Learning at the Speed of Light: A New Type of Optical
Neural Network

A. Steven Younger' and Emmett Redd?

! Jordan Valley Innovation Center, Missouri State University, Springfield, MO 65897 USA
2 Department of Physics, Astronomy and Materials Science, Missouri State University
{SteveYounger, EmmettRedd}@MissouriState.edu

Abstract. Most, if not all, optical hardware-based neural networks are slow
during the neural learning phase. This limitation has been not only a speed bot-
tleneck, but it has contributed to the lack of wide-spread use of optical neural
systems. We present a novel solution — Optical Fixed-Weight Learning Neural
Networks. Standard neural networks learn new function mappings by the
changing of their synaptic weights. However, the Fixed-Weight Neural Net-
works learn new mappings by dynamically changing recurrent neural signals.
The (fixed) synaptic weights of the FWL-NN implement a learning "algorithm"
which adjusts the recurrent signals toward their proper values.

Keywords: Optical Neural Networks, Optical Computing, Fixed-Weight Learn-
ing Neural Networks, Adaptive Neural Networks, Accommodative Neural
Networks.

1 Introduction

Optical hardware is probably the fastest method of performing the forward-
propagation phase of neural networks. An optical neural computer similar to those
presented in [1, 2] should be able to perform over 10" synaptic operations per second
using current technology. Optical Neural squashing computations can now be per-
formed on the sub-picoseconds time scale [3].

Most, if not all optical hardware schemes are slow during the neural learning
phase. Optical learning has traditionally been done on a separate (non-optical) com-
puter and the results stored on film, or required the use of a relatively slow (and/or
expensive) spatial light modulator. This limitation has been not only a speed bottle-
neck, but it has contributed to the lack of wide-spread use of optical neural systems.

We present a different solution — Optical Fixed-Weight Learning Neural Networks
(Optical FWL-NN). Standard neural networks learn new function mappings by the
changing of their synaptic weights. However, the FWL-NNs learn new mappings by
dynamically changing recurrent neural signals. The (fixed) synaptic weights of the
FWL-NN implement learning "algorithm" which adjusts the recurrent signals toward
their proper values. That is, instead of encoding a particular mapping, the synaptic
weights of a FWL-NN encode how to learn any mapping (within a large, perhaps
infinite, set of possible mappings).

S. Dolev, T. Haist, and M. Oltean (Eds.): OSC 2008, LNCS 5172, pp. 104-[114] 2008.
© Springer-Verlag Berlin Heidelberg 2008

Learning at the Speed of Light: A New Type of Optical Neural Network 105

We developed an optical hardware neural network to investigate the precision,
alignment, calibration, speed, and algorithmic issues associated with Optical FWL-
NNs. We report on the hardware design, generation of the synaptic weights, and
initial results for some Fixed-Weight Learning tasks.

2 Optical Neural Hardware

Our optical hardware was not designed to be especially fast or to accommodate ex-
ceptionally large networks. It serves as a test apparatus for studying Optical Fixed-
Weight Learning Neural Networks. Flexibility of use and (relatively) low cost were
our main design criteria. With what we have learned, we are in the process of design-
ing a fast, compact and expandable Optical Neural Network platform.

/— Spatial Filter

Spatial Light
Modulator: DMD

/[— Control Computer

[]

Presynaptic
optics

Iris

Fig. 1. Optical Neural Hardware

2.1 Hardware Overview

Figure 1 shows the optical neural hardware test apparatus. Light from a laser is ex-
panded and directed toward a Spatial Light Modulator (SLM). The SLM creates the
neural signals by modulating the intensity of a set of light beams. We used a Digital
Micromirror Device (DMD) for the SLM. The DMD consists of a rectangular array of
almost 1 million tiny mirrors along with drive and interfacing electronics. Under
software control, each mirror can be individually set to either on (reflecting its beam
toward the presynaptic optics) or off (reflecting away). The resulting signal beams
pass through pre-synaptic optics and onto the synaptic medium, (35mm slide). The
slide has small rectangular areas of various shades of gray that encode the synaptic

106 A.S. Younger and E. Redd

weights. Synaptic multiplications are performed by the attenuations of the several
light beams passing through the medium.

The attenuated optical signals are focused onto a CCD array and sent to the com-
puter. The optical signals are spatially integrated over each region-of-interest. These
dendrite signals are then sign-summed and the nonlinear squashing function applied,
producing the network outputs. These last functions are currently performed in software.

2.2 Distortion, Alignment and Calibration

The 35 mm film synaptic medium can be generated with high spatial precision, as can
the positions of a source neuron on the DMD and terminal neurons on the CCD.
However, the pre- and post-synaptic optics generate considerable distortion. One
solution would have been to create elaborate optics to eliminate these distortions. We
decided to use more flexible software processing to correct the distortions.

There are two distortions to correct. First, the distortion of the DMD image caused
by the pre-synaptic optics must be canceled out before it reaches the fixed synaptic
medium, where precise registration is critical. Second, we must correlate the CCD
positions of the (now attenuated) dendrite images which are further distorted by the
post-synaptic optics.

The first distortion is hard to measure because we can't directly view the image
projected onto the synaptic media. Instead, we project a rectangular array of dots
(called pegs) from the DMD through a transparent slide and onto the CCD. By auto-
matically measuring the CCD coordinates of the pegs, and knowing where they are on
the DMD image, we computed a transformation matrix DMD —to — CCD .

The second distortion can be more directly measured by sending an all pixels on
signal to the DMD, and projecting the light through a slide of a rectangular array of
holes. These holes are clear areas on an otherwise opaque slide. They are at the same
relative positions on the film as the pegs were on the DMD. By semi-automatically
capturing the CCD coordinates of the holes, and knowing where they are on the slide,

we computed the transformation matrix Slide —to — CCD .
Since DMD —to—CCD = DMD —to — Slidex Slide —to— CCD , we can

compute the matrix DMD —to — Slide , which transforms from the DMD to the
synaptic medium. From this information, we determined how to pre-distort the DMD
image in such a way that the presynaptic optics undistorts it and cause the DMD im-
age to arrive properly aligned with the synaptic slide. That is, to make the pegs match
the holes.

We performed the matrix calculations with up-to linear, quadratic and cubic terms
in the matrices. The cubic calculation performed the best. It can correct for transla-
tions, rotations, stretching, keystoning, pincushioning and barrel distortions. We
found that 42 pegs/holes (6 x 7) gave good results. This created over-determined
transformation matrices. We used the Moore-Penrose pseudo inverse to find a least-
squares solution.

Figure 2 shows a CCD image of 30 synapses projected from the DMD through the
slide and onto the CCD. The gray levels differ due to the attenuation by the slide.
Notice substantial distortion of the (originally rectangular) areas. The white boxes

Learning at the Speed of Light: A New Type of Optical Neural Network 107

Fig. 2. Actual and Computed Regions-of-Interest

around the gray areas show where the projected synapses are expected to be -- based
on the matrix calculations. Note that the computed locations are in excellent agree-
ment with the actual image projections, although they are substantially distorted.

2.3 Encoding the Synaptic Weights

Film has a large storage capacity of 10 MegaPixels for a 35mm slide. A high-quality
Holographic Plate can store an order of magnitude more information [2]. To reduce
problems associated with film's very non-linear grayscale, we used a binary pixel area
encoding for our synapses. A synaptic weight of W € [0...1] will have a portion of

W' of randomly selected pixels within its area set to clear, and 1—W of its pixels set
to opaque. This worked out to be over 16 significant bits of gray level precision for
the synapses in our networks.

The accuracy of the film medium proved to be more problematic. The lack of re-
producibility of the actual gray level from slide-to-slide, and even between different
areas of the same slide, was a major difficulty to be solved for fixed-weight learning
to be successful.

Our solution this problem was to calibrate each dendritic area individually. Doing
this automatic gain control once-per-phase also solved problems of the laser light
source intensity and beam profile drifting over time.

2.4 Encoding the Neural Signal Intensity

The individual DMD pixels can be in one of two states — 0 or 1, on or off. This limits
the type of intensity modulation schemes that can be used with this design. We tested
three modulation schemes.

1. Area Pixelation (AP): Because the source areas contain many pixels (several thou-
sand in our examples) a gray level of between zero and one can be produced by
turning on the number of pixels proportional to the desired signal intensity. These
pixels were uniformly and stochastically selected over each source rectangle.

108 A.S. Younger and E. Redd

2. Pulse Width Modulation (PWM) — generate N time slices according to the num-
ber of required significant bits of the signal. (e.g. 256 time slices for 8 significant
bits.) Turn all the pixels in a rectangular area on a number of time slices propor-
tional to the desired signal value, and then turn them off for the remaining pulse
train time slices.

3. Stochastic Pulse (SP) — same as PWM, except the pixels are switched on and off
stochastically in the proper portions to create the desired signal value [10].

The AP had the advantage of being much faster because it only used one time slice
instead of 256 or more. However, the response of the system was very non-linear.

The PWM and SP methods both have the advantage of being able to adjust the num-
ber of required signal significant bits by changing the number of time slices. Speed can
be sacrificed for accuracy, or vice versa. The accuracy of both the PWM and SP meth-
ods was essentially the same. The PWM was slightly faster on our hardware.

2.5 Wave Effects: Diffraction and Interference

There were two main problems created by to the wave properties of the light. First,
the periodic arrangement of the DMD formed a 2-D diffraction grating, creating mul-
tiple copies of the DMD image to be formed. This problem proved easy to solve,
since the zeroth-order image was clearly brighter and easily identifiable. A converg-
ing lens in the presynaptic optics produced clearly separated diffraction images. An
iris excluded all images but the zeroth order.

The second problem was created by the diffraction of the light from the individual
rectangular source areas on the DMD. These are rectangular apertures which create a
diffraction pattern of light, some of which spills outside of the rectangular image on
the film and on the detector. This was the major source of crosstalk between synaptic
areas. Even a fairly small amount of crosstalk was highly detrimental to the network
accuracy. We solved this problem by increasing the dark borders between the source
areas to about 20% of the size of the rectangle. This diffraction imposes a limit on the
number of synapses that can be handled by this optical neural network design. A goal
of our future designs is to eliminate this problem.

2.6 Clock Issues: Cycles, Phases and Pulses

All neurons in our networks were synchronous. Each neuron computes its next state
based on the current activations of its source neurons, but does not change its output
until all neurons have finished computing their next state. Then all neurons on the
same class change their state simultaneously. There are two classes of neurons: per-
pulse-update and per-phase-update.

Our optical hardware network has three levels of timing. External cycle, internal
phase and signal pulses. External cycles represent one network input vector being
processed to generate a network output vector. That is, one exemplar is processed. The
network input vector is applied at the beginning of a cycle and remains unchanged
until the next cycle. The network's output vector is decided at the end of a cycle.

An internal phase is the time it takes a signal to forward-propagate one layer. Typi-
cally, our networks may have three to six internal phases for each external cycle. The
per-phase-update neurons change their outputs at the end of an internal phase.

Learning at the Speed of Light: A New Type of Optical Neural Network 109

For pulse-based intensity modulation schemes, each internal phase is divided into a
number of pulses. The number of pulses depends on the number of significant bits
required for the neural signals. It was typically 256 pulses for 8 significant bits. The
DMD is updated and a new CCD image acquired each pulse. The per-pulse-update
neurons change their output at the end of each pulse.

3 Fixed-Weight Learning Neural Networks

3.1 The Fixed-Weight Learning Theorem

Fixed-Weight Learning (also called Adaptive or Accommodative Neural Networks)
has been investigated by several researchers [4-9] However, this is (as far as we
know) the first reporting of results from FWL-NNs implemented in special hardware,
whether optical or electronic. Previous papers have been mostly concerned with their
highly adaptive nature and/or their use in optimizing learning.

In [4] Cotter and Conwell proved the Fixed-Weight Learning Theorem: Given a
neural network topology (which learns by changing weights) and its attendant learn-
ing algorithm, there exists an equivalent FWL-NN. Any mapping that can be learned
by changing the weights of the original network can be learned by the FWL-NN
without changing any synaptic weights.

The FWL-NN learns because a learning algorithm is encoded in its (fixed) synaptic
weights. The learned function mapping information is dynamically stored in recurrent
neural signals. We call these signals potencies (also known as flying weights [11]) to
distinguish them from the standard synaptic weights.

A FWL-NN can learn the full range of mappings that its non-fixed-weight equiva-
lent network can learn. However, there are costs associated with fixed-weight
learning. The FWL-NN will (almost always) be larger than the equivalent changing-
weight network. This is because it also has to perform the learning computations
along with the mapping computations of the equivalent network. Also, FWL-NNs are
necessarily recurrent even if the initial equivalent network was not.

All of the FWL-NNs presented here perform on-line learning. The target value of the
previously presented exemplar (during the last external cycle, #-1) is provided to the
network. Alternatively, the error of the network output for the previous exemplar could
have been provided. In general, on-line learning is not a requirement for FWL-NNs.

3.2 Creating the Fixed-Weight Learning Networks

The method we used for this work assumes that the network can be divided into two
main parts: the planapse and the tranapse. The planapse (from zAavn meaning error)
performs the potency update calculations, and the tranapse performs 'the potency
signal times the input signal' calculations. In our networks, there is one planapse and
one tranapse for each synapse in the equivalent non-fixed-weight equivalent network.

The planapse and tranapse computations are performed by sub-networks that were
trained separately and integrated together to form the FWL-NN.

110 A.S. Younger and E. Redd

Planapse. The planapse sub-network was trained to learn well-known (on-line) Back-
propagation Learning Rule:

AP(t) = x(t = D)X y(t =1)x (1= y(t=1))x(y(t =) =T(t -1)), where

t :current exemplar (external cycle)

t—1 :exemplar one cycle previous

X :input to synapse (D
y :output of neuron

T :Target value for neuron

AP :Change in Potency (flying weight signal)

This can be a bit confusing since the Backpropagation learning rule was used to
train the planapse on the Backpropagation learning rule. Of course, other learning
rules could be used for either.

The training data sets were generated by choosing random values for the inputs, and
using the mapping formula to compute the targets. Note that a feedback signal consisting

of the target value 7 (f —1) for the previous data exemplar must be provided to the
FWL-NN. Alternatively, an error signal, such as e(f) = y(t —1) =T (t —1) could have

been used as the feedback. The AP can be either positive or negative (bipolar), but
optical intensity signals are unipolar. We scaled the calculations so that zero was repre-
sented by light as half intensity, the most negative signal was represented as no light
intensity, and the most positive signal was represented by full light intensity.

Tranapse. The tranapse sub-network was trained to perform a scaled version
of s(t) = P(t)X x(t). That is, a Potency signal times an input signal. We named

this sub-network a tranapse, because a tranapse is to a (artificial) synapse as a transis-
tor is to a resistor. The same bipolar scaling method was used as with the planapse. In
addition, the tranapse output was scaled to effectively extend the potency range

to—@W < P <+4+®, where @ was usually 4.0.

3.3 From Software Synaptic Weights to Optical Attenuations

The (fixed) synaptic weights ranged from -10 to +10. However, attenuation of light
physically ranges from O to 1. The sign of the synaptic weight was known by our
software neurons, so the attenuation needed to only encode the magnitude of the
weights. The maximum synaptic weight magnitude was determined for each neuron.
Each of the neuron's synaptic weights was divided by this maximum weight magni-
tude to compute the required attenuation. To compensate for this weight scaling, each
neuron has a constant multiplicative scale factor which is equal to the maximum
weight magnitude. This "extra" scale factor should require no extra opto-electronic
hardware, since the optical signal must be amplified anyway as part of the light detec-
tion process.

We tried various ways of dividing the planapse/tranapse pairs into sub-networks.
For instance, should the multiplications be separately trained? Should the planapse

Learning at the Speed of Light: A New Type of Optical Neural Network 111

and tranapse operations be done within the same-subnet with simultaneously training?
Each of these sub-network configurations had its own strengths and weaknesses.

One lesson we learned is that the precise numerical addition of two signals that are
very different in magnitude (such as the weight update from #-/ to f) is very difficult
for a network to learn, and easiest done by "hand" — that is, wiring up a linear neuron
with appropriate synaptic weights.

4 Experimental Testing Results

4.1 Sub-network Training

Table T illustrates (software-based simulation) performance data for a sub-network
trained to perform unsigned multiplication (for instance, it may be used to perform the

x(t —=1)X y(t —1) calculation in the planapse). Training was performed using the

MATLAB nntool.m, using the automatic step size adjustment option traingdx. We
trained each of the networks for 100,000 epochs of 10,000 randomly-generated train-
ing pairs. The large number of epochs was necessary to reduce the network errors.
The relatively large training data set helped reduce overlearning. All of the
planapse/tranapse schemes required a similar amount of training.

We believe that the small increase in error for more than 7 hidden neurons could be
reduced by more epochs training on these larger networks.

A separately generated data set was used to test the sub-networks after they were
trained.

The MSE and SigBits columns were calculated from:

N

1 2
MSE=--> (3, T,)

n=1

L @)
SigBits =—log, (ﬁz v, —T,], where

n=1

N = Number of Exemplars in Test Set

As the table shows, the accuracy of the sub-network depends on the number of
hidden nodes. This points out a property of FWL-NNs -- the size of the neural net-
work required to learn a mapping set depends on the accuracy needed to learn the
mapping set.

4.2 Testing on Optical Hardware

Table 2 shows the results of testing two neural networks on the optical hardware. The
first network is an unsigned multiplication (uMULT). This is the same feed-forward
network shown in Table 1 and Figure 2. The test data was a set of exemplars with two

random inputs X, X, € {x| 0<x<1c R} and one targetT = x, X X, .

112 A.S. Younger and E. Redd

The second network is PlanTran, a FWL-NN that is equivalent to a network with a
single changing synaptic weight, with logsig squashing function and trained by Back-
propagation. This FWL-NN is made from a single Planapse — Tranapse pair.

Table 1. (Simulated) Unsigned Multiplication. Hidden Layer Size vs. Mean Squared Error
(MSE), and number of significant bits of result. Size of Training Set: 10,000. Epochs: 100,000.

Hidden Layer | MSE Sig Bits
3 6.5003%x10~ 53
4 3.6876 x107 5.7
5 3.0794x107" 5.8
6 3.1636x10™ 7.5
7 2.1617x107 7.7
8 4.0069x107° 7.3
9 5.4367x10™ 7.1

Generating Test Data for FWL-NNs. The algorithm to generate training/test data
for a FWL-NN is:

repeat Number-of-Mappings times
Randomly select a mapping X from a set of mappings S.
repeat Number-of-Exemplars-per-Mapping times
Generate a random input vector =
Use x with mapping M generate target vector T
Output training pair (x,T)
end repeat
end repeat

For PlanTran, S was the set of all function mappings 7' =logsig(M -x), —4<M <+4,

where the real index M specifies the particular mapping. The set S represents all mappings
that a single-synapse neural network (with logsig squashing function) can (in theory) learn
exactly.

There are several important parameters that were measured during the network
testing. Size of the network, the number of internal clock phases per external clock
cycle (exemplars), the average number of cycles the network required to learn a map-
ping, the residual error of the FWL-NN after learning has occurred.

For PlanTran, the number of SigBits was computed by:

N

SigBits = —log, [ﬁ Z |y" —TH|J, where

n=L+1
N = Number of-Exemplars
L = Number of Exemplars Required to Learn Mapping

Learning at the Speed of Light: A New Type of Optical Neural Network 113

Table 2. Experimental Results on Optical Hardware. L- Number of Layers, N-number of
neurons, W—number of synapses, ¢ — Phases per Exemplar, Pulses — Number of pulse timeslots
in one Phase. Learn — Number of Exemplars required to learn mapping (for FWL-NN) , MSE —
mean squared error (after learning), SigBits — Number of Significant Bits.

NN L|N |W |¢ |Pulses | Learn | MSE | SigBits
uMULT |3 |13]30 |2 128 n/a | 0.0013 ~6
PlanTran | 4 | 29 | 100 | 6 256 11 | 0.0083 ~4

5 Conclusion and Future Work

The initial uMULT results show that the optical hardware can perform the unsigned
operation to moderate precision (six bits or more). The PlanTran network results
demonstrates that Fixed-Weight Learning can work on an optical hardware platforms.
However, a more accurate and reproducible method of creating optical attenuation
than 35mm film may be necessary for larger networks.

Both of the above neural networks are fundamental "building blocks" on which
larger FWL-NNs can be constructed. We are currently performing ongoing measure-
ments and testing to extend these results.

Based on what we have learned while designing, building, and testing this optical
hardware, we are designing a new hardware platform to support these new FWL-NNs.
The goal of this research and development is to create a practical hardware platform
capable of performing large, complex real-world neural computation tasks at very
high speeds.

Acknowledgments. This material is based on work supported by the United States
National Science Foundation under Grant No. 0725867.

References

1. Keller, P.E., Gmitro, A.F.: Operational Parameters of an Opto-Electronic Neural Network
Employing Fixed-Planar Holographic Interconnects. World Congress on Neural Networks
(1993)

2. Abu-Mostafa, Y.S., Psaltis, D.: Optical Neural Computers Scientific American (March
1987)

3. Kaubler, C., Ehrke, H., Huber, R., Lopez, R., Halabica, A., Haglund, R.F., Leiterstorfer, A.:
Coherent Structural Dynamics and Electronic Correlations during an Ultrafast Insulator-to-
Matal Phase Transition in VO,. Physical Review Letters. PRL 99, 116401 14 (September
2007)

4. Cotter, N.E., Conwell, P.R.: Learning algorithms and fixed dynamics. In: Proceedings of
the International Conference on Neural Networks 1991, vol. I, pp. 799-804. IEEE, Los
Alamitos (1991)

5. Feldkamp, L.A., Prokhorov, D.V., Feldkamp, T.: Conditioned Adaptive Behavior from
Kalman Filter Trained Recurrent Networks. IEEE, Los Alamitos (2003)

6. Younger, A.S., Conwell, P.R., Cotter, N.E.: Fixed-Weight On-Line Learning. IEEE Trans-
actions on Neural Networks 10(2), 272-283 (1999)

114 A.S. Younger and E. Redd

7. Prokhorov, D.V., Feldkamp, L.A., Tyukin, I.Y.: Adaptive Behavior with Fixed Weights in
RNN: An Overview. In: IJCNN 2002. IEEE, Los Alamitos (2002)

8. Lo, J.T., Bassu, D.: Adaptive vs. Accomodative Neural Networks for Adaptive System
Identification. In: IJCNN 2001, IEEE, Los Alamitos (2001)

9. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning To Learn Using Gradient Descent.
In: Proceedings of the International Conference on Artificial Neural Networks, Springer,
Heidelberg (2001)

10. Bade, S.L., Hutchings, B.L.: FPGA-Based Stochastic Neural Networks. In: Implementa-
tion IEEE FPGAs for Custom Computing Machines Workshop, Napa, CA, pp. 189-198
(1994)

11. Werbos, P.: Private Communication (2004)

	Learning at the Speed of Light: A New Type of Optical Neural Network
	Introduction
	Optical Neural Hardware
	Hardware Overview
	Distortion, Alignment and Calibration
	Encoding the Synaptic Weights
	Encoding the Neural Signal Intensity
	Wave Effects: Diffraction and Interference
	Clock Issues: Cycles, Phases and Pulses

	Fixed-Weight Learning Neural Networks
	The Fixed-Weight Learning Theorem
	Creating the Fixed-Weight Learning Networks
	From Software Synaptic Weights to Optical Attenuations

	Experimental Testing Results
	Sub-network Training
	Testing on Optical Hardware

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

