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Abstract. It is shown how to realize quantum gates by decomposing the gates 
into summation of unitary matrices where each of these matrices is given by a 
tensor multiplication of the unit and  Pauli  2x2 spin matrices. It is assumed that 
each of these matrices is operating on a different copy of the quantum states 
produced by 'quantum encoders' with a certain probability of success. The use 
of the present probabilistic linear optics' method for realizing quantum gates is 
demonstrated by the full analysis given for the control phase shift gate, but the 
use of the present method for other gates, including the control-not gate, is also 
discussed.  

1   Introduction 

A quantum bit (qubit) is a two-level quantum system described by a two-dimensional 
complex Hilbert space [1,2]. The computational qubit state is described by a 
superposition of normalized and orthogonal states of a two-level quantum system  
denoted as  |0>  and |1>. In the present study photonic qubits are used where |0>  and 
|1> represent horizontal |H>and vertical |V>  polarized photons, respectively.  In order 
to implement general quantum computational processes one needs to apply control 
operations. In the present work we are interested in the implementation of quantum 
gates with two input qubits, known as the control qubit and the target qubit, 
respectively. The control qubit (A) is not changed by the quantum gate, but a certain 
linear unitary transformation  is performed on the target qubit  (B) if and only if the 
control bit is set to |1>. Optics seems to be a good candidate for achieving two-qubit 
quantum gates. Unfortunately, such gates are quite difficult to implement 
experimentally since the state of the control qubit should affect the second target qubit 
and this requires strong interactions between single photons. Such interactions need 
high nonlinearities well beyond what is available experimentally. 

Recently it has been shown by Knill, Lafllamme and Milburn [3] that probabilistic  
quantum logic operations can be performed using only linear optical elements, 
additional photons (ancilla), and post selection based on the single photon detectors. 
This idea has been implemented in various studies [4] and in particular Pittman, Jacobs 
and Franson [5-7] constructed a variety of quantum logic gates by using polarizing 
beam splitters (PBS) that completely transmit one state of polarization and totally 
reflect the orthogonal state of polarization. These methods overcome the complications 
introduced by using non-linear optics for realizing quantum gates, but on the other 
hand their nature is probabilistic throwing away a part of the measurements. 
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Probabilistic 'quantum encoding' processes have been realized experimentally and 
used for designing various quantum gates transformations [5-7]. The encoder consists 
primarily of a polarizing beam splitter (PBS) and resource pair of entangled photons 

in the Bell state ( )( )1/ 2 00 11φ + = +  [7]. For the quantum encoder the 

input qubit of a single photon, in a general polarization state 0 1α β+  , and one 

member of the entangled resource pair are mixed  at the PBS oriented in the  HV  
basis. There are three output ports of the quantum encoder, including two output ports 
for the PBS and one output port for the second member of the entangled resource pair. 
Detection of one photon by 'gating detector' in one output port of the PBS signals the 
fact that the two remaining photons are exiting the device in the other two output 
ports. Because the PBS transmits H − polarized photons  and reflects V − polarized 
photons it can be shown [5,7]  that the output state is of the form 

                   ( )1 1
000 111

2 2out
ψ α β ψ ⊥= + + ,                        (1) 

where  ψ ⊥  represents  combinations of states orthogonal to the condition of finding 

one and only one (1AO1) in the gating detector. In order to implement the quantum 
encoding process we accept the remaining outputs only when the condition 1AO1 is 
satisfied. In order to have only the condition  1AO1 and erase any additional 
information obtained by the gating detector the encoding is completed by accepting 
the output only when the gating detector measures exactly one photon in a 

polarization basis rotated by 045  from the HV  basis [5]. Under these circumstances 
and ideal conditions, which occur with probability of 1/2 , the device realizes the 
encoding [7]: 

                        
1 2 1 2

0 1 0 0 1 1α β α β+ → + .                             (2) 

The subscripts 1 and 2 indicate different copies of each state where the copied 
wavepackets are located in different places. Under ideal conditions the probability of 
success of the encoding process is 1/2. The encoding device is described in Fig. 1 of 
[7]. One should notice that the encoding transformation (2) obtained by post selection 
is different from the 'cloning' transformation [8]  

                   
( ) ( )

1 2
0 1 0 1 0 1α β α β α β+ → + +

     

which is not allowed. 

One should notice that the state  1 2 1 2
0 0 1 1

2

+
 is the well known entangled 

state which includes certain quantum correlations ,i.e, if the first photon is in the state 
|0>  (horizontal polarized photon) then the second photon is also in the state |0> while 
if the first photon is in the state |1> (vertical polarized photon)  then the second 
photon is also in the state |1>. As is well known quantum entanglement is a 
fundamental resource for quantum computation processes [1,2]. The encoding 
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transformation (2) produces a general entangled state and we would like to exploit 
such entangled states for implementing quantum gates. 

A new method is  developed in the present work for implementing quantum gates, 
based on the use of quantum encoders, which is basicly different from that presented 
in the previous works [5-7]. As is well known any unitary matrix can be decomposed 
into summation of tensor products of Pauli and unit spin matrices [2]. The application 
of such decomposition for the realization of quantum gates is quite problematic since 
in quantum computation we should use multiplications of unitary operators and not 
summations of them. However, there is a certain trick by which such decomposition 
can implement quantum gates. By using quantum encoders [5-7] we can 'copy' each 
state in the  qubit superposition. Then each matrix in the above decomposition of the 
unitary gate operates on a different copy and by adding the results in the different 
copies we implement the corresponding gate. It should be apparent that the quantum 
encoders which are based on probabilistic detection procedures [6,7] and which have 
been realized experimentally are different from 'cloning' of the qubits  which is  
prohibited by the quantum 'no-cloning' theorem [8]. The present new method is 
analyzed explicitly for the ( )CPHASE θ  gate but the options of using it for other 

quantum gates are also discussed. 
The present paper is arranged as follows: In Section 2 we analyze the 

decomposition  of two-qubit gates into summation of tensor products of  Pauli and 
unit spin matrices. In Section 3 we analyze the use of the present method for 
implementing the ( )CPHASE θ  gate. In Section 4 we discuss and summarize our 

results and conclusions.    

2   Two Qubit Gates Described by Tensor Products of Pauli and 
Unit Spin Matrices 

For using matrix representations of quantum gates the qubits 0  and 1  are 

described by the following column vectors 

                                   
1 0

0 ; 1
0 1

⎛ ⎞ ⎛ ⎞
≡ ≡⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.                                           (3) 

The linear transformations operating on these single-qubit column vectors are given 
by multiplying them by unitary matrices of dimension 2x2. These matrices can be 
represented by linear combination of the  four spin matrices: 

1 2 3

1 0 0 1 0 1 0
, , ,

0 1 1 0 0 0 1

i
I

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      (4) 

where I  is the two-dimensional unit matrix, and  1 2 3, ,σ σ σ  are the Pauli spin 

matrices.  
The two-qubit state can be given by four dimensional column vectors 
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1 0

1 1 0 1 0 1
00 ; 01

0 0 0 0 1 0

0 0

0 0

0 1 0 0 0 0
10 ; 11

1 0 1 1 1 0

0 1

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟≡ ⊗ ≡ ≡ ⊗ ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟≡ ⊗ ≡ ≡ ⊗ ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,               (5) 

where in the ket states on the left handside of these equations the first and second 
number denote the state of the first and second qubit, respectively. The sign ⊗  
represents tensor product where the two-qubit states can be described by tensor 
products of the first and second qubit column vectors. 

CNOT gate is given by 

            ( ), , , 0,1 ; 0,1CNOT x y x x y x y= ⊕ = = .                    (6) 

and ⊗  indicates addition modulo 2 . This gate flips the state of the target qubit y  if 
the control qubit x is in the state |1>  and does nothing if the control qubit is in the 
state |0>. CNOT can be represented by a unitary 4x4 dimensional matrix operating 
on the above four dimensional vectors : 

                                         

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

CNOT

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

     .                                        (7) 

The 4x4  unitary matrix ( )CPHASE θ gate is given by 

                             ( )

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

CPHASE

e θ

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                                         (8) 

This gate (which does not have a classical analog [1]) applies a phase shift for the 

state 1,1  giving  

                                  ( ) 1,1 1,1iCPHASE e θθ = ,                                        (9) 

and does nothing if it operates on other states.  
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The CNOT gate is a standard component in computational circuits analysis [1,2]. 
Quantum computational circuits in which the control phase shift gate-

( )CPHASE θ  is inserted as one component has been analyzed in the literature (see 

e.g. [2], Figures (3.5) and (3.6) on page 116). 
Any two-qubit gate can be expressed in the Hilbert-Schmidt ( HS ) representation 

[9] as  

                                       
3

2 ,
, 0

j k j k
j k

U t σ σ
=

= ⊗∑ ,                                         (10) 

where by taking into account the properties of the spin matrices we find  

                                  ( ), 2

1

4l m l mt Tr U σ σ= • ⊗⎡ ⎤⎣ ⎦                                   (11) 

The point •  represents the ordinary matrix multiplication, the sign ⊗ denotes tensor 

product and the notation  Tr  represents the trace operation. 4 ,l mt  is given by the 

trace of the ordinary matrix multiplication of the four-dimensional matrix 2U  by the 

four dimensional matrix ( )l mσ σ⊗ . In deriving (11) we use the relations  

                                    ( ) ( ) , ,4j k l m j l k mTr σ σ σ σ δ δ⎡ ⎤⊗ • ⊗ =⎣ ⎦                      (12)  

While for a general two-qubit gate  16 elements of ,j kt  might be different from zero, 

for the main basic two-qubit gates only 4 elements ,j kt  are different from zero. We 

find by straightforward calculations for the CNOT unitary matrix of (7): 

                      ( ) ( )3 1 1

1 1

2 2
CNOT I I Iσ σ σ= ⊗ − + ⊗ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .               (13) 

For the ( )CPHASE θ  gate of (8) we get: 

( ) ( ) ( ) ( ) ( )3 3 3 3CPHASE I I I Iθ κ λ σ σ μ σ ν σ= ⊗ + ⊗ + ⊗ + ⊗
(14) 

where  

            ( )1
1 , , 1

4
ie θλ μ ν λ κ λ= − = = − = +       .           (15) 

Each of Eqs. (13,14) includes four tensor products where the first and second 2x2 
matrix in each tensor product  operates on the first and second  qubit column vectors , 
respectively. For each qubit we can use the relations: 
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3 3 1 1

2 2

0 0 ; 1 1 ; 0 1 ; 1 0 ;

0 1 ; 1 0 ; 0 0 ; 1 1i i I I

σ σ σ σ
σ σ

= ≡ − = =

= = − = =
    (16) 

In polarization optics the states represented by the column vectors of  (3) are 
known as Jones vectors [10]. By using Jones calculus it is quite easy to implement the 
unitary transformations of (16) operating on single qubit column vectors.(See 
polarization optics transformations obtained by Jones calculus, including the effects 
of half-  and quarter-wave  retardation plates , and the general 2x2 unitary matrices 
transformation (1.5-11) of [10]). 

As explained in the introduction  the application of the decompositions (13,14) for 
the realization of quantum gates is quite problematic but they can implement quantum 
gates by the use of quantum encoders, as described in the following analysis.  

3   Realization of ( )CPHASE θ  Gate  by Quantum Encoders 

An input two-qubit state can be written as  

                  { }{ }0 1 0 1
in A A B B

ψ α β γ δ= + + ,                          (17) 

where the subscripts A and B refer to two separated qubits. The complex amplitudes 
for the first and second qubit are given by  α  and β  , and  γ   and  δ , respectively. 

The   ( )CPHASE θ  is defined  as leading to the output state  

0 0 0 1 1 0 1 1i

out A B A B A B A B
e θψ αγ αδ βγ βδ= + + +    (18) 

The first qubit (A) acts as a control and its value is unchanged on the output. In case 
that the first control qubit is in the |0>  state nothing happens to the second target 
qubit (B). In case that the first control qubit is in the |1> additional   phase θ  is 
inserted between the |0> state and the |1>  state of  the second target qubit, and we 
define this additional phase to be inserted in the  |1) state (but take into account that 
only the relative phase is important). In quantum computational circuits the case 

( )CMINUS CPHASE π=  is especially important [2]. In the following analysis it 
is shown how to implement the transformation (18) by  using quantum encoders. 

By using quantum encoders [7], as explained in the introduction, we can copy two 
times each input state transforming (17)  into  

{ } { } { } { }1 2 1 2 1 2 1 2
0 0 1 1 0 0 1 1

in A A A A B B B B
ψ α β γ δ⎡ ⎤ ⎡ ⎤= + × +⎣ ⎦ ⎣ ⎦    (19) 

In (19) we get multiplications of four states since each of the two-states denoted by 
the subscripts A  and B  has been copied twice by the quantum encoders and these 
copies are indicated by adding the subscripts one and two. 
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The input state 
in

ψ  of (19) can be rearranged as  

     
{ }{ } { }{ }

{ }{ } { }{ }
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

0 0 0 0 0 1 0 1

1 0 1 0 1 1 1 1

in A B A B A B A B

A B A B A B A B

ψ αγ αδ

βγ βδ

= +

+ +
   (20) 

For each four-state multiplication of (20) the  two-states given in the first curled 

bracket which are indicated by the subscripts 1A  and 1B  are  copied into equivalent 

two-states given in the second curled bracket which are indicated  by the subscripts 

2A  and 2B .  

              Eq. (14) can also be written as a summation of two unitary matrices   

           ( ) ( )( ) ( )( )3 3 3CPHASE I I Iθ κ μσ σ λσ ν= ⊗ + + ⊗ +             (21) 

By using the  decomposition of  (21) into the  summation of two 4X4 unitary matrices 

and the relations (16), we will assume that the unitary matrix ( )( )3I Iκ μσ⊗ +  

will operate on the two-states given in the first curled brackets of (20) with subscripts 

1A   and 1B  leading to the transformations: 

{ } ( ){ } { } ( ){ }
{ } ( ) { } ( ){ }

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 ; 0 1 0 1

1 0 1 0 ; 1 1 1 1

A B A B A B A B

A B A B A B A B

κ μ κ μ

κ μ κ μ

→ + → −

→ + → −
       (22) 

and  that the unitary matrix ( )( )3 3 Iσ λσ ν⊗ +   will operate on the two-states 

given in the second curled brackets of (20) with subscripts 2A  and 2B  leading to the 

transformations: 

{ } { } { } { }
{ } { } { } { }

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 0 0 ( ) 0 ; 0 1 0 ( ) 1

1 0 1 ( ) 0 ; 1 1 1 ( ) 1

A B A B A B A B

A B A B A B A B

λ ν ν λ

λ ν λ ν

→ + → −

→ − + → −
 

                                                                                                                                 (23) 

Such processes can be implemented experimentally due to different locations  of the 
two-states so that the operation of the unitary matrix ( )CPHASE θ  has been   
decomposed here into the summation of two unitary processes each operating on a 
different copy of the two-states. 
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Performing the transformations (22-23) on the input state (20) we get : 

        

( ){ } ( ){ }
( ){ } ( ){ }
( ){ } ( ){ }
( ){ } ( ){ }

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

out A B A B

A B A B

A B A B

A B A B

ψ αγ κ μ λ ν

αδ κ μ ν λ

βγ κ μ λ ν

βδ κ μ λ ν

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦

       (24) 

Here the phases of the states with subscripts 1A  and 2A  are assumed to be positive 

and relative to them the phases of the qubits with subscribts  1B  and  2B are given. 

One  should take into account that by the copying procedure the input and 
correspondingly the output states were doubled.  

We can consider (24) as a certain implementation of the ( )CPHASE θ  gate 

where the control operation of this gate has been decomposed into two equal control 

qubits. We find that the states with subscript 1A  are equal to those with subscript  

2A , both can be considered as equal to the control qubit  which is not changed by the 

quantum gate. The target states have been decomposed here into two different target 

states denoted by the subscripts 1B  and  2B . We get a relative phase of the target 

state denoted by subscript 1B  relative to the control state denoted by subscript 1A , 

and we get a relative phase of the target state denoted by subscript 2B  relative to the 

control state denoted by subscript  2A . When we add these two relative phases, 

which can be obtained in two separated experiments, the ( )CPHASE θ  gate is 

realized as  described  by the following correspondences:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2

1 2

1 2

1 2

0 0 2 0 ; 1 1 2 1 ;

0 0 0 ;

1 0 0 ;

0 0 0 ;

1 1 0

A A A A A A

B B B

B B B

B B B

B B B

κ μ λ ν κ μ λ ν

κ μ ν λ κ μ ν λ

κ μ ν λ κ μ ν λ

κ μ λ ν κ μ λ ν

→ →

⎡ ⎤ ⎡ ⎤+ + → + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − → − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − + → + − −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − → − + −⎣ ⎦ ⎣ ⎦

 .       (25) 

Using the relations (15) we get  

( ) ( )
( ) ( )

1 ; 1 ;

1 ; 1 4 ie θ

κ μ λ ν κ μ ν λ

κ μ ν λ κ μ λ ν λ

+ + + = − + − =

+ − − = − + − = + =
                    (26) 
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Substituting  (25,26) into (24) we get 

0 0 0 1 1 0 1 1
2

iout

A B A B A B A B
e θψ

αγ αδ βγ βδ= + + +    (27)           

which is equivalent to the transformation given by (18) (up to the unimportant factor 
2). The transformation in the doubled space of (20) to the output (24) with the above 
correspondences leads in a certain special way to implementation of the 

( )CPHASE θ  gate.  

        One should take into account that ( )CPHASE θ  has been implemented by 

one to one correspondence of (20) to (24) so that such implementation is mainly in 
'principle'. One might also perform the addition of the relative phases in interference 
experiments leading to relations (26) and then the implementation will be also in 
'practice'. The relations (25,26) are given by the addition of the amplitudes like those 
given by interference experiments and are basicly different from the addition of logic 

states numbers [2]. The transformation in the doubled space of the input state 
in

ψ of 

(19) to the output state 
out

ψ  of (24) realizes the quantum gate since we can 

transform back the doubled output state to the ordinary ( )CPHASE θ output two-

qubit state. 

4   Summary, Discussion and Conclusion 

The use of probabilistic logic operations has been  developed  for implementing 
quantum gates. It has been shown that quantum gates can be decomposed into 
summation of tensor products of unit and Pauli 2x2 spin matrices. Such 

HS decomposition has been  applied  for the ( )CPHASE θ  gate leading to a 

summation of two unitary matrices of dimension 4x4. In the present method each 4x4 
matrix operates on a different copy of the two-states produced by quantum encoders. 

By adding the relative phases in the two two-states' copies the ( )CPHASE θ  gate is 

realized.  
           The same technique that has been described in the present work for 

implementing the ( )CPHASE θ  gate can be used also for implementing the 

CNOT  gate. The encoding process for the quantum states is the same for the two 

cases. The only difference is that the decomposition of the  ( )CPHASE θ gate by 

(14) is replaced by the decomposition of the CNOT  by (13). Replacing the 
operations of the unitary matrices of (14) on the quantum states, by those of (13) one 
can use a similar procedure for implementing the CNOT  gate. While the  

( )CPHASE θ  gate is realized by adding the relative phases of the two target states, 
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the CNOT  gate can be realized by adding the polarization states of the two target 
states. Thus, we have shown therefore a new method for implementing  both  

CNOT and ( )CPHASE θ  gates [1,2]. 

In the present work we have used the HS  decomposition by which the quantum 
gate is decomposed into a summation of unitary matrices where each of these matrices 
is given by tensor products of Pauli and unit spin matrices. It has been shown that by 
operating with each of these matrices on a different copy of the states in each 
superposition and by adding the results for the different copies the quantum gate is 

realized. The analyses for ( )CPHASE θ  and CNOT  gates are relatively simple due 

to the fact that for these gates the decomposition can include only two such matrices. 
For other gates the HS  decomposition might include the summation of more unitary 
matrices so that the corresponding copying processes by quantum encoders should be 
more complicated. However, the present analysis becomes quite general if we consider 
the fact that any quantum gate can be obtained by the combinations of single-qubit gates 

and two-qubit ( )CPHASE θ  and CNOT  gates [1,2]. 

Quantum encoding processes which are obtained by using probabilistic 
transformations have been already applied successfully in the experiments reported in 
[5-7]. In the present work the use of quantum encoders has been developed for 
implementing quantum gates by new methods using the HS decomposition which 
are different from those used previously and  these methods should  therefore be of 
interest both theoretically and experimentally. 

Any quantum computational process is described by a certain circuit assuming any 
initial input state and its end to be measured. The quantum circuits described in the 
present analysis seem to be different from the conventional  ones. However, the initial 
state assumed in our analysis and its end to be measured are equivalent to the 
corresponding conventional two-qubit gates. Therefore we find that the present 
method has developed certain realizations of the quantum gates. 

References 

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. 
Cambridge University Press, Cambridge (2001) 

2. Benenti, G., Casati, G., Strini, G.: Principles of Quantum Computation and Information, 
Basic concepts, vol. 1. World Scientific, Singapore (2005) 

3. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with 
linear optics. Nature (London) 409, 46–52 (2001) 

4. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear 
optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007) 

5. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum logic operations using 
polarization beam splitters. Phys. Rev. A 64(062311), 1–9 (2001) 

6. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Demonstration of non-deterministic quantum 
logic operations using linear optical elements. Phys. Rev. Lett. 88(257902), 1–4 (2002) 

7. Pittman, T.B., Jacobs, B.C., Franson, J.D.: Probabilistic quantum encoder for single- 
photon qubits. Phys. Rev. A 69(042306), 1–4 (2004) 



 The Use of Hilbert-Schmidt Decomposition for Implementing Quantum Gates 97 

8. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, London (1998) 
9. Ben-Aryeh, Y., Mann, A., Sanders, B.C.: Empirical state determination of entangled two-

level systems and its relation to information theory. Foundations of Physics 29, 1963–1975 
(1999) 

10. Yariv, A.: Optical Electronics. Saunders College Publishing, NewYork (1991) 


	The Use of Hilbert-Schmidt Decomposition for Implementing Quantum Gates
	Introduction
	Two Qubit Gates Described by Tensor Products of Pauli and Unit Spin Matrices
	Realization of {\it CPHASE($\theta$)} Gate by Quantum Encoders
	Summary, Discussion and Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /CMMI10
    /CMTI10
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




