
Correcting Deadlocking Service Choreographies
Using a Simulation-Based Graph Edit Distance

Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Many work has been conducted to analyze service choreogra-
phies to assert manyfold correctness criteria. While errors can be detected
automatically, the correction of defective services is usually done man-
ually. This paper introduces a graph-based approach to calculate the
minimal edit distance between a given defective service and synthesized
correct services. This edit distance helps to automatically fix found errors
while keeping the rest of the service untouched. A prototypic implemen-
tation shows that the approach is applicable to real-life services.

Keywords: Choreographies, graph correction, correction of services,
verification of services, service automata, operating guidelines, BPEL.

1 Introduction

In service-oriented computing [1], the correct interplay of distributed services is
crucial to achieve a common goal. Choreographies [2] are a means to document
and model the complex global interactions between services of different partners.
BPEL4Chor [3] has been introduced to use BPEL [4] to describe and execute
choreographies. Recently, a formal semantics for BPEL4Chor was introduced [5],
offering tools and techniques to verify BPEL-based choreographies.

Whereas it is already possible to automatically check choreographies for dead-
locks or to synthesize participant services [6], no work was conducted in support-
ing the fixing of existing choreographies. This is especially crucial, because fixing
incorrect services is usually cheaper and takes less time than re-designing and
implemeting a correct service from scratch. In addition, information on how to
adjust an existing service can help the designers understand the error more easily
compared to confronting them with a whole new synthesized service.

As the running example for this paper, consider the example choreography
visualized in BPMN [7] in Fig. 1. It describes the interplay of a travel agency,
a customer service, and an airline reservation system. The travel agency sends
an offer to the client which either rejects it or books a trip. In the latter case,
the travel agency orders a ticket at the airline service which either sends a
confirmation or a refusal message to the customer. The choreography contains
a design flaw as the customer service does not receive the refusal message. This
leads to a deadlock in case the airline refuses the ticket order.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 132–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Correcting Deadlocking Service Choreographies 133

Fig. 1. Choreography between travel agency, airline, and customer. The choreography
can deadlock, because the customer does not receive a refusal message from the airline.

This deadlock can be detected using state-of-the-art model checking tools
which provide a trace to the deadlocking state. In the concrete example, a trace
would be (send offer, receive offer, send booking, send payment1, receive booking,
receive payment, send ticket order, receive ticket order, send refusal). This trace,
however, gives no information which service has to be changed in which manner
to avoid the deadlock. Thus, an iteration of manual corrections followed by fur-
ther deadlock checks is necessary to finally remove the deadlock. Though it is
obvious how to correct the flawed example, the manual correction of choreogra-
phies of a larger number of more complex services is tedious, if not impossible.

Moreover, even for this simple choreography exists a variety of possibilities to
fix the customer’s service. Figure 2 depicts two possible corrections to avoid the
deadlock. Though both services would avoid the choreography to deadlock, the
service in Fig. 2(a) is to be preferred over that in Fig. 2(b) as it is “more similar”
to the original service. Though this preference is psychological and is unlikely
to be proven formally, the usage of similarities is widley accepted (cf. [8]). The
tool chain presented in [6,5] synthesizes a participant service independently of
an existing incorrect service and might produce correct, yet unintuitive results
such as the service in Fig. 2(b).

The goal of this paper is to formalize, systematize, and to some extend autom-
atize the fixing of choreographies as it has been illustrated above. We thereby
combine existing work on characterizing all correctly interacting partners of a
service with similarity measures and edit distances known in the field of graph
correction. These approaches are recalled in Sect. 2 and 3. In Sect. 4, we define
an edit distance that aims at finding the most similar service from the set of
all fitting services. To support the modeler, we further derive the required edit

1 We assume asynchronous (i. e., non-blocking) communication.

134 N. Lohmann

fix
ed

 C
us

to
m

er

send offer
rejection

send
booking

receive
confirmation

receive
refusal

send
payment

(a) add receipt of refusal message

fix
ed

 C
us

to
m

er

send offer
rejection

(b) delete booking
branch

Fig. 2. Two possible corrections of the customer service to achieve deadlock freedom

actions needed to correct the originally incorrect service. In Sect. 5, we present
experimental results conducted with a proof of concept implementation. Sec-
tion 6 discusses related work. Finally, Sect. 7 is dedicated to a conclusion and
gives directions for future research.

2 Service Models

2.1 Service Automata and Operating Guidelines

To formally analyze services, a sound mathematical model is needed. In the
area of workflows and services, Petri nets are a widely accepted formalism [9].
They combine a graphical notation with a variety of analysis methods and tools.
For real-life service description languages such as BPEL or BPEL4Chor exists
a feature-complete Petri net semantics [10,5]. To simplify the presentation, we
abstract from the structure of a service and complex aspects such as data or
fault handling, and focus on the external behavior (also known as the business
protocol) of services in this paper. To this end, we use service automata [11] to
model the external behavior services.2

A service automaton is a finite automaton with a set Q of states, a set F ⊆ Q
of final states, an initial state q0 ∈ Q, an interface I for asynchronous message
passing, and a partial transition function δ : Q × I → Q. In this paper, we
only consider deterministic service automata and require that final states are
sink states; that is, have no outgoing transitions. For δ(q, a) = q′ we also write
q

a−→ q′. Throughout this paper, we use S to denote service automata. We further
assume that all services in this paper share a common interface I. This common
interface can be achieved by joining all participants’ interfaces.

Figure 3(a) depicts a service automaton modeling the external behavior of the
customer service of Fig. 1. The edges are labeled with messages sent to (preceded
with “!”) or received from (preceded with “?”) the environment: The interface
of the service automaton is {!booking, ?confirmation, ?offer, !payment, !rejection}.

2 Due to the close relationship (cf. [12]) between Petri nets and automata, there exist
techniques to transform back and forth between the two formalisms.

Correcting Deadlocking Service Choreographies 135

?offer

?confirmation

!booking

!payment

!rejection

q1

(a) Scustomer

?offer

!booking

!payment

!booking

?refusal?confirmation

!booking

!payment

!rejection

!payment

?offer

?offer (?confirmation ?refusal)

!booking

?offer

?offer

?refusal

?offer

?confirmation

?offer !payment

!booking

?offer !payment

?offer

!rejection

?offer

!rejection ?offer !payment !booking

!rejection !payment !booking

?confirmation ?refusal

true

!payment

?offer !booking

q2

q0

q3

q4

(b) Oagency⊕airline

Fig. 3. A service automaton Scustomer modeling the customer service of Fig. 1 (a) and
the operating guideline Oagency⊕airline of the composition of travel agency and airline
service (b). The service automaton does not match the OG, because q2’s formula is not
satisfied.

As services are usually not considered in isolation, their interplay has to be
taken into account in verification. A necessary correctness criterion is controlla-
bility [13]. A service S is controllable if there exists a partner service S′ such that
their composition S ⊕ S′ (i. e., the choreography of the service and the partner)
is free of deadlocks.

Controllability can be decided constructively: If a correctly interacting part-
ner service for S exists, it can be automatically synthesized [13,6]. Furthermore,
it has been proven that there exists one distinguished partner service S∗ that
is most permissive; that is, it simulates any other correctly interacting partner
service. The converse does, however, not hold; not every simulated service is a
correct partner service itself. To this end, the most permissive partner service
can be annotated with Boolean formulae expressing which states and transi-
tions can be omitted and which parts are mandatory. This annotated most per-
missive partner service is called an operating guideline (OG) [11]. We denote
OGs with O and use ϕ(q) to denote the Boolean formula annotated to state q
of the OG.

Figure 3(b) depicts the OG of the composition of the travel agency and the
airline. The disjunction of the OG’s initial q0 state means that a partner ser-
vice must send a rejection, receive an offer, send a payment or send a book-
ing in its initial state. This is possible due to asynchronous communication.
The service automaton of Fig. 3(a) is simulated by the OG and fulfills all but
one formula (satisfied literals are depicted bold in Fig. 3(b)). It does not sat-
isfy the formula ϕ(q2) = (?confirmation ∧ ?refusal) of the OG’s state q2, be-
cause the service automaton does not receive a refusal message in the simulated
state q1.

136 N. Lohmann

2.2 Fixing Deadlocking Choreographies

Consider a deadlocking choreography of n participants, S1 ⊕ · · · ⊕ Sn. As men-
tioned earlier, a deadlock trace usually does not give sufficient information how
to fix which service to achieve deadlock freedom. To find a candidate service that
can be changed such that whole choreography is deadlock-free, we can perform
the following steps:

– Firstly, we check for each service the necessary correctness criterion: If a
service taken for itself is not controllable, then there exists no environment
in which that service runs correctly— especially not the choreography un-
der consideration. In that case, that service has to be radically overworked
towards controllability, which is not topic of this paper.

– Secondly, we remove one participant, say Si. The resulting choreography
Chori = S1⊕· · ·⊕Si−1⊕Si+1⊕· · ·⊕Sn can be considered as one large service
with an interface. If it is controllable, then there exists a service S′

i which
interacts deadlock-freely with the other participants of the choreography;
that is, Chori ⊕ S′

i is deadlock-free. In [5], a complete tool chain for this
participant synthesis was presented for BPEL-based choreographies.

As motivated in the introduction, the mere replacement of Si by S′
i is not

desirable, because S′
i totally ignores the structure of Si and might be very dif-

ferent to the original, yet incorrect service Si. Instead of synthesizing any fitting
service (such as the service in Fig. 2(b)), we are interested in a corrected service
that is most similar to Si. To this end, we can use the OG of Chori , because it
characterizes the set of all fitting partners. Figure 4 illustrates this.

incorrect
service

set of all correctly
fitting services (OG)

most similar
fitting service

similarity
measure

Fig. 4. The OG as characterization of all correct services can be used to find the most
similar service

Beside the corrected services of Fig. 2, the OG characterizes 2002 additional
(acyclic and deterministic) partner services.3 Though all are correct, we are
interested in the service that most similar to the incorrect customer service.
Instead of iteratively check all candidates, we will define a similarity measure
that exploits the OG’s compact representation to efficiently find the desired
service of Fig. 2(a).

3 The set of cyclic or nondeterministic partner services might be infinite.

Correcting Deadlocking Service Choreographies 137

3 Graph Similarities

Graph similarities are widely used in many fields of computer science, for ex-
ample for pattern recognition [14] or in bio informatics. Cost-based distance
measures adapt the edit distance known from string comparison [15,16] to com-
pare labeled graphs (e. g., [17]). They aim at finding the minimal number of
modifications (i. e., adding, deleting, and modifying nodes and edges) needed to
achieve a graph isomorphism.

Distance measures aiming at graph isomorphism have the drawback that they
are solely based on the structure of the graphs. They focus on the syntax of the
graphs rather than their semantics. When a graph (e. g., a service automaton)
models the behavior of a system, similarity of graphs should focus on simulation
of behavior rather than on a high structural similarity. Figure 5 illustrates that
structural and behavioral similarity is not necessarily related.

?a

!c

?d

?d

!b

qa

(a)

?a

!c

?d
!b

qb

(b)

?d

!c

?a!b

qc

(c)

Fig. 5. Service automata (a) and (b) simulate each other, but have an unsimilar struc-
ture. Service automata (b) and (c) have a very similar structure, but rather unsimilar
behavior.

Sokolsky et el. [18] address this problem (a similar approach is presented
in [19]), motivated by finding computer viruses by comparing a program with a
library of control flow graphs. In that setting, classical simulation is too strict,
because two systems that are equal in all but one edge label behave very similar,
but there exists no simulation relation between them. To this end, Sokolsky et
al. introduce a weighted quantitative simulation function to compare states of
two graphs. Whenever the two graphs cannot perform a transition with same
labels, one graph performs a special stuttering step ε, which is similar to τ -steps
in stuttering bisimulation [20]. To “penalize” stuttering, a label similarity func-
tion assings low similarity between ε and any other label. This label similarity
function L : (I ∪ {ε}) × (I ∪ {ε}) → [0, 1] assigns a value that expresses the
similarity between the labels of the service automata4 under consideration. For
example, L(?a, ?b) describes the similarity of a ?a-labeled transition of service
automaton S1 and a ?b-labeled transition of service automaton S2. Furthermore,
a discount factor p ∈ [0, 1] describes the local importance of similarity compared
to the similarity of successor states.

Definition 1 (Weighted quantitative simulation, [18]). Let S1 = [Q1, δ1,
F1, q01 , I], S2 = [Q2, δ2, F2, q02 , I] be service automata. A weighted quantitative
simulation is a function S : Q1 × Q2 → [0, 1], such that:
4 We adjusted the definitions of to service automata. The original definition in [18]

bases on labeled directed graphs. We do not consider node labels in this paper.

138 N. Lohmann

S(q1, q2) =

{
1, if q1 ∈ F1,

(1 − p) + max(W1(q1, q2), W2(q1, q2)), otherwise,

W1(q1, q2) = max
q2

b−→q′
2

(
L(ε, b) · S(q1, q

′
2)

)
,

W2(q1, q2) =
p

n
·

∑
q1

a−→q′
1

max

⎛
⎝L(a, ε) · S(q′1, q2), max

q2
b−→q′

2

(L(a, b) · S(q′1, q
′
2))

⎞
⎠ ,

and n is the number of edges leaving q1.

The weighted quantitative simulation function S recursively compares the states
from the two service automata and finds the maximal similar edges. Thereby,
W1 describes the similarity gain by stuttering of graph S1 and W2 the tradeoff
between simultaneous transitions of S1 and S2 and stuttering of graph S2. Both,
the discount factor p and the label similarity function L, can be chosen freely
to adjust the result of the similarity algorithm. The choice of the parameters is,
however, out of scope of this paper.

As an example, consider the service automata in Fig. 5 and assume a discount
factor p = 0.5 and a label similarity function L that assigns 1.0 to equal labels
and 0.5 to any other label pair. Then S(qa, qb) = 1.0 (the weighted quantitative
simulation is a generalization of the classical simulation) and S(qb, qc) = 0.75
which indicates the differences in the behaviors.

4 A Matching-Based Edit Distance

The algorithm to calculate weighted quantitative simulation can be used as a
similarity measure for service automata or OGs, but has two drawbacks: Firstly,
it is not an edit distance. It calculates a value that expresses the similarity
between the service automata, but gives no information about the modification
actions needed to achieve simulation. Secondly, it does not take formulae of
the OG into account. Therefore, a high similarity between a service automaton
and an OG would not guarantee deadlock freedom as the example of Fig. 3
demonstrates: The service automaton of the customer is perfectly simulated by
the OG but the overall choreography deadlocks.

4.1 Simulation-Based Edit Distance

Before we consider the OG’s formulae, we show how the similarity result of the
algorithm of [18] can transformed into an edit distance. Given two states q1 and
q2, Def. 1 determines the best simulation between the transitions of q1 and q2. In
addition, one service automaton can stutter (i. e., remain in the same state). The
weighted quantitative simulation function calculates the best label matching to
maximize the similarity between the root nodes of the service automata. From
the transition pairs belonging to the maximum, we can derive according edit
actions (cf. Table 1).

Correcting Deadlocking Service Choreographies 139

Table 1. Deriving edit actions from transition pairs of Def. 1

transition of S1 transition of S2 resulting edit action similarity
a a keep transition a L(a, a)
a b modify transition a to b L(a, b)
a ε (stutter) delete transition a L(a, ε)

ε (stutter) a insert transition a L(ε, a)

These edit actions define basic edit actions whose similarity is determined by
the edge similarity function L. To simplify the representation of a large number
of edit actions, the basic edit actions may be grouped to macros to express more
complex operations such as swapping or moving of edges and nodes, duplicating
of subgraphs, or partial unfolding of loops.

The simulation-based edit distance does not respect the OG’s formulae. One
possibility to achieve a matching would be to first calculate the most similar
simulating service using the edit distance for Def. 1 and then to simply add
and remove all nodes and edges necessary in a second step. Using the weighted
quantitative simulation function of Def. 1, the resulting edit actions (cf. Table 1)
simply inserts or removes edges to present nodes rather than to new nodes. This
approach does in general not work to achieve matching with an OG. See Fig. 6
for a counterexample. However, also the insertion of nodes would not determine
the most similar partner service, because this may result in sub-optimal solutions
as Fig. 7 illustrates.

4.2 Combining Formula-Checking and Graph Similarity

Due to the suboptimal results achieved by a-posteriori formula satisfaction by
node insertion, we need to modify the algorithm of [18] not to statically take the
outgoing transitions of an OG’s state into account, but also check any formula-
fulfilling subset of outgoing transitions. Therefore, we need some additional def-
initions to base formula satisfaction and to cover the dynamic presence of OG
transitions.

Definition 2 (Satisfying label set, label permutation). Let S = [QS , δS ,
FS , q0S , I] be a service automaton and O = [QO, δO, FO, q0O , I] an OG, and let
q1 ∈ QS and q2 ∈ QO.
– Define Sat(ϕ(q2)) ⊆ P(I ∩ {b | ∃q′2 ∈ QO : q2

b−→ q′2}) to be the set of all sets
of labels of transitions leaving q2 that satisfy formula ϕ of state q2.

– For β ∈ Sat(ϕ(q2)), define perm(q1, q2, β) �
(
(I ∪ {ε}) × (I ∪ {ε})

)
to be a

label permutation of q1, q2 and β such that:
(a) if q1

a−→ q′1, then (a, c) ∈ perm(q1, q2, β) for a label c ∈ β ∪ {ε},
(b) if q2

b−→ q′2 and b ∈ β, then (d, b) ∈ perm(q1, q2, β) for a label d ∈ I ∪{ε},
(c) (ε, ε) /∈ perm(q1, q2, β), and
(d) if (a, b) ∈ perm(q1, q2, β), then (a, c),(d, b) /∈ perm(q1, q2, β) for all labels

c ∈ β ∪ {ε} and all labels d ∈ I ∪ {ε}.
– Define Perms(q1, q2, β) to be the set of all label permutations of q1, q2 and β.

140 N. Lohmann

?a

(a)

?a ?b

true

?a

?c

?b

?c

(b)

?a

?b

(c)

?a

?b?c

(d)

Fig. 6. Matching cannot be achieved solely by transition insertion. The service automa-
ton (a) does not match with the OG (b) because of a missing ?b-branch. In service
automaton (c), a loop edge was inserted. However, the state reached by ?b in the OG
requires a ?c-branch to be present. After inserting this edge (d), the resulting service
automaton is not simulated by the OG (b).

!a

?c

(a)

a! !b

?c ?d ?e

!a

true

?c

true true

?c

true

?c

!b

?d ?e

(b)

!a

?c ?d ?e

(c)

!b

?c

(d)

Fig. 7. Adding states to a simulating service automaton may yield sub-optimal results.
The service automaton (a) does not match with the OG (b), because the formula
(?c∧?d∧?e) is not satisfied. The OG, however, perfectly simulates the service automaton
(a), and adding two edges achieves matching (c). However, changing the edge label of
(a) from !a to !b also achieves matching, but only requires a single edit action (d).

The set Sat consists of all sets of labels that fulfill a state’s formula. For ex-
ample, consider the OG in Fig. 3(b): For state q2 of the OG Oagency⊕airline, we
have Sat(ϕ(q2)) = {{?confirmation, ?refusal}}. Likewise, Sat(ϕ(q3)) = {{?offer},
{!payment}, {?offer, !payment}}.

The set Perms consists of all permutations of outgoing edges of two states.
In a permutation, each outgoing edge of a state of the service automaton has to
be present as first element of a pair (a), each outgoing edge of a state of the OG
that is part of the label set β has to be present as second element of a pair (b).
As the number of outgoing edges of both states may be different, ε-labels can
occur in the pairs, but no pair (ε, ε) is allowed (c). Finally, each edge is only
allowed to occur once in a pair (d).

For β = {?confirmation, ?refusal} and state q1 of the service automaton S1
in Fig. 3(a), {(?confirmation, ?confirmation), (ε, ?refusal)} is one of the permu-
tations in Perms(q1, q2, β). Another permutation is {(?confirmation, ?refusal),
(ε, ?confirmation)}. The permutations can be interpreted like the label pairs
of the simulation edit distance: (?confirmation, ?confirmation) describes a keep-
ing of ?confirmation, (?confirmation, ?refusal) describes changing ?confirmation
to ?refusal, and (ε, ?refusal) the insertion of a ?refusal transition. The inser-
tion and deletion has to be adapted to avoid incorrect or sub-optimal results
(see Fig. 6–7).

Correcting Deadlocking Service Choreographies 141

Definition 3 (Subgraph insertion, subgraph deletion). Let S = [QS , δS ,
FS , q0S , I] be a service automaton and O = [QO, δO, FO, q0O , I] an OG. Define

ins(q2) =

⎧⎨
⎩

1, if q2 ∈ FO,

(1 − p) + max
β∈Sat(ϕ(q2))

p

|β| ·
∑
b∈β

L(ε, b) · ins(δO(q2, b)), otherwise,

del(q1) =

⎧⎪⎨
⎪⎩

1, if q1 ∈ FS ,

(1 − p) +
p

n
·

∑
q1

a−→q′
1

L(a, ε) · del(q′1), otherwise,

where n is the number of outgoing edges of q1.

Function ins(q2) calculates the insertion cost of the optimal subgraph of the OG
O beginning at q2 which fulfills the formulae. Likewise, del(q1) calculates the
cost of deletion of the whole subgraph of the service automaton S from state q1.
Both functions only depend on one of the graphs; that is, ins and del can be
calculated independently from the service automaton and the OG, respectively.
Definition 3 actually does not insert or delete nodes, but only calculates the
similarity value of the resulting subgraphs. Only this similarity is needed to find
the most similar partner service and the actual edit actions can be easily derived
from the state from which nodes are inserted or deleted (cf. Table 1).

With Def. 2 describing means to respect the OG’s formulae and Def. 3 cop-
ing with insertion and deletion, we can finally define the weighted quantitative
matching function:

Definition 4 (Weighted quantitative matching). Let S = [QS , δS , FS ,
q0S , I] be a service automaton and O = [QO, δO, FO, q0O , I] an OG. A weighted
quantitative matching is a function M : QS × QO → [0, 1], such that:

M(q1, q2) =

{
1, if (q1 ∈ FS ∧ q2 ∈ FO),
(1 − p) + W1(q1, q2), otherwise,

W1(q1, q2) = max
β∈Sat(ϕ(q2))

max
P∈Perms(q1,q2,β)

p

|P | ·
∑

(a,b)∈P

W2(q1, q2, a, b),

W2(q1, q2, a, b) =

⎧⎪⎨
⎪⎩

L(a, b) · M(δS(q1, a), δO(q2, b)), if (a
= ε ∧ b
= ε),
L(ε, b) · ins(δO(q2, b)), if a = ε,
L(a, ε) · del(δS(q1, a)), otherwise.

The weighted quantitative matching function is similar to the weighted quan-
titative simulation function (Def. 1). It recursively compares the states of the
service automaton and the OG, but instead of statically taking the OG’s edges
into consideration, it uses the formulae and checks all satisfying subsets (W1).
Additionally, W2 organizes the successor states determined by the labels a and
b, or the insertion or deletion.

142 N. Lohmann

4.3 Matching-Based Edit Distance

Again, we can straight-forwardly extend the weighted quantitative matching
function towards an edit distance, because the permutations give information
how to modify the graph. Keeping and modification of transitions is handled as
in Table 1, whereas adding and deletion of nodes can be derived from Def. 3.
In fact, the weighted quantitative matching function is not a classical distance.
It expresses the similarity between a service automaton and an OG (i. e., a
characterization of many service automata) and is hence not symmetric. We still
use the term “edit distance” to express the concept of a similarity measure from
which edit actions can be derived.

Consider the example from Fig. 3. During the calculation of M(q1, q2), the
permutation {(?confirmation, ?confirmation), (ε, ?refusal)} is considered. The first
label pair denotes that the ?confirmation transition is kept unmodified. The sec-
ond label pair denotes an insertion of a ?refusal transition. The value of this
insertion is defined by

L(ε, ?refusal) · ins(δOagency⊕airline(q2, ?refusal)) = L(ε, ?refusal) · ins(q4)
= L(ε, ?refusal)

and only depends on the similarity function L.

?offer

?confirmation

!booking

!payment

!rejection

?refusal

keep transition "?offer" to state q6

keep transition "!booking" to state q7
keep transition "!rejection" to state q8

keep transition "!payment" to state q1

keep transition "?confirmation" to state q8
insert transition "?refusal" to new state q9

q5

q6

q7

q1

q8 q9

Fig. 8. Matching-based edit distance applied to the customer’s service

Figure 8 shows the result of the application of the matching-based edit dis-
tance to the service automaton of Fig 3(a). The states are annotated with edit
actions. The service automaton was automatically generated from a BPEL pro-
cess and the state in which a modification has to be made can be mapped back
to the original BPEL activity. In the example, a receive activity has to be
replaced by a pick activity with an additional onMessage branch to receive the
refusal message.

5 Complexity Considerations and Experimental Results

The original simulation algorithm of [18] to calculate a weighted quantitative
simulation between two service automata S1 and S2 (cf. Def. 1) needs to check

Correcting Deadlocking Service Choreographies 143

O(|QS1 | · |QS2 |) state pairs. The extension to calculate the matching between a
service automaton S and an OG O (cf. Def. 4) takes the OG’s formulae and the
resulting label permutations into consideration. The length of the OG’s formulae
is limited by the maximal degree of the nodes which again is limited by the
interface I. Thus, for each state pair, at most 2|I| satisfying assignments have
to be considered. The number of permutations is again limited by the maximal
node degree such that at most |I|! permutations have to be considered for each
state pair and assignment. This results in O(|QS | · |QO| · 2|I| · |I|!) comparisons.

Though the extension towards a formula-checking edit distance yields a high
worst-case complexity, OGs of real-life services tend to have quite simple formu-
lae, a rather small interface (compared to the number of states), and a low node
degree. As a proof of concept, we implemented the edit distance in a prototype.5

It takes an acyclic deterministic service automaton and an acyclic OG6 as input
and calculates the edit actions necessary to achieve a matching with the OG. The
prototype exploits the fact that a lot of subproblems overlap, and uses dynamic
programming techniques [21] to cache and reuse intermediate results which signif-
icantly accelerates the runtime. We evaluated the prototype with models of some
real-life services. In most cases, the edit distance could be calculated within few
seconds. The experiments were conducted on a 2.16 GHz notebook. Memory con-
sumption is not listed as it never exceeded 10 MB. Table 2 summarizes the results.

Table 2. Experimental results

service interface states SA states OG search space time (s)
Online Shop 16 222 153 102033 4
Supply Order 7 7 96 10733 1
Customer Service 9 104 59 10108 3
Internal Order 9 14 512 > 104932 195
Credit Preparation 5 63 32 1036 2
Register Request 6 19 24 1025 0
Car Rental 7 49 50 10144 6

Order Process 8 27 44 10222 0
Auction Service 6 13 395 1012 0
Loan Approval 6 15 20 1017 0
Purchase Order 10 137 168 > 104932 391

The first seven services are derived from BPEL processes of a German
consulting company; the last four services are taken from the current BPEL
specification [4]. The services were translated into service automata using the
compiler BPEL2oWFN.7 For these service automata, the OGs were calculated
using the tool Fiona.8 For some services, a partner service was already available;
for the other services, we synthesized a partner service with Fiona. As we can
5 Available at http://service-technology.org/rachel.
6 Operating guidelines are deterministic by construction.
7 Available at http://service-technology.org/bpel2owfn.
8 Available at http://service-technology.org/fiona.

http://service-technology.org/rachel
http://service-technology.org/bpel2owfn
http://service-technology.org/fiona

144 N. Lohmann

see, the services’ interfaces are rather small compared to their number of states.
It is worth mentioning that the complexity of the matching is independent of the
fact whether the service automaton matches the OG or not. We used existing
partner services in the case study to process services of realistic size.

Column “search space” of Table 2 lists the number of acyclic deterministic
services characterized by the OG. All these services are correct partner services
and have to be considered when finding the most similar service. The presented
algorithm exploits the compact representation of the OG and allows to efficiently
find the most similar service from more than 102000 candidates.

For most services, the calculation only takes a few seconds. The “Internal
Order” and “Purchase Order” services are exceptions. The OGs of these ser-
vices have long formulae with a large number of satisfying assignments (about
ten times larger than those of the other services) yielding a significantly larger
search space. Notwithstanding the larger calculation time, the service fixed by
the calculated edit actions is correct by design, and the calculation time is surely
an improvement compared to iterative manual correction.

6 Related Work

The presented matching edit distance is related to several aspects of current
research in many areas of computer science:

Automated debugging. In the field of model checking, the explanation of errors
by using distance metrics (cf. [8]) has received a lot of attention. Compared to
the approach presented in this paper, these works focus on the explanation and
location of single errors in classical C (i e., low-level) programs. The derived
information is used to support the debugging of an erroneous program.

Service matching. Many works exists to discover a similar partner service.
An approach to match BPEL processes using an algorithm based on subgraph
isomorphism is presented in [22]. Other approaches such as [23,24] use ontologies
and take the semantics of activities into account, but do not focus much on the
behavior or message exchange. In [25], the behavior of a service is represented as
a language of traces which allows for string edit distances to compare services.
This approach, however, cannot be used in the setting of communicating services
where the moment of branching is crucial to avoid deadlocks.

Service similarity and versioning. The change management of business pro-
cesses and services is subject of many recent works. An overview of what can
differ between otherwise similar services is given in [26,27]. The reported differ-
ences go beyond the behavioral level and also take authorization aspects under
consideration. [28] gives an overview of frequent change patterns occurring in the
evolution of a business process model. Beside the already mentioned basic oper-
ations (adding, changing and removing of edges or nodes), complex operations
such as extracting sub processes are presented. With a version preserving graph,
a technique to represent different versions of a process model is introduced in [29].
This technique was made independent of a change log in [30]. Again, versioning
relies on the structure of the model rather than on its behavior.

Correcting Deadlocking Service Choreographies 145

Service mediation. Instead of changing a service to achieve deadlock freedom
in a choreography, it would also be possible to use a service mediator (sometimes
called adapter) to fix a choreography (e. g., [31,32]). Service mediation is rather
suited to fit existing services, whereas our approach aims at supporting the
design and modelling phase of a service choreography. Still, a mediator between
the customer service on the one hand and the travel agency and the airline service
on the other hand (cf. Fig. 1) would have to receive the airline’s refusal message
and create a confirmation message for the customer which is surely unintended.
Furthermore, several service mediation approaches such as [33] assume total
perception of the participants’ internal states during runtime.

The difference between all mentioned related approaches and the setting of
this paper is that these approaches either focus on low-level programs or mainly
aim at finding structural (certainly not simulation-based) differences between
two given services and are therefore not applicable to find the most similar
service from a large set (cf. Table 2) of candidates.

7 Conclusion and Future Work

We presented an edit distance to compute the edit actions necessary to correct
a faulty service to interact deadlock-freely in a choreography. The edit distance
(i. e., the actions needed to fix the service) can be automatically calculated using
a prototypic implementation. Together with translations from [10] and to [34]
BPEL processes and the calculation of the characterization of all correct partner
services (the operating guideline) [6,11], a continuous tool chain to analyze and
correct BPEL-based choreographies is available. As the edit distance itself bases
on service automata, it can be easily adapted to other modeling languages such
as UML activity diagrams [35] or BPMN [7] using Petri net or automaton-based
formalisations.

However, a lot of questions still remain open. First of all, the choice which
service causes the deadlock and hence needs to be fixed is not always obvious and
needs further investigation. For instance, the choreography of Fig. 1 could also
have been fixed by adjusting the airline service. Another aspect to be considered
in future research is the choice of the cost function used in the algorithm, because
it is possible to set different values for any transition pairs. Semantic information
on message contents (e. g., derived from an ontology) and relationships between
messages can be incorporated to refine the correction. For example, the insertion
of the receipt of a confirmation message can be penalized less than the insertion
of sending an additional payment message.

Another important field of research is to further increase the performance of
the implementation by an early omission of suboptimal edit actions. For instance,
heuristic guidance metrics such as used in the A∗ algorithm [36] may greatly im-
prove runtime performance. Finally, a translation of the matching edit distance
of Def. 4 into a linear optimization problem [37] may also help to cope with
cyclic and nondeterministic services.

146 N. Lohmann

Acknowledgements. The author wishes to thank Oleg Sokolsky for the sources
of his implementation, Christian Stahl for his feedback on an earlier version
of this paper, and the anonymous referees for their valuable comments. Niels
Lohmann is funded by the DFG project “Operating Guidelines for Services”
(WO 1466/8-1).

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Commun.
ACM 44(4), 71–77 (2001)

2. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
IJCIS 13(4), 337–368 (2004)

3. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: ICWS 2007, pp. 296–303. IEEE, Los Alamitos (2007)

4. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0,
April 11, 2007. OASIS Standard, OASIS (2007)

5. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Veri-
fication and participant synthesis. In: WS-FM 2007. LNCS, vol. 4937, pp. 46–60.
Springer, Heidelberg (2008)

6. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

7. OMG: Business Process Modeling Notation (BPMN) Specification. Final Adopted
Specification, Object Management Group (2006), http://www.bpmn.org

8. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

9. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

10. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: WS-
FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)

11. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

12. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

13. Schmidt, K.: Controllability of open workflow nets. In: EMISA 2005. LNI, vol. P-75,
pp. 236–249, GI (2005)

14. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. on SMC 13(3), 353–362 (1983)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Dokl. 10(8), 707–710 (1966)

16. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J.
ACM 21(1), 168–173 (1974)

17. Tsai, W., Fu, K.: Error-correcting isomorphisms of attributed relational graphs for
pattern analysis. IEEE Trans. on SMC 9(12), 757–768 (1979)

18. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Hei-
delberg (2006)

19. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and merging of statecharts specifications. In: ICSE, pp. 54–64. IEEE Computer
Society, Los Alamitos (2007)

http://www.bpmn.org

Correcting Deadlocking Service Choreographies 147

20. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997)

21. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
22. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for

service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 237–254. Springer, Heidelberg (2006)

23. Wu, J., Wu, Z.: Similarity-based Web service matchmaking. In: IEEE SCC, pp.
287–294. IEEE Computer Society, Los Alamitos (2005)

24. Bianchini, D., Antonellis, V.D., Melchiori, M.: Evaluating similarity and differ-
ence in service matchmaking. In: EMOI-INTEROP. CEUR Workshop Proceedings,
CEUR-WS.org, vol. 200 (2006)

25. Günay, A., Yolum, P.: Structural and semantic similarity metrics for Web service
matchmaking. In: Psaila, G., Wagner, R. (eds.) EC-Web 2007. LNCS, vol. 4655,
pp. 129–138. Springer, Heidelberg (2007)

26. Dijkman, R.M.: A classification of differences between similar BusinessProcesses.
In: EDOC, pp. 37–50. IEEE Computer Society, Los Alamitos (2007)

27. Dijkman, R.: Diagnosing differences between business process models. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, pp. 132–147. Springer,
Heidelberg (2008)

28. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg
(2007)

29. Zhao, X., Liu, C.: Version management in the business process change context.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
198–213. Springer, Heidelberg (2007)

30. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process
model differences in the absence of a change log. In: Dumas, M., Reichert, M.,
Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg
(2008)

31. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

32. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation
for service interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

33. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW 2007, pp. 993–1002. ACM,
New York (2007)

34. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Modellierung 2008. LNI, vol. P-127, pp.
57–72, GI (2008)

35. OMG: Unified Modeling Language (UML), Version 2.1.2. Technical report, Object
Management Group (2007), http://www.uml.org

36. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths in graphs. IEEE Trans.Syst. Sci. and Cybernetics SSC-
4(2), 100–107 (1968)

37. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & sons,
Chichester (1998)

http://www.uml.org

	Correcting Deadlocking Service Choreographies Using a Simulation-Based Graph Edit Distance
	Introduction
	Service Models
	Service Automata and Operating Guidelines
	Fixing Deadlocking Choreographies

	Graph Similarities
	A Matching-Based Edit Distance
	Simulation-Based Edit Distance
	Combining Formula-Checking and Graph Similarity
	Matching-Based Edit Distance

	Complexity Considerations and Experimental Results
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

