
Detecting and Resolving Process Model Differences in
the Absence of a Change Log

Jochen M. Küster1, Christian Gerth1,2, Alexander Förster2, and Gregor Engels2

1 IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland

{jku,cge}@zurich.ibm.com
2 Department of Computer Science, University of Paderborn, Germany

{gerth,alfo,engels}@upb.de

Abstract. Business-driven development favors the construction of process mod-
els at different abstraction levels and by different people. As a consequence, there
is a demand for consolidating different versions of process models by detecting
and resolving differences. Existing approaches rely on the existence of a change
log which logs the changes when changing a process model. However, in several
scenarios such a change log does not exist and differences must be identified by
comparing process models before and after changes have been made. In this paper,
we present our approach to detecting and resolving differences between process
models, in the absence of a change log. It is based on computing differences and
deriving change operations for resolving differences, thereby providing a founda-
tion for variant and version management in these cases.

Keywords: process change management, process model differences.

1 Introduction

The field of business process modeling has a long standing tradition. Recently, new re-
quirements and opportunities have been identified which allow the tighter coupling of
business process models to its underlying IT implementation: In Business-Driven De-
velopment (BDD) [11], business process models are iteratively refined, from high-level
business process models into models that can be directly executed. In such scenarios,
a given business process model can be manipulated by several people and different
versions of the original model can be created. At some point in time, these different
versions need to be consolidated in order to integrate selected information found in dif-
ferent versions into a common process model. Technically, this consolidation involves
inspecting differences and resolving differences by performing change operations on
the original model in order to integrate information found in one of the versions.

Detection of differences introduced into a process model is straightforward in a
process-aware information system [5,15] that provides change logs (see e.g. [21]). How-
ever, there exist scenarios where such a change log is not available: Either the tool does
not provide one or process models are exchanged across tool boundaries. In such situa-
tions, detection of differences has to be performed by comparing process models before
and after changes have been made. For each difference detected, appropriate change
operations have to be derived which together can be considered as a reconstructed
change log.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 244–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Detecting and Resolving Process Model Differences in the Absence of a Change Log 245

In addition, process modeling tools have to fulfill specific requirements concerning
user-friendliness: The business user (usually not a computer scientist) should be able
to inspect and resolve differences. As a consequence, differences must be displayed
in a form that is understandable by the business user, by grouping related differences
or those differences that can be resolved together. Similarly, resolution of differences
should involve compound change operations (rather than primitive change operations)
which enable the business user to deal with differences such as insertion or deletion of
a task and automate the reconnection of control flow in the process model.

In this paper, we present our solution to the problem of computing differences,
displaying differences and resolving differences between two process models in the
situation that no change log is available. Detection of differences makes use of the
concept of correspondences [13], well-known from model merging and model compo-
sition, but enriched with the technique of Single-Entry-Single Exit fragments (SESE
fragments) [20]. Using SESE fragments we are able to associate each difference with
a compound change operation that resolves the difference. Overall, our approach pro-
vides a foundation for variant and version management in cases where no change log is
available which is a common situation in process modeling tools and in scenarios where
process models are exchanged across tool boundaries.

The paper is structured as follows: Section 2 introduces our scenario for detection and
resolution of differences and describes key requirements. Then, in Section 3, we discuss
the foundations for our approach, correspondences and SESE fragments. In Section 4
and Section 5 we present our approach for difference detection and visualization. In
Section 6, our approach to difference resolution is described and a prototype for initial
validation is presented. We conclude with a discussion of related and future work.

2 A Scenario for the Detection and Resolution of Differences

In business-driven development, business process models are manipulated by several
persons and multiple versions of a shared process model need to be consolidated at some
point in time. A basic scenario is obtained when a process model V1 is copied and then
changed into a process model V2, possibly by another person. After completion, only
some of the changes shall be applied to the original model V1 to create a consolidated
process model. Figure 1 shows an example process model V1 that has been changed
into a process model V2. In the following, we use process models in a notation similar
to activity diagrams in UML [12].

Both models describe the handling of a claim request by an insurance company. V1
starts with an InitialNode followed by the actions ”Check Claim” and ”Record Claim”.
Then, in the Decision, it is checked whether the claim is covered by the insurance con-
tract or not. In the case of a positive result the claim is settled. In the other case the claim
is rejected and closed, represented by the actions ”Reject Claim” and ”Close Claim”.
We now assume that V2 is derived from V1 by another business user who introduces and
deletes elements, with the final result that is shown in Figure 1. A manual inspection of
the process models V1 and V2 leads to the identification of the following differences:

– The action ”Check Claim” is moved into a newly inserted cyclic structure. In ad-
dition a new action ”Retrieve additional Data” is inserted into the cyclic structure.

246 J.M. Küster et al.

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Pay
Out

V1

V2

Recalc. Cust.
Contribution

Send
Letter

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

?

Fig. 1. Versions V1 and V2 of a business process model

– A parallel structure (Fork and two Joins) is introduced in V2 containing four actions
”Calculate Loss Amount”, ”Recalculate Customer Contribution”, ”Pay Out”, and
”Send Letter”.

– Action ”Close Claim” has been deleted in V2.
– A new alternative structure (Decision and Merge) is inserted in V2 together with

two actions ”Call Customer” and ”Send Rejection Letter”.

- deleteEdge(InitialNode, ”Check Claim”)
- deleteEdge(”Check Claim”, ”Record Claim”)
- addEdge(InitialNode, ”Record Claim”)
- deleteEdge(”Record Claim”, Decision)
- addControlNode(Merge)
- addEdge(”Record Claim”, Merge)
- addEdge(Merge, ”Check Claim”)
- addControlNode(Decision)
- ...

Fig. 2. Primitive change operations ap-
plied to V1 in order to obtain V2

For larger process models, manual identifica-
tion of differences represents a large overhead.
As such, techniques for detecting and resolving
differences between process models are required
which typically depend on the modeling language
as well as on constraints of the modeling environ-
ment. In our scenario, we assume that no change
log is available. A simple approach would then
compute all changed elements and express them
using primitive change operations as displayed in Figure 2. For the business user, such
a change log is difficult to handle because the relationship between change operations
and the process model elements is difficult to determine. Furthermore, changes are not
grouped into compound change operations [21] which package several related primi-
tive change operations. For example, for inserting the new alternative structure with the
Decision and Merge, the business user has to insert these two nodes by appropriate ad-
dControlNode operations, delete edges by deleteEdge operations and insert new edges
by insertEdge operations. This is in contrast to a compound operation that comprises
all these change primitives, being close to the conceptual understanding of the change.
As a consequence, we define the following requirements a solution for detection and
resolution of differences should fulfill:

– (Detection) The solution must provide a technique to re-construct one possible
change log which represents the transformation steps for transforming one process
model into the other process model.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 247

– (Visualization) Differences should be grouped and associated to areas where they
occur in order to improve usability by the business user.

– (Resolution) The solution should enable the business user to resolve differences
using compound change operations rather than change primitives manipulating in-
dividual process model elements.

– (Resolution) The business user should have the opportunity to select only some of
the changes and apply them in any order when possible.

3. Resolution of Differences

Apply
Operation

Opi

Root Fragment
Insert B (A,D)

Concurrent Fragment
Delete C
Move E (F,J)

…

Update
Position

Parameters

1. Detection of Differences

and Construction of a Change Log

V1

E
di

tin
g

O
pe

ra
tio

ns

Insert B (A,D)

Delete C

Move E (F,J)

…

Change Log

Detection of Differences
between V1 and V2
based on:

Correspondences

SESE Fragments

Root Fragment
Insert B (A,D)

Concurrent Fragment
Delete C
Move E (F,J)

…

Calculate Hierarchical
Change Log

2. Ordering of Change
Operations

V2

V1

E
di

tin
g

O
pe

ra
tio

ns

V2

V’1

Fig. 3. Overview of our process merging approach

Figure 3 provides an overview of the approach that we have developed based on
these requirements: The first step is to detect differences between the two process mod-
els. This detection makes use of correspondences and SESE fragments. For each dif-
ference, a change operation is generated which resolves the difference between the two
models. In the second step, change operations are ordered according to the structure of
the process models. The third step is then to resolve differences between the process
models in an iterative way, based on the business user’s preferences.

3 Correspondences and SESE Fragments

In this section, we first define business process models and provide a summary of the
concepts of Single-Entry-Single-Exit fragments [20]. Then we introduce correspon-
dences. Fragments and correspondences will be later used for detecting differences and
also provide a basis for deriving change operations.

3.1 Process Models and SESE Fragments

For the following discussions, we assume a business process model V = (N, E) consist-
ing of a finite set N of nodes and a relation E representing control flow. N is partitioned
into sets of Actions and ControlNodes. ControlNodes contain Decision and Merge, Fork
and Join, InitialNodes and FinalNodes. In addition, we assume that the following con-
straints hold:

1. Actions have exactly one incoming and one outgoing edge.
2. Nodes are connected in such a way that each node is on a path from the InitialNode

to the FinalNode.

248 J.M. Küster et al.

3. Control flow splits and joins are modeled explicitly with the appropriate Control-
Node, e.g. Fork, Join, Decision, or Merge. ControlNodes have either exactly one
incoming and at least two outgoing edges (Fork, Decision) or at least two incoming
and exactly one outgoing edge (Join, Merge).

4. An InitialNode has no incoming edge and exactly one outgoing edge and a FinalN-
ode has exactly one incoming edge and no outgoing edge.

5. A process model contains exactly one InitialNode and exactly one FinalNode.

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action Decision Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Pay
Out

V1

V2

Recalc. Cust.
Contribution

Send
Letter

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

fZ

fZ

fY

fY

fX

fX

fW

fW

fA

fB

fC

fD

fE

fF

fG

fH

fK fL

fM

a)

b)

Fig. 4. Versions V1 and V2 decomposed into canonical SESE fragments

In general, process models can be decomposed into SESE fragments [20]. A SESE
fragment is a non-empty subgraph in the process model with a single entry and a single
exit edge. The fragment which surrounds the entire process model is also considered as
a SESE fragment which we refer to as root fragment. Among all possible SESE frag-
ments, we select so-called canonical fragments which are not overlapping on the same
hierarchical level and denote them with F(V) for a given process model V . Figure 4
shows an example of a SESE decomposition into canonical fragments, with fragments
visualized by a surrounding of dotted lines.

fZ

fY

fX fW

Settle
Claim

Reject
Claim

Close
Claim

Initial
Node

Final
Node

Record
Claim

Decision Merge

Check
Claim

Fig. 5. Process structure tree
of V1

The canonical fragments of a process model V can be
organized into a process structure tree (PST) [20], denoted
by PST(V), according to the composition hierarchy of the
fragments (see Figure 5 for the tree obtained for V1). If a
fragment f1 contains another fragment f2 (respectively node
n), then f1 will be the parent of fragment f2 (node n) in this
tree and fragment f2 (node n) will be one of its children.
Further, the root of the tree is the root fragment. We distin-
guish between different types of fragments as follows [20]:

Detecting and Resolving Process Model Differences in the Absence of a Change Log 249

– a well-structured fragment f is either a sequential, a sequential branching, a cyclic,
or a concurrent branching fragment. For example, in Figure 4, fY is a well-structured
sequential branching fragment and fW is a well-structured sequential fragment.

– an unstructured concurrent fragment f is not well-structured and contains no cycles
and has no decisions and no merges as children. In Figure 4, fD is an unstructured
concurrent fragment.

– an unstructured sequential fragment f is not well-structured and has no forks and
no joins as children.

– a complex fragment f is any other fragment that is none of the above.

Given a fragment f ∈ F(V), we denote by type(f) the type of the fragment and by
frag(f) the parent fragment. Similarly, given a node x ∈ N, we denote by type(x) the
type of the node and frag(x) the parent fragment of x. For example, type(x) = Action
means that x is an Action node.

SESE fragments have been used successfully for checking soundness [18,14] of pro-
cess models but they are also beneficial for detection of differences between process
models, discussed later in this paper.

3.2 Correspondences

Correspondences are useful for the detection of differences because they provide the
link between elements in different process models. We assume process models V1 =
(N1, E1) and V2 = (N2, E2) and x ∈ N1 and y ∈ N2 as given. A correspondence is used
to express that a model element x has a counterpart y with the same functionality in the
other version. In such a case, we introduce a 1-to-1 correspondence between them. In
the case that a model element x does not have a counterpart with the same functionality,
we speak of a 1-to-0 correspondence. In case that y does not have a counterpart, we
speak of a 0-to-1 correspondence. In addition, refinement of an element into a set of
elements would give rise to a 1-to-many correspondence and abstraction of a set of
elements into one element would give rise to a many-to-1 correspondence. These last
two types are not needed in our scenario.

We express a 1-to-1 correspondence by inserting the tuple (x, y) into the set of cor-
respondences C(V1, V2) ⊆ N1 × N2. We further introduce the set of elements in V1
which do not have a counterpart and denote this set by C1−0(V1, V2). Similarly, we
denote the set of elements in V2 without counterparts as C0−1(V1, V2). Similarly, we in-
troduce correspondences for SESE fragments, expressed in the sets CF(F(V1), F(V2)),
CF
1−0(F(V1), F(V2)), and CF

0−1(F(V1), F(V2)).
In our scenario, we assume that the functionality of a node remains the same if it

is copied. Correspondences can then be computed in a straightforward way by first
establishing 1-to-1 correspondences between all nodes 1 (respectively fragments) of a
process model when copying process model V1 to create an initial V2. After obtaining
the final V2 by editing operations, all 1-to-1 correspondences have to be inspected and
1-to-0 or 0-to-1 correspondences are created if nodes (respectively fragments) have

1 Correspondences are internally based on the unique identifiers of elements.

250 J.M. Küster et al.

been deleted or added. In addition, for new nodes (respectively fragments) in V2, addi-
tional 0-to-1 correspondences have to be created. In other scenarios across tool bound-
aries, other means of correspondence computation are required which might involve
semantic matching techniques.

Fig. 6 shows correspondences between versions V1 and V2 of the process model
introduced earlier in this paper. A dotted line represents 1-to-1 correspondences and
connects model elements with the same functionality between V1 and V2. 1-to-0 cor-
respondences are visualized by dotted elements in V1 and 0-to-1 correspondences are
visualized by dotted elements in V2.

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Pay
Out

V1

V2

Recalc. Cust.
Contribution

Send
Letter

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

Fig. 6. Correspondences between nodes of V1 and V2

We further assume a partial ordering relation on actions and fragments of a process
model, restricted to a partial ordering within each fragment. The partial orders will be
later used for detecting moved elements. Given an element x (fragment or action), we
denote by orderf the partial order of elements in fragment f derived by the control flow
order of elements within f and we write x <f y for x smaller than y according to this
order2. Let a tuple of actions or fragments (x, y) ∈ C(V1, V2) ∪ CF(F(V1), F(V2))
and frag(x) = f1 and frag(y) = f2 be given. Then we write orderf1(x) �= orderf2(y)
if and only if there exists an element (z1, z2) ∈ C(V1, V2) ∪ CF(F(V1), F(V2)) with
frag(z1) = f1 and frag(z2) = f2 such that z1 <f1 x and z2 >f2 y, or z1 >f1 x and
z2 <f2 y, or z1 and x are unordered and z2 and y are ordered, or z1 and x are ordered and
z2 and y are unordered.

4 Detection of Differences

In this section, we describe an approach to detect differences between process models,
based on the existence of correspondences and SESE fragments.

2 For cyclic fragments, we assume an order obtained by a depth-first search of the fragment
along the control flow edges.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 251

4.1 Action and Fragment Differences and Change Operations

The correspondences between two process models can be used to identify differences.
One form of differences that can occur are those that result from adding, deleting or
moving actions, as defined in the following:

Definition 1 (Action Differences). Given two business process models V1, V2 and sets
of correspondences C1−0(V1, V2), C0−1(V1, V2) and C(V1, V2), we define the following
action differences:

– an InsertAction difference is defined as an element y ∈ C0−1(V1, V2) and type(y) =
Action,

– a DeleteAction difference is defined as an element x ∈ C1−0(V1, V2) and type(x) =
Action,

– a MoveAction difference is defined as a tuple of actions (x, y) ∈ C(V1, V2)
and either (frag(x), frag(y)) �∈ CF(F(V1), F(V2)) or ((frag(x), frag(y)) ∈
CF(F(V1), F(V2)) and orderfrag(x)(x) �= orderfrag(y)(y)).

The identification of InsertAction and DeleteAction differences is straightforward. With
regards to MoveAction differences, we distinguish between intra-fragment differences
where the action has been moved within corresponding SESE fragments and inter-
fragment differences where actions have been moved between SESE fragments. The
detection of inter-fragment differences can be done by iterating over all 1-to-1 cor-
respondences and checking whether the surrounding SESE fragments are also in a
1-to-1 correspondence. If this is not the case, then the element has been moved and is
considered as an inter-fragment difference. The detection of intra-fragment differences
has to compare all elements within a fragment with the elements in the correspond-
ing fragment and identify changes in the order of elements. Each action difference can
be directly converted into a suitable InsertAction, DeleteAction or MoveAction opera-
tion which resolves the difference, shown in Figure 7. The position parameters a and b
specify the position where action x is inserted or moved to in process model V1.

Effects on Process Model VCompound Change Operation applied on V

Movement of action x between two succeeding elements a
and b in process model V and reconnection of control flow.

MoveAction(V,x,a,b)

Deletion of action x and reconnection of control flow.DeleteAction(V,x)

Insertion of a new action x (by copying action y) between
two succeeding elements a and b in process model V and
reconnection of control flow.

InsertAction(V,x,a,b)

Fig. 7. Overview of compound change operations for actions

In addition to action differences, different versions of process models can also be
constructed by introducing or removing control nodes, as well as deleting or changing
edge connections involving such control nodes. These changes give rise to differences
concerning the fragment structure of the process models and are defined as follows:

252 J.M. Küster et al.

Definition 2 (Fragment Differences). Given two business process models V1 and
V2 and sets of correspondences between SESE fragments CF(F(V1), F(V2)),
CF
1−0(F(V1), F(V2)), and CF

0−1(F(V1), F(V2)), we define the following fragment dif-
ferences:

– an InsertFragment difference is defined as a SESE fragment f2 ∈
CF
0−1(F(V1), F(V2)).

– a DeleteFragment difference is defined as a SESE fragment f1 ∈
CF
1−0(F(V1), F(V2)).

– a MoveFragment difference is defined as a tuple of fragments (f1, f2) ∈
CF(F(V1), F(V2)) and either (frag(f1), frag(f2)) �∈ CF(F(V1), F(V2)) or
((frag(f1), frag(f2)) ∈ CF(F(V1), F(V2)) and orderfrag(f1)(f1) �= orderfrag(f2)(f2)).

– a ConvertFragment difference occurs if the type of the fragment has changed or f1
has a control node as child that has no counterpart in f2 or f2 has a control node
as child that has no counterpart in f1.

The identification of InsertFragment, DeleteFragment and MoveFragment differences
is analogous to action differences. Identification of ConvertFragment differences in-
volves iteration over all tuples (f1, f2) ∈ CF(F(V1), F(V2)) and examining whether the
type of f1 or f2 has changed or whether one of the fragments has a control node as child
that has no counterpart in the other fragment.

Each fragment difference described can be resolved by an appropriate change op-
eration. An overview of the operations and their effect on a process model is given in
Figure 8. Note that here for the InsertFragment difference a number of different change
operations is given, inserting the fragment of suitable type into the process model. The
type can be determined by inspecting the fragment in V2.

Figure 9 shows one possible set of compound change operations obtained for the
example earlier in this paper. Here, InsertCyclicFragment(V1, , , fA) will insert a
new cycle into V1, MoveAction(V1, ”Check Claim”, ...) moves ”Check Claim” to its

Effects on Process Model VCompound Change Operation applied on V

Deletion of fragment f1 from process model V and
reconnection of control flow.

DeleteFragment(V,f1)

Move of fragment f1 between two succeeding elements a
and b in process model V and reconnection of control flow.

MoveFragment(V,f1,a,b)

Conversion of a fragment f1 into the fragment type of f2,
replacing the structure from f1 with the structure of f2, and
reconnection of control flow.

ConvertFragment(V,f1,f2)

Insertion of a new fragment f1 between two succeeding
elements a and b in process model V, copying the structure
of f2, and reconnection of control flow.

InsertFragment(V,a,b,f2)
The generic operation InsertFragment is realized by:
• InsertParallelFragment(V,a,b,f2)
• InsertAlternativeFragment(V,a,b,f2)
• InsertSequentialFragment(V,a,b,f2)
• InsertCyclicFragment(V,a,b,f2)
• InsertUnstructuredConcurrentFragment(V,a,b,f2)
• InsertUnstructuredSequentialFragment(V,a,b,f2)
• InsertComplexFragment(V,a,b,f2)

Fig. 8. Overview of compound change operations for fragments

Detecting and Resolving Process Model Differences in the Absence of a Change Log 253

- InsertCyclicFragment(V1 , , , fA)
- MoveAction(V1,”Check Claim”, ,)
- InsertAction(V1 ,”Retrieve add. Data”, ,)
- InsertUnstr.Conc.Fragment(V1, , , fD)
- InsertAction(V1 ,”Calc. Loss Amount”, ,)
- InsertAction(V1 ,”Recalc. Cust. Contr.”, ,)
- InsertAction(V1 ,”Pay Out”, ,)
- InsertAction(V1 ,”Send Letter”, ,)
- InsertAlternativeFragment(V1 , , , fK)
- InsertAction(V1 ,”Call Customer”, ,)
- InsertAction(V1 ,”Send Rej. Letter”, ,)
- DeleteAction(V1,”Close Claim”)

Fig. 9. Compound change operations
that transfer V1 into V2

- InsertCyclicFragment(V1,”Record Claim”, Decision, fA)
- MoveAction(V1 ,”Check Claim”, ,)
- InsertAction(V1 ,”Retrieve add. Data”, ,)
- InsertUnstr.Conc.Fragment(V1,”Settle Claim”, Merge, fD)
- InsertAction(V1 ,”Calc. Loss Amount”, ,)
- InsertAction(V1 ,”Recalc. Cust. Contr.”, ,)
- InsertAction(V1 ,”Pay Out”, ,)
- InsertAction(V1 ,”Send Letter”, ,)
- InsertAlternativeFragment(V1 ,”Reject Claim”, Merge, fK)
- InsertAction(V1 ,”Call Customer”, ,)
- InsertAction(V1 ,”Send Rej. Letter”, ,)
- DeleteAction(V1 ,”Close Claim”)

Fig. 10. Compound change operations with posi-
tion parameters

new position, and InsertAction(V1, ”Retrieve add. Data”, ...) will insert another action.
Note that Insert and Move operations are still incomplete because the position param-
eters have not been specified. In general, if the position parameters of an operation are
determined, we call this operation applicable. The computation of position parameters
will be discussed in the following subsection.

4.2 Computation of Position Parameters

According to our requirements, differences between two versions of a process model
should be resolvable in an arbitrary way which depends on the position parameters.

Initial
Node

A1 A2

Action

A1 A3

V1

V2 A4 A2

Fig. 11. Simple example

Figure 11 shows a simple example where
two actions ”A3” and ”A4” have been in-
serted, leading to InsertAction(V1,”A3”, ,)
and InsertAction(V1,”A4”, ,). In order to
ensure that the business user can choose both
operations, we compute position parameters to
be InsertAction(V1,”A3”,”A1”,”A2”) and InsertAction(V1,”A4”,”A1”,”A2”). If either
”A3” or ”A4” were position parameters, this would induce a dependency between
them, requiring that one of them is applied before the other one.

In order to avoid such situations, we express position parameters in terms of fixpoints
for given process models V1 and V2 and a set of correspondences C(V1, V2). A fixpoint
pair is a pair of nodes (n1, n2) ∈ C(V1, V2) such that n1 and n2 are not moved in the
process models by any change operation that has been derived from the differences
between V1 and V2. Given a fixpoint pair (n1, n2), both n1 and n2 are called fixpoints.
For example, in Figure 11, both (”A1”,”A1”) and (”A2”,”A2”) are fixpoint pairs. Using
fixpoints as position parameters also ensures that the insert and move operations can
always produce a model that is connected because the newly inserted or moved element
or fragment can be connected to the fixpoints automatically.

Figure 10 shows the operations with position parameters computed (bold printed
operations are applicable, others are not yet applicable and need position parameters).
After applying an operation, the set of fixpoints increases and the position parameters
are recomputed, making more operations applicable.

254 J.M. Küster et al.

In the following, we first reason about the completeness of change operations derived
using our approach.

4.3 Completeness of Change Operations

The set of change operations containing all compound change operations for two busi-
ness process models V1 and V2 derived according to our approach is denoted by
ChangesCompound(V1, V2). After defining action and fragment differences, one ques-
tion to ask is whether these are all differences that can occur when changing a
process model V1 into a process model V2. For this, we assume an ideal minimal
change log consisting of change primitives [17] inserting or deleting nodes (Ac-
tion or ControlNodes) and edges, namely addActionNode, addControlNode, addEdge,
deleteActionNode, deleteControlNode, deleteEdge.

Given process models V1 and V2, a minimal sequence of primitive change operations
opi converting V1 into V2, denoted as ChangeLogmin(V1, V2), is called a minimal change
log. Given such a minimal change log, we have to show that each entry in this change
log gives rise to a compound change operation involving actions or fragments, so no
entry will be ignored. The following theorem establishes a relationship between the
minimal change log and our compound change operations:

Theorem 1 (Completeness of Differences). Given two business process mod-
els V1, V2, ChangeLogmin(V1, V2) and ChangesCompound(V1, V2), for each op ∈
ChangeLogmin(V1, V2) there exists c ∈ ChangesCompound(V1, V2) such that c comprises
op.

Proof sketch: Given op ∈ ChangeLogmin(V1, V2):

– If op = addActionNode, then there exists y ∈ C0−1(V1, V2) which gives rise to
an InsertAction difference which means that we derive an InsertAction operation c
comprising op.

– If op = addControlNode, then the control node either creates a new fragment or is
inserted into an existing fragment. The first case induces an InsertFragment differ-
ence, the second case a ConvertFragment difference. In both cases, c (InsertFrag-
ment or ConvertFragment) comprises op.

– If op = addEdge, then this involves integrating new nodes (ControlNodes or
Actions) into the process model, reordering of existing fragments or nodes, or
reconnection of existing nodes in case of deletions. In the first case, there must
be a suitable addActionNode or addControlNode operation, leading to appropriate
Insert operations comprising op. In the second case, the addEdge operation (pos-
sibly together with other addEdge operations) gives rise to MoveAction or Move-
Fragment differences comprising op. In the third case, there must be a suitable
DeleteAction or DeleteFragment operation comprising op.

– The cases op = deleteActionNode, op = deleteControlNode and deleteEdge can be
treated analogously.

This result shows that it is possible to detect differences based on actions and frag-
ments. Note that each fragment difference usually involves more than one control node
or edge difference and gives rise to the possibility to abstract from several individual
differences relating to edge reconnection or control node changes.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 255

5 Computation of Hierarchical Change Log

In order to enable user-friendly resolution of changes, change operations can be visu-
alized according to the structure of the two process models which is obtained by their
SESE decomposition: Given such a fragment decomposition, each operation can be as-
sociated to the fragment in which it occurs. In the following, we first introduce a joint
process structure tree as a basis of such a hierarchical change log. Given two process
structure trees PST(V1), PST(V2) and correspondences between their nodes, then the
joint PST is denoted as PST(V1, V2). The joint PST can be constructed as follows:

– for a pair (v1, v2) ∈ CF(V1, V2), a new node v3 is inserted into PST(V1, V2) with
fragment(v3) = fragment(v1).

– for a node v1 ∈ CF
1−0(V1, V2), a new node v3 is inserted into PST(V1, V2) with

fragment(v3) = fragment(v1),
– for a node v2 ∈ CF

0−1(V1, V2), a new node v3 is inserted into PST(V1, V2) with
fragment(v3) = fragment(v2).

fZ

root
fragment

fY

alternative
fragment

fX fW

fD

unstructured
concurrent
fragment

fE fF

MoveAction
(V1, “Check Claim“,-,-)

InsertAction
(V1, “Calculate Loss Amount“, -,-)

InsertAction
(V1, “Recalc. Customer Contribution“,-,-)

DeleteAction
(V1, “Close Claim“)

InsertUnstructuredConcurrentFragment
(V1, “Settle Claim”, Merge, fD)

fA

cyclic
fragment

fB fC

InsertAction
(V1, “Retrieve add. Data“,-,-)

InsertCyclicFragment
(V1, ”Reject Claim”, Decision, fA)

fK
alternative
fragment

fL fM

InsertAction
(V1, “Call Customer“, -,-)

InsertAction
(V1, “Send Rej. Letter“,-,-)

InsertAlternativeFragment
(V1, “Reject Claim”,Merge,fK)

fG fH

InsertAction
(V1, “Pay Out“, -,-)

InsertAction
(V1, “Send Letter“,-,-)

MoveAction
(V1, “Check Claim“,-,-)

Fig. 12. Hierarchical change log of example

Based on the joint PST,
we can define a hierarchical
change log. The idea of the
hierarchical change log is to
arrange change operations ac-
cording to the structure of
the process model by associ-
ating to each SESE fragment
the change operations that af-
fect it (for a formal definition
see [10]).

Figure 12 shows a hierar-
chical change log for the two
versions V1 and V2 of a pro-
cess model introduced earlier
in this paper. For example, the
InsertCyclicFragment operation takes place within the root fragment fZ . The Insert-
UnstructuredConcurrentFragment occurs in the branch fX of the alternative fragment
fY . Within the newly inserted unstructured parallel fragment fD, there are several Insert-
Action operations. Further operations such as the InsertAlternativeFragment or Delete-
Action operations are also associated to their fragments.

Using the hierarchical change log, one can easily identify the areas of the process
model that have been manipulated. This enables the business user to concentrate on
those changes that are relevant to a certain area in the process model and increases
thereby usability. The hierarchical change log can also be beneficial for identifying de-
pendencies between change operations and for identifying groups of change operations
that can be applied as a change transaction. In the next section, we elaborate on the
application of change operations and tool support.

256 J.M. Küster et al.

6 Application of Operations and Tool Support

The operations in the change log with position parameters are ready for application.
Figure 13 shows V1 and the application of the InsertUnstructuredConcurrentFragment
operation, leading to the insertion of the Fork and two Joins and the automated recon-
nection of control flow. Alternatively, the user could have chosen any other operation
of the change log that is applicable.

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Fork

Join1

V1’

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

V1

insertUnstructuredConcurrentlFragment
(V1, ”Settle Claim”, Merge, fD)

Join2

Fig. 13. Applying a compound change operation

By recomputing the position parameters of the remaining operations we can increase
the number of applicable operations and refine existing position parameters. In the
example, the position parameters of the InsertAction(V1,”Calculate Loss Amount”,
,), InsertAction(V1,”Recalc. Customer Contribution”, ,), InsertAction(V1,”Pay

Out”, ,), and InsertAction(V1,”Send Letter”, ,) operations can be computed after
inserting the unstructured concurrent fragment. This leads to a new change log which
is shown in Figure 14.

Root Fragment
- InsertCyclicFragment(V1,”Record Claim”, Decision, fA)

- Move(V1,”Check Claim”, ,)
- InsertAction(V1,”Retrieve add. Data”, ,)

- Alternative Fragment
- Unstructured Concurrent Fragment

- InsertAction(V1,”Calculate Loss Amount”, Fork, Join2)
- InsertAction(V1,”Recalc. Cust. Contrib.”, Fork, Join2)
- InsertAction(V1,”Pay Out”, Fork, Join1)
- InsertAction(V1,”Send Letter”, Join2, Join1)

- Delete(V1,”Close Claim”)
- InsertAlternativeFragment(V1 ,”Reject Claim”, Merge, fK)

- InsertAction(V1,”Call Customer”, ,)
- InsertAction(V1,”Send Rej. Letter”, ,)

Fig. 14. Recomputed change log after applying a com-
pound operation

As proof of concept, we have im-
plemented a prototype as an exten-
sion to the IBM WebSphere Busi-
ness Modeler [1] (see Fig. 15), in-
cluding functionality for creation
of correspondences when copying
a process model, decomposition of
process models into SESE frag-
ments and detection and resolution
of differences.

Fig. 15 shows versions V1 and V2
of the business process model intro-
duced earlier in this paper. The lower third of Fig. 15 illustrates the Difference View,
which is divided into three columns. The left and right hand columns show versions
V1 and V2 of the process model decomposed into SESE fragments. The middle column
of the difference view displays the hierarchical change log as introduced previously.
Using our prototype, differences between the two versions can be iteratively resolved
using the change operations introduced in this paper.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 257

Fig. 15. Business Process Merging Prototype in the IBM WebSphere Business Modeler

As an initial validation, we applied our approach to the IBM Insurance Application
Architecture (IAA) [9]. We focused on claim handling, a key process in insurance in-
dustry, which is modeled as a composition of several other processes in IAA and is far
to large to identify differences without tool support. We introduced a set of differences
in the claim handling process and its subprocesses. Using our prototype, users who were
unaware of the differences, were able to identify the differences easily and additionally
were able to resolve selected differences in order to create a consolidated version of the
process model.

7 Related Work

Within the workflow community, the problem of migrating existing workflow instances
to a new schema [3,15] has received considerable attention: Given a process schema
change, it can be distinguished between process instances that can be migrated and
those that cannot be migrated [16]. Rinderle et al. [16] describe migration policies for
the situation that both the process instance as well as the process type has been changed.
They introduce a selection of change operations and examine when two changes are

258 J.M. Küster et al.

commutative, disjoint or overlapping. Recent work by Weber et al. [21] provides a com-
prehensive overview of possible change patterns that can occur when process models
or process instances are modified. These change patterns are used for evaluating dif-
ferent process-aware information systems [5] with respect to change support. Zhao and
Liu [22] address the problem of versioning for process models and present a means
of storing all versions in a version preserving graph, also relying on the existence of a
change log. Grossmann et al. [7] show how two business processes can be integrated
using model transformations after relationships have been established. Both the change
operations by Rinderle et al. [16] and the change patterns for inserting, deleting and
moving a process fragment are similar to our change operations. In contrast to the ex-
isting work, we describe an approach how to identify change operations in the case
that no change log is available and how to use SESE fragments for ordering discovered
change operations.

In the context of process integration where models do not originate from a com-
mon source model, Dijkman [4] has categorized differences of process models and van
Dongen et al. [19] have developed techniques for measuring the similarity of process
models. This work is complementary to our work where we assume that correspon-
dences can be automatically derived. In process integration, correspondences must first
be established using semantic matching techniques (see e.g. [6]) before our techniques
for detecting differences can be applied.

In model-driven engineering, generic approaches for detecting model differences and
resolving them have been studied [2,8]. Alanen and Porres [2] present an algorithm that
calculates differences of two models based on the assumption of unique identifiers. The
computation of differences has similarities to our reconstruction of change operations,
however, in our work, we aim at difference resolution for process models with minimal
user interaction.

8 Conclusion and Future Work

Detecting and resolving process model differences represents a standard functionality
in process-aware information systems that provide a change log. In this paper, we have
presented an approach for the detection and resolution of differences in the absence of
a change log that is based on correspondences between process models and also makes
use of the concept of a SESE fragment decomposition of process models. This SESE
decomposition enables the detection of compound changes and the visualization of dif-
ferences according to the structure of process models. The resolution of differences is
performed in an iterative way, by applying change operations that automatically recon-
nect the control flow.

There are several directions for future work. The change operations are intended to
preserve well-formedness and soundness of the process model which needs to be for-
mally proven. Further work is needed to support all features of process models such as
data flow. Afterwards, a detailed validation of our approach can be performed to show
that dealing with compound changes saves time during modeling. Future work will
also include the elaboration of our approach for merging process models in a distributed

Detecting and Resolving Process Model Differences in the Absence of a Change Log 259

environment. In those scenarios, the concept of a conflict becomes important because
one resolution can turn the other resolution non-applicable.

Acknowledgements. We would like to thank Jana Koehler, Ksenia Ryndina, and Olaf
Zimmermann for their valuable feedback on an earlier version of this paper.

References

1. IBM WebSphere Business Modeler,
http://www.ibm.com/software/integration/wbimodeler/

2. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl. Eng. 24(3),
211–238 (1998)

4. Dijkman, R.: A Classification of Differences between Similar Business Processes. In: EDOC
2007, pp. 37–50. IEEE Computer Society, Los Alamitos (2007)

5. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys-
tems. Wiley, Chichester (2005)

6. Grigori, D., Corrales, J., Bouzeghoub, M.: Behavioral matchmaking for service retrieval. In:
ICWS 2006, pp. 145–152. IEEE Computer Society, Los Alamitos (2006)

7. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior Based Integration of Com-
posite Business Processes. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 186–204. Springer, Heidelberg (2005)

8. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An Algebraic View on the
Semantics of Model Composition. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-
FA 2007. LNCS, vol. 4530. Springer, Heidelberg (2007)

9. IBM Insurance Application Architecture,
http://www.ibm.com/industries/financialservices/iaa

10. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Process Merging in Business-Driven Devel-
opment. IBM Research Report RZ 3703, IBM Zurich Research Laboratory (2008)

11. Mitra, T.: Business-driven development. IBM developerWorks article, IBM (2005),
http://www.ibm.com/developerworks/webservices/library/ws-bdd

12. Object Management Group (OMG). The Unified Modeling Language 2.0 (2005)
13. Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In: VLDB,

pp. 826–873 (2003)
14. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities. In: Dust-

dar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 145–160. Springer,
Heidelberg (2006)

15. Reichert, M., Dadam, P.: ADEPTflex-Supporting Dynamic Changes of Workflows Without
Losing Control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

16. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS,
vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

17. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On Representing, Purging, and Utilizing
Change Logs in Process Management Systems. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 241–256. Springer, Heidelberg (2006)

18. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8(1), 21–66 (1998)

http://www.ibm.com/software/integration/wbimodeler/
http://www.ibm.com/industries/financialservices/iaa
http://www.ibm.com/developerworks/webservices/library/ws-bdd

260 J.M. Küster et al.

19. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business Process
Models. In: CAiSE 2008, pp. 450–464. Springer, Heidelberg (2008)

20. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

21. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in
Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

22. Zhao, X., Liu, C.: Version Management in the Business Process Change Context. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 198–213. Springer,
Heidelberg (2007)

	Detecting and Resolving Process Model Differences in the Absence of a Change Log
	Introduction
	A Scenario for the Detection and Resolution of Differences
	Correspondences and SESE Fragments
	Process Models and SESE Fragments
	Correspondences

	Detection of Differences
	Action and Fragment Differences and Change Operations
	Computation of Position Parameters
	Completeness of Change Operations

	Computation of Hierarchical Change Log
	Application of Operations and Tool Support
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

