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Abstract. Mining frequent subgraphs (FSG) is one form of graph min-
ing for which only main memory algorithms exist currently. There are
many applications in social networks, biology, computer networks, chem-
istry and the World Wide Web that require mining of frequent subgraphs.
The focus of this paper is to apply relational database techniques to
support frequent subgraph mining. Some of the computations, such as
duplicate elimination, canonical labeling, and isomorphism checking are
not straightforward using SQL. The contribution of this paper is to ef-
ficiently map complex computations to relational operators. Unlike the
main memory counter parts of FSG, our approach addresses the most
general graph representation including multiple edges between any two
vertices, bi-directional edges, and cycles. Experimental evaluation of the
proposed approach is also presented in the paper.

1 Introduction

Frequent subgraphs (FSG) is one form of graph mining. However, for FSG min-
ing there currently exist only main memory algorithms [4]. There are many
applications in social networks, biology, computer networks, chemistry and the
World Wide Web that require mining of frequent subgraphs over large data sets.
These main memory algorithms do not scale very well for large data sets. Hence,
there is a need for developing scalable algorithms for frequent subgraph mining.
An SQL-based approach [9,5] is one way of doing that by exploiting the buffer
management and optimization techniques already provided and fine tuned in a
RDBMS. However, applying limited representation and computations provided
by a RDBMS for graph mining is not trivial. Representation of a graph, gener-
ation of larger subgraphs, checking for exact and inexact matches of subgraphs
using relational representation and operators is one of the contributions of this
paper.

The remainder of the paper is organized as follows. The different graph mining
algorithms that motivated the development of a SQL-based approach for frequent
subgraph mining is discussed in section 2. An overview of DB-FSG algorithm
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for FSG is provided in section 3. The design issues related to DB-FSG algorithm
is detailed in section 4. Experimental results are discussed in section 5. Finally,
conclusions and future work are discussed in section 6.

2 Related Work

Subdue [2] is one of the earliest graph mining algorithms that detects the best
substructure using the minimum description length principle [8]. It also mines for
interesting concepts, detect anomalies, and similarities between graph structures.
FSG [4] and others [10,3] are main memory algorithms that mine graph sets to
discover frequent subgraphs. FSG uses canonical labeling to determine subgraph
isomorphism. It considers an undirected graph representation without multiple
edges (between two vertices) or cycles. Hence, FSG cannot mine over general
forms of directed graphs, graphs with multiple edges, and cycles. gSpan [11] is
another frequent subgraph mining approach which uses depth first search and
generates lesser candidate items than FSG. The depth-first traversal and book
keeping requires special data structures and is not clear how it can be mapped
using relational operators.

DB-Subdue [1] and HDB-Subdue [6] (SQL-based versions of Subdue) detect
interesting subgraphs that compress a graph (or a forest) maximally using the
minimum description length (or MDL) principle. HDB-Subdue handles multiple
edges, cycles, and hierarchical reduction to deal with a general graph. However,
HDB-Subdue did not support mining over a set of input graphs to discover
frequent subgraphs.

3 Overview of DB-FSG

Normally, graphs are represented as a set of edges and vertices. DB-FSG repre-
sents graphs using two relations: i) a vertex table and ii) an edge table which
store the vertices and the edges of the graph, respectively. For the set of graphs
shown in Figure 1(a), the corresponding vertex and edge tables are shown in
Figures 1(b) and 1(c), respectively. Graph Id (in short GID) attribute in the
tables helps to identify the edges and vertices belonging to the same graph.

(a) Example Graph

Vertex No. Vertex Name Graph Id 
1 A 1 
2 B 1 
3 C 1 

1 A 2 

2 B 2 

3 C 2 

4 D 2 

1 A 3 

2 B 3 

3 D 3 

 

(b) Vertex Table

Vertex 1 Vertex 2 Edge Label Graph Id 
1 2 AB 1 
2 3 BC 1 
1 2 AB 2 
1 4 AD 2 

2 3 BC 2 

1 2 AB 3 

1 3 AD 3 

 
(c) Edge Table

Fig. 1. Sample Graph and Corresponding Vertex and Edge Table
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Vertex 1 Vertex 2 Edge No. Edge Label Vertex 1 Name Vertex 2 Name Graph Id 
1 2 1 AB A B 1 
2 3 2 BC B C 1 
1 2 3 AB A B 2 
2 3 4 BC B C 2 
1 4 5 AD A D 2 
1 2 6 AB A B 3 
1 3 7 AD A D 3 

 

Fig. 2. Oneedge Table

As the edge table does not contain information about vertex labels, tuples of
edge table cannot represent substructures of size one. Hence, we create a new
relation called oneedge by joining the vertex and the edge tables as shown in
Figure 2. The oneedge table will contain all the instances of substructures of
size one as tuples. For a one-edge substructure, the edge direction is always
from the first vertex to the second vertex. Hence, there are no attributes in the
oneedge table which specify the direction. For a higher edge substructure, we
introduce connectivity attributes to denote the direction of edges between the
vertices of the substructure. The oneedge table is the base table that will be used
for generating higher size substructures. For each edge in the oneedge table, we
assign a unique identifier called the edge number.

We need to systematically generate subgraphs of increasing size in all the
input graphs and obtain the count for the isomorphic substructures across the
graphs. To expand a one-edge substructure to a two-edge substructure, we join
oneedge relation with itself on matching vertices. To ensure that the expansion
is done within the same graph, we impose a constraint that the GID (each graph
has an id termed GID) of both one-edge substructures should be same. We term
the resulting two-edge substructure table as instance 2. In general, substructures
of size i are generated by joining instance (i-1) relation with oneedge relation.
In order to avoid expansion of instances on edges that are already present (re-
member that our approach unlike FSG handles multiple edges and cycles), we
impose the rule that the new edge being added should not have the same edge
number as the edge already present in the substructure instances. In case of
substructures that have two or more edges, we would need attributes to denote
the direction of the edges. The From and To (F and T for short) attributes in
the instance n table serve this purpose. An n-edge substructure is represented
by n+1 vertex numbers, n+1 vertex labels, n edge numbers, n edge labels, and
n From and To pairs. In general, 6n+3 attributes are needed to represent an
n-edge substructure. Though edge numbers are part of every instance n table,
owing to the space constraint, we will be showing it only in sections where they
are necessary.

4 Details Of DB-FSG Approach

DB-FSG algorithm is shown below. Some of the major aspects - new sub-
structure instance representation, unconstrained expansion and pseudo duplicate
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elimination, canonical label ordering and frequency counting and substructure
pruning are eleborated further. For a comprehensive description, refer to [7].

Algorithm 1. DB-FSG Algorithm
1: Create oneedge (instance 1) table by joining vertex table and edge table
2: Remove the edges with instance count less than support from the oneedge table
3: for n=2 to MaxSize do
4: Join instance (n-1) with oneedge table to generate instance n
5: Eliminate pseudo duplicates from instance n table
6: Canonically order instance n table on vertex labels
7: Project distinct vertex label, edge label and gid to obtain one instance per substructure for

each graph and store in dist n table.
8: Group dist n table by vertex label and edge label to obtain substructures and its count
9: Retain only the instances of substructure satisfying support and store it in instance n table

10: If there are no instances of substructure satisfying support then stop

11: end for

The algorithm starts by creating one-edge substructure instance by joining
vertex table and edge table as shown in the step 1 of algorithm 1. The oneedge
instances with frequency less than the user specified support value are pruned.
The remaining one edge instances are expanded to two-edge instances and the
two-edged substructure instances having frequency less than the support value
are pruned. As shown in steps 3 to 11 of the algorithm 1, the expansion and
pruning of sub-graphs continues till user specified MaxSize is reached or until the
subgraphs cannot be expanded any further. Due to the unconstrained expansion,
the same substructure may be generated in many ways. Hence, pseudo duplicate
elimination is required to remove such duplicates as mentioned in step 5 of the
algorithm 1. Also, due to unconstrained expansion similar substructure instances
may be generated in different order. Hence, canonical ordering is performed in
step 6 of the algorithm 1 to identify such substructures instances. Similarly, to get
the correct frequency of the substructures, substructure counting and pruning is
done in steps 7, 8 and 9 of the algorithm 1.

DB-FSG [7] represents a substructure as a tuple of a relation. The repeating
vertex number of a cycle or a multiple edge is marked by ‘0’ and the correspond-
ing vertex label is marked by ‘-’, respectively. The marking of repeating vertices
avoids redundant expansion on the same vertex. This form of representation can
represent most general forms of a graph including cycles and multiple edges.

However, this representation is not sufficient to represent a set of graphs.
For example, this representation cannot represent a set of graphs shown in In
DB-FSG, we need to distinguish between graphs in which the same substructure

Fig. 3. DB-FSG graph representation
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appears. Hence, we have added one more attribute (Graph ID or GID) to denote
which graph a substructure belongs to. Each graph is assigned a unique GID
and all the substructures belonging to same graph will have the same GID. New
substructure instance representation of size two for Figure 3 is shown in table 1.

Table 1. DB-FSG instances

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 GID F1 T1 F2 T2 F3 T3
1 2 3 4 A B C D AB AD CA 1 1 2 3 1 1 4
1 3 4 0 A C D - AD DC CA 1 1 2 2 3 3 1
1 2 3 4 A B C D AB AD CA 2 1 2 3 1 1 4
1 3 4 0 A C D - AD DC CA 2 1 2 2 3 3 1
1 2 3 4 A D C D AB AD CA 3 1 2 3 1 1 4
1 3 4 0 A C D - AD DC CA 3 1 2 2 3 3 1
5 6 7 8 A D C D AB AD CA 3 1 2 3 1 1 4
5 6 7 0 A C D - AD DC CA 3 1 2 2 3 3 1

Unconstrained expansion generates all possible substructures in an arbitrary
graph input. However, this unconstrained expansion also results in the same
instance to be generated in different order (will be termed pseudo duplicates).
In order to identify same instances that grew in different order, we have imple-
mented pseudo duplicate elimination by constructing an edge code that is unique
to an instance. We have introduced a new attribute called ecode in instance n
table. This attribute will store edge code of each instance in the table. Then by
comparing ecodes, we can identify and remove pseudo duplicates more efficiently.
Details can be found in [7].

4.1 Canonical Ordering

In order to identify two similar substructure instances, vertex labels and the
connectivity attributes need to be used (unlike vertex numbers or edge numbers
for pseudo duplicate elimination). If two instances have same vertex labels and
edge directions, then they can be identified as similar (or isomorphic) instances.
In SQL, we can identify similar substructures only if the vertex labels and con-
nectivity map of each tuple is canonically ordered. Since databases do not allow
rearrangement of columns (only rows by using group by and order clauses), to
obtain canonical ordering, we have to transpose the rows of each substructure
into columns, sort and reconstruct them to get the canonical order. To facilitate
construction of canonically ordered instance n table, we introduce an additional
attribute called ID in unordered instance n table. Each instance (tuple) in the
instance n table should have unique ID for which rownum is used as ID value.
Table 2 shows instance 2 table for Fig 3 before canonical ordering.

Owing to the table space constraints, canonical ordering of only the second and
third instance are shown below. We project the vertex numbers and vertex names
from the instance table and insert them row wise into a relation called unsorted as
shown in Fig 4(a). We also include the position in which the vertex occurs in the
original instance. To differentiate between the vertices of different instances, we
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Table 2. Before Canonical Ordering

ID V1 V2 V3 VL1 VL2 VL3 EL1 EL2 GID F1 T1 F2 T2
1 1 3 4 A C D AD DC 1 1 3 3 2
2 1 4 3 A D C AD DC 2 1 2 2 3
3 3 4 1 C D A DC AD 3 2 1 3 1

carry the Id value from the instance table onto the unsorted table. Next, we sort
the table on Id and vertex label and insert it into a table called Sorted as shown
in Fig 4(b) with its New attribute pointing to the new position of the vertex
and the attribute Old pointing to the old position of the vertex. Similarly, the

Id V VL Pos 
2 1 A 1 
2 4 D 2 
2 3 C 3 
3 3 C 1 
3 4 D 2 
3 1 A 3 

(a) Unsorted Table

Id V VL Old New 
2 1 A 1 1 
2 4 D 2 2 
2 3 C 3 3 
3 3 C 1 1 
3 4 D 2 2 
3 1 A 3 3 

 

(b) Sorted Table

Id EL F T 
2 AD 1 2 
2 DC 2 3 
3 DC 2 1 
3 AD 3 1 

 
(c) Old Ext Table

Fig. 4. Canonical Ordering Intermediate Tables

connectivity attributes are also transposed into a table called Old Ext as shown
in Fig 4(c). Since the sorting on vertex numbers has changed its position, we
need to update the connectivity attributes to reflect this change. Therefore, we
do a 3 way join of Sorted and Old Ext tables on the Old attribute of the Sorted
table to get the updated connectivity attributes which we call New Ext as in
Tab 3. Next, we sort the New Ext table on Id and the attributes F (From vertex)
and T (Terminating vertex). Since, we also need ecode and GID attributes for

Table 3. New Ext

Id EL F T
2 AD 1 3
2 DC 3 2
4 DC 3 2
4 AD 1 3

Table 4. Sorted Ext

Id EL F T
2 AD 1 2
2 DC 3 2
4 AD 1 3
4 DC 3 2

expansion of the instances, the ecode and GID attribute were also transposed to
tables called label ecode n and label GID n. To differentiate between the GID
and ecode of different instances, we carry the Id value from the instance table
onto the respective tables.

Now, we have the ordered vertex as well as connectivity map tables. Hence,
we can do a 2n+3 way join (where n is current substructure size) of n+1 Sorted
tables, label GID n table, label ecode n table and n Sorted Ext tables to recon-
struct the original instance in a canonical order. Table 5 shows the substructures
after canonically ordering vertex numbers and connectivity attributes.
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Table 5. Instance table - After canonical ordering

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 GID F1 T1 F2 T2
1 3 4 A C D AD DC 1 1 3 3 2
1 3 4 A C D AD DC 2 1 3 3 2
1 3 4 A C D AD DC 3 1 3 3 2

(a) Graph with
multiple instances

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 GID F1 T1 F2 T2 
1 3 4 A C D AD DC 1 1 3 3 2 
1 3 4 A C D AD DC 2 1 3 3 2 
1 3 4 A C D AD DC 3 1 3 3 2 
5 7 8 A C D AD DC 3 1 3 3 2 
. . . . . . . . . . . . . 

 

(b) Instance table with multiple instances

Fig. 5. Multiple Instances of same substructure

4.2 Frequency Counting and Substructure Pruning

A graph may have many instances of the same substructure. For example, if we
consider substructure in Fig 5(a), it has two instance in graph 3 of Fig 3. Fig 5(b)
shows the instances of substructure in Fig 5(a). If we count the frequency of the
substructure from the instance table, it will give a count of four. Even though, the
correct frequency count across the graph set is three. Hence, to obtain the correct
frequency of a substructure in the graph set, we need to include only one instance
per substructure within a graph. However, we need to preserve all instances of
a substructure that satisfy the support condition for future expansion. In order
to get one instance per substructure of size n, we project distinct vertex labels,
edge labels, connectivity map and GID and store it into dist n table. Then, a
GROUP BY operation on vertex labels, edge labels and connectivity map in
dist n table will provide the correct frequency of each substructure. Since, the
substructures having less frequency than support value will not contribute to
future expansion, we can store only those substructures that satisfies the support
value in sub fold n table. Then, we can prune the instance n table by removing
instances of substructures that are not in sub fold n table.

5 Experimental Analysis

The experiments were conducted on a Linux machine (running on dual processors
with 2.4 GHz CPU speed and 2 GB memory) of the Distributed and Parallel
Computing Cluster at UTA (DPCC@UTA) using Oracle 10g.

For the comparison of DB-FSG with FSG, we performed experiments on data
sets containing 100K - 300K graphs, with each graph containing 30 to 50 edges
and 30 to 50 vertices. The support value was set to 1% and the maximum
substructure size (MaxSize) was set to 5. When we tried to compare DB-FSG
with FSG, it was observed that FSG was not able to detect all the frequent
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patterns in the input graphs and failed to detect all the embedded subgraphs.
Also, FSG does not handle multiple edges and cycles. Hence, the results are not
discussed here. Other main memory FSG systems

Other set of experiments were performed to analyze the performance of the
DB-FSG algorithm for different data sets, for various support values, and for
different types of graphs (that is, simple graph without cycles and multiple edges,
graph with cycles, and graph with multiple edges). Each graph in the data set
has 40 edges and 40 vertices. The data sets are varied from 50K of graphs
(2 million vertices and 2 million edges in the data set) to 300K of graphs (12
million vertices and 12 million edges in the data set). The frequent substructures
embedded in the data set had support value of 3% and 4%. The parameters used
for the set of experiments were MaxSize - 5, Support - 1%. Fig 6(a) gives the

 Time (seconds)  
Type 

Graph 
Simple Cycles Multiple  

Edges 
50K 391.23  431.74  560.8  

100K 1510.4  1516.365  1735.8  
150K 2572.61  2313.04  2639.49  
200K 3680.08  3233.4  3535.39  
250K 4663.78  4387.89  4590.78  
300K 5692.28  5297.8  5604.93  

 

(a) Performance of DB-FSG on different
graphs

 Time (seconds)  
Graph 

Support  
100K 200K 300K 

1% 1892.89  3912.11  6088.9  
3% 1679.05  3697.68  5722.07  
5% 1516.64  3280.12  5374.15  
7% 1064.64  2224.03  4323.82  

 
(b) Performance of DB-FSG for varying
support

Fig. 6. Summary of Experiments

processing time required by DB-FSG on data sets containing graphs without
cycles and multiple edges, graphs with cycles and graphs with multiple edges.
The experimental results showed that the processing time of algorithm increases
linearly as the size of the data set grows. The number of substructures instances
discovered in data set containing graph with cycles are lesser than the graphs
without cycles and graphs with multiple edges. Hence, the processing time of the
data sets containing cycles was less than the graphs without cycles and graphs
with multiple edges.

Then, we conducted experiments to analyze the performance of the algorithm
for varying support value. The frequent substructures embedded in the data sets
had support value of 1%, 3%, 5% and 7%. We varied the support value from 1%
to 7% (keeping the MaxSize as 5) in order to evaluate the performance of the
DB-FSG on those data sets. Figure 6(b) gives shows the relation of support value
with the processing time. The experimental results showed that the processing
time decreased as the support value increased. For greater support value, more
substructures will be pruned in earlier iterations of the algorithm. Hence, less
processing time is required. The number of substructure instances retained for
7% of support value will be lesser than the number of instances retained for
support value of 1% in each expansion iteration. Hence, the processing time for
each steps DB-FSG like substructure expansion, pseudo duplicate elimination,
canonical ordering and substructure counting and pruning will require lesser
time for user defined support value of 7% than for 1%.
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6 Conclusions

In this paper, for the first time, we have applied relational database approach
for frequent subgraph mining. The graph representation used in this paper can
represent the most general form of graph including graphs with cycles and multi-
ple edges (between two vertices). Our approach addresses all aspects of frequent
subgraph mining – from candidate generation to pseudo duplicate elimination to
canonical ordering – all using standard SQL. Our experimental results show that
this approach is highly scalable for very large data sets whereas main memory
approaches are likely to fail. Currently, we are further optimizing the efficiency
of the algorithm.
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