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Abstract. In this paper we summarize the existing principles for build-
ing unconventional computing devices that involve delayed signals for
encoding solutions to NP-complete problems. We are interested in the
following aspects: the properties of the signal, the operations performed
within the devices, some components required for the physical imple-
mentation, precision required for correctly reading the solution and the
decrease in the signal’s strength. Six problems have been solved so far
by using the above enumerated principles: Hamiltonian path, travelling
salesman, bounded and unbounded subset sum, Diophantine equations
and exact cover. For the hardware implementation several types of sig-
nals can be used: light, electric power, sound, electro-magnetic etc.

Keywords: unconventional computing, signal-based computing, NP-
complete, delay lines, optical computing.

1 Introduction

NP-complete problems [6] have attracted a great number of researchers due to
their simple terms but huge complexity. Despite the impressive amount of work
invested in these problems no one has been able to design a polynomial-time
algorithm for them. A relatively new direction is to attack these problems with
unconventional devices. DNA computers [2], Quantum computers [5, 21], bub-
ble soap [1], membrane computing [18, 19], gear-based computer [22], adiabatic
algorithm [10] etc are few of the most important approaches of this kind.

Here we outline some of the most important principles governing some un-
conventional devices which use delayed signals for encoding solutions to NP-
complete problems. A common feature of all these devices is the fact that the
signals are delayed by a certain amount of time. The existence of a solution is
determined by checking whether there is at least one signal which was delayed
by a precise amount of time. If we don’t find a signal at that moment it means
that the problem has no solution.

The difficulty of this approach resides in the design of a delaying system such
that the solution can simply be read at an exact moment of time.
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At the current stage we are interested to find only if a solution exists for the
investigated problem. Otherwise stated, we try to solve the decision (YES/NO)
version of the problems.

Since we work with signals we need a physical structure in which the signals
travel. The structure is usually represented as a directed graph with arcs con-
necting nodes. The directed graph is designed in such a way that all possible
solutions of the problem are generated. The device has 2 special nodes: a start
node (where the signal enters) and the destination node (where the signals are
collected and interpreted).

Initially,thesignal(pulse) issenttothestartnode.Asthesignaltraverses ingraph
it will be divided into more and more signals. Each of them will encode a partial
solutionfortheproblem.It is importantthatthesignalsdonotannihilateeachother.
At the destination node we filter the solutions by checking for the good ones.

Thereare several otherways for solvingNP-completeproblemsbyusing lightand
its properties. Two other different approaches have been presented in [4] and [20].

The paper is organized as follows: Section 2 describes the NP-complete prob-
lems. Properties of the signal useful for our research are described in section 3.
Operations performed in our devices are described in section 4. Some examples
of devices working with delayed signals are shown in section 7. Several practical
aspects for hardware implementation are discussed in sections 8 - 11. Difficulties
for the practical implementations are given in section 12. Further work directions
are given in section 13. Section 14 concludes our paper.

2 YES/NO NP-Complete Problems

NP-complete problems [6] are a special class of problems for which we don’t
know whether a polynomial-time algorithm exists. There is no proof that we can
solve them only in exponential time nor a polynomial algorithm was proposed so
far. NP-complete problems are linked together by a polynomial time reduction.
Thus, if one of them is solved in polynomial time it means that all others can
be solved in polynomial-time.

NP-complete problems are usually formulated as decision problems. Instead
of asking for a minimal solution (e.g. the shortest path, the smallest set, the
lowest point etc) one can ask if there is a solution smaller than a fixed constant
K (e.g. the length of the path is shorter than K, the number of elements in the
set is smaller than K etc). These are decision problems (also known as YES/NO
problems).

In our research we are interested in the solving the decision problems. We are
not interested to find the actual solution of the problems.

3 Properties of the Signal That We Can Count on

Two properties of signal are of great interest for our research. Most types of
signal that we know (light, sound, electric etc) have these properties.
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– The speed of the signal has a limit. We can delay any signal by forcing it to
pass through a cable of a certain length.

– Thesignal canbeeasilydivided intomultiple signals of smaller intensity/power.

For some problems it is required for the signal makes some loops (see the
unbounded subset sum problem in section 7). This type of flow is not possible
for the electric-based signals. This is why, when we talk about problems whose
structure requires loops we assume that we work with optical signals not with
electric-based.

4 What We Do with the Signals

The following manipulations of the signals are performed within the devices:

– When the signal passes through an arc it is delayed by the amount of time
assigned to that arc.

– When the signal passes through a node it is divided into a number of sig-
nals equal to the out degree of that node. Every obtained signal is directed
toward one of the nodes connected to the current node. In this way we add
parallelism to our devices. This feature is actually the source for a major
drawback: due to repetitive divisions the strength of the signal decreases ex-
ponentially and more and more powerful signals are required for larger and
larger instances of the problems.

5 Basic Idea

The device has a directed graph-like structure with 2 special nodes: a start node
and a destination node.

The signal is sent initially to the start node. It will then enter in the rest of
the graph where the actual computations are performed.

The purpose of the destination is to collect the solutions. In the destination
node we have placed a reading device which measures the moments when the
signals arrive there.

In the rest of the directed graph we have nodes which split the signal and
arcs which delay the signal. We work with arcs (directed edges) instead of edges
(undirected edges) because we don’t want to annihilate the signals coming from
2 opposite directions.

The graph must be constructed in a special way. Each signal follows a partic-
ular path meaningful for the problem structure. The signal constructs a solution
by visiting nodes and arcs. When it traverses an arc it is delayed by some amount
of time. Finally it arrives in the destination node. A black-box representation of
our device is given in Figure 5.

If the solution of the problem was correctly constructed we will have a par-
ticular delay induced to a particular signal. In what follows we denote by B
this delay. No other signals (which do not encode solutions) can have this delay.
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Fig. 1. Black-Box design of our device. Signal enters from start node. Within the device,
the signals follow different paths and are divided multiple times. In the destination we
will get different signals at different moments of time.

This is a hard constraint. The delaying system must obey this rule, otherwise
we cannot make distinction between signals representing complete solutions and
signals encoding partial or incorrect solutions.

The difficulty of this approach resides in satisfying this constraint.

6 Did We Solve the Problem?

In the destination node we have more signals arriving at different moments.
There can be two cases:

– If there is a signal arriving at moment B, this means that there is a solution
for our problem.

– If there is a no signal arriving at moment B means that there is no solution
to our problem.

If there is more than one signal arriving at the moment B in to the destination
it simply means that there are multiple solutions to the problem. This is not a
problem because we want to answer the YES/NO decision problem (see section
2). At this moment we are not interested in finding the actual content of the
solution.

Because we work with continuous signal we cannot expect to have discrete
output at the destination node. This means that arrival of the signals is notified
by fluctuations in the intensity of the signal. These fluctuations will be read by
some specialized device (such as an oscilloscope).

7 Designing the Graph

Figures 2, 3 and 4 show several directed graphs used for solving various problems.
All graphs have a polynomial number of nodes. In what follows we describe the
basic ideas behind each device.

The standard subset sum problem has the simplest design [11, 16]. Each num-
ber can appear or not in the final solution. This decision is represented in our
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device by 2 arcs having the same 2 nodes as extremities. One of the arcs has 0
length and the other arc delays the signal by an amount of time equal to one of
the numbers from the given set. If the signal traverses the arc having the length
greater than 0 it means that the corresponding number is selected in the solution.
If the signal traverse the 0 length arc it means that the corresponding number
is not selected in the solution. Practically we cannot have arcs of 0 length. This
is why a constant k is added to all arcs. (B + n ∗ k) is the moment when the
existence of a solution should be checked (where B is the target value of the
problem, n is the cardinal of given set and k is a constant). Finally, since we
want to sum all numbers in solution we construct the device in a serializable way
(see Figure 2 a)). The delays are polynomial (in the size of the given numbers).

The design for unbounded subset sum contains fewer arcs compared to stan-
dard subset sum due to constraint relaxation (each number can appear multiple
times in the solution). This is why we don’t have to create a serial structure
with no return arcs. Instead a loop structure was proposed [11, 12]. The internal
node is used for dividing any incoming signal into n + 1 subsignals (where n is
the cardinal of the given set). n signals are sent back to arcs encoding numbers
and the (n + 1)th is sent to the destination (see Figure 2 b)).

The Hamiltonian problem asks to visit each city exactly once (see Figure 3 a)).
It is not easy to satisfy this constraint since we cannot restrict the signal to visit a
node exactly once. More than that, the distance between nodes is not important
in this problem, thus if incorrectly designed can lead to multiple rays arriving in
the same moment in destination. Because the constraints are imposed by nodes,
the delays should be focused on nodes instead of arcs. This is different from the
previously described solutions where the only purpose of nodes was to divide the
signal. Let us suppose that the signal encoding the Hamiltonian path arrives at
moment B in the destination. No other signals (not encoding Hamiltonian paths)
must arrive in the same moment there. We have to choose the delay induced by
each node in order to satisfy this constraint. In [14, 15] it was shown an example
of such delaying system. That system guarantees that the delay induced to the
signal encoding a Hamiltonian path will not be equal to any other path visiting
some cities more than once or skipping some other cities. Unfortunately it was
exponential (the length of the delays increases exponentially with the number of
nodes).

The directed graph for the Exact Cover problem [6] (see Figure 3 b)) is a
combination between Hamiltonian path and standard subset sum [17]. Some
subsets from a collection must be chosen (like in the standard subset sum) and
each number from the original set must appear exactly once (like nodes in the
Hamiltonian path). The delaying system is exponential because it is based on
the Hamiltonian path device.

For solutions to Diophantine equations we have to choose some positive integer
numbers x and y which have the property a1∗x+a2 ∗y = c [11, 13] (where a and
b are some positive integer numbers). A brute-force approach was employed by
generating all possible pairs (x, y). The trick consists in a loop whose purpose is
to increase the value of a variable with 1 unit. The signal enters in the loop and
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Fig. 2. The graphs representing devices for a) standard subset sum, b) unbounded
subset sum. A problem with 4 numbers {a1, a2, a3, a4} is considered for the standard
subset sum. The constant k was added to all arcs because we cannot have cables of
length 0. All arcs have been depicted similarly, but in reality they can have different
lengths depending on the values of the numbers in the given set. A problem with 3
numbers {a1, a2, a3} is considered for the unbounded subset sum. Signals encoding
combinations of numbers arrive in the internal nodes and are sent either to destination
or back again for adding more delays.

traverses it. When exits it will be divided into 2 signals: one of them will be sent
to the next node and another one will be sent back to the loop for increasing
the delay another time-unit (see Figure 4 a)). Because we cannot have cables
of length 0 we have to search for a solution at moment c + 2 ∗ k, where k is
the delayed induced by cables connecting the nodes. The delaying system is
polynomial.

The construction of TSP device imposes a double difficulty: some nodes must
be visited exactly once and the total path must be the shortest possible [7, 8].
If we ignore delays on nodes we will have paths not being Hamiltonian. If we
focus only on delays induced to nodes, we will not obtain the shortest path. To
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Fig. 3. The graphs representing devices for a) Hamiltonian path, b) Exact Cover. In
the case of Hamiltonian path, the length of the arcs connecting nodes is not important -
it can be the same for all arcs. What is important are the delays induced by each node.
Thus, inside each node we have another set of arcs - not depicted here - which introduce
some delays. The device for Exact Cover is more complicated. Since we wanted that
each number from the original set to appear exactly once we use the delaying system
from the Hamiltonian path. However, this is not enough, because here we have to select
sets from a given collection and not single numbers. For this purpose we have assigned
to each set a delay equal to sum of delays attached to numbers from that set. It is
denoted by delay(Ci). Choosing the correct set of sets is done in a similar manner with
the standard subset sum (see Figure 2). Note that numbers from original set cannot
be seen in this picture. They are actually hidden inside the delays induced by each set.
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Table 1. The magnitude of delays required for solving the problems investigated in
this paper

Problem delays magnitude
Standard subset sum polynomial
unbounded subset sum polynomial
Hamiltonian path exponential
Exact Cover exponential
Diophantine equations polynomial
Travelling salesman exponential

solve this difficulty we assign a large (and exponential) delay to each node and
smaller delays on arcs. Only Hamiltonian paths (visiting each node) are checked
for the length of incorporated arcs.

Table 1 shows the length of the cables used for delaying the signals. 3 problems
requires exponential delays. The other 3 problems require polinomial time length
for cables. However, even if we have cables of polynomial length is not enough
because the energy consumption is exponential with the size of the instance.

8 Precision

A problem is that we cannot measure the moment B exactly. We can do this
measurement only with a given precision which depends on the tools involved in
the experiments.

Let us denote by P the precision used for reading our signals. This means
that we should not have two signals that arrive at 2 consecutive moments at
a difference smaller than P . We cannot distinguish them if they arrive in an
interval smaller than P . In our case, it simply means that if a signal arrives in to
the destination in the interval [B − P, B + P ], we cannot be perfectly sure that
we have a correct subset or one which does not have the property in question.

8.1 What If We Delay by Cables ?

Let us denote by v the speed of the signal. Based on that we can easily compute
the minimal cable length that should be traversed by the signal in order (for
the latter) to be delayed with P seconds. This is obviously v ∗ P meters. This
value is the minimal delay that should be introduced by an arc. Assuming a
3 ∗ 108m/s for the optical signal and a 10−12 precision of the best oscilloscope
we get a 3 ∗ 10−4m for the shortest cable that we can have in our system.

This value is the minimal delay that should be introduced by an arc in order
to ensure that the difference between the moments when two consecutive signals
arrive at the destination node is greater than or equal to the measurable unit
of P seconds. This will also ensure that we will be able to correctly identify
whether the signal has arrived in to the destination node at a moment equal to
the sum of delays introduced by each arc.
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Fig. 4. The graphs representing devices for: a) Diophantine equations, b) travelling
salesman. A loop of the device for Diophantine equations is similar to the device for un-
bounded subset sum problem with only one number in the set. Signals looping through
device are actually increasing values for x and y. Note that the device can be extended
for any number of variables. Travelling salesman is again a complicated device. Practi-
cally n! Hamiltonian paths can be generated and we are interested in searching for the
shortest one. First step is to ensure that we can distinguish between Hamiltonian and
non-Hamiltonian paths. This is done as it was explained in Figure 2. To check for the
shortest path we add some delays for each arc connecting nodes. These delays must be
significantly shorter than the delays within nodes so that the discovery of Hamiltonian
paths is not affected.



124 M. Oltean and O. Muntean

A constraint is that all the lengths must be integer multiples of v ∗ P . We
cannot accept cables whose lengths can be written as x∗ v ∗P + y, where x is an
integer and y is a positive real number lower than v ∗ P because by combining
this kind of numbers we can have a signal in the above mentioned interval but
that signal does not encode a subset whose sum is the expected one.

Once we have the length for that minimal delay, is quite easy to compute the
length of the other cables that are used in order to induce a certain delay.

Note that the maximal number of nodes can be increased when the precision
of our measurement instruments is increased.

9 Energy Consumption

Within nodes the signals are divided into (sub)signals. Because of that, the in-
tensity of the signal decreases. In the worst case we have an exponential decrease
of the intensity. For instance, the intensity of the subsignals will decrease k times
(compared to the incoming strength) if we divide each signal in k subsignals. If we
do this operation n times we get signals kn times weaker than the original signal.
Even if we have a small branching factor (the smallest possible is 2 - utilized in
the solution for the subset sum [16]) we still get a huge decrease for 100 nodes.

This means that our devices require a huge amount of energy for solving large
instances of the problems. Actually, the consumed energy increases exponential
with the size of the instance.

Please note that this difficulty is not specific to our system only. Other major
unconventional computation paradigms, trying to solve NP-complete problems,
share the same fate. For instance, as noted in [9], a quantity of DNA equal to
the mass of the Earth is required in order to solve Hamiltonian Path Problem
instances of 200 cities using a DNA computer.

10 Speed Matters: Slower Is Better

Assume again that we work with cables for delaying the signal.
The speed of the signal is an important parameter in our device. Working

with a high speed signal is bad for our device due to the precision problems
exposed in section 8. We can either increase the precision of our measurement
tools or decrease the speed of signal.

By reducing the speed of signal by 7 orders of magnitude, we can reduce the
size of the involved cables by a similar order (assuming that the precision of the
measurement tools is still the same). This can help us solve larger instances of
the problem.

11 Basic Components for Physical Implementation

For implementing the proposed device we need the following components:
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• a source of signal (laser, pulse generator etc),
• Several splitters for dividing a signal into multiple subsignals. If we work

with electric signals the split is trivial. If we work with light we need some
beam-splitters (such as half-silvered mirrors).

• A device for reading the fluctuations in the signal intensity. If we work with
electric signals we need an oscilloscope. If we work with optical signals we
need either a combination of a photodiode and an oscilloscope or a special
device for reading optical signals. Another possibility for optical signals is to
use white light interferometry [7].

• A set of cables used for connecting nodes and for delaying the signals.

11.1 How to Introduce Delays ?

There are several ways in which the signals can be delayed. These variants depend
on the type of signal to be delayed.

• delay lines (optical or electrical). Electric delays are induced by either long
lines o by discrete inductors and capacitors [23].

• columns of mercury (for delaying sound waves). These devices have been
originally used as memory in old computers.

12 Difficulties

Several difficulties might be encountered during the construction of such devices.
Some of them are listed below:

• Building a general purpose device able to solve a wide range of problems
and instances. This is a critical aspect for making these devices practical.
Further issues are discussed in section 13,

• Setting the delays to an exact value. If we work with cables we have to cut
them with huge precision. Electrical delay lines have a non-zero rise time
which can introduce further difficulties to the system,

• Providing enough power to the system in order to be able to solve large
instances of the problems. This is the greatest difficulty for our device and
cannot be solved unless P = NP,

• Finding high precision reading instruments. Due to high speed of the signals
we need very good reading instruments for detecting very small and very
fast fluctuations in the intensity of the signal.

13 Automation

Currently the design and construction of graphs for each problem is made
by hand. This dramatically reduced the area of applicability. Automating the
process of building the devices would represent a huge step for practical appli-
cations. For achieving this purpose we have to use/design the followings:
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• a scalable and reconfigurable graph. This should allow us to enable/disable
arcs between nodes. The graph should be large enough to accommodate
various sizes of the problems.

• several programmable / reconfigurable delay lines. In this way we can easily
modify the delay quantity induced by each arc. Electrical delay lines with
up to 256 steps are already available on the market, which means that we
can easily have 256 possible values for delays. By serializing such devices we
can have larger ranges of values.

14 Conclusions

The way in which signal can be used for performing useful computations has
been investigated in this paper. The techniques are based on 2 properties of the
signals: the massive parallelism and the limited speed.

Several important aspects have been exposed in this survey: what kind of
operations are performed with the signals, how to construct the graph for several
problems, how to find if the problem was solved or not, how to cope with precision
and power decrease, which are the basic components required for implementation
and which are the most common difficulties encountered during the physical
implementations.

By using the described methods several problems have been solved so far:
Hamiltonian path, travelling salesman, bounded and unbounded subset sum,
Diophantine equations and exact cover.

Future works directions are focused on: implementing the presented devices,
solving new problems and automating the construction process.
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