
Transforming BPMN Diagrams into YAWL Nets

Gero Decker1, Remco Dijkman2, Marlon Dumas3,
and Luciano Garćıa-Bañuelos4,�

1 Hasso Plattner Institute, Germany
gero.decker@hpi.uni-potsdam.de

2 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

3 University of Tartu, Estonia
marlon.dumas@ut.ee

4 Universidad Autónoma de Tlaxcala, Mexico
lgbanuelos@gmail.com

Abstract. While the Business Process Modeling Notation (BPMN) is
the de facto standard for modeling business processes on a conceptual
level, YAWL allows the specification of executable workflow models. A
transformation between these two languages enables the integration of
different levels of abstraction in process modeling. This paper discusses
the transformation of BPMN diagrams to YAWL nets and presents a
tool that carries out this transformation.

1 Introduction

Process modeling occurs at different levels of abstraction. First, models serve to
communicate as-is business processes, pinpoint improvement options, conduct
resource and cost analysis and to capture to-be processes. The Business Process
Modeling Notation (BPMN [1]) is the de facto standard for process modeling at
this level. On the other hand we find languages that are targeted at technically
realizing business processes, used as input for process execution engines. The
Business Process Execution Language (BPEL) is a standard for implementing
process-oriented compositions of web services. YAWL [2] is an alternative to
BPEL, with a strictly defined execution semantics, a first-class concept of “task”,
and sophisticated support for data mappings and task-to-resource allocation.

While the mapping from BPMN to BPEL has been studied in detail and
is implemented by several tools, the mapping from BPMN to YAWL has not
yet received attention. At first glance, this mapping may seem straightforward.
Indeed, the conceptual mismatch between BPMN and YAWL is not as significant
as the one between BPMN and BPEL, especially with regards to control-flow
structures. However, mapping BPMN to YAWL turns out to be tricky in the
details, revealing subtle differences between the two languages.

The transformation from BPMN to YAWL can be used as an instrument to
implement process-oriented applications. It also opens the possibility of reusing
� Funded by CUDI (e-Grov Project) and by ANUIES (ORCHESTRA Project).

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 386–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Transforming BPMN Diagrams into YAWL Nets 387

existing static analysis techniques available for YAWL. Like Petri nets, YAWL
has a formally defined semantics which enables the analysis of YAWL nets to
detect semantic errors such as deadlocks. At the same time, YAWL allows one to
capture advanced process modeling constructs that can not always be captured
in plain Petri nets, e.g. the OR-join or multi-instance activities.

The next section outlines the mapping from BPMN to YAWL. Section 3 then
discusses the tool implementation and Section 4 concludes. The tool is available
at: http://is.tm.tue.nl/staff/rdijkman/bpmn.html

2 Overview of BPMN to YAWL Transformation

At their core, BPMN and YAWL share several common concepts. In particular,
the concept of task in BPMN matches the concept of task in YAWL. Also, the
concept of gateway in BPMN matches the concept of decorator in YAWL, and the
concept of flow in BPMN matches the same concept in YAWL. As an illustration,
Figure 1 shows a simple business process model in BPMN, and the corresponding
YAWL net produced by the BPMN2YAWL tool. It can be seen from this simple
example that the the join decorator of task “Check Completeness” matches the
XOR-merge gateway in BPMN, meaning that the task can be reached from either
of its incoming flows. Similarly, the split decorator of this same task matches the
XOR-split gateway in the BPMN diagram.

At this level, one key difference between BPMN and YAWL is that YAWL
does not provide the ability to directly chain several connectors together, such
as an AND-split connector with a branch that leads directly to an XOR-split
connector. The BPMN2YAWL tool deals with this mismatch by introducing
empty YAWL tasks (i.e. YAWL tasks without decomposition) which serve purely
for control routing. In the working example (Figure 1), the AND-split in the

Check

Completeness

Obtain

Additional

Information

Check Credit 

History

Check Income 

Source(s)

Credit Card

Application

Assess

Application

Make Credit 

Offer

Notify

Rejection

Start

message 

event

XOR

gateway

AND

gateway

Task

End 

event

(a) In BPMN

Check 

Completeness

Obtain

Additional 

Information Check 

Credit 

History

Check

Income

Source(s)

Assess 

Application

Make

Credit

Offer

Reject

Application

Start 

condition

Final 

condition

XOR

decorator

AND

decorator

Task

(b) In YAWL

Fig. 1. Simple process model in BPMN and in YAWL

http://is.tm.tue.nl/staff/rdijkman/bpmn.html


388 G. Decker et al.

BPMN diagram is mapped to an empty task with an AND decorator. The
BPMN2YAWL tool ensures that such empty tasks are only created when it
is necessary, so as to minimise the number of empty tasks.

Subprocess tasks in BPMN are mapped to composite tasks in YAWL. In the
case where the subprocess in BPMN has an attached event (e.g. an error event),
the mapping is more complicated. Figure 2 shows an exception in BPMN and
the mapping onto YAWL. In the BPMN diagram, an error ‘invalid policy’ can
occur within the ‘insurance check’ subprocess. This error is passed to the parent
process, which then continues to ‘notify customer’. In YAWL a BPMN error
is mapped onto a task that sets a subprocess variable (capturing whether or
not the error has occurred) to ‘true’. The parent process reads this variable
upon completion of the subprocess and proceeds according to the value of the
variable.

The transformation covers data and resource aspects in addition to control-
flow. Properties and assignments in BPMN are mapped to variables, input/
output parameters and input/output transformations in YAWL. Lanes in BPMN
are mapped to roles in YAWL. Pools are treated as separate business pro-
cesses (and each one is mapped separately), while message flows are not cov-
ered by the mapping since their implementation depends on the communication
infrastructure.

The transformation does not cover transactions and compensation handlers
because these constructs do not have a direct correspondence in YAWL. Also,
these constructs are underspecified in the current BPMN specification. Finally,
the transformation does not cover complex gateways.

Check

Policy

Check 

Damage

[complex or 

simple claim]

[simple claim]

Invalid 

Policy

Process

Insurance 

Claim

Notify

Customer

[¬exception]

[exception]

Insurance Check

Check 

Policy
simple or 

complex claim

Check 

Damage
complex

claim

invalid

policy

invalid policy Notify

Customer

Process

Insurance 

Claim

(a) in BPMN

(b) in YAWL

OR

gateway

Intermediate 

error event

End error 

event

OR

decorator

Composite 

task

Fig. 2. Mapping attached error events from BPMN to YAWL



Transforming BPMN Diagrams into YAWL Nets 389

3 Tool Implementation

The BPMN2YAWL tool is implemented as an Eclipse plugin. The tool takes as
input BPMN diagrams produced by the STP BPMN editor. The models pro-
duced by the STP BPMN editor are split in two files: one contains the XMI
representation of the model, while the other contains layout information. Once
installed, the BPMN2YAWL plugin provides a menu item that allows to trans-
form the XMI file (.bpmn file). It then produces a YAWL engine file that does
not contain layout information. This file can be imported into the YAWL editor
which applies an automated layout algorithm.

The STP BPMN editor does not support certain features of BPMN. Specifi-
cally, it does not support the markers and properties for multi-instance activities
and ad hoc activities. To overcome this limitation, the BPMN2YAWL tool is able
to detect special types of text annotations: one for multi-instance activities and
one for ad hoc activities. The text annotations for multi-instance activities in-
clude parameters for specifying minimum and maximum amount of instances to
be started, and number of instances that need to complete before proceeding.

4 Outlook

Ongoing work aims at extending the BPMN2YAWL plugin in order to make the
transformation reversible. After generating a model, the plugin will be able to
propagate changes in the YAWL net into the BPMN diagram (and vice-versa) in
order to maintain the models synchronized. For most constructs (e.g. tasks and
gateways) the definition of this reversible transformation is straightforward. But
when explicit conditions are introduced in the YAWL net, mapping these back to
BPMN may prove challenging, or in some cases, impossible. We are investigating
under which syntactic restrictions is it possible to preserve the reversibility of the
transformation. The aim is that designers are only allowed to alter the YAWL
net produced by BPMN2YAWL if the changes can be propagated back to the
BPMN diagram. In tandem with this, we plan to incorporate features to visually
report differences between process models in BPMN and in YAWL, so that when
changes are made to either the source or the target model, the corresponding
changes in the other model can be presented to the designer.

References

1. Business Process Modeling Notation, V1.1. Technical report, Object Management
Group (OMG) (January 2008), http://www.omg.org/spec/BPMN/1.1/PDF/

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Inf. Syst. 30(4), 245–275 (2005)

http://www.omg.org/spec/BPMN/1.1/PDF/

	Transforming BPMN Diagrams into YAWL Nets
	Introduction
	Overview of BPMN to YAWL Transformation
	Tool Implementation
	Outlook



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




