
Applying Patterns during Business Process Modeling�

Thomas Gschwind1, Jana Koehler1, and Janette Wong2

1 IBM Zurich Research Laboratory,
Switzerland

www.zurich.ibm.com/csc/bit
2 IBM Software Group, Canada

Abstract. Although the business process community has put a major emphasis
on patterns, notably the famous workflow patterns, only limited support for us-
ing patterns in today’s business process modeling tools can be found. While the
basic workflow patterns for control flow are available in almost every business
process modeling tool, there is no support for the user in correctly applying these
simple patterns leading to many incorrectly modeled business processes. Only
limited support for pattern compounds can be found in some tools, there is no
active support for selecting patterns that are applicable in some user-determined
context, tools do not give feedback to the user if applying a pattern can lead to
a modeling error, nor do they trace the sequence of applied patterns during the
editing process.

In this paper, we describe an extension of a business process modeling tool
with patterns to provide these capabilities. We distinguish three scenarios of pat-
tern application and discuss a set of pattern compounds that are based on the basic
workflow patterns for control flow. We present an approach where business users
receive help in understanding the context and consequences of applying a pattern.

1 Introduction

There is wide agreement that patterns can accelerate the process of designing a solution
and reduce modeling time, while at the same time they enable an organization to more
easily adopt best practices [1,2,3]. Patterns enable participants of a community to com-
municate more effectively, with greater conciseness and less ambiguity. Furthermore,
process patterns are considered as an effective means to bridge the Business IT gap.
Bridging this gap is more critical than ever because IT advances have escalated the rate
of development of new business functions and operations [2].

Despite the common belief in the importance of patterns, only limited support for
using patterns in today’s business process modeling tools can be found. While the basic
workflow patterns for control flow [4] are available in most business process modeling
tools and the YAWL system [5] provides all workflow patterns, applying even a basic
pattern is under the full responsibility of the user. It is thus not surprising that most
modeling errors result from incorrect combinations of the exclusive choice, parallel
split, simple merge, and synchronization patterns [6].

� The work published in this article was partially supported by the SUPER project (http://www.
ip-super.org/) under the EU 6th Framework Programme Information Society Technologies Ob-
jective (contract no. FP6-026850).

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 4–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.zurich.ibm.com/csc/bit

Applying Patterns during Business Process Modeling 5

In this paper, we discuss flexible pattern support where users can apply patterns to
unstructured process models, they obtain active support in selecting patterns that are
applicable in some user-determined context, the tool gives feedback to the user if ap-
plying a pattern can lead to a modeling error and it traces the sequence of applied
patterns during the editing process. We focus on the basic workflow patterns for control
flow, because of their frequent usage during business process modeling and discuss a
set of pattern compounds that can be built from them. We present an infrastructure that
automates parts of the pattern application process. The infrastructure analyzes the con-
sequences of applying a pattern with respect to the soundness of the resulting process
model and enables only those patterns that are correctly applicable in a given context,
which we describe using the category of the process fragments to which the pattern is
applied. Information about the fragment category is obtained from the process structure
tree that results from parsing the workflow graph underlying the process model [7,8].

We show how patterns can be integrated in a modeling tool such that they enable
business users to move away from a drawing tool with drag-and-drop editing capabili-
ties to a true business-level process modeling tool that allows users to arrive at models
of higher quality with less effort. Although we only consider control-flow patterns, we
see our contribution as an important prerequisite for extending powerful pattern sup-
port to more concrete business process patterns that describe best practices, because
these patterns will usually contain control-flow information as one essential part of the
pattern description [3]. We do not yet introduce a domain-specific vocabulary for the
control-flow patterns, but we argue that it is necessary to do so in the future to make the
patterns more easily usable by business users.

The paper is organized as follows: In Section 2 we revisit the basic workflow patterns
for control flow and define three scenarios for the application of control-flow patterns
during an iterative process modeling approach: (1) refinement of a single control-flow
edge by applying a block-oriented pattern compound, (2) application of a pattern com-
pound to a pair of selected control-flow edges, (3) application of a basic pattern to a set
of selected control-flow edges. Sections 3, 4, and 5 present the three scenarios of pat-
tern application in more detail. Section 3 also provides details on our infrastructure that
is based on the process structure tree [7] and that enables us to extend the application
of patterns to unstructured process models. Section 6 summarizes initial experiences
with an implementation of the three pattern scenarios in a commercial business pro-
cess modeling tool. The section also discusses the interplay of process patterns, process
refactoring operations, and process model transformation. Section 7 gives an overview
on the state of the art in business process patterns, while Section 8 concludes the paper.

2 The Workflow Patterns Revisited

When talking about business process patterns, many business process experts refer to
the famous workflow patterns [4] that have their origin in comparing the runtime con-
structs available in existing workflow engines. Figure 1 shows the most widely used
subset of the control-flow patterns. We selected these patterns to build active pattern
support into a business process modeling tool.

6 T. Gschwind, J. Koehler, and J. Wong

Parallel SplitExclusive Choice Simple Merge Synchronization

Sequence Arbitrary Cycles

t1

t3

t2

t1

t3

t2

t2

t3

t1

t2

t3

t1

t1 t3t2 t1 t3t2 t4 t5

Fig. 1. The five basic workflow patterns exclusive choice, parallel split, simple merge, synchro-
nization and sequence. In addition, the arbitrary cycles pattern as the most frequently occurring
pattern for iteration [4].

The patterns as shown in Figure 1 are of course available in most business process
modeling tools in the form of gateway icons that business users can drag and drop on
a canvas and connect to other modeling elements. Unfortunately, this availability of the
patterns in today’s modeling tools is insufficient to enable users to successfully reuse
proven solutions to recurring problems. The workflow patterns are too fine-grained and
not sufficiently enriched with information on the context and consequences to represent
a reusable solution. A possible alternative, as for example implemented in the ADEPT2
system [9,10], is to offer block-structured pattern compounds and change patterns that
allow users to model structured workflows by an editing process where processes are
sound by construction.

In this paper, we are especially interested in pattern-support for the editing of un-
structured process models where the soundness of these models is not guaranteed by
construction. We developed a pattern-based modeling prototype by extending the com-
mercial modeling tool IBM WebSphere Business Modeler with pattern compounds that
we built from the basic control-flow patterns. Our special emphasis is on pattern se-
quences, i.e., how a model unfolds pattern by pattern and how a user creates an unstruc-
tured model by applying patterns in an iterative and tool-supported modeling process.

The process models that we consider are generalizations of workflow graphs that
permit multiple start and end events. Following [11] we define them as follows:

A business process model is a directed graph G = (N, E) where each node n ∈ N
is either a start or end event, an activity, or a gateway with the gateways partitioned into
the types exclusive choice, parallel split, simple merge, and synchronization, satisfying
the following conditions

1. there is at least one start event and at least one end event; each start event has no
incoming edges and exactly one outgoing edge, whereas each end event has exactly
one incoming edge but no outgoing edges,

2. the exclusive choice and parallel split have exactly one incoming edge and two or
more outgoing edges, whereas the simple merge and synchronization have two or
more incoming edges and exactly one outgoing edge; each activity has exactly one
incoming and exactly one outgoing edge,

3. the graph is connected and each node n ∈ N is on a path from a start to an end
event.

Applying Patterns during Business Process Modeling 7

We are adopting BPMN notation to draw the process models and pattern structures.
This means that we use a diamond to depict a gateway and in the case of a parallel split
or synchronization, a plus sign is added to the diamond. Activities are depicted with
rounded corner rectangles, while a start event is depicted with an empty circle and an
end event is depicted with a thick circle.

Table 1 gives an overview of three pattern application scenarios that we discuss
in this paper. Each scenario is applicable to process models that are still unfinished,
i.e., they may not fully comply to the definition above.

Table 1. Overview of pattern application scenarios

Sc. selected process elements applied pattern compound source target

1 single edge well-formed sound block sound sound
2 pair of edges gateway-guarded control flow sound sound/unsound
3 set of edges gateway sound/unsound sound/unsound

In Scenario 1, a user selects a single edge in a model. This edge is replaced by a
pattern compound that represents a well-formed process fragment. The user has four
choices of pattern compounds that he can apply: sequence, parallel compound, alter-
native compound, and cyclic compound. This form of pattern application (sometimes
also denoted as transition refinement) is always possible in our tool. When applied to
a sound process model or fragment thereof, it preserves the soundness, i.e., it cannot
introduce any modeling errors. Section 3 discusses this scenario in more detail.

By soundness of a process model, we mean the absence of deadlocks and lack of
synchronization. In other words, no situation occurs where some part of the process is
waiting indefinitely for another part of the process and no part of the process executes
more often than intended because of two tokens that occur on the same edge. A for-
mal account of soundness would go beyond the scope of this paper, but can be found
in [12,7].

In Scenario 2, a user selects a pair of edges in the model to which he can add a new
gateway-guarded control flow. Two pattern compounds are available to the user which
we denote as alternative branch and parallel branch. This scenario allows the user to
also create arbitrary cycles. The pattern application is always possible, but an unshielded
application can introduce new modeling errors, i.e., a process or fragment with a sound
underlying workflow graph can become unsound. We describe this scenario in Section 4
and discuss how potential soundness problems can be discovered and prevented.

In Scenario 3, the user selects a set of edges to redirect existing control flow such that
it starts or ends in a newly introduced gateway. In this scenario, the basic control-flow
patterns are directly available to the user. They can be applied to any process model or
fragment thereof and either maintain soundness, yield an unsound model or correct an
unsound model into a sound one. In Section 5 we describe an infrastructure that alerts
the user of these situations and thereby extends the limited support for basic workflow
patterns that is available today.

Our scenarios differ by the user-triggered selection of modeling elements and by the
class of process models that the user can create with the patterns that are available for

8 T. Gschwind, J. Koehler, and J. Wong

each selection. The focus on the selection of modeling elements is important to help
business users understand how to apply a pattern. Furthermore, it provides them with
a simple and systematic description of the context of a selected pattern in the form of
the surrounding process fragment, and the consequences in terms of soundness of the
resulting model, while the modeling tool exploits this information to automate the pat-
tern application. We believe that a higher degree of automation is essential because we
are addressing non-technical users in contrast to software developers who traditionally
apply software patterns in a mostly manual process.

3 Scenario 1: Applying Patterns to a Single Edge

Our first scenario has been widely studied by the workflow community, e.g., as a form
of transition refinement [13]. We introduce it here in order to review some essential
prerequisites for structured workflow modeling that we then gradually relax in Scenar-
ios 2 and 3. Scenario 1 provides the user with the most simple form of application of
a pattern where he can select a single control-flow edge to further refine the business
process model. Instead of selecting a single edge, the user can also select a single ac-
tivity in the process model. In this case, our tool assumes that with this selection, the
single outgoing control-flow edge of this activity is selected, i.e., the pattern is applied
following the activity in the control flow.1

In this scenario, we provide users with pattern compounds that represent a well-
formed and sound block-structured fragment of a process. These pattern compounds
have been studied within the context of structured workflows [14,15,16,17] and are
also available in ADEPT2 [9,10]. Four types of block-structured pattern compounds
are available to the user:

– sequence: a totally ordered set of connected activities,
– parallel compound: a parallel split followed by a synchronization that are connected

by two or more branches containing one or more activities2,
– alternative compound: an exclusive choice followed by a simple merge,
– cyclic compound: a simple merge followed by an exclusive choice.

Figure 2 illustrates this mode of pattern application, which restricts the user to model
structured workflows, but which are guaranteed to be sound by construction. The initial
sequence of activities in this example can be either created manually or by using the se-
quence pattern. Alternatively, we offer an auto-link transformation where the user only
places the activities that he wants to be part of the initial sequence in an approximate
horizontal arrangement. Then he invokes the auto-link transformation that takes a set
of horizontally arranged activities and produces a fully connected sequential process
model including a start and an end event.

Aalst [14] and Kiepuszewski et al. [15] showed that only a subset of all work-
flow graphs can be generated when using block-structured process fragments. However,

1 We do not consider here the refinement of a single activity into a subprocess, which is a com-
pletely different scenario.

2 The number of branches and the names of activities can be provided as parameters when
invoking the pattern.

Applying Patterns during Business Process Modeling 9

a1 a2

a5

c1

a3

a1 a2 a3

...

...a5

a1 a2 a4a3

...a5

a1 a2 a4a3

ck

A

D

C

B

bn

b1

C

bn

b1

a4

B

B

A

A

apply sequence pattern compound

apply cyclic pattern compound

apply parallel pattern compound

apply alternative pattern compound

Fig. 2. Sound refinement of a process model by applying block-structured pattern compounds to
a single edge

modeling block-structured processes is practically relevant for two reasons: First, these
models are more comprehensible to human users [18]. Secondly, they can be directly
mapped to structured process execution languages such as BPEL and thus make it much
easier to go from business to IT.

In order to trace the successive application of patterns, i.e., the pattern sequence,
and to determine the context under which a pattern can be correctly applied, we use
the process structure tree (PST) [7,8] and the notion of category of a fragment. In
Scenario 1, illustrated by Figure 2, the PST is used to trace the successive application
of patterns by the user. Scenarios 2 and 3 will illustrate how the PST together with
the category notion can be used to help a user correctly apply patterns to unstructured
process models.

The PST results from parsing the workflow graph of the process model. It repre-
sents a unique decomposition of a workflow graph into canonical SESE fragments,
which are either disjoint or fully nested in each other. A SESE fragment is a non-empty
subgraph of the workflow graph that is bordered by a single-entry and a single-exit
(SESE) edge [7] or node [8]. The dotted rounded-corner rectangles in Figure 2 show
the SESE edge fragments of the example. Note that only maximal sequences are canon-
ical fragments, e.g., the sequence containing activity a1 followed by fragment D is not a

10 T. Gschwind, J. Koehler, and J. Wong

canonical fragment, because fragments a2, a3, and B are part of the same sequence. The
PST can be computed in linear time. It is unique and modular, i.e., a local change of the
workflow graph only causes a local change of the decomposition. It is as fine-grained
as possible when using SESE node fragments [8].

To determine whether a pattern can be correctly applied, the category of a fragment is
important, which is defined by syntactic properties of the underlying workflow graph.
Well-structured, acyclic concurrent, unstructured alternative, and complex fragments
were proposed in [7]. Other categorizations can be defined instead, i.e., we define and
use our own categories sequence, alternative branching (an arbitrary number of XOR-
splits and XOR-joins that must be cycle-free), parallel branching (an arbitrary number
of AND-splits and AND-joins that must be cycle-free), and cyclic alternative branch-
ing, which is an alternative branching that is not cycle-free. Fragments in these cate-
gories are known to be sound. Figure 3 illustrates the categories parallel branching and
cyclic alternative branching with two unstructured example models.

a1

a2

a3

a4

a5
a1

a2

a3

a4 a5 a6

a7 a8

Fig. 3. Fragment categories parallel branching (left) and cyclic alternative branching (right)

Figure 4 shows the PST for the example of Figure 2 based on SESE edge fragments.

A

B

C

D

sequence

1. cyclic compound

2. parallel compound

3. alternative compound

alternative branching cyclic alternative branching

parallel branching

0. sequence

Fig. 4. The process structure tree

The nodes of the PST, which represent the fragments, are annotated with the category
of the fragment. The edges are annotated with a number and pattern name providing us
with the history of pattern application, i.e., the pattern sequence that the user applied
in this example: 0. sequence, 1. cyclic compound, 2. parallel compound, 3. alternative
compound. Applying patterns in Scenario 1 adds new fragments to the tree. When ap-
plying the patterns of Scenario 2 and 3, fragments and their category can change locally
in the PST, e.g., a fragment can also disappear.

Applying Patterns during Business Process Modeling 11

4 Scenario 2: Applying Patterns to a Pair of Edges

As refining process models with block-structured patterns is very limiting for many
business modeling scenarios, we now consider a first generalization where the user
selects an ordered pair of edges (s, t). The first selected edge s is considered the source
of the new flow and the second selected edge t is considered its target. The user can
select any two edges as source and target edges.3

In this scenario, we support two pattern compounds alternative branch and parallel
branch that the user can apply to establish a new control flow between the source and the
target. We provide the pattern compounds in the form of gateway-guarded control-flow
edges:

– alternative branch: an exclusive choice with a single outgoing edge leading to a
simple merge,

– parallel branch: a parallel split with a single outgoing edge leading to a synchro-
nization.

Figures 5 and 6 illustrate a typical example of this pattern application scenario. In
Figure 5 we see part of a mortgage approval process with two alternative branches. If
the customer is not creditworthy, a rejection is sent by the bank and the application by
the customer is closed. If the customer is creditworthy, a mortgage offer is sent, the
documents are completed, and an account is set up for paying out the mortgage and the
mortgage is registered.

Send
Rejection

…

Close
Application

Complete
Documents

Set up Account &
Register Mortgage

Customer
Creditworthy?

Send
Mortgage Offer

Yes

No

s

t

Fig. 5. Example of a simple mortgage approval process

When taking a closer look at this process model, we notice that it assumes that the
customer accepts the mortgage offered by the bank. However, this may not always be
the case. If the offer is rejected by the customer, the bank employee should contact the
customer to find out why and then also close the application. To achieve this change in
the process model, the user selects the edges s and t as the source and target and applies
the alternative branch pattern. The result can be seen in Figure 6. In a parameterized
version of this pattern, a list of activities can be provided that is placed on the newly
added branch.

In this example, the user transforms a structured model into an unstructured, but
sound model. If the user had applied the parallel branch pattern compound to Figure 5,
a deadlock error would have been introduced. In order to prevent such situations, knowl-
edge of the fragment categories maintained within the PST is essential when patterns

3 Alternatively, a user can select two activities where the tool takes the outgoing edge of the first
activity as the source and the incoming edge of the second activity as the target.

12 T. Gschwind, J. Koehler, and J. Wong

Contact Customer

Send
Rejection

…

Close
Application

Complete
Documents

Set up Account &
Register Mortgage

Customer
Creditworthy?

Send
Mortgage Offer

Yes

No

Customer
Accepts?

No

Yes

Fig. 6. Adding an alternative branch pattern to two selected edges

are applied to a pair of edges. In this example, the user selects two edges that belong
to two different fragments of type sequence that each comprise one of the decision
branches for the Customer Creditworthy? decision. The pattern application destroys
these fragments. They are replaced by four smaller fragments of type sequence—two
on each branch. Their parent fragment, which spawns the process fragment of Figure 5,
remains unchanged and also preserves its type acyclic sequential branching.

The tool guides the user in applying the pattern compounds by analyzing the SESE
fragments that contain the selected edges. If the selected pair of edges is a pair of en-
try/exit edges of a SESE fragment, all pattern compounds that we discussed for Sce-
narios 1 and 2 are applicable independently of the category of the fragment. If the user
selects a pair of edges where at least one of the edges is not an entry or exit edge of
a fragment, an analysis of the SESE fragments surrounding the selected edges needs
to be performed. The tool analyzes the SESE fragments containing the source and tar-
get edge and all those SESE fragments that enclose these fragments up to the smallest
SESE fragment that contains both edges. All fragments have to be of the same category,
which decides if a parallel or alternative branch can be applied to the edges, see Table 2.

Table 2. Soundness of pattern application based on fragment category

Fragment category adding cycle allowed? parallel branch alternative branch

sequence yes × √

sequence no
√ ×

cyclic alternative branching yes × √

parallel branching no
√ ×

Rows 1 and 2 show that if the fragment categories are a simple sequence of activities,
both branch patterns are applicable to a selected pair of edges. However, only the alter-
native branch pattern is permitted to add a cycle to the process model (row 1). Adding
a parallel branch such that a cycle is introduced would lead to a deadlock and is thus
not permitted (row 2). The (acyclic) alternative branching is a special case of the cyclic
alternative branching and is thus subsumed by row 3. Adding an alternative branch to
a parallel branching fragment is not permitted, because it would introduce a lack of
synchronization error (row 4).

If the selected edges do not satisfy the conditions with respect to the fragment cat-
egories or if the process model is known to be unsound, patterns can still be applied
in our current prototype, because we do not want to constrain the user too much in

Applying Patterns during Business Process Modeling 13

using the pattern-based editing capability. However, a warning, but no further guidance
is given to the user. Note that it is not possible to eliminate a deadlock or lack of syn-
chronization error by only applying one of the six pattern compounds that we discussed
so far.

5 Scenario 3: Applying Patterns to a Set of Edges

In our last scenario, we consider the most general situation where the user has selected a
set of two or more edges or nodes. This means, the selections possible in Scenario 2 can
occur here as well, but we consider application scenarios for the basic patterns parallel
split, synchronization, exclusive choice, and simple merge. When applying the basic
patterns to unsound fragments, it is possible for the user to correct modeling errors.

We want to support users selecting nodes in addition to selecting edges because in the
midst of editing a process model, it is common to encounter nodes without connecting
edges yet and applying patterns to nodes can be very useful to complete the editing. On
the other hand, it is not usual to have dangling edges without nodes, because business
process modeling tools make users add nodes first and then allow them to connect the
nodes with edges. We support three situations if nodes are selected:

1. all selected nodes have incoming edges, but no outgoing edges,
2. all selected nodes have outgoing edges, but no incoming edges,
3. all nodes are fully disconnected, i.e., have neither incoming nor outgoing edges.

In situation (1), a new outgoing edge is added to each node and the synchronization
or simple merge pattern is enabled depending on the fragment type returned for the
selection. In situation (2), a new incoming edge is added to each node and the parallel
split or exclusive choice pattern is enabled. In situation (3), all four basic patterns are
enabled and depending on the selection of a pattern by the user, either a new outgoing
or incoming edge is added to each node.

Currently, we impose very restrictive constraints when applying the basic patterns
to a selection of nodes or edges. For example, a synchronization pattern can be added
if a parallel split is found in the process model from which all selected nodes or edges
can be reached without encountering other non-AND gateways along the path. Similar
conditions can be formulated for the other three basic patterns.

Figure 7 illustrates an example situation. In case that the user only selects activities
a3, a4, and a5 in the process model shown in the left, the exclusive choice is found
that can only be correctly matched with a simple merge. If in addition, a1 is selected
as well, the parallel split is found, but on three of the four paths, the exclusive choice
is encountered. In such a situation, more than one pattern must be applied as is shown
in the right of the figure, which requires refactoring techniques that are subject of our
ongoing work [19]. The same challenges occur when the user selects a set of edges.
Again, we constrain the pattern application as described above. In addition, we have to
consider the nodes that are connected by the selected edges.

Figure 8 illustrates an example process where the user wants to introduce two join
points in the process flow. With his first selection e1, e2, e3, the user wants to join the
three parallel flows to allow the doctor to talk to the patient after having worked out the

14 T. Gschwind, J. Koehler, and J. Wong

a1

a2

a3

a4

a5

?

a1

a2

a3

a4

a5

Fig. 7. Applying a single basic pattern to merge or synchronize all selected nodes/edges is not
possible without introducing an error into the process model. Instead, two basic patterns must be
applied.

Write
Prescription

…

Take
Medication

View
Specialist

Appoint second
Specialist

Set up
Physiotherapy

Do
Exercises

e1

e2

e3

e4

e5

e6

Fig. 8. A medical example process with two edge selections e1, e2, e3 and e4, e5, e6

patient’s prescriptions. With his second selection e4, e5, e6, the user wants to join the
individual process ends and allow the doctor to review the treatment results with the
patient.

Figure 9 shows the result of applying two synchronization patterns to the example,
each parameterized with an activity that follows the added AND-Join.

Write
Prescription

…

Take
Medication

View
Specialist

Appoint second
Specialist

Set up
Physiotherapy

Do
Exercises

Coordinate
With Patient

Review Results
With Patient

Fig. 9. Selecting a set of edges for joining leads to a fusion of nodes into a single node when
they are identical. In the case of different nodes, applying a pattern to join branches also requires
applying another pattern to split the branches again, because the nodes cannot be merged.

Applying the synchronization pattern to the first selection e1, e2, e3 requires the in-
troduction of an additional AND-Split following the AND-Join resulting from the pat-
tern, because the subsequent activities cannot be merged. In the case of gateways, a
merging is sometimes possible, but it may not always be desired by the user. We take a
conservative approach so far and do not merge gateways. When applying the synchro-
nization pattern to the second selection e4, e5, e6, the end events can be merged into
a single node and no additional gateway is needed. After having applied the two pat-
terns, the process can be further improved by for example applying the cyclic pattern
compound to iterate the prescription and treatment for the patient if necessary.

Applying Patterns during Business Process Modeling 15

6 Implementation and Validation of Pattern-Based Editing

Figure 10 shows a screen capture of our prototype implementation where we added
pattern support in the form of additional plug-ins to IBM WebSphere Business Mod-
eler, which is an Eclipse-based commercial business process modeling tool. As not
all process models can be generated with the patterns and pattern compounds that we
described in this paper, we also provide the user with refactoring and transformation
operations in addition to the normal editing capabilities.

Fig. 10. Context-sensitive pattern availability when selecting a pair of edges within a parallel
branching fragment

Our set of currently implemented transformations has been described in [20] and in-
cludes a first prototype of a transformation that introduces data flow. We plan to extend
this set of transformations by adopting and extending transformations that have been
described in [14,16,17,21]. Several of these transformations require a tool to verify the
soundness of the process model to which they are applied or that they create. With the
linkage of our transformations and patterns to the PST and its fragments, we have laid
the foundation to perform these checks much faster. In many practical cases a process
model only contains simply structured fragments where soundness can be decided in
linear time. For the general case, we currently develop a complete soundness checker
that we can can invoke on complex fragments. The feedback to the user about potential
modeling errors that can be introduced into a model when applying a pattern is clearly
valuable to increase the quality of the process models.

One can easily demonstrate that by applying patterns, transformations, and refactor-
ing operations on a business process model, many time-consuming editing operations
can be replaced by a single click [20]. A first adoption of the plug-ins by IBM con-
sultants showed that on average about 10% of the modeling time can be saved with

16 T. Gschwind, J. Koehler, and J. Wong

up to 70% of the pure editing time. About 50% of all users who installed the plug-ins
use them frequently in their daily work. Approx. 10% find them very easy to use, while
two-thirds said that they need practice. 90% of all users confirmed that the plug-ins help
them in improving the quality of their models.

Adding pattern-based support for data flow was the most frequently requested exten-
sion of the plug-ins. When applied to a single edge, patterns can inherit the data flow
from the single edge. If several edges are selected that carry different data items, many
possible ways to resolve such a situation exist that we currently explore. Our approach
can also be extended to activities that have multiple incoming and outgoing edges, but
then requires different disambiguation techniques to determine the edges to which a
pattern must be applied in case the user selects one or more activities. As such a dis-
ambiguation is not always possible, slightly modified patterns with more constrained
application conditions must be developed.

7 Related Work

A growing divide in the patterns world is discussed that opens between the pattern ex-
perts who continue to document patterns and the pattern users who are rarely aware
of relevant patterns and understand how to leverage and apply them [22]. Only little
adoption of patterns by practitioners is observed leading to a rather low impact of the
pattern experts on the expected pattern users. The reason for the low adoption of pat-
terns is located in the difficulty to find, contextualize, and compose patterns. “To use a
cooking analogy, what they find is a list of ingredients when what they really want is
a recipe” [22]. This observation is more than true for the business user working with a
business process modeling tool today.

In order to enable users to adopt and actively use patterns, tools must allow users
to build applications by progressively applying patterns. However, how and if patterns
can be built into tools is a hot debate [23]. Following the pioneering work by Gamma
et al. [24], patterns must be thoroughly described by the commonly recurring problem,
the context and consequences of applying the pattern, and the solution provided by the
pattern itself. Understanding the context and consequences related to a specific pattern
is a very important human-centered task. Tools that help users in achieving this task
must provide active support to select patterns and apply them in composition steps
towards creating a complete solution for a particular scenario. The challenge is that
“tools that work with patterns would have to be able to semantically understand your
design as well as the pattern’s trade-offs” [23]. By linking pattern application to the
process structure tree, its fragment categories and their soundness, we have built an
initial semantic understanding into our business process modeling tool.

Process patterns are found at three levels of abstraction [3]: (1) abstract process
patterns that capture generic process structures applicable to any process, (2) gen-
eral process patterns that capture proven process elements applicable across different
domains, (3) concrete process patterns that capture hands-on experience and best prac-
tices for recurring business functions in a specific domain. The most prominent exam-
ple of abstract patterns are probably the famous workflow patterns for control flow [4],
which have also been complemented by patterns for data flow and resources. Examples

Applying Patterns during Business Process Modeling 17

of general process patterns are discussed in [25,26]. A famous collection of concrete
process patterns is [27]. Further examples of concrete process patterns are discussed
in [28,29,30]. All three levels of process patterns can be built into a business pro-
cess modeling tool. While it is argued that many abstract patterns can provide sig-
nificant opportunities for reuse [3]—hence our initial focus on the basic control-flow
patterns—it is also emphasized that patterns should be presented in the domain vocabu-
lary of the business user [31] for easier recognition and application, which we have not
addressed yet.

Three building blocks of a process pattern-based approach are proposed that must
be built into a tool [3]: (1) a pattern inventory, (2) support for pattern selection and
(3) pattern realization. Only the ADEPT2 system [9,10], with which we coincide on
Scenario 1, seems to implement solutions for the pattern inventory and the selection and
realization phases. Some abstract use cases have also been formulated: they comprise
the listing, insertion, connection, visualization, and removal of patterns [30] of which
we address the context-sensitive listing and the correct insertion of a pattern in a process
model in this paper. Palettes that group patterns for specific purposes are discussed
in [29,30] and a concrete design of such a palette is shown in [20].

A significant part of research is devoted to pattern languages. An example of such
a pattern language for processes implemented in a service-oriented architecture is dis-
cussed in [25], while [32,33] describe a visual pattern language for the representation
and enforcement of quality constraints in process models. UML-based metamodels and
pattern languages are proposed in [34,35,28]. An application of domain-specific model-
ing languages for the IT-oriented refinement of business processes is discussed in [36].
In this paper, we do not focus on a specific representation of patterns in some language
or metamodel, but present an initial collection of patterns for specific scenarios that we
found useful for business users.

Unfortunately, very few practical recommendations for the reuse of process patterns
are given to business users. Havey [37] emphasizes the need for high quality, but gives
only two very simplistic and not so easy to follow recommendations: keep a process
model to a size that it fits on a single page (if necessary by using subprocesses) and
model in a coarse-grained way, i.e., focus on the main process activities. Our active
guidance of the user in applying a pattern helps us to go beyond approaches of syntax-
based editing [38] that constrain editing operations by syntactic properties of a model,
because we focus on a linkage to a semantic analysis addressing soundness.

8 Conclusion

In this paper, we present three different scenarios of pattern application in a business
process modeling tool. For each scenario, we discuss a set of patterns and pattern com-
pounds that are linked to an effective structural and semantic analysis of the business
process model based on its process structure tree in order to guide the user in applying
a pattern. This analysis helps business users in understanding the context and conse-
quences of applying a pattern and enables the tool to actively support a user during pat-
tern selection and application. Future work will focus on developing a comprehensive

18 T. Gschwind, J. Koehler, and J. Wong

set of patterns, refactoring operations and model transformations for the most frequent
use cases in business process modeling including a refinement of process models with
data flow.

References

1. Buschmann, F., Henney, K., Schmidt, D.: Past, present and future trends in software patterns.
IEEE Software 24(7/8), 31–37 (2007)

2. Medicke, J., McDavid, D.: Patterns for business process modeling. Business Integration Jour-
nal 1, 32–35 (2004)

3. Tran, H., Coulette, B., Thuy, D.: Broadening the use of process patterns for modeling pro-
cesses. In: Proc. SEKE, Knowledge Systems Institute Graduate School, pp. 57–62 (2007)

4. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Dis-
tributed and Parallel Databases 14(1), 5–51 (2003)

5. van der Aalst, W., ter Hofstede, A.: Yawl: Yet another workflow language. Information Sys-
tems 30(4), 245–275 (2005)

6. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to avoid the common traps of business
process modeling. IBM WebSphere Developer Technical Journal 10(2+4) (2007)

7. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models though SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

8. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) Proc. BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer,
Heidelberg (2008)

9. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with
ADEPT2. In: 21st Int. Conference on Data Engineering, pp. 1113–1114. IEEE, Los Alamitos
(2005)

10. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

11. Sadiq, W., Orlowska, M.: Analyzing process models using graph reduction techniques. In-
formation Systems 25(2), 117–134 (2000)

12. van der Aalst, W., Hirnschall, A., Verbeek, H.: An alternative way to analyze workflow
graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS,
vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

13. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge (2002)

14. van der Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

15. Kiepuszewski, B., ter Hofstede, A., Bussler, C.: On structured workflow modeling. In: Wan-
gler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Hei-
delberg (2000)

16. Sadiq, W.: On business process model transformations. In: Laender, A.H.F., Liddle, S.W.,
Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 267–280. Springer, Heidelberg (2000)

17. Eder, J., Gruber, W., Pichler, H.: Transforming workflow graphs. In: Proc. INTEROP-ESA,
pp. 203–216. Springer, Heidelberg (2006)

18. Mendling, J., Reijers, H., Cardoso, J.: What makes process models understandable? In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63.
Springer, Heidelberg (2007)

Applying Patterns during Business Process Modeling 19

19. Vanhatalo, J., Völzer, J., Moser, S., Leymann, F.: Automatic workflow graph refactoring and
completion (submitted for publication)

20. Koehler, J., Gschwind, T., Küster, J., Pautasso, C., Ryndina, K., Vanhatalo, J., Völzer, H.:
Combining quality assurance and model transformations in business-driven development.
In: Proc. AGTIVE. LNCS, vol. 5088. Springer, Heidelberg (2008)

21. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling problems
related to change. Theoretical Computer Science 270(1-2), 125–203 (2002)

22. Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J.: The growing divide in the patterns
world. IEEE Software 24(4), 61–67 (2007)

23. Kircher, M., Völter, M.: Software patterns. IEEE Software 24(7/8), 28–30 (2007)
24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1994)
25. Zdun, U., Dustdar, S.: Model-driven and pattern-based integration of process-driven SOA

models. Int. Journal of Business Process Integration and Management 2(2), 109–119 (2007)
26. Barros, O.: Business information system design based on process patterns and frameworks.

BPTrends 9, 1–5 (2004)
27. Malone, T., Crowston, K., Herman, G.: Organizing Business Knowledge: The MIT Process

Handbook. MIT Press, Cambridge (2003)
28. Tran, H., Coulette, B., Thuy, D.: A UML-based process meta-model integrating a rigor-

ous process patterns definition. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS,
vol. 4034, pp. 429–434. Springer, Heidelberg (2006)

29. Thom, L., Iochpe, C., Reichert, M.: Workflow patterns for business process modeling. In: 8th
Workshop on Business Process Modeling, Development, and Support in conjunction with
CAISE 2007 (2007)

30. Thom, L., Lau, J., Iochpe, C., Mendling, J.: Extending business process modeling tools with
workflow pattern reuse. In: Proc. ICEIS 2006. LNBIP, vol. 3, pp. 447–452. Springer, Heidel-
berg (2007)

31. Rising, L.: Understanding the power of abstraction in patterns. IEEE Software 24(7/8), 46–51
(2007)

32. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.: A pattern-driven development pro-
cess for quality standard-conforming business process models. In: IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC 2006), pp. 135–142. IEEE, Los
Alamitos (2006)

33. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.: Verification of business process qual-
ity constraints based on visual process patterns. In: Proc. TASE, pp. 197–208. IEEE, Los
Alamitos (2007)

34. Störrle, H.: Describing process patterns with UML. In: Ambriola, V. (ed.) EWSPT 2001.
LNCS, vol. 2077, pp. 173–181. Springer, Heidelberg (2001)

35. Hagen, M., Gruhn, V.: Process patterns - a means to describe processes in a flexible way. In:
Proc. ProSim (2004), http://prosim.pdx.edu/prosim2004

36. Brahe, S., Bordbar, B.: A pattern-based approach to business process modeling and im-
plementation in web services. In: Georgakopoulos, D., Ritter, N., Benatallah, B., Zirpins,
C., Feuerlicht, G., Schoenherr, M., Motahari-Nezhad, H.R. (eds.) ICSOC 2006. LNCS,
vol. 4652, pp. 166–177. Springer, Heidelberg (2007)

37. Havey, M.: Essential Business Process Modeling. O’Reilly, Sebastopol (2005)
38. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.: Handbook of Graph Grammars and

Computing by Graph Transformation, vol. 2. World Scientific, Singapore (1999)

http://prosim.pdx.edu/prosim2004

	Applying Patterns during Business Process Modeling
	Introduction
	The Workflow Patterns Revisited
	Scenario 1: Applying Patterns to a Single Edge
	Scenario 2: Applying Patterns to a Pair of Edges
	Scenario 3: Applying Patterns to a Set of Edges
	Implementation and Validation of Pattern-Based Editing
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

