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Abstract. We propose photonic reservoir computing as a new approach
to optical signal processing and it can be used to handle for example large
scale pattern recognition. Reservoir computing is a new learning method
from the field of machine learning. This has already led to impressive
results in software but integrated photonics with its large bandwidth and
fast nonlinear effects would be a high-performance hardware platform.
Therefore we developed a simulation model which employs a network of
coupled Semiconductor Optical Amplifiers (SOA) as a reservoir. We show
that this kind of photonic reservoir performs even better than classical
reservoirs on a benchmark classification task.

1 Introduction

Reservoir Computing was recently proposed [1,2] as a general framework to
handle classification and recognition problems. The reservoir itself consists of a
network of coupled nonlinear elements and their interactions facilitate the process-
ing and classification of the incoming signals by the readout function. These
reservoirs were until now mainly software-based and they have been employed
successfully in a large variety of applications like speech recognition [3,4,5], event
detection [6], robot control [7], chaotic time series generation and prediction [1,8].

Photonic reservoir computing could be used for a large variety of problems,
going from large scale pattern recognition in (real-time) video data to signal
processing (header recognition, error correction, etc.) in optical fiber networks.
We studied a photonic reservoir, made of coupled SOAs, and this paper presents
the first results. The structure of the paper is as following. In section 2 we will
go deeper into this new concept of reservoir computing. The next section deals
with the (photonic) implementation aspects. Section 4 describes the classifica-
tion task we used, to show the potential of photonic reservoir computing. This
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task requires the reservoir to distinguish between a triangular and a rectangu-
lar waveform. It turns out that a photonic reservoir — with only a little bit of
tuning and a limited number of 25 SOAs — can already distinguish between the
two signals over 97 % of the time.

2 Reservoir Computing

2.1 Classical Approach

In this digital age, signals are often transferred to the digital domain for signal
processing. Nature shows us however that there are alternatives, which can be
superior for complex classification and recognition problems, like the human
brain combined with eyesight. Machine learning looks to the biological world for
inspiration, where organisms often learn from their failures and successes or in
other words from examples. Systems in machine learning are accordingly trained
to perform certain tasks. Artificial Neural Networks (ANN) are an example of
such a system and take the analogy with the biological world one step further [9].
The inspiration for the system comes from its biological counterpart, the human
brain, which consists of neurons. The human brain lacks speed compared to a
computer, but it compensates this by having a rich interconnection topology.
Each connection has a certain weight attached to it and these weights can be
adapted during the training process.

Feed-forward neural networks have been extensively used for non-temporal
problems and they are well understood due to their non-dynamic nature. At the
same time, this limits their applicability in dealing with time varying signals. In-
deed, neural networks with feedback loops (so-called recurrent neural networks)
provide some kind of internal memory which allows them to extract time correla-
tions. However, this turned out to be a hurdle in finding a general learning rule,
which is a method used to train the neural network to perform a desired task.
This is why different rules exist for different tasks and topologies, thus limiting
their broad applicability.

Around 2002 two solutions (Liquid State Machines and Echo State Networks)
were independently proposed [1,2]. They have in common that the network is
split up in two parts. One part — the reservoir — is a random recurrent neural
network that is left untrained and kept fixed while using. The input is fed into
this reservoir. The second part is a readout function, which takes as input the
reservoir state — a collection of the states of the individual elements. In order
to be able to achieve useful functionality, this part of the system needs to be
trained, typically on a set of inputs with known classifications. This process is
visualized in figure 1. Any kind of classifier or regression function could be used,
but it turns out that for most applications a simple linear discriminant suffices.
In this way the interesting properties of recurrent neural networks are kept in
the reservoir part, while the training is now restricted to the memoryless readout
function.

One might wonder why such an approach would be useful to solve complex
classification tasks. However, it is well known in the machine learning community
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that projecting a low-dimensional input into a high-dimensional space can ac-
tually be beneficial for the performance of a classification algorithm. As classes,
which are only separable by a nonlinear function in the low-dimensional space,
can become separable by an easier, linear function in the high-dimensional space
[10]. This concept is applied e.g. in support vector machines.

The reservoir could be seen as an integration of the temporal correlations in
the signal into a spatial correlation in the reservoir state. This is not to say that
any recurrent neural network will do. Rather, it appears that the dynamics of
the network should be in the dynamic region which corresponds to the edge of
stability [11]. The dynamics depend on the amount of gain and losses in the
network and they should be balanced. If the network is over-damped there is
no memory inside the reservoir, if it is under-damped the network will react
chaotically.

reservoir outputinput
state of the 

reservoir
readout 
function

u(t) x(t) fM y(t)

Fig. 1. Reservoir Computing

Recently a toolbox, able to simulate and test reservoirs, was created [12]. In
this toolbox the reservoirs are neural networks. One of those is the classical
variant where the signals are analog and every node is a hyperbolic tangent
function operating on a weighed sum of its inputs. This function is S-shaped as
in figure 2 (left). In this kind of network the nodes themselves are very simple,
while the dynamics come from the complex interconnection topology.

2.2 Photonic Approach

The theory behind reservoir computing is not restricted to neural networks. One
requirement for the reservoir is fading memory, which means that the influence
of an input should fade away slowly. The present software implementations are
rather slow and therefore we investigated the potential of a hardware implemen-
tation based on light. This could be faster and more power efficient due to the
large bandwidth and fast nonlinear effects inherent to light.

Due to the nature of reservoir computing, its implementation can be split up
in two distinctive parts: the reservoir on the one hand and the readout function
on the other. Since the computational power of reservoir computing seems to
reside mainly in the reservoir due to its feedback and nonlinearities, the focus of
the research was on a photonic reservoir. As mentioned before the readout is a
simple linear discriminant, but its training depends on mathematical calculations
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like matrix inversion. This could initially be done off-line with a computer or by
an electronic chip.

Because the specifications for the reservoir do not seem to be very rigid,
the choice of possible nanophotonic components was vast. We opted for coupled
Semiconductor Optical Amplifiers (SOA), based on two observations. First of all,
the steady-state curve of an SOA resembles the S-curve used in analog neural
networks (figure 2) — at least for the upper branch, but since optical power is
non-negative this is a restriction we have to cope with. This resemblance made
SOAs more likely to be able to bridge the reservoir and the photonic world.
The dynamic behavior of an SOA is however more complex in comparison to
the classical analog implementations. The carrier dynamics come into play at
high data rates and because of this a reservoir of SOAs is a middle ground
between simple nodes with a complex network (the classical tanh reservoirs)
and one very complex node. Second, SOAs are broadband which makes the
communication between different nodes less critical as would be the case with
resonating structures.
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Fig. 2. (Left) tanh for analog ANN — (right) SOA: steady state

3 Simulation Model

We developed our simulation program for photonic reservoirs within the frame-
work of the toolbox, mentioned previously. This allows us to use the existing
training schemes for the memoryless readout function. For further details about
this open source toolbox we refer to the manual online [12] and the article by D.
Verstraeten et al. [13].

3.1 SOA Model

In our simulations we work with a traveling wave SOA. This kind of SOA has
anti-reflection coatings on its facets, which allows us to neglect the influence of re-
flections. We use the standard traveling wave SOA equations [14]. We neglect the
influence of Amplified Spontaneous Emission (ASE) and spectral hole burning in
this model. This means that we assume that the input signal itself will be strong
enough to dominate the ASE and that we only use light at one wavelength. To
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incorporate the longitudinal dependence of the gain, the equations can be solved
for a concatenation of small sections of the SOA. Since the latter can be time con-
suming when working with large networks of SOAs, we work mainly with one sec-
tion. Moreover since reflections are neglected at this stage, we use unidirectional
signal injection. This reduces the number of rate equations to be solved to one.

3.2 Topology and Reservoir Simulation

The classical reservoir implementations with neural networks have random inter-
connection topologies. Since the standard optical chip is still 2D we investigated
structures that can be realized without intersections. Two of those structures
are depicted in figure 3. The left structure is a waterfall system which acts as a
nonlinear delay-line. Although this feed-forward topology is relatively simple, it
has already been successfully used to model nonlinear systems [15]. The other
network has feedback connections on the sides in order to avoid crossings. Since
the SOAs are modeled as unidirectional, the connections are too.

INPUT INPUT
ININ OUTOUTSOASOA

Fig. 3. Two topologies: (left) a feed-forward network – (right) a waterfall network with
feedback connections (long dash) at the edges

At every time instant two computational steps are taken. During the first
step the internal state of every node is updated, while during the second step
the outputs are transferred to the inputs they are connected to. The splitters and
combiners are modeled as adiabatic and every connection can have a different
delay and attenuation.

The readout function takes as input the power of every SOA in the network
at every time instant. This is the basic structure of the simulation model. Next,
we will look at tasks that can be solved with these kind of networks.
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4 Pattern Recognition

4.1 Task Description

We will use a simple classification task to demonstrate the potential of photonic
reservoir computing. The task is depicted in figure 4. The system has to be
able, by means of training by examples, to instantly differentiate between a
rectangular and a triangular waveform. Moreover, if the input signal changes
the system has to change its output as fast as possible. In the top part (a) of
figure 4, an example of such an input is depicted. Figure 4b shows the output
that the system should generate accordingly. If the input is triangular than the
system should constantly return 1, if the input is rectangular it should return -1.
Figure 4c shows the state of a few SOAs as they are excited by the input, while
figure 4d shows the result of the readout function. The readout uses a linear
combination of the states of the reservoir nodes, to approximate the desired
output (black curve) as closely as possible (blue curve). In the last stage a sign
function is used on this approximation to define the final output of the system.
As a result the output is either 1 or -1 as can be seen in figure 4e. In the example
the system manages most of the time to follow the desired output.

Since the output function is memoryless, it should be able to handle tran-
sitions of the waveform at different instants. Hence several samples are made
with different transitions. One part of these samples is used to train the readout
function, while the other part is used to test it. These test results are used to
define the quality of the reservoir.

4.2 Results

In figure 5 some results are displayed from our simulations. The vertical lines
are error bars, which show the standard deviation on the reservoir performance
over ten runs. The variation comes, for the photonic reservoirs, from different
samples with different transitions at different instants. The tanh networks have
an extra variation source because they are randomly created.

In the left figure the two photonic topologies from figure 3, with 25 SOAs, are
compared against the attenuation in the connections. This attenuation influences
the dynamic regime and the higher the attenuation, the more damped the system
is. It shows that feedback is beneficial for the performance of photonic reservoirs,
when used in the appropriate dynamic regime. The best result is an error rate of
2.5 % for the network with feedback loops. This means that the reservoir is only
in 2.5 % of the time incorrect in its distinction between the rectangular and the
triangular waveform. If the attenuation in the connections gets too small then
the performance decreases dramatically for the feedback network.

On the right of figure 5 a feedback reservoir with SOAs and the classical tanh
reservoirs are compared, each with 25 nodes. Since there is feedback in both
networks we use the spectral radius (ρ(·)) as a measure for the dynamics in the
system. The spectral radius is the absolute value of the largest eigenvalue of the
connection matrix C, containing all the gain and loss in the network and is an
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Fig. 4. Pattern recognition task: a) Input signal with different transitions between
the rectangular and triangular waveform b) desired output c) state (i.e. optical power
level) of some of the reservoir nodes d) The approximation (blue) of the desired output
(black) by the readout function, e) final output of the system (red)

often used parameter in the field of reservoir computing. In a linear network
a spectral radius smaller than one means the network is stable, a value larger
than one means chaotic. The interesting dynamical region, the edge of stability,
holds for spectral radii just below one. Although our network is nonlinear, we
can still use this as an approximation, where the spectral radius acts as an upper
estimate. The gain for every node is linearized around zero input power and for
a connection matrix C with eigenvalues λi, . . . , λn this leads to the following
spectral radius calculation:

ρ(Clin(0)) = max
1≤i≤n

|λi| (1)

The classical reservoir appears to behave better for small spectral radii (when
the system is damped) with an optimum value around 3.5 %. As soon as the
spectral radius gets too high, the system becomes chaotic which explains the
large error bars and bad results. The same holds for the photonic reservoirs at
higher spectral radii. The curve for the SOA network with feedback is the same
in the two figures but plotted against a different parameter. An optimal value of
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Fig. 5. Results with frequency of 0.5 GHz, simulation time: 100 ns, amplitude power:
5mW, delay: 6.25 ps, fixed input–output weights, SOA input current: 80 mA, 25 nodes:
(left) – photonic reservoirs with and without feedback, (right) – classical reservoirs
versus photonic reservoirs with feedback
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Fig. 6. This figure shows the influence of the reservoir size on the performance of the
classical and photonic reservoirs (with feedback)

2.5 % is obtained for a spectral radius around 0.5. This means that the system
detects the correct waveform almost 97.5 % of the time.

It is remarkable that the photonic reservoir with feedback is slightly better
than the classical reservoir for this task, considering the simple photonic topol-
ogy. One explanation is the different response of an SOA to different rise times.
The rectangular waveform, although smoothed with a tanh, rises faster than the
triangular waveform, causing a depletion of the carriers in the SOA. This can be
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seen in figure 4c, when peaks appear whenever a rising edge of the rectangular
waveform passes through an SOA. This result indicates that the planar-topology
limitation for photonic reservoirs is at least compensated by the richer dynamics
of the SOAs.

In figure 6 we see that the reservoir performance enhances with larger reser-
voirs, although it seems to saturate. The choice for a certain reservoir size is
then a trade-off between the specifications of the task and cost of the chip.

5 Conclusions

We have demonstrated in this paper the potential of photonic reservoir com-
puting, since our photonic reservoirs manage to discriminate over 97 % of the
time between the two waveforms in our classification task. Even though, they
work with a limited number of SOAs and limited amount of feedback. This is a
promising step toward the use of photonic reservoirs for large scale image recog-
nition and signal processing. In future work we want to obtain an experimental
verification of the described simulation results.
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