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Abstract. Most, if not all, optical hardware-based neural networks are slow 
during the neural learning phase.  This limitation has been not only a speed bot-
tleneck, but it has contributed to the lack of wide-spread use of optical neural 
systems. We present a novel solution – Optical Fixed-Weight Learning Neural 
Networks. Standard neural networks learn new function mappings by the 
changing of their synaptic weights.  However, the Fixed-Weight Neural Net-
works learn new mappings by dynamically changing recurrent neural signals. 
The (fixed) synaptic weights of the FWL-NN implement a learning "algorithm" 
which adjusts the recurrent signals toward their proper values.  
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1   Introduction 

Optical hardware is probably the fastest method of performing the forward-
propagation phase of neural networks. An optical neural computer similar to those 
presented in [1, 2] should be able to perform over 1013 synaptic operations per second 
using current technology. Optical Neural squashing computations can now be per-
formed on the sub-picoseconds time scale [3]. 

Most, if not all optical hardware schemes are slow during the neural learning 
phase.  Optical learning has traditionally been done on a separate (non-optical) com-
puter and the results stored on film, or required the use of a relatively slow (and/or 
expensive) spatial light modulator. This limitation has been not only a speed bottle-
neck, but it has contributed to the lack of wide-spread use of optical neural systems.  

We present a different solution – Optical Fixed-Weight Learning Neural Networks 
(Optical FWL-NN).  Standard neural networks learn new function mappings by the 
changing of their synaptic weights.  However, the FWL-NNs learn new mappings by 
dynamically changing recurrent neural signals. The (fixed) synaptic weights of the 
FWL-NN implement learning "algorithm" which adjusts the recurrent signals toward 
their proper values. That is, instead of encoding a particular mapping, the synaptic 
weights of a FWL-NN encode how to learn any mapping (within a large, perhaps 
infinite, set of possible mappings).  
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We developed an optical hardware neural network to investigate the precision, 
alignment, calibration, speed, and algorithmic issues associated with Optical FWL-
NNs.  We report on the hardware design, generation of the synaptic weights, and 
initial results for some Fixed-Weight Learning tasks. 

2   Optical Neural Hardware 

Our optical hardware was not designed to be especially fast or to accommodate ex-
ceptionally large networks. It serves as a test apparatus for studying Optical Fixed-
Weight Learning Neural Networks. Flexibility of use and (relatively) low cost were 
our main design criteria.  With what we have learned, we are in the process of design-
ing a fast, compact and expandable Optical Neural Network platform. 
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Fig. 1. Optical Neural Hardware 

2.1   Hardware Overview 

Figure 1 shows the optical neural hardware test apparatus. Light from a laser is ex-
panded and directed toward a Spatial Light Modulator (SLM).  The SLM creates the 
neural signals by modulating the intensity of a set of light beams. We used a Digital 
Micromirror Device (DMD) for the SLM. The DMD consists of a rectangular array of 
almost 1 million tiny mirrors along with drive and interfacing electronics. Under 
software control, each mirror can be individually set to either on (reflecting its beam 
toward the presynaptic optics) or off (reflecting away). The resulting signal beams 
pass through pre-synaptic optics and onto the synaptic medium, (35mm slide). The 
slide has small rectangular areas of various shades of gray that encode the synaptic 
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weights. Synaptic multiplications are performed by the attenuations of the several 
light beams passing through the medium. 

The attenuated optical signals are focused onto a CCD array and sent to the com-
puter. The optical signals are spatially integrated over each region-of-interest. These 
dendrite signals are then sign-summed and the nonlinear squashing function applied, 
producing the network outputs. These last functions are currently performed in software. 

2.2   Distortion, Alignment and Calibration 

The 35 mm film synaptic medium can be generated with high spatial precision, as can 
the positions of a source neuron on the DMD and terminal neurons on the CCD. 
However, the pre- and post-synaptic optics generate considerable distortion. One 
solution would have been to create elaborate optics to eliminate these distortions. We 
decided to use more flexible software processing to correct the distortions. 

There are two distortions to correct.  First, the distortion of the DMD image caused 
by the pre-synaptic optics must be canceled out before it reaches the fixed synaptic 
medium, where precise registration is critical. Second, we must correlate the CCD 
positions of the (now attenuated) dendrite images which are further distorted by the 
post-synaptic optics. 

The first distortion is hard to measure because we can't directly view the image 
projected onto the synaptic media.  Instead, we project a rectangular array of dots 
(called pegs) from the DMD through a transparent slide and onto the CCD.  By auto-
matically measuring the CCD coordinates of the pegs, and knowing where they are on 
the DMD image, we computed a transformation matrix DMD to CCD− − . 

The second distortion can be more directly measured by sending an all pixels on 
signal to the DMD, and projecting the light through a slide of a rectangular array of 
holes. These holes are clear areas on an otherwise opaque slide. They are at the same 
relative positions on the film as the pegs were on the DMD.  By semi-automatically 
capturing the CCD coordinates of the holes, and knowing where they are on the slide, 
we computed the transformation matrix Slide to CCD− − .    

Since DMD to CCD DMD to Slide Slide to CCD− − = − − × − − , we can 

compute the matrix DMD to Slide− − , which transforms from the DMD to the 
synaptic medium. From this information, we determined how to pre-distort the DMD 
image in such a way that the presynaptic optics undistorts it and cause the DMD im-
age to arrive properly aligned with the synaptic slide. That is, to make the pegs match 
the holes.  

We performed the matrix calculations with up-to linear, quadratic and cubic terms 
in the matrices. The cubic calculation performed the best. It can correct for transla-
tions, rotations, stretching, keystoning, pincushioning and barrel distortions.  We 
found that 42 pegs/holes (6 x 7) gave good results. This created over-determined 
transformation matrices. We used the Moore-Penrose pseudo inverse to find a least-
squares solution. 

Figure 2 shows a CCD image of 30 synapses projected from the DMD through the 
slide and onto the CCD.  The gray levels differ due to the attenuation by the slide. 
Notice substantial distortion of the (originally rectangular) areas. The white boxes  
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Fig. 2. Actual and Computed Regions-of-Interest 

around the gray areas show where the projected synapses are expected to be -- based 
on the matrix calculations. Note that the computed locations are in excellent agree-
ment with the actual image projections, although they are substantially distorted. 

2.3   Encoding the Synaptic Weights 

Film has a large storage capacity of 10 MegaPixels for a 35mm slide. A high-quality 
Holographic Plate can store an order of magnitude more information [2].  To reduce 
problems associated with film's very non-linear grayscale, we used a binary pixel area 
encoding for our synapses.  A synaptic weight of [0...1]W ∈  will have a portion of 

W  of randomly selected pixels within its area set to clear, and 1 W− of its pixels set 
to opaque. This worked out to be over 16 significant bits of gray level precision for 
the synapses in our networks. 

The accuracy of the film medium proved to be more problematic. The lack of re-
producibility of the actual gray level from slide-to-slide, and even between different 
areas of the same slide, was a major difficulty to be solved for fixed-weight learning 
to be successful.  

Our solution this problem was to calibrate each dendritic area individually.  Doing 
this automatic gain control once-per-phase also solved problems of the laser light 
source intensity and beam profile drifting over time.  

2.4   Encoding the Neural Signal Intensity 

The individual DMD pixels can be in one of two states – 0 or 1, on or off. This limits 
the type of intensity modulation schemes that can be used with this design.  We tested 
three modulation schemes. 

1. Area Pixelation (AP): Because the source areas contain many pixels (several thou-
sand in our examples) a gray level of between zero and one can be produced by 
turning on the number of pixels proportional to the desired signal intensity. These 
pixels were uniformly and stochastically selected over each source rectangle. 
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2. Pulse Width Modulation (PWM) – generate N time slices according to the num-
ber of required significant bits of the signal. (e.g. 256 time slices for 8 significant 
bits.) Turn all the pixels in a rectangular area on a number of time slices propor-
tional to the desired signal value, and then turn them off for the remaining pulse 
train time slices. 

3. Stochastic Pulse (SP) – same as PWM, except the pixels are switched on and off 
stochastically in the proper portions to create the desired signal value [10]. 

The AP had the advantage of being much faster because it only used one time slice 
instead of 256 or more. However, the response of the system was very non-linear.  

The PWM and SP methods both have the advantage of being able to adjust the num-
ber of required signal significant bits by changing the number of time slices.  Speed can 
be sacrificed for accuracy, or vice versa.  The accuracy of both the PWM and SP meth-
ods was essentially the same. The PWM was slightly faster on our hardware. 

2.5  Wave Effects: Diffraction and Interference 

There were two main problems created by to the wave properties of the light. First, 
the periodic arrangement of the DMD formed a 2-D diffraction grating, creating mul-
tiple copies of the DMD image to be formed. This problem proved easy to solve, 
since the zeroth-order image was clearly brighter and easily identifiable. A converg-
ing lens in the presynaptic optics produced clearly separated diffraction images. An 
iris excluded all images but the zeroth order. 

The second problem was created by the diffraction of the light from the individual 
rectangular source areas on the DMD. These are rectangular apertures which create a 
diffraction pattern of light, some of which spills outside of the rectangular image on 
the film and on the detector.  This was the major source of crosstalk between synaptic 
areas. Even a fairly small amount of crosstalk was highly detrimental to the network 
accuracy. We solved this problem by increasing the dark borders between the source 
areas to about 20% of the size of the rectangle. This diffraction imposes a limit on the 
number of synapses that can be handled by this optical neural network design. A goal 
of our future designs is to eliminate this problem. 

2.6  Clock Issues: Cycles, Phases and Pulses 

All neurons in our networks were synchronous. Each neuron computes its next state 
based on the current activations of its source neurons, but does not change its output 
until all neurons have finished computing their next state. Then all neurons on the 
same class change their state simultaneously. There are two classes of neurons: per-
pulse-update and per-phase-update.  

Our optical hardware network has three levels of timing. External cycle, internal 
phase and signal pulses.  External cycles represent one network input vector being 
processed to generate a network output vector. That is, one exemplar is processed. The 
network input vector is applied at the beginning of a cycle and remains unchanged 
until the next cycle. The network's output vector is decided at the end of a cycle. 

An internal phase is the time it takes a signal to forward-propagate one layer. Typi-
cally, our networks may have three to six internal phases for each external cycle. The 
per-phase-update neurons change their outputs at the end of an internal phase.   
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For pulse-based intensity modulation schemes, each internal phase is divided into a 
number of pulses.  The number of pulses depends on the number of significant bits 
required for the neural signals. It was typically 256 pulses for 8 significant bits. The 
DMD is updated and a new CCD image acquired each pulse. The per-pulse-update 
neurons change their output at the end of each pulse. 

3   Fixed-Weight Learning Neural Networks 

3.1   The Fixed-Weight Learning Theorem 

Fixed-Weight Learning (also called Adaptive or Accommodative Neural Networks) 
has been investigated by several researchers [4-9] However, this is (as far as we 
know) the first reporting of results from FWL-NNs implemented in special hardware, 
whether optical or electronic. Previous papers have been mostly concerned with their 
highly adaptive nature and/or their use in optimizing learning. 

In [4] Cotter and Conwell proved the Fixed-Weight Learning Theorem:  Given a 
neural network topology (which learns by changing weights) and its attendant learn-
ing algorithm, there exists an equivalent FWL-NN. Any mapping that can be learned 
by changing the weights of the original network can be learned by the FWL-NN 
without changing any synaptic weights.   

The FWL-NN learns because a learning algorithm is encoded in its (fixed) synaptic 
weights.  The learned function mapping information is dynamically stored in recurrent 
neural signals.  We call these signals potencies (also known as flying weights [11]) to 
distinguish them from the standard synaptic weights. 

A FWL-NN can learn the full range of mappings that its non-fixed-weight equiva-
lent network can learn. However, there are costs associated with fixed-weight  
learning.  The FWL-NN will (almost always) be larger than the equivalent changing-
weight network. This is because it also has to perform the learning computations 
along with the mapping computations of the equivalent network. Also, FWL-NNs are 
necessarily recurrent even if the initial equivalent network was not.  

All of the FWL-NNs presented here perform on-line learning. The target value of the 
previously presented exemplar (during the last external cycle, t-1) is provided to the 
network. Alternatively, the error of the network output for the previous exemplar could 
have been provided. In general, on-line learning is not a requirement for FWL-NNs. 

3.2   Creating the Fixed-Weight Learning Networks 

The method we used for this work assumes that the network can be divided into two 
main parts: the planapse and the tranapse. The planapse (from πλανη meaning error) 
performs the potency update calculations, and the tranapse performs 'the potency 
signal times the input signal' calculations. In our networks, there is one planapse and 
one tranapse for each synapse in the equivalent non-fixed-weight equivalent network.  

The planapse and tranapse computations are performed by sub-networks that were 
trained separately and integrated together to form the FWL-NN.  
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Planapse. The planapse sub-network was trained to learn well-known (on-line) Back-
propagation Learning Rule: 

( ) ( )( ) ( 1) ( 1) 1 ( 1) ( 1) ( 1) ,   where

        :current exemplar (external cycle)

1   :exemplar one cycle previous

       :input to synapse

       :output of neuron

       :Target value f

P t x t y t y t y t T t

t

t

x

y

T

Δ = − × − × − − × − − −

−

or neuron

    :Change in Potency (flying weight signal)PΔ  

(1) 

This can be a bit confusing since the Backpropagation learning rule was used to 
train the planapse on the Backpropagation learning rule.  Of course, other learning 
rules could be used for either.  

The training data sets were generated by choosing random values for the inputs, and 
using the mapping formula to compute the targets. Note that a feedback signal consisting 
of the target value ( 1)T t − for the previous data exemplar must be provided to the 

FWL-NN. Alternatively, an error signal, such as ( ) ( 1) ( 1)e t y t T t= − − − could have 

been used as the feedback. The PΔ  can be either positive or negative (bipolar), but 
optical intensity signals are unipolar. We scaled the calculations so that zero was repre-
sented by light as half intensity, the most negative signal was represented as no light 
intensity, and the most positive signal was represented by full light intensity. 

Tranapse. The tranapse sub-network was trained to perform a scaled version 
of ( ) ( ) ( )s t P t x t= × . That is, a Potency signal times an input signal.  We named 

this sub-network a tranapse, because a tranapse is to a (artificial) synapse as a transis-
tor is to a resistor.  The same bipolar scaling method was used as with the planapse. In 
addition, the tranapse output was scaled to effectively extend the potency range 
to Pω ω− ≤ ≤ + , where ω was usually 4.0. 

3.3   From Software Synaptic Weights to Optical Attenuations 

The (fixed) synaptic weights ranged from -10 to +10. However, attenuation of light 
physically ranges from 0 to 1.  The sign of the synaptic weight was known by our 
software neurons, so the attenuation needed to only encode the magnitude of the 
weights. The maximum synaptic weight magnitude was determined for each neuron. 
Each of the neuron's synaptic weights was divided by this maximum weight magni-
tude to compute the required attenuation. To compensate for this weight scaling, each 
neuron has a constant multiplicative scale factor which is equal to the maximum 
weight magnitude. This "extra" scale factor should require no extra opto-electronic 
hardware, since the optical signal must be amplified anyway as part of the light detec-
tion process.  

We tried various ways of dividing the planapse/tranapse pairs into sub-networks. 
For instance, should the multiplications be separately trained? Should the planapse 
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and tranapse operations be done within the same-subnet with simultaneously training? 
Each of these sub-network configurations had its own strengths and weaknesses.  

One lesson we learned is that the precise numerical addition of two signals that are 
very different in magnitude (such as the weight update from t-1 to t) is very difficult 
for a network to learn, and easiest done by "hand" – that is, wiring up a linear neuron 
with appropriate synaptic weights. 

4   Experimental Testing Results 

4.1   Sub-network Training 

Table I illustrates (software-based simulation) performance data for a sub-network 
trained to perform unsigned multiplication (for instance, it may be used to perform the 

( 1) ( 1)x t y t− × − calculation in the planapse). Training was performed using the 

MATLAB nntool.m, using the automatic step size adjustment option traingdx.  We 
trained each of the networks for 100,000 epochs of 10,000 randomly-generated train-
ing pairs. The large number of epochs was necessary to reduce the network errors. 
The relatively large training data set helped reduce overlearning. All of the 
planapse/tranapse schemes required a similar amount of training.  

We believe that the small increase in error for more than 7 hidden neurons could be 
reduced by more epochs training on these larger networks.   

A separately generated data set was used to test the sub-networks after they were 
trained.  

The MSE and SigBits columns were calculated from: 
 

( )2

1

2

1

1

1
log ,  where
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N

n n

n

N

n n

n

MSE y T
N
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=

= −

= − −

=  

(2) 

 
As the table shows, the accuracy of the sub-network depends on the number of 

hidden nodes.  This points out a property of FWL-NNs -- the size of the neural net-
work required to learn a mapping set depends on the accuracy needed to learn the 
mapping set. 

4.2   Testing on Optical Hardware 

Table 2 shows the results of testing two neural networks on the optical hardware. The 
first network is an unsigned multiplication (uMULT). This is the same feed-forward 
network shown in Table 1 and Figure 2. The test data was a set of exemplars with two 

random inputs  1 2, { 0 1 }x x x x∈ ≤ < ⊂ ℜ  and one target 1 2T x x= × . 
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The second network is PlanTran, a FWL-NN that is equivalent to a network with a 
single changing synaptic weight, with logsig squashing function and trained by Back-
propagation. This FWL-NN is made from a single Planapse – Tranapse pair.  

Table 1. (Simulated) Unsigned Multiplication. Hidden Layer Size vs. Mean Squared Error 
(MSE), and number of significant bits of result. Size of Training Set: 10,000. Epochs: 100,000. 

Hidden Layer MSE Sig Bits
3 6.5003×10–4 5.3 
4 3.6876 ×10–4 5.7 

5 3.0794×10–4 5.8 
6 3.1636×10–5 7.5 
7 2.1617×10–5 7.7 

8 4.0069×10–5 7.3 
9 5.4367×10–5 7.1 

Generating Test Data for FWL-NNs. The algorithm to generate training/test data 
for a FWL-NN is: 

repeat Number-of-Mappings times 
  Randomly select a mapping M from a set of mappings S. 

 repeat Number-of-Exemplars-per-Mapping times 
      Generate a random input vector x 
      Use x with mapping M generate target vector T 
      Output training pair (x,T) 
     end repeat 
end repeat 

For PlanTran, S was the set of all function mappings ( )logsig , 4 4T M x M= ⋅ − ≤ ≤ + , 

where the real index M specifies the particular mapping. The set S represents all mappings 
that a single-synapse neural network (with logsig squashing function) can (in theory) learn 
exactly.  

There are several important parameters that were measured during the network 
testing.  Size of the network, the number of internal clock phases per external clock 
cycle (exemplars), the average number of cycles the network required to learn a map-
ping, the residual error of the FWL-NN after learning has occurred. 

For PlanTran, the number of SigBits was computed by: 

2

1

1
log ,  where

Number of-Exemplars

Number of Exemplars Required to Learn Mapping

N

n n

n L

SigBits y T
N L

N

L
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Table 2. Experimental Results on Optical Hardware. L- Number of  Layers, N–number of 
neurons, W–number of synapses, φ − Phases per Exemplar, Pulses – Number of pulse timeslots 
in one Phase. Learn – Number of Exemplars required to learn mapping (for FWL-NN) , MSE – 
mean squared error (after learning), SigBits – Number of Significant Bits. 

NN L N W φ Pulses Learn MSE SigBits 
uMULT 3 13 30 2 128 n/a 0.0013 ~6 
PlanTran 4 29 100 6 256 11 0.0083 ~4 

5   Conclusion and Future Work 

The initial uMULT results show that the optical hardware can perform the unsigned 
operation to moderate precision (six bits or more).  The PlanTran network results 
demonstrates that Fixed-Weight Learning can work on an optical hardware platforms. 
However, a more accurate and reproducible method of creating optical attenuation 
than 35mm film may be necessary for larger networks. 

 Both of the above neural networks are fundamental "building blocks" on which 
larger FWL-NNs can be constructed. We are currently performing ongoing measure-
ments and testing to extend these results.  

Based on what we have learned while designing, building, and testing this optical 
hardware, we are designing a new hardware platform to support these new FWL-NNs. 
The goal of this research and development is to create a practical hardware platform 
capable of performing large, complex real-world neural computation tasks at very 
high speeds. 

Acknowledgments. This material is based on work supported by the United States 
National Science Foundation under Grant No. 0725867. 
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