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Abstract. Object-centric approaches for business process implementa-
tion distribute process logic among several interacting components, each
representing a life cycle of an object. One of the challenges is to manage
the component coupling, because highly-coupled components are diffi-
cult to distribute, maintain and adapt. Existing techniques that derive
a component for each object that changes state in a given process do
not consider component interdependencies and run the risk of produc-
ing components that are highly coupled. To make coupling explicit and
manageable during component identification, we propose an approach for
computing the expected coupling of an object-centric implementation for
a given process model prior to actually deriving this implementation.
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1 Introduction

Most existing languages for business process modeling (e.g. BPMN [3]) and im-
plementation (e.g. BPEL [1]) are activity-centric, because they represent pro-
cesses as a set of activities connected by control-flow elements to indicate the
order of activity execution. In recent years however, a line of alternative object-
centric approaches for modeling and implementing business processes has been
proposed, which include artifact-centric modeling [6,15], adaptive business ob-
jects [14], data-driven modeling [11] and proclets [20]. Activities in the process
are distributed among several components, each representing an object life cycle
that defines possible states of a particular object and transitions between these
states. Interaction between such object life cycle components ensures that the
overall process logic is correctly implemented. Object-centric implementations
can be used for distributed process execution and can lead to a more main-
tainable and adaptable implementation than activity-centric approaches, as the
behavior of one object can be partially changed without influencing the rest of
the process [10]. However, the more dependencies and interactions there are be-
tween the object life cycle components, the costlier becomes their distribution
and the more complicated it is to change their behavior.

One of the challenges in object-centric process implementation is therefore the
management of component interdependencies, commonly referred to as coupling
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in software engineering [7]. Several object-centric approaches advocate deriving
object life cycles from activity-centric process models that specify the process
logic to be implemented. The existing derivation methods [6,18,19] do not ex-
plicitly address object life cycle interdependencies and hence run the risk of pro-
ducing components that are highly coupled. Component refactoring, e.g. moving
some behavior from one component to another or merging components, is one
approach to reduce coupling. However, as a result the process model can get
out of sync with its implementation, which challenges the propagation of any
subsequent process model changes to the implementation. This problem can be
alleviated by making the developer aware of the expected coupling before com-
ponent derivation, so that the process model can be adapted until a desired level
of coupling is achieved. Realization of this approach requires the computation of
the expected component coupling based on a given process model.

The problem addressed in this paper is therefore the prediction of the expected
coupling of an object-centric implementation based on a given process model. We
first review the mapping of the most common workflow patterns [21] to object
life cycle components in order to identify how properties of a process model
influence the coupling of the derived components. We then show that given a
process model, it is possible to compute the object life cycle component pairs
that require interaction by analyzing the control flow between activities that
change the state of objects. Finally, we use this information to compute the
expected coupling of the object life cycle components.

We implement object life cycle components using Business State Ma-
chines (BSMs) [5]. BSMs are introduced in Sect. 2, along with an illustrative
example and the coupling metric used. In Sect. 3, we demonstrate how workflow
patterns can be implemented using BSMs and study how solutions for different
patterns contribute to the overall coupling. These observations are formalized
in Sect. 4, where we define how to compute the expected coupling based on a
given process model. In Sect. 5, we discuss the generalization of our approach.
Related work and conclusions are presented in Sect. 6 and 7, respectively.

2 Example and Background

As an illustrative example, we use a process designed for the organization of
alumni events at the IBM Zurich Research Laboratory. An abridged BPMN [3]
model for this process is shown in Fig. 1. After the approval of the budget, the
date for the event is fixed and then two things happen in parallel: the program,
invitations and web site are prepared; and catering is organized. After all these
have completed, the alumni day is hosted. The process model contains three
sub-processes: Fix Date, Prepare And Send Invitations and Develop Web Site.

All activities of a business process generally transform some objects by chang-
ing their state to contribute to the final goal of the process. For each atomic
activity in the alumni day process, we indicate the state-changing objects1. For
1 We use the notation given on p.94 in [3] for object outputs of an activity and a

shorthand notation for objects that are both inputs and outputs of an activity.
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Fig. 1. Process Model for Alumni Day Organization

example, the Create Web Site activity produces a Web Site object in state Drafted
and Publish Web Site changes the state of the Web Site object from Drafted to Pub-
lished (states are omitted in this diagram). In the Prepare And Send Invitations sub-
process, Prepare Template creates an Invitations object in state TemplatePrepared,
and then multiple instances of the Fill, Print And Pack activity are performed in
parallel, each creating a Single Invitation object. Once all instances of Fill, Print
And Pack have completed, Post Invitations updates the state of Invitations to Posted.

In an object-centric implementation of the alumni day process, the process
logic is split into ten object life cycle components, assuming an approach in
which one component is derived for each state-changing object. We implement
each object life cycle component as a Business State Machine (BSM) [5]. A
simple example of a BSM is shown in Fig. 2.

Interfaces:
basic : start, stop
stateQuery : getState

References:
r : getState

Variables:
String rState = “Unknown”;

operation timeout condition action

ready

start

stop
rState.equals(“done”)

wait
! rState.equals(“done”)
rState = r.getState

Simple

Fig. 2. Example BSM

A BSM is a finite state automaton, tai-
lored for execution in a service-oriented
environment. Each BSM can have several
of the following: interfaces, references and
variables. The Simple BSM in Fig. 2 has
two interfaces: basic comprising operations
start and stop, and stateQuery with the get-
State operation. These are the three oper-
ations that can be invoked on this BSM.
Simple also has one reference r, referencing
an interface of another BSM, with one operation getState. Operations in addition
have parameters, which we omit here. Simple has one variable rState, initialized
to the literal “Unknown”.
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State transitions in BSMs follow the event-condition-action paradigm. A tran-
sition can be triggered either by an expiration of a timeout or by an invocation of
an operation defined in one of the BSM’s interfaces. Once a transition has been
triggered, its associated condition, if any, is evaluated. If the condition evaluates
to true or there is no condition, the action associated with the transition, if any,
is performed and the target state of the transition is entered. An action either
invokes an operation on one of the BSM’s references or performs some other
processing specified in a custom language, such as Java. For example, once the
Simple BSM is in state ready, a self-transition is triggered repeatedly after expi-
ration of the timeout wait. Each time the transition is triggered and rState is not
equal to “done”, the getState operation is invoked on r (invocation is indicated
using italics in the diagrams). The operation getState is implicitly handled by
every BSM and returns the BSM’s current state. Invocation of the stop opera-
tion on Simple results in a transition to the final state only if rState is equal to
“done”.

At runtime, each BSM instance is associated with a correlation ID. The run-
time engine creates a new BSM instance if it receives a call to an operation
associated with an initial transition of some BSM and this operation call speci-
fies a correlation ID that does not correspond to an existing BSM instance.

For the implementation of the alumni day process, we distribute the process
activities among ten BSMs (Budget, Cafeteria, Date, etc). We make a simplifying
assumption that one activity changes the state of exactly one object, as in the
example process model. Each activity is placed into the BSM that represents the
state-changing object for this activity. In Sect. 6, we explain how our approach
can be extended to handle activities that change the state of several objects.

Interfaces:
programInt : start, stop

References:
webSite : getState, programPrepared

Variables:
String webSiteState = “Unknown”;
boolean webSiteNotified = false; Prepared

Idle

Notifying WebSite

start

!webSiteNotified

stop
webSiteNotified webSiteState.equals(“Idle”)

webSite.programPrepared
webSiteNotified = true

wait
!webSiteState.equals(“Idle”)
webSiteState = webSite.getState

Drafted

Idle

start

programPrepared
CreateWebSite

stop

Published

PublishWebSite

Program WebSiteInterfaces:
webSiteInt : start, stop, 
getState, programPrepared

PrepareProgram

Fig. 3. Example BSMs

Partial implementations of the Program and WebSite BSMs are shown in Fig. 3.
Activities that change the state of these two objects are mapped to actions associ-
ated with state transitions in the BSMs, e.g. the PrepareProgram and CreateWebSite
actions. These actions can be implemented to invoke service operations, human
tasks, etc. In the process model, the Prepare Program activity must complete be-
fore the Create Web Site activity can execute. Synchronization of the Program and
WebSite BSMs is implemented to preserve this dependency: After the Prepare-
Program action has been performed in the Program BSM and the Prepared state
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has been reached, the Program BSM transits to state Notifying WebSite. In this
state, the Program BSM queries the state of the WebSite BSM repeatedly. Once
the WebSite BSM has reached the Idle state, the Program BSM notifies the Web-
Site BSM that it has reached the state Prepared by invoking the programPrepared
operation. After this, the Program BSM transits back to state Prepared, and the
WebSite BSM can perform the CreateWebSite action. In a complete BSM imple-
mentation of the alumni day process, many such synchronizations need to be
implemented, e.g. Program also needs to synchronize with the Invitations BSM.

WebSiteProgram

component component

reference interface

wire

Fig. 4. Assembly Model

Aside from additional states and transitions
within BSMs, synchronization also leads to inter-
face bindings between the BSMs. We use the Ser-
vice Component Architecture (SCA) [2], which is
a service-oriented component framework, to rep-
resent these bindings. Each BSM is an implemen-
tation of an SCA component (used interchangeably with component from now
on). An assembly model in SCA is a representation of directed communication
channels, called wires, between components. The assembly model for the BSMs
from Fig. 3 is shown in Fig. 4. Synchronization of the Web Site and Program BSMs
requires that the components are connected by a wire in the assembly model.

Definition 1 (Assembly model). An assembly model is a tuple M = (C, φ), where
C is the set of components in M and φ ⊆ C×C is the wire relation between components.

In the context of SCA, we use the term coupling to refer to interdependencies
of components in an assembly model. We quantify the coupling of an assembly
model by defining the interface coupling metric, adapted from existing work on
quality metrics in the business process domain [17].

Definition 2 (Interface coupling). Given an assembly model M = (C,φ), its in-
terface coupling is defined as follows:

p(M) =

{
0 if |C| = 0 or 1

|φ|
|C|×(|C|−1) otherwise

(1)

Interface coupling represents the ratio between the actual number of wires and
the maximum possible number of wires between the components in the assembly
model. A coupling value of 0 means that there is no interaction at all between
the components. This implies that the distribution of these components does
not incur any communication costs, and the implementation of each component
can be maintained and its behavior adapted at run time with no side-effects
on the other components. On the contrary, a coupling value of 1 means that
every component interacts with every other component. The distribution of such
components will incur high communication costs, and maintenance or adaptation
of one component affects the behavior of all other components. The interface
coupling of the assembly model shown in Fig. 4 is 1

2×1 = 0.5. More refined
coupling metrics could also be used here, e.g. to take into account the number
of operations in the component interfaces connected to wires or the number of
operation calls inside the BSMs.
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In the following section, we explore how the implementation of different work-
flow patterns using BSMs introduces wires between the BSM components and
thus contributes to the coupling of the resulting assembly model.

3 Implementing Workflow Patterns Using BSMs

Workflow patterns [21] are a well-established benchmark for exploring how com-
mon process behaviors can be represented in different business process modeling
and implementation languages. In this section, we show how the basic control-
flow patterns, WP1-WP5, can be modeled using BSMs. In addition, we provide a
solution for WP14, as it can be used to represent the processing of object collec-
tions, commonly occurring in process models. We provide BSM solutions on an
exemplary basis, similar to existing evaluations of other languages (e.g. [22]). We
discuss the requirements that each pattern has with respect to the synchroniza-
tion of BSMs and its contribution to the coupling of the overall implementation.

ActivityA ActivityB

o1o1
[x1→ x2] [x2→ x3]

ActivityA ActivityB

o2o1
[x1→ x2] [y1→ y2]

E1

E2

Fig. 5. WP1 Examples

WP1 Sequence. Several activities are exe-
cuted one after another in this pattern, as il-
lustrated with two examples2 in Fig. 5. In E1,
ActivityA and ActivityB change the state of the
same object o1, whereas in E2 ActivityA and Ac-
tivityB change the state of different objects, o1
and o2.

The solution for E1 is straightforward,
see Fig. 6(a) (interfaces and references are omit-
ted). It comprises one component, shown in the
assembly model at the bottom of the diagram.
A solution for E2 is shown in Fig. 6(b), where BSMs o1 and o2 represent the life
cycles of objects o1 and o2, respectively.

x2

x1

Notifying o2

start

ActivityA

! o2Notified

stop
o2Notified

Variables:
String o2State = “Unknown”;
boolean o2Notified = false;

o2State.equals(“y1”)
o2.o1x2
o2Notified = true

wait
!o2State.equals(“y1”)
o2State = o2.getState

y2

y1

start

o1x2
ActivityB

stop

(b) E2 Solution(a) E1 Solution

x2

x1

start

stop

x3

ActivityA

ActivityB

o1 o1 o2

o2o1o1

Fig. 6. WP1 Solutions

2 We use a shorthand of the form [statesrc → statetgt], based on the notation given
on p.94 in [3], to show how an activity changes the state of an object.
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Once ActivityA has been performed by o1, o1 notifies o2 that it has reached state
x2 by first ensuring that o2 is in state y1 and then invoking the o1x2 operation on
o2. Once o1x2 has been invoked on o2, ActivityB is performed by o2. The resulting
assembly model has an interface coupling of 1

2×1 = 0.5.
WP1 Synchronization Requirements: A generic instance of WP1 comprises

activities a1, ..., an, which change the states of objects o1, ..., on, respectively. A
pair of activities ai, ai+1, with 1 ≤ i < n, requires a synchronization of BSM
oi and BSM oi+1 if and only if oi �= oi+1. We introduce the control handover
synchronization category for such synchronizations, since they represent the han-
dover of control between BSMs. Each such control handover requires a wire from
BSM oi to BSM oi+1 to be present in the assembly model. The introduction of
these wires contributes to the overall coupling of the resulting assembly model.

E3
ActivityA

ActivityB

ActivityC
o1

[x1→ x2]

o2

[y1→ y2]

o3
[z1→ z2]

Fig. 7. WP2 & WP3 Example

WP2 Parallel Split & WP3 Synchro-
nization. In WP2, several activities are
executed simultaneously or in any possi-
ble order, and in WP3, several parallel
threads are joined together into a single
control thread. An example containing an
instance of both of these workflow pat-
terns is shown in Fig. 7. In E3, each activ-
ity changes the state of a different object.
Note that we do not only consider block-structured process models, but examine
these two patterns together for the sake of conciseness.

x2

x1

Notifying o3

start

ActivityA

! o3Notified

stop
o3Notified

Variables:
String o3State = “Unknown”;
boolean o3Notified = false;

o3State.equals(“z1”)
o3.o1x2
o3Notified = true

wait
!o3State.equals(“z1”)
o3State = o3.getState

o1

y2

y1

Notifying o3

start

ActivityB

! o3Notified

stop
o3Notified

Variables:
String o3State = “Unknown”;
boolean o3Notified = false;

o3State.equals(“z1”)
o3.o2y2
o3Notified = true

wait
!o3State.equals(“z1”)
o3State = o3.getState

o2

z2

z1

start

o1x2 & o2y2
ActivityC

stop

o3

o2y2
o2y2 = true

Variables:
boolean o1x2 = false;
boolean o2y2 = false;

o1 o2
o3

o1x2
o1x2 = true

Fig. 8. WP2 & WP3 E3 Solution

A solution for E3 is shown in Fig. 8. As by default all BSMs are executed
concurrently, no explicit parallel split is required. Synchronization of the threads
is performed using notifications, similar as in the E2 solution in Fig. 6(b). BSM
o3 waits to receive notifications from both o1 and o2 (operation calls o1x2 and
o2y2) before performing ActivityC. The interface coupling of the assembly model
for this solution is 2

3×2 ≈ 0.33.
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WP2 & WP3 Synchronization Requirements: As instances of WP2 do not
require any interaction between BSMs, they do not contribute wires to the as-
sembly model and have no effect on the coupling. A generic instance of WP3
comprises activities a1, ..., an that all need to complete before activity an+1
can begin execution. Assuming that a1, ..., an, an+1 change the states of objects
o1, ..., on, on+1, respectively, a pair of activities ai, an+1, with 1 ≤ i ≤ n, requires
a synchronization of BSMs if and only if oi �= on+1. These synchronizations also
fall into the control handover category, introduced for WP1.

E4
ActivityA

ActivityB

ActivityCo1
[x1→ x2]

o2
[y1→ y2]

o3

[z1→ z2]

C1

C2

Fig. 9. WP4 & WP5 Example

WP4 Exclusive Choice & WP5 Sim-
ple Merge. In WP4, one out of several
activities is executed based on the out-
come of a decision, and in WP5, several al-
ternative threads are joined into one con-
trol thread without synchronization. An
example containing instances of these pat-
terns is shown in Fig. 9.

o3State.equals(“z1”)
o3.o1x2

o3Notified = true

C1
ActivityA

wait
!o3State.equals(“z1”)
o3State = o3.getState

x2

x1 Notifying o2

start

C2 & ! o2Notified

stop
o3Notified

Variables:
String o2State = “Unknown”; boolean o2Notified = false;
String o3State = “Unknown”; boolean o3Notified = false;
boolean C1 = getC1(); boolean C2 = !C1;

o2State.equals(“y1”)
o2.C2
o2Notified = true

wait
!o2State.equals(“y1”)
o2State = o2.getState

o1

Notifying o3

stop
C2 & o2Notified

z2

z1

start

o1x2 | o2y2
ActivityC

stop

o3

o2y2
o2y2 = true

Variables:
boolean o1x2 = false;
boolean o2y2 = false;

o1x2
o1x2 = true

y2

y1

Notifying o3

start

C2
ActivityB

! o3Notified

stop
o3Notified

Variables:
String o3State = “Unknown”;
boolean o3Notified = false;

o3State.equals(“z1”)
o3.o2y2
o3Notified = true

wait
!o3State.equals(“z1”)
o3State = o3.getState

o2

o1

o3

o2

Fig. 10. WP4 & WP5 E4 Solution

In a solution for this pattern, the decision needs to be placed into one of the
BSMs, as shown in Fig. 10 where it is placed in BSM o1 (two transitions going
out of state x1 with conditions C1 and C2). Once the decision has been evaluated
in o13, either ActivityA is performed (C1 is true) or o2 is notified and ActivityB
is performed in o2 (C2 is true). The merging of alternative control threads is
implemented similarly to the synchronization solution in Fig. 8, except that
BSM o3 performs ActivityC as soon as it receives one of the operation calls,
3 For simplicity, we initialize C1 and C2 in the variable definitions here. In a real

implementation, they would be evaluated in state x1.
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o1x2 or o2y2. The interface coupling of the assembly model is 3
3×2 = 0.5. These

three components have a higher coupling value than those in Fig. 8, because of
an additional wire between o1 and o2 required for communicating the decision
outcome.

WP4 & WP5 Synchronization Requirements: A generic instance of WP4 com-
prises a decision d and activities a1, ..., an, which change the states of objects
o1, ..., on, where one of these activities is executed depending on the evaluation
of the conditions of d. We assume that the evaluation of d can be assigned to
an object oi, where 1 ≤ i ≤ n. BSM oi requires synchronization with each
BSM oj , where 1 ≤ j ≤ n and oi �= oj . Since such synchronizations do not
represent control handovers, we introduce a new synchronization category called
decision notification for such synchronizations. Instances of WP5 require control
handover synchronizations, similar to instances of WP1 and WP3.

ActivityA

o2
o1

[x1→ x2] [y1]

ActivityC

o1
[x2→ x3]

ActivityB
E5

Fig. 11. WP14 Example

WP14 Multiple Instances with a pri-
ori Run-Time Knowledge. In WP14,
multiple instances of the same activity
are created, all of which need to complete
before a subsequent activity can be ex-
ecuted. The number of instances is not
known at design time, but is determined
at run time before activity instances are created. This pattern can be used to
represent the processing of object collections, as shown in the example in Fig. 11.
In E5, a collection of o2 objects is processed by multiple instances of ActivityB.
In this example, each activity instance creates a new object o2 in state y1. Once
all instances of ActivityB have completed, ActivityC is executed. We show this par-
ticular example here, because it corresponds to the Prepare And Send Invitations
sub-process in Fig. 1, where Invitations and Single Invitation objects take the role
of o1 and o2, respectively.

A solution for E5 is shown in Fig. 12. After performing ActivityA, o1 transits
to state x2 and then to Creating o2s, where it creates n instances of the o2 BSM
by repeatedly invoking the start operation with a fresh correlation ID. Each o2

x1

Creating o2s

start

ActivityA

o2sCreated < n

stop Variables:
int o2sCreated = 0; int o21y1 = 0;
int n = getAtRuntime();

o2sCreated == n

wait
o2sCreated < n
o2.start
o2sCreated ++

o1

x3

x2

o2y1
o2y1++

o2y1 == n
ActivityC

y1 Notifying o1

start
ActivityB

! o1Notified

stop
o1Notified

o1State.equals(“x2”)
o1.o2y1
o1Notified = true

wait
!o1State.equals(“x2”)
o1State = o1.getState

o2

Variables:
String o1State = “Unknown”;
boolean o1Notified = false;

o2o1

Fig. 12. WP14 E5 Solution
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instance performs ActivityB and then notifies o1 that it has reached state y1.
Once o1 has received notifications from all o2 instances, it performs ActivityC and
transits to state x3. The interface coupling for the assembly model is 2

2×1 = 1.
WP14 Synchronization Requirements: A generic instance of WP14 comprises

activities a1, a2, a3, which change the states of objects o1, o2, o3, where activity a2
is to be instantiated multiple times. Provided that a1 and a3 are not themselves
multiple instance activities, the following control handovers are always required:
from BSM o1 to instances of BSM o2, and from instances of BSM o2 to BSM o3.
Although the number of synchronizations at run time will vary, the contribution
to the coupling is constant, as two wires, (o1, o2) and (o2, o3), are introduced into
the assembly model to enable the synchronizations (this also holds if o1 = o3).
The case where o1 = o2 and o2 = o3 is an exception, as in this case only one
wire (o2, o2) would be introduced into the assembly model. For simplification,
we do not consider this case in the remainder of the paper.

In this section, we have demonstrated how workflow patterns can be imple-
mented using BSMs and discussed the requirements of each pattern for the syn-
chronization of BSMs. In the next section, we show how the number of control
handovers and decision notifications can be computed for a given process model,
and then used to compute the expected coupling of a BSM implementation.

4 Predicting Coupling of BSM Implementations

We assume that the process model provided as a specification for a BSM im-
plementation comprises instances of WP1-WP5 and WP14 only and has each
activity associated with one state-changing object, as in the alumni day process
model in Fig. 1. As a sub-process hierarchy in a given process model can be
flattened for processing, we use the following definition for a process model.

Definition 3 (Process model). A process model is a tuple P = (G, O, σ):

– G = (N, E) is a directed graph, in which each node n ∈ N is either a start node,
stop node, activity, fork, join, decision, or merge. As a shorthand, we use NA and
ND to denote activities and decisions in N , respectively.

– O is the set of objects whose states are changed by activities a ∈ NA.
– σ ⊆ NA × O is the state-changing relation between activities and objects. We use

oa to denote the object whose state is changed by activity a ∈ NA, i.e. (a, oa) ∈ σ.

Given a process model P , the number of components in the assembly model
of its BSM implementation is equal to the number of objects whose states are
changed in P , assuming a simple mapping. In Sect. 3, we showed that the number
of wires between the components depends on the control handover and decision
notification synchronizations between the BSMs. As all the synchronizations
required by different patterns fall into these two categories, we directly compute
all object pairs that require such synchronizations, instead of first identifying
workflow pattern instances in a given process model.

A control handover is required whenever an activity in the process model
that changes the state of one object has a direct successor activity 4 that changes
4 Only edges and gateways connect an activity and its direct successor activity.
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the state of another object. A decision notification is required between the object
assigned to evaluate a decision and all the objects whose state is changed by the
direct successor activities of that decision. To compute the objects that require
control handovers and decision notifications, we propagate the information about
state-changing objects downstream from each activity to its direct successor
activities and upstream from direct successor activities of decisions.

Definition 4 (Downstream and upstream control objects). Given a process
model P = (G, O, σ) where G = (N, E), each edge e ∈ E is associated with downstream
and upstream control objects, dco(e), uco(e) ⊆ O respectively, defined as follows:

dco(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if e is the outgoing edge of the start node
{oa} if e is the outgoing edge of activity a ∈ NA⋃m

i=1 dco(ei) otherwise, where e1, ..., em are the incoming edges
of node n, which has e as its outgoing edge

(2)

uco(e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if e is the incoming edge of the stop node
{oa} if e is the incoming edge of activity a ∈ NA⋃m

i=1 uco(ei) otherwise, where e1, ..., em are the outgoing edges
of node n, which has e as its incoming edge

(3)

Downstream and upstream control objects can be computed for a given process
model using data flow analysis techniques [9]. For example, to compute the
downstream control objects, dco(e) is initialized to an empty set for each edge
e and then the nodes in the process model are traversed, evaluating the dco
equations (Equation 2) for each outgoing edge of the traversed node. Reverse
postorder traversal ensures that in the absence of cycles each node is visited once.
In the presence of cycles, the nodes are traversed repeatedly until a fixpoint is
reached, i.e. an iteration when no dco values are updated. Fig. 13 shows the
alumni day process model with the downstream and upstream control objects
indicated above and below each edge, respectively5. The set of object pairs that
need to perform control handover is then defined as follows.

Definition 5 (Control handover object pairs). Given a process model P =
(G, O, σ) where G = (N, E) and each of the edges e1, ..., en is an incoming edge of
some activity a ∈ NA, the set of directed object pairs that require BSMs to perform
control handover is defined as follows:

Och(P ) =
n⋃

i=1

(dco(ei) × uco(ei)) \ {(o, o) | o ∈ O} (4)

For example, the incoming edge of the AD activity gives rise to two control
handover object pairs: (R,N) and (C,N); and the incoming edge of the AB2 activity
gives rise to only one control handover object pair: (R,C).

Next we define object pairs that require decision notification between BSMs.
Given a decision d, we denote its outgoing edges by Eout

d and assume that the
evaluation of d can be assigned to the object co(d), which is one of the upstream
control objects of some edge in Eout

d .
5 Activity names are abbreviated in Fig. 13.
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Fig. 13. Downstream and Upstream Control Objects in a Process Model

Definition 6 (Decision notification object pairs). Given a process model P =
(G, O, σ) where G = (N, E), the set of directed object pairs that require decision noti-
fication between BSMs is defined as follows:

Odn(P ) =
⋃

d∈ND

⎛
⎝co(d) ×

⋃
e∈Eout

d

uco(e)

⎞
⎠ \ {(o, o) | o ∈ O} (5)

The decision in the parent alumni day process model is assigned to object N
and gives rise to one decision notification object pair: (N,C). The decision in the
Fix Date sub-process is assigned to object D. It does not introduce any decision
notification object pairs, as the sets of upstream control objects for both edges
going out of the decision are the same: {D}.

The predicted assembly model for a BSM implementation of a given process
model can now be constructed by introducing a component for each object and
a wire for each of the control handover and decision notification object pairs.

Definition 7 (Predicted assembly model for a BSM implementation). Given
a process model P = (G, O, σ), the predicted assembly model for a BSM implementa-
tion of P is defined as follows:

MP = (CP , φP ) (6)

– where CP = {co1 , ..., con} is the set of components, with one component coi for
each object oi ∈ O where 1 ≤ i ≤ n,

– and φP = {(co1 , co2) ∈ CP ×CP | (o1, o2) ∈ Och(P )∪ Odn(P )} is the wire relation
between components.
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S

WB D

R

E

P

N

C

I

BSM implementation
interface coupling = 0.211

Warning: assembly model contains highly-coupled components: 
{D, R}, {D, C}, {N,C} and {I,S} interface coupling = 1
{D,R,C} interface coupling =  0.83

Fig. 14. Predicted Assembly Model for the Alumni Day Process

The assembly model for the alumni day process model is shown in Fig. 14. It
can be seen that each distinct control handover and decision notification object
pair, such as (R,N) or (C,N), introduces a wire in the predicted assembly model.

The interface coupling is computed for the entire assembly model and for all
component subsets according to Definition 2. A configurable upper bound is used
to assess the predicted coupling values. This upper bound can be evolved as a
best practice by developers, i.e. first initialized to some value and then refined
in further iterations or projects based on the experience gained in deploying and
maintaining object-centric implementations. Empirical evaluations can also help
in determining a generic guideline for this upper bound. In Fig. 14, the overall
interface coupling is 19

10×9 ≈ 0.211, which would not give a reason for concern,
assuming for example an upper bound of 0.8. However, component sets {D,R},
{D,C}, {N,C}, {I,S} and {D,R,C} have a coupling value higher than 0.8 and would
thus be brought to the attention of the developer, as shown in Fig. 14.

Once the expected coupling is predicted using the proposed approach, the de-
veloper should decide how to deal with each set of highly-coupled components.
High coupling may be tolerated for components that have a stable design and do
not require distributed deployment. Otherwise, the process model should be re-
vised in such a way that the expected coupling between components is reduced.
Possible revisions include identification of objects that can be represented by
a merged life cycle and refactoring control flow in the process model. Object
life cycle merger should be applicable only for those objects that have a strong
semantic relationship. For example, the Dinner (N) and Cafeteria (C) life cycles,
which give rise to the highly-coupled component set {N,C}, can be merged to
produce a Catering life cycle. In order to alleviate component coupling by pro-
cess model refactoring, the number of control handovers and decision notifica-
tions should be reduced. In the alumni day process, the decision Dinner Budget
Approved? and the activities connected to its outgoing edges could take place
directly after the Reserve Cafeteria activity, without waiting for the Reserve Event
Rooms activity to complete. This refactoring would reduce the coupling of the
{R,C} and {R,N} component sets. After each life cycle merger and process model
refactoring, the coupling computations need to be repeated and shown to the
developer.
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5 Discussion

In this paper, we have shown how the coupling of an object-centric implemen-
tation using BSMs can be predicted using a given process model. We assumed
that each activity in the process model changes the state of one object. An
activity that changes the state of several objects would be placed into several
BSMs, which would need to synchronize, thus contributing to component cou-
pling. Our current approach can be extended to handle such activities by adding
a new synchronization category, activity synchronization, and providing a defini-
tion for computing the object pairs requiring such a synchronization (similar to
Definitions 5 and 6). The approach can be further extended to handle workflow
patterns other than WP1-WP5 and WP14 by investigating BSM solutions for
these patterns, identifying pattern requirements for synchronization of BSMs,
and extending Definitions 5, 6 and 7.

Although our approach was demonstrated using SCA and BSMs, it can
be generalized to other component frameworks (not necessarily based on ser-
vices) and other object-centric approaches. For example, adaptive business ob-
jects (ABO) [14] are based on communicating automata, and our approach is
applicable once every ABO has been encapsulated in a component and communi-
cation channels between the components have been made explicit. In data-driven
modeling [11], object life cycles are synchronized by so-called external state tran-
sitions. To compute the coupling, each life cycle can be seen as a component, and
communication channels need to be introduced between components whose life
cycles are connected by external state transitions. Proclets [20] use WF-nets to
represent object life cycles and make use of explicit communication channels. Al-
though more advanced communication options, such as multicast and broadcast,
are supported in proclets, our approach is still applicable.

6 Related Work

In component-based development, the coupling has been used for component
identification [8] and refactoring [4]. For example, a statistics technique called
clustering analysis to form components that have high cohesion and low coupling
is used in [8]. Such approaches are complementary to what we propose in this
paper, as they can help to identify how the highly-coupled components in the
predicted assembly model of a BSM implementation can be alleviated.

Many different categories or types of coupling have been identified in software
engineering [7]. Given source code or a component model, it is usually straight-
forward to calculate the different coupling values, as the metrics are defined
directly in terms of source code or component model elements. In our approach,
we determine how the control flow in a given process model influences the cou-
pling of the resulting BSM implementation before actually deriving the BSMs.
So far we have focused on the so-called interface coupling of SCA components;
however other types of coupling, such as data coupling, could also be considered.

A tight correlation between the semantic relationships of objects and synchro-
nization of their life cycles has been identified in manufacturing processes [11,16].
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In manufacturing, objects are naturally coupled by the “part-of” relationship.
Our approach is valuable also in this context, as it can identify whether the
implementation components have dependencies other than those resulting from
the semantic relationships between objects.

In workflow management, several approaches have been proposed for decen-
tralizing workflows with the goal of optimizing their execution [12,13]. For ex-
ample, the approach in [12] involves minimizing the loads and number of syn-
chronization messages exchanged between the distributed workflow components.
Although in our approach we also strive to reduce the number of dependen-
cies between components, execution optimization is not our primary focus. The
object life cycle components dealt with in this paper need to be refined and
maintained by developers, whereas workflow decentralization happens once a
workflow is deployed and its results are not exposed to the developers.

7 Conclusions and Future Work

We have presented an approach for predicting the coupling of an object-centric
implementation for a given process model. Our example showed that deriving
one component for each state-changing object can produce highly-coupled com-
ponents, which are difficult to distribute, maintain and adapt. The predicted
coupling information allows the developer to take preventive actions to arrive at
a better decomposition of the final implementation. Although our approach has
been demonstrated using BSMs, it is possible to generalize it to other languages
suitable for object-centric process implementation.

We are currently extending the approach with the prediction of cohesion and
complexity metrics. We expect that the incorporation of these two metrics with
coupling will not only offer deeper insights into object-centric implementations,
but will also facilitate a comparison of activity-centric and object-centric imple-
mentation approaches.
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