

Lecture Notes in Computer Science 5240
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marlon Dumas Manfred Reichert
Ming-Chien Shan (Eds.)

Business Process
Management

6th International Conference, BPM 2008
Milan, Italy, September 2-4, 2008
Proceedings

13

Volume Editors

Marlon Dumas
University of Tartu
J Liivi 2, 50409 Tartu, Estonia
E-mail: marlon.dumas@ut.ee

Manfred Reichert
University of Twente
Department of Computer Science
Information Systems Group
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail: m.u.reichert@cs.utwente.nl

Ming-Chien Shan
SAP Labs
LLC 3475 Deer Creek Road, Palo Alto, CA 94304, USA
E-mail: ming-chien.shan@sap.com

Library of Congress Control Number: 2008933578

CR Subject Classification (1998): H.3.5, H.4.1, H.5.3, K.4, K.6, J.1

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-85757-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85757-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12465750 06/3180 5 4 3 2 1 0

Preface

BPM 2008 is the sixth international conference in a series that provides the most
distinguished specialized forum for researchers and practitioners in business pro-
cess management (BPM). The conference has a record of attracting innovative
researchof thehighest quality related to all aspects ofBPMincluding theory, frame-
works, methods, techniques, architectures, standards, and empirical findings.

BPM 2008 was held in Milan, Italy, on September 2–4, 2008, and was orga-
nized by the Information Systems Research Group of the Department of Electron-
ics and Information of the Politecnico di Milano. The present volume contains the
research, industry, and prototype demonstration papers accepted for presentation
at the conference.

This year, we received 154 full paper submissions. These submissions came
from authors located in 36 different countries, geographically distributed as fol-
lows: 101 submissions originated from Europe, 19 from Australia, 16 from Asia,
14 from America, and 4 from Africa. As in previous years the paper selection
process was extremely competitive. After a thorough refereeing process in which
every paper was reviewed by between 3 and 5 program committee members,
only 23 of the 154 submissions were accepted, leading to an acceptance rate just
below 15%. Among the 23 accepted papers, there are 20 research papers and 3
industry papers.

In addition to these 23 papers, 3 invited keynote presentations were delivered
by Paul Harmon (Executive Editor and Founder, BPTrends, USA), Michael
Rosemann (Queensland University of Technology, Australia), and Peter Dadam
(University of Ulm, Germany). We are very grateful to the keynote speakers for
their contributions.

In conjunction with the main conference, nine international workshops took
place the day before the conference. These workshops have fostered the exchange
of ideas and experiences between active BPM researchers, and stimulated dis-
cussions on new and emerging issues in line with the conference topics. The
proceedings with the papers of all workshops will be published in a separate
volume of Springer’s Lecture Notes in Business Information Processing series.
Finally, the present volume contains 6 prototype demonstration papers that were
selected out of 15 demo submissions by the demo chairs and the reviewing com-
mittee they appointed.

We owe special thanks to all senior and regular members of the Program Com-
mittee of BPM 2008 as well as their sub-referees for their work. We are also very
grateful to the numerous people who were involved in the organization of the BPM
conference and its satellite events. In particular, we would like to thank the Gen-
eral Co-chairs – Barbara Pernici and Fabio Casati – as well as Danilo Ardagna for
his outstanding support as Organization Chair of BPM 2008. We would also like
to thank MassimoMecella and Jian Yang (Workshop Co-chairs),Malu Castellanos

VI Preface

and Andreas Wombacher (Demo Co-chairs), Vincenzo d’Andrea and Heiko
Ludwig (Tutorial / Panel Co-chairs), and the many other colleagues who con-
tributed to the success of BPM 2008. Finally, we thank the conference sponsors
for their support in making BPM 2008 another successful event in the series.

June 2008 Marlon Dumas
Manfred Reichert
Ming-Chien Shan

Conference Organization

General Chairs

Fabio Casati, University of Trento, Italy
Barbara Pernici, Politecnico di Milano, Italy

Program Chairs

Marlon Dumas, University of Tartu, Estonia & Queensland University of
Technology, Australia

Manfred Reichert, University of Ulm, Germany

Industry Chair

Ming-Chien Shan, SAP Labs, Palo Alto, USA

Senior Program Committee

Wil van der Aalst, The Netherlands
Boualem Benatallah, Australia
Peter Dadam, Germany
Jörg Desel, Germany
Schahram Dustdar, Austria
Johann Eder, Austria
Gregor Engels, Germany
Claude Godart, France
Kees van Hee, The Netherlands
Arthur ter Hofstede, Australia
Stefan Jablonski, Germany
Frank Leymann, Germany
Barbara Pernici, Italy
Michael Rosemann, Australia
Jianwen Su, USA
Mathias Weske, Germany

Program Committee

Alistair Barros, Australia
Djamal Benslimane, France
M. Brian Blake, USA

VIII Organization

Shawn Bowers, USA
Chris Bussler, USA
Jorge Cardoso, Portugal
Jinjun Chen, Australia
Valeria De Antonellis, Italy
Asuman Dogac, Turkey
Maria Grazia Fugini, Italy
Harald Gall, Switzerland
Dimitrios Georgakopoulos, USA
Peter Green, Australia
Paul Grefen, The Netherlands
Manfred Hauswirth, Ireland
Marta Indulska, Australia
Gerti Kappel, Austria
Ekkart Kindler, Denmark
Jana Koehler, Switzerland
Akhil Kumar, USA
Heiko Ludwig, USA
Zongwei Luo, Hong Kong
Peri Loucopoulos, UK
Axel Martens, USA
Jan Mendling, Australia
Mirjam Minor, Germany
Michael zur Muehlen, USA
Mike Papazoglou, The Netherlands
Cesare Pautasso, Switzerland
Olivier Perrin, France
Marco Pistore, Italy
Calton Pu, USA
Frank Puhlmann, Germany
Jolita Ralyte, Switzerland
Hajo Reijers, The Netherlands
Wolfgang Reisig, Germany
Stefanie Rinderle, Germany
Domenico Sacca, Italy
Mohand Said-Hacid, France
Shazia Sadiq, Australia
Wasim Sadiq, Australia
Heiko Schuldt, Switzerland
Carine Souveyet, France
Stefan Tai, USA
Farouk Toumani, France
Kunal Verma, USA
Barbara Weber, Austria
Andreas Wombacher, Switzerland

Organization IX

Local Organization Chair

Danilo Ardagna, Politecnico di Milano, Italy

External Reviewers

Sudhir Agarwal
Ali Aı̈t-Bachir
Piergiorgio Bertoli
Sami Bhiri
Devis Bianchini
Ralph Bobrik
Lianne Bodenstaff
Khouloud Boukadi
Gert Brettlecker
Jan Calta
Remco Dijkman
Rik Eshuis
Dirk Fahland
Sergio Flesca
Francesco Folino
Nadine Froehlich
Walid Gaaloul
Christian Gierds
Karthik Gomadam
Genady Grabarnik
Armin Haller
Jon Heales
Thomas Hettel
Anke Hutzschenreuter
Raman Kazhamiakin
Mariana Kessler Bortoluzzi
Jens Kolb
Oliver Kopp
Jochen Kuester
Marcello La Rosa
Gokce Laleci
Steffen Lamparter
Jim Alain Laredo
Tammo van Lessen
Chen Li
Rong Liu
Guo-Hua Liu
Niels Lohmann
Stefan Luckner

Linh Thao Ly
Peter Massuthe
Ana Karla Medeiros
Michele Melchiori
Thorsten Moeller
Ganna Monakova
Hamid Motahari-Nezhad
Michael Mrissa
Kreshnik Musaraj
Dominic Müller
Paul O’Brien
Olivia Oanea
Alper Okcan
Mehmet Olduz
Woosoek Park
Jarungjit Parnjai
Luigi Pontieri
Francesco Pupo
Michael Rabinovich
Jan Recker
Alastair Robb
Terry Rowlands
Ksenia Ryndina
Yacine Sam
Simon Scerri
Marian Scuturici
Samir Sebahi
Dzmitry Shaparau
Zhongnan Shen
Anna Sibirtseva
Ali Anil Sinaci
Giandomenico Spezzano
Christian Stahl
Steve Strauch
Yehia Taher
Michele Trainotti
Fulya Tuncer
Laura Voicu
Konrad Voigt

X Organization

Hagen Volzer
Jochem Vonk
Gabriela Vulcu
Daniela Weinberg
Jan Martijn van der Werf
Karsten Wolf

Daniel Wuttke
Gabriele Zacco
Maciej Zaremba
Zhangbing Zhou
Christian Zirpins

Table of Contents

Invited Talks (Abstracts)

Business Process Management: Today and Tomorrow 1
Paul Harmon

Understanding and Impacting the Practice of Business Process
Management . 2

Michael Rosemann

The Future of BPM: Flying with the Eagles or Scratching with the
Chickens? . 3

Peter Dadam

Regular Papers

Applying Patterns during Business Process Modeling 4
Thomas Gschwind, Jana Koehler, and Janette Wong

Modularity in Process Models: Review and Effects 20
Hajo Reijers and Jan Mendling

Model Driven Business Transformation – An Experience Report 36
Juliane Siegeris and Oliver Grasl

Supporting Flexible Processes through Recommendations Based on
History . 51

Helen Schonenberg, Barbara Weber, Boudewijn van Dongen, and
Wil van der Aalst

Visual Support for Work Assignment in Process-Aware Information
Systems . 67

Massimiliano de Leoni, W.M.P. van der Aalst, and
A.H.M. ter Hofstede

From Personal Task Management to End-User Driven Business Process
Modeling . 84

Todor Stoitsev, Stefan Scheidl, Felix Flentge, and Max Mühlhäuser

The Refined Process Structure Tree . 100
Jussi Vanhatalo, Hagen Völzer, and Jana Koehler

Covering Places and Transitions in Open Nets . 116
Christian Stahl and Karsten Wolf

XII Table of Contents

Correcting Deadlocking Service Choreographies Using a
Simulation-Based Graph Edit Distance . 132

Niels Lohmann

Predicting Coupling of Object-Centric Business Process
Implementations . 148

Ksenia Wahler and Jochen M. Küster

Instantiation Semantics for Process Models . 164
Gero Decker and Jan Mendling

A Probabilistic Strategy for Setting Temporal Constraints in Scientific
Workflows . 180

Xiao Liu, Jinjun Chen, and Yun Yang

Workflow Simulation for Operational Decision Support Using Design,
Historic and State Information . 196

Anne Rozinat, Moe Wynn, Wil van der Aalst,
Arthur ter Hofstede, and Colin Fidge

Analyzing Business Continuity through a Multi-layers Model 212
Yudistira Asnar and Paolo Giorgini

Resource Allocation vs. Business Process Improvement: How They
Impact on Each Other . 228

Jiajie Xu, Chengfei Liu, and Xiaohui Zhao

Detecting and Resolving Process Model Differences in the Absence of a
Change Log . 244

Jochen M. Küster, Christian Gerth, Alexander Förster, and
Gregor Engels

Diagnosing Differences between Business Process Models 261
Remco Dijkman

BPEL for REST . 278
Cesare Pautasso

Scaling Choreography Modelling for B2B Value-Chain Analysis 294
Thomas Hettel, Christian Flender, and Alistair Barros

Evaluation of OrViA Framework for Model-Driven SOA
Implementations: An Industrial Case Study . 310

Sebastian Stein, Stefan Kühne, Jens Drawehn, Sven Feja, and
Werner Rotzoll

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 326
Ahmed Awad, Gero Decker, and Mathias Weske

Table of Contents XIII

Automatic Extraction of Process Control Flow from I/O Operations 342
Pedro C. Diniz and Diogo R. Ferreira

A Region-Based Algorithm for Discovering Petri Nets from Event
Logs . 358

Josep Carmona, Jordi Cortadella, and Michael Kishinevsky

BESERIAL: Behavioural Service Interface Analyser 374
Ali Aı̈t-Bachir, Marlon Dumas, and Marie-Christine Fauvet

Business Transformation Workbench: A Practitioner’s Tool for Business
Transformation . 378

Juhnyoung Lee, Rama Akkiraju, Chun Hua Tian, Shun Jiang,
Sivaprashanth Danturthy, and Ponn Sundhararajan

Oryx – An Open Modeling Platform for the BPM Community 382
Gero Decker, Hagen Overdick, and Mathias Weske

Transforming BPMN Diagrams into YAWL Nets . 386
Gero Decker, Remco Dijkman, Marlon Dumas, and
Luciano Garćıa-Bañuelos

Goal-Oriented Autonomic Business Process Modeling and Execution:
Engineering Change Management Demonstration . 390

Dominic Greenwood

COREPROSim: A Tool for Modeling, Simulating and Adapting
Data-Driven Process Structures . 394

Dominic Müller, Manfred Reichert, Joachim Herbst,
Detlef Köntges, and Andreas Neubert

Author Index . 399

Business Process Management:

Today and Tomorrow

Paul Harmon

BPTrends, USA
pharmon@sbcglobal.net

Companies have been striving to improve their business processes for decades,
but, in the past few years, the emergence of a variety of new software technologies
and the relentless competitive pressures on large companies to outsource and to
develop a worldwide presence has taken the interest in business processes to a
new level of intensity. In this talk we consider some of the roots of today’s interest
in business process management (BPM), the growing resources available to those
who want to undertake business process change, the emerging BPM systems that
seem destined to transform businesses in the next decade, and the implications
this transformation will have for those who work in the new generation of process-
oriented organizations.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, p. 1, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Understanding and Impacting the Practice of

Business Process Management

Michael Rosemann

Queensland University of Technology, Australia
m.rosemann@qut.edu.au

This presentation will explore how BPM research can seamlessly combine the
academic requirement of rigor with the aim to impact the practice of Business
Process Management. After a brief introduction into the research agendas as
they are perceived by different BPM communities, two research projects will
be discussed that illustrate how empirically-informed quantitative and qualita-
tive research, combined with design science, can lead to outcomes that BPM
practitioners are willing to adopt. The first project studies the practice of pro-
cess modeling using Information Systems theory, and demonstrates how a better
understanding of this practice can inform the design of modeling notations and
methods. The second project studies the adoption of process management within
organizations, and leads to models of how organizations can incrementally tran-
sition to greater levels of BPM maturity. The presentation will conclude with
recommendations for how the BPM research and practitioner communities can
increasingly benefit from each other.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Future of BPM: Flying with the Eagles or

Scratching with the Chickens?

Peter Dadam

Institute of Databases and Information Systems, Ulm University, Germany
peter.dadam@uni-ulm.de

Service-oriented architectures, business process management (BPM) systems,
and BPM in general receive a lot of attention these days and the number of
articles which describe the benefits and great potential of these technologies has
significantly increased. It is something like a second wave after the first (and
short) workflow hype in the middle of the 90’s. However, the contemporary
hype in newspapers and IT magazines does not really reflect reality. In fact,
much more companies are still thinking about whether and in which form they
shall introduce these technologies rather than concretely performing projects in
these fields. And many companies which have started respective projects are
still in the phase of designing and implementing (web) services or in evaluat-
ing SOA platforms and repositories of different vendors; i.e., they are still not
bringing (larger) processes into production. Nevertheless, expectations are very
high: Everything will become easier and more flexible, implementation of cross-
organizational processes will become business as usual, and process management
systems will enable new kinds of process-aware applications which have to be
performed manually today. In fact, BPM has a great potential. However, to real-
ize this potential in practice, we have to face much more the challenges of the real
world, we have to learn more seriously from how business processes are executed
today, and we have to understand how actors deal with exceptional situations.
It is not hard to predict what will happen with the current BPM hype if users
discover that they cannot do much more with these technologies than with pre-
vious ones or, even worse, that they can do less. And no organization will accept
to become inflexible. – It is partially up to us, whether BPM will become a big
and sustainable success or whether it will share the fate of many other hypes
(like Computer Integrated Manufacturing at the end of the 80’s). This talk will
present real-world examples from different domains to illustrate where we jump
too short. It will use the ADEPT project [1,2] to show how stimulating it can
be also from a research point of view to face the reality as it is.

References

1. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. J. of Intelligent Information Systems 10(2), 93–129 (1998)

2. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive Process Management
with ADEPT2. In: Proc. ICDE 2005, pp. 1113–1114 (2005)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, p. 3, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Applying Patterns during Business Process Modeling�

Thomas Gschwind1, Jana Koehler1, and Janette Wong2

1 IBM Zurich Research Laboratory,
Switzerland

www.zurich.ibm.com/csc/bit
2 IBM Software Group, Canada

Abstract. Although the business process community has put a major emphasis
on patterns, notably the famous workflow patterns, only limited support for us-
ing patterns in today’s business process modeling tools can be found. While the
basic workflow patterns for control flow are available in almost every business
process modeling tool, there is no support for the user in correctly applying these
simple patterns leading to many incorrectly modeled business processes. Only
limited support for pattern compounds can be found in some tools, there is no
active support for selecting patterns that are applicable in some user-determined
context, tools do not give feedback to the user if applying a pattern can lead to
a modeling error, nor do they trace the sequence of applied patterns during the
editing process.

In this paper, we describe an extension of a business process modeling tool
with patterns to provide these capabilities. We distinguish three scenarios of pat-
tern application and discuss a set of pattern compounds that are based on the basic
workflow patterns for control flow. We present an approach where business users
receive help in understanding the context and consequences of applying a pattern.

1 Introduction

There is wide agreement that patterns can accelerate the process of designing a solution
and reduce modeling time, while at the same time they enable an organization to more
easily adopt best practices [1,2,3]. Patterns enable participants of a community to com-
municate more effectively, with greater conciseness and less ambiguity. Furthermore,
process patterns are considered as an effective means to bridge the Business IT gap.
Bridging this gap is more critical than ever because IT advances have escalated the rate
of development of new business functions and operations [2].

Despite the common belief in the importance of patterns, only limited support for
using patterns in today’s business process modeling tools can be found. While the basic
workflow patterns for control flow [4] are available in most business process modeling
tools and the YAWL system [5] provides all workflow patterns, applying even a basic
pattern is under the full responsibility of the user. It is thus not surprising that most
modeling errors result from incorrect combinations of the exclusive choice, parallel
split, simple merge, and synchronization patterns [6].

� The work published in this article was partially supported by the SUPER project (http://www.
ip-super.org/) under the EU 6th Framework Programme Information Society Technologies Ob-
jective (contract no. FP6-026850).

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 4–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.zurich.ibm.com/csc/bit

Applying Patterns during Business Process Modeling 5

In this paper, we discuss flexible pattern support where users can apply patterns to
unstructured process models, they obtain active support in selecting patterns that are
applicable in some user-determined context, the tool gives feedback to the user if ap-
plying a pattern can lead to a modeling error and it traces the sequence of applied
patterns during the editing process. We focus on the basic workflow patterns for control
flow, because of their frequent usage during business process modeling and discuss a
set of pattern compounds that can be built from them. We present an infrastructure that
automates parts of the pattern application process. The infrastructure analyzes the con-
sequences of applying a pattern with respect to the soundness of the resulting process
model and enables only those patterns that are correctly applicable in a given context,
which we describe using the category of the process fragments to which the pattern is
applied. Information about the fragment category is obtained from the process structure
tree that results from parsing the workflow graph underlying the process model [7,8].

We show how patterns can be integrated in a modeling tool such that they enable
business users to move away from a drawing tool with drag-and-drop editing capabili-
ties to a true business-level process modeling tool that allows users to arrive at models
of higher quality with less effort. Although we only consider control-flow patterns, we
see our contribution as an important prerequisite for extending powerful pattern sup-
port to more concrete business process patterns that describe best practices, because
these patterns will usually contain control-flow information as one essential part of the
pattern description [3]. We do not yet introduce a domain-specific vocabulary for the
control-flow patterns, but we argue that it is necessary to do so in the future to make the
patterns more easily usable by business users.

The paper is organized as follows: In Section 2 we revisit the basic workflow patterns
for control flow and define three scenarios for the application of control-flow patterns
during an iterative process modeling approach: (1) refinement of a single control-flow
edge by applying a block-oriented pattern compound, (2) application of a pattern com-
pound to a pair of selected control-flow edges, (3) application of a basic pattern to a set
of selected control-flow edges. Sections 3, 4, and 5 present the three scenarios of pat-
tern application in more detail. Section 3 also provides details on our infrastructure that
is based on the process structure tree [7] and that enables us to extend the application
of patterns to unstructured process models. Section 6 summarizes initial experiences
with an implementation of the three pattern scenarios in a commercial business pro-
cess modeling tool. The section also discusses the interplay of process patterns, process
refactoring operations, and process model transformation. Section 7 gives an overview
on the state of the art in business process patterns, while Section 8 concludes the paper.

2 The Workflow Patterns Revisited

When talking about business process patterns, many business process experts refer to
the famous workflow patterns [4] that have their origin in comparing the runtime con-
structs available in existing workflow engines. Figure 1 shows the most widely used
subset of the control-flow patterns. We selected these patterns to build active pattern
support into a business process modeling tool.

6 T. Gschwind, J. Koehler, and J. Wong

Parallel SplitExclusive Choice Simple Merge Synchronization

Sequence Arbitrary Cycles

t1

t3

t2

t1

t3

t2

t2

t3

t1

t2

t3

t1

t1 t3t2 t1 t3t2 t4 t5

Fig. 1. The five basic workflow patterns exclusive choice, parallel split, simple merge, synchro-
nization and sequence. In addition, the arbitrary cycles pattern as the most frequently occurring
pattern for iteration [4].

The patterns as shown in Figure 1 are of course available in most business process
modeling tools in the form of gateway icons that business users can drag and drop on
a canvas and connect to other modeling elements. Unfortunately, this availability of the
patterns in today’s modeling tools is insufficient to enable users to successfully reuse
proven solutions to recurring problems. The workflow patterns are too fine-grained and
not sufficiently enriched with information on the context and consequences to represent
a reusable solution. A possible alternative, as for example implemented in the ADEPT2
system [9,10], is to offer block-structured pattern compounds and change patterns that
allow users to model structured workflows by an editing process where processes are
sound by construction.

In this paper, we are especially interested in pattern-support for the editing of un-
structured process models where the soundness of these models is not guaranteed by
construction. We developed a pattern-based modeling prototype by extending the com-
mercial modeling tool IBM WebSphere Business Modeler with pattern compounds that
we built from the basic control-flow patterns. Our special emphasis is on pattern se-
quences, i.e., how a model unfolds pattern by pattern and how a user creates an unstruc-
tured model by applying patterns in an iterative and tool-supported modeling process.

The process models that we consider are generalizations of workflow graphs that
permit multiple start and end events. Following [11] we define them as follows:

A business process model is a directed graph G = (N, E) where each node n ∈ N
is either a start or end event, an activity, or a gateway with the gateways partitioned into
the types exclusive choice, parallel split, simple merge, and synchronization, satisfying
the following conditions

1. there is at least one start event and at least one end event; each start event has no
incoming edges and exactly one outgoing edge, whereas each end event has exactly
one incoming edge but no outgoing edges,

2. the exclusive choice and parallel split have exactly one incoming edge and two or
more outgoing edges, whereas the simple merge and synchronization have two or
more incoming edges and exactly one outgoing edge; each activity has exactly one
incoming and exactly one outgoing edge,

3. the graph is connected and each node n ∈ N is on a path from a start to an end
event.

Applying Patterns during Business Process Modeling 7

We are adopting BPMN notation to draw the process models and pattern structures.
This means that we use a diamond to depict a gateway and in the case of a parallel split
or synchronization, a plus sign is added to the diamond. Activities are depicted with
rounded corner rectangles, while a start event is depicted with an empty circle and an
end event is depicted with a thick circle.

Table 1 gives an overview of three pattern application scenarios that we discuss
in this paper. Each scenario is applicable to process models that are still unfinished,
i.e., they may not fully comply to the definition above.

Table 1. Overview of pattern application scenarios

Sc. selected process elements applied pattern compound source target

1 single edge well-formed sound block sound sound
2 pair of edges gateway-guarded control flow sound sound/unsound
3 set of edges gateway sound/unsound sound/unsound

In Scenario 1, a user selects a single edge in a model. This edge is replaced by a
pattern compound that represents a well-formed process fragment. The user has four
choices of pattern compounds that he can apply: sequence, parallel compound, alter-
native compound, and cyclic compound. This form of pattern application (sometimes
also denoted as transition refinement) is always possible in our tool. When applied to
a sound process model or fragment thereof, it preserves the soundness, i.e., it cannot
introduce any modeling errors. Section 3 discusses this scenario in more detail.

By soundness of a process model, we mean the absence of deadlocks and lack of
synchronization. In other words, no situation occurs where some part of the process is
waiting indefinitely for another part of the process and no part of the process executes
more often than intended because of two tokens that occur on the same edge. A for-
mal account of soundness would go beyond the scope of this paper, but can be found
in [12,7].

In Scenario 2, a user selects a pair of edges in the model to which he can add a new
gateway-guarded control flow. Two pattern compounds are available to the user which
we denote as alternative branch and parallel branch. This scenario allows the user to
also create arbitrary cycles. The pattern application is always possible, but an unshielded
application can introduce new modeling errors, i.e., a process or fragment with a sound
underlying workflow graph can become unsound. We describe this scenario in Section 4
and discuss how potential soundness problems can be discovered and prevented.

In Scenario 3, the user selects a set of edges to redirect existing control flow such that
it starts or ends in a newly introduced gateway. In this scenario, the basic control-flow
patterns are directly available to the user. They can be applied to any process model or
fragment thereof and either maintain soundness, yield an unsound model or correct an
unsound model into a sound one. In Section 5 we describe an infrastructure that alerts
the user of these situations and thereby extends the limited support for basic workflow
patterns that is available today.

Our scenarios differ by the user-triggered selection of modeling elements and by the
class of process models that the user can create with the patterns that are available for

8 T. Gschwind, J. Koehler, and J. Wong

each selection. The focus on the selection of modeling elements is important to help
business users understand how to apply a pattern. Furthermore, it provides them with
a simple and systematic description of the context of a selected pattern in the form of
the surrounding process fragment, and the consequences in terms of soundness of the
resulting model, while the modeling tool exploits this information to automate the pat-
tern application. We believe that a higher degree of automation is essential because we
are addressing non-technical users in contrast to software developers who traditionally
apply software patterns in a mostly manual process.

3 Scenario 1: Applying Patterns to a Single Edge

Our first scenario has been widely studied by the workflow community, e.g., as a form
of transition refinement [13]. We introduce it here in order to review some essential
prerequisites for structured workflow modeling that we then gradually relax in Scenar-
ios 2 and 3. Scenario 1 provides the user with the most simple form of application of
a pattern where he can select a single control-flow edge to further refine the business
process model. Instead of selecting a single edge, the user can also select a single ac-
tivity in the process model. In this case, our tool assumes that with this selection, the
single outgoing control-flow edge of this activity is selected, i.e., the pattern is applied
following the activity in the control flow.1

In this scenario, we provide users with pattern compounds that represent a well-
formed and sound block-structured fragment of a process. These pattern compounds
have been studied within the context of structured workflows [14,15,16,17] and are
also available in ADEPT2 [9,10]. Four types of block-structured pattern compounds
are available to the user:

– sequence: a totally ordered set of connected activities,
– parallel compound: a parallel split followed by a synchronization that are connected

by two or more branches containing one or more activities2,
– alternative compound: an exclusive choice followed by a simple merge,
– cyclic compound: a simple merge followed by an exclusive choice.

Figure 2 illustrates this mode of pattern application, which restricts the user to model
structured workflows, but which are guaranteed to be sound by construction. The initial
sequence of activities in this example can be either created manually or by using the se-
quence pattern. Alternatively, we offer an auto-link transformation where the user only
places the activities that he wants to be part of the initial sequence in an approximate
horizontal arrangement. Then he invokes the auto-link transformation that takes a set
of horizontally arranged activities and produces a fully connected sequential process
model including a start and an end event.

Aalst [14] and Kiepuszewski et al. [15] showed that only a subset of all work-
flow graphs can be generated when using block-structured process fragments. However,

1 We do not consider here the refinement of a single activity into a subprocess, which is a com-
pletely different scenario.

2 The number of branches and the names of activities can be provided as parameters when
invoking the pattern.

Applying Patterns during Business Process Modeling 9

a1 a2

a5

c1

a3

a1 a2 a3

...

...a5

a1 a2 a4a3

...a5

a1 a2 a4a3

ck

A

D

C

B

bn

b1

C

bn

b1

a4

B

B

A

A

apply sequence pattern compound

apply cyclic pattern compound

apply parallel pattern compound

apply alternative pattern compound

Fig. 2. Sound refinement of a process model by applying block-structured pattern compounds to
a single edge

modeling block-structured processes is practically relevant for two reasons: First, these
models are more comprehensible to human users [18]. Secondly, they can be directly
mapped to structured process execution languages such as BPEL and thus make it much
easier to go from business to IT.

In order to trace the successive application of patterns, i.e., the pattern sequence,
and to determine the context under which a pattern can be correctly applied, we use
the process structure tree (PST) [7,8] and the notion of category of a fragment. In
Scenario 1, illustrated by Figure 2, the PST is used to trace the successive application
of patterns by the user. Scenarios 2 and 3 will illustrate how the PST together with
the category notion can be used to help a user correctly apply patterns to unstructured
process models.

The PST results from parsing the workflow graph of the process model. It repre-
sents a unique decomposition of a workflow graph into canonical SESE fragments,
which are either disjoint or fully nested in each other. A SESE fragment is a non-empty
subgraph of the workflow graph that is bordered by a single-entry and a single-exit
(SESE) edge [7] or node [8]. The dotted rounded-corner rectangles in Figure 2 show
the SESE edge fragments of the example. Note that only maximal sequences are canon-
ical fragments, e.g., the sequence containing activity a1 followed by fragment D is not a

10 T. Gschwind, J. Koehler, and J. Wong

canonical fragment, because fragments a2, a3, and B are part of the same sequence. The
PST can be computed in linear time. It is unique and modular, i.e., a local change of the
workflow graph only causes a local change of the decomposition. It is as fine-grained
as possible when using SESE node fragments [8].

To determine whether a pattern can be correctly applied, the category of a fragment is
important, which is defined by syntactic properties of the underlying workflow graph.
Well-structured, acyclic concurrent, unstructured alternative, and complex fragments
were proposed in [7]. Other categorizations can be defined instead, i.e., we define and
use our own categories sequence, alternative branching (an arbitrary number of XOR-
splits and XOR-joins that must be cycle-free), parallel branching (an arbitrary number
of AND-splits and AND-joins that must be cycle-free), and cyclic alternative branch-
ing, which is an alternative branching that is not cycle-free. Fragments in these cate-
gories are known to be sound. Figure 3 illustrates the categories parallel branching and
cyclic alternative branching with two unstructured example models.

a1

a2

a3

a4

a5
a1

a2

a3

a4 a5 a6

a7 a8

Fig. 3. Fragment categories parallel branching (left) and cyclic alternative branching (right)

Figure 4 shows the PST for the example of Figure 2 based on SESE edge fragments.

A

B

C

D

sequence

1. cyclic compound

2. parallel compound

3. alternative compound

alternative branching cyclic alternative branching

parallel branching

0. sequence

Fig. 4. The process structure tree

The nodes of the PST, which represent the fragments, are annotated with the category
of the fragment. The edges are annotated with a number and pattern name providing us
with the history of pattern application, i.e., the pattern sequence that the user applied
in this example: 0. sequence, 1. cyclic compound, 2. parallel compound, 3. alternative
compound. Applying patterns in Scenario 1 adds new fragments to the tree. When ap-
plying the patterns of Scenario 2 and 3, fragments and their category can change locally
in the PST, e.g., a fragment can also disappear.

Applying Patterns during Business Process Modeling 11

4 Scenario 2: Applying Patterns to a Pair of Edges

As refining process models with block-structured patterns is very limiting for many
business modeling scenarios, we now consider a first generalization where the user
selects an ordered pair of edges (s, t). The first selected edge s is considered the source
of the new flow and the second selected edge t is considered its target. The user can
select any two edges as source and target edges.3

In this scenario, we support two pattern compounds alternative branch and parallel
branch that the user can apply to establish a new control flow between the source and the
target. We provide the pattern compounds in the form of gateway-guarded control-flow
edges:

– alternative branch: an exclusive choice with a single outgoing edge leading to a
simple merge,

– parallel branch: a parallel split with a single outgoing edge leading to a synchro-
nization.

Figures 5 and 6 illustrate a typical example of this pattern application scenario. In
Figure 5 we see part of a mortgage approval process with two alternative branches. If
the customer is not creditworthy, a rejection is sent by the bank and the application by
the customer is closed. If the customer is creditworthy, a mortgage offer is sent, the
documents are completed, and an account is set up for paying out the mortgage and the
mortgage is registered.

Send
Rejection

…

Close
Application

Complete
Documents

Set up Account &
Register Mortgage

Customer
Creditworthy?

Send
Mortgage Offer

Yes

No

s

t

Fig. 5. Example of a simple mortgage approval process

When taking a closer look at this process model, we notice that it assumes that the
customer accepts the mortgage offered by the bank. However, this may not always be
the case. If the offer is rejected by the customer, the bank employee should contact the
customer to find out why and then also close the application. To achieve this change in
the process model, the user selects the edges s and t as the source and target and applies
the alternative branch pattern. The result can be seen in Figure 6. In a parameterized
version of this pattern, a list of activities can be provided that is placed on the newly
added branch.

In this example, the user transforms a structured model into an unstructured, but
sound model. If the user had applied the parallel branch pattern compound to Figure 5,
a deadlock error would have been introduced. In order to prevent such situations, knowl-
edge of the fragment categories maintained within the PST is essential when patterns

3 Alternatively, a user can select two activities where the tool takes the outgoing edge of the first
activity as the source and the incoming edge of the second activity as the target.

12 T. Gschwind, J. Koehler, and J. Wong

Contact Customer

Send
Rejection

…

Close
Application

Complete
Documents

Set up Account &
Register Mortgage

Customer
Creditworthy?

Send
Mortgage Offer

Yes

No

Customer
Accepts?

No

Yes

Fig. 6. Adding an alternative branch pattern to two selected edges

are applied to a pair of edges. In this example, the user selects two edges that belong
to two different fragments of type sequence that each comprise one of the decision
branches for the Customer Creditworthy? decision. The pattern application destroys
these fragments. They are replaced by four smaller fragments of type sequence—two
on each branch. Their parent fragment, which spawns the process fragment of Figure 5,
remains unchanged and also preserves its type acyclic sequential branching.

The tool guides the user in applying the pattern compounds by analyzing the SESE
fragments that contain the selected edges. If the selected pair of edges is a pair of en-
try/exit edges of a SESE fragment, all pattern compounds that we discussed for Sce-
narios 1 and 2 are applicable independently of the category of the fragment. If the user
selects a pair of edges where at least one of the edges is not an entry or exit edge of
a fragment, an analysis of the SESE fragments surrounding the selected edges needs
to be performed. The tool analyzes the SESE fragments containing the source and tar-
get edge and all those SESE fragments that enclose these fragments up to the smallest
SESE fragment that contains both edges. All fragments have to be of the same category,
which decides if a parallel or alternative branch can be applied to the edges, see Table 2.

Table 2. Soundness of pattern application based on fragment category

Fragment category adding cycle allowed? parallel branch alternative branch

sequence yes × √

sequence no
√ ×

cyclic alternative branching yes × √

parallel branching no
√ ×

Rows 1 and 2 show that if the fragment categories are a simple sequence of activities,
both branch patterns are applicable to a selected pair of edges. However, only the alter-
native branch pattern is permitted to add a cycle to the process model (row 1). Adding
a parallel branch such that a cycle is introduced would lead to a deadlock and is thus
not permitted (row 2). The (acyclic) alternative branching is a special case of the cyclic
alternative branching and is thus subsumed by row 3. Adding an alternative branch to
a parallel branching fragment is not permitted, because it would introduce a lack of
synchronization error (row 4).

If the selected edges do not satisfy the conditions with respect to the fragment cat-
egories or if the process model is known to be unsound, patterns can still be applied
in our current prototype, because we do not want to constrain the user too much in

Applying Patterns during Business Process Modeling 13

using the pattern-based editing capability. However, a warning, but no further guidance
is given to the user. Note that it is not possible to eliminate a deadlock or lack of syn-
chronization error by only applying one of the six pattern compounds that we discussed
so far.

5 Scenario 3: Applying Patterns to a Set of Edges

In our last scenario, we consider the most general situation where the user has selected a
set of two or more edges or nodes. This means, the selections possible in Scenario 2 can
occur here as well, but we consider application scenarios for the basic patterns parallel
split, synchronization, exclusive choice, and simple merge. When applying the basic
patterns to unsound fragments, it is possible for the user to correct modeling errors.

We want to support users selecting nodes in addition to selecting edges because in the
midst of editing a process model, it is common to encounter nodes without connecting
edges yet and applying patterns to nodes can be very useful to complete the editing. On
the other hand, it is not usual to have dangling edges without nodes, because business
process modeling tools make users add nodes first and then allow them to connect the
nodes with edges. We support three situations if nodes are selected:

1. all selected nodes have incoming edges, but no outgoing edges,
2. all selected nodes have outgoing edges, but no incoming edges,
3. all nodes are fully disconnected, i.e., have neither incoming nor outgoing edges.

In situation (1), a new outgoing edge is added to each node and the synchronization
or simple merge pattern is enabled depending on the fragment type returned for the
selection. In situation (2), a new incoming edge is added to each node and the parallel
split or exclusive choice pattern is enabled. In situation (3), all four basic patterns are
enabled and depending on the selection of a pattern by the user, either a new outgoing
or incoming edge is added to each node.

Currently, we impose very restrictive constraints when applying the basic patterns
to a selection of nodes or edges. For example, a synchronization pattern can be added
if a parallel split is found in the process model from which all selected nodes or edges
can be reached without encountering other non-AND gateways along the path. Similar
conditions can be formulated for the other three basic patterns.

Figure 7 illustrates an example situation. In case that the user only selects activities
a3, a4, and a5 in the process model shown in the left, the exclusive choice is found
that can only be correctly matched with a simple merge. If in addition, a1 is selected
as well, the parallel split is found, but on three of the four paths, the exclusive choice
is encountered. In such a situation, more than one pattern must be applied as is shown
in the right of the figure, which requires refactoring techniques that are subject of our
ongoing work [19]. The same challenges occur when the user selects a set of edges.
Again, we constrain the pattern application as described above. In addition, we have to
consider the nodes that are connected by the selected edges.

Figure 8 illustrates an example process where the user wants to introduce two join
points in the process flow. With his first selection e1, e2, e3, the user wants to join the
three parallel flows to allow the doctor to talk to the patient after having worked out the

14 T. Gschwind, J. Koehler, and J. Wong

a1

a2

a3

a4

a5

?

a1

a2

a3

a4

a5

Fig. 7. Applying a single basic pattern to merge or synchronize all selected nodes/edges is not
possible without introducing an error into the process model. Instead, two basic patterns must be
applied.

Write
Prescription

…

Take
Medication

View
Specialist

Appoint second
Specialist

Set up
Physiotherapy

Do
Exercises

e1

e2

e3

e4

e5

e6

Fig. 8. A medical example process with two edge selections e1, e2, e3 and e4, e5, e6

patient’s prescriptions. With his second selection e4, e5, e6, the user wants to join the
individual process ends and allow the doctor to review the treatment results with the
patient.

Figure 9 shows the result of applying two synchronization patterns to the example,
each parameterized with an activity that follows the added AND-Join.

Write
Prescription

…

Take
Medication

View
Specialist

Appoint second
Specialist

Set up
Physiotherapy

Do
Exercises

Coordinate
With Patient

Review Results
With Patient

Fig. 9. Selecting a set of edges for joining leads to a fusion of nodes into a single node when
they are identical. In the case of different nodes, applying a pattern to join branches also requires
applying another pattern to split the branches again, because the nodes cannot be merged.

Applying the synchronization pattern to the first selection e1, e2, e3 requires the in-
troduction of an additional AND-Split following the AND-Join resulting from the pat-
tern, because the subsequent activities cannot be merged. In the case of gateways, a
merging is sometimes possible, but it may not always be desired by the user. We take a
conservative approach so far and do not merge gateways. When applying the synchro-
nization pattern to the second selection e4, e5, e6, the end events can be merged into
a single node and no additional gateway is needed. After having applied the two pat-
terns, the process can be further improved by for example applying the cyclic pattern
compound to iterate the prescription and treatment for the patient if necessary.

Applying Patterns during Business Process Modeling 15

6 Implementation and Validation of Pattern-Based Editing

Figure 10 shows a screen capture of our prototype implementation where we added
pattern support in the form of additional plug-ins to IBM WebSphere Business Mod-
eler, which is an Eclipse-based commercial business process modeling tool. As not
all process models can be generated with the patterns and pattern compounds that we
described in this paper, we also provide the user with refactoring and transformation
operations in addition to the normal editing capabilities.

Fig. 10. Context-sensitive pattern availability when selecting a pair of edges within a parallel
branching fragment

Our set of currently implemented transformations has been described in [20] and in-
cludes a first prototype of a transformation that introduces data flow. We plan to extend
this set of transformations by adopting and extending transformations that have been
described in [14,16,17,21]. Several of these transformations require a tool to verify the
soundness of the process model to which they are applied or that they create. With the
linkage of our transformations and patterns to the PST and its fragments, we have laid
the foundation to perform these checks much faster. In many practical cases a process
model only contains simply structured fragments where soundness can be decided in
linear time. For the general case, we currently develop a complete soundness checker
that we can can invoke on complex fragments. The feedback to the user about potential
modeling errors that can be introduced into a model when applying a pattern is clearly
valuable to increase the quality of the process models.

One can easily demonstrate that by applying patterns, transformations, and refactor-
ing operations on a business process model, many time-consuming editing operations
can be replaced by a single click [20]. A first adoption of the plug-ins by IBM con-
sultants showed that on average about 10% of the modeling time can be saved with

16 T. Gschwind, J. Koehler, and J. Wong

up to 70% of the pure editing time. About 50% of all users who installed the plug-ins
use them frequently in their daily work. Approx. 10% find them very easy to use, while
two-thirds said that they need practice. 90% of all users confirmed that the plug-ins help
them in improving the quality of their models.

Adding pattern-based support for data flow was the most frequently requested exten-
sion of the plug-ins. When applied to a single edge, patterns can inherit the data flow
from the single edge. If several edges are selected that carry different data items, many
possible ways to resolve such a situation exist that we currently explore. Our approach
can also be extended to activities that have multiple incoming and outgoing edges, but
then requires different disambiguation techniques to determine the edges to which a
pattern must be applied in case the user selects one or more activities. As such a dis-
ambiguation is not always possible, slightly modified patterns with more constrained
application conditions must be developed.

7 Related Work

A growing divide in the patterns world is discussed that opens between the pattern ex-
perts who continue to document patterns and the pattern users who are rarely aware
of relevant patterns and understand how to leverage and apply them [22]. Only little
adoption of patterns by practitioners is observed leading to a rather low impact of the
pattern experts on the expected pattern users. The reason for the low adoption of pat-
terns is located in the difficulty to find, contextualize, and compose patterns. “To use a
cooking analogy, what they find is a list of ingredients when what they really want is
a recipe” [22]. This observation is more than true for the business user working with a
business process modeling tool today.

In order to enable users to adopt and actively use patterns, tools must allow users
to build applications by progressively applying patterns. However, how and if patterns
can be built into tools is a hot debate [23]. Following the pioneering work by Gamma
et al. [24], patterns must be thoroughly described by the commonly recurring problem,
the context and consequences of applying the pattern, and the solution provided by the
pattern itself. Understanding the context and consequences related to a specific pattern
is a very important human-centered task. Tools that help users in achieving this task
must provide active support to select patterns and apply them in composition steps
towards creating a complete solution for a particular scenario. The challenge is that
“tools that work with patterns would have to be able to semantically understand your
design as well as the pattern’s trade-offs” [23]. By linking pattern application to the
process structure tree, its fragment categories and their soundness, we have built an
initial semantic understanding into our business process modeling tool.

Process patterns are found at three levels of abstraction [3]: (1) abstract process
patterns that capture generic process structures applicable to any process, (2) gen-
eral process patterns that capture proven process elements applicable across different
domains, (3) concrete process patterns that capture hands-on experience and best prac-
tices for recurring business functions in a specific domain. The most prominent exam-
ple of abstract patterns are probably the famous workflow patterns for control flow [4],
which have also been complemented by patterns for data flow and resources. Examples

Applying Patterns during Business Process Modeling 17

of general process patterns are discussed in [25,26]. A famous collection of concrete
process patterns is [27]. Further examples of concrete process patterns are discussed
in [28,29,30]. All three levels of process patterns can be built into a business pro-
cess modeling tool. While it is argued that many abstract patterns can provide sig-
nificant opportunities for reuse [3]—hence our initial focus on the basic control-flow
patterns—it is also emphasized that patterns should be presented in the domain vocabu-
lary of the business user [31] for easier recognition and application, which we have not
addressed yet.

Three building blocks of a process pattern-based approach are proposed that must
be built into a tool [3]: (1) a pattern inventory, (2) support for pattern selection and
(3) pattern realization. Only the ADEPT2 system [9,10], with which we coincide on
Scenario 1, seems to implement solutions for the pattern inventory and the selection and
realization phases. Some abstract use cases have also been formulated: they comprise
the listing, insertion, connection, visualization, and removal of patterns [30] of which
we address the context-sensitive listing and the correct insertion of a pattern in a process
model in this paper. Palettes that group patterns for specific purposes are discussed
in [29,30] and a concrete design of such a palette is shown in [20].

A significant part of research is devoted to pattern languages. An example of such
a pattern language for processes implemented in a service-oriented architecture is dis-
cussed in [25], while [32,33] describe a visual pattern language for the representation
and enforcement of quality constraints in process models. UML-based metamodels and
pattern languages are proposed in [34,35,28]. An application of domain-specific model-
ing languages for the IT-oriented refinement of business processes is discussed in [36].
In this paper, we do not focus on a specific representation of patterns in some language
or metamodel, but present an initial collection of patterns for specific scenarios that we
found useful for business users.

Unfortunately, very few practical recommendations for the reuse of process patterns
are given to business users. Havey [37] emphasizes the need for high quality, but gives
only two very simplistic and not so easy to follow recommendations: keep a process
model to a size that it fits on a single page (if necessary by using subprocesses) and
model in a coarse-grained way, i.e., focus on the main process activities. Our active
guidance of the user in applying a pattern helps us to go beyond approaches of syntax-
based editing [38] that constrain editing operations by syntactic properties of a model,
because we focus on a linkage to a semantic analysis addressing soundness.

8 Conclusion

In this paper, we present three different scenarios of pattern application in a business
process modeling tool. For each scenario, we discuss a set of patterns and pattern com-
pounds that are linked to an effective structural and semantic analysis of the business
process model based on its process structure tree in order to guide the user in applying
a pattern. This analysis helps business users in understanding the context and conse-
quences of applying a pattern and enables the tool to actively support a user during pat-
tern selection and application. Future work will focus on developing a comprehensive

18 T. Gschwind, J. Koehler, and J. Wong

set of patterns, refactoring operations and model transformations for the most frequent
use cases in business process modeling including a refinement of process models with
data flow.

References

1. Buschmann, F., Henney, K., Schmidt, D.: Past, present and future trends in software patterns.
IEEE Software 24(7/8), 31–37 (2007)

2. Medicke, J., McDavid, D.: Patterns for business process modeling. Business Integration Jour-
nal 1, 32–35 (2004)

3. Tran, H., Coulette, B., Thuy, D.: Broadening the use of process patterns for modeling pro-
cesses. In: Proc. SEKE, Knowledge Systems Institute Graduate School, pp. 57–62 (2007)

4. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow patterns. Dis-
tributed and Parallel Databases 14(1), 5–51 (2003)

5. van der Aalst, W., ter Hofstede, A.: Yawl: Yet another workflow language. Information Sys-
tems 30(4), 245–275 (2005)

6. Koehler, J., Vanhatalo, J.: Process anti-patterns: How to avoid the common traps of business
process modeling. IBM WebSphere Developer Technical Journal 10(2+4) (2007)

7. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models though SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

8. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) Proc. BPM 2008. LNCS, vol. 5240, pp. 100–115. Springer,
Heidelberg (2008)

9. Reichert, M., Rinderle, S., Kreher, U., Dadam, P.: Adaptive process management with
ADEPT2. In: 21st Int. Conference on Data Engineering, pp. 1113–1114. IEEE, Los Alamitos
(2005)

10. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

11. Sadiq, W., Orlowska, M.: Analyzing process models using graph reduction techniques. In-
formation Systems 25(2), 117–134 (2000)

12. van der Aalst, W., Hirnschall, A., Verbeek, H.: An alternative way to analyze workflow
graphs. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS,
vol. 2348, pp. 535–552. Springer, Heidelberg (2002)

13. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and Systems.
MIT Press, Cambridge (2002)

14. van der Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

15. Kiepuszewski, B., ter Hofstede, A., Bussler, C.: On structured workflow modeling. In: Wan-
gler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 431–445. Springer, Hei-
delberg (2000)

16. Sadiq, W.: On business process model transformations. In: Laender, A.H.F., Liddle, S.W.,
Storey, V.C. (eds.) ER 2000. LNCS, vol. 1920, pp. 267–280. Springer, Heidelberg (2000)

17. Eder, J., Gruber, W., Pichler, H.: Transforming workflow graphs. In: Proc. INTEROP-ESA,
pp. 203–216. Springer, Heidelberg (2006)

18. Mendling, J., Reijers, H., Cardoso, J.: What makes process models understandable? In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63.
Springer, Heidelberg (2007)

Applying Patterns during Business Process Modeling 19

19. Vanhatalo, J., Völzer, J., Moser, S., Leymann, F.: Automatic workflow graph refactoring and
completion (submitted for publication)

20. Koehler, J., Gschwind, T., Küster, J., Pautasso, C., Ryndina, K., Vanhatalo, J., Völzer, H.:
Combining quality assurance and model transformations in business-driven development.
In: Proc. AGTIVE. LNCS, vol. 5088. Springer, Heidelberg (2008)

21. van der Aalst, W., Basten, T.: Inheritance of workflows: An approach to tackling problems
related to change. Theoretical Computer Science 270(1-2), 125–203 (2002)

22. Manolescu, D., Kozaczynski, W., Miller, A., Hogg, J.: The growing divide in the patterns
world. IEEE Software 24(4), 61–67 (2007)

23. Kircher, M., Völter, M.: Software patterns. IEEE Software 24(7/8), 28–30 (2007)
24. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading (1994)
25. Zdun, U., Dustdar, S.: Model-driven and pattern-based integration of process-driven SOA

models. Int. Journal of Business Process Integration and Management 2(2), 109–119 (2007)
26. Barros, O.: Business information system design based on process patterns and frameworks.

BPTrends 9, 1–5 (2004)
27. Malone, T., Crowston, K., Herman, G.: Organizing Business Knowledge: The MIT Process

Handbook. MIT Press, Cambridge (2003)
28. Tran, H., Coulette, B., Thuy, D.: A UML-based process meta-model integrating a rigor-

ous process patterns definition. In: Münch, J., Vierimaa, M. (eds.) PROFES 2006. LNCS,
vol. 4034, pp. 429–434. Springer, Heidelberg (2006)

29. Thom, L., Iochpe, C., Reichert, M.: Workflow patterns for business process modeling. In: 8th
Workshop on Business Process Modeling, Development, and Support in conjunction with
CAISE 2007 (2007)

30. Thom, L., Lau, J., Iochpe, C., Mendling, J.: Extending business process modeling tools with
workflow pattern reuse. In: Proc. ICEIS 2006. LNBIP, vol. 3, pp. 447–452. Springer, Heidel-
berg (2007)

31. Rising, L.: Understanding the power of abstraction in patterns. IEEE Software 24(7/8), 46–51
(2007)

32. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.: A pattern-driven development pro-
cess for quality standard-conforming business process models. In: IEEE Symposium on Vi-
sual Languages and Human-Centric Computing (VL/HCC 2006), pp. 135–142. IEEE, Los
Alamitos (2006)

33. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.: Verification of business process qual-
ity constraints based on visual process patterns. In: Proc. TASE, pp. 197–208. IEEE, Los
Alamitos (2007)

34. Störrle, H.: Describing process patterns with UML. In: Ambriola, V. (ed.) EWSPT 2001.
LNCS, vol. 2077, pp. 173–181. Springer, Heidelberg (2001)

35. Hagen, M., Gruhn, V.: Process patterns - a means to describe processes in a flexible way. In:
Proc. ProSim (2004), http://prosim.pdx.edu/prosim2004

36. Brahe, S., Bordbar, B.: A pattern-based approach to business process modeling and im-
plementation in web services. In: Georgakopoulos, D., Ritter, N., Benatallah, B., Zirpins,
C., Feuerlicht, G., Schoenherr, M., Motahari-Nezhad, H.R. (eds.) ICSOC 2006. LNCS,
vol. 4652, pp. 166–177. Springer, Heidelberg (2007)

37. Havey, M.: Essential Business Process Modeling. O’Reilly, Sebastopol (2005)
38. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.: Handbook of Graph Grammars and

Computing by Graph Transformation, vol. 2. World Scientific, Singapore (1999)

http://prosim.pdx.edu/prosim2004

Modularity in Process Models:

Review and Effects

H.A. Reijers1 and J. Mendling2

1 Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.a.reijers@tue.nl
2 Queensland University of Technology

Level 5, 126 Margaret Street, Brisbane QLD 4000, Australia
j.mendling@qut.edu.au

Abstract. The use of subprocesses in large process models is an im-
portant step in modeling practice to handle complexity. While there are
several advantages attributed to such a modular design, including ease
of reuse, scalability, and enhanced understanding, the lack of precise
guidelines turns out to be a major impediment for applying modular-
ity in a systematic way. In this paper we approach this area of research
from a critical perspective. Our first contribution is a review of existing
approaches to process model modularity. This review shows that aside
from some limited insights, a systematic and grounded approach to find-
ing the optimal modularization of a process model is missing. Therefore,
we turned to modular process models from practice to study their mer-
its. In particular, we set up an experiment involving professional process
modelers and tested the effect of modularization on understanding. Our
second contribution, stemming from this experiment, is that modularity
appears to pay off. We discuss some of the limitations of our research
and implications for future design-oriented approaches.

1 Introduction

Modularity is the design principle of having a complex system composed from
smaller subsystems that can be managed independently yet function together as
a whole [19]. Such subsystems – or modules – can be decomposed in a similar
vein. In many domains, modularity is a key principle to deal with the design and
production of increasingly complex technology. For example, it has been argued
that the computer industry has dramatically increased its rate of innovation
by adopting modular design [5]. Modules can also be found in business process
models, where they are commonly referred to as subprocesses. Most popular pro-
cess modeling techniques support this concept, e.g. flowcharts, IDEF0 diagrams,
UML Activity Diagrams, EPCs, BPMN, and YAWL.

Various advantages are attributed to the use of subprocesses in process
models. At build-time, subprocesses support a modeling style of stepwise task
refinement, stimulate reuse of process models, and potentially speed up the (con-
current) development of the overall process model [2,23]. At run-time, when a

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 20–35, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Modularity in Process Models: Review and Effects 21

process model is enacted, subprocesses allow for scaling advantages: Each sub-
process, for example, may be executed on a different workflow server [23]. Finally,
when a process model is used to facilitate the understanding of complex busi-
ness processes among various stakeholders, subprocesses are supposed to ease
the understanding of the model [15,36].

However, the way that modularity is currently utilized in modeling practice
raises some questions about the actual benefits. First of all, there are no objec-
tive criteria for applying granularity. Accordingly, there is no absolute guideline
if a particular subprocess should be on level X or X + 1 in the model hierar-
chy [13]. Neither is there a unique way to modularize a process model [13]. As
a consequence, modularity is often introduced in an ad-hoc fashion. Further-
more, there are clearly drawbacks when the process logic is fragmented across
models. In particular, it “becomes confusing, less visible, and tracking its paths
is tiring” [12] if a subprocess is decomposed in further subprocesses. The fact
that the semantic check in ARIS Toolset mainly addresses consistency issues
between events in the subprocess and around the refined function illustrates the
seriousness of this problem. Finally, even if modularization is useful for mainte-
nance purposes, it is questionable whether advantages materialize in practice as
many organizations fail to keep their models up to date.

The greater research challenge we see here is to provide explicit guidance for
using modularization in process models. But, this would be a dubious undertak-
ing at the present state of the art: We simply do not have the evidence whether
modules in process models pay off. Therefore, this paper is concerned with estab-
lishing an empirical foundation as a necessary preparation for a design-oriented
approach to the subject. We start this investigation from a critical review of
existing approaches to introduce modularity in process models.

Our null hypothesis is that modularization does not increase process model
understanding, and we introduce an experimental design to challenge it. In this
approach, we worked together with a group of professional process modelers
to evaluate a set of professional process models. The controlled variable in the
design is whether subprocesses are used or not; the response variable is the
degree of understanding that the subjects display with respect to the models.
Note that we focus on the understanding of a process model as the major point
of evaluation. Our motivation is that in most business applications, the primary
purpose of a process model is to act as a means of communication [25,31]. As Van
der Aalst and Van Hee put it when discussing the introduction of subprocesses
in a process model “[..] the most critical consideration is that the process be
understood by the people carrying out the work. If this is not the case, the
result can be a difficult-to-manage process.”

Against this background, the structure of this paper is as follows. In the next
section, we will give a broader background for the concept of modularity, in
particular with respect to process modeling. In Section 3, we will present our
research method, after which the results of the experiment we carried out are
given in Section 4. Before we come to a conclusion in Section 6, we discuss our
findings and their limitations in Section 5.

22 H.A. Reijers and J. Mendling

2 A Review of Modularity and Process Modeling

2.1 Concepts and Terms

A first issue that should be considered here is that the terms modularity, decom-
posability, and hierarchy are sometimes used interchangeably. However, accord-
ing to [19], a modular system is not automatically decomposable, since one can
break a system into modules whose workings remain highly interdependent with
the internal workings of other modules. Furthermore, as Parnas points out in
his seminal paper on “information hiding”, a modular system is not necessarily
hierarchical [32]. That would be the case if the “uses” relation between modules
gives a partial ordering, which is not always so. One can easily imagine, for exam-
ple, a software program where software modules mutually call each other. These
subtleties also hold in the context of process models. In most practical cases,
however, a modular process model will probably be hierarchical too although
perhaps not decomposable, i.e. its subprocesses may still be highly interdepen-
dent. In this paper we consider the more general phenomenon of “modularity”
as the main point of interest.

2.2 Modularization in Systems

In many settings, “the real issue is normally not to be modular but how to be
modular” [19]. But at the same time, modular systems are much more difficult to
design than comparable interconnected systems [5]. Beyond that, problems with
incomplete or imperfect modularization tend to appear only when the modules
come together and work poorly as an integrated whole. It has been argued that
many of the most attractive and durable systems are developed through an
“unselfconscious” design process [4]. In this mode, the design rules that are used
are not explicit; inconsistencies and interdependencies are revealed by trial and
error only. However, it is by no means obvious that unselfconscious design must
always, or even usually, result in modularity [19].

Quality criteria to consciously decompose a system into modules have been
discussed by Wand and Weber on a general level [41,43]. The authors identify
five criteria. The first three are absolute criteria that are either met or not
and focus on the content of the modular model, not its structure. Minimality
requires that there is no redundant state information in the modular model.
In data models this basically matches normalization requirements. Determinism
requires that a state change is clearly identified to be triggered by an internal or
an external event. If that is not the case the behavior of a module can only be
understood by knowing the state of another subsystem. Losslessness demands
that emergent properties are not lost in a modularization. Furthermore, the two
criteria coupling and cohesion should be optimized, cf. [45]. Coupling should be
minimal such that the sum of inputs of each subsystem is less or equal to the
sum of inputs in any other modularization. Cohesion should be maximal such
that all output affected by input variables are contained in the same set, and
adding another output does not extend the set of input variables on which they
depend.

Modularity in Process Models: Review and Effects 23

Wand and Weber’s criteria had a strong influence on the object-oriented de-
sign metrics proposed by Chidamber and Kemerer [10]. The usefulness of the
five criteria has been demonstrated for UML class diagrams and state charts in
an experimental setting [8]. Yet, an application in the area of process modeling,
either by designing good decomposition operations or by testing their suitability,
is missing.

2.3 Modularization in Process Models

The area of related research in the context of process models is huge, covering
works on process modularization, e.g. [3,7,42], process inheritance, e.g. [6,26], and
reduction rules, e.g. [14,34,44]. Since the latter two categories are mainly utilized
in process model analysis, we will focus on the first category. Furthermore, we
do not consider modular design of process-aware information systems such as
in [16,24]. In the context of process model modularization, three aspects can
be distinguished: modularization operations, modularization prerequisites, and
modularization selection.

Modularization Operations: The idea that basic operators should facili-
tate modularization was already proposed in the 1980s for data flow diagrams
[3]. Refinement operations have also been defined for Workflow Nets [1]. Also,
some modeling approaches impose the use of block structures of nested control
primitives, which favor the creation of decomposable modules, as in e.g. BPEL.
Recently, the ability to extract a subprocess from a process model has been de-
scribed as a change pattern for process-aware information systems [42]. This pat-
tern must be implemented reflecting the syntactic requirements of the modeling
language. In ARIS there are two ways to extract a subprocess: by modulariza-
tion (refining function with subprocess) and by segmentation (cutting a model in
different parts) [13]. Both these options are tailored to yield syntactically correct
EPCs.

Modularization Prerequisites: There are some recommendations regarding
when a process model should be considered for modularization. Some of the
practitioners books state that modularization should be introduced in a model
with more than 5–15 [18] or 5–7 activities [36], yet without giving any support
for this rule. Recently, it has been recommended based on empirical findings
that process models with more than 50 elements should be decomposed [28].
Depending on the process modeling language the amount of activities can vary
for 50 elements, e.g. EPCs use connectors for routing and events to separate
functions while YAWL essentially only uses tasks. Still, up to now no objective
criteria has been proposed for identifying which subprocess should be on which
level in the model hierarchy [13].

Modularization Selection: There are some guidelines on how to select parts of
process models for modularization. Good candidates for subprocesses are
fragments of a model that are components with a single input and a single out-
put control flow arc [22,7,39]. Furthermore, long and thin process models should
be preferred to square models [13, p.278]. This argument points to the potential of

24 H.A. Reijers and J. Mendling

metrics to guide the modularization. The idea here would be to use quality met-
rics like the ones proposed in [28,29] to assess which modularization should be pre-
ferred. An application of metrics to compare design alternatives is reported in [38].
Yet, there is no dedicated approach to guide modularization based on metrics.

Overall, the main focus of research on process modularization is of a concep-
tual nature. Clearly, there are no objective and explicit guidelines that modelers
in practice can rely on. The aim of our research as reported in the following sec-
tions is to contribute to a better understanding of the effects of modularization
as a stepping stone towards such guidelines.

3 Research Design

In the previous sections we discussed that the ad-hoc way in which modularity
is currently introduced in modeling practice raises doubts about its benefits. In
this section, we will explain our design to test the following null hypothesis:

H0: Use of modularization does not improve understanding of a process model.

There are several challenges in testing the presumed absence of a relation be-
tween modularity and understanding, in particular in pursuing results that have
a potential to be generalizable on the one hand while applying methodological
rigor on the other. In particular, it would be unsatisfactory to rigorously test
the effects of modularity in small, toy-like process models, as any effect would
possibly be hard to spot anyway. To achieve a realistic setting for our research,
we set up a collaboration with Pallas Athena Solutions1 in the Netherlands, a
specialized provider of BPM services. This company provided us with real-life
models as study objects. Furthermore, their process modelers participated in our
investigation. As will be explained in this section, we applied an experimental
design to achieve sufficient control over the dependent variable (modularization)
and to allow a meaningful evaluation of the response variable (understanding)
from our hypothesis.

In lack of specific literature on empirical research with respect to modular
process modeling, we build on approaches and classifications used in the field of
software experimentation [17,33]. In particular, we use an experimental design
that is comparable to what was applied in a recent study to evaluate various types
of BPM technology [30]. To test the hypothesis we carried out a so-called single
factor experiment. In general, this design is suitable to investigate the effects of
one factor on a common response variable. This design also allows to analyze
variations of a factor: The factor levels. The response variable is determined
when the participants of the experiment – the subjects – apply the factor or
factor levels to a particular object. The overall approach in our experiment is
visualized in Figure 1. We will address the most important elements in our
design in more detail now.

Objects. The basic objects that were evaluated by the participants, were two
process models from practice. The models were used in the experiment both in
1 See http://www.pallas-athena.com

Modularity in Process Models: Review and Effects 25

Participant 1

Participant n/2

Participant n/2+1

Participant n

Factor level:
modularization

present

Factor level:
modularization

absent

Process Model
A with

subprocesses

Process Model
A without

subprocesses

n participants 1 factor 2 objects

First Run

Participant 1

Participant n/2

Participant n/2+1

Participant n

Factor level:
modularization

absent

Factor level:
modularization

present

Process Model
B without

subprocesses

Process Model
B with

subprocesses

n participants 1 factor

Second Run

2 objects

Completion of first
applied factor level

Overall experiment

Fig. 1. Experiment design

their original form – displaying modularity – and in their flattened version where
modularity is completely removed: All dependencies between model elements are
then on the same level of abstraction. Note that for any particular process model
the absence or presence of modularity does not affect the business logic.

Both process models were selected from a little over 80 process models that
were created and delivered by the consultancy company for its clients. We focused
our search for suitable objects using three criteria: (1) presence of modularity, (2)
size, and (3) access to the original creators of the models. The process models we
looked for needed to display modularity, as consciously applied by the modeler
to deal with the complexity of a large model. We only considered models of
more than 100 tasks, which can be considered as very large using the process
size classification provided in [9]. Our line of reasoning here is that if modularity
does not help to understand very large models, it will not help to distinctively
understand smaller models either. Finally, we needed access to the modelers of
the model to validate questions on the content of the model.

From our search, four candidate models emerged. One of these models was
specifically developed for automated enactment. It was not further considered
because understanding is generally not a prime issue with this modeling purpose.
Of the remaining three, which were all developed for the support of stakeholders
in a process improvement project, the two process models were selected that
were most similar to each other in terms of process size, number of subprocesses,
and modularity depth. Both models had been modeled with the Protos tool
[40]. The flattened versions of the process models can be seen2 in Figure 2, so
that the reader can get an impression about their structure and size. Note that
we are not allowed to disclose the content of the models.

Model A describes the procedure in use by an organization that is responsible
for handing out driver’s licences. The process in question deals with clients that

2 For larger images, see http://www.reijers.com/models.pdf

26 H.A. Reijers and J. Mendling

Geen reactie ontvangen

Model A Model B

Fig. 2. Flattened versions of the used process models

cannot directly obtain their driver’s license because of physical or psychological
disabilities that can influence their driving. Model B captures how a certain
category of unemployed citizens is coached and receives advice in finding a job.
Note that labels in Figure 2 have been removed to protect the confidentiality of
the involved organizations; the subjects in our experiment saw the entire model
in full (including the labels).

Factor and factor levels. In our experiment, the use of modularity is the
considered factor, with factor levels “present” and “absent”. Note that we delib-
erately collected real process models from practice already exhibiting modularity
and derived flattened versions from it, instead of doing it the other way around.
In this way, we could build on a real-life application of modularity.

Response variable. The response variable in our experiment is the level of
understanding that the respondents display with respect to the process models,
both in their modularized and flattened form. To measure the response variable, a
specific set of questions was developed for each of the two models to be answered
by the subjects. We used the percentage of correctly answered questions given
by a subject as measure for his or her level of understanding of the particular
model. This approach is similar to the one we applied in a previous study into
model understandability [29]. An example question for model A is: “If an AA-
investigation is required, then a number of alternative settlements is possible.
How many of these settlements exist?”. For model B an example question is:
“If a client does not appear on an appointment, is it always so that a new
appointment is scheduled?”. Note that the question sets are different for each of
the models because both their content and structure differs. The questions were

Modularity in Process Models: Review and Effects 27

formulated in Dutch, the same language used by the creator of the modeler
to name model elements, and also being the native language for all subjects.
The model-specific questions were preceded by a general introduction to the
experiment, some specific background information for each of the models, and
a number of general questions with respect to the subject’s background. As will
be explained later, we used the latter information for comparison purposes (see
Section 4.2).

Subjects. The participants in this experiment were 28 experienced consultants
from Pallas Athena Solutions. They were randomly assigned to the two groups
used in our set-up (block design). Each group was presented two models: One
model that displayed modularity and the other model in the flattened version.
This way each participant received two different processes – models A and B
– and two different styles – modular and flattened. Participation in the experi-
ment was voluntary; the single reward offered for participation was access to the
research results.

Instrumentation. The experiment was then carried out in the following way.
The groups of subjects were provided with the process models on paper, together
with the questions; an alternative would have been to show the models on a
computer display, e.g. using the software that was used to create the models. The
involved consultancy company indicated that paper is a common form to interact
with their clients. Recall that the original versions of the models were divided
into subprocesses by their respective authors. These models could therefore be
presented to the respondents as a set of A4-sized papers, one for the main process
and one for each subprocess. The alternative, flattened model versions were
presented on A3 paper format, making task labels clearly legible.

Prior to the actual experimentation, all questions and correct answers were
discussed with the creators of the models. They approved of these and validated
that the question sets were a proper way to test understanding of the models.
Then, five graduate students from Eindhoven University of Technology were
involved in a pre-test. This led to the reformulation of 10 questions to remove
ambiguities and the removal of 3 questions. The latter was explicitly required
to keep the experiment within a reasonable time frame. For each model, 12
questions were included in the final version of the experiment.

Data collection and analysis. During the experiment, the subjects were asked
to spend at most 25 minutes per model for answering its related questions. This
limit was imposed to keep the time spent on the entire questionnaire under one
hour and to prevent an imbalance in time spent on each model. Both at the
start and at the end of answering a set of questions for each model, subjects
were asked to write down the current time to allow for exact comparisons.

For our data analysis, well-established statistical methods and standard met-
rics are applied, as provided by the software package STATGRAPHICS XV.II.

From the description the elements in this section, it follows that the experi-
ment is balanced, which means that all factor levels are used by all participants
of the experiment. In general, such an approach enables repeated measurements

28 H.A. Reijers and J. Mendling

and the collection of more precise data as every subject generates data for every
treated factor level. As can be seen in Figure 1, we went through two runs, so this
experiment displays a repeated measurement. But in contrast to the approach in
[30], two objects instead of one were used (process models A and B) to repeat the
experiment in a second run. This setup prevents confronting the same group of
subjects to the same model more than once. In this way, we could avoid learning
effects to take place while still varying the factor levels.

4 Results

In this section, we will first present our main analysis results, after which we will
explore some alternative explanations for these to decide on our hypothesis.

4.1 Main Results

Our main analysis for each model focuses on the comparison between the group
performance in terms of correctly answered questions for its modularized and
flattened version. In other words, does it matter whether someone sees a mod-
ularized or a flattened version of a process model? As explained, we calcu-
lated for each of the subjects the percentage of correct answers given for each
model to make this comparison. Recall that each subject saw a modular model
for one process and a flattened model for the other. The values are shown in
Table 1.

Table 1. Average percentages of correct answers for the model variants

Flattened Modular
Model A 38.54% 42.36%

Model B 37.50% 58.33%

As can be seen from this table, for both models the modular version generates
a higher average percentage of correct answers, which suggests a better under-
standability. To determine whether the differences are statistically significant,
it is important to select the proper statistical test. Therefore, we first explored
for each of the models the distribution of correct answers for each of its vari-
ants, i.e. the modular and flattened version. Because the standardized skewness
and standardized kurtosis are within the range of -2 to +2, for each model the
correctly answered questions can be assumed to be normally distributed. Addi-
tionally, F-tests indicated that with a 95% confidence the standard deviations
of the samples for each of the models are also the same. These two conditions
justify the application of Student’s t-test [37].

Application of the t-test results in a P-value for each comparison; a P-value
lower than 0.05 signals a significant difference when assuming a 95% confidence
level. The results are then as follows:

Modularity in Process Models: Review and Effects 29

Table 2. Group comparison

Factor Factor levels P-value

Domain knowledge Knowledgeable with the process context or not 0.386

Company experience Actual number of years within company 0.411

Field experience Actual number of years working as process con-
sultant

0.726

Education University degree or not 0.453

Job type Business consultant or technical consultant 1.000

Modeling amount Estimated number of process models created 0.504

Modeling size Estimated average size of process models created
(nodes)

0.764

Time overall Actual time spent on entire experiment 0.948

Time A Actual time spent on model A in the experiment 0.641

Time B Actual time spent on model B in the experiment 0.417

– For model A, there is no difference between the modular and the flattened
version in terms of the average percentage of correctly answered questions
(P= 0.562).

– For model B, there is a significant difference between the modular and the
flattened version in terms of the average percentage of correctly answered
questions (P= 0.001).

The difference for model B seems to support rejection of H0. However, we must
first explore whether alternative explanations exist to properly decide on the
acceptance or rejection of this hypothesis.

4.2 Supporting Results

The main alternative explanation for the difference for model B is that the
group that produced better results for the modular version is simply different
from the group that looked at the flattened version. Recall from Section 3 that
our experiment is characterized by a block design, i.e. subjects are randomly
assigned to the two experimental groups. If the groups are different with respect
to a characteristic that may influence their ability to understand process models,
then this would not allow us to reject H0 – despite the noted statistical difference.
A second, alternative explanation would be that one group of respondents simply
spent more time than the other on answering the corresponding questions.

To assess these alternative explanations, we analyzed the characteristics as
shown in Table 2. Each entry in the table lists an investigated factor, the con-
sidered factor levels, and the P-value resulting from a statistical test. Note that
we applied a standard t-test to determine a statistical difference between the
groups with respect to each factor, unless its basic requirements were not met
with respect to the assumed normal distribution and variance equality. In the
latter case, we used the non-parametric Mann-Whitney W test to compare the
medians across both groups [37].

30 H.A. Reijers and J. Mendling

All P-values in this table are far greater than 0.05, so none of the investigated
factors signals anything close to a statistical difference between the groups at
a 95% confidence level. Therefore, in lack of knowledge on other plausible in-
fluences, we must reject hypothesis H0. We conclude that modularity appears to
have a positive connection with process understanding.

5 Discussion

We single out two questions that emerge from considering the results from the
previous section:

1. Why does modularity matter for understanding model B, but not for A?
2. What is the explanation for modularity influencing the understanding of

model B?

In this section, we will first address these questions and then discuss some limi-
tations of our experiment.

5.1 Model Differences

We recall that we selected models A and B from a wide range of models, keen
on satisfying a number of requirements (see Section 4). From the four models
that met these, models A and B were most similar, notably with respect to the
number of tasks they contain and their depth. To determine why modularity
plays a bigger role in understanding model B, we carried out a further analysis
of both models by using the metrics shown in Table 3. At the top of the table,
some basic metrics are given, followed by metrics that have been proposed as
indicators for process model complexity in general, and at the bottom some
metrics that are explicitly proposed for assessing modular process models.

Two metrics display values that differ more than a factor 2 between the models
under consideration, i.e. Subprocesses and FanIn-Out. According to [20], the
relatively high value of the latter metric for model B (33.42) would suggest a
poorer structuring of model B compared to model A, which would make it more
difficult to use. However, an additional test to determine whether a difference
exists in model understandability between the modular version of model A and
the modular version of model B does not show a higher average percentage of
correct answers for the former. In lack of other empirical support for the use of
this metric, the relatively high number of subprocesses (20) in model B seems
more relevant: It suggests that the difference between the modular and flattened
version of this model is more distinct than for model A.

For the remaining factors, models A and B display quite similar characteris-
tics, even though model B is the slightly larger one. There is no general trend
that suggests that one model is considerably more complex than the other and
none of the metrics display substantial and meaningful differences other than
the number of subprocesses. So, the most reasonable answer to the question why
modularity has an impact on understanding model B but not on model A is

Modularity in Process Models: Review and Effects 31

Table 3. Complexity metrics

Metric Description Source Model A Model B
Tasks Total number of tasks – 105 120

Nodes Total number of nodes – 130 175

Arcs Total number of arcs – 171 248

Subproc Total number of subprocess in original
model

– 9 20

To Average number of outgoing arcs from
transitions (tasks)

[21] 0.81 1.03

Po Average number of outgoing arcs from
places (milestones)

[21] 3.42 2.24

Cycn McCabe’s cyclomatic number (adjusted for
Petri nets)

[21] 43 75

Connect Number of arcs divided by the number of
nodes

[27] 1.32 1.42

Density Number of arcs divided by the maximal
number of arcs

[27] 0.020 0.016

ConDeg Average number of input and output arcs
per routing element

[27] 1.10 1.21

Fan-In Average number of modules calling a mod-
ule

[20] 1.25 2.26

Fan-Out Average number of modules called by a
module

[20] 1.5 2.26

Fanin-Out Average ((Fan-In) ∗ (Fan-Out))2 per mod-
ule

[20] 3.63 33.42

Depth Degree of nesting within the process model [27] 3 3

that B’s original version displayed a much higher degree of modularization than
model A, which eased its understanding.

5.2 The Influence of Modularity

In search for an explanation of how modularity increases model understanding,
we re-examined the questions we used in our experiment. Recall that these ques-
tions were validated by the original creators of the model (see Section 3): The
questions were considered to be to the point, reasonable, and a good way to test
someone’s understanding of the model.

In the ex post analysis of our results, we pursued the idea that by using a
modular model perhaps one type of question would be answered better than
another. In particular, we categorized our questions as being of a local or global
type. The answer for a local question can be found within the confinements of
a single subprocess in the modular version, where the examination of more sub-
processes is required to answer a global question. As it turned out, model B
contained 2 global questions and 10 local questions. In a comparison between

32 H.A. Reijers and J. Mendling

the group that used the modular model and the group that used the flattened
model, the following results emerged:

– Too few global questions were used to determine whether there is a difference
in terms of the average percentage of correctly answered questions between
using the modular or the flattened version of model B .

– For local questions, there is a significant difference in terms of the average
percentage of correctly answered questions between the modular and the
flattened version of model B (P=0.002).

From this analysis, we cautiously infer that modularity may be helpful for un-
derstanding a process model because it shields the reader from unnecessary in-
formation. Where the reader of flattened model always sees the entire context,
the reader of the modular version is confronted with precisely the right set of
information when the proper subprocess is selected. In this sense, it resembles
the positive effect of Parnas’ “information hiding” concept [32]: Programmers are
most effective if shielded from, rather than exposed to the details of construction
of system parts other than their own.

Whether there is also an opposite effect, i.e. the correct answer for a global
question would be easier to find with a flattened model, could not be established
for model B. However, it does not seem too likely; an analysis of the results for
model A did not show such an effect.

5.3 Limitations

Only a small number of 28 subjects were involved in this experiment and only 2
process models were considered. Both aspects are threats to the internal validity
of this experiment, i.e. whether our claims about the measurements are correct.
But these small numbers result from our choices to (1) involve experienced pro-
cess modelers and (2) process models from industrial practice. Most experienced
modelers from the company already participated and the confidential models
could not be shown outside the company. Also, to keep the experiment’s du-
ration under one hour – a pragmatic upper bound to avoid non-response – it
was not feasible to use, for example, more models. The choice for professional
modelers and real models clearly positively affects the external validity of our
study, i.e. the potential to generalize our findings. Therefore, our experiment
shows how “internal and external validity can be negatively related” [11].

Another aspect is the choice for displaying the process models on paper. It
is by no means certain that similar findings would result from an experiment
where models are shown on a computer display. In the latter mode, “information
hiding” is achievable in other ways than by applying modularity. For example,
the Protos tool that was used to create the models allows to zoom in on part
of a process model, which is another form of shielding away irrelevant data.

Finally, the lay-out of a process model may be a factor that influences un-
derstandability, as we hypothesized before in [29]. As a limited understanding
of this effect exists at this point, we are restrained in properly controlling this

Modularity in Process Models: Review and Effects 33

variable. We used the same modeling elements, the same top-down modeling
direction, and roughly a similar breadth and width for both models on paper to
limit this effect – if any (see Figure 2).

6 Conclusion

On the basis of the controlled experiment we described in this paper, the main
conclusion of this paper must be that modularity in a process model (through use
of subprocesses) appears to have a positive connection with its understandability.
However, this effect manifests itself in large models if modularity is applied to
a sufficiently high extent and particularly seems to support comprehension that
requires insight into local parts of the model.

These results should be considered within the limitations of the experiment
we described, but in principle favor further efforts into the development of more
explicit design guidance towards modularizing process models. As we noted, this
is a major gap in our knowledge on process modeling. From the review of process
modularization approaches that we presented in the paper, we identified several
attractive ingredients for such an approach. In particular, Wand and Weber’s
quality criteria have already been succesfully applied for other types of models
and the use of metrics to guide process modularization seems a fruitful direction.
Our future work is aimed at the development of such guidance and metrics.

Aside from this research agenda, we hope that publications like [8,30,35], and
this paper as well, may serve as an inspiration for further integrating method-
ologies from behavorial science in the design-science approaches common to the
BPM field. This could be particularly helpful to provide explicit support for
both the necessity and the utility of the models, algorithms, systems, and other
artifacts that BPM scholars are concerned with.

Acknowledgements

We would like to thank Bela Mutschler, Barbara Weber, Maarten Boote, and all
participants from Pallas Athena Solutions for their contribution to this research.

References

1. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge (2002)

3. Adler, M.: An algebra for data flow diagram process decomposition. IEEE Trans-
actions on Software Engineering 14(2), 169–183 (1988)

4. Alexander, C.: Notes on the Synthesis of Form. Harvard University Press (1970)
5. Baldwin, C.Y., Clark, K.B.: Managing Modularity. Harvard Business Review 75(5),

84–93 (1997)

34 H.A. Reijers and J. Mendling

6. Basten, T., van der Aalst, W.M.P.: Inheritance of Behavior. Journal of Logic and
Algebraic Programming 47(2), 47–145 (2001)

7. Basu, A., Blanning, R.W.: Synthesis and Decomposition of Processes in Organiza-
tions. Information Systems Research 14(4), 337–355 (2003)

8. Burton-Jones, A., Meso, P.: How good are these UML diagrams? An empirical test
of the Wand and Weber good decomposition model. In: Applegate, L., Galliers,
R., DeGross, J.I. (eds.) Proceedings of ICIS, pp. 101–114 (2002)

9. Cardoso, J.: Poseidon: A Framework to Assist Web Process Design Based on Busi-
ness Cases. Int. Journal of Cooperative Information Systems 15(1), 23–55 (2006)

10. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on Software Engineering 20(6), 476–493 (1994)

11. Cook, T.D., Shadish, W.R., Campbell, D.T.: Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin (2002)

12. Damij, N.: Business Process Modelling Using Diagrammatic and Tabular Tech-
niques. Business Process Management Journal 13(1), 70–90 (2007)

13. Davis, R.: Business Process Modelling With Aris: A Practical Guide (2001)
14. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical

Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)
15. Dong, M., Chen, F.F.: Petri Net-Based Workflow Modelling and Analysis of the

Integrated Manufacturing Business Processes. The International Journal of Ad-
vanced Manufacturing Technology 26(9), 1163–1172 (2005)

16. Jablonski, S.: MOBILE: A Modular Workflow Model and Architecture. In: Pro-
ceedings of the International Working Conference on Dynamic Modelling and In-
formation Systems (1994)

17. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers, Dordrecht (2001)

18. Kock Jr., N.F.: Product Flow, Breadth and Complexity of Business Processes: An
Empirical Study of 15 Business Processes in Three Organizations. Business Process
Re-engineering & Management Journal 2(2), 8–22 (1996)

19. Langlois, R.N.: Modularity in Technology and Organization. Journal of Economic
Behavior and Organization 49(1), 19–37 (2002)

20. Laue, R., Gruhn, V.: Complexity metrics for business process models. In:
Abramowicz, W., Mayr, H.C. (eds.) Proceedings of BIS 2006. Lecture Notes in
Informatics, vol. 85, pp. 1–12 (2006)

21. Lee, G.S., Yoon, J.M.: An Empirical Study on Complexity Metrics of Petri Nets.
Microelectronics and reliability 32(9), 1215–1221 (1992)

22. Leymann, F.: Workflows Make Objects Really Useful. EMISA Forum 6(1), 90–
99 (1996), http://sunsite.informatik.rwth-aachen.de/Societies/GI-EMISA/
forum/content 96 1/Emisa 1 96 S90-99.pdf

23. Leymann, F., Roller, D.: Workflow-based Applications. IBM Systems Jour-
nal 36(1), 102–123 (1997)

24. Leymann, F., Roller, D.: Production Workflow - Concepts and Techniques. Prentice
Hall, Englewood Cliffs (2000)

25. Lindsay, A., Downs, D., Lunn, K.: Business Processes: Attempts to Find a Defini-
tion. Information and Software Technology 45(15), 1015–1019 (2003)

26. Malone, T.W., Crowston, K., Lee, J., Pentland, B.: Tools for Inventing Orga-
nizations: Toward a Handbook for Organizational Processes. Management Sci-
ence 45(3), 425–443 (1999)

27. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration (2007)

http://sunsite.informatik.rwth-aachen.de/Societies/GI-EMISA/forum/content_96_1/Emisa_1_96_S90-99.pdf
http://sunsite.informatik.rwth-aachen.de/Societies/GI-EMISA/forum/content_96_1/Emisa_1_96_S90-99.pdf

Modularity in Process Models: Review and Effects 35

28. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the occurrence
of errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

29. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007)

30. Mutschler, B., Weber, B., Reichert, M.U.: Workflow management versus case han-
dling: Results from a controlled software experiment. In: Liebrock, L.M. (ed.) Pro-
ceedings of the ACM Symposium on Applied Computing, vol. I, pp. 82–89 (2008)

31. Ould, M.A.: Business Processes: Modelling and Analysis for Re-engineering and
Improvement. Wiley, Chichester (1995)

32. Parnas, D.: On the Criteria for Decomposing Systems into Modules. Communica-
tions of the ACM 15(12), 1053–1058 (1972)

33. Prechelt, L.: Kontrollierte Experimente in der Softwaretechnik: Potenzial und
Methodik. Springer, Heidelberg (2001)

34. Sadiq, W., Orlowska, M.E.: Analyzing Process Models using Graph Reduction
Techniques. Information Systems 25(2), 117–134 (2000)

35. Sarshar, K., Loos, P.: Comparing the control-flow of EPC and Petri nets from
the end-user perspective. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 434–439. Springer, Heidelberg
(2005)

36. Sharp, A., McDermott, P.: Workflow Modeling: Tools for Process Improvement
and Application Development. Artech House (2001)

37. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, Boca Raton (2004)

38. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Evaluating workflow pro-
cess designs using cohesion and coupling metrics. Computers in Industry (2008)

39. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analy-
sis for business process models through SESE decomposition. In: Krämer, B.J., Lin,
K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer,
Heidelberg (2007)

40. Verbeek, H.M.W., van Hattem, M., Reijers, H.A., de Munk, W.: Protos 7.0: Simu-
lation made accessible. In: Ciardo, G., Darondeau, P. (eds.) Proceedings of the 24th
International Conference on Application and Theory of Petri Nets, pp. 465–474.
Springer, Heidelberg (2005)

41. Wand, Y., Weber, R.: On the Deep Structure of Information Systems. Information
Systems Journal 5, 203–223 (1995)

42. Weber, B., Rinderle, S., Reichert, M.U.: Change patterns and change support fea-
tures in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

43. Weber, R.: Ontological Foundations of Information Systems. Coopers & Lybrand
and the Accounting Association of Australia and New Zealand, Melbourne (1997)

44. Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M.,
Edmond, D.: Reduction rules for YAWL workflow nets with cancellation regions
and or-joins. BPMCenter Report BPM-06-24, BPMcenter.org (2006)

45. Yourdon, E., Constantine, L.L.: Structured Design. Prentice Hall, Englewood Cliffs
(1979)

Model Driven Business Transformation – An

Experience Report

Juliane Siegeris1 and Oliver Grasl2,�

1 Gematik, Gesellschaft für Telematikanwendungen der Gesundheitskarte mbH,
Friedrichstrasse 136, 10117 Berlin
juliane.siegeris@gematik.de

2 Transentis management consulting GmbH, Kranzplatz 5-6, 65193 Wiesbaden
oliver.grasl@transentis.com

Abstract. This report details the experience made using BPMN as the
process modeling notation for a large-scale modeling effort that formed
the heart of a business transformation project. It illustrates the practi-
cal limitations encountered in using BPMN and how they were overcome
by using UML to extend BPMN. The automated document generation
approach used to generate user-friendly process documentation from the
BPMN model and the instruments used to drive the business transfor-
mation project forward are explained.

1 Introduction

Newly founded, rapidly growing companies face the challenge of making the
transition from the ad-hoc processes needed in the start-up phase to the clearly
defined responsibilities and the high-performance, repeatable processes needed
to sustain the company in an aggressive market place.

This case study reports from a business transformation project at the gematik,
a German public-private partnership that is responsible for the specification and
implementation of the german health insurance chip card due to be introduced in
2008. The gematik’s main “product” is a bundle of specification documents that
form the basis for the chip card and the IT infrastructure needed to support it.
These specifications are used by independent vendors to implement the various
parts of the system.

The company currently (Spring 2008) employs around 180 people in ten de-
partments. Due to the rapid growth of the company a transformation process
was started mid-2007 to establish clear responsibilities and defined workflows to
ensure efficient definition of high-quality specifications at reasonable cost. At the
heart of the transformation is a new matrix organization aligned to the major
business processes the company supports.

� The authors would like to thank the board of directors and head of quality man-
agement at gematik for their support and encouragement during the writing of this
paper.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 36–50, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Model Driven Business Transformation – An Experience Report 37

To ensure employee buy-in it was decided early on to involve employees of
each new department in the analysis and modeling of the workflows, under co-
ordination of a process architecture team. All in all the process modeling team
has 20 members with different backgrounds.

At a very early stage the team decided to use BPMN 1.0 for workflow model-
ing, as implemented in the repository based modeling tool Enterprise Architect
7.0. The main reasons for choosing BPMN were that BPMN has been stan-
dardized by the OMG, is supported by a wide variety of tools, and is readily
understood both by users with an IT-background as well as users with a busi-
ness background. Workflows modeled in BPMN can also be used as a basis for
process simulation and automated process execution using technologies such as
BPEL4WS—though this is not a goal of the initial modeling project, it is ex-
pected that process simulation and automated process execution will be impor-
tant in the future. The tool Enterprise Architect was chosen because gematik
already used this tool to develop its IT specifications—therefore tool support
and maintenance know-how was already available within the company.

1.1 Major Challenges

The process modeling team encountered many challenges on the way. This paper
focuses on three challenges that concern BPMN and its use in a large, heteroge-
neous modeling team:

– Practical limitations of Modeling with BPMN. While BPMN is very well
suited to modeling workflows, the modeling team encountered a number of
limitations modeling organizational responsibilities within the workflows and
the complex artifact structure supported by the business processes.

– Using BPMN models as a basis for process documentation. BPMN process
models cannot meet the many requirements employees have for the process
documentation they need on a daily basis to support their work. In particular
easy, role-based navigation and cross-references between roles, processes and
artifacts are not directly utilizable though they are (implicitly) modeled in
BPMN workflows.

– Organizing large-scale modeling efforts. BPMN is a modeling notation and
not a method. The process architecture team defined and utilized a number
of instruments that were needed to ensure creation of consistent and valid
models.

1.2 Outline of the Paper

This paper details the solutions the process architecture team found in response
to the major challenges:

Customizing BPMN. For the description of workflow aspects the rich set
of BPMN modeling possibilities was restricted. To overcome its limitations
BPMN was extended with language constructs based on UML. These con-
structs are used to model high-level process architectures, organizational
structures and artifact landscapes.

38 J. Siegeris and O. Grasl

Using BPMN models to generate process documentation. A mechanism
was implemented to generate a complete, intranet-based web portal from the
BPMN model.

Practical implementation. A number of practical instruments were imple-
mented to fully leverage the work of the process architecture team and to
ease the transformation process.

2 Customizing BPMN

The objective of the modeling project was to describe the processes and their
context. The blue print had identified 10 core business processes aggregating
129 processes. The required level of detail for a process description varied from
an abstract, “black-box” process description just defining the context to very
fine granular descriptions e.g. system operations. The contextual information
defines the organizational unit owning the process, the roles responsible for the
execution of the involved activities, and the specific documents used or produced
within the process.

These objectives pose many requirements to the chosen modeling technique.
It should support structuring of the processes at different levels of abstraction
combined with the possibility to drill-down into a single process, thus moving
from an abstract level to the details.

Apart from the workflow itself the description of further aspects, such as orga-
nizational and information related aspects, should be supported, thus allowing
the modeler to define who works on an activity and which items are produced
within an activity.

The decision was made in favor of BPMN, the new OMG standard for busi-
ness process modeling [2]. BPMN amalgamates best practices within the business
modeling community. However, its focus is on the description of activities and
their control flow dependencies. A variety of modeling elements can be combined
in many different ways, thus providing much freedom in defining the actual pro-
cess flow. Regarding BPMN’s support for other aspects, such as the information
and resource perspectives, BPMN’s performance is not so good. Although the
BPMN provides some concepts for their description, the modeling of an organi-
zational structure, an extensive role concept or a distinct document landscape
is beyond BPMN’s means, c.f. [2,9,7].

Defining rules for the use of BPMN within the gematik transformation pro-
cess, these shortcomings were also felt by the gematik process architecture team.
To exploit the BPMN for the business transformation project two lines of cus-
tomization were followed:

Adaption of native BPMN constructs. To define the actual process flow
and the interfaces between processes, and to provide an adequate drill down
mechanism, the rich set of BPMN modeling elements and their combination
possibilities had to be adapted.

Model Driven Business Transformation – An Experience Report 39

Extension of BPMN via UML. The organizational structure, the artifact
landscape but also the high-level process structure is modeled using
UML-concepts. Here the interface between the provided BPMN-concepts
and the separately used UML-models had to be defined.

The necessary customizations are described in more detail in the following
sections:

1. Process architecture
2. Organization structure
3. Artifact landscape

Each section is described in identical format: First the gematik requirements are
given. Then the chosen BPMN-concepts are listed and the linkage to the used
UML mechanisms is described. Finally examples are provided.

2.1 Process Architecture

The new structure of the gematik is process-oriented. Starting form their needs
for resources and with the proviso that interfaces should be reduced the new
structure focuses on the core processes essential for the value creation of the
company. The departments are defined along the core processes, ensuring that
each process is owned by exactly one department. The core processes are made
up of processes and their interfaces. Only at the level of processes the actual
workflow is defined.

BPMN’s highest level of abstraction is the workflow. A concept to describe
process layers at a higher level is not provided. To reflect the structure of the
process landscape the UML-package concept is used.

Core process. Each core process respectively department is modeled by an
UML package. These packages are denoted with a special stereotype “core pro-
cess”. In the repository these packages are contained in a super package called
“departments”. The department package is one of the two main packages of the
repository. The second top-level package “cross-process information” contains
information relevant to more than one core process such as process interfaces,
artifacts and roles.

Process. A core process aggregates a set of processes. Processes are depicted by
business process elements1. Obligatory information on this level is a precise and
unambiguous name and a short textual summary of the process, outlining the
process goal, the critical success factors and the risks. The summary is provided
using the notes-field of the model element. To reflect dependencies between the
processes, they can be grouped (model element group or package) or connected
using control-flow arcs or message flow arcs.
1 In the BPMN Adopted Specification [2] there is no distinct notation for business

process. The distinct activity type “business process” originates from the modeling
set provided by the chosen modeling tool.

40 J. Siegeris and O. Grasl

Workflow. The processes are refined describing the actual workflow. The re-
quired level of detail for a process description varies from quite abstract descrip-
tions just defining the context to very fine granular descriptions of e.g. system
operations.

For the description of the workflow a subset of the BPMN modeling elements
was selected. In general all basic flow elements (events, activity, gateways) can
be used. For the drill down the BPMN-hierarchy concept is used. Different ab-
straction levels are supported by the two activity types “sub-process” (which
can be refined) and “task” (which is atomic).

On the first level the workflow description is complete, but not detailed. On
this level possible start events (process triggers) and possible end events, as well
as involved roles and interfaces to other processes are reflected. Participating
parties (modeled by BPMN pools and lanes) can be described both using a
white- or black-box approach. For white box descriptions, the organizational
unit, involved roles and process steps are visible. A black box description only
discloses the involved organizational unit—such elements must have a white-box
description elsewhere in the model. It is clear that the part of the process owner
is always modeled white-box. A further requirement is, that the elements of the
process owner are all connected, i.e. they are all on a path from a start event to
an end event.

A white-box description of a third party (not the process owner) can be re-
fined. Concerned organizational units can decide to provide their own (enhanced)
process description, thus over riding the pre-defined interface. Requirement for
the re-definition is that the initially provided modeling elements (and their de-
pendencies) are part of the redefined process. An example for a workflow con-
taining white and black-box descriptions is provided in Figure 1.

Here, the part of the “Expert” is modeled white box. This means that the
predefined tasks “comment document” and “send review comments” (and their
order) are obligatory for every refinement. The process of the author is modeled
black box. Except for the defined interface2, no restrictions are made to their
workflow.

Sub-process refinement. Any sub-process can be refined into sub-workflows.
All modeling constructs available to process workflows are also available to sub-
process workflows. The only restriction is that the sub workflow always starts
with one start- and ends with one end event.

Note. The hierarchy must be strictly met. Link model elements from different
levels via flows is prohibited—elements are linked to their parent element by
containment and can be connected to elements at the same level via flows or
messages. Moreover, every flow element should be part of a desired execution
path. In fact, mapping the requirements to possible correctness criteria [6], only
relaxed soundness[4,5] is applicable. Well-structuredness [1,3,8] is not required.

2 An interface between different organizational units is always modeled using a message
flow pointing to a message event.

Model Driven Business Transformation – An Experience Report 41

Fig. 1. The workflow within the review process

Soundness [1] cannot be guaranteed, because of the OR-gateway, which is allowed
to reflect optional flow.

2.2 Organization Structure

Tasks are executed by responsible actors (mostly persons). Responsibilities are
summarized in role(description)s which are assigned to positions within an
organization. In our context3 this relationship was condensed to roles that belong

3 We only consider the description of processes and not their instantiation at run time.
So we do not need to reflect the relationship between roles and concrete actors.

42 J. Siegeris and O. Grasl

to organizational units. Several roles can be involved within one process. One
distinguished role is said to be the process owner.

The BPMN provides model elements to organize and categorize activities.
These are groups, lanes and pools. Pools are used to represent participants of
the process. A lane is a sub-partition of a pool.

In the gematik process landscape roles are modeled using the model element
lane. Organizational units are modeled using the model element pool. Every task
has to be assigned to a role, that is the corresponding model element (activity
or sub process) is contained in a lane. Every role is assigned to an organizational
unit. Therefore every lane is contained in a pool.

The organizational structure of the gematik and the set of possible roles has
been modeled separately using UML-class diagrams. The class diagrams describ-
ing the organizational structure do not only contain class representations for
concrete organizational units (e.g. “Test-Department”, “Quality Management”)
but also for abstract generalizations, e.g. classes “Organizational Unit”, and
“Department”.

Associated to the organizational units are the available roles. As the set of
classes, the roles are divided into generic and internal roles. The first describes
roles that can be applied to people in potentially all organizational units. Ex-
amples for such roles are “Author”, “Expert”, “Project Manager”, “Head of
Department”, “Process Responsible” or “Employee”. The internal roles are spe-
cific to a certain department. Examples for the latter are “Employee of Quality
Management Department”, “Review Owner”, or “Head of Test Department”.

Figure 2 shows an extract of the metamodel describing the gematik’s organi-
zational structure. It is important to note that every role or organizational unit
contains a detailed description which is aligned to the authorized definition in
the organization manual.

In order to guarantee consistency between the BPMN process models and the
UML-class diagrams the following convention must be followed: Every lane and
pool within the process model (BPMN) has to be linked to one class (either
generic or specific) of the organization model (UML). The compliance with the
defined rule is checked with the help of a validation script. Regularly invoked
it checks whether the roles defined in the gematik organization model (UML
classes) are well-defined. It then verifies that every lane used in the process
model has its counterpart within the organization model. If so, a link is set
between the two elements. Otherwise the mismatch is reported.

Figure 1 shows the process model describing the internal review procedure.
It involves up to three different organizational units, and four different roles.
The “Review Owner” (process owner) and the “Proof Reader” are specific roles
in the quality management department. Therefore the corresponding lanes are
contained in a pool representing this specific department. The “Author” of the
reviewed specification can come from either a department or from a project.
The class (respectively pool) generalizing both is the “Organizational Unit”. The
technical reviewing (role “Expert”) is a task that belongs to the responsibilities

Model Driven Business Transformation – An Experience Report 43

Fig. 2. Organization model (extract): The generic organizational structure

of the line structure. The corresponding role is therefore associated only with
departments.

2.3 Artifact Landscape

Artifacts, in particular specification documents, play a prominent role in the
gematik context. These documents constitute the actual “product” of the com-
pany. Most of the processes are centered around their development, respectively
improvement, and their publication. Correspondingly, the artifacts used and pro-
duced within the processes must be modeled within the process descriptions.
Two aspects are modeled: the document type and the progression of a single
document instance.

The only elements BPMN provides to depict information related aspects, are
the model element “data object” and specific connectors to depict data flow.
Detailed data and information models are beyond the scope of BPMN.

To overcome this shortcoming, we followed a similar approach as sketched for
the organizational modeling. The gematik artifact landscape had been described
with an UML-class diagram. It contains a generalized class “gematik artifact”
with common attributes, such as state, status, scope, storage type, and stor-
age place. Derived classes are e.g. “document”, “form”, “document template”,

44 J. Siegeris and O. Grasl

Fig. 3. Information model: The gematik’s artifact landscape

“source code”, “binary”, “model” and an aggregation, the “artifact collection”.
Figure 3 shows the information model describing the gematik artifact landscape.

In order to use the different artifact types within the process models, the UML-
diagram was transformed into an UML-profile with corresponding stereotypes.
This profile was imported into the EA, enhancing the set of possible stereotypes
for the model element Artifact.

Artifacts are built and stored independently from the process models in a
super-ordinate package “Artifacts”. Creating an artifact, its type has to be de-
termined, applying one of the pre-defined stereotypes. Every artifact contains a
textual description outlining its specific purpose. Further information about the
artifact can be given using the attributes provided. Corresponding tagged values
can be set to denote e.g. the state, the status, the scope and its storage location.

In the process descriptions, instances of the artifact are linked. The handling of
an artifact within a process can be documented using (respectively overwriting)
again the mentioned attributes.

Examples for the use of artifacts are provided in the Review Process in Fig-
ure 1. Here the “review protocol” is the main document. The process is triggered
using the interface “Request: initiate internal review” and transferring a certifi-
cate referring to the artifacts to be reviewed. During the first activity “prepare
review” the frame of the review is fixed. This includes determining a dead-
line and the circle of reviewers. This information is noted in the review protocol
(state:instantiated). In parallel, the documents to be reviewed are converted into
a line numbered pdf-format. For reporting purposes a record is created in the in-
ternal planning list. In the next step, the review protocol and the pdf-documents
are transferred to the reviewers (interface “Request: generate comments”). They
use the protocol to include their comments. The completed protocol is renamed
and sent back to the QM-department (interface “Acknowledgment: comments
generated”).

Model Driven Business Transformation – An Experience Report 45

The review owner waits for the deadline to be reached and than collects
the review results. The different comments are integrated into one form and
reordered. Redundant comments are combined. A deadline for the revision is set.
The consolidated protocol and the revision deadline are transmitted back to the
author (interface “Request: integrate the comments and respond”). The process
is closed by recording the revision deadline in the planning list. In addition to
review coordination, the QM-department also performs formal revision of the
documents. This task is accomplished by the role “Proof Reader”.

3 Using BPMN Models to Generate Process
Documentation

An important pre-requisite for successful organizational transformation is that
the new organizational structure and the redesigned workflows are understood,
implemented and found useful by all employees concerned.

While BPMN models are useful for analyzing and redesigning workflows, the
process architecture team quickly realized that a BPMN model per se is neither
an ideal instrument for communicating the essence of newly designed process
landscapes nor suited as process documentation to support day-to-day work:

– BPMN models are centered around processes and workflows, not roles and
artifacts.

– Modeling tools can only be used easily by experienced users
– Comprehending and navigating complex models is difficult without guidance
– Useful textual annotations are hidden in the notes of the model and not

directly visible

After some discussion the following high-level requirements for the process doc-
umentation were elicited from the members of the process team:

– The documentation must provide quick and easy access to the information
needed

– The documentation must provide a role-based view, answering the questions
“Which processes am I involved in?” and “Which artifacts do I have to
produce?”

– The documentation must provide a process-based view, answering the ques-
tion “Who else is involved in this process?” and “How will we work together
to produce the required results?”

– The documentation must provide an artifact-based view, answering the ques-
tions “Which inputs must I use to create this artifact?” and “Which tem-
plates can I use to create this artifact?” and “To whom must I deliver the
results?”

A quick check of these requirements showed that most, if not all, of the infor-
mation needed for the process documentation was actually already contained
in the model, or could be provided by the model through simple extensions.
Therefore the process team realized that the main issue in creating the process

46 J. Siegeris and O. Grasl

documentation lay not in writing wholly new information, but in extracting the
information from the model, presenting it in new form, and making it readily
accessible.

3.1 An Intranet-Based, Fully Generated Process Portal

In consequence the decision was made to create process documentation which
could be fully generated from the process model. The solution to the ease of
use and quick access requirement was to create a process portal based on web-
technology, implementing the following features:

– The process portal offers a process-based, role-based and artifact-based ac-
cess to the process documentation. For example this means that an employee
can start at the role “quality manager” and immediately find all processes a
quality manager is involved in and all artifacts a “quality manager” creates.
If she clicks on one of these artifacts, e.g. “audit protocol”, she will find all
processes this artifact is involved in.

– The process portal offers direct access to artifacts of everyday importance
such as document templates, contact information for process owners, and
guidelines.

– The process portal is the binding source for information on organization
charts, process descriptions and role descriptions authorized by top manage-
ment.

– The process portal is fully generated from the process model.

3.2 The Approach Taken in Developing the Process Portal

Due to high time pressure the process portal was created in parallel to the process
model. The following approach was adopted.

1. Create a mock-up.
2. Choose an initial set of processes.
3. Refine the meta-model.
4. Align initial process model to meta-model.
5. Implement portal generator.
6. Evaluate process portal prototype.
7. Align process model to refined meta-model.
8. Generate first process portal.

Create a mock-up. The mock-up is used to ensure early end-user involvement,
gain buy-in from management, and agree on the layout and style of the process
portal. The mock-up (and later the process portal) is created using XML and
XSLT technology. In this way the presentation of the process portal (defined in
XSLT) is independent of the content (defined in XML). The portal generator
then just needs to generate XML and is not concerned with the presentation
itself. The presentation can later be refined by web designers to maximize ease
of use and the appeal of the graphical design.

The process portal is illustrated in figure 4.

Model Driven Business Transformation – An Experience Report 47

Fig. 4. The review process within the process portal

Choose an initial set of processes. This step is necessary to ensure that
development of the portal generator is not impaired by changes made to the
processes or the structure of the model. It is sensible to choose a small set of
processes initially that have already been released (and are therefore complete).

Refine the meta-model. Once the mock up is completed the meta-model must
be reviewed to check if all information to be displayed in the process portal is
considered in the meta-model.

Align initial process model to meta-model. Once the meta-model has
been completed the initial process model must be aligned to the meta-model. In
particular it must be ensured that all model elements are used correctly and all
necessary relationships are defined.

Implement portal generator. The portal generator is implemented using
Java technology. It first traverses the model and generates XML files for each
element corresponding to the major views in the model (e.g. one XML file for
each process, role and artifact). In a second pass through the model it generates
information necessary for the menu structure of the process portal.

Evaluate process portal prototype. At this stage, the process portal pro-
totype contained complete process information for those processes included in
the initial process model. Small changes to the handling of the process portal

48 J. Siegeris and O. Grasl

and the information displayed were requested. The portal generator, the process
portal presentation layer and the meta-model were finalized on this basis.

Align process model to refined meta-model. Once the meta-model is com-
plete, the main process model must be aligned to the new meta-model to ensure
the process model can be used as a basis for the portal generator.

Generate first complete process portal. Finally a process portal based on
all released processes is generated.

4 Practical Implementation

The set of processes to be modeled is extensive. In the initial blue print 129
processes were identified. The modeling effort is being conducted by all depart-
ments to ensure early buy-in of gematik employees. This means, many people
with different backgrounds are involved in the modeling. It is clear, that the
modelers have to be coordinated to gain a consistent process landscape.

Consistency is a prerequisite to use the process portal as a solid basis for
the communication of workflows and responsibilities across the company. Con-
sistency can only be achieved if the description of the individual processes are
at similar levels of abstraction, use similar language, and provide the same look
and feel. Furthermore, the processes must fit together building an integrated
whole. In order to ensure the model can be used for automatic generation of the
process portal, the model must be compliant to the metamodel.

At the level of BPMN models this goal can only be reached if all processes
reflect the same level of granularity, use the same set of modeling concepts and
conventions and reference artifacts and roles from a common framework.

4.1 The Process Architecture Team and the Modeling Guideline

In order to implement the proposed process landscape, an internal team was
commissioned and authorized to coordinate the modeling effort. In the beginning
the process team consisted of two process architects and a tool expert. Later on,
the team was strengthened by 17 modelers, one of each unit.

In the run-up to the modeling at large, the core team developed the modeling
framework. This included the decision for the modeling language, the tools to
be used, the setup of a common modeling repository and the modeling of the
process architecture based on the initial blue print. The core task at this stage
was to develop a common set of modeling guidelines. These were then used to
train the modelers.

The modeling guidelines are laid down in a specific document, which is the
core instrument in coordinating the modelers. The document contains a short
introduction to the relevant subset of BPMN modeling elements and the rules
for their application in the gematik context.

The guidelines support the modeling, determining what has to be described
and which conventions are to be followed. They define the criteria that have to be

Model Driven Business Transformation – An Experience Report 49

fulfilled to gain formal approval of the process descriptions. To maximize support
the modeler, these criteria are summarized in the appendix of the modeling
guidelines.

The rules defined in the modeling guideline implicitly determine a metamodel.
Later on this metamodel was made explicit and formalized. On the one hand
the metamodel is an instrument the architecture team can use to validate the
modeling guidelines, on the other hand it serves as a basis for automatic vali-
dation of the model (via validation scripts) and for the automatic generation of
the process documentation (via generating scripts).

4.2 Further Instruments Utilized by the Process Architecture Team

The process architecture team used a number of other instruments to improve
communication within the modeling team.

Wiki. The wiki was set up to support the modelers during their modeling
efforts. It is used to provide tips and tricks in using the modeling tool. Moreover,
it allows quick response to questions. Changes to the modeling guideline are also
communicated via the wiki.

Training. In the beginning the modelers were trained individually or in groups.
Joint modeling of prototypical process proved to be particularly effective: Work-
ing in pairs using the modeling tool the modelers could gain hands-on experience
of the tool’s user interface and the modeling guidelines.

Regular process meetings. The entire modeling team meets weekly. The
meeting is used to communicate the processes throughout the company, coor-
dinate handovers between the processes and to exchange encountered problems
and best practices.

Approval process. An approval process has been established to validate both
the process architecture and the description of the individual processes. It in-
volves validation of the process content by the head of the department owning
the process, and validation of compliance to the process architecture and model-
ing guidelines by the process architect. In case the process contains handovers to
processes from other departments, theses interfaces have to be approved by the
corresponding department. Cross organizational processes need final approval by
the board of directors.

5 Conclusions

The project this paper is reporting from is on-going. So far 60% of the processes
identified have been modelled in detail.

BPMN was found to be well-suited to the requirements encountered in this
business transformation project. The limitations concerning BPMN illustrated

50 J. Siegeris and O. Grasl

here were successfully overcome using UML extensions. No further problems are
expected in this area.

The next months will show whether the process portal will be accepted by
gematik employees and used as an instrument to ease daily work. The resonance
has been very positive so far. The practical instruments used by the process
architecture team have proved to be very effective, they will be refined further
as the business transformation project continues. It is clear that the business
transformation will not be finished once the process modeling effort is completed.
The next major challenge will be to ensure the processes are accepted by all
stakeholders and are executed in daily practice. The experience made during
process execution will be discussed at meetings of the process owners and feed
back into the process model and thus the process portal at regular interval.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

2. Business Process Modeling Notation (BPMN 1.0): OMG Final Adopted Specifica-
tion (2006)

3. Chrzastowski-Wachtel, P., Benatallah, B., Hamadi, R., O’Dell, M., Susanto, A.: A
Top-Down Petri Net-Based Approach for Dynamic Workflow Modeling. In: van der
Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003. LNCS, vol. 2678,
pp. 336–353. Springer, Heidelberg (2003)

4. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In: Dittrich,
K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS, vol. 2068, pp. 157–170.
Springer, Heidelberg (2001)

5. Dehnert, J., van der Aalst, W.M.P.: Bridging the Gap Between Business Models
and Workflow Specifications. Int. Journal of Cooperative Information Systems (IJ-
CIS) 13(3), 289–332 (2004)

6. Dehnert, J., Zimmermann, A.: On the Suitability of Correctness Criteria for Business
Process Models. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 386–391. Springer, Heidelberg (2005)

7. Recker, J., Indulska, M., Rosemann, M., Green, P.: How good is BPMN really?
Insights from Theory and Practice. In: Ljungberg, J., Andersson, M. (eds.) 14th
European Conference on Information Systems, Goeteborg, Sweden (2006)

8. Verbeek, E.: Verification of WF-nets. PhD thesis, TU Eindhoven (2004)
9. Wohed, P.P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell,

N.: On the suitability of BPMN for business process modelling. In: Dustdar, S.,
Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer,
Heidelberg (2006)

Supporting Flexible Processes through

Recommendations Based on History

Helen Schonenberg, Barbara Weber, Boudewijn van Dongen,
and Wil van der Aalst

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.h.schonenberg, b.f.v.dongen, w.m.p.v.d.aalst}@tue.nl

Department of Computer Science, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

Abstract. In today’s fast changing business environment flexible Pro-
cess Aware Information Systems (PAISs) are required to allow companies
to rapidly adjust their business processes to changes in the environment.
However, increasing flexibility in large PAISs usually leads to less guid-
ance for its users and consequently requires more experienced users. To
allow for flexible systems with a high degree of support, intelligent user
assistance is required. In this paper we propose a recommendation ser-
vice, which, when used in combination with flexible PAISs, can support
end users during process execution by giving recommendations on pos-
sible next steps. Recommendations are generated based on similar past
process executions by considering the specific optimization goals. In this
paper we also evaluate the proposed recommendation service, by means
of experiments.

1 Introduction

In todays fast changing business environment, flexible Process Aware Informa-
tion Systems (PAISs) are required to allow companies to rapidly adjust their
business processes to changes in the environment [7]. PAISs offer promising
perspectives and there are several paradigms, e.g., adaptive process manage-
ment [13], case handling systems [16] and declarative processes [11, 12] (for an
overview see [18,20,3]).

In general, in flexible PAIS it occurs frequently that users working on a case,
i.e., a process instance, have the option to decide between several activities that
are enabled for that case. However, for all flexibility approaches, the user sup-
port provided by the PAIS decreases with increasing flexibility (cf. Fig. 1), since
more options are available, requiring users to have in-depth knowledge about
the processes they are working on. Traditionally, this problem is solved by edu-
cating users (e.g., by making them more aware of the context in which a case is
executed), or by restricting the PAIS by introducing more and more constraints
on the order of activities and thus sacrificing flexibility. Both options, however,
are not satisfactory and limit the practical application of flexible PAISs.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 51–66, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

52 H. Schonenberg et al.

In this paper, we present an approach for intelligent user assistance which
allows PAISs to overcome this problem and to provide a better balance be-
tween flexibility and support. We use event logs of PAISs to gain insights into
the process being supported without involving a process analyst and we pro-
pose a tooling framework to provide continuously improving support for users
of flexible PAISs. At the basis of our approach lie so-called recommendations.
A recommendation provides information to a user about how he should proceed
with a partial case (i.e., a case that was started but not completed yet), to
achieve a certain goal (e.g., minimizing cycle time, or maximizing profit). In this
paper we discuss several methods for calculating log-based recommendations. In
addition, we describe the implementation of our approach as recommendation
service and its evaluation. The remainder of this paper is structured as follows.
In Section 2, we present the requirements and an overview of the recommenda-
tion service. Then, in Section 3 we define a log-based recommendation service. In
Section 4, we describe the experiment we conducted to evaluate whether recom-
mendations indeed help to achieve a particular goal. Finally, we discuss related
work in Section 5 and provide conclusions in Section 6.

2 Overview

Fig. 2 illustrates the envisioned support of users of flexible PAISs through a
recommendation service. In general, each business process to be supported is
described as process model in the respective PAIS. We consider both impera-
tive and declarative process models. In fact, our approach is most useful when
the process model provides the user a lot freedom to manoeuvre, i.e., multiple
activities are enabled during execution of a case. At run-time, cases are cre-
ated and executed considering the constraints imposed by the process model.
In addition, the PAIS records information about executed activities in event
logs. Typically, event logs contain information about start and completion of
activities, their ordering, resources which executed them and the case they
belong to [1].

As illustrated in Fig. 2, the recommendation service is initiated by a request
from the user for recommendations on possible next activities to execute. In this
request, the user sends the recommendation service information about the par-
tially executed case, i.e., (1) the currently enabled activities, and (2) the history
of executed activities, which we call the partial trace. Information about the
partial trace is required because the decision which activities to perform next
for a particular case usually depends on the activities already performed for this
case. In addition, only enabled activities are considered to ensure that no recom-
mendations are made that violate the constraints imposed by the process model.
The recommendation service then provides the PAIS a recommendation result,
i.e., an ordering of recommendations where each recommendation refers to one
activity and some quality attributes (e.g., expected outcome) explaining the rec-
ommendation. Recommendations are ordered such that the first recommendation

Supporting Flexible Processes through Recommendations Based on History 53

ad-hoc
workflow

groupware
production
workflow

case
handling

low

high

flexibility
su

pp
or

t

Fig. 1. PAIS trade-offs [5]

recommendation
service

process engine

Process
Aware

Information
System

partial case
enabled activities

recommendation result
ordering enabled activities

end user

e.g. Declare

Optimization
goal

Event
log

logs

uses

Fig. 2. An overview of the recommendation service

in the list is most likely to help the user achieving his goal, i.e., optimizing a
certain target, such as profit, cost, or cycle time. Different users can have different
targets, resulting in different recommendations.

As an example we describe a fictive process of applying for a building permit
at a town hall. Initially, the employee has to do several tasks; (A) bill registration
fee (B) register the application details, (C) initiate permission procedure, (D)
announce the application in local newspaper, and (E) inform applicant. The
employee can decide in which order to execute these tasks. Ideally, the employee
finishes these as soon as possible. All tasks have a fixed duration, however, tasks
B and C use the same database application and if B is directly followed by C,
then the combined duration of the tasks is much shorter, since there is no closing-
time for B an not set-up time for C, moreover C can use the data provided by
B, without data re-entry. The recommendation service can guide employees to
execute in the faster order of tasks.

In this simple example the use of recommendations seems to be an overkill
as the user only has to select among a limited set of options. In the presence of
real life flexible processes, with increasing complexity there are so many options
for users, that user support becomes fundamental. At the same time, giving
recommendations based on extracted knowledge from execution logs can provide
knowledge that was not available during the design of the process.

3 Log-Based Recommendation Service

In this section, we present a concrete definition of a log-based recommendation
service for providing users with recommendations on next possible activities to
execute. Recommendations for an enabled activity provide predictive informa-
tion about the user goal, based on observations from the past, i.e., fully com-
pleted traces accompanied by their target value (e.g., cost, cycle time, or profit),
that have been stored in an event log. The log-based recommendation service
requires the presence of an event log that contains such information about cases
that have been executed for a certain process.

54 H. Schonenberg et al.

3.1 Preliminaries

Let A be a set of activities. A∗ denotes a set of finite sequences over A. A
trace σ ∈ A∗ is a finite sequence of activities, where |σ| = n is the length
of the sequence. Sequences are denoted as σ = 〈a1, a2, . . . , an〉 and we denote
∀1≤i≤n σ(i) = ai.

On traces, we define the standard set of operators.

Definition 1 (Trace operators). Letσ : {1, . . . , n} → A andσ′ : {1, . . . , m} →
B be traces with σ = 〈a1, a2, . . . , an〉 and σ′ = 〈b1, b2, . . . , bm〉.

Prefix σ ≤ σ′ ⇐⇒ n ≤ m ∧ ∀1≤i≤n ai = bi

Concatenation σ�σ′ = 〈a1, a2, . . . , an, b1, b2, . . . , bm〉
Membership a ∈ σ ⇐⇒ ∃1≤i≤n ai = a
Parikh vector par(σ)(a) = #0≤i≤n ai = a.

The Parikh vector par(σ)(a) denotes the number of occurrences of a in a trace
σ, e.g., par(〈a, b, c, a, b, c, d〉)(a) = 2.

For multi-sets (bags), we introduce standard notation to denote the universe
of multi-sets over a given set. Let S be a set, then the universe of multi-sets
over S is denoted by B(S), with X ∈ B(S), denoted as X : S → N is a multi-
set, where for all s ∈ S holds that X(s) denotes the number of occurrences
of s in X(s). We will use �a, b2, c3� to denote the multi-set of one a, two b’s
and three c’s as a shorthand for the multi-set X ∈ B(A) where A = {a, b, c},
X(a) = 1, X(b) = 2, X(c) = 3. Furthermore, multi-set operators such as for for
union �, intersection �, and submulti-set �, � are defined in a straightforward
way and can handle a mixture of sets and multi-sets.

Definition 2 (Event log). Let A be a set of activities. An event log L ∈ B(A∗)
is a multi-set of traces referring to the activities in A.

Recall that each recommendation contains predictive information regarding the
user goal. For now, we assume that this goal can be captured by a function on a
trace, i.e., each trace σ in an event log has a target value (e.g., cost, cycle time,
or profit) attached to it.

Definition 3 (Target Function). Let A be a set of activities and σ ∈ A∗ a
sequence of activities. We define τ(σ) ∈ R+ to represent the target value of the
sequence σ.

Note that τ is not a function, as similar sequences might have different values
attached to them. However, τ is total, i.e. it provides a value for all sequences.

3.2 Recommendations

A recommendation is initiated by a recommendation request, which consists of
a partial trace and a set of enabled activities. Formally, we define a recommen-
dation request as follows.

Supporting Flexible Processes through Recommendations Based on History 55

Definition 4 (Recommendation request). Let A be a set of activities and
ρ ∈ A∗ a partial trace. Furthermore, let E ⊆ A be a set of enabled activities.
We call r = (ρ, E) a recommendation request.

An activity accompanied by predictive information regarding the user goal is
called a recommendation. For each enabled activity, we determine the expected
target value when doing this activity (do), and the expected target value for
alternatives of the enabled activity, i.e., other enabled activities (dont). Precise
definitions of do and dont are given in Definitions 10 and 11. A recommendation
result is an ordering over recommendations.

Definition 5 (Recommendations). Let A be a set of activities and L ∈
B(A∗) an event log over A. Furthermore, let (ρ, E) be a recommendation re-
quest with E ⊆ A, |E| = n and e ∈ E an enabled activity.

–
(
e, do(e, ρ, L), dont(e, ρ, L)

)
∈ E × R × R is a recommendation. We use R

to denote the universe of recommendations.
– A recommendation result R = 〈

(
e1, do(e1, ρ, L), dont(e1, ρ, L)

)
,
(
e2, do(e2, ρ,

L), dont(e2, ρ, L)
)
, . . . ,

(
en, do(en, ρ, L), dont(en, ρ, L)

)
〉 is a sequence of rec-

ommendations, such that R ∈ R∗ and ∀1≤i<j≤n ei �= ej.

The nature of the ordering over recommendations is kept abstract, however, we
provide a possible ordering for a recommendation result in Example 1, Section
3.6. In the next section we describe how recommendations are generated by the
recommendation service based on an existing event log L.

3.3 Trace Abstraction

When generating log-based recommendations only those traces from the event
log should be considered, which are relevant for determining the predictive infor-
mation of an enabled activity. From those traces the ones with a high degree of
matching with the partial trace execution should be weighted higher than those
with small or no match.

To determine which log traces are relevant to provide recommendations for
a given partial trace and to weight them according to their degree of match-
ing we need suitable comparison mechanisms for traces. Our recommendation
service provides three different trace abstractions based on which traces can be
compared, namely, prefix, set and multi-set abstraction. The prefix abstraction
basically allows for a direct comparison between the partial trace and a log trace.
In practice such a direct comparison is not always relevant, e.g., when the order-
ing, or frequency of activities is not important. Therefore we provide with set
and multi-set two additional abstractions. They are independent of the domain
context, e.g., they do not assume the process to be a procurement process or an
invoice handling process [17].

Definition 6 (Trace abstraction). Let A be a set of activities, L ∈ B(A∗) be
an event log and σ ∈ L be a trace. σp = σ denotes the prefix abstraction of σ,
σs = {a | a ∈ σ} denotes the set abstraction of σ and σm = par(σ) denotes the
multi-set abstraction of σ, i.e., for all a ∈ σ holds that σm(a) = par(σ)(a).

56 H. Schonenberg et al.

In Section 3.4 we explain how we determine which log traces are relevant for
obtaining predictive information of an enabled activity. In Section 3.5 we describe
how we calculate the weighting of log traces.

3.4 Support

The relevance of log traces for a recommendation is determined on basis of sup-
port. Typically, traces that are relevant are those that support the enabled ac-
tivity for which the recommendation is computed. What support exactly means
here, depends on the trace abstraction used.

For the prefix abstraction, we say that a log trace σ supports enabled activity
e, if and only if e occurs in σ at the same index as in the partial trace ρ, when this
activity is executed. For set abstraction, we consider a log trace σ to support the
enabled activity e whenever activity e has been observed at least once in the log
trace. To support an enabled activity e in multi-set abstraction of trace σ, the
the frequency of activity e in the partial trace ρ must be less than the frequency
in the log trace σ, i.e., by executing e after ρ, the total number of e’s does not
exceed the number of e’s in σ.

Definition 7 (Activity support functions). Let A be a set of activities,
ρ, σ ∈ A∗ and enabled activity e ∈ A. We use the predicate s(ρ, σ, e) to state
that log trace σ supports the execution of e after partial trace ρ. The predicate is
defined for the three abstractions by:

sp(ρ, σ, e) ⇐⇒ σp(|ρ| + 1) = e

ss(ρ, σ, e) ⇐⇒ e ∈ σs

sm(ρ, σ, e) ⇐⇒ ρm(e) < σm(e)

The support predicate is used to filter the event log by removing all traces that
do not support an enabled activity.

Definition 8 (Support filtering). Let A be a set of activities and L ∈ B(A∗)
an event log over A. Furthermore, let (ρ, E) be a recommendation request with
ρ ∈ A∗ and E ⊆ A. We define the log filtered on support of enabled activity
e ∈ E and partial trace ρ as Ls

(ρ,e) = �σ ∈ L | s(ρ, σ, e)�1

Log traces from Ls
(ρ,e) support enabled activity e and are used for the recom-

mendation of e. Next, we define a weighing function (ω) to express the relative
importance of each of these log traces for the recommendation of an enabled
activity e.

3.5 Trace Weight

The support of an enabled activity determines the part of the log that serves as
a basis for a recommendation. However, from the traces supporting an enabled
1 Note that σ ranges over a multi-set traces.

Supporting Flexible Processes through Recommendations Based on History 57

activity, not every one is equally important, i.e., some log traces match the
partial trace better than others. Hence, we define weighing functions that assign
a weight to each log trace. The weight of a trace can be between 1 and 0, where a
value of 1 indicates that two traces fully match and 0 that they do not match at
all. The calculation of the degree of matching depends on the trace abstraction.
For prefixes, the weight of a log trace is 1 if the partial trace is a prefix of
the log trace, otherwise, the weight is 0. For the set abstraction, the weight of
the log trace is defined as the fraction of distinct partial trace activities that the
partial trace abstraction and log trace abstraction have in common. The weight
of a trace for the multi-set abstraction is similar to the set-weight, however, the
frequency of activities is also considered.

Definition 9 (Weight functions). Let A be a set of activities and σ, ρ ∈ A∗.
We define ω(ρ, σ),i.e., the relative importance of a log trace σ when considering
the partial trace ρ as follows:

ωp(ρ, σ) =

{
1 , if ρp ≤ σp

0 , otherwise
, ωs(ρ, σ) =

|ρs ∩ σs |
|ρs |

, ωm(ρ, σ) =
|ρm � σm |

|ρm |

3.6 Expected Outcome

Definition 5 states that a recommendation for enabled activity e contains pre-
dictive information about the target value. We define the expected outcome of
the target value (do value), when e is executed in the next step, as a weighted
average over target values of log traces from Ls

(ρ,e), the log filtered on support
of e. The target value of each trace from Ls

(ρ,e) is weighted (ω) on basis of the
degree of matching with the partial trace.

Definition 10 (do calculation). Let A be a set of activities, τ a target func-
tion, ρ, σ ∈ A∗, L ∈ B(A∗) and e ∈ E ⊆ A an enabled activity. The expected
target value when ρ is completed by the user after performing activity e next is
defined as:

do(e, ρ, L) =

∑
σ∈Ls

(ρ,e)
ω(ρ, σ) · τ(σ)∑

σ∈Ls
(ρ,e)

ω(ρ, σ)

Similarly, we define the expected target value of not doing an enabled activity
e2. The dont function determines the weighted average over all alternatives of
e, i.e., all traces that do not support the execution of e after ρ, but do support
any of the alternatives e′ after ρ.

Definition 11 (dont calculation). Let A be a set of activities, τ a target func-
tion, ρ, σ ∈ A∗, L ∈ B(A∗) and e, e′ ∈ E ⊆ A enabled activities. The expected

2 Note that in both do and dont Σ ranges over a multi-set of traces.

58 H. Schonenberg et al.

Log Weight and support

σ cost ωs(ρ, σ) ss(ρ, σ, e)
e = A e = B e = C

ABC 900 0 � � �
DBC 500 0.5 � �
FBC 500 0.5 � �
DFA 1000 1 �
DFB 1500 1 �
DFC 2000 1 �
DFH 1260 1
CCA 1680 0 � �

Fig. 3. Example log, with weight and support values for ρ = 〈D, F 〉

target value when ρ is completed by the user after not performing activity e next
is defined as:

dont(e, ρ, L) =

∑
e′∈E\{e}

∑
σ∈Ls

(ρ,e′)\Ls
(ρ,e)

ω(ρ, σ) · τ(σ)∑
e′∈E\{e}

∑
σ∈Ls

(ρ,e′)\Ls
(ρ,e)

ω(ρ, σ)

Next, we provide an example calculation for a recommendation, based on a
concrete partial trace, a set of enabled events and a log.

Example 1 (Recommendation). Suppose ρ = 〈D, F 〉 is a partial trace and E =
{A, B, C} is the set of enabled activities. Together, they form a recommenda-
tion request (ρ, E). The log is given by L = �〈A, B, C〉, 〈D, B, C〉, . . .�, with
τ(〈A, B, C〉) = 900, τ(〈D, B, C〉) = 500, etc. (cf. Fig. 3). For convenience, we
also provide the values for support (ss(ρ, σ, e)) and trace weight (ωs(ρ, σ)). For
each log trace, support is denoted by �. The user wants to minimize the cost
and uses set abstraction. The do and dont values for the recommendation are
calculated as follows.

do(A, 〈D, F 〉, L) =
0 · 900 + 1 · 1000 + 0 · 1680

0 + 1 + 0
= 1000

do(B, 〈D, F 〉, L) =
0 · 900 + 0.5 · 500 + 0.5 · 500 + 1 · 1500

0 + 0.5 + 0.5 + 1
= 1000

do(C, 〈D, F 〉, L) =
0 · 900 + 0.5 · 500 + 0.5 · 500 + 1 · 2000 + 0 · 1680

0 + 0.5 + 0.5 + 1 + 0
= 1250

dont(A, 〈D, F 〉, L) =
(0.5 · 500 + 0.5 · 500 + 1 · 1500) + (0.5 · 500 + 0.5 · 500 + 1 · 2000)

0.5 + 0.5 + 1 + 0.5 + 0.5 + 1
= 1125

dont(B, 〈D, F 〉, L) =
(1 · 1000 + 0 · 1680) + (1 · 2000 + 0 · 1680)

1 + 0 + 1 + 0
= 1500

dont(C, 〈D, F 〉, L) =
(1 · 1000) + (1 · 1500)

1 + 1
= 1250

The implementation of our recommendation service orders the enabled ac-
tivities on the difference between do and dont , i.e., the bigger the difference,
the more attractive the activity is. The recommendations for the enabled ac-
tivities are (A, 1000, 1125),(B, 1000, 1500) and (C, 1250, 1250), with the dif-
ferences of -125, -500 and 0 respectively. Thus, the recommendation result is

Supporting Flexible Processes through Recommendations Based on History 59

A.) Experiment Procedure

2.) Random Log Creation (for Object „Set-Up Time Model“)

Create Traces
randomly

Trace 1

Random Sample
with 30 observations

Mean
Cycle Time

?

Trace
1

.. 30

Log L
with size k

Trace 1

Create Traces
using

Recommendation Service
from log L with
abstraction abs

Mean
Cycle Time

?

Abstraction
abs

Sample abs / k
with 30 observations (*)

Trace
1

.. 30
(*) Levels used for Log Size k = {5,30,60,120} and abstractions abs = {prefix, set, multiSet} resulting
in 12 samples = {Pref5, Pref30, …. , MultiSet60, MultiSet120}

1.) Log Creation Based on Recommendations (for Object „Set-Up Time Model“)

Fig. 4. The experiment design

〈(B, 1000, 1500), (A, 1000, 1125), (C, 1250, 1250)〉. If the user goal would be to
maximize costs, the order will be reversed.

4 Evaluation Based on a Controlled Experiment

To evaluate the effectiveness of our recommendation service we conducted a
controlled experiment. Section 4.1 describes the design underlying our experi-
ment and Section 4.2 describes the preparatory steps we conducted. Section 4.3
explains the experiment procedure including data analysis. The results of our
experiment are presented in Section 4.4. Factors threatening the validity of our
experiment are discussed in 4.5.

In our experiment we use the recommendation service to support the business
process, that has been explained in Section 2. The process has five activities
(A, B, C, D, E) that have to be executed exactly once and can be executed in
any order. Each activity has a cycle time of 10 time units, however, if C is
directly executed after B, then the cycle time of the trace will be 35 time units
of 50. For the experiment we assume that the user goal is to minimize the cycle
time and that the recommendation service is used for support.

4.1 Experiment Design

This section describes the design underlying our experiment.

– Object: The object to be studied in our experiment are the traces created
for the set-up time model with the help of our recommendation service.

– Independent Variables: In our experiment we consider the log abstraction
and the log size as independent variables. For variable log abstraction we
consider levels abs ∈ {prefix , set ,multiset} (cf Section 3.3). Variable Log
size k represents the number of instances in the event log, i.e., the amount

60 H. Schonenberg et al.

of learning material based on which recommendations are made. As levels
k ∈ {5, 30, 60, 120} are considered.

– Response Variable: The response variable in our experiment is the cycle
time of a trace created by the recommendation service using a log of a given
size and a given abstraction.

– Experiment Goal: The main goal of our experiment is to investigate
whether changes in the log significantly effect the cycle time3 of the cre-
ated traces given an abstraction. Another goal is to investigate whether the
traces created by our recommendation service yield significantly better re-
sults than randomly created traces.

4.2 Experiment Preparation

This section describes the preparatory steps we conducted for the experiment.

– Implementing the Recommendation Service in ProM. As a prepa-
ration for our experiment we implemented the recommendation service de-
scribed in Section 3 as a plug-in for the (Pro)cess (M)ining framework ProM4.
ProM is a pluggable framework that provides a wide variety of plug-ins to ex-
tract information about a process from event logs [19], e.g., a process model,
an organizational model or decision point information can be discovered.
To implement the recommendation service we had to make several exten-
sions to ProM as the recommendation service, in contrast to other plug-ins,
is not a posteriori mining technique, but recommendations are provided in
real-time during process execution. The implementation of our recommen-
dation service is able to provide a process engine with recommendations
on possible next steps knowing the enabled activities and the partial trace.
In addition, the recommendation service provides means to add finished
cases to the event log to make them available for recommendations in future
executions.

– Implementing a Log Creator and Log Simulator. In addition to the
recommendation service we implemented a log creator and log simulator.
While the log creator allows us to randomly create logs of size k for a given
process model, the log simulator can be used to create traces using the rec-
ommendation service with a log of size k and an abstraction abs. The log
simulator takes the constraints imposed by the process model into consid-
eration and ensures that no constraint violations can occur. Thus, the log
simulator can be seen as a simulation of a process engine. Both the log cre-
ator and the log simulator have been implemented in Java using Fitnesse5

as user interface. This allows us to configure our experiments in a fast and
efficient way using a WIKI and to fully automate their execution.

3 Note that our approach can also be used for costs, quality, utilization, etc. However,
for simplicity we focus on the cycle time only.

4 The ProM framework can be downloaded from www.processmining.org.
5 Fitness Acceptance Testing Framework fitnesse.org

www.processmining.org
fitnesse.org

Supporting Flexible Processes through Recommendations Based on History 61

4.3 Experiment Execution and Data Analysis

The experiment procedure including the analysis of the collected data is de-
scribed in this section.

– Generation of Data. As illustrated in Fig. 4 our experiment design com-
prises two independent variables (i.e., log abstraction abs and log size k). As
a first step a log of size k is randomly created using the log creator, which
is then - in a second step - taken by the log simulator as input to create
traces for each combination of abstractions and log sizes. Traces are created
based on the recommendations provided by the recommendation service de-
scribed in Section 3. The recommendations given by the recommendation
service are used throughout the entire execution of the case whereby the
best recommendation (i.e., the one with the highest difference of do and
dont values, see. Section 3.6) is taken. For each completed trace the log sim-
ulator records the cycle time. We repeated (n=30) the process of producing
a log and creating a trace using the log simulator with this log as input. In
total we obtained 12 samples covering all combinations of log size levels and
abstraction levels. For example, sample PREF5 represents the sample with
abs = prefix and k = 5.

In addition to the 12 samples which are created using recommendations,
we created one sample with 30 randomly created traces to compare this
sample with the ones created using the recommendation service.

– Effects of Changes in Log Size and Abstraction. To analyse the ef-
fects of changes in the log size and the selection of a particular abstraction
on the cycle time of the created traces we calculated 95% confidence inter-
vals (CI 95%) on the mean cycle time for each sample. Doing so, we can
say with 95% probability, for a given log size and a given abstraction, that
the cycle time of a created trace will be within the calculated confidence
interval.

If we then compare the confidence intervals of two samples of a given
abstraction (e.g., PREF5 and PREF10) and these intervals do not overlap, we
can assume that the two samples have statistically different cycle times.

– Effectiveness of Abstractions. To investigate whether the traces created
by our recommendation service yield significantly better results than ran-
domly created traces we compared the confidence interval of the random
sample with the confidence intervals of each of the other 12 samples.

4.4 Experiment Results

The results of our experiments are summarized in Figures 5-10. Figures 5-7 depict
the effect of the log size on the mean cycle time for the 12 samples created using
recommendations. In Figures 8-10 we compare the different abstractions and the
random strategy for a fixed log size.

– Increasing the Log Size. Figure 5 clearly shows the impact of increasing
the log size on the cycle time for prefix abstraction. The mean cycle time

62 H. Schonenberg et al.

Fig. 5. Prefix Fig. 6. Set Fig. 7. Multi-set

Fig. 8. Log size = 5 Fig. 9. Log size = 30 Fig. 10. Log size = 60

for sample PREF5 is given by a CI 95% [38.68,44.32] and for samples PREF30,
PREF60 and PREF120 the mean cycle time is 35 (with a standard deviation
of 0), which is also the optimum cycle time. When studying the results
of Fig. 5 changing the log size from k = 5 to k = 30 yields a significant
decrease of the cycle time. As the confidence intervals of samples PREF5 and
PREF30 are not overlapping the difference in their cycle times is statistically
significantly different. Further increases in the log size have no effect since
the optimum cycle time has already been found for sample PREF30. Figure 6
and 7 shows the results for the set and multi-set abstraction. As all intervals
are overlapping we can conclude that there is no significant improvement in
the cycle time for the set and multi-set abstraction.

– Comparing the Abstractions. Figure 8-10 compares randomly created
traces with the samples for prefix, set and multi-set. It can be observed
that the prefix abstraction (i.e., samples PREF5, PREF30 and PREF60) has
significantly better cycle times compared to the random sample and thus
outperforms the random selection strategy. As illustrated in Figure 8-10 the
difference between random selection and prefix abstraction becomes bigger
with increasing log size. The prefix abstraction also outperforms the multi-
set abstraction for all considered log sizes. A comparison of the set and prefix
abstraction reveals that no significant differences exist between PREF5 and
SET5, while PREF30 and SET30 as well as PREF60 and SET60 significantly
differ. Finally, between the samples of the set and multi-set abstraction no
significant differences can be observed.

Supporting Flexible Processes through Recommendations Based on History 63

In summary, our results show that an increase of the log size does effect the
mean cycle time for the prefix abstraction and that this abstraction significantly
outperforms the random selection strategy. For the set and multi-set abstraction
changes in the log size do not significantly effect the mean cycle time. As these
abstractions cannot exploit the order characteristics of the traces in the log they
do not outperform the random selection strategy.

4.5 Risk Analysis

In the following we discuss factors potentially threatening the validity of our
experiment. In general, it can be differentiated between threats to the internal
validity (Are the claims we made about our measurements correct?) and threats
to the external validity (Can we generalize the claims we made?) [10]. For our
experiment most relevant threats affect the external validity:
– Selection of Process Model. In the selection of the business process for

our experiment constitutes a threat to the external validity of our experi-
ment. Given the properties of the chosen process model, a particular order
of executing activities yields a benefit. As the prefix abstraction considers
the exact ordering of activities, while the set and multi-set abstractions dis-
regard this information, the chosen process model is favouring the prefix
abstraction. For process models with different characteristics other abstrac-
tions might be more favourable. Therefore it cannot be generalized that the
prefix abstraction is always better than the set and multi-set abstraction.
A family of experiments using process models with different characteristics
is needed for generalization. Initial investigations with a business process
which is not order-oriented show that set and multi-set abstraction can per-
form significantly better than random selection.

– Method of Log Creation. For our experiment the method we used for log
creation might constitute another threat to the external validity. We assume
a log that only contains randomly created traces as the input for the log
simulator. Using the simulator we then create, based on this log, an addi-
tional trace considering recommendations. In practice such an assumption
might not always be realistic as a real-life log will most probably contain
a mixture of randomly created traces and traces created using recommen-
dations., i.e., by random/explorative and experience-based ways of working.
First experiments indicate that the degree to which a log contains random
traces compared to traces created based on recommendations also influences
the cycle time. However, like for completely random logs an increase of the
log size has led to decreases in the cycle time, but the slope of the decrease
tends to be steeper for higher ratios of random behaviour in the log. An
extensive investigation of logs with different ratios of random traces will be
subject of further studies.

5 Related Work

The need for flexible PAISs has been recognized and several compet-
ing paradigms (e.g., adaptive process management [13, 22, 9], case-handling

64 H. Schonenberg et al.

systems [16] and declarative processes [12]) have been proposed by both
academia and industry (for an overview see [20]). In all these approaches the
described trade-off between flexibility requiring user assistance can be observed.

Adaptive PAIS represent one of these paradigms by enabling users to make
structural process changes to support both the handling of exceptions and
the evolution of business processes. Related work in the context of adaptive
PAISs addresses user support in exceptional situations. Both ProCycle [21, 14]
and CAKE2 [9] support users to conduct instance specific changes through
change reuse. While their focus is on process changes, our recommendation ser-
vice assists users in selecting among enabled activities. ProCycle and CAKE2
use case-based reasoning techniques to support change reuse. Therefore sug-
gestions to the users are based on single experiences, (i.e., the most similar
case from the past), while in our approach recommendations are based on the
entire log.

In addition to adaptive process management technology, which allows for
structural change of the process model, and the case-handling paradigm, which
provides flexibility by focusing on the whole case, many approaches support
flexibility by allowing the design of a process with regions (placeholders) whose
contents is unknown at design-time and whose content is specified (Late Model-
ing) or selected (Late Binding) during execution of the tasks (for details see [20]).
Examples of such approaches are, Worklets [2] or the Pockets of Flexibility [15]
approach. Both approaches provide user assistance by providing simple support
for the reuse of previously selected or defined strategies, recommendations as
envisioned in our approach are not considered.

Besides the approaches described above there is a third paradigm for flexible
workflows, which relies on a declarative way of modeling business processes.
As opposed to imperative languages that “procedurally describe sequences of
action”, declarative languages “describe the dependency relationships between
tasks” [6]. Generally, declarative languages propose modeling constraints that
drive the model enactment [12]. When working with these systems, users have
the freedom to choose between a variety of possibilities as long as they remain
within the boundaries set by the constraints [11,12]. In the context of declarative
workflows user assistance has not been addressed so far.

In [17] recommendations are used to select the step, which meets the perfor-
mance goals of the process best. Like in our approach selection strategies (e.g.,
lowest cost, shortest remaining cycle time) are used. However, the recommen-
dations are not based on a log, but on a product data model. [9, 8, 23, 4] also
address similarity measures, but unlike these approaches, our approach relies on
observed behaviour rather than information derived from process models.

6 Conclusion

Existing PAISs are struggling to balance support and flexibility. Classical work-
flow systems provide process support by dictating the control-flow while group-
ware-like systems offer flexibility but provide hardly any process support. By

Supporting Flexible Processes through Recommendations Based on History 65

using recommendations, we aim at offering support based on earlier experiences
but not limit the user by imposing rigid control-flow structures. In this paper we
presented an approach based on recommendations, i.e., based on a process model
providing a lot of flexibility the set of possible activities is ranked based on do
and dont values. The recommendation is based on (1) a configurable abstraction
mechanism to compare the current partial case with earlier cases and (2) a
target function (e.g., to minimize costs or cycle time). The whole approach has
been implemented by extending ProM and can be combined with any PAIS that
records events and offers work through worklists. The experimental results in
this paper show the value of information, i.e., the more historic information
is used, the better the quality of the recommendation. We experimented with
different abstractions and log sizes. Clearly, the performance depends on the
characteristics of the process and the abstraction. However, the experiments
show that traces executed by support of recommendations often outperform
traces executed without such support. This is illustrated by the difference in
performance between the random selection and appropriate guided selection.

Future work will aim at characterizing the suitability of the various abstrac-
tion notions. Through a large number of real-life and simulated experiments we
aim at providing insights into the expected performance of the recommenda-
tion service. Furthermore, we plan to extend our recommendation service such
that in addition to control-flow information, information on data and resources
is considered as well. Moreover, we plan to incorporate more sophisticated ab-
straction and comparison techniques, using available approaches from the field
of data mining. In addition we will investigate the added value to create rec-
ommendations based on models that are extracted from the log, e.g., Markov
Decision Processes.

Acknowledgements. The authors would like to thank Christian Günther,
Maja Pesic, Hajo Reijers Isaac Corro Ramos and Christian Haisjackl for their
help and contributions.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 47(2), 237–267 (2003)

2. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: A Service-
Oriented Implementation of Dynamic Flexibility in Workflows. In: Coopis 2006.
LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg (2006)

3. Carlsen, S., Krogstie, J., Sølvberg, A., Lindland, O.I.: Evaluating Flexible Workflow
Systems. In: Proc. HICSS-30 (1997)

4. Alves de Medeiros, A.K., van der Aalst, W.M.P., Weijters, A.J.M.M.: Quantifying
process equivalence based on observed behavior. Data Knowl. Eng. 64(1), 55–74
(2008)

5. van Dongen, B.F., van der Aalst, W.M.P.: A meta model for process mining data.
In: EMOI-INTEROP (2005)

66 H. Schonenberg et al.

6. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A.: Freeflow:
mediating between representation and action in workflow systems. In: Proc. CSCW
1996, pp. 190–198 (1996)

7. Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K., Teschke, M.: A Comprehensive
Approach to Flexibility in Workflow Management Systems. In: Proc. WACC 1999,
pp. 79–88. ACM Press, New York (1999)

8. Lu, R., Sadiq, S.: On the Discovery of Preferred Work Practice through Business
Process Variants. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.)
ER 2007. LNCS, vol. 4801, pp. 165–180. Springer, Heidelberg (2007)

9. Minor, M., Tartakovski, A., Schmalen, D., Bergmann, R.: Agile Workflow Technol-
ogy and Case-Based Change Reuse for Long-Term Processes. International Journal
of Intelligent Information Technologies 1(4), 80–98 (2008)

10. Mutschler, B., Weber, B., Reichert, M.U.: Workflow management versus case han-
dling: Results from a controlled software experiment. In: Proc. SAC 2008. ACM
Press, New York (2008)

11. Pesic, M., van der Aalst, W.M.P.: A Declarative Approach for Flexible Business
Processes. In: Proc. DPM 2006, pp. 169–180 (2006)

12. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
Based Workflow Models: Change Made Easy. In: CoopIS 2007 (2007)

13. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10(2), 93–129 (1998)

14. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating Process Learning and
Process Evolution - A Semantics Based Approach. In: van der Aalst, W.M.P.,
Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp.
252–267. Springer, Heidelberg (2005)

15. Sadiq, S., Sadiq, W., Orlowska, M.: A Framework for Constraint Specification and
Validation in Flexible Workflows. Information Systems 30(5), 349–378 (2005)

16. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering 53(2),
129–162 (2005)

17. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product based workflow
support: A recommendation service for dynamic workflow execution. Technical
Report BPM-08-03, BPMcenter.org (2008)

18. van der Aalst, W.M.P., Jablonski, S.: Dealing with Workflow Change: Identifica-
tion of Issues an Solutions. Int’l Journal of Comp. Systems, Science and Engineer-
ing 15(5), 267–276 (2000)

19. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 27(2), 237–267 (2003)

20. Weber, B., Reichert, M., Rinderle-Ma, S.: Change Patterns and Change Support
Features - Enhancing Flexibility in Process-Aware Information Systems. Data and
Knowledge Engineering (accepted for publication)

21. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing Integrated Life
Cycle Support in Process-Aware Information Systems. Int’l Journal of Cooperative
Information Systems (IJCIS) (accepted for publication)

22. Weske, M.: Formal Foundation and Conceptual Design of Dynamic Adaptations in
a Workflow Management System. In: Proc. HICSS-34 (2001)

23. Wombacher, A., Rozie, M.: Evaluation of Workflow Similarity Measures in Service
Discovery. In: Service Oriented Electronic Commerce, pp. 51–71 (2006)

Visual Support for Work Assignment in

Process-Aware Information Systems

Massimiliano de Leoni1, W.M.P. van der Aalst2,3, and A.H.M. ter Hofstede3

1 SAPIENZA - Università di Roma, Rome, Italy
deleoni@dis.uniroma1.it

2 Eindhoven University of Technology, Eindhoven, The Netherlands
w.m.p.v.d.aalst@tue.nl

3 Queensland University of Technology, Brisbane, Australia
a.terhofstede@qut.edu.au

Abstract. Process-aware information systems ranging from generic
workflow systems to dedicated enterprise information systems use work
lists to offer so-called work items to users. The work list handlers
typically show a sorted list of work items comparable to the way that
e-mails are presented in most e-mail programs. Since the work list
handler is the dominant interface between the system and its users, it
is worthwhile to provide a more advanced graphical interface that uses
context information about work items and users. This paper uses the
“map metaphor” to visualise work items and resources (e.g., users) in
a sophisticated manner. Moreover, based on “distance notions” work
items are visualised differently. For example, urgent work items of
a type that suits the user are highlighted. The underlying map and
distance notions may be of a geographical nature (e.g., a map of a
city of office building), but may also be based on the process design,
organisational structures, social networks, due dates, calenders, etc. The
approach presented in this paper is supported by a visualisation frame-
work implemented in the context of YAWL. The framework is set up
in such a way that it can easily be combined with other workflow systems.

Keywords: Process-aware Information Systems, work list visualisation,
YAWL.

1 Introduction

Originally, Process-Aware Information Systems (PAISs) [1] were mainly applied
in the context of administrative processes. Later their application was extended
to cross-organisational processes. Currently, PAISs are starting to be used for
more flexible and/or pervasive processes, e.g., disaster management scenarios [2].

Independently on the application domain and underlying technology, a PAIS
is driven by some process model. The model may be implicit or hidden, but the
system supports the handling of cases in some (semi-)structured form. PAISs
have also in common that they offer work to resources (typically people). The
elementary pieces of work are called work items, e.g., “Approve travel request

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 67–83, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

68 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

XYZ1234”. These work items are offered to the users by the so-called work
list handler. This component takes care of work distribution and authorisation
issues. Typically, PAISs use a so-called “pull mechanism”, i.e., work is offered to
all resources that qualify and the first resource to select it will be the only one
executing it. To allow users to “pull the right work items in the right order”,
basic information is provided, e.g., task name, due date, etc. However, given
the fact that the work list is the main interface of the PAIS with its users it
seems important to provide support that goes beyond a sorted list of items. If
work items are selected by less qualified users than necessary or if users select
items in a non-optimal order, then the performance of the overall process is
hampered. Assume the situation where multiple resources have overlapping roles
and authorisations and that there are times where work is piling up (i.e., any
normal business). In such a situation the questions listed below are relevant.

– “What is the most urgent work item I can perform?”
– “What work item is, geographically speaking, closest to me?”
– “Is there another resource that can perform this work item that is closer to

it than me?”
– “Is it critical that I handle this work item or are there others that can also

do this?”
– “How are the work items divided over the different departments?”

To our knowledge, commercial as well as open source PAISs present work
lists simply as a list of work items each with a short textual description. Some
products sort the work items in a work list using a certain priority scheme
specified at design time and not updated at run time. To support the user in a
better way and assist her in answering the above questions, we use maps. A map
can be a geographical map (e.g., the map of a university’s campus). But other
maps can be used, e.g., process schema’s, organisational diagrams, Gantt charts,
etc. Work items can be visualised by dots on the map. By not fixing the type of
map, but allowing this choice to be configurable, different types of relationships
can be shown thus providing a deeper insight into the context of the work to be
performed.

Work items are shown on maps. Moreover, for some maps also resources can
be shown, e.g., the geographical position of a user. Besides the “map metaphor”
we also use the “distance metaphor”. Seen from the viewpoint of the user some
work items are close while others are far away. This distance may be geographic,
e.g., a field service engineer may be far away from a malfunctioning printer at
the other side of the campus. However, many other distance metrics are possible.
For example, one can support metrics capturing familiarity with certain types
of work, levels of urgency, and organisational distance. It should be noted that
the choice of metric is orthogonal to the choice of map thus providing a high
degree of flexibility in context visualisation. Resources could for example opt to
see a geographical map where work items, whose position is calculated based on
a function supplied at design time, display their level of urgency.

Visual Support for Work Assignment in Process-Aware Information Systems 69

This paper proposes different types of maps and distance metrics. Moreover,
the framework has been implemented and integrated in YAWL.1 YAWL is an
open source workflow system based on the so-called workflow patterns. However,
the framework and its implementation are set-up in such a way that it can easily
be combined with other PAISs.

The paper is structured as follows. Section 2 discusses the state of the art in
work list visualisation in PAISs, whereas Section 3 provides a detailed overview
of the general framework. Section 4 focusses on the implementation of the frame-
work, highlighting some design choices In Section 5 the framework is illustrated
through a case study. Section 6 summarises the contributions of the paper and
outlines avenues of future work aimed.

2 Related Work

Little work has been conducted in the field of work list visualisation. Visualisa-
tion techniques in the area of PAIS have predominantly been used to aid in the
understanding of process schemas and their run time behaviour, e.g. through
simulation [3] or process mining [4]. Although the value of business process vi-
sualisation is acknowledged, both in literature [5,6,7,8] and industry, little work
has been done in the context of visualising work items.

The aforementioned body of work does not provide specific support for
context-dependent work item selection. This is addressed though in the work
by Brown and Paik [9], whose basic idea is close to the proposal of this paper.
Images can be defined as maps and mappings can be specified between work
items and these maps. Work items are visualised through the use of intuitive
icons and the colour of work items changes according to their state. However,
the approach chosen does not work so well in real-life scenarios where many
work items may have the same position (especially in course-grained maps) as
icons with the same position are placed alongside each other. This may lead
to a situation where a map is completely obscured by its work items. In our
approach, these items are coalesced in a single dot of which the size is pro-
portionate to their number. By gradually zooming in on such a dot, the in-
dividual work items cam become visible again. In addition, in [9] there is no
concept similar to our distance notion, which is an ingredient that can provide
significant assistance with work item selection to resources. Finally, the work of
Brown and Paik does not take the visualisation of the positions of resources into
account.

Also related is the work presented in [10], where proximity of work items is
considered without discussing their visualisation.

Most PAISs present work lists as a simple enumeration of their work items,
their textual descriptions, and possibly information about their priority and/or
their deadlines. This holds both for open source products, as e.g. jBPM2 and

1 www.yawlfoundation.org
2 jBPM web site - http://www.jboss.com/products/jbpm

70 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

Together Workflow3, as for commercial systems, such as SAP Netweaver4 and
Flower5. An exception is TIBCO’s iProcess Suite6 which provides a richer type
of work list handler that partially addresses the problem of supporting resources
with work item selection. For example, the work list handler can show the lengths
of the work queues of other resources or position of work item on a geographic
map at their location of execution. The iProcess Suite also supports a kind
of look-head in the form of a list of “predicted” work items and their start
times. One can also learn about projected deadline expirations and exception
flows by expected durations specified at design time for the various tasks. Our
visualisation framework is more accurate as it can take actual execution times of
work items of a task into account through the use of log files when considering
predictions for new work items of that task. Basically, the iProcess Suite provides
support for some specific views (geographical position, deadline expiration) but
these are isolated from each other. Our approach generalises over the type of
maps (not just geographic) and unlike the iProcess Suite it is able to support
multiple types of maps at the same time. The iProcess Suite is based on Google
Maps while our framework does not rely on an external service for handling
maps and positioning work items.

3 The General Framework

The proposed visualisation framework is based on a two-layer approach: (1) maps
and (2) the visualisation of work items based on a distance notion. A work item
is represented as a dot positioned along certain coordinates on a background
map. A map is meant to capture a particular perspective of the context of the
process. Since a work item can be associated with several perspectives, it can
be visualised in several maps (at different positions). Maps can be designed as
needed. When the use of a certain map is envisaged, the relationship between
work items and their position on the map should be specified through a function
determined at design time. Table 1 gives some examples of context views and
the corresponding work item mapping.

Several active “views” can be supported whereby users can switch from one
view to another. Resources can (optionally) see their own position on the map
and work items are coloured according to the value of the applicable distance
metric. Additionally, it may be helpful to show executing work items as well as
the position of other resources. Naturally, these visualisations are governed by
the authorisations that are in place.

Our framework assumes the generic lifecycle model as described in [11]. First,
a work item is created indicating it is ready for distribution. The item is then

3 Together Workflow web site - http://www.together.at/together/prod/tws/
4 Netweaver web site - http://www.sap.com/usa/platform/netweaver
5 Flower web site -
http://global.pallas-athena.com/products/bpmflower product/

6 iProcess Suite web site -
http://www.tibco.com/software/business process management/

Visual Support for Work Assignment in Process-Aware Information Systems 71

Table 1. Examples of maps and mappings

Process context view Possible map and mapping
The physical environment
where tasks are going to be
performed.

A real geographical map (e.g., Google maps). Work items are placed
where they should be performed and resource are placed where they
are located.

The process schema of the
case that work items belong
to.

The process schema is the map and work items are placed on top of
tasks that they are an instance of.

Deadline expiration of work
items.

The map is a time-line where the origin is the current time. Work
items are placed on the time-line at the latest moment when they can
start without their deadline expiring.

The organisation that is in
charge of carrying out the pro-
cess.

The map is an organizational chart. Work items are associated with
the role required for their execution. Resources are also shown based
on their organizational position.

The materials that are needed
for carrying out work items.

The map is a multidimensional graph where the axes are the materials
that are needed for work item execution. Let us assume that materials
A and B are associated with axes x and y respectively. In this case, a
work item is placed on coordinates (x, y) if it needs a quantity of x of
material A and a quantity y of material B.

Costs versus benefits in exe-
cuting work items.

In this case, the axes represent “Revenue” (the amount of money re-
ceived for the performance of work items) and “Cost” (the expense
of their execution). A work item is placed on coordinates (x, y) if the
revenue of its execution is x and its cost is y. In this case one is best
off executing work items close to the x axis and far from the origin.

offered to appropriate resources. A resource can commit to the execution of the
item, after which it moves to the allocated state. The start of its execution leads
it to the next state, started, after which it can successfully complete, it can be
suspended (and subsequently resumed) or it can fail altogether. At run time a
workflow engine informs the framework about the lifecyle states of work items.

3.1 Fundamentals

In this section the various notions used in our framework, e.g. work item and
resource, are defined formally.

Definition 1 (Work item). A work item w is a tuple (c, t, i, y, e, l), where:

– c is the identifier of the case that w belongs to.
– t is the identifier of the task of which w is an instance.
– i is a unique instance number.
– y is the timestamp capturing when w moved to the “offered” state.
– e is the (optional) deadline of w.
– l represents the (optional) GPS coordinates where w should be executed.

Dimensions y and l may be undefined in case work item w is not yet offered or no
specific execution location exists respectively. The e value concerns timers which
may be defined in YAWL processes. A process region may be associated with a
timer. When the timer expires, the work items part of the region are cancelled.
Note that a work item can potentially be a part of more than one cancellation
region. In these cases, e is assumed as the latest possible completion time with
respect to every cancellation region the work item is part of.

72 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

Definition 2 (Resource). A resource r is a pair (j, l), where:

– j is the identifier of the resource.
– l represents the (optional) GPS coordinates where the resource is currently

located.

The notation wx is used to denote the projection on dimension x of work item w,
while the notation ry is used to denote the projection on dimension y of resource
r. For example, wt yields the task of which work item w is an instance. Work
items w′ and w′′ are considered to be siblings iff w′

t = w′′
t . The set Coordinates

consists of all possible coordinates. Elements of this set will be used to identify
various positions on a given map.

Definition 3 (Position function). Let W and R be the set of work items and
resources. Let M be the set of available maps. For each available map m ∈ M ,
there exists a function positionm : W ∪ R �→ Coordinates which returns the
current coordinates for work items and available resources on map m.

For a map m ∈ M , the function positionm may be partial, since some elements
of W and/or R may not have an associated position. Consider for example the
case where a work item can be performed at any geographical location or where
it does not really make sense to associate a resource with a position on a certain
map. As the various attributes of work items and resources may vary over time
it is important to see the class of functions positionm as time dependent.

To formalise the notion of distance metric, a distance function is defined
for each metric that yields the distance between a work item and a resource
according to that metric.

Definition 4 (Distance function). Let W and R be the set of work items and
resources. Let D be the set of available distance metrics. For each distance metric
d ∈ D, there exists a function distanced : W ×R → [0, 1] that returns a number
in the range [0,1] capturing the distance between work-item w ∈ W and resource
r ∈ R with respect to metric d.7

Given a certain metric d and a resource r, the next work item r should perform
is a work item w for which the value distanced(w, r) is the closest to 1 among
all offered work items.

3.2 Available Metrics

In Table 2 a number of general-purpose distance metrics are informally explained.
These are all provided with the current implementation. Due to the limited space,
we will provide more details for only one of these distance metrics. The metric
chosen combines the familiarity of a resource with a certain work item and the
familiarity of other resources that are able to execute that work item. In order
to formalise this notion, two auxiliary functions are introduced.

7 Please note the value 1 represents the minimum distance while 0 is the maximum.

Visual Support for Work Assignment in Process-Aware Information Systems 73

Table 2. Distance Metrics currently provided by the implementation

Metric Returned Value
distanceF amiliarity(w, r) How familiar is resource r with performing work item w. This can be

measured through the number of sibling work items the resource has
already performed.

distanceGeo Distance(w, r) How close is resource r to work item w compared to the closest resource
that was offered w. For the closest resource this distance is 1. In case
w does not have a specific GPS location where it should be executed,
this metric returns 1 for all resources.

distanceP opularity(w, r) The ratio of logged-in resources having been offered w to all logged-
in resources. This metric is independent from resource r making the
request.

distanceUrgency(w, r) The ratio between the current timestamp and the latest timestamp
when work item w can start but is not likely to expire. The latter
timestamp is obtained as the difference between we, the latest times-
tamp when w has to be finished without expiring, and w’s estimated
duration. This estimation is based on past execution of sibling work
items of w by r.

distanceP ast Execution(w,r) How familiar is resource r with work item w compared to the familiar-
ity of all other resources that w has been offered to. More information
about this metric is provided in the text.

past execution(w,r) yields the weighted mean of the past execution times of
the last h-th work items performed by r among all work item siblings of
w. In this context, the past execution time of work item w′ is defined as
the duration that elapsed between its assignment to r and its successful
completion. Let timei(w, r) be the execution time of the i-th last work item
among w’s siblings performed by r, then:

past execution(w, r) =

j(w,r,h)∑
i=1

αi−1 · timei(w, r)

j(w,r,h)∑
i=1

αi−1

(1)

where constant α ∈ [0, 1] and value j(w,r,h) is the minimum between a given
constant h and the number of sibling work items of w performed by r. Both
h and α have to be tuned through testing. If value j(w,r,h) is equal to zero,
past execution(w, r) is assumed to take an arbitrary large number.8 The
intuition behind this definition stems from the fact that more recent execu-
tions should be given more consideration and hence weighted more as they
better reflect resources gaining experience in the execution of instances of a
certain task.

Res(w) returns all currently logged-in resources that have been offered w:

Res(w) = {r ∈ R | w is offered to r}.
Using these auxiliary functions the following metric can be defined:

distanceRelative Past Execution(w, r) =
1
/
past execution(w, r)∑

r′∈Res(w)

1
/
past execution(w, r′)

. (2)

8 Technically, we set it as the maximum floating value.

74 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

Again, space considerations prevent us from providing an in-depth explanation
of this definition and instead, we just provide some intuition. First observe that
if exactly one resource r exists capable of performing work item w, then the
equation yields one. If n resources are available and they roughly have the same
familiarity with performing work item w, then for each of them the distance
will be about 1/n. It is clear then that as n increases in value, the value of the
distance metric approaches zero. If on the other hand many resources exist that
are significantly more effective in performing w than a certain resource r, then
the value of the denominator increases even more and the value of the metric
for w and r will be closer to zero.

4 Implementation

The general framework described in the previous section has been operationalised
through the development of a component that can be plugged into the YAWL
system. The YAWL environment is an open source PAIS, based on the workflow
patterns9, using a service-oriented architecture. The YAWL engine and all other
services (work list handler, web-service broker, exception handler, etc.) commu-
nicate through XML messages. The YAWL work list handler was developed as
a web application. In its graphical interface different tabs are used to show the
various queues (e.g. offered work items). The visualisation framework can be
accessed through a newly introduced tab and is implemented as a Java Applet.

Section 4.1 illustrates some of the visualisation features provided by the im-
plementation, whereas Section 4.2 focusses on how the component fits within
the YAWL architecture.

4.1 The User Interface

The position and distance functions represent orthogonal concepts that require
joint visualisation for every map. The position function for a map determines
where work items and resources will be placed as dots, while the distance function
will determine the colour of work items. Conceptually, work item information
and resource information is split and represented in different layers. Users can
choose which layers they wish to see and in case they choose both layers which
of them should overlay the other.

Work-item Layer. Distances can be mapped to colours for work items through
a function colour : [0, 1] → C which associates every metric value with a different
colour in the set C. In our implementation colours range from white to red, with
intermediate shades of yellow and orange. When a resource sees a red work item
this could for example indicate that the item is very urgent, that it is one of
those most familiar to this resource, or that it is the closest work item in terms
of its geographical position. While the colour of a work item can depend on the
resource viewing it, it can also depend on which state of the lifecycle it is in.
9 www.workflowpatterns.com

Visual Support for Work Assignment in Process-Aware Information Systems 75

Table 3. Visualisation of a work item depending on its state in the life cycle

Work item state Colour scheme used in the work-list handler
Created Work item is not shown.

Offered to single/multiple resource(s) The colour is determined by the distance to the
resource with respect to the chosen metric. The
colour ranges from white through various shades
of yellow and orange to red.

Allocated to a single resource Purple.
Started Black.

Suspended The same as for offered.
Failed Grey.

Completed Work item is not shown.

Special colours are used to represent the various states of the work item lifecycle
and Table 3 provides an overview. The various rows correspond to the various
states and their visualisation. Resources can filter work items depending on the
state of items. This is achieved through the provision of a checkbox for each of
the states of Table 3. Several checkboxes can be ticked. There is an additional
checkbox which allows resources to see work items that they cannot execute, but
they are authorised to see.

Resources may be offered work items whose positions are the same or very
close. In such cases their visualisations may overlap and they are grouped into a
so-called “joint dot”. The diameter of a joint dot is proportional to the number of
work items involved. More precisely, the diameter D of a joint dot is determined
by D = d(1 + lg n), where d is the standard diameter of a normal dot and n is
the number of work items involved. Note that we use a logarithmic (lg) scaling
for the relative size of a composite dot.

Combining several work items int a single dot raises the question of how the
distance of this dot is determined. Four options are offered for defining the distance
of a joint dot, one can take a) the maximum of all the distances of the work items
involved, b) their minimum, c) their median, or d) their mean. When a resource
clicks on a joint dot, all work items involved are enumerated in a list and they are
coloured according to their value in terms of the distance metric chosen.

Resource Layer. When a resource clicks on a work item the positions of the
other resources to whom this work item is offered are shown. Naturally this is
governed by authorisation privileges and by the availability of location informa-
tion for resources for the map involved.

Resource visualisation can be customised so that a resource can choose to see
a) only herself, b) all resources, or c) all resources that can perform a certain work
item. The latter option supports the case where a resource clicks on a work item
and wishes to see the locations of the other resources that can do this work item.

4.2 Architectural Considerations

Figure 1 shows the overall architecture of the visualisation framework and the
connections with other YAWL components. Specifically, the visualisation frame-
work comprises:

76 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

The Visualisation Applet is the client-side applet that allows resources to
access the visualisation framework and it resides as a separate tab in the
work-list handler.

The Visualisation Designer is used by special administrators in order to de-
fine and update maps as well as to specify the position of work items on
defined maps. Designers can define positions as fixed or as variable through
the use of XQuery. In the latter case, an XQuery expression is defined that
refers to case variables. This expression is evaluated at run time when re-
quired.

Services is the collective name for modules providing information used to depict
maps and to place work items (e.g. URLs to locate map images, work item
positions on various maps).

The YAWL engine is at the heart of the YAWL environment. It determines which
work items are enabled and can thus be offered for execution and it handles the
data that is involved. While the YAWL engine offers a number of external inter-
faces, for the visualisation component interfaces B and E are relevant. Interface
B is used, for example, by the work list handler to learn about work items that
need to be offered for execution. This interface can also be used for starting new
cases. Interface E provides an abstraction mechanism to access log information,
and can thus e.g. be used to learn about past executions of siblings of a work
item. In particular one can learn how long a certain work item remained in a
certain state.

The work list handler is used by resources to access their “to-do” list. The
standard version of the work list handler provides queues containing work items
in a specific state. This component provides interface G which allows other com-
ponents to access information about the relationships between work items and
resources. For example, which resources have been offered a certain work item

Fig. 1. Position of the visualisation components in the YAWL architecture

Visual Support for Work Assignment in Process-Aware Information Systems 77

or which work items are in a certain state. Naturally this component is vital to
the Visualisation Applet.

In addition to interface G, the Visualisation Applet also connects to the Ser-
vices modules through the following interfaces:

The Position Interface provides information about maps and the positioning
of work items on these maps. Specifically, it returns an XQuery over the
YAWL net variables that the Visualisation Applet has to compute. The
work list handler needs to be consulted to retrieve the current values of
these variables.

The Metric Interface provides information about available metrics and their
values for specific work item - resource combinations.

The Resource Interface is used to update and retrieve information concern-
ing positions of active resources on maps.

The visualisation framework was integrated into the standard work list handler
of YAWL through the addition of a JSP (Java Server Page).

All of the services of the visualisation framework share a repository, referred to
as Visualisation Repository in Figure 1, which stores, among others, XQueries to
compute positioning information, resource locations in various maps, and names
and URLs of maps. Services periodically retrieve log data through Interface E in
order to compute distance metric values for offered work items. For instance, to
compute the metric Relative Past Execution (Equation 2) for a certain resource,
one can see from Equation 1 that information is required about the h past
executions of sibling work items performed by that resource.

To conclude this section, we would like to stress that the approach and imple-
mentation are highly generic, i.e., it is relatively easy to embed the visualisation
framework in another PAIS.

5 Example: Emergency Management

In this section we are going to illustrate a number of features of the visualisation
framework by considering a potential scenario from emergency management.
This scenario stems from a user requirement analysis conducted in the context of
a European-funded project [2]. Teams are sent to an area to make an assessment
of the aftermath of an earthquake. Team members are equipped with a laptop
and their work is coordinated through the use of a PAIS.

The main process of workflow for assessing buildings is named Disaster Man-
agement. The first task Assess the affected area represents a quick on-the-spot
inspection to determine damage to buildings, monuments and objects. For each
object identified as worthy of further examination an instance of the sub-process
Assess every sensible object (of which we do not show the actual decomposition
for space reasons) is started as part of which a questionnaire is filled in and pho-
tos are taken. This can be an iterative process as an evaluation is conducted to
determine whether the questionnaire requires further refinement or more photos
need to be taken. After these assessments have finished, the task Send data to

78 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

the headquarters can start which involves the collection of all questionnaires and
photos and their subsequent dispatch to headquarters. This information is used
to determine whether these objects are in imminent danger of collapsing and if
so, whether this can be prevented and how that can be achieved. Depending on
this outcome a decision is made to destroy the object or to try and restore it.

For the purposes of illustrating our framework we assume that an earthquake
has occurred in the city of Brisbane. Hence a number of cases are started by
instantiating the Disaster Management workflow described above.

Each case deals with the activities of an inspection teams in a specific zone.
Figure 2 shows three maps. In each map, the dots refer to work items. Figure 2(a)
shows the main process of the Disaster Management workflow, including eight
work items. Dots for work items which are instances of tasks Assess the affected
area and Send data to the headquarter are placed on top of these tasks in this
figure. Figure 2(b) shows the decomposition of the Assess every sensible object
sub-net. Here also eight work items are shown. No resources are shown in these
diagrams. Note that on the left-hand side is shown a list of work items that
are not on the map. For example, the eight work items shown in the map in
Figure 2(a) appear in the list of “other work items” in Figure 2(b).

Figure 2(a) uses the urgency distance metric to highlight urgent cases while
Figure 2(b) uses the familiarity metric to highlight cases closer to the user in
terms of earlier experiences.

As another illustration consider Figure 2(c) where work items are positioned
according to their deadlines. This can be an important view in the context of
disaster management where saving minutes may save lives. In the map shown,
the x-axis represents the time remaining before a work item expires, while the
y-axis represents the case number of the case the work item belongs to. A work
item is placed at location (100 + 2 ∗ x̃, 10 + 4 ∗ ỹ) on that map, if x̃ minutes
are remaining to the deadline of the work item and its case number is ỹ. In this
example, work items are coloured in accordance with the popularity distance
metric.

Figures 3 and 4 show some screenshots of a geographical map of the city
of Brisbane. Note that geographic maps are plain JPG images and have been
obtained by capturing some screen shots from Google Maps. On these maps,
work items are placed at the location where they should be executed. If their
locations are so close that their corresponding dots overlap, a larger dot (i.e., a
joint-dot) is used to represent the work items involved and the number inside
corresponds to the number of these items. The green triangle is a representation
of the resource whose work list is visualised here. Work items for tasks Assess
the affected area and Send data to the headquarters are not shown on the map as
they can be performed anywhere. In this example, dots are coloured according
to the familiarity distance metric. A dot that is selected as focus obtains a blue
colour and further information about the corresponding work item is shown
at the bottom of the screen (as is the case for work item Take Photos 4 in
Figure 3(b)).

Visual Support for Work Assignment in Process-Aware Information Systems 79

(a) Disaster Management process map showing 4+4=8 work items

(b) Assess the affected area sub-net also showing 8 work items

(c) Example of a timeline map for showing 11 work items

Fig. 2. Examples of Process and Timeline Maps for Disaster Management

80 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

(a) Map showing the geographic locations of work items and resources: the
triangle represents the resource and most work items are shown as single dots
except for the two work items that are clustered into a single dot labeled “2”

(b) Information about the selected dot (blue dot) is shown and also other
resources are shown

Fig. 3. Examples of Geographic Maps for Disaster Management

Visual Support for Work Assignment in Process-Aware Information Systems 81

(a) When a triangle is selected, the corresponding resources and offered work
items are shown

(b) When zooming in, clustered work items and resources are separated

Fig. 4. Further examples of Geographic Maps for Disaster Management

82 M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede

One can click on a dot and see the positions of other resources that have
been offered the corresponding work item. For example, by clicking on the dot
representing work item Take Photos 4, other resources, represented by triangles,
are shown (see Figure 3(b)). As for work items, overlapping triangles representing
resources are combined. For examples, the larger triangle shown in Figure 3(b)
represents two resources.

Figure 4(a) shows the screen shot after clicking on the joint triangle. A re-
source can thus see the list of resources associated with this triangle. By selecting
one of the resources shown in the list, the work items offered to that resource
can be seen. The colour of these work items is determined by their value for the
chosen distance metric. A zooming feature is also provided. Figure 4(b) shows
the result of zooming in a bit further on the map of Figure 4(a). As can be seen,
no dots nor any triangles are overlapping anymore.

6 Conclusions

In this paper a general visualisation framework is proposed that can aid users
in selecting the “right” work item among a potentially large number of work
items offered to them. The framework uses the “map metaphor” to show the
locations of work items and resources. The “distance metaphor” is used to show
which work items are “close” (e.g., urgent, similar to earlier work items, or geo-
graphically close). Both concepts are orthogonal and this provides a great deal
of flexibility when it comes to presenting work to people. For example, one can
choose a geographical map to display work items and resources and use a dis-
tance metric capturing urgency. The proposed framework was operationalised
as a component of the YAWL environment. By using well-defined interfaces the
component is generic so that in principle it could be exploited by other PAISs
as well under the provision that they are sufficiently “open” and provide the
required interface methods. The component is also highly configurable, e.g., it
allows resources to choose how distances should be computed for dots represent-
ing a number of work items and provides customizable support for determining
which resources should be visible. Our operationalisation does not rely on exter-
nal services such as Google Maps for map visualisation support. Maps are just
images on which dots representing work items are to be positioned. Hence our
approach is not restricted to certain types of maps.

Finally, it should be pointed out that the implementation for the Visualisation
Designer is still lacking. In the current evaluation, we manually updated the
information stored in the Visualisation Repository by accessing tables in the
DBMS. All other parts are fully operational.

Further research aims at connecting the current framework to geographical
information systems and process mining tools like ProM [4]. Geographical infor-
mation systems store data based on locations and process mining can be used
to extract data from event logs and visualise this on maps, e.g., it is possible to
make a “movie” showing the evolution of work items based on historic data.

Visual Support for Work Assignment in Process-Aware Information Systems 83

Acknowledgements. The work was primarily conducted during a visit of Mas-
similiano de Leoni to the Business Process Management Group at Queensland
University of Technology. His internship has been partly supported by the Eu-
ropean Commission through the project FP6-2005-IST-5-034749 WORKPAD.
The authors would like to thank Michael Adams for implementing certain re-
quired YAWL interfaces and for answering numerous questions. We also grate-
fully acknowledge Guy Redding for providing some code to connect to the YAWL
interfaces.

References

1. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley,
Chichester (2005)

2. Catarci, T., de Leoni, M., Marrella, A., Mecella, M., Vetere, G., Salvatore, B.,
Dustdar, S., Juszczyk, L., Manzoor, A., Truong, H.L.: Pervasive Software Envi-
ronments for Supporting Disaster Responses. IEEE Internet Computing 12, 26–37
(2008)

3. Hansen, G.: Automated Business Process Reengineering: Using the Power of Vi-
sual Simulation Strategies to Improve Performance and Profit. Prentice-Hall, En-
glewood Cliffs (1997)

4. van der Aalst, W.M.P., van Dongen, B., Christian, G., Mans, R.S., Alva de
Medeiros, A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters,
A.J.M.M.: Prom 4.0: Comprehensive support for real process analysis. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer,
Heidelberg (2007)

5. Bobrik, R., Reichert, M., Bauer, T.: View-based process visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

6. Luttighuis, P., Lankhorst, M., Wetering, R., Bal, R., Berg, H.: Visualising business
processes. Computer Languages 27, 39–59 (2001)

7. Streit, A., Pham, B., Brown, R.: Visualization support for managing large busi-
ness process specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati, F.,
Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 205–219. Springer, Heidelberg
(2005)

8. Wright, W.: Business Visualization Adds Value. IEEE Computer Graphics and
Applications 18, 39 (1998)

9. Brown, R., Paik, H.Y.: Resource-centric worklist visualisation. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 94–111. Springer, Heidelberg (2005)

10. Kumar, A., van der Aalst, W.M.P., Verbeek, H.: Dynamic Work Distribution in
Workflow Management Systems: How to Balance Quality and Performance? Jour-
nal of Management Information Systems 18, 157–193 (2002)

11. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: Identification, representation and tool support. In: Pastor, Ó.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 84–99, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From Personal Task Management to End-User Driven
Business Process Modeling

Todor Stoitsev1, Stefan Scheidl1, Felix Flentge2, and Max Mühlhäuser2

1 SAP Research, SAP AG, Bleichstr. 8, 64283 Darmstadt, Germany
2 Telecooperation Group, Darmstadt University of Technology, 64283 Darmstadt, Germany

{todor.stoitsev, stefan.scheidl}@sap.com,
felix@tk.informatik.tu-darmstadt.de,

max@informatik.tu-darmstadt.de

Abstract. The need to involve business users in process modeling is largely
perceived in the context of Business Process Management systems. This can
facilitate the elaboration of consistent process models which are better turned
to users’ needs and organizational changes. Despite the variety of tools and
notations, process modeling remains hardly accessible for business users,
who lack advanced technical skills. This paper presents an integrated ap-
proach for end-user driven business process modeling which uses web service
based activity tracking to generate weakly-structured process models by cap-
turing data on personal task management. These models can be adapted and
reused for ad-hoc process support or exported to formal workflows by deliv-
ering the business knowledge to process designers and software developers.
Interconnection of ad-hoc and formal workflows results in enhanced process
flexibility and allows complementation of formal workflows through devia-
tions at runtime. The approach is validated through the Collaborative Task
Management (CTM) prototype.

Keywords: business process modeling, process-enhanced groupware, end-user
development, agile workflow, computer supported cooperative work.

1 Introduction

Effective Business Process Management (BPM) can bring competitive advantages to
enterprises in the fast evolving global market. Often, the only ones to understand the
matter and complexity of business processes are the end users of enterprise software,
who execute them on a daily basis. The need to use the detailed process knowledge of
end users during the implementation of BPM solutions in enterprises is clearly per-
ceived and emerges in analyst reports e.g. as the need for “increased business collabo-
ration in process modeling” [9]. It calls for bridging the process understanding of all
stakeholders involved in a Workflow (Wf) project - the business users and the busi-
ness technology staff, i.e. process designers and developers. As a result, standardized
graphical notations such as the Business Process Modeling Notation (BPMN) [18]
have emerged. Visual process modeling is enabled in a variety of enhanced BPM

 From Personal Task Management to End-User Driven Business Process Modeling 85

solutions. However, achieving process support that is better turned to users’ needs and
organizational changes by “letting end users do the tailoring” demands “both domain
expertise and advanced skills in computer use” [17]. Therefore upfront process mod-
eling remains inaccessible for business users, who have detailed domain knowledge
but limited technical expertise.

This paper presents an integrated approach which overcomes the above limitation
and enables end users to become informed participants in business process modeling.
The approach is based on collaborative task management. It is implemented and vali-
dated through a process-enhanced groupware system - the Collaborative Task Man-
ager (CTM) which provides enhanced End-User Development capabilities. End-User
Development is defined as “a set of methods, techniques, and tools that allow users of
software systems, who are acting as non-professional software developers, at some
point to create, modify, or extend a software artefact” [15]. In the presented paper a
process model is considered as a software artifact, which can be adapted and enacted
to support human-centric business processes. The major motivation behind the tool is
to render appropriation of process models to the end users.

Section 2 provides an overview of related work on agile process support. In section 3
we present the approach for end-user driven process modeling. The basic components of
the CTM prototype, implementing the approach, are presented in section 4. A validation
of the approach based on a CTM case study is described in section 5. Section 6 provides
conclusions and gives future research directions.

2 Related Work

The need to support knowledge-intensive business processes raises advanced flexibil-
ity expectations on Wf management systems [20]. Tailoring of task and process repre-
sentations according to the individual point of view and interconnecting them towards
the achievement of global enterprise goals emerges as a common strategy for realiz-
ing process agility. Riss et al. suggest the recognition and reuse of emerging “task
patterns” and “process patterns” as alternative to static Wfs [19]. Holz et al. [11] pre-
sent a further task-centric approach which enables proactive information delivery on
tasks and instance-based task reuse. Ad-hoc task hierarchies are further used to bridge
routine and ad-hoc work [5, 13]. The above approaches discuss agile process support
but do not consider involving end users in formal process modeling and enabling
process “tailoring as collaboration” [17] between business users, process designers
and developers. Wf projects often suffer from inconsistencies, resulting e.g. from
“projecting the sequence of an interview onto real work situations or by assuming
logical dependencies which do not correspond with reality” [10]. We therefore sug-
gest that enabling a seamless transition from underspecified to formal process defini-
tions is important as it could enable the derivation of consistent, real-life compliant
Wfs for rigidly recurring activities and shorten the Wf implementation lifecycle. This
study presents an approach for involving business users in process modeling towards
enhanced adaptability of BPM to users’ needs and process changes.

We suggest that similarly to tailoring of software systems, process tailoring should
be ensured through a “gentle slope of complexity” [16], where users with different
business and Information Technology (IT) background are able to efficiently tailor

86 T. Stoitsev et al.

reusable process definitions. Process mining approaches are capable of generating
workflows from logged data on ad-hoc collaboration or events in formal systems [1].
However they do not allow users to tailor the emergent workflows at use time. The
need for user-centric approaches arises, which ensure unobtrusiveness and in the same
time enable “informed participation” of end users in business process composition by
fostering “social creativity” [8] and allowing domain experts to proactively drive
process optimization in enterprises.

Related literature reveals that user strategies for organizing daily activities are far
from any process or case-definition context and mostly rely on common office tools
such as email [4] or personal to-do lists [3]. Agostini et al. [2] cross the boundaries of
the personal workspace and integrate to-do lists and email within email-based work-
flows. However, the authors do not discuss decoupling of Wfs from the system as
explicit process models, and how such models can be exchanged, adapted and reused.
As end users have different levels of technical expertise and attitudes towards main-
taining process data, we suggest that it is important to consider possibilities for “seed-
ing, evolutionary growth, and reseeding (SER)” [8] of user-defined process models
for their iterative refinement and complementation.

Similarly to email-based Wfs, we suggest involving end users in process composi-
tion by leveraging their experience with standard tools for task management (to-do
lists) and collaboration (email). In this respect, a “gentle slope of complexity” [16] for
process tailoring can be provided by closely integrating the process definition in the
actual user working environment and unfolding emergent processes behind the scenes
in an unobtrusive, implicit manner. For achieving this we propose enabling enterprise-
wide, collaborative “programming by example” [14] by implicitly reconciling data on
personal task management of multiple process participants to end-to-end process
execution examples. In our previous work [21] we have described a framework for
light-weight composition of ad-hoc business processes. It generally enables end users
to create hierarchical to-do lists by breaking down tasks into sub tasks. Tasks can be
delegated over email, whereby the recipients can further break down the received
tasks and delegate resulting (sub)tasks to other end users. Changes of individual tasks
in the personal end users’ to-do lists are tracked over web services on a central server
instance where task data is replicated in a tracking repository. Tracking of email ex-
change for task delegation integrates the personal to-do lists of different process par-
ticipants to overall Task Delegation Graphs (TDG) on the server. TDGs represent
weakly-structured process models that are captured as actual process execution exam-
ples and contain all task data including artifacts (attachments) and stakeholders’ in-
formation. TDGs enable informed participation of end users in process composition
by providing a workflow-like overview of evolving collaborative tasks beyond the
capabilities of common email and to-do lists.

The introduced framework enables SER of weakly-structured process models
through extraction, adaptation and reuse of Task Patterns (TP) [19, 21]. In the follow-
ing a TP is considered as a reusable task structure, comprising one task with its sub
task hierarchy and the complete context information of the contained tasks like e.g.
description, used resources, involved persons etc. TPs can be enacted to create a new
process instance and execute it along the provided example flow. This flow can be
altered by changing suggested task delegations or reusing referenced TP hierarchies.
TP adaptation and reuse can result in evolution and complementation of captured

 From Personal Task Management to End-User Driven Business Process Modeling 87

process examples. This evolution is traced through task instance-based ances-
tor/descendant relationships [21]. TPs generally enable end users to establish best-
practices and to trace best-practice deviations in different application cases.

In the presented paper we discuss an approach that involves end users in formal
process modeling based on implicitly generated TDGs by bridging ad-hoc and formal
Wf models towards increased “business collaboration in process modeling” [9].

3 Approach

The presented approach supports process formalization through transformation of
user-defined TDGs to formal workflows based on the task change and evolution his-
tory. The resulting workflows are hence implicitly modeled by all process participants
and can be extended by process designers or developers in a shared context, contain-
ing ad-hoc and formal process representations. This enables process “tailoring as
collaboration” [17] between business users, process designers and developers. An
overview of the process definition cycle is given in Figure 1.

PB‘

…

B‘‘‘PB‘

PD

PC‘

PB‘

PA‘

Adapt &
Reuse

AD-HOC TASK WORKFLOW

CLIENT

SERVER

A

B

C

Execute

A

B

C

Track

A‘

B‘

C‘

Execute

A‘

B‘

C‘

Track

ancestor

descendant

A‘‘

B‘‘

D

Execute

A‘‘

B‘‘

D

Track

ancestor

descendant

(Re) Define

Deploy

PD

PC‘

PB‘

PA‘

Execute Create
ad–hoc

task
(deviate)B‘‘‘

E

…

Execute

Create
task

event

B‘‘‘

E

…

Track

Adapt &
Reuse

Adapt &
Reuse

PB‘

PD

PC‘
PA‘

Run instance

…

Fig. 1. Process definition cycle

A user is managing and executing tasks in a hierarchical to-do list in a task man-
agement client (root task A with sub tasks B and C in upper CLIENT layer). Task
changes are tracked over web services to replicate task data in a tracking repository
on a central server (lower hierarchy of task A in SERVER layer). Tracked tasks can be
extracted, adapted and reused (root task A’ with sub tasks B’ and C’). Task instance-
based ancestor/descendant relationships to the corresponding originating task are set
iteratively for each task in the resulting hierarchy. Task reuse can result in different
task variances, e.g. in task A’’ the expected task C’’ is replaced with task D.

When a process definition is triggered for given task (A’), the formal Wf is defined
based on the complete evolution history, e.g. for task A’ these are the ancestor and

88 T. Stoitsev et al.

descendant task hierarchies respectively of A and A’’, and task change history of
related task instances. Task changes which alter task status, percent complete or task
artifacts, are considered as task processing changes, denoting that the user is acting on
a given task. Parallel flows in the resulting formal Wf are created for tasks, which
have received task processing changes in parallel. For example if task B’ has received
a first task processing change in given time t1 and a further task processing change at
given time tn, each task and each delegated task on the same tree level under the par-
ent task of B’ (such are C’ and D) is considered parallel to B’ if it has received a task
processing change at a given time ti such that t1 ≤ ti ≤ tn. The period t1 to tn is referred
to as the range of task B’.

Task ranges are a simplified way to suggest task sequencing. This is due to the fact
that ad-hoc tasks can be executed without meeting any pre- or post-conditions. The
resulting sequencing is hence based on suggestions and during model conversion, the
user should be able to view the task change and evolution history and estimate
whether the suggested flow is correct. SER can improve the accuracy of the generated
workflows, i.e. if a given TP is reused multiple times and task ranges overlap in mul-
tiple executions, the tasks can be considered parallel with greater certainty. SER can
enable also the modeling of alternative flows, i.e. based on substitution and cancella-
tion of subsequent tasks in different TP application cases (in Figure 1 ‘+’ denotes
parallel and ‘X’ exclusive split).

The hierarchical order of tasks in TDGs is considered during model transformation
by enabling different export modes for a task with subtasks: (i) as sub process, con-
taining the sub tasks – this mode is pre-selected if a parent task contains data like e.g.
attachments, detailed description etc., which is transferred to one or more of the sub
tasks; (ii) as atomic task before the sub tasks’ sequence – this mode is pre-selected if
the parent task data is not transferred to any of the child tasks; (iii) as group element
(e.g. BPMN group artifact – cf. [18]), embracing the sub tasks as logical association –
this mode is pre-selected if the parent task contains only a subject.

Delegations in a TDG are considered during the model transformation as follows:
(i) if a delegated task has no sub tasks on requester side it can be omitted, or
preserved along with the recipient tasks in the resulting model. Omission is pre-
selected as it results in model simplification when the task was fully processed by the
recipients. In case of delegation to multiple recipients sub tasks of recipient tasks are
handled as children of the same parent and checked for overlapping ranges (parallel
execution). (ii) if a task was delegated, but the requester has added subtasks to it in
their to-do list, requester and recipient tasks can be preserved as independent process
nodes, or they can be merged by selecting one of them as the preferred, resulting Wf
task. In the latter case requester and recipient sub tasks are handled as children of the
same parent and checked for overlapping ranges.

Generated Wf tasks receive a reference to the originating ad-hoc task (PA’, PB’ etc.).
A Wf is deployed on the server and executed through a Wf engine. During execution,
users are enabled to deviate from a formal Wf by creating an ad-hoc task for a given
Wf task. This issues an event over the server, creating an ad-hoc task in the to-do list
of the respective delegate by additionally transferring the Wf task information to the
resulting ad-hoc task, including a reference to the ad-hoc task, used for Wf task defi-
nition (for PB’ this is B’). The recipient of the deviating ad-hoc task can adapt and
reuse the original task (B’) (ancestor/descendant references for task B’’’ are not

 From Personal Task Management to End-User Driven Business Process Modeling 89

shown for simplicity). The resulting task (B’’’) receives a reference to the deviated
Wf task (PB’), and the latter receives a reference to the deviating ad-hoc task (B’’’)
when it is tracked. This allows interrelation of the Wf task to ad-hoc task and vice-
versa and navigation from the to-do list and TDG to the suspended Wf and from the
Wf to the TDG of the ad-hoc task. The execution of the deviated Wf task can con-
tinue, i.e. if the deviation is an extension to the suspended Wf rather than an exception
that requires Wf termination. While the ad-hoc task management server tracks the
changes of the deviating ad-hoc task hierarchy (of B’’’), the Wf server tracks the state
of the deviated Wf task (PB’ – started, suspended, ended). This allows evaluation
whether a deviating ad-hoc task and the respective Wf task continue in parallel or the
ad-hoc task is completed before the Wf task is processed further. After the Wf has
ended, the Wf model can be redefined by considering the deviating ad-hoc flow in
addition to the original ad-hoc task hierarchies, used for Wf definition.

4 Collaborative Task Manager (CTM)

The presented approach is implemented and validated through the CTM prototype.
CTM is a task management tool with enhanced End-User Development capabilities
and addresses two main issues: (i) light-weight composition of weakly-structured
process models for ad-hoc process support; (ii) formalization of weakly-structured
process models for automation of rigidly recurring processes.

4.1 Programming by Example of Weakly-Structured Process Models

In order to ensure integrated support in a common user working environment, the
CTM font-end is delivered as a Microsoft Outlook (OL) add-in. CTM extends OL
mail and task items and enables “programming by example” by capturing OL events
and using web services to replicate task data in a tracking repository, residing in a
database on the CTM server. The CTM to-do list is shown in Figure 2. Extensions to
the standard OL tasks enable end users to create hierarchical to-do lists. When the end
user is creating or editing a CTM task they work with the familiar OL task fields.
Files can be added to CTM tasks as common OL attachments.

A CTM task is delegated through a “Request” email message, which recipients can
“Accept”, “Decline” (similarly to meeting requests in OL) or “Negotiate”. The latter
action allows iterative clarifications on tasks. When a request is accepted, and later on
completed by a recipient, they issue a “Declare Complete” message, to which the
requester can respond with “Approve Completion” or “Decline Completion”. The
actual discourse takes place in the email text, independently from the given message
type. This allows open-ended collaboration and prevents from submitting user behav-
ior to strict speech-act rules, which is a known limitation in speech-acts adoption [7].
All task-related email exchange is associated to a task dialog and stored on the server.
Dialogs can be inspected through a process tree web overview, where the nodes pro-
vide links to task and email information including text and attachments.

CTM tracks the task-related email exchange and integrates the to-do lists of differ-
ent process participants to a TDG [21] as shown in Figure 3, where individual tasks

90 T. Stoitsev et al.

Fig. 2. CTM to-do list

Fig. 3. Task Delegation Graph (TDG)

reside in different user containers (user data is blacked-out for privacy reasons in all
figures in the paper). TDGs provide a workflow-like overview of collaborative activi-
ties where users can view status of related tasks, identify potential bottlenecks and
evaluate work distribution. Currently, due date, task processing status and percent
complete indications are provided. Attachments, added in OL tasks, are replicated in a
central artifacts repository in a database on the CTM server, and are accessible in the

 From Personal Task Management to End-User Driven Business Process Modeling 91

task nodes. We focus on the composition and adaptation of process models by consid-
ering business users who can share information without extensive privacy require-
ments. Therefore no fine-grained authorization framework is currently provided. Such
needs to be considered for CTM usage in a larger enterprise context.

4.2 SER of Weakly-Structured Process Models

CTM enables export of a local task from the personal to-do list to a single TP, and
export of a complete TDG from the server to multiple TPs which represent the per-
sonal task hierarchies of different users and are interlinked through suggestions ac-
cording to the delegation flow. TPs can be saved in local or remote TP repositories. A
local TP repository is a XML document [21]. Remote TP repositories reside in a data-
base on the CTM server. TPs are managed in the TP Explorer (see Figure 4), which
provides rich editing and search functionality on task trees and on data in context
fields on the right hand side, and allows also task search and extraction of TPs from
the tracking repository. When editing the process execution examples (interlinked
TPs) in this component “the user is not required to interact in the interface domain of
computational abstraction, but works directly with the data that interests him or her”
[15]. In that sense CTM enables editing through direct manipulation of the task fields.
The “Name”, ”Description” and “Suggested Execution Time” fields hold simple task
information in text format and are self-explanatory. The “Owner” field recommends
expertise, i.e. when a task is extracted from an executed process the owner is the per-
son, in whose to-do list the task was residing. The field “Suggested Delegates” con-
tains information about the persons, who have the expertise to execute a given task,
i.e. upon task extraction from collaborative process the task recipients are set in this
field. The “Suggested Pattern” field holds a reference to a TP which should be used
for the further processing of a task. In case of TDG extraction, such references in
requester tasks point at recipient tasks, used for the further task processing. The re-
cipient tasks are themselves extracted as separate TPs. Task attachments are repre-
sented as “Artifacts”. Adding of custom artifacts in the TP Explorer replicates these to
the artifacts repository.

TPs can be reused through an “Apply Pattern” operation in the to-do list. It opens
the TP Explorer, where the user can search for TPs in TP repositories and in the track-
ing repository. Applying a TP reactivates the process example by generating the task
hierarchy and filling the pre-modeled content information in the to-do list. Available
delegates are suggested when delegation is initiated. Suggested TP references are also
included in the resulting tasks and can be used by the person, activating the TP, to
accomplish the task themselves without delegations. If a delegation is issued, the
recipient task receives a reference to the suggested TP so that the recipient(s) can
adapt and reuse it.

SER of TP through their iterative adaptation and reuse can result in refinement of
captured process examples. CTM enables tracing of evolving TPs through task in-
stance-based ancestor/descendant relationships [21]. Such are set iteratively between
the tasks in the originating hierarchy and the corresponding tasks in the resulting
hierarchy always, when a task hierarchy is reused, e.g. through copy/paste in the TP
Explorer or save/apply pattern. Through navigating in evolution hierarchies, the user

92 T. Stoitsev et al.

Fig. 4. Task Pattern Explorer/Editor

can view the TDGs and dialog flows of tracked ancestors/descendants. Task evolution
can be viewed in an Evolution Explorer in the CTM OL add-in.

4.3 From Email and To-Do to Formal Workflows

In CTM, rigidly recurring process fragments can be detected based on the captured
TP evolution resulting from SER. For process formalization CTM uses the JBoss
Business Process Management (jBPM) solution [12]. jBPM Wfs are modeled in a
graph-oriented, visual language – the jBPM Process Definition Language (JPDL).
The Wfs can be deployed and executed on a JBoss server, where they are accessed
over a web front-end. jBPM process modeling is originally performed in a JPDL
designer, provided as an Eclipse plug-in. However, CTM enables transformation of
user-defined TDG to formal JPDL Wfs in the CTM OL add-in, by bridging ad-hoc
and formal process representations. We should stress here, that TDGs result from ad-
hoc user behavior which is not constrained through formal business rules. Therefore,
the process expert performing the transformation has to ensure that inconsistencies in
the TDGs will not impact on the quality of the formal models. The added value from

 From Personal Task Management to End-User Driven Business Process Modeling 93

Fig. 5. CTM process definition environment

the introduced approach is that the expert is able to work with data, which was implic-
itly defined by the business users during their daily activities. The degree, to which
the generated formal Wf models will need to be corrected or complemented, depends
on how the end users are dealing with ad-hoc CTM tasks.

CTM Process Definition Environment. The CTM process definition environment is
shown in Figure 5. The upper left corner contains a view, displaying the task hierar-
chy in the same manner as the TP Explorer. Processed tasks receive the jBPM task
icon and a gray foreground. Tasks can be processed along the hierarchy through the
‘Process Task’ (stepwise) and ‘Process All’ (iteration) buttons. During task process-
ing the appropriate export modes (cf. 2) for tasks with sub tasks and delegated tasks
are provided in additional dialogs. A jBPM super state is used as a group element.
The generated JPDL graph is displayed in the upper, central view in Figure 5. A tool-
box on the right hand side allows advanced users to select appropriate tools and edit
the model. If multiple (sub)processes are exported, the user can switch between them
in the drop-down list in the upper central part of Figure 5. The tree in the lower left
part contains the generated jBPM process entities (nodes and transitions). A tab con-
trol for setting their properties is provided on the right. The ‘Controller’ tab enables
users to set parameters for task nodes. An ‘Assignment’ tab allows setting of jBPM
task assignments such as e.g. swimlanes. The latter are automatically generated based
on task owner information where each swimlane is defined through an expression
‘user(email_address)’ (swimlanes can be edited in a dedicated ‘Swimlanes’ tab - see

94 T. Stoitsev et al.

upper central part of Figure 5). The task properties tab control further contains a
‘Form’ tab, where advanced users can edit the xhtml code of a jBPM task’s web form.
CTM automatically generates this code by additionally embedding links to the origi-
nal TDG and used artifacts (available in the artifacts repository) of ad-hoc tasks, and
controls for creating an ad-hoc task for deviation from a jBPM workflow and for
accessing the to-do list of such a task.

A textual explanation of the relevant transformations for each task is given in the
lower central part of Figure 5. It describes the overlapping ranges and refers to the
appropriate change events. Task change and evolution history is provided in the ‘Task
Evolution’ tab, shown in Figure 6. The task evolution tree in the upper left part con-
tains on root level the task ancestors and their references resulting from delegations,
followed by the currently processed task and task descendants if available. The TDG
of tracked ancestors/descendants can be viewed through the “View in Repository”
button. Task change history is displayed in the lower tree. Changes are given with
their time of occurrence and changed properties on the right.

Generated jBPM Wfs can be saved as process files or deployed as fully-functional
Wfs on the jBPM server. Both functionalities are provided in the ‘Deployment’ tab in
the upper central part of Figure 5. Process files can be copied in the JPDL designer,
where the Wfs can be extended by developers.

Fig. 6. Task evolution and change history

Workflow Execution and Deviations. Deployed jBPM Wfs can be executed through
the jBPM engine. Process instances are started and monitored through the jBPM web
front-end. Wf tasks, generated in CTM, contain in their web forms additional buttons
for creating and accessing ad-hoc tasks. Creating an ad-hoc task opens a web form,
where the user can provide recipient information (email address), task subject and
description. When the form is submitted, this information is sent to the CTM server
along with the process instance and task IDs of the deviated jBPM task. The server
issues a “create task” event to the CTM client of the specified recipient, which creates
a new CTM task in their to-do list. CTM uses web service events, for which each OL
client subscribes on the server on OL startup. Identification for sending events to a

 From Personal Task Management to End-User Driven Business Process Modeling 95

particular client is based on the user email address provided upon subscription. When
the created ad-hoc task is tracked, the jBPM process instance and task ID are used to
map the resulting ad-hoc task to the deviated Wf task on the server. The TDG of the
created ad-hoc task can be opened from the Wf task’s form in the jBPM front-end and
vice-versa. After a process is completed, the Wf can be redefined by considering the
deviating ad-hoc task hierarchy along with the original hierarchies for Wf definition.

5 Case Study

Setting and Extent of Use. The CTM case study was conducted at a manufacturing
company (150 employees) and involved 6 users: COA - Chief Officer Assistant;
CSO - Chief Sales Officer; SL1 & SL2 - Sales Employees; ITL - IT Department
Lead; ITE - IT Employee. ITL and ITE were dealing with computers at an advanced
level but did not have any programming skills and hence matched the type of end-user
tailors. The other participants were typical business users. All users used OL as email
client. CSO, SL1 and ITL also used OL tasks before the CTM installation. The trial
was initiated with a workshop in which we gave a 1 hour presentation on the tool,
followed by 30 minutes individual training of each user on the basic functionalities.
Detailed user guides were provided to all participants. The jBPM export functionality
was not included in the installations and manuals to preserve the focus on informal
process support, addressing equally IT and business users. The trial lasted 8 weeks.
Daily backups of the CTM database were scheduled and collected for evaluation each
week. The evaluation concluded with a short video recording and transcription of the
tool use, followed by a structured debriefing interview, in which we asked each par-
ticipant to assess the basic features and rate to what extent CTM improved their abil-
ity to manage work using Likert scales and freeform explanations.

In a second iteration with SL1, SL2 and CSO we additionally performed an
exercise for execution and refinement of a recurring process. The process was for
settlement of consignment sales and occurred twice in the database backups. As con-
signment sales reports were sent in the end of each week and consignations were
settled each Monday, the process seemed very appropriate for automation. We gener-
ated a jBPM Wf from a captured TDG and organized a workshop with the involved
users. The workshop started with a 40 minutes tutorial on the jBPM web front-end
where we explained to the users how deviations can be handled through creation of
ad-hoc CTM tasks. Then we asked the users to process a weekly consignment settle-
ment for a customer by maintaining the tasks in the jBPM Wf and deviating where
needed. We used think-aloud and contextual inquiry [6] methods to track their strate-
gies and intents. The exercises were videotaped for analysis.

Findings - Ad-Hoc Process Support. An excerpt from the case study metrics is
given in Table 1. All participants reported that creating CTM tasks did not impede
their work. We observed that users generally manage percent complete and status
information, however not as precise estimation of work completion, but moreover “to
indicate that I’m working on it [a task] and avoid getting calls and emails from the
others [sales], asking about status” (ITE). We further encountered that users main-
tained attachments in CTM tasks, which was considered “faster than email, as I only

96 T. Stoitsev et al.

needed to attach the updated document and the others can pull the latest version
[from the TDG]” (SL1). As CTM was used only by a small group of people, privacy
issues were not raised during the trial. However ITL stated that authorization has to be
considered for extended CTM use in the enterprise by providing the possibility to hide
certain process fragments in black-box containers in the TDG overview. The users
further considered that having “a kind of checklist [TP] with all things I need to do
and the documents I need is very useful … especially if she [CSO] is not in the office
[vacation]” (SL2). The overall attitude was that global TP should be delivered by a
(senior) domain expert, who can handle also the responsibility for providing them.
Due to the restricted CTM usage, it was not possible to distribute TPs throughout the
company, which prevented from developing a global strategy for TP management e.g.
as alternative to text-based documents. Eventually, 2 remote TP were finally available
(from ITL & CSO) whereas SL2 and ITE had developed local TPs.

Table 1. Excerpt of case study metrics

Metric N
Created root tasks (ad-hoc processes) 8
Created tasks (overall) 46
Delegations 14
Unique attachments added 25
Attachment changes (diff. checksum, same name) 12
Percent complete changes 45
Task changes overall (only edit, no create/delete) 68
Created remote TP 2
Created local TP (files on user PCs) 4
Reused remote TP 1
Reused local TP 2

Findings - Formal Wf Definition and Refinement. A captured TDG of a process for
settlement of consignment sales is shown in Figure 3 (task names are freely translated
by the authors from German, customer name is removed for privacy reasons). SL1
receives a consignment sales report from a customer per email. The report is a CSV
(Comma Separated Values) file, describing customer data, such as e.g. International
Location Number (ILN), address etc., and consignment sales balance. SL1 “checks
the report for consistency” as wrong input data like ILN can cause errors in the further
processing. After that she “enters the sales report data in SAP R/3” system by copying
the report in a special folder, from where the file is automatically read into the system.
SL1 then describes the “supply for the withdrawn consignment items” in R/3 by
specifying e.g. type and number of items. Then she asks SL2 to “process the ship-
ment”. SL2 “reserves the amount for shipment” in another transaction in R/3 and
sends a “feedback about the completeness” of the settlement to the CSO for account-
ing purposes. CSO receives the feedback and later on “checks the payment” for the
re-supplied goods. We generated a jBPM Wf from the captured TDG, which con-
tained the above tasks in a strictly sequential order. We then asked SL1, SL2 and CSO
to process a weekly consignation settlement for a customer by maintaining the corre-
sponding tasks in the jBPM Wf and deviating where necessary.

 From Personal Task Management to End-User Driven Business Process Modeling 97

After SL1 transferred the data from the customer sales report to the R/3 system,
she cross-checked the resulting invoiced amount in the system with the amount in the
sales report. There was a slight difference in both sums: “Yes, sometimes the reported
customer prices differ from our company prices … this is mostly due to the different
calculation of taxes as customer calculates per delivery and we per item” (SL1). The
differences were minimal and were considered insignificant: “Well, as in this case it
is usually a matter of cents … we continue the settlement with the customer prices and
ask Mrs. … [COA] to contact the customer and request them to correct the prices for
the next settlement.” (SL1). As a result SL1 deviated from the currently started jBPM
task “enter sales report data in SAP R/3”, and created a CTM task in her to-do list
with the same name. She then created a sub task “cross-check invoiced amount” and
to this subtask she added another subtask “ask customer for correction”, which she
delegated to COA. As the process could in this case continue (with customer prices),
SL1 returned back to the deviated jBPM task and completed it. She then completed
the “supply for the withdrawn consignment items” task without deviations.

When SL2 started the “reserve amount for shipment” task he inspected the data
about previous deliveries in R/3 and the reported amount of sold items in the cus-
tomer sales report. For one of the consignment items he noticed that the reported sales
exceeded the previously delivered amount: “We ship this item per store and I assume
that the customer has transferred items between their stores, without notifying us. …
I’ll need to inform Mrs. … [CSO] so that she can issue liability statements for the
excess” (SL2). SL2 considered that such inconsistencies will be propagated with the
“completeness feedback” to CSO, so he entered a comment in the jBPM Wf, explain-
ing the inconsistency. A further consignment item needed to be shipped as a set of
multiple, smaller items. In the concrete case, items from the set were not delivered to
the customer in the required amount and had to be re-supplied additionally: “Sets are
often requested with different content from different customers … we have to adapt
and deliver the set items on demand.” (SL2). SL2 hence deviated from the started
“reserve amount for shipment” task in the Wf and created an ad-hoc task “order set
items” in his to-do list: “This is actually the same shipment procedure as for the other
items … We just process such set item deliveries independently as a special case.”
(SL2). He then reserved the shipment of the currently handled consignment items,
leaving the set items for later, and returned to the deviated jBPM task to complete it,
so that CSO can handle further the consignation settlement. SL2 then started process-
ing the order of the set items.

When handling the “completeness feedback” task in the jBPM Wf, CSO read the
comment of SL2 about the inconsistency in delivered and sold consignment items: “I
need to create liability statements for that [inconsistency] so that the customer can
correct the problem on their side” (CSO). For that CSO created an ad-hoc task “pre-
pare liability statement” in the to-do list and started preparing the document. When
she was ready later on, she returned to the jBPM Wf and completed the active “com-
pleteness feedback” task. For the missing set items, she later on received a delegated
CTM task “completeness feedback” from SL2, who had reserved the shipment for
these items. We were not able to follow the processing of the “check of payments”

98 T. Stoitsev et al.

task of CSO as this required customer actions. But CSO agreed that this would end
the consignation settlement process and completed the task in the Wf.

Finally, we re-generated the jBPM process model with all available data from the
initial TDG and from the execution of the jBPM Wf with deviating tasks, i.e. under
the supervision of SL1, SL2 and CSO, with who we discussed the export modes of
ad-hoc tasks (cf. 2). The “order set items” was exported as parallel sub process
whereas the other deviations were exported as sequential Wf tasks. A screenshot,
showing a part of the final model is given in Figure 5. Users appreciated having the
complete Wf with all possible deviations in it: “If the reported balance is ok, I’ll just
complete this task [liability statement] straight away … but I certainly want to have it
there to make sure I won’t forget it” (CSO). Users highly appreciated the provided
jBPM Wf functionality as the automated task assignment would save them the effort
to distribute tasks per email as usual. They further reported that they consider the final
Wf real-life compliant and will try to use it on regular basis and possibly to develop
several variations for different customers.

6 Conclusions

The paper presents an integrated approach enabling informed participation of end
users in business process composition by using collaborative “programming by ex-
ample” based on personal task management. The approach is implemented and vali-
dated through the CTM prototype. Through a CTM case study we have shown that the
presented approach is adequate and efficiently reduces the cognitive distance between
work tasks and Wf modeling (End-User Development) tasks. The approach introduces
several gentle slopes of complexity and provides added value on personal task man-
agement as motivation to overcome each one of them. Usage of CTM ad-hoc tasks is
motivated through transparency in collaborative processes, exceeding common email
and to-do list capabilities. The proactive extraction and adaptation of TPs is motivated
through the ability to exchange and reuse previous experience.

The presented approach further enables transformation of implicitly generated
TDGs to formal process models. The formalization benefits from multiple representa-
tions and fosters tailoring as collaboration between business users, process designers
and developers by allowing the latter to work in a shared context between user-
defined and formal process representations. Deviations from formal Wfs during exe-
cution are enabled with on-demand, ad-hoc task hierarchies. In the case study we have
shown how such deviations enable end-user driven process model refinement.

We will continue to investigate further scenarios of CTM usage in order to enhance
the ad-hoc to formal conversion capabilities, considering also possibilities for Wf
extensions with automated, computational tasks.

Acknowledgments. The reported work was supported financially by the German
“Federal Ministry of Education and Research” (BMBF, project EUDISMES, number
01 IS E03 C). We thank to all participants in our user studies for their cooperation.

 From Personal Task Management to End-User Driven Business Process Modeling 99

References

1. van der Aalst, W., Weijters, A.: Process mining: a research agenda. Computers in Industry,
vol. 53. Elsevier B.V, Amsterdam (2003)

2. Agostini, A., De Michelis, G.: Rethinking CSCW systems: the architecture of Milano. In:
ECSCW 1997, pp. 33–48. Springer, Heidelberg (1997)

3. Bellotti, V., Dalal, B., Good, N., Flynn, P., Bobrow, D.G., Ducheneaut, N.: What a To-Do:
Studies of Task Management towards the Design of a Personal Task List Manager. In: CHI
2004, pp. 735–742. ACM Press, New York (2004)

4. Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., Grinter, R.: Quality Versus Quantity:
E-Mail-Centric Task Management and Its Relation With Overload. Human-Computer In-
teraction, vol. 20, pp. 89–138. Lawrence Erlbaum Associates, Mahwah (2005)

5. Bernstein, A.: How Can Cooperative Work Tools Support Dynamic Group Processes?
Bridging the Specificity Frontier. In: CSCW 2000, pp. 279–288. ACM Press, New York
(2000)

6. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-
gan Kaufmann, San Francisco (1998)

7. Button, G.: What’s Wrong With Speech-Act Theory. Computer Supported Cooperative
Work 3(1), 39–42 (1994)

8. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., Mehanjiev, N.: Meta-Design: A Manifesto
for End-User Development. Communication of the ACM 47(9) (September 2004)

9. Forrester Research. Increase Business Agility with BPM Suites. Forrester Research Inc.
(2006)

10. Herrmann, T.: Evolving Workflows by User-driven Coordination. In: Reichwald, R.,
Schlichter, J. (eds.) Tagungsband D-CSCW 2000, pp. 103–114. Teubner (2000)

11. Holz, H., Maus, H., Bernardi, A., Rostanin, O.: From Lightweight, Proactive Information
Delivery to Business Process-Oriented Knowledge Management. Journal of Universal
Knowledge Management (2), 101–127 (2005)

12. JBoss Business Process Management, jBPM,
http://docs.jboss.org/jbpm/v3/userguide/index.html

13. Jorgensen, H.D.: Interactive Process Models. Ph.D. Thesis, Norwegian University of Sci-
ence and Technology, Trondheim, Norway (2004)

14. Lieberman, H.: Your Wish is My Command: Programming by Example. Morgan Kauf-
mann, San Francisco (2001)

15. Lieberman, H., Paterno, F., Wulf, V.: End-User Development. Springer, Heidelberg (2006)
16. MacLean, A., Carter, K., Lövstrand, L., Moran, T.: User-tailorable systems: pressing the

issues with buttons. In: Proc. CHI 1990, pp. 175–182. ACM Press, New York (1990)
17. Mørch, A., Mehandjiev, N.: Tailoring as Collaboration: The Mediating Role of Multiple

Representations and Application Units. Computer Supported Cooperative Work 9(1), 75–
100 (2000)

18. Object Management Group, BPMN, http://www.bpmn.org/
19. Riss, U., Rickayzen, A., Maus, H., van der Aalst, W.: Challenges for Business Process and

Task Managemen. Journal of Universal Knowledge Management (2), 77–100 (2005)
20. Schwarz, S., Abecker, A., Maus, H., Sintek, M.: Anforderungen an die Workflow-

Unterstützung für wissensintensive Geschäftsprozesse. In: WM 2001, 1st Conference for
Professional Knowledge Management, Baden-Baden, Germany (2001)

21. Stoitsev, T., Scheidl, S., Spahn, M.: A Framework for Light-Weight Composition and
Management of Ad-Hoc Business Processes. In: Winckler, M., Johnson, H., Palanque, P.
(eds.) TAMODIA 2007. LNCS, vol. 4849, pp. 213–226. Springer, Heidelberg (2007)

The Refined Process Structure Tree

Jussi Vanhatalo1�2, Hagen Völzer1, and Jana Koehler1

1 IBM Zurich Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
{juv,hvo,koe}@zurich.ibm.com

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany

Abstract. We consider workflow graphs as a model for the control flow of a busi-
ness process model and study the problem of workflow graph parsing, i.e., finding
the structure of a workflow graph. More precisely, we want to find a decompo-
sition of a workflow graph into a hierarchy of sub-workflows that are subgraphs
with a single entry and a single exit of control. Such a decomposition is the cru-
cial step, for example, to translate a process modeled in a graph-based language
such as BPMN into a process modeled in a block-based language such as BPEL.
For this and other applications, it is desirable that the decomposition be unique,
modular and as fine as possible, where modular means that a local change of
the workflow graph can only cause a local change of the decomposition. In this
paper, we provide a decomposition that is unique, modular and finer than in pre-
vious work. It is based on and extends similar work for sequential programs by
Tarjan and Valdes [11]. We show that our decomposition can be computed in
linear time based on an algorithm by Hopcroft and Tarjan [3] that finds the tri-
connected components of a biconnected graph.

Keywords: Workflow graph parsing, Control flow, Model decomposition, BPMN
to BPEL translation/ roundtripping, Subprocess detection, Graph theory.

1 Introduction

The control flow of a business process can often be modeled as a workflow graph [10].
Workflow graphs capture the core of many business process languages such as UML ac-
tivity diagrams, BPMN and EPCs. We study the problem of parsing a workflow graph,
that is, decomposing the workflow graph into a hierarchy of sub-workflows that have
a single entry and a single exit of control, often also called blocks, and labeling these
blocks with a syntactical category they belong to. Such categories are sequence, if,
repeat-until, etc., see Fig. 1(a). Such a decomposition is also called a parse of the work-
flow graph. It can also be shown as a parse tree, see Fig. 1(c).

The parsing problem occurs when we want to translate a graph-based process de-
scription (e.g. a BPMN diagram) into a block-based process description (e.g. BPEL
process), but there are also other use cases for workflow graph parsing. For example,
Vanhatalo, Völzer and Leymann [14] show how parsing speeds up control-flow analy-
sis. Küster et al. [6] show how differences between two process models can be detected
and resolved based on decompositions of these process models. We believe that parsing
also helps in understanding large processes and in finding reusable subprocesses.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 100–115, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Refined Process Structure Tree 101

s1 e1x2x1

a2
a1

a4

s1 e1x4x3x2x1
a1

a3a2
s1 e1x4x3x2x1

a1
a3a2

(a) (b)

If Repeat-Until
Sequence 2

Sequence 1

If Repeat-Until
Sequence 3

Sequence 1

If

Repeat-Until

Sequence 1

Sequence 2

(d)

If Sequence 3
Sequence 1

If

Sequence 1

Sequence 3

(c) (e)

a1

a2 a3 a2 a4a1

Fig. 1. (a), (b) Two parses of the same workflow graph. (c) Parse tree corresponding to (a). (d)
Workflow graph obtained by a local change and its parse. (e) Parse tree corresponding to (d).

For a roundtripping between a BPMN diagram and a BPEL process, it is desirable
that the decomposition be unique, i.e., the same BPMN diagram always translates to
the same BPEL process. Consider, for example, the workflow graph in Fig. 1(a). The
translation algorithm proposed by Ouyang et al. [9] is nondeterministic. It may produce
one of the two parses shown in Fig. 1(a) and (b), depending on whether the if-block or
the repeat-until-block is found first by the parsing algorithm.

One idea to resolve some of this nondeterminism is to define priorities on the syn-
tactic categories to be found [9,7,8]. For example, if in each step the parsing algorithm
tries to find sequences first, then if-blocks and then repeat-until-blocks, we can only
obtain the parse in Fig. 1(a) in our example. However, this can introduce another prob-
lem. If we change a single block, say, the repeat-until block by replacing it, e.g. by
a single task, we obtain the workflow graph shown in Fig. 1(d). Fig. 1(d) also shows
the parse we obtain with the particular priorities mentioned above. The corresponding
parse tree is shown in Fig. 1(e). It cannot be derived from the tree in Fig. 1(c) by just a
local change, viz., by replacing the Repeat-Until subtree. For a roundtripping between
a BPMN diagram and a BPEL process, it would be much more desirable that a local
change in the BPMN diagram also result in only a local change in the BPEL process.
Replacing a block in the BPMN diagram would therefore only require replacing the
corresponding block in the BPEL process. We then call a such decomposition modular.
The existing approach to the BPMN to BPEL translation problem [9] is not modular.
Furthermore, it does not provide, because of the above problems, a specification of the
translation that is independent of the actual translation algorithm.

Sequence 1
If Repeat-Until

s1 e1x4x3x2x1
a1

a3a2

Fig. 2. Modular decomposition of the process
from Fig. 1

A unique and modular decomposition is
provided by the program structure tree de-
fined by Johnson et al. [4,5] for sequen-
tial programs. It was applied to workflow
graphs by Vanhatalo et al. [14] to find
control-flow errors. The corresponding de-
composition for our first example is shown
in Fig. 2. It uses the same notion of a block

102 J. Vanhatalo, H. Völzer, and J. Koehler

as Ouyang et al. [9] do, that is, a block is a connected subgraph with a single entry and
a single exit edge. But in contrast to the approach of Ouyang et al. [9], non-maximal
sequences are disregarded in the program structure tree. For example, Sequence 2 in
Fig. 1(a) [likewise Sequence 3 in subfigure (b)] is non-maximal: it is in sequence with
another block.

Another general requirement for parsing is to find as much structure as possible,
i.e., to decompose into blocks that are as fine as possible. As we will see (cf. Sect. 4),
this allows us to map more BPMN diagrams to BPEL in a structured way. It has also
been argued [9] that the BPEL process is more readable if it contains more blocks.
Furthermore, debugging is easier when an error is local to a small block rather than to
a large one.

In this paper, we provide a new decomposition that is finer than the program struc-
ture tree as defined by Johnson et al. [4,5]. It is based on and extends similar work for
sequential programs by Tarjan and Valdes [11]. The underlying notion of a block is a
connected subgraph with unique entry and exit nodes (as opposed to edges in the pre-
vious approach). Accordingly, all blocks of the previous approach are found, but more
may be found, resulting in a more refined parse tree. We prove that our decomposition
is unique and modular. Moreover, we show that it can be computed in linear time, based
on an algorithm by Hopcroft and Tarjan [3] that finds the triconnected components of a
biconnected graph.

The paper is structured as follows. In Sect. 2, we define the refined process structure
tree and discuss its main properties. In Sect. 3, we describe how to compute the process
structure tree in linear time. Proofs of the main theorems can be found in a technical
report [13].

2 The Refined Process Structure Tree

In this section, we define the refined process structure tree (PST, for short). First, we
explain our notion of fragments in Subsection 2.1. Fragments have a strong relationship
with the triconnected components of the workflow graph, which we explain in Subsec-
tion 2.2. Subsection 2.3 defines the process structure tree. Finally, we show that our
decomposition is modular.

2.1 Fragments

We start by recalling some basic notions of graph theory. A multi-graph is a graph in
which two nodes may be connected by more than one edge. This can be formalized
as a triple G � (V� E� M), where V is the set of nodes, E the set of edges and M a
mapping that assigns each edge an ordered or unordered pair of nodes—for a directed
or undirected multi-graph, respectively. We will use multi-graphs throughout the paper,
directed and undirected, but will call them graphs for simplicity.

Let G be a graph. If e is an edge of G that connects two nodes u and v, we also say
that u and v are incident to e, e is incident to u and v, and nodes u and v are adjacent.

The Refined Process Structure Tree 103

s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

(a) (b)

G U(G) r

s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

Fig. 3. (a) Two-terminal graph G, and (b) its undirected version U(G), where r is the return edge

Workflow graphs are based on two-terminal graphs1. A two-terminal graph (TTG
for short) is a directed graph G without self-loops such that there is a unique source
node s and a unique sink node t � s and each node v is on a directed path from s to
t. The undirected version of G, denoted U(G), is the undirected graph that results from
ignoring the direction of all the edges of G and adding an additional edge between the
source and the sink. The additional edge is called the return edge of U(G). Figure 3
shows examples of (a) a two-terminal graph G, and (b) its undirected version U(G),
where r is the return edge.

For a subset F of edges, let VF denote the set of nodes that are incident to some edge
in F and let GF denote the subgraph with nodes VF and edges F. We say that GF is
formed by F.

Let G be a TTG and F a subset of its edges such that GF is a connected subgraph
of G. A node v � VF is a boundary node of F if it is the source or sink node of G, or
if G has edges e � F and e�

� F such that v is incident to e and e�. A boundary node v
is an entry of F if no incoming edge of v is in F or if all outgoing edges of v are in F.
A boundary node v is an exit of F if all incoming edges of v are in F or if no outgoing
edge of v is in F. F is called a fragment of G if it has exactly two boundary nodes, an
entry and an exit. Let F (u� v) denote the set of all fragments with entry u and exit v.

Figure 4 shows examples of fragments. A fragment is indicated as a dotted box. It
contains all those edges that either are inside the box or cross the boundary of the box.
Thus, the box in subfigure (a) denotes the fragment F1 � �a� b� c�. Node u is the entry
and v is the exit of F1. In subfigure (b), F2 � �a� b� c� d� is a fragment with entry u and
exit v. In subfigure (c), F3 � �a� b� c� d� has two boundary nodes, u and v, neither of
them is an entry or an exit of F3. Therefore, F3 is not a fragment.

(a) (b) (c)

d

u v
a

c

w
b

F3

u v
a

c

w
b

F1 d

u v
a

c

w
b

F2

Fig. 4. (a), (b) Examples and (c) counterexamples of entry, exit and fragment

1 A workflow graph is a two-terminal graph in which each node is labeled with some control
flow logic such as AND, OR, etc.

104 J. Vanhatalo, H. Völzer, and J. Koehler

Note that it can be checked locally whether a boundary node is an entry or an exit.
This notion of fragment was proposed by Tarjan and Valdes [11], where a TTG modeled
the control flow of a sequential program. When control flows through any of the edges
of a fragment, then it must have flown through the entry before and must flow through
the exit after. Their notion of fragment is, in a sense, the most general notion of fragment
having this property that can still be verified locally [11].

2.2 Triconnected Components

Tarjan and Valdes [11] have shown that the fragments of a TTG are closely related to
the triconnected components of its undirected version. We have to introduce a few more
notions from graph theory.

Let G be an undirected graph. The following notions are also used for directed graphs
by ignoring the direction of their edges. Let W be a subset of nodes of G. Two nodes
u� v � W are connected without W if there is a path that contains u and v but no node
w � W. For instance, in Fig. 3(a) nodes s and t are connected without v6, but not
connected without v5. Two edges e� f are connected without W if there exists a path
containing e and f in which a node w � W may only occur as the first or last element.
A graph without self-loops is k-connected, k � 0, if it has at least k � 1 nodes and
for every set W of k � 1 nodes, any two nodes u� v � W are connected without W.
We say connected for 1-connected, biconnected for 2-connected and triconnected for
3-connected. A separation point (separation pair) of G is a node u (pair �u� v� of nodes)
such that there exists two nodes that are not connected without �u� (without �u� v�).
Therefore a graph is biconnected (triconnected) if and only if it has no separation point
(separation pair). For instance in Fig. 3, G is not biconnected, because v5 is a separation
point, whereas U(G) is biconnected, because it has no separation points. U(G) is not
triconnected, because �v5� v7� is a separation pair. In Fig. 5(a), T2 is an example of a
triconnected graph if the dashed edge x is considered as an ordinary edge.

We say that a graph is weakly biconnected if it is biconnected or if it contains exactly
two nodes and at least two edges between these two nodes. For instance, in Fig. 5(a),
B1 is weakly biconnected, but not biconnected.

Throughout the paper, we assume that U(G) is weakly biconnected. This can easily
be achieved by splitting each separation point into two nodes, where the only outgoing
edge of the first node is the only incoming edge of the second node. 2

Let �u� v� be a pair of nodes. A separation class with respect to (w.r.t.) �u� v� is a
maximal set S of edges such that any pair of edges in S is connected without �u� v�; S
is a proper separation class or branch if it does not contain the return edge; �u� v� is
called a boundary pair if there are at least two separation classes w.r.t. �u� v�. Note that
a pair �u� v� of nodes is a boundary pair if and only if it is a separation pair or u and v
are adjacent in G. For instance in Fig. 3(b), �v5� v7� and �v6� v7� are boundary pairs. The
pair �v5� v7� is also a separation pair, but �v6� v7� is not.

Each weakly biconnected graph can be uniquely decomposed into a set of graphs,
called its triconnected components [3], where each triconnected component is either a

2 It is often assumed for workflow graphs that no node has both multiple incoming and multiple
outgoing edges. In that case it follows that U(G) is biconnected. See also Sect. 4.

The Refined Process Structure Tree 105

j k

s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

s v5 v7 t
u w

r

o

s

v2

v1

v5

a

b

h

i

u

x

v2

v1

v3 v4

c

d

e
f

g
x

v5 v7

n

m

w

y

v5 v6
j

k

z

v5 v6 v7
l

y

z

(a) (c)

P1
T1

T2

B2

B1

P2

P1

T1

P2
T2

B2

B1

(b)

P2T2

T1 B1

B2

P1

G

a b h i m n

l

o

c d f ge

u w

y

z

x

Fig. 5. (a) The triconnected components of U(G) in Fig. 3, (b) the tree of the triconnected com-
ponents of U(G), and (c) the corresponding component subgraphs of G

bond, a polygon or a triconnected graph. A bond is a graph that contains exactly two
nodes and at least two edges between them. A polygon is a graph that contains at least
three nodes, exactly as many edges as nodes such that there is a cycle that contains all
its nodes and all its edges.

Part (a) in Fig. 5 shows the six triconnected components of graph U(G) from Fig. 3.
P1 and P2 are polygons, B1 and B2 are bonds, and T1 and T2 are triconnected graphs.
Each component contains virtual edges (shown as dashed lines), which are not con-
tained in the original graph. They contain the information on how the components are
related to each other: Each virtual edge occurs in exactly two components, whereas
each original edge occurs in exactly one component. For example, the virtual edge x
occurs in components T1 and T2. In component T1, x represents the component T2,
whereas x represents T1 in T2. Therefore, we obtain the original graph by merging the
triconnected components at the virtual edges (which removes them).

The triconnected components can be arranged in a tree, cf. Fig. 5(b), where two com-
ponents are connected if they share a virtual edge. The root of the tree is the unique com-
ponent that contains the return edge. Each original edge is also shown in the tree under
the unique component that contains that edge. Therefore, each component C determines
a set F of edges of the original graph, namely all the leafs of the subtree that C corre-
sponds to. For example, component T1 determines the set F � �a� b� c� d� e� f � g� h� i� of
edges. We call the subgraph formed by such a set F of edges the component subgraph
of C. Figure 5(c) shows the component subgraphs of G. Note that the component sub-
graphs B1, P1 and T1 are fragments, whereas B2, P2 and T2 are not. There are also
fragments that are not component subgraphs, for instance, � j� k� l�m�.

The precise definition of the triconnected components is rather lengthy and has there-
fore been omitted (see [12,2,3]). Instead we present here the exact relationship between
the triconnected components and fragments we are going to exploit. The proofs of the

106 J. Vanhatalo, H. Völzer, and J. Koehler

following two theorems can be found in [12]. First, we observe that triconnected com-
ponents are closely related to boundary pairs.

Theorem 1. A set �u� v� of two nodes is a boundary pair of U(G) if and only if

1. nodes u and v are adjacent in U(G),
2. a triconnected component of U(G) contains a virtual edge between u and v, or
3. a triconnected component of U(G) is a polygon and contains u and v.

We show examples based on U(G) in Fig. 3(b) and its triconnected components in
Fig. 5(a). For instance, the boundary pair �v6� v7� contains two adjacent nodes of U(G),
the boundary pair �v1� v2� corresponds to a virtual edge x of T2, and the boundary pair
�s� v7� contains two nodes of the polygon P1. Boundary pairs are closely related to
fragments as follows.

Theorem 2. 1. If F � F (u� v), then �u� v� is a boundary pair of U(G) and F is the
union of one or more proper separation classes w.r.t. �u� v�.

2. Let �u� v� be a boundary pair of U(G) and F the union of one or more proper
separation classes w.r.t. �u� v�. If u is an entry of F and v is an exit of F, then
F � F (u� v).

For instance, the boundary pair �v5� v7� has three proper separation classes �m�, P2 �

� j� k� l�, and �n�. P2 is not a fragment, because v5 is neither its entry nor its exit, whereas
�m� � F (v5� v7) and �n� � F (v7� v5) are fragments. The union of P2 and �m� is a
fragment, whereas P2 � �n� and �m� � �n� are not. P2 � �m� � �n� is a
fragment.

Theorem 1 says that the boundary pairs can be obtained from the triconnected com-
ponents while Thm. 2 says that the fragments can be obtained from the boundary pairs.

2.3 Canonical Fragments and the Process Structure Tree

Two fragments F1 and F2 may overlap, that is, we have F1 � F2 � �, F1 � F2 � �

and F2 � F1 � �. Examples of overlapping fragments are shown in Fig. 6. Overlapping
fragments give rise to nondeterministic parsing as explained in Sect. 1. We are therefore
interested in a subset of fragments that do not overlap with each other. These will be
called canonical. We comment on our particular definition of canonical fragments in
Sect. 4. We start by defining various types of bond fragments.

(b)

u v

a

c

b

(c)

a

d

b
u vc

N2

N1

N2

N1

ts u v
b ca

(a)

N1
N2

Fig. 6. Examples of overlapping fragments

The Refined Process Structure Tree 107

(a) (b) (c) (d)

vu w vu w vu vu
R S D

B

Fig. 7. Examples of (a) a pure bond fragment, (b) a semi-pure bond fragment, (c) a directed bond
fragment, and (d) a bond fragment

Definition 1 (Bond fragments). Let S be a proper separation class (i.e., a branch)
w.r.t. �u� v�. S is directed from u to v if it contains neither an incoming edge of u nor
an outgoing edge of v. D(u� v) denotes the set of directed branches from u to v. S
is undirected if it is neither in D(u� v) nor in D(v� u). The set of undirected branches
between u and v is denoted by U (u� v). A fragment X � F (u� v) is

1. a bond fragment if it is the union of at least two branches from D(u� v)�U (u� v)�
D(v� u).

2. a directed bond fragment if it is the union of at least two branches from D(u� v) �
U (u� v).

3. a semi-pure bond fragment if it is the union of at least two branches from D(u� v)�
U (u� v), and
(a) there exists no Y � U (u� v) such that Y � X, Y has an edge incoming to

u, or
(b) there exists no Y � U (u� v) such that Y � X, Y has an edge outgoing

from v.
4. a pure bond fragment if it is the union of at least two branches from D(u� v).

Note that the various bond-fragment types form a hierarchy, i.e., each pure bond frag-
ment is a semi-pure bond fragment, each semi-pure bond fragment is a directed bond
fragment etc. Fig. 7 shows examples of various classes of bond fragments that do
not belong to a lower class. Bond fragments are closed under composition, i.e., we
have:

Proposition 1. If X� Y � F (u� v) and F � X�Y, then F � F (u� v). If X and Y are bond
fragments, so is F. If X and Y are directed (semi-pure) [pure] bond fragments, so is F.

Proposition 1 assures that a maximal bond fragment, maximal directed, maximal semi-
pure, or maximal pure bond fragment is unique if it exists. We are now ready to define
canonical fragments.

Definition 2 (Canonical fragment)

1. If F0 � F (v0� v1) and F1 � F (v1� v2) such that F0 � F1 � F � F (v0� v2), we say
that F0 and F1 are in sequence (likewise: F1 and F0 are in sequence) and that F is
a sequence. F is a maximal sequence if there is no fragment F2 such that F and F2

are in sequence.
2. A bond fragment (directed bond fragment etc.) F � F (u� v) is maximal if there is no

bond fragment (directed bond fragment etc.) F� � F (u� v) that properly contains

108 J. Vanhatalo, H. Völzer, and J. Koehler

F. A bond fragment F � F (u� v) is canonical if it is a maximal bond fragment, a
maximal directed, maximal semi-pure, or maximal pure bond fragment such that F
is not properly contained in any bond fragment F� � F (v� u).

3. A fragment is canonical if it is a maximal sequence, a canonical bond fragment, or
neither a sequence nor a bond fragment.

s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

(b)(a)

P1
T1 B1

S1

G P1

T1 B1

S1

j k lm

c d f gea b h i n

o

Fig. 8. (a) The non-trivial canonical fragments of G, and (b) the process structure tree of G

Note that each edge is a canonical fragment, which we call a trivial fragment. Part (a)
of Fig. 8 shows the non-trivial canonical fragments of graph G. S 1 � F (v5� v7) is a
maximal semi-pure bond fragment, and B1 � F (v5� v7) is a maximal bond fragment.
P1 is a maximal sequence. T1 is neither a sequence nor a bond fragment.

To prove that canonical fragments do not overlap, i.e., two canonical fragments are
either nested or disjoint, this claim is proven first for bond fragments that have the same
entry-exit pair.

Lemma 1. Let X� Y � F (u� v) be canonical bond fragments. Then X � Y, Y � X or
X � Y � �.

We continue by showing that two canonical bond fragments that share the same bound-
ary pair do not overlap. In general, we can encounter two situations depending on
whether the union of all branches with respect to a boundary pair is a fragment. These
two cases are shown in Fig. 9.

(a) (b)

v3

v4v1

v2

v3

v4v1

v2

B

R

S

D
R2

R1

S

Fig. 9. Examples of canonical bond fragments

In Fig. 9(a), the union of
all branches with respect to the
boundary pair {u, v} is the max-
imal bond fragment from u to v
called B. Fragments D� S and R
are the maximal directed bond,
semi-pure bond, and pure bond
fragment from u to v respectively.
Compared with part (a) of Fig. 9,
part (b) has an additional edge out-
going from u that is outside of the
union of all branches with respect to the boundary pair �u� v�. Because of this added
edge, neither u or v is an entry of this subgraph. Thus, this set of edges is not a frag-
ment. Fragment R1 is the maximal pure bond fragment from u to v. Fragment S is the
maximal semi-pure bond fragment from u to v. As there is no larger bond fragment

The Refined Process Structure Tree 109

from u to v, S is also the maximal directed bond fragment and the maximal bond frag-
ment from u to v. R2 is the maximal pure bond fragment from v to u. As there is no
larger bond fragment from v to u, R2 is also the maximal semi-pure bond, the maximal
directed bond and the maximal bond fragment from v to u. Through an analysis of these
two cases, we can prove the following:

Lemma 2. Let X � F (u� v) and Y � F (v� u) be canonical bond fragments. Then X �

Y, Y � X or X � Y � �.

We are now ready to present the main theorem.

Theorem 3. Let X� Y be two canonical fragments. Then X � Y, Y � X or X � Y � �.

Theorem 3 allows us to define the unique process structure tree of a workflow graph.

Definition 3 (Process structure tree). Let G be a TTG. The process structure tree
(PST, for short) is the tree of canonical fragments of G such that the parent of a canon-
ical fragment F is the smallest canonical fragment of G that properly contains F.

Thus, the largest fragment that contains a whole workflow graph G is the root fragment
of the PST. Part (b) of Fig. 8 shows the PST of graph G in part (a). The child fragments
of a sequence P1 are ordered left to right from the entry to the exit of P1. For example,
the order of child fragments of maximal sequence P1 is T1, B1 and o. Moreover, as
T1 has the same entry as P1, the exit of T1 (B1) is the entry of B1 (o), and o has
the same exit as P1. We use this ordering in Sect. 2.4 to derive all fragments from the
canonical fragments. For this, it is not necessary to order the child fragments of a bond
or a triconnected graph.

2.4 Computing All Fragments from the Canonical Fragments

The following proposition indicates how to derive all fragments from the canonical
fragments. This is useful for example if one wants to find the smallest fragment that
contains some given set of graph elements.

Proposition 2. Let F be a set of edges in a TTG. F is fragment if and only if F is a
canonical fragment or F is

1. a union of consecutive child fragments of a maximal sequence,
2. a union of child fragments of a maximal pure bond fragment, or
3. a union of child fragments of a maximal bond fragment B such that B is not a

maximal directed bond fragment.

For example, the maximal sequence P1 in Fig. 8 has T1, B1 and o as ordered child frag-
ments. Besides these canonical fragments and the maximal sequence, also the union of
T1 and B1 (B1 and o) is a fragment. However, the union of T1 and o is not a frag-
ment, as these are not consecutive child fragments, i.e., they do not share a boundary
node.

110 J. Vanhatalo, H. Völzer, and J. Koehler

(a)

u v

Ra

c

b

(b)

Bc

b

d

u va R

Fig. 10. Deriving non-canonical fragments from
child fragments of (a) a maximal pure bond
fragment and (b) a maximal bond fragment

Part (a) of Fig. 10 shows a maximal
pure bond fragment R � �a� b� c�. Its child
fragments are �a�, �b�, and �c�. It follows
from Prop. 2 that �a� b�, �b� c�, and �a� c�
are the non-canonical fragments in R. Part
(b) of Fig. 10 shows a maximal bond frag-
ment B � �a� b� c� d� � F (u� v) and a max-
imal directed bond fragment R � �a� b� �
F (u� v) such that B � R. It follows from
Prop. 2 that �c� d�, �a� b� c� and �a� b� d� are
the non-canonical fragments in B. Note that �a� c� d� and �b� c� d� are not fragments,
because their boundary nodes are neither entries nor exits.

2.5 Modularity

Finally, we state what we mean by saying that our decomposition is modular.

Theorem 4. Let G be a TTG and X � F (u� v) be a canonical fragment of G. Let G� be
the TTG obtained by replacing the subgraph that is formed by X by some other subgraph
formed by a set of (fresh) edges X� such that X� � F (u� v) is again a fragment of G�

(but not necessarily canonical) with the same entry-exit pair as X. Assume that A is the
parent fragment of X in G and F � X is a child fragment of A in G. Let A�

� (A�X)�X�

and F�

� F. Then A� and F� are canonical fragments of G� where F� is a child fragment
of A� in G�.

Theorem 4 means that a local change to the TTG, i.e., changing a canonical fragment X,
only affects the PST locally. The parent and siblings of a changed canonical fragment
remain in the PST in the same place and it follows inductively that this is also true for
all canonical fragments above the parent and all canonical fragments below the siblings
of X.

3 Computing the PST

In this section, we describe an algorithm that computes the PST in linear time. We have
extended the algorithm by Valdes [1] to find all the canonical fragments (his algorithm
produces a coarser decomposition, cf. Sect. 4). The algorithm has three high-level steps
that are illustrated in Fig. 11 and described in Alg. 1. In Step 1, the tree of the tri-
connected components is computed, using e.g. the linear-time algorithm by Hopcroft
and Tarjan [3]. Gutwenger and Mutzel [2] present some corrections to this algorithm.
We illustrate the computed triconnected components through the respective component
subgraphs in Fig. 11.

In Step 2, we analyze each triconnected component to determine whether the re-
spective component subgraph is a fragment. This can be done in linear time with the
following approach that takes advantage of the hierarchy of fragments. We analyze the
tree of the triconnected components bottom-up—all children before a parent. For each

The Refined Process Structure Tree 111

Algorithm 1. Computes the PST for a two-terminal graph
buildPST(Graph G)
Require: G is a weakly biconnected TTG.

// Step 1. Compute the tree of the triconnected components of the TTG.
Tree := Compute the tree of the triconnected components of G.
// Step 2. Analyze each component to determine whether it is a fragment.
for each Component c in Tree in a post-order of a depth-first traversal do

Count the number of edges (that are children of c) incoming to/outgoing from each boundary
node. (4 counts)
Add these edge counts to the respective edge counts of the parent component for each shared
boundary node.
Compare these edge counts to the total number of incoming/outgoing edges to determine
whether each boundary node is entry, exit, or neither.
Based on these boundary node types, determine whether c is a fragment.
if c is a polygon then

Count the number of entry and exit nodes of the child components.
If a child component is a fragment, order the child components from entry to exit.

// Step 3. Restructure the tree of the triconnected components into the tree of the canonical
fragments (the PST).
for each Component c in Tree in a post-order of a depth-first traversal do

if c is a polygon then
Merge consecutive child components (that are not fragments if any exist) if those form a
minimal child fragment.
if c is not a fragment and c has at least two child fragments then

Create a maximal sequence (that contains a proper subset of children of c).
if c is a bond then

Classify each branch of c based on the edge counts of the boundary nodes of the respective
child components of c.
if c is a fragment then

Based on the classifications of the branches, create the maximal pure, the maximal
semi-pure, and the maximal directed bond fragment, if any exists.

else
Based on the classifications of the branches, create the maximal pure bond fragments,
the maximal semi-pure bond fragment, if any exists.

for each Component d that has been created in this iteration do
Merge the child fragments of each component in the to-be-merged-list of d to d.

if c is not a fragment then
Add c to the to-be-merged list (a linked list) of its parent component.
Concatenate the to-be-merged list of c to the to-be-merged list of its parent.

else
Merge the child fragments of each component in the to-be-merged list of c to c.

return Tree

child edge of a triconnected component c, we check whether it is incoming to or out-
going from one of the two boundary nodes of c. We count these edges to determine
whether a boundary node is an entry, an exit, or neither. Based on this information,
we can determine whether the respective component subgraph is a fragment. Note that

112 J. Vanhatalo, H. Völzer, and J. Koehler

G P1
T1

T2

B2

B1

P2
s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

G P1
T1 B1

S1
s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o
s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

P1
T1

T2

B2

B1

P2

G

s

v2

v1

v3 v4 v7v5 v6 t

a

b

c

d j

n

e
f

g

h

i

k l

m

o

G

Step 1: Detect the
triconnected
components.

Step 2: Analyze
the triconnected
components.

Step 3: Restructure
the tree into the PST.

Fig. 11. The high-level steps of Alg. 1. Step 1: Detect the triconnected components. Step 2: Ana-
lyze each triconnected component to determine whether the respective component subgraph is a
fragment. Step 3: Create the missing canonical fragments and merge the triconnected components
that are not fragments.

when a triconnected component shares a boundary node with its parent, the same edges
do not have to be counted twice, because an edge inside a child is also inside its parent.

In Step 3, we create the missing canonical fragments, and merge each component
subgraph that is not a fragment to the smallest canonical fragment that contains it. This
restructuring is based on the information computed in Step 2. New fragments are created
only in those cases where a bond or a polygon contains canonical fragments that are not
component subgraphs. Such a fragment is created as a union of at least two (but not all)
children of this bond or polygon. We show examples in the following.

We process the tree of the triconnected components bottom-up as in Step 2. Thus,
in Fig. 11, we can begin with T2. It contains no new canonical fragments, because it is
neither a sequence nor a bond. T2 is not a fragment, because v1 is neither its entry nor
its exit. Thus, it will be merged into its parent fragment T1, that is, the children of T2
become children of T1.

The bond B2 is not a fragment, so it will be merged. B2 contains no new canonical
fragments, because it has only two children. The same applies to P2. More interestingly,
B1 is a fragment and has three children. Each child of a bond is a branch, and we classify
them to find out whether they form new canonical bond fragments. �m� is a directed
branch from v5 to v7, P2 is an undirected branch that has no outgoing edges from v7,
and �n� is a directed branch from v7 to v5. Note that the branches can be classified based
on the counts of edges incident to each boundary node of a branch computed in Step 2.
There is a new semi-pure bond fragment S 1 � �m� � P2. B2 and P2 are merged to S 1.
S 1 and �n� become the children of the restructured B1. Finally, P1 and all its children
are fragments, thus there is no need to restructure P1.

The Refined Process Structure Tree 113

v3

v4v1

v2

s t s tv0
a b

v3

v4v1

v2

v3

v4v1

v2

s t s tv0
a b

v3

v4v1

v2

(a)

P1

(b)

BP

(c)

P

B1

v3v1 v2 v4
b

f

c d

h

e
ts

a g

P

R

S

D
R2

M

BBP

v3v1 v2 v4
b

f

c d

h

e
ts

a g

T

P

B3

Step 3Step 3 Step 3

P1

P2

B1

B2

P1

P2

B1

B2

R1

S

Fig. 12. Step 3: From the tree of the component subgraphs to the tree of the canonical fragments

In the following examples we show polygons and bonds in which more restructuring
is required. In Fig. 12(a), B1 and P1 are not fragments. However, polygon P1 has two
consecutive child fragments �d� and �e� that form a maximal sequence P � �d� � �e�. To
determine whether a polygon contains such a new maximal sequence, we compute the
number of entries and exits of its children already at the end of Step 2. A polygon that
is not a fragment contains a maximal sequence as a union of its children if and only if
its children have at least three entries or at least three exits in total.

In Fig. 12(b), B1, P1, B2, and P2 are not fragments and will be merged. Bond B is
a fragment from v1 to v4 and has six branches: two edges as directed branches from v1
to v4, and one undirected branch, P2, that has no edge incoming to the entry of B, one
undirected branch, P1, that has both an edge incoming to the entry of B and an edge
outgoing from the exit of B, and another two edges as directed branches from v4 to v1.
The directed branches from the entry to the exit of B form a new maximal pure bond
fragment R. The union of P2 and R is a new maximal semi-pure bond fragment S . The
union of P1 and S is a new maximal directed bond fragment. D and the remaining two
directed branches are the children of B. B1 and P1 are merged to D, and B2 and P2 to
S . P is a maximal sequence.

Figure 12(c) shows an example of a bond B that is not a fragment, but its children
form new canonical fragments. As there are at least two directed branches to each di-
rection, these branches form two new pure bond fragments, R1 and R2. The union of
R1 and branch P2 is a semi-pure bond fragment S . Thus, B2 and P2 are merged to
S . The polygon P has four children �a�, B3, B, and �b�. B3 and B not fragments, but
the union of these consecutive siblings is a fragment. Thus, B is merged to B3 to form
a new fragment M. B1 and P1 are also merged to M. The fragment P has only three
children.

Each step of the algorithm can be performed in linear time. Thus, also the entire
algorithm has linear time complexity.

114 J. Vanhatalo, H. Völzer, and J. Koehler

Theorem 5. The PST of a TTG G can be computed in time linear in the number of
edges of G.

4 Conclusion

We have presented a modular technique of workflow graph parsing to obtain fine-
grained fragments with a single entry and single exit node. The result of the parsing
process, the process structure tree, is obtained in linear time. We have mentioned a
couple of use cases in Sect. 1. Coarser-grained decompositions may be desirable for
some use cases. Those can easily be derived from the refined process structure tree by
flattening. One such coarser decomposition, which can be derived and which is also
modular, is the decomposition into fragments with a single entry edge and a single exit
edge presented by Vanhatalo, Völzer and Leymann [14]. The new, refined decomposi-
tion presented here allows us to translate more BPMN diagrams to BPEL in a structured
way. As an example, consider the workflow graph in Fig. 13 and (a) its decomposition
with the existing techniques [9,14] and (b) with our new technique. In Fig. 13(a), X
cannot be represented as a single BPEL block, whereas in Fig. 13(b) each fragment can
be represented as a single BPEL block.

The main idea of the technique presented is taken from Tarjan and Valdes [11,1].
They describe an algorithm that produces a unique parse tree. However, they do not
provide a specification of the parse tree, i.e., a definition of canonical fragments or
claim or prove modularity. Moreover, our PST is more refined than their parse tree.
Figure 12 shows examples of workflow graphs where this is the case. The fragments
that are not identified by them are P in (a), D, S and R in (b), and S , R1 and R2 in (c).

We have made some simplifying assumptions about workflow graphs. The assump-
tion that we have unique source and sink nodes can be lifted. Also the assumptions that
the undirected version of the workflow graph is weakly biconnected and does not con-
tain self-loops can be lifted. The necessary constructions to deal with these cases will
be presented in an extended version of this paper. Thus the remaining assumption on
workflow graphs will be that each node is on a path from some source to some sink.

The reader might wonder what justifies our particular definition of canonical frag-
ments. It can be shown that the canonical fragments are exactly those fragments that
do not overlap with any (canonical or non-canonical) fragment. This means, they are
exactly the ‘objective’ fragments in the sense that they are compatible with any parse
and hence appear in every maximal parse. Any finer decomposition into fragments can

s e
g1 g2 g3

a2

a1

a3
s e

g1 g2 g3

a2

a1

a3

(a) (b)

Sequence
If

Invoke a1 Repeat-Until

Invoke a3

Invoke a2

X
A

C

B

Fig. 13. A workflow graph and (a) decomposition presented in [9,14] and (b) our decomposition

The Refined Process Structure Tree 115

only be obtained by arbitrating between overlapping fragments. Our definition is fur-
ther justified by Prop. 2, i.e., by the fact that all fragments and hence all parses can be
derived from the PST in a simple way.

Acknowledgments. The work published in this article was partially supported by the
SUPER project (http://www.ip-super.org/) under the EU 6th Framework Programme
Information Society Technologies Objective (contract no. FP6-026850).

References

1. Ayesta, J.V.: Parsing flowcharts and series-parallel graphs. PhD thesis, Stanford University,
CA, USA (1978)

2. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.)
GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)

3. Hopcroft, J., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Com-
put. 2, 135–158 (1973)

4. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions
in linear time. In: Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation (PLDI), pp. 171–185 (1994)

5. Johnson, R.C.: Efficient program analysis using dependence flow graphs. PhD thesis, Cornell
University, Ithaca, NY, USA (1995)

6. Küster, J., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model differ-
ences in the absence of a change log. In: Dumas, M., Reichert, M., and Shan, M.-C., (eds.)
BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)

7. Lassen, K.B., van der Aalst, W.M.P.: WorkflowNet2BPEL4WS: A tool for translating un-
structured workflow processes to readable BPEL. In: Meersman, R., Tari, Z. (eds.) OTM
2006. LNCS, vol. 4275, pp. 127–144. Springer, Heidelberg (2006)

8. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models into
human-readable abstract BPEL processes. In: Modellierung 2008, GI, March 2008. Lecture
Notes in Informatics (LNI), vol. P-127, pp. 57–72 (2008)

9. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: From BPMN pro-
cess models to BPEL web services. In: ICWS, pp. 285–292. IEEE Computer Society, Los
Alamitos (2006)

10. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction techniques. Inf.
Syst. 25(2), 117–134 (2000)

11. Tarjan, R.E., Valdes, J.: Prime subprogram parsing of a program. In: POPL 1980: Proceed-
ings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pp. 95–105. ACM, New York (1980)

12. Vanhatalo, J.: Structural analysis of business process models using the process structure trees
(to appear)

13. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. IBM Research Re-
port RZ 3712 (2008)

14. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models though SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

Covering Places and Transitions in Open Nets

Christian Stahl1 and Karsten Wolf2

1 Humboldt-Universität zu Berlin, Institut für Informatik
Unter den Linden 6, 10099 Berlin, Germany

stahl@informatik.hu-berlin.de
2 Universität Rostock, Institut für Informatik

18051 Rostock, Germany
karsten.wolf@uni-rostock.de

Abstract. We present a finite representation of all services M where
the composition with a given service N is deadlock-free, and a given set
of activities of N can be covered (i.e. is not dead). Our representation is
an extension of the existing notion of an operating guideline which only
cared about deadlock freedom. We further present an algorithm to decide
whether a service M matches with the extended operating guideline of N .

Keywords: process modeling and analysis, SOA, Petri nets, operating
guidelines.

1 Introduction

One of the objectives of service-oriented computing (SOC) [1] is the modular
structuring and loose coupling of interorganisational business processes. In this
aspect, SOC meets the area of modeling and analysing workflows [2]. While
SOC aims at composing complex business activities from more elementary ones
(services), workflow modeling is (among others) concerned with the study of
well-designed workflows and business processes. Central to the wellformedness
of workflows is the concept of soundness. This property basically states that
every process instance will terminate in a well-defined final state while there are
no useless (dead) activities. In the intersection of SOC and workflow modeling,
we are thus interested in mechanisms for service composition (and related tasks
such as discovery) which assure soundness in the overall system (e.g. a service
orchestration).

Current approaches for matching and discovering services are incapable of
asserting soundness in service discovery scenarios. Some approaches propose to
compute and publish a public view P ′ of a provided service P [3,4]. Then, a
service requester R can check its composition R⊕P ′ to decide proper interaction.
However, public view approaches do not explicitly state whether soundness of
P ′⊕R implies soundness of P ⊕R. Thus, existing public view approaches cannot
be applied to obtain a globally sound system.

Other approaches suggest to compute an operating guideline OGP for a given
service P which represents all correctly interacting partners of P [5]. Then, a

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 116–131, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Covering Places and Transitions in Open Nets 117

matching procedure between R and OGP can be used for deciding whether P⊕R
would interact correctly. Here, correctness refers to deadlock freedom so far.

Deadlock freedom is a necessary but insufficient condition for soundness. In
this paper, we extend the operating guideline approach by asserting—in addi-
tion to deadlock freedom—the absence of dead activities in the composed sys-
tem. This is another necessary condition for soundness. The only remaining gap
between the new approach and soundness is the possible existence of livelocks.
For acyclic services, our approach already establishes soundness in the composed
system since acyclic services cannot contain livelocks.

Another motivating scenario for our approach is inspired by [6]. In this arti-
cle, all partners of a given service, which enforce or exclude certain behavioral
patterns such as occurrences of activities, are characterized. This approach can
be used, among others, for

– filtering of service registries for services that fit specific specifications (“en-
force book”: I want to get a book selling service; “exclude credit card”: I do
not want to pay by credit card),

– validating services by checking whether there exist partners that access cer-
tain features

Sometimes, enforcing some behavior is too strict. Consider an application for a
credit with an online bank service. Of course, the user (service requester) wishes
to have the activity “credit approved” executed in the service. However, there
is hardly an online bank service where “credit approved” can be enforced by
the user (which would mean that the user can always obtain a credit by just
following a suitable communication pattern). There will rather be an internal
decision based on which a credit is either approved or denied. In typical service
models, the decision appears to the user as a nondeterministic choice. Thus, we
need a weaker criterion that rules out at least all those services where “credit
approved” is completely impossible. That is, R should match with P if and only
if it is at least possible to execute activity “credit approved” in the composition
of the online bank service and the requester.

Formally, we want to compute a finite representation of the (generally infinite)
set of all those partners R of a given service P where the composition P ⊕ R of
both services is deadlock-free, and a certain set X of activities is not dead. For
establishing soundness, this set X would be the set of all activities of P . In the
online banking example, X would consist only of activity “credit approved”. We
achieve this goal by extending the existing operating guideline approach with
deadlock-free interaction.

The paper is structured as follows. In Sect. 2 we recall open nets and operating
guidelines. Next, in Sect. 3, we extend our notion of partners R for P to those
partners R′ where a certain set of places and transitions in P ⊕ R′ is covered
(i.e. each place can be marked and each transition is not dead). We show how to
calculate a finite representation of all these partners by extending our notion of
an operating guideline with a global constraint. Section 4 presents related work
and finally conclusions are drawn in Sect. 5.

118 C. Stahl and K. Wolf

2 Preliminaries

2.1 Open Nets

We assume the usual definition of a (place/transition) Petri net N = (P, T, F)
(see [7], for instance) and use standard notation to denote the preset and postset
of a place or a transition: •x = {y | (y, x) ∈ F} and x• = {y | (x, y) ∈ F}.

Definition 1 (Open net). An open net N = (P, T, F, I, O, m0, Ω) consists of
a Petri net (P, T, F) together with
– an interface defined as a set I ⊆ P of input places such that •p = ∅ for any

p ∈ I and a set O ⊆ P of output places such that p• = ∅ for any p ∈ O and
I ∩ O = ∅,

– a distinguished initial marking m0, and
– a set Ω of final markings such that no transition of N is enabled at any

m ∈ Ω.
We further require that m ∈ Ω ∪ {m0} implies m(p) = 0 for all p ∈ I ∪ O;

that is, in the initial and the final markings the interface places are not marked.

We use indices to distinguish the constituents of different open nets (e. g. Ij

refers to the set of input places of open net Nj).
The behavior of an open net is defined using the standard Petri net seman-

tics [7]; that is, a transition is enabled if each place of its preset holds a token.
An enabled transition t can fire in a marking m by consuming tokens from the
preset places and producing tokens on the postset places, yielding a marking
m′. The firing of t is denoted by m

t−→ m′ (a t-step), the successively firing of a
sequence of transitions is denoted by m

∗−→ m′.
In order to assign a reasonable meaning to final markings, we restrict our

approach to such open nets where a marking in Ω does not enable any transition.
As an example, consider the open net Nc depicted in Fig. 1(a). The initial

marking is m0Nc
= [p0] and the set of final markings is defined by ΩNc = {[p7]}.

Nc has three input and four output places that are depicted on the dashed frame:
INc = {req c, cc y, cc n} and ONc = {r low, r high, rej, acc}. The open net models
a credit approval process of an online banking service. After the customer has
requested a credit (transition t1), the bank decides whether the risk is high or
low (transitions t2 and t3). Then, the customer has to decide whether he accepts
a credit control or not (transitions t4 – t7). Based on this information the bank
distinguishes three cases: If the risk is high and the customer does not accept a
credit control, then the credit request is rejected (transition t8). If there is only
low risk and the customer accepts a credit control, then the request is accepted
(transition t11). In the third case, that is, if the risk is high and the customer
accepts a credit control or the risk is low but the customer does not accept a
credit control, the request is examined by an employee of the bank which is
modeled by a nondeterministic choice (transitions t9 and t10).

The innerN of an open net N defines the Petri net that results from removing
the interface places and the adjacent arcs from N . Obviously, innerN and N

Covering Places and Transitions in Open Nets 119

req_c

p0

p1

p2 p3

p6p5p4

p7

r_low

r_high

cc_y

cc_n

rej

acc

t1

t3t2

t4 t5 t6 t7

t11t10t9t8

(a) Open net Nc modeling the
credit approval process of an on-
line banking service.

req_c

r_low

r_high

cc_y

cc_n

rej

acc

p8

p9

p10

p11

p12

t12

t13 t14

t15

t17t16

(b) Open net M1.

req_c

r_low

r_high

cc_y

cc_n

rej

acc

p13

p14

p16

p18

p19

t18

t19 t20

t21

t24t23

t22

p15

p17

(c) Open net M2.

Fig. 1. The running example process Nc and two strategies M1 and M2

coincide if N has an empty interface. The inner of Nc, innerNc , is the net inside
the dashed frame in Fig. 1(a).

As a correctness criterion for an open net N we require the absence of dead-
locks in N .

Definition 2 (Deadlock). Let N be an open net. A deadlock is a nonfinal
marking in N that does not enable a transition. If N does not have deadlocks, it
is called deadlock-free.

Two open nets M and N are composable if all constituents (except for the
interfaces) are pairwise disjoint. This can be achieved easily by renaming. For
the interfaces, we require that the input places of M are the output places of N
and vice versa (i.e. IM = ON and OM = IN). For markings mM ∈ M, mN ∈ N ,
their composition m = mM ⊕ mN is defined by (mM ⊕ mN)(p) = mM (p) +
mN (p) (assuming mM (p) = 0 for p /∈ PM and mN (p) = 0 for p /∈ PN). These
considerations lead to the following definition of composition.

Definition 3 (Composition of open nets). Let M, N be composable open
nets. Then, the composition of M and N is the open net M ⊕ N defined as
follows:
– P = PM ∪ PN ,
– T = TM ∪ TN ,
– F = FM ∪ FN ,
– I = O = ∅,

120 C. Stahl and K. Wolf

– m0 = m0M ⊕ m0N , and
– Ω = {mM ⊕ mN | mM ∈ ΩM , mN ∈ ΩN}.

Consider the two open nets M1 and M2 depicted in Fig. 1(b) and Fig. 1(c),
respectively and assume m0M1

= [p8], ΩM1 = {[p12]}, m0M2
= [p13], and ΩM2 =

{[p19]}. Then, Nc and M1 as well as Nc and M2 are composable. Notice that
place cc y becomes internal in the composition Nc ⊕M1, but it is never marked.

Clearly, we are mostly interested in composing open nets such that the com-
position is deadlock-free. To this end, we define the notion of a strategy.

Definition 4 (Strategy). An open net M is a strategy for an open net N if
M ⊕ N is deadlock-free. Strat(N) denotes the set of all strategies for N .

Both, M1⊕Nc and M2⊕Nc, are deadlock-free and thus, M1 and M2 are strategies
for Nc.

2.2 Operating Guidelines

In the following we recapitulate our concept of an operating guideline [8,5]. With
the help of operating guidelines we are able to represent the set of all strategies
M for an open net N in a compact way. Technically, an operating guideline is a
special annotated automaton. An annotated automaton AΦ consists of a finite
deterministic automaton A and a function Φ that assigns to each state q of A
a Boolean formula Φ(q). AΦ represents a set Strat(AΦ) of open nets. For each
element of N ∈ Strat(AΦ), we say that N matches with AΦ. We continue by
first defining the notions of annotated automata and matching in general and
then introducing operating guidelines.

Definition 5 (Annotated automaton). AΦ = [Q, C, δ, q0, Φ] is an annotated
automaton iff Q is a nonempty finite set of states, C is a set of labels, δ ⊆
Q × C × Q is a transition relation such that every state q ∈ Q is reachable
from q0 via transitive applications of δ, q0 ∈ Q is the initial state, and Φ is an
annotation function, where, for all q ∈ Q, Φ(q) is a Boolean formula over literals
in C.

We use annotated automata to represent a set of open nets. Therefore, we take an
annotated automaton AΦ with Boolean formulae over literals in C = I ∪ O and
a special literal final and define when a service described in terms of an open net
M with the interface I ∪O matches with AΦ. Intuitively, M matches with AΦ if
(1) its behavior is simulated by AΦ and (2) if a marking m of M is simulated by a
state q of AΦ, then the arcs leaving m— interpreted as an assignment assigning
true to the corresponding literals of the formula Φ(q) — satisfy Φ(q). For more
details, we refer to [9,5].

In order to simplify presentation, we assume that each transition of an open
net is connected to at most one interface place. This assumption does, however,
not restrict generality as every open net can be transformed into an equivalent
one that obeys this restriction [5].

Covering Places and Transitions in Open Nets 121

Definition 6 (Matching with AΦ). Let M be an open net that obeys the
assumption stated above and let Y be the set of all reachable markings of the
Petri net M∗ = innerM . Let AΦ = (Q, C, δ, q0, Φ) be an annotated automaton
with C = IM ∪ OM ∪ {final}. Then M matches with AΦ iff there is a relation
ρ ⊆ Y × Q inductively defined as follows:

1. (m0M , q0) ∈ ρ;
2. If t is an internal transition of M (i. e., t is not connected to any interface

place), m, m′ ∈ Y , and m
t−→ m′, then (m, q) ∈ ρ implies (m′, q) ∈ ρ;

3. If t is a receiving transition of M with c ∈ IM , c ∈ •t, m, m′ ∈ Y , and
(m + [c]) t−→ m′, then (m, q) ∈ ρ implies (m′, q′) ∈ ρ for some q′ with
(q, c, q′) ∈ δ;

4. If t is a sending transition of M with c ∈ OM , c ∈ t•, m, m′ ∈ Y , and
m

t−→ (m′ + [c]), then (m, q) ∈ ρ implies (m′, q′) ∈ ρ for some q′ with
(q, c, q′) ∈ δ;

5. For all m ∈ Y , at least one of the following properties holds:
– An internal transition t is enabled at m; or,
– for all q such that (m, q) ∈ ρ, Φ(q) evaluates to true for the following

assignment β:
- β(c) = true if c ∈ OM and there is a transition t with c ∈ t• that is

enabled at m;
- β(c) = true if c ∈ IM and there is a transition t with c ∈ •t that is

enabled at m + [c];
- β(c) = true if c = final and m ∈ ΩM ;
- β(c) = false, otherwise.

Let Match(AΦ) denote the set of all M such that M matches AΦ.

In the formal definition, ρ represents the informally described (weak) simulation
relation. The assignment used for evaluating an annotation represents transitions
t of M that leave the considered marking m of M∗.

An operating guideline OGN of an open net N is a special annotated automa-
ton, such that an open net M matches with OGN if and only if M is a strategy
for N .

Definition 7 (Operating guideline). An annotated automaton is an operat-
ing guideline OGN of an open net N iff Strat(N) = Match(OGN).

Figure 2 depicts the operating guideline OGNc for the credit approval process
Nc (see Fig. 1(a)). It consists of 16 nodes and 31 edges and was calculated by
our tool Fiona [10]. In the initial state q0, the annotation is !cc y∨ !cc n∨ !req c
reflecting the possible choices of a strategy M for Nc. More precisely, M must
be able to send at least one (expressed by the disjunction) of the three messages
cc y, cc n, and req c in its initial state. In contrast, annotation ?acc∧?rej in state
q14 reflects the fact that M being in marking m with (m, q14) ∈ ρ must be able
to receive message acc and message rej. The two open nets M1 and M2 fulfil the
requirements of Def. 6 and thus match with OGNc .

122 C. Stahl and K. Wolf

!cc_n !cc_y
!req_c

!req_c
!req_c

!cc_n !cc_y?r_low ?r_high

?acc

?r_low ?rej ?r_high

!cc_n

!cc_y
?acc ?r_low ?rej

?r_high

!cc_n
!cc_y

?rej
?r_high?acc ?rej?r_low ?r_low?r_high ?acc ?acc

?rej

q15: final

q1: !req_c

q0: !cc_y !cc_n !req_c

q6: (?rej ?r_high) (?acc ?r_low)
(?acc ?r_high)

q5: !cc_y !cc_n q7: !cc_y !cc_nq4: (?rej ?r_high) (?acc ?r_low)
(?rej ?r_low)

q8: ?r_low q10: ?r_high ?r_low q11: ?acc q13: ?r_highq12: ?rej q14: ?acc ?rejq9: ?acc ?rej

q2: (!cc_y !cc_n ?r_high) (!cc_y !cc_n ?r_low) q3: !req_c

Fig. 2. The operating guideline OGNc for the credit approval process Nc depicted in
Fig. 1(a). For better readability, we add a leading “!” (“?”) to a literal x in the graphics
of an OGN if x is an output (input) place of a strategy M for N .

3 Covering Open Net Nodes

The notion of soundness guarantees (among others) the absence of dead transi-
tions in a workflow net. In this section, this idea is adapted to open nets. For
an open net N and a set X ⊆ PN ∪ TN of open net nodes, we will characterize
those strategies M for N such that X is covered in the composition M ⊕ N .
Here, to cover a place p means that p can be marked in some reachable marking
while to cover a transition t means that t is not dead. Such a strategy M is then
called a CoverX -strategy for N . Clearly, if X contains all transitions of N , our
coverage notion for open nets coincides with soundness, except for the fact that
the composition may contain livelocks.

The motivation for dealing with CoverX -strategies is to figure out if some
functionality of a service (i.e. some communication patterns), for example a
credit approval, can in principle be used by other services. We further show how
to calculate a finite representation of all CoverX -strategies for N by extending
operating guidelines with a global constraint.

3.1 Deciding the Coverage of Open Net Nodes

In this section, we show how a strategy M for N can be discovered as a CoverX -
strategy by just considering the operating guideline of N . In order to define our
notion of CoverX -strategies, we need to define what it means to cover an open
net node.

Covering Places and Transitions in Open Nets 123

Definition 8 (Cover a place/transition). Let N = (P, T, F, I, O, m0, Ω) be
a deadlock-free open net with empty interface (I = O = ∅), and let X ⊆ P ∪ T ,
p ∈ P , and t ∈ T . N covers X iff for all p ∈ X ∩ P (for all t ∈ X ∩ T) there
exists a run of N that includes a marking m with m(p) ≥ 1 (a t-step).

Notice that if N covers two nodes, there is not necessarily a run in which both
nodes are covered. In the example, transitions t1 – t4, t6, and t8 – t10 are covered
in M1 ⊕ Nc and transitions t1 – t3, t5, t7, and t9 – t11 are covered in M2 ⊕ Nc.

The following definition canonically extends strategies to strategies that cover
a set X of open net nodes.

Definition 9 (CoverX-strategy). Let M be a strategy for an open net N , and
let X ⊆ PN ∪ TN . M is a CoverX-strategy for N iff X is covered in M ⊕ N .
With StratCoverX

(N) we denote the set of all CoverX-strategies for N .

For Nc let X = {acc} be given. That means, we are interested whether a credit
approval is possible. Then, M1 and M2 are CoverX -strategies for Nc. Let X =
{t5, t6}, that is, we are interested whether it is possible that a credit request
has to be examined by an employee if the customer is not fixed in his credit
control decision. Then M1 is a CoverX -strategy for Nc, but M2 is not (because
transitions t5, t6 cannot be enabled in M2 ⊕ N).

By definition, every CoverX -strategy for N is also a strategy for N . Obviously,
covering open net nodes restricts the set of strategies for N . Thus, we conclude
StratCoverX

(N) ⊆ Strat(N).
In the remainder of this section, we will define some notions and prove some

properties of operating guidelines. Based on these properties, we can prove a
criterion to decide whether an open net M is a CoverX -strategy for N . We start
with the definition of the most permissive strategy for N . This strategy has the
least restrictions of all strategies. Thus, the state space of its inner corresponds
exactly to the transition system of the underlying automaton of OGN .

Definition 10 (Most permissive strategy). Let OGN = (Q, C, δ, q0, Φ). The
most permissive strategy for N is the open net MPN = (P, T, F, I, O, m0, Ω)
whose behavior corresponds exactly to the transition system (Q, C, δ, q0) with
– P = Q ∪ C,
– T = {tq1,c,q2 | (q1, c, q2) ∈ δ, with q1, q2 ∈ Q, c ∈ C},

– F = {(q1, tq1,c,q2), (tq1,c,q2 , q2) | (q1, c, q2) ∈ δ}∪
{

(c, tq1,c,q2), if c ∈ I;
(tq1,c,q2 , c), if c ∈ O. ,

– I = ON ,
– O = IN ,
– m0 = q0, and
– Ω = {q | c is in Φ(q) with c = final}.

The resulting open net MP is a state machine. Figure 3 illustrates the construc-
tion of the most permissive strategy MPNc of the operating guideline OGNc

depicted in Fig. 2. As the whole open net would be too big, we depict only the
first few nodes.

124 C. Stahl and K. Wolf

pq0

pq1

tq0,cc_n,q1

pq2

tq0,req_c,q2

pq3

tq0,cc_y,q3

tq1,req_c,q4 tq3,req_c,q6

pq4 pq6

req_c

cc_y

cc_n

Fig. 3. The initial part of the most permissive strategy MPNc for Nc which has been
constructed according to Def. 10

By the help of the following corollary, we prove that the most permissive
strategy MP for N is indeed a strategy for N .

Corollary 1. The most permissive strategy MP for N is a strategy for N .

For the proof of this corollary, we rely on a fact about operating guidelines as
constructed in [8]. As we cannot repeat the whole approach of [8], we just state
this fact without proof.

Proposition 1 ([8]). For every operating guideline OGN = (Q, C, δ, q0, Φ) (of
some service N) and all q ∈ Q, the formula Φ(q)

1. uses only literals c where there is some q′ ∈ Q with (q, c, q′) ∈ δ, and
2. is satisfied for the assignment assigning true to all literals in Φ(q).

Proof (of Corollary 1). Let OGN = (Q, C, δ, q0, Φ). We construct open net MP
as described in Def. 10. Let mq0 be the initial marking of MP . By induction, it
can be shown that, for all q ∈ Q, mq is reached by Def. 6, with (mq, q) ∈ ρ.

As there is a transition for each (q, c, q′) ∈ δ, we can derive from Prop. 1
that all annotations evaluate to true when MP is evaluated according to Def. 6.
Consequently, MP matches with OGN and hence MP is a strategy for N . ��

The next definition establishes a connection between markings of an open net N
and the inner of a strategy M ∈ Strat(N). If innerM is in a marking m, then
K(m) (the knowledge that innerM has about N) is the set of markings of N
that N might be in while innerM is in marking m.

Definition 11 (Knowledge). Let M be a strategy for an open net N . Let
MarkM ∗ and MarkN denote the set of all reachable markings of innerM and
N , respectively. Let further mM denote a marking of M and mM∗ denote its
restriction to places in innerM . The knowledge K : MarkM ∗ → P(MarkN) that
innerMP has about the possible markings of N in marking mM∗ is defined by
K(mM∗) = {mN | (mM ⊕ mN) is reachable from (m0M ⊕ m0N)}.

Covering Places and Transitions in Open Nets 125

For the most permissive strategy MPNc for Nc (see Fig. 3), we have the following
knowledge values:

K([pq0]) = {[p0]},
K([pq1]) = {[p0, cc n]},
K([pq2]) = {[p0, req c], [p1], [p2, r high], [p3, r low]},
K([pq3]) = {[p0, cc y]},
K([pq4]) = {[p0, cc n, req c], [p1, cc n], [p2, cc n, r high], [p3, cc n, r low],

[p4, r high], [p5, r low], [p7, r high, rej], [p7, r low, acc], [p7, r low, rej]}

The simulation relation ρ used in Def. 6 actually establishes a relation between
the knowledge values of the involved states. As the following proposition states,
(m, q) ∈ ρ implies that K(m) ⊇ K(mq) where mq is the marking in the most
permissive partner that correpsonds to state q of an operating guideline.

Proposition 2 ([5]). Let M be a strategy for N and MP be the most permissive
strategy for N . Let mq denote the marking in innerMP that corresponds to state
q ∈ Q in OGN (i.e. (mq, q) ∈ ρMP). Let m be reachable in innerM . Then
K(m) =

⋃
q:(m,q)∈ρ K(mq).

The matching relation ρ relates a marking m of innerM to a (possible) set of
states q of OGN . Therefore, the knowledge that innerM has about the possible
markings of N in m is equivalent to the union of the knowledge values of all
markings mq of innerMP with (mq, q) ∈ ρMP .

The notion of knowledge can be applied to the operating guideline OGN of
N . As every marking mq in innerMP corresponds to a state q of OGN , the
knowledge OGN has about N in q is equivalent to the knowledge innerMP has
about N in mq.

Definition 12 (Knowledge in OG). For an open net N let MP be the most
permissive strategy for N and OGN = (Q, C, δ, q0, Φ). Let MarkN denote the set
of markings of N and mq be a marking of innerMP . The knowledge K : Q →
P(MarkN) that OGN has about the possible markings of N in state q ∈ Q is
defined by K(q) = K(mq).

The following theorem presents a way to decide, on the basis of an operating
guideline, whether a strategy M for N is also a CoverX -strategy for N .

Theorem 1 (Place/Transition coverability). Let M be a strategy for open
net N . A place p ∈ PN (a transition t ∈ TN) is covered in M ⊕ N iff there is
a state q ∈ Q of OGN , a marking mM in innerM , and a marking mN ∈ K(q)
with (mM , q) ∈ ρ, and mN (p) ≥ 1 (t is enabled in mN).

Proof. We present the proof for the case of a covered transition only. The case
of a covered place is analogous.

(⇒) Let N , OGN , and M ∈ Strat(N) be given and let transition t be covered
in M⊕N . Then, according to Def. 8, there is a run m0M⊕N

t1−→ . . .
tn−→ mM⊕N

t−→
m′

M⊕N in M⊕N , m′
M⊕N (p) ≥ 1. Let mM and mN be the restrictions of marking

126 C. Stahl and K. Wolf

mM⊕N to places in innerM and N , respectively. As t is a transition of N , t is
enabled in mN as well. By Def. 11, we have mN ∈ K(mM). By Proposition 2,
there must be a state q in OGN where mN ∈ K(q) and hence the implication of
this theorem holds.

(⇐) Let N be an open net and OGN = (Q, C, δ, q0, Φ). Let M be a strategy
for N . Since M is a strategy for N , there is a matching relation ρ of states in Q
and markings in innerM . Let mM , q, and mN be as assumed. Thus, (mM , q) ∈ ρ,
mN ∈ K(q), and t is enabled in mN . From Proposition 2 follows mN ∈ K(mM).
Consequently, there is a run in M ⊕ N that reaches mM ⊕ mN which can be
extended by an occurrence of t since activation of t in mN implies activation of t
in mM ⊕mN . Since every run in M ⊕N is deadlock-free (follows from M being
a strategy for N), we can conclude that the considered run is deadlock-free, too.
So there exists a deadlock-free run in M ⊕ N where t is covered and hence the
replication of this theorem holds. ��

The value of Theorem 1 is that it gives us a criterion to check whether an open
net node is covered or not. A place p of N is covered by a strategy for N if there
is a state q in OGN and the knowledge in q contains a marking of N where p
is marked. A transition t of N is covered by a strategy for N if there is a state
q and the knowledge in q contains a marking m of N where t is enabled. That
way, it is easily possible to annotate each state q of OGN with all places and
transitions which are covered in q. This can be done during the calculation of
the operating guideline.

As an example, based on the knowledge values K([pq0]) – K([pq4]) we pre-
sented above we can derive the following sets of nodes of Nc that are covered in
states q0 – q4 of OGNc :

q0 : {p0}
q1 : {p0, cc n}
q2 : {p0 − p3, req c, r high, r low, t1 − t3}
q3 : {p0, cc y}
q4 : {p0 − p5, p7, cc n, cc y, req c, r high, r low, acc, rej, t1 − t4, t6, t8 − t10}

3.2 A Finite Representation of All CoverX-Strategies

In this section, we introduce a notion of an operating guideline with a global
constraint as a representation of all CoverX -strategies for N . We further present
an algorithm for deciding when an open net M matches with such an operating
guideline.

Consider again our running example Nc in Fig. 1(a). Assume we want to cover
X = {acc} in Nc, that is, we are interested in strategies in which a customer may
receive an approval for his credit request. We have [acc] ∈ K(q4), K(q6), K(q9),
K(q11), K(q14). So according to Theorem 1, a strategy M for Nc is a CoverX -
strategy for Nc if it has at least a marking macc of innerM that matches with
q4, q6, q9, q11, or q14. As a second example assume X = {t5, t6}, that is, we

Covering Places and Transitions in Open Nets 127

are interested in strategies in which a customer is not fixed in his credit control
decision and the credit request can be examined by an employee. In that case we
have [t5] ∈ K(q6), K(q14) and [t6] ∈ K(q4), K(q9). So M is a CoverX -strategy
for Nc if it has at least a marking mt5 of innerM that matches with q6 or q14
and it has a marking mt6 of innerM that matches with q4 or q9.

The examples illustrate that is in general not possible to express the con-
straints for covering open net nodes in the shape of local annotations in each
state of the operating guideline. Consequently, the present concept of an anno-
tated automata fails at representing all CoverX -strategies of N . To overcome
this problem, we propose another representation of all CoverX -strategies of N
that takes the non-locality of covering open net nodes into account. To this end,
we will slightly enhance the concept of an operating guideline.

Consider again the example above. Since OGNc (see Fig. 2) represents all
strategies and every CoverX -strategy for Nc is a strategy for Nc, we have to
restrict OGNc to CoverX -strategies. This can be achieved by a global constraint
specifying that, for every open net node x ∈ X to be covered, at least one state
q in OGNc with x ∈ K(q) must be present in the matching relation between
OGNc and a CoverX -strategy. This constraint can be expressed as a Boolean
formula ψX .

In the following, we formalize annotated automata enhanced with a global
constraint and define the matching relation between an open net and such an
annotated automaton.

Definition 13 (Annotated automaton with global constraint). Let AΦ =
(Q, C, δ, q0, Φ) be an annotated automaton and ψ be a Boolean formula with
propositions taken from the set Q. Then, AΦ,ψ = (AΦ, ψ) is an annotated au-
tomaton with global constraint ψ.

As an example for a global constraint to OGNc , consider ψ = (q6∨q14)∧(q4∨q9).
This formula is satisfied if and only if true is assigned to sufficiently many states
to cover set X = {t5, t6}.

Enhancing an annotated automaton with a global constraintmakes it necessary
to redefine the matching relation of an open net M with an annotated automa-
ton. M matches with an annotated automaton with global constraint AΦ,ψ if it
matches with the annotated automaton AΦ, and in addition satisfies ψ.

Definition 14 (Matching with AΦ,ψ). Let M be an open net, and let AΦ,ψ be
an annotated automaton AΦ with global constraint ψ. M matches with AΦ,ψ iff
M matches with AΦ using relation ρ and ψ evaluates to true in the assignment
γM : QA −→ {true, false} where γM (q) = true iff there is a marking m of M
such that (m, q) ∈ ρ.

Finally, we are ready to construct the operating guideline with global constraint
OGψX (N) of an open net N as a representation of the set StratCoverX

(N) of all
CoverX -strategies for N .

128 C. Stahl and K. Wolf

Definition 15 (Global constraint for covering X). Let N be an open net
and OGN an operating guideline of N . Let X ⊆ PN ∪ TN . For a place p ∈ P ,
let p ∼ q iff there is an m ∈ K(q) where m(p) > 0. For a transition t ∈ T , let
t ∼ q iff there is an m ∈ K(q) where t is enabled. Then ψX is the formula∧

x:x∈X

∨
q:x∼q

q

OGψX (N) = (OGN , ψX) defines an operating guideline with global constraint
of N .

As a direct consequence of Theorem 1, we obtain the main result of this section,
that is, OGψX (N) represents all CoverX -strategies for N .

Theorem 2. M is a CoverX-strategy for N iff M matches with OGψX (N) .

The operating guideline representing all CoverX -strategies for Nc with X =
{t5, t6} is the operating guideline OGψX (Nc) = (OGNc , ψX) where ψ = (q6 ∨
q14)∧(q4∨q9) as stated above. If we consider again open nets M1 and M2 (which
are both strategies for Nc), then we get that M1 matches with OGψX (Nc) and
it is hence a CoverX -strategy for Nc. In contrast, M2 does not match with
OGψX (Nc), because it does not satisfy the global constraint. More precisely,
there is no marking in innerM2 that matches with any of the nodes q4, q6, q9,
and q14.

As another example, let X = {t1, . . . , t11}, meaning all transitions of Nc should
not be dead in M ⊕ N . Then, OGψX (Nc) has the following global constraint:

ψX = (q2 ∨ q4 ∨ q6) ∧ (q2 ∨ q4 ∨ q6) ∧ (q2 ∨ q4 ∨ q6) ∧ (q4 ∨ q12)
∧ (q6 ∨ q14) ∧ (q4 ∨ q9) ∧ (q6 ∨ q11) ∧ (q4 ∨ q12)
∧ (q4 ∨ q6 ∨ q9 ∨ q14) ∧ (q4 ∨ q6 ∨ q9 ∨ q14) ∧ (q6 ∨ q11)

which is equivalent to

ψX = (q2 ∨ q4 ∨ q6) ∧ (q4 ∨ q12) ∧ (q6 ∨ q11) ∧ (q4 ∨ q6 ∨ q9 ∨ q14).

3.3 Discussion

In the following we will compare (ordinary) operating guidelines and operating
guidelines with global constraint. We further discuss some complexity issues.

Comparing an operating guideline OGN for N and an operating guideline
with global constraint OGψX (N) for N , we identify that both operating guide-
lines have the same underlying automaton. This is caused by the fact that each
CoverX -strategy for N is also a strategy for N . Furthermore, if the most per-
missive strategy for N is not a CoverX -strategy for N , then the set of CoverX -
strategies is empty.

Computing OGN is proportional in time to the product of the number of
states of N and an over-approximation of its most permissive strategy [9]. For

Covering Places and Transitions in Open Nets 129

OGψX (N) the time complexity does not change, because all information neces-
sary for annotating the states q ∈ Q with the nodes of N and setting up the
global constraint have to be computed for OGN anyway. In order to increase
efficiency, it is sufficient to annotate each state q only with open net nodes of X .

The space complexity of OGN is proportional to the product of the number of
states of N and its most permissive strategy [9]. If we compute OGψX (N), then
this complexity increases due to ψX . The global constraint is a conjunction of at
most |X | disjunctions where each disjunction may consist of at most |Q| literals.
Hence, the size of the global constraint is at most O(|X | · |Q|). The example
suggests that the size of the global constraint will be much smaller in practice.

Although the time and space complexity of OGN is high, experimental results
have shown that the calculation of OGN is feasible in practical applications both
for time and space (see [5], for instance). Based on the complexity considerations
for OGψX (N) we conclude that the calculation of OGψX (N) will be feasible in
practical applications, too.

Matching an open net M with OGN is proportional in time to the number
of states in M ⊕ N [9]. If we match M with OGψX (N), we additionally have to
check whether the global constraint is satisfied by the assignment γM . This can
be done in linear time w.r.t. the size of the constraint.

As the space complexity and the matching complexity for the proposed no-
tion of operating guidelines with global constraint only marginally increase in
comparison with ordinary operating guidelines, we can conclude that this novel
notion is a well-suited instrument for service composition.

4 Related Work

The work presented in this paper is mainly inspired by the notion of soundness
for workflow nets [2]. Soundness guarantees the absence of deadlocks, livelocks,
and dead transitions. In this paper, we adopt the idea of soundness to our service
model open nets. Given an open net N , we are interested in all open nets M such
that the composition M ⊕N is deadlock-free and certain places and transitions
of N are covered. Here, cover means that these places can be marked and the
transitions are not dead in M ⊕N . So far in contrast to soundness, our approach
is limited in the sense that the composed system may contain livelocks.

There is also some relation to the research fields testing and computer-aided
verification. In these fields testing/checking the coverage of certain activities is
also a known and important sanity check, see [11], for instance.

Besides the relation to soundness, covering open net nodes can also be seen
as a behavioral constraint for services. In [6] the authors introduced two kinds
of behavioral constraints: to enforce and to exclude a set of open net nodes.
A strategy M for N enforces (excludes) a transition t of N if every (no) run
in M ⊕ N includes a t-step. Covering a transition t is thus equivalent to not
exclude t. However, cover cannot be expressed by the approach proposed in [6],
because the authors model a constraint as a constraint open net C and compose
C and N .

130 C. Stahl and K. Wolf

5 Conclusion

We proposed an approach to guarantee the coverage of certain activities in ser-
vices. Our approach is inspired by the notion of soundness on the one hand
and by the work on behavioral constraints for services on the other hand. We
have shown that with the operating guideline of a service N we can decide if a
partner service M is designed in a way such that a given set of activities of N
can be covered in the composition of M and N . We further presented a finite
representation of all partner services M by extending our notion of an operating
guideline with a global constraint. The results presented in this paper have been
implemented in our analysis tool Fiona

1 [10]. The proposed approach can also
be applied to industrial service models specified in WS-BPEL [12]. To this end
the compiler BPEL2oWFN

2 [10] can be used to translate such a WS-BPEL
process into an open net. The resulting net can then be analyzed by Fiona.

The advantage of the proposed approach is that the global constraint can be
calculated based on the information that is already present when calculating
the operating guideline. In addition, the global constraint does only marginally
increase the complexity of matching a service with the operating guideline with
global constraint. Thus operating guidelines with global constraint are a well-
suited instrument for service composition.

In ongoing work plan to deal with a stricter correctness criterion that also
excludes livelocks. That way, we can close the gap to soundness. Furthermore,
an open net N can be substituted by an open net N ′ w.r.t. the coverage of X if
and only if every CoverX -strategy for N is also a CoverX -strategy for N ′ (i.e.
StratCoverX

(N ′) ⊇ StratCoverX
(N)). To this end we are working on an algorithm

to automatically decide substitutability w.r.t. the coverage of X .

Acknowledgements. The authors wish like to thank Robert Danitz and Janine
Ott for their work on the implementation of Fiona. Christian Stahl is funded
by the DFG project “Substitutability of Services” (RE 834/16-1). Karsten Wolf
is supported by the DFG within grant “Operating Guidelines for Services”
(WO 1466/8-1).

References

1. Papazoglou, M.P.: Web Services: Principles and Technology. Pearson - Prentice
Hall, Essex (2007)

2. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

3. van der Aalst, W.M.P., Weske, M.: The P2P approach to Interorganizational Work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE 2001. LNCS,
vol. 2068, pp. 140–156. Springer, Heidelberg (2001)

4. Leymann, F., Roller, D., Schmidt, M.T.: Web services and business process man-
agement. IBM Systems Journal 41(2), 198–211 (2002)

1 Available at http://www.service-technology.org/fiona
2 Available at http://www.service-technology.org/bpel2owfn

http://www.service-technology.org/fiona
http://www.service-technology.org/bpel2owfn

Covering Places and Transitions in Open Nets 131

5. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

6. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)

7. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn.
Springer, Heidelberg (1985)

8. Massuthe, P., Schmidt, K.: Operating Guidelines – an Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In: Cai, K., Ohnishi, A., Lau, M.
(eds.) Proceedings of the Fifth International Conference on Quality Software (QSIC
2005), Melbourne, Australia, pp. 452–457. IEEE Computer Society, Los Alamitos
(2005)

9. Massuthe, P., Wolf, K.: An Algorithm for Matching Non-deterministic Services
with Operating Guidelines. International Journal of Business Process Integration
and Management (IJBPIM) 2(2), 81–90 (2007)

10. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting BPEL
Processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

11. Kupferman, O.: Sanity Checks in Formal Verification. In: Baier, C., Hermanns, H.
(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 37–51. Springer, Heidelberg (2006)

12. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0,
April 11 2007. OASIS Standard, OASIS (2007)

Correcting Deadlocking Service Choreographies

Using a Simulation-Based Graph Edit Distance

Niels Lohmann

Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Many work has been conducted to analyze service choreogra-
phies to assert manyfold correctness criteria. While errors can be detected
automatically, the correction of defective services is usually done man-
ually. This paper introduces a graph-based approach to calculate the
minimal edit distance between a given defective service and synthesized
correct services. This edit distance helps to automatically fix found errors
while keeping the rest of the service untouched. A prototypic implemen-
tation shows that the approach is applicable to real-life services.

Keywords: Choreographies, graph correction, correction of services,
verification of services, service automata, operating guidelines, BPEL.

1 Introduction

In service-oriented computing [1], the correct interplay of distributed services is
crucial to achieve a common goal. Choreographies [2] are a means to document
and model the complex global interactions between services of different partners.
BPEL4Chor [3] has been introduced to use BPEL [4] to describe and execute
choreographies. Recently, a formal semantics for BPEL4Chor was introduced [5],
offering tools and techniques to verify BPEL-based choreographies.

Whereas it is already possible to automatically check choreographies for dead-
locks or to synthesize participant services [6], no work was conducted in support-
ing the fixing of existing choreographies. This is especially crucial, because fixing
incorrect services is usually cheaper and takes less time than re-designing and
implemeting a correct service from scratch. In addition, information on how to
adjust an existing service can help the designers understand the error more easily
compared to confronting them with a whole new synthesized service.

As the running example for this paper, consider the example choreography
visualized in BPMN [7] in Fig. 1. It describes the interplay of a travel agency,
a customer service, and an airline reservation system. The travel agency sends
an offer to the client which either rejects it or books a trip. In the latter case,
the travel agency orders a ticket at the airline service which either sends a
confirmation or a refusal message to the customer. The choreography contains
a design flaw as the customer service does not receive the refusal message. This
leads to a deadlock in case the airline refuses the ticket order.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 132–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Correcting Deadlocking Service Choreographies 133

Fig. 1. Choreography between travel agency, airline, and customer. The choreography
can deadlock, because the customer does not receive a refusal message from the airline.

This deadlock can be detected using state-of-the-art model checking tools
which provide a trace to the deadlocking state. In the concrete example, a trace
would be (send offer, receive offer, send booking, send payment1, receive booking,
receive payment, send ticket order, receive ticket order, send refusal). This trace,
however, gives no information which service has to be changed in which manner
to avoid the deadlock. Thus, an iteration of manual corrections followed by fur-
ther deadlock checks is necessary to finally remove the deadlock. Though it is
obvious how to correct the flawed example, the manual correction of choreogra-
phies of a larger number of more complex services is tedious, if not impossible.

Moreover, even for this simple choreography exists a variety of possibilities to
fix the customer’s service. Figure 2 depicts two possible corrections to avoid the
deadlock. Though both services would avoid the choreography to deadlock, the
service in Fig. 2(a) is to be preferred over that in Fig. 2(b) as it is “more similar”
to the original service. Though this preference is psychological and is unlikely
to be proven formally, the usage of similarities is widley accepted (cf. [8]). The
tool chain presented in [6,5] synthesizes a participant service independently of
an existing incorrect service and might produce correct, yet unintuitive results
such as the service in Fig. 2(b).

The goal of this paper is to formalize, systematize, and to some extend autom-
atize the fixing of choreographies as it has been illustrated above. We thereby
combine existing work on characterizing all correctly interacting partners of a
service with similarity measures and edit distances known in the field of graph
correction. These approaches are recalled in Sect. 2 and 3. In Sect. 4, we define
an edit distance that aims at finding the most similar service from the set of
all fitting services. To support the modeler, we further derive the required edit

1 We assume asynchronous (i. e., non-blocking) communication.

134 N. Lohmann

fix
ed

 C
us

to
m

er

send offer
rejection

send
booking

receive
confirmation

receive
refusal

send
payment

(a) add receipt of refusal message

fix
ed

 C
us

to
m

er

send offer
rejection

(b) delete booking
branch

Fig. 2. Two possible corrections of the customer service to achieve deadlock freedom

actions needed to correct the originally incorrect service. In Sect. 5, we present
experimental results conducted with a proof of concept implementation. Sec-
tion 6 discusses related work. Finally, Sect. 7 is dedicated to a conclusion and
gives directions for future research.

2 Service Models

2.1 Service Automata and Operating Guidelines

To formally analyze services, a sound mathematical model is needed. In the
area of workflows and services, Petri nets are a widely accepted formalism [9].
They combine a graphical notation with a variety of analysis methods and tools.
For real-life service description languages such as BPEL or BPEL4Chor exists
a feature-complete Petri net semantics [10,5]. To simplify the presentation, we
abstract from the structure of a service and complex aspects such as data or
fault handling, and focus on the external behavior (also known as the business
protocol) of services in this paper. To this end, we use service automata [11] to
model the external behavior services.2

A service automaton is a finite automaton with a set Q of states, a set F ⊆ Q
of final states, an initial state q0 ∈ Q, an interface I for asynchronous message
passing, and a partial transition function δ : Q × I → Q. In this paper, we
only consider deterministic service automata and require that final states are
sink states; that is, have no outgoing transitions. For δ(q, a) = q′ we also write
q

a−→ q′. Throughout this paper, we use S to denote service automata. We further
assume that all services in this paper share a common interface I. This common
interface can be achieved by joining all participants’ interfaces.

Figure 3(a) depicts a service automaton modeling the external behavior of the
customer service of Fig. 1. The edges are labeled with messages sent to (preceded
with “!”) or received from (preceded with “?”) the environment: The interface
of the service automaton is {!booking, ?confirmation, ?offer, !payment, !rejection}.

2 Due to the close relationship (cf. [12]) between Petri nets and automata, there exist
techniques to transform back and forth between the two formalisms.

Correcting Deadlocking Service Choreographies 135

?offer

?confirmation

!booking

!payment

!rejection

q1

(a) Scustomer

?offer

!booking

!payment

!booking

?refusal?confirmation

!booking

!payment

!rejection

!payment

?offer

?offer (?confirmation ?refusal)

!booking

?offer

?offer

?refusal

?offer

?confirmation

?offer !payment

!booking

?offer !payment

?offer

!rejection

?offer

!rejection ?offer !payment !booking

!rejection !payment !booking

?confirmation ?refusal

true

!payment

?offer !booking

q2

q0

q3

q4

(b) Oagency⊕airline

Fig. 3. A service automaton Scustomer modeling the customer service of Fig. 1 (a) and
the operating guideline Oagency⊕airline of the composition of travel agency and airline
service (b). The service automaton does not match the OG, because q2’s formula is not
satisfied.

As services are usually not considered in isolation, their interplay has to be
taken into account in verification. A necessary correctness criterion is controlla-
bility [13]. A service S is controllable if there exists a partner service S′ such that
their composition S ⊕ S′ (i. e., the choreography of the service and the partner)
is free of deadlocks.

Controllability can be decided constructively: If a correctly interacting part-
ner service for S exists, it can be automatically synthesized [13,6]. Furthermore,
it has been proven that there exists one distinguished partner service S∗ that
is most permissive; that is, it simulates any other correctly interacting partner
service. The converse does, however, not hold; not every simulated service is a
correct partner service itself. To this end, the most permissive partner service
can be annotated with Boolean formulae expressing which states and transi-
tions can be omitted and which parts are mandatory. This annotated most per-
missive partner service is called an operating guideline (OG) [11]. We denote
OGs with O and use ϕ(q) to denote the Boolean formula annotated to state q
of the OG.

Figure 3(b) depicts the OG of the composition of the travel agency and the
airline. The disjunction of the OG’s initial q0 state means that a partner ser-
vice must send a rejection, receive an offer, send a payment or send a book-
ing in its initial state. This is possible due to asynchronous communication.
The service automaton of Fig. 3(a) is simulated by the OG and fulfills all but
one formula (satisfied literals are depicted bold in Fig. 3(b)). It does not sat-
isfy the formula ϕ(q2) = (?confirmation ∧ ?refusal) of the OG’s state q2, be-
cause the service automaton does not receive a refusal message in the simulated
state q1.

136 N. Lohmann

2.2 Fixing Deadlocking Choreographies

Consider a deadlocking choreography of n participants, S1 ⊕ · · · ⊕ Sn. As men-
tioned earlier, a deadlock trace usually does not give sufficient information how
to fix which service to achieve deadlock freedom. To find a candidate service that
can be changed such that whole choreography is deadlock-free, we can perform
the following steps:

– Firstly, we check for each service the necessary correctness criterion: If a
service taken for itself is not controllable, then there exists no environment
in which that service runs correctly— especially not the choreography un-
der consideration. In that case, that service has to be radically overworked
towards controllability, which is not topic of this paper.

– Secondly, we remove one participant, say Si. The resulting choreography
Chori = S1⊕· · ·⊕Si−1⊕Si+1⊕· · ·⊕Sn can be considered as one large service
with an interface. If it is controllable, then there exists a service S′

i which
interacts deadlock-freely with the other participants of the choreography;
that is, Chori ⊕ S′

i is deadlock-free. In [5], a complete tool chain for this
participant synthesis was presented for BPEL-based choreographies.

As motivated in the introduction, the mere replacement of Si by S′
i is not

desirable, because S′
i totally ignores the structure of Si and might be very dif-

ferent to the original, yet incorrect service Si. Instead of synthesizing any fitting
service (such as the service in Fig. 2(b)), we are interested in a corrected service
that is most similar to Si. To this end, we can use the OG of Chori , because it
characterizes the set of all fitting partners. Figure 4 illustrates this.

incorrect
service

set of all correctly
fitting services (OG)

most similar
fitting service

similarity
measure

Fig. 4. The OG as characterization of all correct services can be used to find the most
similar service

Beside the corrected services of Fig. 2, the OG characterizes 2002 additional
(acyclic and deterministic) partner services.3 Though all are correct, we are
interested in the service that most similar to the incorrect customer service.
Instead of iteratively check all candidates, we will define a similarity measure
that exploits the OG’s compact representation to efficiently find the desired
service of Fig. 2(a).

3 The set of cyclic or nondeterministic partner services might be infinite.

Correcting Deadlocking Service Choreographies 137

3 Graph Similarities

Graph similarities are widely used in many fields of computer science, for ex-
ample for pattern recognition [14] or in bio informatics. Cost-based distance
measures adapt the edit distance known from string comparison [15,16] to com-
pare labeled graphs (e. g., [17]). They aim at finding the minimal number of
modifications (i. e., adding, deleting, and modifying nodes and edges) needed to
achieve a graph isomorphism.

Distance measures aiming at graph isomorphism have the drawback that they
are solely based on the structure of the graphs. They focus on the syntax of the
graphs rather than their semantics. When a graph (e. g., a service automaton)
models the behavior of a system, similarity of graphs should focus on simulation
of behavior rather than on a high structural similarity. Figure 5 illustrates that
structural and behavioral similarity is not necessarily related.

?a

!c

?d

?d

!b

qa

(a)

?a

!c

?d
!b

qb

(b)

?d

!c

?a!b

qc

(c)

Fig. 5. Service automata (a) and (b) simulate each other, but have an unsimilar struc-
ture. Service automata (b) and (c) have a very similar structure, but rather unsimilar
behavior.

Sokolsky et el. [18] address this problem (a similar approach is presented
in [19]), motivated by finding computer viruses by comparing a program with a
library of control flow graphs. In that setting, classical simulation is too strict,
because two systems that are equal in all but one edge label behave very similar,
but there exists no simulation relation between them. To this end, Sokolsky et
al. introduce a weighted quantitative simulation function to compare states of
two graphs. Whenever the two graphs cannot perform a transition with same
labels, one graph performs a special stuttering step ε, which is similar to τ -steps
in stuttering bisimulation [20]. To “penalize” stuttering, a label similarity func-
tion assings low similarity between ε and any other label. This label similarity
function L : (I ∪ {ε}) × (I ∪ {ε}) → [0, 1] assigns a value that expresses the
similarity between the labels of the service automata4 under consideration. For
example, L(?a, ?b) describes the similarity of a ?a-labeled transition of service
automaton S1 and a ?b-labeled transition of service automaton S2. Furthermore,
a discount factor p ∈ [0, 1] describes the local importance of similarity compared
to the similarity of successor states.

Definition 1 (Weighted quantitative simulation, [18]). Let S1 = [Q1, δ1,
F1, q01 , I], S2 = [Q2, δ2, F2, q02 , I] be service automata. A weighted quantitative
simulation is a function S : Q1 × Q2 → [0, 1], such that:
4 We adjusted the definitions of to service automata. The original definition in [18]

bases on labeled directed graphs. We do not consider node labels in this paper.

138 N. Lohmann

S(q1, q2) =

{
1, if q1 ∈ F1,

(1 − p) + max(W1(q1, q2), W2(q1, q2)), otherwise,

W1(q1, q2) = max
q2

b−→q′
2

(
L(ε, b) · S(q1, q

′
2)

)
,

W2(q1, q2) =
p

n
·

∑
q1

a−→q′
1

max

⎛⎝L(a, ε) · S(q′1, q2), max
q2

b−→q′
2

(L(a, b) · S(q′1, q
′
2))

⎞⎠ ,

and n is the number of edges leaving q1.

The weighted quantitative simulation function S recursively compares the states
from the two service automata and finds the maximal similar edges. Thereby,
W1 describes the similarity gain by stuttering of graph S1 and W2 the tradeoff
between simultaneous transitions of S1 and S2 and stuttering of graph S2. Both,
the discount factor p and the label similarity function L, can be chosen freely
to adjust the result of the similarity algorithm. The choice of the parameters is,
however, out of scope of this paper.

As an example, consider the service automata in Fig. 5 and assume a discount
factor p = 0.5 and a label similarity function L that assigns 1.0 to equal labels
and 0.5 to any other label pair. Then S(qa, qb) = 1.0 (the weighted quantitative
simulation is a generalization of the classical simulation) and S(qb, qc) = 0.75
which indicates the differences in the behaviors.

4 A Matching-Based Edit Distance

The algorithm to calculate weighted quantitative simulation can be used as a
similarity measure for service automata or OGs, but has two drawbacks: Firstly,
it is not an edit distance. It calculates a value that expresses the similarity
between the service automata, but gives no information about the modification
actions needed to achieve simulation. Secondly, it does not take formulae of
the OG into account. Therefore, a high similarity between a service automaton
and an OG would not guarantee deadlock freedom as the example of Fig. 3
demonstrates: The service automaton of the customer is perfectly simulated by
the OG but the overall choreography deadlocks.

4.1 Simulation-Based Edit Distance

Before we consider the OG’s formulae, we show how the similarity result of the
algorithm of [18] can transformed into an edit distance. Given two states q1 and
q2, Def. 1 determines the best simulation between the transitions of q1 and q2. In
addition, one service automaton can stutter (i. e., remain in the same state). The
weighted quantitative simulation function calculates the best label matching to
maximize the similarity between the root nodes of the service automata. From
the transition pairs belonging to the maximum, we can derive according edit
actions (cf. Table 1).

Correcting Deadlocking Service Choreographies 139

Table 1. Deriving edit actions from transition pairs of Def. 1

transition of S1 transition of S2 resulting edit action similarity

a a keep transition a L(a, a)
a b modify transition a to b L(a, b)
a ε (stutter) delete transition a L(a, ε)

ε (stutter) a insert transition a L(ε, a)

These edit actions define basic edit actions whose similarity is determined by
the edge similarity function L. To simplify the representation of a large number
of edit actions, the basic edit actions may be grouped to macros to express more
complex operations such as swapping or moving of edges and nodes, duplicating
of subgraphs, or partial unfolding of loops.

The simulation-based edit distance does not respect the OG’s formulae. One
possibility to achieve a matching would be to first calculate the most similar
simulating service using the edit distance for Def. 1 and then to simply add
and remove all nodes and edges necessary in a second step. Using the weighted
quantitative simulation function of Def. 1, the resulting edit actions (cf. Table 1)
simply inserts or removes edges to present nodes rather than to new nodes. This
approach does in general not work to achieve matching with an OG. See Fig. 6
for a counterexample. However, also the insertion of nodes would not determine
the most similar partner service, because this may result in sub-optimal solutions
as Fig. 7 illustrates.

4.2 Combining Formula-Checking and Graph Similarity

Due to the suboptimal results achieved by a-posteriori formula satisfaction by
node insertion, we need to modify the algorithm of [18] not to statically take the
outgoing transitions of an OG’s state into account, but also check any formula-
fulfilling subset of outgoing transitions. Therefore, we need some additional def-
initions to base formula satisfaction and to cover the dynamic presence of OG
transitions.

Definition 2 (Satisfying label set, label permutation). Let S = [QS , δS ,
FS , q0S , I] be a service automaton and O = [QO, δO, FO, q0O , I] an OG, and let
q1 ∈ QS and q2 ∈ QO.
– Define Sat(ϕ(q2)) ⊆ P(I ∩ {b | ∃q′2 ∈ QO : q2

b−→ q′2}) to be the set of all sets
of labels of transitions leaving q2 that satisfy formula ϕ of state q2.

– For β ∈ Sat(ϕ(q2)), define perm(q1, q2, β) �
(
(I ∪ {ε}) × (I ∪ {ε})

)
to be a

label permutation of q1, q2 and β such that:
(a) if q1

a−→ q′1, then (a, c) ∈ perm(q1, q2, β) for a label c ∈ β ∪ {ε},
(b) if q2

b−→ q′2 and b ∈ β, then (d, b) ∈ perm(q1, q2, β) for a label d ∈ I ∪{ε},
(c) (ε, ε) /∈ perm(q1, q2, β), and
(d) if (a, b) ∈ perm(q1, q2, β), then (a, c),(d, b) /∈ perm(q1, q2, β) for all labels

c ∈ β ∪ {ε} and all labels d ∈ I ∪ {ε}.
– Define Perms(q1, q2, β) to be the set of all label permutations of q1, q2 and β.

140 N. Lohmann

?a

(a)

?a ?b

true

?a

?c

?b

?c

(b)

?a

?b

(c)

?a

?b?c

(d)

Fig. 6. Matching cannot be achieved solely by transition insertion. The service automa-
ton (a) does not match with the OG (b) because of a missing ?b-branch. In service
automaton (c), a loop edge was inserted. However, the state reached by ?b in the OG
requires a ?c-branch to be present. After inserting this edge (d), the resulting service
automaton is not simulated by the OG (b).

!a

?c

(a)

a! !b

?c ?d ?e

!a

true

?c

true true

?c

true

?c

!b

?d ?e

(b)

!a

?c ?d ?e

(c)

!b

?c

(d)

Fig. 7. Adding states to a simulating service automaton may yield sub-optimal results.
The service automaton (a) does not match with the OG (b), because the formula
(?c∧?d∧?e) is not satisfied. The OG, however, perfectly simulates the service automaton
(a), and adding two edges achieves matching (c). However, changing the edge label of
(a) from !a to !b also achieves matching, but only requires a single edit action (d).

The set Sat consists of all sets of labels that fulfill a state’s formula. For ex-
ample, consider the OG in Fig. 3(b): For state q2 of the OG Oagency⊕airline, we
have Sat(ϕ(q2)) = {{?confirmation, ?refusal}}. Likewise, Sat(ϕ(q3)) = {{?offer},
{!payment}, {?offer, !payment}}.

The set Perms consists of all permutations of outgoing edges of two states.
In a permutation, each outgoing edge of a state of the service automaton has to
be present as first element of a pair (a), each outgoing edge of a state of the OG
that is part of the label set β has to be present as second element of a pair (b).
As the number of outgoing edges of both states may be different, ε-labels can
occur in the pairs, but no pair (ε, ε) is allowed (c). Finally, each edge is only
allowed to occur once in a pair (d).

For β = {?confirmation, ?refusal} and state q1 of the service automaton S1

in Fig. 3(a), {(?confirmation, ?confirmation), (ε, ?refusal)} is one of the permu-
tations in Perms(q1, q2, β). Another permutation is {(?confirmation, ?refusal),
(ε, ?confirmation)}. The permutations can be interpreted like the label pairs
of the simulation edit distance: (?confirmation, ?confirmation) describes a keep-
ing of ?confirmation, (?confirmation, ?refusal) describes changing ?confirmation
to ?refusal, and (ε, ?refusal) the insertion of a ?refusal transition. The inser-
tion and deletion has to be adapted to avoid incorrect or sub-optimal results
(see Fig. 6–7).

Correcting Deadlocking Service Choreographies 141

Definition 3 (Subgraph insertion, subgraph deletion). Let S = [QS , δS ,
FS , q0S , I] be a service automaton and O = [QO, δO, FO, q0O , I] an OG. Define

ins(q2) =

⎧⎨⎩
1, if q2 ∈ FO,

(1 − p) + max
β∈Sat(ϕ(q2))

p

|β| ·
∑
b∈β

L(ε, b) · ins(δO(q2, b)), otherwise,

del(q1) =

⎧⎪⎨⎪⎩
1, if q1 ∈ FS ,

(1 − p) +
p

n
·

∑
q1

a−→q′
1

L(a, ε) · del(q′1), otherwise,

where n is the number of outgoing edges of q1.

Function ins(q2) calculates the insertion cost of the optimal subgraph of the OG
O beginning at q2 which fulfills the formulae. Likewise, del(q1) calculates the
cost of deletion of the whole subgraph of the service automaton S from state q1.
Both functions only depend on one of the graphs; that is, ins and del can be
calculated independently from the service automaton and the OG, respectively.
Definition 3 actually does not insert or delete nodes, but only calculates the
similarity value of the resulting subgraphs. Only this similarity is needed to find
the most similar partner service and the actual edit actions can be easily derived
from the state from which nodes are inserted or deleted (cf. Table 1).

With Def. 2 describing means to respect the OG’s formulae and Def. 3 cop-
ing with insertion and deletion, we can finally define the weighted quantitative
matching function:

Definition 4 (Weighted quantitative matching). Let S = [QS , δS , FS ,
q0S , I] be a service automaton and O = [QO, δO, FO, q0O , I] an OG. A weighted
quantitative matching is a function M : QS × QO → [0, 1], such that:

M(q1, q2) =

{
1, if (q1 ∈ FS ∧ q2 ∈ FO),
(1 − p) + W1(q1, q2), otherwise,

W1(q1, q2) = max
β∈Sat(ϕ(q2))

max
P∈Perms(q1,q2,β)

p

|P | ·
∑

(a,b)∈P

W2(q1, q2, a, b),

W2(q1, q2, a, b) =

⎧⎪⎨⎪⎩
L(a, b) · M(δS(q1, a), δO(q2, b)), if (a �= ε ∧ b �= ε),
L(ε, b) · ins(δO(q2, b)), if a = ε,
L(a, ε) · del(δS(q1, a)), otherwise.

The weighted quantitative matching function is similar to the weighted quan-
titative simulation function (Def. 1). It recursively compares the states of the
service automaton and the OG, but instead of statically taking the OG’s edges
into consideration, it uses the formulae and checks all satisfying subsets (W1).
Additionally, W2 organizes the successor states determined by the labels a and
b, or the insertion or deletion.

142 N. Lohmann

4.3 Matching-Based Edit Distance

Again, we can straight-forwardly extend the weighted quantitative matching
function towards an edit distance, because the permutations give information
how to modify the graph. Keeping and modification of transitions is handled as
in Table 1, whereas adding and deletion of nodes can be derived from Def. 3.
In fact, the weighted quantitative matching function is not a classical distance.
It expresses the similarity between a service automaton and an OG (i. e., a
characterization of many service automata) and is hence not symmetric. We still
use the term “edit distance” to express the concept of a similarity measure from
which edit actions can be derived.

Consider the example from Fig. 3. During the calculation of M(q1, q2), the
permutation {(?confirmation, ?confirmation), (ε, ?refusal)} is considered. The first
label pair denotes that the ?confirmation transition is kept unmodified. The sec-
ond label pair denotes an insertion of a ?refusal transition. The value of this
insertion is defined by

L(ε, ?refusal) · ins(δOagency⊕airline(q2, ?refusal)) = L(ε, ?refusal) · ins(q4)
= L(ε, ?refusal)

and only depends on the similarity function L.

?offer

?confirmation

!booking

!payment

!rejection

?refusal

keep transition "?offer" to state q6

keep transition "!booking" to state q7
keep transition "!rejection" to state q8

keep transition "!payment" to state q1

keep transition "?confirmation" to state q8
insert transition "?refusal" to new state q9

q5

q6

q7

q1

q8 q9

Fig. 8. Matching-based edit distance applied to the customer’s service

Figure 8 shows the result of the application of the matching-based edit dis-
tance to the service automaton of Fig 3(a). The states are annotated with edit
actions. The service automaton was automatically generated from a BPEL pro-
cess and the state in which a modification has to be made can be mapped back
to the original BPEL activity. In the example, a receive activity has to be
replaced by a pick activity with an additional onMessage branch to receive the
refusal message.

5 Complexity Considerations and Experimental Results

The original simulation algorithm of [18] to calculate a weighted quantitative
simulation between two service automata S1 and S2 (cf. Def. 1) needs to check

Correcting Deadlocking Service Choreographies 143

O(|QS1 | · |QS2 |) state pairs. The extension to calculate the matching between a
service automaton S and an OG O (cf. Def. 4) takes the OG’s formulae and the
resulting label permutations into consideration. The length of the OG’s formulae
is limited by the maximal degree of the nodes which again is limited by the
interface I. Thus, for each state pair, at most 2|I| satisfying assignments have
to be considered. The number of permutations is again limited by the maximal
node degree such that at most |I|! permutations have to be considered for each
state pair and assignment. This results in O(|QS | · |QO| · 2|I| · |I|!) comparisons.

Though the extension towards a formula-checking edit distance yields a high
worst-case complexity, OGs of real-life services tend to have quite simple formu-
lae, a rather small interface (compared to the number of states), and a low node
degree. As a proof of concept, we implemented the edit distance in a prototype.5

It takes an acyclic deterministic service automaton and an acyclic OG6 as input
and calculates the edit actions necessary to achieve a matching with the OG. The
prototype exploits the fact that a lot of subproblems overlap, and uses dynamic
programming techniques [21] to cache and reuse intermediate results which signif-
icantly accelerates the runtime. We evaluated the prototype with models of some
real-life services. In most cases, the edit distance could be calculated within few
seconds. The experiments were conducted on a 2.16 GHz notebook. Memory con-
sumption is not listed as it never exceeded 10 MB. Table 2 summarizes the results.

Table 2. Experimental results

service interface states SA states OG search space time (s)

Online Shop 16 222 153 102033 4
Supply Order 7 7 96 10733 1
Customer Service 9 104 59 10108 3
Internal Order 9 14 512 > 104932 195
Credit Preparation 5 63 32 1036 2
Register Request 6 19 24 1025 0
Car Rental 7 49 50 10144 6

Order Process 8 27 44 10222 0
Auction Service 6 13 395 1012 0
Loan Approval 6 15 20 1017 0
Purchase Order 10 137 168 > 104932 391

The first seven services are derived from BPEL processes of a German
consulting company; the last four services are taken from the current BPEL
specification [4]. The services were translated into service automata using the
compiler BPEL2oWFN.7 For these service automata, the OGs were calculated
using the tool Fiona.8 For some services, a partner service was already available;
for the other services, we synthesized a partner service with Fiona. As we can
5 Available at http://service-technology.org/rachel.
6 Operating guidelines are deterministic by construction.
7 Available at http://service-technology.org/bpel2owfn.
8 Available at http://service-technology.org/fiona.

http://service-technology.org/rachel
http://service-technology.org/bpel2owfn
http://service-technology.org/fiona

144 N. Lohmann

see, the services’ interfaces are rather small compared to their number of states.
It is worth mentioning that the complexity of the matching is independent of the
fact whether the service automaton matches the OG or not. We used existing
partner services in the case study to process services of realistic size.

Column “search space” of Table 2 lists the number of acyclic deterministic
services characterized by the OG. All these services are correct partner services
and have to be considered when finding the most similar service. The presented
algorithm exploits the compact representation of the OG and allows to efficiently
find the most similar service from more than 102000 candidates.

For most services, the calculation only takes a few seconds. The “Internal
Order” and “Purchase Order” services are exceptions. The OGs of these ser-
vices have long formulae with a large number of satisfying assignments (about
ten times larger than those of the other services) yielding a significantly larger
search space. Notwithstanding the larger calculation time, the service fixed by
the calculated edit actions is correct by design, and the calculation time is surely
an improvement compared to iterative manual correction.

6 Related Work

The presented matching edit distance is related to several aspects of current
research in many areas of computer science:

Automated debugging. In the field of model checking, the explanation of errors
by using distance metrics (cf. [8]) has received a lot of attention. Compared to
the approach presented in this paper, these works focus on the explanation and
location of single errors in classical C (i e., low-level) programs. The derived
information is used to support the debugging of an erroneous program.

Service matching. Many works exists to discover a similar partner service.
An approach to match BPEL processes using an algorithm based on subgraph
isomorphism is presented in [22]. Other approaches such as [23,24] use ontologies
and take the semantics of activities into account, but do not focus much on the
behavior or message exchange. In [25], the behavior of a service is represented as
a language of traces which allows for string edit distances to compare services.
This approach, however, cannot be used in the setting of communicating services
where the moment of branching is crucial to avoid deadlocks.

Service similarity and versioning. The change management of business pro-
cesses and services is subject of many recent works. An overview of what can
differ between otherwise similar services is given in [26,27]. The reported differ-
ences go beyond the behavioral level and also take authorization aspects under
consideration. [28] gives an overview of frequent change patterns occurring in the
evolution of a business process model. Beside the already mentioned basic oper-
ations (adding, changing and removing of edges or nodes), complex operations
such as extracting sub processes are presented. With a version preserving graph,
a technique to represent different versions of a process model is introduced in [29].
This technique was made independent of a change log in [30]. Again, versioning
relies on the structure of the model rather than on its behavior.

Correcting Deadlocking Service Choreographies 145

Service mediation. Instead of changing a service to achieve deadlock freedom
in a choreography, it would also be possible to use a service mediator (sometimes
called adapter) to fix a choreography (e. g., [31,32]). Service mediation is rather
suited to fit existing services, whereas our approach aims at supporting the
design and modelling phase of a service choreography. Still, a mediator between
the customer service on the one hand and the travel agency and the airline service
on the other hand (cf. Fig. 1) would have to receive the airline’s refusal message
and create a confirmation message for the customer which is surely unintended.
Furthermore, several service mediation approaches such as [33] assume total
perception of the participants’ internal states during runtime.

The difference between all mentioned related approaches and the setting of
this paper is that these approaches either focus on low-level programs or mainly
aim at finding structural (certainly not simulation-based) differences between
two given services and are therefore not applicable to find the most similar
service from a large set (cf. Table 2) of candidates.

7 Conclusion and Future Work

We presented an edit distance to compute the edit actions necessary to correct
a faulty service to interact deadlock-freely in a choreography. The edit distance
(i. e., the actions needed to fix the service) can be automatically calculated using
a prototypic implementation. Together with translations from [10] and to [34]
BPEL processes and the calculation of the characterization of all correct partner
services (the operating guideline) [6,11], a continuous tool chain to analyze and
correct BPEL-based choreographies is available. As the edit distance itself bases
on service automata, it can be easily adapted to other modeling languages such
as UML activity diagrams [35] or BPMN [7] using Petri net or automaton-based
formalisations.

However, a lot of questions still remain open. First of all, the choice which
service causes the deadlock and hence needs to be fixed is not always obvious and
needs further investigation. For instance, the choreography of Fig. 1 could also
have been fixed by adjusting the airline service. Another aspect to be considered
in future research is the choice of the cost function used in the algorithm, because
it is possible to set different values for any transition pairs. Semantic information
on message contents (e. g., derived from an ontology) and relationships between
messages can be incorporated to refine the correction. For example, the insertion
of the receipt of a confirmation message can be penalized less than the insertion
of sending an additional payment message.

Another important field of research is to further increase the performance of
the implementation by an early omission of suboptimal edit actions. For instance,
heuristic guidance metrics such as used in the A∗ algorithm [36] may greatly im-
prove runtime performance. Finally, a translation of the matching edit distance
of Def. 4 into a linear optimization problem [37] may also help to cope with
cyclic and nondeterministic services.

146 N. Lohmann

Acknowledgements. The author wishes to thank Oleg Sokolsky for the sources
of his implementation, Christian Stahl for his feedback on an earlier version
of this paper, and the anonymous referees for their valuable comments. Niels
Lohmann is funded by the DFG project “Operating Guidelines for Services”
(WO 1466/8-1).

References

1. Papazoglou, M.P.: Agent-oriented technology in support of e-business. Commun.
ACM 44(4), 71–77 (2001)

2. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
IJCIS 13(4), 337–368 (2004)

3. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
modeling choreographies. In: ICWS 2007, pp. 296–303. IEEE, Los Alamitos (2007)

4. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0,
April 11, 2007. OASIS Standard, OASIS (2007)

5. Lohmann, N., Kopp, O., Leymann, F., Reisig, W.: Analyzing BPEL4Chor: Veri-
fication and participant synthesis. In: WS-FM 2007. LNCS, vol. 4937, pp. 46–60.
Springer, Heidelberg (2008)

6. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting BPEL
processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

7. OMG: Business Process Modeling Notation (BPMN) Specification. Final Adopted
Specification, Object Management Group (2006), http://www.bpmn.org

8. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance
metrics. STTT 8(3), 229–247 (2006)

9. van der Aalst, W.M.P.: The application of Petri nets to workflow management.
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

10. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: WS-
FM 2007. LNCS, vol. 4937, pp. 77–91. Springer, Heidelberg (2008)

11. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services.
In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 321–341.
Springer, Heidelberg (2007)

12. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)

13. Schmidt, K.: Controllability of open workflow nets. In: EMISA 2005. LNI, vol. P-75,
pp. 236–249, GI (2005)

14. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. on SMC 13(3), 353–362 (1983)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Dokl. 10(8), 707–710 (1966)

16. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J.
ACM 21(1), 168–173 (1974)

17. Tsai, W., Fu, K.: Error-correcting isomorphisms of attributed relational graphs for
pattern analysis. IEEE Trans. on SMC 9(12), 757–768 (1979)

18. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Hei-
delberg (2006)

19. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S.M., Zave, P.: Matching
and merging of statecharts specifications. In: ICSE, pp. 54–64. IEEE Computer
Society, Los Alamitos (2007)

http://www.bpmn.org

Correcting Deadlocking Service Choreographies 147

20. Namjoshi, K.S.: A simple characterization of stuttering bisimulation. In: Ramesh,
S., Sivakumar, G. (eds.) FST TCS 1997. LNCS, vol. 1346, pp. 284–296. Springer,
Heidelberg (1997)

21. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
22. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for

service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 237–254. Springer, Heidelberg (2006)

23. Wu, J., Wu, Z.: Similarity-based Web service matchmaking. In: IEEE SCC, pp.
287–294. IEEE Computer Society, Los Alamitos (2005)

24. Bianchini, D., Antonellis, V.D., Melchiori, M.: Evaluating similarity and differ-
ence in service matchmaking. In: EMOI-INTEROP. CEUR Workshop Proceedings,
CEUR-WS.org, vol. 200 (2006)

25. Günay, A., Yolum, P.: Structural and semantic similarity metrics for Web service
matchmaking. In: Psaila, G., Wagner, R. (eds.) EC-Web 2007. LNCS, vol. 4655,
pp. 129–138. Springer, Heidelberg (2007)

26. Dijkman, R.M.: A classification of differences between similar BusinessProcesses.
In: EDOC, pp. 37–50. IEEE Computer Society, Los Alamitos (2007)

27. Dijkman, R.: Diagnosing differences between business process models. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, pp. 132–147. Springer,
Heidelberg (2008)

28. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features
in process-aware information systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg
(2007)

29. Zhao, X., Liu, C.: Version management in the business process change context.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
198–213. Springer, Heidelberg (2007)

30. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process
model differences in the absence of a change log. In: Dumas, M., Reichert, M.,
Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg
(2008)

31. Brogi, A., Popescu, R.: Automated generation of BPEL adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

32. Dumas, M., Spork, M., Wang, K.: Adapt or perish: Algebra and visual notation
for service interface adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

33. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW 2007, pp. 993–1002. ACM,
New York (2007)

34. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models
into simple abstract BPEL processes. In: Modellierung 2008. LNI, vol. P-127, pp.
57–72, GI (2008)

35. OMG: Unified Modeling Language (UML), Version 2.1.2. Technical report, Object
Management Group (2007), http://www.uml.org

36. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths in graphs. IEEE Trans.Syst. Sci. and Cybernetics SSC-
4(2), 100–107 (1968)

37. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & sons,
Chichester (1998)

http://www.uml.org

Predicting Coupling of Object-Centric

Business Process Implementations

Ksenia Wahler and Jochen M. Küster

IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland
{ryn,jku}@zurich.ibm.com

Abstract. Object-centric approaches for business process implementa-
tion distribute process logic among several interacting components, each
representing a life cycle of an object. One of the challenges is to manage
the component coupling, because highly-coupled components are diffi-
cult to distribute, maintain and adapt. Existing techniques that derive
a component for each object that changes state in a given process do
not consider component interdependencies and run the risk of produc-
ing components that are highly coupled. To make coupling explicit and
manageable during component identification, we propose an approach for
computing the expected coupling of an object-centric implementation for
a given process model prior to actually deriving this implementation.

Keywords: Coupling, object life cycle, object-centric and data-driven
processes, state machines.

1 Introduction

Most existing languages for business process modeling (e.g. BPMN [3]) and im-
plementation (e.g. BPEL [1]) are activity-centric, because they represent pro-
cesses as a set of activities connected by control-flow elements to indicate the
order of activity execution. In recent years however, a line of alternative object-
centric approaches for modeling and implementing business processes has been
proposed, which include artifact-centric modeling [6,15], adaptive business ob-
jects [14], data-driven modeling [11] and proclets [20]. Activities in the process
are distributed among several components, each representing an object life cycle
that defines possible states of a particular object and transitions between these
states. Interaction between such object life cycle components ensures that the
overall process logic is correctly implemented. Object-centric implementations
can be used for distributed process execution and can lead to a more main-
tainable and adaptable implementation than activity-centric approaches, as the
behavior of one object can be partially changed without influencing the rest of
the process [10]. However, the more dependencies and interactions there are be-
tween the object life cycle components, the costlier becomes their distribution
and the more complicated it is to change their behavior.

One of the challenges in object-centric process implementation is therefore the
management of component interdependencies, commonly referred to as coupling

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 148–163, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Predicting Coupling of Object-Centric Business Process Implementations 149

in software engineering [7]. Several object-centric approaches advocate deriving
object life cycles from activity-centric process models that specify the process
logic to be implemented. The existing derivation methods [6,18,19] do not ex-
plicitly address object life cycle interdependencies and hence run the risk of pro-
ducing components that are highly coupled. Component refactoring, e.g. moving
some behavior from one component to another or merging components, is one
approach to reduce coupling. However, as a result the process model can get
out of sync with its implementation, which challenges the propagation of any
subsequent process model changes to the implementation. This problem can be
alleviated by making the developer aware of the expected coupling before com-
ponent derivation, so that the process model can be adapted until a desired level
of coupling is achieved. Realization of this approach requires the computation of
the expected component coupling based on a given process model.

The problem addressed in this paper is therefore the prediction of the expected
coupling of an object-centric implementation based on a given process model. We
first review the mapping of the most common workflow patterns [21] to object
life cycle components in order to identify how properties of a process model
influence the coupling of the derived components. We then show that given a
process model, it is possible to compute the object life cycle component pairs
that require interaction by analyzing the control flow between activities that
change the state of objects. Finally, we use this information to compute the
expected coupling of the object life cycle components.

We implement object life cycle components using Business State Ma-
chines (BSMs) [5]. BSMs are introduced in Sect. 2, along with an illustrative
example and the coupling metric used. In Sect. 3, we demonstrate how workflow
patterns can be implemented using BSMs and study how solutions for different
patterns contribute to the overall coupling. These observations are formalized
in Sect. 4, where we define how to compute the expected coupling based on a
given process model. In Sect. 5, we discuss the generalization of our approach.
Related work and conclusions are presented in Sect. 6 and 7, respectively.

2 Example and Background

As an illustrative example, we use a process designed for the organization of
alumni events at the IBM Zurich Research Laboratory. An abridged BPMN [3]
model for this process is shown in Fig. 1. After the approval of the budget, the
date for the event is fixed and then two things happen in parallel: the program,
invitations and web site are prepared; and catering is organized. After all these
have completed, the alumni day is hosted. The process model contains three
sub-processes: Fix Date, Prepare And Send Invitations and Develop Web Site.

All activities of a business process generally transform some objects by chang-
ing their state to contribute to the final goal of the process. For each atomic
activity in the alumni day process, we indicate the state-changing objects1. For
1 We use the notation given on p.94 in [3] for object outputs of an activity and a

shorthand notation for objects that are both inputs and outputs of an activity.

150 K. Wahler and J.M. Küster

Approve
Budget

Prepare
Program

Arrange
Dinner

Arrange
Buffet

Host
Alumni Day

Fix Date
+

Dinner
Budget

Approved?

Yes

No

B

Create
Web Site

Publish
Web Site

Develop Web Site

Prepare
Template

Prepare And Send Invitations

Post
Invitations

Fill, Print
And Pack

Check Room
Availability

Check Cafeteria
Availability

Select
Dates

Fix
Date

Reserve
Rooms

Reserve
Cafeteria

Fix Date

One Available
Date?

Yes

No

+

Develop
Web Site

+

Prepare And
Send Invitations

P

W W

C

N

E

I S I

D

R

C

D

R

C

Objects:
B: Budget
C: Cafeteria
D: Date
E: Event
I: Invitations
N: Dinner
P: Program
R: Rooms
S: Single Invitation
W: Web Site

o

o

Multiple
instances

Object
output

Object
input and

output

Activities change
object state:

(1)

(1)

(2)

(3)

(2)

(3)

Fig. 1. Process Model for Alumni Day Organization

example, the Create Web Site activity produces a Web Site object in state Drafted
and Publish Web Site changes the state of the Web Site object from Drafted to Pub-
lished (states are omitted in this diagram). In the Prepare And Send Invitations sub-
process, Prepare Template creates an Invitations object in state TemplatePrepared,
and then multiple instances of the Fill, Print And Pack activity are performed in
parallel, each creating a Single Invitation object. Once all instances of Fill, Print
And Pack have completed, Post Invitations updates the state of Invitations to Posted.

In an object-centric implementation of the alumni day process, the process
logic is split into ten object life cycle components, assuming an approach in
which one component is derived for each state-changing object. We implement
each object life cycle component as a Business State Machine (BSM) [5]. A
simple example of a BSM is shown in Fig. 2.

Interfaces:
basic : start, stop
stateQuery : getState

References:
r : getState

Variables:
String rState = “Unknown”;

operation timeout condition action

ready

start

stop
rState.equals(“done”)

wait
! rState.equals(“done”)
rState = r.getState

Simple

Fig. 2. Example BSM

A BSM is a finite state automaton, tai-
lored for execution in a service-oriented
environment. Each BSM can have several
of the following: interfaces, references and
variables. The Simple BSM in Fig. 2 has
two interfaces: basic comprising operations
start and stop, and stateQuery with the get-
State operation. These are the three oper-
ations that can be invoked on this BSM.
Simple also has one reference r, referencing
an interface of another BSM, with one operation getState. Operations in addition
have parameters, which we omit here. Simple has one variable rState, initialized
to the literal “Unknown”.

Predicting Coupling of Object-Centric Business Process Implementations 151

State transitions in BSMs follow the event-condition-action paradigm. A tran-
sition can be triggered either by an expiration of a timeout or by an invocation of
an operation defined in one of the BSM’s interfaces. Once a transition has been
triggered, its associated condition, if any, is evaluated. If the condition evaluates
to true or there is no condition, the action associated with the transition, if any,
is performed and the target state of the transition is entered. An action either
invokes an operation on one of the BSM’s references or performs some other
processing specified in a custom language, such as Java. For example, once the
Simple BSM is in state ready, a self-transition is triggered repeatedly after expi-
ration of the timeout wait. Each time the transition is triggered and rState is not
equal to “done”, the getState operation is invoked on r (invocation is indicated
using italics in the diagrams). The operation getState is implicitly handled by
every BSM and returns the BSM’s current state. Invocation of the stop opera-
tion on Simple results in a transition to the final state only if rState is equal to
“done”.

At runtime, each BSM instance is associated with a correlation ID. The run-
time engine creates a new BSM instance if it receives a call to an operation
associated with an initial transition of some BSM and this operation call speci-
fies a correlation ID that does not correspond to an existing BSM instance.

For the implementation of the alumni day process, we distribute the process
activities among ten BSMs (Budget, Cafeteria, Date, etc). We make a simplifying
assumption that one activity changes the state of exactly one object, as in the
example process model. Each activity is placed into the BSM that represents the
state-changing object for this activity. In Sect. 6, we explain how our approach
can be extended to handle activities that change the state of several objects.

Interfaces:
programInt : start, stop

References:
webSite : getState, programPrepared

Variables:
String webSiteState = “Unknown”;
boolean webSiteNotified = false; Prepared

Idle

Notifying WebSite

start

!webSiteNotified

stop
webSiteNotified webSiteState.equals(“Idle”)

webSite.programPrepared
webSiteNotified = true

wait
!webSiteState.equals(“Idle”)
webSiteState = webSite.getState

Drafted

Idle

start

programPrepared
CreateWebSite

stop

Published

PublishWebSite

Program WebSiteInterfaces:
webSiteInt : start, stop,
getState, programPrepared

PrepareProgram

Fig. 3. Example BSMs

Partial implementations of the Program and WebSite BSMs are shown in Fig. 3.
Activities that change the state of these two objects are mapped to actions associ-
ated with state transitions in the BSMs, e.g. the PrepareProgram and CreateWebSite
actions. These actions can be implemented to invoke service operations, human
tasks, etc. In the process model, the Prepare Program activity must complete be-
fore the Create Web Site activity can execute. Synchronization of the Program and
WebSite BSMs is implemented to preserve this dependency: After the Prepare-
Program action has been performed in the Program BSM and the Prepared state

152 K. Wahler and J.M. Küster

has been reached, the Program BSM transits to state Notifying WebSite. In this
state, the Program BSM queries the state of the WebSite BSM repeatedly. Once
the WebSite BSM has reached the Idle state, the Program BSM notifies the Web-
Site BSM that it has reached the state Prepared by invoking the programPrepared
operation. After this, the Program BSM transits back to state Prepared, and the
WebSite BSM can perform the CreateWebSite action. In a complete BSM imple-
mentation of the alumni day process, many such synchronizations need to be
implemented, e.g. Program also needs to synchronize with the Invitations BSM.

WebSiteProgram

component component

reference interface

wire

Fig. 4. Assembly Model

Aside from additional states and transitions
within BSMs, synchronization also leads to inter-
face bindings between the BSMs. We use the Ser-
vice Component Architecture (SCA) [2], which is
a service-oriented component framework, to rep-
resent these bindings. Each BSM is an implemen-
tation of an SCA component (used interchangeably with component from now
on). An assembly model in SCA is a representation of directed communication
channels, called wires, between components. The assembly model for the BSMs
from Fig. 3 is shown in Fig. 4. Synchronization of the Web Site and Program BSMs
requires that the components are connected by a wire in the assembly model.

Definition 1 (Assembly model). An assembly model is a tuple M = (C, φ), where
C is the set of components in M and φ ⊆ C×C is the wire relation between components.

In the context of SCA, we use the term coupling to refer to interdependencies
of components in an assembly model. We quantify the coupling of an assembly
model by defining the interface coupling metric, adapted from existing work on
quality metrics in the business process domain [17].

Definition 2 (Interface coupling). Given an assembly model M = (C,φ), its in-
terface coupling is defined as follows:

p(M) =

{
0 if |C| = 0 or 1

|φ|
|C|×(|C|−1) otherwise

(1)

Interface coupling represents the ratio between the actual number of wires and
the maximum possible number of wires between the components in the assembly
model. A coupling value of 0 means that there is no interaction at all between
the components. This implies that the distribution of these components does
not incur any communication costs, and the implementation of each component
can be maintained and its behavior adapted at run time with no side-effects
on the other components. On the contrary, a coupling value of 1 means that
every component interacts with every other component. The distribution of such
components will incur high communication costs, and maintenance or adaptation
of one component affects the behavior of all other components. The interface
coupling of the assembly model shown in Fig. 4 is 1

2×1 = 0.5. More refined
coupling metrics could also be used here, e.g. to take into account the number
of operations in the component interfaces connected to wires or the number of
operation calls inside the BSMs.

Predicting Coupling of Object-Centric Business Process Implementations 153

In the following section, we explore how the implementation of different work-
flow patterns using BSMs introduces wires between the BSM components and
thus contributes to the coupling of the resulting assembly model.

3 Implementing Workflow Patterns Using BSMs

Workflow patterns [21] are a well-established benchmark for exploring how com-
mon process behaviors can be represented in different business process modeling
and implementation languages. In this section, we show how the basic control-
flow patterns, WP1-WP5, can be modeled using BSMs. In addition, we provide a
solution for WP14, as it can be used to represent the processing of object collec-
tions, commonly occurring in process models. We provide BSM solutions on an
exemplary basis, similar to existing evaluations of other languages (e.g. [22]). We
discuss the requirements that each pattern has with respect to the synchroniza-
tion of BSMs and its contribution to the coupling of the overall implementation.

ActivityA ActivityB

o1o1
[x1→ x2] [x2→ x3]

ActivityA ActivityB

o2o1
[x1→ x2] [y1→ y2]

E1

E2

Fig. 5. WP1 Examples

WP1 Sequence. Several activities are exe-
cuted one after another in this pattern, as il-
lustrated with two examples2 in Fig. 5. In E1,
ActivityA and ActivityB change the state of the
same object o1, whereas in E2 ActivityA and Ac-
tivityB change the state of different objects, o1
and o2.

The solution for E1 is straightforward,
see Fig. 6(a) (interfaces and references are omit-
ted). It comprises one component, shown in the
assembly model at the bottom of the diagram.
A solution for E2 is shown in Fig. 6(b), where BSMs o1 and o2 represent the life
cycles of objects o1 and o2, respectively.

x2

x1

Notifying o2

start

ActivityA

! o2Notified

stop
o2Notified

Variables:
String o2State = “Unknown”;
boolean o2Notified = false;

o2State.equals(“y1”)
o2.o1x2
o2Notified = true

wait
!o2State.equals(“y1”)
o2State = o2.getState

y2

y1

start

o1x2
ActivityB

stop

(b) E2 Solution(a) E1 Solution

x2

x1

start

stop

x3

ActivityA

ActivityB

o1 o1 o2

o2o1o1

Fig. 6. WP1 Solutions

2 We use a shorthand of the form [statesrc → statetgt], based on the notation given
on p.94 in [3], to show how an activity changes the state of an object.

154 K. Wahler and J.M. Küster

Once ActivityA has been performed by o1, o1 notifies o2 that it has reached state
x2 by first ensuring that o2 is in state y1 and then invoking the o1x2 operation on
o2. Once o1x2 has been invoked on o2, ActivityB is performed by o2. The resulting
assembly model has an interface coupling of 1

2×1 = 0.5.
WP1 Synchronization Requirements: A generic instance of WP1 comprises

activities a1, ..., an, which change the states of objects o1, ..., on, respectively. A
pair of activities ai, ai+1, with 1 ≤ i < n, requires a synchronization of BSM
oi and BSM oi+1 if and only if oi �= oi+1. We introduce the control handover
synchronization category for such synchronizations, since they represent the han-
dover of control between BSMs. Each such control handover requires a wire from
BSM oi to BSM oi+1 to be present in the assembly model. The introduction of
these wires contributes to the overall coupling of the resulting assembly model.

E3
ActivityA

ActivityB

ActivityC
o1

[x1→ x2]

o2

[y1→ y2]

o3
[z1→ z2]

Fig. 7. WP2 & WP3 Example

WP2 Parallel Split & WP3 Synchro-
nization. In WP2, several activities are
executed simultaneously or in any possi-
ble order, and in WP3, several parallel
threads are joined together into a single
control thread. An example containing an
instance of both of these workflow pat-
terns is shown in Fig. 7. In E3, each activ-
ity changes the state of a different object.
Note that we do not only consider block-structured process models, but examine
these two patterns together for the sake of conciseness.

x2

x1

Notifying o3

start

ActivityA

! o3Notified

stop
o3Notified

Variables:
String o3State = “Unknown”;
boolean o3Notified = false;

o3State.equals(“z1”)
o3.o1x2
o3Notified = true

wait
!o3State.equals(“z1”)
o3State = o3.getState

o1

y2

y1

Notifying o3

start

ActivityB

! o3Notified

stop
o3Notified

Variables:
String o3State = “Unknown”;
boolean o3Notified = false;

o3State.equals(“z1”)
o3.o2y2
o3Notified = true

wait
!o3State.equals(“z1”)
o3State = o3.getState

o2

z2

z1

start

o1x2 & o2y2
ActivityC

stop

o3

o2y2
o2y2 = true

Variables:
boolean o1x2 = false;
boolean o2y2 = false;

o1 o2
o3

o1x2
o1x2 = true

Fig. 8. WP2 & WP3 E3 Solution

A solution for E3 is shown in Fig. 8. As by default all BSMs are executed
concurrently, no explicit parallel split is required. Synchronization of the threads
is performed using notifications, similar as in the E2 solution in Fig. 6(b). BSM
o3 waits to receive notifications from both o1 and o2 (operation calls o1x2 and
o2y2) before performing ActivityC. The interface coupling of the assembly model
for this solution is 2

3×2 ≈ 0.33.

Predicting Coupling of Object-Centric Business Process Implementations 155

WP2 & WP3 Synchronization Requirements: As instances of WP2 do not
require any interaction between BSMs, they do not contribute wires to the as-
sembly model and have no effect on the coupling. A generic instance of WP3
comprises activities a1, ..., an that all need to complete before activity an+1

can begin execution. Assuming that a1, ..., an, an+1 change the states of objects
o1, ..., on, on+1, respectively, a pair of activities ai, an+1, with 1 ≤ i ≤ n, requires
a synchronization of BSMs if and only if oi �= on+1. These synchronizations also
fall into the control handover category, introduced for WP1.

E4
ActivityA

ActivityB

ActivityCo1
[x1→ x2]

o2
[y1→ y2]

o3

[z1→ z2]

C1

C2

Fig. 9. WP4 & WP5 Example

WP4 Exclusive Choice & WP5 Sim-
ple Merge. In WP4, one out of several
activities is executed based on the out-
come of a decision, and in WP5, several al-
ternative threads are joined into one con-
trol thread without synchronization. An
example containing instances of these pat-
terns is shown in Fig. 9.

o3State.equals(“z1”)
o3.o1x2

o3Notified = true

C1
ActivityA

wait
!o3State.equals(“z1”)
o3State = o3.getState

x2

x1 Notifying o2

start

C2 & ! o2Notified

stop
o3Notified

Variables:
String o2State = “Unknown”; boolean o2Notified = false;
String o3State = “Unknown”; boolean o3Notified = false;
boolean C1 = getC1(); boolean C2 = !C1;

o2State.equals(“y1”)
o2.C2
o2Notified = true

wait
!o2State.equals(“y1”)
o2State = o2.getState

o1

Notifying o3

stop
C2 & o2Notified

z2

z1

start

o1x2 | o2y2
ActivityC

stop

o3

o2y2
o2y2 = true

Variables:
boolean o1x2 = false;
boolean o2y2 = false;

o1x2
o1x2 = true

y2

y1

Notifying o3

start

C2
ActivityB

! o3Notified

stop
o3Notified

Variables:
String o3State = “Unknown”;
boolean o3Notified = false;

o3State.equals(“z1”)
o3.o2y2
o3Notified = true

wait
!o3State.equals(“z1”)
o3State = o3.getState

o2

o1

o3

o2

Fig. 10. WP4 & WP5 E4 Solution

In a solution for this pattern, the decision needs to be placed into one of the
BSMs, as shown in Fig. 10 where it is placed in BSM o1 (two transitions going
out of state x1 with conditions C1 and C2). Once the decision has been evaluated
in o13, either ActivityA is performed (C1 is true) or o2 is notified and ActivityB
is performed in o2 (C2 is true). The merging of alternative control threads is
implemented similarly to the synchronization solution in Fig. 8, except that
BSM o3 performs ActivityC as soon as it receives one of the operation calls,
3 For simplicity, we initialize C1 and C2 in the variable definitions here. In a real

implementation, they would be evaluated in state x1.

156 K. Wahler and J.M. Küster

o1x2 or o2y2. The interface coupling of the assembly model is 3
3×2 = 0.5. These

three components have a higher coupling value than those in Fig. 8, because of
an additional wire between o1 and o2 required for communicating the decision
outcome.

WP4 & WP5 Synchronization Requirements: A generic instance of WP4 com-
prises a decision d and activities a1, ..., an, which change the states of objects
o1, ..., on, where one of these activities is executed depending on the evaluation
of the conditions of d. We assume that the evaluation of d can be assigned to
an object oi, where 1 ≤ i ≤ n. BSM oi requires synchronization with each
BSM oj , where 1 ≤ j ≤ n and oi �= oj . Since such synchronizations do not
represent control handovers, we introduce a new synchronization category called
decision notification for such synchronizations. Instances of WP5 require control
handover synchronizations, similar to instances of WP1 and WP3.

ActivityA

o2
o1

[x1→ x2] [y1]

ActivityC

o1
[x2→ x3]

ActivityB
E5

Fig. 11. WP14 Example

WP14 Multiple Instances with a pri-
ori Run-Time Knowledge. In WP14,
multiple instances of the same activity
are created, all of which need to complete
before a subsequent activity can be ex-
ecuted. The number of instances is not
known at design time, but is determined
at run time before activity instances are created. This pattern can be used to
represent the processing of object collections, as shown in the example in Fig. 11.
In E5, a collection of o2 objects is processed by multiple instances of ActivityB.
In this example, each activity instance creates a new object o2 in state y1. Once
all instances of ActivityB have completed, ActivityC is executed. We show this par-
ticular example here, because it corresponds to the Prepare And Send Invitations
sub-process in Fig. 1, where Invitations and Single Invitation objects take the role
of o1 and o2, respectively.

A solution for E5 is shown in Fig. 12. After performing ActivityA, o1 transits
to state x2 and then to Creating o2s, where it creates n instances of the o2 BSM
by repeatedly invoking the start operation with a fresh correlation ID. Each o2

x1

Creating o2s

start

ActivityA

o2sCreated < n

stop Variables:
int o2sCreated = 0; int o21y1 = 0;
int n = getAtRuntime();

o2sCreated == n

wait
o2sCreated < n
o2.start
o2sCreated ++

o1

x3

x2

o2y1
o2y1++

o2y1 == n
ActivityC

y1 Notifying o1

start
ActivityB

! o1Notified

stop
o1Notified

o1State.equals(“x2”)
o1.o2y1
o1Notified = true

wait
!o1State.equals(“x2”)
o1State = o1.getState

o2

Variables:
String o1State = “Unknown”;
boolean o1Notified = false;

o2o1

Fig. 12. WP14 E5 Solution

Predicting Coupling of Object-Centric Business Process Implementations 157

instance performs ActivityB and then notifies o1 that it has reached state y1.
Once o1 has received notifications from all o2 instances, it performs ActivityC and
transits to state x3. The interface coupling for the assembly model is 2

2×1 = 1.
WP14 Synchronization Requirements: A generic instance of WP14 comprises

activities a1, a2, a3, which change the states of objects o1, o2, o3, where activity a2

is to be instantiated multiple times. Provided that a1 and a3 are not themselves
multiple instance activities, the following control handovers are always required:
from BSM o1 to instances of BSM o2, and from instances of BSM o2 to BSM o3.
Although the number of synchronizations at run time will vary, the contribution
to the coupling is constant, as two wires, (o1, o2) and (o2, o3), are introduced into
the assembly model to enable the synchronizations (this also holds if o1 = o3).
The case where o1 = o2 and o2 = o3 is an exception, as in this case only one
wire (o2, o2) would be introduced into the assembly model. For simplification,
we do not consider this case in the remainder of the paper.

In this section, we have demonstrated how workflow patterns can be imple-
mented using BSMs and discussed the requirements of each pattern for the syn-
chronization of BSMs. In the next section, we show how the number of control
handovers and decision notifications can be computed for a given process model,
and then used to compute the expected coupling of a BSM implementation.

4 Predicting Coupling of BSM Implementations

We assume that the process model provided as a specification for a BSM im-
plementation comprises instances of WP1-WP5 and WP14 only and has each
activity associated with one state-changing object, as in the alumni day process
model in Fig. 1. As a sub-process hierarchy in a given process model can be
flattened for processing, we use the following definition for a process model.

Definition 3 (Process model). A process model is a tuple P = (G, O, σ):

– G = (N, E) is a directed graph, in which each node n ∈ N is either a start node,
stop node, activity, fork, join, decision, or merge. As a shorthand, we use NA and
ND to denote activities and decisions in N , respectively.

– O is the set of objects whose states are changed by activities a ∈ NA.
– σ ⊆ NA × O is the state-changing relation between activities and objects. We use

oa to denote the object whose state is changed by activity a ∈ NA, i.e. (a, oa) ∈ σ.

Given a process model P , the number of components in the assembly model
of its BSM implementation is equal to the number of objects whose states are
changed in P , assuming a simple mapping. In Sect. 3, we showed that the number
of wires between the components depends on the control handover and decision
notification synchronizations between the BSMs. As all the synchronizations
required by different patterns fall into these two categories, we directly compute
all object pairs that require such synchronizations, instead of first identifying
workflow pattern instances in a given process model.

A control handover is required whenever an activity in the process model
that changes the state of one object has a direct successor activity 4 that changes
4 Only edges and gateways connect an activity and its direct successor activity.

158 K. Wahler and J.M. Küster

the state of another object. A decision notification is required between the object
assigned to evaluate a decision and all the objects whose state is changed by the
direct successor activities of that decision. To compute the objects that require
control handovers and decision notifications, we propagate the information about
state-changing objects downstream from each activity to its direct successor
activities and upstream from direct successor activities of decisions.

Definition 4 (Downstream and upstream control objects). Given a process
model P = (G, O, σ) where G = (N, E), each edge e ∈ E is associated with downstream
and upstream control objects, dco(e), uco(e) ⊆ O respectively, defined as follows:

dco(e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if e is the outgoing edge of the start node
{oa} if e is the outgoing edge of activity a ∈ NA⋃m

i=1 dco(ei) otherwise, where e1, ..., em are the incoming edges
of node n, which has e as its outgoing edge

(2)

uco(e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if e is the incoming edge of the stop node
{oa} if e is the incoming edge of activity a ∈ NA⋃m

i=1 uco(ei) otherwise, where e1, ..., em are the outgoing edges
of node n, which has e as its incoming edge

(3)

Downstream and upstream control objects can be computed for a given process
model using data flow analysis techniques [9]. For example, to compute the
downstream control objects, dco(e) is initialized to an empty set for each edge
e and then the nodes in the process model are traversed, evaluating the dco
equations (Equation 2) for each outgoing edge of the traversed node. Reverse
postorder traversal ensures that in the absence of cycles each node is visited once.
In the presence of cycles, the nodes are traversed repeatedly until a fixpoint is
reached, i.e. an iteration when no dco values are updated. Fig. 13 shows the
alumni day process model with the downstream and upstream control objects
indicated above and below each edge, respectively5. The set of object pairs that
need to perform control handover is then defined as follows.

Definition 5 (Control handover object pairs). Given a process model P =
(G, O, σ) where G = (N, E) and each of the edges e1, ..., en is an incoming edge of
some activity a ∈ NA, the set of directed object pairs that require BSMs to perform
control handover is defined as follows:

Och(P) =

n⋃
i=1

(dco(ei) × uco(ei)) \ {(o, o) | o ∈ O} (4)

For example, the incoming edge of the AD activity gives rise to two control
handover object pairs: (R,N) and (C,N); and the incoming edge of the AB2 activity
gives rise to only one control handover object pair: (R,C).

Next we define object pairs that require decision notification between BSMs.
Given a decision d, we denote its outgoing edges by Eout

d and assume that the
evaluation of d can be assigned to the object co(d), which is one of the upstream
control objects of some edge in Eout

d .
5 Activity names are abbreviated in Fig. 13.

Predicting Coupling of Object-Centric Business Process Implementations 159

{D}
{R,C}

{R,C}
{P,N,C}

{D}
{R,C}

{R,C}
{P,N,C}

{W,I,N,C}
{E}

AB1

PP

AD

AB2

HADFD

B

P

C

N
E

Objects:
B: Budget
C: Cafeteria
D: Date
E: Event
I: Invitations
N: Dinner
P: Program
R: Rooms
S: Single Invitation
W: Web Site

DWS

PASI

{ }
{B}

{B}
{D}

{R,C}
{P}

{R,C}
{N,C}

{R,C}
{N}

{R,C}
{C}

{P}
{W,I}

{P}
{W}

{P}
{I}

{W}
{E}

{I}
{E}

{N}
{E}

{C}
{E}

{N,C}
{E}

{E}
{}

PT

Prepare And Send Invitations

PIFPAP

I S I

{P}
{I}

{I}
{S}

{S}
{I}

{I}
{E}

CWS PWS

Develop Web Site

W W

{P}
{W}

{W}
{W}

{W}
{E}

CRA

CCA

SD FD

RR

RC

Fix Dates

D

R

C

D

R

C

{D}
{R}

{D}
{C}

{R}
{D}

{C}
{D}

{R,C}
{D}

{R,C}
{D}

{R,C}
{D}

{B,R,C}
{D}

{D}
{R}

{D}
{C}

{R}
{P,N,C}

{C}
{P,N,C}

{B}
{D}

N

D

Fig. 13. Downstream and Upstream Control Objects in a Process Model

Definition 6 (Decision notification object pairs). Given a process model P =
(G, O, σ) where G = (N, E), the set of directed object pairs that require decision noti-
fication between BSMs is defined as follows:

Odn(P) =
⋃

d∈ND

⎛⎝co(d) ×
⋃

e∈Eout
d

uco(e)

⎞⎠ \ {(o, o) | o ∈ O} (5)

The decision in the parent alumni day process model is assigned to object N
and gives rise to one decision notification object pair: (N,C). The decision in the
Fix Date sub-process is assigned to object D. It does not introduce any decision
notification object pairs, as the sets of upstream control objects for both edges
going out of the decision are the same: {D}.

The predicted assembly model for a BSM implementation of a given process
model can now be constructed by introducing a component for each object and
a wire for each of the control handover and decision notification object pairs.

Definition 7 (Predicted assembly model for a BSM implementation). Given
a process model P = (G, O, σ), the predicted assembly model for a BSM implementa-
tion of P is defined as follows:

MP = (CP , φP) (6)

– where CP = {co1 , ..., con} is the set of components, with one component coi for
each object oi ∈ O where 1 ≤ i ≤ n,

– and φP = {(co1 , co2) ∈ CP ×CP | (o1, o2) ∈ Och(P)∪ Odn(P)} is the wire relation
between components.

160 K. Wahler and J.M. Küster

S

WB D

R

E

P

N

C

I

BSM implementation
interface coupling = 0.211

Warning: assembly model contains highly-coupled components:
{D, R}, {D, C}, {N,C} and {I,S} interface coupling = 1
{D,R,C} interface coupling = 0.83

Fig. 14. Predicted Assembly Model for the Alumni Day Process

The assembly model for the alumni day process model is shown in Fig. 14. It
can be seen that each distinct control handover and decision notification object
pair, such as (R,N) or (C,N), introduces a wire in the predicted assembly model.

The interface coupling is computed for the entire assembly model and for all
component subsets according to Definition 2. A configurable upper bound is used
to assess the predicted coupling values. This upper bound can be evolved as a
best practice by developers, i.e. first initialized to some value and then refined
in further iterations or projects based on the experience gained in deploying and
maintaining object-centric implementations. Empirical evaluations can also help
in determining a generic guideline for this upper bound. In Fig. 14, the overall
interface coupling is 19

10×9 ≈ 0.211, which would not give a reason for concern,
assuming for example an upper bound of 0.8. However, component sets {D,R},
{D,C}, {N,C}, {I,S} and {D,R,C} have a coupling value higher than 0.8 and would
thus be brought to the attention of the developer, as shown in Fig. 14.

Once the expected coupling is predicted using the proposed approach, the de-
veloper should decide how to deal with each set of highly-coupled components.
High coupling may be tolerated for components that have a stable design and do
not require distributed deployment. Otherwise, the process model should be re-
vised in such a way that the expected coupling between components is reduced.
Possible revisions include identification of objects that can be represented by
a merged life cycle and refactoring control flow in the process model. Object
life cycle merger should be applicable only for those objects that have a strong
semantic relationship. For example, the Dinner (N) and Cafeteria (C) life cycles,
which give rise to the highly-coupled component set {N,C}, can be merged to
produce a Catering life cycle. In order to alleviate component coupling by pro-
cess model refactoring, the number of control handovers and decision notifica-
tions should be reduced. In the alumni day process, the decision Dinner Budget
Approved? and the activities connected to its outgoing edges could take place
directly after the Reserve Cafeteria activity, without waiting for the Reserve Event
Rooms activity to complete. This refactoring would reduce the coupling of the
{R,C} and {R,N} component sets. After each life cycle merger and process model
refactoring, the coupling computations need to be repeated and shown to the
developer.

Predicting Coupling of Object-Centric Business Process Implementations 161

5 Discussion

In this paper, we have shown how the coupling of an object-centric implemen-
tation using BSMs can be predicted using a given process model. We assumed
that each activity in the process model changes the state of one object. An
activity that changes the state of several objects would be placed into several
BSMs, which would need to synchronize, thus contributing to component cou-
pling. Our current approach can be extended to handle such activities by adding
a new synchronization category, activity synchronization, and providing a defini-
tion for computing the object pairs requiring such a synchronization (similar to
Definitions 5 and 6). The approach can be further extended to handle workflow
patterns other than WP1-WP5 and WP14 by investigating BSM solutions for
these patterns, identifying pattern requirements for synchronization of BSMs,
and extending Definitions 5, 6 and 7.

Although our approach was demonstrated using SCA and BSMs, it can
be generalized to other component frameworks (not necessarily based on ser-
vices) and other object-centric approaches. For example, adaptive business ob-
jects (ABO) [14] are based on communicating automata, and our approach is
applicable once every ABO has been encapsulated in a component and communi-
cation channels between the components have been made explicit. In data-driven
modeling [11], object life cycles are synchronized by so-called external state tran-
sitions. To compute the coupling, each life cycle can be seen as a component, and
communication channels need to be introduced between components whose life
cycles are connected by external state transitions. Proclets [20] use WF-nets to
represent object life cycles and make use of explicit communication channels. Al-
though more advanced communication options, such as multicast and broadcast,
are supported in proclets, our approach is still applicable.

6 Related Work

In component-based development, the coupling has been used for component
identification [8] and refactoring [4]. For example, a statistics technique called
clustering analysis to form components that have high cohesion and low coupling
is used in [8]. Such approaches are complementary to what we propose in this
paper, as they can help to identify how the highly-coupled components in the
predicted assembly model of a BSM implementation can be alleviated.

Many different categories or types of coupling have been identified in software
engineering [7]. Given source code or a component model, it is usually straight-
forward to calculate the different coupling values, as the metrics are defined
directly in terms of source code or component model elements. In our approach,
we determine how the control flow in a given process model influences the cou-
pling of the resulting BSM implementation before actually deriving the BSMs.
So far we have focused on the so-called interface coupling of SCA components;
however other types of coupling, such as data coupling, could also be considered.

A tight correlation between the semantic relationships of objects and synchro-
nization of their life cycles has been identified in manufacturing processes [11,16].

162 K. Wahler and J.M. Küster

In manufacturing, objects are naturally coupled by the “part-of” relationship.
Our approach is valuable also in this context, as it can identify whether the
implementation components have dependencies other than those resulting from
the semantic relationships between objects.

In workflow management, several approaches have been proposed for decen-
tralizing workflows with the goal of optimizing their execution [12,13]. For ex-
ample, the approach in [12] involves minimizing the loads and number of syn-
chronization messages exchanged between the distributed workflow components.
Although in our approach we also strive to reduce the number of dependen-
cies between components, execution optimization is not our primary focus. The
object life cycle components dealt with in this paper need to be refined and
maintained by developers, whereas workflow decentralization happens once a
workflow is deployed and its results are not exposed to the developers.

7 Conclusions and Future Work

We have presented an approach for predicting the coupling of an object-centric
implementation for a given process model. Our example showed that deriving
one component for each state-changing object can produce highly-coupled com-
ponents, which are difficult to distribute, maintain and adapt. The predicted
coupling information allows the developer to take preventive actions to arrive at
a better decomposition of the final implementation. Although our approach has
been demonstrated using BSMs, it is possible to generalize it to other languages
suitable for object-centric process implementation.

We are currently extending the approach with the prediction of cohesion and
complexity metrics. We expect that the incorporation of these two metrics with
coupling will not only offer deeper insights into object-centric implementations,
but will also facilitate a comparison of activity-centric and object-centric imple-
mentation approaches.

References

1. Business Process Execution Language for Web Services, Version 1.1. Joint specifi-
cation by BEA, IBM, Microsoft, SAP and Siebel Systems (2003)

2. SCA Service Component Architecture, Assembly Model Specification, SCA Ver-
sion 1.00, Open SOA Collaboration Specification (March 2007)

3. Business Process Modeling Notation Specification, V1.1., formal/2008-01-17. OMG
Document (January 2008)

4. Abreu, F.B., Pereira, G., Sousa, P.: A Coupling-Guided Cluster Analysis Approach
to Reengineer the Modularity of Object-Oriented Systems. In: Proc. of the Conf.
on Software Maintenance and Reengineering, pp. 13–22. IEEE Computer Society,
Los Alamitos (2000)

5. Beers, G., Carey, J.: WebSphere Process Server Business State Machines concepts
and capabilities, Part 1: Exploring basic concepts. IBM developerWorks (October
2006)

Predicting Coupling of Object-Centric Business Process Implementations 163

6. Bhattacharya, K., Guttman, R., Lyman, K., et al.: A Model-Driven Approach
to Industrializing Discovery Processes in Pharmaceutical Research. IBM Systems
Journal 44(1), 145–162 (2005)

7. Briand, L.C., Daly, J.W., Wüst, J.: A Unified Framework for Coupling Mea-
surement in Object-Oriented Systems. IEEE Transactions on Software Engineer-
ing 25(1), 91–121 (1999)

8. Lee, J.K., Seung, S.J., Kim, S.D., Hyun, W., Han, D.H.: Component Identification
Method with Coupling and Cohesion. In: Proc. of the 8th Asia-Pacific Conf. on
Software Engineering, pp. 79–86. IEEE Computer Society, Los Alamitos (2001)

9. Muchnick, S.: Advanced Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

10. Müller, D., Reichert, M., Herbst, J.: Flexibility of Data-Driven Process Structures.
In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 181–
192. Springer, Heidelberg (2006)

11. Müller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

12. Muth, P., Wodtke, D., Weißenfels, J., Kotz Dittrich, A., Weikum, G.: From Cen-
tralized Workflow Specification to Distributed Workflow Execution. Journal of In-
telligent Information Systems 10(2), 159–184 (1998)

13. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing Execution of Composite Web
Services. In: Proc. of the 19th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 170–187. ACM, New
York (2004)

14. Nandi, P., Kumaran, S.: Adaptive Business Object - A New Component Model
for Business Integration. In: Proc. of the 8th Int. Conf. on Enterprise Information
Systems, pp. 179–188 (2005)

15. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Speci-
fication. IBM Systems Journal 42(3), 428–445 (2003)

16. Reijers, H.A., Limam, S., van der Aalst, W.M.P.: Product-Based Workflow Design.
Journal of Management Information Systems 20(1), 229–262

17. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow
Process Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS,
vol. 3080, pp. 290–305. Springer, Heidelberg (2004)

18. Ryndina, K., Küster, J.M., Gall, H.: Consistency of Business Process Models and
Object Life Cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90.
Springer, Heidelberg (2007)

19. Ryndina, K., Küster, J.M., Gall, H.: A Tool for Integrating Object Life Cycle and
Business Process Modeling. In: Proc. of the BPM Demonstration Program at the
5th Int. Conf. on Business Process Management. CEUR-WS (2007)

20. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A Frame-
work for Lightweight Interacting Workflow Processes. International Journal of Co-
operative Information Systems 10(4), 443–481 (2001)

21. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

22. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis
of Web Services Composition Languages: The Case of BPEL4WS. In: Song, I.-Y.,
Liddle, S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp.
200–215. Springer, Heidelberg (2003)

Instantiation Semantics for Process Models

Gero Decker1 and Jan Mendling2

1 Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

2 Queensland University of Technology, Brisbane, Australia
j.mendling@qut.edu.au

Abstract. Although several process modeling languages allow one to
specify processes with multiple start elements, the precise semantics of
such models are often unclear, both from a pragmatic and from a the-
oretical point of view. This paper addresses the lack of research on this
problem and introduces the CASU framework. The contribution of this
framework is a systematic description of design alternatives for the spec-
ification of instantiation semantics of process modeling languages. We
classify six of the most prominent languages by the help of this frame-
work. Our work provides the basis for the design of new correctness cri-
teria as well as for the formalization of EPCs and extension of BPMN.
It complements research such as the workflow patterns.

1 Introduction

Process modeling techniques have been widely adopted by businesses and other
organizations for documenting their operations. In this context, process models
describe business activities along with their temporal and logical relationships
within business processes of the organization, either as reflection of the status
quo or as a road map for change. Process models are also used for configuring
information systems, in particular workflow systems, that create and handle
singular cases (or instances) according to the rules defined in the model.

There are several business process modeling languages that define the basic
elements for constructing individual business process models. In this paper we
consider the six most prominent ones and assume that the reader has some basic
understanding of their syntax and semantics. They are in historical order:

– Petri nets (PN) [1], a formalism to specify processes with concurrency. In
particular, we will focus on Open Workflow Nets (oWFNs) [2] which extend
Workflow nets [3] with interface places.

– Event-driven Process Chains (EPCs) [4], the business process modeling lan-
guage used within the ARIS framework and the respective toolset [5].

– UML Activity Diagrams (UAD) [6], the process modeling language of UML.
– Yet Another Workflow Language (YAWL) [7], the workflow language that

builds on the workflow patterns analysis [8].
– Business Process Execution Language for Web Services (BPEL) [9], the pro-

posed OASIS standard for web service composition and execution.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 164–179, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Instantiation Semantics for Process Models 165

– Business Process Modeling Notation (BPMN) [10], the OMG standard no-
tation for describing business processes.

In practice these languages tend to be used in different design phases: while
executable processes and workflows are often defined as BPEL or YAWL models,
Petri nets and UAD specify processes in a way that easily supports software
development. EPCs and BPMN are meant to serve as a high-level description of
business operations. For an introduction to these languages refer to [11].

In this paper we focus on the problem of process instantiation and its represen-
tation in process models. This problem is little understood in theory and practice,
and it poses a considerable challenge for mapping conceptual models to executable
processes. In particular, such conceptual models tend to have a significant amount
of control flow errors like deadlocks [12,13]. 57% of these errors in the SAP Ref-
erence Model, i.e. 102 out of 178 [14, p.150], can be traced back to an unsound
combination of multiple start and end events. The BPMN specification acknowl-
edges that the semantics of multiple start events are often unclear [10, p.36]. Even
though there has been a considerable amount of academic contributions on the
formalization of control flow constructs in all the six mentioned process modeling
languages, these works tend to abstract from the problem of process instantiation.
Most notably, the original workflow patterns [8] do not cover any instantiation
patterns. A revised set of control-flow patterns [15] discusses the effect of external
signals on the execution of a process instance (WCP-23 Transient Trigger, WCP-
24 Persistent Trigger), but not on instantiation.

Against this background, this paper provides a twofold contribution. First,
we define a conceptual framework to describe process instantiation semantics
as assumed in different process modeling languages. This framework is called
CASU since it builds on four pillars: instantiation creation (C), control threads
activation (A), event subscription (S), and unsubscription (U). Second, we use
this framework to classify and compare the instantiation semantics of the six
mentioned modeling languages. In particular, this comparison reveals additional
problems of mapping BPMN to BPEL beyond those discussed in [16,17,18].

The remainder of this paper is structured as follows. In Section 2 we discuss
how process instantiation is represented in Petri nets, EPCs, UML-AD, YAWL,
BPEL, and BPMN. We define a set of general concepts to make the approaches
comparable. Then, Section 3 introduce the CASU framework to describe differ-
ent instantiation semantics of process modeling languages. We provide a clas-
sification of the languages according to this framework. Section 4 discusses the
implications of this work, in particular, its relationship to existing research on
the verification of process models as well as potential directions for EPC formal-
ization and BPMN extension. Finally, Section 5 concludes the paper.

2 Background on Process Instantiation

Process Instantiation refers to the action and the rules of creating an instance
from a process model. Instantiation requires an initial state to be identified
for the newly created instance. In this section we discuss explicit and implicit

166 G. Decker and J. Mendling

Open
Workflow

Nets start
place

interface
place

Event-driven
Process
Chains

start
place

start
place

UML
Activity

Diagrams

YAWL

BPEL

<receive ... createInstance="yes" …/>

<pick createInstance="yes">
 <onMessage …/>
 <onMessage …/>
</pick>

BPMN

event condition

V

Fig. 1. Entry points in different process modeling languages

definition of an initial state, the role of entry points for it, i.e. start places, start
conditions, and start events, as well as the basic architecture for instantiation.

Most prominently, process instantiation requires the definition of the initial
state for the new instance. This initial state becomes the starting point for
allowed state transitions in the life cycle of the instance. In general there are two
ways of defining the initial state of a process instance: explicitly or implicitly. A
definition of an initial state is explicit if the initial state is part of the definition
of the process model. The initial state of a Petri net is traditionally defined
explicitly: Murata defines a Petri net as a 5-tuple including places, transitions,
arcs, weight function, and the initial marking [19]. The definition of an initial
state is implicit if it has to be derived from what we call entry points of a process
model, i.e. model elements without any control flow arc pointing to them. Note
that this notion of entry point only refers to the structure of the process model.

Entry points are related to different concepts in process modeling languages,
most prominently start places, start conditions, and start events (see Figure 1).
In the simplest case, an entry point is a start place that receives a control token at
the time of instantiation. A start condition is a statement about the environment
of a process that can be either true or false at a given point in time. Depending on
whether that condition yields true or false, the respective entry point is activated,
and thus becomes part of the initial state of the instance. Entry points can also
refer to start events. An event in that sense can be understood as a record of an
activity in a system [20]. Therefore, every event has a defined time of occurrence.
Start events are special events that respond to records related to a process type.

In some cases the initial state can be derived as unambiguously from entry
points as by giving the initial marking of a Petri net explicitly. Modeling lan-
guages like Workflow nets and YAWL restrict the number of entry points to one
unique node such that the initial state assigns a single token to the unique start

Instantiation Semantics for Process Models 167

Process
instance 1

Process
instance n

Event pool

Process instance factory

Subscription engine

Rule
engine

Fig. 2. Process execution environment

place. Things are less clear if there are multiple entry points in the model. Open
Workflow nets extend Workflow nets with an interface: syntactically they are
classified as start events according to our definition of an entry point. Yet, they
cannot trigger the creation of a new instance. In UML Activity Diagrams the
initial state is derived unambiguously by assigning a control token to each initial
node [6]. Note that receive activities in UAD are no entry points according to
our definition since they have to receive control from an incoming flow to be ac-
tivated. In contrast to the mentioned languages, the original definition of EPCs
[4] does not define a notion of state. Therefore, it is not a priori clear how a
combination of entry points, i.e. EPC start events, maps to an initial state. An
unambiguous way of deriving the initial state in this case would be to activate
all entry points while creating an instance. In contrast to that, the initial state of
an EPC is defined non-deterministically [21,22]. The start events of an EPC are
often used to represent both events and conditions [23, p.134]. As a consequence,
different initial states are allowed, but there is at most informal information, e.g.
in the text labels of the start events, that gives hints when and which initial state
has to be used. In BPMN start events can be used (they are optional) to describe
instantiation. The specification distinguishes subtypes for message, timer, rule,
link, and multiple start events [10]. If there are multiple start events modeled
they should be interpreted as independent events, i.e. each event creates a new
instance. Still, it is possible to describe the dependency upon multiple events
if the events flow to the same activity in the process and this activity specifies
the event dependency. In BPEL alternative start events can be defined using
the pick activity [9]. Multiple message activities can have the “createInstance”
attribute set to “yes”. Upon instantiation subscriptions are issued for all those
receive and onMessage elements that did not trigger instantiation and that do
not belong to the same pick element the triggering activity belonged to.

As a conceptual framework for those cases where start events apply, we as-
sume a subscription infrastructure including a rule engine involved in process
instantiation. Process instances and process instance factories can subscribe for
particular events and can have conditions evaluated. Process instance factories
typically have durable subscriptions for events, i.e. the subscription takes place
at deployment time of a process model and unsubscription at the moment of

168 G. Decker and J. Mendling

undeployment. As the name indicates, process instance factories create process
instances as a result of certain event occurrences. Subscriptions by process in-
stances have a shorter life span. Subscription can only become effective after the
moment of process instantiation. Unsubscription can take place any time during
the life time of a process instance, however, it must be before termination.

Figure 2 illustrates the subscription framework. Events occur in an event pool
and can be observed by a subscription engine. Subscriptions and unsubscriptions
can be issued by the different process instances and by the process instance
factory. The subscription engine in turn notifies them upon availability of a
corresponding event which in turn is then consumed.

3 A Framework for Process Instantiation

This section discusses different design choices for defining process instantiation
semantics. We establish a framework building on four aspects of instantiation
that have to be specified by a process modeling language:

Creation (C): When has a new instance to be created?
Activation (A): Which entry points are activated?
Subscription (S): For which start events are subscriptions created?
Unsubscription (U): How long are subscriptions kept?

Based on the first letters we refer to the framework as the CASU framework.

3.1 When to Create a New Instance?

In essence we can distinguish cases where the process model does not specify
when an instance has to be created (C-1), where the process model defines
conditions before an instance can be created (C-2 and C-3), and where the
process model specifies in response to which event an instance is created (C-4
and C-5). Please note that it is not reasonable to create an instance when a
condition is true. While an event is consumed, a condition would remain true
and trigger a cascade of new instances before it becomes false at some stage.

C-1 Ignorance. The process model is ignorant of instantiation condition. The
instantiation of a process instance is controlled by the process environment,
and no triggering events are defined.
Example: A process model describes that supply needs must be identified
before a request for quote is set up. However, it is not defined what triggers
the first activity. Figure 3 shows a corresponding YAWL net.

C-2 Single Condition Filter. The start condition of a process model specifies
under which circumstances it is possible to create a new process instance.
Example: The start condition of a loan process model specifies that the
applicant must be of full age.

C-3 Multi Condition Filter. Multiple start conditions define a complex con-
dition when a process is allowed to be instantiated.
Example: A loan process model of another bank defines two start conditions:
the applicant must be of full age and credit card owner (Figure 5).

Instantiation Semantics for Process Models 169

Identify
supply

demand

Set up
request for

quote

Fig. 3. C-1 Ignorance in a YAWL net

Applicant
is of full age

Entry
applicant

info

Fig. 4. C-2 Single condition filter in EPC

Applicant
is of full age

Entry
applicant

infoApplicant
is credit card

owner

V

Fig. 5. C-3 Multi condition filter in EPC

Validate
data

Submission
through web form

Fig. 6. C-4 Single event trigger in a
BPMN diagram

Register
match

Buy order

Sell order

Fig. 7. C-5 Multi event trigger in a
BPMN diagram

C-4 Single Event Trigger. The consumption of one start event triggers in-
stantiation.
Example: A Police process model describes that citizens can file charges via
a website, triggering instantiation by submitting the web form (Figure 6).

C-5 Multi Event Trigger. Consumption of multiple events triggers instantia-
tion. There is a potential race between different process definitions (factories)
in case of overlapping event types. When the last required event becomes
available, the instance is created and all required events are consumed at
one point in time.
Example: Buy and sell events arising from the stock market are automatically
correlated triggering trade processes (Figure 7).

3.2 Which Entry Points Are Activated?

There are different ways to express in a process model which entry points are
activated at instantiation time. An initial state (A-1) defines explicitly the ac-
tivation. Depending on the type of entry points the activation can be specified
implicitly: all start places (A-2), true conditions (A-3), occurred events (A-4),
or a combination of the latter (A-5).

A-1 Initial State. The process model explicitly defines the state each process
instance is initially in.
Example: A model includes an initial marking with several tokens. One of
them represents a semaphore, the others two streams of control (Figure 8).

170 G. Decker and J. Mendling

Fig. 8. A-1 Initial state in a Petri net

Assess
customer

liability

Check
customer risk

Check stock
levels

Fig. 9. A-2 All start places in a UML
Activity Diagram

University
certificate
present

Review
certificate

Contact
number
present

CV
present

VCall contact
person

Certificate
reviewed

Contact
person
called

Fig. 10. A-3 True conditions as an EPC

A-2 All Start Places. The process model implicitly defines an initial state
through its structure: all start places receive a token at instantiation.

Example: An ordering process model has three start nodes, each receiving
a token upon instantiation. These tokens enable the three parallel activities
“assess customer liability”, “check customer risk” and “check stock levels”
(Figure 9).

A-3 True Conditions. The environment checks conditions at instantiation and
activates the respective start condition nodes.

Example: A job application process model contains the following start con-
ditions: “University certificate present”, “contact number present” and “CV
present”. Only if a contact phone number is present, the former employer is
called for getting further information on the candidate. The university certifi-
cate must be reviewed if present and the contact person is called if a phone
number is present (Figure 10).

A-4 Occurred Events. In this case all consumed events (one or more) are
mapped to an activation of control threads in the process model. There may
be start events that do not belong to this set.

Example: An invoice management process model describes four start events
(Figure 11): “paper invoice received”, “electronic invoice received”, “delivery
notification received” and a timer event “second Tuesday of the month”.
Once a pair of corresponding invoice and delivery notification have arrived or
an invoice has arrived and the timer event has occurred, a process instance is

Instantiation Semantics for Process Models 171

Paper
invoice

received

Electronic
invoice

received
Delivery

notification
received

Second
Tuesday of
the month

XOR

XOR

V

Fig. 11. A-4 Occurred events as an EPC

Paper
invoice

received

Electronic
invoice

received

Order is
present

Supplier is
new

XOR

V

Fig. 12. A-5 Occurred events plus condi-
tions as an EPC

created. Upon instantiation those control threads are activated that originate
in the respective start events.

A-5 Occurred Events plus Conditions. In this case all consumed events map
to activated control threads. Additionally, branches can be activated if start
conditions yield true at instantiation time.
Example: In a second invoice management process model (Figure 12), the
start events “paper invoice received” and “electronic invoice received” appear
again. Additionally, there are start conditions “order is present” and “supplier
is new”. For each start condition that is fulfilled upon instantiation the corre-
sponding control thread is activated.

3.3 For Which Non-activated Start Events Are Subscriptions
Created?

When there are start events a decision has to be made whether event subscrip-
tions are made for those remaining start events that did not lead to the instan-
tiation of process. We distinguish the case of subscriptions being created for all
of the remaining start events (S-1), for none of them (S-2), or for those that are
required for proper execution (S-3).

S-1 All Subscriptions. For those start events that are not activated at instan-
tiation time, there is an event subscription created for the process instance.
I.e., the remainder branches may be activated later by respective events.
Example: A couple applies for a mortgage. With opening the case, there are
already several events subscriptions activated that matter later like providing
sketch of the house, sale contract, etc. (Figure 13).

S-2 No Subscriptions. In this case there are no event subscriptions created
for the process instance. I.e., an entry point thread will be either activated
at instantiation time or never.
Example: A stock purchase process can be triggered by either a customer
representative directly entering the purchase request or by the customer
entering the request in a web form (Figure 14).

172 G. Decker and J. Mendling

Sketch of
the house
received

Sale
contract
received

V

Fig. 13. S-1 All subscriptions as an EPC

Process
request

Internal request

Request through
web form

Fig. 14. S-2 No subscriptions in a BPMN
diagram

Paper
invoice

received

Electronic
invoice

received
Delivery

notification
received

XOR

V

Fig. 15. S-3 Reachable subscriptions as an EPC

S-3 Reachable Subscription. Only those event subscriptions are activated
that might be required later to complete the process instance properly.
Example: In an invoice management process model similar to that of A-4
there are three start events: the receipt of a paper invoice, of an electronic
invoice or a delivery notification can trigger instantiation. As only one in-
voice is needed for proper termination, only a subscription for the delivery
notification is issued in case the receipt of an invoice triggered instantiation.
In the other case, subscriptions for both invoice types are issued (Figure 15).
BPEL provide respective functionality with the pick as a start activity.

3.4 How Long Are Subscriptions Kept?

There may be different ways to unsubscribe for events. In the simplest case, they
are kept until consumption (U-1) or at least until the process terminates (U-2).
Earlier unsubscriptions can be defined based on timers (U-3), on events (U-4),
or on proper completion (U-5). Listing 1 shows respective concepts in BPEL.

U-1 Until Consumption. The process cannot terminate before all event sub-
scriptions have led to the consumption of a respective event. A subscription
of an instance is never deactivated.
Example: A process model describes the activities of a logistics hub, where
containers with RFID tags arrive while routing information for the contain-
ers is fed into the system through a different channel. Either the container or
its routing information might arrive first, but the process cannot terminate
before both are there.

Instantiation Semantics for Process Models 173

Listing 1. Unsubscription in BPEL
<scope>
<eventHandlers><onAlarm name="timeout" .. /></eventHandlers>
<flow>
<receive name="rcvDeliveryNot" .. createInstance="yes">
<correlations><correlation set="inv" initiate="join"/></correlations>
</receive>
<sequence><pick createInstance="yes">
<onMessage name="rcvEInvoice" .. >
<correlations><correlation set="inv" initiate="join"/></correlations>
.. </onMessage>
<onMessage name="rcvPInvoice" .. >
<correlations><correlation set="inv" initiate="join"/></correlations>
.. </onMessage>
</pick> ..
<exit/></sequence>
</flow>
</scope>

U-2 Until Termination. As soon as the process fulfills a termination con-
dition, all subscriptions are deactivated, and the process terminates. This
seems to be often assumed by EPC modelers.

Example: A BPEL process reaches an exit activity terminating all subscrip-
tions.

U-3 Timer-based. After a certain period of time after instantiation, all or
individual event subscriptions are cancelled.

Example: A timeout of a pick activity in a BPEL process deactivates an
event subscription.

U-4 Event-based. If one of alternative events is consumed, the others are not
more considered, and deactivated.

Example: In an invoice management process model similar to that of A-4
is represented in BPEL. A pick as a start activity defines alternative start
events: the receipt of a paper or an electronic invoice or of a paper or an elec-
tronic delivery notification. If the receipt of an invoice triggered instantiation
and a paper delivery notification arrives, the subscription for an electronic
delivery notification is removed. This also applies for the other combinations.

U-5 Proper Completion. An event gets deactivated when proper completion
is guaranteed for the current marking if the event is not consumed.

Example: A process model describes how reallocation of passengers to flights
of partner airlines works at an airport’s service desk. This process model has
two start events “Passenger arrives at service desk” and “flight voucher ar-
rives”. Immediately upon arrival of the passenger a seat is allocated and im-
mediately upon arrival of an electronic flight voucher this voucher is checked
for validity. As vouchers can also be issued in paper form, the passenger

174 G. Decker and J. Mendling

might carry this voucher with him. As soon as the voucher is checked, the
flight is billed and the passenger can board the aircraft.

3.5 A Classification of Instantiation Semantics

Before assessing the six process modeling languages, the interrelationships be-
tween the patterns presented in the CASU framework need to be discussed
briefly. While patterns A-1 (Initial state) and A-2 (All start places) do not re-
quire support for any particular of the C-patterns, A-3 (True conditions) requires
the specification of single or multiple start conditions (C-2, C-3). All patterns
related to start events (A-4, A-5, all S-patterns and all U-patterns) rely on the
possibility to specify single or multiple event triggers (C-4, C-5). The results of
the classification are summarized below in Table 1.

Open Workflow Nets (oWFN) are a particular class of Petri nets that are
ignorant of the circumstances of their instantiation (C-1). Furthermore, they
define an initial state (A-1). They also include a distinct set of interface places
that can be used for message passing. The input places of the interface follow
all subscription semantics (S-1) that are kept until completion (U-2).

Start events (also called triggers) are used in Event-driven Process Chains
(EPC) to represent when a process starts. The cases C-4 (Single Event Trigger)
with XOR-join and C-5 (Multiple Event Trigger) with AND-join are described
in [5] and [23], but no formalization is available. Although not recommended,
the decomposition of EPCs often leads to subprocesses that have conditions
as start nodes (C-2 and C-3), e.g. if the subprocess starts immediately after a

Table 1. Instantiation in different process modeling languages

Patterns oWFN EPCs UAD YAWL BPEL BPMN

C-1 Ignorance + + + + + +

C-2 Single Condition Filter – + – – – –

C-3 Multi Condition Filter – + – – – –

C-4 Single Event Trigger – + – – + +

C-5 Multi Event Trigger – + – – – +

A-1 Initial State + – – – – –

A-2 All Start Places – – + + – –

A-3 True Conditions – + – – – –

A-4 Occurred Events – + – – + +

A-5 Occurred Events plus Cond. – + – – – –

S-1 All Subscriptions + ∅ – – + –

S-2 No Subscriptions – ∅ – – – +

S-3 Reachable Subscription – ∅ – – + –

U-1 Until Consumption – ∅ – – + –

U-2 Until Termination + ∅ – – + –

U-3 Timer-based – ∅ – – + –

U-4 Event-based – ∅ – – + –

U-5 Proper Completion – ∅ – – – –

Instantiation Semantics for Process Models 175

decision [5, pp.250] or to express external dependencies [5, pp.131]. If the trigger
or condition is not made explicit in the start event label, the EPC remains
ignorant of the instantiation (C-1). Depending on which of multiple start events
and start conditions apply the respective initial state is derived (A-3, A-4, A-5).
The whole area of subscription (S-Patterns) and unsubscription (U-Patterns)
related to non-activated entry points has not been explicitly defined for EPCs.
There seem to be some inconsistent interpretations that need to be resolved
in future work: While Rump assumes that there are no subscriptions [21], the
concept of external dependency appears to suggest either S-1 (all subscriptions)
or S-3 (reachable subscriptions) [5, pp.131]. In neither case unsubscription is
discussed. Table 1 reflects this ambiguity by using the ∅ character.

Although UML Activity Diagrams (UAD) include event consumption and
event production as first-class citizens of the language, these concepts are not
used in the context of process instantiation. The events required for process
instantiation are beyond the scope of UAD models. That way UAD only supports
C-1 (Ignorance) among the C-patterns. The start nodes are essentially start
places that all receive a token upon instantiation (A-2). The remaining patterns
A-3 through A-5, the S-patterns and the U-patterns are not supported.

Yet Another Workflow Language (YAWL) concentrates on the control and
data flow within process instances. There is one distinguished “start condition”
per process model, however, definitions of how and when instantiation takes place
are not part of YAWL models. The notion of start conditions or start events are
not present. Therefore, it does not support C-1 through C-4, A-3 through A-5,
none of the S-patterns as well as none of the U-patterns. The initial state of a
process instance is implicitly given: there is exactly one start place that receives
a token upon instantiation (A-2). That way, YAWL is similar to UAD in terms of
instantiation semantics with an additional restriction to exactly one start place.
Workflow nets share the same instantiation profile with YAWL.

The Business Process Execution Language (BPEL) completely lacks the no-
tion of start conditions (C-2, C-3). Process instantiation might be undefined
in the case of abstract BPEL (C-1) and must be defined for executable BPEL
processes. Here, instantiation is always triggered through individual message re-
ceipts (C-4), described in incoming message activities (receive or pick) having
the attribute “createInstance” set to yes. Defining combinations of messages
that are required for instantiation is not possible (C-5). The start state of a
process instance is solely determined by the one start event that triggered pro-
cess instantiation. Therefore, BPEL does not support A-1, A-2, A-3 and A-5.
Subscriptions are issued for all those incoming message activities that have not
been involved in process instantiation (S-1). Whenever an onMessage branch
of a pick element receives the initial message, no subscriptions are issued for
the other onMessage branches of the same pick element. That way, BPEL sup-
ports S-3. As illustrated in Listing 1, BPEL supports patterns U-1 through U-4.
Termination before having received all start messages can be achieved through
the exit element or through throwing exceptions. Timer-based unsubscription
(U-3) can be realized by surrounding message activities with a scope that has

176 G. Decker and J. Mendling

an onAlarm event handler attached. Event-based unsubscription happens in the
context of pick elements (U-4). Beyond these triggers for unsubscription, BPEL
does not support pattern U-5.

The Business Process Modeling Notation (BPMN) does not include the notion
of start conditions. The only entry points available are start events. C-4 (Single
Event) is the default case for BPMN processes, where an individual event speci-
fied in the model leads to process instantiation. However, no specification might
be given, that way realizing Ignorance (C-1). The BPMN specification mentions
a special case realizing C-5: Multiple start events are connected to an activity
indicating that all start events must have occurred before the activity can start
[10, p.36]. BPMN also supports A-4 (Occurred Events) via event-based gateways.
However, if C-5 applies there is a slightly different token flow in comparison with
the standard semantics of BPMN: While typically each token flowing into an ac-
tivity leads to a separate activity instance, only one activity instance is created
in the presence of the C-5 scenario. All other A-patterns are not supported, in
particular, neither A-1 (Initial State), nor A-2 (All Start Places), and the notion
of start conditions is absent (A-3 and A-5). Although the BPMN specification is
slightly ambiguous regarding multiple start events, we interpret that each start
event consumption will lead to a separate process instantiation. No subscrip-
tions for other start events are issued within a newly created process instance
(S-2). As a result, BPMN does not support patterns S-1, S-3 and none of the
U-patterns.

4 Discussion

In this section we discuss the implications of this research. First, we focus on
the suitability of correctness criteria. We then give directions for a formalization
of EPC instantiation semantics before finally identifying potential extensions
to BPMN. Please note that the formalizations of process modeling languages
that we are aware of tend to abstract from the complexity of the instantiation
problem, e.g. [24,25,22].

Several correctness criteria for process models are available including sound-
ness, relaxed soundness, EPC soundness, and controllability. For an overview see
[11]. The classical soundness property demands a process to complete properly
and to have no dead transitions [3]. It can be used to check process models with
unique start and end elements such as Workflow nets and YAWL nets. Multiple
start nodes in UAD can be bundled with an AND-join such that it becomes also
applicable for them. The relaxed soundness property can be used for languages
with multiple entry points such as EPCs. It basically requires (1) that an OR-
split is introduced to bundle all start elements, and (2) checks whether each node
participates in at least one execution sequence that leads to proper completion
[26]. The property of EPC soundness is stricter: it demands that for every start
element there exists an initial marking that guarantees proper completion [22].
This property assumes pattern S-2 (no subscriptions). For oWFNs the prop-
erty of controllability was defined to deal with interface places. An oWFN is

Instantiation Semantics for Process Models 177

essentially controllable if there exists a strategy to interact with it such that it
terminates properly [2]. The interesting characteristic of this property is that it
is basically applicable for any combinations of subscription and unsubscription
patterns including those that consider reachability and proper completion. Still
it does not distinguish models for which only one particular strategy exists from
those which permit different strategies.

In Section 3.5 we already mentioned that a specification of EPC instantiation
semantics is missing. The concept of external dependency [5] and its represen-
tation as a start event highlights the need to discuss subscription semantics in
detail. A start event with external dependency semantics does not trigger the
creation of an instance, but defines a point of synchronization with an event
from outside the process. We basically see two options to support such external
dependencies: either S-3 (reachable subscriptions) or based on S-1 (all subscrip-
tions) with U-5 (proper completion). In the case of S-3 those event subscriptions
are activated that might be required later to complete the process instance prop-
erly. In this case a reachability graph analysis, e.g. using [22], would be required.
While this solution would prevent some deadlocks at AND-joins that merge
paths from start events, it still allows problems with lack of synchronization. In
case of S-1 with U-5 some of the latter problems can be avoided since events get
unsubscribed if no more needed. Beyond this aspect of the semantics, one has
to carefully select a state representation for the subscriptions. If a subscription
is defined like a special activity that is active, this has consequences for down-
stream OR-joins: they keep waiting for the event to occur, potentially forever
if the event cannot occur anymore. Therefore, it would be preferable that event
subscriptions were not visible in the state representation of this case.

The status of BPMN as a standards proposal raises questions how and whether
it should support more of the CASU patterns. An important consideration in this
regard is most likely to extend it such that it remains consistent with the current
semantics. The support of the start condition patterns (C-2 and C-3) would re-
quire either the introduction of a new element or the redefinition of the rule events.
These options either affect the metamodel or the current semantics which is both
undesirable. If the creation support (C-1 to C-5) remains unchanged, also the ac-
tivation patterns (A-1 to A-5) stay the same. With respect to the subscriptions
(S-1 and S-3) there are basically two options: either changing the instantiation
semantics of BPMN, or to add a subscription attribute to start events. The lat-
ter seems more attractive from a consistency perspective. Using a keepSubscrip-
tion attribute, one would be able to specify S-1 (all subscriptions) and S-2 (no
subscriptions). By using a further attribute subscriptionGroup one would be able
to specify instantiation behavior similar to BPEL: all start events with the same
subscription group assigned would correspond to message receive activities within
one pick element. If there is only one start event for a group, it corresponds to a
plain receive activity. Clearly, these concepts require correlation mechanisms such
as identified in [27]. Unsubscriptions could equally be captured by additional at-
tributes, e.g. by setting subscriptionTimeout (U-3) and properTermination (U-5)

178 G. Decker and J. Mendling

attributes. An event-based unsubscription (U-4) can be handled using the pre-
viously mentioned subscriptionGroup: as soon as an event of the group occurs,
the others are unsubscribed. As BPEL has a more sophisticated profile in terms
of subscription and unsubscription patterns (cf. 1), an extension of BPMN with
these aspects could simplify the automatic transformation between the languages.

5 Conclusions

Up to now there has been hardly any research dedicated to instantiation seman-
tics of process models. In this paper we have addressed this research gap and
introduced the CASU framework. This framework distinguishes the specifica-
tion of when to create a new process instance (C), of which control threads to be
activated upon instantiation (A), of which remaining start events to subscribe
for (S), and of when to unsubscribe from these events (U). It builds on general,
language-independent concepts and offers a tool for the systematic description
and comparison of instantiation semantics of process modeling languages. As
such it complements other works such as the workflow patterns.

Based on the CASU framework, we have classified six of the most prominent
languages according to their instantiation semantics. In particular, the different
profiles of BPMN and BPEL reveal a source of mapping problems between these
two languages that has not been identified before. Furthermore, we have shown
that the framework provides a basis to discuss the suitability of correctness
criteria, the formalization of EPCs, and potential extensions to BPMN. In future
research we aim to utilize the CASU framework for analyzing control-flow errors
in EPCs. This could lead to new insights regarding which instantiation semantics
process modelers assume. In this regard, the explicit description of instantiation
semantics by the help of the CASU framework might eventually help to reduce
ambiguity and the number of errors in conceptual process modeling.

References

1. Petri, C.: Fundamentals of a Theory of Asynchronous Information Flow. In: 1962
IFIP Congress, pp. 386–390. North-Holland, Amsterdam (1962)

2. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting ws-bpel
processes using flexible model generation. Data Knowl. Eng. 64, 38–54 (2008)

3. van der Aalst, W.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

4. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany (1992)

5. Davis, R.: Business Process Modelling With Aris: A Practical Guide (2001)
6. Object Management Group: UML 2.0 Superstructure Specification (2005)
7. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language.

Information Systems 30, 245–275 (2005)
8. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-

terns. Distributed and Parallel Databases 14, 5–51 (2003)

Instantiation Semantics for Process Models 179

9. Alves, A., et al.: Web services business process execution language 2.0 (2007)
10. Object Management Group: Business Process Modeling Notation (2006)
11. Weske, M.: Business Process Management. Springer, Heidelberg (2007)
12. Mendling, J., Verbeek, H., van Dongen, B., van der Aalst, W., Neumann, G.:

Detection and Prediction of Errors in EPCs of the SAP Reference Model. Data &
Knowledge Engineering 64, 312–329 (2008)

13. Mendling, J., Neumann, G., van der Aalst, W.: Understanding the occurrence of
errors in process models based on metrics. In: Meersman, R., Tari, Z. (eds.) OTM
2007, Part I. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

14. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration (2007)

15. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow Control-Flow
Patterns: A Revised View. BPM Center Report BPM-06-22 (2006)

16. Ouyang, C., Dumas, M., Breutel, S., ter Hofstede, A.: Translating standard process
models to bpel. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp.
417–432. Springer, Heidelberg (2006)

17. Mendling, J., Lassen, K., Zdun, U.: Transformation strategies between block-
oriented and graph-oriented process modelling languages. International Journal
of Business Process Integration and Management 3 (2008)

18. van der Aalst, W., Lassen, K.: Translating unstructured workflow processes to
readable bpel: theory and implementation. Inf. Softw. Techn. 50, 131–159 (2008)

19. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77, 541–580 (1989)

20. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley, Reading (2001)

21. Rump, F.: Geschäftsprozessmanagement auf der Basis ereignisgesteuerter Prozess-
ketten - Formalisierung, Analyse und Ausführung von EPKs. Teubner (1999)

22. Mendling, J., van der Aalst, W.: Formalization and Verification of EPCs with OR-
Joins Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Heidelberg
(2007)

23. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-Driven Pro-
cess Chains. In: Process Aware Information Systems, pp. 119–146 (2005)

24. Eshuis, R., Wieringa, R.: Tool support for verifying UML activity diagrams. IEEE
Trans. Software Eng. 30, 437–447 (2004)

25. Puhlmann, F., Weske, M.: Investigations on soundness regarding lazy activities.
In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp.
145–160. Springer, Heidelberg (2006)

26. Dehnert, J., Aalst, W.: Bridging The Gap Between Business Models And Workflow
Specifications. International J. Cooperative Inf. Syst. 13, 289–332 (2004)

27. Barros, A., Decker, G., Dumas, M., Weber, F.: Correlation patterns in service-
oriented architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 245–259. Springer, Heidelberg (2007)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 180–195, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Probabilistic Strategy for Setting Temporal
Constraints in Scientific Workflows

Xiao Liu, Jinjun Chen, and Yun Yang

Faculty of Information and Communication Technologies
Swinburne University of Technology
Hawthorn, Melbourne, Australia 3122

{xliu,yyang,jchen}@swin.edu.au

Abstract. In scientific workflow systems, temporal consistency is critical to en-
sure the timely completion of workflow instances. To monitor and guarantee
the correctness of temporal consistency, temporal constraints are often set
and then verified. However, most current work adopts user specified temporal
constraints without considering system performance, and hence may result in
frequent temporal violations that deteriorate the overall workflow execution ef-
fectiveness. In this paper, with a systematic analysis of such problem, we pro-
pose a probabilistic strategy which is capable of setting coarse-grained and fine-
grained temporal constraints based on the weighted joint distribution of activity
durations. The strategy aims to effectively assign a set of temporal constraints
which are well balanced between user requirements and system performance.
The effectiveness of our work is demonstrated by an example scientific work-
flow in our scientific workflow system.

Keywords: Scientific Workflow, Temporal Constraints, Temporal Constraint
Setting, Probabilistic Strategy.

1 Introduction

Scientific workflow is a new special type of workflow that often underlies many
large-scale complex e-science applications such as climate modelling, structural biol-
ogy and chemistry, medical surgery or disaster recovery simulation [18][25]. Real
world scientific as well as business processes normally stay in a temporal context and
are often time constrained to achieve on-time fulfilment of certain scientific or busi-
ness targets. Furthermore, scientific workflows are usually deployed on the high per-
formance computing infrastructures, e.g. cluster, peer-to-peer and grid computing, to
deal with huge number of data intensive and computation intensive activities [24][25].
Therefore, as an important dimension of workflow QoS (Quality of Service) con-
straints, temporal constraints are often set to ensure satisfactory efficiency of scien-
tific workflow executions [5][9]. Temporal constraints mainly include three types, i.e.
upper bound, lower bound and fixed-time. An upper bound constraint between two
activities is a relative time value so that the duration between them must be less than
or equal to it. As discussed in [6], conceptually, a lower bound constraint is symmet-
rical to an upper bound constraint and a fixed-time constraint can be viewed as a

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 181

special case of upper bound constraint, hence they can be treated similarly. Therefore,
in this paper, we focus on upper bound constraints only. As an important means to
facilitate temporal QoS, many efforts have been dedicated to temporal verification for
workflows in recent years. Different approaches for checkpoint selection and dynamic
temporal verification are proposed to improve the efficiency of temporal verification
with given temporal constraints [6][10][17]. However, with the assumption that tem-
poral constraints are pre-defined, most papers focus on run-time temporal verification
while neglecting the fact that efforts put at run-time will be mostly in vain without
build-time setting of high quality temporal constraints. The reason is obvious since
the purpose of temporal verification is to identify potential violations of temporal
constraints to minimise the exception handling cost. Therefore, if temporal constraints
are of low quality themselves, temporal violations are highly expected no matter how
much efforts have been put by temporal verification.

The task of setting temporal constraints described in this paper is to assign a set of
coarse-grained and fine-grained upper bound temporal constraints to scientific work-
flows. Here, coarse-grained constraints refer to those assigned to the entire workflow
or workflow segments, while fine-grained constraints refer to those assigned to indi-
vidual activities. However, although coarse-grained constraints can be deemed as the
collection of fine-grained constraints, they are not in a simple relationship of linear
culmination and decomposition. To ensure on-time fulfilment of workflow instances,
both coarse-grained and fine-grained temporal constraints are required, especially
when scientific workflows are deployed on dynamic computing infrastructures, e.g.
grid, where the performance of the underlying resources is highly uncertain [18].
Here, the quality of temporal constraints can be measured by at least two criteria: 1)
well balanced between user requirements and system performance; 2) well supported
for both overall coarse-grained control and local fine-grained control. A detailed illus-
tration will be presented in Section 2.

In this paper, a probabilistic strategy for setting both coarse-grained and fine-
grained temporal constraints is proposed. With a novel probability based temporal
consistency which utilises the weighted joint distribution of activity durations, our
strategy supports an iterative and interactive negotiation process between the client
(e.g. a user) and the service provider (e.g. a workflow system) for setting coarse-
grained temporal constraints. Afterwards, fine-grained temporal constraints associated
with each activity can be derived automatically. In addition, the weighted joint distri-
bution of four basic Stochastic Petri Nets [1] (SPN) based building blocks, i.e. se-
quence, iteration, parallelism and choice, is presented to enhance the efficiency of
calculating the overall weighted joint distribution through their compositions. The
effectiveness of our strategy is further demonstrated by an example scientific work-
flow of weather forecast in our scientific workflow management system, i.e.
SwinDeW-G (Swinburne Decentralised Workflow for Grid) [23].

The remainder of the paper is organised as follows. Section 2 presents a motivat-
ing example and the problem analysis. Section 3 proposes novel probability based
temporal consistency. Section 4 presents the probabilistic strategy for setting tempo-
ral constraints. Section 5 further demonstrates the setting process with the motivating
example to verify the effectiveness of our strategy. Section 6 introduces the imple-
mentation of the strategy in our scientific workflow system. Section 7 presents the
related work. Finally, Section 8 addresses our conclusion and future work.

182 X. Liu, J. Chen, and Y. Yang

2 Motivating Example and Problem Analysis

In this section, we introduce a weather forecast scientific workflow to demonstrate the
problem of setting temporal constraints. In addition, two basic requirements for set-
ting high quality temporal constraints are presented.

The entire weather forecast workflow contains hundreds of data intensive and
computation intensive activities. Major data intensive activities include the collection
of meteorological information, e.g. surface data, atmospheric humidity, temperature,
cloud area and wind speed from satellites, radars and ground observatories at
distributed geographic locations. These data files are transferred via various kinds of
network. Computation intensive activities mainly consist of solving complex
meteorological equations, e.g. meteorological dynamics equations, thermodynamic
equations, pressure equations, turbulent kinetic energy equations and so forth which
require high performance computing resources. Due to the space limit, it is not possi-
ble to present the whole forecasting process in detail. Here, we only focus on one of
its segments for radar data collection. As depicted in Figure 1, this workflow segment
contains 12 activities which are modeled by SPN with additional graphic notations as
illustrated in Sections 4 and 6. For simplicity, we denote these activities as

1X to 12X . The workflow process structures are composed with four SPN based
building blocks, i.e. a choice block for data collection from two radars at different
locations (activities 41 ~ XX), a compound block of parallelism and iteration for data

updating and pre-processing (activities 106 ~ XX), and two sequence blocks for data

transferring (activities 12115 ,, XXX).
It is evident that the duration of these scientific workflow activities are highly

dynamic in nature due to their data complexity and the computation environment.
However, to ensure the weather forecast can be broadcast on time, every scientific
workflow instances must be completed within a specific time duration. Therefore, a
set of temporal constraints must be set to monitor the overall workflow execution
time. For our example workflow segment, to ensure that the radar data can be col-
lected in time and transferred for further processing, at least one overall upper bound
temporal constraint is required. However, a coarse-grained temporal constraint is not
effective enough to ensure fine-grained workflow execution, i.e. the completion time
of each activity. It is evidently that without the support of local enforcements, the
overall workflow duration can hardly be guaranteed. For example, we set a two hour
temporal constraint for this radar data collection process. But due to some technical
problems, the connection to the two radars are broken and blocked in a state of retry

Fig. 1. Example scientific workflow segment

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 183

and timeout for more than 30 minutes whilst its normal duration should be far less.
Therefore, the two hour overall temporal constraint for this workflow segment will
probably be violated since its subsequent activities normally require more than 90
minutes to accomplish. However, no actions were taken yet due to the ignorance of
the fine-grained temporal constraints on these connection activities. The exception
handling cost for compensation of this time deficit, e.g. workflow re-scheduling and
recruitment of additional resources, is hence inevitable. That is why we also need to
set fine-grained temporal constraints to each activity. Specifically, for this example
workflow segment, an overall coarse-grained temporal constraint and 12 fine-grained
temporal constraints for activities 1X to 12X are required to be set.

However, setting temporal constraints is not a straightforward task, many factors
such as workflow structures, system performance and user requirements should be
taken into consideration. Here, we present the basic requirements of the setting strat-
egy by analysing two criteria for high quality temporal constraints.

1) Temporal constraints should be well balanced between user requirements and
system performance. It is common that clients often suggest coarse-grained temporal
constraints based on their own interest while with limited knowledge about the actual
performance of workflow systems. With our example, it is not rational to set a 60
minutes temporal constraint to the segment which normally needs two hours to finish.
Therefore, user specified constraints are normally prone to cause frequent temporal
violations. To address this problem, a negotiation process between the client and the
service provider who is well aware of the system performance is desirable to achieve
balanced coarse-grained temporal constraints that both sides are satisfied with.

2) Temporal constraints should facilitate both overall coarse-grained control and
local fine-grained control. As analysed above, this criterion actually means that the
strategy should support setting both coarse-grained temporal constraints and fine-
grained temporal constraints. However, although the overall workflow process is
composed of individual workflow activities, coarse-grained temporal constraints and
fine-grained temporal constraints are not in a simple relationship of linear culmination
and decomposition. Meanwhile, it is impractical to set fine-grained temporal con-
straints manually for a large amount of activities in scientific workflows. Since
coarse-grained temporal constraints can be obtained through the negotiation process,
the problem to be addressed here is how to automatically derive the local fine-grained
temporal constraints for each activity.

To conclude, the basic requirements for setting high quality temporal constraints
can be simply put as effective negotiation for coarse-grained temporal constraints and
automatic assignment for fine-grained temporal constraints. However, to our best
knowledge, very little efforts have been dedicated to set high quality temporal con-
straints in scientific workflows. In this paper, we propose a probabilistic strategy
which targets at the two requirements.

3 Probability Based Temporal Consistency

In this section, we propose a novel probability based temporal consistency which
utilise the weighted joint distribution of workflow acitivity durations to facilitate
setting temporal constraints. To define the weighted joint distribution of workflow

184 X. Liu, J. Chen, and Y. Yang

acitivity durations, we first present two assumptions on the probability distribution of
individual activity duration.

Assumption 1: The distribution of activity durations can be obtained from workflow
system logs. Without losing generality, we assume all the activity durations follow the

normal distribution model, which can be denoted as),(2σµN where µ is the expected

value and 2σ is the variance where σ is the standard deviation [21].

Assumption 2: The activity durations are independent to each other.
For the convenience of analysis, assumption 1 chooses normal distribution to model
the activity durations. If most of the activity durations follow non-normal distribution,
e.g. Gamma distribution, lognormal distribution or Beta distribution [16], our strategy
can still be applied in a similar way with minor differences of their joint distribution.
Furthermore, as it is commonly applied in the area of system simulation and perform-
ance analysis, assumption 2 requires that the activity durations be independent from
each other to facilitate the analysis of joint normal distribution. For those which do
not follow the above assumptions, they can be treated by normal transformation and
correlation analysis [16], or moreover, they can be ignored first when calculating joint
distribution and then added up afterwards.

Furthermore, we present an important formula of joint normal distribution.

Formula 1: If there are n independent variables of),(~ 2
iii NX σµ and n real num-

bers iθ , where n is a limited natural number, then the joint distribution of these vari-

ables can be obtained with the following formula [21]:

nn XXXZ θθθ +++= ...2211 ⎟
⎠
⎞⎜

⎝
⎛= ∑

=
∑
=

∑
=

n

i
ii

n

i
ii

n

i
ii NX

1

22

11
,~ σθµθθ (1)

Based on this formula, we define the weighted joint distribution of workflow
acitivity durations as follows.

Definition 1: (Weighted joint distribution). For a scientific workflow proc-
ess SW which consists of n activities, we denote the activity duration distribution of

activity ia as),(2
iiN σµ with ni ≤≤1 . Then the weighted joint distribution is defined

as ⎟
⎠
⎞

⎜
⎝
⎛= ∑

=
∑
=

n

i
ii

n

i
iiswsw wwNN

1

22

1

2 ,),(σµσµ , where iw stands for the weight of activity

ia that denotes the choice probability or iteration times associated with the workflow

path where ia belongs to.

The weight of each activity with different kinds of workflow structures will be further
illustrated in Section 4 by the calculation of weighted joint distribution for basic SPN
based building blocks. The weighted joint distribution enables us to analyse the com-
pletion time of the entire workflow from an overall perspective. Here, we need to de-
fine some notations. For a workflow activity ia , its maximum duration and minimum

duration are defined as)(iaD and)(iad respectively. For a scientific workflow

process SW which consists of n activities, its upper bound temporal constraint is
denoted as)(SWU with the value of)(SWu [6][10]. In addition, we employ

the “ σ3 ”rule which has been widely used in statistical data analysis to specify the

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 185

possible intervals of activity durations. The “ σ3 ”rule depicts that for any sample
comes from normal distribution model, it has a probability of 99.73% to fall into the
range of []σµσµ 3,3 +− which is a systematic interval of 3 standard deviation around
the mean [21]. Therefore, in this paper, we define the maximum duration as

iiiaD σµ 3)(+= and the minimum duration as iiiad σµ 3)(−= . Accordingly, sam-

ples from the system logs which are above)(iaD or below)(iad are hence discarded
as outliers. Now, we propose the definition of probability based temporal consistency
which is based on the weighted joint distribution of activity durations. To be noted
that, since we deal with setting temporal constraints in this paper, here we only pre-
sent the definition of build-time temporal consistency.

Definition 2: (Probability based temporal consistency).
At build-time stage,)(SWU is said to be:

1) Absolute Consistency (AC), if)()3(
1

SWuw
n

i
iii ≤+∑

=
σµ ;

2) Absolute Inconsistency (AI), if)()3(
1

SWuw
n

i
iii ≥−∑

=
σµ ;

3) %α Consistency (%α C), if)()(
1

SWuw
n

i
iii =+∑

=
λσµ .

Here iw stands for the weight of activity ia , λ (33 ≤≤− λ) is defined as the %α con-
fidence percentile with the cumulative normal distribution function of

%
2

1
)(22

2)(
α

πσ
λσµ σ

µ
λσµ =•=+

−−
∫ +

∞− dxF
i

ix
iiii h (1000 << α). As depicted in

Figure 2, if we apply the “ σ3 ”rule to the conventional discrete multiple temporal
consistency [7], i.e. strong consistency (SC), weak consistency (WC), weak inconsis-
tency (WI) and strong inconsistency (SI), the two discrete states of WI and WC are
actually replaced by continuous consistency states %α C which compose a Gaussian
curve the same as the cumulative normal distribution [21]. The other two consistency
states outside the interval are basically the same but also with continuous values
infinitely approaching 100% or 0% respectively. However, in order to distinguish
them from conventional strong consistency and strong inconsistency, we name them
absolute consistency (AC) and absolute inconsistency (AI). Evidently, the prerequisite
for this definition is the calculation of weighted joint distribution.

Fig. 2. Probability based temporal consistency

186 X. Liu, J. Chen, and Y. Yang

The purpose of probability based temporal consistency is to facilitate the effective-
ness of setting temporal constraints. The reason why conventional discrete multiple
states based temporal consistency is not suitable here can be explained from two as-
pects. First, clients normally cannot distinguish between qualitative expressions such
as weak consistency and weak inconsistency due to the lack of background knowl-
edge, and thus deteriorates the negotiation process for setting coarse-grained temporal
constraints. Second, since each discrete temporal consistency state is actually defined
with a coarse-grained interval, it cannot support fine-grained setting. Hence, we pro-
pose the probability based continuous temporal consistency. A probability value such
as 80% or 90% gives much more sense than a qualitative expression, and any fine-
grained temporal consistency state is represented by a unique probability value rather
than the previous coarse-grained qualitative expression for each interval. Therefore,
the probability based temporal consistency supports the setting of both coarse-grained
and fine-grained temporal constraints.

4 Probabilistic Strategy for Setting Temporal Constraints

In this section, we present our probabilistic strategy for setting temporal constraints.
The strategy aims to effectively achieve a set of coarse-grained and fine-grained tem-
poral constraints which are well balanced between user requirements and system per-
formance. As depicted in Table 1, the strategy requires the input of process model and
system logs. It consists of three steps, i.e. calculating weighted joint distribution of
activity durations, setting coarse-grained temporal constraints and setting fine-grained
temporal constraints. We illustrate them accordingly as follows.

The first step is to calculate weighted joint distribution. The statistic information,
i.e. activity duration distribution and activity weight, can be obtained from system
logs by statistical analysis [1][21]. Here, to illustrate and facilitate the calculation of
the weighted joint distribution, we analyse basic SPN based building blocks,

Table 1. Probabilpistic setting strategy

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 187

i.e. sequence, iteration, parallelism and choice. These four building blocks consist of
basic control flow patterns and are widely used in workflow modelling and structure
analysis [2][4][19]. Most workflow process models can be easily built by their com-
positions, and similarly for the weighted joint distribution of most workflow proc-
esses. Here, SPN based modelling is employed to incorporate time and probability
attributes with additional graphic notations, e.g. stands for the probability of the
path and stands for the normal duration distribution of the associated activity. For
simplicity, we consider two paths for the iteration, parallelism and choice building
blocks, except the sequence building block which has only one path by nature. How-
ever, the results can be extended to more paths in a similar way.

1) Sequence building block. As depicted in Figure 3, the sequence building block
is composed by adjacent activities from ia to ja in a sequential relationship which

means the successor activity will not be executed until its predecessor activity is fin-
ished. The weight for each activity in the sequence building block is 1 since they only
need to be executed once. Therefore, according to Formula 1, the weighted joint dis-

tribution is ∑
=

=
j

ik
kXZ ~ ⎟

⎠

⎞
⎜
⎝

⎛
∑
=

∑
=

)(),(2j

ik
k

j

ik
kN σµ .

2) Iteration building block. As depicted in Figure 4, the iteration building block
contains two paths which are executed iteratively until certain end conditions are sat-
isfied. If the probability of meeting the end conditions for a single iteration is γ as

denoted by the probability notation, then the lower path is expected to be executed
for r1 times and hence the upper path is executed for 1)1(+r times. Accordingly, the

weight for each activity in the iteration building block is the expected execution times
of the path it belongs to. Therefore, the weighted joint distribution here is

() ()
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

=
∑
=

l

kq
q

j

ip
p XXZ γγ 11)1(~ ()() () ()() () ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ ∑

=
∑
=

∑
=

∑
=

l

kq
q

j

ip
p

l

kq
q

j

ip
pN)(1)(11,)(1)(11 2222 σγσγµγµγ .

3) Parallelism building block. As depicted in Figure 5, the parallelism building
block contains two paths which are executed in a parallel relationship. The overall
completion time of the parallelism building block is dominated by the path with the
longer duration. Hence the joint distribution of this building block equals the joint

distribution of the path with a lager expected total duration, that is if ∑
=

∑
=

≥
l

kq
q

j

ip
p µµ

then ∑
=

=
j

ip
pZ µ , otherwise ∑

=
=

l

kq
qZ µ . Evidently, the weight for each activity on the

Fig. 3. Sequence building block

188 X. Liu, J. Chen, and Y. Yang

Fig. 4. Iteration building block

path with longer duration is 1 while on the other path is 0 since they do not contribute
to the joint distribution. Therefore, the weighted joint distribution of this block

is
otherwise

if

N

N

X

X
Z

l

kq
q

j

ip
p

l

kq
q

l

kq
q

j

ip
p

j

ip
p

l

kq
q

j

ip
p ∑

=
∑
=

∑
=

∑
=

∑
=

∑
=

∑
=

∑
= ≥

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎪
⎪
⎩

⎪⎪
⎨

⎧

= µµ

σµ

σµ

,

,

,~

,~

2

2

.

Fig. 5. Parallelism building block

4) Choice building block. As depicted in Figure 6, the choice building block con-
tains two paths in an exclusive relationship which means only one path will be exe-
cuted at run-time. The probability notation denotes that the probability for the choice
of the upper path is β and hence the probability for the lower path is β−1 . The

weight for each activity in the choice building block is hence the probability of the
path it belongs to. Therefore, the weighted joint distribution

is))(1()(∑
=

∑
=

−+=
l

kq
q

j

ip
p XXZ ββ ~ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−+ ∑

=
∑
=

∑
=

∑
=

)()1()(),)(1()(2222 l

kq
q

j

ip
p

l

kq
q

j

ip
pN σβσβµβµβ .

The second step is to set coarse-grained temporal constraints. Based on the four ba-
sic building blocks, the weighted joint distribution of an entire workflow or workflow
segment can be obtained efficiently to facilitate the negotiation process for setting
coarse-grained temporal constraints. Here, we denote the obtained weighted joint dis-
tribution of the target scientific workflow (or workflow segment) SW

as),(2
swswN σµ and assume the minimum threshold is %β for the probability consis-

tency which implies client’s acceptable bottom-line probability for timely completion
of the workflow instance. The actual negotiation process starts with the client’s initial
suggestion of an upper bound temporal constraint of)(SWu and the evaluation of the

corresponding temporal consistency state by the service provider. If

swswSWu λσµ +=)(with λ as the %α percentile, and %α is below the threshold

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 189

Fig. 6. Choice building block

of %β , then the upper bound temporal constraint needs to be adjusted, otherwise the

negotiation process terminates. The subsequent process is the iteration that the client
proposes new upper bound temporal constraint which is less constrained as the previ-
ous one and the service provider re-evaluates the consistency states, until it reaches or
is above the minimum probability threshold.

The third step is to set fine-grained temporal constraints. In fact, this process is
straight forward with the probability based temporal consistency. Since our temporal
consistency actually defines that if all the activities are executed with the duration of

%α probability and their total weighted duration equals their upper bound constraint,
we say that the workflow process is %α consistency at build-time. For example, if
the obtained probability consistency is 90% with the percentile λ of 1.28 (the percen-
tile value can be obtained from any normal distribution table or most statistic program
[21]), it means that all activities are expected for the duration of 90% probability.
Therefore, after the achievement of the coarse-grained temporal constraint, the fine-

grained temporal constraint for activity ia with),(2
iiN σµ is derived

as ii λσµ + automatically. In the case of 90% consistency, it is ii σµ 28.1+ .

5 Evaluation

In this section, we evaluate the effectiveness of our strategy by further illustrating the
motivating example introduced in Section 2. The process model is the same as de-
picted in Figure 1. As presented in Table 1, the first step is to calculate the weighted
joint distribution. Based on statistical analysis and the “ σ3 ”rule, the normal distribu-
tion model and its associated weight for each activity duration are specified through
statistical analysis of accumulated system logs. Therefore, as depicted in Table 2, the
weighted joint distribution of each building block can be derived instantly with their
formulas proposed in Section 4. We obtain the weighted joint distribution for the

workflow segment as)218,6210(2N with second as the basic time unit. The detailed

specification of the workflow segment is presented in Table 2.
The second step is the negotiation process for setting an overall upper bound tem-

poral constraint for this workflow segment. Here, we assume that the client’s ex-
pected minimum threshold of the probability consistency state be 80%. The client
starts to propose an upper bound temporal constraint of 6300s, based on the weighted

joint distribution of)218,6210(2N and the cumulative normal distribution function,

the service provider can obtain the percentile as 41.0=λ and reply with the probabil-
ity of 66% which is lower than the threshold. Hence the service provider advises the

190 X. Liu, J. Chen, and Y. Yang

Table 2. Specification of the workflow segment

client to relax the temporal constraint. Afterwards, for example, the client proposes a
series of new candidate upper bound temporal constraints one after another, e.g.
6360s, 6390s and 6400s, and the service provider replies with 75%, 79% and 81% as
the corresponding temporal consistency states. Therefore, through this negotiation
process, the final negotiation result could be an upper bound temporal constraint of
6400s with a probability consistency state of 81%.

The third step is to set the fine-grained constrains for each workflow activity
with the obtained overall upper bound constraint. As we mentioned in Section 4, the
probability based temporal consistency defines that the probability for each
expected activity duration is the same as the probability consistency state of the work-
flow process. Therefore, since the coarse-grained temporal constraint is 6400s with a
probability consistency state of 81%, the probability of each activity duration is
also 81%. According to the normal distribution, 81% means a percentile of

87.0=λ . Hence, the fine-grained temporal constraints for each activity can be calcu-
lated by σµ 87.0+ . For example, the fine-grained upper bound temporal constraint

for activity 1X is s118)225*87.0105(=+ and the upper bound constraint for activ-

ity 12X is s130)64*87.0123(=+ . The detailed results are presented in Table 3.

Table 3. The setting results

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 191

To conclude, the above demonstration of the setting process evidently shows that
our probabilistic strategy is effective for setting both coarse-grained and fine-grained
temporal constraints. Meanwhile, it has met the two basic requirements proposed in
Section 2, i.e. effective negotiation and automatic setting.

6 System Implementation

In this section, we introduce the implementation of the setting strategy in our
SwinDew-G scientific grid workflow system.

6.1 SwinDeW-G Scientific Workflow System

SwinDeW-G is a peer-to-peer based scientific grid workflow system running on the
SwinGrid (Swinburne service Grid) platform [23]. An overall picture of SwinGrid is
depicted in Figure 7 (bottom plane) which contains many grid nodes distributed in
different places. Each grid node contains many computers including high performance
PCs and/or supercomputers composed of significant number of computing units. The
primary hosting nodes include the Swinburne CITR (Centre for Information Technol-
ogy Research) Node, Swinburne ESR (Enterprise Systems Research laboratory)
Node, Swinburne Astrophysics Supercomputer Node, and Beihang CROWN (China
R&D environment Over Wide-area Network) Node in China. They are running Linux,
GT4 (Globus Toolkit) or CROWN grid toolkit 2.5 where CROWN is an extension of
GT4 with more middleware, hence compatible with GT4. Currently, SwinDeW-G is
deployed at all primary hosting nodes as exemplified in the top of plane of Figure 7
(top plane). In SwinDeW-G, a scientific workflow is executed by different peers that
may be distributed at different grid nodes. As shown in Figure 6, each grid node can
have a number of peers, and each peer can be simply viewed as a grid service.

As an important reinforcement for the overall workflow QoS, temporal verification
is being implemented in SwinDeW-G. It currently supports dynamic checkpoint se-
lection and temporal verification at run-time [9]. After the running of SwinDeW-G for
a period of time, statistical analysis can be applied to accumulated system logs to ob-
tain probability attributes. The probabilistic strategy for setting temporal constraints is
being integrated into the scientific workflow modelling tool which supports SPN
based modelling, composition of building blocks, temporal data analysis, interactive
and automatic setting of temporal constraints.

6.2 SwinDeW-G Scientific Workflow Modelling Tool

Our probabilistic strategy for setting temporal constraints is being implemented into
our SwinDeW-G scientific workflow system as an integrated component of the mod-
elling tool. As shown in Figure 8(a), the modelling tool adopts SPN with additional
graphic notations, e.g. for probability, for activity duration, for a sub-
process, for the start point and for the end point of an upper bound temporal
constraint, to support explicit representation of temporal information. It also supports

the composition of the four basic building blocks and user specified ones. The com-
ponent supports temporal data analysis from workflow system logs. Temporal data

192 X. Liu, J. Chen, and Y. Yang

Fig. 7. Overview of SwinDeW-G environment

analysis follows the “ σ3 ”rule and can generate the normal distribution model for
each activity duration. The probability attributes for each workflow structure such as
the choice probability and iteration times can also be obtained through statistical
analysis on historic workflow instances from system logs. After temporal data analy-
sis, the attributes for each activity, i.e. its mean duration, variance, maximum dura-
tion, minimum duration and weight are associated to the corresponding activity and
explicitly displayed to the client. Meanwhile, the weighted joint distribution of the
target process is obtained automatically with basic building blocks. As shown in Fig-
ure 8(b), with our probability based temporal consistency, the client can specify an
upper bound temporal constraint and the system will reply with a probability for the
consistency state. Based on the visualised results shown by a Gaussian curve (the cu-
mulative normal distribution), the client can decide whether to accept or decline the
results. If the client is not satisfied with the outcomes, he or she can specify a new
value for evaluation until a satisfactory result is achieved. Evidently, the negotiation
process between the client and the service provider is implemented as an interactive

 (a) Temporal data analysis (b) Setting temporal constraints

Fig. 8. SwinDeW-G modelling tool

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 193

process between the system user and our developed program. After setting the coarse-
grained temporal constraints, the fine-grained constraints for each activity areassigned
automatically. These activity duration distribution models, coarse-grained and fine-
grained temporal constraints are explicitly represented in the scientific workflow
models and will be further deployed to facilitate the effectiveness of run-time tempo-
ral verification in scientific workflows.

7 Related Work

In this section, we review some related work on temporal constraints in both tradi-
tional workflows and non-traditional workflows. The work in [24] presents the taxon-
omy of grid workflow QoS constraints which include five dimensions, i.e. time, cost,
fidelity, reliability and security. Some papers have presented an overview analysis of
scientific or grid workflow QoS [5][14]. The work in [8] presents the taxonomy of
grid workflow verification which includes the verification of temporal constraints.
Generally speaking, there are two basic ways to assign QoS constraints, one is task-
level assignment and the other is workflow-level assignment. Since the whole work-
flow process is composed by all individual tasks, an overall workflow-level constraint
can be obtained by the composition of task-level constraints. On the contrary, task-
level constraints can also be assigned by the decomposition of workflow-level con-
straints [24]. However, different QoS constraints have their own characteristics and
require in depth research to handle different scenario.

As shown in our setting strategy, the primary information required for setting tem-
poral constraints include the workflow process models, statistics for activity durations
and the definition of temporal consistency. Scientific workflows require the explicit
representation of temporal information, i.e. activity durations and temporal constraints
to facilitate temporal verification. One of the classical modelling methods is the Sto-
chastic Petri Net (SPN) [1][4] which incorporates time and probability attributes into
workflow processes that can be employed to facilitate scientific workflow modelling.
Activity duration, as one of the basic elements to measure system performance, is of
significant value to workflow scheduling, performance analysis and temporal verifica-
tion [8][18]. Most work obtains activity durations from workflow system logs and
describes them by a discrete or continuous probability distribution through statistical
analysis [1]. As for temporal consistency, traditionally, there are only binary states of
consistency or inconsistency. However, as stated in [7], it argues that the conventional
consistency condition is too restrictive and covers several different states which
should be handled differently for the purpose of cost saving. Therefore, it divides
conventional inconsistency into weak consistency, weak inconsistency and strong
inconsistency and treats them accordingly. However, as we discussed in Section 3,
multiple discrete temporal consistency is not quite effective in terms of negotiation
and setting for temporal constraints.

Temporal constraints are not well emphasised in traditional workflow systems.
However, some business workflow systems accommodate temporal information for
the purpose of performance analysis. For example, Staffware provides the audit trail
tool to monitor the execution of individual instances [2] and SAP business workflow
system employs the workload analysis [22]. As for scientific workflow systems, ac-
cording to the survey conducted in [24], Askalon [3], GrADS [11], GridBus [12] and

194 X. Liu, J. Chen, and Y. Yang

GridFlow [13] support temporal constraints and some other QoS constraints. Yet, to
our best knowledge, only SwinDeW-G [23] has set up a series of strategies such as
multiple temporal consistency states and efficient checkpoint selection to support dy-
namic temporal verification [7][9]. In overall terms, even though temporal QoS has
been recognised as an important aspect in scientific workflow systems, the work in
this area, e.g. the specification of temporal constraints and the support of temporal
verification, is still in its infancy.

8 Conclusion and Future Work

In this paper, we have proposed a probabilistic strategy for setting temporal constraints
in scientific workflows. The strategy aims to achieve a set of temporal constraints
which are well balanced between user requirements and system performance. Hence,
novel probability based temporal consistency which is defined by the weighted joint
distribution of activity durations has been provided to support an effective negotiation
process between the client and the service provider. In addition, the weighted joint
distribution of four Stochastic Petri Nets based basic building blocks, i.e. sequence,
iteration, parallelism and choice, has been presented to facilitate the setting process.
With the probability based temporal consistency, well balanced overall coarse-grained
temporal constraints can be achieved through the negotiation process, and afterwards,
fine-grained temporal constraints for each activity can be derived instantly in an auto-
matic fashion. A weather forecast scientific workflow has been first employed as a
motivating example and then revisited with the detailed setting process to evaluate the
effectiveness of our strategy. As an integrated component of the scientific workflow
modelling tool in our SwinDeW-G scientific grid workflow system, the probabilistic
strategy has been effectively implemented to support the setting of both coarse-grained
and fine-grained temporal constraints in scientific workflows.

In the future, with our probability based temporal consistency, we will investigate
corresponding run-time strategies for checkpoint selection, temporal verification and
temporal-constraint adjustment, so as to improve the overall efficiency and effective-
ness of temporal verification in scientific workflows.

Acknowledgments. The research work reported in this paper is partly supported by
Australian Research Council under Discovery Grant DP0663841, Linkage Grant
LP0669660, by Swinburne Dean’s Collaborative Grants Scheme 2007-2008, and by
Swinburne Research Development Scheme 2008.

References

1. van der Aalst, W.M.P., Hee, K.M.V., Reijers, H.A.: Analysis of Discrete-Time Stochastic
Petri Nets. Statistica Neerlandica 54, 237–255 (2000)

2. van der Aalst, W.M.P., Hee, K.M.V.: Workflow Management: Models, Methods, and Sys-
tems. The MIT Press, Cambridge (2002)

3. Askalon Project (accessed March 1, 2008),
http://www.dps.uibk.ac.at/projects/askalon

4. Bucci, G., Sassoli, L., Vicario, E.: Correctness Verification and Performance Analysis of
Real-Time Systems Using Stochastic Preemptive Time Petri Nets. IEEE Trans. on Soft-
ware Engineering 31(11), 913–927 (2005)

 A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows 195

5. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of Service for Workflows
and Web Service Processes. Journal of Web Semantics: Science, Service and Agents on
the World Wide Web 1(3), 281–308 (2004)

6. Chen, J., Yang, Y.: Adaptive Selection of Necessary and Sufficient Checkpoints for Dy-
namic Verification of Temporal Constraints in Grid Workflow Systems. ACM Trans. on
Autonomous and Adaptive Systems 2(2), Article 6 (June 2007)

7. Chen, J., Yang, Y.: Multiple States based Temporal Consistency for Dynamic Verification
of Fixed-time Constraints in Grid Workflow Systems. In: Concurrency and Computation:
Practice and Experience, vol. 19, pp. 965–982. Wiley, Chichester (2007)

8. Chen, J., Yang, Y.: A Taxonomy of Grid Workflow Verification and Validation. In: Con-
currency and Computation: Practice and Experience, vol. 20, pp. 347–360 (2008)

9. Chen, J., Yang, Y.: Temporal Dependency based Checkpoint Selection for Dynamic Veri-
fication of Fixed-time Constraints in Grid Workflow Systems. In: Proc. of 30th Interna-
tional Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May 2008,
pp. 141–150 (2008)

10. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in Workflow Systems. In: Jarke, M.,
Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300. Springer, Heidelberg
(1999)

11. GrADS Project (accessed March 1, 2008),
http://www.hipersoft.rice.edu/grads

12. GridBus Project (accessed March 1, 2008), http://www.gridbus.org
13. GridFlow Project (accessed March 1, 2008), http://gridflow.ca
14. Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A Probabilistic Approach to Modelling

and Estimating the QoS of Web-Service-Based Workflows. Information Sciences 177,
5484–5503 (2007)

15. Kao, B., Garcia-Molina, H.: Deadline Assignment in a Distributed Soft Real-Time System.
IEEE Trans. on Parallel and Distributed Systems 8(12), 1268–1274 (1997)

16. Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis, 4th edn. McGraw-Hill,
New York (2007)

17. Marjanovic, O., Orlowska, M.E.: On Modelling and Verification of Temporal Constraints
in Production Workflows. Knowledge and Information Systems 1(2), 157–192 (1999)

18. Prodan, R., Fahringer, T.: Overhead Analysis of Scientific Workflows in Grid Environ-
ments. IEEE Trans. on Parallel and Distributed Systems 19(3), 378–393 (2008)

19. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow Control-
Flow Patterns: A Revised View, BPM Center Report BPM-06-22 (2006)

20. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and Validation of Process Con-
straints for Flexible Workflows. Information Systems 30, 349–378 (2005)

21. Stroud, K.A.: Engineering Mathematics, 6th edn. Palgrave Macmillan, New York (2007)
22. Workflow System Administration, SAP Library (accessed March 1, 2008),

http://help.sap.com/saphelp_nw2004s/helpdata/en
23. Yang, Y., Liu, K., Chen, J., Lignier, J., Jin, H.: Peer-to-Peer Based Grid Workflow Run-

time Environment of SwinDeW-G. In: Proc. of 3rd IEEE International Conference on e-
Science and Grid Computing, Bangalore, India, December 2007, pp. 51–58 (2007)

24. Yu, J., Buyya, R.: A Taxonomy of Workflow Management Systems for Grid Computing.
Journal of Grid Computing 3, 171–200 (2005)

25. Yu, J., Buyya, R.: A Taxonomy of Scientific Workflow Systems for Grid Computing, Spe-
cial Issue on Scientific Workflows. ACM SIGMOD Record 34(3), 44–49 (2005)

26. Zhuge, H., Cheung, T., Pung, H.: A Timed Workflow Process Model. Journal of Systems
and Software 55(3), 231–243 (2001)

Workflow Simulation for Operational Decision

Support Using Design, Historic and State
Information

A. Rozinat1, M.T. Wynn2, W.M.P. van der Aalst1,2, A.H.M. ter Hofstede2,
and C.J. Fidge2

1 Information Systems Group, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{a.rozinat,w.m.p.v.d.aalst}@tue.nl
2 Business Process Management Group, Queensland University of Technology,

GPO Box 2434, Brisbane QLD 4001, Australia
{m.wynn,a.terhofstede,c.fidge}@qut.edu.au

Abstract. Simulation is widely used as a tool for analyzing business
processes but is mostly focused on examining rather abstract steady-state
situations. Such analyses are helpful for the initial design of a business
process but are less suitable for operational decision making and contin-
uous improvement. Here we describe a simulation system for operational
decision support in the context of workflow management. To do this we
exploit not only the workflow’s design, but also logged data describing
the system’s observed historic behavior, and information extracted about
the current state of the workflow. Making use of actual data capturing
the current state and historic information allows our simulations to ac-
curately predict potential near-future behaviors for different scenarios.
The approach is supported by a practical toolset which combines and ex-
tends the workflow management system YAWL and the process mining
framework ProM.

Keywords: Workflow Management, Process Mining, Short-term Simu-
lation.

1 Introduction

Business process simulation is a powerful tool for process analysis and improve-
ment. One of the main challenges is to create simulation models that accurately
reflect the real-world process of interest. Moreover, we do not want to use simu-
lation just for answering strategic questions but also for tactical and even oper-
ational decision making. To achieve this, different sources of simulation-relevant
information need to be leveraged. In this paper, we present a new way of creating
a simulation model for a business process supported by a workflow management
system, in which we integrate design, historic, and state information.

Figure 1 illustrates our approach. We consider the setting of a workflow sys-
tem that supports some real-world process based on a workflow and organi-
zational model. Note that the workflow and organizational models have been

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 196–211, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Workflow Simulation for Operational Decision Support 197

Workflow &
organizational

model
Event
logs

Workflow
system

records

supports /
controls

Current state information

models

Simulation
model

specifies
configures

Simulation
logs

Simulation
engine

records

simulates

models

Historic information

Design information

analyze

Simulated process Real-world process

specifies
configures

Fig. 1. Overview of our integrated workflow management (right) and simulation (left)
system

designed before enactment and are used for the configuration of the work-
flow system. During the enactment of the process, the performed activities
are recorded in event logs. An event log records events related to the offer-
ing, start, and completion of work items, e.g., an event may be ‘Mary com-
pletes the approval activity for insurance claim XY160598 at 16.05 on
Monday 21-1-2008’.

The right-hand side of Figure 1 is concerned with enactment using a workflow
system while the left-hand side focuses on analysis using simulation. In order
to link enactment and simulation we propose to use three types of informa-
tion readily available in workflow systems to create and initialize the simulation
model.

– Design information. The workflow system has been configured based on an
explicit process model describing control and data flows. Moreover, the work-
flow system uses organizational data, e.g., information about users, roles,
groups, etc.

– Historic information. The workflow system records all events that take place
in ‘event logs’ from which the complete history of the process can be recon-
structed. By analyzing historic data, probability distributions for workflow
events and their timing can be extracted.

– State information. At any point in time, the workflow process is in a partic-
ular state. The current state of each process instance is known and can be
used to initialize the simulation model. Note that this current state informa-
tion includes the control-flow state (i.e., ‘tokens’ in the process model), case
data, and resource data (e.g., resource availability).

198 A. Rozinat et al.

By merging the above information into a simulation model, it is possible to
construct an accurate model based on observed behavior rather than a manually-
constructed model which approximates the workflow’s anticipated behavior.
Moreover, the state information supports a ‘fast forward’ capability, in which
simulation can be used to explore different scenarios with respect to their effect
in the near future. In this way, simulation can be used for operational decision
making.

Based on this approach, the system design in Figure 1 allows different simu-
lation experiments to be conducted. For the ‘as-is’ situation, the simulated and
real-world processes should overlap as much as possible, i.e., the two process
‘clouds’ in Figure 1 coincide. For the ‘to-be’ situation, the observed differences
between the simulated and real-world processes can be explored and quantified.
In our implementation we ensure that the simulation logs have the same format
as the event logs recorded by the workflow system. In this way we can use the
same tools to analyze both simulated and real-world processes.

To do this, we need state-of-the art process mining techniques to analyze the
simulation and event logs and to generate the simulation model. To demonstrate
the applicability of our approach, we have implemented the system shown in Fig-
ure 1 using ProM [1] and YAWL [2]. YAWL is used as the workflow management
system and has been extended to provide high-quality design, historic, and state
information. The process mining framework ProM has been extended to merge
the three types of information into a single simulation model. Moreover, ProM
is also used to analyze and compare the logs in various ways.

The paper is organized as follows. Related work is reviewed in Section 2.
Section 3 describes the approach proposed. Section 4 presents a running example,
which is then used in Section 5 to explain the implementation realized using
YAWL and ProM. Section 6 concludes the paper by discussing the three main
innovations presented in this paper.

2 Related Work

Our work combines aspects of workflow management, simulation, and process
mining. Some of the most relevant contributions from these broad areas are
reviewed below.

Prominent literature on workflow management [6,13,19] focuses on enact-
ment, and research on workflow analysis usually focuses on verification, rather
than simulation. Conversely, publications on simulation typically concentrate on
statistical aspects [11,16,12] or on a specific simulation language [10]. Several
authors have used simulation or queuing techniques to address business process
redesign questions [4,5,14], and most mature workflow management systems pro-
vide a simulation component [7,8]. However, none of these systems uses historic
and state information to learn from the past and to enable operational decision
making. We are not aware of any toolset that is able to extract the current state
from an operational workflow management system and use this as the starting
point for transient analysis.

Workflow Simulation for Operational Decision Support 199

In earlier work we first introduced the notion of using historic and state infor-
mation to construct and calibrate simulation models [15,20], and used Protos,
ExSpect, and COSA to realize the concept of short-term simulation [15]. How-
ever, this research did not produce a practical publicly available implementation
and did not use process mining techniques.

Process mining aims at the analysis of event logs [3]. It is typically used to
construct a static model that is presented to the user to reflect on the process.
Previously we showed that process mining can be used to generate simulation
models [17], but design and state information were not used in that work.

3 Approach

A crucial element of the approach in Figure 1 is that the design, historic and
state information provided by the workflow system are used as the basis for
simulation. Table 1 describes this information in more detail.

Table 1. Process characteristics and the data sources from which they are obtained

Design information Historic information State information
(obtained from the workflow
and organization model
used to configure the
workflow system)

(extracted from event logs
containing information on
the actual execution of
cases)

(based on information
about cases currently being
enacted using the workflow
system)

• control and data flow
(activities and causalities)

• data value range
distributions

• progress state of cases
(state markers)

• organizational model
(roles, resources, etc.)

• execution time
distributions

• data values for running
cases

• initial data values • case arrival rate • busy resources
• roles per task • availability patterns of

resources
• run times for cases

The design information is static, i.e., this is the specification of the process
and supporting organization that is provided at design time. This information
is used to create the structure of the simulation model. The historic and state
information are dynamic, i.e., each event adds to the history of the process
and changes the current state. Historic information is aggregated and is used
to set parameters in the simulation model. For instance, the arrival rate and
processing times are derived by aggregating historic data, e.g., the (weighted)
average over the last 100 cases is used to fit a probability distribution. Typically,
these simulation parameters are not very sensitive to individual changes. For
example, the average processing time typically changes only gradually over a
long period. The current state, however, is highly sensitive to change. Individual
events directly influence the current state and must be directly incorporated into
the initial state of the simulation. Therefore, design information can be treated
as static, while historic information evolves gradually, and state information is
highly dynamic.

200 A. Rozinat et al.

To realize the approach illustrated in Figure 1 we need to merge design, his-
toric and state information into a single simulation model. The design infor-
mation is used to construct the structure of the simulation model. The historic
information is used to set parameters of the model (e.g., fit distributions). The
state information is used to initialize the simulation model. Following this, tradi-
tional simulation techniques can be used. For example, using a random generator
and replication, an arbitrary number of independent simulation experiments can
be conducted. Then statistical methods can be employed to estimate different
performance indicators and compute confidence intervals for these estimates.

By modifying the simulation model, various ‘what-if’ scenarios can be investi-
gated. For example, one can add or remove resources, skip activities, etc. and see
what the effect is. Because the simulation experiments for these scenarios start
from the current state of the actual system, they provide a kind of ‘fast-forward
button’ showing what will happen in the near future, to support operational de-
cision making. For instance, based on the predicted system behavior, a manager
may decide to hire more personnel or stop accepting new cases.

Importantly, the simulations yield simulation logs in the same format as the
event logs. This allows process mining techniques to be used to view the real-
world processes and the simulated processes in a unified way. Moreover, both
can be compared to highlight deviations, etc.

4 Running Example

Consider the credit card application process expressed as a YAWL workflow
model in Figure 2. The process starts when an applicant submits an application.
Upon receiving an application, a credit clerk checks whether it is complete. If
not, the clerk requests additional information and waits until this information is
received before proceeding. For a complete application, the clerk performs further
checks to validate the applicant’s income and credit history. Different checks are
performed depending on whether the requested loan is large (e.g. greater than
$500) or small. The validated application is then passed on to a manager to
decide whether to accept or reject the application. In the case of acceptance, the
applicant is notified of the decision and a credit card is produced and delivered to
the applicant. For a rejected application, the applicant is notified of the decision
and the process ends.

Here we assume that this example workflow has been running for a while. In
YAWL but also any other workflow system the following runtime statistics can
be gathered about the long-term behavior of this process.

– Case arrival rate: 100 applications per week
– Throughput time: 4 working days on average

With respect to resources, there are eight members of staff available, which
include three capable of acting as ‘managers’ and seven capable of acting as
‘clerks’. (One person can have more than one role.)

Further assume that due to a successful Christmas promotion advertised in
November, the number of credit card applications per week has temporarily

Workflow Simulation for Operational Decision Support 201

Fig. 2. A credit application process modeled in YAWL

doubled to 200. The promotion period is now over and we expect the rate to
decrease to 100 applications per week again. However, as a result of the increased
interest, the system now has a backlog of 150 applications in various stages of
processing, some of which have been in the system for more than a week. Since
it is essential that most applications are processed before the holiday season,
which begins in a fortnight from now (the ‘time horizon’ of interest), manage-
ment would like to perform simulation experiments from the current state (‘fast
forward’) to determine whether or not the backlog can be cleared in time.

5 Realization through YAWL and ProM

We now use the example introduced in Section 4 to describe our proof-of-concept
implementation supporting the approach depicted in Figure 1. The realization
is based on the YAWL workflow environment [2] and the process mining frame-
work ProM [1]. We focus on the new capabilities that have been added to these
systems, and briefly explain the main steps that need to be performed1.

5.1 Extracting Simulation-Relevant Information

The information contained in the workflow specification is supplemented with his-
torical data obtained from the event logs and data from the organizational model
database. This was achieved by implementing two new functions in the workflow
engine to export historical data from the logs for a particular specification and to
export the organizational model (i.e., information about roles and resources).

In the YAWL workflow system, event logs are created whenever an activity
is enabled, started, completed or cancelled, together with the time when this
event occurred and with the actor who was involved. Logs are also kept for data
values that have been entered and used throughout the system. Therefore, we
can retrieve historical data about process instances that have finished execution.
In this work we assume that the simulation experiments are being carried out on
‘as-is’ process models for which historical data is available. A function has been

1 A detailed description of how to generate a simulation model including operational
decision support is provided in our technical report [18]. The example files and the
ProM framework can be downloaded from http://www.processmining.org.

http://www.processmining.org

202 A. Rozinat et al.

<Process>
 <ProcessInstance id="5">
 <AuditTrailEntry>
 <Data>
 <Attribute name="loanAmt">550</Attribute>
 </Data>
 <WorkflowModelElement>

 receive_application_3
 </WorkflowModelElement>
 <EventType>complete</EventType>
 <Timestamp>

 2008-02-29T15:20:01.050+01:00
 </Timestamp>
 <Originator>MoeW</Originator>
 </AuditTrailEntry>

...
 </ProcessInstance>

...
</Process>

(a) A log entry for the completion of ac-
tivity ‘receive application’ carried out by
resource MoeW with loan amount $550

<OrgModel>
 <OrgEntity>
 <EntityID>1</EntityID>
 <EntityName>manager</EntityName>
 <EntityType>Role</EntityType>
 </OrgEntity>
 <OrgEntity>
 <EntityID>2</EntityID>
 <EntityName>clerk</EntityName>
 <EntityType>Role</EntityType>
 </OrgEntity>
 ...
 <Resource>
 <ResourceID>PA-529f00b8-0339</ResourceID>
 <ResourceName>JonesA</ResourceName>
 <HasEntity>2</HasEntity>
 </Resource>

...
</OrgModel>

(b) An excerpt from an organizational
model with roles and resources, where re-
source JonesA has role ‘clerk’

Fig. 3. Part of an organizational model and historical data extracted from the workflow
engine

created which extracts the historical data for a specification from the workflow
engine and exports audit trail entries in the M ining XML (MXML) log format.
Some sample data for the credit application example is shown in Figure 3(a).
This historical data is used for mining information about case arrival rates and
distribution functions for the data values used in future simulation experiments.

Similarly, the YAWL workflow system gives access to the organizational model
through a function which extracts all available role and resource data in an
organization and exports this information in the XML format required by ProM.
Some sample data with the roles of clerk and manager are shown in Figure 3(b).
This information is used to identify available roles and resources that are relevant
for a given specification.

5.2 Generating the Simulation Model

From (1) the extracted workflow specification, (2) the newly extracted organi-
zational model, and (3) the event log file, we can now generate a simulation
model that reflects the process as it is currently enacted. The direct usage of
design information avoids mistakes that are likely to be introduced when models
are constructed manually, and the automated extraction of data from event logs
allows the calibration of the model based on actually observed parameters.

To generate the model, four basic steps need to be performed within ProM (a
sample screenshot is shown for each phase in Figures 4 and 5):

1. The YAWL model, the organizational model, and the event log need to be
imported from YAWL and analyzed.

2. Simulation-relevant information from the organizational model and log anal-
ysis needs to be integrated into the YAWL model.

Workflow Simulation for Operational Decision Support 203

3. The integrated YAWL model must be converted into a Petri net model (be-
cause our simulation tool is based on Coloured Petri Nets).

4. Finally, the integrated and converted model can be exported as a Coloured
Petri Net (CPN) model for simulation.

We can then use the CPN Tools system [9] to simulate the generated model.
However, to produce useful results we do not want to start from an empty initial
state. Instead we load the current state of the actual YAWL system into the
CPN Tools for simulation.

(a) Data is imported from different sources. Here the organizational model
import is shown

(b) The organizational model and the information obtained from the log
analysis are integrated into the imported YAWL model

Fig. 4. Phase 1 : The workflow and organizational model are imported and integrated
with the information obtained from event log analysis

204 A. Rozinat et al.

(a) The integrated YAWL model is translated into a Petri net while pre-
serving all the simulation-relevant information

(b) After importing, merging, and converting the data, a simulation model
including current state support can be generated

Fig. 5. Phase 2 : To enable the export to CPN Tools, the YAWL model is first converted
into a Petri net. Then, a CPN model of the process is generated.

5.3 Loading the Current State

To carry out simulation experiments for operational decision making purposes
(the ‘fast forward’ approach), it is essential to include the current state of the
workflow system. This allows us to make use of the data values for the current
cases as well as the status of the work items for current cases within the sim-
ulation experiments. A new function has been created to extract current state
information of a running workflow from the YAWL system and to export this
information as a CPN Tools input file (see Figure 6).

Workflow Simulation for Operational Decision Support 205

fun getInitialCaseData() = [(41, {loanAmt = 1500,completeApp = false,decideApp = false}),

(40, {loanAmt = 0,completeApp = false,decideApp = false}),

(39, {loanAmt = 500,completeApp = false,decideApp = false})];

fun getNextCaseID() = 42;

fun getInitialTokensExePlace(pname:STRING) = case pname of

"TASK_check_for_completeness_4`E"=>[(41,"-154","JonesA")] | _ => empty;

fun getInitialTokens(pname:STRING) = case pname of

"Process`COND_c2_15"=>[(39,"-43200")] | "Overview`Start"=>[(40,"-155")] | _ => empty;

fun getBusyResources() = ["JonesA"];

fun getCurrentTimeStamp() = “1205203218”;

fun getTimeUnit() = “Sec”;

Fig. 6. CPN Tools input file with initial state information. Several cases are in different
states in the system. For example, application No. 41 is currently being checked by
JonesA for completeness, and has a run time of 154 secs, i.e., ca. 2.57 mins.

The following information is obtained about the current state and is intro-
duced as the initial state of a simulation run.

– All the running cases of a given workflow and their marking.
– All the data values associated with each case.
– Information about enabled work items.
– Information about executing work items and the resources used.
– The date and time at which the current state file is generated.

When the empty initial state file of the generated simulation model is replaced
with the file depicted in Figure 6, tokens are created in the CPN model that
reflect the current system status (see Figure 7). For example, among the three
Case data tokens is the data associated with application No. 41. The resource
JonesA is currently performing a check activity on this case and hence, it does
not appear in the list of free resources.

We now follow the scenario described in Section 4 for simulation experiments,
i.e., due to a promotion 150 cases are in the system. We load the state file
containing these 150 cases into the model and perform simulation experiments
for the coming two weeks. We also add more resources to the model and observe
how this influences the backlog and the throughput times for processing credit
card applications within this time horizon.

5.4 Analyzing the Simulation Logs

We simulate the process from the generated CPN model for four different
scenarios:

1. An empty initial state. (‘empty’ in Figure 8)
2. After loading the current state file with the 150 applications that are cur-

rently in the system and no modifications to the model, i.e., the ‘as-is’ situ-
ation. (‘as is’ in Figure 8)

3. After loading the current state file but adding four extra resources (two
having the role ‘manager’ and three having the role ‘clerk’), i.e., a possible
‘to-be’ situation to help clear the backlog more quickly. (‘to be A’ in Figure 8)

206 A. Rozinat et al.

Fig. 7. The generated CPN model after loading the current state file

4. After loading the current state file and adding eight extra resources (four
having the role ‘manager’ and six having the role ‘clerk’). (‘to be B’ in
Figure 8)

We can see the difference among these four scenarios in Figure 8, which depicts
the development of the number of cases (i.e., applications) in the workflow system
over the coming two weeks for an example simulation run per scenario. In the
case of Scenario 1 the simulation starts with having 0 credit card applications
in the system. This does neither reflect the normal situation nor does it capture
our current backlog of cases. Only after a while, does this simulation represent
the normal behavior of the credit card application process (i.e., with ca. 100
applications arriving per week). The other three scenarios load a defined initial
state, which contains the 150 applications that we assume to be currently in
the system. Furthermore, one can observe that in the scenarios where we add
extra resources to the process, the case load decreases more quickly to a normal
level than without further intervention. However, the scenario ‘to be B’ does
not seem to perform much better than the scenario ‘to be A’ although twice as
many resources have been added. This way, we can assess the effect of possible
measures to address the problem at hand, i.e., we can compare different ‘what-if’
scenarios in terms of their estimated real effects.

CPN Tools has powerful simulation capabilities, which we can leverage. For ex-
ample, it is possible to automatically replicate simulation experiments to enable
statistical analyses, such as calculating confidence intervals for specific process
characteristics. For instance, Figure 9 depicts the 95% confidence intervals of the
average case throughput times based on 50 replicated simulations for each of the
four simulation scenarios. One can observe that the estimated throughput time

Workflow Simulation for Operational Decision Support 207

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5000 10000 15000 20000 25000

N
o.

 o
f a

pp
lic

at
io

ns
 in

 th
e

sy
st

em

Time horizon: two weeks (in seconds)

Number of applications that are in the system for four different scenarios

1)
2)
3)
4)

'as is'

'to be A'

'to be B'

'empty'

Fig. 8. Number of applications in the simulated process for the different scenarios.
While the scenario with the empty state has initially 0 applications, the other scenarios
are initialized by loading 150 applications from the current state file.

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 1 2 3 4 5

C
on

fid
en

ce
 In

te
rv

al

Simulation Scenarios

95 % Confidence Intervals Average Throughput Time in Min
for the Four Simulation Scenarios (50 Replications each)

Confidence Intervals

'as is'
5.88 days

'to be A'
4.91 days

'empty'
3.86 days

'to be B'
4.72 days

Fig. 9. Simulation run showing the 95% confidence intervals of the throughput times
for the different simulation scenarios. The length of the confidence interval indicates
the degree of variation.

for the ‘empty’ scenario (i.e., based on the usual situation) is ca. 4 days, while the
expected throughput time for the ‘as is’ scenario (i.e., actually expected based
on the current backlog situation) is almost 6 days.

While CPN Tools already provides powerful logging facilities and even gener-
ates gnuplot scripts that can be used to plot certain properties of the simulated
process, we also generate MXML event log fragments during simulation, similar
to the one shown in Figure 3(a) for the workflow log. These fragments can then

208 A. Rozinat et al.

Fig. 10. The generated simulation logs can be analyzed with the same tool set as the
initial workflow logs

be combined using the CPN Tools filter of the ProMimport framework, which
facilitates the conversion of event logs from various systems into the MXML
format that is read by ProM.

The ability to use the same toolset for analyzing the simulation logs and
analyzing the actual workflow logs constitutes a big advantage because the sim-
ulation analysis results can be more easily related to the initial properties of
the process. In particular, since we support the loading of current cases into
the initial state at the beginning of the simulation, we can easily combine the
real process execution log (‘up to now’) and the simulation log (which simulates
the future ‘from now on’) and look at the process in a unified manner (with the
possibility of tracking both the history and the future of particular cases that
are in the system at this point in time).

Figure 10 shows a screenshot of ProM while analyzing the simulation logs
generated by CPN Tools. Various plug-ins can be used to gain more insight
into the simulated process. For example, in Figure 10 the Log Dashboard (top
left), the Basic Statistics plug-in (bottom left), the Performance Analysis plug-
in (bottom right), and the LTL Checker (top right) are shown. The former
two provide a general overview about the cases and activities in the process,
whereas the Performance Analysis plug-in finds bottlenecks (e.g., in Figure 10 a
bottleneck for starting the activity ‘Make decision’ is highlighted), and the LTL
Checker can be used to verify specific properties of interest (e.g., “How many
cases could be processed until they are in the stage where a decision can be made
in under 3 days?”).

Workflow Simulation for Operational Decision Support 209

6 Discussion

In this paper we presented an innovative way to link workflow systems, simu-
lation, and process mining. By combining these ingredients it becomes possible
to analyze and improve business processes in a consistent way. The approach
is feasible, as demonstrated by our implementation using YAWL and ProM. To
conclude, we would like to discuss the three main challenges that have been
addressed in this research.

6.1 Faithful Simulation Models

Although the principle of simulation is easy to grasp, it takes time and expertise
to build a good simulation model. In practice, simulation models are often flawed
because of incorrect input data and a näıve representation of reality. In most
simulation models it is assumed that resources are completely dedicated to the
simulated processes and are eager to start working on newly arriving cases. In
reality this is not the case and as a result the simulation model fails to capture
the behavior of resources accurately. Moreover, in manually constructed models
steps in the processes are often forgotten. Hence simulation models are usually
too optimistic and describe a behavior quite different from reality. To compensate
for this, artificial delays are added to the model to calibrate it and as a result
its predictive value and trustworthiness are limited. In the context of workflow
systems, this can be partly circumvented by using the workflow design (the
process as it is enforced by the system) and historic data. The approach presented
in this paper allows for a direct coupling of the real process and the simulation
model. However, the generated CPN models in this paper can be improved by a
better modeling of resource behavior. Moreover, the process mining techniques
that extract characteristic properties of resources need to be improved to create
truly faithful simulation models.

6.2 Short-Term Simulation

Although most workflow management systems offer a simulation component,
simulation is rarely used for operational decision making and process improve-
ment. One of the reasons is the inability of traditional tools to capture the real
process (see above). However, another, perhaps more important, reason is that
existing simulation tools aim at strategic decisions. Existing simulation models
start in an arbitrary initial state (without any cases in the pipeline) and then
simulate the process for a long period to make statements about the steady-state
behavior. However, this steady-state behavior does not exist (the environment
of the process changes continuously) and is thus considered irrelevant by the
manager. Moreover, the really interesting questions are related to the near fu-
ture. Therefore, the ‘fast-forward button’ provided by short-term simulation is a
more useful option. Because of the use of the current state and historic data,
the predictions are more valuable, i.e., of higher quality and easier to interpret
and apply. The approach and toolset presented in this paper allow for short-
term simulation. In the current implementation the coupling between YAWL

210 A. Rozinat et al.

and ProM is not well-integrated, e.g., the translation of insights from simulation
to concrete actions in the workflow system can be improved. Further research is
needed to provide a seamless, but generic, integration.

6.3 Viewing Real and Simulated Processes in a Unified Manner

Both simulation tools and management information systems (e.g., BI tools)
present information about processes. It is remarkable that, although both are
typically used to analyze the same process, the results are presented in com-
pletely different ways using completely different tools. This may be explained
by the fact that for a simulated process different data is available than for the
real-world process. However, the emergence of process mining techniques allows
for a unification of both views. Process mining can be used to extract much more
detailed and dynamic data from processes than traditional data warehousing and
business intelligence tools. Moreover, it is easy to extend simulation tools with
the ability to record event data similar to the real-life process. Hence, process
mining can be used to view both simulated and real processes. As a result, it is
easier to both compare and to interpret ‘what-if’ scenarios.

Acknowledgements. This research was supported by the IOP program of the
Dutch Ministry of Economic Affairs and by Australian Research Council grant
DP0773012. The authors would like to especially thank Michael Adams, Eric
Verbeek, Ronny Mans, and also Christian Günther, Minseok Song, Lindsay Brad-
ford, and Chun Ouyang for their valuable support in implementing the approach
for YAWL and ProM. We also would like to thank Marlon Dumas for sharing
his valuable insights during the many discussions we had about this topic.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de
Medeiros, A.K., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters,
A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn,
J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer,
Heidelberg (2007)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems 30(4), 245–275 (2005)

3. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves
de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An In-
dustrial Application. Information Systems 32(5), 713–732 (2007)

4. Ardhaldjian, R., Fahner, M.: Using simulation in the business process reengineering
effort. Industrial engineering, pp. 60–61 (July 1994)

5. Buzacott, J.A.: Commonalities in Reengineered Business Processes: Models and
Issues. Management Science 42(5), 768–782 (1996)

6. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Informa-
tion Systems: Bridging People and Software through Process Technology. Wiley &
Sons, Chichester (2005)

Workflow Simulation for Operational Decision Support 211

7. Hall, C., Harmon, P.: A Detailed Analysis of Enterprise Architecture, Process Mod-
eling, and Simulation Tools. Technical report 2.0, BPTrends (September 2006)

8. Jansen-Vullers, M., Netjes, M.: Business process simulation – a tool survey. In:
Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, Aarhus, Denmark (October 2006)

9. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer 9(3-4), 213–254 (2007)

10. Kelton, D.W., Sadowski, R., Sturrock, D.: Simulation with Arena. McGraw-Hill,
New York (2003)

11. Kleijnen, J., van Groenendaal, W.: Simulation: a statistical perspective. John Wiley
and Sons, New York (1992)

12. Laugna, M., Marklund, J.: Business Process Modeling, Simulation, and Design.
Prentice Hall, Upper Saddle River, New Jersey (2005)

13. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River (1999)

14. Reijers, H.: Design and Control of Workflow Processes. LNCS, vol. 2617. Springer,
Berlin (2003)

15. Reijers, H.A., van der Aalst, W.M.P.: Short-Term Simulation: Bridging the Gap
between Operational Control and Strategic Decision Making. In: Hamza, M.H.
(ed.) Proceedings of the IASTED International Conference on Modelling and Sim-
ulation, pp. 417–421. IASTED/Acta Press, Anaheim (1999)

16. Ross, S.M.: A course in simulation. Macmillan, New York (1990)
17. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Colored

Petri Nets From Event Logs. International Journal on Software Tools for Technol-
ogy Transfer 10(1), 57–74 (2008)

18. Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.:
Workflow Simulation for Operational Decision Support using YAWL and ProM.
BPM Center Report BPM-08-04, BPMcenter.org (2008)

19. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

20. Wynn, M.T., Dumas, M., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.:
Business Process Simulation for Operational Decision Support. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 66–77.
Springer, Heidelberg (2008)

Analyzing Business Continuity through
a Multi-layers Model

Yudistira Asnar and Paolo Giorgini

Department of Information and Communication Technology,
University of Trento, Italy

{yudis.asnar,paolo.giorgini}@disi.unitn.it

Abstract. Business Continuity Management (BCM) is a process to manage risks,
emergencies, and recovery plans of an organization during a crisis. It results in a
document called Business Continuity Plans (BCP) that specifies the methodology
and procedures required to backup and recover the functional unit of a disrupted
business. Traditionally, the BCP assessment is based only on the continuity of IS
infrastructures and does not consider possible relations with the business objec-
tives and business processes. This traditional approach assumes that the risk of
business continuity is resulted from the disruption of the IS infrastructures. How-
ever, we believe there are situations where the risk emerges even the infrastruc-
tures up and running. Moreover, the lack of modeling framework and the aided-
tool make the process even harder.

In this paper, we propose a framework to support modeling and analysis of
BCP from the organization perspective, where risks and treatments are modeled
and analyzed along strategic objectives and their realizations. An automated rea-
soner based on cost-benefit analysis techniques is proposed to elicit and then
adopt the most cost-efficient plan. The approach is developed using the Tropos
Goal-Risk Framework and the Time Dependency and Recovery Model as under-
lain frameworks. A Loan Originating Process case study is used as a running
example to illustrate the proposal.

1 Introduction

Information Systems (IS) are currently evolving in so called socio-technical systems,
where human and organization factors along technical aspects assume a more and more
critical role in the correct operation of the system. A socio-technical system is repre-
sented as a complex network of interrelationships between human and technical sys-
tems that includes hardware, software, users, stakeholders, data, and regulations [1]. As
reported in [2], economic and social factors results being crucial in such systems and
introduce challenges that lay beyond the mere technical aspects.

In sectors such as e-Banking, e-Commerce, etc., where the business strongly depends
on the availability of IS’s services, an organization should be able to ensure the conti-
nuity of its business objectives accordingly to the evolution of regulations (e.g., Basel
II [3] or Sarbanes-Oxley Act [4]) as well as customers’ needs. Business Continuity
Management (BCM) is a process aiming at managing risks, emergencies, and recovery

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 212–227, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Analyzing Business Continuity through a Multi-layers Model 213

plans of an organization during a crisis and ensuring the returning to the normal busi-
ness operations [5]. A Business Continuity Plan (BCP) [6] specifies the methodologies
and procedures required to backup and recover every functional units of the business.

Traditionally, BCP focuses mainly on the analysis of IT infrastructures and does not
consider other aspects of the business such as business-process and business-objective
[7,8]. For instance, in a e-Shopping scenario, where the main business-objective is sell-
ing items to customers, the continuity of business-objective might depend not only from
the IT infrastructures (e.g., inventory servers, firewall, payment servers, and authenti-
cation servers), but also from the operational-level of the organization, such as delayed
payment services or even more higher level, such as existence of new competitors.

In this paper, we propose a framework to support the analysis of business continuity
from a socio-technical perspective. Essentially, we extend our previous work on risk
analysis [9] with the light of the Time Dependency and Recovery (TDR) model [8]. Our
previous framework is extended in order to analyze the business-objectives, to realize
them at more operational level (business process [10] or tasks) and, finally, to identify
the required artifacts to execute the processes. To model dependencies among assets
(objectives, processes, artifacts), we adopt the time-dependency relation from the TDR
model. This proposed framework intends to assists analysts in: 1) analyzing assets, 2)
defining additional measures to fulfill the stakeholders’ target, and 3) defining the most
cost-effective mitigation plans.

The remaining paper is organized as follows. Next we present a running example,
the Loan Originating Process (LOP) of a bank (§2). We then introduce the modeling
framework (§3) that extends our previous Goal-Risk framework with the TDR model,
and the analysis processes supported by the framework itself (§4). Then, we apply the
framework to the LOP case study to evaluate our proposal (§5), and, finally, we discuss
related works (§6) and conclude the paper (§7).

2 Running Example

The case study that we use in this paper is originated within the European project
SERENITY.1 It focuses on a typical Loan Origination Process (LOP) that starts by
receiving a loan application and ends, possibly, with the loan approval. Essentially, a
Loan Department within a bank is responsible to accept loan applications, handle
the applications, and ensure the loan repayment. These objectives are operational-
ized through a set of business processes. For instance, once the bank receives a loan
application, it starts the handling process verifying the data and calculating the credit
score. The score is assessed either internally (in-house assessment) or by an external
party (Credit Bureau). Afterward, the bank defines the loan schema, namely defining
the loan cap and its interest. In this example, we assume it is always the case that the
customer agrees with the loan schema proposed by the bank. Surely, the bank is also
interested in ensuring the repayment of the loan.

Uncertain events (i.e., threats, un/intentional events, incidents, risks) may affect the
availability of assets. For instance, events like computer virus outbreak, database
failure, the outage of national identity service are considered as disruptions for the

1 http://www.serenity-project.org/

http://www.serenity-project.org/

214 Y. Asnar and P. Giorgini

loan department. Essentially, these disruptions are hard, or impossible, to avoid, but
they might be still acceptable if their effects vanish after an acceptable period (called
Maximum Tolerable Period of Disruption-MTPD). For an example, the goal of receiv-
ing loan is still satisfied though it is disrupted for 2 hours. To maintain the MTPD, all
responsible stakeholders establish a contingency plan in case their assets are disrupted.
The plan, typically, consists of the Recovery Time Objectives (RTOs) that represent the
recovery time of assets. For instance, the IT department ensures that the database of
loan application system will be recovered within 1 hour after the disruption. For any set
of uncertain events, analysts should assess the sufficiency of RTOs to meet the MTPD.
In the case of insufficiency, additional measures need to be introduced. Moreover, these
additions should be analyzed carefully before their adoption because they introduce
additional costs, and very often they introduce other kind of problems to the system.

3 Modeling Framework

To assess BCP, we need to identify and analyze any related assets that are involved
in the business. To this extend, we use the Tropos Goal-Risk (GR) framework [9] to
analyze risk and Time Dependency and Recovery model [8] to capture interdependen-
cies among assets. A Business Continuity Plan (BCP) is defined in terms of a set of
RTOs for all assets. Ideally, it must satisfy the MTPD of business objectives required
by stakeholders.

In the following subsections, we explain the underlain framework (TDR model),
which captures time dependencies among assets. Afterward, we present the extension
of the GR framework for analyzing the Business Continuity in an organization, and also
the process to develop a GR model.

3.1 Time Dependency and Recovery Model

The TDR model allows us to model the interdependencies between assets in realizing
business objectives.

Definition 1. A TDR model is a pair 〈N,→〉 where N is a set of nodes (assets) and
→⊆ N × N represents inter-dependency relations between nodes that is tolerable for
a given time t.

For example, in Fig. 1, the task entry loan application by Bank Employee (T02)

requires the resource secure desktop client (R02). We depict this as T02
15′
�−→ R02 that

refers to T02 will be not available if R02 is unavailable for more than 15 time unit (in
this paper, we use minute as a default time unit). Dash-lines refer to the concept of OR
dependency, for instance G02 can depend either on T01 or T02 .

Using the reasoning framework proposed in [8], we can assess the sufficiency of
RTOs for all assets against the MTPD of business objectives. Moreover, the proposed
tool is able to calculate the Maximum Recovery Time (MRT) of each asset. If all RTOs
of assets are less-or-equal of the MRTs, then the continuity of business objectives is
guaranteed. Contrarily, the continuity of business might be disrupted. In the case of
RTOs have not been defined, we may always use the MRT as threshold for RTO in
order to guarantee the business continuity.

Analyzing Business Continuity through a Multi-layers Model 215

Fig. 1. The TDR Model

3.2 The Goal-Risk Framework

To model and assess BCPs, we need to analyze 1) business objectives and their real-
izations (process and artifacts), 2) interdependencies among assets, and 3) the level of
risk that threats business objectives, directly or indirectly. However, the “original” GR
framework [11] is able to deal with 1 and 3, while the TDR model focuses more on 2.
The idea here is to adapt the notion of inter-dependency relation from the TDR model.
Thus, the GR framework is able to capture the assets in an organization and is able to
model and analyze the BCP.

The Tropos Goal Risk (GR) framework introduced in [11] (more details in [9])
adopts the idea of three layers analysis from Defect Detection Prevention (DDP) [12].
It consists of three conceptual layers – asset, event, and treatment (as depicted in Fig. 2)
– to analyze the risk of uncertain events over organizations’ strategies. The asset layer
analyzes business objectives of the stakeholders and their realizations (i.e., processes
and artifacts), whereas the event layer captures uncertain events along their impacts
to the asset layer and the treatment layer models treatments to be adopted in order to
mitigate risks.

Definition 2. A GR model is a set of tuple 〈N ,R, I〉, where:

– N is a set of nodes of three types: goals, tasks, resources, and events;
– R is represented as (N1, . . . , Nn) r�−→ M , where Ni ∈ N , M ∈ (N ∪ I), and

r is the type of the relation. N1, . . . , Nn are called source nodes and M is the
target node. r consists of AND/OR-decomposition, contribution, and alleviation,
means-end, and needed-by2;

– I ⊆ E × (N \ E) is a special type of relation, called impact relation. It relates
events (E ⊆ N) with other constructs (N \ E) representing the severity of events
toward the asset layer.

2 This is a new kind of relation that was not used in the original GR framework.

216 Y. Asnar and P. Giorgini

Fig. 2. The Extended GR Model

Goals (depicted as ovals in Fig. 2) represent the objectives that actors intend to achieve.
Tasks (hexagons) are course of actions used to achieve goals or treat events. Tasks
might need resources (rectangles) during their execution or even produce resources.
To avoid confusion between tasks for achieving goals and tasks for mitigating risk,
from now on we name the former as tasks and the latter as treatments, respectively.
To model a situation where a task is a means to achieve the end-a goal, we adopt
the Tropos [13] means-end relation (line arrow), and similarly for the task that pro-
duces a resource. So for example, the tasks entry loan application by agent (T01)
and entry loan application by bank employment (T02) are means to achieve the
goal receive application by hard-copy (G02). Moreover, either T01 or T02 pro-
duce the resource of loan documents (R05), which later might be used in other pro-
cesses.

To analyze BCP, a GR model needs also to capture assets dependencies. We intro-
duce the needed-by relation, adapted form the TDR model, to model a task that needs
a particular resource, a resource that needs another resource or a task that needs an-
other task. This type of relation is annotated with time, which represents the maximum
disruption period that is tolerable by dependent assets (we use minutes as default time
unit). For example, Secure desktop client for Loan Agent (R01) is needed by the
task T01 (the time-dependency is 20 minutes) and R01 requires to access database
of loan applications (R04) (the time-dependency is 2 minutes). The disruption of R01

will not result in the failure of T01 for more than 20 minutes. For computing the MRT, a

Analyzing Business Continuity through a Multi-layers Model 217

GR model (2) uses the proposed reasoner in [8] since we can develop the corresponding
TDR model (1) following the rules described in the Section 4.

The fulfillment of goals (also the execution of tasks and the provision of resources)
might be disrupted by the occurrence of uncertain events (pentagons). Here, an event
is characterized into two attributes: likelihood (λ) and its consequences [14].3 To sim-
plify the calculation the likelihood is represented in terms of the number of occurrences
within a specific period (in this framework, the time period is a year) judged by ex-
perts.4 For instance, if an expert judges that the likelihood of an event is 0.1, then it
implies that the event took place once in 10 years. To model consequences, we use the
impact relations (dash-line with hallow arrow).

Possible treatments are introduced in the treatment layers. They are aiming at miti-
gating risks (events with negative impact). Moreover, with the help of a CASE tool 5,
analysts can define, which treatments should be adopted to achieve the acceptable risk
level.

3.3 Modeling Process

The modeling process of a GR model starts from the asset layer, which consists of
objectives, processes, and artifacts. We initially identify all business objectives (goals)
of stakeholders and then we refine them by iterative decompositions. For example, we
identify that stakeholders have two top-goals: receive loan application (G01) and
handle loan application (G04). Then, goal G01 is OR-decomposed into receive
loan application by hard-copy (G02) or receive loan application electronically
(G03). The refinement process continues until each leaf-goal is tangible, that is there
exists at least a task to fulfill it. As soon as analyst identifies the processes/tasks (the
operation level of the asset layer) that realize the business objectives, the modeling pro-
cess continues with the refinement of tasks using AND/OR decomposition. The process
stops when each leaf-task is an atomic activity that cannot be anymore broken down in
sub activities [10]. Finally, we analyze whether there are necessary artifacts/resources
(e.g., T01 requires R01) to execute tasks (the artifact level of the asset layer). Some
of resources may require other resources (e.g., R01 requires R04) or produced by the
execution of tasks (e.g., T01 produces R05).

The fulfillment of business objectives might be disrupted by the occurrence of un-
certain external events. Essentially, in the event layer we identify negative events (i.e.,
threats, un/intentional events, incidents) that disrupt business objectives direct or indi-
rectly (by disrupting the supporting assets). For instance, the resource secure desktop
client for loan agent (R01) might be disrupted by the occurrence of virus outbreak
(E01). This event will cause 2 hours of unavailability for R01 . Taxonomy-based ap-
proaches, such as Computer Program Flaws [15], Faults [16], can be used to iden-
tify this class of events related to the software systems. For identifying events in other
domains (e.g., management, financial), analysts should conduct the interviews to the

3 In this paper, we consider only events with negative consequences (i.e., risks, threats, inci-
dents).

4 The model allows us to represent the likelihood in terms of Probability Distribution Function
for a better result (i.e., precision), but it requires more complex mathematical computation.

5 http://sesa.dit.unitn.it/sistar tool

http://sesa.dit.unitn.it/sistar_tool

218 Y. Asnar and P. Giorgini

related stakeholders or the domain experts. However, the availability of resources is
not sufficient to guarantee the continuity of business objectives. There could be cir-
cumstances where the disruption is introduced from the process level. For example, the
task entry loan application by bank employee (T02) can be unavailable for 4 hours
because of the occurrence of event bank employee strike (E03). To identify risks
at this level, we can use organizational-driven [17,18] and again taxonomy-based [19]
approaches.

Suppose the bank intends, also, to satisfy the goal ensure loan repayment. This
objective can be realized in two different ways (processes): 1) assessing the credit
score and 2) underwrite the loan according to the credit score. Though, the bank is
able to carry on both processes to ensure the repayment of the loan, the risk of a eco-
nomic crisis may still disrupt the business objective. For this type of events, obstacle
approach [20] can be used.

We recommend analysts to start the event identification process from the artifact level
and then move up to the process and objective level. In this manner, we prevent the spu-
rious identification of an event’s impact. For example, the event virus outbreak (E01)
might be modeled to impact the goal receive loan application (G01). However, this
is not correct because actually E01 obstructs R01 that is used to fulfill G01 . In other
words, if an event disrupts a resource, then certainly it will also produce a similar effect
to tasks that use such a resource and consequently this will affect goals that the tasks
are supposed to satisfy. Conversely, in the case of the event economic crisis and the
goal repayment of the loan, the event does not obstruct any task or any resource that
are realized the goal. Identified events are refined using again decomposition relations
until all leaf-event are assessable.

Once the strategic and event layers have been analyzed, we identify and analyze
the countermeasures that might be adopted to mitigate risk in the treatment layer. To
mitigate risks, treatments can operate in two ways: reducing likelihood and/or reduc-
ing Time-Period of Disruption (TPD). To reduce the likelihood, we use the contribution
(depicted as line with filled-arrow) with the annotation ([−1, 0)) indicating the extent of
likelihood reduction. For instance, the treatment have employee union (TR03) miti-
gates to 50% the likelihood of the event bank employee strike (E03). It is presumably
because the union may intermediate the conflict between employees and employers.
However, we use the alleviation relation (depicted as line with hallow-arrow) to capture
the mitigation of risk impact (in this context is the reduction of TPD). For instance, the
treatment have redundant database (TR02) reduces 0.9 of the TPD caused by the
event database failure (E02).

Summing up, we have revisited the semantics of relations in the GR framework to
reason about business continuity. For instance, in [11] the GR model cannot model the
time-dependency among the constructs. Moreover, a impact relation, initially, repre-
sents how much evidence (satisfaction and denial) is propagated to the asset layer once
an event occurs. To model “disruption”, we need to revisited the semantic of this rela-
tion. In this case, an impact relation depicts how long is the disruption once an event
occurs. By means of this model, ones can reason about the sufficiency of existing BCP,
in terms of RTO, to meet the MTPD. The following section, we present the analysis
supported by the model.

Analyzing Business Continuity through a Multi-layers Model 219

4 Analysis Process

Once we have the extended GR model we can analyze the continuity of the business
objectives performing two different kinds of analysis.

– Treatments Analysis, intended to elicit all possible sets of treatments that are able to
mitigate the risk until the acceptable level. Analysts will choose the most adequate
mitigation to introduce following some criteria (e.g., additional costs, possible side-
effects).

– Cost-Benefit Analysis, aiming at identifying the most cost-effective treatments to
reduce the loss introduced by business discontinuity. This analysis is useful when
there is no possible set of treatments that is able to reduce the level of risk until the
acceptable level. In this case, analysts typically choose the most cost-effective set
of treatments.

Inputs for both analyses are:

1. A multi-layers model (e.g., Fig. 2 and Fig. 4);
2. Acceptable risk, represented in terms of pairs Maximum Time Period of Disruption

(MTPD) and Maximum Likelihood (Max.λ) of disruption for each top goal (e.g.,
MTPD(G01) = 60 minutes - Max.λ(G01) = 2 , MTPD(G04) = 120 minutes-
Max.λ(G04)=2);

3. “Significant” business objectives, which are defined as top-level goals and other
subgoals that the stakeholders believe to be important for the organization. For each
of these goals, we specifies its utility for the organization 6 (e.g., Utility(G01)=80 ,
Utility(G02)=50);

4. Likelihood of events (e.g., λ(E01)=12 , λ(E03)=3);
5. Treatments costs (e.g., Cost(TR01)=200, Cost(TR02)=70).

Definition 3. For any given Multi-layers model 〈N ,R, I〉, we build a TDR model
〈N,→〉, where:

– N is N in the asset layer;
– → is constructed from R((N1, . . . , Nn) r�−→ M) where N1, . . . , Ni, M ∈ N in the

asset layer

→=
⋃
R

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N

t�−→ M, if r = needed-by7;

N
0�−→ M, if r = means-end ∧ M is a goal ∧ N is a task;

M
0�−→ N, if r=means-end∧M is a resource∧N is a task;⋃

i=1...n(Ni
0�−→ M), if r = decomposition.

6 We quantify the utility in the range [0, 100]. Conceptually, the notion of utility and value are
different as indicated in literature about expected utility and expected value [21]. To assess the
utility of an asset, one can assess it by summing up all the values generated by the assets. For
instance, a server may have a value not more than 10000, but it may have utility much more
beyond its value.

220 Y. Asnar and P. Giorgini

Event Propagation
Other Inputs.
E.g. Acceptable
Risk, Likelihood,

Cost

Multi-Layer
Model

Risk Evaluation

Risk
Acceptable?

Treatments
Selection

No

Yes

1

2

4

Solutions
E.g., Treatments and

Cost

3

(a) Treatment

Event Propagation
Other Inputs.

E.g. Utility
Likelihood, Cost

Multi-Layer
Model

Assess Cost-
Benefit

More Cost-
Benefit

Treatments
Selection

No

Yes

1

2

4

Solution
E.g., Treatments,
Cost, Expectancy

Loss

3

(b) Cost-Benefit

Fig. 3. Analysis Process

Compare Fig. 1 and Fig. 2 to have an idea of the correspondence between a TDR model
and an Extended GR model. Given a TDR model 〈N,→〉, for each n ∈ N , the MRT
(mrt(n)) is calculated as follow [8]:

mrt(n) =

{
MTPDn, if N is a top-goal;

min{mrt(m) + t)|n t�−→ m}, otherwise.

4.1 Treatment Analysis

Treatments analysis is represented step-by-step in Fig. 3(a). (Step 1) Risks – likelihood
and consequences – of events are propagated throughout the model. (Step 2) We eval-
uate whether it is possible to satisfy all top goals with a risk under given values. This
is done looking at how much the likelihood of top-goals and how long for they will
be disrupted. If the risk is unacceptable (Step 3), then we refine the model introducing
treatments. In this framework, we adopt the algorithm Find Treatments proposed in [9]
to identify the necessary treatments. Essentially, the algorithm is an adaptation of the
greedy search algorithm [22] that aims at suppressing the increase of costs because of
new treatments. If the TPD of top-goals is not acceptable (TPD greater than MDTP),
then the algorithm will propose treatments connected by alleviation relations. If the
TPD is equal to MTPD, then it is acceptable if it occurs less-or-equal than Max.λ, oth-
erwise the algorithm will propose the treatments connected by contribution relations to
the event layer (Step 4). Notice in the worst case, this process will explore all possible
subsets of treatments (i.e., 2N(treatments)−1), which hardly will happen in practice. Fi-
nally, we possibly obtain different solutions (a solution consists of several treatments)
that satisfy the acceptable risk and cost, and then we decide on the bases of criteria such
as cost, stakeholders’ preference, company culture, etc. which solution to implement.

4.2 Cost-Benefit Analysis

Cost-benefit analysis is useful when analysts cannot find any possible composition of
treatments to mitigate the risk until the acceptable level. This analysis is aiming at

7 t is the time-dependency in a needed-by relation.

Analyzing Business Continuity through a Multi-layers Model 221

finding the most advantageous (i.e., cost effective) solution. The notion of advantageous
(ADV) is represented in terms of the ratio between benefit and cost (1) 8, while benefit
is modeled as an inverse function of the loss expectancy - LE -(2)9.

ADV (S) =
1∑

G∈significant-goals

LE(G) × Cost(S)
(1)

LE(G) = [[λ(G) − Max .λ(G)]] × Utility(G)× [[TPD(G) − MTPD(G)]] (2)

Essentially, the loss is introduced when the TPD is greater than MTPD and it happens
more often than Max.λ. In this framework, the loss expectancy is calculated as multipli-
cation of the likelihood distance, the utility of the goal, and the overhead of disruption
period.

The overall process of cost-benefit analysis is depicted in Fig. 3(b). (Step 1) a set of
treatments is selected, and the loss expectancy of every significant goals and the total
cost are calculated to obtain the ADV (Step 2). This process continues exploring every
possible combination of treatments (Step 3). Moreover, the notion of cost-benefit might
be enriched by considering other factors (e.g., time of implementation, intangible val-
ues) besides only loss-expectancy and cost. Notice this process is an exhaustive process
that requires to explore all possible subset of treatments. However, some optimization
can be taken to reduce the possible search space. For instance, the algorithm records
the most cost-effective solution ignoring the branch of search space, which is less ben-
eficial than the recorded solution. Finally, (Step 4) the result of this process is only a
solution that theoretically, based on the equation (1), is the most cost-effective solution.
Typically, this type of solution would be easy to get an approval by the stakeholders
because it proposes the set of treatments, which is the most cost-effective. Moreover,
this analysis can be used, in conjunction with the treatment analysis, to evaluate among
proposed solutions.

5 Validation through an Example in Large

To evaluate our approach and its implementation, we ran a number of experiments with
the Loan Origination Process case study that is a simplification of SERENITY e-Business
scenario [23]. As illustrated in Fig. 4, let consider two top goals for the bank: receive loan
application (G01) and handle loan application (G04). Suppose stakeholders expressed
their acceptable risks (i.e., MTPD, Max.λ) for the two goals as indicate in Table 1. For a
given MTPD, we compute the MRT of every asset (indicated as the number at upper-left
every constructs in Fig. 4) required to satisfy the MTPD. Suppose also, stakeholders argue
about the importance of subgoal G02 , that can endanger the image of the organization
in case it will not be satisfied (even if G01 is satisfied). We quantified the G02 utility
as 50, which is slightly lesser than the utility for G01 (Utility(G01)=80). Differently,
goal G04 Utility(G04)=40) results being less important than G01 and G02 since its
failure will not be visible outside of the organization.

8 Analysts must adopt at least a treatment to mitigate risk and therefore the Cost cannot be 0.
9 The function “[[x]]” never results a value lower than 0. E.g., [[5]] = 5, [[−2]] = 0, [[−0.002]] = 0.

222 Y. Asnar and P. Giorgini

Fig. 4. The Model for Assessing the BCP of Loan Originating Process

Table 1. The Inputs of Top Goals and “Significant” Goals

Goals MTPD(G) Max. λ(G) Utility(G)

G01 Receive Loan Application 60 2 80
G04 Handle Loan Application 120 2 40
G02 Receive Loan App. by Hard-Copy 50

Given these inputs, in Table 3 we see how risks disrupt the business continuity. For
instance, R01 should have at most 2 times of 80 minutes of disruption (MRT) in one
year. Unfortunately, the impact of E01 results in 12 times of 2 hours disruption, which
is unacceptable. However, the assets of T02 , T09 , T06 are not at risk because either
they occurs less than 2 times a year or their disruption is less than their MRT. To mitigate
such risk, treatment analysis enumerates 81 possible solutions (i.e., sets of treatments)
that can satisfy the stakeholders’ inputs. For the sake of simplicity, we concentrate only
on five of them, namely S1 − S5 as indicated in Table 2.

From Table 3, we can observe that the MRT of R06 is 80 minutes for 2 times/year.
However, with S2 the event E05 is mitigated into 2 hours for 2 times/year to R06 ,
which is acceptable by the stakeholders because the likelihood of the disruption is not

Analyzing Business Continuity through a Multi-layers Model 223

Table 2. Total Cost of Possible Treatments

Treatment Cost S1 S2 S3 S4 S5

TR01 Have Premium Service with AV company 200 X X X
TR02 Have Redundant Database 50 X X X X X
TR03 Have Employee Union 100
TR04 Locate The Agents’ Clients in the VPN 90 X X
TR05 Employ Intrusion Detection System 30 X X X
TR06 Have Firewall 10 X X X
TR07 Train In-house Actuaries Regularly 70 X X X X X
TR08 Recheck with National ID Service 40

Total Cost 350 220 240 330 360

Table 3. Risks in The LOP scenario Initial and After Treatments Adoption

Event-Src Target MRT Init S1 S2 S3 S4 S5

E01 Virus Outbreak R01 2-80’ 12-2h 12-30’ 1.2-2h 1.2-2h 12-30’ 1.2-30’
E02 Database Failure R04 2-72’ 10-3h 10-18’ 10-18’ 10-18’ 10-18’ 10-18’
E03 Bank Employee Strike T02 2-1h 2-4h 2-4h 2-4h 2-4h 2-4h 2-4h
E03 Bank Employee Strike T09 2-2h 2-5h 2-5h 2-5h 2-5h 2-5h 2-5h
E04 Fraudulent ID Credential T06 2-2h 24-30’ 24-30’ 24-30’ 24-30’ 24-30’ 24-30’
E05 DoS Attack to Doc. Server R06 2-80’ 20-2h 20-72’ 2-2h 20-72’ 2-2h 2-72’
E06 Miss Ass. In-house Actuaries T09 2-2h 4-3h 1.2-1.5h 1.2-1.5h 1.2-1.5h 1.2-1.5h 1.2-1.5h

Total Cost 350 220 240 330 360

exceeded. However, S5, which includes treatment TR05 , results in 72 minutes for 2
times/year. It implies the business is never discontinued because the TR05 can be re-
covered before the disruption appears in the business level. Each solution has a different
cost and also a different impact on the reduction of risk, as presented in Table 3. Notice
that all solutions (S1 − S5) produce an acceptable level of risk, but S2 results being
the cheapest solution. However, S3 can be also a good candidate since it can reduce,
further, the outage-period of R06 from 2 hours to 72 minutes with only a bit higher
cost. Decision about S2 or S3 is now responsibility of analysts, they have to evaluate
what is better for the organization.

To show the cost-benefit analysis, we suppose now that stakeholders are more risk
averse than in the previous case. MTPD for goals G01 and G04 are reduced to 2 and
50 minutes, respectively. Consequently, the new MTPD will results in shorter MRT for
each asset. Unfortunately, in this case there is no possible combination of treatments
that can reduce the risk until the acceptable level. In this situation, the analyst might
simply ignore this fact and accept the risk per se, or consider to adopt the the most
beneficial solution.

Notice in Table 3, the asset of T02 and T09 results in an acceptable disruption
because it happens only twice a year. Though in this setting the MRT of T06 is much
smaller (e.g., MRT (T06) = 50′), the recovery time of T06 is much smaller (i.e., 30′)
therefore T06 cannot caused unacceptable disruption. Conversely, with S1 the system
still suffers 12 times/year an outage of 30 minutes for R01 where the MRT of R01

is 22 minutes. In other words, the system is discontinued for 8 minutes, 12 times/year
(see Table 4 for the complete ones). Consequently, these outages will introduce a loss

224 Y. Asnar and P. Giorgini

Table 4. ADV of Possible Treatments in the LOP scenario

S1 S2 S3 S4 S5

Disruption after Treatments
R01 12-8’ 12-8’
R04 10-4’ 10-4’ 10-4’ 10-4’ 10-4’
R06 20-7’ 20-7’

Results
Cost 350 220 240 330 360
LE 21920 4800 10400 16320 4800

ADV (in 10−7) 1.30344 9.4697 4.00641 1.8568 5.78704

(expectancy) for G01 , G02 , and G04 , as define in equation (2). For instance, in Table 4
the resulting loss expectancy for S1 is 21920 with a cost of 350. Looking at the table,
S2 results the most cost-effective solution, the lowest level of LE and the cheapest cost.

To summing up, this section has presented how this approach works in two settings:
1) resulting a set of countermeasures that need to be introduced to ensure the business
continuity of an organization and 2) to find the most cost-effective set of treatments to
maintain the business continuity. This approach does not require very precise inputs (e.g.,
likelihood, time-dependency, etc.). However, we recommend to analysts to use the worst
possible scenarios while assessing the inputs, though it means “overshooting risks”.

6 Related Work

KAOS [20,24], a goal-oriented requirements engineering methodology, has been pro-
posed aiming at identifying not only what and how aspect of goals but also why, who,
and when. Moreover, KAOS introduces also the concept of obstacles [20] and anti-
goal [24], which can be seen as boundaries in goal analysis. Those two concepts can be
used to identify the top-events that may threaten the asset layer of a GR model. More-
over, the refinement of obstacles and anti-goals are compatible of the decomposition of
an event.

Liu et al. [25] propose a methodological framework for security requirements anal-
ysis based on i*. They use the NFR framework [26] to support the formal analysis of
threats, vulnerabilities, and countermeasures. This framework captures more details of
a malicious events occurs by identifying who is the attacker, what are the vulnerabil-
ities, and what countermeasures should be taken. In our work, we do not distinguish
between a disruption due to malicious or non-malicious intents.

Moreover, the works, namely Fault Tree Analysis (FTA) [27] or attack tree [28],
have similar representation with events in the multi-layer model. Those works capture
and analyze the events that may harm the system. Therefore, ones may replace the
event layer with those works because of familiarity reason. Notice, those works require
objective-quantitative data that can be obtained by recording past experiences.

Approaches like Multi-Attribute Risk Assessment (MARA) [29] can improve the
risk assessment process by considering multi-attributes. Many factors like reliable,
available, safety and confidentiality can result critical for a system and each of them

Analyzing Business Continuity through a Multi-layers Model 225

has its own risk value. This introduces the need for the analyst to find the right trade-off
among these factors. In this work, we only assess the recoverability property that is part
of the availability. Our results in assessing the recoverability of the system can be useful
as one of the input to perform MARA.

Electronic Data Processor (EDP) Audit shares many commonalities with the work in
Business Continuity Management. Essentially, the EDP Audit is mirror the activity of
business audit [30]. It is a process collecting evidence to determine whether IS systems
protect assets, maintain the data integrity, achieve the goals of organization effectively,
and consume resources efficiently [31]. To achieve this end, auditors should ensure
that the EDP contingency plan is sufficient and has been in place. In this domain, our
framework may assist the auditors to analyze the sufficiency of the plan (i.e., RTO).

Finally, approaches on business process modeling, such as Business Process Mod-
eling Notation [32], declarative business process [33], might be useful to structure the
process level of the asset layer. It is useful to improve the precision of inter-dependency
analysis among assets.

7 Concluding Remarks

In this paper, we have presented a comprehensive framework to analyze the business
continuity of an organization. The framework models all levels of assets (e.g., objective,
process, and artifact) that may be involved in the continuity of the business. In order to
guarantee the continuity of business under uncertainty (e.g., incidents, attacks, human-
errors, hardware-failures), we need to introduce a set of treatments to mitigate risks.
The proposed framework, allows the analysts to explore and analyze all possible sets
of treatments that can be introduced to mitigate the risk (severity or likelihood) of these
events. Moreover, the framework also proposes cost-benefit analysis that allows the
analyst to select the most cost-effective treatments.

As future work, we intend to introduce more precise description of processes and
artifacts in the asset layer by means of more expressive languages (e.g., BPMN, ADL).
Moreover, we plan to do more works in order to increase the accuracy of the BCP
assessment and its usability. We also intend extending the analysis to a multi-actor
environment, where an actor may depend on other actors and they may dis/trust each
other. It is also interesting to explore BCP in organization where business objectives
and activities are outsourced to other parties.

However, we are aware that the continuity/recoverability problem is only one issue of
a critical system (i.e., security and dependability properties). Therefore, the continuity
of a business is necessary for a secure and dependable system but it is not sufficient.
There are other issues, such as confidentiality, that may compromise the system though
the continuity of business is still guaranteed.

Acknowledgment

This work has been partly supported by the projects EU-SERENITY and PRIN-MENSA.
Thanks to Emmanuele Zambon for the discussion and inputs on this work.

226 Y. Asnar and P. Giorgini

References

1. Mate, J.L., Silva, A. (eds.): Requirements Engineering for Sociotechnical Systems. Informa-
tion Science Pub., Hershey (2005)

2. Neumann, P.G.: RISKS-LIST: RISKS-FORUM Digest (accessed May 27, 2008),
http://catless.ncl.ac.uk/Risks/

3. Basel Committee on Banking Supervision: Basel II: International Convergence of
Capital Measurement and Capital Standards: a Revised Framework (June 2004),
http://www.bis.org/

4. Sarbanes, P., Oxley, M.G.: Public company accounting reform and investor protection act.
Government Printing Office, Washington (2002)

5. BSI: Business Continuity Management. BSI 25999-1 (2006)
6. Doughty, K. (ed.): Business Continuity Planning Protecting Your Organization’s Life. Best

practice series. Auerbach, Boca Raton (2001)
7. Lam, W.: Ensuring Business Continuity. IT Professional 4, 19–25 (2002)
8. Zambon, E., Bolzoni, D., Etalle, S., Salvato, M.: A Model Supporting Business Continuity

Auditing and Planning in Information Systems. In: Proc. of ICIMP 2007, p. 33 (2007)
9. Asnar, Y., Giorgini, P.: Risk Analysis as part of the Requirements Engineering Process. Tech-

nical Report DIT-07-014, DIT - University of Trento (March 2007)
10. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer,

New York (2007)
11. Asnar, Y., Giorgini, P.: Modelling Risk and Identifying Countermeasures in Organizations.

In: López, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 55–66. Springer, Heidelberg (2006)
12. Feather, M.S., Cornford, S.L., Hicks, K.A., Johnson, K.R.: Applications of Tool Support for

Risk-Informed Requirements Reasoning. Computer Systems Science & Engineering 20(1)
(2005)

13. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. JAAMAS 8(3), 203–236 (2004)

14. ISO/IEC: Risk Management-Vocabulary-Guidelines for Use in Standards. ISO/IEC Guide
73 (2002)

15. Landwehr, C.E., Bull, A.R., McDermott, J.P., Choi, W.S.: A Taxonomy of Computer Program
Security Flaws. ACM Comp.Surveys 26(3), 211–254 (1994)

16. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. TDSC 1(1), 11–33 (2004)

17. Bhuiyan, M., Islam, M., Koliadis, G., Krishna, A., Ghose, A.: Managing business process
risk using rich organizational models. In: Computer Software and Applications Conference,
2007. 31st Annual International. COMPSAC 2007, vol. 2, pp. 509–520 (2007)

18. COSO: Enterprise Risk Management - Integrated Framework. Committee of Sponsoring Or-
ganizations of the Treadway Commission (September 2004)

19. Carr, M.J., Konda, S.L., Monarch, I., Ulrich, F.C., Walker, C.F.: Taxonomy-Based Risk Iden-
tification. Technical Report CMU/SEI-93-TR-6, SEI-CMU (June 1993)

20. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-Oriented Requirements Engi-
neering. TSE 26(10), 978–1005 (2000)

21. Bernoulli, D.: Exposition of a New Theory on the Measurement of Risk. Econometrica 22,
23–36 (1954) (original 1738)

22. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall,
Englewood Cliffs (2003)

http://catless.ncl.ac.uk/Risks/
http://www.bis.org/

Analyzing Business Continuity through a Multi-layers Model 227

23. Asnar, Y., Bonato, R., Bryl, V., Campagna, L., Dolinar, K., Giorgini, P., Holtmanns, S.,
Klobucar, T., Lanzi, P., Latanicki, J., Massacci, F., Meduri, V., Porekar, J., Riccucci, C.,
Saidane, A., Seguran, M., Yautsiukhin, A., Zannone, N.: Security and Privacy Requirements
at Organizational Level. Research report A1.D2.1, SERENITY consortium. EU-IST-IP 6th
Framework Programme - SERENITY 27587 (November 2006)

24. van Lamsweerde, A., Brohez, S., Landtsheer, R.D., Janssens, D.: From System Goals to
Intruder Anti-Goals: Attack Generation and Resolution for Security Requirements Engineer-
ing. In: Proc. of RHAS 2003 (2003)

25. Liu, L., Yu, E.S.K., Mylopoulos, J.: Security and Privacy Requirements Analysis within a
Social Setting. In: Proc. of RE 2003, pp. 151–161 (2003)

26. Chung, L.K., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

27. Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault Tree
Handbook with Aerospace Applications. NASA (2002)

28. Schneier, B.: Attack Trees: Modeling Security Threats. Dr. Dobbs Journal 12(24), 21–29
(1999)

29. Butler, S.A.: Security Attribute Evaluation Method: a Cost-Benefit Approach. In: Proc. of
ICSE 2002, pp. 232–240. ACM Press, New York (2002)

30. Bace, R.G.: Intrusion Detection. Sams Publishing (2000)
31. Weber, R.: EDP Auditing. McGraw-Hill, New York (1982)
32. López, H.A., Massacci, F., Zannone, N.: Goal-Equivalent Secure Business Process Re-

engineering for E-Health. In: Proc. of MOTHIS 2007 (2007)
33. Bryl, V., Mello, P., Montali, M., Torroni, P., Zannone, N.: B-Tropos: Agent-Oriented Require-

ments Engineering Meets Computational Logic for Declarative Business Brocess Modeling
and Verification. In: Proc. of CLIMA VIII (2007)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 228–243, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Resource Allocation vs. Business Process Improvement:
How They Impact on Each Other

Jiajie Xu, Chengfei Liu, and Xiaohui Zhao

Centre for Information Technology Research
Faculty of Information and Communication Technologies

Swinburne University of Technology
Melbourne, Australia

{jxu,cliu,xzhao}@groupwise.swin.edu.au

Abstract. Resource management has been recognised as an important topic for
the execution of business processes since long time ago. Yet, most exiting
works on resource allocation have not paid enough attentions to process charac-
teristics, such as structural and task dependencies. Furthermore, no effort has
been made on optimising resource allocation by improving business processes.
To address this issue, we propose an approach that optimises the use of re-
sources in an enterprise by exploring the structural features of a business proc-
ess and adapting the structures of the business process to better fit the resources
available in the enterprise. After a motivating example, we describe a role-
based business process model for resource allocation. Then we present strate-
gies for resource allocation optimisation and discuss the relationship between
resource allocation and business process improvement. A set of heuristic rules
are discussed and algorithms based on these rules are designed for optimising
resource allocation with a particular optimisation goal.

1 Introduction

Business Process Management (BPM) is aimed to investigate how to help enterprises
improve their business processes, and thereby enable enterprises to achieve their
business goals with lower cost, shorter time and better quality. Nowadays business
process management systems [11] have been widely used in many business scenarios.
Because the execution of business processes depends on the available resources, the
performance of a business process is subject to the degree of match between the given
resources and the structure of the business process. When the structure of a business
process is fixed, the business process performance, in terms of cost and time, may
vary greatly with different resource allocation plans. To this end, several works have
addressed the impact of business process structures on resource management [2, 4, 8].
Other works [7, 16, 17] have discussed the process evolvement according to the
changing user requirements, yet few have taken resources factors into consideration.

We reckon that resource allocation and business process impact on each other.
Structures of business process set a constraint on how resources are allocated to
tasks due to the dependency. However, it is possible that a business process is not

 Resource Allocation vs. Business Process Improvement 229

well-defined, and as a result the resources may not be utilised optimally to reach cer-
tain business goal. It is desired that the structure of a business process is improved so
that resources can be utilised in a more optimal way. However, as far as we know, no
work has discussed this kind of improvement. In this paper, we collectively discuss
the problems of resource allocation optimisation for business processes, and resource
oriented business process improvement.

To incorporate the resource allocation into business process improvement, this pa-
per proposes a role-based business process model to specify the relationship between
business processes, tasks, roles and resources. Based on this model, a comprehensive
framework is established to pre-analyse and optimise the resource allocation and
business process improvement, and thereby adapt the two to the best match. The con-
tribution of this paper to current business process improvement and resource alloca-
tion lies in the following aspects:

• Enable the pre-analysis on resource allocation and utilisation before the execu-
tion of business processes, and therefore be able to check if some resource allo-
cation requirements can be satisfied;

• Enable the business process structure change to better optimising resource allo-
cation;

• Develop algorithms for allocating resources to a business process with a particu-
lar optimisation criterion for achieving minimal cost with a certain time con-
straint.

The remainder of this paper is organised as follows: Section 2 discusses our prob-
lem for collectively optimising resource allocation and improving business processes
with a motivating example; Section 3 introduces a role based business process model,
which defines the related notions for resource allocation, and the relationship among
these notions; Two algorithms for resource allocation optimisation and resource ori-
ented business process improvement are presented in Section 4; Section 5 reviews the
work related to our approach, and discusses the advantages of our approach; Lastly,
Concluding remarks are given in Section 6.

2 Motivating Example

We use an example to illustrate the problem that we are tackling in this paper. Figure
1 shows a business process with eight tasks and four gateways. Assume that the set of
resources used for this business process are given in Table 1 and are classified accord-
ing to roles. The cost for each role is also shown in the table. A role describes the
capability of its resources for performing certain tasks. For each task, the roles that

And-
split

t3

And-
join

And-
split

t6

t1

t2

t4

t5

t7

t8
And-
join

Fig. 1. Business process structure

230 J. Xu, C. Liu, and X. Zhao

Table 1. Resource classification

o Cost Resource
r1 $50/hr s11, s12
r2 $25/hr s2
r3 $40/hr s31, s32
r4 $20/hr s4
r5 $25/hr s5

Table 2. Capabilities of roles

 Task
Role t1 t2 t3 t4 t5 t6 t7 t8

r1 2hr 2hr 1hr
r2 3hr 1.5hr
r3 1hr 2hr 2hr
r4 2hr 2.5hr
r5 3hr 2hr 3hr

are capable of performing it are shown is Table 2. The time for a role to perform a
task is also indicated in the table. For example, Resources s31 and s32 can perform
role r3 at the cost of $40 per hour. Task t4 can be performed by resources of role r1
and role r4 in 2 hours and 2.5 hours, respectively

Time and cost are two criteria to evaluate the performance of business process. As-
sume resources are allocated as Figure 2(a). The time required is 7 hours, and mean-
while the expense is $537.5. In the situation of allocation as Figure 2(b), the cost is
reduced to $455, while the execution time is increased to 9.5 hours. In reality, an
enterprise always has a time constraint on a production business process such that the
processing time is no more than a deadline. Therefore, the resource allocation is con-
sidered to be optimised when the expense is low but the time constraint can be satis-
fied. In this example, we assume the deadline is 7.5 hours. An optimised resource
allocation for this scenario is shown in Figure 2(c) where the expense is 487.5$ and
time is 7.5 hours which just satisfies the time constraint. Compared with Figure 2(c),
the allocation in Figure 2(a) is worse because it is more expensive, even though both
of them can satisfy time constraint; the allocation in Figure 2(b) is less expensive,
however, it violates the time constraint and hence not usable. Therefore, in order to
improve the performance of this business process, resources are expected to be allo-
cated as Figure 2(c) under the time constraint.

However, sometimes the structure of business process may prevent resources from
being allocated in the optimised way. For instance, if the time constraint is 11.5 hours,
Figure 2(b) is the optimised allocation pattern under the business process structure.
However, because the limit of time is rather long, t1 and t2 can be done in sequential
order rather than parallel order. In other words, the business process can be changed
to a new business process as shown in Figure 3. If we choose to allocate resources as
shown in Figure 2(d), we can achieve an expense of $457.5, which is less than that in
Figure 2(b), and the time is 11.5 hours thereby satisfy the time constraint. Therefore

 Resource Allocation vs. Business Process Improvement 231

Task Resource

t1 s2

t2 s31

t3 s4

t4 s4

t5 s32

t6 s5

t7 s11

t8 s5

Task Resource

t1 s12

t2 s2

t3 s4

t4 s12

t5 s31

t6 s5

t7 s11

t8 s31

Task Resource

t1 s12

t2 s2

t3 s4

t4 s4

t5 s32

t6 s5

t7 s11

t8 s31

(a) (b) (c)

Task Resource

t1 s2

t2 s2

t3 s4

t4 s4

t5 s32

t6 s5

t7 s11

t8 s5

(d)

Fig. 2. Resource allocation

And-
split

t3

And-
join

And-
split

t6

t1 t2

t4

t5

t7

t8
And-
join

Fig. 3. Changed business process structure

based on the time requirement and available resources, business process redesign may
contribute to improve the performance of business process through enabling resource
to be allocated in a more optimised way.

From this example, we know that given a set of available resources, optimised re-
source allocation is based on the structure of business process and the requirements on
the business process. Furthermore, a business process can be improved for the pur-
pose of optimising resource allocation. In summary, we expect that the following
requirements will be met in our resource allocation scheme:

• It should take into account the structural characteristics of a business process.
The structural constraints and dependencies defined in a business process must
be followed in resource allocation.

• It should guarantee the resource allocated with minimal expense within a given
period.

• When necessary, a business process may be improved for better optimising re-
source allocation.

3 Role-Based Business Process Model

In this section, a model comprising the definitions for resources, roles, tasks and busi-
ness processes is introduced to describe the relationships among these notions that
will be used in resource allocation and business process improvement.

232 J. Xu, C. Liu, and X. Zhao

Definition 1 (Resource). A resource s denotes an available unit for executing a task.
In real cases, a resource can be a human, a machine or a computer. In this model, a
resource has an attribute of role:

− Role indicates which group this resource is belonged to according to its position. In
this model a resource can have only one role to perform, yet a role may include
multiple resources.

Definition 2 (Role). A role r denotes a class of resources that own the same capabil-
ity. In order to simplify resource allocation, we further assume that resources with the
same role have the same cost. Therefore role has an attribute of cost.
− Cost denotes the monetary cost a resource of role r is chosen to perform a task.

Cost in this model is valued by the hourly pay of the role.

A role is ‘an abstraction to define the relationship between a set of resources and the
capabilities of resources’ [2]. The resources belonging to role r may be capable to
perform several tasks, where function capable(r, t) depicts such mapping relation-
ships. When resource s is capable of performing t, capable(s, t) is true. Therefore we
have

capable(r, t) && r = role(s) → capable (s, t)

Definition 3 (Task). A task t is a logical unit of work that is carried out by a resource.
A task has an attribute of role:
− role defines what kind of resources can perform this task. In other words, a task

can be performed by resources that can match the role attribute of task. In this
model, one task can have many roles, so each task has a none-empty role set R:{r}.

Execution time, associated with a role r and a task t, specifies the duration required
for r to execute t. We denote this by a function time(r, t). When resource s of role r is
used to execute task t, time can be returned by function time(s, t).

Definition 4 (Business process). A business process represents a series of linked
tasks, which collectively describe the procedure how a business goal is achieved. The
structure of a business process p can be modelled as an directed acyclic graph in the
form of P(T, E, G, type, vs, vt), where

(1) T = {t1, t2, …, tn}, ti ∈ T (1 ≤ i≤ n) represents a task in the business process frag-
ment;

(2) G ={g1, g2, …, gm}, gi ∈G (1 ≤ i≤ m) represents a gateway in the business process
fragment;

(3) E is a set of directed edges. Each edge e = (v1, v2) ∈ E corresponds to the control
dependency between vertex v1 and v2, where v1, v2 ∈ T ∪ G;

(4) For each v∈ T ∪ G, ind(v) and outd(v) define the number of edges which take v
as terminating and starting nodes respectively.

(5) type: G → Type is a mapping function, where Type = { And-Join, And-Split, Or-
Join, Or-Split }. Therefore,

If type(g) = “And-Split” or “Or-Split” then ind(g) = 1, outd(g) > 1;
If type(g) = “And-Join” or “Or-Join” then ind(g) > 1, outd(g) = 1.

 Resource Allocation vs. Business Process Improvement 233

(6) vs is the starting node of the business process fragment, which satisfies that vs∈ T
∪ G and ind(vs) = 0;

(7) vt is the terminating node of the business process p, which satisfies that vt∈ T ∪
G and outd(vt) = 0;

(8) ∀ v∈T \ { vs, vt }, ind(v) = outd(v) = 1.

Task Role

Resource

Is capable of

Can be assigned

ComposesActs as

n

11

1

1 n

1n

Process
Comprises

Dependency Allocation
Determines

Executes

Determines

cost

1

1

1 n

has

1

n

time

Determines

Fig. 4. Business process model

Figure 4 illustrates the relationships among these definitions for resource allocation
purposes. A business process consists of a set of tasks and gateways. Each resource
performs as one role, and one role may represent multiple resources. Any task can be
executed by a set of roles, and a role may be capable of executing many tasks. When
allocating resources to tasks, the allocation is subject to the dependency due to the
structure of the process and the roles of resources. Cost is an attribute of a role, and it
denotes the money that the enterprise has to pay for resources of that role when they
are allocated to execute tasks. Time for a task to be executed is determined by which
role is assigned to perform this task.

4 Resource Allocation and Business Process Improvement

As explained in the motivating example, we set the cost and time as the resource
allocation optimisation criteria for the discussion in this paper. In this section, we first
discuss the set of basic rules that follow the optimisation criteria. Then we describe
the main data structures used for resource allocation. The main steps of our optimisa-
tion algorithms are highlighted afterward. Finally, we present two strategies and cor-
responding algorithms for resource allocation and business process improvement.

4.1 Basic Rules

As the resource allocation problem is to search for a resource allocation scheme that
meets the requirements on cost and time. This searching process has to comply with
the following rules:

234 J. Xu, C. Liu, and X. Zhao

Rule 1. One resource can only serve for one task at one time. When this rule is vio-
lated, we call it resource allocation conflict at the task.
Rule 2. The overall execution time of a business process is not allowed to exceed the
time limit. If this rule is violated, resources will be required to be reallocated for
shortening the process time.
Rule 3. Whenever possible, the expense for executing a business process should be
minimal.

In fact, Rule 3 is our optimisation objective while Rule 1 and Rule 2 are the con-
straints for achieving the objective. In other words, Rule 3 is applicable under the
condition that Rule 1 and Rule 2 cannot be violated.

4.2 Data Structure

In Section 2, we introduced two tables for a business process p, the role table shown
in Table 1 and the capability table shown in Table 2. For describing our resource
allocation algorithms, we also require other two data structures: an allocation table
and a path table.

An allocation table is used to record the allocation information for each task in a
business process in the format of the following table.

Task(t) Role(r) Resource(s) Start Time(st) End Time(et)

When a task is allocated with a resource, the allocation table will be appended with a
new record, where (1) “Task” t denotes the name of task; (2) “Role” r denotes the role
that is selected for performing; (3) “Resource” s of role r is the specific resource that
is assigned to execute t; (4) “Start Time” st is the starting time of t to be executed; (5)
“End Time” et is the time t finishes. It is computed as et = st + time(t, s), where time(t,
s) denotes the time that resource s needs to execute task t.

A path table records the information of all paths from the start node vs to end node
vt on business process p.

Path(i) TaskSet(ts) Time(tm)

In the path table, “Path” i denotes the path number of this path. “TaskSet” ts records
the set of tasks belonging to path i. “Time” t denotes the total time required to execute
all the tasks in ts. Note, a task in business process p may appear in more than one
path.

4.3 Resource Allocation Steps

As the cost and time for executing a task are unknown until it is allocated with actual
resource, the analysis on the business process performance is inevitably involved with
resource allocation. Resource allocation to tasks will be done in such an optimised
way that cost is minimal while satisfying time constraint.

According to the rules introduced in Section 4.1, optimised resource allocation for
business process is carried out by the following three steps:

 Resource Allocation vs. Business Process Improvement 235

(1) A basic allocation strategy will be applied to searching for a resource allocation
satisfying Rule 3 and Rule 1, which aims the minimal expense for executing a busi-
ness process with balanced allocation for all paths. Surely, no resource is allocated to
more than one task at any time.

(2) In case that the allocation scheme in Step (1) violates Rule 2, an adjustment
strategy will be applied to shorten the execution time by re-allocating resources until
time constraint is satisfied;

(3) In case that the time is less than the limit from Step (1) or Step (2), according to
Rule3, the adjustment strategy will be applied to do the resource oriented business
process improvement in order to achieve a lower expense while maintaining the time
constraint to be satisfied.

Step (1) will be discussed in Section 4.4, and Section 4.5 introduces how Step (2)
and Step (3) are carried out.

4.4 Basic Allocation Strategy

In the first step, we introduce the basic resource allocation strategy. The goal of this
basic strategy is first to minimise the overall expense without considering the time
limit. This strategy is achieved by two steps: Firstly, each task is allocated with a role
which makes the expense to be minimal, and allocation table is updated according to
the resource allocations. However, due to the characteristic of business process struc-
ture, it is possible that a role is over-allocated in such a way that at a time, a resource
is allocated to perform more than one task, and hence allocation conflict is made and
Rule 1 is not satisfied. Therefore the second step is used to handle allocation conflicts
through reallocation. In this procedure, overall expense is aimed to be minimal. Also,
in order to improve efficiency, for the routings in parallel or selective blocks, bal-
anced time is preferred for the allocation of different paths.

The basic resource allocation strategy is shown in Algorithm 1. Lines 1-3 initialise
several variables ntbp for nodes to be processed, pd for processed nodes and pathT for
storing all paths of the business process p. The function genPathTable(p) generates
the path table for p with time for each path set to 0. Lines 4-17 are the loop for proc-
essing one node of the graph for p, starting from vs to vt. Function getNextNode(ntbp)
(Line 5) finds the next node v in ntbp such that v cannot be processed before its
predecessor nodes. For a task node v (Line 6), function bestRole (v) (Line 7) returns
the role of minimal expense to execute v. A heuristic rule is used here: if two roles are
capable to execute task v at same expense and one can only be assigned to v, then this
role is selected. Function allocRes(r) (Line 8) assigns a resource s for r. When a re-
source of role r is allocated v, the one that is available to perform v is selected. Lines
9-10 calculate the maximum ending time tm for all paths involving v as a node. When
all the required information is ready, function alloc(t, r, s, st, et) adds a new record
into the allocation table allocT. Line 11 resets the ending time for all paths for v. After
that, for either a task node or a gateway node, the successor nodes of v will be added
to ntbp, and v is removed from ntbp and added to pd (Lines 14-16).

To this point, each task has been allocated with a resource that is least expensive
for executing the task. However, we need to check and see if Rule 1 is violated. If so,
we have to change resources for the task at which the allocation conflict occurs. This

236 J. Xu, C. Liu, and X. Zhao

is achieved by calling the function conflictProc(allocT, 0, p) to check the allocation
starting from the beginning of the business process (Line 18).

Input: p
roleT

 capaT

– a business process
– the associated role table for p;
– the capability table for p.

Output: allocT – the result allocation table.

1 ntbp = { vs }; // initial value of nodes to be processed
2 pd = ; // set for processed nodes
3 pathT = genPathTable(p);
4 while (ntbp)
5 v = getNextNode(ntbp); // get v such that pred(v) pd or pred(v)=
6 if (v P.T) then
7 r = bestRole(v);
8 s = allocRes(r);
9 pts = paths(v); // find all paths that involve v

10 tm = max{pts[i].time}; // maximum time for all paths in pts
11 alloc(v, r, s, tm, tm+time(r, v)) allocT;
12 for each pt in pts do pt.time += time(r, v) end for;
13 end if
14 ntbp = ntbp succ(v);
15 ntbp = ntbp \ {v};
16 pd = pd {v};
17 end while
18 call conflictProc(allocT, 0, p);
19 return allocT;

Algorithm 1. Basic allocation

Algorithm 2 is a function for resolving resource allocation conflicts. Conflict-
Proc(allocT, t, p) is to check conflict for tasks started after time t in the order they
appear in p. When a task v0 is checked, if conflicts exist, all conflicts involving this
task are handled. When there is only one task v1 conflict with v0 and they are in the
same nearest And block, three approaches can be made: reallocation on v0 or on v1, or
change the structure. The longest path (the path with the most overall executing time
from the starting node to the terminating node) processing time in three cases are
computed respectively and compared. Process is changed when its processing time is
no less than other cases. Otherwise, resource is reallocated at the task which leads to
minimal overall processing time. The resource that increase minimal expense but does
not increase time is preferred. If there are multiple conflicts, each of them will be
handled until there is no task conflict with v0. Each task v conflicting with v0 is se-
lected, and reallocation is done on the task in the longest path among those paths
including v0 or v. Function replaceRow(allocT, (v, r, s, v.st, v.st.et)) returns an alloca-
tion table that replaces the row for v in allocT with the specified new row. Function
adjustTime(allocT, tm, p) update the start time and end time for those tasks that start
after the time tm in allocT for process p, and returns the end time of vt.

 Resource Allocation vs. Business Process Improvement 237

function conflictProc(allocationTable allocT, Time startTime, Process p)
timeline=startTime;
V={v | v.st startTime}
while(timeline < vt.st)
 select v0 V : v0.st=min({v’.st| v’ V})

Vc={v’|v’.st< v0.et & v’ V}
timeline= v0.st;

 if (|Vc |=0) then
 V=V \{v0};
 else if((|Vc |=1& andStruc(v0, Vc [0])) then
 v1= Vc[0];
 r1=nextBestRole(v0); s1=allocRes(r1); //reallocate v0

 allocT1=replaceRow(allocT, (v0, r1, s1, v0.st, v0.st+ time (r1, v0)));
 t1 = adjustTime(allocT1, v0.st, p);
 r2=nextBestRole(v1); s1=allocRes(r2); //reallocate v1
 allocT2=replaceRow(allocT, (v1, r2, s2, v1.st, v1.st+ time(r2, v1)));
 t2 = adjustTime(allocT2, v1.st, p);
 p’=changeP(p, v0, v1); //change structure
 r3= allocT[v0].role; s3= allocT [v0].resource;
 allocT3=replaceRow(allocT, (v0, r3, s3, v2.et, v2.et+ time(r3, v0)));
 t3 = adjustTime(allocT3, v0.st, p’);
 if t3 min(t1, t2) then p=p’; allocT=allocT3;
 else if(t2<t1) then V=V \{v0}; allocT= allocT2;
 Else V=V \{v0}; allocT= allocT1;
 end if
 else
 allocT’=allocT;
 for each v Vc
 pt = longestPath(paths(v0) paths(v);
 v’= pt.Tasks { v0, v };
 r’=nextBestRole(v’); s’=allocRes(r’);
 allocT=replaceRow(allocT, (v’, r’, s’, v’.st, v’.st+ time (r’, v’)));
 adjustTime(allocT, v’.st, p);
 if (v’ = v0) then V=V \{v0}; break; end if;
 end for
 end if
end while
return allocT;

Algorithm 2. Resource Allocation Conflict Resolution

Consider the example introduced in Section 2. The basic allocation algorithm first
comes up with an initial allocation as shown in Figure 5(a). After that, allocation con-
flicts are checked. Starting from t1, each task will be checked. When t1 is examined, we
can easily detect that task t1 conflicts with t2 because they use same resource s2 in an
intervening duration. At this stage, reallocation will be applied on t1 because it is on the
longest path, and hence the overall time can be reduced and times of different paths

238 J. Xu, C. Liu, and X. Zhao

Task Resource

t1 s12

t2 s2

t3 s4

t4 s4

t5 s4

t6 s5

t7 s11

t8 s5

Task Resource

t1 s2

t2 s2

t3 s4

t4 s4

t5 s4

t6 s5

t7 s11

t8 s5

Task Resource

t1 s12

t2 s2

t3 s4

t4 s4

t5 s32

t6 s5

t7 s11

t8 s5

(a) (b) (c)

Fig. 5. Allocation conflict and handling

become more balanced. This results in the change shown in Figure 5(b). Similarly,
the conflict between t4 and t5 can be resolved by reallocating s5 with s32 as shown in
Figure 5(c).

4.5 Adjustment Strategy

A time constraint is not considered in the basic strategy. As Rule 2 stated, the overall
execution time of a business process is not allowed to exceed the time limit. In case
this rule is violated, i.e., the ending time of vt in the allocation table is greater than the
time limit tmax, we have to follow Rule 2 and shorten the time until it is within tmax.
However, if the overall time is less than tmax, we may relax the time and to reduce the
expense based on possible business process improvement.

First we discuss the adjustment strategies for the case that time constraint is vio-
lated. We have several heuristic rules. As the overall time is dependent on the longest
path in the business process, it is more effective to adjust those tasks belonging to the
longest path. When a task t currently assigned with resource s is reallocated with s’,
both the time and cost may change accordingly. Assume ∆time denotes the time re-
duced and ∆expense is expense increased. The value of ∆time/∆expense, called as
compensation ratio, can be used to measure the effectiveness of an adjustment. Obvi-
ously a higher compensation ratio is preferable because more time can be reduced
with less expense. If this adjustment is on a task that belongs to the longest path, the
overall time will be reduced accordingly.

Algorithm 3 is designed for handling time constraint violation. The reallocation
process is done until time constraint is satisfied. Firstly, the longest path pt is selected.
In Lines 3-17, we select a task on pt to be reallocated. mcr, with 0 as initial value, is
used to record the maximal compensation ratio for each reallocation, and mallocT is
the allocation table after such a reallocation has been made. For each task v in pt, the
role rv of maximal compensation ratio (calculated by maxRatioRole(v)) for v selected,
and resource sv of rv is reallocated, and allocT’ is the allocation table to record this
reallocation in Lines 5-7. If v is in And block, this reallocation may cause allocation
conflict, hence function conflictProc(allocT’, v.st, p) is called to handle potential
resource allocation conflicts from the starting time of v. Lines 9-11 computes the

 Resource Allocation vs. Business Process Improvement 239

compensation ratio cr of this reallocation from overall perspective. If cr is lager than
mcr, mcr is updated to cr and mallocT is changed to allocT’ in Lines 13-14. After
compensation ratio on all the tasks in pt has been computed, allocT is updated to
mallocT and returned if time constraint is satisfied.

Input: p
allocT
pathT

tmax

- allocation table(based on business process p)
- the old allocation table
- a path table for p
- time limit

Output: allocT - new allocation table

1 while(vt.et> tmax)
2 pt = longestPath(pathT);
3 mcr=0;
4 for each v pt.Tasks
5 rv = maxRatioRole(v);
6 sv = allocRes(r);
7 allocT’=replaceRow(allocT, v, rv, sv, v.st, v.st+time(rv, v));
8 if(v is in And block) then call conflictProc(allocT’) end if;
9 et= allocT[vt].et; exp=expense(allocT[v].role, v); //previous

10 et’= adjustTime(allocT’, v.st, p); exp’=expense(rv, v); //new
11 cr=(et-et’) / (exp’-exp);
12 if(cr>mcr) then
13 mcr=cr;
14 mallocT=allocT’;
15 end if
16 end for
17 allocT=mallocT;
18 end while
19 return allocT;

Algorithm 3. Time constraint violation handling approach

Come back to the example introduced in Section 2, the outcome from Algorithm 1
is shown in Figure 5(c), where the time constraint is violated. At this stage, adjust-
ment strategy must be applied in order to guarantee time constraint be satisfied. The
longest path is computed as path 1 (t1→t4→t7→t8). Therefore, reallocation will be
done on tasks on path 1. It is easy to calculate and compare the compensation ratio for
replacing each task in this path and find that reallocation for t8, will achieve the
maximal compensation ratio. Therefore reallocation on t8 is applied and the new allo-
cation is shown as Figure 2(c).

Now we discuss the adjustment strategies for the case that the overall time is less
than the time limit tmax. We also have some heuristic rules to reduce expense while
relaxing time. In Algorithm 1, the resource allocation conflict caused by two parallel
executing tasks that required same role with minimal expense but there was no
sufficient resource for allocating them was resolved by reallocating one of them with
a higher expense resource. In this scenario, actually, we could change the structure
of the process to support both of them to be assigned with the original cheapest

240 J. Xu, C. Liu, and X. Zhao

resources. The reduced expense through process change is usually compensated with
increased time. Therefore, it is wise to make change to those tasks that do not belong
to a long path, because a task in a long path has less room for increasing time.

Algorithm 4 is designed for relaxing time for maximum reduction of expense. al-
locT’ and p’ records the allocation table and the process structure after change, and
they are initialised with allocT and p respectively (Lines 1-2). While the end time of
allocT’ is less than tmax (Line 3), the process change is accepted (Line 22) and further
process improvement can be made based on allocT’ and p’. Process change is realized
in the following way. In the process p the shortest path pt is first selected (Line 4),
and the change is focused on task in pt. For each task v in pt (Line 5), we select a role
r by function minRatioRole(v) that looks for the maximum expense deduction with
minimum time increase (Line 6). If such a role exists and it is not used by v (Line 7),

Input:
p

allocT
pathT

tmax

- allocation table(based on business process p)
- the old allocation table
- a bath table for p
- time limit

Output: allocT
p

- new allocation table
- new process structure

1 allocT’=allocT; //new allocation table after reallocation, initially allocT
2 p’=p; //new process structure after reallocation, initially p
3 while(allocT’[vt.et]< tmax)
4 pt=shortestpath(PathT);
5 for each v∈pt
6 r = minRatioRole(v);
7 if(r≠null and allocT[v].role≠r)
8 ts=getTasks(r, v.st, v.et);
9 mtm= vt.et;

10 for each v’∈ts
11 ts’=longestPath(paths(v’));
12 if (ts’.time<mtm)
13 mv=v’; mtm=ts’.time;
14 end if
15 end for
16 end for
17 p’=changeP(p, v, mv);
18 s=allocRes(r);
19 allocT’= replaceRow(allocT, (v, r, s, v.st, v.st+time(r, v)));
20 call conflictProc(allocT’, v.st, p’);
21 adjustTime(allocT’, v.st, p’);
22 if(allocT’[vt.et]< tmax) then allocT=allocT’; p=p’; end if;
23 end while
24 return allocT;

Algorithm 4. Relaxation approach

 Resource Allocation vs. Business Process Improvement 241

function getTasks(r, v.st, v.et) returns the set of tasks that are within the same nearest
And block, are overlapped with v, and are assigned resources with the same role (Line
8), then Lines 9-16 finds the task mv with the minimal time in its involved longest
path. Lines 17-21 change the structure and replace the resource.

For the example in Section 2, when the time constraint is 11.5 hours rather than 8,
allocation after Algorithm 3 is shown as Figure 5(c). However, t2 is not using resource
of best role due to conflict with t1, therefore, we examine if process change contrib-
utes to expense reduction. In the new process shown as Figure 3, resource allocation
can be made as shown in Figure 2(d) and the expense is reduced. Therefore, in this
case, we adopt the changed business process structure in Figure 3 and resource alloca-
tion in Figure 2(d).

5 Related Work and Discussion

Resource allocation is a topic related to task/workflow scheduling, which seeks the
proper execution sequence for a set of tasks to achieve specific goals. This procedure
is dependent on the resource allocated to execute the tasks. Scheduling problem has
been discussed at task level and workflow level in previous work. Task level schedul-
ing is based on independent tasks. Many algorithms have been proposed to schedule
tasks within the homogenous systems in previous literatures such as [13, 18]. Our
paper investigates the resource allocation in a heterogeneous environment, and for
heterogeneous scheduling many work has been done. In order to reduce the process-
ing time, Topcuoglu, Hariri and Wu have proposed an Earliest-Finished-Time
(HEFT) algorithm in [10]. The HEFT algorithm selects the task with the highest up-
ward rank value at each step and assigns the selected task to the processor. This algo-
rithm can minimise the earliest finished time, but the cost is not considered. The work
in [6] deals with problem of scheduling tasks to minimise transition cost within a rigid
deadline for completion. A mathematical formulation and a two-phased algorithm are
introduced to solve this problem in [6]. All the works on task level scheduling have
their limit in effective resource management because they do not follow the structure
of a business process.

Compared with task scheduling, workflow scheduling is based on tasks of compul-
sory execution order constraint. In [5], Johann, Euthimios and Michael have proposed
some modelling primitives to express the lower- and upper-bound of time constraints
for workflow scheduling. In addition, they have also developed the technique for
checking if time constraints are satisfied at process build and instantiation time, and
enforcing these constraints at run-time. Their work has solved the problem of deadline
constraints and provided the solution about how to avoid the deadline violation, but
this work does not include any resource allocation strategy. Work [9, 3] has modelled
the workflow with resource constraints. In the framework of [9], workflow scheduling
is under both temporal constraints and resource constraints (composed of control
constraints and cost constraints). However, this work does not touch how to manage
and allocate resource in workflow. A number of Grid workflow management systems
such as [1, 12] have proposed scheduling algorithms to facilitate the workflow execu-
tion and minimise the execution time. Yu and Buyya [14, 15] have considered
not only execution time, but also execution cost. In [15], Yu has proposed a genetic

242 J. Xu, C. Liu, and X. Zhao

algorithm for scheduling scientific workflows for utility Grid applications by mini-
mising the execution time while meeting user’s budget constraint. In [14], the prob-
lem of minimising the overall cost while meeting user’s deadline constraint for the
scientific workflow scheduling is also investigated.

In contrast to the previous work, the work discussed this paper is intended to im-
prove performance of business processes by integrating resource allocation with busi-
ness process structural improvement. Compared to existing approaches, our approach
has the following features:

• Business process improvement for providing better resource allocation. In our
approach, the structure of process can be modified to better adapt to the re-
sources allocation when necessary. Based on the analysis on relationship be-
tween the types of available resource and the business process structure, such
modifications can make the process structure more effective for available re-
sources. In this way, resource allocation on the new process has better perform-
ance than allocation on the old process structure.

• Resource optimisation based on business process characteristics. In our approach,
business process characteristics, which include the constraints and dependencies
pre-defined by the process structure, are preserved in the resource allocation.

• Requirement oriented resource allocation. Our approach is able to guarantee the
requirements set for resource allocation been satisfied. In this paper, time con-
straints and cost requirements for a business process have been considered.

6 Conclusion

This paper discussed the problem of resource allocation for business processes. An
approach was proposed to allocate resources to tasks in such a way that the total ex-
pense is minimal while the requirement of executing time on a business process is
satisfied. In this approach, a basic strategy is applied first to minimise total expense.
Then, an adjustment strategy is applied to modify allocation such that the time con-
straint is met in a smart way. The advantage of this approach over previous ap-
proaches lies in the relationship between the effective resource allocation and the
business process improvement. To cater for the resource allocation requirements and
available resources of an enterprise, the structure of a business process can be
changed. After the structure of the business process is changed, the performance of
the business process in terms of better utilising resources is improved.

In the future, we plan to take more task dependencies into account in the resource
allocation and explore more structure changes of a business process.

References

1. Blythe, J., Jain, S., Deelman, E., Gil, Y., Vahi, K., Mandal, A., Kennedy, K.: Task sched-
uling strategies for workflow-based applications in grids. In: Proceedings of the 5th Inter-
national Symposium on Cluster Computing and the Grid, Cardiff, UK, pp. 759–767 (2005)

 Resource Allocation vs. Business Process Improvement 243

2. Du, W., Eddy, G., Shan, M.-C.: Distributed resource management in workflow environ-
ments. In: Proceedings of the 5th Database Systems for Advanced Applications, Mel-
bourne, Australia, pp. 521–530 (1997)

3. Etoundi, R.A., Ndjodo, M.F.: Feature-oriented workflow modelling based on enterprise
human resource planning. Business Process Management Journal 12, 608–621 (2006)

4. Huang, Y.-N., Shan, M.-C.: Policies in a resource manager of workflow systems: model-
ing, enforcement and management. In: Proceedings of the 15th International Conference
on Data Engineering, p. 104. IEEE Computer Society, Sydney (1999)

5. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: Jarke,
M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 286–300. Springer, Heidelberg
(1999)

6. Lee, Y.-J., Lee, D.-W., Chang, D.-J.: Optimal task scheduling algorithm for non-
preemptive processing system. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang,
Y. (eds.) APWeb 2006. LNCS, vol. 3841, pp. 905–910. Springer, Heidelberg (2006)

7. Liu, C., Orlowska, M.E., Li, H.: Automating handover in dynamic workflow environ-
ments. In: Proceedings of the 10th International Conference on Advanced Information Sys-
tems Engineering, pp. 159–171 (1998)

8. R-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and scheduling in
workflow domains. Expert Systems with Applications 33, 389–406 (2006)

9. Senkul, P., Toroslu, I.H.: An architecture for workflow scheduling under resource alloca-
tion constraints. Information System 30, 399–422 (2004)

10. Topcuoglu, H., Hariri, S., Wu, M.-Y.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed
Systems 13, 260–274 (2002)

11. van der Aalst, W., van Hee, K.: Workflow management: models, methods, and systems.
MIT Press, Cambridge (2004)

12. Wieczorek, M., Prodan, R., Fahringer, T.: Scheduling of scientific workflows in the
ASKALON grid environment. SIGMOD Record 34, 56–62 (2005)

13. Wu, A.S., Yu, H., Jin, S., Lin, K.-C., Schiavone, G.A.: An incremental genetic algorithm
approach to multiprocessor scheduling. IEEE Transactions on Parallel and Distributed Sys-
tems 15, 824–834 (2004)

14. Yu, J., Buyya, R., Tham, C.-K.: Cost-based scheduling of scientific workflow application
on utility grids. In: International Conference on e-Science and Grid Technologies, Mel-
bourne, Australia, pp. 140–147 (2005)

15. Yu, J., Buyya, R.: Scheduling scientific workflow applications with deadline and budget
constraints using genetic algorithms. Scientific Programming 14, 217–230 (2006)

16. Zhao, X., Liu, C.: Version management in the business process change context. In: Pro-
ceedings of the 5th International Conference on Business Process Management, pp. 198–
213 (2007)

17. Zhao, X., Liu, C., Yang, Y., Sadiq, W.: Handling instance correspondence in inter-
organisational workflows. In: Proceedings of the 19th International Conference on Ad-
vanced Information Systems Engineering, pp. 51–65 (2007)

18. Zomaya, A.Y., Teh, Y.-H.: Observations on using genetic algorithms for dynamic load-
balancing. IEEE Transactions on Parallel and Distributed Systems 12, 899–911 (2001)

Detecting and Resolving Process Model Differences in
the Absence of a Change Log

Jochen M. Küster1, Christian Gerth1,2, Alexander Förster2, and Gregor Engels2

1 IBM Zurich Research Laboratory, Säumerstr. 4
8803 Rüschlikon, Switzerland

{jku,cge}@zurich.ibm.com
2 Department of Computer Science, University of Paderborn, Germany

{gerth,alfo,engels}@upb.de

Abstract. Business-driven development favors the construction of process mod-
els at different abstraction levels and by different people. As a consequence, there
is a demand for consolidating different versions of process models by detecting
and resolving differences. Existing approaches rely on the existence of a change
log which logs the changes when changing a process model. However, in several
scenarios such a change log does not exist and differences must be identified by
comparing process models before and after changes have been made. In this paper,
we present our approach to detecting and resolving differences between process
models, in the absence of a change log. It is based on computing differences and
deriving change operations for resolving differences, thereby providing a founda-
tion for variant and version management in these cases.

Keywords: process change management, process model differences.

1 Introduction

The field of business process modeling has a long standing tradition. Recently, new re-
quirements and opportunities have been identified which allow the tighter coupling of
business process models to its underlying IT implementation: In Business-Driven De-
velopment (BDD) [11], business process models are iteratively refined, from high-level
business process models into models that can be directly executed. In such scenarios,
a given business process model can be manipulated by several people and different
versions of the original model can be created. At some point in time, these different
versions need to be consolidated in order to integrate selected information found in dif-
ferent versions into a common process model. Technically, this consolidation involves
inspecting differences and resolving differences by performing change operations on
the original model in order to integrate information found in one of the versions.

Detection of differences introduced into a process model is straightforward in a
process-aware information system [5,15] that provides change logs (see e.g. [21]). How-
ever, there exist scenarios where such a change log is not available: Either the tool does
not provide one or process models are exchanged across tool boundaries. In such situa-
tions, detection of differences has to be performed by comparing process models before
and after changes have been made. For each difference detected, appropriate change
operations have to be derived which together can be considered as a reconstructed
change log.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 244–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Detecting and Resolving Process Model Differences in the Absence of a Change Log 245

In addition, process modeling tools have to fulfill specific requirements concerning
user-friendliness: The business user (usually not a computer scientist) should be able
to inspect and resolve differences. As a consequence, differences must be displayed
in a form that is understandable by the business user, by grouping related differences
or those differences that can be resolved together. Similarly, resolution of differences
should involve compound change operations (rather than primitive change operations)
which enable the business user to deal with differences such as insertion or deletion of
a task and automate the reconnection of control flow in the process model.

In this paper, we present our solution to the problem of computing differences,
displaying differences and resolving differences between two process models in the
situation that no change log is available. Detection of differences makes use of the
concept of correspondences [13], well-known from model merging and model compo-
sition, but enriched with the technique of Single-Entry-Single Exit fragments (SESE
fragments) [20]. Using SESE fragments we are able to associate each difference with
a compound change operation that resolves the difference. Overall, our approach pro-
vides a foundation for variant and version management in cases where no change log is
available which is a common situation in process modeling tools and in scenarios where
process models are exchanged across tool boundaries.

The paper is structured as follows: Section 2 introduces our scenario for detection and
resolution of differences and describes key requirements. Then, in Section 3, we discuss
the foundations for our approach, correspondences and SESE fragments. In Section 4
and Section 5 we present our approach for difference detection and visualization. In
Section 6, our approach to difference resolution is described and a prototype for initial
validation is presented. We conclude with a discussion of related and future work.

2 A Scenario for the Detection and Resolution of Differences

In business-driven development, business process models are manipulated by several
persons and multiple versions of a shared process model need to be consolidated at some
point in time. A basic scenario is obtained when a process model V1 is copied and then
changed into a process model V2, possibly by another person. After completion, only
some of the changes shall be applied to the original model V1 to create a consolidated
process model. Figure 1 shows an example process model V1 that has been changed
into a process model V2. In the following, we use process models in a notation similar
to activity diagrams in UML [12].

Both models describe the handling of a claim request by an insurance company. V1

starts with an InitialNode followed by the actions ”Check Claim” and ”Record Claim”.
Then, in the Decision, it is checked whether the claim is covered by the insurance con-
tract or not. In the case of a positive result the claim is settled. In the other case the claim
is rejected and closed, represented by the actions ”Reject Claim” and ”Close Claim”.
We now assume that V2 is derived from V1 by another business user who introduces and
deletes elements, with the final result that is shown in Figure 1. A manual inspection of
the process models V1 and V2 leads to the identification of the following differences:

– The action ”Check Claim” is moved into a newly inserted cyclic structure. In ad-
dition a new action ”Retrieve additional Data” is inserted into the cyclic structure.

246 J.M. Küster et al.

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Pay
Out

V1

V2

Recalc. Cust.
Contribution

Send
Letter

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

?

Fig. 1. Versions V1 and V2 of a business process model

– A parallel structure (Fork and two Joins) is introduced in V2 containing four actions
”Calculate Loss Amount”, ”Recalculate Customer Contribution”, ”Pay Out”, and
”Send Letter”.

– Action ”Close Claim” has been deleted in V2.
– A new alternative structure (Decision and Merge) is inserted in V2 together with

two actions ”Call Customer” and ”Send Rejection Letter”.

- deleteEdge(InitialNode, ”Check Claim”)
- deleteEdge(”Check Claim”, ”Record Claim”)
- addEdge(InitialNode, ”Record Claim”)
- deleteEdge(”Record Claim”, Decision)
- addControlNode(Merge)
- addEdge(”Record Claim”, Merge)
- addEdge(Merge, ”Check Claim”)
- addControlNode(Decision)
- ...

Fig. 2. Primitive change operations ap-
plied to V1 in order to obtain V2

For larger process models, manual identifica-
tion of differences represents a large overhead.
As such, techniques for detecting and resolving
differences between process models are required
which typically depend on the modeling language
as well as on constraints of the modeling environ-
ment. In our scenario, we assume that no change
log is available. A simple approach would then
compute all changed elements and express them
using primitive change operations as displayed in Figure 2. For the business user, such
a change log is difficult to handle because the relationship between change operations
and the process model elements is difficult to determine. Furthermore, changes are not
grouped into compound change operations [21] which package several related primi-
tive change operations. For example, for inserting the new alternative structure with the
Decision and Merge, the business user has to insert these two nodes by appropriate ad-
dControlNode operations, delete edges by deleteEdge operations and insert new edges
by insertEdge operations. This is in contrast to a compound operation that comprises
all these change primitives, being close to the conceptual understanding of the change.
As a consequence, we define the following requirements a solution for detection and
resolution of differences should fulfill:

– (Detection) The solution must provide a technique to re-construct one possible
change log which represents the transformation steps for transforming one process
model into the other process model.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 247

– (Visualization) Differences should be grouped and associated to areas where they
occur in order to improve usability by the business user.

– (Resolution) The solution should enable the business user to resolve differences
using compound change operations rather than change primitives manipulating in-
dividual process model elements.

– (Resolution) The business user should have the opportunity to select only some of
the changes and apply them in any order when possible.

3. Resolution of Differences

Apply
Operation

Opi

Root Fragment
Insert B (A,D)

Concurrent Fragment
Delete C
Move E (F,J)

…

Update
Position

Parameters

1. Detection of Differences

and Construction of a Change Log

V1

E
di

tin
g

O
pe

ra
tio

ns

Insert B (A,D)

Delete C

Move E (F,J)

…

Change Log

Detection of Differences
between V1 and V2
based on:

Correspondences

SESE Fragments

Root Fragment
Insert B (A,D)

Concurrent Fragment
Delete C
Move E (F,J)

…

Calculate Hierarchical
Change Log

2. Ordering of Change
Operations

V2

V1

E
di

tin
g

O
pe

ra
tio

ns

V2

V’1

Fig. 3. Overview of our process merging approach

Figure 3 provides an overview of the approach that we have developed based on
these requirements: The first step is to detect differences between the two process mod-
els. This detection makes use of correspondences and SESE fragments. For each dif-
ference, a change operation is generated which resolves the difference between the two
models. In the second step, change operations are ordered according to the structure of
the process models. The third step is then to resolve differences between the process
models in an iterative way, based on the business user’s preferences.

3 Correspondences and SESE Fragments

In this section, we first define business process models and provide a summary of the
concepts of Single-Entry-Single-Exit fragments [20]. Then we introduce correspon-
dences. Fragments and correspondences will be later used for detecting differences and
also provide a basis for deriving change operations.

3.1 Process Models and SESE Fragments

For the following discussions, we assume a business process model V = (N, E) consist-
ing of a finite set N of nodes and a relation E representing control flow. N is partitioned
into sets of Actions and ControlNodes. ControlNodes contain Decision and Merge, Fork
and Join, InitialNodes and FinalNodes. In addition, we assume that the following con-
straints hold:

1. Actions have exactly one incoming and one outgoing edge.
2. Nodes are connected in such a way that each node is on a path from the InitialNode

to the FinalNode.

248 J.M. Küster et al.

3. Control flow splits and joins are modeled explicitly with the appropriate Control-
Node, e.g. Fork, Join, Decision, or Merge. ControlNodes have either exactly one
incoming and at least two outgoing edges (Fork, Decision) or at least two incoming
and exactly one outgoing edge (Join, Merge).

4. An InitialNode has no incoming edge and exactly one outgoing edge and a FinalN-
ode has exactly one incoming edge and no outgoing edge.

5. A process model contains exactly one InitialNode and exactly one FinalNode.

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action Decision Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Pay
Out

V1

V2

Recalc. Cust.
Contribution

Send
Letter

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

fZ

fZ

fY

fY

fX

fX

fW

fW

fA

fB

fC

fD

fE

fF

fG

fH

fK fL

fM

a)

b)

Fig. 4. Versions V1 and V2 decomposed into canonical SESE fragments

In general, process models can be decomposed into SESE fragments [20]. A SESE
fragment is a non-empty subgraph in the process model with a single entry and a single
exit edge. The fragment which surrounds the entire process model is also considered as
a SESE fragment which we refer to as root fragment. Among all possible SESE frag-
ments, we select so-called canonical fragments which are not overlapping on the same
hierarchical level and denote them with F(V) for a given process model V . Figure 4
shows an example of a SESE decomposition into canonical fragments, with fragments
visualized by a surrounding of dotted lines.

fZ

fY

fX fW

Settle
Claim

Reject
Claim

Close
Claim

Initial
Node

Final
Node

Record
Claim

Decision Merge

Check
Claim

Fig. 5. Process structure tree
of V1

The canonical fragments of a process model V can be
organized into a process structure tree (PST) [20], denoted
by PST(V), according to the composition hierarchy of the
fragments (see Figure 5 for the tree obtained for V1). If a
fragment f1 contains another fragment f2 (respectively node
n), then f1 will be the parent of fragment f2 (node n) in this
tree and fragment f2 (node n) will be one of its children.
Further, the root of the tree is the root fragment. We distin-
guish between different types of fragments as follows [20]:

Detecting and Resolving Process Model Differences in the Absence of a Change Log 249

– a well-structured fragment f is either a sequential, a sequential branching, a cyclic,
or a concurrent branching fragment. For example, in Figure 4, fY is a well-structured
sequential branching fragment and fW is a well-structured sequential fragment.

– an unstructured concurrent fragment f is not well-structured and contains no cycles
and has no decisions and no merges as children. In Figure 4, fD is an unstructured
concurrent fragment.

– an unstructured sequential fragment f is not well-structured and has no forks and
no joins as children.

– a complex fragment f is any other fragment that is none of the above.

Given a fragment f ∈ F(V), we denote by type(f) the type of the fragment and by
frag(f) the parent fragment. Similarly, given a node x ∈ N, we denote by type(x) the
type of the node and frag(x) the parent fragment of x. For example, type(x) = Action
means that x is an Action node.

SESE fragments have been used successfully for checking soundness [18,14] of pro-
cess models but they are also beneficial for detection of differences between process
models, discussed later in this paper.

3.2 Correspondences

Correspondences are useful for the detection of differences because they provide the
link between elements in different process models. We assume process models V1 =
(N1, E1) and V2 = (N2, E2) and x ∈ N1 and y ∈ N2 as given. A correspondence is used
to express that a model element x has a counterpart y with the same functionality in the
other version. In such a case, we introduce a 1-to-1 correspondence between them. In
the case that a model element x does not have a counterpart with the same functionality,
we speak of a 1-to-0 correspondence. In case that y does not have a counterpart, we
speak of a 0-to-1 correspondence. In addition, refinement of an element into a set of
elements would give rise to a 1-to-many correspondence and abstraction of a set of
elements into one element would give rise to a many-to-1 correspondence. These last
two types are not needed in our scenario.

We express a 1-to-1 correspondence by inserting the tuple (x, y) into the set of cor-
respondences C(V1, V2) ⊆ N1 × N2. We further introduce the set of elements in V1

which do not have a counterpart and denote this set by C1−0(V1, V2). Similarly, we
denote the set of elements in V2 without counterparts as C0−1(V1, V2). Similarly, we in-
troduce correspondences for SESE fragments, expressed in the sets CF(F(V1),F(V2)),
CF
1−0(F(V1),F(V2)), and CF

0−1(F(V1),F(V2)).
In our scenario, we assume that the functionality of a node remains the same if it

is copied. Correspondences can then be computed in a straightforward way by first
establishing 1-to-1 correspondences between all nodes 1 (respectively fragments) of a
process model when copying process model V1 to create an initial V2. After obtaining
the final V2 by editing operations, all 1-to-1 correspondences have to be inspected and
1-to-0 or 0-to-1 correspondences are created if nodes (respectively fragments) have

1 Correspondences are internally based on the unique identifiers of elements.

250 J.M. Küster et al.

been deleted or added. In addition, for new nodes (respectively fragments) in V2, addi-
tional 0-to-1 correspondences have to be created. In other scenarios across tool bound-
aries, other means of correspondence computation are required which might involve
semantic matching techniques.

Fig. 6 shows correspondences between versions V1 and V2 of the process model
introduced earlier in this paper. A dotted line represents 1-to-1 correspondences and
connects model elements with the same functionality between V1 and V2. 1-to-0 cor-
respondences are visualized by dotted elements in V1 and 0-to-1 correspondences are
visualized by dotted elements in V2.

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

Record
Claim Check

Claim

Settle
Claim

Reject
Claim

Fork Join
Calculate

Loss Amount

Pay
Out

V1

V2

Recalc. Cust.
Contribution

Send
Letter

Retrieve
add. Data

Call
Customer

Send Rej.
Letter

Fig. 6. Correspondences between nodes of V1 and V2

We further assume a partial ordering relation on actions and fragments of a process
model, restricted to a partial ordering within each fragment. The partial orders will be
later used for detecting moved elements. Given an element x (fragment or action), we
denote by orderf the partial order of elements in fragment f derived by the control flow
order of elements within f and we write x <f y for x smaller than y according to this
order2. Let a tuple of actions or fragments (x, y) ∈ C(V1, V2) ∪ CF(F(V1),F(V2))
and frag(x) = f1 and frag(y) = f2 be given. Then we write orderf1(x) �= orderf2(y)
if and only if there exists an element (z1, z2) ∈ C(V1, V2) ∪ CF(F(V1),F(V2)) with
frag(z1) = f1 and frag(z2) = f2 such that z1 <f1 x and z2 >f2 y, or z1 >f1 x and
z2 <f2 y, or z1 and x are unordered and z2 and y are ordered, or z1 and x are ordered and
z2 and y are unordered.

4 Detection of Differences

In this section, we describe an approach to detect differences between process models,
based on the existence of correspondences and SESE fragments.

2 For cyclic fragments, we assume an order obtained by a depth-first search of the fragment
along the control flow edges.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 251

4.1 Action and Fragment Differences and Change Operations

The correspondences between two process models can be used to identify differences.
One form of differences that can occur are those that result from adding, deleting or
moving actions, as defined in the following:

Definition 1 (Action Differences). Given two business process models V1, V2 and sets
of correspondences C1−0(V1, V2), C0−1(V1, V2) and C(V1, V2), we define the following
action differences:

– an InsertAction difference is defined as an element y ∈ C0−1(V1, V2) and type(y) =
Action,

– a DeleteAction difference is defined as an element x ∈ C1−0(V1, V2) and type(x) =
Action,

– a MoveAction difference is defined as a tuple of actions (x, y) ∈ C(V1, V2)
and either (frag(x), frag(y)) �∈ CF(F(V1),F(V2)) or ((frag(x), frag(y)) ∈
CF(F(V1),F(V2)) and orderfrag(x)(x) �= orderfrag(y)(y)).

The identification of InsertAction and DeleteAction differences is straightforward. With
regards to MoveAction differences, we distinguish between intra-fragment differences
where the action has been moved within corresponding SESE fragments and inter-
fragment differences where actions have been moved between SESE fragments. The
detection of inter-fragment differences can be done by iterating over all 1-to-1 cor-
respondences and checking whether the surrounding SESE fragments are also in a
1-to-1 correspondence. If this is not the case, then the element has been moved and is
considered as an inter-fragment difference. The detection of intra-fragment differences
has to compare all elements within a fragment with the elements in the correspond-
ing fragment and identify changes in the order of elements. Each action difference can
be directly converted into a suitable InsertAction, DeleteAction or MoveAction opera-
tion which resolves the difference, shown in Figure 7. The position parameters a and b
specify the position where action x is inserted or moved to in process model V1.

Effects on Process Model VCompound Change Operation applied on V

Movement of action x between two succeeding elements a
and b in process model V and reconnection of control flow.

MoveAction(V,x,a,b)

Deletion of action x and reconnection of control flow.DeleteAction(V,x)

Insertion of a new action x (by copying action y) between
two succeeding elements a and b in process model V and
reconnection of control flow.

InsertAction(V,x,a,b)

Fig. 7. Overview of compound change operations for actions

In addition to action differences, different versions of process models can also be
constructed by introducing or removing control nodes, as well as deleting or changing
edge connections involving such control nodes. These changes give rise to differences
concerning the fragment structure of the process models and are defined as follows:

252 J.M. Küster et al.

Definition 2 (Fragment Differences). Given two business process models V1 and
V2 and sets of correspondences between SESE fragments CF(F(V1),F(V2)),
CF
1−0(F(V1),F(V2)), and CF

0−1(F(V1),F(V2)), we define the following fragment dif-
ferences:

– an InsertFragment difference is defined as a SESE fragment f2 ∈
CF
0−1(F(V1),F(V2)).

– a DeleteFragment difference is defined as a SESE fragment f1 ∈
CF
1−0(F(V1),F(V2)).

– a MoveFragment difference is defined as a tuple of fragments (f1, f2) ∈
CF(F(V1),F(V2)) and either (frag(f1), frag(f2)) �∈ CF(F(V1),F(V2)) or
((frag(f1), frag(f2)) ∈ CF(F(V1),F(V2)) and orderfrag(f1)(f1) �= orderfrag(f2)(f2)).

– a ConvertFragment difference occurs if the type of the fragment has changed or f1
has a control node as child that has no counterpart in f2 or f2 has a control node
as child that has no counterpart in f1.

The identification of InsertFragment, DeleteFragment and MoveFragment differences
is analogous to action differences. Identification of ConvertFragment differences in-
volves iteration over all tuples (f1, f2) ∈ CF(F(V1),F(V2)) and examining whether the
type of f1 or f2 has changed or whether one of the fragments has a control node as child
that has no counterpart in the other fragment.

Each fragment difference described can be resolved by an appropriate change op-
eration. An overview of the operations and their effect on a process model is given in
Figure 8. Note that here for the InsertFragment difference a number of different change
operations is given, inserting the fragment of suitable type into the process model. The
type can be determined by inspecting the fragment in V2.

Figure 9 shows one possible set of compound change operations obtained for the
example earlier in this paper. Here, InsertCyclicFragment(V1, , , fA) will insert a
new cycle into V1, MoveAction(V1, ”Check Claim”, ...) moves ”Check Claim” to its

Effects on Process Model VCompound Change Operation applied on V

Deletion of fragment f1 from process model V and
reconnection of control flow.

DeleteFragment(V,f1)

Move of fragment f1 between two succeeding elements a
and b in process model V and reconnection of control flow.

MoveFragment(V,f1,a,b)

Conversion of a fragment f1 into the fragment type of f2,
replacing the structure from f1 with the structure of f2, and
reconnection of control flow.

ConvertFragment(V,f1,f2)

Insertion of a new fragment f1 between two succeeding
elements a and b in process model V, copying the structure
of f2, and reconnection of control flow.

InsertFragment(V,a,b,f2)
The generic operation InsertFragment is realized by:
• InsertParallelFragment(V,a,b,f2)
• InsertAlternativeFragment(V,a,b,f2)
• InsertSequentialFragment(V,a,b,f2)
• InsertCyclicFragment(V,a,b,f2)
• InsertUnstructuredConcurrentFragment(V,a,b,f2)
• InsertUnstructuredSequentialFragment(V,a,b,f2)
• InsertComplexFragment(V,a,b,f2)

Fig. 8. Overview of compound change operations for fragments

Detecting and Resolving Process Model Differences in the Absence of a Change Log 253

- InsertCyclicFragment(V1 , , , fA)
- MoveAction(V1,”Check Claim”, ,)
- InsertAction(V1 ,”Retrieve add. Data”, ,)
- InsertUnstr.Conc.Fragment(V1, , , fD)
- InsertAction(V1 ,”Calc. Loss Amount”, ,)
- InsertAction(V1 ,”Recalc. Cust. Contr.”, ,)
- InsertAction(V1 ,”Pay Out”, ,)
- InsertAction(V1 ,”Send Letter”, ,)
- InsertAlternativeFragment(V1 , , , fK)
- InsertAction(V1 ,”Call Customer”, ,)
- InsertAction(V1 ,”Send Rej. Letter”, ,)
- DeleteAction(V1,”Close Claim”)

Fig. 9. Compound change operations
that transfer V1 into V2

- InsertCyclicFragment(V1,”Record Claim”, Decision, fA)
- MoveAction(V1 ,”Check Claim”, ,)
- InsertAction(V1 ,”Retrieve add. Data”, ,)
- InsertUnstr.Conc.Fragment(V1,”Settle Claim”, Merge, fD)
- InsertAction(V1 ,”Calc. Loss Amount”, ,)
- InsertAction(V1 ,”Recalc. Cust. Contr.”, ,)
- InsertAction(V1 ,”Pay Out”, ,)
- InsertAction(V1 ,”Send Letter”, ,)
- InsertAlternativeFragment(V1 ,”Reject Claim”, Merge, fK)
- InsertAction(V1 ,”Call Customer”, ,)
- InsertAction(V1 ,”Send Rej. Letter”, ,)
- DeleteAction(V1 ,”Close Claim”)

Fig. 10. Compound change operations with posi-
tion parameters

new position, and InsertAction(V1, ”Retrieve add. Data”, ...) will insert another action.
Note that Insert and Move operations are still incomplete because the position param-
eters have not been specified. In general, if the position parameters of an operation are
determined, we call this operation applicable. The computation of position parameters
will be discussed in the following subsection.

4.2 Computation of Position Parameters

According to our requirements, differences between two versions of a process model
should be resolvable in an arbitrary way which depends on the position parameters.

Initial
Node

A1 A2

Action

A1 A3

V1

V2 A4 A2

Fig. 11. Simple example

Figure 11 shows a simple example where
two actions ”A3” and ”A4” have been in-
serted, leading to InsertAction(V1,”A3”, ,)
and InsertAction(V1,”A4”, ,). In order to
ensure that the business user can choose both
operations, we compute position parameters to
be InsertAction(V1,”A3”,”A1”,”A2”) and InsertAction(V1,”A4”,”A1”,”A2”). If either
”A3” or ”A4” were position parameters, this would induce a dependency between
them, requiring that one of them is applied before the other one.

In order to avoid such situations, we express position parameters in terms of fixpoints
for given process models V1 and V2 and a set of correspondences C(V1, V2). A fixpoint
pair is a pair of nodes (n1, n2) ∈ C(V1, V2) such that n1 and n2 are not moved in the
process models by any change operation that has been derived from the differences
between V1 and V2. Given a fixpoint pair (n1, n2), both n1 and n2 are called fixpoints.
For example, in Figure 11, both (”A1”,”A1”) and (”A2”,”A2”) are fixpoint pairs. Using
fixpoints as position parameters also ensures that the insert and move operations can
always produce a model that is connected because the newly inserted or moved element
or fragment can be connected to the fixpoints automatically.

Figure 10 shows the operations with position parameters computed (bold printed
operations are applicable, others are not yet applicable and need position parameters).
After applying an operation, the set of fixpoints increases and the position parameters
are recomputed, making more operations applicable.

254 J.M. Küster et al.

In the following, we first reason about the completeness of change operations derived
using our approach.

4.3 Completeness of Change Operations

The set of change operations containing all compound change operations for two busi-
ness process models V1 and V2 derived according to our approach is denoted by
ChangesCompound(V1, V2). After defining action and fragment differences, one ques-
tion to ask is whether these are all differences that can occur when changing a
process model V1 into a process model V2. For this, we assume an ideal minimal
change log consisting of change primitives [17] inserting or deleting nodes (Ac-
tion or ControlNodes) and edges, namely addActionNode, addControlNode, addEdge,
deleteActionNode, deleteControlNode, deleteEdge.

Given process models V1 and V2, a minimal sequence of primitive change operations
opi converting V1 into V2, denoted as ChangeLogmin(V1, V2), is called a minimal change
log. Given such a minimal change log, we have to show that each entry in this change
log gives rise to a compound change operation involving actions or fragments, so no
entry will be ignored. The following theorem establishes a relationship between the
minimal change log and our compound change operations:

Theorem 1 (Completeness of Differences). Given two business process mod-
els V1, V2, ChangeLogmin(V1, V2) and ChangesCompound(V1, V2), for each op ∈
ChangeLogmin(V1, V2) there exists c ∈ ChangesCompound(V1, V2) such that c comprises
op.

Proof sketch: Given op ∈ ChangeLogmin(V1, V2):

– If op = addActionNode, then there exists y ∈ C0−1(V1, V2) which gives rise to
an InsertAction difference which means that we derive an InsertAction operation c
comprising op.

– If op = addControlNode, then the control node either creates a new fragment or is
inserted into an existing fragment. The first case induces an InsertFragment differ-
ence, the second case a ConvertFragment difference. In both cases, c (InsertFrag-
ment or ConvertFragment) comprises op.

– If op = addEdge, then this involves integrating new nodes (ControlNodes or
Actions) into the process model, reordering of existing fragments or nodes, or
reconnection of existing nodes in case of deletions. In the first case, there must
be a suitable addActionNode or addControlNode operation, leading to appropriate
Insert operations comprising op. In the second case, the addEdge operation (pos-
sibly together with other addEdge operations) gives rise to MoveAction or Move-
Fragment differences comprising op. In the third case, there must be a suitable
DeleteAction or DeleteFragment operation comprising op.

– The cases op = deleteActionNode, op = deleteControlNode and deleteEdge can be
treated analogously.

This result shows that it is possible to detect differences based on actions and frag-
ments. Note that each fragment difference usually involves more than one control node
or edge difference and gives rise to the possibility to abstract from several individual
differences relating to edge reconnection or control node changes.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 255

5 Computation of Hierarchical Change Log

In order to enable user-friendly resolution of changes, change operations can be visu-
alized according to the structure of the two process models which is obtained by their
SESE decomposition: Given such a fragment decomposition, each operation can be as-
sociated to the fragment in which it occurs. In the following, we first introduce a joint
process structure tree as a basis of such a hierarchical change log. Given two process
structure trees PST(V1), PST(V2) and correspondences between their nodes, then the
joint PST is denoted as PST(V1, V2). The joint PST can be constructed as follows:

– for a pair (v1, v2) ∈ CF(V1, V2), a new node v3 is inserted into PST(V1, V2) with
fragment(v3) = fragment(v1).

– for a node v1 ∈ CF
1−0(V1, V2), a new node v3 is inserted into PST(V1, V2) with

fragment(v3) = fragment(v1),
– for a node v2 ∈ CF

0−1(V1, V2), a new node v3 is inserted into PST(V1, V2) with
fragment(v3) = fragment(v2).

fZ

root
fragment

fY

alternative
fragment

fX fW

fD

unstructured
concurrent
fragment

fE fF

MoveAction
(V1, “Check Claim“,-,-)

InsertAction
(V1, “Calculate Loss Amount“, -,-)

InsertAction
(V1, “Recalc. Customer Contribution“,-,-)

DeleteAction
(V1, “Close Claim“)

InsertUnstructuredConcurrentFragment
(V1, “Settle Claim”, Merge, fD)

fA

cyclic
fragment

fB fC

InsertAction
(V1, “Retrieve add. Data“,-,-)

InsertCyclicFragment
(V1, ”Reject Claim”, Decision, fA)

fK
alternative
fragment

fL fM

InsertAction
(V1, “Call Customer“, -,-)

InsertAction
(V1, “Send Rej. Letter“,-,-)

InsertAlternativeFragment
(V1, “Reject Claim”,Merge,fK)

fG fH

InsertAction
(V1, “Pay Out“, -,-)

InsertAction
(V1, “Send Letter“,-,-)

MoveAction
(V1, “Check Claim“,-,-)

Fig. 12. Hierarchical change log of example

Based on the joint PST,
we can define a hierarchical
change log. The idea of the
hierarchical change log is to
arrange change operations ac-
cording to the structure of
the process model by associ-
ating to each SESE fragment
the change operations that af-
fect it (for a formal definition
see [10]).

Figure 12 shows a hierar-
chical change log for the two
versions V1 and V2 of a pro-
cess model introduced earlier
in this paper. For example, the
InsertCyclicFragment operation takes place within the root fragment fZ . The Insert-
UnstructuredConcurrentFragment occurs in the branch fX of the alternative fragment
fY . Within the newly inserted unstructured parallel fragment fD, there are several Insert-
Action operations. Further operations such as the InsertAlternativeFragment or Delete-
Action operations are also associated to their fragments.

Using the hierarchical change log, one can easily identify the areas of the process
model that have been manipulated. This enables the business user to concentrate on
those changes that are relevant to a certain area in the process model and increases
thereby usability. The hierarchical change log can also be beneficial for identifying de-
pendencies between change operations and for identifying groups of change operations
that can be applied as a change transaction. In the next section, we elaborate on the
application of change operations and tool support.

256 J.M. Küster et al.

6 Application of Operations and Tool Support

The operations in the change log with position parameters are ready for application.
Figure 13 shows V1 and the application of the InsertUnstructuredConcurrentFragment
operation, leading to the insertion of the Fork and two Joins and the automated recon-
nection of control flow. Alternatively, the user could have chosen any other operation
of the change log that is applicable.

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Fork

Join1

V1’

Initial
Node

Check
Claim

Record
Claim

Settle
Claim

Reject
Claim

Close
Claim

Action
Decision

Merge Final
Node

V1

insertUnstructuredConcurrentlFragment
(V1, ”Settle Claim”, Merge, fD)

Join2

Fig. 13. Applying a compound change operation

By recomputing the position parameters of the remaining operations we can increase
the number of applicable operations and refine existing position parameters. In the
example, the position parameters of the InsertAction(V1,”Calculate Loss Amount”,
,), InsertAction(V1,”Recalc. Customer Contribution”, ,), InsertAction(V1,”Pay

Out”, ,), and InsertAction(V1,”Send Letter”, ,) operations can be computed after
inserting the unstructured concurrent fragment. This leads to a new change log which
is shown in Figure 14.

Root Fragment
- InsertCyclicFragment(V1,”Record Claim”, Decision, fA)

- Move(V1,”Check Claim”, ,)
- InsertAction(V1,”Retrieve add. Data”, ,)

- Alternative Fragment
- Unstructured Concurrent Fragment

- InsertAction(V1,”Calculate Loss Amount”, Fork, Join2)
- InsertAction(V1,”Recalc. Cust. Contrib.”, Fork, Join2)
- InsertAction(V1,”Pay Out”, Fork, Join1)
- InsertAction(V1,”Send Letter”, Join2, Join1)

- Delete(V1,”Close Claim”)
- InsertAlternativeFragment(V1 ,”Reject Claim”, Merge, fK)

- InsertAction(V1,”Call Customer”, ,)
- InsertAction(V1,”Send Rej. Letter”, ,)

Fig. 14. Recomputed change log after applying a com-
pound operation

As proof of concept, we have im-
plemented a prototype as an exten-
sion to the IBM WebSphere Busi-
ness Modeler [1] (see Fig. 15), in-
cluding functionality for creation
of correspondences when copying
a process model, decomposition of
process models into SESE frag-
ments and detection and resolution
of differences.

Fig. 15 shows versions V1 and V2

of the business process model intro-
duced earlier in this paper. The lower third of Fig. 15 illustrates the Difference View,
which is divided into three columns. The left and right hand columns show versions
V1 and V2 of the process model decomposed into SESE fragments. The middle column
of the difference view displays the hierarchical change log as introduced previously.
Using our prototype, differences between the two versions can be iteratively resolved
using the change operations introduced in this paper.

Detecting and Resolving Process Model Differences in the Absence of a Change Log 257

Fig. 15. Business Process Merging Prototype in the IBM WebSphere Business Modeler

As an initial validation, we applied our approach to the IBM Insurance Application
Architecture (IAA) [9]. We focused on claim handling, a key process in insurance in-
dustry, which is modeled as a composition of several other processes in IAA and is far
to large to identify differences without tool support. We introduced a set of differences
in the claim handling process and its subprocesses. Using our prototype, users who were
unaware of the differences, were able to identify the differences easily and additionally
were able to resolve selected differences in order to create a consolidated version of the
process model.

7 Related Work

Within the workflow community, the problem of migrating existing workflow instances
to a new schema [3,15] has received considerable attention: Given a process schema
change, it can be distinguished between process instances that can be migrated and
those that cannot be migrated [16]. Rinderle et al. [16] describe migration policies for
the situation that both the process instance as well as the process type has been changed.
They introduce a selection of change operations and examine when two changes are

258 J.M. Küster et al.

commutative, disjoint or overlapping. Recent work by Weber et al. [21] provides a com-
prehensive overview of possible change patterns that can occur when process models
or process instances are modified. These change patterns are used for evaluating dif-
ferent process-aware information systems [5] with respect to change support. Zhao and
Liu [22] address the problem of versioning for process models and present a means
of storing all versions in a version preserving graph, also relying on the existence of a
change log. Grossmann et al. [7] show how two business processes can be integrated
using model transformations after relationships have been established. Both the change
operations by Rinderle et al. [16] and the change patterns for inserting, deleting and
moving a process fragment are similar to our change operations. In contrast to the ex-
isting work, we describe an approach how to identify change operations in the case
that no change log is available and how to use SESE fragments for ordering discovered
change operations.

In the context of process integration where models do not originate from a com-
mon source model, Dijkman [4] has categorized differences of process models and van
Dongen et al. [19] have developed techniques for measuring the similarity of process
models. This work is complementary to our work where we assume that correspon-
dences can be automatically derived. In process integration, correspondences must first
be established using semantic matching techniques (see e.g. [6]) before our techniques
for detecting differences can be applied.

In model-driven engineering, generic approaches for detecting model differences and
resolving them have been studied [2,8]. Alanen and Porres [2] present an algorithm that
calculates differences of two models based on the assumption of unique identifiers. The
computation of differences has similarities to our reconstruction of change operations,
however, in our work, we aim at difference resolution for process models with minimal
user interaction.

8 Conclusion and Future Work

Detecting and resolving process model differences represents a standard functionality
in process-aware information systems that provide a change log. In this paper, we have
presented an approach for the detection and resolution of differences in the absence of
a change log that is based on correspondences between process models and also makes
use of the concept of a SESE fragment decomposition of process models. This SESE
decomposition enables the detection of compound changes and the visualization of dif-
ferences according to the structure of process models. The resolution of differences is
performed in an iterative way, by applying change operations that automatically recon-
nect the control flow.

There are several directions for future work. The change operations are intended to
preserve well-formedness and soundness of the process model which needs to be for-
mally proven. Further work is needed to support all features of process models such as
data flow. Afterwards, a detailed validation of our approach can be performed to show
that dealing with compound changes saves time during modeling. Future work will
also include the elaboration of our approach for merging process models in a distributed

Detecting and Resolving Process Model Differences in the Absence of a Change Log 259

environment. In those scenarios, the concept of a conflict becomes important because
one resolution can turn the other resolution non-applicable.

Acknowledgements. We would like to thank Jana Koehler, Ksenia Ryndina, and Olaf
Zimmermann for their valuable feedback on an earlier version of this paper.

References

1. IBM WebSphere Business Modeler,
http://www.ibm.com/software/integration/wbimodeler/

2. Alanen, M., Porres, I.: Difference and Union of Models. In: Stevens, P., Whittle, J., Booch,
G. (eds.) UML 2003. LNCS, vol. 2863, pp. 2–17. Springer, Heidelberg (2003)

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. Data Knowl. Eng. 24(3),
211–238 (1998)

4. Dijkman, R.: A Classification of Differences between Similar Business Processes. In: EDOC
2007, pp. 37–50. IEEE Computer Society, Los Alamitos (2007)

5. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys-
tems. Wiley, Chichester (2005)

6. Grigori, D., Corrales, J., Bouzeghoub, M.: Behavioral matchmaking for service retrieval. In:
ICWS 2006, pp. 145–152. IEEE Computer Society, Los Alamitos (2006)

7. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior Based Integration of Com-
posite Business Processes. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(eds.) BPM 2005. LNCS, vol. 3649, pp. 186–204. Springer, Heidelberg (2005)

8. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.: An Algebraic View on the
Semantics of Model Composition. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-
FA 2007. LNCS, vol. 4530. Springer, Heidelberg (2007)

9. IBM Insurance Application Architecture,
http://www.ibm.com/industries/financialservices/iaa

10. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Process Merging in Business-Driven Devel-
opment. IBM Research Report RZ 3703, IBM Zurich Research Laboratory (2008)

11. Mitra, T.: Business-driven development. IBM developerWorks article, IBM (2005),
http://www.ibm.com/developerworks/webservices/library/ws-bdd

12. Object Management Group (OMG). The Unified Modeling Language 2.0 (2005)
13. Pottinger, R., Bernstein, P.A.: Merging Models Based on Given Correspondences. In: VLDB,

pp. 826–873 (2003)
14. Puhlmann, F., Weske, M.: Investigations on Soundness Regarding Lazy Activities. In: Dust-

dar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 145–160. Springer,
Heidelberg (2006)

15. Reichert, M., Dadam, P.: ADEPTflex-Supporting Dynamic Changes of Workflows Without
Losing Control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

16. Rinderle, S., Reichert, M., Dadam, P.: Disjoint and Overlapping Process Changes: Chal-
lenges, Solutions, Applications. In: Meersman, R., Tari, Z. (eds.) OTM 2004. LNCS,
vol. 3290, pp. 101–120. Springer, Heidelberg (2004)

17. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On Representing, Purging, and Utilizing
Change Logs in Process Management Systems. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P.
(eds.) BPM 2006. LNCS, vol. 4102, pp. 241–256. Springer, Heidelberg (2006)

18. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers 8(1), 21–66 (1998)

http://www.ibm.com/software/integration/wbimodeler/
http://www.ibm.com/industries/financialservices/iaa
http://www.ibm.com/developerworks/webservices/library/ws-bdd

260 J.M. Küster et al.

19. van Dongen, B., Dijkman, R., Mendling, J.: Measuring Similarity between Business Process
Models. In: CAiSE 2008, pp. 450–464. Springer, Heidelberg (2008)

20. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow Analysis
for Business Process Models Through SESE Decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

21. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in
Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

22. Zhao, X., Liu, C.: Version Management in the Business Process Change Context. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 198–213. Springer,
Heidelberg (2007)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 261–277, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Diagnosing Differences between Business Process Models

Remco Dijkman

Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

Abstract. This paper presents a technique to diagnose differences between
business process models in the EPC notation. The diagnosis returns the exact
position of a difference in the business process models and diagnoses the type
of a difference, using a typology of differences developed in previous work.
This in contrast to existing techniques for detecting process differences (by
showing non-equivalence), which return simple true/false statements, or state-
ments in terms of a formal semantics. Neither type of statement is helpful to a
business analyst not versed in formal semantics. A case study illustrates the use-
fulness of the technique. It also shows that, although the technique has expo-
nential complexity, it can be used in practice, because of repeated scoping of
the models. The technique can be used, for example, to resolve differences be-
tween operational process in a merger between organizations.

1 Introduction

This paper presents a technique to diagnose differences between business processes.
Such a technique is useful when, for example, faced with the task of merging (the
business processes of) two organizations or the task of determining to what extent a
business process deviates from a reference process.

Two business processes contain one or more differences if and only if they are not
equivalent according to some notion of equivalence [9]. Therefore, techniques to
determine equivalence play an important role in this paper. However, these techniques
return information about non-equivalence of business processes in terms of the formal
semantics of those processes (i.e. the state-space or the set of traces of those proc-
esses). While such information is useful for someone versed in formal methods it is
less useful for the average business process analyst.

Therefore, the goal and contribution of this paper is a technique to diagnose differ-
ences between business processes, in such a way that a business process analyst,
without training in formal methods, can understand the diagnosis. The diagnosis pro-
vides feedback about differences between processes, by showing exactly where they
are in the processes and by identifying the types of the differences, using a typology
developed in previous work [4]. The paper focuses on business processes modelled in
the Event-Driven Process Chain (EPC) notation. Feedback is provided in terms of this
notation, such that it is understandable by the business process analyst who is familiar
with this notation.

262 R. Dijkman

The usefulness of the technique is illustrated by application to model pairs from the
SAP reference model, which contains 604 business processes in the EPC notation.

This paper builds on results from previous work [4,6]. It extends the difference ty-
pology from [4] by formalizing the differences and developing an algorithm to detect
the differences. The work described in [6] is complementary to this paper, because
this paper focuses on pointing out differences, while [6] focuses on measuring the
degree of similarity in terms of a number between 0 and 1.

The remainder of this paper is organized as follows. Section 2 introduces the EPC
notation as well as a formal semantics and the formal notion of (in)equivalence that
we use to determine equivalence between EPCs. Section 3 explains the technique.
Section 4 shows the results of applying the technique in the context of the SAP refer-
ence model. Section 5 discusses related work and section 6 concludes.

2 Event-Driven Process Chains

Event-driven process chains (EPCs) [10] can be used to model business processes.
Below, we define their syntax and semantics and we explain what feedback on differ-
ences between EPCs should look like.

2.1 EPC Syntax and Information Semantics

An EPC can be used to represent the flow of control in a process. It consists of func-
tions that represent activities in a process, events that represent the preconditions and
postconditions of functions and connectors that influence the flow of control in a
process. These different types of nodes are connected by arcs. Three types of connec-
tors are distinguished: AND (∧), XOR (×) and OR (∨). Each function has exactly one
incoming and one outgoing arc. Each event has at most one incoming and at most one
outgoing arc, but at least one arc. An event with no incoming arc is a start event and
an event with no outgoing arc is an end event. Each connector either has one incom-
ing arc and multiple outgoing arcs (split connectors) or multiple incoming arcs and
one outgoing arc (join connectors). On each path of arcs functions and events must
alternate, while connectors can appear on the path on arbitrary places.

Informally, the semantics of an EPC can be described as follows. An AND-split
waits to get the control flow on its incoming arc before allowing the control flow to
continue on all its outgoing arcs. An AND-join waits to get the control flow on all its
incoming arcs before allowing the control flow to continue on its outgoing arc. An
XOR-split waits to get the control flow on its incoming arc before allowing the con-
trol flow to continue on one of its outgoing arcs. An XOR-join waits to get the control
flow on one of its incoming arcs before allowing it to continue on its outgoing arc. An
OR-split waits to get the control flow on its incoming arc before allowing it to con-
tinue on one or more of its outgoing arcs. An OR-join waits to get the control flow on
all incoming arcs that can get the control flow. It then allows the control flow to con-
tinue on its outgoing arc.

EPC functions can be decomposed into sub-processes. However, this is only a syn-
tactical matter. Therefore, without loss of generality, we focus on flat EPCs, which do
not contain sub-processes. Formally, an EPC is defined as follows.

 Diagnosing Differences between Business Process Models 263

Definition 1 (EPC). An flat EPC is a five-tuple (E, F, C, l, A) in which:

- E is the set of events (E ≠ ∅);
- F is the set of functions (F ≠ ∅, F ∩ E = ∅);
- C is the set of connectors (C ∩ E = ∅, C ∩ F = ∅);
- l : C → {and, or, xor} labels connectors with their type; and
- A ⊆ (E ∪ F ∪ C) × (E ∪ F ∪ C) is the set of arcs.

Definition 2 (Preset, Postset, Start and End Events). Let N = E ∪ F ∪ C be the set
of all nodes. The preset of a node n (denoted •n) is the set of nodes from which there
is an arc to n: •n = {n’|(n’, n) ∈ A}. Similarly, the postset of n (denoted n•) is the set
of nodes to which there is an arc from n: •n = {n’|(n, n’) ∈ A}. Start events (Es) and
end events (Ee) are Es = {e | e ∈ E, |•e| = 0} and Ee = {e | e ∈ E, |e•| = 0}.

Definition 3 (Paths and Chains). Let N = E ∪ F ∪ C be the set of all nodes. For a, b
∈ N a path a O b exists if and only if either a = b or there exists a (possibly empty)
collection of nodes n1, n2, …, nk ∈ N, such that (a, n1), (n1, n2), …, (nk, b) ∈ A.

The correctness criterion that the technique in this paper requires is that an EPC
can only start with events: {n | n ∈ N, |•n| = 0} ⊆ E. See [15] for a more detailed list
of correctness criteria for EPCs.

/\

Purchase
Requisition

Entered

Purchasing

X

Service
Order

Created

Inbound
Delivery
Entered

Goods
Received

Services
are to be
Entered

/\

Service
Entry

Goods
Receipt

/\

Goods
Receipt
Posted

Warehousing

Transfer
Order

Confirmed

X

Invoice
Receipt

Invoice
Verification

Payment
Processed

/\

Purchase
Requisition

Procure

Delivery
Notice

Goods

Receive

/\

Goods
Receipt

Transfer to
Warehouse

Transfer
Order

Invoice

Verify
Invoice

Payment
Notice

i. Procurement ii. Procurement of Goods and Services

Legend

Event

Function

Connector

Arc

Fig. 1. Two EPCs

264 R. Dijkman

Figure 1 shows two examples of EPCs. One procurement process and one process
for procuring both goods and services. The processes are represented graphically.
Events are represented as hexagons, functions as rounded rectangles, connectors as
circles and arcs as arrows. Upon reception of a purchase requisition, the procure-
ment process starts to procure goods. After procurement is completed a delivery
notice is created and when both this notice and the goods are received, it enters the
administrative settlement of the goods reception. After that the invoice is verified
and paid and the goods are transferred to the warehouse. The process for procuring
both goods and services has a similar flow. However, the function and event names
differ. Also, after purchasing goods or services, the process can continue to either
receive goods or services (depending on what was ordered). After goods receipt,
both warehousing and invoice verification is done, but after receiving services, only
invoice verification is done.

2.2 EPC Formal Semantics

A formal semantics for EPCs can be described in terms of a transition system [11,13].
For ease of reading we use a simple semantics in this paper. However, the choice of
semantics is not fundamental to the technique and it can easily be replaced by an
advanced semantics (such as [11,13]), as long as it is based on a transition system.
The difference between this semantics and a more advanced semantics is the seman-
tics of the OR-join. An advanced semantics is able to decide whether an incoming arc
to an OR-join can ever get the control. The semantics used here cannot. It uses a
slightly different semantics for the OR-join: an OR-join waits to get the control flow
on one or more incoming arcs. It then allows the control flow to continue on its outgo-
ing arc. Such a semantics is also called a local semantics.

Definition 4 (Simple EPC Formal Semantics). We define the simple formal seman-
tics of an EPC (denoted [EPC]) as a state-transition system (S, Σ, →, s0, Sf) in which:

- S: Es ∪ A → is the set of states, defined as a marking of start events and arcs of
the EPC with natural numbers;

- Σ = N ∪ {ε} is the alphabet, defined as a the set of nodes of the EPC and a special
character ε ∉ N that represents that nothing of interest occurs;

- → ⊆ S × Σ × S is the transition relation, where (s, a, s’)∈→ (also written as s →a
s’) represents that s can transition into s’ when a occurs. The transition relation is
defined by the transition rules from Figure 2. In this figure a black dot represents
‘n+1’ on a start event or arc. For example, the first rule represents that if, in state s,
s(e) ≥ 1 (because s(e) = n+1, n ∈), then s can transition into a state s’ when e oc-
curs, where s’(e) = s(e) - 1 and s’(arc) = s(arc) + 1. (See [13] for a formalization of
similar transition rules)

- s0 = Es × {1} ∪ A × {0} is the initial state, defined as the state in which all start
events are marked with 1 and all arcs are marked with 0;

- Sf = {s | s∈S, ¬∃s’∈S, a∈Σ: (s, a, s’)∈→} is the set of final states, defined as the
set of states from which no transition can be taken.

Consider the semantics of Figure 1.i as an example. Initially, the process is in a state
in which the events ‘Goods’ and ‘Purchase Requisition’ are marked with 1 and all

 Diagnosing Differences between Business Process Models 265

e e
s ? e s’

e fe
s ? e s’ s ? f s’

f

s ? c s’

OR

s ? c s’ s ? c s’

OR OR

s ? c s’

OR

s ? c s’

OR OR

s ? c s’

X /\X X /\ \/ \/ \/ \/

X X X /\ /\ \/ \/ \/ \/

Fig. 2. Transition rules

arcs are marked with 0. It can then take a transition in which ‘Goods’ occurs and a
transition in which ‘Purchase Requisition’ occurs, leading to states in which the ar-
rows leaving the respective events are marked 1 and the events are marked 0. The
and-join that has {‘Receive’} as its postset can occur if both the arrow leaving
‘Goods’ and the arrow leaving ‘Delivery Notice’ are marked greater than 0, so after
both ‘Goods’ and ‘Delivery Notice’ have occurred.

The technique that diagnoses differences only works for EPCs for which the
statespace is finite. For EPCs with a finite statespace, the transition system is a Non-
deterministic Finite-state Automaton (NFA) with silent (ε) moves (NFA-ε) [19]. We
use this property further on in this paper. We claim that the class of EPCs with a finite
statespace is sufficiently interesting, in particular because none of the EPCs in our
case study (see section 4) had an infinite statespace. The question whether the set of
states is finite is a coverability problem and therefore decidable. The complexity of
constructing the NFA-ε itself (and deciding whether the set of states is finite) is expo-
nential. However, we will show below that by restricting an automaton to a subset of
its alphabet (and subsequently reducing the restricted automaton) we can still use it
practically.

Definition 5 (restriction). We can reduce an automaton P = (S, Σ, →, s0, Sf) to a set
of nodes ns ⊆ Σ (denoted P / ns) by labelling nodes not in ns as ε, resulting in an
automaton (S, Σ’, →’, s0, Sf) in which:

- Σ’ = (Σ ∩ ns) ∪ {ε};
- →’ = {(s, n, s’)|(s, n, s’)∈→, n∈ns}∪ {(s, ε, s’)|(s, n, s’)∈→, n∉ns}

Note that this semantics also works for unsound processes [1] (processes that contain
a deadlock or livelock, do not terminate or leave dangling references).

2.3 Equivalence and Differences between EPCs

Two processes contain differences if and only if they are not equivalent. Therefore, it
is necessary to use a notion of equivalence. We use the notion of completed trace

266 R. Dijkman

equivalence. Stronger notions exist (such as the notion of ‘branching bi-similarity’
[9]). However, these notions can only return a single difference at a time, while we
aim to return as many differences between the processes as possible. Researching
differences with respect to stronger notions of equivalence remains for future work.

Notation. Given an automaton (S, Σ, →, s0, Sf) we use the following notations:

- Σ* is the set of sequences that can be formed from Σ
- ε∈Σ* is the empty sequence
- for s, s’∈S: s ⇒ s’ iff s = s’ or there exists an s1∈S such that s →ε s1 ⇒ s’
- for s, s’∈S, a∈Σ: s ⇒ a s’ iff there exist s1, s2∈S such that s ⇒ s1 →a s2 ⇒ s’
- for s, s’∈S, σ=a1 a2 a3…an∈Σ*: s ⇒σ s’ iff

there exist s1, s2, …∈S such that s ⇒a1 s1 ⇒
a2 s2 ⇒

a3 … ⇒an s’

Definition 6 (completed trace semantics). Given an automaton P = (S, Σ, →, s0, Sf),
the completed trace semantics of P, written Tr(P), is defined as Tr(P) = {σ ∈ Σ* | s0
⇒σ sf, sf ∈ Sf}.

Definition 7 (completed trace equivalence and differences). Two automata P and Q
are completed trace-equivalent if and only if they have equivalent sets of completed
traces Tr(P) = Tr(Q). Clearly then two EPCs E1 and E2 are completed trace equivalent
if and only if Tr([E1]) = Tr([E2]). They contain one or more differences if and only if
Tr([E1]) ≠ Tr([E2]).

For example, the completed trace semantics of the process in Figure 1.i, restricted to
its functions is: {‘Procure’ ‘Receive’ ‘Verify Invoice’ ‘Transfer to Warehouse’, ‘Pro-
cure’ ‘Receive’ ‘Transfer to Warehouse’ ‘Verify Invoice’}. (‘Transfer to Warehouse’
and ‘Verify Invoice’ can occur in arbitrary order because they are preceded by an and-
split.) Clearly, this semantics is different from the semantics of Figure 1.ii, because
the labels of the functions differ and because Figure 1.ii has an additional function
‘Service Entry’, which can occur in some of the traces.

3 Diagnosing Differences between EPCs

Diagnosing the differences between EPCs is done in five steps. This section explains
these five steps successively. The technique is implemented as a plug-in in ProM1.

3.1 Step 1: Pre-processing - Determine Function Completion Equivalences

In many realistic cases labels of equivalent functions will differ. Therefore, equiva-
lences between functions must be determined manually. In particular the completion
equivalence relation R ⊆ F × F must be defined, such that f1 R f2 represents that
the completion of a function f1 coincides with the completion of a function f2. In
the remainder of the paper we use the reflexive, symmetric and transitive closure
(~ ⊆ F × F) of the completion equivalence relation.

1 Freely available on www.processmining.org.

 Diagnosing Differences between Business Process Models 267

The completion equivalence relation can be inferred from a general function corre-
spondence relation, which can be determined first by the business process analyst.
The function correspondence relation is a relation S ⊆ ℘F ×℘F, such that fs1 S fs2
represents that fs1 and fs2 produce the same result and that there are no subsets of fs1
and fs2 for which that holds. Intuitively, fs1 and fs2 are equivalent sets of functions. R
and S are related in the sense that for functions f1 and f2 that represent the completion
of fs1 and fs2 for which fs1 S fs2, it should hold that fs1 R fs2. We call a function f that is
not related by S (i.e. f ∉ ⎩⎭dom(S) ∪ ⎩⎭ran(S)) a skipped function, because it has no
equivalent in the other process.

The business process analyst must determine these relations manually. However,
he can be assisted in this task by techniques that can automatically determine similar-
ity between functions. We developed such techniques earlier [6].

In Figure 1 the process analyst could, for example, relate ‘Procure’ to ‘Purchasing’,
‘Receive’ to ‘Goods Receipt’, ‘Verify Invoice’ to ‘Invoice Verification’ and ‘Transfer
to Warehouse’ to ‘Warehousing’ both as being completion equivalent and as being
corresponding. ‘Service Entry’ would then not be related to a function in the other
process and therefore be a skipped function.

3.2 Step 2: Normalize EPCs

Normalization of a pair of EPCs resolves the differences between function labels,
such that they can be compared using techniques that assume that function labels are
syntactically the same for equivalent functions. In particular differences between
function labels are resolved by replacing each function by its equivalence class.

Definition 8 (normalized EPC). The normalized behaviour of an EPC = (E, F, C, l,
A) induced by the reflexive, symmetric and transitive closure ~ of the completion
equivalence relation, denoted [EPC]~, equals (E, F’, C, l, A’), in which:
- F’ = {[f]~| f ∈ F};
- A’ = {(n1’, n2’)|(n1, n2)∈A, n1’=[n1]~ if n1∈F; n1’= n1 otherwise,

 n2’=[n2]~ if n2∈F; n2’= n2 otherwise }

In the normalized behaviour functions are treated the same if they are related by the
equivalent completion occurrence relation, because functions are replaced by their
equivalence class, which is by definition the same for equivalent functions.

For example, Figure 3 shows a part of the process models from Figure 1. In which
functions have been replaced by their equivalence class. The figure shows that func-
tions that have an equivalent in the other process (e.g. ‘procure’ and ‘purchasing’) are
now the same in the sense that they have the same label, while functions that do not
have an equivalent (e.g. ‘service entry’) will be treated differently.

3.3 Step 3: Restrict EPCs to Compare a Class of Equivalent Functions

The next steps are to focus on (a class of) equivalent functions and to compute the
differences with respect to those functions (steps 4 and 5). We repeat these steps for

268 R. Dijkman

/\

Purchase
Requisition

Entered

{Procure,
Purchasing}

X

Service
Order

Created

Inbound
Delivery
Entered

Goods
Received

Services
are to be
Entered

/\

{Service
Entry}

/\

Purchase
Requisition

{Procure,
Purchasing}

Delivery
Notice

Goods

i. Procurement ii. Procurement of Goods and Services

{Receive, Goods
Receipt}

{Receive, Goods
Receipt}

Fig. 3. Normalized EPCs

each class of equivalent functions. We repeatedly focus on a class of equivalent func-
tions for two reasons.

1. By focusing on functions and their preceding functions, we can return the differ-
ences between EPCs in terms that are understandable to the process analyst.

2. By restricting (and subsequently reducing) the EPCs, the performance of the tech-
nique is acceptable in most practical cases in spite of its exponential complexity.

When focusing on an equivalence class of functions fs, we restrict the EPCs to the
non-skipped functions from which we can reach a function in fs though a chain, con-
sisting only of events, connectors or skipped functions. We call these functions the
potential enablers of fs. We say that these function are the potential enablers rather
than the enablers, because even if there is a chain from them to fs they may never
enable the occurrence of fs. This is certainly true in potentially unsound EPCs, in
which, for example, a deadlock may prevent fs from occurring as a result of one of its
potential enablers. However, it is also true in sound EPCs, in which it may be neces-
sary for a potential enabler of fs to first be succeeded by another potential enabler,
before fs is really enabled. Skipped functions are ignored in the set of potential
enablers, because they do not have a counterpart in the other process and therefore
differences with respect to skipped functions are hard to track. However, skipped
functions are implicitly considered, because the chains that they are on are consid-
ered. The focus of an equivalence class of functions fs consists of the set of its poten-
tial enablers of fs and fs itself.

For example, in Figure 1 {‘Receive’, ‘Goods Receipt’} can be reached via such a
chain from {‘Procure’, ‘Purchasing’}. {‘Verify Invoice’, ‘Invoice Verification’} can
be reached from {‘Receive’, ‘Goods Receipt’} and {‘Procure’, ‘Purchasing’} (be-
cause ‘Service Entry’ is skipped).

The restriction itself does not reduce the state-space of an EPC. However, it en-
ables the use of reduction rules that do. Figure 4 shows the reduction rules that we
use, we adapted them from the reduction rules presented in [7,14]. The reduction rules

 Diagnosing Differences between Business Process Models 269

n n

n
n focus

i. Trivial constructs ii. Similar join

l1

l2

l1

l1 = l2

iii. Similar split

l1

l2

l1

l1 = l2

iv. Simple split/join

l1

l2

l1 = l2 = /\
OR

l1 = l2 = X l1

l2

v. XOR loop vi. Structured end components

l

n1 n2

l

n1

n1, n2 focus

n n

n

vii. Unstructured end components

n focus
AND
n = {n’}

AND
((n’ F) OR (n’ E) OR (n’ C AND l(n’) = /\) OR (n’ C AND n” n :n” focus))

a1

a2

a

X

X

X

X

Fig. 4. Reduction rules that preserve completed trace equivalence

from Figure 4 reduce the state-space of an EPC. They lead to EPCs that are completed
trace equivalent and therefore produce the same results when analyzing differences.

Rule 1 (trivial constructs). Reduces a node with one incoming and one outgoing arc
to a single arc, provided that the node is not in the focus (control and event nodes
never are). This reduction reduces the state-space, because it results in one less arc to
maintain a token-state for. The reduction leads to an EPC that is completed trace
equivalent with respect to the focus. This can be seen in Figure 4.i. Call the EPC be-
fore reduction E1 and after reduction E2. As indicated in the figure, call the arc point-
ing to the reduced node n a1 and the arc originating from n a2 and the reduced arc a.
Because of the firing rules, tokens are put on a1 if and only if they are put on a and E1
can continue like E2 after it has performed the firing rule s →n s’, leading to traces
Tr([E1]) that contain n’s but are otherwise no different from the traces Tr([E2]). Now,
Tr([E1] / focus) = Tr([E2] / focus), because n ∉ focus and therefore s →n s’ is replaced
by s →ε s’.

Rule 2 (similar join). Reduces two similar join-nodes that are connected by an arc to
a single join node. Both join nodes can have an arbitrary number of incoming arcs.
The reduced EPC has the same behaviour with respect to tokens being consumed and
produced by the construct and since the constructs do not lead to visible trace-output,
the EPCs before and after the reduction are completed trace equivalent.

Rule 3 (similar split). Reduces two similar split-nodes that are connected by an arc to
a single split node. Both split nodes can have an arbitrary number of outgoing arcs.

270 R. Dijkman

Rule 4 (simple split/join). Reduces a split-node connected to a join-node by an arbi-
trary number of arcs to nodes connected by a single arc, provides the nodes are of the
same type and either AND or XOR. The split-node can have an arbitrary number of
outgoing arcs and the join-node can have an arbitrary number of incoming arcs.

Rule 5 (XOR loop). Reduces a construct in which two XOR connector nodes that are
in a loop that produces no visible output to two XOR connector nodes that are not in a
loop. One connector node can have an arbitrary number of incoming arcs, the other
can have an arbitrary number of outgoing arcs.

Rule 6 (structured end components). Reduces multiple end nodes preceded by a
control node to a single end node, provided the end nodes are not in the focus set.
Although the figure shows end events, the rule also applies to functions and connec-
tors in any combination.

Rule 7 (unstructured end components). Reduces an end node that is not in the focus
set, provided that the node that precedes it is: a function, an event, an AND control
node, or a control node that is not succeeded by a node that is in the focus set.

For example, Figure 5 shows the EPCs from Figure 3 restricted to compare {‘Re-
ceive’, ‘Goods Receipt’}. For this equivalence class, the equivalence class {‘Service
Entry’} is not in the focus set. Therefore, it can be removed using the ‘trivial con-
structs’ rule. Similarly, the events ‘Delivery Notice’, ‘Service Order Created’ and
‘Inbound Delivery Entered’ are not in the focus set (because events never are). There-
fore, they can be removed using the ‘trivial constructs’ rule.

/\

Purchase
Requisition

Entered

{Procure,
Purchasing}

X

Goods
Received

Services
are to be
Entered

/\
/\

Purchase
Requisition

{Procure,
Purchasing}

Goods

i. Procurement ii. Procurement of Goods and Services

{Receive, Goods
Receipt}

{Receive, Goods
Receipt}

Fig. 5. EPCs restricted to compare {Receive, Goods Receipt}

3.4 Step 4: Compute Semantics of Restricted EPCs

The semantics of the restricted EPCs from the previous step can be computed, pro-
vided that the state space of the EPC is finite (which can be decided in a pre-
processing step). The semantics can be computed, starting from the initial state of the
EPC, by adding the transitions that can occur in each state and then recursively re-
peating this for the states that those transitions lead to.

 Diagnosing Differences between Business Process Models 271

3.5 Step 5: Diagnose Differences between Restricted EPCs

Now that the EPCs are normalized and restricted to a class of equivalent functions
(and the functions that precede them), the differences between the EPCs with respect
to those functions can be diagnosed. The diagnosis consists of two actions:

1. deciding whether the EPCs E1 and E2 are different (Tr([E1]) ≠ Tr([E2])) with re-
spect to this class of equivalent functions; and

2. deciding why they are different.

We use the following well-known and proven properties of NFA-ε [19].

- A deterministic finite-state automaton (DFA) is an NFA-ε (S, Σ, →, s0, Sf) without
ε transitions, in which every combination s∈S, a∈Σ has at most one s’∈S such that
s →a s’.

- For each NFA-ε P it is possible to compute a DFA P’ for which Tr(P’) = Tr(P).
The algorithm to do so can be exponential in complexity.

- For each DFA P it is possible to compute a DFA PC that represents the comple-
mentary set of traces over the alphabet Σ: Tr(PC) = Σ* - Tr(P).

- For each two NFA-ε P1 and P2 it is possible to compute an NFA-ε P1 ∪ P2 that
represents the union of the traces of P1 and P2: Tr(P1 ∪ P2) = Tr(P1) ∪ Tr(P2).

- For an DFA or NFA-ε P it is possible to compute whether Tr(P) = ∅.

Clearly these properties allow us to decide whether two restricted EPCs E1 and E2 are
different (Tr([E1]) ≠ Tr([E2])), by computing whether the following equivalent equa-
tion holds: Tr(([E1]

C ∪ [E2])
C) ≠ ∅ or Tr(([E1] ∪ [E2]

C)C) ≠ ∅.
Subsequently, we use this equation to identify the type of the difference between

the EPCs, using the typology from [4]. The type of difference provides information as
to why the EPCs are different. Figure 6 shows the types of differences.

Different Conditions. A class of functions has different conditions in the two EPCs,
E1 and E2, if it occurs in traces (i.e. under conditions) in E1 that are not in E2 or it
occurs in traces in E2 that are not in E1. More precisely: Tr(([E1]

C ∪ [E2])
C) ≠ ∅ or

Tr(([E1] ∪ [E2]
C)C) ≠ ∅. Clearly, this means that ‘different conditions’ is the super-

type of all differences. As an example, in Figure 6.i, c occurs in the traces abc, bac in
E1 and in the traces ac, bc in E2. abc and bac are not in E2 and ac and bc are not in E1,
such that c has different conditions in the EPCs.

Additional Conditions. A class of functions has additional conditions in one of the
two EPCs, E1 and E2, if it either occurs in more traces in E1 than in E2 or in more
traces in E2 than in E1. More precisely: Tr(([E1]

C ∪ [E2])
C) ≠ ∅ xor Tr(([E1] ∪

[E2]
C)C) ≠ ∅. For example, in Figure 6.ii, c occurs in the traces abc, bac in E1 and in

the traces abc, bac, ac, bc in E2. ac and bc are not in E1, such that c has additional
conditions in E2.

Additional Start Condition. A class of functions, fs, has an additional start condition
in one EPC (E1 or E2), if it can occur from the start in that EPC, but not in the other.
Let Fstart be the automaton that accepts all traces in which fs occurs from the start:
Tr(Fstart) = fs Σ*, where Σ is the joint alphabet of E1 and E2 (this automaton can be
constructed because fs Σ* is regular [19]). The start conditions of an EPC, E, are

272 R. Dijkman

b

a

c

b

a

c

b

a

c

i. Different Conditions

ii. Additional Conditions

b

a

c

ba c ca b

vi. Different Moments

ba a b

iii. Additional Start Condition

ba a b

vii. Iterative vs. Once-off

b

a

c

b

d

c

iv. Different Dependencies

b

a

c b c

v. Additional Dependencies

X/\

\/

/\ X

\//\ /\

XX

/\ /\ /\ /\

/\ /\

X X

Fig. 6. Types of Differences

therefore: Tr(Fstart) ∩ Tr([E]). Hence additional start conditions can be detected by
evaluating: Tr(([E1]

C ∪ Fstart
C ∪ [E2])

C) ≠ ∅ xor Tr(([E1] ∪ Fstart
C ∪ [E2]

C)C) ≠ ∅.
Figure 6.iii shows an example of additional start conditions. In the second EPC b can
occur from the start, but in the first EPC it cannot.

Different Dependencies. A class of functions fs has different dependencies in two
EPCs, E1 and E2, if the classes of functions that can enable the occurrence of fs (its
dependencies) differ in E1 and E2. Let pe1 be the potential enablers of fs in E1 and pe2
be the potential enablers of fs in E2. We intersect the set of potential enablers of fs
with the set of function classes that precede it in some trace, to derive the actual en-
ablers of fs (remember that potential enablers may never actually enable a function).
Let e1 = pe1 ∩ {p | for some σ, σ’ ∈ Σ*: σ p fs σ’∈ Tr([E1])} be the enablers of fs in
E1 and e2 = pe2 ∩ {p | for some σ, σ’ ∈ Σ*: σ p fs σ’∈ Tr([E2])} be the enablers of fs
in E2. Then fs has different dependencies in E1 and E2, if e1 – e2 ≠ ∅ or e2 – e1 ≠ ∅.
Figure 6.iv shows an example of different dependencies for c (assuming that a and d
are not skipped). The potential enablers of c in the first process are a and b, which are
also the enablers of c, because there is a trace in which a directly precedes c and a

 Diagnosing Differences between Business Process Models 273

trace in which b directly precedes c. The enablers of c in the second process are d and
b. Hence, the sets of enablers differ.

Additional Dependencies. A class of functions fs has additional dependencies in one
of two EPCs, E1 and E2, if it either has dependencies in E1 that are not in E2, or it has
dependencies in E2 that are not in E1: e1 – e2 ≠ ∅ xor e2 – e1 ≠ ∅.

Different Moments. A class of functions fs occurs at different moments in EPC E1
than in EPC E2, if the sets of dependencies of fs in E1 and E2 are disjoint: e1 ∩ e2 ≠ ∅.

Iterative vs. Once-off. A class of functions fs occurs iteratively in one EPC, but
once-off in another, if it is in a loop in the (automaton that describes) semantics of one
EPC, but not in the other. This can be decided by constructing the spanning trees of
these automata.

Some differences are subtypes of others (e.g. ‘additional conditions’ is a subtype of
‘different conditions’) while other types are disjoint (e.g. ‘additional dependencies’ is
disjoint with ‘different moments’). A detailed overview of the relations between the
types of differences is given in [5]. We use these relations to order the diagnosis, such
that we do not report ‘useless’ differences (differences of which we can know whether
they exist, based on the existence of other differences). The order is reversed with
respect to the examples in Figure 6: vii – vi – v – iv – iii – ii – i. This means that we
first look for a ‘vii’ (iterative vs. once-off), if it exists we return it and do not continue
look for other differences, if it does not exist we continue to look for a ‘vi’ (different
moments) and so on.

As an example, in Figure 1 an additional dependency will be returned for ‘Invoice
Receipt’ on ‘Purchasing’. This reflects that in the second process invoices can be
processed without having received goods (namely invoices for services). The skipped
function ‘Service Entry’ is ignored.

4 Case Study

We use a case study to:

1. show the feasibility of the technique in spite of its exponential complexity, by
showing that the computation times are acceptable; and

2. illustrate the usefulness of diagnosing differences, by showing:
- a strong correlation between similarity of EPCs and differences found; and
- the frequency of occurrence of each type of difference.

The case study is performed by applying the difference diagnosis technique to a
subset of 132 pairs of EPCs from the SAP reference model. (Below we explain how
these pairs were selected.)

Figure 7.i shows the percentage of EPC pairs for which the differences can be
computed within a given number of milliseconds on a regular desktop computer. The
figure shows that for 90% of the model pairs, computing the differences is a matter
seconds. For 94% it is a matter of minutes. For 4 models (3%) we stopped computa-
tion after 3 hours. These results show that the technique can be applied in practice, in
spite of exponential complexity. For the model pairs for which the computation took

274 R. Dijkman

0%

20%

40%

60%

80%

100%

0,001 0,1 10 1000

P
er

ce
n

ta
g

e
C

o
m

p
le

te
d

Processing Time (s)

0,001

0,01

0,1

1

10

100

1000

10000

100000

0 5 10 15 20 25 30

P
ro

ce
ss

in
g

 T
im

e
(s

)

Start Events (#)

Fig. 7. Processing Times

hours, this was invariably caused by a large (>15) number of start events. Figure 7.ii
shows this. Therefore, the technique can be made practical by restricting the number
of start events allowed in EPCs (a restriction that is used more often, see e.g. regular
EPCs in [1]).

Since two processes are different if and only if they are not similar, there should be
a strong correlation between the process similarity measure that we developed in
previous work [6] and the differences found. To test this hypothesis, we applied the
technique to a subset of 48 EPC pairs that are evenly distributed over the very dis-
similar / very similar range (measured on a 0 to 1 scale). Indeed, we found a very
strong Pearson correlation coefficient of 0.92 between the similarity score and the
percentage of skipped functions. Interestingly, the same exercise showed that by far
the most differences (other than ‘skipped functions’) occurred only in the ‘somewhat
similar’ to ‘very similar’ range (0.5 to 1.0).

To illustrate the usefulness of the types of differences, we determined how many
instances of each type can be found in the ‘sales and distribution’ branch of the SAP
reference model, comparing only model pairs in the ‘somewhat similar’ to ‘very simi-
lar’ range (0.5 to 1.0), a total of 84 pairs. Figure 8.i shows the results. Based on these

0

10

20

30

40

50

60

70

S
ki

p
p

ed

F
u

n
ct

io
n

s

D
if

fe
re

n
t

C
o

n
d

it
io

n
s

A
d

d
it

io
n

al

C
o

n
d

it
io

n
s

A
d

d
it

io
n

al

S
ta

rt
 …

D
if

fe
re

n
t

D
ep

en
d

en
…

A
d

d
it

io
n

al

D
ep

en
d

en
…

D
if

fe
re

n
t

M
o

m
en

ts

It
er

at
iv

e
vs

.
O

n
ce

-o
ff

N
u

m
b

er

0
2

4
6
8

10
12

14
16

S
ki

p
p

ed

F
u

n
ct

io
n

s

D
if

fe
re

n
t

C
o

n
d

it
io

n
s

A
d

d
it

io
n

al

C
o

n
d

it
io

n
s

A
d

d
it

io
n

al

S
ta

rt
 …

D
if

fe
re

n
t

D
ep

en
d

en
ci

es

A
d

d
it

io
n

al

D
ep

en
d

en
ci

es

D
if

fe
re

n
t

M
o

m
en

ts

It
er

at
iv

e
vs

.
O

n
ce

-o
ff

N
u

m
b

er

Fig. 8. Frequency of Found Differences

i. In part of the SAP reference model ii. In earlier case study [4]

i. Percentage completed within processing time ii. Processing time as function of start events

 Diagnosing Differences between Business Process Models 275

results, we argue that the ‘additional dependencies’, ‘additional conditions’, ‘different
conditions’ and ‘skipped function’ differences provide useful feedback about differ-
ences between EPCs. Since no instances are found of the other types, these types are
arguably not useful.

However, we claim that, in spite of these results, the ‘iterative vs. once-off’ differ-
ence is useful. We argue this, because an earlier case study [4] showed a significant
number of ‘iterative vs. once-off’ differences (see Figure 8.ii), considering that only 5
pairs of models were compared. Moreover, the ‘sales and distribution’ branch of the
SAP reference model does not contain any process loops at all. For which reason it is
not surprising that there are no differences with respect to the loop construct. How-
ever, in other process models this construct is quite common. Therefore, we claim that
the ‘iterative vs. once-off’, although not used in this case study, can still prove its use
in other cases. In the earlier case study there also was a strong relation between the
‘iterative vs. once-off’ difference and the ‘different start’ difference. Therefore, we
claim that this difference can also still prove its use. The earlier case study also
showed that the other two differences (‘different dependencies’ and ‘different mo-
ments’) are rare.

Interestingly, an ‘additional dependencies’ difference often occurs multiple times
(2 times on average), when it occurs. This suggests that there can be another differ-
ence underlying this difference. This observation deserves further study.

5 Related Work

The work in this paper is based on the formal notions of behavioural equivalence. A
survey on different notions of behavioural equivalence is given in [9]. Also, work on
detecting differences based on the non-equivalence exists [3]. However, this work
returns differences in terms of a formal semantics, while it is the goal of out technique
to return them in terms that are more easily understood by a business analyst. The
work in [3] also illustrates why we do not use a bi-similarity equivalence, because this
work only returns a single difference for a pair of processes.

Only recently detection of differences is approached by identifying types of differ-
ences. Benatallah et al. [2] and Dumas et al. [8] developed typologies of differences
between interacting business processes. Motari Nezhad et al. [16] also define detec-
tion techniques for such differences. Our work differs from theirs in that we focus on
similar processes, while their work focuses on interacting processes.

The work on process conformance checking is also close to our work [18]. During
conformance checking the differences between a process and the event traces of that
process are identified. Event traces are traces that are observed in reality. Our work
differs from the work on conformance checking, in that conformance checking diag-
noses differences between a process and its event traces, while our work diagnoses
differences between processes. However, it has been suggested that a representative
set of event traces can be generated for a process, allowing diagnosis of differences
between two processes (for which sets of event traces are generated.)

A possible future direction for detecting differences between business processes is
using the notion of ‘edit-distance’, which measures the operations necessary to het
from one process model to another [12].

276 R. Dijkman

Typologies of process differences have also been developed in related areas of re-
search, such as process integration [17] (where differences are called heterogeneities)
and process evolution [20].

6 Conclusion

This paper presents a technique to diagnose differences between EPCs. The diagnosis
provides feedback by pointing out the EPC functions between which there is a differ-
ence and the type of the difference (one of 8 possible types). The technique is an ex-
tension to techniques for determining equivalence of processes. These techniques
return differences between processes in terms of the formal semantics of those proc-
esses. However, returning the differences in terms of the processes themselves is
more intuitive to a process analyst, who is not versed in formal semantics.

Although the technique is restricted to use on EPCs in this paper, we are experi-
menting with the use of the technique on other modelling languages [5].

Currently, the technique uses the notion of completed trace equivalence for deter-
mining differences. Stronger notions of equivalence exist, such as the notion of
branching bi-similarity [9] which is popular for deciding equivalence between busi-
ness processes. However, the drawback of these notions is that techniques to detect
them only return a single difference (in terms of a pair of states in which processes
differ), while it is our goal to yield as many differences as possible.

Clearly, our choice of semantics means that we cannot detect certain differences.
In particular we cannot detect differences with respect to branching time of proc-
esses. Also, because of the repeated restriction that is necessary to detect the differ-
ences, there is a suspicion that not in all cases in which there is a difference (i.e. the
processes are not completed trace equivalent) a difference will be detected. How-
ever, we have not been able to find any counter examples, nor have we been able to
prove that they do not exist. If counter examples can be found then the typology of
differences is incomplete in the sense that it does not classify all possible differences
under completed trace equivalence. Regardless, the differences that can be detected
remain useful.

A case study concerning 132 pairs of process models from the SAP reference
model shows that 4 types of differences occur frequently, providing an argument for
the usefulness of these differences. We attribute the non-occurrence of 2 types of
differences to the absence of process loops in the SAP reference model. Typically,
processes do contain loops and, therefore, differences with respect to loops can be
expected in other processes. An earlier case study supports this claim [4].

The technique has exponential complexity. However, the case study shows that it
can still be used in practice and will produce the differences between EPCs within
seconds in 90% of the cases and within 6 minutes in 94% of the cases. Moreover, the
case study shows that, if the number of start events is constrained, the differences can
be produced within an acceptable timeframe in 100% of the cases.

 Diagnosing Differences between Business Process Models 277

References

1. van der Aalst, W.: Formalization and Verification of Event-driven Process Chains. Infor-
mation and Software Technology 41, 639–650 (1999)

2. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: Developing
Adapters for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE
2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

3. Cleaveland, R.: On Automatically Explaining Bisimulation Inequivalence. In: Larsen,
K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 364–372. Springer, Heidelberg
(1992)

4. Dijkman, R.M.: A Classification of Differences in Similar Business Processes. In: EDOC
2007, pp. 37–47 (2007)

5. Dijkman, R.M.: Feedback on Differences between Business Processes. BETA Working
Paper WP-234, Eindhoven University of Technology, The Netherlands (2007)

6. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring Similarity between Business
Process Models. In: CAiSE 2008, pp. 450–464 (2008)

7. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of EPCs: Using
reduction rules and Petri nets. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,
vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

8. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation for Inter-
face Adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

9. van Glabbeek, R.: The Linear Time – Branching Time Spectrum I: The Semantics of Con-
crete Sequential Processes. Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam
(2001)

10. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der Grund-
lage Ereignisgesteuerter Prozessketten (EPK). Heft 89, Institut für Wirtschaftsinformatik,
Saarbrücken, Germany (1992)

11. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. Data & Knowledge
Engineering 56, 23–40 (2006)

12. Lohmann, N.: Correcting Deadlocking Service Choreographies Using a Simulation-Based
Graph Edit Distance. In: BPM 2008 (accepted, 2008)

13. Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with OR-
Joins Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Heidelberg (2007)

14. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. Ph.D.
Thesis, Vienna University of Economics and Business Administration, Austria (2007)

15. Mendling, J., van der Aalst, W.: Towards EPC Semantics based on State and Context. In:
EPK 2006, pp. 25–48 (2006)

16. Motahari Nezhad, H.R., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: WWW 2007, pp. 993–1002 (2007)

17. Preuner, G., Conrad, S., Schrefl, M.: View Integration of Behavior in Object-Oriented Da-
tabases. Data & Knowledge Engineering 36(2), 153–183 (2001)

18. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring
real behavior. Information Systems 33(1), 64–95 (2008)

19. Sudkamp, T.: Languages and Machines, 2nd edn. Addison-Wesley, Reading (1996)
20. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Features in

Process-Aware Information Systems. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

BPEL for REST

Cesare Pautasso

Faculty of Informatics, University of Lugano
via Buffi 13, 6900 Lugano, Switzerland
cesare.pautasso@unisi.ch

Abstract. Novel trends in Web services technology challenge the assumptions
made by current standards for process-based service composition. Most RESTful
Web service APIs, which do not rely on the Web service description language
(WSDL), cannot easily be composed using the BPEL language. In this paper we
propose a lightweight BPEL extension to natively support the composition of
RESTful Web services using business processes. We also discuss how to expose
the execution state of a business process so that it can be manipulated through
REST primitives in a controlled way.

1 Introduction

With the goal of attracting a larger user community, more and more service providers
are switching to REST [1] in order to make it easy for clients to consume their Web
service APIs [2,3,4]. This emerging technology advocates a return to the original de-
sign principles of the World Wide Web [5] to provide for the necessary interoperability
and enable integration between heterogeneous distributed systems. The HTTP standard
protocol thus becomes the basic interaction mechanism to publish existing Web appli-
cations as services by simply replacing HTML payloads with data formatted in “plain
old” XML (POX) [6].

In this context, many of the assumptions made by existing languages for Web service
composition no longer hold [7]. Since most RESTful Web service APIs do not use the
standard Web service description language (WSDL) to specify their interface contracts,
it is not possible to directly apply existing languages, tools and techniques that are built
upon this standard interface description language. Considering that REST prescribes
the interaction with resources identified by URIs [8], languages that assume static bind-
ings to a few fixed communication endpoints do not cope well with the dynamic and
variable set of URIs that make up the interface of a RESTful Web service. Even the
basic message-oriented invocation constructs for sending and receiving data cannot be
consistently applied with the uniform interface principle of a RESTful Web service.
Moreover, in some cases, also the assumption of dealing with XML data [9] may not
apply when accessing resources represented in other, more lightweight, formats such as
the JavaScript Object Notation (JSON [10]).

In this paper we argue that process-based composition languages can and should be
applied to compose RESTful Web services in addition to WSDL-based ones. However,
given the differences between the two kinds of services [11,12], we claim that native
support for composing RESTful Web services is an important requirement for a modern

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 278–293, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

BPEL for REST 279

service composition language. To address this requirement, we show how the Business
Process Execution Language (WS-BPEL [13]) standard can be extended. Also, follow-
ing the recursive nature of software composition (the result of a composition should be
composable [14]), we propose to apply REST principles to the design of the API of a
BPEL engine so that processes themselves (and a view over their execution state) can
be published through a RESTful Web service interface.

The rest of this paper is structured as follows. The motivation for our work is pre-
sented in Section 2. We continue in Section 3 giving some background on RESTful Web
services and outlining the challenges involved in composing this novel kind of services.
In Section 4 we introduce our extensions to the BPEL language with an example loan
application process. The extensions are then specified in Section 5. The relationship be-
tween the resource and the process abstractions is discussed in Section 6. Related work
is outlined in Section 7. We draw our conclusions in Section 8.

2 Motivation

The following quote from the specification of the WS-BPEL 2.0 standard motivated the
research towards the extensions presented in this paper.

The WS-BPEL process model is layered on top of the service model defined
by WSDL 1.1. [. . .] Both the process and its partners are exposed as WSDL
services [13, Section 3].

In other words, the WS-BPEL and the WSDL languages are tightly coupled. The
partner link type construct, introduced in BPEL to tie together pairs of matching WSDL
port types, forces all external interactions of a process to go through a WSDL interface.
Over time, this strong constraint on the original design of the composition language has
produced a set of extensions (e.g., BPEL-SPE [15] for processes invoking other sub-
processes, BPEL4People [16] for interaction with human operators, or – more recently
– BPEL4JOB [17] with job submission and fault handling extensions to better deal
with the requirements of scientific workflow applications, BPEL-DT [18] to compose
data intensive applications, and BPELlight [19] proposing a complete decoupling of
the two languages in the context of message-oriented interactions). Along the same
direction, in this paper we propose another extension to make BPEL natively support
the composition of RESTful Web services.

Without loss of generality, we will ignore the differences between WSDL 1.1 and the
latest WSDL 2.0 version and assume that WS-BPEL will soon be updated to support
the latter. This is important because – as shown in Figure 1 – the new HTTP binding
introduced in WSDL 2.0 can be used to wrap a RESTful Web service and describe
its interface using the WSDL language [20]. Thus, the problem appears to be already
solved: with this binding, a BPEL process could send and receive messages over the
HTTP protocol without necessarily using the SOAP message format.

From a practical standpoint, however, the approach does not lead to a satisfactory
solution for the following reasons. WSDL 2.0 is not yet widely deployed in the field,
especially to describe existing RESTful Web service APIs, and there is very little ev-
idence indicating that this will change in the future. Thus, at the moment the burden

280 C. Pautasso

Fig. 1. Funneling RESTful Web services through a WSDL 2.0 interface in order to invoke them
from a BPEL process

of going through the procedure of recreating a synthetic WSDL description for the
RESTful Web service interface is shifted from the service provider to the BPEL devel-
oper [21]. Every supplementary artifact introduced in a solution makes it more complex
and more expensive to maintain. The additional WSDL description needs to be updated
whenever changes are made to the corresponding RESTful Web service.

From a theoretical point of view, this approach hides the resource-oriented interac-
tion primitives of REST inside the service-oriented abstractions provided by WSDL.
As we are going to discuss, the invocation of a WSDL operation by means of syn-
chronous or asynchronous message exchange does not always fully match the seman-
tics of a “GET”, “PUT”, “POST”, or “DELETE” request performed on a resource
URI [11,22,23,24]. Thus, we argue that native support for explicitly controlling the
interaction based on REST primitives would be beneficial to developers trying to apply
the BPEL language to specify how to compose resources, as opposed to WSDL-based
services (Figure 2).

R
R2

PUT

PUT

DELETE

DELETE

GET

GET

POST

POST

BPEL for REST

...

<Put >

<Get R>

...

<Post R>

<Delete >

...

R

R

2

2

Fig. 2. Direct invocation of RESTful Web services using the BPEL for REST extensions

BPEL for REST 281

3 Composing RESTful Web Services

The composition of RESTful Web services is typically associated with so-called Web
2.0 Mashups [25,26], where this emerging technology helps to reduce the complexity
and the effort involved in scraping the data out of HTML Web pages [27]. In this con-
text, a consensus still needs to be reached in terms of how to describe the interface
of such RESTful Web service. As we previously discussed it is not always convenient
to use the HTTP binding of the latest version of the Web service description language
(WSDL 2.0). Whereas the Web application description language (WADL [28]) has been
recently proposed, most APIs still rely on human-oriented documentation. This typi-
cally includes interactive examples that help developers to infer how to use a particular
service. If XML is employed as representation format, an XML Schema description is
often associated with the textual documentation.

This uncertain situation makes it challenging to define a composition language for
REST as it is currently not yet possible to assume that a particular service description
language will be used. Thus, like [19], we choose not rely upon the presence of such
a description language and introduce language constructs for service invocation that
directly map to the underlying interaction mechanisms and patterns [29].

In the rest of this section we give an overview over the design principles followed by
RESTful Web services [1,6] and discuss how these challenge the BPEL language in its
current form. These principles and challenges have been taken into account during the
design of the corresponding BPEL extensions presented in this paper.

Resource addressing through URI – The interface of a RESTful Web service con-
sists of a set of resources, identified by URIs. From the client perspective, the inter-
action with a RESTful Web service requires to interact with a dynamic and variable
set of URIs, which are not necessarily known nor identifiable in advance. From the
service provider viewpoint, it should be possible to use languages such as BPEL
to manage the lifecycle of arbitrary resources and to implement the state transition
logic of composite resources [30].

Uniform interface – The set of operations available for a given resource is fixed by
design to the same four methods: PUT, GET, POST, and DELETE. These CRUD-
like operations apply to all resources with similar semantics. POST creates a new
resource under the given URI; GET retrieves the representation of the current state
of a resource; PUT updates the state of a resource (and may also initialize the state
of a new resource if none was previously found at the given URI); DELETE frees
the state associated with a resource and invalidates the corresponding URI. Each
of these methods (or verbs) is invoked on a resource using a synchronous HTTP
request-response interaction round. Thus, there is no need for the asynchronous
(one-way) message exchange patterns supported by BPEL/WSDL. Also, since the
set of operations is fixed to the four methods, there is no apparent need to explicit
enumerate them using an interface description language.

Self-descriptive messages – Thanks to meta-data, clients can negotiate with service
providers the actual representation format of a resource. Thus, it is not always pos-
sible to statically assign a fixed data type to the payload of an HTTP response. Also,
since RESTful Web services may not always exchange XML data, BPEL variables

282 C. Pautasso

need to accomodate a larger set of possible data representation formats. Addition-
ally, meta-data is used to perform client and server authentication, access control,
compression, and caching. Thus, from within a BPEL process it should be possi-
ble to access and control this meta-data, in a way similar to how SOAP message
headers are configured.

Hypermedia as the engine of application state – Whereas every interaction is kept
stateless using self-contained request and response messages, stateful interactions
are based on the concept of explicit state transfer. Through hyperlinks, valid fu-
ture states of the interaction can be embedded in the representation of a resource
and discovered interactively by clients. From this principle, it follows that resource
URIs may be dynamically generated by a service. Thus, a mechanism for extract-
ing URIs from response messages is needed together with a construct for dynamic
binding of activities to target resource URIs.

4 Example

Before giving a complete specification of the BPEL for REST extensions, in this section
we informally introduce them within the example process illustrated in Figure 3.

The Loan application process exposes one resource, the loan that represents the
state of a loan application. Clients can initiate a new loan application with a PUT re-
quest on this resource and retrieve the current state of their application with GET. A
DELETE request immediately cancels the application if it is still in progress, otherwise
it triggers the execution of a different loan cancellation process. The lifecycle of a loan
application goes through several stages as specified by the sequence of activities trig-
gered by the PUT request. In particular, the process invokes the RESTful Web services
of two different banks to gather available interest rates and payment deadlines. It will
then wait for the client to make a decision choosing between the two competing of-
fers. Once the client has chosen an offer, the BPEL process will confirm the acceptance
with a POST request that is dynamically bound to a URI provided by the bank service
(indicated with $accept in the Figure) together with the offer.

For clarity, in the following we highlight the BPEL for REST extension activities
in boldface. Also, to enhance the readability of the XML code, we have omitted
namespace declarations and taken some liberty with the syntax of the <assign> ac-
tivity (this simplified syntax is not part of the proposed language extension). Variable
interpolation is indicated by prefixing the name of variables with the $ sign.

Client

Loan

Service

(BPEL)

PUT /loan

GET /loan

DELETE /loan

DELETE /loan/choice

GET /rate

POST $accept

GET /loan/choice

POST /loan/choice

Bank

Services

Fig. 3. Loan Application Process Example

BPEL for REST 283

<process name="LoanApplication">
<resource uri="loan">
<!-- State variables of the resource -->
<variable name="name"/>
<variable name="amount"/>
<variable name="rate"/>
<variable name="bank"/>
<variable name="start_date"/>
<variable name="end_date"/>

These variable declarations store the state of the loan resource declared within
the LoanApplication BPEL process. Associated with the resource, the process
specifies three request handlers: onPut, onGet, onDelete.

<!-- PUT /loan request handler -->
<onPut>
<if><condition>$request.amount > 100000</condition>
<then>
<response code="400">
Requested amount too large

</response>
<exit/>
</then>
<else>
<sequence>
<assign>

name = $request.name;
amount = $request.amount;

start_date = $request.start_date;
</assign>
<response code="201">
Processing loan application

</response>

The PUT request is used to initialize the state of the loan resource. However, if the re-
quested loan amount is too large, the client will be informed with a response carrying
the HTTP code 400 (Bad Request) and the resource will be immediately deleted using
the BPEL <exit> activity. Otherwise the state of the resource is initialized from the
BPEL for REST predefined variable called $request which stores the input payload
of the HTTP PUT request. After informing the client that the resource could be created
(HTTP response code 201), the onPut request handler continues with the next step of
the loan application process, when two different RESTful Web services are invoked to
retrieve the available interest rates for the given loan request.

<!-- Get rates from two different bank services -->
<scope>
<variable name="ubs_response"/>
<variable name="cs_response"/>
<variable name="url_accept"/>
<variable name="accept_response"/>
<flow>
<get uri="http://www.ubs.ch/rate?chf=$amount&from=$start_date"

response="ubs_response">
<get uri="http://www.cs.ch/rates?amount=$amount&start=$start_date"

response="cs_response">
</flow>

284 C. Pautasso

The two services are invoked in parallel using the BPEL <flow> activity. They are
invoked using a GET request on a URI that is constructed using the current state of the
loan resource. The response of the services are stored in the corresponding variables,
if the invocation is successful.

At this point, the client should decide which loan rate is preferred. To do so, the
process dynamically creates a new resource at the URI loan/choice. A GET on this
new resource will retrieve the current offers (represented in JSON) while a DELETE
request can be used to reject both offers and cancel the entire loan application process.

<!-- Let client choose the preferred bank -->
<while>
<condition>TRUE</condition>
<resource uri="choice">
<onGet>

<!-- Return the rates offered by the banks -->
<response code="200">
<header name="Content-Type">application/json</header>

[{ bank:"cs",
rate:"$cs_response.rate",
end_date:"$cs_response.until" },

{ bank:"ubs",
rate:"$ubs_response.rate",
end_date:"$ubs_response.end" }]

</response>
</onGet>
<onDelete>

<!-- Reject the offer and cancel the loan application -->
<sequence>
<response code="200"/>
<exit/>

</sequence>
</onDelete>
<onPost>

<!-- Store the client choice and continue -->
<sequence>
<assign>bank = $request.choice;</assign>
<if><condition>bank == "cs"</condition>
<then><assign>rate = $cs_response.rate;

end_date = $cs_response.until;
url_accept = $cs_response.accept</assign></then>

<else><assign>rate = $ubs_response.rate;
end_date = $ubs_response.end;
url_accept = $ubs_response.accept</assign></else>

</if>
<response code="200"/>
<activeBPEL:break/>

</sequence>
</onPost>
</resource>

</while>

To continue the execution of the process, the client must communicate its choice
using a POST request. The process will update the state of the loan resource with the
client decision and the corresponding information from the chosen offer: the rate and
end date of the loan and the URL to use in order to confirm the acceptance of the
offer with the bank.

BPEL for REST 285

A successful (code 200) response is then returned to the client and the execution
continues by exiting the <while> loop1. Once the execution exits the scope of the
resource choice declaration, such resource is no longer available to clients. Further
requests to its URI will result in a 404 (Not Found) code being returned by the BPEL
for REST engine. To conclude the onPut request handler, the chosen bank service is
informed by sending the client’s name with a POST request dynamically bound to the
acceptance URL that was returned with the terms of the offer.
<!-- Accept the loan offered by the chosen bank -->

<post uri="$url_accept" request="$name" response="accept_response">
</scope>
</sequence>
</else>
</if>

</onPut>

It is important to point out that once the execution of the <onPut> request handler
is completed, the state of the newly created loan resource is not discarded, but it will
remain available to clients until the corresponding DELETE request is issued. As illus-
trated in the final part of the example, clients can retrieve such state at any time using
a GET request. To cancel the loan application, clients may issue a DELETE request.
However, depending on the state of the loan resource, canceling it may not always
be possible and may require to execute the corresponding loan cancellation business
process.

<!-- GET /loan request handler -->
<onGet>
<!-- Return the state of the loan application -->
</onGet>

<!-- DELETE /loan request handler -->
<onDelete>
<if> <condition>bank == null</condition>
<then>
<response code="200"/>
<exit/>
</then>
<else>

<!-- Start the loan cancellation process -->
<invoke...>
</else>

</if>
</onDelete>
</resource>
</process>

5 BPEL for REST Extensions

As shown in the previous example, in this paper we propose two kinds of extensions.
First, it should be possible to invoke a RESTful Web service directly from a BPEL

1 For simplicity, the process calls the <break> activity (a non-standard BPEL extension intro-
duced by the ActiveBPEL engine). However it would also be possible to do so by setting the
appropriate flag to be tested in the loop condition.

286 C. Pautasso

<get uri="" response="">
<header name="">*value</header>
<catch code="" faultName=""?>*...</catch>
<catchAll>?...</catchAll>

</get>
<post uri="" request="" response=""> ... </post>
<put uri="" request="" response=""?> ... </put>
<delete uri="" response=""?> ... </delete>

Fig. 4. BPEL for REST extensions to invoke a RESTful Web service

process. Also, we propose a declarative construct to expose parts of the execution state
of a BPEL process as a resource. To do so, we choose the introduce a set of activities,
constructs and handlers that are directly related to the REST uniform interface principle.

5.1 Invoking RESTful Web Services

To invoke a RESTful Web service using the HTTP (or HTTPS) protocol from a BPEL
process, we add these four activities: <get>, <post>, <put>, <delete>.

As shown in Figure 4, the four activities use the uri attribute to specify the target
resource address. The URI can be a constant value, but also be computed out of data
currently stored in the process variables. Thus, BPEL for REST supports dynamic bind-
ing to invoke resource URIs that are only known at runtime. The only constraint on the
structure of the URI is that it should target a resource accessible using the HTTP or the
HTTPS protocols.

Following the convention of the existing BPEL <invoke> activity, the data for the
request and response payloads is stored in variables that are referenced from the cor-
responding request and response attributes. In case of <get> and <delete>
activities, there is no request payload as these REST primitives operate on the resource
URI only. For <put> and <delete> the response attribute is optional, as some ser-
vices may return an empty payload with these two methods.

The headers sent with the HTTP request can be controlled using the <header>
child elements of each of the four invocation activities. Also in this case, their values can
be set to constant values but also computed from information stored in BPEL variables.

Similar to standard BPEL <invoke> activities, <get>, <post>, <put>, and
<delete> are equipped to deal with invocation failures. In particular, if an HTTP
code indicating an error (i.e., 4xx or 5xx) is detected, the activity will fail and raise the
corresponding BPEL fault that can be caught by a standard fault handler. As shown
in Figure 4, fault handlers in BPEL for REST can be associated with specific HTTP sta-
tus codes. Unless a specific fault handler is specified, all other HTTP codes (e.g., like
3xx used to indicate a redirection) will be transparently managed by the BPEL engine.

5.2 Publishing Processes as RESTful Web Services

To declaratively publish certain sections of a BPEL process as a resource we introduce
the <resource> container element (Figure 5). This construct allows to dynamically

BPEL for REST 287

<resource uri="">
<variable>*
<onGet>? ... </onGet>
<onPut>? ... </onPut>
<onDelete>? ... </onDelete>
<onPost isolated="false"?>? ... </onPost>

</resource>

<response code=""?>
<header name="">*value</header>
payload

</response>

Fig. 5. BPEL for REST extensions to declare resources within a process

publish resources to clients depending on whether their declarations are reached by the
execution of the BPEL process. Once a process reaches the <resource> element,
the corresponding URI is published and clients may start issuing requests to it. Once
execution leaves the scope where the <resource> is declared, its URI is no longer
visible to clients that instead receive an HTTP code 404 (Not found). Resources that
are declared as top-most elements in a BPEL process never go out of scope and they
are immediately published once the BPEL process is deployed for execution. As shown
in the example, resource declarations can be nested. The URI of nested resources is
computed by concatenating their uri attribute with the usual path (/) separator.

Similar to the BPEL <scope>, a <resource>may contain a set of <variable>
declarations that make up the state of the resource found at a given uri. These state
variables are only visible from within the resource declaration.

Like the BPEL <pick>, the <resource> contains a set of handlers that are
triggered when the process receives the corresponding HTTP request. As opposed to
<pick>, which contains one or more onMessage/onAlarm handlers, the request
handlers found within a <resource> directly stem from the REST uniform interface
principle. They are: <onGet>, <onPost>, <onPut>, <onDelete>. If a request
handler for a given verb is not declared, requests to the resource using such verb will
be answered by the BPEL engine with HTTP code 405 (Method not allowed). At least
one request handler must be included in a resource declaration and a handler for a given
request may appear at most once.

Another difference with <pick> is that there is no limit on the number of times
one such handler may be concurrently activated during the lifetime of the resource it is
attached to. If multiple clients of a BPEL process issue in parallel a GET request on a
resource declared from within the process, the execution of the corresponding onGet
request handler will not be serialized. Since only POST requests are not meant to be
idempotent, the <onPost> handler may be flagged to guarantee proper isolation2 with
respect to the access of the resource state variables. To ensure that GET requests on a
resource are indeed safe, the onGet request handler only has read-only access to the
state variables of the corresponding resource.

2 Similar to the BPEL isolated scope [13, Section 12.8].

288 C. Pautasso

The behavior of a request handler can be specified using the normal BPEL structured
activities (i.e., <sequence>, <flow>, etc.). However, control-flow links across
different handlers are not supported.

To access the data sent by clients with the request payload, a pre-defined variable called
$request is available from within the scope of the request handler. Likewise, a variable
called $request headers gives read-only access to the HTTP request headers.

Results can be sent back to clients using the BPEL for REST <response> activity.
Its code attribute is used to control the HTTP response status code that is sent to clients
to indicate the success or the failure of the request handler. The response headers can be
set using the same header construct introduced for the invocation of a RESTful Web
service. The payload of the response is embedded within the body of the element, but
could also be precomputed in a variable (i.e., by inlining a reference to the $variable
in the body of the element). Whereas at least one response element should be found
within a request handler, in more complex scenarios it could be useful to include more
than one (e.g., to stream back to clients over the same HTTP connection multiple data
items as they are computed by the BPEL process). In this case, only the first response
element should specify the HTTP code and the headers of the response. The connection
with the client will be closed after the last response element is executed. As shown
in the onPut request handler of the example, a response does not need to be placed
at the end of the request handler, as the handler execution may continue even after the
response has been sent to the client.

5.3 Minor BPEL Extensions and Changes

In this section we discuss a few minor extensions and small changes to the semantics of
existing BPEL activities to round off the support for REST in the language.

As shown in the example, the BPEL <exit/> activity – in addition to completing
the execution of the process – has the additional effect of discarding the state of all
resources that were associated with the process. Since nested resources are implicitly
discarded as execution moves out of their declaration scope, exit has only an effect
on the state of the top-level resources, which would remain accessible to clients even
after the normal execution of the process has completed.

Given the absence of a static interface description for RESTful Web services, and
the lack of strong typing constraints on the data to be exchanged, BPEL for REST is
a dynamically typed language. Thus, static typing of <variable> declarations be-
comes optional [13, SA025]. In particular, the attribute messageType – being di-
rectly dependent on WSDL – is not used, while the type or element attributes
may still be used in the presence of an XML schema description for the RESTful
Web service.

6 Discussion

In BPEL for REST, the concept of business process is augmented with notion of re-
source. We have introduced the resource declarative construct to specify that at a
certain point of the execution of a process, parts of its state can be published to clients

BPEL for REST 289

using a RESTful Web service interface. Thus, it is important to understand what is
the relationship between the state of a BPEL process instance and the state of such
resources.

The lifecycle of typical BPEL process instances begins with the execution of a so-
called start activity, which may be either an instantiating receive or a pick configured
with a createInstance="Yes" attribute. Once a process has been instantiated,
its state consists of the values assigned to its variables together with an “instruction
pointer” indicating which subset of its activities are currently active. During execution,
all messages exchanged are correlated with a particular process instance based on their
content and on the correlation sets declared in the process. Execution of a process in-
stance proceeds until it reaches an exit activity or the process simply runs out of
activities that can be executed. The state of a process instance is typically discarded
once execution has completed.

The lifecycle of resources should follow the REST uniform interface principle. Re-
sources are created (or initialized) with a POST/PUT request. Once a resource has been
created, clients may read its current state using GET requests, update its state using
PUT requests, and discard its state using DELETE requests.

In BPEL for REST, the state of a resource is accessed and manipulated from within
the resource request handlers. A new resource instance is created by initializing the
resource state variables from within the <onPut> or <onPost> request handler. To
let clients identify a specific resource instance, in the simplest case, an HTTP Cookie
can be automatically generated by the BPEL engine handling PUT requests. The en-
gine may intercept responses carrying the HTTP status code 201 (Created) and add the
cookie with a unique identifier. Clients will send the cookie for all future interactions
(e.g., GET, PUT, and DELETE) with the resource URI and the engine will use the
cookie to correlate the requests with the correct state of the resource instance.

As proposed in [31,30], a cookie-free solution based on URI rewriting that involves
the template-based generation of resource identifiers is also possible. This would work
as follows: given a top-level URI resource (e.g., /loan) corresponding to a process
model, if a POST request is answered with a 201 (Created) status code, the engine
detects this and adds a Location: /loan/i redirection header (where i is a unique
identifier of the newly created instance). Further GET, PUT, and DELETE requests
from clients will have to be directed to the specific resource instance URI /loan/i.
Nested resource URIs are still constructed by concatenating their uri attributes, but
should now also include the resource instance identifier. A GET request to the original
resource URI /loan could be then used to return hyperlink references to all active
process instances managed by the engine.

BPEL for REST distinguishes between two aspects of a resource that can be pub-
lished from a process: its URI and its state stored in the variables declared within the
resource. If a resource is declared as a top-level element of a BPEL process, clients can
interact with its URI as soon as the BPEL code is deployed for execution, no matter
whether a process instance has yet been started. If a resource is declared from within a
local scope of the process, its URI is published only once the execution of a particular
process instance reaches the particular scope. By introducing this distinction between

290 C. Pautasso

top-level and local resource declarations, BPEL for REST supports a pure resource-
oriented style of composition, where the result of a BPEL process is a resource that is
accessed through the REST uniform interface and can be instantiated multiple times.
Nevertheless, BPEL processes can also be instantiated using standard compliant start
activities and publish resources during their execution that expose part of their state to
clients also using the REST uniform interface.

All in all, the goal of the BPEL for REST extensions is to follow a declarative ap-
proach to embedding resources within processes so that developers do not have to worry
about correlating requests with resource instances, a feature that should be handled
transparently by the engine.

7 Related Work

BPEL for REST builds upon several existing research contributions within the area
of Web service composition languages [32,33]. Also, from the practical side, ad-hoc
support for invoking RESTful Web services is currently being discussed for some BPEL
engines.

In [30], BPEL is proposed as a suitable language to model the internal state of the
resources published by RESTful Web services. To do so, BPEL scopes are used to
represent different states of a resource and POST requests trigger the transition between
different scopes/states. GET, PUT, and DELETE are mapped to <onMessage> event
handlers that access, update and clear the values of the BPEL variables declared within
the currently active scope. The XPath language embedded in BPEL assign activities
is extended with functions to compute URI addresses. Unlike the extensions presented
in this paper, the resulting “resource-oriented” BPEL does not support the invocation
and the composition of external RESTful Web services, but only the publishing of a
BPEL process as a resource (or, more exactly, the implementation of a resource state
transition logic using BPEL).

BPELlight [19] is an attempt to remove the tight coupling between BPEL and WSDL
by identifying the BPEL activities that are closely dependent on WSDL abstractions and
subsuming them with a generic messaging construct (the <interactionActivity>).
We take a similar, but less generic, approach, that introduces a specific set of resource-
oriented activities to provide native and direct support for the interaction with RESTful
Web services.

The idea of a RESTful engine API to access the execution state of workflow instances
has been described in [34]. In this paper we provide explicit language support to control
which parts of a process becomes exposed through a similar kind of API.

Bite [31] (or the IBM Project Zero assembly flow language) can be seen as a BPEL
with a reduced set of activities specifically targeting the development of composite Web
application workflows. As in BPEL for REST, the language supports the invocation of
RESTful Web services and the corresponding runtime allows to automatically publish
processes as resources. Unlike BPEL for REST, the Bite language does not give a di-
rect representation of the REST interaction primitives, as those are condensed within
a single <invoke> activity, which – as opposed to the one from BPEL – can be di-
rectly applied to a URI. Also, with Bite it is not possible to dynamically declare re-
sources from within a process, so that clients may access their state under different

BPEL for REST 291

representations in compliance with the REST uniform interface principle (e.g., the PUT
verb is not supported). Still, the <receive-reply> activity in Bite can seen as a
form of the combination <resource><onPost> in BPEL for REST, since it makes
processes wait for client POST requests on a particular URI.

Within the Apache Orchestration Director Engine (ODE) project, a wiki-based dis-
cussion regarding RESTful BPEL extension has been recently started3. The proposed
extension overrides the semantics of existing BPEL activities (i.e., <invoke>) to han-
dle the invocation of RESTful Web services. Non-standard attributes are introduced to
store the required metadata and bindings to URIs. The ability of declaring and instan-
tiating resources is provided through extensions of the <onEvent> and <receive>
activities. It is worth noting that this solution does not follow the one based on the
WSDL 2.0 HTTP binding presented in Section 2. In this paper we proposed a different
approach that clearly separates the RESTful activities from the standard ones used to
interact with WSDL-based services.

8 Conclusion

This paper contributes to the ongoing discussion on how to best capture the notion of
stateful resource in Web service composition languages originally based on the con-
cepts of business processes and of message-based service invocation. It focuses on the
research problems that stem from the interaction between two current emerging tech-
nologies: WS-BPEL and RESTful Web services. Given their lack of formally described
interfaces and the possibility of not always using XML messages, RESTful Web ser-
vices are challenging to compose through the WSDL-based invocation abstractions re-
quired by WS-BPEL. The paper presents in detail using the classical “loan application”
example a new extension to the BPEL standard with the goal of providing native support
for the composition of RESTful Web services. The extension turns the notion of “re-
source” and the basic RESTful interaction primitives (GET, POST, PUT, and DELETE)
into first class language constructs. With these, a BPEL process can directly interact
and manipulate the state of external resources and declaratively publish parts of its state
through a RESTful Web service API.

Acknowledgements

This work is partially supported by the EU-IST-FP7-215605 (RESERVOIR) project.
The author would also like to thank Domenico Bianculli and the anonymous reviewers
for their insightful comments.

References

1. Fielding, R.: Architectural Styles and The Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine (2000)

2. Vinoski, S.: Serendipitous reuse. IEEE Internet Computing 12(1), 84–87 (2008)

3 Linked from http://ode.apache.org/bpel-extensions.html, last checked on
June 13th, 2008.

http://ode.apache.org/bpel-extensions.html

292 C. Pautasso

3. O’Reilly, T.: REST vs. SOAP at Amazon (April (2003),
http://www.oreillynet.com/pub/wlg/3005

4. Programmable Web: API Dashboard (2007),
http://www.programmableweb.com/apis

5. Fielding, R.: A little REST and Relaxation. The International Conference on Java Technol-
ogy (JAZOON07), Zurich, Switzerland (June 2007),
http://www.parleys.com/display/PARLEYS/
A%20little%20REST%20and%20Relaxation

6. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly, Sebastopol (2007)
7. Laskey, K., Hgaret, P.L., Newcomer, E., (eds.): Workshop on Web of Services for Enterprise

Computing, W3C (February 2007),
http://www.w3.org/2007/01/wos-ec-program.html

8. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): generic syn-
tax. IETF RFC 3986 (January 2005)

9. Florescu, D., Gruenhagen, A., Kossmann, D.: XL: An XML programming language for Web
service specification and composition. In: Proc. of the 11th International World Wide Web
Conference (WWW 2002), Honululu, Hawaii, USA (May 2002)

10. Crockford, D.: JSON: The fat-free alternative to XML. In: Proc. of XML 2006, Boston, USA
(December 2006), http://www.json.org/fatfree.html

11. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web Services:
Making the right architectural decision. In: Proc. of the 17th World Wide Web Conference,
Beijing, China (April 2008)

12. Haas, H.: Reconciling Web services and REST services. In: Proc. of ECOWS 2005, Växjö,
Sweden, Keynote Address (November 2005)

13. OASIS: Web Services Business Process Execution Language (WSBPEL) 2.0 (2006)
14. Assmann, U.: Invasive Software Composition. Springer, Heidelberg (2003)
15. IBM, SAP: WS-BPEL Extension for Sub-Processes (October 2005)
16. Active Endpoints, IBM, Oracle, SAP: WS-BPEL Extension for People (August 2005)
17. Tan, W., Fong, L., Bobroff, N.: BPEL4JOB: A fault-handling design for job flow manage-

ment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
27–42. Springer, Heidelberg (2007)

18. Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W., Maier, A.: BPEL-DT - data-
aware extension of BPEL to support data-intensive service applications. In: Emerging Web
Services Technology, vol. II. Birkhäuser, Basel (September 2008)

19. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In: Alonso, G.,
Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 214–229. Springer, Hei-
delberg (2007)

20. Chinthaka, E.: REST and Web services in WSDL 2.0 (May (2007),
http://www.ibm.com/developerworks/webservices/
library/ws-rest1/

21. Pasley, J.: Using Yahoo’s REST services with BPEL. Cape Clear (2008),
http://developer.capeclear.com/video/httpwizard/
httpwizard.html

22. Snell, J.: Resource-oriented vs. activity-oriented Web services. IBM developerWorks
(October 2004),
http://www-128.ibm.com/developerworks/webservices/
library/ws-restvsoap/

23. Vinoski, S.: Putting the “Web” into Web services: Interaction models, part 1: Current prac-
tice. IEEE Internet Computing 6(3), 89–91 (2002)

24. Vinoski, S.: Putting the “Web” into Web services: Interaction models, part 2. IEEE Internet
Computing 6(4), 90–92 (2002)

http://www.oreillynet.com/pub/wlg/3005
http://www.programmableweb.com/apis
http://www.parleys.com/display/PARLEYS/A%20little%20REST%20and%20Relaxation
http://www.parleys.com/display/PARLEYS/A%20little%20REST%20and%20Relaxation
http://www.w3.org/2007/01/wos-ec-program.html
http://www.json.org/fatfree.html
http://www.ibm.com/developerworks/webservices/library/ws-rest1/
http://www.ibm.com/developerworks/webservices/library/ws-rest1/
http://developer.capeclear.com/video/httpwizard/httpwizard.html
http://developer.capeclear.com/video/httpwizard/httpwizard.html
http://www-128.ibm.com/developerworks/webservices/library/ws-restvsoap/
http://www-128.ibm.com/developerworks/webservices/library/ws-restvsoap/

BPEL for REST 293

25. Wikipedia: Mashup (web application hybrid),
http://en.wikipedia.org/wiki/Mashup (web application hybrid)

26. Maximilien, M., Nielsen, D., Tai, S. (eds.): 1st International Workshop on Web APIs and
Services Mashups (September 2007)

27. Schrenk, M.: Webbots, Spiders, and Screen Scrapers. No Starch Press (2007)
28. Hadley, M.J.: Web Application Description Language (WADL) (2006),

http://wadl.dev.java.net/
29. Barros, A., Dumas, M., ter Hofstede, A.H.: Service interaction patterns. In: Proc. of the

3rd International Conference on Business Process Management. LNCS, vol. 3694. Springer,
Heidelberg (2005)

30. Overdick, H.: Towards resource-oriented BPEL. In: 2nd ECOWS Workshop on Emerging
Web Services Technology (November 2007)

31. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow composition for the web. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 94–106.
Springer, Heidelberg (2007)

32. Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal of
Web and Grid Services (IJWGS) 1(1), 1–30 (2005)

33. Pautasso, C., Alonso, G.: From Web Service Composition to Megaprogramming. In: Shan,
M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324, pp. 39–53. Springer, Heidel-
berg (2005)

34. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services choreography
standards - the case of REST vs. SOAP. Decision Support Systems 40(1), 9–29 (2005)

http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
http://wadl.dev.java.net/

Scaling Choreography Modelling for B2B

Value-Chain Analysis

Thomas Hettel1,2, Christian Flender1, and Alistair Barros2

1 Faculty of Information Technology,
Queensland University of Technology,

Brisbane, Australia
t.hettel@qut.edu.au, c.flender@qut.edu.au

2 SAP Research CEC Brisbane, Australia
t.hettel@sap.com, alistair.barros@sap.com

Abstract. The modelling of B2B scenarios focuses on conversations be-
tween key partners to establish a common business context for their col-
laboration. With the prevalence of Web services, attention has turned to
service choreographies as a means of message exchange ordering between
collaborating participants, from a global (or shared) understanding. As
such, the message ordering in a choreography model can then be used
to determine the message ordering behaviour of each participant’s pro-
cess. In this paper, we extend the suitability of choreography modelling
for the early phase of analysis, where the participants and the nature
of interactions develops under the flux of requirements acquisition. In
particular, we develop a structural view of interactions and stepwise re-
finement, leading to behavioural considerations, reminiscent of classical
techniques. In addition, we introduce contextualisation of intent behind
message exchanges in the form of speech acts. This, we show, can be
used to automatically detect conflicts in conversations, in the business
sense, namely negotiation or provision breakdowns - prior to technical
implementations of choreographies. Model abstraction and refinement is
based on Semantic Object Model (SOM), and a mapping to the Business
Process Modelling Notation (BPMN) is shown.

1 Introduction

The modelling of interactions between collaborating parties in B2B domains
is crucial across the early stages of information systems analysis to detailed
design. At the outset, the key parties and their shared interactions, constituting
a common business context, needs to be established. This provides the scope
and structure of the organisational system being modelled, out of which further
details can be refined, as analysis unfolds and design sets in. Ultimately, the
interoperability of services underpinning B2B collaborations should be traceable
to high-level requirements and the business context, and be free of message
exchange conflicts.

With the prevalence of Web services technologies, attention has turned to ser-
vice composition languages, proposed through the standards arena, as the basis

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 294–309, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Scaling Choreography Modelling for B2B Value-Chain Analysis 295

for model-driven development of service-based applications. The Web Services
Business Process Execution Language (WS-BPEL or BPEL) proposal allows
message exchanges to be captured within process-based descriptions of individ-
ual services. Once completed, the collaboration across different services, derived
through their locally specified message exchanges, can be verified for consistency.
Such an approach proves unwieldy the larger the number of collaborating parties
and the more complex the service interactions.

Accordingly, the need for service choreography modelling has emerged to bring
into a global (“birds-eye”) perspective, message exchanges across all collaborat-
ing services. As seen in Web Services Choreography Definition Language (WS-
CDL), ordered message exchanges across all collaborating services are modelled
as first class elements in a choreography model without the need for expos-
ing orchestration logic of the individual services. As such, choreography models
introduce a particular composition context for reuse of existing services or imple-
menting new ones. This is a strong characteristic of analysis and design specific
to the service-oriented setting, where global conversation protocols derive the
required behaviour of collaborating services, which in turn needs to be adapted
to their preexisting behaviour [1,2,3,4].

For the earlier stages of analysis and design, however, current choreography
modelling languages pose major limitations. Efforts during this stage are con-
cerned with implementation issues of collaborations rather than the organisa-
tional context - the intent - in they are enacted. Since value chains in practice
feature tens to hundreds of stakeholders, the identification of collaborating par-
ties is iterative. Some parties come to the fore in light of the operations of
others. Other parties fade into the background as their operations are seen as
ancillary. Only when the system landscape stabilises around common functions
can detailed modelling of collaborations proceed.

Classical analysis and design techniques manage the complexity of models and
their organisational embedding variously. Structured techniques support step-
wise refinement of models, allowing models to be captured at different levels of
complexity. They rely on abstraction mechanisms to refine organisational collab-
orations into technical service interactions. The lowest level of structural descrip-
tions could be transformed into service composition where orchestration could
be detailed. Action-oriented techniques [5,6] were proposed to explicitly contex-
tualize business intent of collaborations only informally addressed in structured
techniques. Speech acts formalise the social meaning of collaborations, e.g. initial
requests, promises or obligations to act, and ensuing action. Consequently, they
formalise negotiation patterns inherent in reciprocal collaborations, enhancing
modelling and validation.

This paper harnesses different strengths from classical techniques to extend
the suitability of choreography modelling beyond detailed and technically fo-
cussed service interactions. It uses the Semantic Object Model (SOM) [7] which
allows stepwise refinement of choreography models, in particular actors and their
collaborations. At detailed levels, behavioural models are generated from re-
fined structural models, with detailed orchestration logic defined for each role.

296 T. Hettel, C. Flender, and A. Barros

We demonstrate how contextualised collaboration together with behavioural de-
scriptions can be used to improve analysis of choreography models with respect
to inconsistencies of negotiations. We propose conversational analyses beyond
the classical techniques of prescriptive orchestrations enforcing local behaviour.
Finally we show that SOM orchestrations can be mapped into BPMN, a widely
used language for modelling business processes. As part of the mapping, we
demonstrate how racing interactions can be detected from structural models
and be managed in behavioural models.

In the next section, we refer to related attempts to choreography design,
analysis and implementation. Both action-oriented modelling as well as nota-
tions closer to implementation have their strengths and weaknesses. Based on
shortcomings identified, in Section 3, we introduce SOM by means of a logis-
tics reference model suitable to devise breakdown analyses in Section 4. Here,
we formalise potential threats or breakdowns of business cases in complex con-
versational scenarios. Having refined the logistics reference model down to an
appropriate level of detail, we map its behavioural view to BPMN.

2 Related Work

Choreography modelling can be divided into two classes according to their prox-
imity to implementation. Action-oriented languages draw from speech act theory
[8,9] and conversational analysis [10] in order to model the coordination of ac-
tors, communication acts and commitments. Organisations are considered as
networks of interrelated conversations. Similarly, emerging standards for chore-
ography modelling derive their constructs from networks of interrelated Web
services [11]. Accordingly, design and analysis techniques differ with respect
to implementation. However, it is the sound integration of design and analy-
sis techniques across all stages of information systems development that most
approaches aim at.

In line with the specification of interrelated conversations, actors communicate
or speak by uttering words or sentences. According to speech act theory, intents
or so called illocutionary acts complement utterances (e.g. make offer, request
quote). Additionally, propositional acts refer to what it is being talked about (e.g.
an offer of a product, a service to be delivered in the future). Perlocutionary acts
trigger subsequent communication acts so as to spread conversational relations
towards more complex networks of interrelated actions.

For instance, DEMO [6] leverages speech acts to model interactions between
partners and divides conversations into three main stages: offer, execution and
result. The offer phase is made up of two intentional acts, namely request, i.e.
initiator requests something from executor, and promise, i.e. executor promises
to provide a service. In the execution phase, executor enacts what has been
promised, whereupon he states the fulfilment of a promise in the result phase. Ini-
tiator then accepts the execution so far it matches the promise. DEMO supports
the gradual refinement of conversations via transaction patterns like request,
promise, state and accept. However, the gradual refinement or replacement of

Scaling Choreography Modelling for B2B Value-Chain Analysis 297

acts is only one side of the coin. As networks of conversations evolve with new
participating partners inseparably entangled within the transactional network,
actor decomposition becomes salient. DEMO lacks the guided decomposition of
actors and transactions toward implementable models.

Another approach uses Action Diagrams to model conversations [5]. Action
Diagrams explicitly refer to the development of implementable models. Here,
actions, performers, information flows and material flows are covered. It is shown
that requirements specification from the perspective of the actors involved leads
toward more accurate and relevant implementations. Rittgen (2006) follows this
line of argument and specifies a language mapping framework using DEMO and
UML to support the transition from actor networks to system models having a
closer proximity to implementation [12]. Other prominent action languages are
Conversation for Action [13] or Action Workflow loops [14].

As opposed to action-oriented modelling, traditional approaches are derived
from machine languages and therefore have a closer proximity to implementation.
Much effort has been put into these languages to provide sensible abstractions
from less relevant details.

One of these languages is Let’s Dance [15]. Here, interactional relations be-
tween actors are not intentional acts rather than simple message exchanges.
Taking the view of a global observer, the modeller defines dependencies between
interactions, which may be preceded or inhibited by other interactions. Unfor-
tunately, not all specified dependencies can be translated into local behaviour
[16]. This is known as the local enforceability problem. Behaviour of each actor is
derived from the interaction model and therefore, in the first place, it is assumed
to be global, irrespective of its actual point of departure which is always an ac-
tor. However, choreography, as natural language, describes the coordination of
behaviour of autonomous, distributed and loosely-coupled actors and not some
global behaviour [17,18].

Drawing from the ideas of Let’s Dance, Decker et al. (2007) propose interac-
tion modelling for BPMN [19]. Here, the idea is to use standard BPMN graph-
ical elements, such as gateways, start, end and intermediate events to compose
interactions (depicted as message events) between actors to a global process.
However, extending BPMN in this way also runs into the local enforceability
problem. Moreover, its verbose notation and the lack of abstractions or refine-
ments prohibit its use in larger scenarios.

It is beyond implementation that choreography models can become very com-
plex with many actors being involved interacting in many different ways. To
make these complex choreography scenarios tractable, Barros et al. (2007), pro-
pose three different abstraction layers, so-called viewpoints [20]. However, each
viewpoint comes with its own modelling language and paradigm and the steps
necessary to get from one viewpoint to another are rather big. No guidance is
given to perform this refinement. Moreover, it is arguable that fix abstraction
layers serve well in all cases. They may be too coarse grained in larger scenarios.

Drawing from systems theory and its recursive definition of systems, Quartel
et al. (2004) propose an approach that supports the guided derivation of complex

298 T. Hettel, C. Flender, and A. Barros

multi-layered networks of services [21]. This allows complex systems to be grad-
ually decomposed into smaller systems by revealing their inner structure. This
approach is very powerful as it can be applied from the level of value chains down
to implementation. Moreover, it provides guidelines supporting the modeller to
gradually refine systems.

In summary, there is a gap between action-oriented approaches [5,14,6,12,13]
and traditional modelling techniques [15,19,20,21] having a closer proximity to
implementation. More recently, this has been recognised [12,11], however an in-
tegrated approach to the design, analysis and implementation of choreographies
is still missing. Action-oriented modelling puts much emphasis on human actors
and their social relations, thus understanding information systems as vehicles to
support human interactions [5]. However, in the end, implementation support
becomes salient enforcing the shift from conversational networks of interrelated
actors to networks of collaborating Web services. Classical approaches to chore-
ography modelling look at information systems from a more technical perspective
presupposing choreography to be a special case of orchestration. This maintains
the applicability of many sophisticated analysis techniques but also introduces
new problems such as local enforceability. High-level concepts such as speech acts
are not considered, neglecting that in the end it is an human actor who commits
to the provision or consumption of services. An approach is needed that bridges
both worlds supporting the guided design and analysis of collaborating business
partners down to implementation specific process models.

3 The Semantic Object Model

To overcome the gap between business analysis and systems design, the Semantic
Object Model (SOM) [7] was developed in the 1980s and 1990s and provides a
methodology to address recent problems facing choreography. Its core is an enter-
prise architecture that divides a complex system into the three main layers enter-
prise plan, business process model and resources (human and machine actors). In
bridging enterprise plan and resource layer, the business process model gets de-
composed into components, so-called business objects, without losing track of the
architecture as a whole. Interactions between business objects define conversa-
tional relations (transactions) from a structural perspective. From a behavioural
view, business objects change system states according to their relative involve-
ment in conversations. As opposed to structure preserving task decompositions
(e.g. the creation of subprocesses), negotiation and feedback-control coordina-
tion principles guide modellers in the gradual refinement of business objects and
transactions toward multi-layered models so as to reduce overall complexity.
Synchronisation mechanisms track changes of model layers and keep the over-
all architecture in sync. Maintaining such multiple layers enables assignments
of resources (e.g. legacy applications) with diverse granularities. Hence, SOM
provides a holistic framework for application integration. Due to its conceptual
similarity to BPMN, SOM is highly susceptible to put established choreography
models within the broader social context of interacting parties.

Scaling Choreography Modelling for B2B Value-Chain Analysis 299

The next sections will introduce SOM on the basis of a case study derived
from VICS’s logistics reference model1.

3.1 Scenario

To replenish low stocks a Buyer places an order with a Supplier and provides
necessary delivery details identifying the Consignee (delivery point) which may
be a distribution centre or a store. The Buyer then notifies the Consignee about
the expected delivery while the Supplier contacts a Shipper passing on order
details and the destination. The Shipper then establishes a shipment with a
Carrier. This shipment is transported to its final destination and passed through
Customs and Quarantine. From there goods are collected and dispatched by a
Consolidator to the Consignee.

Buyer Supplier

I:Request Quote for Goods
I:Quote Goods
C:Order Goods
E:Deliver Goods

Buyer Supplier
I:Request Quote for Goods

I:Quote Goods

C:Order Goods

E:Deliver Goods

Fig. 1. Layer 1: Initial structural and behavioural view

3.2 Modelling the Scenario with SOM

In SOM, modelling starts at the enterprise plan level. On this abstraction layer
only a minimal number of actors is involved, namely Buyer and Supplier (cf.
Fig. 1). Both are equal partners having to engage in negotiations before any ser-
vices can be provided or consumed (the so-called negotiation principle). Such an
interaction has to follow three sequential steps: (1) Initialising (I) where both ac-
tors exchange information about the provided service; (2) Contracting (C) where
both actors negotiate the terms of the service delivery/consumption; and finally
(3) Enforcing (E) where the negotiated services are provided/consumed. I and
C may be optional depending on whether both objects already know each other
and whether a basic agreement has been established between both. Continuing
with the scenario, Buyer uses an I transaction to get a quote from Supplier for
a specific product he is interested in purchasing. With the C transaction the
Buyer places an order based on the previous quote which is confirmed. In the
next step, Buyer and Supplier commit to provide and consume a service with
respect to the negotiated terms. This service, namely the delivery of the ordered
goods, is enforced using the E:Deliver Goods transaction.

In terms of speech act theory, I, C and E identify the type of the illocutionary
act of the performed speech act. Transactions have names that consist of two
parts: (1) a verb identifying the intention (illocutionary act), e.g. order, request,
confirm, etc.; (2) a noun identifying what is being talked about (propositional
content), e.g. goods, delivery, etc.
1 http://www.vics.org/committees/logistics/LogisticsModel.pdf

300 T. Hettel, C. Flender, and A. Barros

Supplier

Logistics

S
hi

pp
m

en
t

Buyer

Procurement Sales

I:Request Quote for Goods
I:Quote Goods
C:Order Goods

E:Deliver
Goods

Consignee

R
:N

ot
ify

D
el

iv
er

y

F
:C

on
fir

m
D

el
iv

er
y

I:R
eq

ue
st

D
el

iv
er

y

Shipper

I:Request
Consolidation

C:Confirm
Consolidation

E:Deliver Goods

Consolidator

Carrier

R
:Instruct

D
elivery

F
:C

on
fir

m
D

el
iv

er
y

Customs

C
:D

ec
la

re
G

oo
ds

E
:C

le
ar

C
us

to
m

s

C:Confirm Order

C
:C

on
fir

m
D

el
iv

er
y

Fig. 2. Layer 4: Detailed structural view, derived from Fig. 1

To complement the coordination shown in the structural view, SOM provides
a behavioural view that specifies the sequence of transactions (cf. Fig. 1). Here,
the modeller specifies how each actor acts and reacts with respect to trans-
actions. Tasks (rounded rectangles) can either be used to model incoming or
outgoing transactions and may have any number of pre or post events (circles).
A transaction always connects two tasks belonging to different business objects.
The modeller may annotate a task with XOR (‘X’) or AND (‘&’) if it is known
that either one or all pre events are necessary to trigger a task. Similary, tasks
can be annotated to show that only one or all post events are triggered. With re-
gard to implementation, a heuristic rule is to specify more complex control-flow
behaviour once a system is sufficiently detailed.

To add more details to this high-level model, objects can be decomposed
to reveal further actors and their coordination using the recursive definition of
systems as proposed by systems theory. To get to the lowest layer as depicted
in Fig. 2 a number of decompositions had to be applied2. The dotted boxes
give hints with respect to the decomposition process. On the left hand side,
Buyer was decomposed into Procurement and Consignee interacting according
to the feedback-control principle, the second interaction principle besides the

2 Due to lack of space not all layers and all decomposition steps can be shown.

Scaling Choreography Modelling for B2B Value-Chain Analysis 301

negotiation discussed before. Here, the management object Procurement regu-
lates (R) the operational object Consignee by sending an advice to receive goods,
whereupon Consignee replies (F for feedback) by confirming the receipt of the
delivery. On the right hand side, Supplier was first decomposed into Sales and
Logistics. Furthermore, Logistics was decomposed into Shipper, Carrier, Consol-
idator and Customs. Accordingly, transactions initially defined between Buyer
and Supplier connect Procurement and Sales as well as Consolidator and Con-
signee. This does not contradict the previous models. Buyer and Supplier have
not ceased to exist, only their inner structure has been revealed.

Similar to the decomposition of business objects, transactions (and tasks re-
spectively) can be decomposed as well. This is shown in Fig. 3 which is a re-
finement of Fig. 1. Here, C:Order Goods was decomposed to reveal the actual
negotiation process. This was achieved by decomposing C:Order Goods sequen-
tially (1) into the following sub-transactions.

– C:Propose Delivery Details, where Procurement proposes details such as
date, quantity, quality and price.

– C:Confirm Or Propose Alternative Details, where Supplier confirms the de-
tails or proposes alternative details.

In a sub-sequential step (2), C:Confirm Or Propose Alternative Details was in
turn decomposed into the parallel sub-transactions C:Propose Alt Del Details
and C:Confirm Del Details. Here, Supplier has the choice between one of the
aforementioned transactions. In turn, Procurement has a choice between accept-
ing the alternative details or proposing new details again.

Procurement Supplier

I:Request Quote for Goods

I:Quote Goods

C:Propose Del Details

Consignee

R
:N

ot
ify

D
el

iv
er

y

F
:C

on
fir

m
D

el
iv

er
y

x

x

x C:Propose Alt Del Details

C:Confirm Del Details

x C:Confirm Order

&
E:Deliver Goods

❶

❷

Fig. 3. Layer 2 behavioural view showing the decomposition of Buyer into Procurement
and Consignee as well as the decomposition of C:Order Goods

302 T. Hettel, C. Flender, and A. Barros

3.3 Summary

As seen in the case study above, the gradual refinement process is a very pow-
erful tool, supporting the modeller in managing complex interaction scenarios
with many different actors. Arbitrary layers can be utilised to provide a consis-
tent and reasonable abstraction of the system that facilitates understanding and
navigating the system.

4 Breakdown Analysis

Choreography models can become complex with many partners interacting in
many different ways to achieve a common goal. Such a complex system can
suffer many different kinds of breakdowns. Apart from deadlocks and livelocks
and the like that can be identified using classical workflow analysis techniques
[22], there are other breakdowns on a higher level. Especially in choreography
modelling where autonomous and independent partners interact, participants
may choose not to take part and withdraw their support at some stage. This is
most likely during negotiations where each participant may decide to withdraw
for various reasons at any time. However, after a successful negotiation, both
partners are committed to providing a service or consuming it. In most cases such
a commitment cannot be easily withdrawn without attracting financial penalties
or legal charges. In front of this backdrop, partners engaged in negotiations may
want to run the following analysis:

– Are there any external factors that may cause this negotiation to fail? In
other words: what are the sub-sequential negotiations necessary to success-
fully close this deal? (Negotiation Breakdown Analysis)

– Are there any external factors that may prevent a committed service from
being provided? (Provision Breakdown Analysis)

Particularly, the second question may be of interest as once an agreement is
made, products and services have to be delivered or consumed. A failure in doing
so may result in legal charges against the violator who may also be liable to pay
compensation. Such a situation may have been introduced by inapt modelling
and therefore needs to be rectified. If it is, for some reason, not possible to
model the choreography differently, the affected actors should at least be aware
of such possible situations and should have a risk mitigation strategy at hand
to reduce the danger or prevent such situations from happening altogether. The
next sections will elaborate on these analysis techniques in more detail.

4.1 Prerequisite

In complex scenarios, model queries as needed for breakdown analyses require
precise definitions. Therefore, we formalise a SOM model and the conversations
it is meant to express.

Scaling Choreography Modelling for B2B Value-Chain Analysis 303

A SOM Model. is defined to be a directed graph consisting of three types
of nodes: Tasks T , Events E and Business Objects O and two kinds of edges:
Transactions Trans and pre/post event relations EventAssoc.

GS = (VS , ES) = (T ∪ E ∪ O, Trans ∪ EventAssoc)

Furthermore, let bo : T → O be the function that returns the business object
in which a task is contained, let τ : Trans → {I, C, E, R, F} be the function that
returns the type of a transaction and sg,jg : T → {xor, and} be the functions
that return the type of the implicit split (sg) or join gateway (jg) of a task.

A Conversation. is composed of all transactions that were derived from an
initial ICE or RF transaction between two actors. On a lower layer, a conver-
sation may span several actors. Using the trace log of the refinements, different
transactions can be combined to one conversation. For instance, traces can be
used to group the transaction E:Deliver Goods between Consolidator and Con-
signee and the other transactions between Procurement and Sales together to
one conversation as they all originate from the same ICE (cf. Fig. 1, Fig. 2).

Let the trace log be a directed graph GT = (VT , ET) with VT = Trans and
ET = {〈v1, v2〉} v1, v2 ∈ VT . When decomposing a transaction t into a number
of new transactions t1, . . . , tn, edges 〈t, ti〉 i ∈ {1, . . . , n} are added to ET .

Using the trace log GT , an ICE -conversation Cice is defined as the set of
transactions that are leafs in the trace log and can be reached by following the
trace from either i, c or e:

Cice = {t|(t ∈ {i, c, e} ∨ ∃p = 〈x, . . . , t〉 ∈ ET , x ∈ {i, c, e})∧ � ∃p′ = 〈t, t′〉 ∈ Et}

Shipper

Sales
C:Order
Goods

C
:R
eq
ue
st

D
el
iv
er
y

C:Confirm
Order

C
:C
on
fir
m

D
el
iv
er
y

Fig. 4. Relevant part of the be-
haviour involving Sales and Ship-
per as shown in Fig. 2

Consolidator
E:Deliver
Goods

E:Deliver
Goods

Customs

C
:D
ec
la
re

G
oo
ds

E
:C
le
ar

C
us
to
m
s

Fig. 5. Relevant part of the behaviour involv-
ing Consolidator and Customs as shown in
Fig. 2

4.2 Negotiation Breakdown

Requirements for successful negotiations may be other sub-sequential negoti-
ations necessary to arrange additional services needed to provide the overall

304 T. Hettel, C. Flender, and A. Barros

service. As choreographies model the collaboration of loosely coupled and au-
tonomous actors, participants may withdraw from negotiations at any time,
therefore causing it to fail. Such failures may cascade through the model and
cause encompassing negotiations to fail as well – a so-called negotiation break-
down. A possible negotiation breakdown may be caused by Shipper (cf. Fig. 4
and Fig. 2), as an unsuccessful negotiation between Sales and Shipper may im-
pact on the negotiation between Procurement and Sales and may cause it to
fail, too.

The negotiation breakdown analysis leverages SOM’s typed transactions to
find sub-sequential negotiations between third parties that are encompassed in
another negotiation. Therefore, the following set theoretic expressions identify
the set of partners that may be involved in a negotiation breakdown N with
respect to a conversation Cice.

A negotiation breakdown NCice with respect to the conversation Cice may be
caused by business objects o1 = bo(t1), o2 = bo(t2) engaged in a negotiation
n = [t1, t2], where t1, t2 are tasks, that is not part of the conversation Cice. This
negotiation n must be reachable from the first C-transaction c′ ∈ firstCCice

in
Cice and must lead to the first E-transaction e′ ∈ firstECice

in Cice. This way n
can impact on the negotiation in Cice and cause it to fail as well. To denote a
connection between nodes v and v′ regard of direction [v, v′] is used.

NCice = {d|c′ ∈ firstCCice
, e′ ∈ firstECice

,[t1, t2] ∈ TransC(c′, e′),
[t1, t2] /∈ Cice, d = {bo(t1), bo(t2)}}

where the following auxiliary sets and functions were used: first and last
determines the first respectively the last transaction of a type x within a con-
versation Cice. Transx(t′, t′′) determines all transactions of a type x that can be
reached from t′ and lead to t′′.

firstxCice
= {c ∈ Cice|τ(c) = x, � ∃c′ ∈ Cice : τ(c′) = x, ∃〈c′, . . . , c〉 ∈ ES}

lastxCice
= {c ∈ Cice|τ(c) = x, � ∃c′ ∈ Cice : τ(c′) = x, ∃〈c, . . . , c′〉 ∈ ES}

Transx(t′, t′′) = {t ∈ Trans|τ(t) = x, t = [vi, vi+1] ∈ [t′, v1, . . . , vn, t′′] ∈ ES}

4.3 Provision Breakdown

Once, two actors have agreed upon consumption and delivery, the service has to
be provided and consumed. However, it may happen that after committing to a
service provision additional negotiations for supplementary services are required.
If any of these negotiations fail, it may not be possible to provide the promised
service, causing a provision breakdown. For instance, such a breakdown may be
caused by Consolidator and Customs in the example depicted in Fig. 2. Fig. 5
shows that Consolidator does only talk to Customs after it received the goods
from Carrier. If customs cannot be cleared for these goods, then the promised
delivery cannot be made. This may pose a serious problem to other partners
as they may be held liable to pay compensation for violating the contract. This

Scaling Choreography Modelling for B2B Value-Chain Analysis 305

scenario may be the result of unapt modelling and therefore needs to be rectified
by turning a possible provision breakdown into a possible negotiation breakdown.
However, it may not always be possible to model the choreography differently
to avoid such situations. Customs cannot be cleared upfront without having the
actual delivery inspected. In this case the affected actors may consider a risk
mitigation strategy to counter such scenarios.

In order to identify potential provision breakdowns the following set theoretic
expression can be used. Provision breakdown PCice with respect to the conversa-
tion Cice may be caused by business objects o1 = bo(t1), o2 = bo(t2) engaged in
a negotiation n = [t1, t2] that is not part of the conversation Cice. If this nego-
tiation n is reachable from the last C-transaction c′ ∈ lastCCice

in Cice and leads
to the last E-transaction e′ ∈ lastECice

in Cice, n can prevent the provision of the
service in Cice and therefore may cause a provision breakdown:

PCice = {d|c′ ∈ lastCCice
, e′ ∈ lastECice

,[t1, t2] ∈ TransC(c′, e′),
[t1, t2] /∈ Cice, d = {bo(t1), bo(t2)}}

5 Mapping to BPMN

So far, it has been shown how a detailed model can be derived through re-
peated decompositions of business objects and transactions. However, one of the
main benefits of SOM is its potential to derive implementation specific models.
Therefore, a formal mapping from SOM’s behavioural view to BPMN is pre-
sented that allows for the automatic generation of behavioural interfaces, the
point of departure for an implementation.

5.1 Prerequisite

In addition to the SOM model defined in 4.1, we also define a BPMN diagram to
be a directed graph GB consisting of the nodes Pools P , Activities A, Gateways
G and edges sequence flow SeqF low and message flow MsgF low.

GB = (VB, EB) = (P ∪ A ∪ G, SeqF low ∪ MsgF low)

Gateways are further disjointly subdivided into XOR gateways GX , parallel
gateways GP and event-based gateways GE . G = GX ∪ GP ∪ GE . Moreover,
let pool : (A ∪ G) → P be the function that assigns activities or gateways to the
pool in which they are contained.

5.2 Mapping Rules

For the following mapping two auxiliary sets of tuples linking SOM tasks to
BPMN activities or gateways are used: linkTo, linkFrom ⊆ T × (A ∪ G). The
following mapping is based on predicate logic expressions, where the left-hand
side matches a pattern in the SOM model and the right-hand side asserts the

306 T. Hettel, C. Flender, and A. Barros

existence of the corresponding pattern in the BPMN model. A number of injec-
tive functions3 fX is used to relate SOM to BPMN elements.

The first rule creates a BPMN activity for each SOM task and a pool for each
business object and links the activity to the pool. The other rules deal with the
implicit gateways in SOM which have to be made explicit in BPMN. Here the
auxiliary sets linkTo and linkFrom are used to keep track of where sequence flow
has to be attached to, i.e., the activity or its preceding or succeeding gateway.

t ∈ T, o ∈ O, bo(t) = o ⇒ ft2a(t) = a ∈ A, fbo2pool(o) = p ∈ P, p = pool(a)
t ∈ T,¬split(t) ⇒ ft2a(t) = a ∈ A, (t, a) ∈ linkTo

t ∈ T,¬join(t) ⇒ ft2a(t) = a ∈ A, (t, a) ∈ linkFrom

t ∈ T, xorSplit(t) ⇒ ft2a(t) = a ∈ A, ft2sg(t) = g ∈ GX , (t, g) ∈ linkFrom,

〈a, g〉 ∈ SeqF low

t ∈ T, andSplit(t) ⇒ ft2a(t) = a ∈ A, ft2sg(t) = g ∈ GP , (t, g) ∈ linkFrom,

〈a, g〉 ∈ SeqF low

t ∈ T, xorJoin(t) ⇒ ft2a(t) = a ∈ A, ft2jg(t) = g ∈ GX , (t, g) ∈ linkTo,

〈a, g〉 ∈ SeqF low

t ∈ T, andJoin(t) ⇒ ft2a(t) = a ∈ A, ft2jg(t) = g ∈ GP , (t, g) ∈ linkTo,

〈a, g〉 ∈ SeqF low

The second set of rules adds implicit control flow, message flow and data-based
gateways.

For each transaction between SOM tasks, a message flow between the corre-
sponding activities must exist.

t1, t2 ∈ T, 〈t1, t2〉 ∈ Trans ⇒ 〈ft2a(t1), ft2a(t2)〉 ∈ MsgF low

For two tasks of the same business object in SOM that are connected via a
sequence of transactions and events, a sequence flow edge must connect the
corresponding activities.

t1, t2 ∈ T, bo(t1) = bo(t2), connected(t1, t2), (t1, a1) ∈ linkFrom, (t2, a2) ∈ linkTo,

¬(〈t1, e, t3〉 ∈ ES , connected(t3, t2)) ⇒ 〈a1, a2〉 ∈ SeqF low

For two tasks of one business object that are (indirectly) connected via an XOR
split in another business object, an event-based gateway has to be introduced
and linked to the corresponding activities:

t1, t2, t3 ∈ T, bo(t1) = bo(t3) �= bo(t2), xorSplit(t2), connected(t1, t2),
connected(t2, t3), (t1, a1) ∈ linkFrom, (t3, a3) ∈ linkTo

⇒ 〈a1, g〉 ∈ SeqF low, 〈g, a2〉 ∈ SeqF low, ft2eg(t2, bo(t1)) = g ∈ GE

3 An actual definition of those functions is not necessary as only their injective nature
is of interest.

Scaling Choreography Modelling for B2B Value-Chain Analysis 307

P
ro

cu
re

m
en

t
S

up
pl

ie
r

C
on

si
gn

ee

I:R
eq

ue
st

 Q
uo

te
fo

r
G

oo
ds

I:Q
uo

te
 G

oo
ds

C
:P

ro
po

se
D

el
 D

et
ai

ls

C
:P

ro
po

se
A

lt
D

el
 D

et
ai

ls

C
:C

on
fir

m
D

el
 D

et
ai

ls

C
:C

on
fir

m
 O

rd
er

R
:N

ot
ify

 D
el

iv
er

y

F
:C

on
fir

m
 D

el
iv

er
y

E
:D

el
iv

er
 G

oo
ds

Fig. 6. BPMN diagram generated from the SOM behavioural model Fig. 3

Moreover, the following predicates were used and need to be defined:

∃p1 = 〈t, t1, . . . tn, t′〉 ∈ ES : ∀ti : ¬split(ti), bo(ti) �= bo(t), i ∈ {1, . . . , n}
⇒ connected(t, t′)

∃〈t, e〉, 〈t, e′〉 ∈ EventAssoc, e �= e′ ⇒ split(t)

∃〈e, t〉, 〈e′, t〉 ∈ EventAssoc, e �= e′ ⇒ join(t)

split(t), sg(t) = xor ⇒ xorSplit(t)

join(t), jg(t) = xor ⇒ xorJoin(t)

split(t), sg(t) = and ⇒ andSplit(t)

join(t), jg(t) = and ⇒ andJoin(t)

This transformation was implemented using the Tefkat model transformation
language and the result of running it on the SOM behavioural view depicted in
Fig. 3 is shown in Fig. 6. In particular, it shows that racing conditions (event-
based gateways) have been derived from the behavioural view and complement
each decision (XOR-split) made by a particular partner. Although being imple-
mented, rules concerning start and end events can not be shown due to lack of
space.

Eventually, it is this mapping that closes the gap between high-level models
and implementation. We started from the level of value chains or conversational
networks, refined the model through gradual decompositions and transformed a
flat behavioural representation into an executable template (at least as far as
control flow is concerned).

308 T. Hettel, C. Flender, and A. Barros

6 Conclusion and Future Research

In this paper, we introduced SOM for the design and analysis of choreographies
involving several business partners. From the enterprise plan down to a model
detailed enough to be translated into BPMN behavioural interfaces, we decom-
posed business objects and transactions. Engaged in the complex exercise of
systems design and analysis, the modeller is guided and supported by a set of
decomposition rules.

Due to the nature of autonomous and loosley-coupled actors, breakdowns may
occur that cause negotiations to fail, or even worse, prevent the provision of a
service despite agreement. Violations may attract financial penalties and even
legal charges. Analysis techniques were presented to help modellers becoming
aware of possible breakdowns and therefore allowing them to change the model. If
revisions are not possible risk mitigation strategies will increase in attractiveness.

A requirement of our analysis was SOM building upon speech acts as reflected
in the types of transactions between actors. Intentional acts enable distinc-
tions between negotiation and service provision. Furthermore, a crucial concept
utilised in the analysis was the gradual refinement process that allowed individ-
ual transactions spread between different partners to be grouped together into
a single conversation. Grouping of conversational acts can hardly be achieved
with traditional modelling languages such as BPMN as there are no decompo-
sition guidelines. Moreover, understanding choreography models as coordinated
behaviour of autonomous actors, and not as some global behaviour, avoids SOM
being prone to the local enforceability problem.

Our proposal of a combined top-down and bottom-up approach to choreog-
raphy modelling will be extended toward higher degrees of flexibility. Ongoing
research addresses model synchronisation, in particular it looks at ways of how
higher layers of an existing model can be changed with minimal impact on exist-
ing models on lower layers. Moreover, future work will investigate the trace log, a
side product of the refinement process. Trace logs capture the history of a model
whose evolutionary decomposition steps could mirror sophisticated navigation
in complex models. New results will continously add to an integrated modelling
environment which was initialised with the implementation of a SOM/BPMN
editor according to the research presented in this paper.

References

1. Dijkman, R., Dumas, M.: Service-oriented design: A multi-viewpoint approach.
Int’l Journal of Cooperative Information Systems 13(4), 337–368 (2004)

2. Bäına, K., Benatallah, B., Casati, F., Toumani, F.: Model-Driven Web Service
Development. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp.
290–306. Springer, Heidelberg (2004)

3. Zimmermann, O., Krogdahl, P., Gee, C.: Elements of service-oriented analysis and
design (2004), www.ibm.com/developerworks/library/ws-soad1

4. Papazoglou, M., Van Den Heuvel, W.: Service-oriented design and development
methodology. Int’l Journal of Web Engineering and Technology 2(4), 412–442
(2006)

www.ibm.com/developerworks/library/ws-soad1

Scaling Choreography Modelling for B2B Value-Chain Analysis 309

5. Agerfalk, P., Eriksson, O.: Action-oriented conceptual modelling. European Journal
of Information Systems 13(1), 80–92 (2004)

6. Dietz, J.: The deep structure of business processes. Communications of the
ACM 49(5), 58–64 (2006)

7. Ferstl, O.K., Sinz, E.J.: Foundations of Information Systems (in German), 5th edn.
Oldenbourg (2006)

8. Austin, J.L.: How to do things with words. Oxford Uni. Press, Cambridge (1962)
9. Searle, J.R.: Speech acts. Cambridge Univ. Press, Cambridge (1969)

10. Sacks, H.: Lectures on Conversation. Blackwell Publishers, Malden (1995)
11. Umapathy, K., Purao, S.: A theoretical investigation of the emerging standards for

web services. Information Systems Frontiers 9(1), 119–134 (2007)
12. Rittgen, P.: A language-mapping approach to action-oriented development of in-

formation systems. European Journal of Information Systems 15(1), 70–81 (2006)
13. Winograd, T.: A language/action perspective on the design of cooperative work.

Human Computer Interaction 3(1), 330 (1988)
14. Denning, P., Medina-Mora, R.: Completing the loops. Interfaces 25(3), 42–57

(1995)
15. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language

for Service Behavior Modeling. In: Fourteenth Int’l Conference on Cooperative
Information Systems (CoopIS), Montpellier, France. LNCS, vol. 4275, pp. 145–
162. Springer, Heidelberg (2006)

16. Zaha, J.M., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service Inter-
action Modeling: Bridging Global and Local Views. In: IEEE Int’l Conference on
Enterprise Distributed Object Computing (EDOC). IEEE, Los Alamitos (October
2006)

17. Maturana, H., Poerksen, B.: From being to doing: the origins of the biology of
cognition. Carl Auer Verlag, Heidelberg (2004)

18. Winograd, T., Flores, F.: Understanding computers and cognition. Ablex Publish-
ing Corp. Norwood, NJ (1986)

19. Decker, G., Barros, A.: Interaction Modeling using BPMN. In: ter Hofstede,
A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928,
pp. 208–219. Springer, Heidelberg (2008)

20. Barros, A., Decker, G., Dumas, M.: Multi-staged and Multi-viewpoint Service
Choreography Modelling. In: Proceedings of the Workshop on Software Engineer-
ing Methods for Service Oriented Architecture (SEMSOA), Hannover, Germany.
CEUR Workshop Proceedings, vol. 244 (May 2007)

21. Quartel, D., Dijkman, R., van Sinderen, M.: Methodological support for service-
oriented design with ISDL. In: ICSOC 2004: Proceedings of the 2nd international
conference on Service oriented computing, pp. 1–10. ACM, New York (2004)

22. van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

Evaluation of OrViA Framework for

Model-Driven SOA Implementations: An
Industrial Case Study

Sebastian Stein1, Stefan Kühne2, Jens Drawehn3,
Sven Feja4, and Werner Rotzoll5

1 IDS Scheer AG
Altenkesseler Str. 17, 66115 Saarbrücken, Germany

sebastian.stein@ids-scheer.com
http://www.ids-scheer.com/soa/

2 Universität Leipzig, Institut für Informatik, Betriebliche Informationssysteme
Johannisgasse 23, 04103 Leipzig, Germany

kuehne@informatik.uni-leipzig.de
http://bis.informatik.uni-leipzig.de/

3 Fraunhofer Institut für Arbeitswissenschaft und Organisation
Nobelstr. 12, 70569 Stuttgart, Germany

jens.drawehn@iao.fraunhofer.de
http://www.swm.iao.fraunhofer.de/

4 Christian-Albrechts-Universität zu Kiel
24098 Kiel, Germany

sven.feja@email.uni-kiel.de
http://www.informatik.uni-kiel.de/

5 DVZ Datenverarbeitungszentrum Mecklenburg-Vorpommern GmbH
Lübecker Str. 283, 19059 Schwerin, Germany

w.rotzoll@dvz-mv.de
http://www.dvz-mv.de/

Abstract. Today, most business processes are at least partially sup-
ported by IT systems. An integration of those IT systems is required,
because a business process usually involves several IT systems. The
OrViA framework suggests a model-driven approach to solve this inte-
gration problem. Platform independent business processes are modelled
and transformed into executable ones. To ensure compliance to inter-
nal and external policies, the OrViA framework suggests using model
checking technologies.

We present an industrial case study evaluating the OrViA framework
in context of a model-driven SOA implementation in the E-Government
domain. We were able to successfully apply the OrViA framework, but we
also identified several problems. Our case study shows how model-driven
approaches can be successfully applied in real-world projects.

1 Introduction

1.1 Research Background

Companies and organisations have been working on optimising their business
processes in past years. This effort in the field of business process management

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 310–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.ids-scheer.com/soa/
http://bis.informatik.uni-leipzig.de/
http://www.swm.iao.fraunhofer.de/
http://www.informatik.uni-kiel.de/
http://www.dvz-mv.de/

Evaluation of OrViA Framework for Model-Driven SOA Implementations 311

(BPM) [1] enables them to control and coordinate the activities within and across
an organisation’s boundaries, which is necessary to ensure cost-effectiveness and
high quality.

Today, most business processes are supported by IT systems. Therefore, it is
important to find an efficient way to implement the target business processes
based on the existing IT systems and infrastructure. However, business process
models focus on the business aspect and do not contain all information needed by
an IT expert implementing an appropriate solution. Following the idea of Model
Driven Architecture (MDA) [2], we need an approach starting with the business
process model as a platform independent model (PIM) and derive a platform
specific model (PSM) containing all information needed for implementation.

Many business processes span multiple IT systems, which must be integrated
to deliver the desired result. In most organisations, there are many IT systems
with different architectures, programming languages, and interfaces. A standard
mechanism is necessary to realise the connections between the IT systems ef-
ficiently. We make use of the ideas of a service-oriented architecture (SOA) [3,
see e. g.] to see business processes as a complex interaction of services provided
by IT systems. Following this idea, process design is the description of a service
interaction.

An iterative methodology supporting the realisation of business processes in
the phases of analysis, design, and implementation is provided by the OrViA
framework [4,5], which was developed by some of us. It supports the transforma-
tion of business process models into executable process models and makes use of
model checking technologies to ensure the consistency of the model information
on all levels. We1 wanted to evaluate the applicability of the OrViA framework
in a real-world scenario. Therefore, we conducted an industrial case study, which
is presented in this paper.

1.2 Querying the Register of Residents

We conducted the industrial case study in the E-Government domain, whereas
“the term E-Government focuses on the use of information and communication
technologies (ICT) by governments applied to the full range of governmental and
administrational functions” [6]. The use of ICT is expected to enable execution
of business processes, integration of back-office systems among the public (and
private) sector, and provisioning of fully customised and personalised electronic
services to the different stakeholders. For instance, municipal processes include
more than 1.000 interconnected and interdependent services and underlying pro-
cesses for citizens, companies, and other administrational parties [7].

The real-world E-Government scenario used in the case study is provided
by the German company Datenverarbeitungszentrum Mecklenburg-Vorpommern
GmbH (DVZ M-V2) based in Schwerin, Germany. DVZ M-V maintains the

1 This research was funded by the German federal ministry of education and research
within the public research project OrViA – http://www.orvia.de/

2 http://www.dvz-mv.de/

312 S. Stein et al.

Portal

WSDL

BPEL

EARR

Service

Service

Service

provided by DVZ M-V

Fig. 1. Simple Electronic Access to Register of Residents (EARR) Service

IT systems of the public administration in the German region Mecklenburg-
Vorpommern. They also support and implement new administrational processes.

Public authorities or commercial users utilise the governmental registration
service for different purposes. The simple electronic access to the register of res-
idents (EARR) service shown in Fig. 1 is used to check the validity of name
and address data of a single person. The prerequisites and conditions under
which the EARR takes place are defined by several legal regulations like the law
Landesmeldegesetz Mecklenburg-Vorpommern. Different public authorities take
part in this service as service providers and service consumers, using different
IT systems. For example, there are 100 different registration applications by 6
different vendors used in the region Mecklenburg-Vorpommern. To ensure in-
teroperability between these systems, standardisation is needed. In the field of
governmental registration services, the public XMeld standard3 defines the mes-
sages to be exchanged between the different systems. The implementation of the
EARR must comply with those legal regulations and standards. Unfortunately,
several versions of the XMeld standard are available and must be supported by
the EARR service.

The process of validating an address and name of a single person against
the register of residents starts with an incoming XMeld message describing the
request to validate one resident’s data. Next, it is checked if the request can
be answered complying with the legal regulations like data protection. If this
is the case, access is granted and the responsible IT system is determined, i. e.
the register containing the requested data. For example, if the person is not liv-
ing in the German region Mecklenburg-Vorpommern, the request is forwarded
to the IT systems of the corresponding region. This is done through a so called
intermediary service. There are several IT systems in Mecklenburg-Vorpommern
are several IT systems, because the register of residents is organised peripher-
ally. The request is forwarded to the designated system and the system answers
with another XMeld message. This answer is passed back to the customer. Each
request is documented.

3 http://www.osci.de/xmeld132a/xmeld-132a.zip version 1.3.2a.

Evaluation of OrViA Framework for Model-Driven SOA Implementations 313

Following the idea of SOA, all described tasks are executed by a business
process execution engine invoking several WSDL4 based web services. As the
tasks are orchestrated in the shape of a BPEL [8] process, the entire process can
easily be reused as a service in more complex settings. For example, the EARR
service can be used to validate a list of persons and addresses instead of creating
a single request for each person address pair.

Before this case study was started, DVZ M-V already implemented the EARR
service manually. The implementation used the BPEL execution engine Mi-
crosoft BizTalk Server and the BPEL orchestration was created with Microsoft
Orchestration Designer. This previous experience allows us to compare the usage
of the OrViA framework against a manual approach.

In this paper, the application of the OrViA framework in the industrial use-
case EARR is described. We explain our research design in Sect. 2 and give a
short overview of the OrViA framework in Sect. 3. Sect. 4 describes in detail
how we applied the OrViA framework to the given use-case. An extensive dis-
cussion explaining advantages as well as disadvantages of the application of the
OrViA framework in context of model-driven SOA implementations is presented
in Sect. 5.

2 Research Design

Scientific rigor requires carefully designing and carrying out research [9]. While
designing our research according to the top-down approach described by Creswell
[9], we first locate our epistemological standpoint. In general, we have a post pos-
itivism standpoint, implying that we can generate knowledge through empirical
observation and measurement. However, we extend our standpoint beyond stan-
dard post positivism by taking pragmatic knowledge claims into account. We
are interested in a good solution for the given use-case, but we are aware that
having found a solution for a specific use-case does not mean our work can be
generalised.

Our epistemological standpoint allows us to freely select between different
research methods [9] and to apply a mixed methods strategy of inquiry. This
means, we can use quantitative as well as qualitative research methods based on
their usefulness to support our research.

Before we can select any research method, we must formulate our research
question and analyse which kind of data or insight we need. In general, we are
interested investigating if the OrViA framework as described by Kühne et al. [4,5]
can be successfully used as a guiding principle for model-driven SOA implemen-
tations. In order to prevent favouring the OrViA framework by relativising or
ignoring criticism, we follow critical rationalism by Popper [10] and turn our
research question around into the following hypothesis:

Hypothesis. It is impossible to successfully use the OrViA framework as a
guiding principle for model-driven SOA implementations.

4 See http://www.w3.org/TR/wsdl/

314 S. Stein et al.

To make the hypothesis operational, we define the application to be “success-
ful” if less budget is required, quality is improved, project length is shortened, or
a combination of those three factors. Based on that hypothesis, we can further
detail the research question and ask what is missing that it does not work, what
shortcomings exist, where is commercial tool support missing, which parts of the
OrViA framework are not integrated, and where is future research needed?

We are not interested in a theoretical discussion, but instead want to test
the OrViA framework in a real-world scenario. However, we are not aware of
practitioners using the OrViA framework as a guiding principle for model-driven
SOA implementations. Therefore, it is impossible to use research methods like
surveys or interviews to extract the experience gained by others. Instead, we first
have to create this experience on our own. We are not interested in experiences
for certain parts of the OrViA framework’s application, but instead how all the
different parts work together in a real-world setting. Therefore, we decided to
conduct a case study, because it allows us to gather multiple experiences. We
also investigated the possibility to conduct controlled experiments as described
by Wohlin [11], but we found that the scope is too broad for an experiment to
cover all aspects. Also, conducting several experiments each focusing on a small
part does not give us the overall insight we are seeking. Our decision to do a case
study is supported by all partners in our research project, because it allows them
to gather experience, which they can use for their own business. Generating this
individual know-how fosters the transfer of the research insights into industry,
strengthening the competiveness of the involved companies, and allowing fast
practical adoption of the developed technologies and methods.

3 Overview OrViA Framework

Transferring business processes to distributed execution environments involves
different actors and roles with different skills such as business analysts, IT archi-
tects, integration specialists, and software developers. The co-operation between
business-oriented and more technology-affine actors requires artefacts enabling
the negotiation and coordination of requirements, design decisions, and imple-
mentation results. The OrViA framework [4,5] is based on process models on
different levels of abstraction as basic communication mechanism. An outline is
given in Fig. 2. It provides a conceptual framework whose building blocks may
be represented by several appropriate methods and technologies.

Comparable to the four abstraction levels of Model Driven Architecture
(MDA) [2], the OrViA framework proposes four levels. The business require-
ments level provides a computation independent view on the integration sce-
nario. Below, the business process level comprises a platform independent design
of the integration solution, i. e. its content is rather conceptual. The orchestration
level covers the technical refinement of business process models. Finally, on the
implementation level the platform-specific orchestration models are bound to re-
sources such as E-Business services and are deployed on execution environments.
The intended execution environments are domain-specific and service-oriented,

Evaluation of OrViA Framework for Model-Driven SOA Implementations 315

business requirements
(unstructured, informal)

structured requirements analysis

business

business requirements
(structured, formal)

structured requirements analysis requirements patterns
(domain-specific)

transformationh t ti tt

process models
(e.g. EPC)

XOR

validation

orchestration patterns
(domain-specific)

technical
orchestration models

cooperative

orchestration models
(e.g. BPEL4WS)

p
e-business systems

(e.g. Microsoft BizTalk, Intershop Enfinity)

Fig. 2. The OrViA framework

i. e. services are first class entities. The services may be basic services provided
by domain-specific E-Business components, e. g. E-Government components, as
well as composed and orchestrated services relying on other services.

The modelling on each abstraction level is multi-perspective. This is due to the
cognitive complexity of the focused inter-organisational E-Business integration
scenarios. The process-oriented approach of the framework requires static views
such as organisational, functional, data, and resource views, interconnected by
a dynamic process view covering control-flow aspects. To enable added value
through model operations the modelling concepts, such as model elements and
model types, are formally defined in a well defined meta language.

In terms of a methodology, the OrViA framework proposes a top-down pro-
cedure that stepwise refines abstract models to more technology-oriented ones.
Business-oriented process models tend to be incomplete representations of pro-
cesses according to implementation relevant details. Exception handling for un-
expected events, such as special cases from a business point of view or technical
failures, is often omitted [12]. A pure migration transformation from a business-
oriented process notation to a more technology-oriented notation is therefore not
an adequate approach. Instead, the OrViA framework follows a pattern-based
approach, i. e. combinations of business concepts are identified and replaced by
appropriate technical exception-aware representations. Furthermore, the rela-
tionships between models of different abstraction levels are many-to-many rela-
tionships according to views, i. e. the refinements involve merging steps where
different views are combined.

Another usage of formal models by automated model operations is validation.
Besides the identification of structural and syntactical failures, the validation of

316 S. Stein et al.

process models on high and low levels of abstraction involves the checking of busi-
ness requirements according to dynamic aspects. The process models describing
conditional and parallel control flows are reduced to state-based representations
that are input to model checkers. This reduction may suffer from state explosion,
which makes a complete validation impossible. Nevertheless, a partial validation
of process models against relevant business rules induced by customers, legal reg-
ulations or organisational directives reduces the efforts required in late testing
phases.

The full potential of the OrViA framework of handling process-based inte-
gration scenarios is only gained if the building blocks work effectively together.
The structured requirement analysis provides the functional input, which is con-
sumed by validation and transformation. The validation checks models against
functional requirements before and after transformation steps. Furthermore, the
aspects of formal modelling and transformation improve the functional docu-
mentation of technical implementations, traceability of design decisions, and
reproducibility of results.

4 Case Study

4.1 Overview

According to our research question described in Sect. 2, it is our aim to eval-
uate if and how the OrViA framework can be used successfully as a guiding
principle for a model-driven SOA implementation. The case study implements
the electronic access to the register of residents service as described in Sect. 1.2.
This section describes the case study and is structured according to the three
main building blocks of the OrViA framework, namely: structured requirements
analysis, validation, and transformation (including deployment and execution).

4.2 Structured Requirements Analysis

The previous manual implementation of the EARR service was directly mod-
elled in BPEL by DVZ M-V. This modelling resulted in a very complex model,
because business details as well as technical details were mixed in one model.
This model was platform specific (PSM) not allowing exchanging the underlying
technology. The OrViA framework instead recommends to first do structured
requirements analysis on a business-oriented platform independent level (PIM)
and to derive the platform specific level through model transformation and step-
wise refinement. This allows separating business and technical details.

To elicit the requirements, we interviewed the domain experts of DVZ M-V
and studied the relevant laws and regulations. After, we created a first version
of the process model and reworked it together with the domain experts of DVZ
M-V in several workshops. We also interviewed the lead developer, who created
the previous implementation of EARR and we analysed his BPEL model. The
existing implementation gave us additional insights so that we could prevent

Evaluation of OrViA Framework for Model-Driven SOA Implementations 317

Request
Arrived

Answer sent

Request
(600)

Responsible
System

Answer (601)

SYS

Validate
Request

Access
granted

Invalid
Request

SYS

Identify
Responsible

System SYS

Create Answer

ZIR is
responsible

Intermediary
is responsible

SYS

Query ZIR

SYS

Forward
Request to

Intermediary

Request
(600)

Validation
Results

Request
(600)

Request
(600)

Request
(600)

Answer (601) Answer (601)

Answer (601)

Lookup
Service

Answer
Service

ZIR Service Intermediary
Service

F
O
S

Encryption

LMG
§3a

F
O
S

Encryption

LMG
§3a

T
S Encryption of Answer

LMG
§34a

F
T
S

Reasons to deny Request

LMG
§9

F
T
S

Reasons to deny Request

LMG
§9

Validation
Results

Request
Answered

Validation
Service

SYS

Log RequestAnswer (601)
Request

Documentati
on Service

Fig. 3. Business Process Model of EARR in EPC Notation

doing the same mistakes again like adding handling for different XMeld versions
directly to the process model.

To formally define the requirements, we used the off-the-shelf modelling soft-
ware ARIS SOA Architect5 by IDS Scheer AG. We followed the vendor’s SOA
methodology documented in [13]. The methodology formulates 10 steps starting
with a platform independent process model and ending with a platform specific
BPEL model. We used the EPC notation [14] to model the EARR process. The
resulting business process model is shown in Fig. 3. The model consists of events

5 http://www.aris.com/soa/

318 S. Stein et al.

(white colour), business functions (green colour), software services (blue colour),
input and output data (red colour), and legal annotations (yellow colour on a red
layer). The process flow is defined by the directed connections between events,
business functions, and operators (gray colour).

An important detail is the software services given in the EPC model. Each
software service is still independent of any implementation technology and does
not directly represent a WSDL web service. The modelling tool supports the
business analyst in selecting a matching web service [15].

We used the standard EPC notation and extended it to cover domain-specific
details, namely the links to the corresponding laws and regulations. This allows
navigating from the process model to the laws and regulations, which explain in
detail why and how a certain business activity must be performed. The resulting
process model is detailed enough to be transformed later to a platform specific
process model. It also documents all business (legal) requirements and it contains
enough details to be validated against business policies.

4.3 Validation

The main task of validation is to check if the modelled business process fulfils the
requirements stated in the analysis. The validation is done with model checkers
technologies. They check if a model satisfies a given temporal statement. The
software tool validating a model is called model checker. An overview of some of
these technologies can be found in [16]. When we tried to apply model checking
for the use-case EPC business process we faced the problem that current model
checking technologies are hardly useable by business analysts. One reason is the
complicated logical rules, which have to be defined textual in a temporal logic
like the Computation Tree Logic (CTL) [17]. Another reason is the abstract
type of models needed by model checkers. For instance, the model checker we
used (called SMV [18]) needs a finite state machine as a Kripke Structure [19]
as input.

To solve the first problem, we developed a graphical notation for CTL formu-
las. This notation extends the elements of EPCs with temporal operators and
is called Graphical Computation Tree Logic (G-CTL) [20]. To use G-CTL for
ARIS EPCs, we developed an extension for the ARIS Platform. This extension
allows modelling the requirements in conjunction with the modelled EPC. An
example G-CTL rule for the EARR process is shown in Fig. 4. This temporal rule
expressed in CTL is AG(E_Access_granted -> AF(F_Log_Request)) meaning
that on every (AG) process path beginning from the event Access granted the
function Log Request has to exist on all paths in the future (AF). In combina-
tion with the business process, this rule ensures the business requirement “Every
Access granted has to be logged” is satisfied. The result of the validation should
be TRUE if all temporal rules are satisfied. Otherwise the model checker gives
one counter example where a rule is not fulfilled.

To validate the use-case EPC business process, the models (EPC and G-
CTL) have to be translated in a format supported by the model checker. Both
ARIS models are exported as ARIS Markup Language (AML) file format. The

Evaluation of OrViA Framework for Model-Driven SOA Implementations 319

Fig. 4. An example graphical validation rule for the EARR process

translation has to handle each element of the EPC and G-CTL AML to receive
the Kripke Structure and the CTL formula. We performed this transformation
using the operator hierarchy concept [21]. We were able to successfully validate
the business process models created in the case study. However, we did not
validate any other artefacts produced like the BPEL model manually refined by
the user after transformation. This will be the task of future research activities.

4.4 Transformation and Execution

After the successful validation of the business process model, we generated the
executable BPEL model using the built-in model transformation of ARIS SOA
Architect [22, see]. This model transformation is based on identifying workflow
patterns [23] in the EPC and replacing them with corresponding BPEL elements.
A static validation is performed before the transformation to ensure the EPC
model can be transformed and to instruct the user how to model the EPC
correctly. The transformation ignores events and considers them as a business
documentation with no execution counterpart. Business objects given in the EPC
model are transformed to BPEL variables if the business objects are mapped to
XML Schema definitions. The transformation also provides merge functionality
so that manual changes done in the generated BPEL model can be preserved in
many cases.

It was not possible to directly deploy the generated BPEL model, but instead
we had to fix e. g. the variable definitions and add additional namespaces to the
BPEL header. Still, no significant reworks were needed. The BPEL process was
deployed on the Oracle SOA Suite6. We were not able to deploy the generated
model on Microsoft BizTalk, because BizTalk is not standard conformant. The
web services were not hosted on the Oracle server, because in reality they are
not hosted on the same machine either. The web services were deployed on the
Java servlet container Apache Tomcat7. We were not allowed to directly use
the web services provided by DVZ M-V, because of data protection reasons.
We therefore implemented the web services as well as the end-user portal8 on

6 http://www.oracle.com/technologies/soa/soa-suite.html
7 http://tomcat.apache.org/
8 See https://service.mv-regierung.de/web/emrauser/emra

320 S. Stein et al.

our own following the implementation done by DVZ M-V. The end-user only
interacts with the portal.

5 Discussion

In the previous section, we have outlined how we instantiated the OrViA frame-
work to do a model-driven SOA implementation for the given E-Government
use-case. We conducted this case study to check if the hypothesis formulated
in Sect. 2 holds. The hypothesis postulates that the OrViA framework cannot
be used as a guiding principle to do a model-driven SOA implementation. After
conducting the case-study, we slightly tend to reject the hypothesis under the
conditions discussed in this section.

The case study was done with a use-case from the E-Government domain.
Therefore, we can only reject the hypothesis for the E-Government domain if
the selected use-case is representative for this domain. We are confident that
the use-case is representative, because it was selected by a well-established use-
case partner working in this domain. The use-case partner tried in the past
to implement the same use-case, but in contrast to our case study the use-case
partner tried a manual approach without using structured requirements analysis.
The use-case is directly implementing a public law and it involves different actors
like the register of residents, gateways to other German regions, and an end-user
portal. As the use-case implements the business process as it is defined by the
law, the use-case is not too simplistic but instead a realistic one. Even though
we have just done one case study in the E-Government domain, we covered the
most important technologies, because the used technologies were selected by the
use-case partner and not by us.

As we have done the case study only for a use-case in the E-Government do-
main, we have to do additional use-cases in other domains to see if the OrViA
framework can be applied there as well. We have already completed a similar
study in the automotive industry, but we have not analysed the results yet. We
have prepared other case-studies in the E-Commerce domain as well as in indus-
trial engineering. We will also do an additional case study in the E-Government
domain, but with the main difference that the implementation is not an exe-
cutable process model but ordinary software instead. As those studies are not
finished yet, their results are not reported and discussed in this paper.

One important building block of the OrViA framework is structured require-
ments analysis. In order to be able to reject the hypothesis, we must show the
usefulness and applicability in case of the use-case. We used the EPC modelling
notation as a base and modelled the process defined by the law as a business pro-
cess. To better represent the requirements, the standard EPC notation was ex-
tended to cover domain-specific elements like clauses from the law. This approach
of combining the advantages of a standard notation with a domain-specific lan-
guage proved to be very successful. Using a standard notation has the big advan-
tage that it is supported by commercial tools, which also provide the necessary
transformations to follow a model-driven SOA implementation approach. On

Evaluation of OrViA Framework for Model-Driven SOA Implementations 321

the other hand, extending such a standard notation by domain-specific elements
allows to better capture the domain and to adapt the used language to the lan-
guage used by the domain experts. This increases the comprehensibility of the
models for the domain experts and results in a higher acceptance by them. It
was possible to model all aspects important for the SOA implementation and to
later derive the implementation through automated model transformation.

We were able to identify additional benefits of doing structured requirements
analysis. For example, as the SOA implementation is directly derived from the
business process model, the use-case partner can use the business process model
for proving the compliance of the implementation to the law. This is possi-
ble, because structured requirements specification and implementation are not
mixed in a single BPEL model, but instead the implementation is derived out of
the structured requirements specification through an automated transformation.
Therefore, it is enough to check the structured requirements specification during
an audit in contrast to also checking the actual implementation.

Another important element of the OrViA framework is the transformation
used to derive the IT implementation out of the structured requirements model.
We used the transformation available in ARIS SOA Architect for this purpose.
We also tend to reject the hypothesis in case of the transformation, but there are
a few more concerns to be discussed. We were able to use the transformation to
create the BPEL model. The structure of the business process model as well as
the selected software services were correctly transformed into the corresponding
BPEL constructs. We can confirm that this helps to speed up the implemen-
tation step, because creating all those constructs manually requires much more
effort and is an error-prone task. On the other hand, the current transformation
has some shortcomings, which result from bugs in the transformation as well
as conceptual problems. For example, transforming business object descriptions
given in the business process model into data definitions (given as XML schema
definitions) is not working as expected. However, this seems to be a bug in the
transformation used and not related to any fundamental conceptual problems
in the approach. We were able to write small scripts fixing the wrongly cre-
ated constructs and we expect those bugs to be fixed in a future release of the
transformation software.

A more pressing issue is related to the transformation of conditions in the
control flow of the business process model. As BPEL is an executable language,
the conditions for loops and branches must be defined with a strict syntax like
XPath expressions. However, a business process model usually does not contain
such formal expressions nor can we expect that a business analyst is able or
willing to create such expressions. This would be wrong from a conceptual view
point, as well. XPath expressions are a concrete technology and should there-
fore not be added to a platform independent model like the business process
model. We therefore must investigate, how such conditions can be expressed in a
technology independent way. A possible solution might be adding business rules
to the EPC, but this needs further investigations. Besides those problems, we

322 S. Stein et al.

were able to deploy and execute the generated BPEL models without having to
change a lot.

The third core element of the OrViA framework is validation. According to
the OrViA framework, validation should be applied to different artefacts like the
business process model, the transformation rules, and the generated executable
process model. We have not validated the transformation rules, because they are
packaged in the transformation software and are therefore not accessible to us.
We do not consider this to be a shortcoming of our case study, because we have
to rely on the software used as a real-world project would have to do. As we have
discussed in the previous section, we have validated the business process model.
Based on the law, we created a set of rules, which must be enforced like that each
access to the register of residents must be logged. Afterwards, we checked the
created business process model to see if it complies with the rules using model
checking technologies. From an algorithmic and technological standpoint we can
confirm that validation works. However, a more interesting question is whether
the approach is feasible in real-world projects. Our first concern was to check if
business analysts are able to formulate the rules. We did a modelling workshop
together with another use-case partner, explained the graphical rule modelling
notation, and did some exercises. We learnt from this workshop that someone
able to formulate a correct business process model is able to formulate the rules
using our graphical rule notation.

Our second concern was about how the rules can be integrated with the pro-
cess models. For example, it must be possible to reference a process model ele-
ment like an event or a business function in the rules. The current solution is not
satisfying, because the dependency between rule and process model is too tight.
If a rule specifies that a business function must occur after a certain event, the
model checker will be only able to validate this rule if the business function and
the event in the process model are named exactly as in the rule. If business ana-
lysts are allowed to freely name model elements while creating a business process
model, this is very unlikely to happen. Therefore, the vocabulary allowed for the
model elements must be defined and naming conventions must be enforced. At
the current point, we see this as a major problem and we will investigate how
we can relax this constrain in the future.

The OrViA framework suggests validating the generated executable process
model in order to ensure that manual changes have not changed the semantics
and that the executable model is still implementing all business requirements. We
have not done this validation step, because the approach would have been similar
to validating the business process model and the same limitations would apply.
In summary, we can reject the hypothesis in case of validation, even though we
found this to be the most problematic part.

We do not consider it to be a threat to the validity of our study that we
only used one specific set of tools (mainly ARIS SOA Architect, Oracle BPEL
Process Server, and Apache Tomcat), because our focus is on evaluating if the
OrViA framework can be applied for such an implementation and not if it works
with any kind of tool combination. However, it will be interesting to see if such

Evaluation of OrViA Framework for Model-Driven SOA Implementations 323

a tool chain can also be built using Open Source software. We will investigate
that in a future case study.

In general, we found that integrating the different tools to form a complete
tool chain is still challenging, even though there are public standards like BPEL
and WSDL. Making the top-down approach work is possible, but implementing
a roundtrip scenario is almost impossible. For example, if the BPEL model is
changed in ARIS SOA Architect as well as in Oracle JDeveloper, it is hard to
merge those changes. The OrViA framework only provides a top-down path with
no backward links, because this makes the OrViA framework simple and easy to
understand. On the other hand, it might be a too simplistic view for real-world
projects, which is another point why we only slightly reject the hypothesis.

Besides the problems and limitations discussed above, there are also some clear
advantages of applying the OrViA framework. The OrViA framework clearly di-
vides the necessary tasks into packages. Each package requires specific skills
like having profound business knowledge for structured requirements analysis or
having software engineering skills for deployment and execution of the generated
executable process model. This clear separation helps to reduce the overall com-
plexity, because people only need a part of the overall required skill set to handle
the part they are assigned to. The complexity is further reduced by step-wise
refinement. Each step only adds few aspects to the models and is therefore easier
to handle. For example, during business process modelling, software services are
discovered and selected but providing the correct binding information is done at
a later step.

The OrViA framework supports in providing different perspectives on the
overall solution, which is another advantage and success factor for real-world
projects. Another advantage lies in the fact that the OrViA framework is ag-
nostic of the software engineering methodology used. It does not matter if the
project is done following the Waterfall model or using an agile approach. This
is an important fact, because companies usually have their own methodologies,
which often cannot and should not be replaced. Therefore, being independent of
concrete methodologies supports the adoption of the OrViA framework. On the
other hand, the OrViA framework is conceptual and therefore it cannot be used
out of the box. Companies wishing to use the OrViA framework have to conduct
a pilot project to see how the framework must be tailored for their needs.

In summary, we can reject the hypothesis that the OrViA framework
cannot be used successfully as a guiding principle for model-driven SOA im-
plementations.

6 Summary

In this paper, we presented a case study done in the E-Government domain
to evaluate the applicability of the OrViA framework as a guiding principle for
model-driven SOA implementations. Besides introducing the real-world use-case,
we have discussed in detail our research design. Following the idea of rationalism

324 S. Stein et al.

criticism, we formulated a negative hypothesis and tried to prove that the OrViA
framework is not applicable.

Our research results show we have to slightly reject this hypothesis if the con-
ditions discussed in the paper are taken into account. For example, we can only
say that the OrViA framework is applicable in the E-Government domain. Cur-
rently, there is a lack of integration between validation and structured require-
ments analysis and the transformation of condition expressions is not solved.
Based on those findings, we formulate several points for further investigations.
Still, we are confident that the OrViA framework is very useful to bring model
transformation technologies to the business.

References

1. Smith, H., Fingar, P.: Business Process Management: The Third Wave, 1st edn.
Meghan-Kiffer Press, Tampa (2003)

2. Miller, J., Mukerji, J.: MDA guide. Technical Report omg/2003-06-01, Object Man-
agement Group (OMG) Version 1.0.1 (June 2003)

3. McGovern, J., Sims, O., Jain, A., Little, M.: Enterprise Service Oriented Architec-
tures. Springer, Dordrecht (2006)

4. Kühne, S., Thränert, M., Speck, A.: Towards a methodology for orchestration and
validation of cooperative e-business components. In: Rutherford, M.J. (ed.) 7th
GPCE Young Researcher Workshop, pp. 29–34 (2005)

5. Fähnrich, K.P., Kühne, S., Speck, A., Wagner, J.(eds.): Integration betrieblicher
Informationssysteme: Problemanalysen und Lösungsansätze des Model-Driven In-
tegration Engineering. Leipziger Beiträge zur Informatik, vol. IV. Eigenverlag
Leipziger Informatik-Verbund (LIV), Leipzig, Germany (2006)

6. Lau, E.: E-government: Analysis framework and methodology. Puma(2001)16/ann/
rev1, OECD (2001),
http://www.olis.oecd.org/olis/2001doc.nsf/LinkTo/
NT00000936/$FILE/JT00118445.PDF

7. Algermissen, L., Delfmann, P., Niehaves, B.: Experiences in process-oriented reor-
ganisation through reference modelling in public administrations - the case study
regio@komm. In: 13th European Conference on Information Systems, Information
Systems in a Rapidly Changing Economy (ECIS) (2005)

8. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business Pro-
cess Execution Language for Web Services (BPEL4WS) 1.1. Technical report, OA-
SIS (May 2003), http://www-128.ibm.com/developerworks/library/ws-bpel/

9. Creswell, J.W.: Research design: Qualitative, quantitative, and mixed method ap-
proaches, 2nd edn. Sage Publications, Inc, Thousand Oaks (2002)

10. Popper, K.: Logik der Forschung, 11th edn. Mohr Siebeck, Tübingen (1934)
11. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wessén, A.: Experi-

mentation in software engineering: an introduction. International Series in Software
Engineering. Kluwer Academic Publishers, Norwell (2000)

12. Dehnert, J., van der Aalst, W.M.P.: Bridging Gap between Business Models and
Workflow Specifications. International Journal of Cooperative Information Sys-
tems 13(3), 289–332 (2004)

http://www-128.ibm.com/developerworks/library/ws-bpel/

Evaluation of OrViA Framework for Model-Driven SOA Implementations 325

13. Stein, S., Ivanov, K.: Vorgehensmodell zur Entwicklung von Geschäftsservices. In:
Fähnrich, K.P., Thränert, M. (eds.) Integration Engineering – Motivation, Begriffe,
Methoden und Anwendungsfälle. Leipziger Beiträge zur Informatik VI. Eigenverlag
Leipziger Informatik-Verbund (LIV), Leipzig, Germany (2007)

14. Scheer, A.W., Thomas, O., Adam, O.: Process Modelling Using Event-Driven Pro-
cess Chains. In: Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M. (eds.)
Process-Aware Information Systems, pp. 119–146. Wiley, Hoboken (2005)

15. Stein, S., Barchewitz, K., El Kharbili, M.: Enabling Business Experts to Discover
Web Services for Business Process Automation. In: Pautasso, C., Gschwind, T.
(eds.) 2nd Workshop on Emerging Web Services Technology, Halle, Germany, pp.
19–35 (November 2007)

16. Pfeiffer, J.H., Rossak, W.R., Speck, A.: Applying model checking to workflow verifi-
cation. In: ECBS 2004: Proceedings of the 11th IEEE International Conference and
Workshop on the Engineering of Computer-Based Systems (ECBS 2004), Wash-
ington, DC, USA, pp. 144–151. IEEE Computer Society, Los Alamitos (2004)

17. Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear-time and
branching-time logics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.)
Linear Time, Branching Time and Partial Order in Logics and Models for Concur-
rency. LNCS, vol. 354, pp. 428–437. Springer, Heidelberg (1989)

18. McMillan, K.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht
(1993)

19. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking, 3rd edn. The MIT
Press, Cambridge (2001)

20. Feja, S., Fötsch, D., Stein, S.: Grafische Validierungsregeln am Beispiel von EPKs.
In: Software Engineering 2008, Fachtagung des GI-Fachbereichs Softwaretechnik,
München,GI, February 22. LNI (2008) (to appear)

21. Fötsch, D., Speck, A., Hänsgen, P.: The Operator Hierarchy Concept for XML
Document Transformation Technologies. In: 3. Berliner XML-Tage 2005 (BXML
2005), Berlin, Germany, pp. 59–70 (2005)

22. Stein, S., Ivanov, K.: EPK nach BPEL Transformation als Vor aussetzung für prak-
tische Um setzung einer SOA. In: Bleek, W.G., Raasch, J., Züllighoven, H. (eds.)
Software Engineering 2007. Gesellschaft für Informatik (GI), Hamburg, Germany,
March 2007. Lecture Notes in Informatics (LNI), vol. 105, pp. 75–80 (2007)

23. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

Efficient Compliance Checking Using BPMN-Q

and Temporal Logic

Ahmed Awad, Gero Decker, and Mathias Weske

Business Process Technology Group
Hasso-Plattner-Institute, University of Potsdam, Germany
{ahmed.awad,gero.decker,weske}@hpi.uni-potsdam.de

Abstract. Compliance rules describe regulations, policies and quality
constraints business processes must adhere to. Given the large number of
rules and their frequency of change, manual compliance checking can be-
come a time-consuming task. Automated compliance checking of process
activities and their ordering is an alternative whenever business pro-
cesses and compliance rules are described in a formal way. This paper
introduces an approach for automated compliance checking. Compliance
rules are translated into temporal logic formulae that serve as input to
model checkers which in turn verify whether a process model satisfies the
requested compliance rule. To address the problem of state-space explo-
sion we employ a set of reduction rules. The approach is prototypically
realized and evaluated.

1 Introduction

Business processes and their explicit representation in business process models
are important assets to understand how companies work. To be in line with
their business goals, but also with legal regulations, companies need to make
sure that their operations satisfy a set of policies and rules, i.e., they need to
design compliance rules and implement compliance checking mechanisms.

Compliance rules originate from different sources and keep changing over time.
Also, these rules address different aspects of business processes, for example a
certain order of execution between activities is required. Other rules force the
presence of activities, e.g. reporting financial transactions to an external en-
tity. The obligation of adhering to rules ranges from gaining competitive advan-
tage to employing strategies that protect businesses from failure, e.g. Basel II
(http://www.Basel-II.info) in the field of risk assessment in the banking sector;
other regulations come as quality standards like ISO 9000. Regulations might
also come with legal regulations like the Sarbanes-Oxley Act of 2002 [1]. Viola-
tion could lead to penalties, scandals and loss of business reputation.

The changing nature of rules (e.g. due to changes in policies) calls for checking
business processes each time a rule is added or changed. As a result, organizations
need to hire compliance experts auditing their process models. In the case of
manual auditing, a considerable amount of time is consumed in identifying the

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 326–341, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 327

Obtain
Customer

Info

Identify
Customer

Info

Retrieve
Full

Customer
Dtl

Analyze
Customer
Relation

Select
Deposit
Service

Submit
Deposit

Prepare
Prop. Doc

Propose
Account
Opening

Schedule
Status
Review

Open Acc
Status
Review

Verify
Customer

ID

Open
Account

Validate
Acc Info

Close Acc

Apply Acc
Policy

Activate
Acc

Record
Acc
Info

Evaluate
Deposit

Val

Do
Deposit

Report
Large

Deposit

Notify
Customer

Non-VIP

VIP

Record
Customer

Info

Receive
customer
request

Fig. 1. Banking business process model adapted from [18]

set of process models affected by each rule before revising them for compliance;
something that may lead to failure to meet the deadline for declaring compliance.

The contribution of this paper is twofold. First, it presents an automated
approach for checking compliance of business process models regarding ordering
constraints for activities. Automation is achieved by expressing rules as queries
in a visual language we developed earlier [2]. These queries determine the set of
process models that are candidates for further compliance checking. We assume
that candidate process models contain all activities mentioned in the rule. If this
is not the case i.e. the process model contains only a subset of the activities in the
rule, we simply know that the process model is no compliant. The hard part is to
be sure that candidate process models do satisfy the rule. This activity is already
very time consuming in manual auditing. Efficiently determining whether process
models comply to the rules using model checking is the second contribution. Our
approach is not limited to processes defined in BPMN, it can be applied to any
graph based process definition language as described below.

The remainder of this paper is structured as follows. In Section 2 we discuss a
scenario in the banking business and derive a set of rules. Section 3 discusses how
we adapted BPMN-Q to express compliance rules as queries. Details of applying
model checking to formally verify compliance is given in Section 4. Related work
is reported in Section 5, before we conclude the paper in Section 6.

2 Compliance Example

In this section, we introduce a business process from the banking sector. It will
serve as example throughout the paper. In the financial sector, banks are obliged
to conform to several compliance rules. Consider the process model in Figure 1
(expressed in BPMN notation) for opening a bank account.

328 A. Awad, G. Decker, and M. Weske

The process starts with ”Receive customer request” to open an account. Cus-
tomer information is obtained from the request and identified. In case of a non-
VIP customer, her detailed information is retrieved and its relation to the bank
is analyzed. If the customer selects to open a deposit account, an extra deposit
form must be submitted and the customer’s information is recorded. With all
previous steps completed, a proposal document is prepared by a bank’s employee
for further analysis. A proposal’s status review is scheduled along with the pro-
posal of opening an account. Later on, the customer’s identity is verified and the
status of the account is reviewed. An account is opened at that point followed by
a validation of account information. If validation fails the account is closed. With
valid account information, an account policy is applied before the account is ac-
tivated. Finally the account information is recorded and the account is ready for
transactions. Large deposit transactions (”Evaluate Deposit Val”) are reported
to a central bank to track the possibility of money laundering. At the end of the
process the customer is notified.

The process has to comply with several rules. Among them are rules to prevent
money laundering. The rules demand that an account is not opened until certain
checks have been completed. We selected the following two rules to guide the
discussion in this paper.

– Rule 1: Before opening an account, customer information must be obtained
and verified. The rule delays the activity ”open account” until information
about the customer has been verified e.g. checking absence from black lists
containing undesirable customers. Violation of this rule may lead to opening
an account for individuals that are known to be on the black list of e.g. the
central bank.

– Rule 2: Whenever a customer requests to open a deposit account, customer
information must be recorded before opening the account. Information must
be recorded to ease future tracking of their transactions and identifying them
in case they run large deposit transactions.

3 Declarative Representation of Compliance Rules

As mentioned in Section 1, the first contribution of this paper is the automated
discovery of process models that are relevant to a given rule (see Definition 3).
To determine these relevant process models, we express rules concerned with
ordering of activities as queries in BPMN-Q. Before we go further with the details
of using BPMN-Q to express compliance rules, we briefly introduce BPMN-Q.
Next, we discuss how to adapt it for compliance checking.

BPMN-Q [2] is a visual language based on BPMN. It is used to query business
process models by matching a process graph to a query graph. Figure 2 sketches
an overview of the steps of processing a query. In addition to the sequence flow
edges in BPMN, BPMN-Q introduces the concept of path (see edge in Figure 3
(b)). When matching a process graph (like the one in Figure 3 (a)) to the query
in (b), the result of the path edge is the sub-graph of the matching process in
which the two nodes along with nodes in between are contained (Figure 3 (c)).

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 329

BPMN-Q
query

Process Model
Repository

Process Model P
Relevant Process

Models Filter
Query Processor Process Model P’

Fig. 2. Overview of query processing in BPMN-Q

B D//

(a) A process model

A B C D E

(b) a query with path element connecting nodes B, D

B C D

(c) a sub-graph from process in (a) matching the query in (b)

Fig. 3. Example of a BPMN-Q query

We now define process graphs, where the set of nodes N can be either ac-
tivities, events or gateways. Set F represents the sequence flow edges that can
connect nodes. The definition is adapted from [4].

Definition 1. A process graph is a tuple PG= (N , A, E, G , F) where

– N is a finite set of nodes that is partitioned into the set of activities A, the
set of events E, and the set of gateways G

– The set of events E can be further partitioned into:
• Start events Es i.e. nodes with no incoming edges.
• Intermediate events E i.
• End events Ee i.e. nodes with no outgoing edges.

– F ⊆ (N \ Ee) × (N \ Es) is the sequence flow relation between nodes.

BPMN-Q provides more types of edges to connect nodes. It is possible to express
in the query what we call paths as discussed earlier.

Definition 2. A query graph is a tuple QG= (NQ, AQ, EQ,GQ, S, PA) where

– NQ is a finite set of nodes that is partitioned into the set of activities AQ,
the set of events EQ, and the set of gateways GQ

– S ⊆ NQ×NQ is the set of sequence flow edges between nodes.
– PA ⊆ NQ×NQ is the set of path edges between nodes.

A process graph is relevant to a query graph only if the set of activity nodes in
a process graph is a superset of the activity nodes in a query graph.

Definition 3. A process graph PG= (N , A, E, G , F) is relevant to query graph
QG= (NQ, AQ, EQ,GQ, S, PA) iff A ⊇ AQ

330 A. Awad, G. Decker, and M. Weske

To address the execution ordering between activities , a process graph is divided
into a set of execution paths. An execution path is a sequence of nodes starting
from one of the process start node(s) and ending at one of its end node(s).

Definition 4. An execution path exp is a sequence of nodes (n0, . . . , nk) where
n0, . . . , nk ∈ N , n0 ∈ Es and nk ∈ Ee. EXP is the set of all execution paths in
a given process graph.

We can determine the execution order between two nodes a, b in a process
graph with respect to an execution path exp by finding the precedence between
the first occurrence of node a and occurrence of node b. We emphasize on the
first occurrence of node a because a might appear more than once in case the
execution path includes loops. We need to be sure that a executed at least once
before the execution of b.

Definition 5. An execution ordering relation between nodes on an execution
path exp is defined as <exp = {(n′, n′′) ∈ N×N : n′ ∈ exp∧n′′ ∈ exp∧∃i, j(n′ =
ni ∧n′′ = nj ∧ i <j ∧�j′(n′′ = nj′ ∧ j′ <i))}, where n ∈ exp means that the node
n resides on the execution path exp.

The evaluation of path edge as shown in Figure 3 conforms to the following
definition.

Definition 6. A function subgraph (a, b, pi):= PSG’(N’,E’), where pi is a pro-
cess graph and a, b ∈ Ni , constructs the process sub-graph of pi where:

– N’ = {x : ∀ expi ∈ EXPi (a ∈ expi ∧ b ∈ expi ∧ x ∈ expi ∧ (x = a ∨ x
=b ∨ (a <expi x ∧ x <expi b))) }

– ∀ x,y ∈ N’ ((x,y) ∈ F → (x,y) ∈ E’)

A relevant process graph to a query graph is said to match it if it satisfies all
sequence flow and path edges as in Definition 7.

Definition 7. A process graph PG= (N , A, E, G , F) matches a query graph
QG= (NQ, AQ, EQ,GQ, S, PA) iff:

– NQ ⊆ N .
– S ⊆ F .
– ∀ (n, m) ∈ PA (subgraph(n,m,p) �= ∅).

To express rules as queries, we add an activity node in the query for each ac-
tivity mentioned in the rule. To express the ordering relationship between two
activities, a path element connects a source node in the query to a destination
node. Figure 4 shows how the rules from Section 2 can be visually represented.

If BPMN-Q does not find a match i.e. it fails to find an execution path from
Record Customer Info to Open Account then we are sure that the answer to rule
2 is “NO”. On the other hand if the matching succeeds and a path is found,
we cannot be sure that this execution path is activated in all possible execution
scenarios. That is because the path element does not consider the semantics of

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 331

Obtain
Customer Info

Verify
Customer ID

Open
Account

//

//

Rule 1

Submit
Deposit

Record
Customer Info

Open
Account

// //

Rule 2

Fig. 4. Queries capturing rules

control nodes in execution paths. We record this as a limitation that we will
resolve in this paper.

Another limitation is the ability to express the direction of the execution
dependency between activities. For instance, determining the order of execution
between two activities A and B in Figure 5 by finding path from A to B, are we
interested in being sure that every execution of activity A will lead to execution
of Activity B, or on the other hand each time activity B is executed it must have
been preceded by an execution of activity A. The two situations are different. In
the first one we state a constraint over the future states of a process execution
while in the second one we state this constraint over its past execution states.
From this simple process fragment, we can see that activity B is preceded by
activity A but activity A does not lead to activity B.

The two concepts of precedes and leads to are not distinguishable in queries.
To overcome these limitations we decided to:

– Extend BPMN-Q with precedes and leads to qualifiers to solve the second
limitation.

– Use Model checking as a formal approach to verify constraints against process
sub-graphs to solve the first limitation.

To visually differentiate between the precedes and leads to semantics we simply
added them under the arc representing the path operator like �precedes� and
�leads to� respectively in a way similar to the stereotypical extension in UML.
Now queries from Figure 4 will look as in Figure 6. The formalism behind these
two concepts is given within the context of this section along with necessary
supporting definitions. To say that node A in a process graph leads to (see
Definition 8) node B, we just need to be sure that every execution path going
through A also goes through B. On the other hand node A precedes (Definition 9)
node B only if all execution paths gone through B have gone through node A
before.

A

B

C

D

Fig. 5. A fragment of a process model to show difference between leads to and precedes
concepts. A precedes B, but A does not lead to B.

332 A. Awad, G. Decker, and M. Weske

Obtain
Customer Info

Verify
Customer ID

Open
Account

//

//

Rule 1

Submit
Deposit

Record
Customer Info

Open
Account

// //

Rule 2

<<leads to>>

<<leads to>> <<precedes>><<leads to>>

Fig. 6. Queries refined

Definition 8. Node m leads to node n iff ∀exp ∈ EXP(m ∈ exp ⇒ n ∈ exp ∧
m <exp n)

Definition 9. Node m precedes node n iff ∀exp ∈ EXP(n ∈ exp ⇒ m ∈ exp ∧
m <exp n)

We can read queries as follows:

– Rule 1: The execution of ”Obtain Customer Info” and ”verify customer ID”
always leads to execution of ”Open Account” i.e. leads to (Obtain Customer
Info, Open Account) and leads to (Verify Customer ID, Open Account).

– Rule 2: The execution of submit deposit leads to recording customer info,
which must precede opening an account i.e. leads to (Submit Deposit, Record
Customer Info) and precedes (Record Customer Info, Open Account).

The effects of these extensions are more than just a visual differentiation between
the leads to and precedes concepts. One further effect is the temporal expression
generated from each rule, shown in the next section. Another effect is on the
query itself. In case of precedes paths we add a start event to the query graph
(in case the query does not already have one) and a path operator between the
start event and the destination of the precedes operator. This path is added to
allow the query to match all possible paths from the beginning of the process
to the destination activity of the precedes operator in order to give the model
checker the possibility to find violations (if any).

4 Efficient Analysis Using Temporal Logic

This section discusses how compliance checking on BPMN process models can
be carried out. The compliance rules are formulated as BPMN-Q queries. Our
approach can be divided into the following steps, which are also illustrated in
Figure 7.

1. Retrieval of BPMN sub-graphs. A query processor takes a BPMN-Q
query as input and retrieves a number of BPMN sub-graphs from a BPMN
process model repository. Only those process models are considered that
structurally match the BPMN-Q query.

2. Graph reduction. The sub-graphs are reduced, mainly removing activities
and gateways that are not relevant to the query.

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 333

3. Petri net generation. The reduced sub-graphs are translated into Petri
nets.

4. State space generation. The Petri nets are checked for boundedness and
the reachability graph is calculated.

5. Generation of temporal logic formulae. The BPMN-Q query is trans-
lated into temporal logic formulae.

6. Model checking. The finite state machines and the temporal logic formulae
are fed into a model checker. The model checker verifies whether the temporal
logic formulae are respected by the given state machines. As a result, it is
detected which process models comply to the initial BPMN-Q queries.

BPMN process
model

BPMN-Q
query

Query
processor

LTL formulae
generator

BPMN
 sub-graph

Reduced
 sub-graph

Graph
reducer

Petri net
generator Petri net Petri net

analyzer
Finite state
machine

Temporal
logic

formulae Com-
pliance

checking
result

Model
checker

Fig. 7. Compliance checking approach

Retrieval of BPMN Sub-graphs
The major role of BPMN-Q is to select the set of process models which are
relevant for the query. As a first step, BPMN-Q selects all process models in
each of which the set of activity nodes is a superset for the activities in the
query. With each of these processes, the ordering between activities, expressed
in the query as sequence flows and/or paths, are tested. If the process graph fails
to satisfy any of these, it is dropped from the answer set. For more details about
query processing of BPMN-Q, please refer to [2].

The result of queries (rules) 1 and 2 in Figure 6 against the process model
in Figure 1 is shown in Figure 8 where all nodes between ”Obtain Customer
Info” and ”Open Account” are included in the result. Since the activity ”Verify
Customer ID” already resides on the path from ”Obtain Customer Info” to
”Open Account” , the evaluation of path from ”Verify Customer ID” to ”Open
Account” will not introduce new nodes or edges to the result.

We can notice in the result of query 2 (as shown in Figure 9) that nodes
preceding the activities ”Submit Deposit” and ”Record Customer Info” were

Obtain
Customer

Info

Retrieve
Full

Customer
Dtl

Analyze
Customer
Relation

Prepare
Prop. Doc

Propose
Account
Opening

Schedule
Status
Review

Open Acc
Status
Review

Verify
Customer

ID

Open
Account

Non-VIP

VIP

Fig. 8. Process graph matching rule 1

334 A. Awad, G. Decker, and M. Weske

Obtain
Customer

Info

Identify
Customer

Info

Retrieve
Full

Customer
Dtl

Analyze
Customer
Relation

Select
Deposit
Service

Submit
Deposit

Prepare
Prop. Doc

Propose
Account
Opening

Schedule
Status
Review

Open Acc
Status
Review

Verify
Customer

ID

Open
Account

Non-VIP

VIP

Record
Customer

Info

Receive
customer
request

Fig. 9. Process graph matching rule 2

also included. This is due to the implicit inclusion of a start node with a path
to ”Open Account”. This inclusion occurred because of the precedes between
”Record Customer Info” and ”Open Account” as discussed in Section 3.

Graph Reduction
Reduction rules have been successfully used either as a stand alone approach
[23,24], or as an engineering approach used to reduce the complexity of the
process models [27,19] to verify correctness of process models. We adopt the
reduction approach to reduce the state space for model checking in a way to
work around the state space explosion [3]. Unlike the aforementioned approaches
which focused on simplifying the underlying control graph, our approach respects
and depends on the set of activities included in the rule to be verified. So, the
reduction result differs depending on the rule to be verified.

We have already discussed the difference between precedes and leads to depen-
dencies. As a result, the reduction rules applied must respect these dependencies.
This is especially important when considering decision points (XOR/OR-splits)
and merging behavior (XOR/OR-joins).

– R1: Reduction of Activities, and intermediate events: all activities that are
not of interest to the compliance rule (query) are removed.

– R2: Reduction of Structured Blocks. A block of split gateway that is di-
rectly connected to a join gateway of the same type and both have no other
connections is replaced with a sequence flow edge.

– R3: Merging of similar gateways. if two splits or two joins of the same type
follow each other, for example an XOR-split A is followed by XOR-split B
and B has no other incoming edges, B is removed and the sequence flow edge
between A and B. A inherits all outgoing sequence flow edges of B.

– R4: Reduction of structured loops. Loops having an XOR/OR-join node as
an input and an XOR/OR-split as an output with backward edge from split
node to join node are reduced by removing the backward edge.

– R5: Reduction of Single activity parallel blocks. Whenever an activity that
is of interest to the compliance rule (query) lies in parallel block, after the
reduction of other activities that are parallel to it, parallel block is removed
and the activity is retained connected with nodes before and after the block.
if the parallel block contains in only one of its branches activities of interest

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 335

that are somehow in a nested structure, the direct edges from the AND-Split
to the AND-join are removed.

– R6: Reduction of Single output AND-Split and single input join nodes. Due
to the nature of pattern matching based query processing of BPMN-Q (see [2]
section 6), and to application of other reduction rules, a situation where
an AND-Split with single outgoing edge or a join gateway that is either
preceded or followed by an Activity of interest to the query may occur. The
rule replaces the node with a single sequence flow between the source of its
incoming sequence flow and the destination of its outgoing sequence flow.

– R7: Reduction of start events. Depending on whether the query contains
start events (either explicitly by the user or implicitly added as described
in 3, we reduce start events in case two or more start events are the input
for an AND-join. We remove the set of start events along with sequence flow
edges to the AND-join and the AND-join itself and introduce a single start
event and a sequence flow edge from that event to the destination of the
outgoing sequence flow edge of the AND-join.

– R8: Reduction of single activity selection block. The application of this rule
depends on the type of path operator the activity is involved in. The reduc-
tion rule is applicable only If this activity is involved in only leads to paths
as a source, otherwise we cannot apply the rule.

– R9: Reduction of BPMN-specific activities. This includes the MI activity, loop
activity and ad-hoc activities. For MI and ad-hoc activities we assume that
there is only one token produced from the activity after all running instances
complete. In case of Loop activities we follow the mapping shown in [4].

Rules from R1 to R4 are adapted from previous work using reduction rules
to verify correctness [27,19,23]. Unlike other reduction approaches, the reduced
graph always contains the set of activities mentioned in the query graph.

Applying reduction rules to the process graph of Figure 8 will result in reduced
graph shown in Figure 10. We elaborate more details on applying reduction rules
to the result of query 2 shown in Figure 9. R1 is applied to remove all activities
and intermediate events that are not of interest to the compliance rule. The
result is shown in Figure 11 (a). Applying rules R2, R3 to the graph resulting
from (a) yields the reduced graph in (b). Applying R2 again removes the parallel
block immediately before the ”Open Account” activity. A special case of R5 (as
discussed earlier) is applied where the direct edges from the first AND-Split
to the AND-join are removed resulting in graph (c). A final application of R6
produces graph in (d).

Generation of Temporal Logic Formulae
Linear Temporal Logic allows expressing formulae about the future of systems.
In addition to logical connectors (¬,∨,∧,→,⇔) and atomic propositions, it

Obtain
Customer

Info

Verify
Customer

ID

Open
Account

Fig. 10. Reduced graph for rule 1

336 A. Awad, G. Decker, and M. Weske

Submit
Deposit

Open
Account

Record
Customer

Info

Submit
Deposit

Open
Account

Record
Customer

Info

Submit
Deposit

Open
Account

Record
Customer

Info

Submit
Deposit

Open
Account

Record
Customer

Info

(a) Reduced graph after applying R1 on
result of query 2

(b) Reduced graph after applying R2
and R3 on reduced graph from (a)

(c) Reduced graph after applying R2
and R5 on reduced graph from (b)

(d) Reduced graph after applying R6
reduced graph from (c)

Fig. 11. Reduced graph for rule 2

introduces temporal quantifiers (always, eventually, next, until). The tempo-
ral operator eventually is of direct correspondence to the leads to concept. On
the other hand, the translation of the precedes into a temporal expression in
LTL would be complex. We used Past linear time temporal logic PLTL [17,29]
as it has introduced the counterpart temporal quantifiers (always in past, once
in the past, previous sate, since) to allow expressing formulae about the past
states of a system. Although these quantifier did not increase the expressiveness
of LTL, it made expressing formulae about the past exponentially succinct than
in pure-future LTL [16]. Since the representation of these temporal quantifiers
is not standardized, we mention the notation we use throughout this paper. For
future states G(all future states), X(next state), F(eventually), U(Until). For
past states H(all past states), Y(previous state), O(Once in the past), S(Since).
It is straightforward to relate the concept of precedes to the temporal operator
O and the concept of leads to to the operator F.

The generation of PLTL formulae from queries is straight forward. The fol-
lowing listing summarizes the translation into PLTL.

– A leads to B is translated to A →F(B).
– A precedes B is translated to B →O(A).

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 337

All generated formulae for different path constructs are conjuncted together
and surrounded by the G operator to express the meaning of in all possible
execution scenarios, be sure that the formulae are satisfied.

Query of rule 1 will generate the following temporal formula

G((Obtain Customer Info →F(Open Account)) ∧ (Verify Customer ID
→F(Open Account)))

Model checking this formula against the reduced graph of Figure 10 will suc-
ceed, i.e. the process model complies with the rule. The query of rule 2 will
generate the following temporal formula

G((submit deposit →F(record customer info)) ∧
(open account →O(record customer info)))

Model checking this formula against the reduced graph of Figure 11 will fail,
i.e. there are some execution scenarios that do not satisfy this formula.

Petri Net and State Space Generation
We need to generate, from the (reduced) graph, the finite state machine that
will be, along with the PLTL expression, the input to model checker. In fact,
we need to be sure that the state machine is finite, otherwise model checking
is not feasible [3,8]. In order to generate the state machine and determine its
finiteness, we have to give formal execution semantics to the different constructs
of BPMN. We follow the approach introduced in [4]. In this approach a mapping
of a subset of BPMN constructs (for example OR-join is not addressed) to Petri
nets is given. We have implemented their algorithm in our tool, as will be shown
later. The state machine is then obtained by the reachability graph of the Petri
net. Finiteness of the state machine reduces to the boundedness of the net, so
utilizing a Petri net tool to determine this property. Figure 12 is the generated
Petri net for the reduced graph of Figure 11.

Output places of transitions corresponding to activities are of interest to in-
dicate the execution of the activity — see labeled places of Figure 12. Further
reductions on the level of a Petri net are possible provided that these places are
not merged.

Table 1 shows the average running time (in milliseconds) of the model checker
(MC) for checking rule 2 with and without reduction. Also, reduction time is

Start
event

Submit
Deposit

Submit_deposit_complete

Record
Customer

Info

Record_customer_info_complete

Open_account_complete

Open
Account

Fig. 12. Petri net for reduced process graph of Figure 11

338 A. Awad, G. Decker, and M. Weske

Table 1. Comparison of average running time of model checker with and without using
reduction

Process Model Id No. Nodes MC without reduction MC with reduction

A 39 151 ms 110 ms

B 32 52 ms 31 ms

C 38 52 ms 48 ms

D 35 68 ms 52 ms

presented. The query of rule 2 matched 5 process models in the repository. One
of them was excluded from model checking because it suffered from a deadlock.

Tool Support
We have implemented a prototypical tool chain for our approach. As process
modelling environment we use Oryx1, a web-based BPMN editor developed in
our research group. We implemented a Petri net generator as an integrated com-
ponent in BPMN-Q. LoLA [25]2 is used for checking boundedness and absence
of deadlocks. LoLA is also used for producing the finite state machine. We im-
plemented a PLTL generator returning the temporal logic formulae. As model
checker we opted for NuSMV3 due to its support for PLTL expressions.

5 Related Work

According to [22] checking for compliance can occur either after-the-fact or
before-the-fact. Manually auditing processes is one way to check compliance in an
after-the-fact fashion. An automated approach to detect violations from work-
flow logs using LTL checkers was introduced in [26].

Before-the -fact approaches can be further categorized as either (a)
compliance-aware design or (b) post design verification. [22] is an example for
compliance-aware design. Here, control objectives are modeled independently,
that way addressing conflicting requirements between processes and regulations.
The authors build their approach on a requirements modeling framework that
later on propagates (forces) these requirements onto business processes. Another
approach to guarantee compliance by design is given in [14], introducing PENE-
LOPE as a declarative language to capture obligations and permissions imposed
by business policies (sequencing and timing constraints between activities) and
later on automatically generate business processes that are, by design, compliant
with these policies. The same authors have discussed in [13] the importance of
explicitly modeling business rules as an enabler of flexibility and generation of
less complex business processes. A more recent approach to compliance by de-
sign is introduced in [21] which can be seen as an extension of [22] with a special
focus on assisting the process designer to create compliant business processes. In
1 See http://oryx-editor.org
2 See http://wwwteo.informatik.uni-rostock.de/ls tpp/lola/
3 See http://nusmv.irst.itc.it/

http://oryx-editor.org
http://wwwteo.informatik.uni-rostock.de/ls_tpp/lola/
http://nusmv.irst.itc.it/

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 339

[20] a more comprehensive framework where a categorization of control objective
along with corresponding compliance patterns were discussed. They assume that
process models are by default are not compliant. Later on, they are adapted and
enriched with controls to be compliant with support of monitoring of violation
at runtime.

We categorize our work as before-the-fact and post design. Other work in this
category is briefly discussed. The Formal Contract Language (FCL) was intro-
duced in [15] to formally measure the compliance between a business contract
and a business process. In [12] an approach to check compliance of business
processes and the resolution of violations was introduced. The paper defines Se-
mantic Process Networks (SPN), where each activity is further annotated with
effect predicates. Rules are then verified against this network. In [18], a formal
approach based on model checking was given to check for compliance of processes
defined in BPEL against constraints defined in the Business Property Specifi-
cation Language (BPSL) that are translated to LTL. The approach is close to
ours. However, we are able to express constraints in PLTL rather than LTL only,
which gives our approach more expressiveness over the other. Similar work that
verifies BPEL processes is in [28] where authors propose their own language
PROPOLS to capture patterns to be checked against a business process. The
approach depends on transforming PROPOLS expressions into FSAs and BPEL
into LTS/FSA and check the language inclusion between the two FSAs. Work
in [9,10,11] defines a set of visual patterns using the Process Pattern Specifica-
tion Language (PPSL). These patterns are used to express constraints against
UML Activity Diagrams. PPSL patterns are then translated into PLTL formu-
lae. The approach is the closest to ours from the point of expressiveness i.e. it
supports reasoning with PLTL, yet we offer a small set of constructs to express
the same set of concepts. Similar work on verification of properties against UML
Activity Diagrams has been accomplished earlier by Erik et al in [5,7,6], where
they offered their own formalization of ADs and used model checking to verify
properties against them.

Using queries for generating PLTL formulae, the retrieval of sub graphs to be
tested and the application of reduction rules for simplifying the state space are
unique properties of our approach.

6 Conclusion

In this paper we have presented an approach for compliance checking for BPMN
process models using BPMN-Q queries. As centerpiece of the analysis, a model
checker is used. The approach is not limited to BPMN process models, it can be
applied to any process modelling language with formal execution semantics. The
usage of BPMN-Q to express compliance rules was not limited to the graphical
representation of the rules. BPMN-Q as a query language helps identify the set of
process models that are subject to compliance checking, a task that is too time-
consuming if done manually. The usage of reduction was to simplify the state
space for the model checker, especially for large process models — which is the
case in real world process models. For small process models, model checking can

340 A. Awad, G. Decker, and M. Weske

be applied directly without the overhead of reduction. This approach is effective
under the assumption that business process models really reflect the way business
is carried out. Although we assume that relevant (candidate) process models have
to contain all activities mentioned in a rule, we still see our approach effective
since the hard task is to check the ordering between activities. If a process
model contains a non-empty subset of activities in a rule, we can conclude it
non-compliant without further checking.

In the current version of our approach, we are able to give yes/no answers
for the compliance between rule(s) and process models. As a limitation of our
approach, the detailed analysis provided by the model checker in the case of non-
compliance cannot be taken advantage of. This is due to the fact that we applied
reductions. This means that generated counter examples by the model checker do
not reflect real execution scenarios in process models. An important assumption
behind the use of reduction rules is the relaxation of usage of temporal operators
next X, and previous Y in queries. It has been pointed in literature that the X
operator is of little interest when verifying properties of process models [5,7].

Currently, most research in the area of compliance checking focuses on veri-
fication of control flow aspects. As future work, we intend to extend BPMN-Q
with the capability of querying data objects and verification of their states as
pre-conditions for activities.

References

1. Sarbanes-Oxley Act of 2002. Public Law 107-204 (116 Statute 745), United States
Senate and House of Representatives in Congress (2002)

2. Awad, A.: BPMN-Q: A Language to Query Business Processes. In: EMISA, pp.
115–128 (2007)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

4. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Pro-
cess Models in BPMN. Information and Software Technology (IST) (2008)

5. Eshuis, H.: Semantics and Verification of UML Activity Diagrams for Workflow
Modeling. PhD thesis, Centre for Telematics and Information Technology (CTIT)
University of Twente (2002)

6. Eshuis, R.: Symbolic model checking of uml activity diagrams. ACM Trans. Softw.
Eng. Methodol. 15(1), 1–38 (2006)

7. Eshuis, R., Wieringa, R.: Tool support for verifying uml activity diagrams. IEEE
Transactions on Software Engineering 30(7), 437–447 (2004)

8. Esparza, J.: Decidability of model checking for infinite-state concurrent systems.
Acta Informatica 34(2), 85–107 (1997)

9. Förster, A., Engels, G., Schattkowsky, T.: Activity diagram patterns for model-
ing quality constraints in business processes. In: Briand, L.C., Williams, C. (eds.)
MoDELS 2005. LNCS, vol. 3713, pp. 2–16. Springer, Heidelberg (2005)

10. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.V.D.: A pattern-driven de-
velopment process for quality standard-conform business process models. In: IEEE
Symposium on Visual Languages and Human-Centric Computing VL (2006)

11. Förster, A., Engels, G., Schattkowsky, T., Straeten, R.V.D.: Verification of business
process quality constraints based on visual process patterns. In: TASE, pp. 197–
208. IEEE Computer Society, Los Alamitos (2007)

Efficient Compliance Checking Using BPMN-Q and Temporal Logic 341

12. Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

13. Goedertier, S., Vanthienen, J.: Compliant and Flexible Business Processes with
Business Rules. In: 7th Workshop on Business Process Modeling (2006)

14. Goedertier, S., Vanthienen, J.: Designing Compliant Business Processes from Obli-
gations and Permissions. In: 2nd Workshop on Business Processes Design (BPD
2006), Proceedings, Business Process Management Workshops (2006)

15. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: EDOC 2006, Washington, DC, USA, pp. 221–
232. IEEE Computer Society Press, Los Alamitos (2006)

16. Hornus, S., Schnoebelen, P.: On solving temporal logic queries. In: Kirchner, H.,
Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 163–177. Springer, Hei-
delberg (2002)

17. Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past. Theo-
retical Computer Science 148(2), 303–324 (1995)

18. Lui, Y., Müller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46(2), 335–362 (2007)

19. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Institute of Information Systems and New Media Vienna University
of Economics and Business Administration (WU Wien) Austria (May 2007)

20. Namiri, K., Stojanovic, N.: Pattern-based design and validation of business process
compliance. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803,
pp. 59–76. Springer, Heidelberg (2007)

21. Lu, S.S.R., Governatori, G.: Compliance aware business process design. In: 3rd
International Workshop on Business Process Design (BPD 2007), in Conjunction
with 5th International Conference on Business Process Management (2007)

22. Sadiq, S.W., Governatori, G., Namiri, K.: Modeling control objectives for business
process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

23. Sadiq, W., Orlowska, M.E.: Applying graph reduction techniques for identifying
structural conflicts in process models. In: Jarke, M., Oberweis, A. (eds.) CAiSE
1999. LNCS, vol. 1626, pp. 195–209. Springer, Heidelberg (1999)

24. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Inf. Syst. 25(2), 117–134 (2000)

25. Schmidt, K.: Lola a low level analyser. In: Nielsen, M., Simpson, D. (eds.) ICATPN
2000. LNCS, vol. 1825, p. 465. Springer, Heidelberg (2000)

26. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verifi-
cation of properties: An approach based on temporal logic. In: Meersman, R., Tari,
Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)

27. van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Verification of epcs:
Using reduction rules and petri nets. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 372–386. Springer, Heidelberg (2005)

28. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property
specification and verification for service composition. In: Aberer, K., Peng, Z.,
Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp.
156–168. Springer, Heidelberg (2006)

29. Zuck, L.: Past Temporal Logic. PhD thesis, Weizmann Intitute, Rehovet, Israel
(August 1986)

Automatic Extraction of Process Control Flow

from I/O Operations

Pedro C. Diniz1 and Diogo R. Ferreira2

1 IST/INESC-ID, Technical University of Lisbon, Portugal
2 IST/INOV, Technical University of Lisbon, Portugal
{pedro.diniz,diogo.ferreira}@tagus.ist.utl.pt

Abstract. Many end users will expect the output of process mining to
be a model they can easily understand. On the other hand, knowing
which objects were accessed in each operation can be a valuable input
for process discovery. From these two trends it is possible to establish an
analogy between process mining and the discovery of program structure.
In this paper we present an approach for extracting process control-
flow from a trace of read and write operations over a set of objects.
The approach is divided in two independent phases. In the first phase,
Fourier analysis is used to identify periodic behavior that can be rep-
resented with loop constructs. In the second phase, a match-and-merge
technique is used to produce a control-flow graph capable of generating
the input trace and thus representing the process that generated it. The
combination of these techniques provides a structured and compact rep-
resentation of the unknown process, with very good results in terms of
conformance metrics.

Keywords: Process mining, Control-flow graphs, Fourier analysis.

1 Introduction

Since the publication of [1], Petri nets became the preferred formal framework
for the analysis [2], modeling [3], verification [4], mining [5] and conformance
checking [6] of business processes. However, most workflow and Business Pro-
cess Management (BPM) systems typically make use of proprietary modeling
languages [7]. Despite efforts such as the development of workflow patterns [8],
a vast community of end users still makes use of informal languages and nota-
tions, some of which have their origin in flowcharting [9], and many of which are
reminiscent of basic programming concepts such as decision and loop constructs.

There is a number of reasons for the continuing use of such languages. First, it
is often the case that the goal is to discuss process models with domain experts
rather actually pursuing process analysis or enactment [10]. Second, there is
often a perceived notion that process modeling is a kind of programming [11],
hence the resemblance between modeling and programming constructs. Third,
recent developments in Web service technology and SOA1 have also contributed
1 SOA: Service-Oriented Architecture.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 342–357, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Automatic Extraction of Process Control Flow from I/O Operations 343

to shorten the distance between process modeling and programming, as business
processes may be implemented as compositions of web services [12]. Fourth,
business analysts may be encouraged to use graphical languages when there are
mechanisms to automatically translate them to executable models; for example,
it is possible to translate process models in BPMN2 to executable descriptions
in BPEL3 [13].

This sort of top-down implementation of business processes is in some way
available in every BPM system (see for example [14]). But if we look at bottom-
up approaches, and in particular to the problem of discovering business pro-
cesses from event logs, we realize that current process mining techniques are
able to recover process models in a representation that might not always match
what the end users may be familiar with. Some techniques generate dependency
graphs [15,16], others use probabilistic models [17,18], and most of the current
techniques are geared towards retrieving Petri net models [19]. To communicate
with end users, it may be necessary to translate Petri nets into other kinds of
models, including business process notations such as EPC4 [20,21].

In this paper we present a technique for extracting process behavior directly
as a structure of programming constructs. Although we make use of just a
couple of basic constructs, namely decisions and loops, it is possible to ex-
tend the same technique to more intricate elements. The goal is to extract a
control-flow graph whose structure and building blocks resemble those of a com-
puter program written in an imperative programming language. The nature and
scope of business processes are obviously quite different from those of software
programs, but a representation in terms of programming constructs may help
the end user relate more easily to the results of process mining over a given
event log.

The analogy can be extended even further when we consider the content of
the input log. Typically, process mining techniques require that each event in the
input log is associated with a specific process instance [5]; in some scenarios this
context may be unavailable. On the other hand, process mining techniques focus
mainly on the control-flow perspective and only recently have begun to take
into account information about data or objects being accessed, which makes it
possible to identify data dependencies between events [22]. The availability of
such information becomes critical when the process models must comply with
known object life-cycles [23].

In this work we consider that the input event log is available as a trace of all
read and write operations over a set of objects. Such read and write operations
could have been recorded, for example, as accesses to document repository, or
even to a version-control system. They can also be regarded as low-level events
such as memory, disk, or database accesses. The objects that are accessed in these
operations can be regarded either as workflow-relevant data [24] or as program
variables. The log contains no information about activity, process instance, or

2 BPMN: Business Process Modeling Notation.
3 BPEL: Business Process Execution Language for Web Services.
4 EPC: Event-Driven Process Chain.

344 P.C. Diniz and D.R. Ferreira

business context; it is simply a trace of all I/O operations performed by an
unknown process, whose structure is to be determined.

The remainder of this paper is structured as follows. In section 2 we provide
an overview of the overall approach, comprising two phases: the first phase which
finds the boundaries of loops and their control variables, and the second phase
which merges the sub-traces of each loop into a well-structured control-flow graph
(CFG). These algorithms are explained in detail in sections 3 and 4, respectively.
In section 5 we present experimental results on the application of the described
approach to a set of sample traces, and evaluate the results according to a set
of conformance metrics defined in [6]. Finally, section 6 concludes the paper.

2 Overview

In the following sections we describe an approach for automatically uncovering
a possible control-flow representation from a sequential input trace of I/O op-
erations. In this context, the input trace is regarded as a numbered sequence of
basic read and write operations on a set of variables. Each variable, vi ∈ V
represents an object in the specific domain of objects for the process (e.g., a
document, or a database table or row) that is read or updated (written).

The approach is structured into two major phases as depicted in figure 1. In
a first phase, we rely on Fourier analysis of the input trace to detect operations
that occur in repeatable patterns or time slots in the trace thus exhibiting some
periodic behavior. This analysis determines if periodic behavior is present and
which variable(s) are possible loop control variables, i.e. variables that control
the execution of loop constructs in the process structure that generated the
observed trace.

At the end of the first phase, the approach has identified the runs of existing
loops and separated them into sub-traces of the original input trace. In a second
and completely separate phase, the algorithm creates a CFG by matching and
merging identical operations in the different sub-traces, while respecting the
sequential relation between the operations in each sub-trace and in the resulting
CFG.

Input trace Input trace
 with loop boundaries

Phase 2

Fourier analysis
for identification of

loop control variables
and loop boundaries

CFG extraction using
backward and forward
operation matching in

subtraces

Control Flow Graph
(CFG)

Phase 1

su
bt

ra
ce

 1
su

bt
ra

ce
 2

su
bt

ra
ce

 3
su

bt
ra

ce
 4

Fig. 1. Overall approach

Automatic Extraction of Process Control Flow from I/O Operations 345

3 The Loop-Finding Algorithm

The first phase of the algorithm aims at finding loop constructs. We first describe
the basic algorithm to uncover a single loop construct and then describe how to
use this approach to find nested loop structures.

3.1 Fourier Transformation

To find a loop construct in a given section of a large trace the algorithm makes
use of a digital signal processing technique – the Discrete Fourier Transform
(DFT). Fourier techniques [25] translate periodic time-domain signals to the
frequency domain. A periodic time-domain signal such as a sine function is rep-
resented in the frequency domain by a single magnitude and phase coefficient as
depicted in figure 2(a). The Fourier transform of a generic periodic time-domain
signal is a series of magnitude and phase coefficients, each corresponding to one
of the harmonic frequencies of the given signal. This frequency-domain represen-
tation is called the spectrum of the input signal; a high-frequency composition
on the spectrum reveals a fast changing signal and a low-frequency composition
reveals a slow changing signal. For discrete periodic signals the same Fourier
decomposition is possible and a periodic discrete signal with periodicity of T
will have a frequency-domain representation exhibiting peaks separated by 1/T
as illustrated in figure 2(b).

frequency

magnitude

time

T
1/T

amplitude

time

amplitude

frequency

magnitude1st harmonic

2nd harmonic

(a) continuous time domain signals and spectral representation (b) discrete time domain signal and spectral representation

Fig. 2. Illustrative examples of Fourier Transformations (FT/DFT)

3.2 Algorithm Rationale and Description

The basis for the loop-finding algorithm relies on the observation that if a specific
operation over a variable has a predominately periodic behavior, its signature
signal must have a frequency-domain representation exhibiting clearly spaced
peaks reflecting the periodicity of the time-domain signature signal. As such,
one is able to uncover the periodicity associated with a specific variable and
operation by examining its spectral representation.

For a given variable v and operation op (either read or write) the algorithm
computes its signature signal sigv,op(k) as a time-domain discrete signal. This
discrete signal is composed of N samples 0 ≤ k ≤ N−1, one for each time sample

346 P.C. Diniz and D.R. Ferreira

Sv,op(n) = 1
N

∑N−1
k=0 sigv,op(k)e−jk2πn/N

‖Sv,op(n)‖ =

√
Sreal

v,op(n)
2

+ Simag
v,op (n)

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 4 7 10 13 16 19

Spectral
Mid Point

Signal Time
Average Spectral

Distance

Frequency

Magnitude

Fig. 3. DFT calculation expressions (left) and spectral example (right) where sigv,op is
the discrete signature signal for variable v and operation op and Sv,op(n) is its spectral
representation for N spectral frequencies n/N for 0 ≤ n ≤ N − 1

in the input trace. The signature signal sigv,op(k) has value 1 for positions in
the trace with an operation op over the v variable, and 0 otherwise. Figure 4(b)
depicts a sample signature for the variable i and the write operation. The
algorithm computes the Fourier transform of the signature signal for the variable
v. It derives its spectral representation as a set of N complex coefficients, Sv,op(k)
with 0 ≤ k ≤ N − 1 and computes the corresponding magnitude ‖Sv,op(n)‖ of
the coefficients given by the norm-2 of its real and imaginary components as
depicted by the equation in figure 3 (left).

Once the spectral representation is computed, the algorithm examines the
peaks in the spectrum and determines the distances between peaks to discover
the various base frequencies of the original time-domain signal. To accomplish
this step, the algorithm selects the middle point in the spectral representation
(i.e., the coefficient at N/2) and measures the distance from that middle point
to the next peak5. The inverse of this distance d is the frequency with which the
operation op on variable v occurs in the time-domain signal.

In figure 3 (right) we illustrate an example of a spectral representation of a pe-
riodic signal corresponding to an input trace with 21 operations. Excluding the
zero-frequency component (which corresponds to the average or DC component
of the signal) the spectral information for the signal exhibits distinct spikes sep-
arated by 3 time units in the frequency axis. In the time domain, this frequency
mode corresponds to a repetition interval of approximately (N−1)/d = (21−1)/3
time units, i.e. between 6 and 7 events.

5 A practical complication arises regarding the ability to clearly identify the peaks in
the Fourier representation. The algorithm uses a thresholding step where all values
below a specific percentage τ of the maximum value are eliminated. To select the
value of threshold τ , the algorithm applies the Fourier analysis with values of τ = 1.0
down to τ = 0.1 and stops when it uncovers a feasible time-domain period.

Automatic Extraction of Process Control Flow from I/O Operations 347

Once the period(s) for each variable in the input trace has been identified, the
algorithm selects as the loop-controlling variable the variable with the shortest
period but with the highest number of occurrences in the trace6. Given this con-
trol variable the algorithm then scans the input trace selecting the occurrences
of the variable that are located at approximate intervals corresponding to the
identified period. As there can be some slight variations to the location of the
occurrences of this control variable in the trace, the algorithm uses a simple
windowing scheme to sync-up their occurrences in the trace.7

3.3 Example

Figure 4(a) presents an example of an input trace with a total of 21 read and
write operations over a set of variables. For the variable i and operation write
the algorithm uses Fourier analysis as depicted in figure 3 to uncover a period
of approximately 6 time units, the period of i as the control variable for a loop
construct. The algorithm then performs a linear scan over the input trace and
splits the input trace into 4 sub-traces corresponding to the ranges of operations
depicted in figure 4(c). The algorithm also detects a common initial operation
read i in addition to the common final operation write i thus defining the
entry and exit nodes of the CFG loop structure depicted in figure 4(d).

(a) Initial Trace (c) Uncovered sub-traces
 for the write operation for

 variable i with loop boundaries

(d) Control-Flow-Graph (CFG)
 considering loop constructs

 only and based on the sub-traces in (c)

write i

read i

Loop
Body

read i
read d
read c
read d

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

read c

write i
read i

read b

write i

read c
read e

read b

read b
read c

write i
read i
read b
read b
write i

21

read i

read c

read i

write i

read i

write i
read i

write i

write i

read i

su
b-

tr
ac

e
1

su
b-

tr
ac

e
2

su
b-

tr
ac

e
3

su
b-

tr
ac

e
4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(b) Signature signal
 sig(i,write)

0
0
0
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0
1
0
0

1

0
0

0

0
0

1
0
0
0
121

0

0

Fig. 4. Sample illustrative trace with 21 operations

6 So that a spurious variable that occurs often but randomly is not selected.
7 Spurious occurrences of an operation at time stamps that are not lined up with the

recognized interval are not critical, as the second phase of the algorithm absorbs
these instances by taking them into account as different paths in the loop control
flow.

348 P.C. Diniz and D.R. Ferreira

3.4 Handling Nested Loops

The approach described above enables the same algorithm to discover nested
loops. The algorithm works inside-out by first finding shorter loops in the trace,
corresponding to inner-loops. These loops have control variables with high spec-
tral frequencies, as they occur more frequently than the control variables of outer
loops. In order to recognize successive outer loops, the algorithm collapses the
operations within an inner loop as a single aggregate macro operation and then
performs a new Fourier analysis on the collapsed trace, attempting to uncover
the next innermost loop. This procedure is repeated until the structure of nested
loops is found and the trace collapses to a small segment where no more loops
can be detected.

4 The Control-Flow Algorithm

In this second phase, the algorithm uses the sub-traces extracted during the first
phase to create a well-structured CFG that can generate the entire input trace.

4.1 Algorithm Outline

The algorithm is structured into two iterative, greedy refinements phases. It
terminates when it cannot refine the CFG any further. The algorithm begins
by building a CFG with all the sub-traces as possible (disjoint) paths. These
paths are connected to the same source and sink nodes, which represent the
entry and exit nodes of a loop construct. In a first pass, the algorithm works
bottom-up against the flow of the sub-traces, creating nodes in a new CFG that
correspond to the operations in the sub-traces, and whenever possible it merges
two identical nodes that share a common descendant node in the graph.8 In a
second pass the algorithm works top-down along the flow, this time in the CFG
resulting from the first pass, and merges any two identical nodes with a common
ancestor node. At the end of these two match-and-merge phases the resulting
CFG is augmented by a back edge which connects two nodes, respectively the
head and tail of a loop, thus reflecting the iterative structure of the input trace.

There is no reason not to invert the order of these two passes as both ways will
allow the algorithm to derive valid but possibly different CFGs. This may pro-
duce a slight difference in the placement of decision points, without a noticeable
impact in the metrics presented ahead in section 5.

4.2 Backward Match-and-Merge

In this pass the algorithm attempts to merge nodes from each sub-trace with
nodes from other traces as close as possible in the linear sequence within each
trace. The merged nodes become a single node shared between sub-traces as
8 It should be noted that at the beginning of this first pass the sink node is a common

descendant of all paths.

Automatic Extraction of Process Control Flow from I/O Operations 349

(a) Initial set-up phase CFG and
 matching between sub-traces.

(b) CFG after merging of nodes in traces
 t1 and t2 and traces t3 and t4.

(c) CFG after merging of nodes
 in traces t1, t2 and t3.

(d) Final CFG after merging of
 nodes in traces t2, t3 and t4.

1 1 1 1

read i

write i

read bread bread bread d

read c

read d read e read b

read c

write i

read i

read bread d

read c

read d read e

read c

read b

1

2

3

4

1

2

3

4

1

2

3

1

2

t1 t2 t3 t4

write i

read i

read b

read bread b

read c

read b

read c

read e

read c

read bread d

read c

read d

read c

1

2

3

1

2

3

1

2

1 read b

read i

write i

read b

read c

read bread b

read c

read e

read c

read d

read c

read d

Fig. 5. Backward Match-and-merge operation with 4 illustrative traces

depicted in figure 5(b). The current greedy strategy for matching and merging
of nodes gives preference to matches that are chronologically closer, as that in-
creases the likelihood of merging more nodes across the sub-traces. For example,
although there is a match in figure 5(a) between the operation read c in the
sub-trace t1 and the same operation in the sub-trace t3, the algorithm does not
merge these two operations as there is a match from an operation read b in
sub-trace t3 that occurs later along the control flow than that first match. As a
result, the first read c is only matched with the same operation in sub-trace t2
and the operation in read b is matched with the same operation in sub-trace t4.
Such greedy matching process continues as depicted in figure 5(b) and 5(c) until
there are no more possible matches, resulting in the CFG depicted in figure 5(d).

4.3 Forward Match-and-Merge

After having constructed a CFG in the first backward pass, the algorithm per-
forms a forward match-and-merge to attempt to merge nodes that might have
been left unmatched in the first phase9. This forward pass is also a greedy process
where the algorithm iteratively merges consecutive adjacent nodes along the con-
trol flow until no further merges are possible or the end of sub-traces is reached.
For the CFG derived at the end of the first step as depicted in figure 5(d), there
are no opportunities for this particular transformation. The algorithm merges no
nodes in this second pass and the final CFG with loop control-flow is shown in
figure 6(a). As an illustrative example we depict in this final CFG two execution
paths corresponding to the sub-traces t1 and t4 in the input sub-traces.

4.4 Structured Control-Flow

While the algorithm described above is effective in finding common subsequences
among all traces preserving the sequential execution of the control flow, it
can generate control-flow structures that in the lexical sense are not perfectly
nested. These imperfectly nested control-flow structures cannot be described

9 A typical scenario occurs when two or more sub-traces get out-of-sync and the cor-
responding nodes are then left unmatched.

350 P.C. Diniz and D.R. Ferreira

write i

read i

read bread d

read c

read d read e

read c

read b

start

end

t1 t4

begin
 while (Pred1) do
 read i;
 if (Pred2) then
 read d;
 read c;
 if (Pred3) then
 read d;
 else
 read e;
 end if
 read c;
 else
 read b;
 if (Pred4) then
 read c;
 endif
 read b;
 end if
 write i;
 end while
end

(a) Complete CFG with loop
 construct and sample execution
 paths through the loop body.

(b) Complete CFG with loop construct using
 structured aggregation of nodes during
 CFG construction.

(c) High-level programming constructs
 for CFG derived in (b) using generic
 conditional and loop predicates.

write i

read i

read bread d

read c

read d read e

read c

read b

start

end

read c

Fig. 6. Complete CFG with loop as derived by the algorithm

using high-level programming constructs without the use of goto or other ar-
bitrary control-flow transfer primitives [26]. More importantly, in the context
of process flows, it substantially complicates conformance checking between
processes.

To overcome this problem we developed a variant of the control-flow algo-
rithm that always generates structured CFGs at the expense of the loss of some
sharing of nodes between sub-traces. The revised algorithm keeps the match-
ing of nodes confined to a subset of traces that have been already matched in
a previous matching step. The algorithm thus partitions the input traces into
disjoint subset of traces which are then refined as the matching progresses. As
a result, the matching and thus the merging is always done between traces that
have a common descendant towards the sink node. The resulting CFG is thus
less compact than the CFG generated by the first control-flow algorithm.

Figure 6 illustrates the CFGs resulting from the two variants of the algorithm
for the same 4 illustrative sub-traces used in figure 5. Figure 6(a) presents the
CFG resulting from the application of the first algorithm, whereas figure 6(b)
presents the CFG obtained using the variant of the algorithm that generates
structured CFGs. For this second CFG we depict the corresponding high-level
program description that can generate the various traces in figure 6(c).

4.5 Algorithmic Complexity

Given that both the backward and the forward passes traverse and advance
through each sub-trace at least one operation at a time in each iteration, the
algorithm eventually terminates. At each iteration the algorithm performs in the

Automatic Extraction of Process Control Flow from I/O Operations 351

worst case O(n2) when matching operations between the k sub-traces. On the
other hand, each sub-trace is O(n) long and this length is linearly related to
the length of the input trace. Considering book-keeping and the manipulation of
auxiliary data structures as a constant, the worst-case time complexity becomes
O(n3) where n is the number of operations in each sub-trace.

Despite this worst-case complexity behavior, we do anticipate the algorithm
to perform well given that at each step more than one node can be processed.10

5 Results

We have implemented the above algorithms in approximately 4, 000 lines of C
code. In this section we describe a series of experiments with sample traces to
evaluate the ability of the algorithm to extract a CFG for each input trace. In all
these experiments we have used the revised version of the algorithm in order to
derive structured CFGs. We then evaluated each of the derived CFGs according
to a set of fitness and appropriateness metrics defined in [6].

5.1 Sample Traces

To support our experiments we generated a set of 4 traces with read and write
operations over a set of scalar variables such as i or a.11 Each trace is generated
by a different C program that outputs the various operations reflecting its own
execution.12

Table 1 presents the experimental results for the various traces. In the left
section of the table we have a series of results characterizing the traces used,
whereas on the right section we have results regarding metrics as discussed in
the next section.

In table 1 we characterize each trace by its length or number of operations,
and also by the number of variables that each trace contains. These are shown in
columns 2 and 3, respectively. Column 4 presents the control variables extracted
by the Fourier analysis phase of our algorithm, indicating for each variable the
uncovered period (as an interval of two values). In column 5 we report the number
of sub-traces identified for each control variable, and in column 6 we indicate the
nested structure of the discovered CFG. Figure 7 shows the CFGs discovered for
the 4 sample traces.

10 Common string-matching algorithms such as the longest common sub-sequence
(LCS) or the shortest common super-sequence (SCS) problems are impractical. Both
LCS [27] and SCS [28] problems require O(n2) solutions for two sequences of length
n, but are NP-hard for k strings. An incremental 2-at-a-time approach would lead
to a time complexity of O(nk).

11 The various input traces and CFG outputs are available at the following location:
http://www.dei.ist.utl.pt/∼ped/submissions/BPM08

12 For example, in the execution of loop constructs the trace generator will output the
operations required to evaluate the loop control predicate. Updating the loop control
variable, say i = i + 1; involves a read operation followed by a write operation.

352 P.C. Diniz and D.R. Ferreira

(a) CFG for input
 trace 1

(b) CFG for input
 trace 2

(c) CFG for input
 trace 3

(d) CFG for input
 trace 4

Fig. 7. Complete CFGs for the 4 sample traces

Automatic Extraction of Process Control Flow from I/O Operations 353

Table 1. Characteristics of the sample traces used in experiments, and metrics for the
derived CFG solutions

Characteristics Metrics
Trace number number control var. number nesting cE cT f aB a′

B aS a′
S

operations variables and period sub-traces structure

#1 52 7 i:[8,9] 5 single loop 1.000 1.000 1.000 0.988 0.924 0.588 1.000

#2 109 6 i:[12,13] 8 single loop 1.000 1.000 1.000 0.994 0.849 0.458 1.000

#3 1034 6 i:[101,102] 10 doubly 1.000 1.000 1.000 0.998 1.000 0.407 1.000
j:[8,9] 101 nested

#4 1108 7 i:[121,122] 10 doubly 1.000 1.000 1.000 0.996 0.953 0.311 1.000
j:[8,9] 82 nested

5.2 Metrics

The algorithms described above produce a CFG that is in effect one possible
explanation for the behavior observed in the input trace. To assess the interest
and potential of this approach, and to be able to compare it with other process
mining algorithms, it is necessary to determine the extent to which the produced
CFG is actually a good explanation for the original behavior. This assessment
can be done by applying a set of metrics to compare the behavior allowed in
the model with the behavior observed in the input trace. Such analysis can be
done, for example, by checking if the process model would allow all events in the
trace to occur in the same order. This is the underlying rationale for the fitness
metric [6]. Other metrics – such as behavioral appropriateness and structural
appropriateness [6] – are also useful to check that the model is a compact and
non-redundant representation of the intended process.

Even though these metrics have been defined for Petri net models, it is pos-
sible to apply them to CFGs with small adaptations. The only metric that
requires a significant adaptation is the fitness metric, as it is based on replay-
ing the trace in the model. While the execution semantics of Petri nets are
formally well-established (via tokens, places and transitions), those of CFGs
may vary; for example, splits and joins could be given different interpretations.
In the CFGs we use above, there are only OR-splits and OR-joins so the se-
mantics become quite simple. We therefore redefined the fitness metric as the
percentage of trace events that can be successfully replayed in the CFG in the
same order.

Table 1 shows the results obtained for each trace and metric. Table 2 summa-
rizes the purpose of each metric and provides a brief explanation of the typical
results obtained in several runs of the algorithm for different input traces. A
detailed description of these metrics can be found in [6].

354 P.C. Diniz and D.R. Ferreira

Table 2. Applying the metrics defined in [6]

Metric Results

Log coverage:

cE =
|{e∈E|lE(e)∈LT }|

|E|

This metric checks if each event in the input trace is represented as a
node label in the CFG. Since they all are, the metric is always 100%.

Model coverage:

cT =
|{t∈TV |lT (t)∈LE}|

|TV |

This metric checks if each label in the CFG appears as an event in
the trace. Since they all do, the metric is always 100%.

Fitness:

f = 1
2

(
1 − m

c

)
+ 1

2

(
1 − r

p

) This metric checks whether events can be replayed in the model in
the same order as they appear in the trace. It is originally defined in
terms of consumed (c) and produced tokens (p), as well as missing
tokens (m) during replay and remaining tokens (r) after replay. Since
we are using CFGs rather than Petri nets, this metric has been
redefined as the percentage of trace operations that can be replayed
in the same order in the CFG. As the trace is always a possible path
in the resulting CFG, the metric is always 100%.

Simple behavioral
appropriateness:

aB =
|TV |−x

|TV |−1

This metric uses the number of visible tasks |TV | (which in our case
is the number of CFG nodes) and the mean number (x) of possible
transitions at each step when replaying the trace. As the produced
CFGs usually have a few decision points, at some steps there is more
than one option for the next step, and hence the metric is usually
close but not equal to 100%. Depending on trace length and the
number of decision points, it is usually above 99%.

Advanced behavioral
appropriateness:

a′
B =

|Sl
F

∩Sm
F

|
2·|Sm

F
| +

|Sl
P

∩Sm
P

|
2·|Sm

P
|

This metric computes the follows and precedes relations both for the
trace (Sl

F and Sl
P) and for the CFG (Sm

F and Sm
P). These relations

basically say whether any given pair of operations always, sometimes
or never follow each other. Based on these relations, the metric
checks whether the CFG allows for more variability in behavior than
that observed in the trace. Due to the presence of decision points,
the CFG usually does allow for more variability, hence the metric is
typically in the range 85%-95%.

Simple structural

appropriateness: aS =
|L|
|N|

This metric checks the amount of duplicate nodes in the CFG (i.e.
nodes with the same label) by dividing the number of distinct labels
|L| by the number of nodes |N |. As the match-and-merge procedure
avoids merging nodes that would cause the model to become
unstructured, it is usually the case that a number of duplicate nodes
remain in the CFG. In relatively complex CFGs, the metric can be as
low as 30%. It should be noted, however, that the true model (i.e.
the program that generated the input trace) may have duplicate
operations, so this simple metric is not a reliable measure of accuracy
in our experiments.

Advanced structural
appropriateness:

a′
S =

|T |−(|TDA|+|TIR|)
|T |

This metric penalizes the model when there are redundant invisible
tasks (TIR) or alternative duplicate tasks (TDA). An invisible task
is an operation that is represented in the model but is not present in
the trace; in our CFGs there are no invisible tasks. Two CFG nodes
are said to be alternative duplicate tasks if they have the same label
but there is no possibility that they could occur in the same trace.
The match-and-merge steps in our algorithm eliminate these
alternative duplicate nodes, hence the value for this metric is always
100%.

Automatic Extraction of Process Control Flow from I/O Operations 355

6 Conclusion

The analogy between process modeling and programming suggests that it should
be possible to approach process mining from the perspective of discovering pro-
gram structure. This is useful not only because process modeling and execution
languages make use of building blocks that resemble programming constructs,
but also because the way a program operates on variables can be seen as being
analogous to the way workflow participants manipulate documents and other
data objects.

In this paper we described a combination of techniques to extract process
behavior directly as a control-flow graph from a trace of all read and write
operations over a set of objects. The approach is divided in two main phases
where, in the first phase, signal processing techniques are used to detect peri-
odic behavior that can be potentially represented with loop constructs. This is
an interesting challenge since the problem of delimiting repeating behavior is
not addressed by current process mining techniques, and the DFT proves to be
an effective tool for this purpose. It also enables the algorithm to uncover nested
loops, which can be abstracted as sub-processes. Furthermore, as a signal pro-
cessing technique it is inherently more robust to noise than discrete algorithmic
approaches.

In the second phase, the algorithm proceeds with a set of unsupervised match-
and-merge steps to produce a structured graph by consolidating the behavior of
different sub-traces, and by reducing their differences to a set of decision points.
This technique can be used as a process mining algorithm by itself, if several
traces of the same process are provided as input. In this case, the algorithm
would be equivalent to beginning with M3 in [6] and proceed by merging nodes
until an appropriate model is found. The match-and-merge procedure described
in section 4.4 ensures that the outcome is a structured model.

Overall, the combination of these techniques is able to produce compact and
accurate models of control-flow behavior, and exhibits very good results in terms
of conformance metrics. Although only loops and decision constructs have been
addressed in the present work, we are currently studying techniques to support
other behavioral patterns, in particular parallel constructs.

Acknowledgment

The second author would like to acknowledge the support of Fundação para a
Ciência e a Tecnologia (FCT) through project no. PTDC/CCI/70512/2006.

356 P.C. Diniz and D.R. Ferreira

References

1. van der Aalst, W.: The application of petri nets to workflow management. Journal
of Circuits. Systems and Computers 8(1), 21–26 (1998)

2. van der Aalst, W.: Woflan: a petri-net-based workflow analyzer. Systems Analysis
Modelling Simulation 35(3), 345–357 (1999)

3. van der Aalst, W.: Loosely coupled interorganizational workflows: Modeling and
analyzing workflows crossing organizational boundaries. Information and Manage-
ment 37(2), 67–75 (2000)

4. van der Aalst, W., ter Hofstede, A.: Loosely coupled interorganizational workflows:
Modeling and analyzing workflows crossing organizational boundaries. Information
Systems 25(1), 43–69 (2000)

5. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

6. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Information Systems 33(1), 64–95 (2008)

7. van der Aalst, W., ter Hofstede, A.: YAWL: Yet another workflow language. Infor-
mation Systems 30(4), 245–275 (2005)

8. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

9. Rosemann, M., Recker, J., Indulska, M., Green, P.: A study of the evolution of the
representational capabilities of process modeling grammars. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

10. van der Aalst, W., ter Hofstede, A., Weske, M.: Business process management: A
survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM
2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

11. Yang, G.: Process library. Data and Knowledge Engineering 50(1), 35–62 (2004)
12. Emig, C., Weisser, J., Abeck, S.: Development of SOA-based software systems –

an evolutionary programming approach. In: Proceedings of the Advanced Interna-
tional Conference on Telecommunications and International Conference on Internet
and Web Applications and Services (AICT-ICIW 2006), Washington, DC, p. 182.
IEEE Computer Society, Los Alamitos (2006)

13. Ouyang, C., Dumas, M., ter Hofstede, A., van der Aalst, W.: Pattern-based trans-
lation of BPMN process models to BPEL web services. International Journal of
Web Services Research 5(1), 42–61 (2008)

14. Kloppmann, M., Knig, D., Leymann, F., Pfau, G., Roller, D.: Business process
choreography in websphere: Combining the power of bpel and J2EE. IBM Systems
Journal 43(2), 270–296 (2004)

15. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS,
vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

16. Greco, G., Guzzo, A., Pontieri, L.: Mining hierarchies of models: From abstract
views to concrete specifications. In: van der Aalst, W.M.P., Benatallah, B., Casati,
F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 32–47. Springer, Heidelberg
(2005)

17. Herbst, J., Karagiannis, D.: Integrating machine learning and workflow manage-
ment to support acquisition and adaption of workflow models. In: Proceedings of
the 9th International Workshop on Database and Expert Systems Applications,
pp. 745–752. IEEE, Los Alamitos (1998)

Automatic Extraction of Process Control Flow from I/O Operations 357

18. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining
with sequence clustering: Experiments and findings. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidel-
berg (2007)

19. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Weijters,
A.: Workflow mining: A survey of issues and approaches. Data and Knowledge
Engineering 47(2), 237–267 (2003)

20. van Dongen, B., van der Aalst, W.: Multi-phase process mining: Building instance
graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004.
LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)

21. Verbeek, H., van Dongen, B.: Translating labelled P/T nets into EPCs for sake
of communication. BETA Working Paper Series WP 194, Eindhoven University of
Technology (2007)

22. Rozinat, A., Mans, R., van der Aalst, W.: Mining CPN models: Discovering process
models with data from event logs. In: Proceedings of the Seventh Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (CPN 2006),
Denmark, University of Aarhus, pp. 57–76 (2006)

23. Kuester, J., Ryndina, K., Gall, H.: Generation of business process models for object
life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

24. Hollingsworth, D.: The workflow reference model. Technical Report TC00-1003,
Workflow Management Coalition (1995)

25. Oppenheimer, A., Shaffer, R.: Digital Signal Processing. Prentice-Hall, Englewood
Cliffs (1975)

26. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques and Tools.
Addison-Wesley, Inc., Reading (1986)

27. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. Journal
of the ACM 24(4), 664–675 (1977)

28. Fraser, C., Irving, R.: Approximation algorithms for the shortest common super-
sequence. Nordic Journal of Computing 2(3), 303–325 (1995)

A Region-Based Algorithm for Discovering

Petri Nets from Event Logs

J. Carmona1, J. Cortadella1, and M. Kishinevsky2

1 Universitat Politècnica de Catalunya, Spain
2 Intel Corporation, USA

Abstract. The paper presents a new method for the synthesis of Petri
nets from event logs in the area of Process Mining. The method derives a
bounded Petri net that over-approximates the behavior of an event log.
The most important property is that it produces a net with the smallest
behavior that still contains the behavior of the event log. The methods
described in this paper have been implemented in a tool and tested on
a set of examples.

1 Introduction

The discovery of formal models from event logs in information systems is known
as process mining. Since the nineties, the area of process mining has been fo-
cused in providing formal support to business information systems [16]. In the
industrial domain, ranging from hospitals and banks to sensor networks or CAD
for VLSI, process mining can be applied to succinctly summarize the behavior
observed in large event logs [14]. Nowadays, several approaches can be used to
mine formal models, most of them included in the ProM framework [15].

The synthesis problem [7] is related to process mining: it consists in building a
Petri net that has a behavior equivalent to a given transition system. The prob-
lem was first addressed by Ehrenfeucht and Rozenberg [8] introducing regions to
model the sets of states that characterize marked places. Process mining differs
from synthesis in the knowledge assumption: while in synthesis one assumes a
complete description of the system, only a partial description of the system is
assumed in process mining. Therefore, bisimulation is no longer a goal to achieve
in process mining. Instead, obtaining approximations that succinctly represent
the log under consideration are more valuable [19].

In the area of synthesis, some approaches have been studied to take the theory
of regions into practice. In [3] polynomial algorithms for the synthesis of bounded
nets were presented. This approach has been recently adapted for the problem of
process mining in [4]. In [6], the theory of regions was applied for the synthesis
of safe Petri nets with bisimilar behavior. Recently, the theory from [6] has been
extended to bounded Petri nets [5]. In this paper we adapt the theory from [5]
to the problem of process mining.

The work presented in this paper aims at constructing (mining) a Petri net
that covers the behavior observed in the event log, i.e. traces in the event log

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 358–373, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 359

s

p
rj rs

sb

em ac

ap

c
r

Fig. 1. Petri net mining to avoid overfitting

will be feasible in the Petri net. Moreover, the Petri net may accept traces not
observed in the log. Additionally, a minimality property is demonstrated on the
mined Petri net: no other net exists that both covers the log and accepts less
traces than the mined Petri net. This capability of minimal over-approximation
represents the main theoretical contribution of this paper. The methods pre-
sented in the paper can mine a particular k-bounded Petri net, for a given
bound k. We have implemented the theory of this paper in a tool, and some
preliminary results from logs are reported. The approach taken in this paper
is a formal one and differs from the more heuristic methods in the literature.
Although the methods presented might have a high complexity for large logs,
they can be combined with recent iterative approaches [18] to alleviate their
complexity.

This paper shares common goals with the previously presented paper [4].
In [4], two process mining strategies on region of languages are presented, having
the same minimality goal as the one that we have in this paper. However the
strategy is different: integer linear models are solved in order to find a set of
special places called feasible places that guarantee the inclusion of the traces
from the event log. The more places added, the more traces are forbidden in
the resulting net. If the net contains all the possible feasible places, then the
minimality property can be demonstrated. However, the set of feasible places
might be infinite. In our case, given a maximal bound k for the mining of a
k-bounded Petri net, minimal regions of the transition system are enough to
demonstrate the minimality property on this bound.

Example. In [14], a small log is presented to motivate the overfitting
produced by synthesis tools. The log contains the following activities:
r=register, s=ship, sb=send bill, p=payment, ac=accounting, ap=approved,
c=close, em=express mail, rj=rejected, and rs=resolve. Now assume that the
event log contains the traces (r, s, sb,p, ac, ap, c), (r,sb,em, p, ac, ap, c),
(r, sb, p, em, ac, rj, rs, c), (r, em, sb, p, ac, ap, c), (r, sb, s, p, ac, rj, rs, c),
(r, sb, p, s, ac, ap, c) and (r, sb, p, em, ac, ap, c). From this log, a TS can
be obtained [13] and a PN as the one shown in Figure 1 will be synthesized
by a tool like petrify [6]. If the log is slightly changed (for instance, trace
(r, sb, s, p, ac, rj, rs, c) is replaced by (r, sb, s, p, ac, ap, c), the synthesis tool
will adapt the PN to account for the changes, deriving a different PN. This means
that synthesis algorithms are very sensitive to variations in the logs. However,
the techniques presented in this paper, as it happens also with traditional

360 J. Carmona, J. Cortadella, and M. Kishinevsky

mining approaches like the α-algorithm [16], are less sensitive to variations in
event logs, and will derive the same PN over the modified log.

The two models used in this paper are Petri nets and transition systems. We
will assume that a transition system represents an event log obtained from ob-
serving a real system from which an event-based representation (e.g. a Petri net)
approximating its behavior must be obtained. The derivation of the transition
system from an event log is an important step, that may have big impact in
the final mined Petri net, as it is demonstrated in [13]. A two-step approach is
presented in [13], emphasizing that the first step (generation of the transition
system) is crucial for the balance between underfitting and overfitting. If the de-
sired abstraction is attained in the first step, i.e. the transition system represents
an abstraction of the event log, the second step is expected to reproduce exactly
this abstraction, via synthesis. The methods presented in this paper extend the
possibilities of this two-step approach, given that the second step might also
introduce further abstraction in a controlled manner. The approaches based on
regions of languages perform the mining process in only one step, provided that
logs can be directly interpreted as languages [4].

2 Preliminaries: Theory of Regions

2.1 Finite Transition Systems and Petri Nets

Definition 1 (Transition system). A transition system (TS) is a tuple
(S, E, A, sin), where S is a set of states, E is an alphabet of actions, such
that S ∩ E = ∅, A ⊆ S × E × S is a set of (labelled) transitions, and sin is the
initial state.

Let TS = (S, E, A, sin) be a transition system. We consider connected TSs that
satisfy the following axioms:

– S and E are finite sets.
– Every event has an occurrence: ∀e ∈ E : ∃(s, e, s′) ∈ A;
– Every state is reachable from the initial state: ∀s ∈ S : sin

∗→ s.

A TS is called deterministic if for each state s and each label a there can
be at most one state s′ such that s

a→ s′. The relation between TSs will be
studied in this paper. The language of a TS, L(TS), is the set of traces feasible
from the initial state. When, L(TS1) ⊆ L(TS2), we will denote TS2 as an over-
approximation of TS1. The notion of simulation between two TSs is related to
this concept:

Definition 2 (Simulation [2]). Let TS1 = (S1, E, A1, sin1) and TS2 = (S2, E,
A2, sin2) be two TSs with the same set of events. A simulation of TS1 by TS2 is
a relation π between S1 and S2 such that

– for every s1 ∈ S1, there exists s2 ∈ S2 such that s1πs2.
– for every (s1, e, s

′
1) ∈ A1 and for every s2 ∈ S2 such that s1πs2, there exists

(s2, e, s
′
2) ∈ A2 such that s′1πs′2.

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 361

When TS1 is simulated by TS2 with relations π, and viceversa with relation π−1,
TS1 and TS2 are bisimilar [2].

Definition 3 (Petri net [12]). A Petri net (PN) is a tuple (P, T, F, M0)
where P and T represent finite sets of places and transitions, respectively, and
F ⊆ (P × T) ∪ (T × P) is the flow relation. The initial marking M0 ⊆ P defines
the initial state of the system1.

The sets of input and output transitions of place p are denoted by •p and p•,
respectively. The set of all markings of N reachable from the initial marking
m0 is called its Reachability Set. The Reachability Graph of PN (RG(PN)) is a
transition system in which the set of states is the Reachability Set, the events
are the transitions of the net and a transition (m1, t, m2) exists if and only if
m1

t→ m2. We use L(PN) as a shortcut for L(RG(PN)).

2.2 Regions

We now review the classical theory of regions for the synthesis of Petri nets [8,
7,6]. Let S′ be a subset of the states of a TS, S′ ⊆ S. If s �∈ S′ and s′ ∈ S′, then
we say that transition s

a→ s′ enters S′. If s ∈ S′ and s′ �∈ S′, then transition
s

a→ s′ exits S′. Otherwise, transition s
a→ s′ does not cross S′.

Definition 4. Let TS = (S, E, A, sin) be a TS. Let S′ ⊆ S be a subset of states
and e ∈ E be an event. The following conditions (in the form of predicates) are
defined for S′ and e:

nocross(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 ∈ S′ ⇔ s2 ∈ S′

enter(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 �∈ S′ ∧ s2 ∈ S′

exit(e, S′) ≡ ∃(s1, e, s2) ∈ A : s1 ∈ S′ ∧ s2 �∈ S′

The notion of a region is central for the synthesis of PNs. Intuitively, each region
is a set of states that corresponds to a place in the synthesized PN, so that every
state in the region models the marking of the place.

Definition 5 (region). A set of states r ⊆ S in TS = (S, E, A, sin) is called a
region if the following two conditions are satisfied for each event e ∈ E:

– (i) enter(e, r) ⇒ ¬nocross(e, r) ∧ ¬exit(e, r)
– (ii) exit(e, r) ⇒ ¬nocross(e, r) ∧ ¬enter(e, r)

A region is a subset of states in which all transitions labeled with the same
event e have exactly the same “entry/exit” relation. This relation will become
the predecessor/successor relation in the Petri net. The event may always be
either an enter event for the region (case (i) in the previous definition), or
1 Although this paper deals with bounded Petri nets, for the sake of clarity we restrict

the theory of current and next sections to the simpler class of safe (1-bounded) Petri
nets. Section 4 discusses how to generalize the method for bounded Petri nets.

362 J. Carmona, J. Cortadella, and M. Kishinevsky

a b

c

d

r1r2

r3 r4

r5

a b

b a d

s1

c

(a) (b)

Minimal Regions

1

2r = { s1, s3 }

3r = { s2, s4 }

4r = { s3, s4 }
r = { s5 }

5

r = { s1, s2 }

(c)

s2 s3

s4

s5

Fig. 2. (a) Transition system, (b) minimal regions, (c) synthesis applying Algorithm
of Figure 3

always be an exit event (case (ii)), or never “cross” the region’s boundaries,
i.e. each transition labeled with e is internal or external to the region, where
the antecedents of neither (i) nor (ii) hold. The transition corresponding to the
event will be successor, predecessor or unrelated with the corresponding place
respectively.

Examples of regions are reported in Figure 2: from the TS of Figure 2(a),
some regions are enumerated in Figure 2(b). For instance, for region r2, event a
is an exit event, event d is an entry event while the rest of events do not cross
the region.

Definition 6 (Minimal region). Let r and r′ be regions of a TS. A region r′

is said to be a subregion of r if r′ ⊂ r. A region r is a minimal region if there is
no other region r′ which is a subregion of r.

Going back to the example of Figure 2, in Figure 2(b) we report the set of
minimal regions. The union of disjoint regions is a region, so for instance the
union of the regions r1 and r4 is the set {s1, s2, s3, s4} which is also a (non-
minimal) region.

Each TS has two trivial regions: the set of all states, S, and the empty set.
Further on we will always consider only non-trivial regions. The set of non-trivial
regions of TS will be denoted by RTS. Given a set S′ ⊆ S and a region r, r |S′

represents the projection of the region r into the set S′, i.e. r |S′= r ∩ S′.
A region r is a pre-region of event e if there is a transition labeled with e which

exits r. A region r is a post-region of event e if there is a transition labeled with
e which enters r. The sets of all pre-regions and post-regions of e are denoted
with ◦e and e◦, respectively. By definition it follows that if r ∈ ◦e, then all
transitions labeled with e exit r. Similarly, if r ∈ e◦, then all transitions labeled
with e enter r.

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 363

Algorithm: PN synthesis

– For each event e ∈ E generate a transition labeled with e in the PN;
– For each minimal region ri ∈ RTS generate a place ri;
– Place ri contains a token in the initial marking iff the corresponding

region ri contains the initial state of the TS sin;
– The flow relation is as follows: e ∈ ri• iff ri is a pre-region of e

and e ∈ •ri iff ri is a post-region of e, i.e.,

FTS
def
= {(r, e)|r ∈ RTS ∧ e ∈ E ∧ r ∈ ◦e}

∪{(e, r)|r ∈ RTS ∧ e ∈ E ∧ r ∈ e◦}

Fig. 3. Algorithm for Petri net synthesis from [11]

2.3 Generation of Minimal Regions

The computation of the minimal regions is crucial for the synthesis methods
in [6, 5]. It is based on the notion of excitation region [10].

Definition 7 (Excitation region2). The excitation region of an event e,
ER(e), is the set of states in which e is enabled, i.e.

ER(e) = {s | ∃s′ : (s, e, s′) ∈ A}

Minimal regions can be generated from the ERs of the events in a TS in the
following way: starting from the ER of each event, set expansion is performed on
those events that violate the region condition (a pseudocode of the expansion
algorithm is given in Figure 10 from [6]). This exploration can be done efficiently
by considering only sets that are not supersets of regions already computed [6],
because only minimal regions are required. Each time a region is obtained (ac-
cording to Definition 5), it is added to the set of regions. Finally, from the set
of regions computed, non-minimal regions are removed.

2.4 Region-Based Synthesis

The procedure given by [11] to synthesize a PN, NTS = (RTS, E, FTS, Rsin), from
an elementary transition system3, TS = (S, E, A, sin), is illustrated in Figure 3.
Notice that only minimal regions are required in the algorithm [7].

An example of the application of the algorithm is shown in Figure 2. The
initial TS and the set of minimal regions is reported in Figures 2(a) and (b),
respectively. The synthesized PN is shown in Figure 2(c).

2 Excitation regions are not regions in the terms of Definition 5. The term is used due
to historical reasons.

3 Elementary transition systems are a proper subclass of the TS considered in this
paper, were additional conditions to the ones presented in Section 2.1 are required.

364 J. Carmona, J. Cortadella, and M. Kishinevsky

b1
b2

b2

b1

a
b2

d

c

b1

(a) (b)

a

d c
dd

d

c
b

a b

d c
d

b

d

d

b
c

(c)

Fig. 4. (a) TS, (b) ECTS by label-splitting, (c) synthesized PN

2.5 Excitation-Closed Transition Systems

Definition 8 (Excitation-closed TS). A transition system TS = (S, E, A,
sin) is called excitation-closed (ECTS) if it satisfies the following two axioms:

– Excitation closure: For each event a:
⋂

r∈ ◦a r = ER(a)
– Event effectiveness: For each event a: ◦a �= ∅

The synthesis algorithm in Figure 3 applied to an ECTS derives a Petri net with
reachability graph bisimilar to the initial TS [6]. Note that the state separation
property of elementary transition systems, which enforces every pair of states to
be distinguished by the set of regions is not required. The set of regions needed by
the algorithm to preserve bisimilarity can be constrained to minimal pre-regions.

When the TS is not excitation closed, then it must be transformed to enforce
that property. One possible strategy is to represent every event by multiple
transitions with the same label. This technique is called label splitting. Figure 4
illustrates this technique. The initial TS, shown in Figure 4(a) is transformed
by splitting the event b into the events b1 and b2, as shown in Figure 4(b),
resulting in an ECTS. The synthesized PN, with two transitions for event b is
shown in Figure 4(c). Hence in PN synthesis label splitting might be crucial
for the existence of a PN with bisimilar behavior. However, sometimes label
splitting might degrade the resulting PN structure significantly, deriving intricate
causality relations that are not helpful for visualization. This phenomenon is
discussed in [5].

The following sections introduce PN mining, a version of PN synthesis where
the excitation closure is dropped.

3 Algorithm for Petri Net Mining

The goal of Petri net mining is to generate a PN that over-approximates all
observed behaviors in the TS, i.e. L(TS) ⊆ L(PN), and where L(PN) \ L(TS) is
small [4]. Additionally, obtaining a succinct PN with nice causality relations is
desirable. For this purpose, the classical synthesis conditions must be adapted
to allow the discovery of behaviors not present in the input TS. In this section
we show a simple yet powerful approach for relaxing the region-based synthesis
conditions from [6, 5] to obtain over-approximations of the TS. Formally, given

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 365

a TS=(S, E, A, sin) , the theory of regions can be adapted for mining a Petri net
PN=(P, T, F, M0) with the following characteristics:

1. L(TS) ⊆ L(PN),
2. T = E, i.e. there is no label splitting, and
3. Minimal language containment (MLC) property:

∀PN′ = (P ′, T ′, F ′, M ′
0) s.t. T ′ = E : L(TS) ⊆ L(PN′) ⇒ L(PN) ⊆ L(PN′)

Therefore the obtained Petri net represents the minimal over-approximation of
the input TS that can be synthesized without label splitting. The remainder
of this section will show how to relax the region-based synthesis to derive such
Petri net.

3.1 Mining Over-approximations of a TS

Bisimilarity or language equivalence are very restricting equivalence relations,
not very useful for the area of Petri net mining where over-approximations of
the initial event log are more valuable [19,4]. In [6,5], bisimulation between the
TS and the synthesized PN holds due to the excitation closure condition. Let us
assume in this section that the excitation closure condition is dropped, i.e. the set
of minimal pre-regions of some events may properly include the excitation region
of the event. With this simple relaxation, the PN obtained by the Algorithm of
Figure 3 will satisfy the MLC property (Theorem 2).

Theorem 1. Let TS=(S, E, A, sin) be a transition system, and PN=(P, T,
F, M0) be the synthesized net with the set of minimal regions of TS, using Algo-
rithm of Figure 3. Then L(TS) ⊆ L(PN).

Proof. The proof corresponds to the sufficiency direction from Theorem 3.4
in [6]. The theorem guarantees bisimilarity between an ECTS and the reach-
ability graph of the synthesized Petri net from the set of minimal regions. From
the two simulations necessary for having bisimulation in that theorem, only
one is preserved if the excitation closure condition is dropped. This remaining
simulation is the one between the TS and the reachability graph of the PN.
Hence every trace in the TS can be simulated by the PN when minimal re-
gions are used, even if the TS is not excitation closed. This suffices to prove the
theorem. �

Moreover, as the following results show, regions are preserved under language
containment or simulation.

Lemma 1. Let TS=(S, E, A, sin), TS′ = (S′, E′, A′, sin) be two transition sys-
tems such that S ⊆ S′, E ⊆ E′, T ⊆ T ′. If r ∈ RTS′ then r |S ∈ RTS.

Proof. If predicates (i),(ii) in Definition 5 hold in r for transitions in A′, then
they also hold for the transitions in A when r is restricted to S, given that A ⊆ A′

and S ⊆ S′, i.e. by removing arcs, no new violations of the region conditions can
be created (see Definition 5). �

366 J. Carmona, J. Cortadella, and M. Kishinevsky

We now prove a similar lemma on the correspondence of regions between simu-
lated TSs.

Lemma 2. Let TS=(S, E, A, sin), TS′ = (S′, E, A′, s′in) be such that there ex-
ists a simulation relation of TS by TS′ with relation π. If r ∈ RTS′ , then
π−1(r) ∈ RTS, and the nocross/enter/exit predicates for every event at r
are preserved in π−1(r).

Proof. The proof for this lemma is similar to the one used in Lemma 1, but
on simulated states: for every transition (s, e, s′) ∈ A there exists a transition
(π(s), e, π(s′)) ∈ A′. Therefore, the predicates (i),(ii) in Definition 5 hold in TS
for the set π−1(r). �

In general, language containment between two TSs does not imply simulation [9].
However, if the TS corresponding to the superset language is deterministic then
language containment guarantees the existence of a simulation:

Lemma 3. Let TS1 = (S1, E1, A1, sin1) and TS2 = (S2, E2, A2, sin2) be two TSs
such that TS2 is deterministic, and L(TS1) ⊆ L(TS2). Then TS2 is a simulation
of TS1.

Proof. The relation π ⊆ (S1 × S2) defined as follows:

s1πs2 ⇔ ∃ σ : sin1
σ→ s1 ∧ sin2

σ→ s2

represents a simulation of TS1 by TS2: the first item of Definition 2 holds since
L(TS1) ⊆ L(TS2). If the contrary is assumed, i.e. ∃s1 ∈ S1 :� ∃s2 ∈ S2 : s1πs2

then the trace leading to s1 in TS1 is not feasible in TS2, which contradicts the
assumption. The second item holds because the first item and the determinism
of TS2: for every s1 ∈ S1, TS2 deterministic implies that there is only one state
possible s2 ∈ S2 such that s1πs2. But now if e is enabled in s1 and not enabled
in s2 will imply that the trace σe, with sin1

σ→ s1, is not feasible in TS2, reaching
a contradiction to L(TS1) ⊆ L(TS2). �

And now we can proof the MLC property on the mined Petri net from a TS:

Theorem 2. Let PN=(P, T, F, M0) be the synthesized net with the set of mini-
mal regions of TS=(S, E, A, sin), using Algorithm of Figure 3. Then PN satisfies
the MLC property.

Proof. By contradiction. Let TS′ = (S′, E′, A′, s′in) be the reachability graph
corresponding to a PN′ = (P ′, T ′, F ′, M ′

0) such that E′ = T , L(TS) ⊆ L(TS′)
and L(PN) �⊆ L(TS′). The following facts can be observed:

– TS′ and RG(PN) are deterministic because E = E′ = T and therefore they
correspond to the reachability graph of Petri nets with a different label for
each transition.

– Since TS′ is deterministic and L(TS) ⊆ L(TS′), then there is a simulation π
of TS by TS′ (Lemma 3).

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 367

a b

dc

e

a

b

c

d e

(c)

a b

b a cc

c
ab

d

e

(a) (b)

p

Fig. 5. (a) Initial TS, (b) Mined Petri net , (c) Mined marked graph

– ∀r′ ∈ RTS′ , r = π−1(r) ∈ RTS, and the nocross/enter/exit predicates of
the events is the same in r′ and r (Lemma 2).

– Each non-minimal region can be described as the union of disjoint minimal
regions [6], and therefore we can focus only on minimal regions.

– Each minimal region r ∈ RTS is a region in RRG(PN), since PN has been
obtained with Algorithm of Figure 3 from the set of minimal regions in TS.
Moreover, since RG(PN) is deterministic and L(TS) ⊆ L(PN) (Theorem 1),
then there is a simulation of TS by RG(PN) (Lemma 3). Now using Lemma 2,
together with the fact that r is a region both in RTS and RRG(PN), the
nocross/enter/exit predicates of events in TS hold also in RG(PN).

– Hence, the previous items show that for a region in TS′ there is a corre-
sponding region in RG(PN) with the same nocross/enter/exit predicates
on the events. In Petri net terms, this fact means that the flow relation of
PN′ is included in the flow relation of PN. Additionally, the simulations con-
necting both transition systems preserve the initial states (see Lemma 3).
This contradicts the assumption that L(PN) �⊆ L(TS′). �

3.2 Related Issues and Further Extensions

Now we discuss the features of the mining strategy and possible extensions.

Visualization capabilities. By removing the excitation closure condition, one
guarantees that there is a 1-to-1 correspondence between the events in the log
and the transitions in the Petri net. This is important in terms of visualization.
Moreover, the set of minimal regions can include redundant regions: a region r
is redundant if the language of the Petri net without r is preserved. Therefore
redundant regions can be safely removed from the net. The theory in [6, 5]
proposes methods to detect redundant places, based in the preservation of
the excitation closure. Those methods have been adapted and included in the
mining approach presented in this paper.

Mining of Petri net subclasses. As it has been done in synthesis (see [6],
Section 4.4), the approach presented in this paper might be adapted to mine

368 J. Carmona, J. Cortadella, and M. Kishinevsky

b

c

a a b

c

(b) (c)

a a b

a

b

c

b

a

c

a

c

(a)

a

2

Fig. 6. (a) Transition system, (b) Mined safe Petri net, (c) Mined 3-bounded Petri net

Petri net subclasses. The basic idea is to restrict the generation of regions in
order to generate regions satisfying structural Petri net conditions. Let us use
the example in Figure 5 to illustrate this. In Figure 5(b) we report the mined
two-bounded Petri net from the TS of Figure 5(a) (next Section shows how to
generalize the mining method to the bounded case). Now imagine that we are
interested in the mining of marked graphs, i.e. Petri nets where places have at
most one predecessor (successor) transition. Notice that place p in Figure 5(b)
does not satisfy this condition. If the mining of a marked graph is applied, the
Petri net shown in Figure 5(c) is obtained.

Critical events. The methods presented can be extended to select those events
that might be critical in terms of representation: for those events, the avoidance
of over-approximation might be imposed by requiring excitation closure on them.
The application of label-splitting can be guided to attain this goal.

4 Mining Bounded Petri Nets

In the literature for the mining of Petri nets from event logs, it is widely accepted
the use of ordinary and safe Petri nets for the discovery of process models (a
remarkable exception is presented in [4]). Due to the recent results for the syn-
thesis of bounded and weighted Petri nets [5], this limitation can be waved, and
therefore a more succinct and accurate model of the log can be obtained using
the techniques developed in this paper. Moreover, the possibility to search for
unsafe regions might be crucial in order not to over-approximate the event log
too much. To illustrate this fact, see the example in Figure 6. The mining of a
safe Petri net from the TS of Figure 6(a) is shown in Figure 6(b), whereas Fig-
ure 6(c) reports the mining of a 3-bounded net. The language accepted by the
PN from Figure 6(b) is (a∗ ‖ b)c which might be an over-conservative approx-
imation4, while the net in Figure 6(c) accepts (a3 ‖ b)c, which although being
also an over-approximation, it is a more accurate one. This section introduces
4 The expression e1 ‖ e2 denotes the set of possible interleavings between e1 and e2.

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 369

b

ca
22

p1

p2 p3

120 111 102

022 013 004031040

b b

b b b b

200
a

a a a
c

cc

c

Fig. 7. A transition system and an equivalent bounded Petri net

informally how the theory of the previous sections can be generalized to mine
bounded systems.

In [5], an extension of the region-based synthesis of Petri nets has been pre-
sented to support bounded nets. The methods assume that a k is initially given
for the search of a k-bounded Petri net. Let us use the example in Figure 7 to
summarize the theory. In the bounded case, the basic idea is that regions are
represented by multisets (i.e., a state might have multiplicity greater than one).
Figure 7 depicts a TS with 9 states and 3 events. After synthesis, the Petri net
at the right is obtained. Each state has a 3-digit label that corresponds to the
marking of places p1, p2 and p3 of the Petri net, respectively. The shadowed
states represent the general region that characterizes place p2. Each grey tone
represents a different multiplicity of the state (4 for the darkest and 1 for the
lightest). Each event has a gradient with respect to the region (+2 for a, -1 for
b and 0 for c). The gradient indicates how the event changes the multiplicity of
the state after firing. For the same example, the equivalent safe Petri net has 5
places and 10 transitions.

In summary, the generalization of the theory of Sections 2 and 3 is based
on the idea that regions are no longer sets but multisets, and the predicates
for region conditions must take into account the gradient of each event on the
multisets. The excitation closure notion is defined on the support (states with
multiplicity greater or equal than one) of the multiset. Finally, the algorithm for
synthesis of bounded Petri nets is generalized to account for bounded markings
and weighted arcs. The interested reader may refer to [5] for details.

The theory in [5] has been incorporated in the Petri net mining approach
presented in this paper. Hence the mining of Petri nets can be guided to find
bounded Petri nets. An example of k-bounded mining is shown in Section 5.

5 Examples, Experiments and Tool

The theory described in this paper has been incorporated in Genet, a tool for
the synthesis and mining of concurrent systems [5]. Most of the examples have
been obtained from [1].

Mining of safe Petri nets
Some examples have been presented along the paper. An additional example
is shown in Figure 8. The language accepted by the PN of Figure 8(b) is

370 J. Carmona, J. Cortadella, and M. Kishinevsky

a

e

d

b c

a
b

c

c
d

e

e

e e e e c b d

c d

(a) (b)

b

b
b

c b

dc

Fig. 8. (a) Initial TS, (b) Mined Petri net

ae ∗ (b ‖ c)d, which properly includes the language of the TS of Figure 8(a). Re-
markably, applying the α-algorithm [17] to this event log results in the same PN.

Mining of bounded Petri nets
An example of the power of k-bounded PN mining is shown in Figure 9. The sys-
tem modeled represents 5 procesess sharing 3 resources. Every process requires
one resource, but there is one process that requires two resources. We assume
that the TS used for this example can be constructed from a set of simulations.
The 3-bounded PN from the corresponding transition system contains 20 states
and 74 arcs. The synthesis of a safe PN from the transition system applies many
label splittings in order to enforce the excitation closure, deriving in a PN with
15 places, 34 transitions and 128 arcs. Clearly, neither the initial TS nor the syn-
thesized PN are of any help to realize the control flow of this example. However,
the mined 3-bounded PN is a succint representation of the log.

Experiments
The mining of some examples is summarized in Table 1. Following the two-step
mining approach from [13], we have obtained the transition systems from each
log with the FSM Miner plugin available in ProM. For each log, columns report
the number of states of the initial log |S|, number of states of the minimal
bisimilar transition system |[S]| (that gives an idea of the amount of redundancy
present in the initial log) and number of events |E|. Next, the number of places
|P | and transitions |T | of the PN obtained by synthesis is reported. For each
version of the mining algorithm (safe and 2-bounded), the number of places
of the mined PN and number of states of the corresponding minimal bisimilar
reachability graph are reported. The CPU time for the mining of all examples
but the last one has taken less than two seconds. The mining of pn ex 10, 2-
bounded version, took one minute. Finally the same information is provided for
two well-known mining algorithms in ProM: the Parikh Language-based Region
and the Heuristics [20] miners. The number of unconnected transitions (|TU |)

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 371

e2

t2

e3

t3

e4

t4

e5

t5

e1 t1
2 2

Fig. 9. Mined 3-bounded PN for a system of five processes sharing three resources

Table 1. PN mining applied to event logs from [1]

synthesis mining

petrify Genet Genet ProM ProM

safe safe 2-bounded Parikh Heuristics

benchmark |S| |[S]| |E| |P | |T | |P | |[S]| |P | |[S]| |P | |TU | |[S]| |P | |TI | |[S]|
groupedFollowsa7 18 10 7 7 7 6 11 7 11 7 0 10 7 1 8

groupedFollowsal1 15 15 7 8 9 10 16 12 15 7 0 7 14 10 22

groupedFollowsal2 25 25 11 15 11 15 25 15 25 11 0 13 15 3 25

herbstFig6p21 16 16 7 11 13 7 22 11 16 1 6 2 18 15 ∞
herbstFig6p34 32 32 12 16 13 16 34 18 32 8 2 12 19 12 ∞
herbstFig6p41 20 18 14 16 14 16 18 16 18 17 0 18 14 0 18

staffware 15 31 24 19 20 20 18 22 19 31 18 0 21 19 0 19

pn ex 10 233 210 11 64 218 13 281 16 145 8 2 14 41 25 ∞

derived by the Parikh miner and the number of invisible transitions introduced
by the Heuristic miner is also reported (|TI |).

The numbers in Table 1 suggest some remarks. If the synthesis is compared
with the mining in the case of safe PNs, it should be noticed that even for
those small examples the number of transitions is reduced, due to the absence
of label splitting (see row for pn ex 10). The number of places is also reduced
in general. It should also be noticed that 2-bounded mining represents the log
more accurately, and thus more places are needed with respect to the min-
ing of safe nets. Sometimes the mined PN accepts more traces but the corre-
sponding minimal bisimilar transition system has less states, e.g. pn ex 10: after
over-approximating the initial TS, several states become bisimilar and can be
minimized.

The Parikh miner tends to derive very aggressive abstractions, as it is demon-
strated in the pn ex 10 and herbstFig6p21 logs. Sometimes the Petri nets ob-
tained with this miner contain isolated transitions, because the miner could not
find places connecting them to the net. The Heuristics miner is based on the
frequency of patterns in the log. The miner derives a heuristic net that can be
afterwards converted to Petri net with ProM. Some of the Petri nets obtained
with this conversion turned out to be unbounded (denoted with symbol ∞ in

372 J. Carmona, J. Cortadella, and M. Kishinevsky

the table), and contain a significant amount of invisible transitions. This miner
is however very robust to noise in the log. In conclusion, different miners can
achieve different mining goals, widening the application of Process mining into
several directions.

6 Conclusions

A strategy for adapting the theory of regions for the area of Process mining
has been presented. The main contribution is to allow the generation of over-
approximations of the event log by means of a bounded Petri net, not necessarily
safe. An important result is presented that guarantees the minimal language
containment property on the mined PN. The theory has been incorporated in a
synthesis tool.

Acknowledgements

We would like to thank W. van der Aalst, E. Verbeek and B. van Dongen for
helpful discussions and guidance, and anonymous referees for their help in im-
proving the final version of the paper. This work has been supported by the
project FORMALISM (TIN2007-66523), and a grant by Intel Corporation.

References

1. Process mining, www.processmining.org
2. Arnold, A.: Finite Transition Systems. Prentice-Hall, Englewood Cliffs (1994)
3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-

thesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.)
CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–383.
Springer, Heidelberg (1995)

4. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions
of languages. In: Proc. 5th Int. Conf. on Business Process Management, September
2007, pp. 375–383 (2007)

5. Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L.,
Yakovlev, A.: A symbolic algorithm for the synthesis of bounded Petri nets. In:
29th International Conference on Application and Theory of Petri Nets and Other
Models of Concurrency (June 2008)

6. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets
from finite transition systems. IEEE Transactions on Computers 47(8), 859–882
(1998)

7. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315
(1996)

8. Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Infor-
matica 27, 315–368 (1990)

9. Engelfriet, J.: Determinacy - (observation equivalence = trace equivalence). Theor.
Comput. Sci. 36, 21–25 (1985)

www.processmining.org

A Region-Based Algorithm for Discovering Petri Nets from Event Logs 373

10. Kishinevsky, M., Kondratyev, A., Taubin, A., Varshavsky, V.: Concurrent Hard-
ware: The Theory and Practice of Self-Timed Design. John Wiley and Sons, London
(1993)

11. Nielsen, M., Rozenberg, G., Thiagarajan, P.: Elementary transition systems. The-
oretical Computer Science 96, 3–33 (1992)

12. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn, Institut für In-
strumentelle Mathematik (technical report Schriften des IIM Nr. 3) (1962)

13. van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther,
C.: Process mining: A two-step approach to balance between underfitting and over-
fitting. Technical Report BPM-08-01, BPM Center (2008)

14. van der Aalst, W.M.P., Günther, C.W.: Finding structure in unstructured pro-
cesses: The case for process mining. In: Basten, T., Juhás, G., Shukla, S.K. (eds.)
ACSD, pp. 3–12. IEEE Computer Society, Los Alamitos (2007)

15. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros,
A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W.E., Weijters, A.J.M.M.:
ProM 4.0: Comprehensive support for real process analysis. In: Kleijn, J., Yakovlev,
A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)

16. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data
Knowl. Eng. 47(2), 237–267 (2003)

17. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

18. van Dongen, B., Busi, N., Pinna, G., van der Aalst, W.: An iterative algorithm for
applying the theory of regions in process mining. Technical Report Beta rapport
195, Department of Technology Management, Eindhoven University of Technology
(2007)

19. Verbeek, H., Pretorius, A., van der Aalst, W.M.P., van Wijk, J.J.: On Petri-net
synthesis and attribute-based visualization. In: Proc. Workshop on Petri Nets and
Software Engineering (PNSE 2007), June 2007, pp. 127–141 (2007)

20. Weijters, A., van der Aalst, W., de Medeiros, A.A.: Process mining with the heuris-
tics miner-algorithm. Technical Report WP 166, BETA Working Paper Series,
Eindhoven University of Technology (2006)

BESERIAL: Behavioural Service Interface

Analyser

Ali Aı̈t-Bachir1,�, Marlon Dumas2, and Marie-Christine Fauvet1

1 University of Grenoble, LIG (MRIM)
{Ali.Ait-Bachir,Marie-Christine.Fauvet}@imag.fr

2 University of Tartu Estonia
marlon.dumas@ut.ee

Abstract. In a service-oriented architecture, software services interact
by means of message exchanges that follow certain patterns documented
in the form of behavioural interfaces. As any software artifact, a service
interface evolves over time. When this happens, incompatibility problems
may arise. We demonstrate a tool, namely BESERIAL, that can pinpoint
incompatibilities between behavioural interfaces.

1 Motivation

The interface of a software service establishes a contract between the service and
its clients or peers. In its basic form, a service interface defines the operations
provided by the service and the schema of the messages that the service can
receive and send. This structural interface can be captured for example using
WSDL. In the case of conversational services that provide several inter-related
operations, a service interface may also capture the inter-dependencies between
these operations. Such behavioural interfaces can be described for example using
BPEL business protocols, or more simply using state machines as we consider
in this paper [1].

As a service evolves, its interface is likely to undergo changes. These changes
may lead to the situation where the interface provided by a service no longer
matches the interfaces that its peers expect from it. This may result in incom-
patibilities between the service and the client applications and other services
that interact with it.

This paper presents a tool, namely BESERIAL, which is able to automatically
detect incompatibilities between behavioural service interfaces and to report them
graphically. This feature enables designers to pinpoint the exact locations of these
incompatibilities and to fix them. BESERIAL is able to detect elementary changes
in the flow of service operations that lead to incompatibilities (e.g. adding an op-
eration, deleting an operation and modifying an operation). Existing tools, such

� This author is partially funded by the Web Intelligence project granted by the French
Rhône-Alpes Region and a scholarship from Estonian Ministry of Education and
Research.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 374–377, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

BESERIAL: Behavioural Service Interface Analyser 375

as WS-Engineer1, are able to detect if two behavioural interfaces are compatible.
But, they will only detect one incompatibility at a time, whereas BESERIAL iden-
tifies several incompatibilities at once. Also BESERIAL allows one to compare a
given interface with multiple other interfaces in order to identify which one most
closely matches the given interface. This can be used for service selection. A screen-
cast of the demo is available online at http://www-clips.imag.fr/mrim/User/
ali.ait-bachir/webServices/webServices.html

2 BESERIAL Tool

In BESERIAL behavioural service interfaces are modeled by means of
Finite State Machines (FSM)2. These FSMs are serialized in SCXML3. Fig-
ure 1 (Process1) depicts an FSM representing the behaviour of a given interface
(the underlying service supports orders and deliveries of goods). In this work, we
consider only the external behaviour of an interface (sent messages and received
messages) and we abstract away from internal steps of the underlying business
process. Accordingly, transitions are labelled by the types of messages to be sent
(with prefix ’ !’) or received (with prefix ’?’).

2.1 Incompatibility Detection

One of the main features of BESERIAL is to detect changes between a new ver-
sion of an interface and a previous one. BESERIAL specifically detects changes
that may cause the new version to be incompatible vis-a-vis of clients or peers
that use the previous version. To that end, BESERIAL relies on a simulation
algorithm incorporating an incompatibility diagnosis and recovery mechanism.
The originality of BESERIAL is that the simulation algorithm does not stop at
the first incompatibility encountered [1,3] but tries to search further to identify
a series of incompatibilities leading up to one of the final states of the old version
of the interface.

A screenshot of the tool is shown in Figure 1. The screenshot displays the re-
sult of comparing two versions of an interface FSM (Process2 versus Process1).
The operation that allows customers to cancel an order has been deleted as well
as the operation that allows the supplier to send updated information about an
order to the customer (!OrderResponse). Accordingly, we can see two state pairs
(updateOrderResonse, invoice) and (transfer, transfer) linked by a dashed
edge labelled deletion. The deleted operations are !OrderResponse and ?Can-
celOrder shown by dotted arrows.

For validation purposes, we built a test collection consisting of 14 process sce-
narios from the xCBL4 textual description of order management choreographies.
1 http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
2 Transformations exist between other languages for describing behavioural service in-

terfaces (e.g. BPEL) and FSMs – see for example the WS-Engineer and Tools4BPEL
toolsets referenced above.

3 http://www.w3.org/TR/scxml/
4 XML Common Business Library (http://www.xcbl.org/).

http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html
http://www-clips.imag.fr/mrim/User/ali.ait-bachir/webServices/webServices.html
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
http://www.w3.org/TR/scxml/
http://www.xcbl.org/

376 A. Aı̈t-Bachir, M. Dumas, and M.-C. Fauvet

process #2:orderManagement_3_3.xmlprocess #1:orderManagement_3_2.xml

_delivery _canceledcanceled

transfer

cancelOrder
_transfer

_order

updateOrderResponse

_orderResponse

_cancelOrder

_invoice

order

orderResponse

delivery

!Invoice

?CancelOrder

?Transfer

?CancelOrder

!OrderResponse

?CancelOrder!Invoice

?Order

!OrderResponse

?CancelOrder

?CancelOrder

?Order

deletion

!OrderResponse

deletion

!CancelOrderResponse
?Transfer!CancelOrderResponse

Fig. 1. Detected incompatibilities in two FSMs

These two-party choreographies describe possible document exchanges between
trading partners in an Order Management business process.

2.2 BESERIAL in Action

One of the two features of BESERIAL is to detect changes between two be-
havioural interfaces that cause that one interface does not simulate the behaviour
of another interface. A typical usage scenario is one where the compared inter-
faces correspond to consecutive versions of a service. The algorithm simulates
the two FSMs by visiting state pairs (one state from each of the two interfaces).
Given a state pair, the algorithm determines if an incompatibility exists and clas-
sifies it as addition, deletion or modification (i.e. replacement of one operation
with another). If an addition is detected the algorithm moves along the transi-
tion of the added operation in the new version only. Conversely, if the change is
a deletion, the algorithm will move along the transition of the deleted operation
in the old version only. However, if a modification is detected, the algorithm
progresses along both FSMs simultaneously. Detection results are written down
in a text area showing the test and its outcomes (states, changes). Results can
be viewed graphically, as in Figure 1, to better pinpoint the incompatibilities.

BESERIAL can also compare one interface to a collection of interfaces. The
comparison results are sorted increasingly according to the number of detected
incompatibilities. This functionality may be used to select which service interface
is most closely compatible with the required interface.

BESERIAL: Behavioural Service Interface Analyser 377

Fig. 2. Test results of incompatibility detections in BESERIAL tool

In Figure 2, one given interface is compared to other interfaces and the de-
tection result is rendered and sorted in the table area. Results can be sorted
increasingly and a graph can be viewed. The graph shows which interface yields
less incompatibilities with respect to the interface given as reference. In this ex-
ample, the closest interface to the given one yields two incompatibilities and the
worst result is six incompatibilities.

3 Future Work

In this paper we focused on elementary incompatibility detection. Ongoing work
aims at extending BESERIAL towards two directions:

– Detecting complex incompatibilities combining elementary ones,
– Fixing detected incompatibilities.

As BESERIAL covers synchronous communications only, it also needs to be
extended to address the asynchronous case along the lines of [2].

References

1. Bordeaux, L., Salan, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Proc. 5th Int. on Technologies for E-Services, Canada, pp. 15–28.
Springer, Heidelberg (2004)

2. Motahari-Nezhad, R.H., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proc. of the 16th WWW Int. Conf.,
Canada, pp. 993–1002. ACM, New York (2007)

3. Wu, J., Wu, Z.: Similarity-based web service matchmaking. In: Proc. of the Int.
Conference on Services Computing, Florida, pp. 287–294 (2005)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 378–381, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Business Transformation Workbench:
A Practitioner’s Tool for Business Transformation

Juhnyoung Lee, Rama Akkiraju, Chun Hua Tian, Shun Jiang,
Sivaprashanth Danturthy, and Ponn Sundhararajan

IBM Corporation
Armonk, New York 10504, U.S.A.

{jyl,akkiraju}@us.ibm.com, {chtian,jshun}@cn.ibm.com,
{Sivaprashanth.D,psundhar}@in.ibm.com

Abstract. Business transformation is a key management initiative that attempts
to align people, business process and technology of an enterprise more closely
with its business strategy and vision. It is an essential part of the competitive
business cycle. Existing consulting methods and tools do not address issues
such as scalability of methodology, knowledge management, asset reuse, and
governance well, to name a few. This paper presents Business Transformation
Workbench, a practitioner’s tool for business transformation addressing these
problems. It implements a methodical approach that was devised to analyze
business transformation opportunities and make business cases for transforma-
tion initiatives and thereby offering decision-support to the consultants. It pro-
vides an intuitive way to evaluate and understand various opportunities in staff
and IT consolidation and process standardization. It embodies structured ana-
lytical models, both qualitative and quantitative, to enhance the consultants’
practices. BT Workbench has been instantiated with data from finance man-
agement domain and applied to address a client situation as a case study. An al-
pha testing of the tool was conducted with about dozen practitioners. 90% of
the consultants who tested the BT Workbench tool felt that the tool would help
them do a better job during a client engagement.

1 Introduction

Business transformation is a key management initiative that attempts to align people,
business process and technology of an enterprise closely with its business strategy and
vision. Business transformation is often achieved by taking a holistic look at various
dimensions of an enterprise such as business models, management practices, business
processes, organizational structure and technology and optimizing them with best-
practice or differentiated methods to reach a strategic end state. For example, business
transformation in the enterprise finance area would, among others, optimize financial
processes such as accounts receivables, eliminate non-value-added tasks, improve
efficiency and productivity of people, and reduce errors by using technologies. Busi-
ness transformation is considered an essential part of the competitive business cycle.

Consulting service companies in the business transformation area brand technology
and consulting as their core product and service offerings. These offerings include

 Business Transformation Workbench 379

models, methods and tools devised for facilitating business transformation. While the
state-of-the-art business transformation consulting models and methods are useful,
there are a number of general problems that need to be addressed to make them more
effective. First, the current approaches are often limited in scalability because they
demand subject matter experts to work with a variety of disconnected data, tools,
templates and other assets. It is often cumbersome and difficult to streamline the data
gathering and management manually. Data and documents often reside in multiple
folders distributed among several machines. Consistency checking across data can
only be done manually, and the process requires experts. Second, it is hard to capture
a structured thinking process without a tool which enforces the process or method.
Third, it is difficult to disseminate and reuse knowledge effectively, if it is not cap-
tured systematically. In addition, assets such as knowledge, models and methods are
not necessarily managed. For example, more often than not, there is no version con-
trol in place, and updating the assets is hard to do consistently across the board. Fi-
nally, it is difficult to visualize multiple views with scattered documents of a process
view, a metrics view, a component view, a resource view, etc., which, in turn, makes
it hard to link up upstream and downstream analyses.

This paper presents a practitioner’s tool for business transformation addressing
these problems. Business Transformation Workbench is a productivity tool for busi-
ness consultants. It is a tool to analyze business performance, to identify transforma-
tion opportunities and to assess the business value of specific transformation
initiatives. Using this tool, consultants can examine which business functions and
components are underperforming in comparison to industry benchmark measures and
why. By investigating the organizational responsibilities and IT application portfolio
in conjunction with business components, shortfalls such as duplications, over-
extensions, gaps and deficiencies can be identified and reasoned. Specific solutions
can be discovered to address the identified shortfalls. Financial benefits of implement-
ing specific solutions can be analyzed further via conducting a business case analysis.
The Business Transformation Workbench embodies best practices and methodologies
in a tool, which also helps address scalability, data management, and governance,
linkages to upstream and downstream activities, analyses around benchmarking,
Component Business Model (CBM) based analysis, and business case preparation.

2 Business Transformation Workbench

BT Workbench provides an integrated view of various business models and data,
including component business models, a business process model such as APQC
(American Product Quality Council) Process Classification Framework (PCF) and
SAP Business Process Hierarchy (BPH), a value driver model, an IT infrastructure
map, an organization structure map, and a solution catalog, with the models linked to
each other. It automates traditional component business model-based analyses in form
of visual queries and inference.

For example, one can ask questions such as which metrics help measure the per-
formance of a given business component? What are the IT systems that support the
business functions represented by a business component? Which organizations im-
plement the business functions represented by a business component? Which

380 J. Lee et al.

transformation solutions can address a given shortfall? These questions are answered
in the tool via the explicit and the inferred linkages made among different models
such as the component model, IT system model, organizational model, metrics model
etc. This is also referred to as daisy chain analysis in the tool. The tool automates the
component performance analysis by comparing the metrics that help measure the
performance of a component with benchmark data. This is referred to as ‘heat map’
analysis in the tool. The underperforming components can be marked as shortfalls
based on whether it is caused by a misaligned IT system or by an organization. This
identification and marking of shortfalls is referred to as ‘shortfall assessment’ in the
tool. Finally, the tool provides business benefit analyses in terms of value drivers and
standard financial metrics for business case analysis such as NPV (Net Present
Value), IRR (Internal Return Rate), ROI (Return on Investment), and payback time.
BT Workbench provides normative and constructive business performance analysis
models, so it can be easily configured for different types of clients, initiatives, and
projects.

3 Component Business Modeling

Component Business Modeling is a novel business modeling technique from IBM. A
component business model represents the entire business in a simple framework that
fits on a single page. It is an evolution of traditional views of a business, such as busi-
ness unit view, functional view, geographical view, and processes view. The compo-
nent business model methodology helps identify basic building blocks of business,
where each building block includes the people, processes and technology needed by
this component to act as a standalone entity and deliver value to the organization.

After a comprehensive analysis of the composition of each business, a consultant
can map these individual building blocks, or components, onto a single page. Each
component business map is unique to each company. The columns are created after
thorough analysis of a business’s functions and value chain. The rows are defined by
actions. Figure 1 shows a visual representation of a CBM map for a business. The top
row, ‘direct,’ shows all of those components in the business that set the overall strat-
egy and direction for the organization. The middle row, ‘control,’ represents all of the
components in the enterprise which translate those plans into actions, in addition to
managing the day-to-day running of those activities. The bottom row, ‘execute,’ con-
tains the business components that actually execute the detailed activities and plans of
an organization. The component business map shows activities across lines of busi-
ness, without the constrictions of geographies, internal silos or business units. This
single page perspective provides a view of the business which is not constricted by
barriers that could potentially hamper the ability to make meaningful business trans-
formation. The component business model facilitates to identify which components of
the business create differentiation and value. It also helps identify where the business
has capability gaps that need to be addressed, as well as opportunities to improve
efficiency and lower costs across the entire enterprise.

The Business Component Performance Analysis is an essential capability of CBM
where the user discovers one or more ‘hot’ components that are associated with one
or more business strategies and/or pain points. In the traditional CBM analysis, this

 Business Transformation Workbench 381

step was conducted manually by the business consultants relying on his/her knowl-
edge and expertise in the business domain. The BT Workbench automates the capabil-
ity as visual queries, by taking metrics values into account with the analysis. First, the
system allows the user to explore the value driver tree to identify one or more value
drivers that may be associated with a certain business strategy/pain point. The discov-
ery of ‘hot’ components that affect the business strategy can be accomplished. Then
the system colors the identified hot components differently to distinguish ones that
affect positively or negatively to the strategy. The BT Workbench system compares
the industry benchmark and the as-is value of the operational metrics and perform-
ance indicators associated with the components to decide on their color.

4 Concluding Remarks

In this paper we presented Business Transformation Workbench, a consulting practi-
tioner’s tool for identifying and analyzing business transformation opportunities. It
embodies structured analytical models (both qualitative and quantitative) to enhance
the consultants’ practices. The tool helps visualize the linkages of various enterprise
models such as the business component model, the business process model, the value
driver model, the organization model, the IT application model, and the solution
model. Using this tool, consultants can examine which business functions and com-
ponents are underperforming in comparison to industry benchmark measures and
why. By investigating the organizational responsibilities and IT application portfolio
in conjunction with business components, shortfalls such as duplications, over-
extensions, gaps and deficiencies can be identified and reasoned. Specific solutions
can be discovered to address the identified shortfalls. Financial benefits of implement-
ing specific solutions can be analyzed further via conducting a business case analysis.
BT Workbench has been instantiated with data from finance management domain and
applied to address a client situation as a case study. An alpha testing of the tool was
conducted with about dozen practitioners. The feedback has been very encouraging.
90% of the consultants who tested the BT Workbench tool felt that the tool would
help them do a better job during a client engagement. The tool is currently being pi-
loted with customer engagements in a large IT consulting organization.

The BT Workbench methodology and its software solution is part of an ongoing
research initiative on business design and transformation at IBM Research and Global
Business Service Divisions. With a methodology and a research prototype in place,
we work with practitioners to validate them with real-world business transformation
initiatives. In addition to the tool and methodology, in practice, the availability of
useful and accurate content and information of business components, value drivers,
processes and solutions is critical to meaningful analyses.

Oryx – An Open Modeling Platform

for the BPM Community

Gero Decker, Hagen Overdick, and Mathias Weske

Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,hagen.overdick,weske}@hpi.uni-potsdam.de

1 Introduction

In the academic business process management community, tooling plays an in-
creasingly important role [8,6]. There are good reasons for this fact. Firstly,
theoretical concepts benefit from exploration using prototypical implementation
of the concepts. By experimentation based on real-world business processes, con-
cepts can be evaluated and refined. Secondly, the practical applicability of the
research work can be demonstrated, which is important to raise awareness of
academic BPM research to practitioners.

In academic research groups, researchers tend to implement small-scale proto-
types that can do exactly what the particular researcher is interested in. Typically
each project is started from scratch. If results from collaborators are re-used, then
re-use is done in a non-structured way, by copying and pasting program code. As
a result, the wheel is re-invented many times, and valuable resources are wasted.
Motivated by this observation, the business process technology research group at
HPI has decided to develop an open and extensible framework for business process
management, called Oryx (http://oryx-editor.org).

Oryx supports web based modeling of business processes using standard Fire-
fox web browsers, so that no additional software installation at the client side is
required. Users log on to the Oryx web site and authenticate by openID, an in-
ternet authentication standard. They start modeling processes, share them with
collaborators, or make them available to the public.

More technically, in Oryx each model artefact is identified by a URL, so that
models can be shared by passing references, rather than by exchanging model
documents in email attachments. Since models are created using a browser and
models are just “a bookmark away”, contribution and sharing of process models
is eased. Using a plugin mechanism and stencil technology, Oryx is extensible.
Today there are stencil sets for different process modeling languages, including
BPMN [1], EPC [3], Petri nets [4], and Workflow nets [7]. But the extensibility
is not restricted to process languages. The plugin mechanism also facilitates the
development of new functionality, for instance mappings to executable languages,
thereby providing a business process management framework.

The rest of the paper is structured as follows. Section 2 highlights the most
important requirements for the use case scenarios addressed. Section 3 outlines
how these requirements are addressed in the Oryx framework by discussing its
architecture. Finally, a conclusion is given in Section 4.

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 382–385, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://oryx-editor.org

Oryx – An Open Modeling Platform for the BPM Community 383

2 Oryx Use Cases

Most importantly, there must be editing functionality for graphical business pro-
cess models. Different modeling languages are present in the BPM field. Probably
most prominently, there are the Business Process Modeling Notation (BPMN [1])
and event-driven process chains (EPC [3]). Here, the corresponding stencil sets
must be available and certain restrictions on the models that can be created
must be enforced. E.g. it must not be possible to connect two events in an EPC
or to have incoming sequence flow into a start event in BPMN.

Once process models have been created, it must be verified if the models are
free of modeling errors, e.g. using one of the “soundness” notions. Such analysis
requires that the diagrams are not just interpreted as mere collection of nodes
and edges. Elements must be properly connected, for instance BPMN tasks with
preceding or succeeding tasks, or tasks with their parent subprocess or pool.
BPMN comes with a special challenge, namely attached intermediate events,
where a node is directly connected to another node without edges in between.

Process models are subject to transformations. E.g. BPMN models must be
transformed to Petri nets in order to carry out analysis. In other scenarios, high-
level models serve as input for generating stubs for more technical models. As
an example, BPMN models can be transformed to Business Process Execution
Language (BPEL) processes. In order to ease integration with other systems,
common interchange formats must be supported.

3 Oryx Overview

Figure 1 depicts the Oryx architecture. While the current release requires a
specific Oryx backend, in theory any location on the Web will do. Oryx itself
is a set of Javascript routines loaded into a web browser as part of a single
document describing the whole model. Models are represented in RDF format.

Plugins

Browser

User

Oryx Core

Oryx
Backend

Process
Model

RepositoryLanguage Def.
(Stencil Set)

Plugins

Process Model

Other systems

Multiple languages

Data portability

Feature extensions

Fig. 1. Oryx architecture

384 G. Decker, H. Overdick, and M. Weske

The Oryx core provides generic handling of nodes and edges; how to create, read,
and update them; as well as an infrastructure for stencil sets and plugins.

Language Support via Stencil Sets. Stencil sets drive the Oryx core, as they
provide explicit typing, connection rules, visual appearance, and other features
differentiating a model editor from a generic drawing tool. Hence, a stored Oryx
model is structure first, directly based on the loaded stencil sets, visual diagram
second. Oryx today has full support for BPMN 1.0 and 1.1. In addition, there
is a stencil set for EPC and Petri nets.

Feature Extensions via Plugins. Plugins allow for both generic as well as notation-
specific extensions. E.g. element selection and cut & paste are plugin features, as
they are not needed for an Oryx viewer. More advanced plugins allow for com-
plex model checking beyond the powers of the stencil set language. For instance,
a BPMN to Petri net mapping is included as specified in [2] as well as BPMN to
BPEL transformation [5], XPDL serialization for BPMN and soundness checking.

Data Portability beyond Oryx. The Oryx core, with the help of stencil sets and
plugins, allows users to create, edit, and view visual models within a browser.
Currently, Oryx does so by self-modifying the loaded page and sending it back to
the server in whole. Being web-based Oryx reduces deployment and collaboration
to distributing a single bookmark.

Fig. 2. Oryx for BPMN: Modeling by drag and drop of notational elements shown on
the left hand side. Right hand side shows all BPMN 1.0 attributes of a selected model
element, here the Place Order activity.

Oryx – An Open Modeling Platform for the BPM Community 385

4 Conclusion and Outlook

Oryx is an extensible platform for process modeling on the web. Using its exten-
sion mechanism, it aims at providing a platform to be used by the BPM com-
munity. Researchers can use the platform to implement extensions and thereby
to evaluate their particular research question.

Researchers often lack access to business process models. Companies are al-
ways reluctant to provide public access to their models, so that generally few
business process models are available to the public. Oryx maintains a reposi-
tory of business process models. Each user can define visibility of his process
models to “public”, so that it can be read and evaluated by anybody accessing
Oryx. While this technical feature does not solve the organizational problem of
companies, we believe that, with your help, the Oryx process model repository
will grow over time to a valuable resource for the BPM community. We encour-
age our industrial partners to use the Oryx modeling platform and to share an
anonymous version of their models for scientific usage.

We invite all interested parties to use Oryx in their own research work, and
to contribute to this open source project.

Acknowledgments. The authors thank the Oryx team at HPI for their devel-
opment work, including Martin Czuchra, Ole Eckermann, Nicolas Peters, Willi
Tscheschner, Daniel Polak, Stefan Krumnow, Sven Wagner-Boysen, Björn Wag-
ner and all other contributors to the Oryx project.

References

1. Business Process Modeling Notation (BPMN) Specification, Final Adopted Specifi-
cation. Technical report, Object Management Group (OMG) (February 2006)

2. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Process
Models in BPMN. Information and Software Technology (IST) (2008)

3. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany (1992)

4. Petri, C.A.: Communication with Automata (in German). PhD thesis, Universität
Bonn, Institut für Instrumentelle Mathematik, Schriften IIM Nr.2 (1962)

5. Pfitzner, K., Decker, G., Kopp, O., Leymann, F.: Web Service Choreography Config-
urations for BPMN. In: WESOA 2007, Vienna, Austria. LNCS. Springer, Heidelberg
(2007)

6. Reichert, M., Rinderle, S., Kreher, U., Acker, H., Lauer, M., Dadam, P.: ADEPT
Next Generation Process Management Technology. In: CAiSE Forum (2006)

7. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

8. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van
der Aalst, W.M.P.: The prom framework: A new era in process mining tool support.
In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454.
Springer, Heidelberg (2005)

Transforming BPMN Diagrams into YAWL Nets

Gero Decker1, Remco Dijkman2, Marlon Dumas3,
and Luciano Garćıa-Bañuelos4,�

1 Hasso Plattner Institute, Germany
gero.decker@hpi.uni-potsdam.de

2 Eindhoven University of Technology, The Netherlands
r.m.dijkman@tue.nl

3 University of Tartu, Estonia
marlon.dumas@ut.ee

4 Universidad Autónoma de Tlaxcala, Mexico
lgbanuelos@gmail.com

Abstract. While the Business Process Modeling Notation (BPMN) is
the de facto standard for modeling business processes on a conceptual
level, YAWL allows the specification of executable workflow models. A
transformation between these two languages enables the integration of
different levels of abstraction in process modeling. This paper discusses
the transformation of BPMN diagrams to YAWL nets and presents a
tool that carries out this transformation.

1 Introduction

Process modeling occurs at different levels of abstraction. First, models serve to
communicate as-is business processes, pinpoint improvement options, conduct
resource and cost analysis and to capture to-be processes. The Business Process
Modeling Notation (BPMN [1]) is the de facto standard for process modeling at
this level. On the other hand we find languages that are targeted at technically
realizing business processes, used as input for process execution engines. The
Business Process Execution Language (BPEL) is a standard for implementing
process-oriented compositions of web services. YAWL [2] is an alternative to
BPEL, with a strictly defined execution semantics, a first-class concept of “task”,
and sophisticated support for data mappings and task-to-resource allocation.

While the mapping from BPMN to BPEL has been studied in detail and
is implemented by several tools, the mapping from BPMN to YAWL has not
yet received attention. At first glance, this mapping may seem straightforward.
Indeed, the conceptual mismatch between BPMN and YAWL is not as significant
as the one between BPMN and BPEL, especially with regards to control-flow
structures. However, mapping BPMN to YAWL turns out to be tricky in the
details, revealing subtle differences between the two languages.

The transformation from BPMN to YAWL can be used as an instrument to
implement process-oriented applications. It also opens the possibility of reusing
� Funded by CUDI (e-Grov Project) and by ANUIES (ORCHESTRA Project).

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 386–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Transforming BPMN Diagrams into YAWL Nets 387

existing static analysis techniques available for YAWL. Like Petri nets, YAWL
has a formally defined semantics which enables the analysis of YAWL nets to
detect semantic errors such as deadlocks. At the same time, YAWL allows one to
capture advanced process modeling constructs that can not always be captured
in plain Petri nets, e.g. the OR-join or multi-instance activities.

The next section outlines the mapping from BPMN to YAWL. Section 3 then
discusses the tool implementation and Section 4 concludes. The tool is available
at: http://is.tm.tue.nl/staff/rdijkman/bpmn.html

2 Overview of BPMN to YAWL Transformation

At their core, BPMN and YAWL share several common concepts. In particular,
the concept of task in BPMN matches the concept of task in YAWL. Also, the
concept of gateway in BPMN matches the concept of decorator in YAWL, and the
concept of flow in BPMN matches the same concept in YAWL. As an illustration,
Figure 1 shows a simple business process model in BPMN, and the corresponding
YAWL net produced by the BPMN2YAWL tool. It can be seen from this simple
example that the the join decorator of task “Check Completeness” matches the
XOR-merge gateway in BPMN, meaning that the task can be reached from either
of its incoming flows. Similarly, the split decorator of this same task matches the
XOR-split gateway in the BPMN diagram.

At this level, one key difference between BPMN and YAWL is that YAWL
does not provide the ability to directly chain several connectors together, such
as an AND-split connector with a branch that leads directly to an XOR-split
connector. The BPMN2YAWL tool deals with this mismatch by introducing
empty YAWL tasks (i.e. YAWL tasks without decomposition) which serve purely
for control routing. In the working example (Figure 1), the AND-split in the

Check
Completeness

Obtain
Additional

Information

Check Credit
History

Check Income
Source(s)

Credit Card
Application

Assess
Application

Make Credit
Offer

Notify
Rejection

Start
message
event

XOR
gateway

AND
gateway

Task

End
event

(a) In BPMN

Check
Completeness

Obtain
Additional

Information Check
Credit
History

Check
Income

Source(s)

Assess
Application

Make
Credit
Offer

Reject
Application

Start
condition

Final
condition

XOR
decorator

AND
decorator

Task

(b) In YAWL

Fig. 1. Simple process model in BPMN and in YAWL

http://is.tm.tue.nl/staff/rdijkman/bpmn.html

388 G. Decker et al.

BPMN diagram is mapped to an empty task with an AND decorator. The
BPMN2YAWL tool ensures that such empty tasks are only created when it
is necessary, so as to minimise the number of empty tasks.

Subprocess tasks in BPMN are mapped to composite tasks in YAWL. In the
case where the subprocess in BPMN has an attached event (e.g. an error event),
the mapping is more complicated. Figure 2 shows an exception in BPMN and
the mapping onto YAWL. In the BPMN diagram, an error ‘invalid policy’ can
occur within the ‘insurance check’ subprocess. This error is passed to the parent
process, which then continues to ‘notify customer’. In YAWL a BPMN error
is mapped onto a task that sets a subprocess variable (capturing whether or
not the error has occurred) to ‘true’. The parent process reads this variable
upon completion of the subprocess and proceeds according to the value of the
variable.

The transformation covers data and resource aspects in addition to control-
flow. Properties and assignments in BPMN are mapped to variables, input/
output parameters and input/output transformations in YAWL. Lanes in BPMN
are mapped to roles in YAWL. Pools are treated as separate business pro-
cesses (and each one is mapped separately), while message flows are not cov-
ered by the mapping since their implementation depends on the communication
infrastructure.

The transformation does not cover transactions and compensation handlers
because these constructs do not have a direct correspondence in YAWL. Also,
these constructs are underspecified in the current BPMN specification. Finally,
the transformation does not cover complex gateways.

Check
Policy

Check
Damage

[complex or
simple claim]

[simple claim]

Invalid
Policy

Process
Insurance

Claim

Notify
Customer

[¬exception]

[exception]

Insurance Check

Check
Policy

simple or
complex claim

Check
Damage

complex
claim

invalid
policy

invalid policy Notify
Customer

Process
Insurance

Claim

(a) in BPMN

(b) in YAWL

OR
gateway

Intermediate
error event

End error
event

OR
decorator

Composite
task

Fig. 2. Mapping attached error events from BPMN to YAWL

Transforming BPMN Diagrams into YAWL Nets 389

3 Tool Implementation

The BPMN2YAWL tool is implemented as an Eclipse plugin. The tool takes as
input BPMN diagrams produced by the STP BPMN editor. The models pro-
duced by the STP BPMN editor are split in two files: one contains the XMI
representation of the model, while the other contains layout information. Once
installed, the BPMN2YAWL plugin provides a menu item that allows to trans-
form the XMI file (.bpmn file). It then produces a YAWL engine file that does
not contain layout information. This file can be imported into the YAWL editor
which applies an automated layout algorithm.

The STP BPMN editor does not support certain features of BPMN. Specifi-
cally, it does not support the markers and properties for multi-instance activities
and ad hoc activities. To overcome this limitation, the BPMN2YAWL tool is able
to detect special types of text annotations: one for multi-instance activities and
one for ad hoc activities. The text annotations for multi-instance activities in-
clude parameters for specifying minimum and maximum amount of instances to
be started, and number of instances that need to complete before proceeding.

4 Outlook

Ongoing work aims at extending the BPMN2YAWL plugin in order to make the
transformation reversible. After generating a model, the plugin will be able to
propagate changes in the YAWL net into the BPMN diagram (and vice-versa) in
order to maintain the models synchronized. For most constructs (e.g. tasks and
gateways) the definition of this reversible transformation is straightforward. But
when explicit conditions are introduced in the YAWL net, mapping these back to
BPMN may prove challenging, or in some cases, impossible. We are investigating
under which syntactic restrictions is it possible to preserve the reversibility of the
transformation. The aim is that designers are only allowed to alter the YAWL
net produced by BPMN2YAWL if the changes can be propagated back to the
BPMN diagram. In tandem with this, we plan to incorporate features to visually
report differences between process models in BPMN and in YAWL, so that when
changes are made to either the source or the target model, the corresponding
changes in the other model can be presented to the designer.

References

1. Business Process Modeling Notation, V1.1. Technical report, Object Management
Group (OMG) (January 2008), http://www.omg.org/spec/BPMN/1.1/PDF/

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Inf. Syst. 30(4), 245–275 (2005)

http://www.omg.org/spec/BPMN/1.1/PDF/

Goal-Oriented Autonomic Business Process

Modeling and Execution:
Engineering Change Management

Demonstration

Dominic Greenwood

Whitestein Technologies AG, Zürich, Switzerland
dgr@whitestein.com

This demonstration paper describes the Living Systems Autonomic BPM
(LS/ABPM) suite from Whitestein Technologies AG. This unique product con-
sists of several integrated components for modelling, executing and administering
business processes using a ground-breaking goal-oriented approach to BPM. A
real and current customer case in the domain of Engineering Change Manage-
ment (ECM), from Daimler AG, is used to explore the approach and features
of the suite in the demonstration. Key improvements over conventional BPM
techniques and technologies include business-goal oriented process modeling and
extending process agility beyond the design stage by offering autonomic, self-
optimizing process orchestration and execution.

The LS/ABPM suite includes a Process Modeler for goal-oriented process
modeling, a Process Navigation Engine for process execution, a Management
Console for process deployment and administration, and Process Task Libraries
and Application Frameworks to easily build solutions for different vertical mar-
kets. The suite tools are all based on, and compliant with, standard technologies
(i.e., BPMN and J2EE) allowing seamless enterprise integration.

LS/ABPM is the first BPMS to enable true goal-oriented process modeling.
The Goal-Oriented BPMN (GO-BPMN)[1] notation is an extension of standard
BPMN, with all model elements given a precise operational semantics allow-
ing unambiguous model execution. Process designers use the LS/ABPM Pro-
cess Modeler to capture a process’ business-level purpose in terms of its goals
(what/why) and the plans that are capable of achieving them (how). Owing to
this loose coupling of ends and means, goal-oriented process models flexibly and
concisely express the available paths across business targets. This is inherently
different from conventional approaches that need to model explicit process vari-
ants, thus creating more rigidity and complexity. Both business analysts and IT
specialists easily grasp and use GO-BPMN models, which are directly executable
for smooth testing and deployment.

The LS/ABPM Process Navigation Engine uses the Living Systems Technology
Suite (LS/TS) autonomic software technology middleware to directly map process
model goals onto process instance goals using a form of Belief-Desire-Intention
(BDI) execution logic [2]. The engine interprets a loaded model and dynamically
selects the available plans best suited to attain goal-specified business objectives

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 390–393, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Goal-Oriented Autonomic Business Process Modeling and Execution 391

in real-time. It immediately considers changes in goals, plans and environment
conditions, and autonomically adapts the executing process, constantly tracking
its goals. The result is real-time process agility and responsiveness to changes in
goals, plans and context-conditions as they happen during execution. This yields
the greatest benefit to processes not following a strict predefined execution se-
quence, which is often the case for human-centric collaboration activities and in-
creasingly also in service-oriented architectures.

The development of the LS/ABPM suite was motivated by two factors, first
an observation that many enterprises have an extant desire to elevate business
process modeling and management from purely the IT domain, toward providing
intuitive access and use to business people who often prefer to think in terms
of objectives, rather than solely the actions taken toward achieving objectives.
Secondly, contemporary flexible methods of working, just-in-time organizational
reaction times, distributed intra/inter-organization collaboration and constantly
changing markets are creating business landscapes requiring a strong degree of
real-time process agility, without sacrificing reliability or robustness. We there-
fore suggest that some enterprises are now discovering that a common limitation
with conventional approaches to BPM is their inability to create business pro-
cess models that are both meaningful to business people and capable of offering
the real-time process flexibility and rapid process adaptation required to cope
effectively with the pressing dynamic business conditions typifying many mod-
ern enterprises. As evidenced by our work with customers in the manufacturing
domain, there is very often a need to alter executing process structures, some-
times in real-time, without perturbing the process as a whole which can continue
to run as normal, accounting for updates on-the-fly. If a BPMS is not built to
innately manage change in this manner the result can be reductions in both
dependability and visibility, especially from a management perspective.

LS/ABPM Process Modeler
The LS/ABPM Process Modeler component of the suite provides business and IT
users with a comprehensive set of tools and methodologies for goal-oriented [3]
process model design, testing, and validation. Goals and plans to intuitively
express business processes LS/ABPM leverages the concepts of every-day goals
and plans for a more intuitive BPM experience: first define the goals a process
must accomplish and then specify the possible plans that are capable of achieving
these goals.

Graphical modeling language: LS/ABPM’s business process specification relies
on GO-BPMN to focus on business goals and business organization. GO-BPMN
extends the widely used OMG-standard BPMN with semantics for modeling
goals, plans and their relationships in addition to standard BPMN elements.

Separation of goals and plans : GO-BPMN models cleanly separate the (busi-
ness) goals to be achieved and the plans to achieve them. Changes to any goal
or plan in a GO-BPMN process model are made independently and don’t have a
ripple effect of consequences as they would in a sequential process model. Hence,
changes canbemade at any time, evenduring execution.The resulting adaptability

392 D. Greenwood

and resilience to changing business conditions save time and reduce the costs as-
sociated with business process maintenance.

Separation of process and organizational model: The Process Modeler distin-
guishes between the goal/plan aspect of a process and the associated organization
structures and constraints: what needs to be done is not mixed with who can
or should do it. Clean separation between the execution of process logic and the
organization of human participants helps adapt to organizational restructuring
and isolates a process’ business value from human resourc deployment issues.

Accessible process models for business domain experts: Thanks to the pri-
mary focus on business goals in lieu of procedures, the resulting process models
are of highly descriptive nature. This intuitive method not only supports easier
changes, but also enables domain experts to directly do the modeling. LS/ABPM
substantially narrows the gap between business and technology.

Modular design for cooperation: Process models are modular allowing collab-
oration on large models, domain-specific modules, or libraries. Different people
can work on reusable modules, later consolidating results into a whole model.

LS/ABPM Process Navigation Engine
The LS/ABPM Process Navigation Engine directly executes GO-BPMN process
models. It pursues the defined business goals by creating a path that takes into
account model changes and plans alternatives in real-time.

Direct execution of process models: LS/ABPM’s GO-BPMN process models
are directly executable, and the whole user interface can be automatically gener-
ated from the process model. Domain experts can test their models on their own
computer for rapid process development and consistent process lifecycle manage-
ment. Round-trip engineering is intrinsic in LS/ABPM, as the suite never needs
to translate between a modeling notation (such as BPMN) and an execution
language (such as BPEL).

Autonomic goal-oriented process performance: Each business goal connects
to one or more plans, each defining a distinctive way to achieve the goal. The
Process Navigation Engine selects and orchestrates the appropriate plans in real-
time based on business rules and other domain-relevant context conditions. San-
ity conditions can be defined and the system ensures them through continuous
monitoring and prompt corrective action.

Agile process navigation and responsiveness: Agility in LS/ABPM is based
on the autonomic, real-time composition and navigation of a goal-plan-context
model, not on the rigid execution of explicit, situation-specific process model
variants. This offers unprecedented adaptivity to dynamic business conditions.

Active coordination and cooperation between process models: The Engine per-
forms active coordination and cooperation between multiple process models
through message-driven synchronization between process controllers. Compet-
ing goals and plans do not lead to obstruction, but are autonomically resolved.

LS/ABPM Management Console
The LS/ABPM Management Console offers powerful tools for the deployment
and steering of processes and other system administration tasks.

Goal-Oriented Autonomic Business Process Modeling and Execution 393

Continuous visibility of process execution and events: LS/ABPM provides
detailed monitoring of running process instances. At any point, the achieved,
running, and waiting goals of a process can be inspected, as well as the corre-
sponding pending tasks.

Systematic control of executing business processes: Supervisors can control
all elements (goals, plans, etc.) to fine-tune a process during execution. Other
aspects under their control include visualization, data persistency, user manage-
ment, role-based assignments of personnel, and security.

Operational Overview
Once a GO-BPMN models has been automatically validated by the Process
Modeler it can be loaded into the Autonomic Process Navigation Engine for ex-
ecution. In this respect the model itself is directly executable with no requirement
to translate it via an intermediary representation such as BPEL. The engine is
composed of two layers, the LS/ABPM process navigation engine and the J2EE
compliant LS/TS autonomic middleware platform. In effect, the LS/ABPM pro-
cess navigation engine is an LS/TS application consisting of a collection of goal-
oriented agents with BDI logic engines acting as process instance controllers. An
agent controller is assigned to each process instance, responsible for coordinating
the process algebra and task structuring within goal-plan combinations, taking
into account goal and plan preconditions. When a process model is created us-
ing the Process Modeler it is directly loaded into a new process controller agent,
wherein process goals are mapped onto logical goals within the goal-oriented
execution engine provided by LS/TS. The controller then executes the process
instance by initiating the entire goal hierarchy and waiting for appropriate trig-
gers to be sensed within the system environment to activate goals and move
forward with process execution. Each process controller is at the heart of an
autonomic feedback control loop that uses observations made of the system be-
ing affected by the process instance to effect decisions within the corresponding
process instance relating to, for example, which goals should be activated and
which plans selected to meet goal requirements. Such autonomic control allows
process instances to be self-configured and self-optimized bringing about both
process flexibility and resilience.

References

1. Greenwood, D., Rimassa, G.: Autonomic goal-oriented business process manage-
ment. In: Proceedings of the Third International Conference on Autonomic and
Autonomous Systems (ICAS 2007) (2007)

2. Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of
the First Intl. Conference on Multiagent Systems, San Francisco (1995)

3. Tibco: Goal-driven business process management: Creating agile business processes
for an unpredictable environment. Tibco Whitepaper (2006)

COREPROSim: A Tool for Modeling, Simulating

and Adapting Data-Driven Process Structures�

Dominic Müller1,2, Manfred Reichert1, Joachim Herbst2, Detlef Köntges1,2,
and Andreas Neubert1

1 Institute of Databases and Information Systems, Ulm University, Germany
{dominic.mueller,manfred.reichert,andreas.neubert}@uni-ulm.de

2 Dept. GR/EPD, Daimler AG Group Research & Advanced Engineering, Germany
{joachim.j.herbst,detlef.koentges}@daimler.com

Abstract. Industry is increasingly demanding IT support for large en-
gineering process structures consisting of hundreds up to thousands of
synchronized processes. In technical domains, such process structures are
characterized by their strong relation to the assembly of a product (e.g.,
a car); i.e., resulting process structures are data-driven. The strong link-
age between data and processes can be utilized for automatically creating
process structures as well as for (dynamically) adapting them at a high
level of abstraction. This paper presents the COREPROSim demonstra-
tor which enables sophisticated support for modeling, coordinating and
(dynamically) adapting data-driven process structures. COREPROSim

substantiates the COREPRO approach which provides a new paradigm
for the integration of complex data and process structures.

1 Introduction

In the engineering domain, the development of complex products (e.g., cars) ne-
cessitates the coordination of large process structures. Managing such structures,
however, is a complex task which is only rudimentarily supported by current
workflow technology [1]. Process structures often show a strong linkage with the
assembly of the product; i.e., the processes to be coordinated can be explicitly
assigned to the different product components. Further, synchronizations of these
processes are correlated with the relations existing between the product com-
ponents. We denote such process structures as data-driven. COREPRO utilizes
information about product components and their relations for modeling, coordi-
nating, and (dynamically) adapting process structures based on given (product)
data structures. For example, the assembly of a (product) data structure can be
used to automatically create the related process structure [2].

The adaptation of process structures constitutes a particular challenge. When
adding or removing a car component (e.g., a navigation system), for example,
the instantiated process structure has to be adapted accordingly; i.e., processes
as well as synchronization relations between them have to be added or removed.
When changing a (product) data structure during runtime, in addition, the
� This work has been funded by Daimler AG Group Research and has been conducted

in the COREPRO project (http://www.uni-ulm.de/dbis)

M. Dumas, M. Reichert, and M.-C. Shan (Eds.): BPM 2008, LNCS 5240, pp. 394–397, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

COREPROSim: A Tool for Modeling, Simulating and Adapting 395

running process structure must be adapted on-the-fly, but without leading to
faulty synchronizations (e.g. deadlocks). To cope with this challenge, again, our
approach takes benefit from the strong linkage between process structure and
(product) data structure. Data structure changes can be translated into con-
sistent adaptations of the corresponding process structure [3]. Thus, changes
of data-driven process structures can be introduced by users at a high level of
abstraction, which reduces complexity as well as cost of change significantly.

This paper sketches COREPROSim – a demonstrator enabling the model-
ing, enactment and (dynamic) adaptation of data-driven process structures. It
enhances the COREPROModeler, our first demonstrator supporting the manual
modeling of data-driven process structures [4]. COREPROSim has been realized
using the Eclipse Graphical Editing Framework. It implements an instantiation
concept for automatically creating data-driven process structures and a runtime
framework for simulating them [2,3]. Furthermore, COREPROSim translates
(dynamic) changes of currently processed data structures into corresponding
adaptations of the related process structures. Finally, consistency is checked to
ensure that dynamic adaptations result again in a sound process structure.

2 COREPRO Framework and Demo Description

The COREPRO modeling framework considers the sequence of states a (data)
object goes through during its lifetime. A car component, for example, passes
states like tested and released. Generally, state transitions are triggered when ex-
ecuting the processes which modify the respective object (e.g., test and release).
An object life cycle (OLC) then constitutes an integrated and user-friendly view
on the states of a particular object and its manipulating processes (cf. Fig. 1b).

Based on a collection of OLCs and their synchronizations, large process struc-
tures can be built. OLC state transitions do not only depend on the processes
associated with the respective object, but also on the states and state transitions
of other objects. As example consider a car prototype, which will be only tested
if all subsystems (e.g., engine, chassis and navigation system) are tested before.
By connecting the states of different OLCs, a logical view on the data-driven
process structure results (cf. Fig. 1d).

Five steps become necessary to create a data-driven process structure using
COREPROSim (cf. Fig. 1). Step 1 deals with the specification of a domain-
specific data model, which defines object and relation types, and therefore consti-
tutes the schema for instantiating concrete (product) data structures. An object
type represents a class of objects within the data model (cf. Fig. 1a), which can
be instantiated multiples times (cf. Fig. 1c).

Step 2 (cf. Fig. 1b) is related to the modeling of OLCs. Internally, OLCs are
mapped to state transition systems whose states correspond to object states and
whose (internal) state transitions are associated with object-specific processes.
Non-deterministic state transitions are realized by associating different internal
state transitions with same source state and process, and by adding a process
result as condition (e.g., P2 with possible results 0 and 1 in Fig. 1b).

396 D. Müller et al.

Fig. 1. Procedure for Creating Data-Driven Process Structures

Step 3 deals with the state dependencies existing between the OLCs of differ-
ent object types. In COREPRO, an OLC dependency is expressed in terms of
external state transitions between concurrently enacted OLCs (which together
form the process structure). Like an internal OLC state transition, an external
state transition can be associated with the enactment of a process. To benefit
from the strong linkage between object relations and OLC dependencies, external
state transitions are mapped to object relation types (cf. Fig. 1b).

Steps 4 + 5 are related to the instance level. COREPROSim allows to instan-
tiate different data structures based on a given data model (cf. Fig. 1c) and to
automatically create related process structures (cf. Fig. 1d). A data-driven pro-
cess structure includes an OLC instance for every object from the data structure.
Likewise, as specified in Step 3, for each relation in the data structure external
state transitions are added to the process structure; e.g., for every hasSubsystem
relation in the data structure from Fig. 1c, corresponding external state transi-
tions are added (cf. Fig. 1d).

As result we obtain an executable process structure describing the dynamic
aspects of the given data structure (cf. Fig. 1d). To ensure a correct dynamic
behavior, COREPROSim allows for checking soundness of the process structure
based on the concepts described in [2].

When simulating data-driven process structures, COREPROSim uses different
markings to reflect the current runtime status (cf. Fig. 2). We annotate states
as well as (internal and external) state transitions with respective markings. By
analyzing state markings, for example, we can immediately figure out whether
a particular state of a process structure has been already passed, is currently
activated, has been skipped, or has not been reached yet. Transition markings,

COREPROSim: A Tool for Modeling, Simulating and Adapting 397

Fig. 2. Simulation and Dynamic Change of Process Structure with COREPROSim

in turn, indicate whether the associated process has been started, skipped or
completed. The use of markings further eases consistency checking and runtime
status adaptations in the context of dynamic changes of process structures.

To cope with flexibility requirements of engineering processes, we allow users
(e.g., engineers) to perform dynamic process structure adaptations. In
COREPROSim, this is accomplished by automatically translating changes of the
data structure (cf. Fig. 1c) into adaptations of the respective process structure
[3]. Removing an object, for example, leads to the removal of the related OLC.
Such dynamic adaptations must not violate soundness of the process structure.
To ensure this, COREPROSim constrains changes to certain runtime states (i.e.,
markings) of the process structure (cf. Fig. 2).

In summary, COREPROSim constitutes a powerful demonstrator realizing
the concepts developed in the COREPRO project [1,2,3]. It is currently applied
in the context of a case study in the automotive industry. In future, we will
extend the current prototype with extensive mechanisms for runtime exception
handling and integrate existing data sources and applications.

References

1. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT support for release manage-
ment processes in the automotive industry. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg (2006)

2. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of large
process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 131–147. Springer, Heidelberg (2007)

3. Müller, D., Reichert, M., Herbst, J.: A new paradigm for the enactment and dynamic
adaptation of data-driven process structures. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 48–63. Springer, Heidelberg (2008)

4. Müller, D., Reichert, M., Herbst, J., Poppa, F.: Data-driven design of engineer-
ing processes with COREPROModeler. In: WETICE 2007, pp. 376–378. IEEE, Los
Alamitos (2007)

Author Index

Aı̈t-Bachir, Ali 374
Akkiraju, Rama 378
Asnar, Yudistira 212
Awad, Ahmed 326

Barros, Alistair 294

Carmona, Josep 358
Chen, Jinjun 180
Cortadella, Jordi 358

Dadam, Peter 3
Danturthy, Sivaprashanth 378
de Leoni, Massimiliano 67
Decker, Gero 164, 326, 382, 386
Dijkman, Remco 261, 386
Diniz, Pedro C. 342
Drawehn, Jens 310
Dumas, Marlon 374, 386

Engels, Gregor 244

Fauvet, Marie-Christine 374
Feja, Sven 310
Ferreira, Diogo R. 342
Fidge, Colin 196
Flender, Christian 294
Flentge, Felix 84
Förster, Alexander 244

Garćıa-Bañuelos, Luciano 386
Gerth, Christian 244
Giorgini, Paolo 212
Grasl, Oliver 36
Greenwood, Dominic 390
Gschwind, Thomas 4

Harmon, Paul 1
Herbst, Joachim 394
Hettel, Thomas 294

Jiang, Shun 378

Kishinevsky, Michael 358
Koehler, Jana 4, 100
Köntges, Detlef 394
Kühne, Stefan 310
Küster, Jochen M. 148, 244

Lee, Juhnyoung 378
Liu, Chengfei 228
Liu, Xiao 180
Lohmann, Niels 132

Mendling, Jan 20, 164
Mühlhäuser, Max 84
Müller, Dominic 394

Neubert, Andreas 394

Overdick, Hagen 382

Pautasso, Cesare 278

Reichert, Manfred 394
Reijers, Hajo 20
Rosemann, Michael 2
Rotzoll, Werner 310
Rozinat, Anne 196

Scheidl, Stefan 84
Schonenberg, Helen 51
Siegeris, Juliane 36
Stahl, Christian 116
Stein, Sebastian 310
Stoitsev, Todor 84
Sundhararajan, Ponn 378

ter Hofstede, Arthur 67, 196
Tian, Chun Hua 378

van der Aalst, Wil 51, 67, 196
van Dongen, Boudewijn 51
Vanhatalo, Jussi 100
Völzer, Hagen 100

Wahler, Ksenia 148
Weber, Barbara 51
Weske, Mathias 326, 382
Wolf, Karsten 116
Wong, Janette 4
Wynn, Moe 196

Xu, Jiajie 228

Yang, Yun 180

Zhao, Xiaohui 228

	Title Page
	Preface
	Conference Organization
	Table of Contents
	Business Process Management: Today and Tomorrow
	Understanding and Impacting the Practice of Business Process Management
	The Future of BPM: Flying with the Eagles or Scratching with the Chickens?
	References

	Applying Patterns during Business Process Modeling
	Introduction
	The Workflow Patterns Revisited
	Scenario 1: Applying Patterns to a Single Edge
	Scenario 2: Applying Patterns to a Pair of Edges
	Scenario 3: Applying Patterns to a Set of Edges
	Implementation and Validation of Pattern-Based Editing
	Related Work
	Conclusion
	References

	Modularity in Process Models: Review and Effects
	Introduction
	A Review of Modularity and Process Modeling
	Concepts and Terms
	Modularization in Systems
	Modularization in Process Models

	Research Design
	Results
	Main Results
	Supporting Results

	Discussion
	Model Differences
	The Influence of Modularity
	Limitations

	Conclusion
	References

	Model Driven Business Transformation – An Experience Report
	Introduction
	Major Challenges
	Outline of the Paper

	Customizing BPMN
	Process Architecture
	Organization Structure
	Artifact Landscape

	Using BPMN Models to Generate Process Documentation
	An Intranet-Based, Fully Generated Process Portal
	The Approach Taken in Developing the Process Portal

	Practical Implementation
	The Process Architecture Team and the Modeling Guideline
	Further Instruments Utilized by the Process Architecture Team

	Conclusions
	References

	Supporting Flexible Processes through Recommendations Based on History
	Introduction
	Overview
	Log-Based Recommendation Service
	Preliminaries
	Recommendations
	Trace Abstraction
	Support
	Trace Weight
	Expected Outcome

	Evaluation Based on a Controlled Experiment
	Experiment Design
	Experiment Preparation
	Experiment Execution and Data Analysis
	Experiment Results
	Risk Analysis

	Related Work
	Conclusion
	References

	Visual Support for Work Assignment in Process-Aware Information Systems
	Introduction
	Related Work
	The General Framework
	Fundamentals
	Available Metrics

	Implementation
	The User Interface
	Architectural Considerations

	Example: Emergency Management
	Conclusions
	References

	From Personal Task Management to End-User Driven Business Process Modeling
	Introduction
	Related Work
	Approach
	Collaborative Task Manager (CTM)
	Programming by Example of Weakly-Structured Process Models
	SER of Weakly-Structured Process Models
	From Email and To-Do to Formal Workflows

	Case Study
	Conclusions
	References

	The Refined Process Structure Tree
	Introduction
	The Refined Process Structure Tree
	Fragments
	Triconnected Components
	Canonical Fragments and the Process Structure Tree
	Computing All Fragments from the Canonical Fragments
	Modularity

	Computing the PST
	Conclusion
	References

	Covering Places and Transitions in Open Nets
	Introduction
	Preliminaries
	Open Nets
	Operating Guidelines

	Covering Open Net Nodes
	Deciding the Coverage of Open Net Nodes
	A Finite Representation of All Cover$_X$-Strategies
	Discussion

	Related Work
	Conclusion
	References

	Correcting Deadlocking Service Choreographies Using a Simulation-Based Graph Edit Distance
	Introduction
	ServiceModels
	Service Automata and Operating Guidelines
	Fixing Deadlocking Choreographies

	Graph Similarities
	A Matching-Based Edit Distance
	Simulation-Based Edit Distance
	Combining Formula-Checking and Graph Similarity
	Matching-Based Edit Distance

	Complexity Considerations and Experimental Results
	Related Work
	Conclusion and Future Work
	References

	Predicting Coupling of Object-Centric Business Process Implementations
	Introduction
	Example and Background
	Implementing Workflow Patterns Using BSMs
	Predicting Coupling of BSM Implementations
	Discussion
	Related Work
	Conclusions and Future Work
	References

	Instantiation Semantics for Process Models
	Introduction
	Background on Process Instantiation
	A Framework for Process Instantiation
	When to Create a New Instance?
	Which Entry Points Are Activated?
	For Which Non-activated Start Events Are Subscriptions Created?
	How Long Are Subscriptions Kept?
	A Classification of Instantiation Semantics

	Discussion
	Conclusions
	References

	A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows
	Introduction
	Motivating Example and Problem Analysis
	Probability Based Temporal Consistency
	Probabilistic Strategy for Setting Temporal Constraints
	Evaluation
	System Implementation
	SwinDeW-G Scientific Workflow System
	SwinDeW-G Scientific Workflow Modelling Tool

	Related Work
	Conclusion and Future Work
	References

	Workflow Simulation for Operational Decision Support Using Design, Historic and State Information
	Introduction
	Related Work
	Approach
	Running Example
	Realization through YAWL and ProM
	Extracting Simulation-Relevant Information
	Generating the Simulation Model
	Loading the Current State
	Analyzing the Simulation Logs

	Discussion
	Faithful Simulation Models
	Short-Term Simulation
	Viewing Real and Simulated Processes in a Unified Manner

	References

	Analyzing Business Continuity through a Multi-layers Model
	Introduction
	Running Example
	Modeling Framework
	Time Dependency and RecoveryModel
	The Goal-Risk Framework
	Modeling Process

	Analysis Process
	Treatment Analysis
	Cost-Benefit Analysis

	Validation through an Example in Large
	Related Work
	Concluding Remarks
	References

	Resource Allocation vs. Business Process Improvement: How They Impact on Each Other
	Introduction
	Motivating Example
	Role-Based Business Process Model
	Resource Allocation and Business Process Improvement
	Basic Rules
	Data Structure
	Resource Allocation Steps
	Basic Allocation Strategy
	Adjustment Strategy

	Related Work and Discussion
	Conclusion
	References

	Detecting and Resolving Process Model Differences in the Absence of a Change Log
	Introduction
	A Scenario for the Detection and Resolution of Differences
	Correspondences and SESE Fragments
	Process Models and SESE Fragments
	Correspondences

	Detection of Differences
	Action and Fragment Differences and Change Operations
	Computation of Position Parameters
	Completeness of Change Operations

	Computation of Hierarchical Change Log
	Application of Operations and Tool Support
	Related Work
	Conclusion and Future Work
	References

	Diagnosing Differences between Business Process Models
	Introduction
	Event-Driven Process Chains
	EPC Syntax and Information Semantics
	EPC Formal Semantics
	Equivalence and Differences between EPCs

	Diagnosing Differences between EPCs
	Step 1: Pre-processing - Determine Function Completion Equivalences
	Step 2: Normalize EPCs
	Step 3: Restrict EPCs to Compare a Class of Equivalent Functions
	Step 4: Compute Semantics of Restricted EPCs
	Step 5: Diagnose Differences between Restricted EPCs

	Case Study
	Related Work
	Conclusion
	References

	BPEL for REST
	Introduction
	Motivation
	Composing RESTful Web Services
	Example
	BPEL for REST Extensions
	Invoking RESTful Web Services
	Publishing Processes as RESTful Web Services
	Minor BPEL Extensions and Changes

	Discussion
	Related Work
	Conclusion
	References

	Scaling Choreography Modelling for B2B Value-Chain Analysis
	Introduction
	Related Work
	The Semantic Object Model
	Scenario
	Modelling the Scenario with SOM

	Breakdown Analysis
	Prerequisite
	Negotiation Breakdown
	Provision Breakdown

	Mapping to BPMN
	Prerequisite
	Mapping Rules

	Conclusion and Future Research
	References

	Evaluation of OrViA Framework for Model-Driven SOA Implementations: An Industrial Case Study
	Introduction
	Research Background
	Querying the Register of Residents

	Research Design
	Overview OrViA Framework
	Case Study
	Overview
	Structured Requirements Analysis
	Validation
	Transformation and Execution

	Discussion
	Summary
	References

	Efficient Compliance Checking Using BPMN-Q and Temporal Logic
	Introduction
	Compliance Example
	Declarative Representation of Compliance Rules
	Efficient Analysis Using Temporal Logic
	Related Work
	Conclusion
	References

	Automatic Extraction of Process Control Flow from I/O Operations
	Introduction
	Overview
	The Loop-Finding Algorithm
	Fourier Transformation
	Algorithm Rationale and Description
	Example
	Handling Nested Loops

	The Control-Flow Algorithm
	Algorithm Outline
	Backward Match-and-Merge
	Forward Match-and-Merge
	Structured Control-Flow
	Algorithmic Complexity

	Results
	Sample Traces
	Metrics

	Conclusion
	References

	A Region-Based Algorithm for Discovering Petri Nets from Event Logs
	Introduction
	Preliminaries: Theory of Regions
	Finite Transition Systems and Petri Nets
	Regions
	Generation of Minimal Regions
	Region-Based Synthesis
	Excitation-Closed Transition Systems

	Algorithm for Petri Net Mining
	Mining Over-approximations of a TS
	Related Issues and Further Extensions

	Mining Bounded Petri Nets
	Examples, Experiments and Tool
	Conclusions
	References

	BESERIAL: Behavioural Service Interface Analyser
	Motivation
	BESERIAL Tool
	Incompatibility Detection
	BESERIAL in Action

	Future Work
	References

	Business Transformation Workbench: A Practitioner’s Tool for Business Transformation
	Introduction
	Business Transformation Workbench
	Component Business Modeling
	Concluding Remarks

	Oryx – An Open Modeling Platform for the BPM Community
	Introduction
	Oryx Use Cases
	Oryx Overview
	Conclusion and Outlook
	References

	Transforming BPMN Diagrams into YAWL Nets
	Introduction
	Overview of BPMN to YAWL Transformation
	Tool Implementation
	Outlook
	References

	Goal-Oriented Autonomic Business Process Modeling and Execution: Engineering Change Management Demonstration
	References

	COREPRO$_{Sim}$: A Tool for Modeling, Simulating and Adapting Data-Driven Process Structures
	Introduction
	COREPRO Framework and Demo Description
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

