
Obligations: Building a Bridge between Personal and
Enterprise Privacy in Pervasive Computing

Susana Alcalde Bagüés1,2, Jelena Mitic1, Andreas Zeidler1,
Marta Tejada2, Ignacio R. Matias2, and Carlos Fernandez Valdivielso2

1 Siemens AG, Corporate Technology
Munich, Germany

{susana.alcalde.ext,jelena.mitic,a.zeidler}@siemens.com
2 Public University of Navarra

Department of Electrical and Electronic Engineering
Navarra, Spain

{tejada.43281,carlos.fernandez,natxo}@unavarra.es

Abstract. In this paper we present a novel architecture for extending the tradi-
tional notion of access control to privacy-related data toward a holistic privacy
management system. The key elements used are obligations. They constitute a
means for controlling the use of private data even after the data was disclosed
to some third-party. Today’s laws mostly are regulating the conduct of business
between an individual and some enterprise. They mainly focus on long-lived and
static relationships between a user and a service provider. However, due to the
dynamic nature of pervasive computing environments, rather more sophisticated
mechanisms than a simple offer/accept-based privacy negotiation are required.
Thus, we introduce a privacy architecture which allows a user not only to nego-
tiate the level of privacy needed in a rather automated way but also to track and
monitor the whole life-cycle of data once it has been disclosed.

1 Introduction

Over the last few years privacy topics have attracted the attention of many researches
working in the field of Pervasive Computing. The existing common understanding is:
the envisioned age of invisible computing is only feasible if people have control over
the circumstances under which their personal data is disclosed and how it is processed
thereafter. The demand is clear: we should design pervasive computing environments
aware of their users’ privacy preferences. So far, most efforts are centered around pri-
vacy control for enterprises, like E-P3P [1] and EPAL [2]. However, we argue that
pervasive computing settings demand an additional level of personal privacy comple-
menting enterprise privacy in important aspects. Personal privacy is concerned with
maintaining a user’s privacy preferences. In our opinion, for guaranteeing an individ-
ual’s right for privacy, it is necessary to empower a user to decide on the exchange of
personal data on a much finer-grained level than possible today. Apart from such mech-
anisms that provide access control for commercial use, and more recently obligations
management [3], users should have their own personalized context-aware privacy ac-
cess control, and additionally the possibility of monitoring the post-disclosure life-cycle

S.M. Furnell, S.K. Katsikas, and A. Lioy (Eds.): TrustBus 2008, LNCS 5185, pp. 173–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

174 S. Alcalde Bagüés et al.

of the data transmitted. The goal is to enable users to monitor the access, use and dele-
tion of data, also after the data was disclosed. Today, this is only possible to the extent
that an enterprise “promises” to respect a user’s privacy preferences.

We enable post-disclosure monitoring by introducing obligations as an independent
entity within our User-centric Privacy Framework (UCPF) [4]. Wikipedia defines an
obligation as “a requirement to take some course of action”. In our work presented
here, we leverage this notion of an obligation as a required description of regulation on
the processing of personal data when being disclosed to third-parties. In this paper, we
describe how we add specialized layers for privacy management in order to realize a
holistic privacy control, able to fulfill a user’s privacy preferences. The key idea is to
combine personal and enterprise privacy in an appropriate way. For us it is clear that
personal privacy demands differ substantially from those assumed by enterprises, since
personal privacy is a much more intimate concern than an enterprise’s requirement to
meet existing legislations.

This paper is structured as follows: Section 2 compares the requirements for personal
privacy protection with those for enterprises. Section 3 then introduces our own privacy
framework. Section 4 and 5 are dedicated to our approach for a holistic privacy man-
agement based on obligations. The following Sections 6 and 7 are summarizing related
work and conclude this paper also indicating directions for future work.

2 Personal and Enterprise Privacy in Pervasive Computing

Pervasive computing scenarios entail the deployment of a large number of Context-
aware Mobile Services (CAMS) and along with them a “pervasive sensing” of context
information related to a person at any time and any place. Therefore, individuals will
require automatic mechanisms to control when context is revealed without the need to
set their privacy preferences each time and for each service separately. Even the large
number of services alone will make a manual per-use authorization of access to personal
data (as required by law) an impossible task. Furthermore, individuals will want mech-
anisms to monitor that enterprises use disclosed data only for fulfilling the requested
purpose and nothing else. The challenge here is to meet the individual’s expected level
of privacy while at the same time dynamic information is revealed in mobile, inherently
changing and distributed settings.

Today, enterprises and organizations offer mainly privacy protection mechanisms
oriented toward the long-term use of services. They consume personal data, which is
classified as static in [5], e.g. account number or address. In contrast to the dynamic
and short-lived relations typically found in pervasive and mobile settings, where data
usually is provided and used only once in a single request. In the latter setting, obviously
it is no longer possible to spend the time and effort to define or acknowledge privacy
preferences at the moment of use, which is normal for Internet services or company
applications. An “offline” solution is needed where a user can define the privacy policy
with which a newly discovered service is used; beforehand of actually being in the
situation of using it. Our proposal is to add specialized layers of privacy management
to give a user a maximum control over the specification and enforcement of his privacy.

Obligations: Building a Bridge between Personal and Enterprise Privacy 175

Fig. 1. Privacy Architectures

Figure 1 compares two different situations, on the left hand side the current use of
obligations by enterprises, situation applicable to the long-lived service bindings. And
on the right hand side our approach of a holistic privacy control scheme integrating
access control and obligation tracking on the user side.

In order to address named challenges for privacy in pervasive computing, we have
developed a novel privacy architecture consisting of three layers, namely: 1) Personal
context-aware privacy access control, 2) Enterprise access control and obligation man-
agement, and 3) Personal obligation tracking. These layers are complementary and de-
pend on each other to guarantee a holistic privacy protection. For instance, personal
privacy alone cannot protect data once it was transmitted and must rely on enterprise
privacy mechanisms. For the rest of the paper we assume that a privacy protection mid-
dleware on the enterprise side is in place, capable of handling and enforcing obligations.

The first privacy layer is provided by our privacy framework called UCPF (cf. Sec-
tion 3). It acts as a personal access filter to delimit when, what, how and who gets
permission to access a user’s personal data. In pervasive computing scenarios mostly
this is related to disclosing context information, e.g. location or activity. Obviously, for
users it is desirable to automate such frequent decisions as much as possible and also
to have their current context taken into account. For instance, in the example: “Bob al-
lows the disclosure of his location to his employer when his activity state is working”,
the activity of Bob must be checked to decide whether his location is disclosed or not.
Therefore, the UCPF’s policy system (SenTry) has as design requirement to be context-
aware [6], in the sense that the evaluation process of a policy might involve consulting a
user’s context or peer context (e.g. requester) against the applicable policy constraints.
We argue that leaving the enforcement of such constraints to a third-party (e.g. enter-
prise access control system) would not be advisable since it entails the disclosure of
sensitive information during the policy evaluation (Bob’s activity). Nevertheless, this
privacy layer can only address situations where information is disclosed for the present
use. But it does not cover cases where information may be stored for future use in a

176 S. Alcalde Bagüés et al.

potentially different context. So, the user has to trust the service to adhere to the legal
regulations for enterprises. Here is where the second and third privacy layers are intro-
duced to make users aware of the whole life-cycle of information once it was disclosed.

The second privacy layer is the enterprise privacy access control and obligation man-
agement depicted in Figure 1, right hand side. Once data was transmitted, after follow-
ing the evaluation and enforcement process of the appropriate user’s privacy policy in
the UCPF, the enterprise service takes over the task of protecting the data. Enterprises
are obliged by law to control all accesses to the data gathered from their users. In or-
der to comply with current legislation, enterprise guidelines [7] and individual privacy
preferences, enterprise service providers not only should apply traditional access con-
trol but also actively accept and enforce privacy obligations from the users. This notion
of privacy enforcement is in accordance with the work of Hewlett Packard [3] as part
of the European Union project PRIME [8]. Obligations impose conditions for the fu-
ture that the enterprise is bound to fulfill [9], e.g “My data must be deleted within one
month” or “Send a notification when Bob requests Alice location more than N times”.
This is of vital importance since an enterprise is the only entity in an interaction chain,
see Figure 2, able to deal with future situations.

The idea of an enterprise privacy middleware able to enforce obligations based on
a user’s privacy preferences has been inspired by the work of HP in its Obligation
Management System (OMS) [10]. In the OMS framework users can explicitly define
their privacy preferences at disclosure time or at any subsequent point of time, e.g.,
through a web portal. Such privacy preferences are automatically translated into privacy
obligations based on a predefined set of templates. As mentioned before this approach
is valid for services with long-lived bindings but due to the dynamic nature of CAMS a
different solution is needed to automate the exchange of data and privacy preferences.
To do so, we impose privacy on enterprises by employing an automatic negotiation
protocol over a set of obligations, which contain a user’s privacy preferences related
with the service used.

The third privacy layer realizes the requirement to empower users of being aware
of the “life-cycle” of data after being transmitted. Here, we have developed a set of
strategies to reach a trust relationship based on a notification protocol on the agree-
ments stored, at the time of the disclosure between a UCPF and some enterprise service.
Agreements include the set of obligations defined by a user in his privacy policy, more
details can be found in Section 4.

3 User-Centric Privacy Framework

A first prototype of the UCPF [4] has been developed to be tested on the residential
gateway for the Siemens Smart Home Lab. The residential gateway provides access to
home-based services from inside and outside the home environment. The incorporation
of the UCPF adds privacy control and context brokering as separate functionalities and
lets inhabitants interact with outside CAMS. Part of the implementation of the UCPF
was incorporated into the privacy framework of the IST project CONNECT [11] as well.

As shown in Figure 2, the UCPF consists of six main functional elements, the Sen-
Try or policy system, the Obligation Manager (OM), the Sentry Registry, the Context

Obligations: Building a Bridge between Personal and Enterprise Privacy 177

Fig. 2. UCPF overview

Handler (CH), the SenTry Manager Interface (SMI), and the Noise Module (NM). The
SenTry is the major architecture building block. It was developed in JAVA on top of the
Java Expert System Shell, called Jess. A SenTry instance manages the context disclo-
sure of a user to third parties, based on a set of personal privacy policies defined with
the SeT policy language [6]. We benchmarked the performance of the SenTry together
with the policy language by using a repository of 500 rules grouped into 6 policies. In
average a request took less than 50ms to be evaluated on a standard PC, which seems
to be a reasonable performance for the application scenarios considered.

The Obligation Manager, see next Section, negotiates agreements and tracks the obli-
gations agreed on by third parties. The SenTry Registry is the only component that is
not co-located with the rest of the elements on the gateway. This component is shared
among sentries instances and located in the Internet. It tracks the availability of peo-
ple’s context and provides the pointer to the appropriate SenTry service instance, see
Figure 2 right hand side. The interface between SenTry and Service Registry is facili-
tated by the Context Handler (CH). It supports the identification of external sources of
context e.g. for the evaluation of Foreign Constraints [12]. Furthermore, the CH acts
as a mediator between SenTry and externals context providers. The interaction of end-
users with the UCPF is made possible through the Sentry Manager Interface (SMI). It
is implemented as an API used to generate, upgrade or delete privacy policies, receive
information about the current applicable policies, or getting feedback on potential pri-
vacy risks and obligations state. The Noise Module (NM) is a modular component that
incorporates additional tools to the policy matching mechanism, e.g. obfuscation and
white lies [13].

4 Building a Bridge toward Holistic Privacy

In Section 2 the idea of a holistic privacy protection was introduced together with its de-
pendency on the collaboration between a personal privacy framework (the UCPF) and
an enterprise privacy system. The question we address now is: How can this collabo-
ration be established?, The main problem obviously is that users still have to trust to
some degree in enterprises’ “promises”. Obligations are used to create automatic bind-
ings between both parts, and ensure that data protection requirements are adhered to.
However, in cases where those bindings cannot be monitored, checking the compliance

178 S. Alcalde Bagüés et al.

Fig. 3. Agreement Negotiation

with the obligation is almost impossible. The concept of Non-observable Obligations
is described in the work of Hilty et al. [9], they suggest that a possible solution is the
use of nontechnical means, such as audits or legal means. We propose instead the idea
of employing observable bindings between personal and enterprise frameworks. This
is realized by introducing an agreement negotiation protocol together with a trusted
notification mechanism, both detailed below.

The agreement negotiation protocol, cf. Fig. 3, starts after the evaluation of a service
request within a SenTry instance. If the rule effect compiled contains obligations, the
Policy Enforcement Point (PEP) queries the OM for an agreement over the pending
obligations, step 3 in Figure 3, and the OM launches the negotiation, steps 4 to 9.

This protocol enables per-service and per-user resource agreements negotiations that
are guaranteed to terminate after at most three negotiation rounds. The Obligation Man-
ager makes a first proposal in the “Negotiating Optimum” stage. The enterprise side
cannot make any counter-proposal at this stage, since the user should not be involved
during the negotiation. Therefore, it is limited to check the list of obligations attached
and to reject or bind them. If the agreement is denied by the enterprise, which means that
one or more obligations are rejected, the OM issues the second proposal: “Negotiating
Acceptable” stage. It includes a new set of obligations where the rejected obligations
of the first set are replaced by their acceptable equivalents. The enterprise service may
accept the second proposal, or start the third and last round: “Negotiating Minimum”
stage, in which a new set of obligations classified as minimum replaces those rejected.
The goals of this negotiation strategy are: i) to allow more than “take or leave” situa-
tions, ii) to enable an automatic setup of user’s privacy preferences, and iii) to execute
the obligation binding process transparent to the user.

In a situation where an enterprise does not accept the third and last proposal, no
agreement is reached and the priority of the rejected agreement is taken into account by
the OM. Each agreement is labeled with a priority value, one, two or three. Priority one
means that the service (enterprise) MUST accept the agreement otherwise permission

Obligations: Building a Bridge between Personal and Enterprise Privacy 179

Fig. 4. Notification Schemes

will be denied (step 10). Priority two means that the service SHOULD accept the agree-
ment otherwise data quality will decrease in accuracy. A priority of three means that the
service MIGHT accept the agreement and entails the disclosure of the requested data
anyway but the user will be notified that no agreement was reached. A user may modify
his privacy settings based on the obligations rejected.

Our approach to establish a trusted relationship between an enterprise service and
the UCPF is based on the possibility to subscribe to notifications about the use of dis-
closed data. We introduce two complementary notification types as shown in Fig. 4.
The notification template shown on the left hand side is used for notifying the UCPF
(as subscriber) about the fulfillment or violation of an obligation by the service provider.
We have defined seven notifications types, namely: DELETION, ACCESS, LEAKING,
REPOSITORY, REQUEST, DISCLOSURE and POLICY. Depending on the notifica-
tion type used, further parameters need to be provided. E.g. a DELETION notification
does not have any parameter, on the other hand, a DISCLOSURE notification should
include at least the Subject or Service, recipient of the data, and the Purpose of such
disclosure. The use of notifications allows for monitoring the status of the active obli-
gations and to define actions (penalties) in case of a violation. We introduced the tag if
Violated (cf. Fig. 3) for this case. It describes the sanctions to be carried out once the
OM observes such a violation.

The template on the right hand side of Fig. 4 is the notification scheme used by
the UCPF to request a report on the state of or a list of the operations on a particular
resource. In summary, notifications are leveraged for: i) enabling monitoring of active
obligations, ii) auditing the enterprise service, iii) getting access to personal data in the
service’s repository (with REPOSITORY notification), iv) knowing when the service’s
obligation policy changes in order to re-negotiate agreements, and v) controlling when
an active obligation is violated.

4.1 Model of Privacy Obligations in the UCPF

In collaboration with the IST project CONNECT, we created a set of 16 obligations as
shown in Figure 5. They represent the privacy constraints that a user may impose on

180 S. Alcalde Bagüés et al.

Data accessACCESSSend NotificationNotify change on purpose16

UCPF NotificationSend Data LogSend data log when requested by UCPF15

UCPF NotificationSend Data StateSend data state when requested by UCPF14

Data disclosureDISCLOSURESend NotificationSend notification when number disclosures
same subject equals specified value

13

Data accessACCESSSend NotificationSend notification when number accesses
equals specified value

12

Policy changedPOLICYSend NotificationNotify any change of the Obligation Policy11

Data deletionDELETIONSend NotificationSend notification when data is removed
from repository

10

Data storageREPOSITORYSend NotificationSend notification with URL to the stored
data (in service repository)

9

Session finishedDelete DataDo not store data in any repository8

TimeoutDelete DataDelete data after specified timeout7

Data accessACCESSSend NotificationNotify the purpose of data access6

Data storageEncryptionData in repositories must be encrypted5

Data transmissionEncryptionCommunication must be secured4

Data requestREQUESTSend NotificationRequest permission before any disclosure
to a Subject

3

Data disclosureDISCLOSURESend NotificationSend notification each time data is
disclosed to a subject

2

Leaking of dataLEAKINGSend NotificationData MUST not be disclosed to any third-
party service

1

SystemEventNotificationActionDescription

Data accessACCESSSend NotificationNotify change on purpose16

UCPF NotificationSend Data LogSend data log when requested by UCPF15

UCPF NotificationSend Data StateSend data state when requested by UCPF14

Data disclosureDISCLOSURESend NotificationSend notification when number disclosures
same subject equals specified value

13

Data accessACCESSSend NotificationSend notification when number accesses
equals specified value

12

Policy changedPOLICYSend NotificationNotify any change of the Obligation Policy11

Data deletionDELETIONSend NotificationSend notification when data is removed
from repository

10

Data storageREPOSITORYSend NotificationSend notification with URL to the stored
data (in service repository)

9

Session finishedDelete DataDo not store data in any repository8

TimeoutDelete DataDelete data after specified timeout7

Data accessACCESSSend NotificationNotify the purpose of data access6

Data storageEncryptionData in repositories must be encrypted5

Data transmissionEncryptionCommunication must be secured4

Data requestREQUESTSend NotificationRequest permission before any disclosure
to a Subject

3

Data disclosureDISCLOSURESend NotificationSend notification each time data is
disclosed to a subject

2

Leaking of dataLEAKINGSend NotificationData MUST not be disclosed to any third-
party service

1

SystemEventNotificationActionDescription

Fig. 5. Obligations defined within the UCPF

an enterprise service when data is disclosed. In our definition, an obligation has two
aspects; First, it is a second-class entity subject to the enforcement of a rule by the Sen-
Try component and embedded as part of the rule effect (see Fig. 6, tag hasEffect) and
to be compiled during the evaluation of a service request. And second, when an evalu-
ation reaches the PEP and it contains obligations, it activates the agreement negotiation
protocol as described on Fig. 3. Then, obligations are first-class entities used to convey
personal privacy preferences.

In the representation of obligations basically we follow the scheme adopted by the
HP framework to facilitate collaboration with the enterprise privacy system. Thus, obli-
gations are XML documents with Event, Action and Metadata elements. Some tags

Fig. 6. Obligation’s Example

Obligations: Building a Bridge between Personal and Enterprise Privacy 181

were left out in our definition (e.g. Target), which only can be used together with HP’s
OMS. In Figure 6 a simple rule example is depicted to show how an XML obliga-
tion instance is created to be included in the agreement negotiation protocol (ANP). In
this example Bob is allowing his employer to access his location based on the activity,
but to delete his coordinates latest after 30 days. The rule is specified using our pol-
icy language SeT [6]. The instance of the rule effect (BobPOP) specifies that the result
evaluates to “grant” but only if the service agrees on the obligation with id “BB555”.
Fig. 6, right hand side, shows the XML document referred by the named rule effect.

The table in Fig. 5 shows five special obligations marked as system. Those are
mandatory obligations (deducted from current legislation), which are by default estab-
lished independently of a user’s preferences and beforehand of any commercial transac-
tion with a service. The rest marked ANP mean that user might include them as a result
of the evaluation of a rule and that they will be subject of the negotiation protocol. There
are two more obligations highlighted that are obligations that allow the UCPF to audit
the enterprise service.

5 Obligation Management from the User Perspective

Due to space restrictions we cannot really go into the details of obligation manage-
ment. But still we want to give a short introduction to our ongoing work in this area.
The question remaining at this point obviously is: How can a user setup his obliga-
tion policies regarding optimal, acceptable, and minimum agreement?. Figure 7 shows
a screenshot of our current application prototype for managing sets of obligations. A
user can specify a new rule for being added to his privacy policy and subsequently can
allocate a set of obligations to it. A set always consists of the three mandatory obliga-
tion types “Optimum”, “Acceptable”, and “Minimum”. These can be predefined and be
re-used, obviously, and do not have to be defined separately each time. Implicitly they
are always indirectly referenced by id and not by name or privacy rule. For example, in
Fig. 6 the id of the obligation chosen is “BB555” which, for the sake of simplicity, is
only a single obligation. In our real application the same id would refer to a set of three
obligations corresponding to the three mandatory categories.

Fig. 7. GUI prototype

182 S. Alcalde Bagüés et al.

In later implementations we hope to use the experiences gathered in field trials to
improve the management for the use within different user groups. However, for the
time being this has to be considered future work.

6 Related Work

The use of obligations in computer systems by itself is not a new topic. It has been
largely used to specify actions that must be performed by some entity. In daily sit-
uations where people interact, individuals are held responsible for their own actions;
they may be punished if they fail to do what they have promised. In 1996 Van the Riet
et al. translated this concept to the “cyberspace”. In [14] they conclude that although
software entities cannot take real responsibility, their specification still should take into
account what such entities must do and what happens if they do not fulfill what has
been specified. For instance, within Ponder [15] obligations are event-triggered policies
that carry-out management tasks on a set of target objects or on the subject itself, e.g.
when a print error event occurs a policy management agent will notify all operators of
the error and log the event internally based on an obligation.

In traditional access control systems obligations are coupled tightly to access control
policies. An obligation is considered as an action that shall be performed by the system’s
Policy Enforcement Point (PEP) together with the enforcement of an access control
decision. This is the approach followed by EPAL [2], where obligations are entities
subordinated to access control. Similarly to EPAL, XACML [16] specifies the syntax
and format of access control policies and related obligations. Within this popular access
control language obligations are a set of operations associated with an XACML policy
that must be executed by the PEP together with an authorization decision. In the work
of Park and Sandhu [17] obligations are requirements that have to be fulfilled by a
subject at the time of the request for allowing access to a resource. E.g., a user must
give his name and email address to download a company’s white paper. However, the
mentioned approaches do not cover the main requirement of obligations in the context
of post-disclosure life-cycle control. Here, obligations should be a binding agreement
between two parts, the requesting service and the user, specifying actions to be carried
out by the service’s PEP after getting the data, at some point in the future. The main
goal of these types of privacy obligations is not to constrain the access to the user data
but to inform a remote requester of a user’s privacy preferences, which should involve
an agreement and its posterior tracking.

In Rei [18], an obligation describes an action that must be performed on an object
by a distributed entity. An example of an obligation in Rei is “All members of a team
are obliged to send weekly reports to the team leader”. Rei uses obligations in a similar
way to our work and introduces some common and important aspects, such as promises
for the future and sanctions in case of violation. However, the Rei framework does
not provide an enforcement model. Rei assumes that obligation management is done
outside the policy engine although it is not clear how obligations are agreed upon or
denied by a third party.

The work presented in [19] describes an approach to archive digital signed com-
mitments on obligations between distributed parties. They introduced the Obligation

Obligations: Building a Bridge between Personal and Enterprise Privacy 183

of Trust (OoT) protocol, which executes two consecutive steps: Notification of Obliga-
tion and Signed Acceptance of Obligation. The OoT is built upon the XACML standard
following its Web Services Profile (WS-XACML). The disadvantages of this approach
are that it does not cater for the enforcement and monitoring of such obligations, on
the one hand, and that it seems to be rather complicated for a common user to manage
obligations following this protocol, on the other hand.

We propose a novel privacy architecture in which obligations can be managed by
common users. Our framework provides privacy-aware access control, an agreement
negotiation protocol over a set of obligations and its posterior tracking. In order to
avoid the misuse of private data, once it was disclosed, we rely on the idea of an enter-
prise privacy middleware able to enforce obligations remotely. This notion of privacy
obligations enforcement is in accordance with the work of Hewlett Packard [3] within
PRIME [8], as already mentioned in Section 2.

7 Conclusions and Outlook

In this paper we present a novel architecture that extends privacy control in a substan-
tial matter toward holistic privacy management. We introduced the notion of a binding
obligation for each privacy-related resource. Such an obligation has to be accepted by
a service whenever it requests access to private data. Obligations describe the rights
and requirements for processing, storing or deleting data by the service. To avoid sit-
uations where obligations are not acceptable by a service and would lead to simple
denial of service, we also defined a well-defined negotiation protocol for trying to find
an agreement based on different classes of information- or service provided. However,
we considered even this to be not far-reaching enough and introduced a third layer of
privacy-related functionality: the personal obligation tracking, enabling post-disclosure
life-cycle awareness. Obligations additionally can describe which information the client
(user) wants to receive in order to track the usage of disclosed data after releasing it. We
showed that this is an easy but effective way to enable trust between the client and the
service. On the other hand, we are aware that we have to gather more experience with
these mechanisms. Therefore, we currently are improving the client applications which
allow users to maintain and manage their privacy-related settings. This is partly done
in the context of the CONNECT project which serves as ’testbed’ for the concepts and
also provides input for realistic scenarios from different domains.

References

1. Karjoth, G., Schunter, M., Waidner, M.: The platform for enterprise privacy practices - pri-
vacy enabled management of customer data. In: Dingledine, R., Syverson, P.F. (eds.) PET
2002. LNCS, vol. 2482. Springer, Heidelberg (2003)

2. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise Privacy Authorization
Language (EPAL 1.2) Specification (November 2003),
http://www.zurich.ibm.com/security/enterprise-privacy/epal/

3. Casassa Mont, M., Thyne, R.: A Systemic Approach to Automate Privacy Policy Enforce-
ment in Enterprises. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 118–
134. Springer, Heidelberg (2006)

http://www.zurich.ibm.com/security/enterprise-privacy/epal/

184 S. Alcalde Bagüés et al.

4. Alcalde Bagüés, S., Zeidler, A., Fernandez Valdivielso, C., Matias, I.R.: Sentry@home -
leveraging the smart home for privacy in pervasive computing. International Journal of Smart
Home 1(2) (2007)

5. Price, B.A., Adam, K., Nuseibeh, B.: Keeping ubiquitous computing to yourself: a practical
model for user control of privacy. International Journal of Human-Computer Studies 63,
228–253 (2005)

6. Alcalde Bagüés, S., Zeidler, A., Fernandez Valdivielso, C., Matias, I.R.: Towards personal
privacy control. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2007, Part II. LNCS,
vol. 4806, pp. 886–895. Springer, Heidelberg (2007)

7. Federal Trade Commission (FTC). Fair information practice principles. Privacy online: A
(June 1998)

8. Camenisch, J., et al.: Privacy and Identity Management for Everyone. In: Proceedings of the
ACM DIM (2005)

9. Hiltya, M., Basin, D.A., Pretschner, A.: On Obligations. In: di Vimercati, S.d.C., Syverson,
P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 98–117. Springer, Heidel-
berg (2005)

10. Casassa Mont, M.: A System to Handle Privacy Obligations in Enterprises. Thesis (2005)
11. The CONNECT Project, http://www.ist-connect.eu/
12. Alcalde Bagüés, S., Zeidler, A., Fernandez Valdivielso, C., Matias, I.R.: A user-centric pri-

vacy framework for pervasive environments. In: OTM Workshops (2), pp. 1347–1356 (2006)
13. Alcalde Bagüés, S., Zeidler, A., Fernandez Valdivielso, C., Matias, I.R.: Disappearing for a

while - using white lies in pervasive computing. In: Proceedings of the 2007 ACM workshop
on Privacy in electronic society (WPES 2007) (2007)

14. van de Riet, R.P., Burg, J.F.M.: Linguistic tools for modelling alter egos in cyberspace: Who
is responsible? Journal of Universal Computer Science 2(9), 623–636 (1996)

15. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: Ponder: A language for specifying security
and management policies for distributed systems (2000)

16. OASIS standard. eXtensible Access Control Markup Language. Version 2 (February 2005)
17. Park, J., Sandhu, R.: The uconabc usage control model. ACM Trans. Inf. Syst. Secur. 7(1),

128–174 (2004)
18. Kagal, L.: A Policy-Based Approach to Governing Autonomous Behavior in Distributed

Environments. Phd Thesis, University of Maryland Baltimore County (September 2004)
19. Mbanaso, U.M., Cooper, G.S., Chadwick, D.W., Anderson, A.: Obligations for privacy and

confidentiality in distributed transactions. In: EUC Workshops, pp. 69–81 (2007)

http://www.ist-connect.eu/

	Obligations: Building a Bridge between Personal and Enterprise Privacy in Pervasive Computing
	Introduction
	Personal and Enterprise Privacy in Pervasive Computing
	User-Centric Privacy Framework
	Building a Bridge toward Holistic Privacy
	Model of Privacy Obligations in the UCPF

	Obligation Management from the User Perspective
	Related Work
	Conclusions and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

