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Abstract. Grain growth in polycrystals is modelled using an improved Monte Carlo Potts 
model algorithm. By extensive simulation of three-dimensional normal grain growth it is shown 
that the simulated microstructure reaches a quasi-stationary self-similar coarsening state, where 
especially the growth of grains can be described by an average self-similar growth law, which 
depends only on the number of faces described by a square-root law. Together with topological 
considerations a non-linear effective growth law results. A generalized analytic mean-field the-
ory based on the growth law yields a scaled grain size distribution function that is in excellent 
agreement with the simulation results. Additionally, a comparison of simulation and theory 
with experimental results is performed. 

1   Introduction 

Many technical properties of polycrystalline materials depend strongly on the grain 
size of the microstructure. The control of the microstructure is a key to improve mate-
rial’s properties like, e.g., strength, toughness, diffusivity and electrical conductivity 
in processing. On the other hand, many technical processes lead, e.g., by thermal  
influence, to grain growth, which is the migration of a grain boundary driven by the 
boundary energy. The associated thermodynamic driving force is the decrease in the 
Gibbs free interface energy. In this process the mean grain size increases with a si-
multaneous decrease of the total inner interface leading to a minimization of the total 
interface free energy. In order to study the phenomenon of grain growth more closely, 
first physically motivated grain growth models have been developed in the early 
1950s (Smith 1952; Burke and Turnbull 1952). However, there remained clear  
discrepancies between the theories and experiments. 

A new approach has been provided in the 1980s by computer simulations as new 
possibilities to model the grain microstructure and its temporal evolution under realis-
tic conditions allowing for the observation of features that are difficult to observe  
experimentally, like, e.g., the surface or the rate of volume change of individual 
grains. Due to the broad field of applicability a number of different simulation meth-
ods have been developed throughout the years like, e.g., the Monte Carlo Potts model, 
the phase-field method, the Surface Evolver, and the vertex method (compare, e.g.,  
(Miodownik 2002; Atkinson 1988; Thompson 2001)). 

Among the above methods, the Monte Carlo Potts model is the most widely used 
one. The model is in its basics simple but in its specifics rather complex and therewith  
flexible. Hence, it can be applied efficiently to complex microstructures. Within the 
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Fig. 1. Simulated 3D grain structures at different grain growth stages 

scope of the authors present work the Monte Carlo Potts model method has been im-
plemented in two and three dimensions based on the original works of (Anderson et 
al. 1984; Srolovitz et al. 1984; Anderson et al. 1989) including improvements in the 
algorithm, which have been suggested recently (e.g., (Yu and Esche 2003; Kim et al. 
2005; Zöllner 2006) and the references within). 

2   Monte Carlo Potts Model Simulation 

Before a simulation can be started, the continuously given microstructure has to be 
mapped onto a discrete lattice. In three dimensions a cubic lattice is usually used with 
26 nearest neighbours (first, second, and third nearest neighbours). Although the  
cubic 3D resp. quadratic 2D lattice is the simplest one for implementation, there has 
been a discussion throughout the years, whether this underlying lattice constrains the 
simulation results. In Figure 2 one can see that the grain boundaries cling to the un-
derlying lattice. The reason for this effect is substantiated in the Potts model itself as 
the driving force places the boundaries along the lattice facets yielding a growth  
kinetics that differs from the expected normal grain growth (Holm et al. 1991 and 
2001). 
 

 

Fig. 2. a – clinging of the grain boundaries to the lattice at zero simulation temperature; 
b – grain boundaries with 120° angles at high simulation temperatures 
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Since these lattice effects depend strictly on the simulation algorithm and are 
highly non-physical, one has to eliminate them, e.g., following (Holm et al. 1991) by 
increasing the defined number of neighbouring lattice points or the simulation  
temperature T activating thermal fluctuations. In Figure 2b one can see that independ-
ent of the underlying lattice the angles adjust at 120° in the triple points for a non-zero 
temperature. 

Each lattice point represents in the simulation a Monte Carlo unit (MCU), to which 
a crystallographic orientation is assigned specified by the rotation angles in the three-
dimensional Euler space. The rotation angles specify the relative orientation to the 
given fixed coordinate system of the lattice (Ivasishin et al. 2003). In the simulation 
the orientation is usually represented by natural numbers. 

The smallest time unit of the Monte Carlo Potts model simulation is called a Monte 
Carlo step (MCS) and defined as N reorientation attempts, where N is equal to the to-
tal number of MCUs, i.e., lattice points of the lattice. 

The basic Potts algorithm (Anderson et al. 1984 and 1989; Srolovitz et al. 1984) 
shows some disadvantages that are inherent to the technique, e.g., unrealistic nuclea-
tion events and a growth exponent in Eq. (1) smaller than the expected value of n = 
0.5. Furthermore, the basic algorithm is very time consuming. Especially in recent 
times, changes in the algorithm have been suggested improving the accuracy of the 
simulation results and reducing the runtime of the simulations (Yu and Esche 2003; 
Zöllner and Streitenberger 2004; Kim et al. 2005; Zöllner 2006). 

Each of the N reorientation attempts consists of the following steps. 

In the first step a MCU is chosen in a probabilistic way. This MCU has an orienta-
tion Qμ (old state). But mostly the chosen MCU will be inside a grain and not on a 
boundary. Hence, unrealistic nucleation events may occur due to fluctuations induced 
by the simulation temperature. Seeing that grain growth always means grain boundary 
migration, a change of orientation can only occur if the chosen MCU is on the bound-
ary. In this case the simulation algorithm proceeds with Step 2, otherwise the  
algorithm terminates this loop (Step 1). 

In the second step a new orientation Qν different from the old orientation Qμ is  
assigned on probation to the chosen MCU. This new orientation is chosen from all 
other (Q-1) orientations, where Q is the total number of orientations. However, most 
reorientation attempts will fail or again unrealistic nucleation events happen. There-
fore, only orientations of the neighbouring MCUs are considered, because of the 
above grain boundary migration argument. 

In the third step the energy of both states is given by the Hamiltonian 
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The inner sum sums up over the nearest neighbours of the i-th MCU and the outer 
sum over all N MCUs of the lattice. Due to the Kronecker delta each pair of nearest 
neighbours contributes J to the system energy, if they do not have the same orienta-
tion, and 0 otherwise, where J measures the interaction of the i-th MCU with all 
neighbouring MCUs as a function of the misorientation angle θ between two grains 
calculated by the Read-Shockley equation (Read and Shockley 1950) 
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where ∗θ  is the maximal value of a low angle grain boundary. From experiments it is 
known to be between 10° and 30° depending on the material (Sutton and Balluffi 
1995) (compare also (Read and Shockley 1950; Hui et al. 2003) and the literature 
therein). For simulations of normal grain growth, where only high angle grain 
boundaries occur, it holds J = 1 (Fig. 3b). 

In the fourth step the difference in energy EΔ  between new and old state is calcu-
lated. However, due to the fact that from the whole lattice only one MCU is reoriented 
at a time, the difference in energy can simply be calculated as 
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Finally – in the fifth step – the final state with the final orientation ∗
μQ  of the se-

lected MCU is chosen with the probability p given by 
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where kB is Boltzmann’s constant and T the simulation temperature (Fig. 3a). 
It should be mentioned here again that the factor T does not measure a real tem-

perature but rather represents a parameter of the probability-jump-function introduced 
to avoid lattice pinning. 

 

Fig. 3. a – Probability p for acceptance of orientation; b – boundary mobility and energy  
depending on misorientation angle  
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The boundary mobility is also a function of the misorientation angle (Fig. 3b) 
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given by (Huang and Humphreys 2000). The constants are B = 5 and n = 4. 

3   Monte Carlo Simulation Results 

The coarsening process has been investigated by following the temporal development 
of 3D grain microstructures simulated by the Monte Carlo Potts model simulation. 
These microstructures are initially either Rayleigh distributed structures or Voronoi 
Tessellations (Zöllner 2006). 

 

Fig. 4. 3D coarsening process shown through temporal development of a 2D section 

The size of the lattice has been chosen as 200×200×200 with periodic boundary 
conditions and the simulation temperature is kBT = 2.6. For analyses the simulation 
results are averaged for each simulation step over ten simulation runs. 

3.1   Coarsening Process: Growth Law, Scaling Regime and Grain Size 
Distribution 

Curvature-driven normal grain growth – as simulated by the Monte Carlo Potts model 
– can essentially be characterized by a parabolic growth law and statistical self-
similarity (cf. the review articles (Atkinson 1988; Thompson 2001)). 

The average grain size <R> of an ensemble of grains of a polycrystalline solid  
increases with time t according to the parabolic growth law 

                                       tbRR nn ⋅=〉〈−〉〈 0 , (1) 

where R is the radius of a grain volume equivalent sphere, b is the growth factor and n 
is the growth exponent, which is theoretically supposed to be 0.5. The volume of each 
grain is equal to the number of MCUs representing the grain. 

Both 3D grain structures as they have been simulated (Zöllner and Streitenberger 
2008) by the Monte Carlo Potts model follow after an initial period of time (Figure 5a 
and b, part I) the well-known growth law, Eq. (1), (Figure 5a and b, part II). For both 
structures the numerically given growth exponent n is in very good agreement with 
 



8 D. Zöllner and P. Streitenberger 

 

Fig. 5. Temporal development of the mean grain size (black) with initial period (I) and self-
similar coarsening regime (II) together with fit (grey) of growth law, Eq. (1): a – for the 
Rayleigh distributed grain ensemble; b – for the Voronoi tessellated grain ensemble 

the expected value of n = 0.5 in Eq. (1), which can be found in all three fields of  
investigation of normal grain growth, namely experiments, theory and computer 
simulations (compare (Yu and Esche 2003)). 

The initially Rayleigh distributed grain ensemble reaches faster than the initial  
Voronoi tessellation the state characterised by the growth law, Eq. (1). The authors 
have shown (cf. Fig. 3b in (Zöllner and Streitenberger 2008)) that the number of 
grains reaching this state is significant larger for the initially Rayleigh distributed 
structure (approx. 34% grains left) than for the initial Voronoi structure (with approx. 
20% grains left). Therefore, the initially Rayleigh distributed grain structure is used 
for further statistical analyses. 

 
Fig. 6. a – Absolute grain size distribution showing number of grains vs. grain size; b - relative 
size distribution with relative number of grains vs. relative grain size x = R/<R> 

Contemporary, the coarsening process of the grain structure develops towards a 
quasi-stationary state that exhibits statistical self-similarity (Burke 1949; Mullins 
1986). The grain size distribution function F(R,t) in the quasi-stationary state is char-
acterized by the scaling form 
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All scaled grain size distribution functions f(x) within this quasi-stationary self-
similar coarsening regime collapse to a single universal, time-independent size  
distribution as shown in Figure 6b, where three time steps out of the quasi-stationary 
self-similar state indeed coincide. The temporal development of the size distribution 
can be seen best by looking at the absolute size distribution in Figure 6a (compare 
(Zöllner 2006; Zöllner and Streitenberger 2006, 2007b and 2008)). 

 

Fig. 7. Comparison of the simulated grain size distribution with the results of: a – other Monte 
Carlo Potts model simulations; b – other simulation methods both taken from literature (Krill 
and Chen 2002) 

Figure 7a shows the simulated self-similar grain size distribution within the quasi-
stationary coarsening regime in comparison to Monte Carlo Potts model simulations 
of (Anderson et al. 1989; Saito 1998; Miyake 1998; Song and Liu 1998), which have 
been taken from (Krill and Chen 2002). The grain size distribution of the simulation 
of the authors (blank squares) is very similar to that of other simulations. Deviations 
can be explained by the use of different simulation parameters like, e.g., simulation 
temperature or underlying lattice. 

The comparison between the grain size distribution obtained in this work with  
results of other simulation methods, namely the phase-field simulation of (Krill and 
Chen 2002), the Surface Evolver approach of (Wakai et al. 2000) and the vertex 
method of (Weygand et al. 1999), shows an even better agreement (Figure 7b). 

3.2   Topology: Number of Faces vs. Grain Size 

The correlation between the number of faces s per grain and the relative grain size x is 
an important topological feature of the microstructure. Due to the relaxation process 
connected with grain growth this correlation changes with time. However, it is known 
that the average number of faces of a grain of given size can be described within the 
quasi-stationary self-similar state by a time-invariant function of the relative grain 
size x (cf. Fig. 8b). 
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Fig. 8. a – Number of faces vs. relative grain size for all grains of an ensemble for the 500th 
MCS together with quadratic least-squares fit; b – average number of faces vs. relative grain 
size divided into size classes for three different time steps 

Within the quasi-stationary state the number of faces of the individual grains de-
pends non-linearly on the relative grain size (compare Fig. 8a). The relation can be 
approximated in the average by a non-binomial parabolic function 

                 ( ) δ++=++= 2
01

2
2)( qpxsxsxsxs . (3) 

This is consistent with experimental observations (Zhang et al. 2004), geometrical 
considerations following (Abbruzzese and Lücke 1996; Streitenberger and Zöllner 
2006; Zöllner 2006) and 3D computer simulations (Wakai et al. 2000). 

3.3   Volumetric Rate of Change 

In the quasi-stationary state the growth of each grain can be described by the average 
self-similar growth law (Streitenberger 1998; Streitenberger and Zöllner 2006 and 
2007) 

                                     ( )xH
R

k

dt

dR
R ⋅==& . (4) 

H(x) is a time-invariant dimensionless function of the relative grain size, and k is 
the kinetic constant of curvature driven grain boundary motion. According to this 

equation RR &  is directly linked to the volume change rate with 

               ( ) ( ) 3/123/1 48     ; πζζζ =⋅⋅=⋅=− xHkRRVV &&  (5) 

In recent times, (Hilgenfeldt et. al. 2001) and (Glicksman 2005) have shown by 
considering three-dimensional space filling polyhedral networks that the average 
volumetric rate of change is solely a function of its average number of faces or 
neighbours s = s(x) and can be approximated by the expression 

                                       sCCRR 10 +=& , (6) 

which can be considered as the 3D analogue to the von Neumann–Mullins law. 
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Fig. 9. a – Volumetric rate of change vs. number of faces for 500th MCS with fit of Eq. (6); b – 
development of grain size for some selected grains together with volume change rate 

Figure 9a shows RR &  vs. s as it follows from the Monte Carlo simulation, where 

tRR ΔΔ≈ /&  is approximated (Zöllner and Streitenberger 2004 and 2006). The least-
square fit of Eq. (6) to the simulation data yields a very good representation. Devia-
tions for small grains are inherent to the simulation technique. It can be seen that the 
fitted values C0 = -0.9385 and C1 = 0.23829 are close to Glicksman’s theoretical  
values C0 Glicksman = -1.0583 and C1 Glicksman = 0.2886 (normalized by ζ/1  as it is given 

in Eq. (5)). 
Additionally, in Figure 9b it is shown that in general grains with a volumetric rate 

of change larger than zero grow (curves 1 and 2), nearly equal to zero do not change 
(curves 3, 4 and 5) and smaller than zero shrink (curves 6 to 11) (compare also  
(Zöllner and Streitenberger 2007a). 

In Figure 10a it appears that the simulated volumetric rate of change can be ap-
proximated by a quadratic polynomial in x (Zöllner and Streitenberger 2007b) 

 

Fig. 10. a – Self-similar volumetric rate of change vs. relative grain size for all simulation data 
together with linear and quadratic least-squares fits; b - self-similar volumetric rate of change 
vs. relative grain size for data divided into size classes together with fit of Eq. (7)  (solid curve) 
and plot of Eq. (6) with s(x) from Eq. (3) as they both follow from fits to simulation data  
(dotted curve). 
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This is consistent with the non-linear behaviour of the effective growth law result-
ing from the combination of Eqs. (3) and (6), which leads to an effective growth law 
in the form of Eq. (4), where contrary to Hillert’s assumption H(x) is a non-linear 
function, (Figure 10b). 

4   Mean-Field Theory 

In the statistical mean-field theory of grain growth [Zöllner (2006)] it is assumed that 
the growth of grains can be described by an average self-similar growth law, Eq. (4), 
for all grains of size R so that the grain size distribution function F(R,t), characterized 
by the scaling form, Eq. (2), obeys the continuity equation 
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In his pioneering work on grain growth (Hillert 1965) assumed a linear function for 
H(x). Using stability arguments of the coarsening theory of (Lifshitz and Slyozov 
1961; Wagner 1961) Hillert obtained his well-known grain size distribution function 
(Hillert 1965), which, however, never has been observed, neither experimentally nor 
by computer simulations. 

Based on the parabolic approximation, Eq. (7), and the scaling assumption (2) for 
the grain size distribution, the integration of the continuity equation yields the follow-
ing analytical expression for the normalized scaled grain size distribution function 
(Streitenberger and Zöllner 2006; Zöllner 2006), 
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Eq. (10) represents a two-parameter family of grain size distribution functions  
(Fig. 11a), which fulfil the requirement of volume conservation in conjunction with 
the existence of the D-th moment <uD> of the grain size distribution function if the 
parameters α and γ obey the conditions (Streitenberger and Zöllner 2006) 
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For the limiting case Δ = 0, that is for 4γ(1+α)(1-αγ)-γ2 = 0, Eq. (10) reduces to the 
one-parameter function (Fig. 11b) 
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with a = D(u0 - 1)2, showing a finite cut-off at  u0 considered already in (Streitenber-
ger 1998 and 2001, Zöllner and Streitenberger 2004 and 2006). 

 

Fig. 11. Analytic grain size distribution functions: a – Eq. (10) rescaled to f(x) for D = 3 and Δ 
> 0; b – Eq. (12) for D = 3 and Δ = 0. 

5   Comparison of Simulation with Experimental Measurements 
and Analytical Theory 

It is a well known problem that sections through a 3D grain ensemble yield smaller 
2D grain sizes than the real 3D grain sizes (Ohser and Mücklich 2000). Parallel sec-
tions through grains yield different sizes and forms depending on place and orienta-
tion of the sectioning (compare Fig. 12). 

Since most experimentally determined size distributions come from sectioning 
(Ohser and Mücklich 2000), for comparison 2D sections of the simulated 3D micro-
structure have to be used. In this case (Fig. 13a) experimental data of zone-refined 
iron, which shows normal grain growth, have been used determined by (Hu 1974). 
Despite some minor differences there is a good overall agreement between the 2D 
sectioning data from experiment and simulation (Zöllner and Strei-tenberger 2007c). 

The comparison of 3D grain size distributions from simulation with experimental 
results for recrystallized and annealed pure polycrystalline iron obtained by serial sec-
tioning (Zhang et al. 2004) is shown in Figure 13b, where additionally a fit of the 
theoretical expression Eq. (10) to our simulation data is plotted. It can be seen that the 
experimental size distribution of Zhang et al. shows some differences (Zöllner and 
Streitenberger 2007c). The reason why it is more peaked is unclear. 
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Fig. 12. Equally distanced sections through: a – a sphere; b – a grain 

 

Fig. 13. Relative grain size distributions: a – of experimental data (Hu 1974) compared to 2D 
sections from Monte Carlo simulation; b – from experimental data (black stars) obtained by se-
rial sectioning (Zhang et al. 2004) compared to simulated self-similar 3D size distribution 
(grey) with analytical fit, Eq. (10) 

The least-squares fits of eqs. (10) and (12) to the simulation data are in very good 
agreement with the simulation results (Figure 14a). It can rather be seen that the one-
parameter function is an approximation as good as the two parameter one. 

The parameters α and γ can also be determined (Streitenberger and Zöllner 2006) 
from the parameters of the quadratic average growth law (7) fitted to the simulated 
microstructure (Fig. 10a). While α can be calculated immediately from α = a2xc/a1 = 
0.6492, γ is determined self-consistently by the scaling requirement that the scaled 
critical grain size xc = 1.22309 of the simulated microstructure following from 

0)( =cxR&  has to be the same as ( )∫= duuuxc ϕ/1  following from the grain size dis-

tribution function, (10), yielding γ = 1.24876. The resulting analytical grain size  
distribution function is in excellent agreement with the grain size distribution of the 
Monte Carlo Potts model simulation as shown in Figure 14b. 

A comparison of the least-squares fit of Eq. (10) to the simulated size distribution 
with the analytical size distribution functions of (Hillert 1965) and (Louat 1974) are 
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Fig. 14. Simulated grain size distribution together with: a – least-squares fit of (10) and (12); b 
– fit of (10) with parameters given by average growth law, Eq. (7); c – least-squares fit of (10), 
Hillerts (Eq. (10) for α = 0) and Louats (Eq. (10) for α → ∞) size distribution; d – size distribu-
tion obtained by integration of average growth law (6) with Eq. (3). 

shown in Figure 14c, where it is clear that the simulated distribution can be approxi-
mated very well by our theory but is quite different from the distributions of Hillert 
and Louat. 

The average growth law RR &  can also be used free of the parabolic approximation, 
Eq. (7). Therefore, the non-linear growth law (6) is used as it has been fitted to the 
simulation results in Figure 9a. The function s(x) is given in Figure 8a. Then the grain 
size distribution results from numerical integration of the growth law and is also in 
fair agreement with the results as can be seen in Figure 14d. 

6   Conclusions 

In the present work normal grain growth in three dimensions has been studied on the 
basis of large-scale Monte Carlo Potts model simulations, which enabled extensive 
statistical analyses of growth kinetics and topological properties of microstructures 
within the quasi-stationary coarsening regime. In particular, an average growth law 
could be derived from the simulation data, involving a quadratic dependency of the 
self-similar grain-volume change rate on the relative grain size x.  
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It has been shown that an adequate modification of the effective growth law allows 
a modification of the Lifshitz-Slyozov-Wagner procedure. Based on the effective 
growth law derived from simulation data an analytical size distribution function is de-
rived, which is not only fully consistent with the requirement of total-volume conser-
vation and the existence of a finite average grain volume but  rather represents the 
simulation data of three-dimensional grain growth very well.  

Additionally, 2D plane sections from simulated 3D grain structures were consid-
ered and compared with experimental data showing a very good agreement. The 
simulated size distribution shows – compared with an experimental grain size distri-
bution for pure iron obtained by serial sectioning – also a fair agreement. 
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