
Rules and Ontologies for the Semantic Web�

Thomas Eiter1, Giovambattista Ianni2,
Thomas Krennwallner1, and Axel Polleres3

1 Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,tkren}@kr.tuwien.ac.at

2 Department of Mathematics, Universitá della Calabria, Rende, Italy
ianni@mat.unical.it

3 Digital Enterprise Research Institute, National University of Ireland, Galway
{firstname.lastname}@deri.org

Abstract. Rules and ontologies play a key role in the layered architecture of the
Semantic Web, as they are used to ascribe meaning to, and to reason about, data
on the Web. While the Ontology Layer of the Semantic Web is quite developed,
and the Web Ontology Language (OWL) is a W3C recommendation since a cou-
ple of years already, the rules layer is far less developed and an active area of
research; a number of initiatives and proposals have been made so far, but no
standard as been released yet. Many implementations of rule engines are around
which deal with Semantic Web data in one or another way. This article gives
a comprehensive, although not exhaustive, overview of such systems, describes
their supported languages, and sets them in relation with theoretical approaches
for combining rules and ontologies as foreseen in the Semantic Web architec-
ture. In the course of this, we identify desired properties and common features of
rule languages and evaluate existing systems against their support. Furthermore,
we review technical problems underlying the integration of rules and ontologies,
and classify representative proposals for theoretical integration approaches into
different categories.

1 Introduction

The issue of having rules on top or aside ontologies written in OWL is an important mile-
stone on the World Wide Web Consortium’s (W3C) agenda for completing the Semantic
Web architecture. Despite arising theoretical issues, due to the complementary nature
of existing ontology and rules languages a plethora of rule based systems have been de-
veloped over the last years, driven by the need for rule-based integration of constantly
growing Semantic Web data; currently, the W3C is designing of a unifying exchange
format – the Rule Interchange Format (RIF) [9] – for the various existing languages.
This article aims at giving a snapshot overview of existing languages and systems im-
plementations, of their features and of the theoretical approaches they build upon.

� This research has been partially supported by the European FP6 projects inContext
(IST-034718) and REWERSE (IST-2003-506779), by the Austrian Science Fund (FWF)
projects P17212, P20840, and P20841, and by the Science Foundation Ireland under Grant
No. SFI/02/CE1/I131.

C. Baroglio et al. (Eds.): Reasoning Web 2008, LNCS 5224, pp. 1–53, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 T. Eiter et al.

Given the mature state of the RDF and the OWL standards, the building of a rule
language is not just a cheap add-on to the standards created so far. During research on
Semantic Web technologies the demand for combined formalisms, which integrate on-
tology and rule languages, emerged as a consequence to supply advanced reasoning ca-
pabilities in this setup. Ontology languages are good for describing knowledge adhering
to the Open World Assumption, i.e., the encoded knowledge is considered incomplete
and conclusions, which cannot be derived from an ontology, are treated agnostically. But
under this assumption, one might not get certain rational conclusions, which are rea-
sonable to infer even under incomplete knowledge. To weaken the conservative stance
of the Open World Assumption, rule languages, which are proponents of the Closed
World Assumption, have been conceived as partners for ontologies. This assumption
maintains, hence the name, a closed view of the world; everything which is not deriv-
able from such kind of knowledge base is assumed to be false. This allows for reasoning
in problem domains which have to deal with default knowledge, i.e., knowledge that
“usually holds” like “birds typically fly,” unless there is evidence to the contrary.

Ontology languages on their own cannot fulfill all the prescribed requirements; rule
languages should close at least some of the known obstacles. But such a combination of
rules and ontologies, which integrates well with current W3C standards, is not a simple
task due to various reasons shown later.

We direct our attention here to rule-based approaches for the Semantic Web, in view
of rule systems operating upon RDF data, and ontology languages for the Web, in partic-
ular RDF Schema, OWL, and its dialects. This article takes a view on these approaches
from the perspective of integrating knowledge gathered from the Semantic Web under
several aspects. In particular, we consider modelling features that are needed for practi-
cal use cases, and also their mutual relationships. We then discuss several implemented
systems and evaluate their support of these features. Finally we give an overview of se-
mantic problems that rise with introducing rules, particularly when they should be com-
bined with expressive ontology languages like OWL. We discuss directions on how these
problems might be overcome; furthermore, issues for further research are pointed out.

When we talk about rule-based approaches here, the focus will be on deductive
rules languages approaches with a two-valued semantics; probabilistic, fuzzy, dynamic
(event-condition-action rules, production rules) approaches, etc., will not be considered.
For students interested in these areas, we point to previous editions of the Reasoning
Web Summer school and other contributions in the present volume where these topics
have been presented in more depth [9,37,88,93].

The remainder of this article is organized as follows. The next section provides some
preliminaries, including RDF/RDF Schema and Description Logics as well as OWL.
In Section 3, we then turn to rule-based aggregation and integration of Semantic Web
data, where – based on practical use cases – we discuss several features that are in-
teresting to compare different available rule systems. After that, we examine in Sec-
tion 4 several languages and systems with respect to these criteria. The second part
of the article addresses then combinations of rules and ontologies using a dedicated ap-
proach and semantics. In Section 5, first general issues that come up in combining logic-
based rules and ontologies are revisited in more detail; after that, three different generic
settings for the combination are considered that allow to group existing approaches into

Rules and Ontologies for the Semantic Web 3

different categories. Example instances of approaches falling into each of these settings
are discussed in Section 6. We conclude the article in Section 7 with a short summary
and a brief discussion of issues for research.

2 Preliminaries

The Semantic Web architecture [8] defines at its bottom a simple, and at the same time
extremely flexible data model, the Resource Description Framework (RDF) [48,101].
Based on RDF data, which can be used to annotate Web pages and export data from
legacy sources, ontologies and rules represent the two main components in the Semantic
Web vision – the heart of the Semantic Web –, which shall enable to integrate and
make new inferences from existing data. While there are already standard languages
for ontologies recommended by W3C, viz. RDF Schema (RDFS) [12] and the Web
Ontology Language (OWL) [27] (which are becoming increasingly used), there is no
standard for a rules language available yet. Many rule languages and systems have
been proposed, and they offer varying features to reason over Semantic Web data. To
mitigate the situation, the Rule Interchange Format (RIF) working group of W3C [9,10]
is currently developing a standard exchange format for rules on the Web that takes
languages features into account, but is less concerned with a committed semantics.
Before we turn our attention to the various rules languages and systems, let us briefly
review the basics of RDF, RDFS, and OWL.

In this section, we chose as motivating problem domain a publication scenario, in
which we express knowledge about authors and their co-authors, the publications they
made, etc. To this end, we start with RDF graphs of the authors of this chapter which
encode information like relationships to persons and bibliographic information (see Fig-
ure 2–5). We will increase the expressiveness of the represented knowledge by using a
description logic ontology given in Example 2. Later on, in Section 3, we will extend the
context of our problem domain and look for suitable reviewers of unpublished articles
based on given RDF(S) and OWL data using RIF rules.

Along the path of this scenario, we will define the notions used and provide helpful
pointers to the interested reader.

2.1 RDF and RDF Schema

The Resource Description Framework (RDF) defines the data model for the Semantic
Web. Driven by the goal of least possible commitment to a particular data schema, the
simplest possible structure for representing information was chosen – labeled, directed
graphs. An RDF dataset (that is, a RDF graph) can be viewed as a set of the edges of
such a graph, commonly represented by triples (or statements) of the form:

Subject Predicate Object

where

– the edge links Subject , which is a resource identified by a URI or a blank node,
to Object , which is either another resource, a blank node, a datatype literal, or an
XML literal;

– Predicate , in RDF terminology referred to as property, is the edge label.

4 T. Eiter et al.

_:a

foaf:Person

Alice

foaf:name

_:bfoaf:knows

Bob

foaf:name

_:cfoaf:knows

Charles

foaf:name

foaf:knows

rdf:type

rdf:typerdf:type

Fig. 1. A simple RDF graph

The next example will clarify the main concepts of RDF.

Example 1. Take a scenario in which three persons named Alice, Bob, and Charles,
have certain relationships among each other: Alice knows both Bob and Charles, Bob
just knows Charles, and Charles knows nobody. The graphical representation of this
simple example showing the relationships between these persons is given in Figure 1.
Note that we encode the information using the so called FOAF (friend-of-a-friend) RDF
vocabulary [42].

A subgraph of Figure 1 states that “a person called Bob knows a person called
Charles.” This can be given by several RDF triples:

_:b rdf:type foaf:Person, _:b foaf:name "Bob", _:b foaf:knows _:c,
_:c rdf:type foaf:Person, and _:c foaf:name "Charles".

For instance, the triple

_:b foaf:name "Bob"

expresses that “someone has the name Bob.” _:b is a blank node and can be seen as
an anonymous identifier. In fact, the name for a blank node is meaningful only in the
context of a given RDF graph; conceptually, blank node names can be uniformly sub-
stituted inside a RDF graph without changing the meaning of the encoded knowledge.
The semantics of blank nodes will be sketched later on.

RDF information can be represented in different formats. One of the most common is
the RDF/XML syntax.1 Our graphical representation above can be given as RDF/XML
document:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person rdf:nodeID="a">
<foaf:name>Alice</foaf:name>
<foaf:knows>
<foaf:Person rdf:nodeID="b">
<foaf:name>Bob</foaf:name>

1 http://www.w3.org/TR/rdf-syntax-grammar/

http://www.w3.org/TR/rdf-syntax-grammar/

Rules and Ontologies for the Semantic Web 5

<foaf:knows>
<foaf:Person rdf:nodeID="c">
<foaf:name>Charles</foaf:name>

</foaf:Person>
</foaf:knows>
</foaf:Person>

</foaf:knows>
<foaf:knows rdf:nodeID="c"/>

</foaf:Person>
</rdf:RDF>

Unfortunately, this XML representation is hard to deal with, and, on top of that,
the same RDF graph can look very different in distinct RDF/XML documents due to
ambiguous variants of this format. From a didactic point of view, the much simpler
Turtle2 representation of our RDF graph is preferable:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
_:a rdf:type foaf:Person .
_:a foaf:name "Alice" .
_:a foaf:knows _:b .
_:a foaf:knows _:c .
_:b rdf:type foaf:Person .
_:b foaf:name "Bob" .
_:b foaf:knows _:c .
_:c rdf:type foaf:Person .
_:c foaf:name "Charles" .

The above encoding explicitly states triples carrying the same information as the
RDF/XML example before. We will make heavy usage of a Turtle shortcut notation
throughout this chapter, like

_:a rdf:type foaf:Person ;
foaf:name "Alice" ;
foaf:knows _:b ;
foaf:knows _:c .

which is a condensed version of the first four triples stated before.
A constantly growing number of RDF graphs – typically in RDF/XML format – is

already accessible on the Web. Other common notations, more or less human readable,
are N-Triples,3 Notation 3,4 and Turtle. We will adopt Turtle in the following, since it
is also a fundamental part of SPARQL, which will be described later on.

Figures 2–5 show some information about the authors of this article extracted from
RDF data that are available on the Web. RDF defines a special property rdf:type,5

2 http://www.w3.org/TeamSubmission/turtle/
3 http://www.w3.org/2001/sw/RDFCore/ntriples/
4 http://www.w3.org/DesignIssues/Notation3.html
5 Short for the full URI http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/2001/sw/RDFCore/ntriples/
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/1999/02/22-rdf-syntax-ns
type

6 T. Eiter et al.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://www.mat.unical.it/˜ianni/foaf.rdf> a foaf:PersonalProfileDocument.
<http://www.mat.unical.it/˜ianni/foaf.rdf> foaf:maker _:me .
<http://www.mat.unical.it/˜ianni/foaf.rdf> foaf:primaryTopic _:me .
_:me a foaf:Person .
_:me foaf:name "Giovambattista Ianni" .
_:me foaf:homepage <http://www.gibbi.com> .
_:me foaf:phone <tel:+39-0984-496430> .
_:me foaf:knows [a foaf:Person ;

foaf:name "Axel Polleres" ;
rdfs:seeAlso <http://www.polleres.net/foaf.rdf>].

_:me foaf:knows [a foaf:Person ;
foaf:name "Wolfgang Faber" ;
rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/faber/foaf.rdf>].

_:me foaf:knows [a foaf:Person ;
foaf:name "Francesco Calimeri" ;
rdfs:seeAlso <http://www.mat.unical.it/kali/foaf.rdf>].

_:me foaf:knows [a foaf:Person .
foaf:name "Roman Schindlauer" .
rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/roman/foaf.rdf>].

Fig. 2. Giovambattista Ianni’s personal FOAF file

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix : <http://www.postsubmeta.net/> .
:foaf a foaf:PersonalProfileDocument .
:foaf foaf:maker <http://www.postsubmeta.net/foaf#TK> .
:foaf foaf:primaryTopic <http://www.postsubmeta.net/foaf#TK> .
:foaf owl:sameAs <http://www.postsubmeta.net/foaf.rdf> .
<http://www.postsubmeta.net/foaf#TK> a foaf:Person ;

foaf:name "Thomas Krennwallner" ;
foaf:homepage <http://www.postsubmeta.net/> ;
rdfs:seeAlso <http://www.postsubmeta.net/foaf> ;
owl:sameAs <http://www.postsubmeta.net/foaf.rdf#TK> ;
foaf:knows [a foaf:Person ; foaf:name "Roman Schindlauer" ;

rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/roman/foaf.rdf>] ;
foaf:knows [a foaf:Person ; foaf:name "Giovambattista Ianni" ;

rdfs:seeAlso <http://www.gibbi.com/foaf.rdf>] ;
foaf:knows [a foaf:Person ; foaf:name "Axel Polleres" ;

rdfs:seeAlso <http://www.polleres.net/foaf.rdf>] ;
foaf:knows [a foaf:Person ; foaf:name "Francesco Calimeri" ;

rdfs:seeAlso <http://www.mat.unical.it/kali/foaf.rdf>] ;
foaf:knows [a foaf:Person ; foaf:name "Wolfgang Faber" ;

rdfs:seeAlso <http://www.kr.tuwien.ac.at/staff/faber/foaf.rdf>] ;
foaf:knows [a foaf:Person ; foaf:name "Alessandra Martello"] .
foaf:knows [a foaf:Person ; foaf:name "Thomas Eiter"] .

Fig. 3. Thomas Krennwallner’s personal FOAF file

abbreviated in Turtle syntax by the “a” letter. It allows the specification of “IS-A” rela-
tions, such as, for instance,

<http://www.mat.unical.it/˜ianni/foaf.rdf> a foaf:PersonalProfileDocument.

in Figure 2 links the resource <http://www.mat.unical.it/˜ianni/foaf.rdf>
to the resource foaf:PersonalProfileDocument via rdf:type.

Qualified names like foaf:Person are shortcuts for full URIs like http://xmlns.
com/foaf/0.1/Person, making usage of namespace prefixes from XML, for ease
of legibility. For instance, :me is a shortcut for http://www.polleres.net/
foaf.rdf#me in the graph of Figure 4. If we compare this graph with Figure 2, we
see that there is no obligation to give identifiers to entities on the Semantic Web: while
the graph in Figure 2 uses a blank node to refer to the entities Giovambattista Ianni and
Axel Polleres, the graph in Figure 4 assigns a URI to the entity Axel Polleres.

http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/Person
http://www.polleres.net/foaf.rdf#me
http://www.polleres.net/foaf.rdf#me

Rules and Ontologies for the Semantic Web 7

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix : <http://www.polleres.net/foaf.rdf#>.
<http://www.polleres.net/foaf.rdf> foaf:maker :me;

foaf:primaryTopic :me.
:me a foaf:Person; foaf:name "Axel Polleres";
foaf:givenname "Axel"; foaf:surname "Polleres";
foaf:phone <tel:+35391495723>, <fax:+35391495541>;
foaf:workplaceHomepage <http://www.deri.ie/> .
owl:sameAs
<http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres>.

...
:me foaf:knows

<http://www.harth.org/˜andreas/foaf.rdf#ah>.
<http://www.harth.org/˜andreas/foaf.rdf#ah>
a foaf:Person; foaf:name "Andreas Harth";
rdfs:seeAlso <http://www.harth.org/˜andreas/foaf.rdf>.

<http://www.polleres.net/foaf.rdf#me> foaf:knows _:b1
_:b1 a foaf:Person; foaf:name "John Breslin";
rdfs:seeAlso <http://www.johnbreslin.com/foaf/foaf.rdf>.

<http://www.polleres.net/foaf.rdf#me> foaf:knows _:b2.
_:b2 a foaf:Person; foaf:name "Giovambattista Ianni";
rdfs:seeAlso> <http://www.gibbi.com/foaf.rdf> .

...

Fig. 4. Axel Polleres’ personal FOAF file

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix swrc: <http://swrc.ontoware.org/ontology#> .
<http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter>

a foaf:Agent ;
foaf:name "Thomas Eiter" .

...
<http://dblp.L3S.de/d2r/resource/publications/conf/foiks/2002>

a swrc:Proceedings ; a foaf:Document;
swrc:editor <http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter>.

...
<http://dblp.L3S.de/d2r/resource/publications/conf/icdt/2005>

a swrc:Proceedings ; a foaf:Document;
swrc:editor <http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter>.

...
<http://dblp.L3S.de/d2r/resource/publications/conf/webi/EiterIST06>

dc:creator <http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter>,
<http://dblp.L3S.de/d2r/resource/authors/Giovambattista_Ianni>,
<http://dblp.L3S.de/d2r/resource/authors/Hans_Tompits>,
<http://dblp.L3S.de/d2r/resource/authors/Roman_Schindlauer>;

a foaf:Document; dcterms:issued "2006"ˆˆxsd:gYear ;
dcterms:bibliographicCitation

<http://dblp.uni-trier.de/rec/bibtex/conf/webi/EiterIST06>.
dcterms:partOf

<http://dblp.L3S.de/d2r/resource/publications/conf/webi/2006>.
...
<http://dblp.L3S.de/d2r/resource/publications/conf/webi/2006>
rdfs:label
"2006 IEEE/WIC/ACM Int.l Conference on Web Intelligence"ˆˆxsd:string;
swrc:series <http://dblp.L3S.de/d2r/resource/conferences/webi>.

...
<http://dblp.L3S.de/d2r/resource/authors/Giovambattista_Ianni>

foaf:name "Giovambattista Ianni" .
<http://dblp.L3S.de/d2r/resource/authors/Hans_Tompits>

foaf:name "Hans Tompits" .
<http://dblp.L3S.de/d2r/resource/authors/Roman_Schindlauer>

foaf:name "Roman Schindlauer" .
...

Fig. 5. An RDF graph about Thomas Eiter extracted from DBLP

Types supported for RDF property values are URIs, or the two basic types, viz.
rdf:Literal and rdf:XMLLiteral. Under the latter, a basic set of XML schema
datatypes are supported.

8 T. Eiter et al.

Prologue: P prefix prefix: <namespace-URI>

Head: C construct { template } or
S select variable list or
A ask

Body: D from /from named <dataset-URI>
W where { pattern }
M order by expression

limit integer > 0
offset integer > 0

Fig. 6. A schematic overview of SPARQL

SPARQL Query Language for RDF. SPARQL is the W3C standard language for
querying RDF data.6 A query in this language can be roughly divided in two parts: (i)
the retrieval part (body) and (ii) the result construction part (head).

Figure 6 shows a schematic overview of the building blocks that SPARQL queries
consist of. We do not go into details of SPARQL here (see [82,76,77] for formal details).

The first part of a SPARQL query (the prologue part P) consists of namespace prefix
declarations, which are used in the where part in the body to shortcut IRI literals.

The body part of a SPARQL query (DWM) offers the following features. An RDF
dataset (D), i.e., the set of source RDF graphs used as input data, is specified using
multiple from or from named clauses. Merging multiple RDF sources specified in
consecutive from clauses is a crucial feature of SPARQL, which complements the lack
of this possibility in plain RDF format. The where part (W) allows to match parts
of the RDF dataset at hand, by specifying a graph pattern possibly involving variables
(variable symbols are prefixed with a ? sign). This pattern is given in a Turtle-based
syntax, in the simplest case by a list of consecutive triple patterns, i.e., triples containing
variables, IRIs, blank nodes, and RDF literals. More involved patterns allow unions
of graph patterns, optional matching of parts of a graph, matching of named graphs
selected in from named clauses, etc. Finally, variable bindings matching the where
pattern in the source graphs can be ordered, but also other solution modifiers (M) such
as limit and offset are allowed to restrict the number of solutions considered in
the result.

In the head portion, SPARQL allows to specify one of four query forms. Each one is
associated to a specific result format representing a view over the solutions of the pat-
tern matching mechanism. The three most-used query forms (CSA) are construct,
select, and ask; the describe query form can be used to get RDF graphs de-
scribing resources, but no formal semantics is defined for this operator and the output
depends on the used SPARQL implementation, hence we omit a discussion here. The
construct query form takes a template as parameter, which consists of a list of triple
patterns in Turtle syntax, possibly involving variables that carry over bindings from the
where part. This operator can be used to translate between different RDF formats.
The select query form is used to retrieve the bindings for variables mentioned in the

6 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

Rules and Ontologies for the Semantic Web 9

graph pattern of the where part. The ask query form returns true, if there is a binding
for the supplied graph pattern, or false otherwise.

An example for a simple SPARQL select query is

prefix foaf: <http://xmlns.com/foaf/0.1/>
select ?name
from <http://www.mat.unical.it/˜ianni/foaf.rdf>
from <http://www.postsubmeta.net/foaf.rdf>
from <http://www.polleres.net/foaf.rdf>
where {

?person foaf:knows ?friend .
?friend foaf:name ?name .

}

which retrieves all ?names of ?friends known by ?persons over the combined
RDF graphs shown in Figure 2–4.

Usage on the Web. RDF graphs are gaining wide popularity. Driven by efforts such
as the Linked Data initiative, 7 RDF datasets are becoming available in several ways,
making the current amount of available RDF data substantial. Available datasets can be
categorized as:

– Data exposed directly in RDF format and publicly accessible from the web.
This direct way is preferred when advertised data has relatively small size. For in-
stance, a lot of RDF data is available on the Web in personal graphs using the FOAF
vocabulary mentioned before. The personal FOAF files of some of the authors are
shown in Figures 2–4.8

– Data available as SPARQL endpoint.
The SPARQL query language, as shown above, allows to query RDF data using
SPARQL endpoints, which are standardized Web Services that answer SPARQL
queries by following the SPARQL protocol [18].

For example, the widely known DBLP online citation index is accessible in two
ways: as plain and huge RDF document and via a SPARQL endpoint.9 By means
of the SPARQL endpoint, only the interesting portion of the data is returned to the
user, which means that both client and server save time and network bandwidth.
DBLP contains a huge amount of information about scientific publications and their
authors (see Figure 5 for an example).

– Data available by means of conversion services, also called wrappers.
Converters from popular data formats of heterogeneous provenance such as iCAL
(calendar and agenda description format) and RSS (Web feeds) are available, as
well as adapters from, e.g., Amazon and eBay Web services.10 In this context,

7 http://linkeddata.org/
8 Data accessible from the Web at
http://www.gibbi.com/foaf.rdf, http://www.postsubmeta.net/foaf,
and http://www.polleres.net/foaf.rdf, resp.

9 http://dblp.l3s.de/d2r/
10 See http://esw.w3.org/topic/ConverterToRdf for a comprehensive list.

http://linkeddata.org/
http://www.gibbi.com/foaf.rdf
http://www.postsubmeta.net/foaf
http://www.polleres.net/foaf.rdf
http://dblp.l3s.de/d2r/
http://esw.w3.org/topic/ConverterToRdf

10 T. Eiter et al.

W3C’s Gleaning Resource Descriptions from Dialects of Languages [19] (GRDDL)
working group has the goal to complement the concrete RDF/XML syntax with
a mechanism to relate to other XML dialects (especially XHTML or “microfor-
mats”) [19]. GRDDL focuses on extracting RDF from XML. To this end, the work-
ing group recently published a finished Recommendation which specifies how XML
documents or XML Schema namespace documents can reference transformations
that are then processed by a GRDDL-aware application to extract RDF from the
respective source file.

An excerpt of the RDF data available about Thomas Eiter from DBLP is shown
in Figure 5. This graph contains information such as the papers Thomas Eiter au-
thored, links to co-authors of these papers, etc. The property dc:creator belongs
to the Dublin Core vocabulary [71] and is used to denote the authorship relation. For
instance, the statement

<http://dblp.L3S.de/d2r/resource/publications/conf/webi/EiterIST06>
dc:creator <http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter> .

says that the article with URI

http://dblp.L3S.de/d2r/resource/publications/conf/webi/EiterIST06

was created by the person with URI

http://dblp.L3S.de/d2r/resource/authors/Thomas Eiter

Semantics and logical characterization. RDF graphs may contain anonymous, exis-
tential nodes, also called “blank” nodes, in order to express incomplete information about
the identity of the subject or the object of a statement. An RDF graph can be equally
viewed as a first-order formula, where we use a special predicate triple to denote state-
ments made in the graph and where blank nodes are viewed as existentially quantified
variable. For instance, the graph from Figure 2 corresponds to the following formula:

∃me, b1 , b2 , b3 , b4
(triple(foaf.rdf, rdf:type, foaf:PersonalProfileDocument)
∧ triple(foaf.rdf, foaf:maker, me)
∧ triple(foaf.rdf, foaf:primaryTopic, me)
∧ triple(me, rdf:type, foaf:Person)
∧ triple(me, foaf:name, "Giovambattista Ianni")
∧ triple(me, foaf:homepage, http://www.gibbi.com)
∧ triple(me, foaf:phone, tel:+39-0984-496430)
∧ triple(me, foaf:knows, b1) ∧ triple(b1 , rdf:type, foaf:Person)
∧ triple(b1 , foaf:name, "Axel Polleres")
∧ triple(b1 , rdfs:seeAlso, http://www.polleres...)
∧ triple(me, foaf:knows, b2) ∧ triple(b1 , rdf:type, foaf:Person)
∧ triple(b2 , foaf:name, "Wolfgang Faber")
∧ triple(b2 , rdfs:seeAlso, http://www.kr.tuwien...)
∧ triple(me, foaf:knows, b3) ∧ triple(b1 , rdf:type, foaf:Person)
∧ triple(b3 , foaf:name, "Francesco Calimeri")
∧ triple(b3 , rdfs:seeAlso, http://www.mat.unical...)
∧ triple(me, foaf:knows, b4) ∧ triple(b1 , rdf:type, foaf:Person)
∧ triple(b4 , foaf:name, "Roman Schindlauer")
∧ triple(b4 , rdfs:seeAlso, http://www.kr.tuwien...)) .

(1)

There are different alternative logical representations conceivable for formula (1).
For instance, Frame Logic (F-Logic) [56] has often been proposed as an adequate rep-
resentation for RDF graphs [26,105]. F-Logic extends classical first-order logic by con-
cepts from object-oriented programming like objects and class inheritance, and allows

http://dblp.L3S.de/d2r/resource/publications/conf/webi/EiterIST06
http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter

Rules and Ontologies for the Semantic Web 11

to reason about complex objects, which are built from simpler ones. The name Frame
Logic stems from the similarity to frame-based languages, which deal with objects and
classes and relationships between themselves. F-Logic has a special representation for
the class membership relation (rdf:type) denoted as “:”, or “#”, and frames are
expressed in square brackets denoting slots with “→”. As a frame logic formula, the
graph from Figure 2 would look as follows:

∃me, b1 , b2 , b3 , b4 (foaf.rdf#foaf:PersonalProfileDocument
∧ foaf.rdf[foaf:maker → me]
∧ foaf.rdf[foaf:primaryTopic → me]
∧ me#foaf:Person∧ · · ·) .

(2)

Alternatively, the OWL community tends to favor a representation using unary and bi-
nary predicates for RDF properties, where unary predicates are used for the rdf:type
predicate and binary predicates for all other predicates. In that representation, the graph
from Figure 2 would look as follows:

∃me, b1 , b2 , b3 , b4 (foaf:PersonalProfileDocument(foaf.rdf)
∧ foaf:maker(foaf.rdf, me)
∧ foaf:primaryTopic(foaf.rdf, me)
∧ foaf:Person(me) ∧ · · ·) .

(3)

The semantics of an RDF graph can be essentially viewed as corresponding to the
first-order representation chosen in Figure 4 plus entailment of several axiomatic triples.
For instance, the triple X rdf:type rdf:Property is an axiom for all X which occur
in the predicate position of any other triple. In particular, this also makes, for instance,
rdf:type rdf:type rdf:Property an axiom.

The semantics of RDF involves some more peculiarities in the handling of XML
literals, RDF containers, and lists. We refer the interested reader to [37,48] for more
details.

RDF Schema (RDFS). RDF Schema (RDFS) is a semantic extension of basic RDF.
In a nutshell, by giving special meaning to the properties rdfs:subClassOf and
rdfs:subPropertyOf, to rdfs:domain and rdfs:range, as well as to several types
(like rdfs:Class, rdfs:Resource, rdfs:Literal, rdfs:Datatype, etc.), RDFS
allows to express simple taxonomies and hierarchies among properties and resources,
as well as domain and range restrictions for properties.

The axiomatization of RDFS can to a large extent be approximated by a set of sen-
tences of first-order logic (FOL), as shown in Table 1, plus the axiomatic triples from
[48, Sections 3.1 and 4.1].11 Note that our choice of using a ternary predicate triple in
favor of a binary representation helped us to avoid higher-order-like rules such as

∀S, P, O (P (S, O) ⊃ rdf:type (P , rdf:Property))
in this axiomatization. Roughly speaking, a triple t is true in a RDF graph G under
RDFS semantics if the theory constructed as the union of

– Axiomatic triples,
– Entailment clauses (as in Table 1), and
– The encoding of G as an existentially quantified conjunction of atoms (as in Figure 1)

11 We use ’⊃’ for material implication to avoid confusion with ’←’ as commonly used in logic
programming.

12 T. Eiter et al.

Table 1. Semantics of RDFS

∀S, P, O (triple(S, P, O) ⊃ triple(S,rdf:type, rdfs:Resource))

∀S, P, O (triple(S, P, O) ⊃ triple(P, rdf:type, rdf:Property))

∀S, P, O (triple(S, P, O) ⊃ triple(O, rdf:type, rdfs:Resource))

∀S, P, O (triple(S, P, O) ∧ triple(P, rdfs:domain, C) ⊃ triple(S,rdf:type, C))

∀S, P, O, C (triple(S, P, O) ∧ triple(P, rdfs:range, C) ⊃ triple(O, rdf:type, C))

∀C (triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, rdfs:Resource))

∀C1, C2, C3 (triple(C1, rdfs:subClassOf, C2) ∧
triple(C2, rdfs:subClassOf, C3) ⊃ triple(C1, rdfs:subClassOf, C3))

∀S, C1, C2 (triple(S,rdf:type, C1) ∧ triple(C1, rdfs:subClassOf, C2) ⊃ triple(S, rdf:type, C2))

∀S, C (triple(S, rdf:type, C) ⊃ triple(C, rdf:type, rdfs:Class))

∀C (triple(C, rdf:type, rdfs:Class) ⊃ triple(C, rdfs:subClassOf, C))

∀P1, P2, P3 (triple(P1, rdfs:subPropertyOf, P2) ∧
triple(P2, rdfs:subPropertyOf, P3) ⊃ triple(P1, rdfs:subPropertyOf, P3))

∀S, P1, P2, O (triple(S, P1, O) ∧ triple(P1, rdfs:subPropertyOf, P2) ⊃ triple(S, P2, O))

∀P (triple(P, rdf:type, rdf:Property) ⊃ triple(P, rdfs:subPropertyOf, P))

entails t. Again, we do not elaborate upon peculiarities and additional rules or axioms
in the context of RDF containers, XML literals, etc. here. A thorough formalization of
RDF(S) semantics can be found in [66].

2.2 Description Logics and the OWL Web Ontology Language

The next layer in the Semantic Web stack serves to formally define domain models as
shared conceptualizations, also often called ontologies [46], on top of the RDF/RDFS
data model. In order to formally specify such domain models, the W3C has chosen a
language which is close to a syntactic variant of an expressive but still decidable De-
scription Logic (DL) [4], namely SHOIN (D). More precisely, the OWL DL variant
coincides with this DL, at the cost of imposing several restrictions on the usage of
RDF(S). These restrictions (e.g., disallowing that a resource is used both as a class and
an instance) are lifted in OWL Full which combines the description logic flavor of OWL
DL and the syntactic freedom of RDF(S). For an in-depth discussion of the peculiari-
ties of OWL Full, we refer the interested reader to the language specification [27] and
restrict our observations to OWL DL here.

While RDFS itself may already be viewed as a simple ontology language, OWL adds
several features beyond RDFS’ simple capabilities to define hierarchies (rdfs:sub-
PropertyOf, rdfs:subClassOf) among properties and classes.

As for properties, OWL allows to specify transitive, symmetric, functional, inverse,
and inverse functional properties. The correspondences of respective OWL properties
and classes with respective description logics and first-order logic axioms can be found
in Table 2. Note that we switch to the binary representation P (S, O) of triples here,

Rules and Ontologies for the Semantic Web 13

Table 2. Expressing OWL DL Property axioms to DL and FOL

OWL property axioms as RDF triples DL syntax FOL short representation
〈P rdfs:domainC〉 	
 ∀P−.C ∀x, y.P (x, y) ⊃ C(x)

〈P rdfs:rangeC〉 	
 ∀P.C ∀x, y.P (x, y) ⊃ C(y)

〈P owl:inverseOf P0〉 P ≡ P−
0 ∀x, y.P (x, y) ≡ P0(y, x)

〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y.P (x, y) ≡ P (y, x)

〈P rdf:type owl:FunctionalProperty 〉 	
 � 1P ∀x, y, z.P (x, y) ∧ P (x, z) ⊃ y = z

〈P rdf:type owl:InverseFunctionalProperty 〉 	
 � 1P− ∀x, y, z.P (x, y) ∧ P (z, y) ⊃ x = z

〈P rdf:type owl:TransitiveProperty 〉 P+
 P ∀x, y, z.P (x, y) ∧ P (y, z) ⊃ P (x, z)

Table 3. Mapping of OWL DL Complex Class Descriptions to DL and FOL

OWL complex class descriptions∗ DL syntax FOL short representation
owl:Thing 	 x = x

owl:Nothing ⊥ ¬x = x

owl:intersectionOf (C1 . . . Cn) C1
 · · ·
 Cn C1(x) ∧ · · · ∧ Cn(x)

owl:unionOf (C1 . . . Cn) C1 � · · · � Cn C1(x) ∨ · · · ∨ Cn(x)

owl:complementOf (C) ¬C ¬C(x)

owl:oneOf (o1 . . . on) {o1, . . . , on} x = o1 ∨ · · · ∨ x = on

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P (x, y) ∧ C(y)

owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P (x, y) ⊃ C(y)

owl:restriction (P owl:value (o)) ∃P.{o} P (x, o)

owl:restriction (P owl:minCardinality (n)) � nP ∃y1...yn.

n̂

k=1

P (x, yk)∧
^

i<j

yj �=yj

owl:restriction (P owl:maxCardinality (n)) � nP ∀y1...yn+1.

n+1̂

k=1

P (x, yk)⊃
_

i<j

yi =yj

∗For reasons of legibility, we use a variant of the OWL abstract syntax [73] in this table.

since in description logics (and thus in OWL DL), predicate names and resources are
assumed to be disjoint.

Moreover, OWL allows the specifications of complex class descriptions to be used
in rdfs:subClassOf statements. Complex descriptions may involve class definitions
in terms of union or intersection of other classes, as well as restrictions on properties.
Table 3 gives an overview of the expressive possibilities of OWL for class descriptions
and its semantic correspondences with description logics and first-order logics.12

Such class descriptions can be related to each other using rdfs:subClassOf,
owl:equivalentClass, and owl:disjointWith keywords, which allow us to ex-
press description-logic axioms of the form C1 � C2, C1 ≡ C2, and C1 � C2 � ⊥,
respectively, in OWL.

Finally, OWL allows to express explicit equality or inequality relations between in-
dividuals by means of the owl:sameAs and owl:differentFrom properties, e.g., the
triples

〈http://www.polleres.net/foaf.rdf#me〉owl:sameAs
〈http://dblp.l3s.de/d2r/page/authors/Axel Polleres〉 .

12 We use a simplified notion for the first-order logic translation here—actually, the translation
needs to be applied recursively for any complex DL term. For a formal specification of the
correspondence between DL expressions and first-order logic, cf. [4].

<http://www.polleres.net/foaf.rdf#me>
<http://dblp.l3s.de/d2r/page/authors/Axel_Polleres>

14 T. Eiter et al.

and

〈http://polleres.net/foaf.rdf#me〉owl:differentFrom
〈http://www.gibbi.com/foaf.rdf#me〉 .

boil down to

http://www.polleres.net/foaf.rdf#me=
http://dblp.l3s.de/d2r/page/authors/Axel Polleres

∧ http://polleres.net/foaf.rdf#me �=
http://www.gibbi.com/foaf.rdf#me.

For details on the description logics notions used in the Tables 2 and 3, we refer the
interested reader to, e.g., [4]. For our purposes, basic understanding of the correspond-
ing definitions in terms of first-order logic will be sufficient. What makes description
logics the formalism of choice is the fact that they resemble decidable fragments of
first-order logic, i.e., queries for entailment of subclass relationships or class member-
ship of a particular individual are effectively computable. At the moment of writing, the
next iteration of OWL (version 2) has the status of a member submission at W3C and is
further developed by the recently relaunched OWL working group.13 If accepted in the
present form, OWL2 will, based on the decidable description logic SROIQ [51], sup-
port additional features such as acyclic role composition, qualified number restrictions,
possibility to declare (for simple roles) symmetry, reflexivity, or disjointness axioms.

Example 2 (Ontologies in Description Logics).We take a simple ontology about publica-
tions available online at http://asptut.gibbi.com/sandbox/reviewers.
rdf as an example to illustrate some of the conceptualizations therein in their corre-
sponding DL syntax:

∃ex :title.
 � ex :Paper (i)

∃ex :title−.
 � xsd :string (ii)

ex :isAuthorOf − ≡ dc:creator (iii)

ex :Publication ≡ ex :Paper � ∃ex :publishedIn .
 (iv)

 � � 1 ex :publishedIn− (v)

ex :Senior ≡ foaf :Person � � 10 ex :isAuthorOf � (vi)

∃ex :isAuthorOf .ex :Publication
ex :Club100 ≡ foaf :Person � � 100 ex :isAuthorOf (vii)

This knowledge base expresses the following information: ex :title is a datatype
property on ex :Papers that takes strings as values (axioms (i) and (ii)). Furthermore, the
property ex :isAuthorOf is the inverse of the property dc:creator (axiom (iii)). Next,
the ontology defines in (iv) a class ex :Publication which consists of all the papers
which have been published, and in (v), we state that ex :publishedIn to be an inverse
functional property (i.e., every paper is published in at most one venue). A ex :Senior
researcher (vi) is defined as a person who has at least ten papers, some of which are
published. Finally, the class ex :Club100 is defined as the persons having authored more
than 100 papers.
13 http://www.w3.org/2007/OWL/wiki/OWL Working Group

<http://polleres.net/foaf.rdf#me>
<http://www.gibbi.com/foaf.rdf#me>
http://www.polleres.net/foaf.rdf#me
http://dblp.l3s.de/d2r/page/authors/Axel_Polleres
http://polleres.net/foaf.rdf#me
http://www.gibbi.com/foaf.rdf#me
http://asptut.gibbi.com/sandbox/reviewers.rdf
http://asptut.gibbi.com/sandbox/reviewers.rdf
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group

Rules and Ontologies for the Semantic Web 15

3 Rule-Based Aggregation and Integration of Semantic Web Data

The main use case we want to address in this article is rule-based aggregation and
integration of Semantic data. In other words, we will focus on how it would be possible
to reach the goal of combining existing data from the Web, by exploiting rule-based
technologies and available Semantic Web rules languages and engines.

To give a condensed introduction into rule-based languages, consider this rule spec-
imen from non-monotonic logic programming: a disjunctive rule is of form

a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm , (4)

where l ≥ 0, m ≥ k ≥ 0, and all ai and bj are literals, i.e., possibly negated
atoms. The disjunction a1 ∨ · · · ∨ al is called the head of a rule, while the conjunc-
tion b1, . . . , bk,not bk+1, . . . ,not bm is the body of a rule. Each expression not bj

is a negation as failure (NAF) literal, which is true by default, i.e., if we cannot infer
that bi is true. In the usual semantics of such languages, the head of a rule is true if
the body is true, i.e., we can infer new knowledge from other knowledge. As an exam-
ple, male(X) ∨ female(X)← person(X) and author(X)← isAuthorOf(X, Y),
not unpublished(Y) are valid rules. For a more detailed explanation of the syntax and
the semantics of rule-based languages see, e.g., [13,37].

3.1 Common Formats for Rule Interchange on the Web

Since all available rule languages use fairly differing syntaxes, we will illustrate rules
using a simplified version of the Rule Interchange Format Basic Logic Dialect (RIF-
BLD) presentation syntax [10]. RIF-BLD is basically a syntactic variant of Horn rules,
which most available rule systems can process. RIF allows frames as in F-Logic no-
tation and the use of URIs as object identifiers,14 where URIs are enclosed in angle
brackets as in Turtle. Likewise, (typed) literals as in Turtle notation are allowed, i.e., for
instance we write the RDF triple

<http://dblp.L3S.de/d2r/resource/publications/conf/webi/EiterIST06>
dcterms:issued "2006"ˆˆxsd:gYear.

from Figure 5 as a RIF frame

<http://dblp.L3S.de/d2r/resource/publications/conf/webi/EiterIST06>[
dcterms:issued -> "2006"ˆˆxsd:gYear]

RIF uses the Prolog style “:-” for separating rule head (consequent) and body (an-
tecedent). We start our illustration with a simple example use case for rule based inte-
gration.

Example 3 (Reviewer Selection). Let us assume that we have FOAF and DBLP infor-
mation about the authors of the present article available as given above. Based on that
information, we want to find more information about which are suitable reviewers for
this article, and on persons, which, having conflicts of interests, can not be instead

14 Strictly speaking, RIF allows IRIs (International Resource Identifier) [32]. IRIs are a general-
ization of URIs, allowing for example Kanji, Chinese, Arabic or Hebrew characters.

16 T. Eiter et al.

elected as reviewers. In order to do so, we want to use an available Semantic Web rules
engine which we wish to feed with information shown next:15

– The namespace declarations:

Prefix(xsd http://www.w3.org/2001/XMLSchema#)
Prefix(rdfs http://www.w3.org/2000/01/rdf-schema#)
Prefix(owl http://www.w3.org/2002/07/owl#)
Prefix(foaf http://xmlns.com/foaf/0.1/)
Prefix(ex http://www.example.org/)

– The set of conflicting reviewers, that is, either persons having the same names as
individuals the authors know personally, according to their FOAF files:

Forall ?P ?A ?P1 ?N
(?P#ex:ConflictingReviewer :- And(

<http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08>
[dc:creator -> ?A]

?A[foaf:knows -> ?P1]
?P1[foaf:name -> ?N]
?P[foaf:name -> ?N]
?P#foaf:Person

)
)

(5)

– or, persons having the same names as people that, according to DBLP, co-authored
papers with the authors of the paper in question.

Forall ?P ?A ?Pub ?P1 ?N
(?P#ex:ConflictingReviewer :- And(

<http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08>
[dc:creator -> ?A]

?Pub[dc:creator -> ?A]
?Pub[dc:creator -> ?P1]
?P1[foaf:name -> ?N]
?P[foaf:name -> ?N]
?P#foaf:Person

)
)

(6)

– People with the same names as people who have published in the same conferences
or journals as the authors are, instead, possible reviewers.

Forall ?P ?A ?Pub ?ConfOrJournal ?P1 ?N
(?P#ex:CandidateReviewer :- And(

<http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08>
[dc:creator -> ?A]

?Pub[dc:creator -> ?A]
?Pub[dcterms:partOf -> ?ConfOrJournal]
?Pub1[dcterms:partOf -> ?ConfOrJournal]
?Pub1[dc:creator -> ?P1]
?P1[foaf:name -> ?N]
?P[foaf:name -> ?N]
?P#foaf:Person

)
)

(7)

In principle, any rule system which (i) provides access to RDF data, such as Figures 2–5,
via import facilities, and (ii) uses the Frame style RDF representation analog to (2)
would be capable of processing the rules (5)–(7) and computing conflicting reviewers.

15 We will assume the URI of the present work is
http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08

http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08

Rules and Ontologies for the Semantic Web 17

We could easily transform these rules to the alternative RDF representation styles
in (1) or in (3) above for other rules systems which support them. We will show these
representations later on, when discussing concrete rules systems and their supported
syntaxes.

In the following, we will discuss the different features which are (or, should be)
present in available rules systems. Small illustrating examples extending the basic re-
viewer selection scenario from above will be exploited. We will focus on the following
aspects:

– RDF data import
– RDF schema support
– OWL support
– Modules, context, and named graphs
– Blank nodes and function symbols
– Built-in predicates and functions
– Defaults and negation as failure
– Advanced features including unstratified negation, constraints, and disjunction

3.2 RDF Data Import

The first and most basic feature for processing Semantic Web data, which we have
already mentioned in the previous section, is an import or access facility for RDF data
from one or more RDF graphs (or RDF data extracted by a GRDDL [19] transformation
from an HTML or XML source). Many available rules systems provide such import
facilities, either

– By import directives or mapping definitions, external to the rules language, to ac-
cess RDF graphs accessible on the Web; or

– By special built-in predicates as part of the rule language to import RDF graphs.

As a special case, we expect that many future rules systems for the Semantic Web
will – as opposed to direct import of whole RDF graphs – allow access to RDF stores
via a SPARQL [18,82] endpoint, i.e., providing import directives or built-predicates to
dispatch SPARQL queries. More details on how different existing rules systems support
this feature are given in Section 4 below.

3.3 RDF Schema Support

The next feature which we would expect from a reasonable rules language/system oper-
ating on Semantic Web data is obviously that ontological statements from RDF Schema
are taken into account.

Let us have a closer look at the rules above, and assume that we execute them
just on the “raw” RDF data available on the Web. Without taking additional RDFS
inferences into account, we would not be able to find out that Thomas Eiter is a con-
flicting reviewer, since for http://dblp.L3S.de/d2r/resource/authors/
Thomas Eiter only the membership in the class foaf:Agent is known in the data

http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter
http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter

18 T. Eiter et al.

in Figure 5, but all the rules above have membership in the class foaf:Person in its
prerequisites for inferring that somebody is a conflicting reviewer.

Fortunately, we have – in our own knowledge base – some knowledge which relates
the DC [71], SWRC [94], and FOAF [42] ontologies referred to in Figure 5. As we have
seen above, RDFS supports taxonomies on classes and properties as well as domain and
range restrictions on properties. Let us assume that our own knowledge base contains
the following statements relating SWRC and FOAF:

foaf:maker rdfs:subPropertyOf dc:creator .
swrc:editor rdfs:domain foaf:Document .
swrc:editor rdfs:range foaf:Person .
swrc:Person rdfs:subClassOf foaf:Person .

(8)

From this and the rules in Table 1, we can conclude that Thomas is indeed a con-
flicting reviewer. From the DBLP data we can conclude truth of the body condition
in rule (6) for binding the variable ?Pub to http://dblp.l3s.de/d2r/page/
publications/conf/rweb/EiterIKP08, all the variables ?A, ?P1, and ?P to
http://dblp.L3S.de/d2r/resource/authors/Thomas Eiter, and the
variable ?N to "Thomas Eiter". These bindings make all atoms of the condition
except the last one – ?P#foaf:Person – true. However, the inference of the neces-
sary RDF statement

<http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter> a foaf:Person .

follows from the RDF statement

<http://dblp.L3S.de/d2r/resource/publications/conf/foiks/2002>
swrc:editor <http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter>.

plus the third statement of (8) and the fifth RDFS inference rule in Table 1. In fact, we
can write this and all other RDFS inference rules from Table 1 similarly in RIF syntax:

Forall ?S ?P ?O ?C (?O#?C :- And(?S[?P -> ?O] ?P[rdfs:range -> ?C])) (9)

So, basically for any rule engine that is capable of processing rules (5)–(7), we can
equally encode all the RDFS inference rules analogous to (9), and we would be able
to compute all conflicting reviewers when taking in addition the RDFS inferences into
account.

3.4 OWL Support

Note that we did a little shortcut in the previous example by making in the third state-
ment of (8) explicit that the swrc:editor had foaf:Person in its range, adding a
respective RDFS statement. However, in fact the SWRC ontology is specified in OWL
and states this in a different way. Among others, the SWRC ontology contains the fol-
lowing statements, which is not expressible in RDFS alone:

swrc:Proceedings � ∀swrc:editor .swrc:Person ;

this particular axiom can still be translated into a rule:

Forall ?P ?Proc(?P#swrc:Person :- And(?Proc#swrc:Proceedings
?Proc[swrc:editor -> ?P])). (10)

http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08
http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08
http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter

Rules and Ontologies for the Semantic Web 19

From above rule, we can still derive that http://dblp.L3S.de/d2r/resource/
authors/Thomas Eiter is a foaf:Person, namely by

<http://dblp.L3S.de/d2r/resource/publications/conf/foiks/2002>
a swrc:Proceedings ;
swrc:editor <http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter>.

plus the last statement of (8) and the respective RDFS inference rule. So, by translating
to rules the OWL axioms from the SWRC ontology and all other involved ontologies,
i.e., the DC ontology and the FOAF ontology, then adding the resulting rulebase to
imported data, we could still compute all conflicting reviewers within a rules engine.
Faithful preservation of semantics when translating OWL to rules is however a known
problem. A premier fragment of OWL which can be translated into rules quite since
(since it has a one-to-one correspondence with Horn rules), is described e.g. in [96]
or [21, Section 9.3].

Unfortunately, not all OWL axioms can be translated to rules. To illustrate this, let
us have a look into the axioms in the Reviewer ontology from above: it is not difficult to
translate the rules (i)–(ii) in Example 2 to rules similar to (10), looking at the equivalent
FOL representation for OWL statements in Tables 2 and 3. The remaining three rules are
equivalences; each equivalence A ≡ B can be “decomposed” into two axioms A � B
and B � A, which are then translated to rules. As for the axiom (iv), this is easy for the
�-axiom:

Forall ?P ?X (?P#ex:Publication :- And(?P#Paper
?P[ex:pulishedIn -> ?X])) (11)

However, for the �-axiom we end up with a rule which is not Horn:
Forall ?P (And(?P#ex:Paper Exists ?X(?P[ex:pulishedIn -> ?X]))

:- ?P#Publication) (12)

In fact, rule (12) is not admissible in RIF-BLD syntax. Likewise the axioms (v)
and (vi) from Example 2 are not translatable to rules. However, we can easily imagine
situations in which we would need inferences both in OWL and also over rules in order
to aggregate Semantic Web data for our reviewer selection scenario.

Suppose we have collected a list of experts from the Semantic Web or Knowledge
Representation areas all of which have over a hundred publications which are possibly
candidates to review the paper at hand, i.e., we know that they are all members of the
ex :Club100 16 defined above which we could state in an RDF graph as follows:

<http://dblp.l3s.de/d2r/page/authors/Stefan_Decker> a ex:Club100.
<http://dblp.l3s.de/d2r/page/authors/Dieter_Fensel> a ex:Club100.
<http://dblp.l3s.de/d2r/page/authors/Georg_Gottlob> a ex:Club100.
<http://dblp.l3s.de/d2r/page/authors/Ian_Horrocks> a ex:Club100.
<http://dblp.l3s.de/d2r/page/authors/Michael_Gelfond> a ex:Club100.
<http://dblp.l3s.de/d2r/page/authors/Michael_Kifer> a ex:Club100.
<http://dblp.l3s.de/d2r/page/authors/Vladimir_Lifschitz> a ex:Club100.

(13)

We want to find candidate reviewers from this list and the remaining information from
DBLP based on the following additional rules. Firstly, we want to add that those docu-
ments having a dcterms :bibliographicCitation count as publications:

Forall ?X ?C (?X#ex:Publication :- And(
?X#foaf:Document
?X[dcterms:bibliographicCitation -> ?C]))

(14)

16 Although this may not necessarily reflect current and actual content of DBLP, we assume the
set of authors given has more than 100 certified publications each.

http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter
http://dblp.L3S.de/d2r/resource/authors/Thomas_Eiter
foaf:Person

20 T. Eiter et al.

Secondly, we want to state that any senior researcher, i.e., any member of the class
ex :Senior , is a candidate reviewer:

Forall ?P (?P#ex:CandidateReviewer :- ?P#ex:Senior) (15)

Note that the above rule can be stated just as well as part of our ontology using the DL
axiom ex :CandidateReviewer � ex :Senior . Regarding (15), obviously, without OWL
reasoning support in our Semantic Web Rules engine we cannot come to the conclusion
that our designated ex :Club100 members from (13) are indeed candidate reviewers.
An OWL reasoner, like Pellet [92] or Racer [47], that supports the inference of such a
rule engine would allow to infer class membership of, e.g., http://dblp.l3s.de/
d2r/page/authors/Vladimir Lifschitz in the ex :Senior class and thus making
him a ex :CandidateReviewer by the following rationale:

1. Each of Vladimir’s publications in DBLP would by rule (14) trigger class member-
ship of the respective publication in the class ex :Publication .

2. By Vladimir being member of the ex :Club100 class and the ontology axioms (vii)
from Example 2 we know that Vladimir has more than 100 fillers for the property
ex :isAuthorOf , and thus obviously is also an author of more than 10 papers.

3. Now, class membership for Vladimir in the ex :Senior class is established by rule
(vi) from Example 2.

4. Finally, rule (15) establishes that Vladimir is indeed a candidate Reviewer.

This inference chain needs both rules and ontological inferences from the OWL ontol-
ogy.

In the next rule (16), we want to state that for each ex :Publication ?X , which ac-
cording to our knowledge base is dcterms :partOf another entry ?Y , we can also assert
that ?X was ex :publishedIn ?Y :

Forall ?X ?Y ?P (?X[ex:publishedIn -> ?Y] :- And (
?X#ex:Publication ?X[dc:partOf -> ?Y])) (16)

Like (15), the above rule can be expressed using DL axioms as part of an ontology, but
is far less legible than the simple rule above.

As we already discussed, not all OWL axioms are expressible in Horn rules; on the
other hand, also not all rules, even not all Horn rules, are expressible in OWL. Take, for
instance, the next rule, which is a variant of the uncle rule in [52]:

Forall ?A ?E (?A[ex:editedBy -> ?E] :- Exists ?C (And (
?A[dc:partOf -> ?C] ?C[swrc:editor -> ?E]))) (17)

This rule simply states that every article ?A has an editor ?E , if ?E is the editor of
?A’s collection ?C . This property is not expressible in OWL alone. One formalism that
is capable of expressing it is SWRL, which adds a form of rules to OWL and will be
described in section 4.1; this already shows the increase in expressivity obtained by
combining rules and ontologies. See also the discussion in [67].

We note at this point that in the general case, a combination of such rules and ontolo-
gies poses several problems, such as defining the right semantics or ensuring decidabil-
ity, in particular for rule systems that allow to take OWL reasoning into account. This
is discussed in more detail in Section 5.

http://dblp.l3s.de/d2r/page/authors/Vladimir_Lifschitz
http://dblp.l3s.de/d2r/page/authors/Vladimir_Lifschitz

Rules and Ontologies for the Semantic Web 21

3.5 Modules, Context, and Named Graphs

As mentioned in Section 3.2, a flexible rules system should enable access to one or
more RDF graphs. However, we did not yet discuss facilities to refer to data coming
from different RDF graphs within rules or across several rules. For instance, we could
simplify rule (14) from above. Instead of stating that the documents having a
dcterms :bibliographicCitation count as publications, we could simply say that all doc-
uments listed at DBLP count as publications. Given that an RDF graph containing all doc-
uments listed at DBLP is accessible at the URLhttp://dblp.l3s.de/d2r/all/
Publications, we could reformulate the rule (14) for extracting ex :Publications as
follows:

Forall ?X (?X#ex:Publication :-
?X#foaf:Document @ <http://dblp.l3s.de/d2r/all/Publications>) (18)

Here, we used the ‘@’ symbol to denote the module [55,91], or the context [78]
to which a particular statement belongs. This module mechanism is not (yet) part of
the standard RIF syntax; we borrowed this syntax from systems like F lora-2 [55] or
Triple [91] for the moment. Often a context is associated with the physical URL where
a certain statement can be found, but there are also more general definitions of named
RDF Graphs [17], where the graph name or context does not necessarily corresponds
to a Web-accessible URL. Note that named graphs are also present in SPARQL via the
GRAPH keyword.

3.6 Blank Nodes and Function Symbols

As mentioned in Section 2.1, blank nodes are used in RDF to denote unknown nodes,
akin to existential variables in first-order logic. If we want to write rules that create new
statements including such blank nodes we run into similar problems as in rule (12),
since a rule creating blank nodes boils down to a rule with existential variables in the
head. In fact, rule (12) could be viewed as a rule creating a new blank node :X?P

for each binding for ?P . Although hardly any rule system supports existentials in rule
heads, rule systems which support function symbols can typically work around this by
creating new identifiers using a Skolem function (see [13, Section 4.1.5] for details
about Skolemization). That is, each existential variable X in the head of a Horn rule
can be replaced by a term fX(Y1, . . . , Yn) using a new function symbol fX whose
parameters are all variables Yi that have an unbound occurrence inside the scope of the
existential variable. For example, the Skolemized version of rule (12) is

Forall ?P (And(?P#ex:Paper ?P[ex:publishedIn -> f_X(?P)])
:- ?P#Publication) (19)

Here fX is a fresh function symbol, not occurring elsewhere in the rule set to be pro-
cessed, and P is its single parameter.

The RIF BLD syntax – and most existing rule systems – do not allow conjunctions
but only atomic formulas in the rule head, but following the transformations defined
by Lloyd and Topor [62] we can equivalently rewrite rule (19) to two Horn rules as
follows:

Forall ?P (?P#ex:Paper :- ?P#Publication)
Forall ?P (?P[ex:pulishedIn -> f_X(?P)] :- ?P#Publication) (20)

http://dblp.l3s.de/d2r/all/Publications
http://dblp.l3s.de/d2r/all/Publications

22 T. Eiter et al.

Rule systems supporting complex terms with function symbols (such as for instance
all Prolog systems), can use this method to emulate rules such as (12). However, func-
tion symbols also cause problems with respect to decidability and termination; many
existing rule systems therefore simply disallow them. There exists however a substan-
tial effort for including and implementing function symbols in rule languages under a
fully declarative framework, such as the Answer Set semantics [11,15,90].

3.7 Built-in Predicates and Functions

Many rule systems and languages support a range of built-in functions and predicates
for string manipulations, arithmetics and alike, up to flexible APIs for adding procedural
attachments to rules which allow to implement and invoke arbitrary external functions
from rules. By “built-in” functions and predicates we mean here functions and predi-
cates with a fixed, semantics, that is “built in” in the rules system.

An example for a kind of standard list of functions and predicates is provided by
the XQuery/XPath Functions and Operators [65] by W3C, which encompass – besides
standard arithmetics – a number of useful manipulations for XML and Web data ma-
nipulation.

A built-in predicate could for instance be used to extract a substring from a URI. The
following variant of rule (18) checks – instead of the data source of a triple – directly
its Document URI to determine whether an article corresponds to one listed at DBLP:

Forall ?X ?A (?X#ex:Publication :- And(
?X#foaf:Document
?X[dc:creator-> ?A]
fn:startsWith(?X,"http://dblp.l3s.de/d2r/")))

(21)

Another example, now for a built-in function, (see [80]) is the mapping from
vCard/RDF (http://www.w3.org/TR/vcard-rdf) to FOAF. Here we want to com-
bine from vCard the given name and the family name to a foaf:name by string con-
catenation using a built-in function directly in the rule head:

Forall ?X ?N ?F ?G (?X[foaf:name -> fn:concat(?F," ",?G)] :-
And(?X [vCard:N -> ?N]

?N[vCard:Given-> ?G]
?N[vCard:Family-> ?F]))

(22)

Some rules languages do not support built-in functions but only predicates. Note that
built-in functions can be “emulated” by respective built-in predicates. For instance, if a
rule system doesn’t offer the XPath functionfn:concat directly, but a ternary built-in
predicate CONCAT (X ,Y ,Z) having fixed interpretation such that CONCAT (x , y, z)
is true whenever z is the concatenation of strings x and y. Using this, we can emulate
rule (22) as follows:

Forall ?X ?N ?F ?G ?F1 ?F2 (?X[foaf:name -> ?F2] :-
And(?X [vCard:N -> ?N]

?N[vCard:Given-> ?G]
?N[vCard:Family-> ?F]
CONCAT(?F," ",?F1)
CONCAT(?F1,?G,?F2))

(23)

Furthermore, many rules systems restrict the use of variables in built-in predicates
and functions in the sense that variables occurring in built-ins must be bound, i.e., they
must occur also in some non-built-in body atom. This is similar to the notion of variable
safety [98] in Datalog rules.

http://www.w3.org/TR/vcard-rdf

Rules and Ontologies for the Semantic Web 23

We note here that some subtle issues arise with introducing built-ins in Semantic
Web rules languages. For instance, it is not entirely clear whether a string-function like
fn:startsWith in (21) can be applied to an IRI bound to the variable ?A. That is,
it is debatable what it means to convert IRIs – which are actually only a syntactic (and
atomic) representation of a constant (an RDF resource in this case), but have no “syn-
tactic” meaning by themselves – to a string. This and other issues which are handled
differently in existing rule-based approaches are currently under discussion in the RIF
working group.

3.8 Defaults and Negation as Failure

A common extension in many rules languages is negation in rule bodies. For instance,
after having established who are conflicting reviewers in rules (5)–(7), one may want to
extend rule (15) by stating that candidate reviewers are exactly those senior researchers
not in conflict:

Forall ?P (?P#ex:CandidateReviewer :-
And(?P#ex:Senior Not(?P#ex:ConflictingReviewer))) (24)

Note that, when integrating data from open sources such as the Web, we have to
take care about what “not in conflict” means here. Particularly, most rules systems that
support rules like (24), would read Not there as nonmonotonic or weak negation, or
negation as failure. That means, the rule would fire for any ?P for whom we could
prove that ?P is a senior researcher, but we cannot prove that ?P is a conflicting re-
viewer. These rules are called nonmonotonic, since additional information might lead
to retraction of a previously made inference, e.g., if we add new RDF statements stating
that a senior researcher has published papers with one of the authors.

This is different from classical logic, which always behaves monotonically. If we try
to formulate rule (24) as an OWL DL axiom, we could write:

ex :Senior � ¬ex :ConflictingReviewer � ex :CandidateReviewer

or in a rule:

Forall ?P (?P#ex:CandidateReviewer :-
And(?P#ex:Senior Neg(?P#ex:ConflictingReviewer))) (25)

However, such a rule would only fire for individuals ?P about which we have explicit
knowledge that they are not conflicting reviewers, which is also sometimes called strong
negation. Such explicit knowledge about negated facts is typically not available on the
Web and, as opposed to rule (25), rule (24) rather expresses a default assumption stating
that “unless we know that ?P is a conflicting reviewer, we assume that ?P is a possible
candidate.”

3.9 Advanced features: Unstratified Negation, Constraints, and Disjunction

Rules involving negation, as those shown in the previous section, are particularly tricky
for rules systems if such negation occurs in recursive rules, i.e., if negative rules depend
on each other. Imagine we add the following rule, that states that if some candidate
reviewer was not chosen, she is an available reviewer.

24 T. Eiter et al.

Forall ?P (?P#ex:AvailableReviewer :-
And(?P#ex:CandidateReviewer Not(?P#ex:AssignedReviewer))) (26)

Likewise, one could state it the other way around, i.e., if some candidate reviewer
was not available, she is an chosen reviewer.

Forall ?P (?P#ex:AssignedReviewer :-
And(?P#ex:CandidateReviewer Not(?P#ex:AvailableReviewer))) (27)

Many rules systems, in particular Prolog-based systems have difficulties with rules
that involve cyclic (or unstratified, see [13, Section 5.3.1]) negation; for any candidate
reviewer, it is not clear which of the two rules should fire: without further discrimina-
tion, both rules should fire, but upon firing one, the other should be blocked.

Sections 5.3.2–5.3.5 of [13] illustrate several possible semantics for such unstratified
rule sets, including the stable model semantics (now more widely known as answer set
semantics) [43] and the well-founded semantics [100]:

– Given a candidate reviewer x who is a ex :CandidateReviewer , the stable model
semantics would allow for two possible stable models (answer sets). In one of them,
the fact x#ex :AssignedReviewer holds, but not x#ex :AvailableReviewer , in the
other stable model it is the other way round.

– The well-founded semantics, which is a 3-valued semantics, would take an agnostic
view here, with only a single model, but assigning unknown as a third truth value
to both x#ex :AssignedReviewer and x#ex :AvailableReviewer .

There are rule systems supporting either of these semantics; we refer to Section 4 below.
We remark here that the multiple-model view of the stable model semantics, as a

opposed to a canonical model semantics, can be profitably used for declarative problem
solving when multiple solutions exist. The idea is that a problem is represented by a
non-monotonic logic program such that its stable models correspond to the solutions
of the problem, which then can be computed using a logic programming engine; this
paradigm is often referred to as Answer Set Programming (ASP). For example, consider
in our scenario the problem “give me all possible sets of reviewer assignments.” A rule
set including both rules (26) and (27) would have exactly these sets as answers (i.e.,
stable models) under the stable model semantics.

Constraints. Constraints are special rules that have an empty head, and lead to the
inference of a contradiction if their body is true. In the multi-model approach of the
stable model semantics, constraints are customary to filter out unwanted models which
correspond to “wrong” assignments with respect to candidate solutions.

For instance, if we add the constraint
Forall ?P1 ?P2 (:- And(?P1#ex:AssignedReviewer ?P2#ex:AssignedReviewer

?P1 != ?P2)) (28)

to the rules (26) and (27), all assignments where two or more reviewers are assigned
would be excluded from possible answers. The following rule and constraint guarantee
that at least one reviewer is assigned:

Forall ?P (someoneAssigned :- ?P#ex:AssignedReviewer)
:- Not(someoneAssigned) (29)

In combination, the rules (26)–(29) guarantee that exactly one candidate reviewer
is assigned. Constraints are supported by several rules systems for the stable model
semantics.

Rules and Ontologies for the Semantic Web 25

Disjunctive Rules. One useful extension are disjunctive rules, i.e., rules which do not
only permit atomic formulas in the head but also a disjunction of atoms. Disjunction
enables us to write (26) and (27) more concisely in just one rule, which reads very
natural:

Forall ?P (Or(?P#ex:AssignedReviewer
?P#ex:AvailableReviewer) :- ?P#ex:CandidateReviewer) (30)

This disjunction has the following semantics: for each ?P#ex :CandidateReviewer ,
either ?P#ex :AssignedReviewer is made true or ?P#ex :AvailableReviewer ; this is
different from classical logic, according to which we would just know that at least one
of the two is true.

Although we used a “RIF style” syntax here, both negation as failure as well as
disjunction in rule heads is beyond the current version of RIF BLD. For more details and
examples on Answer Set Programming as well as particular rules systems, see [6,13,36].

4 Languages and Systems

In this section, we present languages and tools for reasoning with RDF data. This kind
of data will be classified in two categories: RDF(S) and OWL, which have been defined
in Section 2.

One important use case for combining rules and ontologies is ontology alignment,
or in general data integration from different data sources. In OWL ontologies, you can
import additional ontologies using owl :import statements, but this feature can be seen
as splitting ontologies into partitions rather than integrating ontologies from different
sources. RDF(S) has no built-in support for integrating other RDF data; this task is
outsourced to SPARQL [82]: to merge different RDF data sources, one can specify
every RDF graph in a from clause of a SPARQL query. Typically, rule systems can
easily reference data from multiple sources and provide even more expressive reasoning
support than SPARQL alone.

Several languages and systems exist which support accessing and querying RDF data
and allow to combine data sources under several aspects. In the following, we will look
into this in more detail and outline the features of prominent languages and systems. We
classify the languages into four categories (SWRL, RDF Stores, Logic Programming,
and Hybrid Combinations), which should make their flavour more visible. Please note
that we can only describe a fragment of available tools, hence the next sections display
an inherent incomplete list of rule systems with ontology support.

4.1 SWRL – OWL Reasoners with Rules Support

The Semantic Web Rules Language (SWRL) is an ontology language that integrates
OWL with a rule layer [52] built on top of it. SWRL’s goal of enhancing description
logics with rules is aimed at overcoming some known expressive limitation in ontology
languages, which can be easily fixed by adding rules to the ontology. The addition of
rules is also the main cause why reasoning in SWRL is in general undecidable, but
decidable fragments are known, like DL-safe rules [70]. This language is a non-hybrid

26 T. Eiter et al.

coupling approach of rules and ontologies; see also Section 5 for fundamental issues of
amalgamating rules and ontology reasoning.

SWRL supports a rich set of built-ins inspired by XQuery and XPath2 functions [65].
Since SWRL is an extension of the OWL ontology language, it is restricted to unary and
binary DL-predicates. Furthermore, it does not support nonmonotonic inference. Also,
combining OWL data from outside ontologies is only possible through owl :import
constructs.

A SWRL ontology is composed of ordinary OWL axioms and SWRL rules. The
rules constitute of antecedents and consequents, which both consist of lists of atoms.
Atoms may be OWL class expressions, property definitions, or built-ins.

Usually, SWRL rules are part of an OWL ontology encoded in XML or in abstract
syntax. The next example might serve as an illustration for the SWRL abstract syntax,
which is just a different way for representing rule (17):

Implies(Antecedent(dc:partOf(I-variable(A) I-variable(C))
swrc:editor(I-variable(C) I-variable(E)))

Consequent(ex:editedBy(I-variable(A) I-variable(E))))

DL reasoners now increasingly support SWRL. For instance, state of the art engines
like KAON217 and Pellet [92] facilitate the DL-safe fragment of SWRL, while Racer-
Pro [47] supports a SWRL-like syntax with a slightly different semantics (for instance,
closed world reasoning is supported in RacerPro’s variant of SWRL).

4.2 RDF Stores with Rules Support

RDF stores (or triple stores) are frameworks for managing, accessing, and processing
RDF data. These kind of systems do not employ standardized languages. Instead, they
provide their own proprietary rules implementations. These implementations are not as
expressive as SWRL, in favor of manageable computational properties.

In the following, we will briefly show three of the most common proponents of this
category and address different aspects on how rules are managed. One of such aspects,
mentioned quite often, is the handling of forward- and backward-chaining rules. For
instance, the well-known RETE algorithm is the backbone of many forward-chaining
systems. Depth-first backtracking traversal of rule sets based on SLD-Resolution [61]
is the most widely known representative of backward-chaining algorithms for rule pro-
cessing, deployed in most Prolog systems.

For a more in-depth explanation of the differences between forward- and backward-
chaining, we refer the interested reader to [13].

In the following, we will show how to write some of the rules modelling conflict of
interest for reviewers from Example 3 in systems with rule support.

Jena. The Jena18 Semantic Web framework comes with both forward- and backward-
chaining rule support, where the former implementation uses the RETE algorithm, and
the latter a standard logic programming style engine. Both engines can be tied together
and run in a hybrid mode where rules to be processed in a forward-chaining fashion are
syntactically distinguished from those to be processed by backward-chaining.

17 http://kaon2.semanticweb.org/
18 http://jena.sourceforge.net/

http://kaon2.semanticweb.org/
http://jena.sourceforge.net/

Rules and Ontologies for the Semantic Web 27

As an example for a rule expressed in Jena’s forward-chaining syntax, we show next
the translation of rule (5). Recall that this rule expresses that a conflicting reviewer is a
person which knows an author of this paper:

[conflict1:
(http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08 dc:creator ?A),
(?A foaf:knows ?P1), (?P1 foaf:name ?N), (?P foaf:name ?N),
(?P rdf:type foaf:Person)
->
(?P rdf:type ex:ConflictingReviewer)]

In this example, conflict1 is simply a name for the rule, and the atoms in the an-
tecedent of a rule might be either triple patterns of the form (Subject Predicate Object)

or built-ins of the form builtin(Subject Predicate Object). The terms in subject, predi-
cate, or object position could be RDF terms in the style of [82] or variables prefixed
with a “?” symbol.

Similarly, the above rule could be executed using the backward chaining inference
engine. In this reasoning mode, the same rule is just written with the consequent first:

[conflict1back: (?P rdf:type ex:ConflictingReviewer) <-
(http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08 dc:creator ?A),
(?A foaf:knows ?P1), (?P1 foaf:name ?N), (?P foaf:name ?N),
(?P rdf:type foaf:Person)]

Jena comes with support for custom rules, i.e., rules which are used to define a se-
mantics using the predefined RDF(S) or OWL semantics.

Sesame/OWLIM. The Sesame19 project maintains a reasoning and storage framework
for querying and persistently storing RDF data. By means of the OWLIM20 forward-
chaining engine, Sesame can be turned into a reasoning platform which supports the on-
tology languages RDFS, as well as the non-standard OWL fragments OWL DLP [45],
and OWL-Horst [96]. OWL DLP is a fragment of OWL DL expressible entirely in
function-free Horn rules. The OWL fragment defined by Herman ter Horst (thus some-
times referred to as OWL-Horst) adds more, yet incomplete, support for the fragment
of OWL Full translatable to rules.21

To give a glimpse on how OWLIM rules look like, we render rule (6) from Section 3,
which expresses that a conflicting reviewer is a person who co-authored a paper with
an author of the article in question:

Id: conflict2
<http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08> <dc:creator> A
Pub <dc:creator> A
Pub <dc:creator> P1
P1 <foaf:name> N
P <foaf:name> N
P <rdf:type> <foaf:Person>

?P#ex:ConflictingReviewer

19 http://www.openrdf.org/
20 http://www.ontotext.com/owlim/
21 Different other rule-expressible fragments of OWL exist in the literature, e.g., (i) the inten-

tional OWL fragment defined in Jos de Bruijn’s thesis [21, Section 9.3] which does a rigid
analysis of ter Horst’s work and tries to fix some of the problems therein, (ii) the OWL−

fragment [25] which is a slight extension of OWL DLP, or (iii) OWLPrime [104] discussed
below.

http://www.openrdf.org/
http://www.ontotext.com/owlim/

28 T. Eiter et al.

Moreover, OWLIM supports constraints on the variable bindings in each triple, i.e.,
the user can filter certain matches. Another feature are custom rule-sets (Axioms),
which allows users of this system to define their own semantics and control the com-
plexity of reasoning.

Oracle 11g. The Oracle 11g RDF database22 provides full RDF(S) support and comes
with a reasoning engine for a subset of OWL DL, more specifically, OWLPrime [104].
It includes support for forward-chaining rules and extends its SQL dialect with new
constructs for querying RDF inside of Oracle’s relational DBMS, i.e., it features a rule
system built entirely on top of the existing Oracle DBMS infrastructure. Like Jena and
Sesame/OWLIM, Oracle 11g facilitates adding inference rules on top of the built-in
rules for implementing user-defined semantics based on RDF.

For instance, our rule (17) can be defined as new element in the rulebase store of the
RDF database:

INSERT INTO mdsys.semr_user_rulebase VALUES (’editedby_rule’,
’(?x <http://purl.org/dc/elements/1.1/partOf> ?y)
(?y <http://swrc.ontoware.org/ontology#editor> ?z)’,

NULL, ’(?x <http://www.example.org/editedBy> ?z)’, null);

Getting the extension of the ex :editedBy predicate can be done using the following
extended SQL query:

SELECT s,o FROM table(SEM_MATCH(’(?s <http://www.example.org/editedBy> ?o)’,
SEM_MODELS(’OWLTST’),
SEM_RULEBASES(’OWLPRIME’,’USER_RULEBASE’), null, null));

which retrieves all ex :editedBy -related pairs using OWLPrime plus our user-rulebase
as entailment regime.

4.3 Logic Programming Engines with RDF Support

Logic programming has a long tradition in rule-based knowledge representation. Here
programs are composed of sets of rules in the form of (4). Inferencing with rules is
in logic programming is mostly performed using reasoning engines such as backward-
chaining Prolog systems. Other systems implementing logic programming paradigms
such as Answer Set Programming[6,36] often rely on a forward-chaining Datalog en-
gine underneath.

Among systems following the logic programming spirit, we next present such repre-
sentatives which at least have support for importing RDF data (from possibly different
locations), and thus allow to partially address our use cases outlined above.

Prolog Systems with RDF libraries. SWI-Prolog23 is a Prolog engine with many fea-
tures. It can import RDF using the Semantic Web Library [103] for SWI-Prolog and
reason about this data using Prolog-style backward chaining. RDFS and query support
works by using standard Prolog rules. For example, the fifth axiom in our RDFS ax-
iomatization (see Table 1) can be specified as

triple(O, rdf:type, C) :- rdf(S, P, O), rdf(P, rdfs:range, C).

22 http://www.oracle.com/technology/tech/semantic technologies/
23 http://www.swi-prolog.org/

http://www.oracle.com/technology/tech/semantic_technologies/
http://www.swi-prolog.org/

Rules and Ontologies for the Semantic Web 29

As any common Prolog system, SWI Prolog only supports stratified negation as failure,
denoted in Prolog by ‘\+’.

Rule (24) could (assuming all the relevant data is in the graph data.rdf) be ex-
pressed in SWI-Prolog as follows.

triple(P, rdf:type, ex:CandidateReviewer) :-
rdf(P, rdf:type, ex:Senior),
\+ (rdf(P, rdf:type, ex:ConflictingReviewer)).

?- rdf_assert(S,P,O), triple(S,P,O).

FLORA-2. The FLORA-2 system is an F-Logic reasoner with built-in support for
RDF(S).24 Negation as failure is supported under well-founded semantics. FLORA-2
is implemented on top of the XSB Prolog engine.25 Reconsidering the fifth axiom in
our RDFS axiomatization (Table 1), it can be specified as

?O[rdf:type -> ?C] :- ?S[?P -> ?O], ?P[rdfs:range -> ?C].

which is very close to RIF’s presentation syntax. Note that also the KAON2 system
mentioned above has limited support for F-Logic.

cwm. Finally, an example for a rule-based RDF engine in spirit of logic programming
is cwm.26 It is built for Notation3 (N3),27 which is an RDF notation enhanced with
support for modelling formulae and rules. An example is our rule (7), which can be
expressed in N3 as
@forAll P, A, P1, N .
{ <http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08> dc:creator A .

Pub dc:creator A .
Pub dcterms:partOf ConfOrJournal .
Pub1 dcterms:partOf ConfOrJournal .
Pub1 dc:creator P1 .
P1 foaf:name N .
P foaf:name N .
P rdf:type foaf:Person .

} log:implies { P rdf:type ex:ConflictingReviewer } .

N3 is based on a proprietary forward-chaining engine implemented in Python. It also
supports also a rich set of built-ins. Interestingly, N3/cwm also support for stratified
negation as failure with the log:notIncludes directive. Rule (24) could (assuming
all the relevant data is in the graph data.rdf) be expressed in N3 as follows.
@forAll :P.
{ <data.rdf>.log:semantics.log:conclusion

log:notIncludes { :P a ex:ConflictingReviewer };
log:includes { :P a ex:Senior. } }

log:implies {:P a ex:CandidateReviewer}.

4.4 Systems for Hybrid Combinations

In anticipation of Section 6, we show here systems which apply some of the more
complex approaches to combine rules and ontologies introduced there. These systems

24 http://flora.sourceforge.net/
25 http://xsb.sourceforge.net/
26 http://www.w3.org/2000/10/swap/doc/cwm.html
27 http://www.w3.org/DesignIssues/Notation3

data.rdf
data.rdf
http://flora.sourceforge.net/
http://xsb.sourceforge.net/
http://www.w3.org/2000/10/swap/doc/cwm.html
http://www.w3.org/DesignIssues/Notation3

30 T. Eiter et al.

are typically very expressive, and combine full DL reasoning with some form of logic
programming.

Hybrid Rules. HD-rules,28 which realizes Hybrid rules under well founded semantics
as defined in [31,30]. The system is implemented using XSB29 and a DL reasoner of
choice capable of handling the DIG format.

dl-Programs. The software prototype NLP-DL30 implements dl-programs as described
in [35,40,41], under stable model and well-founded semantics, by integrating the ASP
reasoner DLV [58] and RACER [47]. An example is given in the next section, and
further details will be shown in Section 6.1.

HEX-programs. HEX-programs, proposed in [38,39], are an extension of nonmono-
tonic logic programs under the answer set semantics [43] with support for higher-order
and external atoms. External atoms are a very generic form of built-ins. They general-
ize the semantics of dl-programs by providing a special notion of external atom which
enables access to DL reasoners and, above that, ensures the possibility of integrating
generic external software modules.

dlvhex 31 is an implementation of a large fragment of HEX-programs. It has been used
for a variety of applications such as ontology merging, bio-ontologies, e-government,
web querying, and policy management.

HEX-programs combine many approaches into a single extensible language for RDF
and DL reasoning, among others. Remarkably, external atoms allow a bidirectional data
flow between external sources and HEX-programs, i.e., inferences can be fed as input to
the outside data source.

An example for RDF support is the rdf external atom of dlvhex, which is of the form
&rdf [U](S ,P ,O). Through such an atom, RDF triples (S ,P ,O) from URL U can be
accessed:

triple(S,P,O) :- &rdf[<http://...>](S,P,O).
triple(S,"rdf:type","ex:ConflictingReviewer") :-

triple("http://dblp.l3s.de/d2r/page/publications/conf/rweb/EiterIKP08",
"dc:creator:, A),

triple(Pub, "dc:creator", A), triple(Pub, "dc:creator", P1),
triple(P1, "foaf:name", N), triple(P, "foaf:name", N),
triple(P, "rdf:type", "foaf:Person").

By the notion of DL external atoms, HEX-programs are able to query external descrip-
tion logics reasoners; the dlvhex system is able to accommodate dl-atoms in the style of
Section 6.1, which give a more concise syntax:

publishedIn(X,Y) :- DL[ex:Publication](X), DL[dc:partOf](X,Y).

Table 4 summarizes features of the previously introduced rules languages. As we
focus here on Semantic Web rule languages, it is no wonder that almost all support
RDF(S), and those systems, which do not have support for this language, have OWL

28 http://www.ida.liu.se/hswrl/
29 http://xsb.sourceforge.net/
30 http://www.kr.tuwien.ac.at/research/systems/semweblp/
31 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

http://www.ida.liu.se/hswrl/
http://xsb.sourceforge.net/
http://www.kr.tuwien.ac.at/research/systems/semweblp/
http://www.kr.tuwien.ac.at/research/systems/dlvhex/

Rules and Ontologies for the Semantic Web 31

Table 4. Overview of rule systems features

System (Language) RDF(S) OWL Modules Functions Built-ins HO Constraints NAF ∨
cwm (N3) + – – – + – – + –
dlvhex (HEX) + + – – + + + + +
FLORA-2 (F-Logic) + – + + + + – + –
HD-rules (Hybrid rules) – + – + – – – + –
Jena (Jena Rules) + + – – + – – – –
KAON2 (SWRL) + + – – + – – – +
NLP-DL (dl-programs) – + – – – – + + –
Oracle 11g (OWLPrime) + +∼ – – + – – – –
OWLIM (OWL Horst) + +∼ – – – – – – –
Pellet (SWRL) + + – – – – – – –
RacerPro (SWRL) + + – – + – – – –
SWI-Prolog (RDF(S)) + – + + + – – + –

Legenda: HO = Higher Order predicates, + = yes, – = no, +∼= yes, with some proviso

support instead. The OWL column shows then which systems promote the description
logics part of OWL, i.e., OWL Lite and OWL DL; we did not consider OWL Full
systems. The next column reveals tools with module support, which can be found in
FLORA-2 and SWI-Prolog. Similarly, function symbols are only present in those two
systems and HD-rules, since they are based on Prolog engines. In contrast, built-in
predicates or functions are not available in OWLIM and Pellet. Typically, all built-in-
aware systems provide an API, which allows the system users to specify their own
built-ins, but only dlvhex provides a declarative semantics for this feature. Higher-order
predicates (HO), that is the possibility of making a variable quantify over predicate
names, are only supported in two systems, whereas dlvhex and NLP-DL are the only
engines with constraint rules. As shown in Table 4, support for (unstratified) negation
as failure (NAF) is typical for descendants of logic programming systems and hybrid
combination approaches. Our last category, disjunctive rules, are only present in dlvhex
and KAON2 due to their heritage of disjunctive Datalog.

5 Combining Rules with Ontologies

Whereas we focused on practical features and implemented systems so far, in this sec-
tion we examine the general issues that come up when combining logic-programming
based (nonmonotonic) rules and (monotonic) ontology languages from a more theoret-
ical perspective. After discussing the semantic discrepancies which are the source of
difficulties when integrating logic programs with FOL – namely the Description Log-
ics fragment corresponding to OWL DL – we classify the integration approaches in
three categories. Eventually, we will present some representative approaches for each
category in more detail.

32 T. Eiter et al.

5.1 The Issue of Combining Rules with Description Logics

The combination and extension of terminological concepts defined in a DL theory by
means of rules is nowadays acknowledged as an important tool enriching knowledge
representation capabilities of traditional ontology languages such as OWL. As a pro-
totypical example, one cannot define the role uncleOf, given the roles brotherOf and
fatherOf in OWL DL (see e.g. [52]). OWL DL does not feature a role composition con-
struct or, more generally, a mechanism for defining axiomatic rules. Such aspects are
covered by extensions of OWL DL: for instance OWL2, based on SROIQ, adds the
possibility of constructing roles by composition, while SWRL adds the possibility to
declare arbitrary Horn clauses, which however leads to undecidability of crucial rea-
soning tasks such as subsumption in OWL. More troubles arise when rules governed by
nonmonotonic semantics should be introduced in a monotonic context, like a descrip-
tion logic knowledge base [22].

As well-known, the core of logic programming, i.e., definite positive programs (pos-
itive Datalog programs), has a direct correspondence with the Horn subset of classical
FOL. To wit, a rule of the form

a1 ∨ · · · ∨ al ← b1, . . . , bk,not bk+1, . . . ,not bm, (31)

which is definite (i.e., when l = 1) and not-free (i.e., when m = k) can be read as a
first-order sentence

(∀) b1 ∧ . . . ∧ bk ⊃ a1 (32)

where (∀) denotes the universal quantification of all variables. This subset of FOL al-
lows for a sound and complete decision procedure for entailment of ground atomic
formulae.

Several attempts to embrace such definite rules within a homogeneous (which can
be classified as non-hybrid coupling) semantic framework based on classical first-order
semantics have been made; most noticeable is SWRL, which is submitted to the W3C
(see Section 4.1 and [52]). SWRL embeds rules and terminological knowledge bases
under the same first-order semantics, but is restricted to (monotonic) Horn rules. This
approach has a smooth and homogeneous semantics, but still suffers from undecidabil-
ity problems; this can be addressed by introducing appropriate syntactic restrictions to
the rules, such as DL-safety [70]. DL-safe Horn rules can be combined with Description
Logics still retaining decidability.

Among non-hybrid approaches, also DLP [45] is noticeable. DLP, in contrast to
SWRL, restricts the syntax of the supported OWL DL fragment to those axioms ex-
pressible in Horn rules, while allowing arbitrary Horn rules to be added while still
staying within the Horn fragment.

As opposed to these non-hybrid approaches we will now mainly concentrate on the
possibility of combining nonmonotonic rule sets under traditional logic programming
semantics with a (monotonic) Description Logics knowledge base, which we refer to as
the so-called hybrid approaches.

While equivalence theorems between Horn Clausal Logic and function-free positive
Datalog under minimal model semantics are well known traditional results, the latter
diverts crucially as soon as nonmonotonic constructs are introduced. Hybrid approaches

Rules and Ontologies for the Semantic Web 33

have thus to take the great semantic and philosophical differences among the two worlds
into account.

We will in the following denote a hybrid knowledge base KB = 〈T , P 〉 as the com-
bination of:

– A first-order theory T (the classical component), expressed in a FO language with
signature ΣT ; and

– A logic program P (the rules component), formulated with a signature ΣP .

The combined signature of KB is ΣKB = ΣT ∪ ΣP . Predicates in ΣT (resp. ΣP) are
termed classical (resp. rule) predicates.

5.2 Logic Programming Versus First-Order Logic

We summarize next some of the crucial differences among logic programming (into
which ASP [43] and Frame Logic under nonmonotonic semantics [56] fall), and Clas-
sical Logic (into which OWL DL and, in general, Description Logics, fall).

Closed vs. Open World Assumption and single vs. multiple models. A logic pro-
gram is seen as a description of a single world, over which knowledge is complete.
Incomplete knowledge about a proposition is simply resolved by turning it into falsity.
Indeed, logic programming embraces Reiter’s Closed World Assumption (CWA) [83]:
If a theory T does not logically entail a ground atom A, then conclude ¬A.

On the other hand, a set of FOL sentences (or DL axioms) is intended as a description
of possible worlds (interpretation), in which all the sentences must hold. Conclusions
about propositions which cannot be proven to be true in all the possible worlds are
kept open. Under Open World Assumption (OWA) incomplete information is treated
agnostically (i.e., under a theory T it might be that neither T |= A nor T �|= A holds
for a proposition A).

The OWA is often reasonable in the Semantic Web context. However, taking the
agnostic stance of OWA may be not helpful for drawing rational conclusions under
incomplete information. Indeed, one can see the Web as a set of knowledge sources. A
locally scoped closed world assumption might be preferred when, for instance, one has
complete knowledge over a given source. In such cases a mix of CWA and OWA may
be appropriate, cf. [20,79].

It is worth noting that the issue of OWA vs. CWA is strictly related, but not equiva-
lent, to the multiple models approach taken in FOL versus the single model approach
taken in logic programming. Indeed, Answer Set Programming is a representative of
a logic programming paradigm where the closed world assumption is combined with
the possibility to control the modelling of multiple worlds. Also, there are fragments of
first-order which can be seen as the description of a single, canonical model (e.g., Horn
logic or DL-Lite [16]).

Negation as failure vs. classical negation. Negation as failure (NAF) is the traditional
operator for inferring negative knowledge from incomplete information, and is peculiar

34 T. Eiter et al.

of logic programming. The behavior of NAF compared the classical negation is notice-
ably different. For instance, consider the logic program

P : person(X)← author (X).
nonAuthor(X)← not author(X).
person(joe doe).

From P , we can conclude the fact nonAuthor (joe doe). Now consider the first-order
counterpart of P :

T : ∀X. (Author(X) ⊃ Person(X))∧
∀X. (¬Author(X) ⊃ NonAuthor(X))∧
Person(joe doe).

From T , we cannot conclude NonAuthor (joe doe).

Strong negation vs. classical negation. Several logic programming formalisms feature
the possibility to avoid negation as failure and use the so-called strong negation. For
instance, the seminal paper about Answer Set Programming [43] introduces a language
comprising both negation as failure and strong negation. Strong negation is often seen
as a “surrogate” of classic negation, but it must not be mispelled as equivalent to the
latter, due to some crucial semantic differences.

For instance, given the logic program

P : person(X)← author (X).
−person(joe doe).

where “−” is used for denoting strong negation, we cannot −auther (joe doe) from P ;
on the other hand, from the corresponding first-order theory:

T : ∀X. (Author(X) ⊃ Person(X))∧
¬Person(joe doe).

we can conclude ¬Author(joe doe) from T .
This discrepancy can be traced to the different setting in which the two types of nega-

tion live: strong negation can be seen as negation under OWA but in a single model setting.
In a single model (in the sense of logic programming) knowledge about strongly negated
atoms might be incomplete. For instance, it might be that in a stable model M neither an
atomic proposition A nor its strong negation−A is known (i.e., evaluates to true).

On the other hand, classical negation inherits its behavior from a scenario where
the OWA is obtained by quantifying the truth of possible answers over multiple inter-
pretations. The uncertainty of an assertion A is given by the fact that there might be
interpretations in which A holds, and others in which A is false. In a single first-order
interpretation, classical negation is interpreted under a complete knowledge assump-
tion, and thus either A or ¬A evaluates to true.

However, like in the example above, FOL semantics allows to determine that there
is no interpretation in which Author(joe doe) can hold, hence we can infer that T |=
¬Author (joe doe), while the same conclusion does not hold using strong negation in a
logic programming setting. Note that adding to P the rule

−author(X)← −person(X).

Rules and Ontologies for the Semantic Web 35

is in general not enough to enforce a similar behavior, since logic programming lacks
the tertium non datur property for strong negation; to enforce it, a rule −p(X) ∨
p(X)← for every predicate p would need to be added.

Treatment of equality. Logic programming formalisms, including ASP, typically em-
ploy a Unique Name Assumption (UNA), i.e., different ground terms denote different
objects, and do not support real equality reasoning, i.e., the possibility to infer knowl-
edge about (in)equality of names. This does not comply necessarily with the view in
classical logic, and thus with RDF and OWL, where no such assumption is made. While
equality “=” and inequality “ �=” predicates are allowed in rule bodies, they represent
syntactic equality and (default) negation thereof only. This shall not be confused with
OWL’s owl:sameAs and owl:differentFrom directives. Following up the ex-
ample from Section 2.2, consider the following rule base:

knowsOtherPeople(X)← knows(X, Y), X �= Y ;
knows(“http://polleres.net/foaf.rdf#me”,

“http://www.polleres.net/foaf.rdf#me”).

Under standard ASP semantics, “ �=” amounts to “not =”. Hence,

knowsOtherPeople(“http://polleres.net/foaf.rdf#me”)

would be entailed, while the same would not hold in similarly modelled OWL knowl-
edge bases. Enabling reasoning with equality has usually a very high computational
cost. Indeed, common DL reasoners like FACT++ [97] or RACER [47] also do not
support full equality reasoning and nominals.

Existential quantification. The inability of expressing existence of individuals in logic
programming is also matter of semantic discrepancy. Consider the theory

T : ∀X∃Y. (Person(X) ⊃ hasNationality(X, Y))

which, in DL Syntax, is equivalent to Person � ∃hasNationality . This can be ren-
dered as an equi-satisfiable Horn clause, by skolemizing the Y in the head (see above):

T : ∀X. (Person(X) ⊃ hasNationality(X, fY (X)))

This clause can be rendered as a rule in logic programming, but not in standard Datalog,
where function symbols are not allowed. However, most implemented systems can not
actually evaluate a logic program equivalent to the clause above, since corresponding
models are infinite. Elimination of functions symbols from logic programs or their eval-
uation in a decidable setting is indeed matter of continuous research (see, e.g., [11,7,90]
and references therein).

Decidability. Finally, the probably largest obstacle towards combining the description
logics world of OWL and the logic-programming world stems from the fact that these
two worlds face undecidability issues from two completely different angles.

Indeed, decidability of logic programming (and in particular of its answer set pro-
gramming dialects) follows from the fact that it is based on function-free Horn logic

http://polleres.net/foaf.rdf#me
http://www.polleres.net/foaf.rdf#me
http://polleres.net/foaf.rdf#me

36 T. Eiter et al.

RDFS

Ontologies
(OWL)

Rules
(RIF)

Rules
(RIF)

Ontologies
(OWL)

RDFS RDFS

Ontologies
(OWL)

Rules
(RIF)

Unifiying Logic

Loose coupling approach Tight semantic integration Full integration

Fig. 7. Different combination categories for rules and ontologies

where ground entailment can be determined by checking finite subsets of the Herbrand
base, i.e., decidability and termination of evaluation strategies is guaranteed by the
finiteness of the domain. However, this is not so for description logics. Decidability
of reasoning tasks such as satisfiability, class subsumption, or class membership in de-
scription logics is often strictly dependent on the combination of constructs which are
allowed in the terminological language, living in a infinite domain.

For description logics, it is often possible to prove decidability of reasoning by means
of the so called tree-model property. This property expresses that a DL knowledge base
has a model iff it has a (possibly infinite) tree shaped model whose branching factor is
bounded by the size of the knowledge base [4], such that the model gets, loosely speak-
ing, repetitive after a finite number of steps. It is worth noting, however, that the DL
SHOIN has not the tree-model property, and also not the finite-model property [53].

Unfortunately, it is difficult to combine two decidable fragments coming from the
two worlds. As shown already in [59], the naive combination of even a very simple DL
with an arbitrary Horn logic program is undecidable. Levy & Rousset [59] highlighted
recursion and unsafety of rules as culprits for undecidability, and suggested role-safety
as a remedy: at least one of variables X, Y in a role atom R(X, Y) in a rule r must
occur in a rule predicate in r that does not occur in any rule head of the program. As we
will see later, most of the hybrid approaches indeed provide a notion of safety as a key
tool for ensuring decidability.

5.3 Taxonomy of Hybrid Approaches

We can group hybrid rule formalisms into three main categories:

– Loose coupling (strict semantic separation);
– Tight integration; and
– Full integration.

We summarize next the peculiarities of the three categories. The reader can find
further interesting material and discussion in [3,22,72,88].

Loose coupling. Languages that are classified under the loose coupling category are
denoted by a high level of semantic separation between P and T .

Roughly speaking, the rule base P and the first-order theory T are treated as separate
and independent components. An interface mechanism is then defined that allows the
exchange of knowledge between the two sides. The particular design of the interfacing

Rules and Ontologies for the Semantic Web 37

mechanism (safe interfacing) guarantees decidability of the combined knowledge base,
although the flow of knowledge between the two sides is restricted, and in some cases,
unidirectional (e.g., the rules component can import data from the classical component,
but not vice versa). In important note is that loose coupling approaches are better suited
for practical implementation on top of existing reasoners for the two sides.

As representatives of loose coupling frameworks, we mention nonmonotonic dl-
programs [35,40], defeasible logic coupled with description logic bases [102], and prob-
abilistic dl-programs [63].

Tight semantic integration. With respect to loose coupling approaches, formalisms
categorized under the tight semantic integration scenario tend to integrate FOL state-
ments with the logic program to a larger extent, while keeping the vocabularies of the
first-order predicates and the logic programming predicates distinct.

In general, a tightly integrated language is built on the notion of an integrated model
which satisfies both the rules part P and the first-order part T of the knowledge base.
Such a model can be often seen as M = (Mo, Ml), that is, it is composed of two sep-
arate models Mo and Ml that share the same domain. Mo should satisfy the first-order
theory, while Ml should satisfy the corresponding program. Depending on the seman-
tics of the language at hand, there are different ways to define “agreement” of Mo and
Ml on the overall knowledge base, thus defining a “safe interaction” method between
the two worlds; see, e.g., [22] for more discussion. Representative of this category are
CARIN [59], r-hybrid KBs, r+-hybrid KBs, and DL+log [85,86,87,89].

Full integration. Full integration approaches are mostly distinct by the absence of
separation between the two vocabularies at hand: the two universes are treated to a
large extent in a homogeneous way; this, however, does not exclude to ascribe a certain
intended role to a particular predicate (to be a rule predicate, or a classical predicate),
which has to be done by proper axiomatization within the formalism.

Representative examples are Hybrid MKNF knowledge bases [69], first-order Au-
toepistemic Logic [23] and Open Answer Set Programs [49]. Terminological Default
Logic [5], and Description Logics of Minimal Knowledge [29] can be viewed as re-
lated precursors.

In their work on g-hybrid knowledge bases [50], Heymans et al. show that actu-
ally tight integration approaches, such as r-hybrid KBs [86] from above, can partially
be embedded into the above-mentioned Open Answer Set Programs. Likewise, in [24]
de Bruijn et al. show that a non-classical logic can embrace several tight-coupling ap-
proaches by an elegant embedding into Quantified Equilibrium Logic [74,75]. These
two proposed approaches can be seen as frameworks unifying classical logic with dis-
junctive logic programs under open answer set programming in a common logical
framework and thus may – despite keeping up the separation between classical and
rules predicates – be viewed among the full integration approaches.

6 Sample Combination Approaches

In this section, we briefly review some concrete approaches for combining rules and
ontologies that were mentioned in the previous section, one representative for each of

38 T. Eiter et al.

the general kinds of integration, viz. non-monotonic dl-programs as an example for
loose coupling, [33,34], DL+log [89], as an example for tight coupling, and Hybrid
MKNF knowledge bases [69] as an example for full integration. After that, we compare
these approaches in Section 6.4 with respect to several criteria.

6.1 Loose Coupling: Non-monotonic dl-Programs

dl-programs extend (function-free) answer set programs with queries to DL knowledge
bases through dl-atoms [35,40], which may be tuned to allow to query a DL knowledge
base in different ways. How the DL knowledge base and the logic program are matched
is under control of the knowledge designer.

The actual implementation combines a DL engine and an ASP solver, whose interac-
tion is clearly separated. The two sides can transfer knowledge bidirectionally through
dl-atoms, which serves as an interface. The basic idea of dl-atoms is to provide a means
for posing queries to the DL base T from the program P , by exploiting the native query
facilities of the DL engine. In the course of this, also knowledge can flow from P to T .

More in detail, a query Q can be a concept/role instance C(X)/R(X, Y), or a sub-
sumption C � D. When submitting a query, a dl-atom allows to modify the extensional
part (ABox) of T , by adding positive (�) or negative (−∪) assertions that are computed
by the logic program P .32 The dl-atom evaluates to true iff the modified T proves Q.

For example, the dl-atom DL[Wine](“ChiantiClassico”) asks whether it holds that
T |= Wine(“ChiantiClassico”); a dl-atom with a variable, DL[Wine](X) evaluated
to true for all the known individual x such that T |= Wine(x) holds.

The atom DL[RedWine � my red ;Wine](X) adds all assertions RedWine(c) to
T , such that my red(c) holds in the logic program P , while DL[RedWine−∪my white ;
hasColor](X, “Red”) adds all assertions ¬RedWine(c) to T such that my white(c)
holds in P . In both cases, the resulting theory T ′ is used for the query entailment test.

More formally, a dl-program [35,40] is a pair (T , P) where P consists of rules of
the form (31) where l = 1 and based on a function-free first order language, each ai

is a classical literal and each bj is either a classical literal or a dl-atom; an extension
allowing arbitrary l ≥ 0 (and thus also disjunctive rules) has been considered in [37].

Answer sets of a dl-program (T , P) are defined via grounding all the rules in P with
a set of constants C, where C contains the constants in P and additional constants from
T ; by default, these additional constants are all the constants in T , but they may also
be designated (see [35]). A model is a consistent set of classical ground literals M built
from the predicates in P and the constants in C. A ground dl-atom DL[〈Add〉; Q](c)
is true in M , iff T ∪ 〈Add〉M |= Q(c). Note that 〈Add〉M is dependent on M ; this
enables a knowledge flow from P to T .

A model M is called a strong answer set of (T , P), if it is the least model of sPM ,
which is akin to the famous Gelfond-Lifschitz reduct PM of an ordinary logic program
with respect to M [43]. It generalizes PM by handling dl-atoms, which are treated like
ordinary atoms. That is, sPM contains all rules obtained from the grounding of P by

32 Other modifications have been conceived, which we for simplicity disregard here. They lead
to non-monotonic dl-atoms, i.e., queries to T ′ that can have non-monotonic behavior, which
require special treatment.

Rules and Ontologies for the Semantic Web 39

– Removing all rule instances r of form (31) such that for some bj , where j ∈ {k +
1, . . . , m}, it holds that bj is true in M (which for a classical literal bj means
bj ∈M), and

– Removing all negation-as-failure literals not bj from the remaining rules.

In case of a dl-program with arbitrary rule heads (l ≥ 0), in the above definition by “the
least model” is replaced “a minimal model.”

dl-programs are decidable, provided that evaluating dl-atoms over T is decidable;
in particular, they are NEXP-complete for T ∈ SHIF(D) and PNEXP-complete for
T ∈ SHOIN (D) [35,40].

As an example dl-program, consider a scenario where a computer network is encoded
in an OWL DL knowledge base T ′′, through the concept Node and the role wiredTo.
Imagine now that some new node x must be added to T ′′, and it must be decided
to which existing node x should be connected to. When choosing new connections,
nodes belonging to the concept HighTrafficNode should be avoided. High traffic nodes
could be restricted in a way such that, e.g., HighTrafficNode � � k wired , for some
threshold value k. Thus connecting new nodes might trigger new high traffic nodes.
This kind of interplay between the two sides of knowledge can be modelled with the
following program:

connect(X, Y)← newNode(X),DL[Node](Y),not overloaded (Y).

overloaded (X)← DL[wired � connect ;HighTrafficNode](X).

The usage of dl-programs facilitates several advanced reasoning tasks: appropriate en-
codings allow to emulate CWA and Extended CWA (ECWA) [44] on top of a DL knowl-
edge base. Similarly, dl-programs can incorporate Poole’s-style [81] and a restricted
fragment of Reiter’s Default Logic [84] over DL bases. We show next how to emu-
late default reasoning and ECWA in dl-programs. The reader may refer to [35] for an
extensive description of applications of dl-programs.

Default Reasoning. Reconsider the candidate reviewer selection scenario in Section 3.8,
and suppose we have the following small knowledge base:

T = { ¬ex :ConflictingReviewer � ex :CandidateReviewer ,
ex :Senior(joe), ex :Senior(bob), ex :ConflictingReviewer (bob) }.

The rule that a senior author is a candidate reviewer by default (unless a conflict is
apparent), can be mimicked by the following dl-program:

r1 : cand rev(P)←DL[ex :Senior](P), not conflict(P);

r2 : conflict(P)←DL[ex :CandidateReviewer
cand rev ; ex :ConflictingReviewer](P).

Roughly speaking, r1 encodes the fact that a senior author should be considered as
a canidate reviewer, unless a conflict can be proven. Under Answer Set Semantics, r2

effects maximal application of r1 over T . The single answer set M will thus be as
follows:

{ cand rev(joe), conflict(bob) }.

40 T. Eiter et al.

Minimal Models and ECWA. If one considers a DL base with disjunctive information,
such as:

T = { Publication(p1), Publication ≡ Journal Pub � Conference Pub }

one can consider the goal of maximizing negative information (thus, minimizing pos-
itive knowledge) without raising inconsistency. The program shown next singles out
“minimal” models, in the setting of Extended CWA (ECWA):

j pub(X) ← not j pub(X).

c pub(X) ← not c pub(X).

j pub(X) ← DL[Journal Pub −∪ j pub,Conference Pub −∪ c pub; Journal Pub](X).

c pub(X) ← DL[Journal Pub −∪ j pub,Conference Pub −∪ c pub;Conference Pub](X).

In simple terms, the first two rules effect CWA on the concepts of journal and confer-
ence publication. The last two rules maximally propagate inferred negative information
to T . The answer sets, corresponding to minimal models, of the above program are:

M1 = {j pub(p1), c pub(p1)},
M2 = {c pub(p1), j pub(p1)}.

The same encoding structure can be extended to select those concept to be kept “fixed”
as in the general ECWA setting.

In [35], also weak answer sets have been introduced, which are defined like strong
answer sets with the only difference that in building the reduct, besides the not-literals,
also dl-atoms bj that are not under not are “evaluated” for rule and literal elimination.
However, in contrast to strong answer sets, weak answer sets are not guaranteed to be
minimal, in the sense that a weak answer set may contain some other weak answer set
properly; intuituively, they are less “grounded” than strong answer sets. Furthermore,
dl-programs have been recently extended to support also (union of) conjunctive queries
over the DL base [33,34].

6.2 Tight Integration: DL+log

DL+log [89] is the latest in a chain of extensions of the DL ALC with rules such as
AL-log , r- and r+-hybrid knowledge bases. The key semantic choices of DL+log can
be summarized as follows:

(a) A distinction between rule-predicates and classical predicates.
(b) a fixed, countably infinite domain, whose elements e can be accessed in all interpre-
tations with distinguished constant ce in a one-to-one correspondence; this is called the
Standard Names Assumption (note that this implies the UNA, and that interpretations
are isomorphic to Herbrand interpretations in absence of function symbols).
(c) Models (called NM-models) ofKB = 〈T , P 〉 are of form I∪M , where I is a model
of the classical predicates, M of the rules-predicates, after deletion of classical atoms
satisfied by I in P .
(d) The language has no strong negation, and weak negation is limited to rules-predicates,
but classical predicates can appear in rules heads; function symbols are not considered.

Rules and Ontologies for the Semantic Web 41

(e) To ensure decidability, weak (DL-)safety is used: each variable X in a rule r must
occur in some positive body atom of r, and this atom must have a rule predicate if X
occurs in an atom with classical predicate in the head of r.

Note that weak safety allows to access unnamed individuals in classical atoms. For
instance, take KB = 〈T , P 〉, where T = {author � ∃isAuthorOf , author(turing)}
and P consists of the weakly DL-safe rule:

scientist(X)← isAuthorOf (X, Y), not likes(X, astrology);

Here isAuthorOf is a classical predicate and scientist and likes are rule predicates.
The variable Y , which does not occur in any atom with a rule predicate, can access also
unknown individuals. We have KB = 〈T , P 〉 |=NM scientist(turing) as intuitively
expected, although Y can not be instantiated and might vary from interpretation to
interpretation. The same rule expressed as a dl-program would look like

scientist(X)← DL[isAuthorOf](X, Y), not likes(X, astrology)

which does not entail scientist(turing). However, the remodeled dl-program

scientist(X)← DL[∃isAuthorOf](X), not likes(X, astrology);

yields the expected answer; using the extended syntax proposed in [33,34] (allowing
also conjunctive queries), this dl-atoms can be expressed as DL[father (X, Y)](X).

The stable model (or answer set) semantics of DL+log is conceived in a 2-step re-
duction.

– In the first step, an interpretation I of the classical predicates is taken. Then P is
grounded and “reduced” with respect to I, by “evaluating” and eliminating classi-
cal atoms from rules (that is, classical atoms satisfied in I and appearing in bod-
ies are eliminated, classical atoms not satisfied in I and appearing in heads are
eliminated, rules which have falsified body and/or true head are eliminated). The
resulting ground program PI contains no classical predicates.

– In the second step, we define M as a stable model of PI as usual.

The DL+log formalism is decidable, if containment between union of conjunctive
queries is decidable in T .

For an example, consider the following KB = 〈T , P 〉:

T = {Multilingual � ¬Monolingual ;
Multilingual �Monolingual � Author ;
Author � ∃isAuthorOf ; Author(joey) }

P ={novelist(X) ∨ scientist(X)← writer (X);
Monolingual(X)← novelist(X);
Multilingual(X)← scientist(X);
writer(joey);
scientist(X)←writer(X), isAuthorOf (X, Y), not likes(X,astrology)}

(33)

Given a consistent interpretation I1, s.t. the set of classical atoms {Author(joey),
Multilingual(joey)} holds in I1, we have

42 T. Eiter et al.

PI1 = { novelist(joey) ∨ scientist(joey)← writer(joey);
← novelist(joey);
writer(joey);
scientist(joey)← writer(joey), not likes(joey , astrology)}

The interpretation M1 = {writer(joey), scientist(joey)} is a stable model, while
M2 = {writer(joey), novelist(joey)} is not a stable model. Indeed, we have

PI
M1 = { novelist(joey) ∨ scientist(joey)← writer(joey);

← novelist(joey);
writer(joey);
scientist(joey)← writer (joey)}

which has as single minimal model M1. Since PI
M2 = PI

M1 , M2 is not a stable
model.

If we take I2, where joey belongs to Monolingual and Author, we get

PI2 = { novelist(joey) ∨ scientist(joey)← writer(joey);
← scientist(joey);
writer(joey);
scientist(joey)← writer(joey), not likes(joey , astrology)}

We cannot find any stable model, since in any such M , likes(joey , astrology) must be
false, otherwise scientist(joey) would be true, in contradiction with the constraint←
scientist (joey).

6.3 Full Integration: Hybrid MKNF Knowledge Bases

Building on Lifschitz’s bimodal Logic of Minimal Knowledge and Negation as Failure
(MKNF) [60], hybrid MKNF knowledge bases [68,69] aim at a seamless integration of
classic and nonmonotonic semantics beyond tight integration approaches. The formal-
ism uses two modal operators: Kφ, which intuitively should mean that φ is necessarily
known, and notφ, which intuitively means that φ is not true, i.e., there is some scenario
in which φ is false.

In hybrid MKNF KBs, the rules in P have the form

Kh1 ∨ · · · ∨Khl ← Kb1, . . .Kbm,not bm+1, . . . ,not bn

where all hi and bj are function-free first-order atoms; they are seen as MKNF formulas

(∀)Kb1 ∧ · · · ∧Kbm ∧ not bm+1,∧ · · · ∧ not bn ⊃ Kh1 ∨ · · · ∨Khl.

The first-order part T is converted to the formula K
∧

φ∈T φ, assuming that T is finite.
As in other formalisms, no function symbols are allowed.

The semantics of the hybrid MKNF KB KB = 〈T , P 〉 is then defined in terms
of the semantics of the conjunction of these MKNF formulas, which we denote by
MKNF(KB). As inDL+log , a fixed, countably infinite domain and the Standard Names
Assumption is used, but in addition Herbrand interpretations are explicitly assumed.

Rules and Ontologies for the Semantic Web 43

In the tradition of Kripke-style semantics for modal logics, models are sets of inter-
pretationsM rather than single interpretations I. Intuitively, a modelM represents a
group of interpretations or “possible worlds” I in which a given formula is true. The
operator Kφ can be seen as the logical necessity operator under modal logic S5 axiom-
atization; in Kripke-semantic terms, this means that given a model M, each world I
can access each world I′ inM (including itself); thus, a formula Kφ evaluates to true
at a world I, if φ evaluates to true at each world I ′ inM. Similarly, notφ evaluates to
false at I if φ evaluates to false at some I′ inM. Atoms, propositional combinations
of formulas, and quantifiers are evaluated at I as usual in first-order logic.

A modelM is now an MKNF model of KB = 〈T , P 〉, if the formula MKNF(KB)
evaluates to true at each world of M, and it is not possible to increase M to some
M′ ⊃M such that MKNF(KB) evaluates to true at some world ofM′, if K would be
evaluated with respect toM′ but not with respect toM. Intuitively,M is “maximal”
and embodies the Minimal Knowledge Principle in the sense that the more interpreta-
tions (possible worlds) a model contains, the less certain knowledge is associated with
it. Note that for a modal-free formula φ, the formula Kφ is equivalent to φ, as the only
maximal model M such that M |= Kφ coincides with the set of all the first-order
interpretations I such that I |= φ. On the other hand, the not operator implements
negation as failure and can be read as “there is the possibility that φ is false.”

Although in hybrid MKNF KBs there is no distinction between classical and rules
predicates for defining the semantics, this issue becomes relevant for ensuring decid-
ability of reasoning. To this end, DL-safety of the rules in P is adopted, where predi-
cates that appear in T are considered as DL-predicates, and all other ones (occurring
only in P) as non-DL-predicates. Furthermore, on the first-order side T is restricted to
a decidable DL.

Hybrid MKNF KBs can be seen as a generalization of CARIN [59], AL-log [28],
and DL-safe rules [70]. They extend, like dl-programs, and DL+log , logic programs
and description logic faithfully in the sense that the consequences of hybrid KBs (∅, P)
and (T , ∅) reflect consequences of stable model semantics and first-order semantics,
respectively (where for dl-programs, only consequences given by queries make sense).

For an example, consider the following extension of the hybrid KB (33). The ontol-
ogy part is extended to

T = {Multilingual � ¬Monolingual ;
Multilingual �Monolingual � Author ;
Author � ∃isAuthorOf ; Author(joey); Lefthanded � Author }

where the last axiom introduces a class of authors using their left hand to write. To the
rules part, we add that the rule that authors write with their right hand if they are not
left-handed, and this is the default. This leads to the following program part P :

P ={Knovelist(X) ∨Kscientist(X)← Kwriter(X);
KMonolingual(X)← Knovelist(X);
KMultilingual(X)← Kscientist(X);
Kscientist(X)←Kwriter(X),KisAuthorOf (X, Y),notlikes(X,astrology);
Kwriter(joey);
KRighthanded (X)← KAuthor(X),notLefthanded(X) }

44 T. Eiter et al.

Note that compared to DL+log (in which the new rule cannot be formulated), it is now
possible to use negation as failure over first-order predicates such as Lefthanded. As the
authors of [69] describe, in some sense “closed world glasses” can be put on classical
predicates, allowing to state exceptions.

By treating DL concepts and roles as objective knowledge (i.e., without the K oper-
ator), and the rule predicates as modal, it is possible to port a DL+log knowledge base
into an equi-satisfiable generalized hybrid MKNF KB. For more details, see [68].

6.4 Assessment

Some noticeable features of the semantics of dl-programs,DL+log , and hybrid MKNF
knowledge bases are summarized Table 5, following a similar assessment in [22]. For
the sake of comparison, we have added also SWRL there as a prominent non-hybrid ap-
proach. The first row identifies which formalisms have different vocabularies for clas-
sical and rule predicates names, respectively. Note that this feature is not distinctive
of loose coupling approaches, although it can be seen as an indication of the level of
coupling between classic and logic programming semantics.

The second group of features identifies which choice is taken regarding the domain
of discourse for the logic programming part P of a knowledge base. The choice varies
between taking a single arbitrary domain, such as for SWRL, or adopting a combined,
yet overlapping, signature (such as for hybrid MKNF and dl-programs). Such a signa-
ture usually defines two distinct domains of discourse and their interaction. In this latter
setting, it can be chosen whether to take the Herbrand Universe as domain for P .

As it can be seen in the second group of features, dl-programs, DL+log , and hybrid
MKNF KBs have unique names in the Herbrand universe of the rules part. In fact,

Table 5. Comparison table for some hybrid approaches

dl-programs DL+log hybrid MKNF SWRL
Distinguish classical + + – –
and rule predicates

Domain of Discourse for P

Herbrand Universe of P – +∼ + –
Combined Signature + +∼ + –
Arbitrary domains – – – +

Uniqueness of Names
unique names in HU of P + + + –
Special equality predicate +∼ +∼ + +
No uniqueness – – – +

Knowledge Interaction: from First-Order Theories to Rules
Per single model – + – +
Entailment + – + –

Knowledge Interaction: from Rules to First-Order Theories
Per single model – + + +
Entailment + – – –
Decidability +∼ +∼ +∼ –

Legenda: + = yes, – = no, +∼= yes, with some proviso

Rules and Ontologies for the Semantic Web 45

DL+log and hybrid MKNF KBs fulfill the UNA in the whole knowledge base, which is
implied by the Standard Names Assumptions they adopt. Note, however, that DL+log
is not committed to Herbrand interpretations of constants in the rules part.

Although under UNA, it is possible to identify different names using a special equal-
ity predicate such as ≈ in hybrid MKNFs. The same is in principle possible for both
DL+log and dl-programs, which are extensible with axioms defining an appropriate
congruence relation. This has actually been theoretically introduced and implemented
for dl-programs [35,40], which feature the possibility of simulating a congruence re-
lation or defining a customized behavior for equality. Note that dl-programs tolerate
non-uniqueness of names on the classical logic side of the knowledge base signature.
SWRL has native features for reasoning with non-uniqueness of names, which is the
default setting.

Regarding the interaction from the ontology (first-order theory) to the rules, we dis-
tinguish whether the truth of literal with “classical” predicate in a rule depends for
model construction on a single model of the first-order part of the hybrid KB, or on
entailment from multiple models. Here, “model” is understood in the wider sense of
first-order logics interpretation/hybrid model; for hybrid MKNF, it is a first-order inter-
pretation in a MKNF model (which is a set of first-order interpretations). DL+log and
SWRL work on a single model basis, while dl-programs and hybrid MKNF employ in-
ference from multiple models; in dl-programs, information from the first-order theory
is imported to rules only if a query is proven from the (possibly constrained) set of mod-
els of the first-order part. Similarly, the operators K and not in hybrid MKNFs imply
a quantification over multiple first-order models before knowledge can be considered
true/false within a rule.

For the reverse direction (from the rules to the first-order part), single-model inter-
action is understood in the sense that each model I of the rules part P constrains the
models of the first order part T such that only models will be considered in which all
classical predicates have a larger extent than in I. Entailment based interaction, instead,
simply adds positive conclusions about the classical predicates that can be drawn from
the model of the logic program to the first-order part. Note that this may make a dif-
ference, if we can have elements in interpretations that can not be accessed via some
ground term. Here, only dl-programs are conceived according to the second principle,
through the special dl-atom device, which adds conclusions about classical predicates
to the ontology.

As a last yet important parameter, we consider decidability. Both dl-programs and
hybrid MKNF KBs are decidable, provided that satisfiability checking for the underly-
ing description logic base is decidable, and the rules part is DL-safe (for dl-programs,
DL-safety is implicitly ensured). Compared to MKNF, theDL+log formalism asks only
for weak DL-safety, but in turn containment between union of conjunctive queries must
be decidable in the underlying first-order theory T .

6.5 Further Aspects

There are many interesting aspects that we can not cover here. Probabilistic and fuzzy
hybrid systems under stable model semantics for the rules have been investigated under

46 T. Eiter et al.

both the loose coupling and tight coupling approach; see [14,63,64]. An extension of
RDF(S) with stable models has been proposed in [2].

Besides stable models semantics, the research community also paid attention to hy-
brid knowledge bases with well-founded semantics on the rules side: for example, a
well-founded semantics for dl-programs [41] and for hybrid MKNF knowledge bases
[57] has been defined, while hybrid rules under well-founded semantics [31] follow the
approach of the DL+log family.

A rich line of research has investigated the possibility of emulating first-order se-
mantics by mapping first-order theories into equivalent logic programs. A noticeable
translation from SHIQ to positive disjunctive Datalog (which has an exponential blow
up in the worst case) was given in [54]. A correspondence between open logic program-
ming andALCN has been shown in [99]. Other attempts to map description logics into
answer set semantics are [95] and [1]. A decidable fragment of ASP extended with
function symbols that is rich enough to captureALC has been recently described [90].

7 Conclusion

Advanced reasoning frameworks for future Semantic Web applications need to deal
with both rules and ontologies in an integrated manner, which is currently not supported
well and an active area of research. In this article, we have considered a number of rule-
based formalisms to work on top of or aside ontology bases. They work at different
levels of integration, ranging from a low level, at which the integration is ad hoc, to a
high level, where a genuine semantics is given to a combination of rules and ontologies.

In the course of this, we have developed a number of criteria and discriminating fea-
tures, which we then used to profile the various formalisms and systems. As for imple-
mented systems, we have briefly addressed the languages they support, and we related
them to foundational approaches to combining rules and ontologies. Furthermore, we
have also discussed selected approaches at the high level that are on the forefront of
research, whose impact for future developments remains to be seen.

Looking at the tool support that is currently available, we found that many – and
quite diverse – systems and languages exist, and that there is no easy way to change
from one system to another in general; this means that once the user gets stuck when
modeling her application with a specific system, then she has to port the whole rule
base to another system; this is however not always feasible for any arbitrary target
system. In this regard, the RIF standardization effort of the W3C is not only useful to
promote rule languages, but also to give more freedom to the users in choosing the
“right” system for their application. The Semantic Web as such is a good application
playground for pushing the frontiers in the implementations and for providing solid and
scalable implementation of rule/ontology languages.

When we looked at the issue of combining rules and ontologies into a unifying
framework, we found that this is not easy given the quite different features underlying
logic programs and ontologies, since the latter are mainly based on classical logic while
the former are not. Recent proposals are a step forward but the issue is not resolved yet
(as it seems), and more research efforts will be necessary. After the successful ontology
initiative of the W3C which resulted in the OWL standard, it is to be hoped that the RIF

Rules and Ontologies for the Semantic Web 47

effort will converge to a useful standard as well, even though this is far less clear given
the many facets of rules and views what rules are.

Current and future research centers around the following questions.

Semantics for rules plus ontologies. While a number of proposals for a semantics of
rules combined with ontologies have been made, it is not clear whether these pro-
posals are already sufficient and will show satisfactory behavior in relevant cases.
What is missing at this point are case studies and large(r) scale examples beyond
the toy examples which have been considered in the seminal papers that introduced
the approaches. This, in turn, may also provide guidance in the development of a
“gold standard” for rules plus ontologies.

Semantic and computational properties. Related with these, we need to know more
about the semantic and computational properties of the various approaches for rules
and ontologies, and also how they relate to each other. Studies on how knowledge
bases in the one formalism can be transformed into knowledge bases in the other
formalism are useful in this regard, as well as to understand what scenarios can
be expressed in a formalism (and which not). Related to this is the issue of com-
putational complexity, which gives us however a somewhat coarser view than the
expressiveness of a formalism in terms of (sets of) models that it can represent.
Current complexity studies provide us with basic results, but more refined ones and
studies of expressiveness issues are missing.

Efficient implementations, algorithms. Of most reasoning engines, especially at the
high level of integration, only simple prototypes or even no implementations are
available. Implementations, however, are barely needed in order to experiment with
a formalism not only to measure performance, but also to understand and analyze its
behavior. Doing this on paper is cumbersome (and tedious). Guided by the results
of complexity studies, efficient implementations have to be developed, and the great
challenge of scalability has to be met. This, however, might require to modify the
semantics or to develop suitable approximation methods to facilitate reasoning with
manageable resources.

Beyond logic rules. The current integration efforts aim at logic rules, be it in the read-
ing of rules as logical clauses, or in the style of (non-monotonic) rules as in logic
programming. In fact, there are many more kinds of rules out there which we need
to integrate with ontologies as well; for example, production rules as available in
traditional expert systems engines, that are based on an operational semantics; busi-
ness rules, which are used in the context of business policies and whose semantics
is not always clear; etc.

Knowledge combination/integration beyond rules and ontologies. Connected to the
previous issue, knowledge integration beyond a simple pair of a rules and an ontol-
ogy part is an issue. Both the rules and the ontology part need not be homogeneous,
but composed of parts itself that have difference semantics; furthermore, knowledge
bases of a different kind than rules (e.g., descriptions of temporal processes like work
flows or protocols in a temporal logic, or action theories) may need to be integrated.
This calls for a logic framework in which knowledge modules, having different na-
tive semantics, can be put together under a meaningful semantics, ideally in a plug
and play manner – realizing this vision is a challenging goal.

48 T. Eiter et al.

References

1. Alsaç, G., Baral, C.: Reasoning in description logics using declarative logic programming.
Technical report, CS Dept, Arizona State University (2001)

2. Analyti, A., Antoniou, G., Damásio, C.V., Wagner, G.: Stable Model Theory for Extended
RDF Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 21–36. Springer, Heidelberg (2005)

3. Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J.,
Patel-Schneider, P.F.: Combining Rules and Ontologies: A survey. Technical Report
IST506779/Linköping/I3-D3/D/PU/a1, Linköping University, IST-2004-506779 REW-
ERSE Deliverable I3-D3. (February 2005),
http://rewerse.net/publications/

4. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cam-
bridge University Press, Cambridge (2007)

5. Baader, F., Hollunder, B.: Embedding defaults into terminological representation systems.
J. Automated Reasoning 14, 149–180 (1995)

6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2002)

7. Baselice, S., Bonatti, P.A., Criscuolo, G.: On finitely recursive programs. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 89–103. Springer, Heidelberg (2007)

8. T. Berners-Lee. Web for Real People, April 2005. Keynote Speech at the 14th World Wide
Web Conference WWW2005,
http://www.w3.org/2005/Talks/0511-keynote-tbl/.

9. Boley, H., Kifer, M., Pătrânjan, P.-L., Polleres, A.: Rule interchange on the web. In: Anto-
niou, G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.-L., Tolksdorf, R.
(eds.) Reasoning Web. LNCS, vol. 4636, pp. 269–309. Springer, Heidelberg (2007)

10. Boley, H., Kifer, M. (eds.): RIF Basic Logic Dialect, W3C Working Draft (October2007),
http://www.w3.org/TR/2007/WD-rif-bld-20071030

11. Bonatti, P.A.: Reasoning with infinite stable models. Artificial Intelligence 156(1), 75–111
(2004)

12. Brickley, D., Guha, R. (eds.): RDF vocabulary description language 1.0: RDF Schema,
W3C Recommendation (February 2004), http://www.w3.org/TR/rdf-schema/

13. Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R., Wei,
F.: Foundations of rule-based query answering. In: Antoniou, G., Aßmann, U., Baroglio,
C., Decker, S., Henze, N., Patranjan, P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS,
vol. 4636, pp. 1–153. Springer, Heidelberg (2007)

14. Calı̀, A., Lukasiewicz, T.: Tightly integrated probabilistic description logic programs for the
semantic web. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 428–429.
Springer, Heidelberg (2007)

15. F. Calimeri, S. Cozza, G. Ianni, N. Leone. DLV-Complex homepage, since 2008,
http://www.mat.unical.it/dlv-complex

16. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Embedding defaults
into terminological representation systems. J. Automated Reasoning 39, 385–429 (2007)

17. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web Semantics 3(4)
(2005)

18. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL Protocol for RDF, W3C Proposed Rec-
ommendation (November 2007),
http://www.w3.org/TR/2007/PR-rdf-sparql-protocol-20071112/

http://rewerse.net/publications/
http://www.w3.org/2005/Talks/0511-keynote-tbl/
http://www.w3.org/TR/2007/WD-rif-bld-20071030
http://www.w3.org/TR/rdf-schema/
http://www.mat.unical.it/dlv-complex
http://www.w3.org/TR/2007/PR-rdf-sparql-protocol-20071112/

Rules and Ontologies for the Semantic Web 49

19. Connolly, D. (ed.): Gleaning Resource Descriptions from Dialects of Languages (GRDDL)
(September 2007)

20. Damásio, C.V., Analyti, A., Antoniou, G., Wagner, G.: Supporting open and closed world
reasoning on the web. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR
2006. LNCS, vol. 4187, pp. 149–163. Springer, Heidelberg (2006)

21. de Bruijn, J.: Semantic Web Language Layering with Ontologies, Rules, and Meta-
Modeling. PhD thesis, Faculty of Mathematics, Computer Science and Physics of the Uni-
versity of Innsbruck, Innsbruck, Austria (2008)

22. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: On representational issues about combi-
nations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F., Wang, J. (eds.)
KSEM 2006. LNCS (LNAI), vol. 4092, pp. 1–22. Springer, Heidelberg (2006)

23. de Bruijn, J., Eiter, T., Polleres, A., Tompits, H.: Embedding non-ground logic programs
into autoepistemic logic for knowledge base combination. In: Veloso, M. (ed.) Proceedings
20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pp. 304–309.
AAAI Press, Menlo Park (2007)

24. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A logic for hybrid rules. In: Proceedings
Second International Conference on Rules and Rule Markup Languages for the Semantic
Web (RuleML 2006), IEEE, Los Alamitos (2006),
http://2006.ruleml.org/online-proceedings/rule-integ.pdf

25. de Bruijn, J., Polleres, A., Lara, R., Fensel, D.: OWL−. Final draft d20.1v0.2, WSML
(2005)

26. J. de Bruijn (ed.). RIF RDF and OWL Compatibility, W3C Working Draft (October 2007),
http://www.w3.org/TR/2007/WD-rif-bld-20071030

27. Dean, M., Schreiber, G., Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuin-
ness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference,
W3C Recommendation (February 2004)

28. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and De-
scription Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)

29. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Trans. Comput. Log. 3(2), 177–225 (2002)

30. Drabent, W., Henriksson, J., Maluszynski, J.: HD-Rules: a hybrid system interfacing prolog
with dl-reasoners. In: 2nd International Workshop on Applications of Logic Programming
to the Web, Semantic Web and Semantic Web Services. ALPSWS 2007 (2007)

31. Drabent, W., Maluszynski, J.: Well-founded semantics for hybrid rules. In: Marchiori, M.,
Pan, J.Z., Marie, C. (eds.) RR 2007. LNCS, vol. 4524, pp. 1–15. Springer, Heidelberg
(2007)

32. Duerst, M., Suignard, M.: Internationalized Resource Identifiers (IRIs). RFC 3987 (Pro-
posed Standard) (January 2005)

33. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in
description logic programs. In: Proceedings of the 2007 International Workshop on De-
scription Logics (DL 2007), pp. 259–266 (2007)

34. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive queries in
description logic programs. Technical Report INFSYS RR-1843-08-02, Institut für Infor-
mationssysteme, Technische Universität Wien, A-1040 Vienna, Austria, Extended version
of the DL 2007/ISAIM 2008 abstract (March 2008)

35. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. Technical Report INFSYS
RR-1843-07-04, Institut für Informationssysteme, TU Wien (2007) (to appear in Artificial
Intelligence)

36. T. Eiter, G. Ianni, A. Polleres, and R. Schindlauer. Answer set programming for the semantic
web, (June 2006), http://asptut.gibbi.com/

http://2006.ruleml.org/online-proceedings/rule-integ.pdf
http://www.w3.org/TR/2007/WD-rif-bld-20071030
http://asptut.gibbi.com/

50 T. Eiter et al.

37. Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and
ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg (2006)

38. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order
Reasoning and External Evaluations in Answer Set Programming. In: Kaelbling, L.P., Saf-
fiotti, A. (eds.) In: Proceedings of the 19th International Joint Conference on Artificial In-
telligence (IJCAI 2005), Professional Book Center, pp. 90–96 (2005)

39. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic Web Reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

40. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set program-
ming with description logics for the Semantic Web. In: Proceedings KR 2004, pp. 141–151
(2004)

41. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML
2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)

42. The Friend of a Friend (FOAF) Project, http://www.foaf-project.org/
43. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, 365–385 (1991)
44. Gelfond, M., Przymusinska, H., Przymusinski, T.C.: The Extended Closed World Assump-

tion and its Relationship to Parallel Circumscription. In: Proceedings Fifth ACM Sympo-
sium on Principles of Database Systems (PODS 1986), pp. 133–139 (1986)

45. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logics. In: Proceedings WWW 2003, pp. 48–57 (2003)

46. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Ac-
quisition 5, 199–220 (1993)

47. Haarslev, V., Möller, R.: RACER System Description. In: Goré, R.P., Leitsch, A., Nipkow,
T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

48. Hayes, P.: RDF semantics, http://www.w3.org/TR/rdf-mt/
49. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming for the

semantic web. J. Applied Logic 5(1), 144–169 (2007)
50. Heymans, S., Predoiu, L., Feier, C., der Bruijn, J., van Nieuwenborgh, D.: G-hybrid knowl-

edge bases. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 39–54.
Springer, Heidelberg (2006)

51. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proceedings of the
10th International Conference of Knowledge Representation and Reasoning (KR 2006), pp.
57–67 (2006)

52. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, W3C Member, May (2004),
http://www.w3.org/Submission/SWRL/

53. Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Very Expressive Description
Logics. Logic Journal of the IGPL 8(3), 239–264 (2000)

54. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to dis-
junctive datalog. J. Autom. Reasoning 39(3), 351–384 (2007)

55. Kifer, M.: Nonmonotonic reasoning in FLORA-2. In: Baral, C., Greco, G., Leone, N., Ter-
racina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 1–12. Springer, Heidelberg
(2005)

56. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based lan-
guages. Journal of the ACM 42(4), 741–843 (1995)

http://www.foaf-project.org/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/Submission/SWRL/

Rules and Ontologies for the Semantic Web 51

57. Knorr, M., Alferes, J.J., Hitzler, P.: A well-founded semantics for hybrid mknf knowl-
edge bases. In: Proceedings of the 2007 International Workshop on Description Logics (DL
2007), pp. 347–354 (2007)

58. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv
system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7(3), 499–
562 (2006)

59. Levy, A.Y., Rousset, M.-C.: Combining Horn Rules and Description Logics in CARIN.
Artificial Intelligence 104(1-2), 165–209 (1998)

60. Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Proceedings IJCAI 1991,
pp. 381–386 (1991)

61. Lloyd, J.W.: Foundations of logic programming, 2nd edn. Springer, New York (1987)
62. Lloyd, J.W., Topor, R.W.: Making prolog more expressive. Journal of Logic Program-

ming 1(3), 225–240 (1984)
63. Lukasiewicz, T.: Probabilistic description logic programs. Int. J. Approx. Reasoning 45(2),

288–307 (2007)
64. Lukasiewicz, T., Straccia, U.: Description logic programs under probabilistic uncertainty

and fuzzy vagueness. In: Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty, 9th European Conference, ECSQARU, pp. 187–198 (2007)

65. Malhotra, A., Melton, J., Walsh, N. (eds.): XQuery 1.0 and XPath 2.0 Functions and Oper-
ators, W3C Recommendation (January 2007),
http://www.w3.org/TR/xpath-functions/

66. Marin, D.: A formalization of RDF. Technical Report TR/DCC-2006-8, TR Dept. Computer
Science, Universidad de Chile (2006)

67. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming live to-
gether happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D.,
Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514.
Springer, Heidelberg (2006)

68. B. Motik and R. Rosati. Closing semantic web ontologies. Technical report, Univer-
sity of Manchester, March 2007, http://web.comlab.ox.ac.uk/oucl/work/
boris.motik/publications/mr06closing-report.pdf

69. Motik, B., Rosati, R.: A faithful integration of description logics with logic programming.
In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence, pp. 477–482 (2007)

70. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web 3(1), 41–60 (2005)

71. Nilsson, M., Powell, A., Johnston, P., Naeve, A.: Expressing dublin core metadata using the
resource description framework (rdf), DCMI Recommendation (January 2008)

72. Pan, J.Z., Franconi, E., Tessaris, S., Stamou, G., Tzouvaras, V., Serafini, L., Horrocks, I.R.,
Glimm, B.: Specification of Coordination of Rule and Ontology Languages. Project Deliv-
erable D2.5.1, KnowledgeWeb NoE (June 2004)

73. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and
Abstract Syntax, W3C Recommendation (February 2004)

74. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
75. Pearce, D., Valverde, A.: Quantfied equilibrium logic. Technical report, Universidad Rey

Juan Carlos (2006)
76. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. In: Cruz, I.,

Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

77. Polleres, A.: From SPARQL to rules (and back). In: Proceedings of the 16th World Wide
Web Conference (WWW 2007), Banff, Canada (May 2007)

http://www.w3.org/TR/xpath-functions/
http://web.comlab.ox.ac.uk/oucl/work/boris.motik/publications/mr06closing-report.pdf
http://web.comlab.ox.ac.uk/oucl/work/boris.motik/publications/mr06closing-report.pdf

52 T. Eiter et al.

78. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011. Springer, Heidelberg (2006)

79. Polleres, A., Feier, C., Harth, A.: Rules with contextually scoped negation. In: Sure, Y.,
Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer, Heidelberg
(2006)

80. Polleres, A., Scharffe, F., Schindlauer, R.: SPARQL++ for mapping between RDF vocabu-
laries. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 878–896.
Springer, Heidelberg (2007)

81. Poole, D.: A Logical Framework for Default Reasoning. Artificial Intelligence 36, 27–47
(1988)

82. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQL Query Language for RDF, W3C Rec-
ommendation (January 2007),
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

83. Reiter, R.: On Closed-World Databases. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 55–76. Plenum Press, New York (1978)

84. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
85. Rosati, R.: Towards Expressive KR Systems Integrating Datalog and Description Logics:

Preliminary Report. In: Proceedings of the 1999 International Workshop on Description
Logics (DL 1999), pp. 160–164 (1999)

86. Rosati, R.: On the Decidability and Complexity of Integrating Ontologies and Rules. Jour-
nal of Web Semantics 3(1), 61–73 (2005)

87. Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and
rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer,
Heidelberg (2005)

88. Rosati, R.: Integrating Ontologies and Rules: Semantic and Computational Issues. In: Bara-
hona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS,
vol. 4126, pp. 128–151. Springer, Heidelberg (2006)

89. Rosati, R.: Tight Integration of Description Logics and Disjunctive Datalog. In: Proceed-
ings of the Tenth International Conference on Principles of Knowledge Representation and
Reasoning (KR 2006), pp. 68–78. AAAI Press, Menlo Park (2006)

90. Simkus, M., Eiter, T.: FDNC: Decidable non-monotonic disjunctive logic programs with
function symbols. In: Logic for Programming, Artificial Intelligence, and Reasoning, 14th
International Conference, LPAR, pp. 514–530, Full paper Tech.Rep.INFSYS RR-1843-08-
01, TU Vienna. (2007),
http://www.kr.tuwien.ac.at/research/reports/rr0801.pdf

91. Sintek, M., Decker, S.: TRIPLE - A Query, Inference, and Transformation Language for
the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp.
364–378. Springer, Heidelberg (2002)

92. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL
reasoner. Technical Report 68, UMIACS, University of Maryland (2005)

93. Straccia, U.: Reasoning about Uncertainty. In: Reasoning Web, Fourth International Sum-
mer School 2008, Tutorial Lectures. LNCS, vol. 5224. Springer, Heidelberg (2008)

94. Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The SWRC ontology - semantic
web for research communities. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS
(LNAI), vol. 3808, pp. 218–231. Springer, Heidelberg (2005)

95. Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR
2004. LNCS (LNAI), vol. 2923, pp. 275–288. Springer, Heidelberg (2003)

96. ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema
and a semantic extension involving the owl vocabulary. Journal of Web Semantics 3(2)
(July 2005)

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.kr.tuwien.ac.at/research/reports/rr0801.pdf

Rules and Ontologies for the Semantic Web 53

97. Tsarkov, D., Horrocks, I.: Fact++ Description Logic Reasoner: System Description. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130. Springer, Heidelberg
(2006)

98. Ullman, J.D.: Principles of Database & Knowledge Base Systems. Comp. Science Press
(1989)

99. Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between de-
scription logics and open logic programming. In: Proceedings ICLP 1997, pp. 346–360
(1997)

100. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The Well-Founded Semantics for General Logic
Programs. Journal of the ACM 38(3), 620–650 (1991)

101. W3C. The Resource Description Framework, http://www.w3.org/RDF/
102. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining Description Logic and Defea-

sible Logic for the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS,
vol. 3323, pp. 170–181. Springer, Heidelberg (2004)

103. Wielemaker, J., Schreiber, G., Wielinga, B.: Prolog-based infrastructure for RDF: Scalabil-
ity and performance. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,
vol. 2870, pp. 644–658. Springer, Heidelberg (2003)

104. Wu, Z., Eadon, G., Das, S., Chong, E.I., Kolovski, V., Annamalai, M., Srinivasan, J.: Im-
plementing and Inference Engine for RDFS/OWL Constructs and User-Defined Rules in
Oracle. In: Proccedings of ICDE 2008, IEEE Computer Society Press, Los Alamitos (to
appear, 2008)

105. Yang, G., Kifer, M.: Reasoning about anonymous resources and meta statements on the
semantic web. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics
I. LNCS, vol. 2800, pp. 69–97. Springer, Heidelberg (2003)

http://www.w3.org/RDF/

	Rules and Ontologies for the Semantic Web
	Introduction
	Preliminaries
	RDF and RDF Schema
	Description Logics and the OWL Web Ontology Language

	Rule-Based Aggregation and Integration of Semantic Web Data
	Common Formats for Rule Interchange on the Web
	RDF Data Import
	RDF Schema Support
	OWL Support
	Modules, Context, and Named Graphs
	Blank Nodes and Function Symbols
	Built-in Predicates and Functions
	Defaults and Negation as Failure
	Advanced features: Unstratified Negation, Constraints, and Disjunction

	Languages and Systems
	SWRL -- OWL Reasoners with Rules Support
	RDF Stores with Rules Support
	Logic Programming Engines with RDF Support
	Systems for Hybrid Combinations

	Combining Rules with Ontologies
	The Issue of Combining Rules with Description Logics
	Logic Programming Versus First-Order Logic
	Taxonomy of Hybrid Approaches

	Sample Combination Approaches
	Loose Coupling: Non-monotonic dl-Programs
	Tight Integration: DL+log
	Full Integration: Hybrid MKNF Knowledge Bases
	Assessment
	Further Aspects

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

