
A Light Number-Generation Scheme for Feasible
and Secure Credit-Card-Payment Solutions

Francesco Buccafurri and Gianluca Lax

DIMET, University of Reggio Calabria
via Graziella, Località Feo di Vito, 89122 Reggio Calabria, Italy

bucca@unirc.it, lax@unirc.it

Abstract. Disposable-number credit card is a recent approach to con-
trasting the severe problem of credit card fraud, nowadays constantly
growing, especially in credit-card-based e-commerce payments. When-
ever the solutions cannot rely on a secure extra communication chan-
nel between cardholder and issuer, the only possibility is to generate
new numbers on the basis of some common scheme, starting from secret
shared initial information. However, in order to make the approach fea-
sible, the computational load both on issuer and customer side should
be minimized, also to reduce the cost of user-side devices, keeping yet
an adequate security level. In this paper we present a disposable-number
credit card scheme meeting the above goals, going a step ahead w.r.t.
the state of the art.

1 Introduction

Credit card fraud is nowadays a serious problem whose dimension is constantly
growing. Indeed, there are a number of techniques used by attackers to sniff
(during both on-line and traditional transactions) the fixed credit card num-
ber used for authentication, and to use it for fraudulent payments. This is of
course a direct consequence of the intrinsic weakness of the traditional credit
card processing system, where the key used for authentication is long-term,
semi-secret, transmitted over insecure channels, sometimes completely disclosed.
Consider that credit cards are still widely used in e-commerce (as well as in other
e-activities) since it often happens that alternative secure payment methods (like
[15,10]) are not applicable or preferred.

A recent approach to contrasting the above problem is based on the concept of
disposable-number credit cards. According to this scheme, issuer and customer
agree on a number to use for the transaction, then they discard it, generate a new
number for the next transaction and so on. This way, sniffing an authentication
number during a transaction does not give the attacker any useful credential.

There are commercial [9,8] solutions based on the above scheme. Unfortu-
nately, such solutions are either still insecure, when the cardholder gets the
disposable number from the issuer Web site and authenticates itself by sensi-
ble data (like a standard credit card number) [16] or too expensive (and little
friendly), when the generation of the new number is executed on board of a smart

G. Psaila and R. Wagner (Eds.): EC-Web 2008, LNCS 5183, pp. 11–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

12 F. Buccafurri and G. Lax

card, and the issuer provides the cardholder with an additional device capable
of displaying the disposable number. In principle, the extra cost related to the
additional device could be eliminated by exploiting simple software solutions to
display disposable numbers, interfaced with standard smart-card drivers. Any-
way, the cost of (secure) smart cards is not irrelevant, so that a real applicability
of the above strategy could be strongly related with the possibility of decreas-
ing significantly also the cost of the card. Another related problem is that the
number generation scheme should be enough secure, because, differently from
schemes based on an extra communication channel (typically the Web), where
numbers can be generated randomly by the issuer, necessarily there will be a
mathematical link between a given disposable number and the successor one.
This mathematical link could be thus exploited by the attacker in order to pre-
dict new numbers on the basis of the past ones. As a consequence adequate efforts
are necessary in order to design number generation schemes sufficiently robust,
w.r.t. possible attacks. There are a number of research solutions [17,5] address-
ing the above problem. The first approach of this type is presented in [13] that
generates a new authentication number by encrypting in a smart card a set of
possible restrictions describing some elements of the transaction itself. Starting
from the consideration that encryption is too expensive to be realistically used in
this context, the authors of [17] propose the use of context free grammars (thus
not relying on any cryptographic algorithm) to generate disposable credit card
numbers. Context free grammars present the property that the generation and
validation of strings belonging to a given language can be done in polynomial
time, but it is unfeasible to find the grammar given only the strings generated
by it, since any conjectured grammar may fail on a new input string. However,
the authors do not give any suggestion about how context free grammars have
to be generated. As a consequence, an unlucky generation of the grammar may
allow an attacker to easily guess the grammar. Moreover, as stated in [18], there
exists no theoretical result about how difficult is it to guess another string which
belongs to the same language, thus showing the impossibility to guarantee the
security of this technique. Also the authors of [5] propose a more efficient solution
using cryptographic hash functions rather than encryption.

In this paper we do a step ahead. Indeed, we propose an authentication num-
ber generation scheme that is much computationally easier than previous ap-
proaches. It is based on a new fast non-cryptographic hash function as the core
of the solution, and is highly secure too. The interesting thing is that the compu-
tation which the generation scheme is based on is implementable in hardware by
very simple circuits whose cost is relevantly smaller than the traditional smart-
card chip. Observe that the high computational lightness is a key issue also
from the perspective of the issuer-side computational load. This is not irrelevant
whether we think of a huge number of clients simultaneously using their credit
card.

The rest of the paper is organized as follows. In the next section we present the
conceptual basis of our proposal. The detailed definition of the approach is given
in Section 3, where we deal with the elements composing the disposable-number

A Light Number-Generation Scheme 13

s

s1 x1 AN 1

s2 x2 AN 2

...

H P

H P
B

B

B

Fig. 1. Number generation scheme

generation scheme. Section 4 deals with the security issues. An implementation
of our proposal is provided in Section 5. Finally, in Section 6 we draw our con-
clusions. For space limitations the theorem proofs are not included in the paper.

2 Overview of the Proposal

The number generation scheme is based on the following elements:

1. an initial seed s, generated by the credit card issuer, consisting of a k-bit
string;

2. a basic function B to obtain a k-bit string from another k-bit string;
3. a hash function H;
4. a projection function P ;

The scheme to generate disposable numbers is shown in Figure 1. In particular,
by computing B(s) we obtain a new seed s1 that is recorded in place of s. Starting
from s, it is possible to create a chain of values s1, ..., sn such that si+1 = B(si)
for i > 1. Since the function B is reversible, such a chain can be traversed also
backward, by considering that si = B−1(si+1). Thanks to such a feature, the
chain values are not required to be pre-computed and stored, but they can be
generated on the fly (the advantages resulting from this feature regard all the
cases when the issuer has to check the validity of an already burnt number, like
in case of refunds).

Once the new seed s1 is generated, we compute x1 = H(s1). The one-way
property of the hash function guarantees that the knowledge of x1 does not give
an attacker the possibility to guess s1.

The last step, AN1 = P(x1) is necessary to transform the value obtained
by the hash function to a new credit card number. The following elements si,
such that i > 1, and the corresponding ANs are obtained by iterating the above
procedure.

An important issue regards the hash function to be used. We need to exploit
its one-way property and this is the only property we required. On the contrary,
the approach followed in [4] uses SHA-1 [7], a particular hash function provided

14 F. Buccafurri and G. Lax

with additional features (it must satisfy the collision-resistant property) and for
this reason defined cryptographic hash function.

In our approach, this strong assumption is not necessary. We just require that
given x = H(s), it is hard for the attacker to guess s from the knowledge of x (i.e.,
to invert the function by a brute-force attack). Observe that for a cryptographic
hash function it is required the infeasibility of finding any y (even different from s)
such that x = H(y).

In order to reach the goal of computationally non-invertibility (by generate
and test approaches) of the hash function, a possible strategy is to design a hash
function producing a large number of collisions and, thus, a sufficiently large
research space. In our scheme, we can easily set parameters in order to obtain
about 2450 collisions per value.

Note that our approach does not consist simply in the substitution of a weak
hash function in place of a cryptographic one in a typical number generation
scheme (like [5]). It is intuitive to understand that this would result in a very
insecure approach just because of the weakness of the hash function itself (and
because, in a scheme like [5], a new number is calculated as a hash of a seed
that contains the number obtained at the previous step). We have designed thus
a new weak hash function and, coherently, a new number generation scheme
guaranteeing the security of the approach.

3 Number Generation Scheme

In this section we give the definitions of the elements composing the number
generation scheme, that are the basic function B, the hash function H, and the
projection function P , we study some important properties of the functions B
and H, and, finally, we deal with the problem of the definition of the initial
seed s. Observe that the choice of the basic function, the hash function and the
projection function, cannot proceed orthogonally. Since the non-secret result is
the composition of the three functions, we have to avoid that they are based
on the same elementary operations, giving useful information to the attacker
to proceed by crypto-analysis techniques. To prevent this, as we will explain in
the following in this section, the basic function is based on string reverse and
sum, the hash function is based on XOR and shift, and the projection function
is based on scaling operations.

Before going into detail about the elements composing our scheme, we need
some preliminary notations that will be used along the paper.

Notations. We denote by xk = (x0, . . . , xk−1) a k-bit string, where xj , such
that 0 ≤ j ≤ k − 1, represents the j-th bit. We denote by x̃k = (xk−1, . . . , x0)
the k-bit-reverse string. Moreover, xk + 1 denotes the k-bit string representing
the number obtained by summing xk thought as a binary number and 1, in 2k-
modulo arithmetic. For example, given x3 = 111, x3 + 1 represents the string
000, since (111 + 001)(mod 1000) = 000(mod 1000). Moreover, we denote by

A Light Number-Generation Scheme 15

1k (0k, resp.) the k-bit string composed of all 1s (0s, resp.). Finally, let xj be a
j-bit string. We denote by xixj the (i+ j)-bit string obtained by juxtaposing xj

to xi.

3.1 The Basic Function

The basic function B allows us to generate the sequence of seeds used in the
scheme. The function is defined as follows.

Definition 1. Given a k-bit string sk, then B(sk) = s̃k + 1.

In words, B(sk) is obtained by reversing the string sk and, then, by summing
1 (modulo 2k). This function allows us to have a new seed at each generation.
Clearly, the period of this function should be as large as possible, hopefully 2k

(the upper bound), in order to have a negligible probability of re-generating a
seed during a plausible life of a credit card. The next theorem ensures that the
above goal is reached provided that k is odd.

Theorem 1. Given a k-bit string rk
0 with k mod 2 �= 0, let Rk be the sequence

〈rk
0 , . . . , rk

2k−1〉 such that rk
i = B(rk

i−1) for 1 ≤ i ≤ 2k − 1.
Then, it holds that rk

i �= rk
j , for any i, j such that 0 ≤ i < j ≤ 2k − 1.

3.2 The Hash Function

As observed in Section 2, our proposal is based on the usage of a weak hash
function. In particular, we refer to a hash function able to guarantee a weak
one-wayness, obtained by the generation of a large number of collisions.

The first question is understanding if some already existing weak hash func-
tion can be used for our purpose. A good candidate could be CRC (Cyclic
Redundancy Check) [3], a non-cryptographic hash function that is widely used
in error-detection contexts, both for its effectiveness to detect many kinds of er-
rors and for its efficiency, since a simple shift register circuit can be constructed
to compute it in hardware [11]. Observe that CRC is much faster than cryp-
tographic hash functions, even if it is computed in software1. However, we will
see in Section 4 that CRC cannot be used in our scheme due to an intrinsic
weakness which it suffers from. So we have to design a new weak hash function
keeping the nice computational features of CRC but eliminating its weakness.
Let us describe first how CRC works.

CRC is computed to produce a n-bit string, named checksum, starting from
an arbitrary length string, called frame, such that also a slight change of the
frame produces a different checksum. The checksum is computed as the rest of
1 In order to test the efficiency of our proposal, we have performed some experiments

comparing the efficiency of CRC (64 bits) computation with SHA-1. The experi-
mental results show that CRC is one magnitude order faster than SHA-1. Indeed,
computing 109 CRC hashes required about 300 seconds, whereas SHA-1 took about
3800 seconds.

16 F. Buccafurri and G. Lax

the binary division with no carry bit (it is identical to XOR) of the frame, by a
predefined generator polynomial, a (n+1)-bit string representing the coefficients
of a polynomial with degree n. CRC is thus parametric w.r.t. the generator
polynomial and for this reason there are many kinds of CRCs. For example,
the most frequently used are CRC32 and CRC64 that generate a checksum of
length 32 and 64 bits, respectively. Obviously, the higher the checksum length,
the better the effectiveness of CRC in error detecting. Beside dependence on
the generator-polynomial length, CRC is parametric w.r.t. the value of its coef-
ficients. Consequently, the goodness of CRC strictly depends also on the latter
parameter. Among the several existing CRCs, in the following we will refer to
CRC64 whose generator polynomial is defined by the ECMA standard [2], since
we argue that a 64-bit fully tested CRC offers satisfactory robustness features.

CRC satisfies the one-way requirement introduced in Section 2. Indeed, given a
k-bit frame sk (with k > 64) and its w-bit (with w = 64) checksum cw computed
by CRC, there are 2k−w collisions, that is there exist 2k−w k-bit strings sk

i such
that CRC(sk

i) = cw. We may vary k in order to increase the number of collisions
generated by CRC to any value (for example 2450) to the goal of making practically
infeasible a brute-force attack attempting to find the original frame sk. Moreover,
its implementation easiness and efficiency make CRC very appealing to be used
in this context.

Beside these nice features, CRC is not immune from malicious attacks exploit-
ing its linearity w.r.t. XOR (this weakness has been widely documented in the
literature and already exploited in some application contexts, like Wep [1,19]). In
particular, it holds that CRC(a XOR b) =CRC(a) XOR CRC(b), that is the check-
sum of the XOR of two numbers is equal to the XOR of the checksums of the two
numbers. In our case, this property of CRC could be in principle exploited by an
attacker to obtain the hash of the i-th seed of an user (i.e. xi =CRC(sk

i)) starting
from the knowledge of (1) the hash of the j-th seed of the user and (2) the XOR
between sk

i and sk
j (this attack is analyzed in Section 4).

We need thus to construct a hash function not suffering from the above prob-
lem, and preserving the other nice features of CRC. The idea is to apply a
cyclic right shift to each seed before calculating the CRC value. But, clearly, the
number of such shifts cannot be equal for each seed, otherwise the prediction
described above can be identically applied. The solution we adopt is that the
number of cyclic right shifts applied on a given seed sk

i is equal to the number
of 1s occurring in the seed itself. We denote by −→s k

i the resulting k-bit string.
Now we are ready to define our hash function H.

Definition 2. Given a k-bit string sk
i , then H(sk

i) =CRC64(−→s k
i).

3.3 The Projection Function

The numbers found on credit cards share a common numbering scheme. For a
standard 16-digit credit card, the number consists of a single-digit major industry
identifier (MII) (4 for Visa, 5 for MasterCard, and so on), a five-digit issuer
identifier number (IIN), an account number (AN), and a single digit checksum

A Light Number-Generation Scheme 17

(C) computed by the Luhn algorithm [6]. Thus, given a major industry and a
given issuer, for every users only digits from 7 to 15 can change. The projection
function P transforms the 64-bit string x64

i generated by H into a 9-digit number
ANi. Observe that a trivial implementation of such a function as P(x64) = x64

mod 109 is not a good solution since (1) it cannot be easily realized via hardware
because 109 is not a power of 2 and (2) the distribution of values so obtained
is not uniform (values ranging from 0 to (264 − 1) mod 109 are more probable
than the remaining ones).

To overcame this problem we have implemented the following solution. First,
we introduce two notations. Given a k-bit string K, we denote by [k]i,j with
1 ≤ i ≤ j ≤ k the sub-string of K obtained by keeping the j − i + 1 bits starting
from the i-th left-most bit. For example, given k = 1000, [k]1,2 = 10. Given
a decimal number number N , we denote by [N]j its j-th left-most digit. For
example, given N = 56789, [N]2 = 6.

Our solution requires a modulo-10 (decimal) counter C, initialized to 0. Ini-
tially, C is increased by 1 if the first bit (i.e. the most significant) of x64 is 1. The
remaining 63 bits of x64 are partitioned in 9 buckets of 7 bits. The i-th bucket is
used to set [AN]i, that is the i-th digit of AN. The i-th 7-bit bucket may assume
a value vi ranging from 0 to 127, and is partitioned again in 11 intervals. The
first 10 intervals have size 12, whereas the last one 8. Let pi be the index of the
interval which vi belongs to. If pi is less than 10, then the value of the i-th digit
of AN is set to pi. Otherwise (i.e., pi is either 10 or 11), [AN]i is set to the value
stored in C and C is increased by pi (modulo 10). It is easy to show that this
procedure results in a uniform distribution of ANs.

4 Security Issues

In this section we analyze the robustness of the proposed disposable number
generation scheme with respect to a number of possible strategies followed by
an attacker to guess the next credit card number. In our analysis we consider
firstly the case of a brute force attack trying to find the current seed si starting
from the sniffing of the last-used credit card numbers. Then we describe possible
cryptanalytic attacks exploiting the knowledge of (more than one) consecutive
credit card numbers. The analysis is done assuming that k = 511.

Consider a brute-force attack conducted knowing some credit card numbers
used by the user (thus he knows some ANi of our scheme). Clearly, he has to
guess the source hash value (i.e. xi of our scheme) starting from ANi. Since
the projection function maps in an uniform way all the 264 xi in the set of 109

ANi, the probability of success is (264/109)−1, that is about 2−34. At this step
the attacker has found 234 potential xi. Let suppose the attacker can detect the
correct xi among the potential 234 values. Then, he must find the original seed
si such that H(si) = xi. By repeating the above reasoning, we obtain that the
attacker will find 2511/264 = 2447 potential solutions. Observe that, if the value
si chosen by the attacker (among the 2447 found) differs from the actual si (i.e.
the current seed of the fraud victim), then the probability that AN i+1 = AN i+1,

18 F. Buccafurri and G. Lax

where AN i+1 is the next credit card number obtained by si and AN i+1 is that
one obtained by si, is 1

109 , that coincides with the probability of guessing a valid
credit card number with no background knowledge. Thus, these results should
discourage the attacker from trying to break the scheme by brute force attacks.

Now consider the case the attacker knows a sequence C of c consecutive credit
card numbers spent by the victim. By a brute force the attacker should test
10c∗9/2 seeds to find a seed s producing such a sequence C. Observe that, since
our generation scheme produces a mapping between a set of 2511 bit strings and
a set of 109 (i.e., about 230) numbers, till c is less than 511/30 − 1 ≈ 16, the
probability of guessing also the next credit card number of the victim is again
10−9. For higher c, this probability becomes 1 but the number of seeds to test
is really too large (more than 1076).

Finally, consider an attack based on the weakness of the CRC computation.
In Section 3, we have noted that every two steps, the “noise” introduced by the
reverse operation is quasi-cancelled. To understand how this could be exploited
for an attack, we observe that when a seed sk

i has both the left-most and the
right-most bit 0 (i.e., every four steps), the attacker knows that sk

i XOR sk
i+2 =

10k−21 (recall that, according to our preliminary notations, 10k−21 denotes a
k-bit string of the form 1 · · · 1, with k − 2 0s). Thus, the CRC of sk

i+2 is easily
predictable by exploiting the above property. This behavior can be generalized
also for other bit configurations. It is easy to see that if sk

i is of the form 00 · · · 01,
then we expect that the XOR with the seed generated two steps ahead is of the
form 10k−311. Again, if sk

i is of the form 10 · · ·00, then we expect that the XOR
with sk

i+2 is of the form 110k−31. Finally, if sk
i is of the form 10 · · · 01, then we

expect that the XOR with sk
i+2 is of the form 110k−411. This is a symptom of the

alternating destructive effect of the reverse operation and, further, of the general
invariance of the internal part of the seed, when the basic function is applied.
Observe that this negative effect is maximum whenever the seed is palindromic,
because the effect of the reverse is null also on a single step.

The next theorem gives us the probabilistic support that a quasi-random
generation of the initial seed prevents this drawback for the entire credit card
life.

Theorem 2. Let t and k be two positive integers such that t < 2
k−4
2 . Let sk

be a k-bit seed of the form 10cjdk−4−2jej00, where cj and ej are j-bit strings,
dk−4−2j is a (k−4−2j)-bit string containing at least one 0 and j = �log2t	+1. It
holds that the sequence St = 〈sk

0 , . . . , sk
t 〉 such that sk

0 = B(sk) and sk
r = B(sk

r−1)
for 1 ≤ r ≤ t does not contain any seed of the form 10fk−401, where f is a
(k − 4)-bit string.

The theorem states that (i) fixing both the first and the last two bits of the
initial seed (to 10 and 00, respectively), and (ii) ensuring that the seed contains
an internal centered range whose bounds are distant �log2t	+1 from the bottom
(and the top) of the seed itself such that at least one 0 occurs in this interval,
then it results that for at least t applications of the basic function (thus, at least
for the next t credit card transactions), we do not generate bad seeds (i.e., seeds
of the form 10 · · ·01). For example, in order to have the above property for the

A Light Number-Generation Scheme 19

first t = 50.000 transactions, it suffices to set the initial seed to 10s17
1 sk−38s17

2 00,
where s17

1 , s17
1 and sk−38 are randomly generated, with the only constraint that

sk−38 contains at least one 0. It is easy to verify that the probability that a
randomly generated string sk−38 does not satisfies the above requirement is

1
2k−38 (thus the blind random generation could be also accepted). For example
in the case k = 511 this probability is 1

2473 .

5 Implementation Issues

In this section we sketch the design of the hardware device implementing the
number generation scheme so far described, in order to make evident that a
strong positive point of our proposal is its feasibility and cheapness (especially
w.r.t. other approaches based on smart card).

A concrete protocol implementing our scheme requires that the initial seed
is generated by the credit card issuer, that is the provider of the device itself.
In the following we assume the seed length is k = 511, that, as analyzed in the
previous sections, guarantees a high security level. However there is no serious
difficulty from the hardware point of view in further increasing this value in
order to further hardening the system.

The device is equipped with three circuits implementing the basic function,
the hash function and the projection function. The circuit implementing the
basic function is composed of a 512-bit shift register R, storing the current seed
and allowing the shift operation, and an adder used to implement the increment
operation (for space reasons, we cannot describe the circuit).

Concerning the hash function implementation, it requires a simple shift regis-
ter circuit and XOR gates (for details about CRC implementation and its faster
table-driven implementation see the wide related literature [11,12,14]).

Finally, the projection function is implemented by means of a small com-
binatorial circuit having 7-bit input and 4-bit output (for example a ROM of
27 · 4 = 512 bits). This circuit works on each of the 9 buckets of 7 bits as de-
scribed in Section 3.3, and returns the variable 9-digit number AN that, together
with the fixed major industry identifier MII, the identifier number IIN, and the
checksum C, produces the final disposal credit card number.

6 Conclusions

In this paper we have proposed a new number generation scheme used for CCT
credit cards. The main contribution of our proposal is the simplicity of the
computational machinery required to implement the scheme, resulting in a very
simple and economic hardware implementation. It is well-known that the seeming
low attention towards security aspects shown by issuers is actually the right
compromise of a trade-off between costs to implement radical innovations and
costs to refund customers victims of fraud. This explains why the aspects related
to the practical feasibility of any proposed innovation to harden the credit card
transaction processing is definitely important.

20 F. Buccafurri and G. Lax

References

1. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: MobiCom 2001: Proceedings of the 7th annual international
conference on Mobile computing and networking, pp. 180–189. ACM Press, New
York (2001)

2. ECMA. ECMA-182: Data Interchange on 12,7 mm 48-Track Magnetic Tape Car-
tridges — DLT1 Format (December 1992)

3. Hill, J.R.: A table driven approach to cyclic redundancy check calculations. SIG-
COMM Comput. Commun. Rev. 9(2), 40–60 (1979)

4. Li, Y., Zhang, X.: A security-enhanced one-time payment scheme for credit card.
In: Proceedings of the 14th International Workshop on Research Issues on Data En-
gineering: Web Services for E-Commerce and E-Government Applications (RIDE
2004), pp. 40–47 (2004)

5. Li, Y., Zhang, X.: Securing credit card transactions with one-time payment scheme.
Electronic Commerce Research and Applications 4, 413–426 (2005)

6. Luhn, H.P.: Computer for verifying numbers. U.S. Patent 2, 950, 048 (1960)
7. NIST/NSA. Fips 180-2 secure hash standard (SHS). NIST/NSA (August 2002)
8. Dynamic passcode authentication, http://www.visaeurope.com
9. Private Payments, http://www10.americanexpress.com

10. Paypal, http://www.paypal.com
11. Peterson, W.W.: Error-correcting codes. MIT Press and J. Wiley & Sons (1961)
12. Ramabadran, T.V., Gaitonde, S.S.: A tutorial on crc computations. IEEE Mi-

cro. 8(4), 62–75 (1988)
13. Rubin, A., Wright, N.: Off-line generation of limited-use credit card numbers. In:

Proceedings of the Fifth International Conference on Financial Cryptography, pp.
165–175 (2001)

14. Sarwate, D.V.: Computation of cyclic redundancy checks via table look-up. Com-
mun. ACM 31, 1008–1013 (1988)

15. SET Secure Electronic Transaction LLC. SET Secure Electronic Transaction Spec-
ification, http://www.setco.org

16. Shamir, A.: Secureclick: A web payment system with disposable credit card num-
bers. In: Syverson, P.F. (ed.) FC 2001. LNCS, vol. 2339, pp. 232–242. Springer,
Heidelberg (2002)

17. Singh, A., dos Santos, A.L.M.: Grammar based off line generation of disposable
credit card numbers. In: SAC 2002: Proceedings of the 2002 ACM symposium on
Applied computing, pp. 221–228. ACM Press, New York (2003)

18. Singh, A., dos Santos, A.L.M.: Context free grammar for the generation of one
time authentication identity. In: FLAIRS Conference (2004)

19. Stubblefield, A., Ioannidis, J., Rubin, A.D.: A key recovery attack on the 802.11b
wired equivalent privacy protocol (wep). ACM Trans. Inf. Syst. Secur. 7(2), 319–
332 (2004)

http://www.visaeurope.com
http://www10.americanexpress.com
http://www.paypal.com
http://www.setco.org

	A Light Number-Generation Scheme for Feasible and Secure Credit-Card-Payment Solutions
	Introduction
	Overview of the Proposal
	Number Generation Scheme
	The Basic Function
	 The Hash Function
	The Projection Function

	Security Issues
	Implementation Issues
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

