
S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 450 – 464, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Translating SQL Applications to the Semantic Web

Syed Hamid Tirmizi, Juan Sequeda, and Daniel Miranker

Department of Computer Sciences, The University of Texas at Austin, USA
{hamid,jsequeda,miranker}@cs.utexas.edu

Abstract. The content of most Web pages is dynamically derived from an un-
derlying relational database. Thus, the success of the Semantic Web hinges on
enabling access to relational databases and their content by semantic methods.
We define a system for automatic transformation of SQL DDL schemas into
OWL DL ontologies. This system goes further than earlier efforts in that the en-
tire system is expressed in first-order logic. We leverage the formal approach to
show the system is complete with respect to a space of the possible relations
that can be formed among relational tables as a consequence of primary and
foreign key combinations. The full set of transformation rules is stratified, thus
the system can be executed directly by a Datalog interpreter.

1 Introduction

It has been estimated that Internet accessible databases contain up to 500 times more
data compared to the static Web and that three-quarters of these databases are man-
aged by relational database management systems [HeP07]. Thus, enabling the integra-
tion of relational databases and their content with the Semantic Web is critical to the
Semantic Web’s success.

The Semantic Web provides an ontology-based framework for integration, search
and sharing of data drawn from diverse sources. Broadly stated, there are two archi-
tectural approaches to integrating databases with the Semantic Web. The more com-
monly researched approach is the development of wrapper systems that map a
relational database schema to an existing domain ontology [AnB05, Bar04, Che06,
Lab05, Lab06, Rod06]. To date there has been little work automating the creation of
such wrappers. Thus, wrapper systems appear to be a labor-intensive solution.

The second approach, which is the subject of the work in this paper, concerns the
automatic transformation of database content and/or schema to a Semantic Web repre-
sentation, i.e. RDF and OWL [Biz03, LiD05, Ast07]. In this approach it is assumed that
the data model entails a logical model of the application domain, and by syntactically
analyzing the model’s physical encoding in SQL Data Description Language (DDL) the
logical model may be recovered. While many legacy databases were defined using strict
relational syntax and semantics, and thus may encode modest application domain se-
mantics, the current SQL standard coupled with modern software design methodology
enables rich expression of domain semantics; albeit not in a form readily accessible to
automated inference mechanism [Seq07]. In addition to foreign key constraints, SQL
DDL supports a variety of constraints on the range of values allowed in a table.
Building on related work we define a system for automatic transformation of relational

 Translating SQL Applications to the Semantic Web 451

databases into OWL-DL ontologies. Two critical elements distinguish our transforma-
tion system from past efforts. First, the entire system is defined in first order logic
(FOL) eliminating syntactic and semantic ambiguities in our rules. Much of the related
work is expository in nature, at times influenced by domain specific examples and/or
specifying the resulting rules in English prose. Often the influence of examples from a
particular domain can result in incorrect rules. Second, we present a notion of complete-
ness of our system in terms of a space of all possible relations describable by SQL DDL
considering the interactions of primary and foreign keys in relations. We have parti-
tioned the space of relations and have covered the transformation of each partition with
sets of rules applicable to that partition.

Further, we observe that the FOL expression of our transformation system is strati-
fied. Thus, in addition to implementation in Prolog environments, the system may in-
tegrate with databases supporting Datalog interpreters.

2 Related Work

A number of researchers have made inroads on this problem and serve as a foundation
for our work [Sto02, LiD05, Ast07].

Stojanovic et al. [Sto02] provide rules for translation of relational schemas to
Frame Logic and RDF Schema. This work formally defines rules for identification of
classes and properties in relational schemas. It does not have the capability of captur-
ing richer semantics that cannot be expressed in RDF Schema.

Li et al. [LiD05] propose a set of rules for automatically learning an OWL ontol-
ogy from a relational schema. They define the rules using a combination of some for-
mal notation and English language. Our analysis shows that some of their rules miss
some semantics offered by the relational schema and some rules produce specific re-
sults for inheritance and object properties that may not accurately depict concepts
across domains or database modeling choices. We believe these shortcomings are due
to lack of a formal system and thorough examination of examples capturing a variety
of modeling choices in various domains.

Astrova et al. [Ast07] provide expository rules and examples to describe a system
for automatic transformation of a relational schema to OWL Full. When it was pub-
lished this work was the most comprehensive. Since the rules were not formally de-
fined, a number of transformations are ambiguous.

In addition to the lack of correctness due to informal specification of rules, these
systems do not provide any notion of completeness of their rules. By completeness we
mean consideration of all possible database key structures that may encode an onto-
logical relationship. We present the results of a construction that enumerates such
key structures and document that our transformation system is complete and unambi-
guous. In the rest of the paper, first we present the disparities between relational
databases and ontologies. Then we systematically present how relational database
schemas can be transformed into OWL ontologies. First, with the help of an example,
we show how a domain expert can translate a relational schema in SQL DDL into an
OWL ontology. Then, we present our assumptions and transformation rules, and

452 S.H. Tirmizi, J. Sequeda, and D. Miranker

explain them using the same example. We also provide a comparison of human and
automatically generated ontologies and relate the differences using our discussion on
disparities as a basis.

3 Extracting Knowledge from a Relational Schema

Consider a relational database for a university and its definition (see Table 1).
The Person table contains data about all the people, some of them may be students

and present in Student table, and some may be professors and present in Professor ta-
ble. The Dept table lists the departments in the university where each department has
a unique name, and the Course table lists the courses for every department. The Se-
mester table contains a list of semesters which have a year and one of the three sea-
sons, Spring, Summer or Fall, associated with them. A course could be offered in a
particular semester with a particular professor, and recorded in Offer table. Two of-
fered courses could be co-offered, and recorded as a self-relation in the Offer table. A
student could study an offered course, which is recorded in Study table. Also, a stu-
dent could be registered in a semester with or without taking a course, and this infor-
mation is recorded in the Reg table.

Table 1. Schema of a University Database

University Database Schema
create table PERSON { ID integer primary key, NAME varchar not null }
create table STUDENT { ROLLNO integer primary key, DEGREE varchar,
 ID integer unique not null foreign key references PERSON(ID) }
create table PROFESSOR { ID integer primary key, TITLE varchar,
 constraint PERSON_FK foreign key (ID) references PERSON(ID) }
create table DEPT { CODE varchar primary key,
 NAME varchar unique not null }
create table SEMESTER { SNO integer primary key, YEAR date not null,
 SESSION varchar check in (‘SPRING’, ‘SUMMER’, ‘FALL’) }
create table COURSE { CNO integer primary key, TITLE varchar,
 CODE varchar not null foreign key references DEPT(CODE) }
create table OFFER { ONO integer primary key,
 CNO integer foreign key references COURSE(CNO),
 SNO integer foreign key references SEMESTER(SNO),
 PID integer foreign key references PROFESSOR(ID),
 CONO integer foreign key references OFFER(ONO) }
create table STUDY { ONO integer foreign key references OFFER(ONO),
 RNO integer foreign key references STUDENT(ROLLNO),
 GRADE varchar, constraint STUDY_PK primary key (ONO, RNO) }
create table REG { SID integer foreign key references STUDENT(ID),
 SNO integer foreign key references SEMESTER(SNO),
 constraint REG_PK primary key (SID, SNO) }

For a domain expert, it is easy to recognize the concepts in this database structure,
and to identify the semantics of their properties and different kinds of relationships
that exist between these concepts. Table 2 shows an ontology corresponding to the
given schema, developed by a domain expert.

 Translating SQL Applications to the Semantic Web 453

Table 2. Parts of an ontology corresponding to the schema in Table 1, developed by a domain
expert. The ontology is presented in OWL Abstract Syntax. The highlighted sections in the
table are later compared with an automated output.

Domain Expert’s Ontology
Ontology(<urn:sql2owl>
 ObjectProperty(<REG> domain(<STUDENT>) range(<SEMESTER>))
 ObjectProperty(<REG_I> inverseOf(<REG>))
 ObjectProperty(<OFFER.CONO> Transitive Symmetric
 domain(<OFFER>) range(<OFFER>))...
 DatatypeProperty(<COURSE.CNO> Functional
 domain(<COURSE>) range(xsd:integer))
 DatatypeProperty(<SEMESTER.YEAR> Functional
 domain(<SEMESTER>) range(xsd:date))
 DatatypeProperty(<SEMESTER.SESSION> Functional domain(<SEMESTER>)
 range(oneOf("SPRING" "SUMMER" "FALL")) range(xsd:string))...
 Class(<PERSON> partial ...)
 Class(<PROFESSOR> partial <PERSON> ...)
 Class(<STUDENT> partial <PERSON>
 restriction(<STUDY.RNO_I> minCardinality(0)) ...)
 Class(<COURSE> partial restriction(<COURSE.DEPTCODE> cardinality(1))
 restriction(<COURSE.CNO> cardinality(1)) ...) ...)

4 Disparities between Relational Databases and Ontologies

While relational databases are capable of efficiently managing large amounts of struc-
tured data, ontologies are very useful for knowledge representation. Since these two
data models are aimed towards different requirements specified by their domains, it is
reasonable to expect some disparities among them in terms of capabilities.

To define a relational database to ontology transformation system, it is important to
understand the mismatches between the two data models, and to make educated
choices when confronted with such problems. Here we discuss some key issues – in-
heritance modeling, property characteristics and open/closed world assumptions – that
affect a transformation system.

4.1 Inheritance Modeling

Relational databases do not express inheritance. However, inheritance hierarchies can
be modeled in a variety of ways in relational schemas. Also, some modeling choices are
harder to identify automatically. Given a foreign key definition between two entities, we
would like to know whether a subclass relationship exists between the entities involved.
If such patterns exist, we can map them to subclass relationships in the ontology.

The following list presents possible foreign key patterns to model inheritance:

• Foreign key is also the primary key: The Professor-Person relationship in our uni-
versity schema is an example. This pattern uniquely identifies inheritance. An ex-
ception to this would be vertical partitioning of tables, but since we assume 3NF
databases for our system, this case can be transformed to inheritance.

• Foreign key and primary key are disjoint: The Student-Person relationship in our
university schema is an example. However, the Course-Dept relationship modeled

454 S.H. Tirmizi, J. Sequeda, and D. Miranker

in the same schema is a counterexample. In fact, this pattern is the most common
one used for expressing one-to-many relationships.

• Foreign key is a subset of the primary key: This is also not a good candidate for
automatic translation to an inheritance hierarchy in the ontology. Many counterex-
amples for this pattern can be presented, particularly the ones for modeling ‘part-
of’ relationships between entities.

4.2 Characteristics of Relationships

While relational schemas can capture some cardinality constraints on relationships be-
tween entities by defining constraints on foreign keys, they lack the expressive power
to define relationships with interesting logical characteristics, like symmetry and tran-
sitivity etc. On the other hand, expressing such characteristics of relationships is natu-
ral to ontology languages like OWL, which are based on some form of logic.

For example, the self-relation on the Offer entity, that represents co-location of
an offered course with another offered course, is symmetric and transitive. While
these characteristics are obvious to a domain expert, the relationship is expressed
like any other self-relationship in the relational schema, which may not have the
same characteristics. Consider the example: Employee(ID,Name,MgrID), where ID
is the primary key, and MgrID is a foreign key to the Employee table itself refer-
encing manager’s ID. This relationship is clearly not symmetric, and may or may
not be transitive.

The example clearly shows that it is hard to identify logical characteristics of rela-
tionships in a relational schema without using the domain knowledge. Therefore, our
rules do not capture these characteristics automatically.

4.3 The Effect of Open/Closed World Assumptions

Relational databases usually operate under the closed world (CW) assumption. This
means that whatever is not in the database is considered false. On the other hand,
knowledge bases operate in open world (OW) where whatever is not in the knowledge
base is considered unknown. This assumption is natural for knowledge bases that of-
ten contain incomplete knowledge, and grow incrementally.

Therefore, the concept of a constraint has very different meanings in the two
worlds [Mot07]. In a database setting, a constraint is mainly used for validation. In
contrast, in an ontology, a constraint expresses some characteristics of classes or rela-
tionships but does not prevent assertion of any facts. In addition, some assertions may
even result in unintuitive inferences.

When developing an ontology based on a relational schema, it is very important to
keep these differences in mind. The question whether the open world should be closed
or not depends upon the domain and application requirements. In our system, we pro-
duce an ontology with open world assumption. If needed, one way to close the world
will be to assert that all inferred classes are pair-wise disjoint.

 Translating SQL Applications to the Semantic Web 455

5 Translating SQL to Semantic Web

In this section, we explain the transformation of a relational schema to an ontology.
First we present our assumptions and explain the rationale behind them. Then, we list
the predicates and functions we have defined to express transformation rules in first
order logic. In the next section, we explain the transformations for data types, classes,
properties and inheritance, and provide mapping tables or first order logic rules to
formally define the transformations.

5.1 Assumptions

In order to translate a relational schema into an ontology, we make the following
assumptions:
• The relational schema, in its most accurate form, is available in SQL DDL. Data-

bases evolve due to changing application requirements. Such modifications are of-
ten reflected solely in the physical model, usually expressed in SQL DDL, making
it the most accurate source for the structure of the database.

• The relational schema is normalized, at least up to third normal form. While all
databases might not be well normalized, it is possible to automate the process of
finding functional dependencies within data and to algorithmically transform a re-
lational schema to third normal form [DuW99, Wan00].

5.2 Predicates and Functions

We have defined a number of predicates and functions to aid the process of defining
transformation rules in first order logic.

There are two sets of predicates in our system. RDB predicates test whether an ar-
gument (or a set of arguments) matches a construct in the domain of relational data-
bases. Such predicates are listed below:

Rel(r) r is a relation; e.g. Rel(PERSON) holds, Rel(ID) does not
Attr(x,r) x is an attribute in relation r; e.g. Attr(ID,PERSON) holds
NN(x,r) x is an attribute (or a set of attributes) in relation r with NOT

NULL constraint(s); e.g. NN(NAME,PERSON) holds
Unq(x,r) x is an attribute (or a set of attributes) in relation r with UNIQUE

constraint; e.g. Unq({NAME},DEPT) holds
Chk(x,r) x is an attribute in relation r with enumerated list (CHECK IN)

constraint; e.g. Chk(SESSION,SEMESTER) holds
PK(x,r) x is the (single or composite) primary key of relation r; e.g.

PK({ONO,RNO},STUDY) holds; Also: PK(x,r) Unq(x,r) NN(x,r)
FK(x,r,y,s) x is a (single or composite) foreign key in relation r and references

y in relation s; e.g. FK({ID},STUDENT,{ID},PERSON) holds
NonFK(x,r) x is an attribute in relation r that does not participate in any foreign

key; e.g. NonFK(NAME,DEPT) holds
On the other hand, ontology predicates test whether an argument (or a set of argu-
ments) matches a construct that can be represented in an OWL ontology. These predi-
cates are:

456 S.H. Tirmizi, J. Sequeda, and D. Miranker

Class(m) m is a class
ObjP(p,d,r) p is an object property with domain d and range r
DTP(p,d,r) p is an data type property with domain d and range r
Inv(p,q) when p and q are object properties, p is an inverse of q
FP(p) p is a functional property
IFP(p) p is an inverse functional property
Crd(p,m,v) the (max and min) cardinality of property p for class m is v
MinC(p,m,v) the min cardinality of property p for class m is v
MaxC(p,m,v) the max cardinality of property p for class m is v
Subclass(m,n) m is a subclass of class n

The constructs represented by ontology predicates are described as they appear in the
rules mentioned in the upcoming sections of this paper.

We have also defined the following functions:

fkey(x,r,s) takes a set of attributes x, relations r and s, and returns the foreign
key defined on attributes x in r referencing s

type(x) maps an attribute x to its suitable OWL recommended data type (we
discuss data types in more detail in a later section)

list(x) maps an attribute x to a list of allowed values; applicable only to at-
tributes with a CHECK IN constraint, i.e. Chk(x) is true

In addition to the predicates and functions listed above, we describe the concept of a
binary relation, written BinRel, as a relation that only contains two (single or compos-
ite) foreign keys that reference other relations. Such tables are used to resolve many-
to-many relationships between entities. Using RDB predicates, we formally define
BinRel as follows:

Rule Set 1:

BinRel(r,s,t)
Rel(r) FK(q,r,_,t) FK(p,r,_,s) p q Attr(y,r) ¬NonFK(y,r)
FK(z,r,_,u) fkey(z,r,u) {fkey(p,r,s),fkey(q,r,t)}

This rule states that a binary relation r between two relations s and t exists if r is a re-
lation that has foreign keys to s and t, and r has no other foreign keys or attributes
(each attribute in the relation belongs to one of the two foreign keys). Note that there
is no condition that requires s and t to be different, allowing binary relations that have
their domain equal to their range.

5.3 Transformation Rules and Examples

In this section we present rules and examples for transformation of a relational data-
base to OWL ontology.

Producing Unique Identifiers (URIs) and Labels
Before we discuss the transformation rules, it is important to understand how we can
produce identifiers and names for classes and properties that form the ontology.

The concept of globally unique identifiers is fundamental to OWL ontologies. Each
class or property in the ontology must have a unique identifier, or URI. While it is
possible to use the names from the relational schema to label the concepts in the on-
tology, it is necessary to resolve any duplications, either by producing URIs based on

 Translating SQL Applications to the Semantic Web 457

fully qualified names of schema elements, or by producing them randomly. In addi-
tion, for human readability, RDFS labels should be produced for each ontology ele-
ment containing names of corresponding relational schema elements. Due to lack of
space, we have not used fully qualified names in our examples. When needed, we ap-
pend a name with an integer to make it unique, e.g. ID1, ID2 etc.

Transformation of Data Types
Transformations from relational schemas to ontologies require preserving data type
information along with the other semantic information. OWL (and RDF) specifica-
tions recommend the use of a subset of XML Schema types [XMLSch] in Semantic
Web ontologies [OWLRef, RDFSem].

In Table 3 we present a list of commonly used SQL data types along with their cor-
responding XML Schema types. During transformation of data type properties, the
SQL data types are transformed into the corresponding XML Schema types.

Table 3. Common SQL types and corresponding XML Schema types recommended for OWL

SQL Data Type XML Schema Type SQL Data Type XML Schema Type

INTEGER xsd:integer VARCHAR xsd:string
FLOAT xsd:float DATE xsd:date

BOOLEAN xsd:boolean TIMESTAMP xsd:dateTime

Identifying Classes
According to OWL Language Guide [OWLGde], “the most basic concepts in a do-
main should correspond to classes …”. Therefore we would expect basic entities in
the data model to translate into OWL classes.

Given the definition of a binary relation, it is quite straightforward to identify
OWL classes from a relational schema. Any relation that is not a binary relation can
be mapped to a class in an OWL ontology, as stated in the rule below.

Rule Set 2:
Class(r) Rel(r) ¬BinRel(r,_,_)

Remember that a binary relation has exactly two foreign keys and no other attributes
(see Rule Set 1). Keeping that in mind, we can see that this very simple rule covers a
number of cases for identifying classes:

• All tables that do not have foreign keys should be transformed to classes. There-
fore, we conclude Class(PERSON), i.e. Person should be mapped to a class since it
has no foreign key. The same reasoning holds for the Dept and Semester tables.

• All tables with one foreign key can be mapped to classes since they cannot be bi-
nary relations. Hence Student, Professor and Course should be mapped to classes.

• Tables with more than two foreign keys should be transformed to classes as well.
Such tables may represent an entity or an N-ary relationship between entities. For-
tunately, in OWL, both the cases can be modeled the same way, i.e. by translating
the entity or the N-ary relationship into a class [Noy06]. From our example, Offer
represents an N-ary relationship, and modeled as a class using the given rule.

458 S.H. Tirmizi, J. Sequeda, and D. Miranker

• For tables containing exactly two foreign keys, presence of independent attributes
qualifies them to be translated to classes. The table Study, with an independent at-
tribute Grade, is an example, and is translated to an OWL class.

Thus Rule Set 2 identifies the OWL classes from the database schema. For example:
Class(PERSON), Class(STUDENT), Class(DEPT), Class(STUDY), Class(OFFER)

Identifying Object Properties
An object property is a relation between instances of two classes in a particular direc-
tion. In practice, it is often useful to define object properties in both directions, creat-
ing a pair of object properties that are inverses of each other. OWL provides us the
means to mark properties as inverses of each other. In our work, when we translate
something to an object property, say ObjP(r,s,t), it implicitly means we have created
an inverse of that property, which we write as ObjP(r’,t,s).

There are two ways of extracting OWL object properties from a relational schema.
One of the ways is through identification of binary relations, which represent many-
to-many relationships. The following rule identifies an object property using a binary
relation.

Rule Set 3:
ObjP(r,s,t) BinRel(r,s,t) Rel(s) Rel(t) ¬BinRel(s,_,_) ¬BinRel(t,_,_)

This rule states that a binary relation r between two relations s and t, neither being a
binary relation, can be translated into an OWL object property with domain s and
range t. Notice that the rule implies Class(s) and Class(t) hold true, so the domain and
range of the object property can be expressed in terms of corresponding OWL classes.

From our university database schema, the Reg table fits the condition. Reg is a bi-
nary relation between Student and Semester entities, which are not binary relations.
Therefore, ObjP(REG,STUDENT,SEMESTER) holds, and since we can create in-
verses, ObjP(REG’,SEMESTER,STUDENT) and Inv(REG,REG’) also hold true.

Foreign key references between tables that are not binary relations represent one-
to-one and one-to-many relationships between entities. A pair of object properties that
are inverses of each other and have a maximum cardinality of 1 can represent one-to-
one relationships. Also, one-to-many relationships can be mapped to an object prop-
erty with maximum cardinality of 1, and an inverse of that object property with no
maximum cardinality restrictions.

In OWL, a property with min cardinality of 0 and max cardinality of 1 is called
functional which we represent by the functor FP. If an object property is functional,
then its inverse is inverse functional, represented by the functor IFP. In addition to
specifying cardinality restrictions on properties in general, we can also specify such
restrictions when a property is applied over a particular domain. In our rules, we use
ontology predicates Crd, MinC and MaxC to specify these restrictions. The examples
following the rules explain the use of these predicates.

The following rule set identifies object properties and their characteristics using
foreign key references (not involving binary relations, covered in Rule Set 3) with
various combinations of uniqueness and null restrictions. To simplify the rules, we
first define a predicate NonBinFK that represents foreign keys not in or referencing
binary relations and then express the rules in terms of this predicate.

 Translating SQL Applications to the Semantic Web 459

Rule Set 4:
NonBinFK(x,s,y,t) FK(x,s,y,t) Rel(s) Rel(t) ¬BinRel(s,_,_) ¬BinRel(t,_,_)

a.
ObjP(x,s,t), FP(x),

MinC(x’,t,0)
NonBinFK(x,s,y,t) ¬NN(x) ¬Unq(x)

b.
ObP(x,s,t), FP(x),

Crd(x,s,1), MinC(x’,t,0)
NonBinFK(x,s,y,t) NN(x) ¬Unq(x)

c. ObjP(x,s,t), FP(x), FP(x’) NonBinFK(x,s,y,t) ¬NN(x) Unq(x)

d.
ObjP(x,s,t), FP(x),
Crd(x,s,1), FP(x’)

NonBinFK(x,s,t) NN(x) Unq(x) ¬PK(x,s)

Each rule in Rule Set 4 states that a foreign key represents an object property from the
entity containing the foreign key (domain) to the referenced entity (range). Since a
foreign key references at most one record (instance) of the range, the object property
is functional. This entails that the inverse of that object property is inverse functional.
An example is the foreign key from Study to Student which gives us:
ObjP(RNO,STUDY,STUDENT), FP(RNO), Inv(RNO’,RNO), IFP(RNO’).

Rules 4a and 4b represent variations of one-to-many relationships.

• We can apply a stronger restriction on cardinality of the object property if the for-
eign key is constrained as NOT NULL. Without this constraint (rule 4a), the mini-
mum cardinality is 0, which is covered by functional property predicate. With this
constraint (rule 4b), we can set the maximum and minimum cardinality to 1.

• According to these rules, we can infer only the minimum cardinality restriction of
0 on the inverse property. Since an instance in the range could be referenced by
any number of instances in the domain, we cannot apply a maximum cardinality
restriction on the inverse property.

The other two rules, 4c and 4d, represent one-to-one relationships, modeled by apply-
ing a uniqueness constraint on the foreign key. It means that an instance in the range
can relate to at most one object in the domain, making the inverse property functional
too. This also means that the original object property is inverse functional as well.

The difference between rules 4c and 4d is that of a NOT NULL constraint that, like
one-to-many relationships mentioned above, if present, gives us a stronger cardinality
restriction on the object property represented by the foreign key.

Notice that none of the rules allow the foreign key to be the same as the primary
key of the domain relation. Rule 4d restricts this by providing an extra condition,
whereas the negation of uniqueness or NOT NULL constraints in rules 4a-c, by defi-
nition, implies this condition.

Examples of object properties and their characteristics obtained from the relational
schema by applying Rule Sets 3 and 4 are:

ObjP(REG,STUDENT,SEMESTER), ObjP(REG’,SEMESTER,STUDENT), Inv(REG,REG’)
ObjP(RNO,STUDY,STUDENT), FP(RNO), IFP(RNO’), MinC(RNO’,STUDENT,0)
ObjP(ID1,STUDENT,PERSON), FP(ID1), FP(ID1’), Crd(ID1,STUDENT,1)

Identifying Data Type Properties
Data type properties are relations between instances of classes with RDF literals and
XML Schema data types. Like object properties, data type properties can also be

460 S.H. Tirmizi, J. Sequeda, and D. Miranker

functional, and can be specified with cardinality restrictions. However, unlike object
properties, OWL DL does not allow them or their inverses to be inverse functional.

Attributes of relations in a database schema can be mapped to data type properties
in the corresponding OWL ontology. Rule Set 5 identifies data type properties.

Rule Set 5:
a. DTP(x,r,type(x)), FP(x) NonFK(x,r)

b. DTP(x,r,type(x)), FP(x), Crd(x,r,1) NonFK(x,r) NN(x,r)

c. DTP(x,r,type(x) list(x)), FP(x) NonFK(x,r) Chk(x,r)
Rule Set 5 says that attributes that do not contribute towards foreign keys can be mapped
to data type properties with range equal to their mapped OWL type. Since each record
can have at most one value per attribute, each data type property can be marked as a
functional property. When an attribute has a NOT NULL constraint, rule 5b allows us to
put an additional cardinality restriction on the property. Rule 5c allows us to infer
stronger range restrictions on attributes with enumerated list (CHECK IN) constraints.

Table 4. Parts of an ontology corresponding to the University Database, produced automatically
using our transformation rules. The output format is OWL Abstract Syntax. The underlined parts
highlight the differences compared to the human-developed ontology shown in Table 2.

Automatically Produced Ontology
Ontology(<urn:sql2owl>
 ObjectProperty(<REG> domain(<STUDENT>) range(<SEMESTER>))
 ObjectProperty(<REG_I> inverseOf(<REG>))
 ObjectProperty(<OFFER.CONO> Functional
 domain(<OFFER>) range(<OFFER>))
 ObjectProperty(<OFFER.CONO_I> InverseFunctional
 inverseOf(<OFFER.CONO>))
 ObjectProperty(<STUDENT.ID> Functional InverseFunctional
 domain(<STUDENT>) range(<PERSON>))
 DatatypeProperty(<COURSE.CNO> Functional
 domain(<COURSE>) range(xsd:integer))
 DatatypeProperty(<SEMESTER.YEAR> Functional
 domain(<SEMESTER>) range(xsd:date))
 DatatypeProperty(<SEMESTER.SESSION> Functional domain(<SEMESTER>)
 range(oneOf("SPRING" "SUMMER" "FALL")) range(xsd:string)) ...
 Class(<PERSON> partial ...)
 Class(<PROFESSOR> partial <PERSON> ...)
 Class(<STUDENT> partial restriction(<STUDENT.ID> cardinality(1))
 restriction(<STUDY.RNO_I> minCardinality(0)) ...)
 Class(<COURSE> partial restriction(<COURSE.DEPTCODE> cardinality(1))
 restriction(<COURSE.CNO> cardinality(1)) ...) ...)

In some cases, it may be possible to apply more than one rule to an attribute. In such
cases, all possible rules should be applied to extract more semantics out of the rela-
tional schema. Some data type properties extracted from our sample university data-
base schema are:

DTP(ID1,PERSON,xsd:integer), FP(ID1), Crd(ID1,PERSON,1)
DTP(SESSION,SEMESTER,xsd:string∩{SPRING,SUMMER,FALL}), FP(SESSION)
DTP(NAME1,PERSON,xsd:string), FP(NAME1), Crd(NAME1,PERSON,1)

 Translating SQL Applications to the Semantic Web 461

Identifying Inheritance
Inheritance allows us to form new classes using already defined classes. It relates a
more specific class to a more general one using subclass relationships [OWLGde].

Inheritance relationships between entities in a relational schema can be modeled in
a variety of ways. Since most of these models are not limited to expressing inheri-
tance alone, it is hard to identify subclass relationships.

The following rule describes a special case that can be used only for inheritance
modeling in a normalized database design.

Rule Set 6:
Subclass(r,s) ← Rel(r)∧Rel(s)∧PK(x,r)∧FK(x,r,_,s)

This rule states that an entity represented by a relation r is a subclass of an entity rep-
resented by relation s, if the primary key of r is a foreign key to s. In our sample uni-
versity schema, we can clearly identify that Subclass(PROFESSOR,PERSON) holds.

As a result of applying our rules on the given relational schema, we get the ontol-
ogy shown in Table 4

A comparison of the ontologies produced by the domain expert (Table 2) with the
one produced automatically using our rules (Table 4) shows a number of differences.
For example, our rules are unable to capture the subclass relationship of Student with
Person, or the symmetric and transitive characteristics of the co-location relationship
among Offer instances. These examples clearly show that automatic translation of a
relational schema to an ontology has some limitations, and that these limitations are
inline with the disparities we have identified earlier.

5.4 Implementation

The FOL expression of our transformation system is stratified enabling direct integra-
tion of the transformation system with databases supporting Datalog interpreters.
Theorem: The transformation system defined by the union of rules in rule sets 1
through 6 is stratified.

The proof is left to the reader. Hint: The predicates BinRel and NonBinFK are the
only predicates that appear in both the head and body of a rule.

6 Completeness of Transformation

A notion of completeness of a SQL DDL to ontology transformation is that the rules
of the transformation system cover the entire range of possible relations that can be
described in a SQL schema. The interaction of the foreign keys with primary keys
provides clues about the kinds of relationships that exist between the entities, e.g.
one-to-one, one-to-many etc.

Theorem: The space of relations describable in SQL DDL using various combina-
tions of primary key and foreign key references between the relations can be parti-
tioned into 10 disjoint cases of key combinations. Our transformation system covers
the entire space of relations.

The formal proof is beyond the space limits of this paper. The proof involves a syn-
tactic enumeration of the cases and a closure operation over the space of relations.
Fig. 1 provides a useful summary of the theorem and its proof.

462 S.H. Tirmizi, J. Sequeda, and D. Miranker

(Rule sets 2, 5)

Space of
relations

0 FKs

FK=PK

FK PK

i FKi=PK

¬(i FKi=PK)

i FKi=PK

FKi FKj=PK (i j)

Otherwise

Has non-FK attrs

All attrs in FKs

All attrs in FKs

Has non-FK attrs

1 FK

2 FKs

>2 FKs

(Rule sets 2, 5, 6)

(Rule sets 2, 4, 5)

(Rule sets 2, 4, 5, 6)

(Rule sets 2, 4, 5)

(Rule sets 2, 4, 6)

(Rule set 3)

(Rule sets 2, 4)

(Rule sets 2, 4, 5)

(Rule sets 2, 4)

Fig. 1. The tree describes the complete space of relations when all possible combinations of
primary and foreign keys are considered. For each branch, applicable rules are listed.

Briefly, we first partition the space by examining the number of foreign keys that a
relation contains. All relations without any foreign keys can be easily translated into
classes in an ontology. Similarly, relations with more than two foreign keys usually
represent N-ary relationships, and the rules for N-ary relationships are applicable to
them. The cases for one or two foreign keys are more interesting and give rise to more
possibilities like binary relations, inheritance or new classes. However, for each pos-
sible branch, we have carefully defined sets of rules for producing ontology classes
and properties.

7 Discussion

SQL DDL is a standard for representing the physical schema of applications that use
relational databases. Although SQL DDL it is not a knowledge representation lan-
guage, it is capable of capturing some semantics of the application domain. We have
defined a system for automatic transformation of normalized SQL DDL schemas into
OWL DL ontologies. We have defined our entire set of transformation rules in first
order logic eliminating syntactic and semantic ambiguities and allowing for easy im-
plementation of the system in languages like Datalog.

Once an ontology is defined for a domain represented by a relational schema, the
actual database content can be easily translated into a corresponding RDF representa-
tion. We have also ensured compatibility with description logics based OWL DL,
which is essential to assuring decidability for reasoning represented by the relational
model.

We have demonstrated that an automatic transformation system has its deficiencies
when it comes to identifying inheritance and other rich semantic elements. Although
it is easy to generate specific examples of relational encodings of inheritance, there is

 Translating SQL Applications to the Semantic Web 463

neither a unique encoding, nor an encoding whose syntax, without further qualifica-
tion, can be strictly interpreted as inheritance. Thus, transformation systems that cre-
ate inheritance relationships will incorrectly produce too many, or too few. Thus,
there may always be an opportunity for human judgment to fill in gap between the
expressive power of SQL DDL and OWL.

Independent of the issues that arise from the differences in expressive power, a fair
criticism of the automated transformation approach, in general, is that the scope of
success may be highly dependent on the amount of domain semantics captured in
SQL DDL, which in turn correlates to the age of the database application and the so-
phistication of its developers. However, if the success of an application of an
automated transformation is limited, it is still possible to add missing semantics using
the techniques being developed in wrapper-based approaches. Such semi-automated
systems have been explored in the context of strict relational data integration [BaM07,
Mil00]. Further, functioning relational database applications are prone to schema
modification. One can envision a system where an automated transformation boot-
straps a more powerful wrapper system. In the advent of database schema evolution a
combined system may be able to reason about and propagate the changes.

References

[AnB05] An, Y., Borgida, A., Mylopoulos, J.: Inferring Complex Semantic Mappings be-
tween Relational Tables and Ontologies from Simple Correspondences. In: Pro-
ceedings of On The Move to Meaningful Internet Systems (2005)

[Ast07] Astrova, I., Korda, N., Kalja, A.: Rule-Based Transformation of SQL Relational
Databases to OWL Ontologies. In: Proceedings of the 2nd International Confer-
ence on Metadata & Semantics Research (October 2007)

[Bar04] Barrasa, J., Corcho, O.: R2O, an Extensible and Semantically Based Database-to-
Ontology Mapping Language. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.)
SWDB 2004. LNCS, vol. 3372, Springer, Heidelberg (2005)

[BaM07] Barbançon, F., Miranker, D.P.: SPHINX: Schema integration by example. Journal
of Intelligent Information Systems (in press, available on-line SpringerLink)

[Biz03] Bizer, C.: D2R MAP - A Database to RDF Mapping Language. In: Proceedings of
the Twelfth International World Wide Web Conference (WWW) (2003)

[Che06] Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., et al.: Towards a Se-
mantic Web of Relational Databases: a Practical Semantic Toolkit and an In-Use
Case from Traditional Chinese Medicine. In: Proc. of the 5th International Seman-
tic Web Conference (2006)

[DuW99] Du, H., Wery, L.: Micro: A normalization tool for relational database engineers.
Journal of Network and Computer Applications 22(4), 215–232 (1999)

[HeP07] He, B., Patel, M., Zhang, Z., Chang, K.C.: Accessing the deep web. Communica-
tions of the ACM 50(5), 94–101 (2007)

[Hor03] Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic
satisfiability. In: Proceedings of the 2nd International Semantic Web Conference
(2003)

[Lab05] de Laborda, C.P., Conrad, S.: Relational. OWL: a data and schema representation
format based on OWL. In: Proceedings of the 2nd Asia-Pacific Conference on
Conceptual Modeling, vol. 43, pp. 89–96 (2005)

464 S.H. Tirmizi, J. Sequeda, and D. Miranker

[Lab06] de Laborda, C.P., Conrad, S.: Database to Semantic Web Mapping using RDF
Query Languages. In: 25th International Conference on Conceptual Modeling
(November 2006)

[LiD05] Li, M., Du, X., Wang, S.: Learning ontology from relational database. In: Proceed-
ings of the Fourth International Conference on Machine Learning and Cybernetics
(2005)

[Mil00] Miller, R., Haas, L.L., Hernández, M.: Schema mapping as query discovery. In:
Proceedings of the VLDB Conference (2000)

[Mot07] Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. In: Proceedings of the 16th International Conference on World Wide
Web (2007)

[Noy06] Noy, N., Rector, A. (eds.): Defining N-ary Relations on the Semantic Web. W3C
Working Group Note (11/14/2007), http://www.w3.org/TR/2006/
NOTE-swbp-n-aryRelations-20060412/

[OWLGde] Smith, M.K., Welty, C., McGuinness, D.L. (eds.): OWL Web Ontology Language
Guide. W3C Recommendation /REC-owl-guide-20040210/> (11/15/2007) (2004),
http://www.w3.org/TR/

[OWLRef] Dean, M., Schreiber, G. (eds.): OWL Web Ontology Language Reference. W3C
Recommendation (11/14/2007), http://www.w3.org/TR/2004/REC-
owl-ref-20040210/

[RDFSem] Hayes, P. (ed.): RDF Semantics. W3C Recommendation (11/26/2007),
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

[Rod06] Rodriguez, J.B., Gomez-Perez, A.: Upgrading relational legacy data to the seman-
tic web. In: Proceedings of the 15th international Conference on World Wide Web
(2006)

[Seq07] Sequeda, J.F., Tirmizi, S.H., Miranker, D.P.: SQL Databases are a Moving Target.
In: Position Paper for W3C Workshop on RDF Access to Relational Databases
(October 2007)

[Sto02] Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive web sites into the
semantic web. In: Proceedings of the ACM Symposium on Applied Computing
(2002)

[Wan00] Wang, S., Shen, J., Hong, T.: Mining fuzzy functional dependencies from quantita-
tive data. In: IEEE International Conference on Systems, Man and Cybernetics
(October 2000)

[XMLSch] Biron, P.V., Permanente, K., Malhotra, A. (eds.): XML Schema Part 2: Datatypes
Second Edition. W3C Recommendation (11/26/2007), http://www.w3.org/
TR/2004/REC-xmlschema-2-20041028/

	Translating SQL Applications to the Semantic Web
	Introduction
	Related Work
	Extracting Knowledge from a Relational Schema
	Disparities between Relational Databases and Ontologies
	Inheritance Modeling
	Characteristics of Relationships
	The Effect of Open/Closed World Assumptions

	Translating SQL to Semantic Web
	Assumptions
	Predicates and Functions
	Transformation Rules and Examples
	Implementation

	Completeness of Transformation
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

