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Preface

OCS, the International Workshop on Optical SuperComputing, is a new annual
forum for research presentations on all facets of optical computing for solving
hard computation tasks. Optical computing devices have the potential to build
the very next computing infrastructure. Given the frequency limitations and
cross-talk phenomena, as well as the soft-errors, of electronic devices on one
hand, and the natural parallelism of optical computing devices, as well as the
advances in fiber optics and optical switches, on the other hand, optical com-
puting is becoming increasingly marketable. The focus of the workshop is on
research surrounding the theory, design, specification, analysis, implementation,
and application of optical supercomputers. Topics of interest include, but are
not limited to: design of optical computing devices; electro-optics devices for
interacting with optical computing devices; practical implementations; analysis
of existing devices and case studies; optical and laser switching technologies;
applications and algorithms for optical devices; and alpha practical, x-rays and
nano-technologies for optical computing. The First OSC workshop was held on
August 26th, 2008, in Vienna, Austria, co-located with the 7th International
Conference on Unconventional Computing.

This volume contains eight contributions selected by the program committee
and two invited papers. All submitted papers were read and evaluated by at least
three program committee members, assisted by external reviewers. The review
process was aided by the EasyChair system.

OSC 2008 was organized in cooperation with OSA the Optical Society of
America. The support of Ben-Gurion University and Babeş-Bolyai University is
also gratefully acknowledged.

June 2008 Shlomi Dolev
Tobias Haist
Mihai Oltean
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Optics Goes Where No Electronics Can Go:

Zero-Energy-Dissipation Logic

H. John Caulfield

Fisk University
1000 17th Ave., N.

Nashville, TN 37208

Abstract. Optical computing has a seemingly eternal problem. It al-
ways appears to be in competition with electronic computing. Moore’s
law and the advantages of digital over analog processing make pure elec-
tronics superior in almost every case. Optical computing uses come when
the signal is already in the optical domain or when it is used to reduce
the heat load in hybrid optical-electronic chips. I describe here work done
with a number of bright opticists and logicians over the last four years
that produces using optics logic that dissipates no energy and accommo-
dates whatever bandwidth the input and output laser modulation affords.
Moreover, we can show why electronics alone can never accomplish those
important properties.

Keywords: Optical logic, zero energy, unlimited bandwidth.

1 Introduction

Optical computing has existed for many decades now and has been through
many cycles of excitement and depression [1,2,3]. It seems now to be in its best
condition ever, because there are niches it seems to fill (optical communication)
and next generation chips that will contain optics and electronics. Though these
matters are quite important, they will not be reviewed here. Rather, here we
report on a totally new capability that optics alone can do. In this, there can
never be competition. For the first time, optical computing has a field to itself.
That field is sequential logic that does two things that seem at first to be beyond
possibility for either electronics or optics:

1. Perform logic with zero energy dissipation.
2. Operate at whatever speed can be modulated onto a laser beam.

The zero energy operation was shown to be thermodynamically allowable many
years ago [4,5,6,7]. The reader should note, that the papers cited here are the ones
we consider to be the foundation papers. The literature in the field is huge. A
limited but useful bibliography of that field has been published online [8].

What Landauer noted [4] was that a binary logic gate takes in two bits but
outputs only one. The erasure of one bit costs at least kT ln 2 in energy, where
k is the Boltzmann constant and T is the ambient temperature. This is a very

S. Dolev, T. Haist, and M. Oltean (Eds.): OSC 2008, LNCS 5172, pp. 1–8, 2008.
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2 H.J. Caulfield

tiny amount of energy. But if we aim for, say, 109 of those per second, which
requires a huge amount of power. And current electronic computers use millions
of times more energy than this minimum.

So far as I can discern, it was Bennett [5,6] who took the next critical step.
Like moist good ideas, it was very simple after he published it. If we do not erase
that extra output bit, there is no price to pay for it. They tended to call that
undesired bit a ”garbage bit.” But logic gates so constructed were reversible.
Information was transformed but not lost. In a sense nothing was lost. If gates
using that strange kind of gate could be made, then lossless logic might appear
momentarily.

Fredkin and Toffoli each contributed computationally complete reversible logic
gates [7]. This made the growing community of researchers in the field quite
excited. Perhaps the end was near. Someone might invent a suitable zero energy
or at least a very low energy logic gate soon. They were wrong.

Feynman [9] contributed his own gate and published it in an optics journal.
That was really the start of the quest that started me down the road of optical
reversible logic. With various colleagues, most notably Joseph Shamir [10], I set
out to see if those gate could be made optically. The result was a kind of graceful
failure. Later, I will describe precisely the mistake we made. Nevertheless, we
accomplished several nice things, only one of which I mention in the introduction,
namely: Both Joe Shamir and I became very interested in this field.

In about 2003, I saw an opportunity to assemble a team of bright opticists
and bright logicians to try again what we failed to do earlier. Our team (grouped
by affiliation) was

– Joseph Shamir, The Technion (consultant)
– Andrey Zavalin, Fisk University (opticist)
– Lei Qian, Fisk University (logician)
– Chandra Vikram, Fisk University (opticist)
– John Caulfield, Fisk University (opticist)
– Jim Hardy, Idaho State (logician)
– Jonathan Westphal, Idaho State (logician)
– Liz Golden, Idaho State (logician)
– Steve Blair, Utah (integrated optics)

Like everyone before us, we struggled but began to see some progress a few
years ago. But it was a shock to us when we realized in late 2007 that

1. We had solved the problem
2. We knew why everyone else had failed.

Those are the stories I want to tell in this paper.

2 Zero Energy Dissipation Logic

There were things we knew and things we thought we knew. What we actually
knew is shown in Figure 1.
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Fig. 1. Our initial insight was that the zero-energy-dissipation requires making the all
of the operations linear. That is obvious, but a surprising number of people forget it,
for reasons to be discussed below.

A linear operation can be made lossless in information content. A reversible
system must conserve information. The arithmetic version of reversibility matter
makes it easier to understand. Consider the relationship

2 + 3 = 5

Initially, it seems that information has been added. We might not have known
that the sum of 2 and 3 is 5. Nevertheless, that is implied by the data (2 and 3)
and the instructions (add the numbers). So it really adds nothing that was not
already implied. To the contrary, 2 + 3 = 5 destroys information. Given the
answer - 5 - there is no way to find what instructions and data led to that
answer. Was it “add 2 and 3”? Perhaps it was add 4 and 1? Perhaps it was:
divide 10 by 2. An information conservative operation is

2 + 3 = 3 + 2.

No information is lost, so it could be reversed if we wanted.
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So we reasoned that, as there are no lossless gain mechanisms, by definition;
each component must be both lossless and reversible. This suggested optics,
because optics is inherently linear and reversible. To accomplish nonlinear optics
we have to insert some appropriate material that interacts with the light. Of the
past papers in optical logic only a very few have sought to do logic using the only
way it could conceivably be dome: with only linear components. Those papers
were those of my colleagues in this work and me [11,12]. And none of them
actually solved the problem.

The originators of this line of thinking [4,5,6,7,8] had in mind only the energy
needed to perform the logic operations. Neither they nor we were interested in
the energy needed to enter the data not in the energy needed to read out the
data.

Historically, we solved the problem twice. Out first solution was limited in
that the lossless logic device we produced could be programmed electrically to
perform any logical function without energy dissipation. For many purposes, this
device (called a Generalized Optical Logic Element or GOLE) is not useful, as
its input mechanism was electronic but its output was in the phase of light in
the output relative to the phase in another beam. This gave it very limited use
and limited cascadability [11,12]. It will not be discussed more extensively here,
because it is a wonderful example of an intellectual error we and everyone else
had made.

But also, it demonstrated that a passive switch was possible. And that turns
out to be vital. Figure 2 shows why that relationship between interferometers
and intensity switches. Interferometers can be adjusted so that the two outputs
can be either 0 and 1 or 1 and zero, depending on the relative phase of the two
input beams. That functions as a binary switch so long as the two beams are
present. Electronics and other nonlinear means can latch the output states, while
interferometry cannot. This passive, linear switch is the key to our inventions,
see Figure 2.

Two things we thought we knew and did not. The most obvious thing about
doing reversible logic is that it must be done by linear lossless gate designs such
as those of Fredkin, Toffoli, Feynman, and so forth.

The second thing we and everyone else knew that was wrong concerned the
relationship of speed to energy loss. Feynman [9] explained the problem with
elegant simplicity. Fortunately, he was completely wrong.

The errors made were largely in the implicit assumptions that

– The solution must involve logic gates that are themselves lossless
– The gates must be electronic

The solutions we found violated both of those ”obvious” assumptions. We did
not use gates of any previously known kind. And, we did not use electronics in
computing the answer. Feynman’s supposed inescapable speed problem is that
the less energy per gate we use, the slower we go. That is based on the need to
urge electronic signals along with an electric field. But that is totally irrelevant
to optics. Light moves. If it does not move, it is not light. No urging is needed.
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Fig. 2. Conventional logic uses intensity for logic, but that is inherently nonlinear. So
it cannot lead to lossless operations. Our optical logic uses interferometry for phase
(not intensity) so it can be switched linearly. This clears the path for lossless logic.

Correcting the errors we all made. A major step was taken by Hardy and
Shamir [13]. Our earlier work [10] showed clearly why optical Fredkin gates could
not produce zero energy logic. The gate has three inputs and three outputs. But
one of the inputs and one of the outputs was electronic. The other two inputs
and two outputs were optical. But to synthesize even simple logical operations
with a Fredkin gate, it must be possible for any output to connect to any input
to the next device. With mixed optics and electronics, this cannot work. Hardy
and Shamir [13] devised gates that did not require such mixing and thus can
be made all optical in terms of the input signals. That matched what optics is
good at with the need to evaluate arbitrary sequences of logic operations. What
optics does is move (Maxwell’s equations require that light travels at the fixed
speed c, and Einstein showed that c was the universe’s speed limit.) It is easy to
direct where the light travels in waveguides, so the need is to figure out how to
use the direction of light travel to compute the outcome of a sequence of logical
operations. This is what they did in what they called Directed Logic. This is
what they did. The results of some simple operations are shown in Figure 3. It
gets the right answer, but not in the conventional way.

The earlier assumptions on speed would predict extremely slow operations of
any solution to the zero-energy problem. In fact, these gates will work at any
speed at which a laser can be modulated. The fastest modulation rates con-
ceivable would be several wavelengths long. The only speed-limiting effect in
our devices is clock skew. We need to make all optical path lengths equal; to
within a fraction of several wavelengths. This is straightforward to do in optics.
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Fig. 3. The flow of light through waveguides and passive interferometric switches can
implement any sequence of logic operations. We show one simple but representative
operator.

The waveguides cab be made that good, and electrooptic correction is quite
feasible.

The last step we have taken is to go back to the regular connection fabric
originally suggested by Shamir et al. [10]. It looks nothing like any previous
logic gate - electronic or optical. But it works.

Why we (and others) failed for so many decades. Quite often scientists
are correct about saying what cannot be done, if their implicit rules apply.
We explicitly violated the implicit assumptions of prior workers. Our earlier
attempt to solve the problem, explicitly violated the electronics assumption.
But we retained the assumption that we must use some sort of constructively
complete gates that are themselves lossless.

3 Remaining Problems

Two problems remain.
First, we would like to see how small such systems can be made. At the

moment, perhaps tens of microns is required. But, slow light can allow the in-
teraction lengths to be made shorter. If we sacrifice a little on energy, we may
be able to use plasmonics to make the devices smaller. If we sacrifice a little in
bandwidth, we can use resonant rings that can now be made very small.

Second, we can accomplish the zero-energy feat by avoiding measurements
until the end. The system is analog and subject, therefore, to error accumulation.
Even here, however, there may be a hope of significant BER (Bit Error Rate).
There are two complementary outputs. Measuring both places the decision in the
domain of hypothesis testing. This is terra incognito. As we were preparing this
paper, we ran across a paper by Peres [14] who uses this same error reduction
approach in the kind of optical processor he found so fascinating: those that
harness entanglement. This is very encouraging to us, not only because of Peres’s
great record in his kind of quantum computing but also because his work can
be a template for ours.

Summary Diagram. Everything of technical importance in this paper is sum-
marized in Figure 4.
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Fig. 4. This is a lossy compression of the history of the project discussed here. Everyone
involved made significant contributions but only the lead players on any part of the
path toward lossless logic are shown for compactness.

4 Conclusions

The number of implicit assumptions and their persuasive obviousness seem to
us what has caused so many brilliant scientists to fail in attempts to make zero-
energy-dissipation logic and then be able to use it for high speed operations. We
too fell victim to these obvious things for 20 years. We think other ”impossible”
tasks should be reexamined from time to time to find if they contain implicit
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assumptions that can be avoided. This has worked for us in several fields and
almost certainly others do this as well. The task we set out to solve was im-
possible, given the tacit, unnoticed assumptions we and others made. Removing
inessential assumptions allowed a team of experts in different fields to solve the
now-possible problem.
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1   Introduction 

The twentieth century has been the era of semiconductor materials and electronic 
technology while this millennium is expected to be the age of photonic materials and 
optical technology. Optical technology has led to countless optical devices that have 
become indispensable in our daily lives in storage area networks (SANs) [1], parallel 
processing [2,3], optical switches [4,5], all-optical data networks [6], holographic 
storage devices [7] and biometric devices at airports [8]. 

This invited paper is meant to give an overall summary of the latest advances and 
bring some awareness to the state-of-the-art of optical technologies, which have po-
tential for future super-computing. Optical computing system uses photons instead of 
electrons to perform appropriate mathematical calculation. In the optical computer of 
the future, electronic circuits and wires will be replaced by laser diodes, optical fibers, 
tiny crystals, micro-optical components, and thin films, which will make the systems 
more efficient, more cost effective, lighter, and more compact. Optical components 
would not need insulators, as those needed between electronic components, because 
they are much less sensitive to cross-talk and do not suffer from short circuits. Multi-
ple frequencies of light can travel concurrently through optical components without 
interference, allowing photonic devices to process multiple streams of data, in paral-
lel, with ease. Optical computing can enhance our computing speed by more than 
seven orders of magnitude than our current computing speed. This means that an hour 
of computation by an optical computing system is equivalent to more than eleven 
years by a conventional electronic computer. Researchers at the University of 
Rochester have built a simple optical computer, demonstrating the feasibility of such 
a system, which was able to conduct huge computations nearly instantly.  In the last 
five years, significant advances have been achieved in the field of optical communica-
tion to improve upon our communication technology and have a great impact on the 
development of the optical computing technology.  The efforts in trying to avoid the 
conversion of an optical signal traveling through a fiber to an electronic signal and 
vise versa and build an all-optical system enhances to a great extent the communica-
tion performance and serves very well the optical computing technology. Although 
recent years have shown a great deal of progress on all fronts in the field of optics, 
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there are still certain fundamental limitations to be resolved in the optical computing 
technology, such as cascading, size of optical circuits, integration of components, 
nonlinear optical processes, laser sizes and powers, etc.  Widespread intensive re-
search on the national and international levels is currently progressing at a fast base in 
academia, industry, and government laboratories to develop the means of processing 
those light encoded signals without the need for optical conversion to electronic 
forms. Recent developments in developing all-optical processors, optical switches, 
optical materials, optical storage media, and optical interconnects have brought all-
optical systems closer to reality than ever before as will be shown below. The concept 
of optical computing stems from the advent of lasers. This promising new technology 
exploits the advantages of photons over electrons, which include ultrafast information 
processing and communication.  Although an optical computing system is not yet in 
existence, many related recent developments have been demonstrated which bring the 
optical computing technology closer to reality. Our intent, in this paper, is to present 
an overview of the current status of optical computing, and a brief evaluation of the 
recent advances and performance of the following key components necessary to build 
an optical computing system. 

1. All-Optical Logic gates. 
2. Adders 
3. Optical processors. 
4. Optical Storage 
5. Holographic storage. 
6. Optical interconnects.  
7. Spatial Light Modulators. 
8. Optical Materials 

2   All-Optical Logic Gates 

Logic gates are the building blocks of any digital system. An all-optical logic gate is a 
switch that controls one light beam by another without the need for an electrical sig-
nal; it is “ON” when the device transmits light and it is “OFF” when it blocks the 
light. We have demonstrated in our laboratory at NASA two ultra-fast all-optical 
switches in the nanosecond and picosecond regimes using phthalocyanine and  
polydiacetylene thin films, respectively. The phthalocyanine switch functions as an 
all-optical AND logic gate, while the polydiacetylene exhibits XOR logic gate func-
tionality as shown in Figure 1.   

The AND gate has been demonstrated as follows: the second harmonic from a 
Nd:YAG laser at 532 nm with a pulse duration of 8 ns collinearly with a probe beam 
of a cw He-Ne beam at 633 nm have been sent perpendicular to a few hundreds Ang-
strom thick film of metal-free phthalocyanine.  At the output, a narrow band filter has 
been placed to block the 532 nm beam and allows only the He-Ne beam.  The trans-
mitted beam is then focused on a fast photo-detector and sent to a 500 MHz oscillo-
scope, triggered by the Nd:YAG laser.  It has been found that the transmitted He-Ne 
signal is of a nanosecond duration and is in synchronous with the Nd:YAG pulse.  
The physical mechanism responsible for this switching effect has been attributed to 
the saturation (nonlinear) effect, which can easily be explained by assuming that the  
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Fig. 1. A schematic of all-optical AND and XOR logic gates, which were demonstrated in 
phthalocyanine and polydiacetylene thin films in the nanosecond and picosecond regimes, re-
spectively [9]  

metal-free phthalocyanine system is a two-level system.  The film strongly absorbs 
the 633 nm from the He-Ne laser as has been observed from its absorption spectrum. 
When the nanosecond pulse from the green laser, which is also within the film’s ab-
sorption band, travels through the film, the film becomes saturated (bleached) and al-
lows the red laser to pass through within the duration of the green pulse.  After the 
green pulse is switched off, the system relaxes back to its ground state and blocks the 
red beam from traveling through.  This means that the red output is ON only when 
both inputs are ON and is OFF when either the green or the red or both are OFF 
(characteristic table of an AND logic gate).  The picosecond XOR gate has been dem-
onstrated in a polydiacetylene thin film, deposited on a substrate that fluoresces red 
when excited with the green laser.  The logic of the XOR gate has been attributed to 
the excited state absorption, which is also a nonlinear process that has been discussed 
in detail in reference  [10]. The green laser picosecond pulse saturates the first excited 
state of the polydiacetylene, which strongly absorbs the He-Ne beam and prevents its 
transmission.   

Photonic switches can easily perform in the sub-picosecond (10-12) or femtosecond 
(10-15) regime as has been demonstrated in polydiacetylene [11].  Li et. al. [12] pro-
posed an all-optical logic gate of SiGe/Si material with multifunctional performance 
that can function as OR, NOT, NAND, and NOR gates simultaneously or individu-
ally. All-optical logic gates based on semiconductor optical amplifiers (SOA) are 
promising due to their power efficiency and potential for photonic integration [13].  
Li et. al.[14] proposed a simple and polarization independent logic gate composed of 
a single SOA followed by an optical band pass filter to achieve various logic func-
tions and have demonstrated AND, OR, and XOR logic functions at 10 Gbit/s. Fuji-
sawa et. al. [15] has proposed a novel design of all-optical logic gates based on 
nonlinear slot-waveguide couplers, where NOT, OR, and AND logic gates can be  



 Recent Advances in Photonic Devices for Optical Super Computing 12 

realized by a simple single optical-directional coupler configuration. An impressive 
40 Gbit/s NOR all-optical logic gate has been demonstrated by Zang et. al. [16] using 
a semiconductor optical amplifier (SOA) and an optical band pass filter and allows 
photonic integration.  An all-optical AND gate has also been demonstrated at 20 
Gbit/s for the first time by using the probe and pump signals as the multiple binary 
points in cross phase modulation (XPM) [17]. An even more impressive 80 Gbit/s 
NOR all-optical logic gate has been demonstrated by Liang et. al. [18] in submicron 
size silicon wire waveguide using pump induced non-degenerate two-photon 
absorption inside the waveguide.  The device requires low pulse energy of a few pJ 
for logic gate operation. Researchers at the California Institute of Technology [19] 
developed all-optical logic devices by developing a new silicon and polymer 
waveguide that can manipulate light signals using light, at speeds almost 100 times as 
fast as conventional electron-based optical modulators.  The all-optical modulator 
consists of a silicon waveguide, about one centimeter long and a few microns wide, 
that is blanketed with a novel nonlinear polymer developed at the University of Wash-
ington. The modulator can be switched ON and OFF a trillion times or more per sec-
ond. A complete all-optical processing polarization-based binary-logic system has 
also been demonstrated [20].  

3   Adders 

An adder is a device which performs the addition of two numbers. Although adders in 
electronics can be constructed for many numerical representations, the most common 
adders operate on binary numbers. For single bit adders, there are two general types: 

3.1   Half Adder 

A half adder (Figure 2) is a logical circuit that performs an addition operation on two bi-
nary digits. The half adder produces a sum and a carry value which are both binary digits. 

S = A XOR B 
C = A AND B 

 

Fig. 2. Half adder circuit diagram and its logic table 

3.2   Full Adder 

A full adder (Figure 3) is a logical circuit that performs an addition operation on three 
binary digits (two inputs and a carry in). The full adder produces a sum and carry 
value, which are both binary digits. It can be combined with other full adders or work 
on its own. 
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   S =  (A XOR B) XOR Ci 
Co = (A AND B) OR (Ci AND (A XOR B)) = (A AND B) OR  

              (B AND Ci) OR (Ci AND A) 
 

 

Fig. 3. Full adder circuit diagram:  A + B + Carry In = Sum + Carry Out 

Kim et.al. [21] have demonstrated a 10 Gbit/s all-optical half adder using the gain 
nonlinearity  of Cross Gain Modulation (XGM ) in semiconductor optical amplifiers. 
Dong et. al. [22] have presented a compact configuration of all-optical adders imple-
mented with a single semiconductor optical amplifier (SOA) and optical band-pass filter 
(OBF). All-optical adders in photonic bandgap materials containing optically nonlinear 
layers and using nonlinear optical mechanisms have been demonstrated by several au-
thors in references [23,24],  which also lead to other work on the same topic. 

4   Optical Processors 

A data processor in general is a device that manipulates input information or performs 
operations on the input data to produce meaningful outputs. As information technol-
ogy keeps pushing the computing speed and the network capacities towards faster and 
higher bit rates, the electronic processors at both ends of the fiber-optic communica-
tion networks become unable to handle such high data rates.  To avoid the inherent 
cumbersomeness of electronics, all-optical processors will have to eventually replace 
the electronic ones.  Novel processor architectures are essential for future optical 
computing.  A few papers were submitted to this conference suggesting new means of 
solving NP-Complete problems. Konishi et.al [25] described an ultrafast all-optical 
processor for time-to- 2D-space conversion by using second harmonic generation. 
They also proposed a technique for the development of an ultrafast all-optical proces-
sor that can convert a modulated ultrashort optical pulse sequence into a 2-D spatial 
distribution for ultrafast spatial information processing using an ultrashort pulse laser. 
Experimental results show the proposed processor could achieve a throughput of con-
version at speeds in the range of Terabits per second (Tbps). 
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Fig. 4. Schematic of the SAC-label processor [26] 

A group of researchers at the University of Laval [26] have proposed a novel label 
processor, which can recognize multiple spectral-amplitude-code (SAC) labels using 
the nonlinear optical process of four-wave-mixing (FWM) sidebands and selective 
optical filtering.  In their proposed approach in Figure 4 each label is associated with 
a spectral amplitude code, which consists of wavelength tones (bins); the payload has 
been transmitted at a different wavelength.  The label recognition unit passes the 
SAC-label through a nonlinear device to generate frequency sidebands by FWM. If 
the set of SAC-labels is carefully selected, each code generates at least one unique 
FWM sideband. The presence of an optical code (OC) can be identified by filtering its 
unique sideband.  This concept is similar to Wavelength Division Multiplexing 
(WDM) systems that seek to reduce FWM effects by using unequal wavelength spac-
ing [27]. At the output of the nonlinear device, an arrayed waveguide grating acts as 
the control signal demultiplexer. Splitting of the incoming OC labels is completely 
avoided and high speed recognition is achieved by the fast nonlinear process.  They 
have succeeded in demonstrating ten SAC-labels on 10 Gbps variable-length packets 
and achieved error free transmission for more than 5x1010 bits in all cases at a bit er-
ror rate of less than 2x1011 and could transmit over 200 km of fiber with 1dB.  

Lenslet has developed a digital signal processor at a new performance level.  The 
processor performs 8 trillion operations per second, which is 1000 times faster than 
standard processors. It takes multiple electronic digital inputs, converts them into op-
tical signal, performs the desired computation at light speed in the optical core, and 
then converts the optical output signals back into digital electronic form. It can be 
used for optical computing, homeland security, military, and multimedia and commu-
nications applications [28, 29].  Tian et.al. [30] developed an organic material, which 
can be used as a fast optical processor that compares an input temporal-frequency pro-
file with a recorded reference spectral shape.  This pattern –recognition procedure  
relies on a sub-picosecond temporal cross-correlation process. The size of the phase-
encoding spectral interval exceeds 1 THz.   
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5   Optical Storage 

Optical storage is considered nowadays the natural alternative for magnetic recording 
systems. Optical systems have much more storage capacity and more reliability than 
magnetic systems.  Optical data storage is a general term for all data storage tech-
niques that use optical means to read, write or erase data. Reading all optical storage 
systems relies on reflected light. Optical compact disc (CD) and Digital Versatile Disc 
(DVD) drives operate on the principle of detecting the intensity or polarization varia-
tions in the optical properties of the media surface. A single disc from Hitachi Maxell, 
which is only 1 cm longer in diameter than a CD can store up to 300 GB. Currently, a 
High Definition Digital Versatile Disc (HD-DVD) offers a maximum of 30 GB on a 
2-layer disc, and Blu-ray Disc (BD) offers up to 50 GB. The future predictions expect 
to increase the storage density up to 800GB in two years, and up to 1.6TB by the year 
2010. Figure 5 shows a schematic of the different optical storage disks. Hybrid poly-
mer composites, both organic-organic and organic-inorganic are candidate materials 
for high density storage. New polymers were synthesized as photorefractive informa-
tion storage materials. Aprilis Inc. demonstrated a composite with a storage capacity 
of 250 GB on a DVD-like disc with transfer rates exceeding 10 Gbps.  The evolution 
of the different optical storage techniques can be seen in reference [32].  

 

Fig. 5. Schematic of the different optical storage disks, the wavelength, the numerical aperture, 
and spot size for each [31] 

Physicists at Imperial College London [33] in collaboration with other institutions 
developed a new optical disk the size of a CD or DVD with a storage capacity of one 
Terabyte. This is ten times more capacity than what a BluRay disk can hold. It is ex-
pected to be released between 2010 and 2015.  Under magnification the surface of 
CDs and DVDs appear as tiny grooves filled with pits and land regions, which are en-
coded as digital formats in the form of ones and zeros.  Each bit is read back as one 
bit.  The new technology of Imperial researchers has been designed such that each bit 
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carries ten times the amount of information that we would expect in each bit.   This 
was achieved by making the bit asymmetric to reflect different information at differ-
ent orientations.    

6   Holographic Storage 

The schematic in Figure 6 represents the roadmap of the existing and future technolo-
gies for different wavelengths. The surface-storage techniques described above are 
approaching their fundamental limits.  As the bits become smaller and smaller they 
become thermally unstable, difficult to access, and unreliable.  Holography is a differ-
ent technique for optically storing information at a much higher density than surface 
storing techniques because of the capacity for three dimensional imaging. The holo-
gram encodes a large block of data as a single entity in a single write operation and 
the information is retrieved back as a data block simultaneously.  The hologram is 
constructed as shown in Figure 7 by intersecting two coherent laser beams within a 
photosensitive material. One of these two beams carries the information to be stored 
and is called the object or signal beam and the second called the reference beam.  The 
interference grating between the two beams causes chemical or physical changes in 
the photosensitive material, which are reproduction of the information on the object 
 

 

Fig. 6. Schematic of the optical density roadmap[34] 
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Fig. 7. Schematic of how information is stored and retrieved in a holographic medium (Images 
courtesy Lucent Technology) [35] 

beam. The stored holographic information can be retrieved by illuminating the mate-
rial by a laser beam at the same wavelength counter propagating to the reference 
beam. The stored information will be reconstructed  along the object beam to be seen 
by a camera or on a screen.  

The key feature of holographic storage is that the data has been stored and re-
trieved as one page rather than one bit at a time. Multiple pages can be stored simul-
taneously at the same spot, but at different angles. Up to 500 holograms can be stored 
in one spot and holograms can be processed at a rate of nearly 1.0 Gbytes / sec. In ad-
dition, a defect in the recording medium would not destroy the data bits but rather af-
fect the signal to noise ratio.  

Holography breaks the density limitations imposed on us by conventional surface 
storage techniques. Unlike the encoded digital data stored on conventional CDs, holo-
graphy allows the writing and reading of billions of data bits with a single flash of 
light. In volume holography the fundamental storage capacity is limited to ~ V/λ3, 
where V is the volume, and λ is the wavelength of the light. This means that holo-
grams enhance both the storage capacity and the rate of data transfer.  In addition they 
are durable, compact, inexpensive, and reliable, which make them the future means of 
storing large size information and data processing. The storage density of holograms 
has been achieved by storing many holograms in the same volume at different angles, 
wavelength multiplexing, orthogonal phase encoding, and fractal–space multiplexing 
techniques. Wan et al. [36] has developed a batch-thermal scheme as a holographic 
disk storage technique known as the Track-Division Thermal Fixing scheme (TDTF).   
They have succeeded in storing 5000 images; each contains 768x768 pixels on a disk-
shaped 0.03wt% Fe doped LiNbO crystal. Researchers at IBM have succeeded in  
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storing 10,000 pages, one megabit each, in a one centimeter cube recording material.  
This means that the cube can store about 10 gigabits [37] in comparison with storage 
density of ~100Kb per cm2 using today’s magnetic storage technique. Maxell USA 
and InPhase Technologies [38] have now made available, on the market, holographic 
discs with 1.6 Tera Bytes per disk and with data rates as high as 120MB/s and with 
50+ year media archival life. M. Thomas the president of Colossal Storage Corpora-
tion [39] demonstrated a holographic storage capacity on a 3.5-inch disc on the order 
of  ~1.2 petabytes (1018 bytes).  The production of these disks for marketing is ex-
pected to be no sooner than 2012. 

Holograms are essential components in optical neural network, which attempt to 
imitate the way a human brain functions.  A neural network works by creating con-
nections between processing elements. Neural networks are particularly effective for 
predicting events when the networks have a large database of prior examples to draw 
on. Neural networks are currently used prominently in voice recognition systems, im-
age recognition systems, industrial robotics, medical imaging, data mining and aero-
space applications. While numerous artificial neural network (ANN) models have 
been electronically implemented and simulated by conventional computers, optical 
technology provides a far superior mechanism for the implementation of large-scale 
ANNs. The properties of light make it an ideal carrier of data signals. With optics, 
very large and high speed neural network architectures are possible.  

7   Optical Interconnects 

As optical interconnect technology becomes less costly and better integrated, it also 
becomes more widely used in links at local and wide area networks, as common 
alternatives to electrical links. The backbone of the Internet uses fiber optics to 
transfer data over long distances. Several personal commercial systems such as 
keyboards, mice, printers, and computers can easily exchange data with each other 
through invisible infrared light. Several optoelectronic products are also in use to 
connect rack-to-rack data storage centers, and for network switching. Optoelectronics 
show future promise as an interconnect technology for exchanging data over ultra-
short distances.  Data will be exchanged between chips using light instead of electric 
current, eliminating the need for interconnecting wires. Optical data transfer holds 
future promise as a more efficient means to move large amounts of data inside a 
computer rapidly. Multimode optical fibers allow links with a bit rate-distance 
product of more than 2 GHz.km (i.e., 4 Gb/s over 500 meters), while copper cables 
have a bit rate-distance product, which is ten times less. Copper cables attenuate 
electric signals at much faster rates than fiber cables attenuate optical signals. 
Additionally, optical interconnections do not over-heat as in the case of copper cables. 
Challenges facing optical interconnections are exacerbated by ultrashort distance for 
board-to-board and chip-to-chip connections.  Intel Corporation has developed an 
optical interconnect architecture that over the next decade could form the basis for 
chip-to-chip interconnects, e.g., linkage of a microprocessor to its logic chip set. More 
information on the status of optical Interconnects can be found in references [40-45]. 
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8   Spatial Light Modulators (SLM) 

Spatial Light Modulators (SLMs) are valuable components in building optical com-
puting and neural networks for image processing. SLM modulates either the laser 
beam intensity or its phase, or both. The most common ones are made of micron-size 
pixels of Nematic liquid crystals, which have relatively slow modulation speed and a 
low contrast ratio. This makes them unsuitable for high speed optical computing.  Re-
cent advances in the area of SLMs, have been developed using polymeric materials, 
which have high modulation speed and a high contrast ratio. Holoeye corporation de-
veloped high resolution SLMs of 1920x1200 pixels and pixel pitch of 8.1 µm.   SLMs 
( Figure 8) are used extensively in holographic data storage setups to encode informa-
tion into the laser beam.   

 

Fig. 8. Schematic of a Spatial Light Modulator setup 

SLMs can be electrically or optically addressed. The image on an electrically 
addressed SLM is created and changed electronically, while the image on an optically 
addressed SLM is created and changed by shining light encoded with an image on its 
front or back surface [46] . 
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9   Optical Materials and New Photonic Devices 

Optical materials are crucial elements in the development of all-optical technology.  
The different materials used to construct the different all-optical components have al-
ready been demonstrated but the proper material to build an optical chip that can play 
the same role as semiconductor chip has not yet emerged. The different materials, 
which have been examined so far are: 

i. Photorefractive materials  
ii. Semiconductors 
iii. Doped microshperes 
iv. Photonic Band Gap materials 
v. Organic and polymeric materials 

 
i   Photorefractive (PR) materials   
Photorefractive materials are those materials which their indexes of refractions are 
modified and altered by the presence of light [47]. The induced photorefractive effect 
in these materials is non-local, where the special phase shift between the change in the 
refractive index and the intensity is 900 as shown in figure 9.  Photorefractive materi-
als are of considerable interest for the development of all-optical computing devices 
[48].  The most common inorganic photorefractive crystals are BaTiO3, LiTaO3, 
LiNbO3, SrxBa1-xNb2O6 (SBN), Ba1-xSrxTiO3, Ba1-xCaxTiO3, Bi12(Si, Ti, Ge)O20 (BSO, 
BTO, BGO), KTa1-xNbxO3 (KTN), Sr1-xBaxNb2O6, and KNbO3.  PR polymers [49-56] 
are also of considerable interest for being less expensive, easy to manufacture, and are 
more flexible alternatives to the exotic inorganic crystals. Plasticizers such as butyl 
benzyl phthalate (BBP) [57] can be added to lower the glass transition temperature in 
PR polymer crystals. All PR polymers contain the essential functionalities either as 
dopants or as moieties covalently attached to a common backbone and demonstrated 
high optical gain and diffraction efficiency near 100% [58] . 

All PR materials show efficient nonlinear effects of interest for optical switching, 
phase conjugation, multi-wave mixing, spatial light modulators, optical correlators, op-
tical laser systems for adaptive correction of ultra-short pulses, and dynamic hologram 
recordings. The nonlinear phenomena in these materials promise the capability of proc-
essing information in parallel.  The photorefractive effect in crystals is a result of charge 
generation, charge transport, and the electro-optic effect. For PR polymers to mimic in-
organic crystals, charge (hole) transport is enabled by photoconductive compounds. All 
PR polymers contain the essential functionalities and demonstratd high optical gain and 
diffraction efficiency near 100% [57].  Inorganic crystals have high-gain because they 
can be made thick crystals, whereas polymers are made in thin layers for both practical 
and technical reasons. Large gain is essential for many uses; inorganic crystals have ex-
ponential gains of tens per centimeter. A few millimeters thick barium titanate crystal, 
for example, can show huge net gains, on the order of 104 to 105. This value means that 
a 1-mW signal can be amplified to 10 to 100 mW (provided that the other supplied 
beam has more than 10 to 100 mW).   Grunnet-Jepsen et al. [58] achieved a net gain of 
5 by stacking several layers of their material optically in series while the orientation of 
the electro-optic PDCST was done electrically in parallel. The gain of 5, although not 
huge, is sufficient to demonstrate self-pumped phase-conjugation, a particular optical 
 



21 H. Abdeldayem et al. 

 

Fig. 9. Hologram formation. (Left) Two beams interfere in a photorefractive medium, produc-
ing an index grating across a spatial dimension x. (Right) Relations between spatial light inten-
sity I(x), charge density ρ(x), electric field E(x), and change in index of refraction Dn(x). The 
90o phase shift between the interference pattern and the index change is indicative of gain, that 
is, energy transfer from one beam to the other [48]. 

oscillator configuration used to correct or undo wave-front and image distortions [46]. 
Breer et.al. [59] discussed the wavelength de-multiplexing of superimposed volume-
phase holograms in photorefractive Lithium Niobate crystal and demonstrated the de-
multiplexing of 1558.0 and 1558.8 nm beams with losses of nearly 15 dB and cross-talk 
suppression up to 20 dB. Yau et.al [60] was able to demonstrate picosecond and femto-
second [61] responses in BaTiO3 crystal by generating a self-pumped phase conjugate 
signal using a laser of pulse duration 1.5 ps and 126 fs and repetition rates of 86 MHz 
and 110 MHz, respectively.  The possibility of optical limitation of picosecond laser ra-
diation in photorefractive Bi12SiO20 (BSO) and Bi12GeO20 (BGO) crystals at a wave-
length of 1064 nm has been demonstrated [62]. It was shown that the mechanism  
determining the process of optical limitation is three-photon absorption. In this work, 
the coefficients of three-photon absorption has been determined by the Z-scanning 
method. 

 

ii. Semiconductors  
Semiconductors are widely used to build lasers of different sizes, and broad range of 
powers, and wavelengths.   These lasers have been used in optical communication, 
remote sensing, optical data storage, and medical applications.  A team from Toronto 
University, Canada, made a laser by painting a 75 µm diameter glass tube with a solu-
tion of nano-sized crystals (quantum dots) of semiconductor lead sulfide [63].  The 
quantum dots were produced by heating a mixture of oleic acid, lead and sulfur com-
pounds. The glass tube was dipped into the solution and dried afterwards to obtain a 
thin film of quantum dots. Pumping these quantum dots with a pump source causes 
them to lase along the tube wall. This laser was useful to connect microprocessors in 
an optical computer.   Sazio et.al.[64] developed a process to embed semi-conducting 
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materials inside the holes in photonic crystal fiber, essentially inserting the switching 
and modulating hardware inside flexible glass tubes about the thickness of fishing 
line. Their technology is a step forward towards all-optical interconnects and proc-
esses and the ultimate goal of optical computing. Haetty et.al [65] fabricated a flexi-
ble single crystal semiconductor, expected to expedite the transition from electronic to 
optical computing. These new semiconductors are ideal for optical computing because 
they will allow for optical waveguides to be contained inside the same component.  A 
new class of semiconductor materials is EviDots semiconductor nano-crystal quantum 
dots[66], which were developed by Evident technologies. They range in size from 2-
10 nm and contain less than 1000 atoms.  They are tunable between 490-2000 nm.  
They have excellent nonlinear optical properties in telecommunication frequency 
range.  They can be easily adopted in different optical systems and expected to be 
thousands of times faster than existing equipments at much lower production cost.  
These quantum dots have shown switching speed in the 1-picosecond time frame, 
which is thousands of times faster than other nonlinear materials. It is important to 
note that all-optical logic gates on an optical chip are unlike electronic transistors on 
an electronic chip.  The electronic transistors on a chip can all be activated by the 
same power supply, while all-optical logic gates are expected to perform using differ-
ent light frequencies and  intensities.  This is one of the major hurdles in the way of 
integrating several optical components on a single chip.   

iii. Micro-spherical Laser 
We recently demonstrated at NASA Goddard Space Flight Center a simple, durable, 
and inexpensive laser system, which is capable of emitting all sorts of laser lines of 
interest for an optical chip at the required intensities (patent pending).  The system is 
based on the use of silica microspheres doped with lasing materials of interest and at-
tached to a silica fiber. A schematic of the system is shown in Figure 10.  

  

 

Fig. 10. Schematic of the microspherical-fiber laser system 
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The coupling of the microspheres to the fiber is achieved as shown in figure 6. The 
fiber is custom designed where the core is made of silica glass coated with a wax film 
for protection. The core can be softened at nearly 1500oC and the wax film melts at 
<90oC. The fiber is coiled around an aluminum spool with its axel attached to a com-
puter controlled motor, not shown.  A heating filament on the top is set to a tempera-
ture near the softening temperature of the core for a few seconds, where the wax coat 
is totally melted and the core is exposed. The computer controlled motor rotates the 
spool for the fine powder spray gun to spray the microspheres at the heated section of 
the fiber.  The process repeats itself for one complete revolution.  The spheres and the 
fiber are then sprayed with an adhesive coating of a refractive index less than that of 
the spheres and the fiber to stabilize the adherence of the spheres to the fiber.  The 
spool will then be removed away from the heating filament and the spray gun. The 
cooling element is then activated before turning on the pump laser. The system is con-
tained in a temperature controlled compartment to achieve lasing stability. 

 

Fig. 11. Schematic of the process of attaching the microspheres to the fiber 

iv. Organic Compounds 
Organic materials have been extensively investigated for nonlinear optical and elec-
tro-optic applications for many years. Thousands of publications about the topic of 
organic optical materials and their potential for their use in optical devices are pre-
sented in scientific journals and conference proceedings. We here present the most re-
cent and interesting ones, which will lead the reader to more materials for gathering 
further information [67-70]. 

Organic materials have been demonstrated, as photorefractive materials, optical 
storage materials, electro-optical materials, and even magnetic materials.   These ma-
terials can exhibit very high nonlinear optical and electro-optic (EO) coefficients.  
One such application is display technology.  Some concerns with the current state of 
development of this technology relate, e.g., to space exploration needs, and elevate  
interest in organic light emitting diodes (OLEDs), an application exploitive of the 
characteristics of particular organic and polymeric compounds having high EO effi-
ciencies.  This particular application would specifically address crew displays, e.g., to 
be used during certain critical aspects surrounding exploration activity in space. These 
power-efficient low-mass devices could be good candidates for such operations, while 
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providing an opportunity to expand applications to development of roll-up screens, 
head wearable displays, and other flexible electronic applications.   

Organic Light Emitting Diodes (OLEDs) [71-74] are now at the heart of display 
technologies breaking into the consumer electronics market and replacing small LCDs 
found in music players, cameras and mobile phones.  Some of the most promising 
OLED technology materials belong to the class of ionic transition metal complexes 
(organometallic complexes).  These materials have emerged as promising candidates 
for applications in solid-state electroluminescent devices.  The air-tolerant fabrication 
of such devices and their simple geometry renders them a valuable alternative to the 
complex multi-layered devices produced from neutral compounds. Four times higher 
efficiency in OLED devices was demonstrated using organometallic compounds as 
emitters than using small organic singlet emitter molecules [75]. Furthermore, transi-
tion metal complexes can serve as multifunctional chromophores, to address the 3-
color stability problem for full-color OLEDs. Using Ru(II)-trisdimine complexes, 
Rudmann, et. al.[76] showed that ligands can be deliberately designed to optimize de-
vice stability and efficiency.  Later, alternate complexes, such as Os (II) with 
phosphine-based ligands [77], and cyclometallated Ir(III) complexes, were shown to 
exhibit a blue-shifted electroluminescence compared to the 605nm emission observed 
with devices fabricated with Ru(II) complexes. To date, no single layer devices with 
ionic luminophores have been reported with emission maxima at energies higher than 
560 nm.  It is a major objective in the development of useful OLEDs, to pinpoint 
highly efficient, stable luminophores with blue-shifted emission energies.   

A demonstration of conjugated polymers as the basis for a new generation of flexi-
ble displays has been promising [77-84]. Scott [85] reports on a conducting polymer, 
which can be useful for fabrication of basic electronic devices. Shaw and Seidler [86] 
presented a review article on nontraditional materials such as conjugated organic 
molecules, short-chain oligomers, longer-chain polymers, and organic–inorganic 
composites, which can emit light, conduct current, and act as semiconductors. The 
ability of these materials to transport charge due to the -orbital overlap of neighbor-
ing molecules provides the bases for their semi-conducting and conducting properties. 
The self-assembling or ordering of these organic and hybrid materials enhances -
orbital overlap and is key to improvements in carrier mobility[87-89]. In addition to 
their electronic and optical properties, many of these thin-film materials possess good 
mechanical properties (flexibility and toughness) and can be processed at low tem-
peratures using techniques familiar to the semiconducting and printing industries, 
such as vacuum evaporation, solution casting, ink-jet printing, and stamping. These 
properties could lead to new form factors in which roll-to-roll manufacturing could be 
used to create products such as low- cost information displays on flexible plastic, and 
logic for smart cards and radio-frequency identification (RFID) tags. 

Schon et.al [90] developed an organic solid state injection laser made of a tetracene 
single crystal using field –effect electrodes for efficient electron and hole injection.  Ono 
et.al.[91] demonstrated a photorefractive polymer-dissolved liquid crystal as a type of in-
tensity amplification of a two-dimensional optical image.  A full-color all-optical display 
was demonstrated [92] using photo induced anisotropy in a bacteriorhodopsin film and a 
pump-probe beam.  The pump beam was the second-harmonic YAG laser and the three 
probe wavelengths are at 442, 532, and 655 nm from different lasers. PSI-TEC Corpora-
tion  [93] announced on April, 2006, the successful testing of a nanotechnology  
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engineered organic material called Perkinamine-NR, whose molecular electro-optic coef-
ficient is approximately twice that of the industry’s highest- performance materials. Elec-
tro-optic materials convert high-speed electronic signals into optical signals and are thus 
the core active component in high-speed fiber-optics telecommunication, satellite com-
munication, radar, and navigational systems in both the civilian and military sectors.    
Researchers from Lehigh University and the Swiss Federal Institute of Technology in 
Zurich (ETH) have reported unprecedented nonlinear optical efficiency in donor-
substituted cyanoethynylethene molecules, which can be potentially useful for optical 
computing, optical data processing, and optical telecommunication[94]. N. Peyghambar-
ian et.al [95] reported that organic optical materials with super-molecular assemblies  
prepared using chrompohoric building blocks have led to unprecedented electro-optic co-
efficients greater than 300pm/V as compared to 30 pm/V for lithium noibate.    
 
v.  Photonic Band Gap Materials (PBG) 
Photonic Band Gap materials are similar to semiconductors, except the electrons are 
replaced by photons. The current explosion in information technology has been de-
rived from our ability to control the flow of electrons in a semiconductor in some of 
the most intricate ways. Photonic crystals promise to give us similar control over pho-
tons. Given the impact, which semiconductor materials have had on our lives, 
photonic crystals could play an even greater role in this 21st century, particularly in 
the optical-communications and optical computing industries [96].  PBG materials are 
periodic dielectric or metallo-dielectric nano structures with a band gap which forbids 
certain frequencies of light from passing and can act as a perfect mirror for these fre-
quencies. PBG materials then can be used to control and manipulate the spatial and 
temporal properties of light propagation. The efficiency of light confinement is lim-
ited by the precision with which the structures can be fabricated.  The deviation from 
perfect periodicity of the refractive index reduces the efficiency of light confinement.  
The Q-factor is a common metric used to evaluate how effectively light is confined 
within the PBG structure.  The Q-factor is also a measure of the rate at which energy 
escapes from the cavity.  The size of the Q-factor is inversely proportional to the cav-
ity size.  The nanocavities in PBG materials are important because they can achieve a 
very high Q-factor and yield high Q optical filter with a wide spectral range of lasers 
with an ultra low threshold [ 97].  The Q factor has been expressed as [98]: 

Q=  λ/∆λ 

Where λ is the center wavelength and ∆λ is the width at half maximum of a reso-
nance. The drawback of a high Q-factor is long photon lifetime (τ ) since Q=ωτ, 
where ω is optical angular frequency.  Significant progress towards practical PBG de-
vices has been accomplished.  The highest reported experimental Q-factor of 600,000 
was measured for a nanocavity fabricated in a silicon-based two dimensional photonic 
crystal slab [99]. Photonic crystal microcavity lasers fabricated in InAsP/InGaAsP 
multi-quantum-well membranes operate with a Q-factor of 13,000 [100]. The reflec-
tance and transmittance of a multilayer structure follows the Bragg condition (mλ=n d 
sinθ), where m is an integer, λ is the wavelength of the incident light, n the refractive 
index of the layer, d is the thickness of the layer, and θ is the angle of incidence with 
respect to the surface.  
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Yuan et.al. [101] presented a simple and efficient method for computing bandgap 
structures of a two-dimensional photonic crystal.   A great introduction to the topic of 
photonic bandgap materials can be found in reference [102].  Publications on the topic 
of photonic bandgap materials have grown exponentially since 1983.  These materials 
hold potential for several applications ranging from optical communications to optical 
computing as well as inhibition of spontaneous emission to reduce threshold current 
and noise in semiconductor lasers, low-loss waveguides in optical integrated circuits, 
perfect mirrors for specific frequencies, optical filters and polarizers.  The optical 
properties of photonic crystal structures can be tuned by modifying its geometrical pa-
rameters using thermo-optic effects, carrier plasma effects, electro-optic effects, or by 
external pressure.  Early work suggested that very large refractive index contrasts 
would be needed to create photonic band gaps in two or three dimensionally periodic 
photonic crystals.  Argyros et.al [103] was able to demonstrate experimentally a 
photonic band gap fiber made from two glasses with a relative index step of only 1%.  
Lipson et.al. [104, 105] designed and fabricated a free-space silicon one-dimensional 
photonic bandgap optical filter. Researchers at NASA’s Jet Propulsion Laboratory 
proposed, in the year 2005, to build high-power fiber lasers with average power levels 
as high as 1,000 W per fiber made from photonic band gap materials [106]. Research-
ers at the Department of Energy’s Sandia National Laboratory [107] are claiming that 
they have possibly solved the major technical problem of bending light easily and 
cheaply without leaking regardless of how many twists or turns are needed for optical 
communications or optical computing. If this is true, effective use of PBG materials 
will be a major step forward toward the building of an optical chip, and opens a win-
dow to the engineering of dielectric microstructures to make the photons flow in a 
way similar to electrical currents in semiconductor chips [108].  

10   Conclusion 

We briefly presented some of the most recent work and components having potential 
for the manufacture of an optical computing system. The state of the art components 
demonstrate impressive high speed components with very high storage density and re-
liability, which brings optical computing closer to reality than ever before. If so, why 
aren’t optical computing systems yet in existence? We believe that there are many 
hurdles yet to overcome as follows:   

 
1. In the initial development of conventional electronic technology, scientists 

and engineers availed themselves of the fortuitously existing elements of the 
periodic table to build the needed transistors.  Conversely, optical technology 
relies, for the most part, on materials yet to be synthesized or developed. Re-
searchers in the field predict that novel materials yet to be derived. Photonic 
bandgap crystals, are quite promising, and could become the “flesh and 
bones” of the optical chip for the future optical computer. These materials 
have the unprecedented ability to guide, rout, control and manipulate light, 
build laser diodes, optical transistors, confining or even slowing down light, 
in addition to many other components that can be developed from PBG ma-
terials.  More importantly, PBGs have the potential for integrating many 
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components into a single optical circuitry chip. Additionally, such materials 
offer extremely fast processing speeds, ultra-miniaturization potential, and 
can be activated by very low power.  

2. Electronic transistors on a chip function by the same power supply, while op-
tical components in order to perform, may require different light frequencies 
and intensities from different laser sources.  

3. The issues of miniaturizing optical components, cascading, integrating and 
processing on a single chip are difficult problems yet to be solved.  

4. Optical technology is multidisciplinary and relies on close cooperation be-
tween material scientists, physicists, organic chemists, computer architects, 
computer engineers, computer scientists, and mathematicians.  There is a 
strong need for the government and the industry to integrate and generously 
fund such inter-disciplined groups.  

5. There is still the tendency for scientists and engineers to try imitating the 
functions of conventional electronic systems when planning and designing 
an optical computing system. This might not be the optimum way of think-
ing. There is a need for a paradigm shift in thoughts since electrons and 
photons are quite different in nature and the means of manipulating them are 
totally different.  
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Abstract. We propose a method for implementing digital-optical arith-
metic with high accuracy at extremely high speed. To this end we use
the superposition of photons running through a passive network of sim-
ple optical components. All possible solution are realized in parallel by
superposition. Therefore, the overall computing time can be reduced to
the sum of the time of flight through a very short optical path and the
time needed for input and output.

1 Introduction

Fig. 1 shows the classical approach for performing computations. Input signals are
processed before we obtain the results. Obviously the overall time for performing
the computation is the sum of the time needed for input/output, the time for the
computation itself, and the time for the signals to travel from input to output.

In the early days of optical computing the speed of the proposed methods
typically was limited completely by the switching time of light- or electronically-
controlled switches and detectors. For very fast switching we need reasonable
large power because always a minimum switching energy is required. Also de-
tection requires a minimum number of photons, and therefore detection time
somehow is anti-proportional to the available energy. In this paper we neglect
such energy considerations. We are not interested in an energy efficient, but
rather in the fastest possible system.

During the last two decades — mostly due to the tremendous progress in
telecommunications — a lot of research effort went into the development of
detectors and switches. Switching and detection of photons with femtosecond
speed is possible[1, 2], and with such switches a lot of processing methods are
limited by the time of flight of the photons running through the optical paths.
Therefore, tomorrow’s final speed limitation for optical computing architectures
is the optical path length that the photons have to travel. According to Fig. 1 (a)
this means that the overall propagation distance should be as small as possible.

Instead of trying to minimize current optical processors we propose to use the
system of Fig. 1 (b). At first one might think that this is impossible, because
the input is introduced after the processing stage.

Fig. 1 (b) might be regarded as a simple look-up approach of precomputed
results, that is employing the well known technique of trading memory for speed.
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Fig. 1. Computing as it is done (a) normally and (b) as we propose it

But this is not exactly what we propose here. Although such a conventional look-
up approach is powerful, it is only applicable if the number of possible input
values is limited. As an example take the digital addition of two 32 bit numbers.
A simple look-up table would need 2 ·32 = 64 bits of input. Therefore, we would
need a table with 264 entries. Of course, this would not be feasible.

In the following, we will propose a method for using the scheme of Fig. 1
(b) without any precomputed and stored results. The core idea is to use the
superposition of all possible computations by coding numbers via different path
lengths. By that approach, the computation time — defined here as the time
between switching the input and reading the output — will be as small as the
time of flight between switch and detector. As we will show in the course of this
paper, the detector can be located immediately behind the switch, therefore,
this time of flight can in principle be made extremely small, so that computing
in the femtoseconds region should be possible.

In Sect. 2 we introduce the core of wave-optical digital computing. The de-
scribed optical setups are not really practical, but serve to explain the idea.
Based on a simple analysis, we extend the method in Sect. 3 to residue arith-
metic which fully exploits the maximum achievable speed while enabling high
accuracy by parallelization. In Sect. 4 and 5 we describe one possible optical
implementation and discuss how the method is related to quantum computing
before ending with a short conclusion.

2 Proposed Method

A lot of methods have been proposed and used in the past for the digital-
optical implementation of arithmetic operations[3–14]. For a good introduction
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we recommend the paper of McAulay [15] or the review of Sawchuk[16]. These
methods typically make use of polarisation, phase, intensity, color, or spatial
position for digitally coding numbers.

Here, we propose to use the optical path length for coding. At first this might
seem counterproductive, because increasing the path length leads to delay and
therefore, a reduction of the maximum achievable speed. However, we will see
that this is not necessarily true. Using path lengths together with white light
interferometry[17] allows us to employ the superposition of all possible compu-
tations. That means, we use the fact that a photon running through a system of
splitted channels simultaneously runs through all possible paths. So, we exploit
the inherent parallelism when guiding a large number of photons through an
optical network.

Coding solutions by paths of photons has been described already in [18–23] for
solving the Hamiltonian path problem and the well-known travelling salesman
problem. Here, we extend this principle to digital-optical computations. Several
optical realizations of quantum computing that use different paths have been
proposed in order to optically realize quantum computing algorithms. Therefore,
there is also some kind of relatedness to quantum computing (compare Sect. 5).

Fig. 2 shows a simple example for the analog optical addition of two numbers
A and B. It is basically a white light interferometric setup with coherence length
L. The reference path length is C. We will obtain interference (constructive or
destructive, based upon the chosen alignment) at the detectors if and only if
C = A + B. Therefore, we might move the mirrors in the lower path until we
detect interference. The coherence length of the source determines the accuracy
of this analog optical method.

Fig. 2. Analog optical addition of A and B. Interference will be detected if C = A+B.
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INTERFERENCE
DETECTION

Fig. 3. Digital-optical addition C = A + B in binary representation. The detection of
bit #1 of the solution is depicted. Slow version.

This idea can be easily extended to a digital-optical method. We implement
A, B, and C by their binary representation (see Fig. 3). We might use switches
to control which bits of A and B are set.

For the lower path (encoding C) in Fig. 3 we want to realize all possible integer
path lengths simultaneously. Different optical methods are possible to achieve
this. In Fig. 3 we employed beamsplitters (for a different setup see Sect. 4). We
use the beamsplitters to make sure that a photon entering the lower path will
run exactly once or not at all through a loop representing one bit.

At the output of the reference path we therefore obtain the superposition of all
2N possible integer path lengths with N being the number of bits. One of these 2N

outgoing light fields will interfere with the light running through the upper path
(through A and B), and, of course, this corresponds to the unknown solution C.

How can we now check which photons took the correct path? Fortunately, we
do not have to know this in order to find the unknown C. We just block the
loop of bit i of C to check if bit i really is set. That is by blocking loop i we
artificially set ci to zero, if we denote the unknown C by

C =
N−1∑

0

cj2j . (1)
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INTERFERENCE
DETECTION BIT 3

Fig. 4. Digital-optical addition of two numbers A and B in parallel but still slow. Only
two channels (bit 0 and bit 1) are depicted.

If there is still interference at the detector, we know for sure that indeed bit i
of the solution equals zero. Otherwise we have to conclude that bit i equals one.
So, by introducing the N blocks sequentially we might measure the N bits of C.
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But we can even do better because we can easily perform these N blockings
in parallel. Fig. 4 shows the proposed system. For each bit i we build the same
basic system with a block of the i-th loop (of course loop i can also be completely
omitted). So, we have N interference detectors, and by looking at these detectors
we immediately obtain the binary representation of C and the solution is found
in one step.

INTERFERENCE
DETECTION

Fig. 5. Multiplication of A with a constant B

For subtraction we only have to change the position of operand B. That is,
block B of Fig. 3 goes to to the lower path and directly connects to the output of
block C. Multiplication and division with a constant might be implemented by
the setup of Fig. 5. Division is realized by changing the position of the switches
from the upper path to the lower path. Unfortunately for multiplication and
division only one operand can be realized by switches. The other operand has
to be hard-coded by choosing the appropriate delay lines.

How fast is such a computation? At first, one might assume that the speed is
completely determined by the time a photon needs to travel through the network
before interfering at the detector. Fortunately, this is not true. When switching
one bit of B, it takes only the time that the photon travels until it hits the
detector after passing the switch (provided that there are already photons in the
network). In a simple classical model this is quite obvious.
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In the quantum model things are not so simple, but the famous delayed-choice
experiment[24] showed that indeed interference will still persist if the photon
already travelled through all possible paths of C before we decide how to setup A
and B. The crux of this is that we should build our system in such a way that the
distance between detector and switches is minimized. By making this distance
very small, we can compute complex operations as fast as the time of flight
between the switches and the detector. This is in contrast to other approaches
of digital-optical computation and only works due to the superposition of all
possible results.

3 Residue Arithmetic

We discussed that in order to maximize speed we have to minimize the distance
of the switches to the detector. We denote the coherence length of our light source
by L which acts as the final quantization of the method. For an N bit number
it then takes at least 2N−1 · L/c until the photon arrives at the detector after
switching the most significant bit. For low accuracy this results in reasonable
values, but suppose that we want to achieve an accuracy of 32 bit. In this case
the system would be extremely slow.

We can improve by giving up the binary representation and having one sep-
arate optical path (and one switch) for every number. Fig. 6 shows an example
for subtraction. Now, we can put the detectors directly after the switches, and
therefore, we obtain ultrafast operation. Unfortunately, this only works for low
accuracy. Suppose that we want to achieve 32 bit accuracy. In this case we would
need 232 paths and switches which is, of course, not practical.

Byusing residuearithmetic[5] it is possible to obtainhighaccuracy togetherwith
high speed. Residue arithmetic is a well known technique, dating back at least 1500
years, for representing large integer numbers by multiple small integers. It allows to
perform addition, subtraction, multiplication, and polynomial evaluation without
carry operations. This means that we can perform arithmetic operations with high
accuracy inone single step.Due to this advantage it hasbeenproposed for electronic
as well as digital-optical computation[5, 4, 25–27,16].

Fig. 6. Ultrafast subtraction based on a decimal representation of the numbers. The
detectors can be located directly after the switches.
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The basic principle is to represent an integer I by a set of M residues (RN1,
RN2, ..RNM ). A residue RNi is the remainder of I divided by Ni, that is

RNi = I mod Ni := I % Ni . (2)

Therefore 0 <= RNi < Ni.
A simple example explains this more clearly: If we want to represent the

integer 1817 in the residue system given by N1 = 17, N2 = 13, and N3 = 11,
we obtain

RN1 = 1817 % 17 = 15
RN2 = 1817 % 13 = 10
RN3 = 1817 % 11 = 2

Therefore, 1817 = (15, 10, 2)res(17,13,11).
The maximum number that we can represent in the residue system is given

by the product of the Ni:

Imax =
M∏

i=1

Ni (3)

In order to unambiguously use the number system defined by the Ni, it is
required that the Ni are “relatively prime”. That means that for every pair
(Ni, Nj) the Ni and Nj have no prime factors in common. If we chose prime
numbers for the Ni, we easily fulfil this requirement.

As already mentioned, the advantage of this rather complicated representation
is that addition, subtraction, multiplication, and polynomial evaluation[5] are
carry-free. That is, we can perform all operations on the Rni in parallel.

Again, we use an example to clarify this. The addition of I1 = 1817 and
I2 = 230 in the system (17, 13, 11) results in

I1 = ( 15 , 10 , 2 )
I2 = ( 9 , 9 , 10 )
I = ( 7 , 6 , 1 )

This is correct since 1817+230 = 2047 which indeed equals (7, 6, 1)res(17,13,11).
One easily verifies that this also works for subtraction (if we define the negative

value as the complement according to Ni of the corresponding positive number)
as well as for multiplication (see e.g. Ref. [25]). Division, unfortunately, is only
possible for certain dividers, because the quotient may not be an integer and
also there are no sign and overflow bits.

The main disadvantage of residue arithmetic is that at the beginning and
the end of a series of computations, normally, one wants to have the input and
output numbers in a decimal or binary representation, because that is what we
normally are used to work with. The decimal-to-residue conversion (Eq. (2)) can
be done even optically[4] and for the residue-to-decimal conversion we can use
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the Chinese Remainder Theorem or the Mixed Radix Technique[28]. Of course,
such conversions will take time, but first, for a longer sequence of operations this
is negligible, and second, we are anyway not forced to use the decimal system.

4 One Possible Implementation and Practicability

We are now in the position to combine the core idea of Sect. 2 with residue arith-
metic. A lot of practical implementations are possible, we don’t want to discuss
the pros and cons of them here, and we don’t discuss details (e.g. dispersion vs.
coherence length) of such implementations. We instead will show a conceptually
simple scheme.

Suppose we want to achieve 24 bit accuracy. We might take the four largest
prime numbers below 100, that is N1 = 79, N2 = 83, N3 = 89, and N4 = 97
as the basis for our residues. According to (3) this results in Imax = 56.606.581
which corresponds to an accuracy of more than 25 bit.

Fig. 7 shows one possible realization for detecting one bit of one residue for
a 7-digits residue base. For the detection of the interference different methods
are possible. We schematically have shown here two photodetectors. Due to
the π phase shift at the beamsplitter one of the detectors will detect negative
interference if the other detector detects positive interference. Other possibilities
are switches based on four-wave mixing[29]. In Fig. 7 the different path lengths
are realized by continued splitting with blazed gratings. Of course, we have to use
similar devices for all the other bits. Addition can be achieved by subtraction of A
and the (residue-)complement of B which we easily can implement by relabeling
the switches of B. The extension to multiplication with fixed numbers (compare
Fig. 5) is straight forward.

For the system with (79, 83, 89, 97) and an addition of two 24 bit numbers,
seven bits per residue are sufficient. Therefore, we need 4 x 7 = 28 detection bits

Fig. 7. Detection of constructive or destructive interference for bit 1 of one residue
for the subtraction C = A − B. The N different path lengths are realized by using N
diffraction gratings.
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and 28 x 2 = 56 intensity detectors and 56 switches. Each switch is approximately
a 100–to–1 switch. The disadvantage of the proposed method, therefore, is its
complex way of implementation.

The speed of computation is — apart from the delay introduced by real
switches and detectors for input and output of the result — completely given
by the distance between switches and detector. Some kind of beam overlap (e.g.
by a beamsplitter) has to be realised for a standard intensity detector between
both elements. For interference based detection by four-wave mixing this is not
necessary because we might introduce the lower path wave from behind. With
integrated optics it might be anyway no problem to achieve distances below 50
µm which would correspond to 167 femtoseconds time of flight.

Of course, the high speed of the computation would only be usable if we would
have a suitable overall computing architecture. Delivering the signals from and
to the detectors and the switches in practice will introduce delays which will
significantly reduce the achievable speed. Three–dimensional integrated optical
systems, perhaps even based on photonic crystals, might make a future realiza-
tion feasible. One might think of using such a technique within high-speed fiber
networks, for example for self-routing of data packets[30] or high speed decryp-
tion. But at the moment, we do not see how a real implementation would lead
to practical benefit.

Apart from that it is not clear what application really would need such high
speed arithmetic. One has to keep in mind that for most high-speed numeric
applications simple parallelization (done by real parallelization or by pipelining)
is the best practical approach.

5 Classical, Wave-Optical, and Quantum Computing

The core idea to achieve the very fast computation is to generate the super-
position of all possible solutions. This is what distinguishes the method from
“classical” computing. In the jargon of quantum mechanics, we would anyway
call the method “classical” because purely classical waves are sufficient to un-
derstand the working principle. (The meaning of “classical” strongly depends on
the context within one uses the word.)

Therefore, although superposition (which is often regarded as the key ingre-
dient for quantum computing) also is one of the key points employed here we do
not want to classify the method as a “quantum computing” technique. Wave-
optical superposition even leads to some kind of entanglement, but this sort of
entanglement is — although strongly related — not the same as the non-local
entanglement of quantum mechanics[31, 32].

For the realization of N (entangled) bits by wave-optical computation we
would need 2N different optical paths and a correspondingly large number of
photons. As Londero et al. pointed out, a Hilbert space of dimension M x N can
be realized by N particles with M states. For the wave-optical computation we
only use one particle (one photon) that interferes with itself. But this particle
can be in a superposition of M states (the different paths). Londero discusses
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that in general this leads to a scaling of the volume of the computing device and
the number of detectors with M x N . This seems to be true, but it does not
imply that for most practical problems this upper bound is relevant.

Consequently, there are problems which in principle might be better solved by
a quantum computer. But on the other hand, for other problems implementation
of wave-optical computing might be much more simple and faster than achieving
the same result by quantum computing. Both, wave-optical as well as quantum
computing share the parallelization based on superposition. We want to empha-
size that the wave-optical computing as described here is not used to somehow
realize or emulate a quantum computing algorithm[33–37]. An interesting com-
parison of quantum and classical wave computing for Grover’s database search
algorithm[38] has been done by Lloyd[39, 40].

6 Conclusions

We have proposed a method for ultrafast digital-optical arithmetic. The mini-
mum computation time is given by the time of flight of the distance between the
input switches and the detectors. Contrary to other approaches, the switches can
be located immediately in front of the detectors. Therefore, extremely high speed
in the femtosecond region should be achievable. This high speed is only possible
because we use the superposition of all possible computations and by coding
the numbers by optical path lengths. The accuracy of the computations can be
chosen freely by parallelization which is realized here by residue arithmetic.

At the moment we doubt much practical value because, first of all, the suitable
application is missing, and, additionally, an overall computing architecture that
could exploit the extremely high speed is not available. Anyway, the architecture
might proof fruitful for optical computing devices in the future.
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Abstract. We propose photonic reservoir computing as a new approach
to optical signal processing and it can be used to handle for example large
scale pattern recognition. Reservoir computing is a new learning method
from the field of machine learning. This has already led to impressive
results in software but integrated photonics with its large bandwidth and
fast nonlinear effects would be a high-performance hardware platform.
Therefore we developed a simulation model which employs a network of
coupled Semiconductor Optical Amplifiers (SOA) as a reservoir. We show
that this kind of photonic reservoir performs even better than classical
reservoirs on a benchmark classification task.

1 Introduction

Reservoir Computing was recently proposed [1,2] as a general framework to
handle classification and recognition problems. The reservoir itself consists of a
network of coupled nonlinear elements and their interactions facilitate the process-
ing and classification of the incoming signals by the readout function. These
reservoirs were until now mainly software-based and they have been employed
successfully in a large variety of applications like speech recognition [3,4,5], event
detection [6], robot control [7], chaotic time series generation and prediction [1,8].

Photonic reservoir computing could be used for a large variety of problems,
going from large scale pattern recognition in (real-time) video data to signal
processing (header recognition, error correction, etc.) in optical fiber networks.
We studied a photonic reservoir, made of coupled SOAs, and this paper presents
the first results. The structure of the paper is as following. In section 2 we will
go deeper into this new concept of reservoir computing. The next section deals
with the (photonic) implementation aspects. Section 4 describes the classifica-
tion task we used, to show the potential of photonic reservoir computing. This
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task requires the reservoir to distinguish between a triangular and a rectangu-
lar waveform. It turns out that a photonic reservoir — with only a little bit of
tuning and a limited number of 25 SOAs — can already distinguish between the
two signals over 97 % of the time.

2 Reservoir Computing

2.1 Classical Approach

In this digital age, signals are often transferred to the digital domain for signal
processing. Nature shows us however that there are alternatives, which can be
superior for complex classification and recognition problems, like the human
brain combined with eyesight. Machine learning looks to the biological world for
inspiration, where organisms often learn from their failures and successes or in
other words from examples. Systems in machine learning are accordingly trained
to perform certain tasks. Artificial Neural Networks (ANN) are an example of
such a system and take the analogy with the biological world one step further [9].
The inspiration for the system comes from its biological counterpart, the human
brain, which consists of neurons. The human brain lacks speed compared to a
computer, but it compensates this by having a rich interconnection topology.
Each connection has a certain weight attached to it and these weights can be
adapted during the training process.

Feed-forward neural networks have been extensively used for non-temporal
problems and they are well understood due to their non-dynamic nature. At the
same time, this limits their applicability in dealing with time varying signals. In-
deed, neural networks with feedback loops (so-called recurrent neural networks)
provide some kind of internal memory which allows them to extract time correla-
tions. However, this turned out to be a hurdle in finding a general learning rule,
which is a method used to train the neural network to perform a desired task.
This is why different rules exist for different tasks and topologies, thus limiting
their broad applicability.

Around 2002 two solutions (Liquid State Machines and Echo State Networks)
were independently proposed [1,2]. They have in common that the network is
split up in two parts. One part — the reservoir — is a random recurrent neural
network that is left untrained and kept fixed while using. The input is fed into
this reservoir. The second part is a readout function, which takes as input the
reservoir state — a collection of the states of the individual elements. In order
to be able to achieve useful functionality, this part of the system needs to be
trained, typically on a set of inputs with known classifications. This process is
visualized in figure 1. Any kind of classifier or regression function could be used,
but it turns out that for most applications a simple linear discriminant suffices.
In this way the interesting properties of recurrent neural networks are kept in
the reservoir part, while the training is now restricted to the memoryless readout
function.

One might wonder why such an approach would be useful to solve complex
classification tasks. However, it is well known in the machine learning community
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that projecting a low-dimensional input into a high-dimensional space can ac-
tually be beneficial for the performance of a classification algorithm. As classes,
which are only separable by a nonlinear function in the low-dimensional space,
can become separable by an easier, linear function in the high-dimensional space
[10]. This concept is applied e.g. in support vector machines.

The reservoir could be seen as an integration of the temporal correlations in
the signal into a spatial correlation in the reservoir state. This is not to say that
any recurrent neural network will do. Rather, it appears that the dynamics of
the network should be in the dynamic region which corresponds to the edge of
stability [11]. The dynamics depend on the amount of gain and losses in the
network and they should be balanced. If the network is over-damped there is
no memory inside the reservoir, if it is under-damped the network will react
chaotically.

reservoir outputinput
state of the 

reservoir
readout 
function

u(t) x(t) fM y(t)

Fig. 1. Reservoir Computing

Recently a toolbox, able to simulate and test reservoirs, was created [12]. In
this toolbox the reservoirs are neural networks. One of those is the classical
variant where the signals are analog and every node is a hyperbolic tangent
function operating on a weighed sum of its inputs. This function is S-shaped as
in figure 2 (left). In this kind of network the nodes themselves are very simple,
while the dynamics come from the complex interconnection topology.

2.2 Photonic Approach

The theory behind reservoir computing is not restricted to neural networks. One
requirement for the reservoir is fading memory, which means that the influence
of an input should fade away slowly. The present software implementations are
rather slow and therefore we investigated the potential of a hardware implemen-
tation based on light. This could be faster and more power efficient due to the
large bandwidth and fast nonlinear effects inherent to light.

Due to the nature of reservoir computing, its implementation can be split up
in two distinctive parts: the reservoir on the one hand and the readout function
on the other. Since the computational power of reservoir computing seems to
reside mainly in the reservoir due to its feedback and nonlinearities, the focus of
the research was on a photonic reservoir. As mentioned before the readout is a
simple linear discriminant, but its training depends on mathematical calculations
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like matrix inversion. This could initially be done off-line with a computer or by
an electronic chip.

Because the specifications for the reservoir do not seem to be very rigid,
the choice of possible nanophotonic components was vast. We opted for coupled
Semiconductor Optical Amplifiers (SOA), based on two observations. First of all,
the steady-state curve of an SOA resembles the S-curve used in analog neural
networks (figure 2) — at least for the upper branch, but since optical power is
non-negative this is a restriction we have to cope with. This resemblance made
SOAs more likely to be able to bridge the reservoir and the photonic world.
The dynamic behavior of an SOA is however more complex in comparison to
the classical analog implementations. The carrier dynamics come into play at
high data rates and because of this a reservoir of SOAs is a middle ground
between simple nodes with a complex network (the classical tanh reservoirs)
and one very complex node. Second, SOAs are broadband which makes the
communication between different nodes less critical as would be the case with
resonating structures.
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Fig. 2. (Left) tanh for analog ANN — (right) SOA: steady state

3 Simulation Model

We developed our simulation program for photonic reservoirs within the frame-
work of the toolbox, mentioned previously. This allows us to use the existing
training schemes for the memoryless readout function. For further details about
this open source toolbox we refer to the manual online [12] and the article by D.
Verstraeten et al. [13].

3.1 SOA Model

In our simulations we work with a traveling wave SOA. This kind of SOA has
anti-reflection coatings on its facets, which allows us to neglect the influence of re-
flections. We use the standard traveling wave SOA equations [14]. We neglect the
influence of Amplified Spontaneous Emission (ASE) and spectral hole burning in
this model. This means that we assume that the input signal itself will be strong
enough to dominate the ASE and that we only use light at one wavelength. To



50 K. Vandoorne et al.

incorporate the longitudinal dependence of the gain, the equations can be solved
for a concatenation of small sections of the SOA. Since the latter can be time con-
suming when working with large networks of SOAs, we work mainly with one sec-
tion. Moreover since reflections are neglected at this stage, we use unidirectional
signal injection. This reduces the number of rate equations to be solved to one.

3.2 Topology and Reservoir Simulation

The classical reservoir implementations with neural networks have random inter-
connection topologies. Since the standard optical chip is still 2D we investigated
structures that can be realized without intersections. Two of those structures
are depicted in figure 3. The left structure is a waterfall system which acts as a
nonlinear delay-line. Although this feed-forward topology is relatively simple, it
has already been successfully used to model nonlinear systems [15]. The other
network has feedback connections on the sides in order to avoid crossings. Since
the SOAs are modeled as unidirectional, the connections are too.

INPUT INPUT
ININ OUTOUTSOASOA

Fig. 3. Two topologies: (left) a feed-forward network – (right) a waterfall network with
feedback connections (long dash) at the edges

At every time instant two computational steps are taken. During the first
step the internal state of every node is updated, while during the second step
the outputs are transferred to the inputs they are connected to. The splitters and
combiners are modeled as adiabatic and every connection can have a different
delay and attenuation.

The readout function takes as input the power of every SOA in the network
at every time instant. This is the basic structure of the simulation model. Next,
we will look at tasks that can be solved with these kind of networks.
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4 Pattern Recognition

4.1 Task Description

We will use a simple classification task to demonstrate the potential of photonic
reservoir computing. The task is depicted in figure 4. The system has to be
able, by means of training by examples, to instantly differentiate between a
rectangular and a triangular waveform. Moreover, if the input signal changes
the system has to change its output as fast as possible. In the top part (a) of
figure 4, an example of such an input is depicted. Figure 4b shows the output
that the system should generate accordingly. If the input is triangular than the
system should constantly return 1, if the input is rectangular it should return -1.
Figure 4c shows the state of a few SOAs as they are excited by the input, while
figure 4d shows the result of the readout function. The readout uses a linear
combination of the states of the reservoir nodes, to approximate the desired
output (black curve) as closely as possible (blue curve). In the last stage a sign
function is used on this approximation to define the final output of the system.
As a result the output is either 1 or -1 as can be seen in figure 4e. In the example
the system manages most of the time to follow the desired output.

Since the output function is memoryless, it should be able to handle tran-
sitions of the waveform at different instants. Hence several samples are made
with different transitions. One part of these samples is used to train the readout
function, while the other part is used to test it. These test results are used to
define the quality of the reservoir.

4.2 Results

In figure 5 some results are displayed from our simulations. The vertical lines
are error bars, which show the standard deviation on the reservoir performance
over ten runs. The variation comes, for the photonic reservoirs, from different
samples with different transitions at different instants. The tanh networks have
an extra variation source because they are randomly created.

In the left figure the two photonic topologies from figure 3, with 25 SOAs, are
compared against the attenuation in the connections. This attenuation influences
the dynamic regime and the higher the attenuation, the more damped the system
is. It shows that feedback is beneficial for the performance of photonic reservoirs,
when used in the appropriate dynamic regime. The best result is an error rate of
2.5 % for the network with feedback loops. This means that the reservoir is only
in 2.5 % of the time incorrect in its distinction between the rectangular and the
triangular waveform. If the attenuation in the connections gets too small then
the performance decreases dramatically for the feedback network.

On the right of figure 5 a feedback reservoir with SOAs and the classical tanh
reservoirs are compared, each with 25 nodes. Since there is feedback in both
networks we use the spectral radius (ρ(·)) as a measure for the dynamics in the
system. The spectral radius is the absolute value of the largest eigenvalue of the
connection matrix C, containing all the gain and loss in the network and is an
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Fig. 4. Pattern recognition task: a) Input signal with different transitions between
the rectangular and triangular waveform b) desired output c) state (i.e. optical power
level) of some of the reservoir nodes d) The approximation (blue) of the desired output
(black) by the readout function, e) final output of the system (red)

often used parameter in the field of reservoir computing. In a linear network
a spectral radius smaller than one means the network is stable, a value larger
than one means chaotic. The interesting dynamical region, the edge of stability,
holds for spectral radii just below one. Although our network is nonlinear, we
can still use this as an approximation, where the spectral radius acts as an upper
estimate. The gain for every node is linearized around zero input power and for
a connection matrix C with eigenvalues λi, . . . , λn this leads to the following
spectral radius calculation:

ρ(Clin(0)) = max
1≤i≤n

|λi| (1)

The classical reservoir appears to behave better for small spectral radii (when
the system is damped) with an optimum value around 3.5 %. As soon as the
spectral radius gets too high, the system becomes chaotic which explains the
large error bars and bad results. The same holds for the photonic reservoirs at
higher spectral radii. The curve for the SOA network with feedback is the same
in the two figures but plotted against a different parameter. An optimal value of
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Fig. 6. This figure shows the influence of the reservoir size on the performance of the
classical and photonic reservoirs (with feedback)

2.5 % is obtained for a spectral radius around 0.5. This means that the system
detects the correct waveform almost 97.5 % of the time.

It is remarkable that the photonic reservoir with feedback is slightly better
than the classical reservoir for this task, considering the simple photonic topol-
ogy. One explanation is the different response of an SOA to different rise times.
The rectangular waveform, although smoothed with a tanh, rises faster than the
triangular waveform, causing a depletion of the carriers in the SOA. This can be
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seen in figure 4c, when peaks appear whenever a rising edge of the rectangular
waveform passes through an SOA. This result indicates that the planar-topology
limitation for photonic reservoirs is at least compensated by the richer dynamics
of the SOAs.

In figure 6 we see that the reservoir performance enhances with larger reser-
voirs, although it seems to saturate. The choice for a certain reservoir size is
then a trade-off between the specifications of the task and cost of the chip.

5 Conclusions

We have demonstrated in this paper the potential of photonic reservoir com-
puting, since our photonic reservoirs manage to discriminate over 97 % of the
time between the two waveforms in our classification task. Even though, they
work with a limited number of SOAs and limited amount of feedback. This is a
promising step toward the use of photonic reservoirs for large scale image recog-
nition and signal processing. In future work we want to obtain an experimental
verification of the described simulation results.
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Abstract. We present a vector-by-matrix multiplier architecture incorporating 
the high potential of optical computing within electronics. This architecture 
stems from advances in optical switching technology, optical communication, 
and laser on silicon, and overcomes previous bottlenecks implied by the speed 
of transferring information to the optical vector-by-matrix multiplier. Based on 
this architecture, we present in detail a feasible electro-optical DSP co-
processor that can obtain more than 16-Tera integer operations per second. The 
use of the new architecture for several principal DSP applications is detailed, 
showing a significant improvement of at least two orders of magnitudes, over 
existing DSP technologies. Examples of possible applications, including motion 
estimation engine, string matching, and geometry engine systems, are provided. 
In addition, the architecture enables an improvement of previous solutions to 
bounded NP-complete problems by extensively reducing the size of the solver, 
while preserving an efficient computation time. 

Keywords: Optical Computing, Parallel Processing, Digital Signal Processing, 
Traveling Sales Person Problem, Bounded NP-Complete Algorithms. 

1   Introduction 

The need to double the computation speed every 18 months (Moore law) or less still 
exists. To cope with the frequency limitations of VLSI technologies and still satisfy this 
need, the microprocessor industry proposes multi-core technologies, essentially suggest-
ing the use of parallel computations. New parallel processing paradigms are being con-
sidered and evaluated due to the need for fast communication capabilities among the 
cores. The revolution in microprocessor architectures can open new opportunities for 
the use of optical computing. Several new architectures were recently suggested [1-5]. 



 Electro-Optical DSP of Tera Operations per Second and Beyond 57 

These architectures are based on optical communication over silicon and utilize the fact 
that no cross-talks occur in optics, just like the case of the widely-used fiber optics 
communication.  

In this work, we present a new electro-optical architecture that enables a fast vec-
tor-by-matrix multiplication. In addition, we present new solutions that enhance the 
capabilities of this architecture as a co-processor dedicated for DSP-intensive and 
computationally-intensive applications. The fact that optical matrix multiplication can 
be carried out in parallel and in a very fast rate must be supported by electronic inter-
face for transferring data to the multiplier in a way that utilizes the multiplier capabili-
ties. Otherwise, the speed of the computation is determined by the data transfer  
bottleneck.  

The operation of a vector-by-matrix multiplication is involved in several computation-
ally-intensive applications such as rendering computer-generated images, beam forming, 
radar detection, and wireless communication systems. Many of these practical applica-
tions require efficient and fast implementation of vector-by-matrix multiplication.   

In addition, vector-by-matrix multiplication can be used as a building block for 
numerous DSP procedures such as convolution, correlation, and certain transforma-
tions, as well as distance and similarity measurements [6,7,8]. For example, a discrete 
Fourier transform (DFT) can be implemented as a special case of vector-by-matrix 
multiplication.  

The electro-optical vector-by-matrix multiplier (VMM) presented in this paper can 
perform a general vector (1×256×8 bit) by matrix (256×256×8 bit) multiplication in 
one cycle of 8 nanoseconds (that is, at a rate of 125 MHz). This rate is faster than all 
other VMMs available today and it is expected to improve with the introduction of 
new electro-optical technologies. In addition, the proposed VMM can serve as a co-
processor attached to a DSP or a RISC CPU (referred to as a controller) and signifi-
cantly enhance the performance of the controller. 

Previous commercial electro-optical VMMs (e.g. [1]) were limited to the rate of 
the electrical driver of the spatial light modulator (SLM) used to represent the VMM 
matrix. The present paper proposes an alterative architecture where the SLM and its 
electrical driver are not limited to low rates. Hence, the proposed VMM utilizes the 
optical advantages more efficiently.  

Section 2 introduces the proposed electro-optical design. Section 3 presents possi-
ble implementation and provides data that show the design feasibility, as well as ex-
plains how this design can be improved along with technology advances. Section 4 
presents and analyzes several applications, and Section 5 concludes the current paper. 

2   The VMM Electro-Optical Unit 

The ability to perform mathematical operations in free space (in the open space, with 
no wiring), in parallel, and without mutual interactions among the various signals is 
only a part of the inherent features of optical data processing. These features are util-
ized in this paper, as well as in many other optical VMM configurations that have 
been suggested in the technical literature [9-12]. The proposed VMM has two main 
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components: the optical unit and the electrical driver. The next two sections elaborate 
on each of these two components respectively. 

2.1   The VMM Optical Unit 

Several configurations can be utilized to implement the optical component of the 
VMM. One of these configurations is based on the Stanford multiplier principle [12] 
illustrated in Fig. 1. As shown in this figure, the input vector of the VMM is repre-
sented by a set of light sources, the matrix of the VMM is represented by a slide mask 
or a real-time SLM and the output (multiplication-product) vector of the VMM is 
represented by a set of sensitive detectors. The light from each of the sources is 
spread vertically so that it illuminates a single column in the matrix and then each row 
in the matrix is summed onto a single detector in the detector array. This VMM con-
figuration can be performed by several optical techniques. One of these techniques 
uses two sets of lenses. Each of these sets contains a cylindrical lens and a spherical 
lens and each of these lenses has a focal length of f. A single set of lenses has an 
equivalent focal length of f/2 in vertical/horizontal direction and f in the other direc-
tion. As shown in Fig. 1, the first set of lenses is positioned between the input vector 
(represented by the light sources) and the matrix (represented by the SLM). This set 
of lenses is positioned so that the light coming from each of the sources illuminates 
only a single column in the matrix, which means collimating the light diverging verti-
cally from each of the sources, but imaging it in the horizontal direction.  

2.2   The VMM Electrical Driver 

Figures 2 and 3 present high level descriptions of the electrical components of the 
system. A possible implementation of the system outlined in these figures is presented 
in Section 3. 

Figure 2 shows the VMM electrical driver. The driver is comprised of 256 single 
electrical driver (SED) units and has two types of inputs: a 1×256×8 bit input vector 
A which is the VMM input vector (which is the VCSEL source array driving signal), 
and a set of 256 vector inputs B0 to B255 (total of 256×256×8 bit). The output of the 
VMM is a 1×256×20 bit vector C. The VMM output vector C is an aggregation of the 
set of scalar outputs (C0 to C255), where the output Cj emerging from SEDj is a single 
20-bit bus which is yielded by the output detector array.  

Figure 3 shows the design of one of the 1×256×8 bit SED units. The input vector 
Bj can be stored in an internal dual-port modular memory buffer / shifter before being 
directed to the SLM. The output Cj is directed to the external output.  

The configuration depicted in Fig. 3 supports a dot-product operation between the in-
put row vector A (being converted into light by the VCSELs) and one column of the 
entire SLM matrix. Each SED unit performs one vector dot-product operation per cycle 
of 8 ns (the reciprocal of 125 MHz). Combined together, the 256 units perform a vector 
(1×256×8 bit) by matrix (256×256×8 bit) multiplication operation at a rate of 125 MH.  

Each of the units depicted in Fig. 3 is capable of executing 256×125 million multi-
ply-accumulate instructions per second. This is equivalent to 64 Giga integer  
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Fig. 1. The Stanford VMM 

operations per second (GIPS). Since the entire VMM system consists of 256 units that  
are the same as the one unit depicted in Fig. 3, it can perform in peak performance of 
16384 GIPS.  

The proposed VMM can serve as a co-processor attached to a DSP or a RISC CPU, 
referred to as the controller. In addition, the controller can utilize other co-processors. 
The entire system (controller, co-processors and VMM) is depicted in Fig. 4. The figure 
shows an example where one of the additional co-processors is capable of shuffling vec-
tor elements. This may be useful for implementing convolution and correlation. It is 
assumed that in the typical mode of operation, the controller, along with other co-
processors, prepares an input vector and an input matrix to be sent to the VMM for proc-
essing. We refer to this as pre-processing. The output of the VMM is sent back to the 
controller, where it may go through additional processing (referred to as post-processing) 
before being sent to other devices or back to the VMM. Sound pre-processing and post-
processing operations can reduce the amount of VMM operations. For example, reusing 
the same input vector as much as possible, while altering only some of the matrix values, 
can reduce the amount of communication between the controller and the VMM and en-
able the VMM to operate at a peak rate that is greater than 125 MHz.  

The VMM is capable of performing one generic operation. That is, a vector 
(1×256×8 bit) by matrix (256×256×8) multiplication. Nevertheless, special cases of 
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Fig. 2. The VMM electrical driver 

vector-by-matrix multiplication can be used as the building blocks for numerous DSP 
procedures. For example, a vector-by-matrix multiplication with a large number of 
elements (more than 256 or 256×256 elements), vector-by-matrix multiplication with 
a small number of elements (less than 256 or 256×256 elements), various matrix-by-
matrix multiplications, dot-product operations including convolution, correlation, 
transforms (e.g. discrete Fourier / cosine transforms), and L2 norm operations, as well 
as addition, complex, and extended-precision operations. These operations, which are 
the building blocks of numerous DSP-intensive applications, are further analyzed in a 
technical report [13]. 

3   Implementation of the VMM Electrical Driver 

Figures 3, 5, and 6 illustrate the components of the VMM electrical driver. These 
figures include several implementation details showing that it is feasible to construct 
the system using existing mass-production VLSI technology.  

As mentioned above, the driver consists of 256 SED units of 1×256×8 bit each 
(one of which is shown in Fig. 3). Several SED units are integrated into ALU chips, 
which are placed on an interface board. A set of SED units integrated into one chip is 
referred to as the ALU chip (see Fig. 5). The interface board contains several ALU 
chips (see Fig. 6). Overall, the interface board contains 256 SED units. There is de-
sign flexibility with respect to the number of SED units per ALU chip. This number 
dictates the required number of ALU chips in the interface board.  After analyzing 
current technology, we have decided to investigate a configuration with 16 ALU 
chips, each of which contains 16 SED devices. This configuration is further analyzed 
in the next subsections.  
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3.1   The SED Unit 

Each SED unit contains a relatively small dual-port modular memory of several thou-
sands bytes (say 2048 bytes) and a 256 element SLM (i.e., 256 SLM transistors). 
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Fig. 3. A 1×256 SLM electrical driver 
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Fig. 4. System architecture 
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The SLM element of SEDj (depicted in Fig. 3) represents row j of the SLM matrix. 
The input vector Bj can be stored in the internal buffer / shifter before being directed 
to the SLM. The buffer drives the SLM either directly with the input jB  or with a set 
of 256 bytes that has been previously stored in the buffer )( jB . In this case, the 
shifter can implement a shift of 1, 2, 4, or 8 bit on one stored row of 256×8 bit, ena-
bling convolution and correlation with bytes and sub-byte units. The output Cj is a 
single 20-bit bus which is wired to the output detector array. In the implementation 
considered here, we assume that the input Bj consists of a 256-bit bus that operates at 
1 GHz. Hence, it loads the 256 SLM elements of the SED or/and the SED buffer at a 
rate of 125 MByte per second. 

3.2   The ALU Chip 

Several SED units are integrated into one ALU chip (see Fig. 5). In the implementa-
tion investigated here, we assume that 16 SED units are integrated into a single ALU 
chip. This is a reasonable assumption since the estimated number of transistors in 
each SED unit is less than 100,000 (assuming a 2048×8 bit buffer / shifter imple-
mented as an SRAM organized as a FIFO (first in, first out) queue; with 6 transistors 
per bit, which is fewer than 100K transistors). In addition, the number of internal 
connections within the SED unit is small.  

SED-0

SED-1

SED-15

2176@ 2.4 GHz

256 @ 1 GHz
Bus + Logic

Data from
memory or
I/O modules

 

Fig. 5. The ALU chip 
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An ALU chip is connected to external memory or I/O devices through an external 
bus. An internal bus distributes the data to the 16 SED units inside the ALU chip. 
Each unit gets 256 bit at a rate of 1 GHz, hence a rate of 125 MByte per second. This 
means that the entire SLM matrix is updated at the same rate as the input row vector 
(125 MHz). 

Theoretically, a bus of 2048 bit operating at 2 GHZ is needed in order to supply 
256 bit of data to each SED unit and sustain a rate of 125 MHz. Practically, we can 
use an internal bus of 2176 bit, which operates at 2.4 GHz, to drive the individual 
SED units. The reason for using a bus of 2176 bit is due to the need to synchronize 
the input data. It is assumed that each set of 16 data lines are synchronized through 
one synch line. Hence, 2048 data lines require 128 synch lines and the total number of 
input lines is 2176. In addition, it is  assumed  that  20%  redundancy in the number of 
input bits is required in order to supply error correction and handshaking mechanism. 
This can be achieved by raising the frequency of the bus to 2.4 GHz. While this is a 
relatively wide bus operating at a relatively high frequency, it is well supported by 
current 0.65-nm CMOS technology, where chips such as the IBM Cell contain thou-
sands of pins, thousands of bus lines, and operate at rates that are above 3 GHz [14]. 
It is also in line with the ITRS 2005 / 2006 reports [15]. Furthermore, this bus is not a 
true multi-drop bus; rather, it is implemented as a number of narrower point-to-point 
interconnects (driving a very wide bus quickly and supporting many sinks would be a 
design challenge). 

The proposed device requires a package with several thousand input pins. This is 
within the state of the art. As predicted in Ref. [16], packages with over 3000 connec-
tions are currently available. 

Within the devices, several sources distribute Gigahertz-rate signals to several des-
tinations. This is also within the capabilities of current technology. As an example, 
the Tilera TILE 64  implements 64 processors in a 90-nm CMOS technology [17]. 
Each processor connects to five point-to-point networks implemented as unidirec-
tional 32-bit interconnects, which provides an aggregate bandwidth of 1.28 Terabit 
per second. This bandwidth is provided by 320 bits (lines). Hence, each wire in this 
older CMOS technology is providing 1280/320=4 Gigabit per second. Furthermore, 
Intel has described a 5 GHz on-chip network [18]. 

3.3   The Interface Board 

The interface board depicted in Fig. 6 contains 16 ALU chips. In addition, the inter-
face board contains lines that enable transfer of external inputs to the ALU chip. Each 
ALU chip is fed with data independently of other ALU chips. While there are no 
internal connections or dependencies between the ALU chips, they work in a source-
synchronous mode, where each ALU chip operates at a rate of 2.4 GHz. 

The interface board is comparable in complexity to a small-size InfiniBand inter-
connect board [19]. In fact, in some applications, it is conceivable that the ALU chips 
occupy more than one interface board. In these cases, the system is equivalent in 
complexity to several system-on-chip (SOC) units connected to an InfiniBand board. 
In addition, since there are no dependencies / communication transactions between 
ALU chips, the interface board does not require a fully-connected switch. 
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Fig. 6. The interface board 

The conclusion from the above discussion is that the level of complexity of the inter-
face board is moderate and that this design can be implemented with current of-the-
shelve VLSI technology. 

3.4   System Synchronization 

We consider two synchronization tasks. First, the SED units within an ALU chip have 
to be synchronized. Second, the ALU chips within an interface board have to be  
synchronized.  

Synchronization of SED units within the ALU chip is relatively straightforward. 
The SED units operate at 1 GHZ. Each SED contains small amount of logic and the 
data path within the SED is short (4 transistors in serial, one of which is an SLM 
transistor). This is well below the characteristics of current multi-core systems which 
contain 16 to 32 cores, a data-path with 11 (or more) transistors, and operate at fre-
quencies of 3 GHz and above [17, 18, 20, 21].  

Given the characteristics of an ALU chip, synchronizing the ALU chips within the 
interface board requires a relatively modest level of complexity. The synchronization 
can be done by distributing a clock signal through the ALU chips. Commercial systems 
that distribute clock through a clock-tree to hundreds of devices with skew of less than 
50 picoseconds (ps) are available. Hence, a 2-branch 8-level clock distribution unit can 
be used to synchronize the 16 ALU chips. Using this tree, an uncertainty of the order of 
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less than 50 ps is achievable [17]. Nevertheless, since the source array operates at a rate 
of 125 MHz, 50 ps is a negligible uncertainty and can be factored into the design. The 
effect of uncertainty can cause a loss of one least significant bit from an entire set of 
256×8 bit. Given the fact that we can use guard bits in the VMM, this uncertainty is 
tolerable. 

4   DSP-Intensive and Computationally-Intensive Applications 

The DSP procedures, listed in Section 2 and detailed in a technical report [13], can be 
used as building blocks for several DSP-intensive applications. As explained in the 
abovementioned technical report, the proposed architecture is capable of performing 
125 million operations - of a (1x256x8 bit) vector by a (256x256x8 bit) matrix multi-
plication - per second. It can complete 32 billion cross correlations - of a (1x256x8 
bit) vector by a (1x256x8 bit) vector - per second. In addition, the VMM can complete 
125 million convolutions - of up to 511 samples with a finite input response filter of 
up to 256 taps - per second, and 31.25 million discrete Fourier transforms - of 256 
complex samples - per second. 

Goren et al [1] have elaborated on wireless-related processing, such as rake re-
ceiver and multi-user detection. Their proposed VMM, however, is at least two orders 
of magnitude slower than the current proposed VMM. In this section, we analyze the 
performance of the proposed system as a component in several other DSP-intensive 
and computationally-extensive applications.  

4.1   The VMM as a Motion Estimation Engine  

The VMM can be used to implement MPEG/H.264-like motion estimation (ME). 
Consider a current-frame macro-block of 16×16 pixels stored in the input vector and 
a search window of 32×48 pixels. The controller loads the SLM matrix with consecu-
tive macro-blocks from the search window and the VMM implements cross-
correlation with 256 blocks in each cycle (32 billion cross correlations per second). 
The entire 32×48 window contains 1536 instances of overlapping macro-block. 
Hence, it can be loaded into the SLM in 6 cycles of operation or at a rate of 

38.206/125 = MHz. This is the rate at which the VMM can complete the search. 
The controller has to find the maximum of the cross-correlation function calculated 
by the VMM. Some variants of the above analysis can be of interest. For example, if 
an “informed” search, such as multi-resolution (pyramid) search, is implemented, then 
each stage can use 256 macro-blocks from the search window. A 3-stage search in a 
32×48 window at 1/4-pixel resolution can be accomplished at 25 MHz per macro-
block. A 1/8-pixel resolution requires one more cycle and can be accomplished in 

38.206/125 =  MHz [13]. 

4.2   String Matching Using the VMM 

The motion estimation method described above is a special case of two-dimensional 
string matching. The VMM has exceptional capability to support string matching. It 
can be used for exhaustive string matching or to support advanced matching tech-



66 D.E. Tamir et al. 

niques such as the Boyer-Moore, Knuth-Morris-Pratt, or Rabin-Karp algorithms [22]. 
The string or substring to be matched is stored in the VMM input vector. It can be 
matched via cross-correlation with 256 other substrings stored in the SLM matrix. 
Under the current architecture, the VMM can sustain “row” (exhaustive) string 
matching rate of 256 Gigabit per second. This is at least two orders of magnitude 
faster than existing hardware architectures of exhaustive search. In the future, we plan 
to investigate the possibility of loading the SLM matrix at a rate that is higher than 
125 MHZ. This can increase the row-string-matching capability of the VMM to the 
order of Terabit per second. In addition, we plan to investigate the VMM capability to 
support Basic Local Alignment Search Tools (BLAST) and algorithms for matching 
nucleotide or protein sequences [23]. 

4.3   The VMM in a Geometry Engine System  

The VMM can be used to support the geometry pipeline of a computer-graphics sys-
tem, where multitudes of polygons (generally triangles), represented by vertices in a 
4-dimensional homogeneous coordinate space, are subject to affine transformation 
and perspective/parallel projections. Affine transformations and perspective projec-
tions of the polygons require multiplication of 1×4 vectors, representing polygon 
vertices, by 4×4 matrices. The proposed VMM can complete 2 billion multiplications 
of a 1×4×8-bit vector by a 4×4×8-bit matrix per second. Hence, it can compute the 
transformation of 666 million triangles per second. The vertices, however, are repre-
sented by low resolution 8-bit elements. To support 32-bit floating point operations, 
i.e., operations with 24-bit mantissa, the VMM has to enable 24-bit multiplication. 
This can be achieved by generating 9 partial products. Reuse of data stored in the 
matrix can enable a rate of 222 million triangles per second. In this case, however, the 
controller is expected to do extensive pre-processing and post-processing (e.g., shift-
and-add of partial products). This may require another dedicated co-processor. Fur-
thermore, each 8-bit×8-bit multiplication must produce no errors, since these errors 
can appear in significant bits of the 24-bit result. Thus, the VMM should be capable 
of generating an exact 16 bit result. This can be accomplished by adding guard bits to 
the VMM multiplication unit.  

4.4   Bounded NP-Complete Problem Optical Solver 

Due to the difficulty of solving high-order instances of bounded NP-complete combi-
natorial problems, many approximation and heuristic methods have been proposed in 
the literature. These methods, however, have unpredictable execution time. Therefore, 
for certain bounded NP-complete applications, where deadlines must be met, such 
methods are not a good choice and one may prefer to use an exhaustive search. For 
these cases, a new optical method which can provide a significantly better and guar-
antied solution-time is proposed in Refs. [2] and [3].  

The proposed device is capable of solving bounded NP-complete problems such as 
the traveling salesman problem (TSP), the Hamiltonian path problem (HPP), etc. by 
checking all feasible possibilities orders of magnitude faster than a conventional com-
puter. To do this, we use the VMM to perform a fast optical vector-by-matrix  
multiplication between a weight vector representing the problem weights and a binary 
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matrix representing all feasible solutions. The multiplication product is a vector repre-
senting the final solutions of the problem. In the TSP for example, where the required 
solution is the shortest Hamiltonian tour connecting a certain set of given node coor-
dinates, the multiplication is performed between a grayscale weight vector represent-
ing the weights between the TSP nodes and a binary matrix representing all feasible 
tours among the TSP nodes. The multiplication product is a length vector representing 
the TSP tour lengths by peaks of light with different intensities. Finding the shortest 
Hamiltonian tour can be performed by using an optical polynomial-time binary search 
which utilizes an optical threshold plate. On the other hand in the HPP, a decision 
whether there is a Hamiltonian path connecting two given nodes on the HPP graph is 
required. In the HPP, the binary matrix still represents all feasible paths (tours), but 
the weight vector is also binary. After performing the vector-by-matrix multiplication, 
any peak of light obtained in the output of the optical system means that a Hamilto-
nian path exists.  

The advantage of the proposed method is that once the binary matrix is synthe-
sized, all TSP and HPP instances of the same order (with the same number of nodes) 
can be solved optically by only changing the weight vector and performing the vector-
by-matrix multiplication in an optical way. In addition, in Refs. [2] and [3] we have 
presented an efficient method to arrange the tours or paths in the binary matrix so that 
the binary matrix of N nodes contains the binary matrix of N−1 nodes. Therefore, 
once the binary matrix of N nodes is synthesized, all TSP and HPP instances contain-
ing N or fewer nodes can be solved by the VMM. In case the binary matrix contains 
more than 256×256 elements, the binary matrix is stored in the proposed device 
memory and then uploaded in a high rate to the SLM in parts in order to perform 
different portions of the vector-by-matrix multiplication each time. Note that in this 
case the SLM contains binary matrices (rather than 8 bit grayscale matrices). Hence, a 
dedicated special-purpose TSP/HPP VMM solver is expected to have performance 
that is 8 times faster than the performance of the general-purpose VMM presented in 
former sections. 

5   Conclusions  

New optical architecture for a super DSP co-processor that is based on of-the-shelf 
technology is presented. The architecture solves severe bottlenecks of the previous 
commercial electro-optical designs, gaining orders of magnitude better performance. 
The architecture supports principal-  DSP primitives such as vector-by-matrix  and 
matrix-by-matrix multiplications, convolution and correlation, discrete Fourier trans-
form, L2 norm operations, addition, complex numbers and extended-precision arith-
metic. These building blocks enable DSP-intensive applications, as well as an  
efficient bounded NP-complete problem solution. The device operational rate, in the 
order of at least 16-Tera integer operations per seconds, is a great opportunity for 
enhancing existing applications and introducing new computer applications, such as 
video compression and three-dimensional geometry engine. It is expected that devel-
opments in electro-optics technology will enable increasing the performance of this 
architecture, allowing more SED units and laser elements per device so that higher 
operational rate can be obtained. 
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Abstract. We present a number of computational complexity results for
an optical model of computation called the continuous space machine.
We also describe an implementation for an optical computing algorithm
that can be easily defined within the model. Our optical model is de-
signed to model a wide class of optical computers, such as matrix vector
multipliers and pattern recognition architectures. It is known that the
model solves intractable PSPACE problems in polynomial time, and NC
problems in polylogarithmic time. Both of these results use large spatial
resolution (number of pixels). Here we look at what happens when we
have constant spatial resolution. It turns out that we obtain similar re-
sults by exploiting other resources, such as dynamic range and amplitude
resolution. However, with certain other restrictions we essentially have
a sequential device. Thus we are exploring the border between parallel
and sequential computation in optical computing. We describe an optical
architecture for the unordered search problem of finding a one in a list of
zeros. We argue that our algorithm scales well, and is relatively straight-
forward to implement. This problem is easily parallelisable and is from
the class NC. We go on to argue that the optical computing community
should focus their attention on problems within P (and especially NC),
rather than developing systems for tackling intractable problems.

1 Introduction

Over the years, optical computers were designed and built to emulate conven-
tional microprocessors (digital optical computing), and for image processing over
continuous wavefronts (analog optical computing). Here we are interested in the
latter class: optical computers that store data as images. Numerous physical
implementations exist and example applications include fast pattern recognition
and matrix-vector algebra. There have been much resources devoted to designs,
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implementations and algorithms for such optical information processing archi-
tectures (for example see [1,8,11,?,29] and their references).

We investigate the computational complexity of a model of computation that
is inspired by such optical computers. The model is relatively new and is called
the continuous space machine (CSM). The model was originally proposed by
Naughton [17,18]. The CSM computes in discrete timesteps over a number of
two-dimensional images of fixed size and arbitrary spatial resolution. The data
and program are stored as images. The (constant time) operations on images in-
clude Fourier transformation, multiplication, addition, thresholding, copying and
scaling. We analyse the model in terms of seven complexity measures inspired
by real-world resources.

For the original [18] CSM definition, it was shown [17] that the CSM can
simulate Turing machines (this was a sequential simulation). A less restricted
CSM definition [20,35] was shown to be too general for proving reasonable upper
bounds on its computational power [33], so in this paper we mostly focus on
computational complexity results for a restricted CSM called the C2-CSM.

In Section 2 we recall the definition of the model, including a number of
optically-inspired complexity measures [35]. In Section 2.5 we describe a number
of known computational complexity results for the model, including character-
isations of PSPACE and NC. These results were shown a few years ago [30,34]
(later improved [32]), and were the first to prove that optical computers were
capable of solving NP-complete (and other intractable) problems in polynomial
time. Of course, these results make use of exponential space-like resources. In
particular, these algorithms used exponential spatial resolution (number of pix-
els). Since we have a clear model definition, including definitions of relevant
optical resources, it is relatively easy to analyse CSM algorithms to determine
their resource usage. Recently, Shaked et al. [25,26,27] have designed an optical
system for solving the NP-hard travelling salesman problem in polynomial time.
Their algorithm can be seen as a special case of our results. Interestingly, they
give both implementations and simulations. As we argue below, we believe that
tackling intractable problems is probably not going to really highlight any ad-
vantages of optics over digital electronic systems. As a step in another direction,
we have shown that if we restrict ourselves to using polylogarithmic time, and
polynomial space-like resources, then parallel optical systems can solve exactly
those problems that lie in the (parallel) class NC.

In Section 3 we present a number of new results for our model. In particular
we look at what happens when spatial resolution is constant. Parallel optical
algorithms and experimental setups usually exploit the fact that we can operate
over many pixels in constant time. However, we show that even with a con-
stant number of pixels we can solve problems in (and characterise) presumed
intractable classes such as PSPACE, in polynomial time. In this case we make
exponential usage of other resources, namely amplitude resolution and dynamic
range. We argue that this is an even more unrealistic method of optical com-
puting than using exponential numbers of pixels. We go on to show that if we
disallow image multiplication, restrict to polynomial numbers of pixels and/or
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images, but put no restrictions on the other resources, then in polynomial time
the model characterises P.

This results lead us to suggest of a new direction for optical algorithm design-
ers. Rather than trying to solve intractable problems, perhaps the community
should focus its attention on problems that are known to be easily parallelisable,
for example those in NC. Of course, these problems are polynomial time solv-
able on sequential machines. However, using our NC characterisations one can
see that optics has the potential to solve such problems exponentially faster than
sequential computers. Also, due to relatively low communication costs and high
fan-in, optics has the potential to out-perform parallel digital electronic archi-
tectures. Perhaps such benefits of optics will be seen where very large datasets
and input instances are concerned. We give evidence for this opinion by citing
existing optical algorithms, as well as the following result in this paper.

We design an optoelectronic implementation for the unordered search problem
of finding a single one in a list of zeros. Of course, this problem can be sequentially
solved in n−1 steps. Our algorithm works in O(log n) time but, most importantly,
we get this low time overhead on an optical set-up that scales well (uses at most
n pixels), and is relatively straightforward to build. As we discuss in Section 4.1,
this problem is contained in some of the lowest classes within NC.

2 CSM and C2-CSM

We begin by describing the model in its most general sense, this brief overview
is not intended to be complete and more details are to be found in [30].

2.1 CSM

A complex-valued image (or simply, image) is a function f : [0, 1) × [0, 1) → C,
where [0, 1) is the half-open real unit interval. We let I denote the set of complex-
valued images. Let N

+ = {1, 2, 3, . . .}, N = N
+ ∪ {0}, and for a given CSM M

let N be a countable set of images that encode M ’s addresses. An address is an
element of N × N.

Definition 1 (CSM). A CSM is a quintuple M = (E, L, I, P, O), where

E : N → N is the address encoding function,
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a and b, where a �= b,
I and O are finite sets of input and output addresses, respectively,
P = {(ζ1, p1ξ

, p1η), . . . , (ζr, prξ
, prη)} are the r programming symbols ζj and

their addresses where ζj ∈ ({h, v, ∗, ·, +, ρ, st, ld, br, hlt} ∪ N ) ⊂ I.
Each address is an element from {0, . . . , Ξ−1}×{0, . . . , Y−1} where Ξ, Y ∈ N+.

Addresses whose contents are not specified by P in a CSM definition are assumed
to contain the constant image f(x, y) = 0. We interpret this definition to mean
that M is (initially) defined on a grid of images bounded by the constants Ξ
and Y, in the horizontal and vertical directions respectively. The grid of images
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h(i1;i2) : replace image at i2 with horizontal 1D Fourier transform of i1.
v(i1;i2) : replace image at i2 with vertical 1D Fourier transform of image at i1.
∗(i1;i2) : replace image at i2 with the complex conjugate of image at i1.
··· (i1,i2;i3) : pointwise multiply the two images at i1 and i2. Store result at i3.
+(i1,i2;i3) : pointwise addition of the two images at i1 and i2. Store result at i3.
ρ(i1,zl,zu;i2) : filter the image at i1 by amplitude using zl and zu as lower and upper

amplitude threshold images, respectively. Place result at i2.
[ξ′

1, ξ
′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2] : copy the rectangle of images whose bottom left-hand

address is (ξ1, η1) and whose top right-hand address is (ξ2, η2) to the
rectangle of images whose bottom left-hand address is (ξ′

1, η
′
1) and whose

top right-hand address is (ξ′
2, η

′
2). See illustration in Figure 3.

Fig. 1. CSM high-level programming language instructions. In these instructions
i, zl, zu ∈ N × N are image addresses and ξ, η ∈ N. The control flow instructions are
described in the main text.

may grow in size as the computation progresses. Address sta is the start location
for the program so the programmer should write the first program instruction
(beginning) at sta. Addresses a and b define special images that are frequently
used by some program instructions.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
located at the lower left-hand corner of the grid. The images have the same
orientation as the grid. For example the value f(0, 0) is located at the lower
left-hand corner of the image f .

In Definition 1 the tuple P specifies the CSM program using programming
symbol images ζj that are from the (low-level) CSM programing language [30,35].
We refrain from giving a description of this programming language and instead
describe a less cumbersome high-level language [30]. Figure 1 gives the basic
instructions of this high-level language. The copy instruction is illustrated in
Figure 3. There are also if/else and while control flow instructions with con-
ditions of the form (fψ == fφ) where fψ and fφ are binary symbol images (see
Figures 2(a) and 2(b)).

The function E is specified by the programmer and is used to map addresses
to image pairs. This enables the programmer to choose her own address encoding
scheme. We typically don’t want E to hide complicated behaviour thus the com-
putational power of this function should be somewhat restricted. Thus we insist
that for a given M there is an address encoding function E : N → N such that E
is Turing machine decidable, under some reasonable representation of images as
words. For example, we put a restriction of logspace computability on E in Defin-
ition 7 below. Configurations are defined in a straightforward way as a tuple 〈c, e〉
where c is an address called the control and e represents the grid contents.

2.2 Complexity Measures

Next we define some CSM complexity measures. All resource bounding functions
map from N into N and are assumed to have the usual properties [2].
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(a) (b) (c) (d) (e) (f)

Fig. 2. Representing binary data. The shaded areas denote value 1 and the white areas
denote value 0. (a) Binary symbol image representation of 1 and (b) of 0, (c) list (or
row) image representation of the word 1011, (d) column image representation of 1011,
(e) 3× 4 matrix image, (f) binary stack image representation of 1101. Dashed lines are
for illustration purposes only.

ξ ξ + 3

η
i

Fig. 3. Illustration of the instruction i ← [ξ, ξ + 3, η, η] that copies four images to a
single image that is denoted i.

Definition 2. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Definition 3. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

Let S : I × (N × N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with ΦΨ
constant-valued pixels arranged in Φ columns and Ψ rows, that approximates
f(x, y). If we choose a reasonable and realistic S then the details of S are not
important.

Definition 4. The spatialRes complexity of a CSM M is the minimum ΦΨ
such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

One can think of spatialRes as a measure of the number of pixels needed
during a computation. In optical image processing terms, and given the fixed
size of our images, spatialRes corresponds to the space-bandwidth product of
a detector or spatial light modulator.

Definition 5. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

In optical processing terms dyRange corresponds to the dynamic range of a
signal.
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We also use complexity measures called amplRes, phaseRes and freq

[30,35]. Roughly speaking, the amplRes of a CSM M is the number of discrete,
evenly spaced, amplitude values per unit amplitude of the complex numbers in
the range of M ’s images. The phaseRes of M is the total number (per 2π)
of discrete evenly spaced phase values in the range of M ’s images. freq is a
measure of the optical frequency of M ’s images [35].

Often we wish to make analogies between space on some well-known model
and CSM ‘space-like’ resources. Thus we define the following convenient term.

Definition 6. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

2.3 Representing Data as Images

There are many ways to represent data as images. Here we mention some data
representations that we have used in previous results. Figures 2(a) and 2(b)
are the binary symbol image representations of 1 and 0 respectively. These im-
ages have an everywhere constant value of 1 and 0 respectively, and both have
spatialRes of 1. The row and column image representations of the word 1011
are respectively given in Figures 2(c) and 2(d). These row and column images
both have spatialRes of 4. In the matrix image representation in Figure 2(e),
the first matrix element is represented at the top left corner and elements are or-
dered in the usual matrix way. This 3×4 matrix image has spatialRes of 12. Fi-
nally, the binary stack image representation, which has exponential spatialRes

of 16, is given in Figure 2(f).
Figure 3 shows how we might form a list image by copying four images to

one in a single timestep. All of the above mentioned images have dyRange,
amplRes, and phaseRes of 1.

2.4 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we defined [30,33] the C2-CSM, a restricted class of CSM.

Definition 7 (C2-CSM). A C2-CSM is a CSM whose computation time is de-
fined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:

– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t each of grid, spatialRes and dyRange is O(2t) and space

is redefined to be the product of all complexity measures except time and freq.
– Operations h and v compute the discrete Fourier transform (DFT) in the

horizontal and vertical directions respectively.
– Given some reasonable binary word representation of the set of addresses N ,

the address encoding function E : N → N is decidable by a logspace Turing
machine.
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Let us discuss these restrictions. The restrictions on amplRes and phaseRes

imply that C2-CSM images are of the form f : [0, 1)×[0, 1) → {0,± 1
2 ,±1,± 3

2 , . . .}.
We have replaced the Fourier transform with the DFT [5], this essentially means
that freq is now solely dependent on spatialRes; hence freq is not an inter-
esting complexity measure for C2-CSMs and we do not analyse C2-CSMs in terms
of freq complexity [30,33]. Restricting the growth of space is not unique to
our model, such restrictions are to be found elsewhere [10,21,22]. The condition
on the address encoding function E amounts to enforcing uniformity (we do not
wish to use E as a powerful oracle).

In this paper we prove results for variants (generalisations and restrictions)
on the C2-CSM model. If we are not stating results for the C2-CSM itself, then
we always specify the exact model that we are using.

2.5 Some Existing C2-CSM Complexity Results

We have given lower bounds on the computational power of the C2-CSM by
showing that it is at least as powerful as models that verify the parallel compu-
tation thesis [30,32,34]. This thesis [7,9] states that parallel time corresponds,
within a polynomial, to sequential space for reasonable parallel models. See, for
example, [12,14,21,28] for details. Let S(n) be a space bound that is Ω(log n).
The languages accepted by nondeterministic Turing machines in S(n) space are
accepted by C2-CSMs computing in polynomial time O(S2(n)) (see [32] for this
result, which improves on the version in [30,34]):

Theorem 1. NSPACE(S(n)) ⊆ C2-CSM–TIME(O(S2(n)))

For example, polynomial time C2-CSMs accept the PSPACE languages1. Of
course any polynomial time C2-CSM algorithm that we could presently write
to solve PSPACE-complete, or NP-complete, problems would require exponen-
tial space. Theorem 1 is established using an implementation of a well-known
transitive closure algorithm on the C2-CSM. Using this result, we also find that
C2-CSMs that simultaneously use polynomial space and polylogarithmic time

accept the class NC [30,34].

Corollary 1. NC ⊆ C2-CSM–SPACE, TIME(nO(1), logO(1) n)

We have also given the other of the two inclusions that are necessary in or-
der to verify the parallel computation thesis: C2-CSMs computing in time T (n)
are no more powerful than O(T 2(n)) space bounded deterministic Turing ma-
chines [30,31].

Theorem 2. C2-CSM-TIME(T (n)) ⊆ DSPACE(O(T 2(n)))

Via the proof of Theorem 2, we get another result. C2-CSMs that simultaneously
use polynomial space and polylogarithmic time accept at most NC [30,31].
1 PSPACE is a well-known class of problems that are solvable by Turing machines that

use space polynomial in input length n. This class contains NP, since a polynomial
space bounded Turing machine can simulate, in turn, each of the exponentially many
possible computation paths of a nondeterministic polynomial time Turing machine.
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Corollary 2. C2-CSM-SPACE, TIME(nO(1), logO(1) n) ⊆ NC

The latter two inclusions are established via C2-CSM simulation by logspace uni-
form circuits of size and depth polynomial in space and time respectively. Thus
C2-CSMs that simultaneously use both polynomial space and polylogarithmic
time characterise NC.

3 Parallel and Sequential C2-CSM Computation

As we have seen in the previous section, a number of computational complexity
results for the C2-CSM have shown that the model is capable of parallel process-
ing in much the same way as models that verify the parallel computation thesis,
and models that are known to characterise the parallel class NC. To date, these
results strongly depended on their use of non-constant spatialRes. The algo-
rithms exploit the ability of optical computers, and the CSM in particular, to
operate on large numbers of pixels in parallel. But what happens when we do
not have arbitrary numbers of pixels? If allow images to have only a constant
number of pixels then we need to find new CSM algorithms. It turns out that
that such machines characterise PSPACE.

Theorem 3. PSPACE is characterised by C2-CSMs that are restricted to use
polynomial time T = O(nk), spatialRes O(1), grid O(1), and generalised to
use amplRes O(22T

), dyRange O(22T

).

Proof. The PSPACE upper bound comes directly from a minor extension to
the proof of Theorem 2, sketched as follows. The proof of Theorem 2 showed
that C2-CSMs that run in polynomial time T = O(nk), are simulated by cir-
cuits of polynomial depth O(T 2) and size exponential in T , and it remains to
be shown that our amplRes and dyRange generalisations do not affect these
circuit bounds by more than a polynomial factor. In the previous proof [30,31]
dyRange was O(2T ), in accordance with the usual C2-CSM definition. Thus, in
the circuit simulation, images values x ∈ {1, . . . , O(2T )} ⊆ N were represented
by binary words x̂ of length |x̂| = O(T ). We directly apply the previous con-
struction to represent values x ∈ {1, . . . , O(22T

)} as words of length |x̂| = O(2T ).
Since the circuits are already of size exponential in T , this modification only in-
creases circuit size by a polynomial factor in the existing size. Also, the circuit
simulation algorithms experience at most a polynomial factor increase in their
depth. A similar argument works for amplRes (even though in the previous
proof amplRes was O(1)). Here we are using constant spatialRes and grid

(as opposed to O(2T ) for the previous proof), so circuit size and depth are each
decreased by a polynomial factor in their respective previous values. We omit
the details.

For the lower bound we use the results of Schönhage [24] and Bertoni et
al. [4] which show that PSPACE is characterised by RAMs augmented with
integer addition, multiplication, and left shift instructions, that run in time that
is polynomial in input length n. We show how to simulate such an augmented
RAM with a C2-CSM that has time overhead that is polynomial in RAM time.
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The numerical value x ∈ N of the binary word in a RAM register is stored as
an image, with a single pixel, of value x. The RAM uses a constant (independent
of input length n) number of registers, and therefore the C2-CSM uses a constant
number of images. The addition and multiplication RAM operations are trivially
simulated in constant time by C2-CSM addition and multiplication instructions.

The RAM shift instruction x ← y takes a register x containing a binary
value and shifts it to the right by an amount stored in another binary register y
(Schönhage defines the shift instruction as �x/2y�). In the C2-CSM this can be
simulated (using multiplication and addition) by (x · 1/2y) + (−1 · x′) where x′

is the result of (thresholding and multiplication) ρ(x · 1/2y, 1/2y, 1; x′), and the
value 1/2y is computed by repeated multiplication in O(log y) steps.

The C2-CSM algorithm uses amplRes and dyRange that are exponential in
the space used by the RAM and time polynomial in the time of the RAM. All
other resources are constant. �
So by treating images as registers and generating exponentially large, and expo-
nentially small, values we can solve seemingly intractable problems. Of course
this kind of CSM is quite unrealistic from the point of view of optical implemen-
tations. In particular, accurate multiplication of such values in optics is difficult
to implement. Some systems have up to a few hundred distinct amplitude lev-
els [8] (for example 8 bits when we have 256 × 256 pixels [15], although higher
accuracy is possible when we have a single pixel2). Therefore, one could argue
that this kind of multiplication is quite unrealistic. To restrict the model we could
replace arbitrary multiplication, by multiplication by constants, which can be
easily simulated by a constant number of additions. If we disallow multiplication
in this way, we characterise P.

Theorem 4. C2-CSMs without multiplication, that compute in polynomial time,
polynomial grid O(nk), and spatialRes O(1), characterise P.

Proof (Sketch). For the P lower bound assume that we wish to simulate a deter-
ministic Turing machine with one-way infinite tapes. Each tape is represented
as a row of images, one for each tape cell. We store a pointer to the current
tape head position as an image address. Then it is a straightforward matter to
convert the Turing machine program to CSM program, where a left (right) move
corresponds to decrementing (incrementing) the address pointer. Reading and
writing to the tape is simulated by copying images. CSM branching instructions
simulate branching in the Turing machine program. The CSM runs in time that
is linear in Turing machine time.

For the P upper bound we assume some representation of images as binary
words (such as the representation given above, or in [30,31]), and apply a simple
inductive argument. The initial configuration of our restricted C2-CSM is en-
coded by a binary word of length polynomial in the input length n. Assume at
2 Inexpensive off-the-shelf single point intensity detectors have intensity resolutions of

at least 24 bits (see, for example, the specifications for silicon-based point detectors
and optical power meters from popular manufacturers such as www.mellesgriot.com,
www.newport.com, and www.thorlabs.com).
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C2-CSM time t that the binary word encoding the configuration is of polynomial
length. For each pixel, addition of two images leads to an increase of at most
one bit per pixel under our representation, and can be simulated in polynomial
time on a Turing machine. The DFT over a finite field is computable in poly-
nomial time and is defined in such a way that it does not increase the number
of pixels in an image. Also, its input and output values are from the same set,
therefore the upper bounds on the other space-like resources are unaffected by
the DFT. Copying (up to) a polynomial number of encoded images can be com-
puted in polynomial time. It is straightforward to simulate complex conjugation
and thresholding in linear time. �

The first proof of universality for the CSM was a simulation of Turing ma-
chines that used space that is exponential in Turing machine space [17]. Specifi-
cally, it used constant grid and exponential spatialRes. The previous theorem
improves the space bound to linear, by using linear grid and only constant
spatialRes.

If we take the previous restricted C2-CSM, and restrict further to allow only
constant grid, but allow ourselves polynomial spatialRes, then we also
characterise P.

Theorem 5. CSMs without multiplication, that compute in polynomial time,
polynomial spatialRes O(nk), and grid O(1), characterise P.

Proof (Sketch). Here we are considering a C2-CSM model that is similar to the
model in Theorem 4; we are swapping grid for spatialRes. Hence a very similar
technique can be used to show the P upper bound, so we omit the details.

For the lower bound, we store each one-way, polynomial p(n) length, binary,
Turing machine tape as a binary list image. We store the current tape head
position i ∈ {1, . . . , p(n)} as a binary list image that represents i in binary.
Then, to extract the bit stored at position i, we can use a O(log p(n)) time

binary search algorithm (split tape image in two, if i � p(n)/2 then take the left
image, otherwise take the right, let p(n) := p(n)/2 and repeat). This technique,
along with suitable masks, can also be applied to write to the tape. The Turing
machine program is simulated using C2-CSM branching instructions. �

Theorems 4 and 5 give conditions under which our optical model essentially
looses its parallel abilities and acts like a standard sequential Turing machine.

4 Implementation of an Unordered Search Algorithm

We provide a design for an optoelectronic implementation of a binary search
algorithm that can be applied to unordered lists. Consider an unordered list of n
elements. For a given property P , the list could be represented by an n-tuple
of bits, where the bit key for each element denotes whether or not that element
satisfies P . If, for a particular P , only one element in the list satisfies P , the
problem of finding its index becomes one of searching an unordered binary list
for a single 1. The problem is defined formally as follows.
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A

F

B

D

C

Convex lens (12)

OASLM (2)

Laser with spatial filter (3)

Beam splitter (5)

Mirror (6)

On/off control electronics (4)

Single-pixel intensity detector (1)

Light block (2)

Fourier transform (9)

E

Fig. 4. Optical apparatus to perform a binary search for a single 1 in a bitstream
of 0s. The legend explains the optical components and the number of them required.
The labels A-F are explained in the text. OASLM: optically-addressed spatial light
modulator.

Definition 8 (Needle in haystack problem). Let L = {w : w ∈ 0∗10∗}. Let
w ∈ L be written as w = w0w1 . . . wn−1 where wi ∈ {0, 1}. Given such a w,
the needle in haystack problem asks what is the index of the symbol 1 in w. The
solution to the needle in haystack problem for a given w is the index i, expressed
in binary, where wi = 1.

This problem was posed by Grover in [13]. His quantum computer algorithm
requires O(

√
n) comparison operations on average. Bennett et al. [3] have shown

the work of Grover is optimal up to a multiplicative constant, and that in fact
any quantum mechanical system will require Ω(

√
n) comparisons. It is not dif-

ficult to see that algorithms for sequential models of computation require Θ(n)
comparisons in the worst case to solve the problem. We present an algorithm that
requires O(log2 n) comparisons, with a model of computation that has promising
future implementation prospects.

Our search algorithm is quite simple. A single bright point is somewhere in
an otherwise dark image. If we block one half of the image we can tell in a single
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step if the other half contains the bright point or not. This forms the basis of a
binary search algorithm to determine the precise location of the bright point.

Theorem 6 ([35]). There exists a CSM that solves the needle in haystack prob-
lem in Θ(log2 n) comparisons for a list of length n, where n = 2k, k ∈ N, k ≥ 1.

The CSM instance that performs this computation is given elsewhere [35], as
are details of a counter to determine when the computation has finished and
details of how the next most significant bit of the address is built up in an
image at each step. We explain the main loop of the CSM algorithm. The binary
input list w can be represented as a binary list image as illustrated in Fig. 2(c),
or more simply by using a single point of light instead of a vertical stripe to
denote value 1. Therefore, w would be represented by a small bright spot (a
high amplitude peak) in an otherwise black image, where the position of the
peak denotes the location of the 1 in w. During the first iteration of the loop, w
is divided equally into two images (a left-hand image and a right-hand image).
The nonzero peak will be either in the left-hand image or the right-hand image. In
order to determine which image contains the peak in a constant number of steps,
the left-hand image is Fourier transformed, squared, and Fourier transformed
again. This effectively moves the nonzero peak (wherever it was originally) to
the centre of the image, where it can be easily compared to a template (using
a single conditional branching instruction in the CSM). If the left-hand image
contains a nonzero amplitude at its centre, then the left-hand image contained
the peak. In this case, the right-hand image is discarded, and the most significant
bit of the address of 1 in w is 0. Otherwise, the right-hand image contained the
peak, the left-hand image is discarded, and the most significant bit of the address
is 1. For the next iteration, the remainder of the list is divided equally into two
images and the computation proceeds according to this binary search procedure.

A schematic for an optoelectronic implementation is shown in Fig. 4. At the
start of the computation, optically addressed spatial light modulator (OASLM)
A is initialized to display the input list. One half of the input is read out of
the OASLM using illumination B and a beam splitter in standard configura-
tion, and is transformed by a Fourier lens so that its Fourier transform falls on
OASLM C. The act of detection within C squares the image, and it is read out
and Fourier transformed again using illumination D. A single point detector is
centred on the optical axis – exactly where light would fall if there was a bright
spot anywhere in the left half of the list on OASLM A. If light is detected, light
block E is opened to allow the left half of the list to be copied to the full extent
of A, otherwise illumination F is switched on to allow the right half of the list
to be copied to the full extent of A. The act of detection within A will itself
square the image but this is no concern because it is intended that the list would
have constant phase everywhere. In fact, the response of A could be configured
to nonlinearly transform the intensities in the image, to suppress any back-
ground noise and enhancing the bright spot, thus avoiding the propagation of
errors which is the overriding problem with numerical calculations implemented
in analog optics [16]. The left half of the remainder of the list is now ready to
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be Fourier transformed itself onto C, for the next step in the computation. For
simplicity, at each step we let the next bit of the address to be recorded at the
detector electronics.

To more rigorously verify the operation of the apparatus in Fig. 4 from an
optical engineering standpoint, the following steps in the process are stated
explicitly.
Step 1: Ensure F is off, E closed, B on, D on, C cleared, input displayed on A.
Step 2: (Detector will sense the presence or absence of light.) Put A into write
mode. If light is sensed, record address bit of 0 and open E for an instant, oth-
erwise record an address bit of 1 and switch F on for an instant. Take A out of
write mode. Clear C.
Step 3: Go to step 2.

All that is required to augment the design is a counter to determine when to
halt (which can also be performed electronically) and a method of initialising
OASLM A with the input (which can be performed by replacing the upper-right
mirror with a beam splitter). This is by no means a definitive implementation of
the operation, but conceptually it is very simple, and as a design it is straightfor-
ward to implement. The most difficult implementation issues concern ensuring
that light close to the centre of A is appropriately partitioned by the pair of
side-by-side Fourier lenses, and ensuring that the feedback paths (the two paths
from A to itself) are not unduly affected by lens abberations. Ultimately, the
spatial resolution of the input images (and so the size of the list inputs) is lim-
ited by the finite aperture size of the lenses. Practically, it would be desirable to
configure both B and D to be pulsed in the same way as F, although this adds
to the control burden. It would be possible to replace the two 4-f feedback paths
with 2-f feedback paths (thereby removing two lenses from each path) if one
took note that the list would be reversed at each alternate step. Further, each
pair of Fourier lenses in the upper feedback arm could be replaced by a single
lens in imaging configuration if one ignores the phase errors – Fourier transform-
ing lenses are used exclusively in this design to ease detailed verification of the
apparatus by the reader. Imaging lenses would also allow reduction in size of
the largest of the mirrors and beamsplitter in the design. Furthermore, passive
beamsplitters and planar mirrors are specified here to maintain the quality of
the optical wavefronts at reasonable notional financial cost; instead employing
active beam splitter technology and curved mirrors would reduce the number of
components further while admitting their own disadvantages. Finally, cylindrical
lenses could be used rather than spherical lenses because Fourier transformation
in one dimension only is required.

4.1 Complexity of the Unordered Search Problem

It is possible to give an AC0 circuit family to solve the Needle in haystack
problem. In fact, is is possible to give constant time CSM, or C2-CSM, algo-
rithms to solve the problem. However, although fast, we felt than any such CSM
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algorithm that we could think of was more difficult to implement optically than
the above algorithm. For example, one can consider a CSM algorithm that en-
codes the values 1, . . . n at addresses a1, . . . , an, respectively. Next we assume
an ordering on the n possible inputs that corresponds to the ordering in the
addressing scheme. Using such an input, the machine would simply branch to
the address at the input’s value, and output the image at the ith address. The
algorithm runs in constant time, linear grid, and all other resources are con-
stant. Although simple to describe, the use of addressing would complicate the
algorithm’s implementation.

5 A New Direction for Optical Algorithm Designers?

Nature-inspired systems that apparently solve NP-hard problems in polynomial
time, while using an exponential amount of some other resource(s), have been
around for many years. So the existence of massively parallel optical systems for
NP-hard problems should not really suprise the reader.

One could argue that it is interesting to know the computational abilities,
limitations, and resource trade-offs of such optical architectures, as well as to
find particular (tractable or intractable) problems which are particularly suited
to optical algorithms. However, “algorithms” that use exponential space-like re-
sources (such as number of pixels, number of images, number of amplitude levels,
etc.) are not realistic to implement for large input instances. What happens to
highly parallel optical architectures if add the requirement that the amount of
space-like resources are bounded in some reasonable way? We could, for exam-
ple, stipulate that the optical machine use no more than a polynomially bounded
amount of space-like resources. If the machine runs in polynomial time, then it
is not difficult to see that it characterises P (by characterise we mean that the
model solves exactly those problems in P), for a wide range of reasonable par-
allel and sequential optical models (see Section 3). Many argue that the reason
for using parallel architectures is to speed-up computations. Asking for an ex-
ponential speed-up motivates the complexity class NC. The class NC can be
thought of as those problems in P that can be solved exponentially faster on
parallel computers than on sequential computers. Thus, NC is contained in P
and it is an major open question whether this containment is strict: it is widely
conjectured that this is indeed the case [12].

How does this relate to optics? As discussed in Section 2.5, a wide range of
optical computers that run for at most polylogarithmic time, and use at most
polynomial space-like resources, solve exactly NC [30,31,32,34]. In effect this
means that we have an algorithmic method (in other words, a compiler) to
convert existing NC algorithms into optical algorithms that use similar amounts
of resources.

From the practical point of view, perhaps we can use these kinds of results to
find problems within NC, where optical architectures can be shown to excel. Ob-
vious examples for which this is already known are matrix-vector multiplication
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(which lies in NC2), or Boolean matrix multiplication (which is in NC1).3 An-
other example is the NC1 unordered search problem given in Section 4. Another
closely related idea is to exploit the potential unbounded fan-in of optics to com-
pute problems in the AC, and TC, (parallel) circuit classes. These are defined
similarly to NC circuits except we allow unbounded fan-in gates, and threshold
gates, respectively. The results of Reif and Tyagi [23], and Caulfield’s observa-
tion on the benefits of unbounded fan-in [6], can be interpreted as exploiting this
important and efficient aspect of optics.

There is scope for further work here, on the continuous space machine in
particular, in order to find exact characterisations, or as close as possible for
NCk for given k. Or even better, to find exact characterisations of the ACk or
TCk classes of problems.
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Abstract. It is shown how to realize quantum gates by decomposing the gates 
into summation of unitary matrices where each of these matrices is given by a 
tensor multiplication of the unit and  Pauli  2x2 spin matrices. It is assumed that 
each of these matrices is operating on a different copy of the quantum states 
produced by 'quantum encoders' with a certain probability of success. The use 
of the present probabilistic linear optics' method for realizing quantum gates is 
demonstrated by the full analysis given for the control phase shift gate, but the 
use of the present method for other gates, including the control-not gate, is also 
discussed.  

1   Introduction 

A quantum bit (qubit) is a two-level quantum system described by a two-dimensional 
complex Hilbert space [1,2]. The computational qubit state is described by a 
superposition of normalized and orthogonal states of a two-level quantum system  
denoted as  |0>  and |1>. In the present study photonic qubits are used where |0>  and 
|1> represent horizontal |H>and vertical |V>  polarized photons, respectively.  In order 
to implement general quantum computational processes one needs to apply control 
operations. In the present work we are interested in the implementation of quantum 
gates with two input qubits, known as the control qubit and the target qubit, 
respectively. The control qubit (A) is not changed by the quantum gate, but a certain 
linear unitary transformation  is performed on the target qubit  (B) if and only if the 
control bit is set to |1>. Optics seems to be a good candidate for achieving two-qubit 
quantum gates. Unfortunately, such gates are quite difficult to implement 
experimentally since the state of the control qubit should affect the second target qubit 
and this requires strong interactions between single photons. Such interactions need 
high nonlinearities well beyond what is available experimentally. 

Recently it has been shown by Knill, Lafllamme and Milburn [3] that probabilistic  
quantum logic operations can be performed using only linear optical elements, 
additional photons (ancilla), and post selection based on the single photon detectors. 
This idea has been implemented in various studies [4] and in particular Pittman, Jacobs 
and Franson [5-7] constructed a variety of quantum logic gates by using polarizing 
beam splitters (PBS) that completely transmit one state of polarization and totally 
reflect the orthogonal state of polarization. These methods overcome the complications 
introduced by using non-linear optics for realizing quantum gates, but on the other 
hand their nature is probabilistic throwing away a part of the measurements. 
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Probabilistic 'quantum encoding' processes have been realized experimentally and 
used for designing various quantum gates transformations [5-7]. The encoder consists 
primarily of a polarizing beam splitter (PBS) and resource pair of entangled photons 

in the Bell state ( )( )1/ 2 00 11φ + = +  [7]. For the quantum encoder the 

input qubit of a single photon, in a general polarization state 0 1α β+  , and one 

member of the entangled resource pair are mixed  at the PBS oriented in the  HV  
basis. There are three output ports of the quantum encoder, including two output ports 
for the PBS and one output port for the second member of the entangled resource pair. 
Detection of one photon by 'gating detector' in one output port of the PBS signals the 
fact that the two remaining photons are exiting the device in the other two output 
ports. Because the PBS transmits H − polarized photons  and reflects V − polarized 
photons it can be shown [5,7]  that the output state is of the form 

                   ( )1 1
000 111

2 2out
ψ α β ψ ⊥= + + ,                        (1) 

where  ψ ⊥  represents  combinations of states orthogonal to the condition of finding 

one and only one (1AO1) in the gating detector. In order to implement the quantum 
encoding process we accept the remaining outputs only when the condition 1AO1 is 
satisfied. In order to have only the condition  1AO1 and erase any additional 
information obtained by the gating detector the encoding is completed by accepting 
the output only when the gating detector measures exactly one photon in a 

polarization basis rotated by 045  from the HV  basis [5]. Under these circumstances 
and ideal conditions, which occur with probability of 1/2 , the device realizes the 
encoding [7]: 

                        
1 2 1 2

0 1 0 0 1 1α β α β+ → + .                             (2) 

The subscripts 1 and 2 indicate different copies of each state where the copied 
wavepackets are located in different places. Under ideal conditions the probability of 
success of the encoding process is 1/2. The encoding device is described in Fig. 1 of 
[7]. One should notice that the encoding transformation (2) obtained by post selection 
is different from the 'cloning' transformation [8]  

                   
( ) ( )

1 2
0 1 0 1 0 1α β α β α β+ → + +

     

which is not allowed. 

One should notice that the state  1 2 1 2
0 0 1 1

2

+
 is the well known entangled 

state which includes certain quantum correlations ,i.e, if the first photon is in the state 
|0>  (horizontal polarized photon) then the second photon is also in the state |0> while 
if the first photon is in the state |1> (vertical polarized photon)  then the second 
photon is also in the state |1>. As is well known quantum entanglement is a 
fundamental resource for quantum computation processes [1,2]. The encoding 
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transformation (2) produces a general entangled state and we would like to exploit 
such entangled states for implementing quantum gates. 

A new method is  developed in the present work for implementing quantum gates, 
based on the use of quantum encoders, which is basicly different from that presented 
in the previous works [5-7]. As is well known any unitary matrix can be decomposed 
into summation of tensor products of Pauli and unit spin matrices [2]. The application 
of such decomposition for the realization of quantum gates is quite problematic since 
in quantum computation we should use multiplications of unitary operators and not 
summations of them. However, there is a certain trick by which such decomposition 
can implement quantum gates. By using quantum encoders [5-7] we can 'copy' each 
state in the  qubit superposition. Then each matrix in the above decomposition of the 
unitary gate operates on a different copy and by adding the results in the different 
copies we implement the corresponding gate. It should be apparent that the quantum 
encoders which are based on probabilistic detection procedures [6,7] and which have 
been realized experimentally are different from 'cloning' of the qubits  which is  
prohibited by the quantum 'no-cloning' theorem [8]. The present new method is 
analyzed explicitly for the ( )CPHASE θ  gate but the options of using it for other 

quantum gates are also discussed. 
The present paper is arranged as follows: In Section 2 we analyze the 

decomposition  of two-qubit gates into summation of tensor products of  Pauli and 
unit spin matrices. In Section 3 we analyze the use of the present method for 
implementing the ( )CPHASE θ  gate. In Section 4 we discuss and summarize our 

results and conclusions.    

2   Two Qubit Gates Described by Tensor Products of Pauli and 
Unit Spin Matrices 

For using matrix representations of quantum gates the qubits 0  and 1  are 

described by the following column vectors 

                                   
1 0

0 ; 1
0 1

⎛ ⎞ ⎛ ⎞
≡ ≡⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.                                           (3) 

The linear transformations operating on these single-qubit column vectors are given 
by multiplying them by unitary matrices of dimension 2x2. These matrices can be 
represented by linear combination of the  four spin matrices: 

1 2 3

1 0 0 1 0 1 0
, , ,

0 1 1 0 0 0 1

i
I

i
σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

      (4) 

where I  is the two-dimensional unit matrix, and  1 2 3, ,σ σ σ  are the Pauli spin 

matrices.  
The two-qubit state can be given by four dimensional column vectors 
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1 0

1 1 0 1 0 1
00 ; 01

0 0 0 0 1 0

0 0

0 0

0 1 0 0 0 0
10 ; 11

1 0 1 1 1 0

0 1

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟≡ ⊗ ≡ ≡ ⊗ ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟≡ ⊗ ≡ ≡ ⊗ ≡⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,               (5) 

where in the ket states on the left handside of these equations the first and second 
number denote the state of the first and second qubit, respectively. The sign ⊗  
represents tensor product where the two-qubit states can be described by tensor 
products of the first and second qubit column vectors. 

CNOT gate is given by 

            ( ), , , 0,1 ; 0,1CNOT x y x x y x y= ⊕ = = .                    (6) 

and ⊗  indicates addition modulo 2 . This gate flips the state of the target qubit y  if 
the control qubit x is in the state |1>  and does nothing if the control qubit is in the 
state |0>. CNOT can be represented by a unitary 4x4 dimensional matrix operating 
on the above four dimensional vectors : 

                                         

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

CNOT

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

     .                                        (7) 

The 4x4  unitary matrix ( )CPHASE θ gate is given by 

                             ( )

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

CPHASE

e θ

θ

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

                                         (8) 

This gate (which does not have a classical analog [1]) applies a phase shift for the 

state 1,1  giving  

                                  ( ) 1,1 1,1iCPHASE e θθ = ,                                        (9) 

and does nothing if it operates on other states.  
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The CNOT gate is a standard component in computational circuits analysis [1,2]. 
Quantum computational circuits in which the control phase shift gate-

( )CPHASE θ  is inserted as one component has been analyzed in the literature (see 

e.g. [2], Figures (3.5) and (3.6) on page 116). 
Any two-qubit gate can be expressed in the Hilbert-Schmidt ( HS ) representation 

[9] as  

                                       
3

2 ,
, 0

j k j k
j k

U t σ σ
=

= ⊗∑ ,                                         (10) 

where by taking into account the properties of the spin matrices we find  

                                  ( ), 2

1

4l m l mt Tr U σ σ= • ⊗⎡ ⎤⎣ ⎦                                   (11) 

The point •  represents the ordinary matrix multiplication, the sign ⊗ denotes tensor 

product and the notation  Tr  represents the trace operation. 4 ,l mt  is given by the 

trace of the ordinary matrix multiplication of the four-dimensional matrix 2U  by the 

four dimensional matrix ( )l mσ σ⊗ . In deriving (11) we use the relations  

                                    ( ) ( ) , ,4j k l m j l k mTr σ σ σ σ δ δ⎡ ⎤⊗ • ⊗ =⎣ ⎦                      (12)  

While for a general two-qubit gate  16 elements of ,j kt  might be different from zero, 

for the main basic two-qubit gates only 4 elements ,j kt  are different from zero. We 

find by straightforward calculations for the CNOT unitary matrix of (7): 

                      ( ) ( )3 1 1

1 1

2 2
CNOT I I Iσ σ σ= ⊗ − + ⊗ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ .               (13) 

For the ( )CPHASE θ  gate of (8) we get: 

( ) ( ) ( ) ( ) ( )3 3 3 3CPHASE I I I Iθ κ λ σ σ µ σ ν σ= ⊗ + ⊗ + ⊗ + ⊗
(14) 

where  

            ( )1
1 , , 1

4
ie θλ µ ν λ κ λ= − = = − = +       .           (15) 

Each of Eqs. (13,14) includes four tensor products where the first and second 2x2 
matrix in each tensor product  operates on the first and second  qubit column vectors , 
respectively. For each qubit we can use the relations: 
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3 3 1 1

2 2

0 0 ; 1 1 ; 0 1 ; 1 0 ;

0 1 ; 1 0 ; 0 0 ; 1 1i i I I

σ σ σ σ
σ σ

= ≡ − = =

= = − = =
    (16) 

In polarization optics the states represented by the column vectors of  (3) are 
known as Jones vectors [10]. By using Jones calculus it is quite easy to implement the 
unitary transformations of (16) operating on single qubit column vectors.(See 
polarization optics transformations obtained by Jones calculus, including the effects 
of half-  and quarter-wave  retardation plates , and the general 2x2 unitary matrices 
transformation (1.5-11) of [10]). 

As explained in the introduction  the application of the decompositions (13,14) for 
the realization of quantum gates is quite problematic but they can implement quantum 
gates by the use of quantum encoders, as described in the following analysis.  

3   Realization of ( )CPHASE θ  Gate  by Quantum Encoders 

An input two-qubit state can be written as  

                  { }{ }0 1 0 1
in A A B B

ψ α β γ δ= + + ,                          (17) 

where the subscripts A and B refer to two separated qubits. The complex amplitudes 
for the first and second qubit are given by  α  and β  , and  γ   and  δ , respectively. 

The   ( )CPHASE θ  is defined  as leading to the output state  

0 0 0 1 1 0 1 1i

out A B A B A B A B
e θψ αγ αδ βγ βδ= + + +    (18) 

The first qubit (A) acts as a control and its value is unchanged on the output. In case 
that the first control qubit is in the |0>  state nothing happens to the second target 
qubit (B). In case that the first control qubit is in the |1> additional   phase θ  is 
inserted between the |0> state and the |1>  state of  the second target qubit, and we 
define this additional phase to be inserted in the  |1) state (but take into account that 
only the relative phase is important). In quantum computational circuits the case 

( )CMINUS CPHASE π=  is especially important [2]. In the following analysis it 
is shown how to implement the transformation (18) by  using quantum encoders. 

By using quantum encoders [7], as explained in the introduction, we can copy two 
times each input state transforming (17)  into  

{ } { } { } { }1 2 1 2 1 2 1 2
0 0 1 1 0 0 1 1

in A A A A B B B B
ψ α β γ δ⎡ ⎤ ⎡ ⎤= + × +⎣ ⎦ ⎣ ⎦    (19) 

In (19) we get multiplications of four states since each of the two-states denoted by 
the subscripts A  and B  has been copied twice by the quantum encoders and these 
copies are indicated by adding the subscripts one and two. 
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The input state 
in

ψ  of (19) can be rearranged as  

     
{ }{ } { }{ }

{ }{ } { }{ }
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

0 0 0 0 0 1 0 1

1 0 1 0 1 1 1 1

in A B A B A B A B

A B A B A B A B

ψ αγ αδ

βγ βδ

= +

+ +
   (20) 

For each four-state multiplication of (20) the  two-states given in the first curled 

bracket which are indicated by the subscripts 1A  and 1B  are  copied into equivalent 

two-states given in the second curled bracket which are indicated  by the subscripts 

2A  and 2B .  

              Eq. (14) can also be written as a summation of two unitary matrices   

           ( ) ( )( ) ( )( )3 3 3CPHASE I I Iθ κ µσ σ λσ ν= ⊗ + + ⊗ +             (21) 

By using the  decomposition of  (21) into the  summation of two 4X4 unitary matrices 

and the relations (16), we will assume that the unitary matrix ( )( )3I Iκ µσ⊗ +  

will operate on the two-states given in the first curled brackets of (20) with subscripts 

1A   and 1B  leading to the transformations: 

{ } ( ){ } { } ( ){ }
{ } ( ) { } ( ){ }

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

0 0 0 0 ; 0 1 0 1

1 0 1 0 ; 1 1 1 1

A B A B A B A B

A B A B A B A B

κ µ κ µ

κ µ κ µ

→ + → −

→ + → −
       (22) 

and  that the unitary matrix ( )( )3 3 Iσ λσ ν⊗ +   will operate on the two-states 

given in the second curled brackets of (20) with subscripts 2A  and 2B  leading to the 

transformations: 

{ } { } { } { }
{ } { } { } { }

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0 0 0 ( ) 0 ; 0 1 0 ( ) 1

1 0 1 ( ) 0 ; 1 1 1 ( ) 1

A B A B A B A B

A B A B A B A B

λ ν ν λ

λ ν λ ν

→ + → −

→ − + → −
 

                                                                                                                                 (23) 

Such processes can be implemented experimentally due to different locations  of the 
two-states so that the operation of the unitary matrix ( )CPHASE θ  has been   
decomposed here into the summation of two unitary processes each operating on a 
different copy of the two-states. 
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Performing the transformations (22-23) on the input state (20) we get : 

        

( ){ } ( ){ }
( ){ } ( ){ }
( ){ } ( ){ }
( ){ } ( ){ }

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

out A B A B

A B A B

A B A B

A B A B

ψ αγ κ µ λ ν

αδ κ µ ν λ

βγ κ µ λ ν

βδ κ µ λ ν

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ + − +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦

       (24) 

Here the phases of the states with subscripts 1A  and 2A  are assumed to be positive 

and relative to them the phases of the qubits with subscribts  1B  and  2B are given. 

One  should take into account that by the copying procedure the input and 
correspondingly the output states were doubled.  

We can consider (24) as a certain implementation of the ( )CPHASE θ  gate 

where the control operation of this gate has been decomposed into two equal control 

qubits. We find that the states with subscript 1A  are equal to those with subscript  

2A , both can be considered as equal to the control qubit  which is not changed by the 

quantum gate. The target states have been decomposed here into two different target 

states denoted by the subscripts 1B  and  2B . We get a relative phase of the target 

state denoted by subscript 1B  relative to the control state denoted by subscript 1A , 

and we get a relative phase of the target state denoted by subscript 2B  relative to the 

control state denoted by subscript  2A . When we add these two relative phases, 

which can be obtained in two separated experiments, the ( )CPHASE θ  gate is 

realized as  described  by the following correspondences:  

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2

1 2

1 2

1 2

0 0 2 0 ; 1 1 2 1 ;

0 0 0 ;

1 0 0 ;

0 0 0 ;

1 1 0

A A A A A A

B B B

B B B

B B B

B B B

κ µ λ ν κ µ λ ν

κ µ ν λ κ µ ν λ

κ µ ν λ κ µ ν λ

κ µ λ ν κ µ λ ν

→ →

⎡ ⎤ ⎡ ⎤+ + → + + +⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − → − + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤+ − + → + − −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − → − + −⎣ ⎦ ⎣ ⎦

 .       (25) 

Using the relations (15) we get  

( ) ( )
( ) ( )

1 ; 1 ;

1 ; 1 4 ie θ

κ µ λ ν κ µ ν λ

κ µ ν λ κ µ λ ν λ

+ + + = − + − =

+ − − = − + − = + =
                    (26) 
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Substituting  (25,26) into (24) we get 

0 0 0 1 1 0 1 1
2

iout

A B A B A B A B
e θψ

αγ αδ βγ βδ= + + +    (27)           

which is equivalent to the transformation given by (18) (up to the unimportant factor 
2). The transformation in the doubled space of (20) to the output (24) with the above 
correspondences leads in a certain special way to implementation of the 

( )CPHASE θ  gate.  

        One should take into account that ( )CPHASE θ  has been implemented by 

one to one correspondence of (20) to (24) so that such implementation is mainly in 
'principle'. One might also perform the addition of the relative phases in interference 
experiments leading to relations (26) and then the implementation will be also in 
'practice'. The relations (25,26) are given by the addition of the amplitudes like those 
given by interference experiments and are basicly different from the addition of logic 

states numbers [2]. The transformation in the doubled space of the input state 
in

ψ of 

(19) to the output state 
out

ψ  of (24) realizes the quantum gate since we can 

transform back the doubled output state to the ordinary ( )CPHASE θ output two-

qubit state. 

4   Summary, Discussion and Conclusion 

The use of probabilistic logic operations has been  developed  for implementing 
quantum gates. It has been shown that quantum gates can be decomposed into 
summation of tensor products of unit and Pauli 2x2 spin matrices. Such 

HS decomposition has been  applied  for the ( )CPHASE θ  gate leading to a 

summation of two unitary matrices of dimension 4x4. In the present method each 4x4 
matrix operates on a different copy of the two-states produced by quantum encoders. 

By adding the relative phases in the two two-states' copies the ( )CPHASE θ  gate is 

realized.  
           The same technique that has been described in the present work for 

implementing the ( )CPHASE θ  gate can be used also for implementing the 

CNOT  gate. The encoding process for the quantum states is the same for the two 

cases. The only difference is that the decomposition of the  ( )CPHASE θ gate by 

(14) is replaced by the decomposition of the CNOT  by (13). Replacing the 
operations of the unitary matrices of (14) on the quantum states, by those of (13) one 
can use a similar procedure for implementing the CNOT  gate. While the  

( )CPHASE θ  gate is realized by adding the relative phases of the two target states, 
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the CNOT  gate can be realized by adding the polarization states of the two target 
states. Thus, we have shown therefore a new method for implementing  both  

CNOT and ( )CPHASE θ  gates [1,2]. 

In the present work we have used the HS  decomposition by which the quantum 
gate is decomposed into a summation of unitary matrices where each of these matrices 
is given by tensor products of Pauli and unit spin matrices. It has been shown that by 
operating with each of these matrices on a different copy of the states in each 
superposition and by adding the results for the different copies the quantum gate is 

realized. The analyses for ( )CPHASE θ  and CNOT  gates are relatively simple due 

to the fact that for these gates the decomposition can include only two such matrices. 
For other gates the HS  decomposition might include the summation of more unitary 
matrices so that the corresponding copying processes by quantum encoders should be 
more complicated. However, the present analysis becomes quite general if we consider 
the fact that any quantum gate can be obtained by the combinations of single-qubit gates 

and two-qubit ( )CPHASE θ  and CNOT  gates [1,2]. 

Quantum encoding processes which are obtained by using probabilistic 
transformations have been already applied successfully in the experiments reported in 
[5-7]. In the present work the use of quantum encoders has been developed for 
implementing quantum gates by new methods using the HS decomposition which 
are different from those used previously and  these methods should  therefore be of 
interest both theoretically and experimentally. 

Any quantum computational process is described by a certain circuit assuming any 
initial input state and its end to be measured. The quantum circuits described in the 
present analysis seem to be different from the conventional  ones. However, the initial 
state assumed in our analysis and its end to be measured are equivalent to the 
corresponding conventional two-qubit gates. Therefore we find that the present 
method has developed certain realizations of the quantum gates. 
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Abstract. An optical method for modulo operations has been proposed. This 
method utilizes phase modulation of light wave. This method can be applied to 
modulo multiplication which is an important operation in an algorithm for 
prime factorization. Optical parallel processing based on the method is imple-
mented with a Michelson interferometer. This report shows that this method is 
effective in prime factorization. Especially, we study on suitability between 
large scale data processing for the prime factorization and the proposed method. 

Keywords: Parallel processing, phase modulation, optical interference, modulo 
operation, prime factorization, spatial parallelism. 

1   Introduction 

As is well known, optical signals have various advantaged features for information 
processing. Broad bandwidth and huge capability for data storage are mentioned as 
examples of such features. Also, spatial parallelism is one of the promising character-
istics in optical information processing. 

Recently, some optical methods for problems requiring exponential computa-
tional costs with electronic processing have been proposed. In Ref. [1], a method 
for the Hamiltonian path problem is reported. This method utilizes delay of the rays. 
Also, two solutions for the traveling salesman problem have been developed. One is 
based on white light interferometry with fiber optics [2]. In the other methods, a set 
of network is represented as a binary matrix and the output is obtained by a matrix 
vector multiplication [3]. The multiplication process is realized with a joint trans-
form correlator. 

In such a situation, we have proposed an optical method for parallel modulo opera-
tions [4]. One of the advantaged features of the proposed method is based on spatial 
parallelism of light. This method gives wave fields corresponding to results of modulo 
operation by modulating phase of light wave. Moreover, this method is applied to 
modulo multiplication.  Massive data processing for modulo multiplication is impor-
tant in an algorithm for prime factorization [5]. The proposed method has been veri-
fied to be useful for prime factorization.  
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In this report, the principle of the method is described. And, some advantaged fea-
tures of the system are discussed. 

2   Modulo Operation with Optical Phase Modulation 

In the factoring algorithm reported in Ref. [5], two prime numbers of a target integer 
are obtained with the period of modulo exponentiation as described in Eq. (1).  

 

f (x) = ax mod N                                                     (1) 
 

In this equation, N shows a target integer (N=pq). And a is an integer selected in pre-
processing. Here, a should be satisfied with inequality (2) and Eq. (3), respectively. 
 

1 < a < N                                                            (2) 
 

gcd(a,N) =1                                                     (3) 
 

In Eq. (3), gcd (a, N) indicates the greatest common devisor between a and N. In case 
that the period of f (x) is an odd number, p and q are given by the following two equa-
tions. 
 

p = gcd(ar / 2 −1, N)                                                (4) 
 

q = gcd(ar / 2 +1, N)                                                 (5) 
 

In the algorithm, f (x) is derived in accordance with the Shonhage-Strassen algo-
rithm [7]. Note that modulo exponentiation is derived with sequence of modulo mul-
tiplication represented as Eq. (6). 

 
g(x) = yx modN                                            (6) 

 
Let us consider a sinusoidal wave defined as Eq. (7). 
 

U(φ) = cos 2πφ( )                                            (7) 
 

In Eq. (7), by setting φ = yx/N, Eq. (7) is modified as shown in Eq. (8). 
 

U(φ) = cos 2π yx

N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

= cos 2π kN + g(x)
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

= cos
2π
N

g(x)
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

                                    (8) 
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Eq. (3) shows that wave fields corresponding to remainder are obtained by simple 
phase modulation. 

3   Optical Hardware and Improved Solutions 

3.1   Basic Architecture for Optical Implementation  

An optical system for parallel processing based on the above scheme can be con-
structed with a Michelson interferometer as described in Fig. 1. In the system, the 
mirror put at one optical arm is tilted to generate desired interference signals. A tilt 
angle to execute parallel processing shown in Eq. (7) is given by Eq. (8).  

 

θ = 1

2
sin−1 yλ

DN

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟                                                     (8) 

 
In this equation, λ and D show wavelength of the light source and pixel pitch of PD 
array, respectively. Interference signals are observed with photodetector array. Opti-
cal path difference between pixels is (yλ/N). In accordance with procedure reported in 
Ref. [4], prime factorization is executed with the optical system and post processing. 
We have developed and demonstrated an optical system based on the architecture 
described in Fig. 1.  

3.2   Previous Works  

In the first prototype reported in Ref. [4], 640 points of g(x) can be achieved in paral-
lel. The performance of parallel processing directly depends on the array size of de-
tectors. It has been shown that proposed method is able to give correct period of f (x) 
with post processing even though noise signals are included in measured interference 
signals. 

 

Fig. 1. Schematic diagram of an optical parallel processor for modulo operations 
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A method for two-dimensional parallel processing has been reported as improve-
ment of the proposed method [6]. In the two-dimensional parallel system, both mir-
rors in the interferometer are controlled. One is rotated at θ-direction. And, the other 
is turned at α-direction. Interference patterns are generated and measured with two 
dimensional array of photo sensors. Note that this architecture is suitable for an area 
sensor. Fig. 2 shows a photograph of the constructed system. This system can achieve 
1344x1024 points of parallel operations. It is shown that two dimensional processing 
is useful to improve processing performance dramatically. 

 

Fig. 2. Photograph of the experimental system for two dimensional parallel processing 

 

Fig. 3. Numerical analysis for auto correlation of modulo exponentiation obtained by the im-
proved method with Eq. (9). (a)~(d) show those in case of  m=1, 2, 4, 32, respectively. 
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Another method has been proposed. This method improves processing perform-
ance without change of device. In the method θ is set as described in Eq. (9). 

  

θ = 1

2
sin−1 m

D

aλ
N

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟                                                    (9) 

 

Here, m must be a natural number. Therefore, this method can achieve m times of 
parallel processing in comparison with the first system described in Fig. 1. Fig. 3 
shows an example of the improved method. There are results of numerical analysis. 
Horizontal and vertical axes show x and auto correlation of f (x), respectively. In this 
case, N and a are 1643 and 300 respectively. From the graphs, it is confirmed that 
correct period (=780) is derived in case of m≦32. 

On the other hands, noise robustness of an optical system described in Fig. 1 is es-
timated [9]. In an interferometer, misalignment and noise components are unavoid-
able. Therefore, error tolerance of the optical system is important for estimation of the 
proposed method. As results of estimations, we show that the proposed method has 
high robustness against noise signals.  

4   Discussion about Spatial Parallelism and Suitability of 
     Mathematical Property 

In Ref. [4], we discuss on characteristics of the optical system shown in Fig. 1. Only 
single emitter and single modulator are required to construct the system. Note that 
two modulators are used for two dimensional parallel processing. The reason of the 
characteristics is described. In our method, plane wave corresponds to input state-
ments for parallel processing. That means that input datum can be generated optically 
and passively. Almost of conventional optical parallel processors requires huge num-
bers of emitters. Therefore, our method seems to be effective for practical use. More-
over, the improved method using Eq. (9) executes modulo operations with fewer 
photodetectors. By use of the improved method, large scale information processing 
can be implemented at less device costs. 

In the studied prime factorization, also, desired prime factors can be derived even 
though measured optical signals have noise components caused by misalignment. The 
reason of that is described. In our scheme, period of f (x) is obtained with the optical 
system and post signal processing. One of the reasons of the feature, mathematical 
property is mentioned. f (x) is known to be periodical function. And the period is an 
integer. By use of these characteristics, results obtained by the optical system can be 
compensated in the post processing. Therefore, it may be permitted that results of 
optical processing have slight errors. Suitability between required exactness in the 
target signal processing and accuracy of optical hardware is considered to be impor-
tant to develop a practical optical system utilizing spatial parallelism. 

5   Summary 

We have reported an optical method for parallel processing. This method is based on 
optical interference and is effective in prime factorization. Reasons of the effectiveness of 
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the method have been discussed. In the discussion, we especially focus on the spatial 
parallelism of optical processing and suitability between mathematical characteristics and 
optical operations. 

However, we have not yet developed a solution to execute prime factorization in 
polynomial time costs. To construct the solution is final goal of our research and a 
challenging issue. 
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Abstract. Most, if not all, optical hardware-based neural networks are slow 
during the neural learning phase.  This limitation has been not only a speed bot-
tleneck, but it has contributed to the lack of wide-spread use of optical neural 
systems. We present a novel solution – Optical Fixed-Weight Learning Neural 
Networks. Standard neural networks learn new function mappings by the 
changing of their synaptic weights.  However, the Fixed-Weight Neural Net-
works learn new mappings by dynamically changing recurrent neural signals. 
The (fixed) synaptic weights of the FWL-NN implement a learning "algorithm" 
which adjusts the recurrent signals toward their proper values.  
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1   Introduction 

Optical hardware is probably the fastest method of performing the forward-
propagation phase of neural networks. An optical neural computer similar to those 
presented in [1, 2] should be able to perform over 1013 synaptic operations per second 
using current technology. Optical Neural squashing computations can now be per-
formed on the sub-picoseconds time scale [3]. 

Most, if not all optical hardware schemes are slow during the neural learning 
phase.  Optical learning has traditionally been done on a separate (non-optical) com-
puter and the results stored on film, or required the use of a relatively slow (and/or 
expensive) spatial light modulator. This limitation has been not only a speed bottle-
neck, but it has contributed to the lack of wide-spread use of optical neural systems.  

We present a different solution – Optical Fixed-Weight Learning Neural Networks 
(Optical FWL-NN).  Standard neural networks learn new function mappings by the 
changing of their synaptic weights.  However, the FWL-NNs learn new mappings by 
dynamically changing recurrent neural signals. The (fixed) synaptic weights of the 
FWL-NN implement learning "algorithm" which adjusts the recurrent signals toward 
their proper values. That is, instead of encoding a particular mapping, the synaptic 
weights of a FWL-NN encode how to learn any mapping (within a large, perhaps 
infinite, set of possible mappings).  
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We developed an optical hardware neural network to investigate the precision, 
alignment, calibration, speed, and algorithmic issues associated with Optical FWL-
NNs.  We report on the hardware design, generation of the synaptic weights, and 
initial results for some Fixed-Weight Learning tasks. 

2   Optical Neural Hardware 

Our optical hardware was not designed to be especially fast or to accommodate ex-
ceptionally large networks. It serves as a test apparatus for studying Optical Fixed-
Weight Learning Neural Networks. Flexibility of use and (relatively) low cost were 
our main design criteria.  With what we have learned, we are in the process of design-
ing a fast, compact and expandable Optical Neural Network platform. 

Presynaptic 
Optics 

LASER

Control Computer 

Synaptic Media

Spatial Light 
Modulator: DMD 

CCD

Spatial Filter 

Postsynaptic 
Optics 

Iris

 

Fig. 1. Optical Neural Hardware 

2.1   Hardware Overview 

Figure 1 shows the optical neural hardware test apparatus. Light from a laser is ex-
panded and directed toward a Spatial Light Modulator (SLM).  The SLM creates the 
neural signals by modulating the intensity of a set of light beams. We used a Digital 
Micromirror Device (DMD) for the SLM. The DMD consists of a rectangular array of 
almost 1 million tiny mirrors along with drive and interfacing electronics. Under 
software control, each mirror can be individually set to either on (reflecting its beam 
toward the presynaptic optics) or off (reflecting away). The resulting signal beams 
pass through pre-synaptic optics and onto the synaptic medium, (35mm slide). The 
slide has small rectangular areas of various shades of gray that encode the synaptic 
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weights. Synaptic multiplications are performed by the attenuations of the several 
light beams passing through the medium. 

The attenuated optical signals are focused onto a CCD array and sent to the com-
puter. The optical signals are spatially integrated over each region-of-interest. These 
dendrite signals are then sign-summed and the nonlinear squashing function applied, 
producing the network outputs. These last functions are currently performed in software. 

2.2   Distortion, Alignment and Calibration 

The 35 mm film synaptic medium can be generated with high spatial precision, as can 
the positions of a source neuron on the DMD and terminal neurons on the CCD. 
However, the pre- and post-synaptic optics generate considerable distortion. One 
solution would have been to create elaborate optics to eliminate these distortions. We 
decided to use more flexible software processing to correct the distortions. 

There are two distortions to correct.  First, the distortion of the DMD image caused 
by the pre-synaptic optics must be canceled out before it reaches the fixed synaptic 
medium, where precise registration is critical. Second, we must correlate the CCD 
positions of the (now attenuated) dendrite images which are further distorted by the 
post-synaptic optics. 

The first distortion is hard to measure because we can't directly view the image 
projected onto the synaptic media.  Instead, we project a rectangular array of dots 
(called pegs) from the DMD through a transparent slide and onto the CCD.  By auto-
matically measuring the CCD coordinates of the pegs, and knowing where they are on 
the DMD image, we computed a transformation matrix DMD to CCD− − . 

The second distortion can be more directly measured by sending an all pixels on 
signal to the DMD, and projecting the light through a slide of a rectangular array of 
holes. These holes are clear areas on an otherwise opaque slide. They are at the same 
relative positions on the film as the pegs were on the DMD.  By semi-automatically 
capturing the CCD coordinates of the holes, and knowing where they are on the slide, 
we computed the transformation matrix Slide to CCD− − .    

Since DMD to CCD DMD to Slide Slide to CCD− − = − − × − − , we can 

compute the matrix DMD to Slide− − , which transforms from the DMD to the 
synaptic medium. From this information, we determined how to pre-distort the DMD 
image in such a way that the presynaptic optics undistorts it and cause the DMD im-
age to arrive properly aligned with the synaptic slide. That is, to make the pegs match 
the holes.  

We performed the matrix calculations with up-to linear, quadratic and cubic terms 
in the matrices. The cubic calculation performed the best. It can correct for transla-
tions, rotations, stretching, keystoning, pincushioning and barrel distortions.  We 
found that 42 pegs/holes (6 x 7) gave good results. This created over-determined 
transformation matrices. We used the Moore-Penrose pseudo inverse to find a least-
squares solution. 

Figure 2 shows a CCD image of 30 synapses projected from the DMD through the 
slide and onto the CCD.  The gray levels differ due to the attenuation by the slide. 
Notice substantial distortion of the (originally rectangular) areas. The white boxes  
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Fig. 2. Actual and Computed Regions-of-Interest 

around the gray areas show where the projected synapses are expected to be -- based 
on the matrix calculations. Note that the computed locations are in excellent agree-
ment with the actual image projections, although they are substantially distorted. 

2.3   Encoding the Synaptic Weights 

Film has a large storage capacity of 10 MegaPixels for a 35mm slide. A high-quality 
Holographic Plate can store an order of magnitude more information [2].  To reduce 
problems associated with film's very non-linear grayscale, we used a binary pixel area 
encoding for our synapses.  A synaptic weight of [0...1]W ∈  will have a portion of 

W  of randomly selected pixels within its area set to clear, and 1 W− of its pixels set 
to opaque. This worked out to be over 16 significant bits of gray level precision for 
the synapses in our networks. 

The accuracy of the film medium proved to be more problematic. The lack of re-
producibility of the actual gray level from slide-to-slide, and even between different 
areas of the same slide, was a major difficulty to be solved for fixed-weight learning 
to be successful.  

Our solution this problem was to calibrate each dendritic area individually.  Doing 
this automatic gain control once-per-phase also solved problems of the laser light 
source intensity and beam profile drifting over time.  

2.4   Encoding the Neural Signal Intensity 

The individual DMD pixels can be in one of two states – 0 or 1, on or off. This limits 
the type of intensity modulation schemes that can be used with this design.  We tested 
three modulation schemes. 

1. Area Pixelation (AP): Because the source areas contain many pixels (several thou-
sand in our examples) a gray level of between zero and one can be produced by 
turning on the number of pixels proportional to the desired signal intensity. These 
pixels were uniformly and stochastically selected over each source rectangle. 
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2. Pulse Width Modulation (PWM) – generate N time slices according to the num-
ber of required significant bits of the signal. (e.g. 256 time slices for 8 significant 
bits.) Turn all the pixels in a rectangular area on a number of time slices propor-
tional to the desired signal value, and then turn them off for the remaining pulse 
train time slices. 

3. Stochastic Pulse (SP) – same as PWM, except the pixels are switched on and off 
stochastically in the proper portions to create the desired signal value [10]. 

The AP had the advantage of being much faster because it only used one time slice 
instead of 256 or more. However, the response of the system was very non-linear.  

The PWM and SP methods both have the advantage of being able to adjust the num-
ber of required signal significant bits by changing the number of time slices.  Speed can 
be sacrificed for accuracy, or vice versa.  The accuracy of both the PWM and SP meth-
ods was essentially the same. The PWM was slightly faster on our hardware. 

2.5  Wave Effects: Diffraction and Interference 

There were two main problems created by to the wave properties of the light. First, 
the periodic arrangement of the DMD formed a 2-D diffraction grating, creating mul-
tiple copies of the DMD image to be formed. This problem proved easy to solve, 
since the zeroth-order image was clearly brighter and easily identifiable. A converg-
ing lens in the presynaptic optics produced clearly separated diffraction images. An 
iris excluded all images but the zeroth order. 

The second problem was created by the diffraction of the light from the individual 
rectangular source areas on the DMD. These are rectangular apertures which create a 
diffraction pattern of light, some of which spills outside of the rectangular image on 
the film and on the detector.  This was the major source of crosstalk between synaptic 
areas. Even a fairly small amount of crosstalk was highly detrimental to the network 
accuracy. We solved this problem by increasing the dark borders between the source 
areas to about 20% of the size of the rectangle. This diffraction imposes a limit on the 
number of synapses that can be handled by this optical neural network design. A goal 
of our future designs is to eliminate this problem. 

2.6  Clock Issues: Cycles, Phases and Pulses 

All neurons in our networks were synchronous. Each neuron computes its next state 
based on the current activations of its source neurons, but does not change its output 
until all neurons have finished computing their next state. Then all neurons on the 
same class change their state simultaneously. There are two classes of neurons: per-
pulse-update and per-phase-update.  

Our optical hardware network has three levels of timing. External cycle, internal 
phase and signal pulses.  External cycles represent one network input vector being 
processed to generate a network output vector. That is, one exemplar is processed. The 
network input vector is applied at the beginning of a cycle and remains unchanged 
until the next cycle. The network's output vector is decided at the end of a cycle. 

An internal phase is the time it takes a signal to forward-propagate one layer. Typi-
cally, our networks may have three to six internal phases for each external cycle. The 
per-phase-update neurons change their outputs at the end of an internal phase.   



 Learning at the Speed of Light: A New Type of Optical Neural Network 109 

For pulse-based intensity modulation schemes, each internal phase is divided into a 
number of pulses.  The number of pulses depends on the number of significant bits 
required for the neural signals. It was typically 256 pulses for 8 significant bits. The 
DMD is updated and a new CCD image acquired each pulse. The per-pulse-update 
neurons change their output at the end of each pulse. 

3   Fixed-Weight Learning Neural Networks 

3.1   The Fixed-Weight Learning Theorem 

Fixed-Weight Learning (also called Adaptive or Accommodative Neural Networks) 
has been investigated by several researchers [4-9] However, this is (as far as we 
know) the first reporting of results from FWL-NNs implemented in special hardware, 
whether optical or electronic. Previous papers have been mostly concerned with their 
highly adaptive nature and/or their use in optimizing learning. 

In [4] Cotter and Conwell proved the Fixed-Weight Learning Theorem:  Given a 
neural network topology (which learns by changing weights) and its attendant learn-
ing algorithm, there exists an equivalent FWL-NN. Any mapping that can be learned 
by changing the weights of the original network can be learned by the FWL-NN 
without changing any synaptic weights.   

The FWL-NN learns because a learning algorithm is encoded in its (fixed) synaptic 
weights.  The learned function mapping information is dynamically stored in recurrent 
neural signals.  We call these signals potencies (also known as flying weights [11]) to 
distinguish them from the standard synaptic weights. 

A FWL-NN can learn the full range of mappings that its non-fixed-weight equiva-
lent network can learn. However, there are costs associated with fixed-weight  
learning.  The FWL-NN will (almost always) be larger than the equivalent changing-
weight network. This is because it also has to perform the learning computations 
along with the mapping computations of the equivalent network. Also, FWL-NNs are 
necessarily recurrent even if the initial equivalent network was not.  

All of the FWL-NNs presented here perform on-line learning. The target value of the 
previously presented exemplar (during the last external cycle, t-1) is provided to the 
network. Alternatively, the error of the network output for the previous exemplar could 
have been provided. In general, on-line learning is not a requirement for FWL-NNs. 

3.2   Creating the Fixed-Weight Learning Networks 

The method we used for this work assumes that the network can be divided into two 
main parts: the planapse and the tranapse. The planapse (from πλανη meaning error) 
performs the potency update calculations, and the tranapse performs 'the potency 
signal times the input signal' calculations. In our networks, there is one planapse and 
one tranapse for each synapse in the equivalent non-fixed-weight equivalent network.  

The planapse and tranapse computations are performed by sub-networks that were 
trained separately and integrated together to form the FWL-NN.  
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Planapse. The planapse sub-network was trained to learn well-known (on-line) Back-
propagation Learning Rule: 

( ) ( )( ) ( 1) ( 1) 1 ( 1) ( 1) ( 1) ,   where

        :current exemplar (external cycle)

1   :exemplar one cycle previous

       :input to synapse

       :output of neuron

       :Target value f

P t x t y t y t y t T t

t

t

x

y

T

∆ = − × − × − − × − − −

−

or neuron

    :Change in Potency (flying weight signal)P∆  

(1) 

This can be a bit confusing since the Backpropagation learning rule was used to 
train the planapse on the Backpropagation learning rule.  Of course, other learning 
rules could be used for either.  

The training data sets were generated by choosing random values for the inputs, and 
using the mapping formula to compute the targets. Note that a feedback signal consisting 
of the target value ( 1)T t − for the previous data exemplar must be provided to the 

FWL-NN. Alternatively, an error signal, such as ( ) ( 1) ( 1)e t y t T t= − − − could have 

been used as the feedback. The P∆  can be either positive or negative (bipolar), but 
optical intensity signals are unipolar. We scaled the calculations so that zero was repre-
sented by light as half intensity, the most negative signal was represented as no light 
intensity, and the most positive signal was represented by full light intensity. 

Tranapse. The tranapse sub-network was trained to perform a scaled version 
of ( ) ( ) ( )s t P t x t= × . That is, a Potency signal times an input signal.  We named 

this sub-network a tranapse, because a tranapse is to a (artificial) synapse as a transis-
tor is to a resistor.  The same bipolar scaling method was used as with the planapse. In 
addition, the tranapse output was scaled to effectively extend the potency range 
to Pω ω− ≤ ≤ + , where ω was usually 4.0. 

3.3   From Software Synaptic Weights to Optical Attenuations 

The (fixed) synaptic weights ranged from -10 to +10. However, attenuation of light 
physically ranges from 0 to 1.  The sign of the synaptic weight was known by our 
software neurons, so the attenuation needed to only encode the magnitude of the 
weights. The maximum synaptic weight magnitude was determined for each neuron. 
Each of the neuron's synaptic weights was divided by this maximum weight magni-
tude to compute the required attenuation. To compensate for this weight scaling, each 
neuron has a constant multiplicative scale factor which is equal to the maximum 
weight magnitude. This "extra" scale factor should require no extra opto-electronic 
hardware, since the optical signal must be amplified anyway as part of the light detec-
tion process.  

We tried various ways of dividing the planapse/tranapse pairs into sub-networks. 
For instance, should the multiplications be separately trained? Should the planapse 
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and tranapse operations be done within the same-subnet with simultaneously training? 
Each of these sub-network configurations had its own strengths and weaknesses.  

One lesson we learned is that the precise numerical addition of two signals that are 
very different in magnitude (such as the weight update from t-1 to t) is very difficult 
for a network to learn, and easiest done by "hand" – that is, wiring up a linear neuron 
with appropriate synaptic weights. 

4   Experimental Testing Results 

4.1   Sub-network Training 

Table I illustrates (software-based simulation) performance data for a sub-network 
trained to perform unsigned multiplication (for instance, it may be used to perform the 

( 1) ( 1)x t y t− × − calculation in the planapse). Training was performed using the 

MATLAB nntool.m, using the automatic step size adjustment option traingdx.  We 
trained each of the networks for 100,000 epochs of 10,000 randomly-generated train-
ing pairs. The large number of epochs was necessary to reduce the network errors. 
The relatively large training data set helped reduce overlearning. All of the 
planapse/tranapse schemes required a similar amount of training.  

We believe that the small increase in error for more than 7 hidden neurons could be 
reduced by more epochs training on these larger networks.   

A separately generated data set was used to test the sub-networks after they were 
trained.  

The MSE and SigBits columns were calculated from: 
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As the table shows, the accuracy of the sub-network depends on the number of 

hidden nodes.  This points out a property of FWL-NNs -- the size of the neural net-
work required to learn a mapping set depends on the accuracy needed to learn the 
mapping set. 

4.2   Testing on Optical Hardware 

Table 2 shows the results of testing two neural networks on the optical hardware. The 
first network is an unsigned multiplication (uMULT). This is the same feed-forward 
network shown in Table 1 and Figure 2. The test data was a set of exemplars with two 

random inputs  1 2, { 0 1 }x x x x∈ ≤ < ⊂ ℜ  and one target 1 2T x x= × . 
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The second network is PlanTran, a FWL-NN that is equivalent to a network with a 
single changing synaptic weight, with logsig squashing function and trained by Back-
propagation. This FWL-NN is made from a single Planapse – Tranapse pair.  

Table 1. (Simulated) Unsigned Multiplication. Hidden Layer Size vs. Mean Squared Error 
(MSE), and number of significant bits of result. Size of Training Set: 10,000. Epochs: 100,000. 

Hidden Layer MSE Sig Bits
3 6.5003×10–4 5.3 
4 3.6876 ×10–4 5.7 

5 3.0794×10–4 5.8 
6 3.1636×10–5 7.5 
7 2.1617×10–5 7.7 

8 4.0069×10–5 7.3 
9 5.4367×10–5 7.1 

Generating Test Data for FWL-NNs. The algorithm to generate training/test data 
for a FWL-NN is: 

repeat Number-of-Mappings times 
  Randomly select a mapping M from a set of mappings S. 

 repeat Number-of-Exemplars-per-Mapping times 
      Generate a random input vector x 
      Use x with mapping M generate target vector T 
      Output training pair (x,T) 
     end repeat 
end repeat 

For PlanTran, S was the set of all function mappings ( )logsig , 4 4T M x M= ⋅ − ≤ ≤ + , 

where the real index M specifies the particular mapping. The set S represents all mappings 
that a single-synapse neural network (with logsig squashing function) can (in theory) learn 
exactly.  

There are several important parameters that were measured during the network 
testing.  Size of the network, the number of internal clock phases per external clock 
cycle (exemplars), the average number of cycles the network required to learn a map-
ping, the residual error of the FWL-NN after learning has occurred. 

For PlanTran, the number of SigBits was computed by: 

2

1

1
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Number of Exemplars Required to Learn Mapping
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Table 2. Experimental Results on Optical Hardware. L- Number of  Layers, N–number of 
neurons, W–number of synapses, φ − Phases per Exemplar, Pulses – Number of pulse timeslots 
in one Phase. Learn – Number of Exemplars required to learn mapping (for FWL-NN) , MSE – 
mean squared error (after learning), SigBits – Number of Significant Bits. 

NN L N W φ Pulses Learn MSE SigBits 
uMULT 3 13 30 2 128 n/a 0.0013 ~6 
PlanTran 4 29 100 6 256 11 0.0083 ~4 

5   Conclusion and Future Work 

The initial uMULT results show that the optical hardware can perform the unsigned 
operation to moderate precision (six bits or more).  The PlanTran network results 
demonstrates that Fixed-Weight Learning can work on an optical hardware platforms. 
However, a more accurate and reproducible method of creating optical attenuation 
than 35mm film may be necessary for larger networks. 

 Both of the above neural networks are fundamental "building blocks" on which 
larger FWL-NNs can be constructed. We are currently performing ongoing measure-
ments and testing to extend these results.  

Based on what we have learned while designing, building, and testing this optical 
hardware, we are designing a new hardware platform to support these new FWL-NNs. 
The goal of this research and development is to create a practical hardware platform 
capable of performing large, complex real-world neural computation tasks at very 
high speeds. 

Acknowledgments. This material is based on work supported by the United States 
National Science Foundation under Grant No. 0725867. 

References 

1. Keller, P.E., Gmitro, A.F.: Operational Parameters of an Opto-Electronic Neural Network 
Employing Fixed-Planar Holographic Interconnects. World Congress on Neural Networks 
(1993) 

2. Abu-Mostafa, Y.S., Psaltis, D.: Optical Neural Computers Scientific American (March 
1987) 

3. Kubler, C., Ehrke, H., Huber, R., Lopez, R., Halabica, A., Haglund, R.F., Leiterstorfer, A.: 
Coherent Structural Dynamics and Electronic Correlations during an Ultrafast Insulator-to-
Matal Phase Transition in VO2. Physical Review Letters. PRL 99, 116401 14 (September 
2007) 

4. Cotter, N.E., Conwell, P.R.: Learning algorithms and fixed dynamics. In: Proceedings of 
the International Conference on Neural Networks 1991, vol. I, pp. 799–804. IEEE, Los 
Alamitos (1991) 

5. Feldkamp, L.A., Prokhorov, D.V., Feldkamp, T.: Conditioned Adaptive Behavior from 
Kalman Filter Trained Recurrent Networks. IEEE, Los Alamitos (2003) 

6. Younger, A.S., Conwell, P.R., Cotter, N.E.: Fixed-Weight On-Line Learning. IEEE Trans-
actions on Neural Networks 10(2), 272–283 (1999) 



114 A.S. Younger and E. Redd 

7. Prokhorov, D.V., Feldkamp, L.A., Tyukin, I.Y.: Adaptive Behavior with Fixed Weights in 
RNN: An Overview. In: IJCNN 2002. IEEE, Los Alamitos (2002) 

8. Lo, J.T., Bassu, D.: Adaptive vs. Accomodative Neural Networks for Adaptive System 
Identification. In: IJCNN 2001, IEEE, Los Alamitos (2001) 

9. Hochreiter, S., Younger, A.S., Conwell, P.R.: Learning To Learn Using Gradient Descent. 
In: Proceedings of the International Conference on Artificial Neural Networks, Springer, 
Heidelberg (2001) 

10. Bade, S.L., Hutchings, B.L.: FPGA-Based Stochastic Neural Networks. In: Implementa-
tion IEEE FPGAs for Custom Computing Machines Workshop, Napa, CA, pp. 189–198 
(1994) 

11. Werbos, P.: Private Communication (2004) 



Solving NP-Complete Problems with Delayed

Signals: An Overview of Current Research
Directions

Mihai Oltean and Oana Muntean

Department of Computer Science,
Faculty of Mathematics and Computer Science,
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Abstract. In this paper we summarize the existing principles for build-
ing unconventional computing devices that involve delayed signals for
encoding solutions to NP-complete problems. We are interested in the
following aspects: the properties of the signal, the operations performed
within the devices, some components required for the physical imple-
mentation, precision required for correctly reading the solution and the
decrease in the signal’s strength. Six problems have been solved so far
by using the above enumerated principles: Hamiltonian path, travelling
salesman, bounded and unbounded subset sum, Diophantine equations
and exact cover. For the hardware implementation several types of sig-
nals can be used: light, electric power, sound, electro-magnetic etc.

Keywords: unconventional computing, signal-based computing, NP-
complete, delay lines, optical computing.

1 Introduction

NP-complete problems [6] have attracted a great number of researchers due to
their simple terms but huge complexity. Despite the impressive amount of work
invested in these problems no one has been able to design a polynomial-time
algorithm for them. A relatively new direction is to attack these problems with
unconventional devices. DNA computers [2], Quantum computers [5, 21], bub-
ble soap [1], membrane computing [18, 19], gear-based computer [22], adiabatic
algorithm [10] etc are few of the most important approaches of this kind.

Here we outline some of the most important principles governing some un-
conventional devices which use delayed signals for encoding solutions to NP-
complete problems. A common feature of all these devices is the fact that the
signals are delayed by a certain amount of time. The existence of a solution is
determined by checking whether there is at least one signal which was delayed
by a precise amount of time. If we don’t find a signal at that moment it means
that the problem has no solution.

The difficulty of this approach resides in the design of a delaying system such
that the solution can simply be read at an exact moment of time.

S. Dolev, T. Haist, and M. Oltean (Eds.): OSC 2008, LNCS 5172, pp. 115–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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At the current stage we are interested to find only if a solution exists for the
investigated problem. Otherwise stated, we try to solve the decision (YES/NO)
version of the problems.

Since we work with signals we need a physical structure in which the signals
travel. The structure is usually represented as a directed graph with arcs con-
necting nodes. The directed graph is designed in such a way that all possible
solutions of the problem are generated. The device has 2 special nodes: a start
node (where the signal enters) and the destination node (where the signals are
collected and interpreted).

Initially,thesignal (pulse) issenttothestartnode.Asthesignaltraverses ingraph
it will be divided into more and more signals. Each of them will encode a partial
solution fortheproblem. It is importantthatthesignalsdonotannihilateeachother.
At the destination node we filter the solutions by checking for the good ones.

Thereare several otherways for solvingNP-completeproblemsbyusing lightand
its properties. Two other different approaches have been presented in [4] and [20].

The paper is organized as follows: Section 2 describes the NP-complete prob-
lems. Properties of the signal useful for our research are described in section 3.
Operations performed in our devices are described in section 4. Some examples
of devices working with delayed signals are shown in section 7. Several practical
aspects for hardware implementation are discussed in sections 8 - 11. Difficulties
for the practical implementations are given in section 12. Further work directions
are given in section 13. Section 14 concludes our paper.

2 YES/NO NP-Complete Problems

NP-complete problems [6] are a special class of problems for which we don’t
know whether a polynomial-time algorithm exists. There is no proof that we can
solve them only in exponential time nor a polynomial algorithm was proposed so
far. NP-complete problems are linked together by a polynomial time reduction.
Thus, if one of them is solved in polynomial time it means that all others can
be solved in polynomial-time.

NP-complete problems are usually formulated as decision problems. Instead
of asking for a minimal solution (e.g. the shortest path, the smallest set, the
lowest point etc) one can ask if there is a solution smaller than a fixed constant
K (e.g. the length of the path is shorter than K, the number of elements in the
set is smaller than K etc). These are decision problems (also known as YES/NO
problems).

In our research we are interested in the solving the decision problems. We are
not interested to find the actual solution of the problems.

3 Properties of the Signal That We Can Count on

Two properties of signal are of great interest for our research. Most types of
signal that we know (light, sound, electric etc) have these properties.
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– The speed of the signal has a limit. We can delay any signal by forcing it to
pass through a cable of a certain length.

– Thesignalcanbeeasilydivided intomultiple signalsof smaller intensity/power.

For some problems it is required for the signal makes some loops (see the
unbounded subset sum problem in section 7). This type of flow is not possible
for the electric-based signals. This is why, when we talk about problems whose
structure requires loops we assume that we work with optical signals not with
electric-based.

4 What We Do with the Signals

The following manipulations of the signals are performed within the devices:

– When the signal passes through an arc it is delayed by the amount of time
assigned to that arc.

– When the signal passes through a node it is divided into a number of sig-
nals equal to the out degree of that node. Every obtained signal is directed
toward one of the nodes connected to the current node. In this way we add
parallelism to our devices. This feature is actually the source for a major
drawback: due to repetitive divisions the strength of the signal decreases ex-
ponentially and more and more powerful signals are required for larger and
larger instances of the problems.

5 Basic Idea

The device has a directed graph-like structure with 2 special nodes: a start node
and a destination node.

The signal is sent initially to the start node. It will then enter in the rest of
the graph where the actual computations are performed.

The purpose of the destination is to collect the solutions. In the destination
node we have placed a reading device which measures the moments when the
signals arrive there.

In the rest of the directed graph we have nodes which split the signal and
arcs which delay the signal. We work with arcs (directed edges) instead of edges
(undirected edges) because we don’t want to annihilate the signals coming from
2 opposite directions.

The graph must be constructed in a special way. Each signal follows a partic-
ular path meaningful for the problem structure. The signal constructs a solution
by visiting nodes and arcs. When it traverses an arc it is delayed by some amount
of time. Finally it arrives in the destination node. A black-box representation of
our device is given in Figure 5.

If the solution of the problem was correctly constructed we will have a par-
ticular delay induced to a particular signal. In what follows we denote by B
this delay. No other signals (which do not encode solutions) can have this delay.
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Fig. 1. Black-Box design of our device. Signal enters from start node. Within the device,
the signals follow different paths and are divided multiple times. In the destination we
will get different signals at different moments of time.

This is a hard constraint. The delaying system must obey this rule, otherwise
we cannot make distinction between signals representing complete solutions and
signals encoding partial or incorrect solutions.

The difficulty of this approach resides in satisfying this constraint.

6 Did We Solve the Problem?

In the destination node we have more signals arriving at different moments.
There can be two cases:

– If there is a signal arriving at moment B, this means that there is a solution
for our problem.

– If there is a no signal arriving at moment B means that there is no solution
to our problem.

If there is more than one signal arriving at the moment B in to the destination
it simply means that there are multiple solutions to the problem. This is not a
problem because we want to answer the YES/NO decision problem (see section
2). At this moment we are not interested in finding the actual content of the
solution.

Because we work with continuous signal we cannot expect to have discrete
output at the destination node. This means that arrival of the signals is notified
by fluctuations in the intensity of the signal. These fluctuations will be read by
some specialized device (such as an oscilloscope).

7 Designing the Graph

Figures 2, 3 and 4 show several directed graphs used for solving various problems.
All graphs have a polynomial number of nodes. In what follows we describe the
basic ideas behind each device.

The standard subset sum problem has the simplest design [11, 16]. Each num-
ber can appear or not in the final solution. This decision is represented in our
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device by 2 arcs having the same 2 nodes as extremities. One of the arcs has 0
length and the other arc delays the signal by an amount of time equal to one of
the numbers from the given set. If the signal traverses the arc having the length
greater than 0 it means that the corresponding number is selected in the solution.
If the signal traverse the 0 length arc it means that the corresponding number
is not selected in the solution. Practically we cannot have arcs of 0 length. This
is why a constant k is added to all arcs. (B + n ∗ k) is the moment when the
existence of a solution should be checked (where B is the target value of the
problem, n is the cardinal of given set and k is a constant). Finally, since we
want to sum all numbers in solution we construct the device in a serializable way
(see Figure 2 a)). The delays are polynomial (in the size of the given numbers).

The design for unbounded subset sum contains fewer arcs compared to stan-
dard subset sum due to constraint relaxation (each number can appear multiple
times in the solution). This is why we don’t have to create a serial structure
with no return arcs. Instead a loop structure was proposed [11, 12]. The internal
node is used for dividing any incoming signal into n + 1 subsignals (where n is
the cardinal of the given set). n signals are sent back to arcs encoding numbers
and the (n + 1)th is sent to the destination (see Figure 2 b)).

The Hamiltonian problem asks to visit each city exactly once (see Figure 3 a)).
It is not easy to satisfy this constraint since we cannot restrict the signal to visit a
node exactly once. More than that, the distance between nodes is not important
in this problem, thus if incorrectly designed can lead to multiple rays arriving in
the same moment in destination. Because the constraints are imposed by nodes,
the delays should be focused on nodes instead of arcs. This is different from the
previously described solutions where the only purpose of nodes was to divide the
signal. Let us suppose that the signal encoding the Hamiltonian path arrives at
moment B in the destination. No other signals (not encoding Hamiltonian paths)
must arrive in the same moment there. We have to choose the delay induced by
each node in order to satisfy this constraint. In [14, 15] it was shown an example
of such delaying system. That system guarantees that the delay induced to the
signal encoding a Hamiltonian path will not be equal to any other path visiting
some cities more than once or skipping some other cities. Unfortunately it was
exponential (the length of the delays increases exponentially with the number of
nodes).

The directed graph for the Exact Cover problem [6] (see Figure 3 b)) is a
combination between Hamiltonian path and standard subset sum [17]. Some
subsets from a collection must be chosen (like in the standard subset sum) and
each number from the original set must appear exactly once (like nodes in the
Hamiltonian path). The delaying system is exponential because it is based on
the Hamiltonian path device.

For solutions to Diophantine equations we have to choose some positive integer
numbers x and y which have the property a1∗x+a2 ∗y = c [11, 13] (where a and
b are some positive integer numbers). A brute-force approach was employed by
generating all possible pairs (x, y). The trick consists in a loop whose purpose is
to increase the value of a variable with 1 unit. The signal enters in the loop and
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Fig. 2. The graphs representing devices for a) standard subset sum, b) unbounded
subset sum. A problem with 4 numbers {a1, a2, a3, a4} is considered for the standard
subset sum. The constant k was added to all arcs because we cannot have cables of
length 0. All arcs have been depicted similarly, but in reality they can have different
lengths depending on the values of the numbers in the given set. A problem with 3
numbers {a1, a2, a3} is considered for the unbounded subset sum. Signals encoding
combinations of numbers arrive in the internal nodes and are sent either to destination
or back again for adding more delays.

traverses it. When exits it will be divided into 2 signals: one of them will be sent
to the next node and another one will be sent back to the loop for increasing
the delay another time-unit (see Figure 4 a)). Because we cannot have cables
of length 0 we have to search for a solution at moment c + 2 ∗ k, where k is
the delayed induced by cables connecting the nodes. The delaying system is
polynomial.

The construction of TSP device imposes a double difficulty: some nodes must
be visited exactly once and the total path must be the shortest possible [7, 8].
If we ignore delays on nodes we will have paths not being Hamiltonian. If we
focus only on delays induced to nodes, we will not obtain the shortest path. To
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Fig. 3. The graphs representing devices for a) Hamiltonian path, b) Exact Cover. In
the case of Hamiltonian path, the length of the arcs connecting nodes is not important -
it can be the same for all arcs. What is important are the delays induced by each node.
Thus, inside each node we have another set of arcs - not depicted here - which introduce
some delays. The device for Exact Cover is more complicated. Since we wanted that
each number from the original set to appear exactly once we use the delaying system
from the Hamiltonian path. However, this is not enough, because here we have to select
sets from a given collection and not single numbers. For this purpose we have assigned
to each set a delay equal to sum of delays attached to numbers from that set. It is
denoted by delay(Ci). Choosing the correct set of sets is done in a similar manner with
the standard subset sum (see Figure 2). Note that numbers from original set cannot
be seen in this picture. They are actually hidden inside the delays induced by each set.
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Table 1. The magnitude of delays required for solving the problems investigated in
this paper

Problem delays magnitude

Standard subset sum polynomial
unbounded subset sum polynomial
Hamiltonian path exponential
Exact Cover exponential
Diophantine equations polynomial
Travelling salesman exponential

solve this difficulty we assign a large (and exponential) delay to each node and
smaller delays on arcs. Only Hamiltonian paths (visiting each node) are checked
for the length of incorporated arcs.

Table 1 shows the length of the cables used for delaying the signals. 3 problems
requires exponential delays. The other 3 problems require polinomial time length
for cables. However, even if we have cables of polynomial length is not enough
because the energy consumption is exponential with the size of the instance.

8 Precision

A problem is that we cannot measure the moment B exactly. We can do this
measurement only with a given precision which depends on the tools involved in
the experiments.

Let us denote by P the precision used for reading our signals. This means
that we should not have two signals that arrive at 2 consecutive moments at
a difference smaller than P . We cannot distinguish them if they arrive in an
interval smaller than P . In our case, it simply means that if a signal arrives in to
the destination in the interval [B − P, B + P ], we cannot be perfectly sure that
we have a correct subset or one which does not have the property in question.

8.1 What If We Delay by Cables ?

Let us denote by v the speed of the signal. Based on that we can easily compute
the minimal cable length that should be traversed by the signal in order (for
the latter) to be delayed with P seconds. This is obviously v ∗ P meters. This
value is the minimal delay that should be introduced by an arc. Assuming a
3 ∗ 108m/s for the optical signal and a 10−12 precision of the best oscilloscope
we get a 3 ∗ 10−4m for the shortest cable that we can have in our system.

This value is the minimal delay that should be introduced by an arc in order
to ensure that the difference between the moments when two consecutive signals
arrive at the destination node is greater than or equal to the measurable unit
of P seconds. This will also ensure that we will be able to correctly identify
whether the signal has arrived in to the destination node at a moment equal to
the sum of delays introduced by each arc.
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Fig. 4. The graphs representing devices for: a) Diophantine equations, b) travelling
salesman. A loop of the device for Diophantine equations is similar to the device for un-
bounded subset sum problem with only one number in the set. Signals looping through
device are actually increasing values for x and y. Note that the device can be extended
for any number of variables. Travelling salesman is again a complicated device. Practi-
cally n! Hamiltonian paths can be generated and we are interested in searching for the
shortest one. First step is to ensure that we can distinguish between Hamiltonian and
non-Hamiltonian paths. This is done as it was explained in Figure 2. To check for the
shortest path we add some delays for each arc connecting nodes. These delays must be
significantly shorter than the delays within nodes so that the discovery of Hamiltonian
paths is not affected.
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A constraint is that all the lengths must be integer multiples of v ∗ P . We
cannot accept cables whose lengths can be written as x∗ v ∗P + y, where x is an
integer and y is a positive real number lower than v ∗ P because by combining
this kind of numbers we can have a signal in the above mentioned interval but
that signal does not encode a subset whose sum is the expected one.

Once we have the length for that minimal delay, is quite easy to compute the
length of the other cables that are used in order to induce a certain delay.

Note that the maximal number of nodes can be increased when the precision
of our measurement instruments is increased.

9 Energy Consumption

Within nodes the signals are divided into (sub)signals. Because of that, the in-
tensity of the signal decreases. In the worst case we have an exponential decrease
of the intensity. For instance, the intensity of the subsignals will decrease k times
(compared to the incoming strength) if we divide each signal in k subsignals. If we
do this operation n times we get signals kn times weaker than the original signal.
Even if we have a small branching factor (the smallest possible is 2 - utilized in
the solution for the subset sum [16]) we still get a huge decrease for 100 nodes.

This means that our devices require a huge amount of energy for solving large
instances of the problems. Actually, the consumed energy increases exponential
with the size of the instance.

Please note that this difficulty is not specific to our system only. Other major
unconventional computation paradigms, trying to solve NP-complete problems,
share the same fate. For instance, as noted in [9], a quantity of DNA equal to
the mass of the Earth is required in order to solve Hamiltonian Path Problem
instances of 200 cities using a DNA computer.

10 Speed Matters: Slower Is Better

Assume again that we work with cables for delaying the signal.
The speed of the signal is an important parameter in our device. Working

with a high speed signal is bad for our device due to the precision problems
exposed in section 8. We can either increase the precision of our measurement
tools or decrease the speed of signal.

By reducing the speed of signal by 7 orders of magnitude, we can reduce the
size of the involved cables by a similar order (assuming that the precision of the
measurement tools is still the same). This can help us solve larger instances of
the problem.

11 Basic Components for Physical Implementation

For implementing the proposed device we need the following components:
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• a source of signal (laser, pulse generator etc),
• Several splitters for dividing a signal into multiple subsignals. If we work

with electric signals the split is trivial. If we work with light we need some
beam-splitters (such as half-silvered mirrors).

• A device for reading the fluctuations in the signal intensity. If we work with
electric signals we need an oscilloscope. If we work with optical signals we
need either a combination of a photodiode and an oscilloscope or a special
device for reading optical signals. Another possibility for optical signals is to
use white light interferometry [7].

• A set of cables used for connecting nodes and for delaying the signals.

11.1 How to Introduce Delays ?

There are several ways in which the signals can be delayed. These variants depend
on the type of signal to be delayed.

• delay lines (optical or electrical). Electric delays are induced by either long
lines o by discrete inductors and capacitors [23].

• columns of mercury (for delaying sound waves). These devices have been
originally used as memory in old computers.

12 Difficulties

Several difficulties might be encountered during the construction of such devices.
Some of them are listed below:

• Building a general purpose device able to solve a wide range of problems
and instances. This is a critical aspect for making these devices practical.
Further issues are discussed in section 13,

• Setting the delays to an exact value. If we work with cables we have to cut
them with huge precision. Electrical delay lines have a non-zero rise time
which can introduce further difficulties to the system,

• Providing enough power to the system in order to be able to solve large
instances of the problems. This is the greatest difficulty for our device and
cannot be solved unless P = NP,

• Finding high precision reading instruments. Due to high speed of the signals
we need very good reading instruments for detecting very small and very
fast fluctuations in the intensity of the signal.

13 Automation

Currently the design and construction of graphs for each problem is made
by hand. This dramatically reduced the area of applicability. Automating the
process of building the devices would represent a huge step for practical appli-
cations. For achieving this purpose we have to use/design the followings:
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• a scalable and reconfigurable graph. This should allow us to enable/disable
arcs between nodes. The graph should be large enough to accommodate
various sizes of the problems.

• several programmable / reconfigurable delay lines. In this way we can easily
modify the delay quantity induced by each arc. Electrical delay lines with
up to 256 steps are already available on the market, which means that we
can easily have 256 possible values for delays. By serializing such devices we
can have larger ranges of values.

14 Conclusions

The way in which signal can be used for performing useful computations has
been investigated in this paper. The techniques are based on 2 properties of the
signals: the massive parallelism and the limited speed.

Several important aspects have been exposed in this survey: what kind of
operations are performed with the signals, how to construct the graph for several
problems, how to find if the problem was solved or not, how to cope with precision
and power decrease, which are the basic components required for implementation
and which are the most common difficulties encountered during the physical
implementations.

By using the described methods several problems have been solved so far:
Hamiltonian path, travelling salesman, bounded and unbounded subset sum,
Diophantine equations and exact cover.

Future works directions are focused on: implementing the presented devices,
solving new problems and automating the construction process.
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