute accessor methods as shown
in Section 4). The desired behaviour of button and light instances is captured
by the state charts given in Figures 2 and 3, respectively.

Automatic Generation of CSP || B Skeletons from xUML Models 367

Fig. 2. State chart for Buttons Fig. 3. State chart for Lights

Table 1. Effects of Button Signals

State buttonOn buttonOff
Off On Ignore
On Ignore Off

Table 2. Effects of Light Signals

State switchOn switchOff
Off On Ignore
On Ignore Off

We now describe the interaction of these state charts, so that lights can be
turned on and off. Consider an instance of both classes in their Off states. To
turn on the light, we must send a buttonOn signal to the button. In our model,
this task is neither the responsibility of buttons or lights; instead, it is exter-
nally generated. Receipt of this signal by the button triggers transition to its
On state, and the execution of the defined entry action. Accordingly, we first
obtain an instance handle to the attached light through the ASL navigation
statement: light = this -> R1; where this refers to the instance handle of
the button and R1 is the name of the association being navigated. Subsequently,
a switchOn signal is sent to the light, using the signal generation statement:
generate LL1:switchOn() to light1. The attached light can process this sig-
nal and move to its own On state even if the button was still processing any
remaining ASL statements (in this case there are none). The actions in this
state then sets status to TRUE, to denote the light has been successfully illumi-
nated. The procedure for turning off a light follows a similar pattern, but where
the trigger is the buttonOff signal, which is also external.

Tables 1 and 2 show the effects of signals in particular states of our model.
For example, we define in Table 1 that when a button is in the Off state and
it processes a buttonOff signal, the signal should be ignored and discarded.
Similarly, we ignore all unexpected signals.

Typical object scenarios are described in initialisation segments, e.g., to set
up linked lights and buttons. Test methods can then be defined to generate

1 Identifiers of signals and methods are made unique by the KC tool using automat-
ically generated prefixes. Therefore, switchOn and switchOff signals are denoted
by LL1:switchOn() and LL2:switchOff().

368 E. Turner et al.

signals to evolve system behaviour. Both these additions to an xUML model are
achieved using ASL statements.

3 CSP || B

CSP ‖ B is an approach that combines an event-based notation with a state-
based notation to facilitate the specification of systems with both complex flows
of control and structured data. A degree of separation between the CSP [4] and
B [5] aspects is maintained so that we can retain the use of existing tool support.
The FDR model checker [11] and ProB [12] are both used to support the analysis
and verification of CSP ‖ B specifications.

CSP process expressions can be constructed from several operators, the ones
used in this paper are: event sequencing (→), (indexed) external choice (�),
(indexed) interleaving (|||), (indexed) alphabetised parallel composition (‖), and
interface parallel (P ‖

S
Q where S is the synchronisation set). We also use con-

ditional expressions (if then else) and local definitions (let within).
The failures of a process P consists of all (tr ,X) where tr is a trace and X

is a set of events P can refuse (see [13,14]). A trace tr is said to be a trace of a
process P if the process can perform the sequence of events in tr . The refinement
relation in the failures model is denoted by �F . The refinement relation in the
traces model is denoted by �T .

B specifications are structured using machines. Each machine contains some
state describing the objects of interest, and operations to manipulate the state.
A B machine also contains an invariant that declares properties of the state
variables, and specifies what must be preserved by the execution of operations.
Functions and relations are used to model complex state, e.g., R−1, gives the
relational inverse of a relation R and, given a set U , the relational image R[U]
is the set of objects (in the range of R) related to the elements of U .

A B operation takes the form PREP THENS END where P is a predicate
and S represents the statements that update variables. In CSP ‖ B we are par-
ticularly interested in operations without guards. The kind of B machines that
we define are referred to as non-blocking. Hence, any deadlock in a CSP ‖ B
specification is as a result of the CSP processes deadlocking.

In CSP ‖ B, the events of a CSP process trigger operation calls of a B ma-
chine, and the process is said to ‘control’ the B machine because its events cause
state updates within the B machine via the operation calls. We refer to CSP
processes as controllers. Structured events are used to pass values between the
controller process and the B machine. For example, an event e!x?y, that out-
puts a value x and binds the variable y to an input value, corresponds to an
operation call y ←− e(x) that inputs x and outputs a value y. These events
can contain a number of inputs/outputs or none. Our previous work has jus-
tified that it is meaningful to combine CSP processes and B machines [1]. We
combine collections of controller/machine pairs using the architecture identified
in [15] and shown in Figure 4. The association machine ASSOC is controlled by
the synchronising events of two processes P and Q . These processes define the

Automatic Generation of CSP || B Skeletons from xUML Models 369

Fig. 4. Overview of CSP || B architecture

collections of controllers representing the behaviour of instances of classes and
the machines, M1 and M2, record and update the instances’ attribute informa-
tion. The ASSOC machine tracks the associations that exist between instances.

4 Automatic Generator

The overall architecture of our tool is given in Figure 5. By importing an xUML
model into our tool, we populate a suite of meta-models describing various as-
pects of the system. Our tool primarily relies on two of these; the representation
of entities of the imported system, such as the classes and state charts used (part
of the xUML meta-model), and the ASL used by system entities (stored within
the ASL meta-model). The pattern for generating CSP and B then comprises
a procedure that initiates a guided traversal of these meta-models, to access
certain data, and the application of our transformation rules to obtain the ele-
ments of the formal specifications. The following sections discuss the steps for
generating CSP and B from the meta-models.

A

xUML Model

xUML Metamodels

Generator

Transformation
Rules

...
.
.
.

...
B

...

...

.

.

.
Specification+

S1 S2

Fig. 5. The main components of our tool

4.1 Translating ASL to Skeleton B Machines

A B machine is created for each class in the class diagram of the xUML system.
Figure 6 presents the B machine generated by our tool for the light class. A
set, llIH , is used to specify the instance handles of the class, a subset of which,
llObj , captures the current light instances in the system. The approach we use

370 E. Turner et al.

MACHINE
LIGHT MCH

SEES
Bool TYPE

SETS
llIH = { ll0 , ll1 }

VARIABLES
llObj , status

INVARIANT
llObj ⊆ llIH ∧
status ∈ llObj → BOOL

INITIALISATION
llObj := ∅ ‖
status := ∅

OPERATIONS
LL create (ih) �=
PRE ih ∈ llIH ∧ ih �∈ llObj THEN
llObj := llObj ∪ { ih } ‖
status (ih) := false

END ;
vv ←− LL default get status (ih) �=
PRE ih ∈ llObj THEN
vv := status (ih)

END ;
LL default set status (ih , val) �=
PRE ih ∈ llObj ∧ val ∈ BOOL THEN
status (ih) := val

END
END

Fig. 6. Skeleton machine for the Light class

link R1 (ll ih , b ih) �=
PRE ll ih ∈ llObj ∧ b ih ∈ bObj

ll ih �∈ dom (R1) ∧ b ih �∈ ran(R1)
THEN
R1 := R1 ∪ { ll ih �→ b ih }

END

ll ih ←−navigate R1 from B (b ih) �=
PRE b ih ∈ bObj ∧ b ih ∈ ran (R1)
THEN
ll ih := R1−1 (b ih)

END

Fig. 7. Example B operations for managing the R1 association

resembles the B style, presented in [7], for modelling objects and continues our
previous work developed in [16]. Attributes are represented by functions, and
simple operations are generated to query or modify their values. In addition,
operations are provided to support the dynamic creation of objects. For example,
LL create creates a light instance and explicitly sets the status variable. In
general, other methods of a class are transformed to skeleton B operations that
specify the typing of input and output variables.

A single B machine is used to capture all the relationships used within an
xUML model. For our example, a machine called ASSOC is generated, which
defines the variable, R1, and its invariant representing the relationship between
llObj and bObj (current button instances), as follows:

R1 ∈ llObj ↔ bObj

The relation can be specified in terms of the llObj and bObj variables since they
are accessible via the USES structuring mechanism within the B-Method. The
multiplicity constraints of R1 need to be maintained throughout the lifetime of
the objects but the constraints are not discharged until we consider model con-
sistency in Section 5.2. The ASSOC machine defines link R1 and unlink R1
operations linking/unlinking lights and buttons, and navigate R1 from LL
and navigate R1 from B to traverse the association from either side, two of
which are given in Figure 7.

Automatic Generation of CSP || B Skeletons from xUML Models 371

4.2 Translating ASL to CSP

The general procedure for generating CSP for object behaviour is outlined in
Algorithm 1. For each class c in an xUML system we define a controller process.
Thus, for the button class, 〈c〉 CTRLS is instantiated as B CTRLS , to repre-
sent the behaviour of all button instances, shown in Figure 8, where B denotes
the class key letter and b denotes the instance handle to which it applies. This
interleaving process means that all buttons instances act independently and only
interact via the signal queues. In general, instances may be composed in paral-
lel; the synchronising events would be those corresponding to creation/deletion
methods, object scoped methods and attribute accessor methods. For all in-
stances a create event initially occurs and the subsequent behaviour is defined
using the B CTRL parameterised process. For example, B create!b1, where b1
is a particular button instance, is a create event which triggers the correspond-
ing B operation so that a new object is added, i.e., b1 is added to bObj . The

Algorithm 1. An outline for generating CSP for object lifecycles
for all c in classes of xUML model m do

if c has a state chart then
〈c〉 SCTRL(ih) = let /* state chart behaviour for instance handle ih */
for all states, s in sc do
〈c〉 〈s〉 ENTRY = sequence entry actions ending in〈c〉 〈s〉 STATE

〈c〉 〈s〉 STATE = �
se∈{signal effects}

se → 〈c〉 〈s〉 STATE

end for
within /* initial STATE process*/

end if
if c has a state chart then

if c has no attributes and no methods (excluding create/delete) then
〈c〉 CTRL(ih) = 〈c〉 SCTRL(ih) � (〈c〉 delete.ih → STOP)

else
〈c〉 CTRL(ih) = (〈c〉 SCTRL(ih)� (〈c〉 delete!ih → STOP))

‖
{〈c〉 delete.ih}

〈c〉 DOPS (ih)

end if
else

if c has no attributes and no methods (excluding create/delete) then
〈c〉 CTRL(ih) = 〈c〉 delete!ih → STOP

else
〈c〉 CTRL(ih) = 〈c〉 DOPS (ih)

end if
end if
where 〈c〉 DOPS (ih) = (�

o∈O
o → 〈c〉 DOPS (ih)) � (〈c〉 delete!ih → STOP)

and O is the set of methods and attribute accessor methods
/* composition of all instances in 〈c〉 INSTANCES, e.g., in simple case: */
〈c〉 CTRLS = |||ih∈〈c〉 INSTANCES 〈c〉 create!ih → 〈c〉 CTRL(ih)
α〈c〉 CTRLS = /* set of events in〈c〉 CTRLS */

end for

372 E. Turner et al.

B SCTRL(b) = let
B Off ENTRY = navigate R1 from B !b?ih →

generate!ih!b!LL2 switchOffSignal → B Off STATE
B Off STATE =

remove!b? !B1 buttonOnSignal → B On ENTRY
� / * branch representing ignored signals */

B On ENTRY = navigate R1 from B !b?ih →
generate!ih!b!LL1 switchOnSignal → B On STATE

B On STATE =
remove!b? !B2 buttonOffSignal → B Off ENTRY
� / * branch representing ignored signals */

within B Off STATE
B CTRL(b) = B SCTRL(b) � (B delete!b → STOP)

B CTRLS = |||
b∈B INSTANCES

B create!b → B CTRL(b)

Fig. 8. Generated CSP for the Button state chart

creation of an object must make explicit all its initial attribute values and set
the state machine into a particular state. This information is required by the
corresponding B operation and the CSP within clause respectively. Currently,
we do not support state charts containing an explicit initialisation state.

The B CTRL process is responsible for describing the behaviour of the state
chart associated with class B , defined in B SCTRL. The B CTRL process also
ensures that when a deletion event is performed the state chart behaviour termi-
nates. In general, any object scoped methods and attribute accessor methods of
an object must be offered at all times while that object exists. An instantiation
of process 〈c〉 DOPS would provide this behaviour.

The pattern for the B SCTRL process comprises two process equations for
each state. The first process models the execution of ASL statements in the
state’s entry action. In B Off ENTRY this corresponds to obtaining the light
to which the button is attached via R1, and generating a LL2 switchOffSignal
communication. In LL On ENTRY , defined in Figure 9, we set the status
attribute which means calling the operation corresponding to the communication
along LL default set status2.

The secondprocess defined for a state captures the effectsof a signal in that state.
e.g., LL On STATE . Our transformation rules for signal effects are described in
Table 3. Signals that cause a transition to another state are removed from one of
the object’s signal queues via remove, after which the successor’s entry action is
performed. We ensure signals with the ignored effect have no consequence and are
removed from the signal queue, before returning to the same process; and cannot
happen signals give rise to a msg.ih.cannot happen event, where ih is an instance
handle.
2 In general, we need to distinguish between object a’s methods of class A being

called by a itself and by other objects. Synchronisation must only occur between the
methods in A DOPS (a) and their occurrence in other SCTRL processes, and not
between those found in any of a’s ENTRY processes.

Automatic Generation of CSP || B Skeletons from xUML Models 373

L SCTRL(ll) = . . .
LL On ENTRY = LL default set status!ll !true → LL On STATE
LL On STATE =

remove!ll? !LL2 switchOffSignal → LL Off ENTRY
�

remove!ll? !LL2 switchOnSignal → msg .ll .ignore → LL On STATE

Fig. 9. Fragment of generated CSP for the Light state chart

Table 3. Transformation rules for signal effects

Description CSP Translation

Transition from state to successor remove!ih? !sig → 〈c〉 〈succ〉 ENTRY
succ on occurrence of signal, sig
Ignored signals, igs, are �sig∈igs remove!ih? !sig →
consumed msg .ih.ignore → 〈c〉 〈state〉 STATE
Cannot happen signals, chs, �sig∈chs remove!ih? !sig →
trigger cannot happen events msg .ih.cannot happen → 〈c〉 〈state〉 STATE

4.3 Generating the Execution Environment

In order to analyse the generated CSP ‖ B specifications we must consider their
execution environment. We presented our original version in [16] but the model
presented was not general enough. Consider the following:

P1 = generate!i1!i3!s1 → generate!i1!i2!s2 → STOP

P2 = remove!i2?s → generate!i2!i3!s → STOP

P3 = remove!i3?s1 → remove!i3?s2 → STOP

Assuming no other processes, P2 will only generate its signal after it has re-
ceived P1’s s2 signal. Hence, using our original definition of the queues, P3 will
necessarily receive P1’s s1 signal before P2’s s2 signal, but this is too determin-
istic. The rules stated in Mellor & Balcer [2] do not enforce this: there is nothing
to prevent P3 getting P2’s signal before P1’s. Our solution was to change the
queuing model: for each instance i there is a queue, SQ , to handle self generated
signals and also a queue, Q , for each instance j that is different from i , and
which describes the behaviour of i with respect to the signals generated from
j to i . Furthermore, queues must only associated with active objects. Thus, all
the queues can be collectively defined as SignalQueues (renaming create/delete
omitted) and are initially empty as follows:
|||i∈INSTANCE

create.i → ((SQ(i , 〈〉) ‖
{|remove.i|}

(|||j∈(INSTANCE−{i}) Q(i , j , 〈〉)))

� (delete.i → STOP))

4.4 Translating Supporting ASL to Enable Animation

Besides the CSP processes representing the state charts of classes, our tool also
generates initialisation segments and test methods as processes, e.g., InitSegment

374 E. Turner et al.

and TestMethod . This enables us to define an animation scenario in terms of the
following:

((SYSTEM ‖
{|externalGenerate|}

TestMethod) ‖ InitSegment)

where SYSTEM represents the controllers of the specification and the signal
queues, and the externalGenerate channel enables the test method to invoke sig-
nals that are externally visible from within the model. For example, a TestMethod
defined as externalGenerate.b1.ext0.B1 buttonOnSignal → STOP generates a
B1 buttonOnSignal from the external instance ext0 to the button instance b1.
Our tool creates a specified number of animation scenarios for each model.

5 Towards an Analysis Framework

The contributions of this paper beyond that of the original transformation strat-
egy presented in [16] are the mapping of the creation and deletion of objects, the
correction and generalisation in the queuing model, the inclusion of classes that
do not have state charts, initialisation segments and test methods. These were
described in the last section and are implemented in our tool. In this section we
discuss an analysis framework that is work in progress. We identify three kinds
of analysis of interest: model consistency checking, deadlock freedom checking,
and the verification of the Effects table. In the KC tool validation takes place
via simulation, which will only expose bad behaviour if the right animation sce-
nario is provided. Our framework aims to verify that under no circumstances
such bad behaviour is possible. We have yet to consider other system properties
that could be specified using LTL formulae in ProB and also CSP specifications.
For example, verifying that if the button is switched on the corresponding light
status is eventually on could be achieved by observing the signal event and then
checking the status attribute value.

5.1 Analysis of the Effects Table

This first analysis is straightforward; we define the following specification:

NoCannotHappens = �
s∈(Σ−{|nomsg|})

s → NoCannotHappens

where {| nomsg |} is the set of all messages involving cannot happen. If the
following check holds:

NoCannotHappens �T ((SYSTEM ‖
{|externalGenerate|}

ExternalSignals)

where ExternalSignals represents a recursive choice over all externally gener-
ated signals for active objects, then we can be confident that cannot happen
communications are not possible in specification. It only makes sense to label
cannot happen messages on internal signals. The refinement is trivially false if
external signals are labelled cannot happen since they can be invoked in any
state.

Automatic Generation of CSP || B Skeletons from xUML Models 375

5.2 Model Consistency

Model consistency means checking that a model preserves its multiplicities at
certain execution points. Instances can be created independently and a subse-
quent explicit link statement sets up the association between them. Thus, for
example, a 1..1 association would not be preserved until after the link statement
has been executed. However, the validity of the association is only important at
the point a navigation occurs. Otherwise, an action may attempt to navigate to
an invalid instance.

Associations are dynamic since object and relationship management ASL
statements can be used within entry actions, and so model consistency needs
to be checked throughout the execution of a system. Our current work is investi-
gating a rely/guarantee style for consistency checking, which spans across state
charts and initialisation segments and will be based upon our work on decompo-
sitional verification in CSP ‖ B [6]. This is where we see a benefit of explicitly
modelling association information in the ASSOC machine.

The way to proceed is to identify for each state action Ai in each state ma-
chine P the predicate that needs to be guaranteed in order to prevent model
inconsistency. This predicate is then attached to all the incoming signals of Ai
as a blocking assertion (which is a rely condition). We then find appropriate as-
sociated state actions Q1 . . .Qn which ensure that the assertions are guaranteed,
and decorate the relevant generate signals with diverging assertions (which are
guarantee conditions). We would need to demonstrate, using our weakest pre-
condition control loop invariant (CLI) technique, that the process expressions
related to each Ai ’s entry action in P ’s CSP controller is model consistent with
respect to P MCH and ASSOC . That is, (P Ai Entry ‖ P MCH ‖ ASSOC) is
divergence-free meaning the guarantees have fulfilled the rely conditions. In gen-
eral, it is not the case that diverging assertions and their corresponding blocking
assertions are on the same signal, and in some cases the rely/guarantee condi-
tions are contained and fulfilled within a single entry action [6].

In our example, there is only one state action that contains behaviour which
could result in the model being inconsistent: the On state action of the Button
state chart. Thus, we can identify from the navigate R1 from B opera-
tion the predicate b ∈ ran(R1) as the blocking assertion on the buttonOn sig-
nal. (We would need to be careful how variables were quantified, i.e., b ∈
B INSTANCES .) Normally, we would find the corresponding generating signals
and attach diverging assertions, provided that the signal was generated internally
by the model. Decorating signal channels with assertions and their associated
proofs ensures that the pair of instances exists when the signal is generated.
Subsequently, when we retrieve the light instance in the On state it is a valid
instance. In our example the signal generation of buttonOn is externally con-
trolled, and therefore, the blocking assertion becomes an assumption of the ex-
ternal environment; and anyone using this xUML model would need to discharge
it. As we have seen, the buttonOn signal can be invoked after the initialisation
segment. Therefore, we would need to demonstrate that all operation sequences

376 E. Turner et al.

resulting from the InitSegment ‖ BUTTON MCH ‖ LIGHT MCH ‖ ASSOC
establishes the identified predicate.

Only a single predicate needs to be relied upon in our example. However, this
need not be the case in general; it can be a conjunctive predicate identified from
propagating all the conditions which need to be relied upon within a state action.
Thus, we may be required to demonstrate that more than one complementary
action or external method ensures that such predicates are preserved to ensure
model consistency.

5.3 Deadlock Freedom Checking

Deadlock checking means that the model does not deadlock with respect to the
processing of signals in active objects. For example, we need to check that:

((SYSTEM ‖
{|externalGenerate|}

ExternalSignals) ‖ InitSegment)

is deadlock-free. It follows a similar pattern to an animation scenario but here
the ExternalSignals process replaces a particular test method in order to allow
always the availability of externally generated signals for active objects. However,
this only gives us assurance that the system does not deadlock in the context
of a particular object initialisation. We need to provide confidence that the
system does not deadlock given an arbitrary valid collection of active objects.
This means that we need mechanisms for generating collections of objects that
preserve the consistency of multiplicities described in the class diagram, using
the same notion of consistency as above. It makes no sense to check for deadlocks
when the multiplicities are not preserved at certain execution points. We have
developed multiplicity templates for all the association types supported in xUML.

Recall that button instances in our example are uniquely related to light
instances via the R1 association. Therefore, before a button instance can perform
a communication along the channel navigate R1 from B, in order to find its
corresponding light instance, it must have been associated with it via a link
event. Furthermore, button instances cannot be related to other instances unless
they have first been unlinked; instances can only be deleted if they are no longer
connected to other instances. Figure 10 provides a CSP definition of a process
which constrains button instances to link to precisely one light instance (in order
to identify the 1 multiplicity at the light end of R1 association in Figure 1). A
similar template is needed for light instances and together they provide the
overall multiplicity constraint.

We then construct a parallel process, CONSTRAINED CTRLS , which is the
combination of the button and light controllers constrained by their multiplicity
templates:

(BUTTONOBJECTS R1 ‖ B CTRLS) ‖ (LIGHTOBJECTS R1 ‖ LL CTRLS)

The final system, SYSTEM 2, is the parallel composition of these constrained
controllers, together with their signal queues, and the process which enables
external signals to be generated, defined as follows (renaming has been omitted):

Automatic Generation of CSP || B Skeletons from xUML Models 377

ButtonMT R1(b) =
letButtonMT 1 = B create!b → link R1?a!b → ButtonMT 2({a})

ButtonMT 2(∅) =
(B delete!b → ButtonMT 1) �

link R1?a!b → ButtonMT 2({a})
ButtonMT 2(S) =

unlink R1?a ∈ S !b → ButtonMT 2(S − {a}) �

navigate R1 from B !b?a ∈ S → ButtonMT 2(S)
within ButtonMT 1

BUTTONOBJECTS R1 = (||| b ∈ Button INSTANCES • ButtonMT R1(b))

Fig. 10. Button Multiplicity Template for R1

CONSTRAINED CTRLS ‖
{|create,delete,generate,remove|}

SignalQueues ‖
{|create,delete,externalGenerate|}

ExternalSignals

Without the inclusion of the ExternalSignals process the system would not be
able to evolve the behaviour of the button and light state charts.

Finally, we define a specification, SPEC , which is a composition of the
ExternalsSignals process and processes which represent conditional deadlocks
for both buttons and lights. An object cannot deadlock when it is active. The
form of such a process for a button i is as follows:

B CD(i) = (B create.i → B CDF (i)) � STOP
B CDF (i) = (B delete.i → B CD(i)) � (�b∈B(i)

b → B CDF (i))

where B(i) is the set of all events that the active object i can engage in. If
SPEC �F SYSTEM 2 holds then the specification is shown to be deadlock-
free. The theoretical foundations of CSP ‖ B [1] allow us to deduce that if
the controllers of a specification are deadlock-free then the whole specification
is deadlock-free. Hence, the above deadlock check allows us to conclude that
SYSTEM 2 ‖ (LIGHT MCH ‖ BUTTON MCH ‖ ASSOC) is deadlock-free.
We anticipate that in order to extend this to apply to several relations for each
class we will define a separate multiplicity template for each association of a
class and the CONSTRAINED CTRLS process will be the composition of each
controller and all its associated multiplicities. The controllers themselves can
already support manipulating several associations. The open research issue is
whether will we need to develop decomposition arguments in order to make the
model checking tractable.

6 Conclusions

This paper outlined our tool that produces CSP ‖ B specifications and which is
integrated into the KC toolset. The specifications are based on transformation
rules that are invoked during the traversal of the xUML meta-model using par-
ticular xUML classes and any associated state charts. The tool can translate the

378 E. Turner et al.

structure of class diagrams and state charts with limited object manipulation.
We have documented assumptions and other forms of restrictions on the xUML
input models. More work is needed to identify what datatype definitions cannot
be supported and this issue is also identified in [17] as a potential weakness. The
subset we use will need to be sufficiently wide ranging so that the translated
models can be verified using tool support.

There is a significant body of work relating UML and formal methods, in-
cluding [7,8]. The action language in Snook and Butler’s UML-B tool is more
abstract than ASL, and guards are used within Event-B to provide the control
instead of CSP. The emphasis of the UML-B tool is to provide a graphical in-
terface to Event-B rather than analysing the integrity of a UML model. As far
as we know, they do not provide support for instrumenting a formal model with
animation scenarios based on initialisation segments and test methods. Larsen’s
work [8] on mapping VDM++ from UML is very pragmatic. The specifier is
able to add to the VDM++ produced and these additions are preserved, even if
the specification is re-generated. Furthermore, errors from the VDM++ can be
mapped back to the UML and this is an important feature in order to provide
backwards traceability.

References

1. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Asp. Comput. 17(4), 390–422 (2005)

2. Mellor, S.J., Balcer, M.J.: Executable UML, A Foundation for Model-Driven Ar-
chitecture. Addison-Wesley, Reading (2002)

3. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Epsilon development tools for Eclipse.
In: Eclipse Summit (2006)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

5. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

6. Schneider, S.A., Treharne, H., Evans, N.: Chunks: Component verification in CSP
‖ B. In: Romijn, J.M.T., Smith, G.P., van de Pol, J. (eds.) IFM 2005. LNCS,
vol. 3771, pp. 89–108. Springer, Heidelberg (2005)

7. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

8. Group, T.V.T.: The Rose-VDM++ link. Technical report, CSK Systems (2008)
9. Wilkie, I., King, A., Clarke, M., Weaver, C., Raistrick, C., Francis, P.: UML ASL

Reference Guide (ASL language level 2.5). Kennedy Carter Ltd (2003)
10. Object Management Group: UML 2.0 OCL Specification (2003)
11. Formal Systems Oxford: FDR 2.83 manual (2007)
12. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003)

13. Schneider, S.: Concurrent and Real-Time Systems: the CSP Approach. Wiley,
Chichester (1999)

14. Roscoe, A.W.: The theory and practice of concurrency. Prentice-Hall, Englewood
Cliffs (1998)

Automatic Generation of CSP || B Skeletons from xUML Models 379

15. Evans, N., Treharne, H., Laleau, R., Frappier, M.: Applying CSP ‖ B to information
systems. Software and System Modeling 7(1), 85–102 (2008)

16. Treharne, H., Schneider, S., Grant, N., Evans, N., Ifill, W.: A step towards merging
xUML and CSP || B. In: Dagstuhl workshop on Rigorous Methods for Software
Construction and Analysis (to appear)

17. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MOD-
ELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007)

Bounded Model Checking for Partial Kripke

Structures

Heike Wehrheim

Universität Paderborn, Institut für Informatik
33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Partial Kripke structures model incomplete state spaces with
unknown parts. The evaluation of temporal logic formulae on partial
Kripke structures is thus based on three-valued interpretations; the ad-
ditional truth value ⊥ stands for “unknown whether property true or
false”. There are existing model checking algorithms as well as tools em-
ploying this three-valued interpretation.

In this paper we study the applicability of bounded model checking
techniques to partial Kripke structures. To this end, we generalise the
translation of Kripke structure and temporal logic formula to proposi-
tional logic as to include the value ⊥, and define a new notion of satis-
fiability for propositional formulae containing ⊥ as constants. We show
that a check for this kind of satisfiability can be reduced to two checks for
ordinary two-valued satisfiability, thus allowing for the use of standard
SAT solvers.

1 Introduction

Temporal logic model checking [CGP99] is used for checking whether certain
properties specified in temporal logic hold in system specifications (models of
hardware or software). Since its invention in the late ’80ties, a lot of progress
has been made, in particular with respect to the size of systems which can
be verified by model checking. Nevertheless, the so-called state-explosion prob-
lem remains an issue, and today research in verification is still mainly devoted
to managing large state spaces. Two landmark developments in this area are
the introduction of symbolic model checking [BCM+92], using binary decision
diagrams for representing state spaces, and the development of bounded model
checking [BCC+03]. The latter reduces the model checking problem for temporal
logic to propositional satisfiability. Recent advances in SAT solving technology
have made this approach feasible, also for large systems [PBG05].

Model checking techniques usually assume the system to be completely known.
This general assumption fails to hold for some classes of systems, for instance for
certain kinds of self-* systems (e.g. self-organising, self-adapting, self-healing).
Self-organising systems [KM07] can adapt to changing system states (e.g. fail-
ures) or environmental conditions, and thus may dynamically evolve over time
reaching initially unknown states. This adaption may lead to system models

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 380–394, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Bounded Model Checking for Partial Kripke Structures 381

or specifications, which are only partially known. Inconsistencies are another,
different source of uncompleteness: in a system specification with multiple view-
points these might be contradictory and thus lead to a certain imprecision in the
model. And third, abstractions naturally lead to partially known systems as the
abstract system only partially resembles the information in the original system
(for examples see [GC06]).

Multi-valued model checking [BG99, CDEG03] has been developed as to cope
with such incomplete specifications. Multi-valued model checking is usually based
on system models given by partial Kripke structures. In partial Kripke structures
labellings of states with atomic propositions as well as transitions can take val-
ues out of some many-valued logic. The interpretation of temporal logic formulae
on partial Kripke structures therefore also takes values out of the multi-valued do-
main. Several results have shown that multi-valued model checking can be reduced
to a number of standard model checking runs [GC03, KP02, BG00]. Multi-valued
model checkers however usually do not follow this approach and use specialised
techniques like MBTDDs or MDDs instead [CDEG03]. Bounded model checking
for partial Kripke structures has - to the best of the author’s knowledge - only be
considered in [AY04], which however first encodes the multi-valued model check-
ing problem into a ”layered” binary one, where the layers represent boolean en-
codings of the multi-valued setting. This layered model is then the starting point
of standard bounded model checking.

In this paper we develop a technique for bounded model checking of three-
valued partial Kripke structures which keeps the third truth value ⊥ during the
translation to a propositional formula. The translation generalises the definitions
in [BCCZ99] to the many-valued case. The satisfiability check, however, then
needs to be able to treat propositional formulae with ⊥ as constant. For this
type of formulae we define a new notion of satisfiability (which can give three
types of answers: yes, no and unknown), and show that - alike the corresponding
results for model checking - testing for this type of satisfiability can be reduced
to two ordinary binary satisfiability checks. This allows for the use of standard
SAT solvers. We moreover prove correctness of the translation with respect to
this new type of satisfiability.

The paper is structured as follows. We startwith a short review of partial Kripke
structures and the three-valued interpretation of LTL formulae. Then alike
[BCCZ99] we define a bounded semantics for LTL and show its relationship to
the non-bounded semantics in our three-valued setting. Section 4 defines the
translation to 3-valued propositional logic and the new kind of satisfiability. It fur-
thermore shows the correctness of our approach. The reduction of this type of sat-
isfiability checking to two two-valued satisfiability checks is shown in Section 5, the
last section concludes.

2 Background

We start with briefly reviewing partial Kripke structures, the evaluation of tem-
poral logic formulae on them and some known results about the relationship

382 H. Wehrheim

between model checking partial and complete Kripke structures. Let AP be a
set of atomic propositions.

Definition 1. A partial Kripke structure over a set of atomic propositions AP
is a tuple M = (S ,S0,R,L) such that

– S is a finite set of states,
– S0 ⊆ S is a set of initial states,
– R ⊆ S × S is a total transition relation, i.e. ∀ s ∃ s ′ : (s , s ′) ∈ R, and
– L : S × P → {true,⊥, false} is a labelling function telling us whether an

atomic proposition is true, false or unknown in a particular state.

A Kripke structure is complete if L(s , p) ⊆ {true, false} for all s ∈ S , p ∈ AP.

A partial Kripke structure thus has some unknown parts: we might be unsure
as to whether an atomic proposition is true or not in a particular state. A more
generalised notion of partiality might also take transitions to be unknown [LT88]
or use values of arbitrary multi-valued lattices (see e.g. [CED01]). Unknown
values might arise out of inconsistencies in a system specification or just unknown
components which contribute to the overall semantics.

A path of M is a finite or infinite sequence of states s0s1 . . . sk . . . such that s0 ∈
S0 and (si , si+1) ∈ R; π(i) denotes the state si and πi the sequence sisi+1
Paths are considered when evaluating linear time properties of Kripke structures.
Here, we use the temporal logic LTL [MP92] to specify such properties. LTL
formuale are built over atomic propositions from AP using the boolean operators
¬, ∨, ∧ and the temporal operators � (always), � (eventually), X (next) and
U (until).

In contrast to ordinary complete Kripke structure, the evaluation of an LTL
formula on a Kripke structure can yield three values: true (if the properties
holds), false (if the property does not hold) or ⊥ (if it is unknown whether
the property is true or false). Thus we have to use a three-valued logic (here
Kleene’s logic L3 [Fit94]) for the evaluation. Figure 1 gives the truth tables for
conjunction, disjunction and negation in L3. It can be seen that conjunction
computes the minimal value of its arguments and disjunction the maximal value
using the truth ordering false ≤ ⊥ ≤ true.

The validity of an LTL formula on a partial Kripke structure can thus be
inductively defined as follows.

∧ true ⊥ false

true true ⊥ false
⊥ ⊥ ⊥ false
false false false false

∨ true ⊥ false

true true true true
⊥ true ⊥ ⊥
false true ⊥ false

¬

true false
⊥ ⊥
false true

Fig. 1. Truth tables for L3

Bounded Model Checking for Partial Kripke Structures 383

Definition 2. Let M be a Kripke structure, π a path of M and ϕ an LTL
formula. The value of ϕ in M , [M |= ϕ], is defined as

[M |= ϕ] =
∧

π,π infinite path of M [π |= ϕ]

where

[π |= p] = L(π(0), p)
[π |= ¬ϕ] = ¬[π |= ϕ]

[π |= ϕ1 ∧ ϕ2] = [π |= ϕ1] ∧ [π |= ϕ2]
[π |= ϕ1 ∨ ϕ2] = [π |= ϕ1] ∨ [π |= ϕ2]

[π |= X ϕ] = [π1 |= ϕ]

[π |= �ϕ] =
∧

i∈N

[πi |= ϕ]

[π |= �ϕ] =
∨

i∈N

[πi |= ϕ]

[π |= ϕ1 U ϕ2] =
∨

j∈N

[π |= ϕ1 Uj ϕ2]

with [π |= ϕ1 Uj ϕ2] = [πj |= ϕ2] ∧
∧

i<j

[πi |= ϕ1]

This looks completely standard. The unknown values only come into play when
evaluating atomic propositions on states, and are then propagated on the higher
level of a formula by means of conjunction and disjunction. Figure 2 shows a
Kripke structure M over AP = {p, q} with three states. Here, we have [M |=
� p] = ⊥ and [M |= � q] = ⊥, whereas [M |= � p] = true and [M |= X ¬p] =
false. Note also that in particular both �(q ∨ ¬q) and �(q ∧ ¬q) evaluate to
⊥ in the structure. The evaluation of a formula might yield ⊥, although the
formula is – on complete Kripke structures – universally valid or unsatisfiable. A
semantics which does not have this property (sometimes also called the thorough
semantics) can be found in [BG00]. The complexity of model checking wrt. this
thorough semantics is however much higher (and the semantics does not enjoy a
natural inductive definition). Most of the work on model checking partial Kripke
structures sticks to the semantics given here, in particular also the many-valued
model checker χChek [CDEG03].

p �→ true

p �→ true
q �→ ⊥
p �→ ⊥

q �→ ⊥

q �→ ⊥

Fig. 2. A partial Kripke structure

384 H. Wehrheim

In the following, we will only use a positive form of LTL formula, LTL+.
LTL+ formulae contain no negations at all. They are evaluated on complement-
closed Kripke structures [BG00]. In complement-closed structure every atomic
proposition p has a complementary proposition p̄ such that L(s , p) = ¬L(s , p̄).
Instead of at least allowing negations on atomic propositions (as in negation
normal form), we replace ¬p with p̄ in every LTL formula. Thus �(q ∧ ¬q)
becomes �(q ∧ q̄). The corresponding complement-closed structure for M is
given in Figure 3.

p �→ true
p̄ �→ false

p �→ ⊥
p̄ �→ ⊥
q �→ ⊥
q̄ �→ ⊥

q̄ �→ ⊥

q̄ �→ ⊥
q �→ ⊥
p̄ �→ false
p �→ true

q �→ ⊥

Fig. 3. A complement-closed Kripke structure

The semantics we use here has the interesting property that the model checking
problem for partial Kripke structures can be reduced to two model checking
problems for complete Kripke structures.

Definition 3. Given a partial Kripke structure M , we define K o, the optimistic
completion of M , as (S ,S0,R,Lo) and K p , the pessimistic completion of M , as
(S ,S0,R,Lp) with

Lo(s , p) =
{

true if L(s , p) = ⊥
L(s , p) else

Lp(s , p) =
{

false if L(s , p) = ⊥
L(s , p) else

From [BG00] we get the following result (where M |= ϕ stands for the standard
LTL semantics on complete Kripke structures). Similar results relating multi-
valued to two-valued model checking can be found in [KP02, GC03].

Theorem 1. Let M be a partial Kripke structure and ϕ an LTL+ formula. Then

[M |= ϕ] =

⎧
⎨

⎩

true if M p |= ϕ
false if M o �|= ϕ
⊥ else

This property is consistent with the above observed fact that �(q∧¬q) evaluates
to ⊥ in the Kripke structure M of Figure 2. The pessimistic completion assigns
false to both q and q̄, the optimistic completion true. Hence, evaluating �(q ∧ q̄)
on the pessimistic completion yields false, on the optimistic completion we get
true. Later, we will develop a similar result for satisfiability checking.

Bounded Model Checking for Partial Kripke Structures 385

3 Bounded Semantics

Instead of checking whether a formula is true on all paths, bounded model checking
tries to find one path on which the negation of the formula is not true. Intuitively,
the idea is to try to find a counterexample to the universal validity of a formula.
A universal problem is thus transfered into an existential validity check.

Definition 4. The universal value of an LTL formula ϕ in a Kripke structure
M is [M |=A ϕ] := [M |= ϕ], its existential value is

[M |=E ϕ] =
∨

π,π infinite paths of M [π |= ϕ]

Thus, instead of checking for instance [M |=A � p], we check [M |=E �¬p]. A
witness for this property can then serve as a counterexample to [M |=A � p].
Bounded model checking tries to find witnesses by only looking at a finite prefix
of a path. The prefix’ length is bound by some number k , which is progressively
increased during the model checking runs. For some fixed k , the existence of a
witness with length k is checked by testing a propositional formula for satis-
fiability. The propositional formula is obtained by a translation of the Kripke
structure and the LTL formula. Here, we aim at extending this technique to
partial Kripke structures with three-valued interpretations.

We start with the basic idea of transfering a universal into an existential
problem. Alike the two-valued case, we get the following correspondence between
universal and existential validity:

Proposition 1. Let M be a partial Kripke structure, ϕ an LTL formula.

[M |=A ϕ] = ¬[M |=E ¬ϕ]

Next, we have to define the bounded semantics for LTL formula. This semantics
defines the value of an LTL formula on a path of length k . Intuitively, a finite
prefix can also represent an infinite path, namely if the prefix contains a loop
(definition from [BCCZ99]).

Definition 5. A path π has a (k , l) − loop, l ≤ k, if (π(k), π(l)) ∈ R and π =
u · vω with u = π(0) . . . π(l − 1) and v = π(l) . . . π(k). π has a k-loop if there is
some l such that π has a (k , l)-loop.

The bounded semantics (and the translation of Kripke structure and formula to
propositional logic) has to distinguish between paths with and without loops.

Definition 6. Let ϕ be an LTL+ formula, π a path of a complement-closed
Kripke structure without k-loop, k ∈ N the bound (length of prefix) and i ∈ N a
number denoting the current position in the path. The bounded semantics of ϕ
is inductively defined by

[π |=i
k p] = L(π(i), p)

[π |=i
k p̄] = L(π(i), p̄)

386 H. Wehrheim

[π |=i
k ϕ1 ∧ ϕ2] = [π |=i

k ϕ1] ∧ [π |=i
k ϕ2]

[π |=i
k ϕ1 ∨ ϕ2] = [π |=i

k ϕ1] ∨ [π |=i
k ϕ2]

[π |=i
k X ϕ] = i < k ∧ [π |=i+1

k ϕ]
[π |=i

k �ϕ] = false

[π |=i
k �ϕ] =

k∨

j=i

[π |=j
k ϕ]

[π |=i
k ϕ1 U ϕ2] =

∨

j≤k

[π |=i
k ϕ1 Uj ϕ2]

[π |=i
k ϕ1 Uj ϕ2] = [π |=j

k ϕ2] ∧
∧

i≤n<j

[π |=n
k ϕ1]

If π has a k-loop, then [π |=i
k ϕ] := [πi |= ϕ].

Finally, [M |=E ,k ϕ] :=
∨

π,π infinite path of M [π |=0
k ϕ].

This bounded semantics approximates the existential semantics with respect to
the truth ordering: whenever we get the value [M |=E ,k ϕ] for a particular k , we
know that the value for [M |=E ϕ] can only be ”better” (in the truth ordering).
Theorem 2. Let ϕ be an LTL+ formula, M a complement-closed Kripke struc-
ture. For all k ∈ N we get

[M |=E ϕ] ≥ [M |=E ,k ϕ]

Proof. For the three-valued logic we get [M |=E ϕ] =
∨

k∈N
[M |=E ,k ϕ]. This

holds since on a finite Kripke structure all infinite paths eventually contain
loops. The above theorem is a corollary of this fact, since disjunction amounts
to computing the maximum of truth values. �

Thus, when [M |=E ,k ϕ] becomes ⊥ for some k , we already know that [M |=E
ϕ] will either yield ⊥ or true. As an example, consider the Kripke structure in
Figure 4 and assume we want to check [M |=A � p]. Transferring this to an ex-
istential problem we need to check [M |=E � p̄]. For the bounded semantics
we get

23

1
p �→ true
p̄ �→ false

p̄ �→ ⊥
p �→ false
p̄ �→ true

p �→ ⊥

Fig. 4. Checking [M |=E � p̄]

Bounded Model Checking for Partial Kripke Structures 387

[M |=E ,0 � p̄] = false
[M |=E ,1 � p̄] = ⊥
[M |=E ,2 � p̄] = true

For bound k = 1 we already see that [M |=E � p̄] cannot become false anymore,
i.e. we have already found a counterexample to [M |=A � p] = true.

4 Translation to Propositional Logic

In the next step, the bounded model checking problem is reduced to propositional
satisfiability. For a Kripke structure M , a bound k and an LTL formula ϕ, a
propositional formula F = [[M , ϕ]]k is constructed such that F is satisfiable
if and only if M |=E ,k ϕ. This is the two-valued setting. Here, we aim at a
similar result: we also translate M , k , ϕ into a propositional formula [[M , ϕ]]k
with the translation differing in the treatment of atomic propositions (where we
now might get ⊥), define a notion of satisfiability sat3 which has three possible
outcomes (true, false,⊥) and show the following:

[[[M , ϕ]]k sat3] = [M |=E ,k ϕ]

The next section will then show that this 3-valued satisfiability testing can - like
3-valued model checking - be reduced to two normal satisfiability checks. Thus
we can employ standard SAT solvers.

The definitions of [[M]]k and [[ϕ]]k in this section closely follow [BCCZ99]. The trans-
lation to propositional logic consists of two parts: the translation of the Kripke
structure (which guarantees that only valid paths ofM can be taken) and the trans-
lation of the LTL formula. We startwith the former. First, we have to encode states
as boolean formulas. To this end we take n atoms Atoms = {A,B , . . .} such that
2n−1 < |S | ≤ 2n . Let L(Atoms) be the set of propositional formulae over Atoms
and the boolean constants true, false using negation, conjunction and disjunction;
L⊥(Atoms) additional includes ⊥ as constant. A valuation is a mapping
A : Atoms → {true, false}, A(F) is the evaluation of F under a given A. Note
that valuationsA never assign the truth value ⊥ to atoms.

Definition 7. An encoding of states of a Kripke structure is an injective map-
ping c : S → L(Atoms) such that c(s) is a conjunction of literals. Alternatively,
c(s) can be seen as a valuation mapping atoms to true or false.

For the Kripke structure in Figure 4 we could for instance use the encoding
c(1) = ¬A∧¬B , c(2) = ¬A∧B and c(3) = A∧¬B . For a propositional formula
F we write Fi to stand for F [A,B , . . . /Ai ,Bi , . . .], e.g. ((A ∧ ¬B) ∨ C)i =
(Ai ∧¬Bi)∨Ci . The Kripke structure M is now translated into a formula [[M]]k
which exactly characterises the k -prefixes of paths.

Definition 8. Let M = (S ,S0,R,L) be a partial Kripke structure. Define
Init to be the predicate

∨
s∈S0

c(s) characterising initial states and Ti,i+1 =∨
(s,s′)∈R c(s)i ∧ c(s ′)i+1 to be a predicate for transitions. Then

[[M]]k := Init0 ∧
∧k−1

i=0 Ti,i+1

388 H. Wehrheim

For the Kripke structure of Figure 4 we get

Init = ¬A0 ∧ ¬B0

Ti,i+1 = (¬Ai ∧ ¬Bi ∧ ¬Ai+1 ∧ Bi+1)
∨ (¬Ai ∧ Bi ∧ Ai+1 ∧ ¬Bi+1)
∨ (Ai ∧ ¬Bi ∧ ¬Ai+1 ∧ ¬Bi+1)

The formula [[M]]k is satisfiable (since there are valid paths in the Kripke struc-
ture) and the satisfying valuation exactly characterises a path. For a (prefix)
of a path π = s0s1s2 . . . sk , the valuation Aπ : {A0,B0, . . . ,Ak ,Bk , . . .} →
{true, false} is defined as A(Ai) = c(si)(A). A satisfying assignment for [[M]]k is
a valuation Aπ for some path prefix π.

Proposition 2. Let M be a Kripke structure, k ∈ N, [[M]]k the translation. Then

1. for all paths π of M , Aπ([[M]]k) = true, and
2. all valuations A such that A([[M]]k) = true denote k-prefixes of paths.

The second part of the translation concerns the LTL formula. Here, we need to
distinguish between paths with and without loops. The basic idea for the trans-
lation of the temporal logic formula is to encode all possibilities for a formula
to become true into the propositional formula. For instance, if the LTL formula
is ϕ = � p, we are currently at position i in a prefix and the prefix has length
k , then ϕ becomes true if p holds at position i or i + 1 or ... until position k .
The difference in the 3-valued case is that proposition p holding at position j
can now take three different values: true, false or ⊥. The translation of atomic
propositions p (and their complements) thus is the disjunction over all states
with their encodings conjoined with the value of p in the state.

Definition 9. Translation without a loop.
Let ϕ be an LTL+ formula and k , i ∈ N, i ≤ k.

[[p]]ik =
∨

s∈S

c(s)i ∧ L(s , p)

[[p̄]]ik =
∨

s∈S

c(s)i ∧ L(s , p̄)

[[ϕ1 ∧ ϕ2]]ik = [[ϕ1]]ik ∧ [[ϕ2]]ik
[[ϕ1 ∨ ϕ2]]ik = [[ϕ1]]ik ∨ [[ϕ2]]ik

[[�ϕ]]ik = false

[[�ϕ]]ik =
k∨

j=i

[[ϕ]]jk

[[X ϕ]]ik = if i < k then [[ϕ]]i+1
k else false

[[ϕ1 U ϕ2]] =
k∨

j=i

([[ϕ2]]
j
k ∧

j−1∧

n=i

[[ϕ1]]nk)

Bounded Model Checking for Partial Kripke Structures 389

Considering again Figure 4, [[p]]12 = (¬A1 ∧ ¬B1 ∧ true) ∨ (¬A1 ∧ B1 ∧ ⊥) ∨
(A1 ∧ ¬B1 ∧ false). Note that [[p̄]]ik is in general not equivalent to ¬[[p]]ik , e.g.
¬(Ai ∧ Bi ∧ ⊥) �= (Ai ∧ Bi ∧ ¬⊥). Here, we thus need our complement-closed
structures. In contrast to [[M]]k , we have the constant ⊥ in these formulae, i.e.
[[ϕ]]ik ∈ L⊥(Atoms). As mentioned before, valuations of atoms will however still
only take values out of {true, false}. For such a valuation A and a propositional
formula F ∈ L⊥(Atoms), A(F) ∈ {true, false,⊥}.

Next, we take a look at the correctness of this translation, i.e. the relationship
between the bounded model checking problem and the valuation of the propo-
sitional formula. The translation ensures the following property: for a valuation
A describing a path π, the evaluation of the propositional formula with respect
to A takes exactly the same value as the interpretation of the LTL formula on
the path π.

Lemma 1. Let π = s0s1 . . . be a path without a k-loop, ϕ an LTL+ formula,
Aπ the valuation for A0,B0, . . . ,Ak ,Bk , . . . as fixed by π. Then

[π |=i
k ϕ] = Aπ([[ϕ]]ik)

Proof. Induction on the structure of ϕ. We only present some cases.

– Atomic propositions: ϕ = p (same for complements)

[π |=i
k p] = L(π(i), p))

Aπ([[p]]ik) = Aπ(
∨

s∈S

c(s)i ∧ L(s , p))

= L(si , p) = L(π(i), p)

– Temporal operator globally: ϕ = �ϕ1

[π |=i
k �ϕ1] = false = A(false) = A([[�ϕ1]]ik).

– Temporal operator eventually: ϕ = �ϕ1

[π |=i
k �ϕ1] =

k∨

j=i

[π |=j
k ϕ1]

=
k∨

j=i

Aπ([[ϕ1]]
j
k)

= Aπ(
k∨

j=i

[[ϕ1]]
j
k)

= Aπ([[�ϕ1]]ik)

�

This so far give us a treatment of paths without loops. The translation for loops
is similar. Below k is the bound, i the current position and l the starting position
of the loop.

390 H. Wehrheim

Definition 10. Translation with a loop.
Let ϕ be an LTL+ formula and k , i , l ∈ N, l , i ≤ k.

l [[p]]ik =
∨

s∈S

c(s)i ∧ L(s , p)

l [[p̄]]ik =
∨

s∈S

c(s)i ∧ L(s , p̄)

l [[ϕ1 ∧ ϕ2]]ik = l [[ϕ1]]ik ∧ l [[ϕ2]]ik
l [[ϕ1 ∨ ϕ2]]ik = l [[ϕ1]]ik ∨ l [[ϕ2]]ik

l [[�ϕ]]ik =
k∧

j=min(i,l)

l [[ϕ]]jk

l [[�ϕ]]ik =
k∨

j=min(i,l)

l [[ϕ]]jk

l [[X ϕ]]ik = l [[ϕ]]succ(i)
k

l [[ϕ1 U ϕ2]] =
k∨

j=i

(l [[ϕ2]]
j
k ∧

j−1∧

n=i
l [[ϕ1]]nk) ∨

i−1∨

j=l

(l [[ϕ2]]
j
k ∧

k∧

n=i
l [[ϕ1]]nk ∧

j−1∧

n=l

l [[ϕ1]]nk)

Here, succ(i) is either i + 1 or, in case of i = k , l . Alike the translation without
loops, we get a result relating a specific path-valuation of the formula and the
validity of an LTL formula.

Lemma 2. Let π = s0s1 . . . be a path with a (k , l)-loop, ϕ an LTL+ formula,
Aπ the valuation for A0,B0, . . . ,Ak ,Bk , . . . ,Ak+1,Bk+1, . . . as fixed by π. Then

[π |=i
k ϕ] = Aπ(l [[ϕ]]ik)

Proof. The proof again proceeds by induction on the structure of ϕ. The main
argument here, which differs from the case of paths without loops, is the follow-
ing: if π contains a (k , l)-loop, then ∀ j ≥ l : [π |=j

k |= ϕ] = [π |=j+(k−l)+1
k ϕ].

�

The general translation of the formula now needs to take both cases into account.
For this, [BCCZ99] uses a loop condition.

Definition 11. For k , l ∈ N, we define lLk = Tk ,k+1 and Lk =
∨k

l=0 lLk .

Proposition 3. Let π1 be a path without a k-loop and π2 a path with a (k , l)-
loop. Then Aπ1(Lk) = false and Aπ2(Lk) = true.

The overall translation now combines the translation of the Kripke structure
with the translation of the formula.

Bounded Model Checking for Partial Kripke Structures 391

Definition 12. Let M be a partial Kripke structure, k ∈ N a bound and ϕ an
LTL+ formula.

[[M , ϕ]]k = [[M]]k ∧ ((¬Lk ∧ [[ϕ]]0k) ∨
k∨

l=0

(lLk ∧ l [[ϕ]]0k))

Finally, we need a test for satisfiability. The essential difference to ordinary
satisfiability is the presence of the constant ⊥ in our propositional formulae.
Valuations should however still take only values from {true, false}. The overall
goal is to define a notion of [F sat3], F ∈ L⊥(Atoms), such that

[[[M , ϕ]]k sat3] = [M |=E ,k ϕ]

holds. The following definition is a non-standard generalisation of 2-valued sat-
isfiability: a formula is satisfiable if some valuation can make it true, it is unsat-
isfiable if all valuations make it false, and its satisfiability is unknown otherwise.
Note that this does not coincide with ordinary multi-valued satisfiability and
thus we cannot use multi-valued SAT solvers like CAMA [LKM03].

Definition 13. Sat3 Let F ∈ L⊥(Atoms) be a 3-valued propositional formula.

[F sat3] =

⎧
⎨

⎩

true if ∃A : A(F) = true
false if ∀A : A(F) = false
⊥ else

Then we get the following correctness result for our translation which is a direct
corollary of Lemmas 1 and 2 and Propositions 2 and 3.

Corollary 1. Let M be a partial Kripke structure, k ∈ N a bound and ϕ an
LTL+ formula.

[[[M , ϕ]]k sat3] = [M |=E ,k ϕ]

For the example in Figure 4 and k = 1, we get the following formulae: [[M]]1 =
(¬A0∧¬B0)∧((¬A0∧¬B0∧¬A1∧B1)∨(¬A0∧B0∧A1∧¬B1)∨(A0∧¬B0∧¬A1∧
¬B1)) and [[� p̄]]01 = [[p̄]]01 ∨ [[p̄]]11 which (leaving out conjunctions with false) is
(¬A0∧B0∧⊥)∨(A0∧¬B0∧true)∨(¬A1∧B1∧⊥)∨(A1∧¬B1∧true). There is no
valuation which makes [[M]]1∧ [[� p̄]]01 true, but one which makes it ⊥, namely A :
A0 �→ false,B0 �→ false,A1 �→ false,B1 �→ true. Thus [([[M]]1 ∧ [[� p̄]]01) sat3] = ⊥
which coincides with [π |=0

1 ϕ] for 1-loop-free paths π.

5 Checking Sat3

Having defined a new notion of satisfiability we have to see how this can actually
be checked. The feasibilty of bounded model checking crucially depends on fast
SAT solvers, only the recent advances in SAT solving have made bounded model
checking a success.

Fortunately, we can also make use of existing SAT solvers here. We use a
trick similar to the one used in model checking partial Kripke structures: a

392 H. Wehrheim

satisfiability test on a pessimistic and an optimistic completion of our three-
valued propositional formula is all we need. The pessimistic completion replaces
all ⊥’s with false (F p = F [⊥/false]), the optimistic completion with true (F o =
F [⊥/true]). We let [F sat2] denote standard two-valued satisfiability yielding
true if F is satisfiable and false otherwise.

Theorem 3. Let F ∈ L⊥(Atoms) be a propositional formula with negation in
front of atoms only. Then

[F sat3] =

⎧
⎨

⎩

true if [F psat2] = true
false if [F 0sat2] = false
⊥ else

The check for our 3-valued satisfiability can hence be reduced to two checks for
standard 2-valued satisfiability using standard SAT solvers. This result requires
the formula to be in a kind of negation normal form, in particular no negations
are allowed in front of ⊥. This is a neccessary requirement, which is however
indeed fulfilled by the formula [[ϕ]]k . The proof of the above theorem is a direct
consequence of the following lemma:

Lemma 3. Let F ∈ L⊥(Atoms) be a propositional formula with negation in
front of atomic propositions only, and let A : Atoms → {true, false} be a valua-
tion. Then

A(F) =

⎧
⎨

⎩

true if A(F p) = true
false if A(F o) = false
⊥ else

Proof: The proof follows by induction on the structure of F . For instance, for
F = ⊥ we get A(F) = ⊥ (for every A) and A(⊥p) = A(false) = false, A(⊥o) =
A(true) = true. The other cases are similar. The result fails to hold if negations
occur in front of ⊥: A(¬⊥) = ⊥ whereas A((¬⊥)p) = A(¬false) = true. �

We have thus found a way of using standard SAT solvers (like e.g. Chaff
[MMZ+01]) for bounded model checking of partial Kripke structures.

6 Conclusion

In this paper we have presented a technique for bounded model checking of three-
valued Kripke structures. It employs a variation of the standard technique for
translating Kripke structure and temporal logic formula into propositional logic.
A new notion of satisfiability for propositional formulae with third truth value ⊥
as constants has been developed and shown to be adequate for bounded model
checking. An implementation of the technique could reuse much from existing
bounded model checkers, only the translation of three-valued satisfiability to
ordinary satisfiability needs to be added.

We conjecture that the technique presented here can naturally be extended to
arbitrary multi-valued Kripke structures, even those having multi-valued transi-
tions. This could be achieved by reducing satisfiability checks for formulae with

Bounded Model Checking for Partial Kripke Structures 393

constants out of the multi-valued domain to an appropriate number of standard
satisfiability checks along the lines done here for the three-valued case.

The implementation of this approach remains as future work. This would also
give us a more precise comparison with [AY04]. As [AY04] requires a transforma-
tion on the level of the specification (viz. the abstract description of the Kripke
structure) translating program variables and expressions, while our approach
only needs to rename constants in propositional formulae (⊥ to true or false),
we expect our approach to favourably compare to theirs.

References

[AY04] Andrade, J.O., Yonezawa, T.: Multi-valued bounded model check-
ing. Technical report, Department of Computer Science, University of
Tsukuba, Japan (2004)

[BCC+03] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded
model checking. Advances in Computers 58, 118–149 (2003)

[BCCZ99] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking
without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579,
pp. 193–207. Springer, Heidelberg (1999)

[BCM+92] Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Sym-
bolic Model Checking: 1020 States and Beyond. Inf. Comput. 98(2), 142–
170 (1992)

[BG99] Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-
valued temporal logics. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg (1999)

[BG00] Bruns, G., Godefroid, P.: Generalized Model Checking: Reasoning about
Partial State Spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS,
vol. 1877, pp. 168–182. Springer, Heidelberg (2000)

[CDEG03] Chechik, M., Devereux, B., Easterbrook, S.M., Gurfinkel, A.:
Multi-valued symbolic model-checking. ACM Trans. Softw. Eng.
Methodol. 12(4), 371–408 (2003)

[CED01] Chechik, M., Easterbrook, S.M., Devereux, B.: Model checking with
multi-valued temporal logics. In: ISMVL, pp. 187–192 (2001)

[CGP99] Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT Press, Cam-
bridge (1999)

[Fit94] Fitting, M.: Kleene’s three valued logics and their children. Fundam. In-
form. 20(1/2/3), 113–131 (1994)

[GC03] Gurfinkel, A., Chechik, M.: Multi-valued model checking via classical
model checking. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 263–277. Springer, Heidelberg (2003)

[GC06] Gurfinkel, A., Chechik, M.: Why waste a perfectly good abstraction? In:
Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
212–226. Springer, Heidelberg (2006)

[KM07] Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Chal-
lenge. In: ICSE 2007 - Future of Software Engineering Track. ACM Press,
New York (2007)

394 H. Wehrheim

[KP02] Konikowska, B., Penczek, W.: Reducing Model Checking from Multi-
valued CTL* to CTL*. In: Brim, L., Jančar, P., Křet́ınský, M., Kucera,
A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 226–239. Springer, Hei-
delberg (2002)

[LKM03] Liu, C., Kuehlmann, A., Moskewicz, M.: CAMA: A Multi-Valued Satis-
fiability Solver. In: International Conference on Computer Aided Design,
pp. 326–333. IEEE/ACM (November 2003)

[LT88] Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210.
IEEE Computer Society, Los Alamitos (1988)

[MMZ+01] Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: DAC, pp. 530–535. ACM, New
York (2001)

[MP92] Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, Heidelberg (1992)

[PBG05] Prasad, M.R., Biere, A., Gupta, A.: A survey of recent advances in SAT-
based formal verification. STTT 7(2), 156–173 (2005)

Verification of Linear Duration Invariants by Model
Checking CTL Properties�

Miaomiao Zhang1, Dang Van Hung2, and Zhiming Liu3

1 School of Software Engineering,
Tongji University, Shanghai, China

miaomiao@mail.tongji.edu.cn
2 College of Technology,

Vietnam National University, Hanoi, Vietnam
dvh@vnu.edu.vn

3 International Institute of Software Technology,
United Nations University, Macau, China

Z.Liu@iist.unu.edu

Abstract. Linear duration invariants (LDI) are important safety properties of
real-time systems. They can be easily formulated in terms of a class of chop-
free formulas in the Duration Calculus (DC). Compared to other temporal logics,
the specification in DC is simpler, neater and more importantly easier to under-
stand. However, directly model checking them is more difficult than model check-
ing properties formulated in the computation tree logic (CTL). In this paper, we
present a technique for the verification of the satisfaction of a LDI D by a timed
automaton A by model checking a CTL property. For this, we construct an un-
timed automaton G from A, and prove that A satisfies D iff D is is satisfied by
the set of all paths of G. To Verify that all paths of G satisfy D, we construct a
CTL formula ψ and simply check if G satisfies ψ. By this, we convert the prob-
lem of verification of the LDI to the problem of model checking CTL formula.
As a result, the CTL model checking techniques and tools, such as UPPAAL, can
be used for verification of LDI specified in the DC.

1 Introduction

Linear constraints on the durations of states are important properties of real-time sys-
tems. Such a property can be easily formalized as a chop-free formula in the Duration
Calculus (DC) [11] of the form

A ≤ # ≤ B ⇒
∑

s∈S

cs
∫
s ≤M (1)

where S is a finite set of system states,
∫
s is the duration of state s, # denotes the

length of the reference time interval, and A, B, and cs are constants. This class was

� Research supported by the project of National Natural Science Foundation of China
(No.60603037) and HTTS project funded by Macau Science and Technology Development
Fund.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 395–409, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

396 M. Zhang, D. Van Hung, and Z. Liu

first introduced and called linear duration invariants (LDI) in [12]. The duration
∫
s of

a state s and the length # are mappings from time intervals to reals. For an observation
time interval [b, e],

∫
s defines the accumulated time for the presence of state s over

[b, e] and # is the length e− b of the interval. A LDI A ≤ # ≤ B ⇒
∑

s∈S cs
∫
s ≤M

simply says that for any observation time interval [b, e], if the length # of the interval
satisfies the constraint A ≤ # ≤ B then the durations of the system states over that
interval should satisfy the linear constraint

∑
s∈S cs

∫
s ≤M .

Since timed automata are good models of real-time systems and linear duration in-
variants are important properties of real-time systems [12], an important problem is
weather the verification of a LDI of a timed automaton can be done automatically.

To solve this problem, several algorithms are proposed in the literature, but they
have high complexity and they only work with various restrictions either on the timed
automata or on the LDIs [6,12,7,3]. For improving the complexity the algorithms pro-
posed in [10,8,9] are restricted to the class of the so-called discretisable properties.
A property is discretisable iff it is satisfied by all the behaviors of a timed automaton
exactly when it is satisfied by the integral behaviors of the automaton (i.e behavior
in which transitions take place only at integer time). Furthermore, to the best of our
knowledge, there are no existing implementations of these algorithms.

Another popular logic for specification and verification of real-time systems is the
computation tree logic (CTL)[5]. Effective techniques and tools [14,15] have been de-
veloped for checking real-time systems modeled by timed automata [1,2] against prop-
erties specified in CTL. This motivates our interest in this paper to study the possibility
of reducing the problem of verification of a LDI of a timed automaton to an equivalent
problem of model checking a CTL property of an automaton. The goal is that, instead
of directly checking a LDI D for a timed automata using the techniques in [10,8,9], we
check a CTL property for a translated model G, using popular model checker, such as
UPPAAL.

Our technique following the idea proposed in [9] for checking D for an automaton
A, we construct a reachability graph RG. We then optimize RG to derive a graph
G. However, different in technique from [9] that uses extra sub-vertices to record the
duration that the system stays in a node of RG, we use an integer variable n to denote
the duration that the system stays in a vertex v ofRG together with a self-loop transition
of v. This makes our model much simpler and thus easier for model checking. Also, we
use a variable gc to bind the value of observation time, and another variable d to bind
the value of duration of system states. The value of n is bounded because we remove
infinite edges in RG. In achieving these, our graph is constructed carefully in different
ways depending on whether the constant B in formula (1) is finite or not.

We use P(G) to denote the set of all paths of the graph G constructed from A. We
then prove that D is satisfied by A iff D is satisfied by the paths P(G), i.e. A |= D
if and only if P(G) |= D. Finally, we define a CTL formula ψ for G, and prove that
P(G) |= D iff G |= ψ.

The rest of the paper is organized as follows. Section 2 recalls some basic notions
of timed automaton and Duration Calculus. It also introduces the integral reachability
graph of timed automaton. The main technical contribution is presented in Section 3.
There, we introduce two kinds of graphs respectively for the cases when B is finite

Verification of Linear Duration Invariants by Model Checking CTL Properties 397

and when B is infinite, and prove the main theorems. We then show an algorithm for
checking an CTL of a graph of the automaton. A case study is given in Section 4 to
illustrate our technique. Conclusions are discussed in Section 5.

2 Preliminary

We introduce the notions that we need in this paper. These include timed automata,
region graphs, and Linear Duration Invariants (LDI) defined in DC.

2.1 Timed Automata

We first recall the definition of timed automata given in in [1,2] and explain their be-
havior. For this, we use R≥0 and N to denote the sets of nonnegative real numbers and
natural numbers, respectively.

A timed automaton is a finite state machine equipped with a set of clocks. We use
a set X of real value variables to resents the clocks and let Φ(X) be the set of clock
constraints on X , which are conjunctions of the formulas of the form x ≤ c or c ≤ x,
where x ∈ X and c ∈ N.

Definition 1. A timed automatonA is a tuple 〈L, s0, Σ,X,E, I〉, where

– L is a finite set of locations,
– s0 ∈ L is the initial location,
– Σ is a finite set of symbols (action names),
– X is a finite set of clocks,
– I is a mapping that assigns each location s ∈ L with a clock constraint I(s) ∈
Φ(X) called the invariant of location s. Intuitively, the timed automaton only stays
at s when the values of the clocks satisfy the invariant I(s).

– E ⊆ L×Φ(X)×Σ×2X×L is a set of switches. A switch 〈s, ϕ, a, λ, s′〉 represents
a transition from location s to location s′ with event a, where ϕ is a clock constraint
over X that specifies the enabling condition of the switch, and λ ⊆ X is the set of
clocks to be reset to 0 by this switch.

A clock interpretation ν is a mapping that assigns a nonnegative real value to each clock
in X . For δ ∈ R≥0, let ν + δ denote the clock interpretation which maps every clock
x ∈ X to the value ν(x) + δ. For λ ⊆ X , let ν[λ := 0] denote the clock interpretation
which assigns 0 to each x ∈ λ and agrees with ν over the rest of the clocks.

A state of automaton A is a pair (s, ν) where s is a location of A and ν is a clock
interpretation which satisfies the invariant I(s). State (s0, ν0) is the initial state where
s0 is the initial location ofA and ν0 is the clock interpretation for which ν0(x) = 0 for
all clocks x. Here we should note that I(s0) is always assumed to be satisfied by ν0 to
make the automatonA operate.

2.2 Linear Duration Invariants and Duration Properties

Duration Calculus. DC [11] is a logic for reasoning about about durations of states of
real-time systems of real-time systems. A comprehensive introduction to DC is given

398 M. Zhang, D. Van Hung, and Z. Liu

in the monograph by Zhou and Hansen [13]. In DC, a state s is interpreted as a function
from the time domain R≥0 to the boolean values {1, 0}, and s is 1 at time t if the
system is in state s and 0 otherwise. Therefore, a model of DC formula consists of an
interpretation I of the states and a time interval [b, e]. It represents an observation of
the behavior of the system in term of presence and absence of the states in the interval
of time. Given an interpretation I, the duration of a state s over the time interval [b, e]
is defined as the integral

∫ e

b
Is(t)dt, which is exactly the accumulated present time of s

in the interval [b, e] under the interpretation I.
We consider the set of DC models that express all the observations of the behaviors

of a timed automaton. Each behavior ρ = (s0, t0)(s1, t1) . . . of timed automaton A
defines an interpretation I of the DC formulas about the states of A: for any state s of
A, Is(t) = 1 iff ∃i • (si = s ∧ t ∈ [ti, ti+1)). We also denote such I by (s, t) where
s = (s0, s1, . . .) and t = (t0, t1, . . .) are respectively the sequence of states si and the
sequence of time stamps ti from the behavior ρ. Hence, (s, t, [b, e]) is also considered
as a DC model representing the observation of A in the time interval [b, e], which is a
possible observation of the timed automaton A over interval [b, e]. For this reason, we
also call (s, t, [b, e]) an A-model of DC.

Let M(A) denote the set of A Models of DC. For a given timed automaton A, the
following three classes of A models of DC are identified and studied in [9]:

1. the set of all A models that start from time 0 and end at any time point

M0(A) =̂ {σ | σ = (s, t, [0, T]) ∈M(A), T ≥ 0}
2. the models representing the observations starting and ending at those time points at

which the automatonA switches from one location to another location:

Md(A) =̂ {σ | σ = (s, t, [tu, tv]) ∈M(A), tu, tv occur in t and tu ≤ tv}
3. the models with integral observation intervals

MI(A) =̂ {σ | σ = (s, t, [b, e]) ∈ M(A) and b, e ∈ N, b ≤ e}

Linear Duration Properties and Linear Duration Invariants. A linear duration in-
variant (LDI) of a timed automaton A = 〈L, s0, Σ,X,E, I〉 is a DC formula D of the
form

A ≤ # ≤ B ⇒
∑

s∈L

cs
∫
s ≤M

where cs, A, B and M are real numbers, A ≤ B (B may be ∞), the DC term
∫
s

denotes the duration of location s, and the DC term # the length of the interval. A
LDI D is evaluated in an A model (I, [b, e]) to tt, denoted by (I, [b, e]) |= D, iff
A ≤ e − b ≤ B ⇒

∑
s∈L cs

∫ e

b
Is(t)dt ≤ M holds. D is satisfied by A, denoted by

A |= D, if (I, [b, e]) |= D holds for any model (I, [b, e]) ∈ M(A). We use Σ(D) to
denote the the sum of the durations

∑
s∈L cs

∫
s.

A LDI D of a timed automaton A is said to be discretisable with respect to A iff
A |= D exactly whenMI(A) |= D. We have the following theorem [9].

Verification of Linear Duration Invariants by Model Checking CTL Properties 399

Theorem 1. Let D =̂ A ≤ # ≤ B ⇒
∑

s∈L cs
∫
s ≤M be a LDI of a timed automaton

A. It is discretisable with respect to A if A and B are integers. Here we consider∞ as
an integer.

2.3 Integral Reachability Graph of Timed Automata

An integral reachability graphRG = (VR,ER) of a timed automatonA is constructed
as follows. Each vertex v ∈ VR will be a pair 〈s, π〉, where s is a state of A, and π
is an integral region of A, i.e. the restriction on the set of integers of a clock region
of A (see [9] for more detailed definition). ER is initialized to ∅, and VR is initialized
to {〈s0, π0〉}, where s0 is initial location of A and π0 is the integral region containing
the assignment that assigns 0 to all clocks, i.e. π0 contains only the assignment that
assigns 0 to all clocks. Then, VR is expanded as follows. If a vertex 〈s, π〉 ∈ VR has a
successor 〈s′, π′〉, i.e. there exist d ≥ 0 and an transition e = 〈s, ϕ, a, λ, s′〉 such that

(s, ν)
d,a→ (s′, ν′), then 〈s′, π′〉 is added into VR and e = (〈s, π〉 , 〈s′, π′〉) is an edge

in ER. [l(e), u(e)], where l(e) and u(e) are the minimal and maximal integer time delay
that the automaton can stay at location s before it transits into location s′. l(e) and u(e)
are defined as:

l(e) = inf
{
d ≥ 0 | d ∈ N, 〈s, π〉 d,a→ 〈s′, π′〉

}
,

u(e) = sup
{
d ≥ 0 | d ∈ N, 〈s, π〉 d,a→ 〈s′, π′〉

}
.

A detailed description of the algorithm are given in [10,9]. From the definition of 〈s, π〉
and 〈s′, π′〉, we have l(e) ≤ u(e) and it is possible that u(e) = ∞. We call e an infinite
edge if u(e) = ∞. We will label an edge e by (v, v′, [l(e), u(e)]).

There is a clear correspondence relation between the paths of the graph and the A
models of DC [9]. Let p = v1v2 . . . vm be a path in RG and d = d1, d2, . . . , dm−1 a
sequence of integers, where di ∈ [l(vi, vi+1), u(vi, vi+1)], for i = 1..m−1. We call the
sequence ℘ = v1d1v2d2 . . . vm−1dm−1vm (written as ℘ = (p, d) for short) weighted
interpretation of p.

We define the following

– the length of ℘: l(℘) =̂
∑m−1

i=1 di

– the cost of ℘: θ(℘) =̂
∑m−1

i=0 cvidi where cvi is the coefficient csi in LDI D when
si is the location of vi.

– a weighted interpretation ℘ is said to satisfy D, denoted by ℘ |= D, iff

A ≤ l(℘) ≤ B ⇒ θ(℘) ≤M

– a graph RG is said to satisfy LDI D, denoted by RG |= D, iff ℘ |= D for all
weighted interpretations ℘ ofRG.

The fact thatMd(A) |= D iffRG |= D can be derived from relation in the following
lemma between the models inMd(A) and the weighted interpretations ofRG.

Lemma 1. For any model σ ∈Md(A), there exists a weighted interpretation ℘ ofRG
such that l(σ) = l(℘) and θ(σ) = θ(℘), and vice versa.

400 M. Zhang, D. Van Hung, and Z. Liu

Case analysis is needed when checking a region graph with infinite edges. This is done
following the two lemmas below, in which A ≤ # ≤ B is the premise of the LDI D of
concern. For a node v = 〈s, π〉 we simply write cv for the coefficient cs in the LDI D.

Lemma 2. Assume that e = (v, v′, [l(e),∞)) is an infinite edge of a region graphRG.
RG �|= D if B =∞ and cv > 0.

Lemma 3. Assume that e = (v, v′, [l(e),∞)) is an infinite edge of RG. Then the label
[l(e),∞) can be replaced as follows without affecting the result of checkingRG |= D.

– If B =∞ and cv ≤ 0, replace [l(e),∞) by [l(e), u(e)] with u(e) = max{l(e), A}.
– If B <∞, replace [l(e),∞) by [l(e), u(e)] with u(e) = max{l(e), B}.

Therefore, to verify Md(A) |= D, lemma 2 allows us to conclude with Md(A) �|= D
immediately if the conditions of the lemma hold, otherwise we can use lemma 3 to
translate the graph to one without infinite edges. In the rest of the paper, we assume that
RG does not contain infinite edges.

3 Technique to Check LDI Using CTL

We now present our technique to reduce the verification of the satisfaction of a LDI by a
timed automaton to checking a CTL formula of timed automaton. From the discussion
in the previous section, we only need to construct a graph G with variables from a
reachability graphRG (without infinite edges) and a CTL formulaψ such thatRG |= D
if and only if G |= ψ. We distinguish two cases of the constant B in the premise of D:
1) B is finite, 2) B is infinite.

3.1 When B Is finite

We first introduce integer variables n, gc and d

– n is used to count the number of time units that RG stays in a vertex v before
moving to another vertex,

– gc is used to record the time length of an observation interval (corresponding to a
path inRG), and

– d records the sum of durations of states.

All of the variables are initialized to 0. For the reachability graph RG = (VR,ER),
an untimed graph G = (V,E) with integer variables n, gc and d is constructed by a
procedure.

For the description of the procedure, we need the following normalization function
for variable gc.

Definition 2. (B + 1-normalization)

normB+1(gc) =
{
gc+ 1, if gc ≤ B
B + 1, if gc > B

Verification of Linear Duration Invariants by Model Checking CTL Properties 401

The intuitive intention is that gc records the length of the current observation interval,
and the LDI D is satisfied trivially when it exceeds the constant B in premise of D.
Hence, we do not need to record every value of gc that bigger than B. It is sufficient
to record B + 1 when the length of the observation time exceeds B. The procedure for
construction G = (V,E) fromRG = (VR,ER) is given as follows. In the construction,
we introduce an extra vertice v0 as the single initial node to set the initial value of data
variavles. Note that with data variables, a CTL formula is not a state formula in our
system graph because with different histories leading to a node, a data variable might
have different values.

Step 1. V := VR ∪ {v0}, E := ER ∪ {(v0, v)|v ∈ VR}, where v0 is a fresh node and is
also considered as an initial node in G.

1. Let u(v) be the maximum time units thatRG stays in v. In the edge (v0, v), we have
the guard n ≤ u(v).

2. Let T = max {u(v)|v ∈ VR}. In v0 there is a self-loop transition that nondetermin-
istically select the value of n between [0, T]. In UPPAAL, this can be described by
a select language n : int[0, T].

Starting with the initial node v0 and the initial values gc, n, d := 0, 0, 0, the above two
conditions imply that gc starts to count time from the first enter of any node v; and the
system can stay the node v for any n time units provided that n ≤ u(v).

Step 2. For each edge e = ((vi, vj), [l(e), u(e)]) ∈ ER

1. E := E \ {e},
2. E := E ∪ E1 ∪ E2, where

– E1 := {(vi, vi)}, and for this edge we have the guard ϕ : n < u(e) and the
multiple assignment λ :
• n := n+ 1,
• gc := (gc ≤ B?gc+ 1 : B + 1),
• d := (gc ≤ B?d+ cvi : 0)

The second assignment assigns gc the value of gc+ 1 if gc ≤ B and the value
B + 1 otherwise, i.e. it is the implementation of the B + 1 normalization.
Similarly, the third assignment assigns d the value of d + cvi if gc ≤ B and 0
otherwise.

– E2 := {(vi, vj)}, and for this edge we have the guard ϕ : n ≥ l(e) and the
assignment λ : n := 0,

Notice that precisely speaking an edge in G is labeled with a guard and a set of
assignments. There can be different edges between the same pair of nodes but with
different labels. We call G constructed by this procedure the untimed graph ofA for D.

Roughly speaking, G is built by adding self-loop edges in vertex vi and the edges
between vi and vj . By assigning 0 to d when gc > B, the value of variable d is finite.
Besides, gc is bounded by B + 1. Since RG does not contain infinite edges, the value
of n is bounded. This construction is much simpler than the one in paper [9], which
“splitting” each edge e = (v, v′, [l(e), u(e)]) of RG into u(e) small edges with the
length (weight) 1 by adding u(e) − 1 sub-vertices. Figure 1 gives an example how to
build the graph G from the graphRG.

402 M. Zhang, D. Van Hung, and Z. Liu

vi

vj

[3, 5]

n < 5
n = n + 1,

RG :

G:

n ≥ 2

n = 0
vi

vj

gc = (gc ≤ B?gc + 1 : B + 1),
d = (gc ≤ B?d + cvi : 0)

[2,4]

n < 4
n = n + 1,
gc = (gc ≤ B?gc + 1 : B + 1),
d = (gc ≤ B?d + cvj : 0)

n ≥ 3

n = 0

v0

n ≤ 4n ≤ 5

select : n : int[0, 5]

Fig. 1. “Discretising” graph when B is finite

The corresponding CTL formula. We now define the CTL ψ1 formula corresponding
to the LDI D of a timed automatonA

ψ1 =̂ A[] not A ≤ gc ≤ B ∧ d > M (2)

We call ψ1 the CTL-version of D forA.

Lemma 4. Let D be a LDI of a timed automaton A, G the untimed graph of A for
D, and ψ1 the CTL-version of D for A. Then there exists a path p ∈ P(G) such that
p �|= ψ1 iff there exists an integral model σ ∈ MI(A) such that σ �|= D.

Proof. From the construction procedure for G, there is an obvious one-to-one corre-
spondence between a path ρ of RG and a path ρg of G starting from the node v0, that
represents an observation of the system in the two models. Let #(ρ) be the length of ρ,
which represents the time of the observation, and last(ρg) be the last node of ρg.

1. When #(ρ) ≤ B, the value of gc at last(ρg) equals #(ρ), and the value of d at
last(ρg) is the value of the sum Σ(D).

2. When #(ρ) > B, the value of gc at last(ρg) is B + 1.

Consequently, the lemma follows immediately from the definition of the satisfaction
relations |= for LDI and CTL formulas. �(

From this lemma and the discretisability of LDI, we have to check only integer models
of the automaton A. Hence we can restrict ourselves to the integral region graph. The
theorem below follows straightforward.

Theorem 2. When B is finite, the verification of a LDI D by a timed automaton A is
equivalent to the verification of the satisfaction of CTL-version of D for A by the set of
paths P(G), i.e.A |= D if and only if P(G) |=ψ1.

We can use a model checker for CTL, such as UPPAAL, to verify P(G) |= ψ1.

Verification of Linear Duration Invariants by Model Checking CTL Properties 403

3.2 When B Is Infinite

In terms of the graph constructed as above, for the case thatB is infinite, gc can increase
infinitely and d can take an arbitrary value. This case makes it impossible to check the
property D using the technique presented in the previous section. To bind the value of
gc we will use “A-normalization” as follows in the graph construction, where A is the
other constant in the premise of the LDI.

Definition 3. (A-normalization)

normA(gc) =
{
gc+ 1, if gc < A
A, if gc ≥ A

Intuitively, the A normalization is dual to the B-normalization. The variable gc is still
used for the length of the observation. Therefore with this normalization, for checking
LDI D when gc equals A, we only need to check whether there exists a path along
which the value of Σ(D) is bigger than M . Now we introduce a number to bound the
value of d.

Definition 4. Let V+ be the set of all nodes vp in RG for which cvp > 0. Then we call
the value Q =

∑
vp∈V+(cvp . u(vp)) the maximum increment ofRG.

The intended meaning for the numberQ is that in case there is no loop in a path ofRG,
the value of d along that path can increase at most Q. In other words, if the value of d
along a path increases more than Q, then there must be a positive loop in the path. The
graph G+ = (V,E) is constructed from RG = (VR,ER) in a way similar to the case
thatB is finite by the following procedure. For any v ∈ V, we make variable d bounded
by updating it differently depending on whether the coefficient cv in Σ(D) is negative
or not.

The Procedure for Constructing G+.

Step 1. This step is the same as that in the construction of G.
Step 2. For each edge e = ((vi, vj), [l(e), u(e)]) ∈ ER, where vi has a non-negative
coefficient cvi , do the following:

1. E := E \ {e},
2. E := E ∪ E1 ∪ E2, where

– E1 := {(vi, vi)}, and in this edge we have the guard ϕ : n < u(e) and the
multiple assignment λ :
• n := n+ 1,
• gc := (gc < A?gc+ 1 : A),
• d := (gc ≥ A ∧ d > M?M + 1 : d+ cvi)

– E2 := {(vi, vj)}, and in this edge we have the guard ϕ : n ≥ l(e) and the
assignment λ : n := 0.

Step 3. For each edge e = ((vi, vj), [l(e), u(e)]) ∈ ER, where vi has a negative coeffi-
cient cvi , do the following:

404 M. Zhang, D. Van Hung, and Z. Liu

1. E := E \ {e},
2. E := E ∪ E1 ∪ E2, where

– E1 := {(vi, vi)}, and in this edge we have the guard ϕ : n < u(e) and the
assignment λ :
• n := n+ 1,
• gc := (gc < A?gc+ 1 : A),
• d := (gc ≥ A ∧ d < M −Q?d : d+ cvi)

– E2 := {(vi, vj)}, and in this edge we have the guard ϕ : n ≥ l(e) and the
assignment λ : n := 0,

In case of cvi is non-negative, when gc ≥ A and d > M , by setting d toM+1, the value
of d is finite. Moreover, when gc ≥ A, gc remains as A, so gc is a bounded variable.
Since the states that satisfy gc ≥ A ∧ d =M + 1 imply P(G+) �|= D, it is obvious that
the update does not change the verification result.

When cvi is negative, the edge of the graph from vi to vi is the same as that of the non-
negative one, except that the value update of d is d := (gc ≥ A∧d < M−Q?d : d+cvi).
It is not hard to see why we set d to d + cvi if ¬(gc ≥ A ∧ d < M − Q): we have to
evaluate the value of d precisely when we do not have enough information for verifying
if D is satisfied. Now we prove that if gc ≥ A ∧ d < M −Q, the value of d remaining
unchanged does not alter the checking result of the LDI. To do so, we define another
graph G• that is the same as G+ except that if gc ≥ A∧d < M −Q the assignment for
d is d := d+ cvi .

Similar to the case thatB is finite, we define a CTL-version ofD, denoted by ψ2, for
a timed automatonA.

ψ2 : A[] not gc ≥ A ∧ d > M. (3)

Lemma 5. There exists a path ρ ∈ P(G+) such that ρ �|= ψ2 if and only if there exists
a path ρ′ ∈ P(G•) such that ρ′ �|= ψ2.

Proof. Notice that the topological structure of G+ and G• are the same. Each path
ρ = v+

0 , . . . , v
+
m in G+ corresponds to exactly one path ρ• = v•0, . . . , v•m in G•. Let v+

i

and v•i be any two corresponding nodes respectively in ρ and ρ•. Then the value of gc
at vertex v+

i is the same as the value of that at vertex v•i . Due to the different updates
of d in ρ and ρ• for the negative coefficient of a vertex, we know that at vertex v+

i , the
value of d is bigger than or equal to the value of d at v•i . Hence, a path ρ′ = ρ• in G•

that does not satisfy ψ2 then its corresponding path ρ in G+ does not satisfy ψ2.
To prove the other direction, let ρ in G+ be such that ρ �|= ψ2 and ρ starts from the

initial node v0. If ρ• �|= ψ2, we are done. Otherwise, we need to show that there will be a
“positive cycle” in ρ, i.e. there is a cycle such that going along the cycle will increase the
value of d properly by at least 1. We now give the illustration for the case ρ �|= ψ2∧ρ• |=
ψ2. This case denotes that the values of d on ρ and on ρ• are different and there should
be a first node v+

j along ρ where the condition gc ≥ A ∧ d < M −Q ∧ cvj < 0 holds.
Thus, from v+

j , the value of d is increased by at least Q+ 1 to make ρ �|= ψ2.
From the definition of Q, in ρ there must be a “positive cycle” along which d will

be increased by at least 1. From the correspondence relation between ρ and ρ•, ρ• must
also have a positive cycle C. Thus ρ′ is formed by increasing the number of repetition
of the cycle C in ρ•, such that ρ′ �|= ψ2. �(

Verification of Linear Duration Invariants by Model Checking CTL Properties 405

vi

vj

[3, 5]

n < 5
n = n + 1,

RG :

G+ :

n ≥ 2

n = 0
vi

vj

gc = (gc < A?gc + 1, A)
d = (gc ≥ A ∧ d > M?M + 1 : d + cvi)

[2,4]

n < 4
n = n + 1,
gc = (gc < A?gc + 1, A)
d = (gc ≥ A ∧ d < M −Q?d : d + cvj)

n ≥ 3

n = 0

v0

n ≤ 4n ≤ 5

select : n : int [0, 5]

Fig. 2. “Discretising” graph when B is infinite and cvi is non-negative, cvj is negative

Therefor we conclude that d is a bounded integer variable. Figure 2 gives an example
how to build the graph G+ from the graph RG when cvi is non-negative and cvj is
negative. The lemma bellow follows from the definitions of relations |= for D and ψ2.

Lemma 6. Given a timed automaton A and a LDI D. Then there exists a path ρ ∈
P(G+) such that ρ �|= ψ2 iff there exists an integral model σ ∈ MI(A) such that
σ �|= D.

Now we have our main theorem for the case when B is infinite.

Theorem 3. When B is infinite, the verification of a LDI D by a timed automatonA is
equivalent to the verification of the satisfaction of CTL-version ψ2 ofD forA by the set
of paths P(G+), i.e. A |= D if and only if P(G+) |=ψ2.

3.3 Verification in UPPAAL

The model checking tool-UPPAAL that is available at www.uppaal.com, is an inte-
grated tool environment for formal specification, validation and verification of real time
systems modeled as networks of timed automata. UPPAAL uses a simplified version
of CTL to express the requirement specification. The query language consists of path
formulas and state formulate. State formulate describe individual states, whereas path
formula quantify over paths or traces of the model. Path formula can be classified into
reachability, safety and liveness.

The properties ψ1 and ψ2 in our checking algorithm are safety properties. This im-
plies that on one hand, we can draw the graph in UPPALL and just click the “check”
button to verify the safety property ψ1 or ψ2 from the extra vertex v0. And this is done
automatically. On the other hand, since we use the same modeling language and the

406 M. Zhang, D. Van Hung, and Z. Liu

same query language used by UPPAAL, the checking algorithm can be easily imple-
mented in UPPAAL.

4 Case Study

In [11], the Duration Calculus is used to prove that a gas burner does not leak exces-
sively. That is, the accumulated time of leakage is at most one twentieth of the time in
any interval of at least 60 seconds. Following the techniques in Section 3, using UP-
PAAL, we have checked that the LDI property is satisfied. We now use a more general
modelA shown in Fig 3 to illustrate our techniques.

L5

x<=3

L4x<=0

L3

x<=8

L2L1

x<=6

x=0

x>=2
x=0

x>=5
x=0

x>=2
x=0

x>=3
x=0

Fig. 3. A Model A

The LDI properties to be checked are:

1. D1 : 10 ≤ # ≤ 30→ (−2×
∫
L2 +

∫
L3 + 3×

∫
L5) ≤ 30.

2. D2 : 10 ≤ # ≤ ∞→ (−2×
∫
L2 +

∫
L3 + 3×

∫
L5) ≤ 30.

Let e1, e2 be the infinite edges from L2 respectively to L3 and L4. To check whether
or not D1 is satisfied, we first use the methods of removing infinite edge in subsection
2.3, to translate e1 and e2 to finite edges. We thus have l(e1) = 2, l(e2) = 5, u(e1) =
u(e2) = 30. Also, in this case we have A = 10, B = 30,M = 30. The CTL formula
C1 forD1 is:

C1 : A[] not (gc >= 10 && gc <= 30 && d > 30)

In terms of the technique in subsection 3.2, we construct the graph A′ shown in
Fig.4 that is used in UPPAAL as a model to check C1. The checking result shows that
A′ |= C1. Therefore, we haveA |= D1.

We now checkD2 and construct the modelA′′ shown in Fig 5. In this case, u(e1) =
u(e2) = 10, A = 10, B = ∞, M = 30, Q = 8 + 3 × 3 = 17. The CTL logic C2 for
D2 is:

C2 : A[] not (gc >= 10 && d > 30)

We have checked with UPPAAL, and the checking result is that A′′ �|= C2. Thus
A �|= D2.

Verification of Linear Duration Invariants by Model Checking CTL Properties 407

L5L4

L3L2L1

n : int[0,30]

n<=30

n<=8

n<=3n<=0n<=6

n<3
n=n+1,
gc=(gc<=30? gc+1: 31),
d=(gc<=30?d+3:0)

n<8
n=n+1,
gc=(gc<=30? gc+1: 31),
d=(gc<=30?d+1:0)

n<30
n=n+1,
gc=(gc<=30? gc+1: 31),
d=(gc<=30?d-2:0)

n<6
n=n+1,
gc=(gc<=30? gc+1: 31),
d=(gc<=30?d:0)

n=0

n>=2
n=0n=0

n>=5
n=0

n>=2
n=0

n>=3
n=0

Fig. 4. “Disretising” graph A′

L5L4

L3L2L1

n:int[0,10]

n<=8

n<=3

n<=6

n<=10 n<=0

n<3
n=n+1,
gc=(gc<10? gc+1:10),
d=(gc>=10 && d>30?31:d+3)

n<8
n=n+1,
gc=(gc<10? gc+1:10),
d=(gc>=10 && d>30?31:d+1)

n<10
n=n+1,
gc=(gc<10? gc+1:10),
d=(gc>=10 && d<30-17? d:d-2)

n<6
n=n+1,
gc=(gc<10? gc+1:10),
d=(gc>=10 && d>30?31:d)

n=0

n>=2
n=0n=0

n>=5
n=0

n>=2
n=0

n>=3
n=0

Fig. 5. “Disretising” graph A′′

5 Conclusion

The examples in the paper show that the DC formulation of Linear Duration Constraints
is simpler, neater and easier to understand than those in LTL and CTL. The automata
that are given for the DC specification are simpler than those that would be constructed
for a LTL or CTL specification. However, the existing algorithms for model checking
Linear Duration Calculus invariants are complex and have not been implemented. A
lot of works have been done recently [16,17,18] for the development of model check-

408 M. Zhang, D. Van Hung, and Z. Liu

ing tools for Duration Calculus formulas. In spite of some model checking tools for
Duration Calculus formulas are available now, to our knowledge, compared with other
temporal logics, the techniques developed for DC are still not widely applicable in in-
dustrial fields. In this paper, we have presented a different approach to the problem. Our
approach is to reduce the verification of a LDI to model checking CTL. This allows us
to use or easily extend the techniques in the current tools for CTL, such as UPPAAL
and SMV, to check linear Duration Calculus Invariant of real-time embedded systems.
Furthermore, since the CTL formulas ψ1 and ψ2 can directly be specified in the lin-
ear time logic LTL, we thus can use the model checkers like SPIN to check the LDI.
We believe that this technique will help to make Duration Calculus more applicable in
industry field.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science, 183–235
(1994)

2. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS,
vol. 1633, pp. 8–22. Springer, Heidelberg (1999)

3. Braberman, V.A., Van Hung, D.: On Checking Timed Automata for Linear Duration Invari-
ants. In: Proceedings of the 19th Real-Time Systems Symposium RTSS 1998, pp. 264–273.
IEEE Computer Society Press, Los Alamitos (1998)

4. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)
5. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not Never” Revisited: On Branching versus

Linear Time Temporal Logic. Journal of the ACM 33(1), 151–178 (1986)
6. Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration Graphs: A Class of Decidable Hy-

brid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and
HS 1992. LNCS, vol. 736, pp. 179–208. Springer, Heidelberg (1993)

7. Dong, L.X., Van Hung, D.: Checking Linear Duration Invariants by Linear Programming.
In: Jaffar, J., Yap, R.H.C. (eds.) ASIAN 1996. LNCS, vol. 1179, pp. 321–332. Springer,
Heidelberg (1996)

8. Yong, L., Van Hung, D.: Checking Temporal Duration Properties of Timed Automata. Jour-
nal of Computer Science and Technology 17(6), 689–698 (2002)

9. Thai, P.H., Van Hung, D.: Verifying Linear Duration Constraints of Timed Automata. In:
Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 295–309. Springer, Heidelberg
(2005)

10. Jianhua, Z., Van Hung, D.: Checking Timed Automata for Some Discretisable Duration Prop-
erties. Journal of Computer Science and Technology 15(5), 423–429 (2000)

11. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Processing
Letters 40(5), 269–276 (1991)

12. Zhou, C.: Linear Duration Invariants. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.)
FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 86–109. Springer, Heidelberg (1994)

13. Chaochen, Z., Hansen, M.R.: Duration Calculus. A Formal Approach to Real-Time Systems.
Springer, Heidelberg (2004)

14. Yovine, S.: KRONOS: A Verification Tool for Real-Time Systems. STTT 1(1-2), 123–133
(1997)

15. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini,
F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)

Verification of Linear Duration Invariants by Model Checking CTL Properties 409

16. Pandya, P.K.: Interval Duration Logic: Expressiveness and Decidability. ENTCS 65(6)
(2002)

17. Meyer, R., Faber, J., Rybalchenko, A.: Model Checking Duration Calculus: A Practical Ap-
proach. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281,
pp. 332–346. Springer, Heidelberg (2006)

18. Fränzle, M., Hansen, M.R.: Deciding an Interval Logic with Accumulated Durations. In:
Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 201–215. Springer, Hei-
delberg (2007)

Exact Response Time Scheduling Analysis of
Accumulatively Monotonic Multiframe Real Time Tasks

Areej Zuhily1 and Alan Burns2

1 RTS Group, Department of Computer Science, University of York, York, UK
ehar@cs.york.ac.uk

2 RTS Group, Department of Computer Science, University of York, York, UK
burns@cs.york.ac.uk

Abstract. An exact schedulability test of Accumulatively Monotonic (AM) multi-
frame tasks executing on a uniprocessor according to the fixed priority scheduling
scheme is presented in this paper. The test is given as an analysis of the worst case
response time of each AM multiframe task. This analysis is given in two stages,
firstly we give the basic formula of the worst case response time of an AM multi-
frame task. Secondly, we extend this formula to include blocking time. An eval-
uation of this analysis is given as a comparison between this exact schedulability
analysis and the most recent published, but non-optimal, schedulability analysis.

1 Introduction

A real-time multiframe task is a generalized real-time task whose worst-case execution
time is different from one phase to another of its execution, for instance, a task that
executes with worst-case execution times of 10ms and 5ms is said to have two frames.
Another example, often found in industrial applications [5], is a periodic task that does
a small amount of data collection in each period consuming a small execution time,
but then summaries and stores this data every n cycles using a much more expensive
algorithm that consumes a larger execution time. A further example is found within the
MPEG coding standard where there are three types of video frames (usually represented
by the letters I, P and B). The I frame usually takes much more decoding than the others,
but may occur only every 10 frames. The assumption of all frames being I frames leads
to poor utilization and the system could be deemed unschedulable whilst in reality it is
schedulable. We therefore wish to present the decoder task as a multiframe task. Other
examples of the multiframe tasks can be found in practical systems.

Mok and Chen [12,13] were the first who introduced the multiframe concept as a gen-
eralisation of the classic Liu and Layland model [10]. They proposed a utilization based
schedulability test, for fixed priority scheduling, under Rate Monotonic, RM, [10] pri-
ority assignment (the greater period the task has the lower priority it is assigned). They
gave a utilization bound, assuming the execution time sequence of each multiframe task
has a particular restrictive property that they called Accumulatively Monotonic, AM,
(see section 2). Subsequent papers (Section 3.1) have improved this utilization bound
but their tests remain inexact (i.e. sufficient but not necessary).

In this paper we provide an exact and tractable analysis based upon the response time
formulation for multiframe tasks when this AM restriction is applied. In general, to test

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 410–424, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Exact Response Time Scheduling Analysis 411

the schedulability of a set of multiframe tasks, regardless to the AM restriction, requires
examining all possible phasings of the tasks [17]; which leads to an intractability prob-
lem for the scheduling analysis. But, having the AM restriction applied to a multiframe
task, we show that only critical frame can give rise to the worst-case response times for
lower priority tasks. As a result the analysis is tractable.

This paper is organised as follows. In the next section our system model and nota-
tion are introduced whilst prior work is summarised in Section 3. Section 4 gives the
exact response time analysis of AM multiframe tasks; then the analysis is developed
to include blocking. In Section 5, we give a numeric example to illustrate our analysis.
Section 6 provides an analysis of randomly generated task sets to show how our re-
sponse time test is better than any one previously published. Conclusions are provided
in Section 7 as a summary of the contribution.

2 System Model

Consider a system S consisting ofN multiframe tasks. Each multiframe task τi consists,
in its turn, of a repeating sequence of ni frames. Frames are executing on a uniprocessor
using the preemptive fixed priority scheduling policy. Priorities of multiframe tasks in
the system are ordered consecutively with τ1 having the highest priority in the system
and τN the lowest priority (i.e 1 in τ1 refers to the highest priority and N in τN refers
to the lowest priority). All frames of the multiframe task have the same priority – the
priority of the relative multiframe task.

Each frame in the multiframe task might have a worst case execution time that may
be different from other frames in the same multiframe task with the assumption that
the execution time sequences of all multiframe tasks in the system satisfy the AM re-
striction that is given below. In other words, a multiframe task, τi, has ni worst case
execution times (Ck

i ; k = 0..ni − 1) that satisfy Equation (1). All frames in the same
multiframe task are released with a fixed or minimum time interval Ti and have the
same deadline represented by the single parameter Di. In all situations we assume (in
this paper) that Di ≤ Ti. The worst case response time Ri of the multiframe task τi is
the maximum time of any of its frames from when the frame is released until it com-
pletes.

As an illustration of the multiframe scenario, Table 1 represents a simple example
with just 2 tasks τ1 and τ2 where τ1 is a multiframe task with 4 frames represented
by the execution time values 8, 4, 3 and 1; and τ2 has just one frame. To simplify the
explanation of the multiframe concept, all tasks in the example are assumed to have
zero blocking time and haveDi = Ti; i = 1, 2.

Table 1. Attributes of tasks in the example

task C T = D priority
τ1 8, 4, 3, 1 10 1
τ2 x 20 2

412 A. Zuhily and A. Burns

Table 2. Possible interference from τ1

release exe seq. 1 inv 2 inv 3 inv 4 inv
8 8, 4, 3, 1 8 12 15 16
4 4, 3, 1, 8 4 7 8 16
3 3, 1, 8, 4 3 4 12 16
1 1, 8, 4, 3 1 9 13 16

Finding the worst case response time R2 of τ2, whatever its execution time, requires
finding the maximum amount of possible interference from τ1. Table 2 shows all val-
ues of interference that task τ1 generates from different initial frames in the execution
sequence and for numbers of invocations up to the number of frames (i.e. 4). It can be
seen from Table 2 that the maximum amount of interference τ1 generates, in the case
of one, two, three or four invocations, is when it is released having an execution time
of 8. None of the other releases of τ1 generates a greater amount of interference than
the release of 8. That is because the multiframe task τ1 satisfies the Accummulatively
Monotonic, AM, restriction.

In the AM multiframe task, one of the frames, whose execution time is maximum,
always generates the maximum amount of interference within the execution of lower
priority tasks; for any number of its invocations (i.e. interference). We call the frame
whose execution time is maximum the Peak Frame.

Definition 1. A Peak Frame of a multiframe task is one of the frames, in the multi-
frame task, whose execution time is the maximum of the execution times of this multi-
frame task.

For example, the multiframe task τ , whose execution time sequence is (8, 4, 8, 3), has
two peak frames with locations 0 and 2; where their execution times are both 8.

Mok and Chen [12] mathematically formalize the AM restriction by an equation
using the mod function to reach the execution time from its sequence whatever the
number of invocations is. Equation (1) represents this AM restriction

m+j∑

k=m

C(k mod n) ≥
i+j∑

l=i

C(l mod n); (1)

∀i, j = 0, 1, 2, .., n− 1;

where Cm is one of the peak values in a list of execution times (C0, C1, .., Cn−1)
that satisfies Equation (1). For example, for the multiframe task whose execution time
sequence is C = (8, 4, 8, 3), m = 0 and C0 = 8. We call the peak frame whose
execution time is Cm the Critical Frame.

Definition 2. A Critical Frame of an AM multiframe task is one of the peak frames,
in the multiframe task, whose execution time satisfies the AM restriction (i.e. Equation
(1)).

For example, the critical frame of the multiframe task whose execution time sequence
is C = (8, 4, 8, 3), is the first frame whose execution time is 8.

Exact Response Time Scheduling Analysis 413

The first step in the schedulability analysis of a task is to identify the instant that
leads to the maximum load for its execution. In terms of the response time analysis
of a multiframe task τi, we now introduce the critical instant of τi as the instant that
leads to the worst case response time of τi. Mok and Chen [12] show in their paper
that the critical instant of an AM multiframe task is when its peak frame is released
simultaneously with all critical frames of all higher priority AM multiframe tasks.

Definition 3. Critical instant of an AM multiframe task τi is the simultaneous re-
lease, of the peak frame of τi with all critical frames of the higher priority multiframe
tasks.

We employ this critical instant of the AM multiframe task τi to analyse its worst case
response time and therefore its schedulability status.

3 Related Work

Because we are concerned with the response time analysis of AM multiframe tasks,
previous contributions must be covered within two fields. The first field is the schedula-
bility analysis of the multiframe tasks; which is presented in the following subsection.
The second field is response time analysis; which is presented in the later subsection.

3.1 Schedulability Analysis of the Multiframe Tasks

As the research into schedulability analysis starts from the utilization point of view,
we introduce here the beginning of the utilization’s research. Liu and Layland [10]
and Serlin[15], with the RM priority assignment algorithm and assuming a constant
execution time for each multiframe task in the system, introduced a sufficient but not
necessary feasibility test. The test was based upon the least upper bound of the processor
utilization factor; which is given by

∑i=N
i=1

Ci

Ti
. The test is based on the criteria that a

task set is schedulable if its processor utilization is less than a given upper bound; which
is N(2

1
N − 1) which simplifies to .693 for large N . Symbolically,

i=N∑

i=1

Ci

Ti
≤ N(2

1
N − 1).

This upper bound has been employed by different researchers to serve the multiframe
model.

Although research on multiframe tasks began when Mok and Chen [12,13] intro-
duced this multiframe concept and gave the utilization bound (as explained in the intro-
duction), Han [6] gave another schedulability test, under RM priority assignment, that
was better than Mok’s test in the sense that multiframe task sets with peak utilization
(i.e. the utilization of the peak frame) larger than Mok’s bound are not feasible using
Mok and Chen’s utilization bound but can be found feasible by Han’s test.

Baruah et al. [3] gave another tractable but sufficient response time analysis of a sys-
tem of multiframe tasks. They applied a fixed point algorithm to determine the worst
case response time of the peak frame of multiframe tasks taking into account the maxi-
mum amount of interference that higher priority multiframe tasks provide.

414 A. Zuhily and A. Burns

Traor et al. [18] mentioned in their paper that the multiframe model was a particular
case of tasks with offset (transactions), so they assumed that their offset analysis can be
applied to the multiframe model. However, we assume in our model that the priorities
of the tasks are assigned according to the multiframe task so all frames in a multiframe
task have the same priority which means the AM multiframe model is a restricted form
of the transaction model.

Kuo et al. [8] gave another improved utilization bound for the schedulability test
of systems with AM multiframe tasks. The main idea of the test was to merge tasks
with harmonic periods to reduce the number of tasks that has to be considered in the
schedulability test and then apply Mok’s bound to the merged tasks. The combined task,
under Kuo’s test, will have a period of Tmerg and a sequence of execution times (Cj)
with the size nmerg; where Tmerg is the maximum period of the merged tasks, nmerg

is the least common multiple, LCM, of the number of frames of the merged tasks, for
example, if N MF tasks in the system have harmonic periods then nmerg is LCM of
n1, n2, .., nN . The value of Cj is given by the following formula (assuming that we are
mergingN multiframe tasks)

Cj =
N∑

i=1

(

(Tmerg

Ti
)−1∑

k=0

C
(j(T merg

Ti
)+k) mod ni

i); j = 0, .., nmerg − 1

More recently, Lu et al. [11] improved Kuo’s utilization test and presented new
scheduling conditions for AM multiframe tasks within the utilization domain and as-
suming the RM priority assignment. They considered the ratio of the periods in their
test. The improvement was that they used Kuo’s method to merge the tasks and then
they applied their test to the merged tasks. The schedulability status, under their ap-
proach, depends on the total peak utilization, U , of the AM multiframe tasks being less
than a defined upper bound. They call this upper bound the Conditional Bound function,
CB. Symbolically, the AM task set is schedulable if the inequality (2) is satisfied.

U ≤ CB; (2)

where the total peak utilization, U , is the summation of all peak utilizations of the
multiframe tasks in the system; and it is given by

U =
N∑

i=1

max
0≤j≤ni−1

{C
j
i

Ti
}.

While the CB function is defined by Equation (3); for number of tasks, N > 1, and
with regard to two parameters r and z.

CB(r, z) = z + r(z − 1) + r(N − 1)((
1
z
)

1
N−1

− 1) (3)

where ni and Ti are respectively the number of frames and period of the ith multiframe
task. r is given as

Exact Response Time Scheduling Analysis 415

r = min1≤i≤N {ri}, where ri is defined depending on ni as
ri = Ci0

Ci1
; for ni > 1, and ri = 1; for ni = 1.

z is given as
z = max {min1≤i≤N−1 { Vi

TN
}, r

1+r}, where Vi is a virtual period and given by

Vi = 6TN

Ti
7Ti.

Although Lu’s analysis improves previous results, it still remains inexact. In this
paper we compare our schedulability analysis with Lu’s analysis since Lu’s analysis is
the most recent improved scheduling analysis.

As can be seen from all of the above contributions, all published schedulability ap-
proaches are inexact since all of them are either in the utilization domain or are only suf-
ficient. While in this paper, we provide exact scheduling analysis within the response time
domain. In the following, we cover relevant contributions in the response time domain.

3.2 Standard Response Time Analysis

In terms of schedulability under response time analysis, we say that the task τi is
schedulable if its worst case response time Ri is less than or equal to its deadline.
Usually, the response time of a task represents two kinds of execution: execution of the
task itself and execution of the other tasks in the system. The execution of the tasks
other than the task itself is presented as the interference from higher priority tasks.

The research into response time analysis began with Joseph and Pandya [7] followed
by Audsley et al. [1]. They introduced an iterative equation, Equation (4), for finding
the worst case response time of a task τi within specific restrictions and assuming the
execution times of the tasks in the system are constant for all phases of their execution.
They consider in the formula Liu and Layland’s critical instant [10]; where Liu and
Layland’s critical instant, and so the worst case response time, of a task is when this
task is released simultaneously with all higher priority tasks.

Ri = Ci +
i−1∑

j=1

;Ri

Tj
<Cj (4)

where
∑i−1

j=1 ;Ri

Tj
<Cj is the amount of interference from tasks whose priorities are

higher than the priority of τi.
From the blocking point of view, the blocking time of a task τi is the time for which

τi is stopped in its execution because of the execution of some lower priority task.
In other words, a task τi is subjected to blocking when this task is blocked awaiting
a lower priority task to complete its execution. This scenario happens when a concur-
rency control protocol is used with the fixed priority scheduling scheme. Priority ceiling
protocol [16] and stack resource protocol [2] are the most famous concurrency control
protocols. Audsley et al. [1] enhanced the response time formula (i. e. Equation (4)) to
include blocking time, Bi, as in Equation (5).

Ri = Ci +Bi +
i−1∑

j=1

;Ri

Tj
<Cj (5)

To solve Equation (5), a recurrence relation is given as in Equation (6); where w =
0, 1, 2, ... and r0i = Ci. The smallest solution of Equation (6) represents the worst case

416 A. Zuhily and A. Burns

response time of τi. In other words, the worst case response time is obtained when it
is found that rw+1

i = rwi (= Ri for the smallest value of w). However, in the case that
rw+1
i becomes greater than the deadline of the task, τi is not guaranteed to meet its

deadline, so we say that the task is unschedulable.

rw+1
i = Ci +Bi +

i−1∑

j=1

;r
w
i

Tj
<Cj (6)

The critical instant of the task is not affected by changing the release frame of higher
priority tasks; because all frames in a standard task generate the same amount of inter-
ference. In our contribution, the restriction of having constant execution times of the
tasks is removed. So, the response time formula requires modification and specifically
the side that calculates interference from the higher priority multiframe tasks.

4 Exact Response Time Analysis for AM Multiframe Tasks

In this section, we use the framework of response time analysis to provide the exact
scheduling analysis of AM multiframe tasks. The analysis is done in two steps, in the
first step we provide the basic response time formula when no blocking of the multi-
frame task is considered while in the second step we introduce the blocking term into
the formula. Then, we show the applicability of this response time scheduling analysis
by showing that its coverage is wider than the utilization based analysis.

4.1 Basic Response Time Analysis of the AM Multiframe Tasks

This section covers the response time analysis of a multiframe task assuming that all
multiframe tasks in the system satisfy the AM restriction (i.e. Equation (1)). The main
concern of the response time analysis of the multiframe task is to find a function that can
account for the amount of interference an AM multiframe task, τj , generates for a spe-
cific number of its invocations, k. We call the function with this property the cumulative
function, ξj , Definition 4 provides a full description of this function.

Definition 4. Given an AM multiframe task τj with nj execution times (C0
j , C

1
j , ..,

C
nj−1
j). A cumulative function (ξj) of τj for a given number of its invocations is the

amount of interference that τj generates starting from the critical frame and proceeding
for that number of invocations. Equation (7) represents the cumulative function of the
jth AM multiframe task, τj , for k number of its invocations assuming that its critical
frame is indexed asmj .

ξj(k) =
mj+k−1∑

l=mj

Cl mod n
j ; k = 1, 2, .. (7)

For example, the value of ξ1(3) for the task τ1 whose execution times are (8, 4, 8, 3) is 20.
In fact, for an ordinary single frame task the cumulative function is well defined as

ξj(k) = kCj because of the constancy of Cj for all frames of the multiframe task. So,

Exact Response Time Scheduling Analysis 417

using Equation (7) to present the amount of interference the higher priority multiframe
tasks generate, the basic response time formula represented by Equation (4) is modified
to be in the form used in the following theorem (i.e. Theorem 1).

Theorem 1. Given a real time system consisting of N AM multiframe tasks, the worst
case response time of the multiframe task τi is given by the smallest non-negative solu-
tion to Equation (8):

Ri = Cmi

i +
i−1∑

j=1

ξj(;
Ri

Tj
<) (8)

where ξj (;Ri

Tj
<) is the cumulative function of the critical frame of τj as defined by

Equation (7).

Proof. Assume Ri is the worst case response time of the task τi, then for each multi-
frame task whose priority is higher than the priority of τi (i.e. τj ; j = 1..i − 1); the
number of invocations of τj within Ri is given by ;Ri

Tj
< where the critical instant of an

AM multiframe task is as in Definition 3 [12,13]. So, when τj is released at the critical
frame, the amount of interference that τj generates within Ri is given by:

ξj(;
Ri

Tj
<). (9)

In addition, the maximum amount of interference that any τj generates within a lower
priority task is when it is released at its critical frame (i.e. Definition 3), so the amount
of interference that all higher priority multiframe tasks generate within Ri is given by:

i−1∑

j=1

ξj(;
Ri

Tj
<) (10)

On the other hand, the maximum time τi takes for execution is represented by Cmi

i .
So the response time of τi is given by Equation (8); in which presents the execution of
both the multiframe task τi as well as interference from all higher priority tasks. �
Equation (8) that can be solved by a recurrence relation, provides an exact test of
schedulability as the response time calculation is exact, assuming that there is no block-
ing time. So, the schedulability test, of a system with AM multiframe tasks, is presented
as follows: a system with AM multiframe task set is schedulable if and only if all its
multiframe tasks meet their relative deadlines. Where the AM multiframe task meets its
deadline if its worst case response time, that is calculated by Equation (8), is less than
or equals its deadline.

4.2 Adding Blocking Time to the Response Time Analysis

As mentioned earlier, blocking of a task is when this task stops its execution awaiting
lower priority tasks to complete their execution. So, when we have a system of multi-
frame tasks, we expect more than one blocking values for the execution of τi since also
all lower priority tasks are multiframes and therefore could have different execution
times. However, using priority ceiling protocol [16,14] allows the task to be blocked at

418 A. Zuhily and A. Burns

most once during its execution, so we only add, to the worst case response time formula,
the maximum of the expected blocking values which we symbolize it as Bi. Thus, as-
suming that τi has a maximum blocking ofBi, we now say that the worst case response
time formula (i.e. Equation (11)), is represented as a collection of three kind of exe-
cution: maximum execution of the task itself Cmi

i , maximum blocking time Bi and
maximum interference from the higher priority multiframe tasks,

∑i−1
j=1 ξj(;Ri

Tj
<).

Ri = Cmi

i +Bi +
i−1∑

j=1

ξj(;
Ri

Tj
<) (11)

Similar to the given solution of the standard response time, Equation (11) is solved
using a recurrence relation as in Equation (12); where w = 0, 1, 2, ... and r0i = Cmi

i .
The worst case response time is obtained when it is found that rw+1

i = rwi (= Ri

for the smallest value of w). While, in the case that rw+1
i becomes greater than the

deadline of the task, τi is not guaranteed to meet its deadline, so we say that the task is
unschedulable.

rw+1
i = Cmi

i +Bi +
i−1∑

j=1

ξj(;
rwi
Tj
<) (12)

4.3 Coverage of the Analysis

So far, research into schedulability tests has two formulations: the utilization domain
and the response time domain. In our framework within this paper, we consider the
response time scheduling test as better than the utilization based test because of the
wider coverage the response time test gives for a less restricted system model.

From the utilization point of view, the scheduling test mostly depends on the cho-
sen priority assignment, for example, Lu’s approach considers RM priority assignment
which is optimal when the deadlines of the tasks in the system are identical to their
relative periods. However, when the deadlines of the tasks are permitted to be less than
their relative periods; RM priority assignment is not optimal and Deadline Monotonic
DM priority assignment takes its place (DM is a priority assignment where the lower
deadline the relative task has, the higher priority it is assigned [9]). But, Lu’s approach,
for instance, is not applicable to the systems whose tasks’ priority assignment is DM.

On the other hand, the response time scheduling analysis is a flexible test, better than
the utilization test, from two points of view. Firstly, the response time test is applica-
ble to the system model when the tasks have deadlines less than their relative periods.
Secondly, the response time test does not depend on the priority assignment scheme of
the tasks in the system. For example, response time test is still applicable to the system
model where priorities are assigned according to RM, DM or even any other priority
assignment scheme; while the utilization based test is not. For more illustration of the
efficiency of the response time test, the following numeric example is given.

5 Numeric Example

In this section, we show the efficiency of the response time analysis by giving a numeric
example and comparing the response time schedulability result with Lu’s schedulability

Exact Response Time Scheduling Analysis 419

Table 3. System Example

task C T = D R
τ1 1 3 1

τ2 2 9 3

τ3 3, 1 18 8

τ4 2, 1 20 14

τ5 6, 3 60 32

result. Table 3 represents an example task set of 5 AM multiframe tasks with their pa-
rameters and their worst case response times according to RM priority assignment (the
smaller period the task has the higher priority it is assigned). To simplify the example,
we assume that all deadlines are identical to their relative periods and all blocking terms
are zero.

Lu et al. [11] note that the schedulability of this task set is unknown using Kuo’s [8]
method, while response time analysis shows that the task set is schedulable. Moreover,
the analysis in this paper gives an exact value of the worst case response time of each
task in the system. All worst case response times of all the tasks are given in Table 3
calculated by applying Equation (8). As all of the worst case response times are less
than their deadlines, all multiframe tasks in the system are schedulable. So, the system
is schedulable.

However, if we modify the execution times of task τ4 to be (3, 2) instead of (2, 1)
and keep all other parameters as in Table 3; we find that the system schedulability is
unknown using Lu’s method but it is schedulable using our response time analysis. That
is because, in Lu’s approach τ1, τ4, and τ5 will be merged using Kuo’s method to τ̂1
with the execution times (34, 30) and the period of 60 while τ2 and τ3 are merged to
τ̂2 with execution times (7, 5) and a period of 18 (see Section 3.1 for all calculation
details’). Therefore, the total peak utilization of the merged tasks is U = 0.95556 and
Lu’s conditional bound function (CB) of the merged tasks is 0.91259. So U > CB
which means using Lu’s test that the system schedulability is unknown; whilst the exact
response time analysis given in this paper shows that the system is schedulable because:

R1 = 1 < 3,
R2 = 3 < 9,
R3 = 8 < 18,
R4 = 15 < 20,
R5 = 35 < 60.

6 Evaluating Exact Response Time Schedulability Analysis

We show in this section how the worst case response time test is a clear improvement,
compared to the most recent schedulability test that is represented by Lu et. [11]. Com-
parison in this section requires the generation of the real time systems to check their
schedulability under each approach (i.e. each of response time and Lu approaches) and
then compare between these two to determine the best. This scenario is presented as
simulations that are explained in three steps, the first step shows how each experiment

420 A. Zuhily and A. Burns

is constructed, the second step illustrates how each experiment is run, and the third step
shows the results of the experiments.

6.1 Experimental Setup

The generation of the real time system means the generation of the size of the system
as well as the generation of the multiframe tasks that form the system. From the system
size point of view, we assign the number of tasks in the system for each experiment to
be one of the values {5, 20, 100}. While from the multiframe task’s generation point
of view, we require the generation of four parameters for each multiframe task, τi, (i.e.
ni, Ti, Di, Ci; which are: number of frames, Period, Deadline, and the execution time
sequence).

The four parameters of a multiframe task are generated, in summary, as follows. The
first parameter that is the number of frames of the multiframe task is assumed as fixed
for all multiframe tasks in the system and is chosen, for each experiment, as one of the
values {3, 7, 13, 23}. The values are chosen to be prime numbers so that no task can
have a repeating pattern of frames. The second and third parameters are the period and
deadline of the multiframe task, they are assumed to be identical to each other for each
multiframe task and are randomly generated in the range of [1, 2500] using the uniform
distribution. Once the deadlines are assigned to each task, the priorities of the tasks are
also assigned according to DM (=RM) assignment.

The sequence of the execution times, which is the fourth parameter, is generated in
two steps. In the first step we generate the utilization for each frame of the multiframe
task, while in the second step we assign the execution time of this frame by multiplying
its utilization by its period. The following is the full details the generation scheme for
the execution times.

First of all, we give an overall utilization of the system and then we distribute this
utilization to all multiframe tasks in the system using the UUnifast algorithm [4]. We
consider each portion of the utilization for each multiframe task as the mean utilization
of this multiframe task, and we multiply this mean by the number of frames, then we
again apply the UUnifast algorithm to the results of the multiplication. In this case,
we get the utilization of each frame in the multiframe task and therefore the execution
time of this frame is the multiplication of its utilization by its period. Once we get the
execution time sequence we re-arrange it to be AM using Mok’s algorithm [13].

For each experiment, we modify one and fix two of the three attributes of the analysed
system: utilization, number of frames and number of tasks. All experiments show, as
expected, that the number of schedulable systems when the exact response time test is
applied is always greater than when Lu’s test is applied.

6.2 Scope of Running the Experiments

We run each experiment 1000 times, for each chosen number of frames, in four steps as
following. Firstly, we generate the parameters of the experiment (i.e. number of frames,
periods, deadlines, and execution time sequences) as previously explained. Secondly,
we check the worst case response time of each task, using Equation (8), whether it is
less than the relative deadline. In other words, we check the schedulability of the system

Exact Response Time Scheduling Analysis 421

by checking if the worst case response time of all multiframe tasks in this system are
within their relative deadlines. Thirdly, for the same parameters of the system we check
the schedulability of the same generated system using Lu’s test. Lastly, for each of the
two tests, we count the percentage of the number of schedulable systems out of the 1000
ones that are randomly generated.

6.3 Results of the Experiments

From the utilization point of view, we investigate the values of the utilizations that are in
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,). Figure 1 shows the percentage of the schedulable
systems versus the overall utilization of the systems regarding two parameters: number
of tasks, N , and number of frames, n. Each line in each graph in Figure 1 shows the
results of the schedulability percentages for a value of n and a value of N . To simplify
the presentation of the results, we present only two values of n in each graph. So, each
graph has four lines, each two lines have the same values of parameters and present the
results of both the response time test and Lu’s test. For example, graph (a) in Figure
1 shows the results for 5 number of tasks and two values of n, that are 3 and 13; and
likewise all graphs of Figure 1 show the results for different values of the number of
tasks and number of frames.

Figure 1 shows that when the overall utilization of the system is very low, 0.1, both
of the response time and Lu’s tests give the same performance of 100% schedulable
systems. While when the utilization is very high, greater than 0.6, although the exact
test is better than Lu’s one, the success of both tests is very low (as these systems are
indeed unschedulable). So, we emphasize the range [0.2, 0.6] of the overall utilization
to show how much the exact response time test is better than Lu’s test.

Graph (a) in Figure 1 shows that there is less than 10% better performance of the
exact test than Lu’s test; when the overall utilization of the system is 0.2, for 5 tasks in
the system, and number of frames equal to 13. While this standard of performance rises
to 20% in graph (a1) (i.e. percentage of the number of schedulable systems is 100%,
according to the exact test, while this percentage is 80%, according to Lu’s test), when
the number of frames is 23 for the same other parameters. The performance decreases
by increasing the number of tasks and increases by increasing the number of frames.
For example, graph (b) and (b1) show that there is 55% better performance of the exact
test than Lu’s test; when the overall utilization of the system is 0.2, for 20 tasks in the
system, and number of frames is 13 or 23. While this standard of performance rises
to 95% in graph (c1) (i.e. percentage of the number of schedulable systems is 100%,
according to the exact test, while this percentage is 5%, according to Lu’s test); when
the number of tasks is 100 and the number of frames becomes 23 for the utilization 0.2.

All graphs apart from (a1), in Figure 1, show that when the overall utilization of the
system increases up to 0.4 (and sometimes 0.5 like in graphs (b) and (c)) and the number
of frames is 3, or 7; the performance of the exact test stays higher than 90% for all
studied number of tasks (i.e. 5, 20, and 100) while at the same time, graph (b1) shows
that the performance of Lu’s test decreases to about 22% when the utilization is 0.3,
number of tasks is 20 and number of frames is 7. Also, from graph (c1), there is around
97% better performance of of the exact than Lu’s test; when the overall utilization of
the system is 0.3, for 100 tasks in the system, and number of frames is 23.

422 A. Zuhily and A. Burns

(a) (a1)

(b) (b1)

(c) (c1)

Fig. 1. Percentage of Schedulable Systems Regarding the Overall Utilization of the System after
Applying Response Time and Lu’s Tests

Exact Response Time Scheduling Analysis 423

In addition, graph (b) shows that there is about 42% better performance of the exact
test when the overall utilization of the system is 0.4, the number of frames is 13 and
the number of tasks is 20. While graph (b1) shows that there is 80% better performance
of the exact when the overall utilization of the system is 0.3, the number of frames is
23 and the number of tasks is 20; where 80% of the number of the random tasks are
schedulable by the response time test but none of them were schedulable using Lu’s
test.

So, the percentage of the schedulability performance of the exact response time test
is much more better than Lu’s test and some times could reach to around 100% bet-
ter performance. For example, graph (c) shows that 100% of the random systems are
schedulable using exact test while non of the systems are schedulable using Lu’s test;
when the overall utilization is 0.3, the number of tasks is 100 and number of frames
is 13. Similarly, graph (c1) shows that when the overall utilization is 0.3, the number
of tasks is 100 and number of frames is 23; the percentage of the schedulable systems
using exact test is about 97% while 0% of the systems are schedulable using Lu’s test.

7 Conclusions

In this paper, we present an exact schedulability test for a system of AM multiframe
tasks. The schedulability analysis is given in terms of the response time analysis of the
AM multiframe tasks. The response time test, that is presented in this paper, shows
a clear improvement in the schedulability tests from three points of view, firstly, the
test is exact and tractable. Secondly, the test is applicable to the system model when
deadlines of the tasks are less than their relative periods and regardless to the scheme
for priority assignment. While thirdly, evaluations show that this exact response time
test has better performance than the most improved utilisation bases schedulability test
of the AM multiframe tasks. This improvement varies between 10% and 100% (for the
relative three parameters: overall utilization of the system, number of tasks and number
of frames).

References

1. Audsley, N.C., Burns, A., Richardson, M., Tindell, K., Wellings, A.J.: Applying New
Scheduling Theory to Static Priority Preemptive Scheduling. Software Engineering Jour-
nal 8(5), 284–292 (1993)

2. Baker, T.P.: Stack-based scheduling of realtime processes. The Journal of Real Time Sys-
tems 3(1), 67–99 (1991)

3. Baruah, S.K., Chen, D., Mok, A.: Static-priority scheduling of multiframe tasks. In: Proceed-
ings 11th Euromicro Conference on Real-Time Systems, pp. 38–45 (June 1999)

4. Bini, E., Buttazzo, G.C.: Biasing effects in schedulability measures. In: ECRTS 2004: Pro-
ceedings of the 16th Euromicro Conference on Real-Time Systems (ECRTS 2004), Wash-
ington, DC, USA, 2004, pp. 196–203. IEEE Computer Society Press, Los Alamitos (2004)

5. Burns, A., Wellings, A.J., Forsyth, C.H., Bailey, C.M.: A performance analysis of a hard
real-time system. Control Engineering Practice 3(4), 447–464 (1995)

6. Han, C.J.: A better polynomial-time schedulability test for real-time multiframe tasks. In:
Proceedings of 19th IEEE Real-Time Systems Symposium, December 1998, pp. 104–113
(1998)

424 A. Zuhily and A. Burns

7. Joseph, M., Pandya, P.: Finding Response Times in a Real-Time system. The Computer
Journal 29(5), 390–395 (1986)

8. Kuo, T.W., Chang, L.P., Liu, Y.H., Lin, K.J.: Efficient on-line schedulability tests for real-
time systems. IEEE Trans. on Software Engineering 29(8) (2003)

9. Leung, J.Y.T., Whitehead, J.: On the Complexity of Fixed Priority Scheduling of Periodic,
Real Time Tasks. Performance Evaluation 2(4), 237–250 (1982)

10. Liu, C.L., Layland, J.W.: Scheduling Algorithm for Multiprogrammimg in a Hard Real-Time
Environment. Journal of the Association for Computing Machinery 20(1), 46–61 (1973)

11. Lu, W.C., Lin, K.J., Wei, H.W., Shih, W.K.: New schedulability conditions for real-time
multiframe tasks. In: 19th Euromicro Conference on Real Time Systems (ECRTS 2007),
Pisa, Italy, July 4-6 (2007)

12. Mok, A.K., Chen, D.: A multiframe model for real time tasks. In: Proceedings of IEEE
International Real Time System Symposium, December 1996, pp. 22–29 (1996)

13. Mok, A.K., Chen, D.: A multiframe model for real-time tasks. IEE Trans. on Software Engi-
neering 23(10), 635–645 (1997)

14. Pilling, M., Burns, A., Raymond, K.: Formal specification and proofs of inheritance protocols
for real-time scheduling. Software Engineering Journal 5(5), 263–279 (1990)

15. Serlin, O.: Scheduling of time critical processes. In: AFIPS Spring Computing Conference
(1972)

16. Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority Inheritance Protocol: An Approach to Real
Time Synchronization. IEEE Transactions on Computers 39(9), 1175–1185 (1990)

17. Takada, H., Sakamura, K.: Schedulability of generalized multiframe task sets under static
priority assignment. In: Real Time Computing Systems and Applications, pp. 80–86 (1997)

18. Traor, K., Grolleau, E., Rahni, A., Richard, M.: Response-time analysis of tasks with offsets.
In: 11th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA 2006), Prague, Czech Republic (September 2006)

Endomorphisms for Non-trivial Non-linear Loop

Invariant Generation

Rachid Rebiha1,3, Nadir Matringe2, and Arnaldo Vieira Moura3,�

1 Faculty of Informatics, University of Lugano, Switzerland
rachid.rebiha@lu.unisi.ch

2 Institue de Mathematiques de Jussieu (UMR 7586) Université Paris 7-Denis
Diderot, France

matringe@math.jussieu.fr
3 Institute of Computing, University of Campinas, SP.Brasil

arnaldo@ic.unicamp.br

Abstract. Present approaches for non-linear loop invariant generation
are limited to linear (affine) systems, or they relay on non scalable meth-
ods which have high complexity. Moreover, for programs with nested
loops and conditional statements that describe multivariate polynomials
or multivariate fractional systems, no applicable method is known to lend
itself to non-trivial non-linear invariants generation. We demonstrate
a powerful computational complete method to solve this problem. Our
approach avoids first-order quantifier elimination, cylindrical algebraic
decomposition and Grobner bases computation, hereby circumventing
difficulties met by recent methods.

1 Introduction

In this paper, we present a new method that addresses the various deficien-
cies of state-of-the-art non-linear invariant generation methods. An invariant at
a location in a program is an assertion true of any reachable program states
associated to this location. We provide mathematical techniques and design ef-
ficient algorithms to automate the discovery and strengthening of non-linear
interrelationships among the variables of a program containing non-linear loops
(multivariate polynomial and fractional manipulation).

It is well-know that the automation and effectiveness of formal verification of
programs depend on the ease with which strong invariants can be automatically
generated [1] (e.g. safety properties can be reduced to invariant properties). Fur-
thermore, the standard techniques use invariant assertion [2] to prove program
properties or to provide lemmas that can establish other safety and liveness
program properties. We also know that the weakest precondition method [3, 4]
requires loop invariants to be completely automatic.

Non-linear loop invariant generation methods have seen tremendous progress
[5, 6, 7, 8, 9, 10, 11, 12] in recent years. But these approaches are limited to

� Supported by CNPq grant 472504/2007-0.

J.S. Fitzgerald, A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 425–439, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

426 R. Rebiha, N. Matringe, and A.V. Moura

linear (affine) system or relay on non scalable methods (with complexity at least
doubly exponential). Moreover, they require Grobner Bases computations, first-
order quantifier elimination [13, 14] or cylindrical algebraic decomposition. In [5],
the non-linear invariant generation problem is reduced to a numerical constraint
solving problem over indeterminate polynomial coefficients. In [7] similar for-
ward propagation techniques use an abstract interpretation [15] framework and
Grobner bases construction to compute invariants as fixed points of operations
on ideals. In [16], techniques from abstract interpretation and Grobner bases
computation are used to calculate a polynomial ideal that represents the weak-
est precondition for the validity of the polynomial relations at a given program
point. The main challenge for these techniques is that abstract interpretation in-
troduces imprecision (widening) to assure termination. This is the main reason
why these approaches often produce null or trivial invariant due to a too coarse
abstraction. In [17, 10], the methods use techniques from algebra and combina-
torics (Grobner bases, variable elimination, algebraic dependencies and symbolic
summation). They attempt to generate (not in an completely automatic way)
all polynomial invariants from a restricted class of linear (P-solvable) loops. Also
conditional statement are “omitted”[10]. On the other hand, [5, 18, 12] use the
theory of polynomial algebra to generate multivariate polynomial invariants.
However, the main weakness of these approaches is that they relay on meth-
ods with at least a doubly exponential complexity: Grobner Bases computation,
first-order quantifier elimination. Also, these approaches omit conditional state-
ments and deal with conjunctions of linear [5] and polynomial equations [18, 12].
Recently, [9] proposed the first methods to handle conditional statements by di-
rectly solving semi-algebraic systems, but the authors pointed out that this is
not a practical method since the complexity remmains at least doubly exponen-
tial (single exponential w.r.t the number of program variables and parameters,
and doubly exponential w.r.t the number of parameters).

For each type of semi-algebraic loop (affine, multivariate fractional and poly-
nomial) we can summarize our contribution as follosw: (i) in contrast with the
mentioned approaches, our methods do not required computation of Grobner
bases, quantifier elimination, cylindrical algebraic decomposition or direct reso-
lution of semi-algebraic system and do not depend on any abstraction methods;
(ii) we succeeded in reducing the non-linear loop invariant generation problem to
the intersection between eigenspaces of specific endomorphisms and initial linear
or semi-affine/algebraic constraints; (iii) we present the first non-linear invari-
ant generation methods that handle multivariate fractional instructions (as far
as we know it is the first method that handles multivariate fractional systems),
conditional statement, and nested inner-loops; (iv) we present necessary and suf-
ficient conditions for the existence of non-trivial non-linear loop invariants; and
(v) considering the problem of invariant generation, we identify large decidable
and undecidable classes.

In Section 2 we present ideals of polynomials and their possible interactions
with inductive assertions. In Section 3 we consider the case where loops describe
an affine system. We also present a complete decision procedure for the automatic

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 427

generation of non-trivial non-linear invariants. In Section 4 we present results
for non-linear loops and the associated endomorphisms. Next, we present results
for the existence of non-trivial invariants, decidable and undecidable classes and
a generalization of the decision procedure to multivariate polynomial loops. In
Section 5 we provide a complete generalization by considering loops describing
multivariate fractional systems. We finally conclude our approach by showing
how we handle nested loops and conditional statements in Section 6.

Details of all proofs and examples can be found in [19].

2 Ideals of Polynomials and Inductive Assertions

Let An = K[X1, .., Xn] be the ring of multivariate polynomials over the set
of variables {X1, .., Xn} ⊂ K. An ideal I ∈ An is closed under addition, it
includes 0 and it is closed by multiplication with each element in An (for
all P ∈ An and Q ∈ I, PQ ∈ I). Let E ⊆ An be a set of polynomials,
the ideal generated by E is given by the following set of finite sums: (E) =
{
∑k

i=1 PiQi | Pi ∈ K[X1, . . . , Xn], Qi ∈ E, k ≥ 1}. In other words, the set of
finite sums

∑
Q∈E AnQ. A set of polynomials E is said to be a basis of an ideal

I if I = (E). By Hilbert’s Basis Theorem, we know that all ideals have a finite
basis. An algebraic assertion is of the following form

∧
i pi(x1, ..., xn) = 0 where

each pi ∈ An. Let φ(x1, ..., xn) ≡ (
∧

i pi(x1, ..., xn) = 0) be an algebraic assertion
and let Sφ ⊆ An be the associated set of polynomials pi that appear in φ. For
Sφ we define the algebraic set (or variety) as the set of common zeroes of all
the polynomials in Sφ: V (Sφ) = {(x1, ..., xn) ∈ Cn | ∀p ∈ Sφ, p(x1, ..., xn) = 0}.
Consider a polynomial Q ∈ An, an algebraic assertion φ with its associated
polynomial set Sφ and the ideal I = (Sφ). The Ideal Membership problem
(Q ∈ I) can be understood by the equivalent inclusion problem V (I) ⊆ V (Q).
The weak version of Hilbert’s Nullstellensatz Theorem states that if (Q ∈ I)
then φ(x1, . . . , xn) |= (Q(x1, . . . , xn) = 0).

We use transition systems as representations of programs.

Definition 1. A transition system is given by 〈V, L, T , l0, Θ〉, where V is a set
of variables, L is a set of locations and l0 is the initial location. A state is given
by an interpretation of the variables in V . A transition τ ∈ T is given by a
tuple 〈lpre, lpost, ρτ 〉, where lpre and lpost name the pre- and post- locations of
τ . The transition relation ρτ is a first-order assertion over V ∪ V ′, where V
correspond to current-state variables and V ′ to the next-state variables. Θ is the
initial condition, given as a first-order assertion over V .

Definition 2. W = 〈V, L, T , l0, Θ〉 is a transition system. An invariant at loca-
tion l ∈ L is defined by an assertion over V which holds on all reachable states at
location l. An invariant of W is an assertion over V that holds at all locations.

Definition 3. Let W = 〈V, L, T , l0, Θ〉 be a transition system and let D be the
domain of assertions. An assertion map for W is a map η : L→ D. We say that
η is inductive if and only if the Initiation and Consecution conditions hold:

428 R. Rebiha, N. Matringe, and A.V. Moura

– Θ |= η(l0) (Initiation)
– ∀τ ∈ T s.t τ = 〈li, lj , ρτ 〉 we have η(li) ∧ ρτ |= η(lj)′ (Consecution).

From [4], we know that if η is an inductive assertion map then η(l) is an invariant
at l. We will use the following notions of consecution.

Definition 4. Let τ = 〈li, lj, ρτ 〉 be a transition for a given algebraic transi-
tion system and let η be an algebraic inductive map. We identify the following
complete notion of consecution:

1. η satisfies the Fractional-scale consecution for τ if and only if there exists a
multivariate fractional T

Q such that: ρτ |= (η(lj)′ − T
Qη(lj) = 0)

2. η satisfies the Polynomial-scale consecution for τ if and only if there exist a
multivariate polynomial T such that : ρτ |= (η(lj)′ − Tη(lj) = 0)

3. η satisfies the Constant-scale consecution for τ if and only if there exists a
constant λ ∈ K such that : ρτ |= (η(lj)′ − λη(lj) = 0)

Constant-scale consecution encodes the fact that the numerical value of the as-
sertion after the transition τ is given by λ times the numerical value prior the
transition τ . Polynomial-scale consecution encodes the fact that the numeri-
cal value of the assertion after the transition τ has been multiplied after the
transition by a multivariate polynomial T . Fractional-scale consecution encodes
the fact that the numerical value of the assertion after the transition τ is a T

Q
multivariate fractional multiple of the numerical value prior to the transition.

3 When to Use Constant Scale Consecution

Definition 5. Let a transition system corresponding to loop τ = 〈li, li, ρτ 〉 be

ρτ ≡ [x′1 = L1(x1, . . . , xn) ∧ ... ∧ x′n = Ln(x1, . . . , xn).] (1)

A polynomial Q ∈ K[X1, ..., Xn] is said to be a λ-invariant for constant-scale
consecution with parameter λ for the loop τ if and only if

Q(X ′
1, .., X

′
n)− λQ(X1, .., Xn) = 0,

modulo the ideal of K[X ′
1, .., X

′
n, X1, .., Xn] corresponding to the loop generated

by the basis (X ′
1 − L1(X1, ..., Xn), ..., X ′

n − Ln(X1, ..., Xn)).

Theorem 1. (λ-invariant characterization) Consider a transition system
corresponding to a loop τ as described in Definition 5. Let Q(X1, ..., Xn) be a
multivariate polynomial with indeterminate coefficients. Q is a λ-invariant for
constant-scale consecution with parameter λ ∈ K for τ if and only if

Q(L1(X1, . . . , Xn), .., Ln(X1, . . . , Xn)) = λQ(X1, . . . , Xn).

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 429

Consider the case of affine transition systems corresponding to a loop as de-
scribed in Definition 5, where Li(x1, ..., xn) =

∑n
k=1 ci,k−1xk + ci,k are affine

forms. In this case, let Q ∈ An be a multivariate polynomial of degree r, with
indeterminate coefficients (a template), which is going to be a λ-invariant can-
didate for constant-scale consecution with parameter λ. We show that for good
choices of λ there always exists such a λ-invariant that is not trivial. As Q is of
degree r, it has coefficients a0, .., at, each corresponding to a monomial in the
expansion of Q with respect to the total-degree lexicographic ordering (t + 1
being the number of monomials of degree inferior to r, so that at is the coefficient
of the constant term). Notice that Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) is also of
degree r because all Li’s are of degree one. Writing the problem using linear
algebra, and using the canonical basis of K[X1, .., Xn], we immediately see that
it is equivalent to solve the following: (M − λI) →

a=
→
0 , where

→
a is the column

vector with coordinates ai, andM is a (t+1)× (t+1) matrix whose coefficients
depend on the ci,k’s. To be more precise, let Vr be the subspace of K[X1, .., Xn]
consisting of polynomials of degree less than r, then M is the matrix of the
endomorphism of Vr given by

(P (X1, .., Xn) �→ P (L1(X1, ..., Xn), .., Ln(X1, ..., Xn))

in the canonical basis of Vr consisting of terms of degree less then r with total-
degree lexicographic ordering (this is indeed an endomorphism because all Li’s
are of degree one). That is, λ must be an eigenvalue of M if we want to find a
non null λ-invariant whose coefficients will be those of an eigenvector.

Theorem 2. (Existence of λ-invariants) Let Vr and M be as above. A poly-
nomial Q of Vr is λ-invariant for scale consecution if and only if there exists an
eigenvalue λ of M such that Q belongs to the eigenspace corresponding to λ.

We also notice that the last column of M is always (0, .., 0, 1)t by definition
of the matrix M . Thus 1 is always an eigenvalue of M , with a corresponding
eigenvector being

→
a with ai = 0 except for at, which gives the trivial λ-invariant

Q(X1, .., Xn) = at, i.e. the constant polynomial. Eigenvalue 1 always gives the
constant polynomial as a λ-invariant, but it might give better invariants for other
eigenvectors if dim(Ker(M − λI)) ≥ 2, as we will see in the sequel.

Example 1. General Case for 2 Variables. We first treat the general case
where the transition system has only two variables, we will look for a λ-invariant
candidate of degree 2, where

ρτ ≡
[
x′1 = c1,0x1 + c1,1x2 + c1,2

x′2 = c2,0x1 + c2,1x2 + c2,2

]
.

And we look for an invariant polynomialQ(X1, X2) = a0X1
2+a1X1X2+a2X2

2+
a3X1 + a4X2 + a5 for constant scaling with parameter λ. Recall that we must
solve the equation Q(c1,0X1+c1,1X2+c1,2, c2,0X1+c2,1X2+c2,2) = λQ(X1, X2).

430 R. Rebiha, N. Matringe, and A.V. Moura

Thus for M we get the following matrix:
�
�������

c1,0
2 c1,0c2,0 c2,0

2 0 0 0
2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1 0 0 0

c1,1
2 c1,1c2,1 c2,1

2 0 0 0
2c1,0c1,2 c1,0c2,2 + c1,2c2,0 2c2,0c2,2 c1,0 c2,0 0
2c1,1c1,2 c1,1c2,2 + c1,2c2,1 2c2,1c2,2 c1,1 c2,1 0

c1,2
2 c1,2c2,2 c2,2

2 c1,2 c2,2 1

�
�������

.

We see that the last column is as predicted, plus the matrix is block diag-
onal. Thus its characteristic polynomial is P (λ) = (1 − λ)P1(λ)P2(λ), with

P1 being the characteristic polynomial of
(
c1,0 c2,0

c1,1 c2,1

)
and P2 being the one of

⎛

⎝
c1,0

2 c1,0c2,0 c2,0
2

2c1,0c1,1 c1,0c2,1 + c1,1c2,0 2c2,0c2,1

c1,1
2 c1,1c2,1 c2,1

2

⎞

⎠. Here P2 is of degree 3 and has at least

one real root, which can be computed by Lagrange’s resolvent method. Choosing
λ to be this root, the corresponding eigenvectors will give non-trivial λ-invariants
of degree two as at least a0, a1 or a2 must be non null for such an eigenvector.

Example 2. Now, suppose the transition system is given by τ = 〈li, li, ρτ 〉 with
ρτ ≡ [x′1 = 2x1 + x2 + 1 ∧ x′2 = 3x2 + 4]. Then P2(λ) = (4 − λ)(6 − λ)(9 − λ).
So fix λ to be 4. We get that the corresponding eigenspace is generated by the
following vector: (1,−2, 1,−6, 6, 9)t. So that as a λ-invariant polynomial for scale
consecution with parameter 4, we get 1X1

2 − 1X1X2 +X2
2 − 6X1 + 6X2 + 9.

Example 3. (With 4 Variables). We study the following transition system
[5] corresponding to the multiplication of 2 numbers and where the transition
considered is τ = 〈li, li, ρτ 〉 with ρτ ≡ [s′ = s+i∧j′ = j+1∧i′ = i∧j′0 = j0]. We
are looking for a degree two invariant of the form Q(s, j, i, j0) = a0s2 + a1sj +
a2si+ a3sj0 + a4j2 + a5ji+ a6jj0 + a7i2 + a8ij0 + a9j02 + a10s+ a11j + a12i+
a13j0 +a14. We need to solve Q(s+i, j+1, i, j0) = λQ(s, j, i, j0). Here an evident
eigenvalue is 1, as it is clear in view of the matrixM that dim(Ker(M−I)) ≥ 2.
For example the vector (1, 0, 0, 0, 0, 1, 0, 0,−1, 0, 0, 0, 0, 0, 0)t is the eigenvector
corresponding to the λ-invariant s+ ji− ij0. Note that without Grobner bases
and quantifier elimination we find the invariant obtained in [5].

3.1 What Happens in Practice

We have seen that for an affine transition system of the type describe in Defin-
ition 5 where Li(x1, ..., xn) =

∑n
k=1 ci,k−1xk + ci,k are affine forms, the scaling

consecution technique with parameter λ works if and only if λ is an eigenvalue
of M . Since eigenvalues are calculated as the roots of the characteristic polyno-
mial of M , we can state three facts: 1 is always an eigenvalue as we have seen,
but if the corresponding eigenspace is of dimension one exactly, the eigenvectors
correspond to constant of λ-invariants, which are trivial. Apart from 1, other
eigenvalues might not be real, but complex. If a polynomial is of degree equal to

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 431

or greater than five, finding its roots becomes undecidable [20], so even if there
are eigenvalues different than 1, one is not always certain to obtain them.

Theorem 3. (Undecidability of constant scale consecution) Let M the
matrix introduced in this section and let φλ be its characteristic polynomial.
Finding a non trivial λ invariant is equivalent to finding a root of φλ different
than 1, if 1 has multiplicity one. If the degree of φλ is equal to or greater than
six, then φλ/(X − 1) has degree equal to or greater than five.

Theorem 4. (Some decidable classes) Let M the matrix introduce in this
section. The problem of finding a non-trivial λ-invariant is decidable if one of
the following assertions are true:

– M is block triangular (with 4× 4 blocks or less) ,
– Eigenspace associated with eigenvalue 1 is of dimension greater than 1.

3.2 Initiation Step

Intersection with an Initial Hyperplane Consider the affine system as-
sociated with an affine loop (see Definition 5), and an invariant candidate Q
of degree r. Q is a λ-invariant for constant scale consecution, meaning that
Q(L1(X1, .., Xn), .., Ln(X1, .., Xn)) = λQ(X1, .., Xn). Now let u1, ..., un be the
initial values of X1, ..., Xn. For the initial step we need Q(u1, ..., un) = 0.

In the space Vr of polynomials of degree less or equal to r, we have the follow-
ing linear form on this space: P �→ P (u1, ..., un). Hence initial values correspond
to a hyperplane in Vr, given by the kernel of P �→ P (u1, ..., un). Now, if we add
the initiation step, Q(X1, ..., Xn) = 0 will be an invariant (see Definition 2) if and
only if there exists an eigenvalue λ of M such that Q belongs to the intersection
of the eigenspace corresponding to λ and the hyperplane Q(u1, . . . , un) = 0 given
by the initial values (u1, . . . , un). Given our encodings, the algebraic assertion
map η : L �→ (Q(X1, . . . , Xn) = 0) is inductive (see Definition 3).

Theorem 5. (Invariants and constant scale consecution) A polynomial
Q in Vr is an invariant for the affine loop (see Definition 5) with initial values
(u1, . . . , un) if and only if there is an eigenvalue λ of M such that Q is in the
intersection of the eigenspace of λ and the hyperplane Q(u1, . . . , un) = 0.

The previous paragraph describes the case when variables are initial constraints
with constant values. In the following theorem, we state the most important
result: we consider the more general case where variables are assigned a set of
parameter variables (that could be subject to any type of constraint).

Theorem 6. (Non-null invariants and constant scale consecution) There
will be a non-null invariant polynomial for any given initial values if and only if
there exists an eigenspace of M with dimension greater than 2.

Reconsider the example where ρτ ≡ [x′1 = 2x1 +x2+1∧x′2 = 3x2 +4]. MatrixM
has six distinct eigenvalues, so that eigenspaces are of dimension 1. We denote by

432 R. Rebiha, N. Matringe, and A.V. Moura

Eλ the eigenspace corresponding to λ. E4 has basis (1,−2, 1,−6, 6, 9)t, E6 has
basis (0, 1,−1, 2,−5, 6)t, E9 has basis (0, 0, 1, 0, 4, 4)t, E2 has (0, 0, 0, 1,−1,−3)t,
E3 has basis (0, 0, 0, 0, 1, 2)t, and E1 has basis (0, 0, 0, 0, 0, 1)t. Suppose that
the initiation step is given by (x1 = 0, x2 = −2), i.e. (u1, u2) = (0, 2), which
corresponds to the hyperplane Q(0, 2) = 0 in V2, or 4a2 − 2a4 + a5 = 0 in R6,
using the canonical basis of V2. It is clear that (0, 0, 1, 0, 4, 4) belongs to this
hyperplane, so that X2

2 + 4X2 + 4 is an invariant polynomial for the loop with
initial step (x1 = 0, x2 = −2). Now, reconsider Example 3 where dim(Ker(M −
I)) ≥ 2, so that according to the previous subsection, the consecution scale
technique will give a non-null invariant whatever the initial values are (which
explains why a non-trivial invariant was found in [5]).

3.3 When Constant Scale Consecution Never Works

Let’s consider an algebraic transition system

ρτ ≡

⎡

⎢⎣
x′1 = P1(x1, . . . , xn)

...
x′m = Pm(x1, . . . , xn)

⎤

⎥⎦ , (2)

where P1, . . . , Pm ∈ An. In the case where each polynomial Pi has a degree
greater than 1, the constant-scale consecution encoding proposed by existing
methods [5],[10] unfortunately generates trivial (constant or null) invariants.
Moreover, if each Pi is of degree greater or equal than 2, the previous methods
can only generate trivial invariants.

Example 4. Let’s consider the following loop: ρτ ≡
[
x′ = x(y + 1)
y′ = y2

]
. At step k

of the iteration, this loop computes the sum: 1 + y + · · ·+ y2k−1. Let P (x, y) =
a0x

2 + a1xy + a2y2 + a3x + a4y + a5 be a candidate λ-invariant. Modulo the
loop ideal of K[x′, y′, x, y] (ordering by the precedence: x′ > y′ > x > y.), we
have P (x′, y′) = P (x(y + 1), y2) and we write P ′(x, y) = P (x(y + 1), y2). After
expanding we get P ′(x, y) = a0x2y2 + a1xy3 + a2y4 + 2a0x2y + a1xy2 + a0x2 +
a3xy+ a4y2 + a3x+ a5. If we try the constant-scale consecution with parameter
λ we obtain, after simplification: a0 = a1 = a2 = a3 = a4 = 0 and a5 = λa5.
If λ �= 1 then a5 = 0, which leads to a null invariant. Otherwise λ = 1 and we
obtain a constant invariant (a5). Also, by considering the initial condition, we
note that it will imply that the constant invariant a5 is null.

4 Non-linear Algebraic Transition Systems

4.1 T -Invariants Generation

Definition 6. Consider an algebraic transition system corresponding to an al-
gebraic loop τ = 〈li, lj , ρτ 〉 as in Equation 2 where P1, ..., Pn ∈ K[x1, ..., xn]. A
polynomial Q ∈ K[X1, ..., Xn] is said to be a T -invariant for polynomial-scale

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 433

consecution for τ if and only if there exists a polynomial T ∈ K[X1, ..., Xn],
verifying Q(X ′

1, . . . , X
′
n) = T (X1, . . . , Xn)Q(X1, . . . , Xn) modulo the ideal of

K[X ′
1, ..., X

′
n, X1, ..., Xn] corresponding to the loop, and generated by the base

(X ′
1 − P1(X1, ..., Xn), ..., X ′

n − Pn(X1, ..., Xn)).

Theorem 7. (T -invariant characterization) Consider an algebraic transi-
tion system corresponding to an algebraic loop τ as in Equation 2. Let Q ∈
K[X1, ..., Xn] be a multivariate polynomial with indeterminate coefficients (a
template). Q is a T -invariant for polynomial scale consecution with parametric
polynomial T ∈ K[X1, ..., Xn] for τ if and only if

Q(P1(X1, . . . , Xn), . . . , Pn(X1, . . . , Xn)) = T (X1, . . . , Xn)Q(X1, . . . , Xn).

Reconsider Example 4. We take (y = y0, x = 1) as initial values. We propose
to use polynomial scale consecution with a parametric polynomial T (x, y) =
b0y

2 + b1x + b2y + b3. We obtain P ′(s, x) = (b0y2 + b1x + b2y + b3) · P (x, y).
In other words, we obtain the following multi-parametric linear system (with
parameters b0, b1, b2, b3):

�����	
����

a0 = b0a0 0 = b2a5 + b3a4 a3 = b1a4 + b2a3 + b3a1

a1 = b0a1 0 = b0a4 + b2a2 a4 = b0a5 + b2a4 + b3a2

a2 = b0a2 a3 = b1a5 + b3a3 a1 = a3b0 + b1a2 + b2a1

a5 = b3a5 a0 = b1a3 + b3a0

0 = b1a0 2a0 = b1a1 + b2a0

Now we describe a decision procedure for parameter valuations. Considering
the first three equations, choose b0 = 1 in order to keep a high degree invariant
(otherwise the coefficients a0, a1, a2 of the highest degree terms would be null).
Then we obtain another system with b1a0 = 0. For the same degree, choose
b1 = 0. Then we have b2a0 = 2a0. As a direct consequence, the parameter b2 is set
to 2. Since equation b3a0 = a0 is in the resulting system, b3 is set to 1. We obtain
a3 +a1 = 0, a4 +2a2 = 0 and a2−a5 = 0. With less equations than variables, we
will have a non-trivial solution for the generation of a T -invariant. Now we add
the hyperplane corresponding to the initial values: a2y02+(a1 +a4)y0+a0+a1+
a5 = 0. As there are six variables and four equations, we will have a non-trivial
solution for the problem of invariant generation. A possible solution is the vector
(y0(1 − y0), 1, 1,−1,−2, 1)t, that is, y0(1 − y0)x2 + xy + y2 − x − 2y + 1 = 0 is
an invariant. Note that T (x, y) = y2 + y + 1.

That is a simple decision procedure, which can fail in more complex cases.
Shortly, we will present a superior technique, with a more global point of view.

4.2 A General Theory for Polynomial Scale Consecutions

We need a T -invariant of degree r for an algebraic loop τ = 〈li, li, ρτ 〉 (as in Equa-
tion 2), that is, a polynomial Q of degree r such that there exists a polynomial
T , verifying Q(P1(X1, .., Xn), .., Pn(X1, .., Xn)) = T (X1, .., Xn)Q(X1, .., Xn).

We write again the T -invariant ordered candidate’s coefficients a0, ..., at (t+1
being the number of monomials of degree inferior to r). Let d be the maximal

434 R. Rebiha, N. Matringe, and A.V. Moura

degree of the Pi’s. We are going to look for T of degree e = dr − r. Let’s write
its ordered coefficients λ0, ..., λs (s + 1 being the number of monomials of de-
gree inferior to e). Recall that Vm designates the subspace of K[x1, . . . , xn] of
degree inferior to or equal to m. Let M be the matrix, in the canonical ba-
sis of Vr and Vdr, of the morphism from Vr to Vdr given by P (X1, . . . , Xn) �→
P (P1(X1, . . . , Xn), . . . , Pn(X1, . . . , Xn). The coefficients of M will be polynomi-
als in the coefficients of the Pi’s. Let L be the matrix, in the canonical basis
of Vr and Ve, of the morphism from Vr to Vdr given by P �→ TP . Matrix L
will be ssen to have a very simple form. Now we just claim that its non zero
coefficients are the λi’s, and that it has a natural block decomposition. Let u
be the number of terms of degree less than dr (i.e. the dimension of Vrd). Our
problem is equivalent to finding a matrix L, such that M − L has a non trivial
kernel. In other words, such that M − L is of rank less than u. We know that a
matrix is of rank less than k ∈ N if and only if it has an invert k ∗ k sub-matrix.

Theorem 8. (Existence of T -invariant vectorspaces) Consider M as de-
scribed above. There will be a T -invariant polynomial if and only if there exists
a matrix L (corresponding to P �→ TP) such that M−L has a nontrivial kernel.
Further, any vector in the kernel of M − L will give a T -invariant polynomial.

Again the last column ofM is (0, ..., 0, 1)t, and the last column of L is (0, .., 0, λ0,
.., λs)t. Hence, choosing every λi to be zero, except for λs = 1, the last column
of M - L will be null. With this choice of L (or T = 1), we at least always
get T -invariants corresponding to constant polynomials. Now, M − L having a
non trivial kernel is equivalent to its rank being less than the dimension d(r)
of Vr. This is equivalent to the fact that each d(r) × d(r) subdeterminant of
M − L is equal to zero [20]. Those determinants are polynomials with variables
(λ0, λ1, · · · , λs), which we will denote by D1(λ0, λ1, .., λs), .., Dt(λ0, λ1, .., λs).

Theorem 9. (Undecidability of finding T -invariants) There will be a non
trivial T -invariant if and only if the polynomials (D1, .., Dr) described above
admit a common root, other than the trivial one (0, .., .., 0, 1). Those roots are,
in general, not calculable.

Example 5. Loop with Two Variables, T -Invariant of Degree Two We
first study the general case of degree two algebraic transition systems with two
variables in the loop. The transition system has the form:

ρτ ≡
[
x′ = c0x2 + c1xy + c2y2 + c3x+ c4y + c5
y′ = d0x2 + d1xy + d2y2 + d3x+ d4y + d5

]
,

M =

�
��������������������������

c0
2 c0d0 d0

2 0 0 0
2c0c1 c0d1 + c1d0 2d0d1 0 0 0

2c0c2 + c1
2 c0d2 + c1d1 + c2d0 2d0d2 + d1

2 0 0 0
2c1d1 c1d2 + c2d1 2d1d2 0 0 0

c2
2 c2d2 d2

2 0 0 0
2c0c3 c0d3 + c3d0 2d0d3 0 0 0

2(c0c4 + c1c3) c0d4 + c1d3 + c3d1 + c4d0 2(d0d4 + d1d3) 0 0 0
2(c1c4 + c2c3) c1d4 + c2d3 + c3d2 + c4d1 2(d1d4 + d2d3) 0 0 0

2c2c4 c2d4 + c4d2 2d2d4 0 0 0
2c0c5 + c3

2 c0d5 + c3d3 + c5d0 2d0d5 + d3
2 c0 d0 0

2(c1c5 + c3c4) c1d5 + c3d4 + c4d3 + c5d1 2(d1d5 + d3d4) c1 d1 0
2c2c5 + c4

2 c2d5 + c4d4 + c5d2 2d2d5 + d4
2 c2 d2 0

2c3c5 c3d5 + c5d3 2d3d5 c3 d3 0
2c4c5 c4d5 + c5d4 2d4d5 c4 d4 0
c5

2 c5d5 d5
2 c5 d5 1

�
��������������������������

L =

�
������������������������

λ0 0 0 0 0 0
λ1 λ0 0 0 0 0
λ2 λ1 λ0 0 0 0
0 λ2 λ1 0 0 0
0 0 λ2 0 0

λ3 0 0 λ0 0 0
λ4 λ3 0 λ1 λ0 0
0 λ4 λ3 λ2 λ1 0
0 0 λ4 0 λ2 0

λ5 0 0 λ3 0 λ0
0 λ5 0 λ4 λ3 λ1
0 0 λ5 0 λ4 λ2
0 0 0 λ5 0 λ3
0 0 0 0 λ5 λ4
0 0 0 0 0 λ5

�
������������������������

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 435

For the rank of M − L to be less than 6, one has to calculate each 6 × 6
subdeterminant obtained by canceling 9 lines ofM−L. They will be polynomials
of degree less than 6 in variables (λ0, ..., λ5). Now, L is such thatM−L will be of
degree less than 6 if and only if (λ0, ..., λ5) are roots of each of those polynomials.

Remark 1. (Decidable classes) In many cases, it is easy to find a matrix L
such that M −L has a non trivial kernel. We describe two decidable classes: (i)
suppose that in the previous case, c2, c4 and c5 are null, then one can choose
(λ0, . . . , λs) in order to make the first column zero; and (ii) the third column
can be canceled using good choices for the λi’s, if d0, d3 and d5 are zero.

For example, suppose that in the previous case c2, c4 and c5 are null. Then one
can choose (λ0, . . . , λs) in order to make the first column zero. Now consider
Example 4 in Section 3.3. Here we have c0 = 0, c1 = 1, c2 = 0, c3 = 1, c4 =
0, c5 = 0, and d0 = 0, d1 = 0, d2 = 1, d3 = 0, d4 = 0, d5 = 0. Then M − L is:

�
������������������������

−λ0 0 0 0 0 0
−λ1 −λ0 0 0 0 0

1 − λ2 −λ1 −λ0 0 0 0
0 1 − λ2 −λ1 0 0 0
0 0 1 − λ2 0 0 0

−λ3 0 0 −λ0 0 0
2 − λ4 −λ3 0 −λ1 −λ0 0

0 1 − λ4 −λ3 −λ2 −λ1 0
0 0 −λ4 0 −λ2 0

1 − λ5 0 0 −λ3 0 −λ0
0 −λ5 0 1 − λ4 −λ3 −λ1
0 0 −λ5 0 1 − λ4 −λ2
0 0 0 1 − λ5 0 −λ3
0 0 0 0 −λ5 −λ4
0 0 0 0 0 1 − λ5

�
������������������������

Now, taking λ0 = λ1 = λ3 = 0, λ2 = 1, λ4 = 2, λ5 = 1, the first column of
M − L is zero, and the second column is equal to the fourth. hence, M −L will
be of rank equal to or less than four, i.e. with kernel of dimension equal to or
more than two. Any vector in this kernel will be T -invariant.

4.3 Initiation Step

We are looking for an invariant Q ∈ k[X1, ..., Xn]. Let u1, . . . , un be the initial
values of the variablesX1,, Xn. For the initial step we need Q(u1, . . . , un) = 0.
Considering the space Vr of polynomials of degree less or equal to r, P �→
P (u1, . . . , un) is a linear form in this space. Initial values then correspond to a
hyperplane of Vr, given by the kernel of P �→ P (u1, . . . , un).

Theorem 10. (Non trivial invariants andpolynomial consecution) There
will be a non trivial invariant if and only if there exists a matrix L such that
the intersection of the kernel of M − L and the hyperplane given by the initial
values is not zero. The invariants correspond to vectors in the intersection.

We deal with practical cases using the following theorem. All variables are ini-
tially constrained to initial parameters (subject to other types of constraint).

Theorem 11. (Non trivial invariant and polynomial scale consecution
for any initial values) If one can find T (i.e. L) with dim(Ker(M −L)) ≥ 2
for any initiation step, then there will be non trivial invariants.

436 R. Rebiha, N. Matringe, and A.V. Moura

Reconsider the preceding example, with T (x, y) = y2+2y+1,M−L verifying the
hypothesis of the theorem. Then there will always bee an invariant, whatever the
initial values. Note that for the initial step (y = y0, x = 1), a possible invariant
is given by y0(1 − y0)x2 + xy + y2 − x− 2y + 1.

5 Fractional Scale Consecution

We now want to deal with transition systems like

ρτ ≡

⎡

⎢⎣
x′1 = P1(x1, . . . , xn)/Q1(x1, . . . , xn)

...
x′n = Pn(x1, . . . , xn)/Qn(x1, . . . , xn)

⎤

⎥⎦ , (3)

where Pi and Qi belong to K[X1, ..., Xn], and Pi is relatively prime to Qi.

Definition 7. A polynomial Q ∈ K[X1, . . . , Xn] is said to be a T -invariant for
polynomial-scale consecution for the loop τ if and only if there exists a rational
function F ∈ K(X1, ..., Xn), corresponding to the loop, with Q(X ′

1, ..., X
′
n) =

F (X1, .., Xn)Q(X1, .., Xn), modulo the fractional ideal ofK(X ′
1, ., X

′
n, X1, .., Xn),

and generated by
(
X ′

1 −
P1(X1,...,Xn)
Q1(X1,...,Xn) , . . . , X

′
n −

Pn(X1,...,Xn)
Qn(X1,...,Xn)

)
.

Theorem 12. (F -invariant characterization) Consider an algebraic tran-
sition system corresponding to an algebraic loop τ as described in Definition 7.
Let Q ∈ K[X1, . . . , Xn] be a multivariate polynomial with indeterminate coef-
ficients (a template). Q is a F -invariant for polynomial scale consecution with
parametric polynomial F ∈ K(X1, . . . , Xn) for τ if and only if

Q

(
P1(X1, ..., Xn)
Q1(X1, ..., Xn)

, . . . ,
Pn(X1, ..., Xn)
Qn(x1, ..., xn)

)
= F (X1, ..., Xn)Q(X1, ..., Xn).

Let d be the maximal degree of the Pi’s andQi’s, and letΠ be the lcm of the Qi’s.
Now let U = X1

i1 ..Xn
in be a monomial of degree less than r (i.e. i1 + ..+ in ≤

r). Then, ΠrU(P1/Q1, . . . , Pn/Qn) = Πr(P1/Q1)i1 ...(Pn/Qn)in . But as Qij

j

divides Πij , for all j, we see that Qi1
1 ...Q

in
n divides Πi1+...+ir which divides Πr.

We deduce that ΠrQ(P1/Q1, . . . , Pn/Qn) is a polynomial for every Q in Vr. Now
suppose that F = T/S (T relatively prime to S) satisfies the equality of the
previous theorem and suppose that we are looking for an invariant Q of degree
r. Then, multiplying by Πr we get ΠrQ(P1/Q1, . . . , Pn/Qn) = (ΠrTQ)/S. As
we have no “a priory” information on Q, in most of the cases Q will be relatively
prime to S. In this case we see that S will divides Πr, and we can suppose that
it has denominator Πr. So, let F be of the form T/Πr (we just argued that this
constraint is weak). Now let m be the morphism Q �→ ΠrQ(P1/Q1, . . . , Pn/Qn)
from Vr to Vnrd, and let M be its matrix in a canonical basis. Let T be a
polynomial in Vnrd−r, let l denote the morphism Q �→ TQ from Vr to Vnrd, with
L as its matrix in a canonical basis. Combining theorem 11 and the preceding
discussion, we have the following:

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 437

Theorem 13. Let M be as described above. There will exist a F -invariant (with
the restriction that F is of the form T/Πr) polynomial if and only if there exists
a matrix L (corresponding to Q �→ TQ) such that M−L has a nontrivial kernel.
Any vector in the kernel of M − L will give a F -invariant polynomial.

Similar to Theorems 9 and 10. For the initiation step we have a hyperplane in
Vr. In order for the transition system to make sense, the n-tuple of initial values
must not be a root of any of the Qi’s, and so must be their iterates, as long as
the loop is applied. So, they will not cancel Πr. We have the following:

Theorem 14. (Non trivial invariants using Fractional scale consecu-
tion) There is a non trivial invariant if and only if there exists a matrix L (the
one of Q �→ TQ in the canonical basis, with the coefficients of T being λ0, ..., λs),
such that the intersection of the kernel of M − L and the hyperplane given by
the initial values (good initial values) is not zero, the invariants correspond to
vectors in the intersection.

We also have the important theorem:

Theorem 15. (Non trivial invariants using Polynomial scale conse-
cution for any initial value) We will have a non trivial invariant for any
“good”(non-trivial) initial value if there exists a matrix L such that the kernel
of M − L is of dimension equal or greater than 2.

Example 6. We consider the system ρτ ≡
[
x′1 = x2/(x1 + x2)
x′2 = x1/(x1 + 2x2)

]
. We are look-

ing for a F -invariant polynomial of degree two. The lcm of (x1 + x2) and
(x1 + 2x2) is their product, so that m is given by: [Q ∈ V2 �→ [(x1 + x2)(x1 +
2x2)]2Q(x1/(x1 + x2), x2/(x1 + 2x2))]. As both x2/(x1 + x2) and x1/(x1 + 2x2)
have “degree” zero, [(x1 + x2)(x1 + 2x2)]2Q(x2/(x1 + x2), x1/(x1 + 2x2)) will
be a linear combination of degree four terms, if it is non null. Hence, m has
values in V ect(X4

1 , X
3
1X2, X

2
1X

2
2 , X1X

3
2 , X

4
2). For T and Q in V2 to verify [(x1 +

x2)(x1 + 2x2)]2Q(x2/(x1 + x2), x1/(x1 + 2x2)) = TQ, as the left member is in
V ect(X4

1 , X
3
1X2, X

2
1X

2
2 , X1X

3
2 , X

4
2), T must be of the form λ0X

2
1 + λ1X1X2 +

λ3X
2
2 and Q of the form a0X

2
1 + a1X1X2 + a3X2

2 . We see that we can take Q in
V ect(X2

1 , X1X2, X
2
2), and similarly for T . Then both m and l : (Q �→ TQ) will

be morphisms from V ect(X2
1 , X1X2, X

2
2) in V ect(X4

1 , X
3
1X2, X

2
1X

2
2 , X1X

3
2 , X

4
2).

In the corresponding canonical basis, the matrix M − L is
�
�����

−λ0 0 1
−λ1 1 − λ0 2

1 − λ2 3 − λ1 1 − λ0
4 2 − λ2 −λ1
4 0 −λ2

�
�����

.

Taking λ0 = 1, λ1 = 3 and λ2 = 2 cancels the second column and L, M − L
will have kernel equal to V ect(0, 1, 0). It was clear from the beginning that the
corresponding polynomialX1X2 is (X2

1 +3X1X2+2X2
2)/[(X1+X2)(X1+2X2)]2-

invariant. It is an invariant (see Definition 2) for initial values (0, 1) (whose
iterates clearly never cancel X1 + X2 and X1 + 2X2, because they are of the
form (a, 0) or (0, b) with a and b strictly positive).

438 R. Rebiha, N. Matringe, and A.V. Moura

6 Branching Conditions and Nested Loops

Here, we show how our method deals with the conditional statements.

Theorem 16. Let I = {I1, ..., Ik} a set of ideals in K[X1, ..., Xn] such that
Ij = (f (j)

1, ..., f
(j)
nj) where j ∈ [1, k]. Let’s ∇(I1, ..., Ik) = {δ1, ..., δn1n2...nk

} such
that all elements δi in ∇(I1, ..., Ik) are formed by the product of one element
from each ideal in I. Assume that all Ijs are ideals of invariants for a loop at
location lj described by a transition τj. Now, if all lj describe the same location
program point, then we have several transitions looping at the same point. So we
obtain an encoding of possible execution paths of a loop containing conditional
statements. Then ∇(I1, ..., Ik) is an ideal of non-trivial non-linear invariants for
the entire loop located at lj.

Example 7. Let’s consider the following loop:

int u_0;//(M > 0)&&(Z = 1)&&(U = u_0) While ((X>=1) || (Z>=z_0)){
if(Y > M){X = Y / (X + Y);

Y = X / (X + 2 * Y);}
else{Z = Z * (U + 1);

U = U^2;}}

The resulting invariant given by our prototype is: [WHILE 1][Invariant:=]
[u 0*(1-u 0)*X*Y*Z2̂*+X*Y*Z*U +X*Y*U2̂-X*Y*Z-2*X*Y*U+X*Y]

Once again, here there are no need for Grobner Basis computation and the
complexity of the steps described remain linear. For nested loops, our prototype
generates ideals of invariants for each inner-loop and then generates a global in-
variant considering the non-linear system composed of pre-computed invariants.

7 Conclusion

Our methods do not required computation of Grobner bases, quantifier elimi-
nation, cylindrical algebraic decomposition or direct resolution of semi-algebraic
system, as well as they do not depend on any abstraction methods. We suc-
ceeded in reducing the non-linear loop invariant generation problem to the in-
tersection between eigenspaces of specific endomorphisms and initial linear or
semi-affine/algebraic constraints. Our non-trivial non-linear invariant generation
method is sound and complete as we provide a complete encoding to handle mul-
tivariate fractional loops (algebraic system with multivariate rational functions)
where variable are initially constrained by parameters. As far as we know, these
are the first non-linear invariant generation methods that handle multivariate
fractional instructions, conditional statement and nested inner-loops. Also, for
each type of system, we presented necessary and sufficient conditions for the
existence of non-trivial non-linear loop invariants. Considering the problem of
invariant generation, we identified a large decidable class together with an unde-
cidable class. Finally, our methods generates ideals of non-trivial non-linear loop
invariants (in a polynomial number of steps) and we believe that our methods
could complete the framework proposed in [9].

Endomorphisms for Non-trivial Non-linear Loop Invariant Generation 439

References

[1] Tiwari, A., Rueß, H., Säıdi, H., Shankar, N.: A technique for invariant generation.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 113–127.
Springer, Heidelberg (2001)

[2] Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety.
Springer, New York (1995)

[3] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

[4] Floyd, R.W.: Assigning meanings to programs. In: Proceedings of the 19th Sym-
phosia in Applied Mathematics, pp. 19–37 (1967)

[5] Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant gener-
ation using grobner bases. In: POPL 2004: Proc. of the 31st ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp. 318–329. ACM
Press, New York (2004)

[6] Bensalem, S., Bozga, M., Ghirvu, J.C., Lakhnech,L.: A transformation approach for
generatingnon-linear invariants. In: StaticAnalysis Symposium,pp. 101–114 (2000)

[7] Rodŕıguez-Carbonell, E., Kapur, D.: Automatic generation of polynomial in-
variants of bounded degree using abstract interpretation. Sci. Comput. Pro-
gram. 64(1), 54–75 (2007)

[8] Bensalem, S., Lakhnech, Y., Saidi, H.: Powerful techniques for the automatic
generation of invariants. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS,
vol. 1102, pp. 323–335. Springer, Heidelberg (1996)

[9] Chen, Y., Xia, B., Yang, L., Zhan, N.: Generating polynomial invariants with
discoverer and qepcad. In: Formal Methods and Hybrid Real-Time Systems, pp.
67–82 (2007)

[10] Kovacs, L.: Reasoning algebraically about p-solvable loops. In: Ramakrishnan,
C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer,
Heidelberg (2008)

[11] Cousot, P.: Proving program invariance and termination by parametric abstrac-
tion, lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

[12] Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in sim-
ple loops. J. Symb. Comput. 42(4), 443–476 (2007)

[13] Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and
beyond. Applicable Algebra in Engineering, Communication and Computing 8(2),
85–101 (1997)

[14] Collins, G.E.: Quantifier Elimination for the Elementary Theory of RealClosed
Fields by Cylindrical Algebraic Decomposition. LNCS. Springer, Heidelberg (1975)

[15] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2–3), 103–179 (1992)

[16] Müller-Olm, M., Seidl, H.: Polynomial constants are decidable. In: Hermenegildo,
M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 4–19. Springer, Heidelberg
(2002)

[17] Kovacs, L., Jebelean, T.: Finding polynomial invariants for imperative loops in
the theorema system. In: Proc.of Verify 2006 Workshop, pp. 52–67 (2006)

[18] Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Proc. IMACS Intl. Conf. on Applications of Computer Algebra (2004)

[19] Rebiha, R., Matringe, N., Vieira-Moura, A.: Non-trivial non-linear loop invariant
generation. Technical-Report-IC-07-045 (December 2007)

[20] Lang, S.: Algebra. Springer, Heidelberg (January 2002)

Instantiation for Parameterised Boolean

Equation Systems

A. van Dam, B. Ploeger, and T.A.C. Willemse�

Department of Mathematics and Computer Science,
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract. Verification problems for finite- and infinite-state processes,
like model checking and equivalence checking, can effectively be encoded
in Parameterised Boolean Equation Systems (PBESs). Solving the PBES
solves the encoded problem. The decidability of solving a PBES depends
on the data sorts that occur in the PBES. We describe a manipulation
for transforming a given PBES to a simpler PBES that may admit solu-
tion methods that are not applicable to the original one. Depending on
whether the data sorts occurring in the PBES are finite or countable, the
resulting PBES can be a Boolean Equation System (BES) or an Infinite
Boolean Equation System (IBES). Computing the solution to a BES is
decidable. Computing the global solution to an IBES is still undecidable,
but for partial solutions (which suffices for e.g. local model checking), ef-
fective tooling is possible. We give examples that illustrate the efficacy
of our techniques.

1 Introduction

Parameterised Boolean Equation Systems (PBESs) [8,11], a specialisation of
fixed-point equation systems [13] have emerged as a versatile vehicle for study-
ing and solving verification problems for complex systems. Prime examples are
the encoding of the first-order modal μ-calculus model-checking problem over
(possibly infinite) labelled transition systems [6,7]; equivalence checking of vari-
ous bisimulations on (possibly infinite) labelled transition systems [3]; and static
analysis of code [5]. The solution to the encoded problem can be found by solv-
ing the resulting PBES. Solving PBESs is, much like the problems that can be
encoded in them, generally undecidable. The outlook, however, is not that bleak:
practical applications have demonstrated that a pragmatic approach can lead to
promising results [7].

Among the techniques for solving PBESs are symbolic approximation [7] and
pattern matching [8]. We here report on techniques for partially and fully in-
stantiating a PBES. In general, this results in a new PBES. Ultimately, the
transformation can yield a Boolean Equation System (BES) [9] when all involved
data sorts are finite, or an Infinite Boolean Equation System (IBES) [10] when
� This research has been partially funded by the Netherlands Organisation for Scien-

tific Research (NWO) under FOCUS/BRICKS grant number 642.000.602.

J.S. Fitzgerald,A.E. Haxthausen, and H. Yenigun (Eds.): ICTAC 2008, LNCS 5160, pp. 440–454, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Instantiation for Parameterised Boolean Equation Systems 441

some data sorts are countable. Hence, from a theoretical viewpoint, our trans-
formations firmly relate the abovementioned different formalisms and help in
understanding the quite complex theory underlying PBESs. In particular, they
confirm the intuition that the inherent computational complexity in PBESs is
due to the complexity of the data sorts that appear in the equations.

On a more practical level, we illustrate that our technique for partially in-
stantiating a PBES leads to a wider applicability of existing solution techniques
— such as the aforementioned use of pattern matching — even in the presence
of countable and uncountable data sorts. A full instantiation of PBESs to BESs
is important for automation purposes: BESs form a subset of PBESs for which
computing the solution is effectively decidable. As such, both types of instanti-
ation are welcome additions to the collection of PBES manipulation methods.
As an aside, we show that the instantiation of PBESs involving countable data
sorts can indeed lead to effective tooling for particular verification questions.

Independently of this work, the approach taken in [11] has recently been
implemented in a tool called Evaluator 4.0 [12]. In essence, this tool employs
alternation-free PBESs to solve the on-the-fly model-checking problem of Mcl

formulas on finite systems. Our approach is not restricted to alternation-free
PBESs and can be used for model-checking both finite and infinite systems.

This paper is structured as follows. In Section 2, we introduce the relevant
concepts and properties. Partial and full instantiation for finite data sorts in
PBESs is detailed in Section 3, and full instantiation to IBESs for PBESs in-
volving countably infinite data sorts is discussed in Section 4. In Section 5, we
demonstrate the power of all involved instantiation schemes and our concluding
remarks can be found in Section 6.

2 Preliminaries

2.1 Data

We assume that there are nonempty data sorts, generally written using letters
D, E and F , and that every sort has a collection of basic elements to which
every term can be rewritten. For a sort D, we write v ∈ D to denote that v is a
basic element of D and we use set notation to list the basic elements of D, e.g.
D = {v1, . . . , vn}. With every sort D we associate a semantic set D such that
every syntactic term of type D can be mapped to the element of D it represents.
The set of basic elements of a sort D is isomorphic to the semantic set D.

We have a set D of data variables, with typical elements d, d1, . . ., and we
assume that there is some data language that is sufficiently rich to denote all
relevant data terms. We assume an interpretation function [[]] that maps every
closed term t of type D (denoted t:D) to the data element [[t]] of D it represents.
For open terms we use a data environment ε that maps each variable from D
to a data element of the right sort. The interpretation [[t]]ε of an open term t is
given by ε(t), where ε is extended to terms in the standard way.

We assume the existence of a sort B = {-,⊥} representing the Booleans B,
and a sort N = {0, 1, . . .} representing the natural numbers N. For these sorts,

442 A. van Dam, B. Ploeger, and T.A.C. Willemse

we assume the usual operators are available and we do not write constants or
operators in the syntactic domain any different from their semantic counterparts.
For example, we have B = {-,⊥} and the syntactic operator ∧ :B × B → B
corresponds to the usual, semantic conjunction ∧ :B× B → B.

2.2 Parameterised Boolean Equation Systems

We want to solve sequences of fixpoint equations, each of which is of the form:

σX(d1:D1, . . . , dn:Dn) = ϕ.

The left-hand side of each equation consists of a fixpoint symbol σ ∈ {μ, ν},
where μ indicates a least and ν a greatest fixpoint, and a predicate variable
X :D1× . . .×Dn → B (from a set of variables X) that depends on data variables
d1, . . . , dn of possibly infinite sorts D1, . . . , Dn. We call n the arity of X and if
n = 0 then we call X a proposition variable. In the sequel, we restrict ourselves
to predicate variables of arity ≤ 2 which does not incur a loss of generality. The
right-hand side of each equation is a predicate formula as defined below.

Definition 1. Predicate formulae ϕ are defined by the following grammar:

ϕ ::= b | X(e) | ϕ⊕ ϕ | Qd:D.ϕ

where ⊕ ∈ {∧,∨}, Q ∈ {∀, ∃}, b is a data term of sort B, X is a predicate
variable, d is a data variable of sort D and e is a data term.

Note that negation does not occur in predicate formulae, except as an opera-
tor in data terms. As a notational convenience, we use the operators ⊕ and Q
throughout this paper when the exact operator is of lesser importance. Also, we
call a predicate formula ϕ closed if no data variable in ϕ occurs freely. We now
formalise the notion of a Parameterised Boolean Equation System.

Definition 2. A parameterised Boolean equation system (PBES) is inductively
defined as follows, for every PBES E:

– ε is the empty PBES;
– (σX(d:D) = ϕ) E is a PBES, where σ∈{μ, ν} is a fixpoint symbol, X :D → B

is a predicate variable and ϕ is a predicate formula.

A special class of PBESs is the class of Boolean Equation Systems (BESs). BESs
have been studied extensively in the literature [9]. Formally, we have:

Definition 3. A Boolean equation system is a PBES in which every predicate
variable has arity 0 and every formula ϕ adheres to the following grammar (here-
after referred to as proposition formulae):

ϕ ::= - | ⊥ | X | ϕ⊕ ϕ

where ⊕ ∈ {∧,∨} and X is a proposition variable.

Instantiation for Parameterised Boolean Equation Systems 443

The set of predicate variables that occur in a predicate formula ϕ, denoted by
occ(ϕ), is defined recursively as follows, for any formulae ϕ1, ϕ2:

occ(b) Δ= ∅ occ(X(e)) Δ= {X}
occ(ϕ1 ⊕ ϕ2)

Δ= occ(ϕ1) ∪ occ(ϕ2) occ(Qd:D.ϕ1)
Δ= occ(ϕ1).

For any PBES E , the set of binding predicate variables, bnd(E), is the set of vari-
ables occurring at the left-hand side of some equation in E . The set of occurring
predicate variables, occ(E), is the set of variables occurring at the right-hand side
of some equation in E . Formally, we define:

bnd(ε) Δ= ∅ bnd((σX(d:D) = ϕ) E) Δ= bnd(E) ∪ {X}
occ(ε) Δ= ∅ occ((σX(d:D) = ϕ) E) Δ= occ(E) ∪ occ(ϕ).

A PBES E is said to be well-formed iff every binding predicate variable occurs
at the left-hand side of precisely one equation of E . Thus, (νX = -)(μX = ⊥)
is not a well-formed PBES. We only consider well-formed PBESs in this paper.

A PBES E is called closed if occ(E) ⊆ bnd(E) and open otherwise. An equation
σX(d:D) = ϕ is called data-closed if the set of data variables that occur freely
in ϕ is either empty or {d}. A PBES is called data-closed iff each of its equations
is data-closed. We say an equation σX(d:D) = ϕ is solved if occ(ϕ) = ∅, and a
PBES E is solved iff each of its equations is solved.

Finally, we give the denotational semantics of predicate formulae and PBESs.
Predicate formulae are interpreted in a context of a data environment ε and
a predicate environment η:X → (D → B). For an arbitrary environment θ, we
write θ[v/d] for the environment θ in which the variable d has been assigned the
value v. For substitution on tuples we define θ[(v1, . . . , vn)/(d1, . . . , dn)] to be
equivalent to the simultaneous substitution θ[v1/d1, . . . , vn/dn].

Definition 4. For any data environment ε and predicate environment η, the
interpretation [[ϕ]]ηε is inductively defined as follows:

[[b]]ηε Δ= [[b]]ε
[[X(e)]]ηε Δ= η(X)([[e]]ε)

[[ϕ1 ⊕ ϕ2]]ηε
Δ= [[ϕ1]]ηε⊕ [[ϕ2]]ηε

[[Qd:D.ϕ]]ηε Δ= Qv∈D : [[ϕ]]η(ε[v/d]).

The predicate formula ϕ in an equation σX(d:D) = ϕ must be interpreted as a
fixpoint over the set of functions with domain D and co-domain B. Note that the
existence of such fixpoints follows from the following observations. The variable
d, which may occur freely in ϕ, is effectively used as a formal, syntactic function
parameter. Semantically, this is achieved by associating the interpretation of ϕ
to the functional (λv∈D. [[ϕ]]ηε[v/d]), which relies on the data environment to
assign specific values to variable d. The set of (total) functions f :D → B, denoted
by BD can be equipped with an ordering �, defined as follows:

f � g Δ= ∀d ∈ D : f(d) ⇒ g(d).

444 A. van Dam, B. Ploeger, and T.A.C. Willemse

The set (BD,�) is a complete lattice. The functional (λv∈D. [[ϕ]]ηε[v/d]) can be
turned into a predicate formula transformer by employing the predicate environ-
ment η in a similar manner as the data environment is used to turn a predicate
formula into a functional. Assuming that the domain of the predicate variable
X is of sort D, the functional (λv∈D. [[ϕ]]ηε[v/d]) yields the following predicate
formula transformer:

λg∈B
D. (λv∈D. [[ϕ]]η[g/X]ε[v/d]).

The resulting predicate formula transformer is monotone over the complete lat-
tice (BD,�). As a corollary of Tarski’s fixpoint Theorem [14], the existence of
least and greatest fixpoints of the predicate formula transformers is guaranteed.
This leads to the following interpretation for PBESs.

Definition 5. The solution of a PBES in the context of a predicate environment
η and a data environment ε is inductively defined as follows, for any PBES E:

[[ε]]ηε Δ= η

[[(σX(d:D) = ϕ)E]]ηε Δ= [[E]](η[σf ∈ BD. λv∈D.[[ϕ]]([[E]]η[f/X]ε)ε[v/d]/X])ε.

The solution of a PBES prioritises the fixpoint signs of equations that come first
over the signs of equations that follow. In that sense, the solution is sensitive to
the order of equations in a PBES. Moreover, the solution of a PBES only assigns
functions to the binding variables of that PBES; other predicate variables are
left unmodified. This follows from the following lemma:

Lemma 1 (see [4]). Let E be an arbitrary PBES. Then for all X /∈ bnd(E) and
all environments η, ε: [[E]]ηε(X) = η(X).

2.3 Infinite Boolean Equation Systems

Mader [9] introduces Infinite Boolean Equation Systems (IBESs) as a vehicle
for solving a model checking problem for infinite state systems. IBESs resemble
BESs but differ in the following aspects: (1) finite and (countably) infinite con-
junction and disjunction over proposition variables are allowed, and, (2) finite
and (countably) infinite sequences of equations are allowed (but still only finitely
many blocks of equations).

Definition 6. Infinite proposition formulae ω are defined by the following gram-
mar, for any countable sorts I and J ⊆ I:

ω ::= - | ⊥ | Xi | ω ⊕ ω |
⊕

j∈J ω

where ⊕∈{∧,∨},
⊕
∈{

∧
,
∨
} and Xi:B is a proposition variable for any i ∈ I.

Here,
∧

j∈J and
∨

j∈J denote the infinite conjunction and disjunction over basic
elements of a countable sort J , respectively.

Instantiation for Parameterised Boolean Equation Systems 445

Definition 7. An infinite Boolean equation system (IBES) is inductively de-
fined as follows, for every IBES E:
– ε is the empty IBES;
– (σB) E is an IBES, where σ ∈ {μ, ν} is a fixpoint symbol and σB is a block of

equations {σXj = ωj | j∈J} where J is a countable sort, and for each j∈J ,
Xj :B is a proposition variable and ωj is an infinite proposition formula.

Notice that BESs are, syntactically, exactly in the intersection of PBESs and
IBESs. The notions of binding and occurring variables, and the induced notions
of open, closed and well-formedness, that are defined for PBESs transfer to
IBESs without problems.We also restrict to IBESs that are well-formed.

The semantics of infinite proposition formulae is defined in the context of a
proposition environment η:X → B. For any countable sort I, environment η and
function f :I → B we denote by η[f/XI] the simultaneous substitution of f(i)
for Xi in η for all i∈I, i.e. η[f/XI](Xi) = f(i) if i∈I and η(Xi) otherwise.

Definition 8. Let η:X → B be a proposition environment. The interpretation
[[ω]]η that maps an infinite proposition formula ω to - or ⊥, is inductively defined
as follows:

[[-]]η Δ= -
[[⊥]]η Δ= ⊥
[[
⊕

j∈J ω]]η Δ= Qv∈J : [[ω[v/j]]]η

[[Xi]]η
Δ= η(Xi)

[[ω1 ⊕ ω2]]η
Δ= [[ω1]]η ⊕ [[ω2]]η

where Q = ∀ if
⊕

=
∧

, and Q = ∃ otherwise.

The set of functions f :I → B, where I is some (countable) sort, is denoted by
BI . Together with the ordering �, the set (BI ,�) is a complete lattice. Let Ω =
{ωi | i ∈ I} be a countable set of infinite proposition formulae. The functional
induced by the interpretation of Ω is written (λi∈I. [[ωi]]η), with ωi ∈ Ω. This
leads to the following transformer on infinite proposition formulae:

λg ∈ B
I . (λi∈I. [[ωi]]η[g/XI]).

The transformer is a monotone operator on the complete lattice (BI ,�), guar-
anteeing the existence of its least and greatest fixpoints.

Definition 9. Let η be a proposition environment, E be an IBES and σB =
{σXi = ωi | i∈I} be a block for some countable sort I. The solution of an IBES
is inductively defined as follows:

[[ε]]η Δ= η
[[σB E]]η Δ= [[E]]η[σf ∈ BI . λi∈I.[[ωi]]([[E]]η[f/XI])/XI].

The solution of an IBES assigns a value to every binding proposition variable
of that IBES. Often, only the value for a specific proposition variable is sought,
e.g. in local model checking. In such a case, equations that are unimportant to
the solution of that variable can be pruned, yielding a smaller IBES, or even a
BES. This follows from the following result.

446 A. van Dam, B. Ploeger, and T.A.C. Willemse

Proposition 1 (see [4]). For all IBESs E ,F ,G and all environments η:

occ(E G) ∩ bnd(F) = ∅ =⇒ ∀X �∈bnd(F) : [[E F G]]η(X) = [[E G]]η(X).

The above result turns out to be useful in Section 4, and also provides the
necessary foundation for the correctness of parts of the algorithm in [11].

3 Instantiation on Finite Domains

Without loss of generality, we assume that all predicate variables in this section
are either of type D×E → B or of type E → B, for some finite sort D and some
possibly infinite sort E. To each predicate variable X :D×E → B, we associate
a finite set of predicate variables all(X) Δ= {Xd:E → B | d∈D}. For a set of
predicate variables P we write all(P) for

⋃
X∈P all(X). For any PBES E , we say

X is instantiation-fresh for E iff all(X) ∩ (bnd(E) ∪ occ(E)) = ∅.
Instantiation replaces a single equation (σX(d:D, e:E) = ϕ) by an entire

PBES (σXd1(e:E) = ϕd1) · · · (σXdn(e:E) = ϕdn). The transformation can be
lifted to general PBESs and to arbitrary subsets of binding variables (see Algo-
rithm 1). Although the basic idea of the transformation is intuitive, the devil is
in the technical details: careful bookkeeping and a naming scheme have to be
applied to make the transformation work. This is taken care of by the function
SubP that is used in the main transformation InstP . It ensures that new predi-
cate variables are introduced correctly in the right-hand sides of the equations
of a PBES. In the definition of SubP , the operand

∨
v∈D abbreviates a finite

disjunction over all basic elements in D.
The soundness of the transformation is far from obvious due to newly in-

troduced predicate variables. Proposition 2 phrases a precise correspondence
between the solution of the original PBES and a partially transformed PBES.In

Algorithm 1. The instantiation algorithm InstP
For any P ⊆ X with P �= ∅:

Inst∅(E)
Δ
= E

InstP(ε)
Δ
= ε

InstP((σX(d:D, e:E) = ϕ) E)
Δ
=�

{(σXv(e:E) = SubP(ϕ[v/d])) | v∈D} InstP(E) if X∈P
(σX(d:D, e:E) = SubP(ϕ)) InstP(E) otherwise

where

Sub∅(ϕ)
Δ
= ϕ

SubP(b)
Δ
= b

SubP(X(d, e))
Δ
=

��
v∈D(v = d ∧Xv(e[v/d])) if X∈P

X(d, e) otherwise

SubP(ϕ1 ⊕ ϕ2)
Δ
= SubP(ϕ1)⊕ SubP(ϕ2)

SubP(Qd:D. ϕ)
Δ
= Qd:D. SubP(ϕ)

Instantiation for Parameterised Boolean Equation Systems 447

order to facilitate the proof of the main claims in this section, we first address
several lemmata concerning the functions Sub{X} and Inst{X}, which we abbre-
viate to SubX and InstX for conciseness.

Lemma 2. Let ϕ be a predicate formula and X :D × E → B be a predicate
variable. Let η be an enviroment such that η(X)([[v]]) = η(Xv) for all v ∈ D.
Then for any enviroment ε: [[ϕ]]ηε = [[SubX(ϕ)]]ηε.

Proof. By means of an induction on the structure of formula ϕ. For full details,
see [4]. �

Lemma 3. Let X :D × E → B be a predicate variable. Let E be a PBES for
which X is instantiation-fresh and X /∈ bnd(E). Let η be an environment such
that η(X)([[v]]) = η(Xv) for all v ∈ D. Then for arbitrary environment ε, we
have:

[[E]]ηε = [[InstX(E)]]ηε.

Proof. Let ε be an arbitrary data environment, and let η be a predicate environ-
ment satisfying the conditions of the lemma. We prove the lemma by induction
on the length of E . If E is of length 0 then: [[ε]]ηε = η = [[InstX(ε)]]ηε. Suppose E
is of length m+ 1, and for all E ′ of length m, we have, for all environments υ:

[[E ′]]ηυ = [[InstX(E ′)]]ηυ. (IH)

Necessarily, E is of the form (σZ(f :F) = ϕ) F , where F is of length m. We
derive:

[[E]]ηε
= [[(σZ(f :F) = ϕ) F]]ηε
= [[F]]η[(σg ∈ BF. λv∈F. [[ϕ]]([[F]]η[g/Z]ε)ε[v/f])/Z]ε
∗= [[F]]η[(σg ∈ BF. λv∈F. [[SubX(ϕ)]]([[F]]η[g/Z]ε)ε[v/f])/Z]ε

(IH)
= [[InstX(F)]]η[(σg ∈ BF. λv∈F. [[SubX(ϕ)]]([[InstX(F)]]η[g/Z]ε)ε[v/f])/Z]ε
= [[InstX((σZ(f :F) = ϕ) F)]]ηε
= [[InstX(E)]]ηε.

At * we used the following equivalence:

(σg ∈ B
F.[[ϕ]]([[F]]η[g/Z]ε)ε) = (σg ∈ B

F.[[SubX(ϕ)]]([[F]]η[g/Z]ε)ε)

which follows readily from Lemma 2. Observe that this lemma applies because
([[F]]η[g/Z]ε)(X)([[v]]) = ([[F]]η[g/Z]ε)(Xv) for all v ∈ D by assumption on η,
instantiation-freshness of X in E , X /∈ bnd(F) and Lemma 1. �

Suppose we have a PBES E in which the first equation is for variable X :D ×
E → B and the domain D of X is instantiated in that PBES, i.e. we use
the transformation InstX(E). The PBES resulting from the transformation will
consist of |D| equations replacing the single equation for X , plus the remaining
|E| − 1 equations from E . The following lemma states that the solution to X
in the original PBES and the solutions to its instantiated counterparts in the
resulting PBES correspond. Note that it does not state that the transformation
does not have undesirable side-effects. This property is addressed in Lemma 5.

448 A. van Dam, B. Ploeger, and T.A.C. Willemse

Lemma 4. Let F be a PBES of the form (σX(d:D, e:E) = ϕ) E such that X is
instantiation-fresh for F . Then for any environment η, ε:

∀v ∈ D : ([[InstX(F)]]ηε)(Xv) = (([[F]]ηε)(X))([[v]]).

Proof. Assume that D = {v1, . . . , vn}; then |D| = |D| = n and take 1 ≤ i ≤ n.
We abbreviate InstX(E) by Eι. First, we rewrite the left-hand side of the equality
as follows:

([[InstX(F)]]ηε)(Xvi)
=‡ (σg∈BD→E. (λu∈D.λw∈E.

[[SubX(ϕ)]]([[Eι]]η[g([[v1]])/Xv1 , . . . , g([[vn]])/Xvn]ε)ε[u/d, w/e])
)
([[vi]]).

At ‡ we used Bekič’s theorem [1] to replace n nested σ-fixpoints by one si-
multaneous σ-fixpoint over an n-tuple, the fact that Xvi ∈ bnd(InstX(F)), the
assumption that the data theory is fully abstract, and the isomorphism between
BE|D| and BD→E to replace a tuple of functions (gv1 , . . . , gvn):(E → B)n by a
single function g:D → E → B such that for any u ∈ D: g([[u]]) = gu.

For the right-hand side, we can derive:

([[F]]ηε)(X([[vi]]ε))
=
(
σf ∈ BD→E. λu∈D. λw∈E. [[ϕ]]([[E]]η[f/X]ε)ε[u/d, w/e]

)
([[vi]]).

So it suffices to show the following equivalence:
(
σf ∈ B

D→E. λu∈D. λw∈E. [[ϕ]]([[E]]η[f/X]ε)ε[u/d, w/e]
)

=
(
σg ∈ BD→E. (λu∈D. λw∈E.
[[SubX(ϕ)]]([[Eι]]η[g([[v1]])/Xv1 , . . . , g([[vn]])/Xvn]ε)ε[u/d, w/e])

)

which follows readily from:

[[ϕ]]([[E]]η[h/X]ε)υ
= [[SubX(ϕ)]]([[Eι]]η[h([[v1]])/Xv1 , . . . , h([[vn]])/Xvn]ε)υ (*)

for all environments υ and h ∈ B
D→E. Lemmata 2 and 3 can be used to show (*).

For full details, see [4]. �

Lemma 5. LetF Δ= (σX(d:D, e:E) = ϕ) E be a PBES and letX be instantiation-
fresh for F . Then for all environments η, ε:

∀Y ∈ X : Y �∈ all(X) ∪ {X} =⇒ ([[InstX(F)]]ηε)(Y) = ([[F]]ηε)(Y).

Proof. Let Y ∈ X such that Y �∈ all(X) ∪ {X}. Let g : D×E → B be such that:

∀v ∈ D : g([[v]]) = ([[InstX(F)]]ηε)(Xv).

Then by Lemma 4, we have g = ([[F]]ηε)(X) and:

([[InstX(F)]]ηε)(Y)
= ([[InstX(E)]]η[g([[v1]])/Xv1 , . . . , g([[vn]])/Xvn]ε)(Y)
= ([[InstX(E)]]η[g/X][g([[v1]])/Xv1 , . . . , g([[vn]])/Xvn]ε)(Y)
=† ([[E]]η[g/X][g([[v1]])/Xv1 , . . . , g([[vn]])/Xvn]ε)(Y)
= ([[F]]ηε)(Y)

where at † we used Lemma 3. �

Instantiation for Parameterised Boolean Equation Systems 449

Proposition 2. Let E be a PBES and X ∈ bnd(E) be instantiation-fresh. Then
for all environments η, ε:

∀v ∈ D : ([[Inst{X}(E)]]ηε)(Xv) = ([[E]]ηε)(X([[v]])) (2a)
∀Y ∈ X : Y �∈ all(X) ∪ {X} =⇒ ([[Inst{X}(E)]]ηε)(Y) = ([[E]]ηε)(Y). (2b)

Proof. Observe that E is of the form E Δ= E1 F where F Δ= (σX(d:D, e:E) =
ϕ) E2. The property can be shown by means of structural inductions on the sizes
of E1 and E2, relying on Lemma 2 and Lemmata 4 and 5 for the base cases. and
Lemma 2 for the inductive step. For full details, see [4]. �

Instantiation for a set of variables P in a PBES can be achieved by applying
Inst{X} for all X ∈ P repeatedly. However, sound as this strategy may be, it is
undesirable as it is highly inefficient. We therefore prove that the instantiation
algorithm InstP is sound for a general set P . To this end, we introduce the
following shorthand notation for functional composition of Inst functions over a
set of variables P :

©X∈P Inst{X} =
{
I if P = ∅
Inst{Y } ◦©X∈P\{Y }Inst{X} for some Y ∈ P , otherwise

where I denotes the identity function for PBESs, i.e. I(E) = E for all E . The
following lemma formalises that instantiating a set of variables P yields the same
equation system as successively instantiating for every variable in P .

Lemma 6. Let E be a PBES and P be a set of instantiation-fresh predicate
variables such that P ⊆ bnd(E). Then:

InstP(E) = (©X∈P Inst{X})(E).

Proof. By means of an induction on the structure of the equation system E , using
an auxiliary lemma to prove SubP(ϕ) = SubX(SubP\{X}(ϕ)) for all formulae
appearing in the equation systems E . For full details, see [4]. �

Theorem 1. Let E be a PBES and P ⊆ bnd(E) be a set of instantiation-fresh
predicate variables. Then for all environments η, ε:

∀X∈P : ∀v∈D : ([[InstP(E)]]ηε)(Xv) = ([[E]]ηε)(X([[v]])) (2a)
∀Y ∈X : Y �∈ all(P) ∪ P =⇒ ([[InstP(E)]]ηε)(Y) = ([[E]]ηε)(Y). (2b)

Proof. By means of an induction on the size of P , relying on Lemma 6 and
Proposition 2. �

The above result allows for a full instantiation of a PBES to a BES. This is
viable when (1) all data sorts that occur in the PBES are finite, (2) the PBES
is closed and data-closed, and (3) it is possible to rewrite every data term that
occurs in the right-hand side expressions of the PBES to either - or ⊥. We
assume that the latter is achieved by a data term evaluator eval; notice that eval
can be lifted to PBESs in a straightforward manner.

Corollary 1. Let E be a PBES. If E is closed and data-closed, all data sorts in
E are finite and a term rewriter exists then eval(Instbnd(E)(E)) is a BES.

450 A. van Dam, B. Ploeger, and T.A.C. Willemse

Algorithm 2. The instantiation algorithm Inst∞ for countable domains D

Inst∞(ε)
Δ
= ε

Inst∞((σX(d:D) = ϕ) E)
Δ
= {(σXv = Sub∞(ϕ[v/d])) | v∈D} Inst∞(E)

where

Sub∞(b)
Δ
= eval(b)

Sub∞(X(d))
Δ
=
�

v∈D (eval(v = d) ∧Xv)

Sub∞(ϕ1 ⊕ ϕ2)
Δ
= Sub∞(ϕ1)⊕ Sub∞(ϕ2)

Sub∞(Qd:D. ϕ)
Δ
=
�

v∈D Sub∞(ϕ[v/d]) where
�

=
�

if Q = ∀, else
�

=
�

.

4 Instantiation on Countable Domains

In the previous section, we assumed that the domain D of the instantiated pa-
rameter was finite. Instantiation then resulted in a PBES in which the predicate
variables still carried parameters with a (possibly) infinite domain. In this sec-
tion, we lift the restriction of finiteness and consider PBESs in which each vari-
able is of type D → B or of type B, where D is a possibly infinite, yet countable
domain. Note that neither the restriction to a single parameter nor the use of a
single domain D incur a loss of generality. To each predicate variable X :D → B,
we associate a countable set of proposition variables all(X) Δ= {Xd:B | d∈D}.

The instantiation algorithm is Algorithm 2; it generates an IBES from a
PBES. For every equation σX(d:D) = ϕ in the PBES, a block of countably
many equations is generated, each of which is of the form σXv = ωv for some
v ∈ D and infinite proposition formula ωv = Sub∞(ϕ[v/d]). To ensure that every
ωv is indeed a proper infinite proposition formula, we rely on the term evaluator
eval to rewrite every data term in ϕ[v/d] to either - or ⊥. Hence, ϕ[v/d] must
be closed, i.e. ϕ may contain no free data variables other than d.

Theorem 2. For all data-closed PBESs E for which every X ∈ bnd(E)∪occ(E)
is instantiation-fresh, and all environments η satisfying:

∀Y ∈ occ(E) \ bnd(E) : ∀w ∈ D : η(Yw) = η(Y)([[w]]) (1)

it holds that, for any environment ε:

∀X ∈ bnd(E) : ∀v ∈ D : ([[Inst∞(E)]]η)(Xv) = ([[E]]ηε)(X)([[v]]).

Proof. Let E be a data-closed PBES and η, ε be environments such that E all
variables X ∈ var(E) are instantiation-fresh, and η satisfies (1). The proof goes
by induction on the length of E . If E = ε the statement holds vacuously. For the
inductive case we assume, for all PBESs E ′ of length m for which all variables
are instantiation-fresh and environments η′, ε′ satisfying (1):

∀X ∈ bnd(E ′) : ∀v ∈ D : ([[Inst∞(E ′)]]η′)(Xv) = ([[E ′]]η′ε′)(X)([[v]]). (IH)

Instantiation for Parameterised Boolean Equation Systems 451

Suppose E is of length m + 1, so E = (σY (d:D) = ϕ) E ′ for some PBES E ′ of
length m. We define the following shorthands:

σB Δ= {σYw = Sub∞(ϕ[w/d]) | w ∈ D}
f

Δ= σg ∈ BD. λw ∈ D. [[Sub∞(ϕ[w/d])]]([[Inst∞(E ′)]]η[g/YD])
h

Δ= σk ∈ BD. λw ∈ D. [[ϕ]]([[E ′]]η[k/Y]ε)ε[w/d].

Let X ∈ bnd(E) and v ∈ D. Then:

[[Inst∞((σY (d:D) = ϕ) E ′)]]η(Xv)
= [[σB Inst∞(E ′)]]η(Xv)
= [[Inst∞(E ′)]]η[f/YD][h/Y](Xv)
∗= ([[E ′]]η[f/YD][h/Y]ε)(X)([[v]])
= ([[(σY (d:D) = ϕ) E ′]]ηε)(X)([[v]]).

At * we used (IH), which applies since one can prove:

∀X ∈ var(E ′) : all(X) ∩ var(E ′) = ∅ (2)
∀Z ∈ occ(E ′) \ bnd(E ′) : ∀x ∈ D : (3)

η[f/YD][h/Y](Zx) = η[f/YD][h/Y](Z)([[x]]).

For full details of the proofs of 2 and 3, we refer to [4]. �

As a corollary of Theorem 2, we have the following result:

Corollary 2. Let E be a PBES. If E is closed and data-closed, all data sorts in
E are countable and a term rewriter eval exists then Inst∞(E) is an IBES.

Note that a reverse transformation from an IBES to a PBES is elementary:
the sort of an IBES block acts as the sort of a PBES equation and the infinite
conjunctions/disjunctions occurring in the infinite proposition formulae can be
mapped to equality tests and universal/existential quantifications, respectively.

For typical verification problems, such as (local) model checking and equiva-
lence checking, a partial solution to the PBES is sufficient. In that case, Propo-
sition 1 allows one to prune the infinite blocks from an IBES, often resulting in
a BES. Pruning can be done on-the-fly by means of a depth-first or breadth-first
exploration of all the equations for the required (instantiated) binding variables
of the theoretical IBES. A similar technique is discussed in [11], and, thence, we
do not further explore this issue here.

5 Examples

In this section, we illustrate the various uses of the basic instantiation techniques
of the previous sections. First, we demonstrate that the partial instantiation of
a PBES is a powerful manipulation in itself. Two prime –but lengthy– example
applications of the manipulation are already contained in the full version of [3].
A smaller example is given below. This problem appeared in [2] and [9]. Another
problem of this type, also appearing in both [2,9] can equally well be solved using
partial instantiation, see [4].

452 A. van Dam, B. Ploeger, and T.A.C. Willemse

Example 1. Consider the infinite transition system depicted below. The property
that Bradfield [2] and Mader [9] verify is that every path that starts in s has
only finite length, a property that is given by the following modal μ-calculus
formula: μX.[−]X . Notice that the number of paths in the system is infinite.

s

...
. . .

The following PBES, consisting of a single fixpoint equation, encodes the above
model checking problem, where state s corresponds with X(-, 0):1

μX(b:B, n:N) = (∀i:N. ¬b ∨X(¬b, i)) ∧ (b ∨ n = 0 ∨X(b, n− 1)).

A solution technique based on a straightforward symbolic approximation as de-
scribed in e.g. [8] does not terminate. Patterns [7] for solving PBESs, which
allow one to “look up” a solution for equations of a particular shape, are also
not applicable. Instantiation of Booleans leads to the following PBES:

(μX⊥(n:N) = (n = 0) ∨X⊥(n− 1)) (μX�(n:N) = ∀i:N. X⊥(i)).

The equation for X⊥ can easily be solved by means of a pattern, immediately
leading to the following equivalent equation system:

(μX⊥(n:N) = ∃i:N. n = i) (μX�(n:N) = ∀i:N. X⊥(i)).

The above equation system can immediately be rewritten to the following:

(μX⊥(n:N) = -) (μX�(n:N) = -).

Hence the property holds. The proof in [9] requires a manual construction of a
set-based representation of an IBES, and requires showing the well-foundedness
of mappings of this representation. The tableau-based methods of [2] require the
investigation of extended paths. Our proof strategy requires less effort. �

The next examples demonstrate the feasibility of instantiating to (I)BESs. All
specifications contain infinite data sorts such as natural numbers.

Example 2. The algorithm has been implemented in a tool2 that instantiates a
given PBES, and, upon termination has computed a BES that holds the answer
to whether a particular equation in the original PBES is true for some data value.
The table below shows the time performance of this tool on several publicly
available benchmarks, consisting of industrial protocols and systems (first four)
and games (second three). The property encoded in the PBES was absence of
deadlock, which would require all reachable states to be computed. This allows
for a fair comparison with explicit state space generating tools. Of course, more
involved properties can also be encoded, e.g. fairness and liveness properties.
1 Notice that the PBES can be obtained fully automatically, for details, see [8]. For

an implementation, see a.o. the tool lps2pbes of mCRL2 [http://mcrl2.org].
2 The tool is part of the mCRL2 toolset (revision 4413) and is called pbes2bool.

http://mcrl2.org

Instantiation for Parameterised Boolean Equation Systems 453

BRP IEEE-1394 car-lift chatbox domineering clobber othello

States (#) 10,548 188,569 4,312 65,536 455,317 600,161 55,093
Transitions (#) 12,168 340,607 9,918 2,162,688 2,062,696 2,221,553 88,258
LTS (sec) 7 215 14 37 78 148 159
BES (sec) 6 232 10 15 82 182 186

We added the performance of the tool that would generate the state space. Our
performance is in general comparable; differences are likely to be caused by minor
differences in rewriting strategies. Our experience with memory usage is similar.
Note that the BES generation time includes solving the BES using a BES-solver
that is sufficiently efficient for alternation-free BESs. �

Example 3. The previous example illustrated the efficacy of full instantiation of
PBESs to (I)BESs for alternation-free PBESs. We next consider the encoding
of the branching bisimulation equivalence problem [3], which yields PBESs with
alternation depth 2. The table below shows the time performance of our tool
on instantiating three PBESs encoding the equivalence between the Concurrent
Alternating Bit Protocol (CABP), the Alternating Bit Protocol (ABP) and the
One-Place Buffer (OPB). Each protocol has ten different messages. The reported
times do not include solving the BESs as our BES-solver currently cannot handle
large, alternating BESs very well. �

OPB ABP CABP ABP ≈ OPB CABP ≈ OPB ABP ≈ CABP

States (#) 11 362 3,536
Transitions (#) 20 460 13,791

BES (# equations) 2,884 35,104 268,064
BES (sec) < 1 2 13

6 Conclusions

Parameterised Boolean Equation Systems have demonstrated to be quite suited
for studying various formal verification problems. Several unique solution tech-
niques for solving PBESs have been studied and shown to be effective.

To this set of solution techniques, we have added a new set of manipulations,
which admit a wider class of PBESs to be solved either automatically or by
means of (syntactic) manipulations. From the point of view of the basic theory
of PBESs, the manipulations firmly relate PBESs to two other prominent notions
of equation systems, viz. BESs and IBESs. This provides a different angle on the
somewhat complex basic theory of PBESs.

We have also reported on the efficacy of our manipulations (see Section 5).
Among others, we report on the results of typical verification problems conducted
using a tool that implements the transformation from PBESs to (I)BESs. In this
respect, the approach taken in the tooling is reminiscent of the approach outlined
in [12] but slightly more general.

454 A. van Dam, B. Ploeger, and T.A.C. Willemse

Acknowledgements. We thank Wieger Wesselink and Jan Friso Groote for valu-
able feedback on the implementation.

References

1. Bekič, H.: Programming Languages and their Definition. LNCS, vol. 177. Springer,
Heidelberg (1984)

2. Bradfield, J.C.: Verifying Temporal Proporties of Systems. Birkhäuser (1992)
3. Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking

for infinite systems using parameterized boolean equation systems. In: Caires, L.,
Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer,
Heidelberg (2007)

4. van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised
boolean equation systems. CS-Report 08-11, TU Eindhoven (2008)

5. Gallardo, M.M., Joubert, C., Merino, P.: Implementing influence analysis using
parameterised boolean equation systems. In: Proc. of ISOLA 2006. IEEE, Los
Alamitos (2006)

6. Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a
setting with data. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp.
74–90. Springer, Heidelberg (1998)

7. Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput.
Program 56(3), 251–273 (2005)

8. Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor.
Comput. Sci. 343(3), 332–369 (2005)

9. Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD
thesis, Technische Universität München (1997)

10. Mader, A.: Verification of modal properties using infinite boolean equation systems.
Technical Report CSI-R9727, University of Nijmegen, Nijmegen (1997)

11. Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-
calculus. In: Proc. 2nd Int’l Workshop on VMCAI (September 1998)

12. Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing
systems. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014.
Springer, Heidelberg (2008)

13. Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen,
K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer, Heidelberg (2002)

14. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J.
Mathematics 5(2), 285–309 (1955)

Author Index

Abdulla, Parosh Aziz 50
Abed, Sa’ed 228
Abrial, J.-R. 1
Agrigoroaiei, Oana 66
Aichernig, Bernhard 319
Ait Mohamed, O. 228

Blom, Stefan 81
Bonsangue, Marcello M. 156
Burns, Alan 410

Cavalcanti, Ana 141
Chen, Haiming 96
Chen, Lei 96
Ciobanu, Gabriel 66

de Boer, Frank 319
Dechesne, Francien 111
Delzanno, Giorgio 50

Evans, Neil 364

Furia, Carlo A. 126

Griesmayer, Andreas 319

Harwood, Will 141
He, Jifeng 201
Hoang, Thai Son 1
Hung, Dang Van 395

Izadi, Mohammad 156

Johnsen, Einar Broch 319

Kamareddine, Fairouz 171
Klaudel, Hanna 186
Koutny, Maciej 186
Kyas, Marcel 334

Li, Jing 201
Liu, Zhiming 395

Majster-Cederbaum, Mila 216
Matringe, Nadir 425
Minnameier, Christoph 216
Mokhtari, Y. 228
Morzenti, Angelo 290
Mota, Alexandre 258
Murakami, Masaki 243

Nogueira, Sidney 258
Nour, Karim 171

Orzan, Simona 111, 349

Pace, Gordon J. 274
Peleska, Jan 3
Pelz, Elisabeth 186
Ploeger, B. 440
Pommereau, Franck 186
Pradella, Matteo 290

Rafe, Vahid 305
Rahli, Vincent 171
Rahmani, Adel T. 305
Rebiha, Rachid 425
Rezine, Ahmed 50
Roscoe, A.W. 23

Sampaio, Augusto 258
San Pietro, Pierluigi 290
Schlatte, Rudolf 319
Schneider, Gerardo 274
Schneider, Steve 364
Schönborn, Jens 334
Song, X. 228
Spoletini, Paola 126

Tahar, S. 228
Torabi Dashti, Mohammad 349
Treharne, Helen 364
Turner, Edward 364

van Dam, A. 440
van de Pol, Jaco 81
Vieira Moura, Arnaldo 425

Wang, Yanjing 111
Wehrheim, Heike 380
Wells, J.B. 171
Willemse, T.A.C. 440
Woodcock, Jim 141

Zhang, Miaomiao 395
Zhu, Huibiao 201
Zuhily, Areej 410

	Title Page
	Preface
	Organization
	Table of Contents
	Using Design Patterns in Formal Methods: An Event-B Approach
	A Unified Approach to Abstract Interpretation, Formal Verification and Testing of C/C++ Modules
	Introduction
	Overview
	Related Work

	Background and Motivation: Industrial Safety-Critical Systems Development and the Deployment of Formal Methods
	Abstract Interpretation, Formal Verification and Testing – An Integrated Approach
	Specification of Analysis, Verification and Test Objectives
	Transformation into an Intermediate Model Representation
	The Sub-model Generator
	Interpreters
	Constraint Generation
	Constraint Solver

	Conclusion
	References

	The Three Platonic Models of Divergence-Strict CSP
	Introduction
	Background
	The CSP Language
	The Hierarchy of CSP Models

	Finitary Versus General Models of CSP
	Stage 1: Every Model Refines \TM^{\Downarrow}
	An Unexpected Congruence and How to Avoid It
	Stage 2: \FDM Is the Weakest Proper Refinement of \TM^{\Downarrow}
	Stage 3: Every Proper Refinement of \FDM Refines \SRM^{\Downarrow}
	Conclusions
	References

	Monotonic Abstraction in Action
	Introduction
	Preliminaries
	Parameterized Distributed Systems
	OperationalSemantics
	Safety Properties
	Distributed Mutex by Lamport
	Distributed Mutex by Ricart-Agrawala
	Approximation and Scheme Overview
	Experimental Results
	Conclusions and Future Research
	References

	Non-interleaving Semantics with Causality for Nondeterministic Dataflow
	Introduction
	Labelled Flows
	Denotational Model of Dataflow Networks
	Feedback

	Conclusion
	References

	Symbolic Reachability for Process Algebras with Recursive Data Types
	Introduction
	Preliminaries
	Locality
	Grey Box Reachability Algorithm
	Implementation
	Experiments
	Conclusion
	References

	Inclusion Test Algorithms for One-Unambiguous Regular Expressions
	Introduction
	Notations and Notions
	Regular Expressions
	One-Unambiguous Regular Expressions
	Glushkov Automaton and Star Normal Form

	Automata Based Method
	The Algorithm
	Improvements

	Derivative Based Method
	Experiments
	Related Work
	Concluding Remarks
	References

	Refinement of Kripke Models for Dynamics
	Introduction
	Preliminaries
	Kripke Modal Labelled Transition System
	Public Announcement Logic
	Semantics

	Refinement and Logical Characterization
	Refinement and Abstraction
	Logical Characterization

	Examples
	The Muddy Children
	Encoded Broadcast

	Conclusion
	References

	Tomorrow and All our Yesterdays: MTL Satisfiability over the Integers
	Introduction
	Definitions and Preliminaries
	Metric Temporal Logic
	Automata over Infinite Words

	Automata-Based MTL Satisfiability over the Naturals
	Automata-Based MTL Satisfiability over the Integers
	Splitting the Evaluation about the Origin
	From Languages to Automata (to ProMeLa)
	Summary and Complexity

	Discussion
	References

	A Theory of Pointers for the UTP
	Introduction
	Unifying Theories of Programming
	AModel forPointers
	The Pointer Machine
	A Simpler Model

	Conjunctive Healthiness Conditions
	Pointers and Records in the UTP
	Programming Constructs
	Value Assignment
	Pointer Assignment
	Object Creation
	Variable Declaration and Undeclaration

	Conclusions
	References

	Recasting Constraint Automata intoB\"uchi Automata
	Introduction
	Basic Theory of Constraint Automata
	Timed Data Streams
	Constraint Automata and Their Composition

	B\"uchi Automata of Record Languages
	Streams and Languages of Records
	B\"uchi Automata of Records

	Joining B\"uchi Automata on Streams of Records
	Splitting the Join

	Concluding Remarks
	References

	A Complete Realisability Semantics for Intersection Types and Arbitrary Expansion Variables
	Introduction
	The Pure $\l^{{\cal L}_{\mathbb N}}$-Calculus
	Typing System
	Subject Reduction Properties
	Subject Expansion Properties
	The Realisability Semantics
	The Completeness Theorem
	Conclusion
	References

	Towards Efficient Verification of Systems with Dynamic Process Creation
	Introduction
	Process Identifiers
	Coloured Petri Nets
	Properties of Reachable Markings
	Checking Marking Equivalence
	Example
	Experimental Results

	Conclusions
	References

	An Observational Model for Transactional Calculus of Services Orchestration
	Introduction
	TCOS
	Semantic Model
	Observational Semantics for TCOS
	Atomic Transactions
	Compensable Transactions

	Algebraic Laws
	Conclusion
	References

	Everything Is PSPACE-Complete in Interaction Systems
	Introduction
	Interaction Systems
	Syntax and Semantics
	Properties of Interaction Systems
	Interaction Systems and 1-Safe Petri Nets

	The Polynomial Time Reductions
	Reachability Is Polynomially Reducible to Progress
	$Progress$ Is Polynomially Reducible to $GDIS$
	$GDIS$ Is Polynomially Reducible to $LDIS$
	$LDIS$ Is Polynomially Reducible to $Availability$

	Conclusion and Related Work
	References

	A New Approach for the Construction of Multiway Decision Graphs
	Introduction
	Related Work
	Multiway Decision Graphs Overview
	Sorted Signature
	Well Sorted Terms
	Well Formed Directed Formulae (DFs)
	Semantics
	MDG Structure

	MDG Construction
	Generalized-If-Then-Else (GITE)
	Relational Product (RelP)
	Pruning by Subsumption (PbyS)

	NuMDG Structure
	Conclusion and Future Work
	References

	Congruence Results of Scope Equivalence for a Graph Rewriting Model of Concurrent Programs
	Introduction
	BasicIdea
	Formal Definitions
	Programs
	Operational Semantics

	Behavioral Equivalence
	Scope Equivalence
	Equivalence Relation
	Congruence Results

	Conclusions
	References

	Guided Test Generation from CSP Models
	Introduction
	Application Domain
	Test Models as CSP Processes
	Test Scenario Generation
	Test Scenario Selection
	Constructing Sound Test Cases
	Conclusions
	References

	Relaxing Goodness Is Still Good
	Introduction
	Polygonal Hybrid Systems (SPDIs)
	Relaxing Goodness: Generalised SPDIs
	Preliminary Results
	Decidability Results

	FinalRemarks
	References

	Benchmarking Model- and Satisfiability-Checking on Bi-infinite Time
	Introduction
	Automata and Logics on Bi-infinite Words
	Automata on Bi-infinite Words
	A Temporal Logic on Bi-infinite Time
	A Bi-infinite Encoding
	Metric Temporal Operators

	Bi-infinite Time: A Short Motivation
	The Zot Toolkit
	Case Studies and Experiments
	A Simple In/Out Channel
	Kernel Railway Crossing
	Fischer’s Protocol
	Simple Mutual Exclusion Protocol
	Real-Time Allocator
	Summary of Experimental Results

	Conclusions
	References

	Formal Analysis of Workflows Using UML 2.0 Activities and Graph Transformation Systems
	Introduction
	Related Work
	Attributed Typed Graph Transformation Systems
	Modeling Workflows
	Verification and Validation
	Conclusions and Future Work
	References

	Testing Concurrent Objects with Application-Specific Schedulers
	Introduction
	Creol and Executable Modeling
	Testing and Testing Methodology
	Combining Method Automata and Scheduling Policies
	Modeling Method Invocations: Method Automata
	Modeling Parallelism: The System Automaton
	Modeling Schedulers: The Scheduler Automata
	Integration of the Scheduler and the System Automaton

	Test Case Generation with WP and Schedulers
	Test Case Execution

	Related Work
	Conclusion and Future Work
	References

	A Theory of Bounded Fair Scheduling
	Introduction
	Fair Scheduling
	From Scheduling Specifications to Streett Automata
	Consistency of Specifications
	Suspending the Scheduler
	Conclusions and Future Work
	References

	Fair Exchange Is Incomparable to Consensus
	Introduction
	Preliminaries
	\FE and \DC Are Incomparable
	Related Work
	Concluding Remarks
	References

	Automatic Generation of CSP $\mid\mid$ B Skeletons from xUML Models
	Introduction
	ExecutableUML
	Running Example

	CSP $\mid\mid$ B
	Automatic Generator
	Translating ASL to Skeleton B Machines
	Translating ASL to CSP
	Generating the Execution Environment
	Translating Supporting ASL to Enable Animation

	Towards an Analysis Framework
	Analysis of the Effects Table
	Model Consistency
	Deadlock Freedom Checking

	Conclusions
	References

	Bounded Model Checking for Partial KripkeStructures
	Introduction
	Background
	Bounded Semantics
	Translation to Propositional Logic
	Checking Sat$_3$
	Conclusion
	References

	Verification of Linear Duration Invariants by Model Checking CTL Properties
	Introduction
	Preliminary
	Timed Automata
	Linear Duration Invariants and Duration Properties
	Integral Reachability Graph of Timed Automata

	Technique to Check LDI Using CTL
	When B Is finite
	When B Is Infinite
	Verification in UPPAAL

	Case Study
	Conclusion
	References

	Exact Response Time Scheduling Analysis of Accumulatively Monotonic Multiframe Real Time Tasks
	Introduction
	System Model
	Related Work
	Schedulability Analysis of the Multiframe Tasks
	Standard Response Time Analysis

	Exact Response Time Analysis for AM Multiframe Tasks
	Basic Response Time Analysis of the AM Multiframe Tasks
	Adding Blocking Time to the Response Time Analysis
	Coverage of the Analysis

	Numeric Example
	Evaluating Exact Response Time Schedulability Analysis
	Experimental Setup
	Scope of Running the Experiments
	Results of the Experiments

	Conclusions
	References

	Endomorphisms for Non-trivial Non-linear Loop Invariant Generation
	Introduction
	Ideals of Polynomials and Inductive Assertions
	When to Use Constant Scale Consecution
	What Happens in Practice
	Initiation Step
	When Constant Scale Consecution Never Works

	Non-linear Algebraic Transition Systems
	T-Invariants Generation
	A General Theory for Polynomial Scale Consecutions
	Initiation Step

	Fractional Scale Consecution
	Branching Conditions and Nested Loops
	Conclusion
	References

	Instantiation for Parameterised Boolean Equation Systems
	Introduction
	Preliminaries
	Data
	Parameterised Boolean Equation Systems
	Infinite Boolean Equation Systems

	Instantiation on Finite Domains
	Instantiation on Countable Domains
	Examples
	Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

