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Abstract. This paper presents a revised version of an unsupervised and
knowledge-free morpheme boundary detection algorithm based on letter
successor variety (LSV) and a trie classifier [I]. Additional knowledge
about relatedness of the found morphs is obtained from a morphemic
analysis based on contextual similarity. For the boundary detection the
challenge of increasing recall of found morphs while retaining a high
precision is tackled by adding a compound splitter, iterating the LSV
analysis and dividing the trie classifier into two distinctly applied clasi-
fiers. The result is a significantly improved overall performance and a
decreased reliance on corpus size. Further possible improvements and
analyses are discussed.
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1 Introduction

The algorithm presented in this pape is a revised version of the letter successor
variety (LSV) based algorithm [2[3[4] described and implemented previously
[5UI]. The additional component of morpheme analysis is based on a prototypical
implementation described in [6].

The morpheme segmentation algorithm attempts to find morpheme bound-
aries within word forms. For a given input word form it results in a segmentation
into morphs (as opposed to morphemes). It is based on the assumption that any
grammatical function is expressed with only a small amount of different affixes.
For example, plural is expressed with only five different morphs in German -en,
-s, -¢, -er (and zero).

In essence, the algorithm measures the amount of various letters occuring
after a given substring with respect to some context of other words (in this
case semantically similar ones), weighting that value according to bi- and tri-
gram probabilities and comparing the resulting score to a threshold. Hence it is
designed to handle concatenative morphology and it is likely to fail in finding
morpheme boundaries in languages with other types of morphology. The algo-
rithm is not rooted in any particular (linguistic) theory of morphology, especially

L' A recent implementation of this algorithm is available at http://wortschatz.uni-
leipzig.de/~sbordag/
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since such theories tend to omit the fact that morphemes, as their basic units of
interest, are not as simply observable as words. The knowledge about where a
morph begins and ends is usually assumed to be given a priori.

The present implementation of the morpheme boundary detection consists
of three distinct major parts: a compound splitter, a letter successor variety
algorithm using contextual similarity of word forms and a trie based machine
learning step. Due to the low performance of the LSV based method in splitting
longer words, in a pre-processing step a simple compund splitter algorithm is
applied. The LSV part is iterated to increase recall with only a moderate loss of
precision. The machine learning part (using a trie) is split into two parts, one
with high precision and a subsequent one with high recall.

According to an evaluation using the German Celex [7], each change improves
the overall performance slightly. Several possibilities of further improvements
and analyses are discussed. Any of the major three parts (compound splitter,
LSV algorithm, trie classifier) of the described algorithm can be replaced by or
merged with a different algorithm, which should facilitate the combination of
this algorithm with others.

The morpheme analysis part is based on statistical co-occurrence of the found
morphs and subsequent contextual similarity and a basic rule learning algorithm.
The rules are then used to find related morphs where groups of related morphs
represent a morpheme.

2 Letter Successor Variety

LSV is a measure of the amount of different letters encountered after (or before)
a certain substring, given a set of other strings as context. It is possible to use the
entire word list as context for each string and its substrings [3l4]. Alternatively,
only a specific set of words may be used as context [I], if a method for the
selection of relevant words is included. In order to use LSV to find true morpheme
boundaries, this set ideally consists of words that share at least one grammatical
feature with the input word. For example, if the input word is hurried, then
relevant words are past tense forms. It is obvious that in such a case the amount
of different letters encountered before the substring -ed is maximized.

As has been shown earlier [6], using the entire word list for morpheme bound-
ary detection (global LSV) is inferior to using a simulation of semantic similarity
(contextual similarity based on comparing statistically significant co-occurrences)
of words to find the relevant ones (local LSV). However, the power-law distribu-
tion of word frequencies makes it impossible to compute a proper representation
of their usage and accordingly compare such words for usage similarity. Hence,
local LSV based morpheme boundary detection might have a high precision, but
is guaranteed to have a low recall. Another related method, first globally finding
the contextually most similar word pairs and then analyzing their differences [§],
appears to have even lower recall than the LSV method.
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2.1 Trie Classifier

In order to increase the recall of the local LSV method, a machine learning method
was proposed. It is based on training a patricia compact trie (PCT) [9] with mor-
pheme segmentations detected by the local LSV methods. The trained trie can then
be used to recursively split all words into morphs, irrespective of their frequency.

Training the trie, as depicted in Figure[T], is performed as follows: Each known
morpheme boundary is reformulated as a rule: The entire word is the input string,
whereas the shorter half of the word (according to the morpheme boundary) is the
class to be learned. The trie learns by adding nodes that represent letters of the
word to be learned along with increasing the count of the class for each letter (see
Figure[l). With multiple boundaries within a single word form, training is applied
recursively, taking the outmost and shortest morphs first (from right to left).

Two distinct tries, a forward-trie and a backward-trie are used to sep-
arately learn suffixes and affixes. The decision which trie to use for any given
training instance is based on the length of the morphs. The longer half of the
word probably contains the stem, whereas the shorter half is used as the class.
In the case of the backward-trie, the word itself is reversed.

The classification is applied recursively as well: For an input string both the
backward and forward tries are used to obtain the most probable class. This
results in up to two identified morpheme boundaries and hence three parts of
the original words. Each part is analyzed recursively in the same way as the
entire word form until no further classifications can be found.

In the Morpho Challenge 2005 [10], both the local LSV and a subsequent
application of the trie learning were submitted separately. As expected, the LSV
method had a high precision, but extremely low recall (only 1.9% for Finnish, for
example). The application of the trie increased recall, but also lowered precision

PCT
Training set root Result set
R . (on new words)
clear - 2ily 2:- Lry
clearly ly T P(we@k) =0.4
dearly ly _wP(easi-ly) =0.66
carly - "y P(public-ly) =0.66
machinery ry 2:ly 1:- Liry 4
earl
2:ly 1:- | :
\ /
/ (optionally)
- C d / pruned
1:- L:ly L:ly -

Fig. 1. Illustration of training a PCT and then using it to classify previously unseen
words
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due to overgeneralization. Overgeneralization occurs mostly because of missing
negative examples. Since even for a well-represented input word not all contex-
tually similar words share grammatical information with it, it is impossible to
take words without found boundaries as examples of words that in fact do not
have any morpheme boundaries.

3 Refined Implementation

The above mentioned weaknesses of the LSV + trie combination hold uniformly
over all tested languages. The following modifications attempt to address some
of these weaknesses, while trying to avoid language-specific rules or thresholds.
The new version contains several changes: a recursive compound identifier, an
iteration of the LSV algorithm and splitting the trie classification into two steps.

3.1 Identifying Compounds

The LSV algorithm is based on using contextually similar words. However, com-
pounds usually are less frequent, and words contextually similar to a compound
do not necessarily contain other compounds, or compounds sharing parts with
the input word. Particularly for semantically opaque compounds this is almost
guaranteed to be the case. Therefore it is mostly impossible for the LSV algo-
rithm to find morpheme boundaries between the parts of a compound, unless
the compound contains a very productive part.

Since only a small sample set is sufficient for the trie to correctly classify
most compounds later, it is not necessary to find all compounds at this point.
The compound splitter is therefore based on simply trying to divide a given
word word at a position ¢ and testing whether that division seems plausible.
The function testDiv(word,i) then tests the plausibility and returns a score.
The division is plausible if both parts of the hypothetical decomposition exist
as words in the underlying corpus, and reach a threshold of minimum length (4)
and a threshold of minimum frequency (20). If that is the case, the score is the
sum of the frequencies of the parts assumed to be words.

It is then possible to take the one partition of the input word that maximizes
the frequency of the participating parts. This mechanism is applied to recursively
divide a long word into shorter units. Table [[] shows that the algorithm (as ex-
pected) has a high precision, but it also has a very low recall. In fact, it may have
even lower recall for other languages. It also shows that training the trie classifier
with this data directly indeed increases recall, but also incurs a rather strong loss
in precision. It can be assumed that if compounding exists in a language, then this
algorithm in combination with the trie classifier helps to find the parts of a large
part of compounds. However, a more elaborate implementation is desirable at this
point, especially since this algorithm does not take linking elements into account.

3.2 Iterated LSV Algorithm

For the LSV algorithm, the ideal case is achieved when all contextually similar
words to a given input word carry the same grammatical information. However,
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due to data sparseness, compounds, overly high co-occurrence frequency and other
factors, this ideal state is achieved only for few words. In many cases only a few
contextually similar words actually share grammatical information with the in-
put word. Running the LSV algorithm may thus find some morpheme boundaries
correctly and not find many others. It is important that in this setup (using con-
textually similar words as context) it nearly never finds wrong morpheme bound-
aries, if it does find any, see also Table[lwhich shows that the first run of the LSV
algorithm found very few (but very precisely) morpheme boundaries.

In order to facilitate the boundary identification for some of the remaining
words, it is possible to iterate the LSV algorithm by incorporating knowledge
produced in earlier iterations. This is done by an additional factor to the com-
putation of the LSV score: Given a substring -ly of the input word clearly, if
the same substring was identified as a morph in any (or all) of the contextually
similar words, then increase the LSV score. However, some very frequent words
such as was or do-es are contextually similar to a large amount of words, which
in turn means that these frequent words might influence the analyses of many
other words adversely, such as James to Jam-es. Therefore the increase of the
LSV score is normalized against the number of words with the same substring
and the number of contextually similar words.

To recall from [6], the formula to compute the left LSV score for the word w
at the position 4 (the formula for the right score is likewise) is:

Isv(w, i) = plsvy(w, i) - fw(w,1) - ib(w, i) (1)
This takes anomalies such as phonemes represented my several letters into
account. Here plsv;(w,4) is the plain number of different letters found to the
right of the substring between the beginning of the word w and the position 4.
fwi(w, ) is the bi- or trigram based frequency weight of the substring, whereas
ib(w, 1) is the inverse bigram weight. The previously acquired knowledge about
morpheme boundaries is used to compute prev;(w, ) as the number of previously
identified morphs pf;(w, ) divided by 2 and multiplied with the quotient of the
number of words containing the same substring subf;(w, i) and the size of the
pruned list of contextually similar words prune:

previ(w, i) = pfi(w,i) - 0.5 (subfi(w,i)/prune) (2)

To prevent the previous analyses from overriding the analysis of the present

word, the new LSV score is computed as a multiplication of the LSV score with
the previous knowledge, which is at most as high as lsv;(w, ) -1:

Isv2;(w, i) = min(lsvy(w,i) — 1, previ(w, 1)) - lsv(w, 1) (3)

The same is reversely applied to the right LSV score lsv,(w,i) and both

Isv(w, i) and lsv,(w, ) are summed to produce the final lsv2(w,4) and compare

it to a threshold (for example 6) to obtain a decision whether the position ¢ in
the word w is a morpheme boundary.

For example, the analyses of the most similar words of clear-ly might result

in the following morpheme boundaries: closely, white, great-ly, legal-ly, clear,
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linear-ly, really, weakly, .... Hence, for the position 5 (which corresponds to -ly)
in clearly, the amount of previously identified morphs pf, (w, ) is 3. The number
of such substrings subf;(w,4) is 5 and the amount of contextually similar words
was 150. Hence, prev,(clearly,5) = 3-0.5-(5/150) = 0.05 and thus the absolute
increase of the LSV score is only 0.05 in this case.

Table [[l shows that there are many cases where the influence was sufficiently
strong for the resulting LSV score to reach the threshold. It also shows that
iterating the LSV algorithm increases Recall. However, it also incurs a certain
Precision loss due with words such as James being contextually similar to many
other words where -es is really a suffix.

Table 1. Iterating the LSV algorithm and applying the modified trie classifier increases
recall while keeping precision at high levels

recursive pretree

R P F R P F
compounds 10.30 88.33 18.44 27.93 66.45 39.33
Isviter 1 17.88 88.55 29.76 57.66 71.00 63.64
Isv iter 3 23.96 84.34 37.31 62.72 68.96 65.69
savelrie  31.09 82.69 45.19 66.10 68.92 67.48

3.3 Split Trie Classification

Irrespective of its source, knowledge about boundaries is used to train the trie clas-
sifier and then apply the trained classifier to identify more morpheme boundaries.
In the original version the trie produces a most probable class for an input string
simply by searching for the deepest node in the trie. This mean that often decisions
were made without considering further context. For example, the LSV algorithm
found the morpheme boundary drama-tic. When analyzing plas-tic, the trie clas-
sifier would find ¢ as the deepest matching node. Since that node has only a single
class stored with the frequency count of 1, the classifier would decide in favor of -tic
being a morph with a maximal probability of 1. No further context from the word
is considered and the decision is made on grounds of only a single training instance.
However, simply forbidding all decisions that do not take a certain amount of
the word into account, would result in extremely low recall, such as 31% for Ger-
man in Table[Il The trie classification is thus split into two parts, a modified trie
classifier and subsequently an original unmodified trie classifier. The modified trie
classifier returns a decision only if all of the following conditions are met:

— The deepest matching node must be at least two letters deeper than the
class to be returned.

— The matching node must have a minimal distance of three from the root of
the trie.

— The total sum of the frequency of all classes stored in the deepest matching
node must be larger than 5.
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Table [ shows that applying the modified trie classifier saveTrie increases
recall by 8% while reducing precision by less than 2%. It also shows that the
subsequent application of the original trie classifier further increases recall to a
total of 66% while lowering precision to roughly 69%. The table also shows that
applying the original trie classifier directly on any of the LSV iterations or even
the compound identification algorithm results in lower overall performance.

3.4 Assessing the Improvements

In order to measure the influence of the various improvements proposed, a num-
ber of experiments were run on the 3 million sentences German corpus available
for the Morpho Challenge 2007. The results of each improvement were measured
and are depicted in Table[Il Additionally, the original trie classifier was applied
to the results of each modification.

These evaluations show that ultimately, the local LSV implementation could
be significantly improved. As such, it reaches similar performance as reported
in [I], despite being run on a significantly smaller corpus (3 million sentences
vs. 11 million). On the other hand, the relatively small improvements achieved
indicate that a significantly better morpheme boundary detection may only be
achieved by combining this method with an entirely different approach.

The results of the Morpho Challenge 2007 also show that currently the MDL
based approaches to morpheme boundary detection [TTJT2] mostly outperform
the LSV based approach, especially in the more important Information Retrieval
task evaluation. The most probable reason is that the LSV algorithm is good
at detecting boundaries within high-frequent words, whereas the MDL based
algorithms are better at detecting boundaries in longer words. Longer words
tend to be less frequent and thus more important for Information Retrieval as
opposed to the more frequent words.

A manual analysis of the resulting word list revealed several possible
improvements:

— An algorithm specifically designed to identify compounds and take the ex-
istence of linking elements into accounts, for example by means of finding
reformulations.

— In a post-processing step, an algorithm based on affix signatures such as
proposed by [13], might find errors or generalize known morpheme bound-
aries better than the trie classifiers and ultimately avoid mistakes such as
in-fra-struktur.

— A global morpheme vocabulary control mechanism, such as the MDL
[TAUTHITTIT2] might provide further evidence for or against certain morpheme
boundaries and subsequently inhibit mistakes such as schwa-ech-er.

4 Morpheme Analysis

Under the assumption that morpheme boundaries were correctly detected, it
is possible to treat every single morph separately (similarly to a word) in a
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statistical co-occurrence analysis. This allows computing contextual similarity
between morphs, instead of words. The following algorithm uses this procedure
to find rules that relate various morphs to each other and then applies these
rules to produce morphemic analyses of the words that originally occurred in
the corpus:

for each morph m

for each cont. similar morph s of m
if LD_Similar(s,m)
r = makeRule(s,m)
store(r->s,m)

for each word w
for each morph m of w
if in_store(m)
sig = createSignature(m)
write sig
else
write m

For each morph, the function LD Similar(s,m) filters from the contextually
most similar morphs those that differ only minimally, based on Levenshtein
Distance (LD) [I6] and word lengths. This step could be replaced by a more
elaborate clustering mechanism. Pairs with short morphs are only accepted if
LD = 1, pairs with longer morphs may have a larger distance. The function
makeRule(s,m) creates a hypothetical rule that explains the difference between
two contextually similar morphs. For example, the morphs ion and ions have
a Levenshtein Distance of 1 so the function creates a rule -s (or n -ns to take
more context into account) which says that s can be added to derive the second
morph from the first one. This rule is then stored and associated with the pair
of morphs that produced it. This allows deciding between probably correct (if
many morph pairs are associated with it) and incorrect rules later.

The second part of the morphemic analysis then applies the acquired knowl-
edge to the original word list. The goal is an analysis of the morphemic structure
of all words, where a morpheme is represented by all its allomorphs. In the first
step, each word is thus split into its morphs, according to the LSV and trie
based algorithm described above. In the next step, all related morphs as stored
by the first part of the morphemic analysis are retrieved for each morph of the
input word. The function createSignature(m) produces a representation of each
morpheme. For example, the original word fracturing was found to have two
morphs: fractur and ing. The first morph is related to two morphs fracture and
fractures. The second morph is related to inag, ingu and iong. This results in
the following analysis:

fracturing
> fractur.fracture.fractures
> inag.ing.ingu.iong
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It is noteworthy that this algorithm cannot distinguish between various mean-
ings of a single morph. In English, the suffix -s may be a plural marker if used
with a noun or the third person singular marker if used with a verb. Given the
extremely high frequency of some these ambiguous morphs, the number of (at
least partially) wrong analyses produced by the algorithm is likely to be high.
Further research may evolve around using an unsupervised POS tag inducer [17]
to distinguish between different word classes or using a word sense induction
algorithm [I8] applied to morphs in order to induce the various meanings.

The results from the Morpho Challenge 2007 are surprising in that the mor-
pheme analysis did not yield any significant changes to the evaluation results.
This is despite the fact that on average nearly every single morpheme is repre-
sented by several morphs. After exploring the word lists for German, the most
probable reasons for this appear to be any of the following:

— During construction of the rules no context is taken into account. This often
results in morphs to be found as correlated despite them just incidentally
looking similar and sharing some contextual similarity. Hence, benefit of the
analysis and error might be cancelling each other out.

— Many of the morphs representing a morpheme are, in fact, only artifacts
of the mistakes of the morpheme boundary detection algorithm. Thus, the
morpheme analysis appears to be strongly influenced by the quality of the
detected boundaries.

— When determing the validity of a rule, the amount of morph pairs is taken
into account, but not their frequency. This results in many extremely rare
morphs (without any impact on the evaluation) to be merged correctly into
morphemes, but many very frequent ones (with actual impact on the evalu-
ation) to be missed.

5 Conclusions

Whereas the changes introduced to the morpheme boundary detection improve
the overall performance, they also add several more parameters to the entire pro-
cess. The paramaters do not have to be set specifically for each language, but
a large number of parameters often indicates the possibility of overfitting. Yet,
despite the improvements and the possibility of overfitting, the performance of
knowledge-free morpheme boundary detection is far below what knowledge-rich
systems (i.e. rule-based) achieve. Nevertheless, the significant beneficial effects
achieved in the Information Retrieval evaluation task in the Morpho Challenge
2007 sufficiently demonstrate the usefulness of such algorithms even in the cur-
rent state.

Compared to other knowledge-free morpheme boundary detection algorithms,
the version of the LSV algorithm described in this paper produces good results.
The modular design of this algorithm allows for a better interoperability with
other algorithms. For example, the significant performance boost achieved by
adding a compound splitter indicates that combining various underlying hy-
potheses is more likely to yield significant improvements than changes to any
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single method. Also, given that the most simple combination of algorithms in
the form of a voting algorithm in the Morpho Challenge 2005 demonstrated
an extraordinary increase in performance, it is reasonable to assume that more
direct combinations should perform even better.

The noise produced during the morpheme boundary detection, the missing
method for distinguishing ambiguous affixes and other factors resulted in the
subsequent morphemic analysis to produce apparently insignificant results. It
becomes obvious that adding further algorithmic solutions representing other
hypotheses about morpheme boundaries, as well as a more elaborate morphemic
analysis, should be a significant step towards a true morphemic analysis similarily
to what can be done manually.
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