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Abstract. The content of most Web pages is dynamically derived from an un-
derlying relational database. Thus, the success of the Semantic Web hinges on 
enabling access to relational databases and their content by semantic methods. 
We define a system for automatic transformation of SQL DDL schemas into 
OWL DL ontologies. This system goes further than earlier efforts in that the en-
tire system is expressed in first-order logic. We leverage the formal approach to 
show the system is complete with respect to a space of the possible relations 
that can be formed among relational tables as a consequence of primary and 
foreign key combinations. The full set of transformation rules is stratified, thus 
the system can be executed directly by a Datalog interpreter. 

1   Introduction 

It has been estimated that Internet accessible databases contain up to 500 times more 
data compared to the static Web and that three-quarters of these databases are man-
aged by relational database management systems [HeP07]. Thus, enabling the integra-
tion of relational databases and their content with the Semantic Web is critical to the 
Semantic Web’s success. 

The Semantic Web provides an ontology-based framework for integration, search 
and sharing of data drawn from diverse sources. Broadly stated, there are two archi-
tectural approaches to integrating databases with the Semantic Web. The more com-
monly researched approach is the development of wrapper systems that map a  
relational database schema to an existing domain ontology [AnB05, Bar04, Che06, 
Lab05, Lab06, Rod06]. To date there has been little work automating the creation of 
such wrappers. Thus, wrapper systems appear to be a labor-intensive solution. 

The second approach, which is the subject of the work in this paper, concerns the 
automatic transformation of database content and/or schema to a Semantic Web repre-
sentation, i.e. RDF and OWL [Biz03, LiD05, Ast07]. In this approach it is assumed that 
the data model entails a logical model of the application domain, and by syntactically 
analyzing the model’s physical encoding in SQL Data Description Language (DDL) the 
logical model may be recovered. While many legacy databases were defined using strict 
relational syntax and semantics, and thus may encode modest application domain se-
mantics, the current SQL standard coupled with modern software design methodology 
enables rich expression of domain semantics; albeit not in a form readily accessible to 
automated inference mechanism [Seq07]. In addition to foreign key constraints, SQL 
DDL supports a variety of constraints on the range of values allowed in a table.  
Building on related work we define a system for automatic transformation of relational 
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databases into OWL-DL ontologies. Two critical elements distinguish our transforma-
tion system from past efforts. First, the entire system is defined in first order logic 
(FOL) eliminating syntactic and semantic ambiguities in our rules. Much of the related 
work is expository in nature, at times influenced by domain specific examples and/or 
specifying the resulting rules in English prose. Often the influence of examples from a 
particular domain can result in incorrect rules. Second, we present a notion of complete-
ness of our system in terms of a space of all possible relations describable by SQL DDL 
considering the interactions of primary and foreign keys in relations. We have parti-
tioned the space of relations and have covered the transformation of each partition with 
sets of rules applicable to that partition. 

Further, we observe that the FOL expression of our transformation system is strati-
fied. Thus, in addition to implementation in Prolog environments, the system may in-
tegrate with databases supporting Datalog interpreters. 

2   Related Work 

A number of researchers have made inroads on this problem and serve as a foundation 
for our work [Sto02, LiD05, Ast07].  

Stojanovic et al. [Sto02] provide rules for translation of relational schemas to 
Frame Logic and RDF Schema. This work formally defines rules for identification of 
classes and properties in relational schemas. It does not have the capability of captur-
ing richer semantics that cannot be expressed in RDF Schema. 

Li et al. [LiD05] propose a set of rules for automatically learning an OWL ontol-
ogy from a relational schema. They define the rules using a combination of some for-
mal notation and English language. Our analysis shows that some of their rules miss 
some semantics offered by the relational schema and some rules produce specific re-
sults for inheritance and object properties that may not accurately depict concepts 
across domains or database modeling choices. We believe these shortcomings are due 
to lack of a formal system and thorough examination of examples capturing a variety 
of modeling choices in various domains. 

Astrova et al. [Ast07] provide expository rules and examples to describe a system 
for automatic transformation of a relational schema to OWL Full. When it was pub-
lished this work was the most comprehensive. Since the rules were not formally de-
fined, a number of transformations are ambiguous. 

In addition to the lack of correctness due to informal specification of rules, these 
systems do not provide any notion of completeness of their rules. By completeness we 
mean consideration of all possible database key structures that may encode an onto-
logical relationship.  We present the results of a construction that enumerates such 
key structures and document that our transformation system is complete and unambi-
guous. In the rest of the paper, first we present the disparities between relational  
databases and ontologies. Then we systematically present how relational database 
schemas can be transformed into OWL ontologies. First, with the help of an example, 
we show how a domain expert can translate a relational schema in SQL DDL into an 
OWL ontology. Then, we present our assumptions and transformation rules, and  
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explain them using the same example. We also provide a comparison of human and 
automatically generated ontologies and relate the differences using our discussion on 
disparities as a basis. 

3   Extracting Knowledge from a Relational Schema 

Consider a relational database for a university and its definition (see Table 1). 
The Person table contains data about all the people, some of them may be students 

and present in Student table, and some may be professors and present in Professor ta-
ble. The Dept table lists the departments in the university where each department has 
a unique name, and the Course table lists the courses for every department. The Se-
mester table contains a list of semesters which have a year and one of the three sea-
sons, Spring, Summer or Fall, associated with them. A course could be offered in a 
particular semester with a particular professor, and recorded in Offer table. Two of-
fered courses could be co-offered, and recorded as a self-relation in the Offer table. A 
student could study an offered course, which is recorded in Study table. Also, a stu-
dent could be registered in a semester with or without taking a course, and this infor-
mation is recorded in the Reg table. 

Table 1. Schema of a University Database 

University Database Schema 
create table PERSON { ID integer primary key, NAME varchar not null } 
create table STUDENT { ROLLNO integer primary key, DEGREE varchar, 
  ID integer unique not null foreign key references PERSON(ID) } 
create table PROFESSOR { ID integer primary key, TITLE varchar, 
  constraint PERSON_FK foreign key (ID) references PERSON(ID) } 
create table DEPT { CODE varchar primary key, 
  NAME varchar unique not null } 
create table SEMESTER { SNO integer primary key, YEAR date not null, 
  SESSION varchar check in (‘SPRING’, ‘SUMMER’, ‘FALL’) } 
create table COURSE { CNO integer primary key, TITLE varchar, 
  CODE varchar not null foreign key references DEPT(CODE) } 
create table OFFER { ONO integer primary key, 
  CNO integer foreign key references COURSE(CNO), 
  SNO integer foreign key references SEMESTER(SNO), 
  PID integer foreign key references PROFESSOR(ID), 
  CONO integer foreign key references OFFER(ONO) } 
create table STUDY { ONO integer foreign key references OFFER(ONO), 
  RNO integer foreign key references STUDENT(ROLLNO), 
  GRADE varchar, constraint STUDY_PK primary key (ONO, RNO) } 
create table REG { SID integer foreign key references STUDENT(ID), 
  SNO integer foreign key references SEMESTER(SNO), 
  constraint REG_PK primary key (SID, SNO) } 

For a domain expert, it is easy to recognize the concepts in this database structure, 
and to identify the semantics of their properties and different kinds of relationships 
that exist between these concepts. Table 2 shows an ontology corresponding to the 
given schema, developed by a domain expert. 
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Table 2. Parts of an ontology corresponding to the schema in Table 1, developed by a domain 
expert. The ontology is presented in OWL Abstract Syntax. The highlighted sections in the 
table are later compared with an automated output. 

Domain Expert’s Ontology 
Ontology(<urn:sql2owl> 
 ObjectProperty(<REG> domain(<STUDENT>) range(<SEMESTER>)) 
 ObjectProperty(<REG_I> inverseOf(<REG>)) 
 ObjectProperty(<OFFER.CONO> Transitive Symmetric 
  domain(<OFFER>) range(<OFFER>))... 
 DatatypeProperty(<COURSE.CNO> Functional 
  domain(<COURSE>) range(xsd:integer)) 
 DatatypeProperty(<SEMESTER.YEAR> Functional 
  domain(<SEMESTER>) range(xsd:date)) 
 DatatypeProperty(<SEMESTER.SESSION> Functional domain(<SEMESTER>) 
  range(oneOf("SPRING" "SUMMER" "FALL")) range(xsd:string))... 
 Class(<PERSON> partial ...) 
 Class(<PROFESSOR> partial <PERSON> ...) 
 Class(<STUDENT> partial <PERSON> 
  restriction(<STUDY.RNO_I> minCardinality(0)) ...) 
 Class(<COURSE> partial restriction(<COURSE.DEPTCODE> cardinality(1)) 
  restriction(<COURSE.CNO> cardinality(1)) ...)   ...) 

4   Disparities between Relational Databases and Ontologies 

While relational databases are capable of efficiently managing large amounts of struc-
tured data, ontologies are very useful for knowledge representation. Since these two 
data models are aimed towards different requirements specified by their domains, it is 
reasonable to expect some disparities among them in terms of capabilities. 

To define a relational database to ontology transformation system, it is important to 
understand the mismatches between the two data models, and to make educated 
choices when confronted with such problems. Here we discuss some key issues – in-
heritance modeling, property characteristics and open/closed world assumptions – that 
affect a transformation system. 

4.1   Inheritance Modeling 

Relational databases do not express inheritance. However, inheritance hierarchies can 
be modeled in a variety of ways in relational schemas. Also, some modeling choices are 
harder to identify automatically. Given a foreign key definition between two entities, we 
would like to know whether a subclass relationship exists between the entities involved. 
If such patterns exist, we can map them to subclass relationships in the ontology. 

The following list presents possible foreign key patterns to model inheritance: 

• Foreign key is also the primary key: The Professor-Person relationship in our uni-
versity schema is an example. This pattern uniquely identifies inheritance. An ex-
ception to this would be vertical partitioning of tables, but since we assume 3NF 
databases for our system, this case can be transformed to inheritance.  

• Foreign key and primary key are disjoint: The Student-Person relationship in our 
university schema is an example. However, the Course-Dept relationship modeled 
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in the same schema is a counterexample. In fact, this pattern is the most common 
one used for expressing one-to-many relationships. 

• Foreign key is a subset of the primary key: This is also not a good candidate for 
automatic translation to an inheritance hierarchy in the ontology. Many counterex-
amples for this pattern can be presented, particularly the ones for modeling ‘part-
of’ relationships between entities. 

4.2   Characteristics of Relationships 

While relational schemas can capture some cardinality constraints on relationships be-
tween entities by defining constraints on foreign keys, they lack the expressive power 
to define relationships with interesting logical characteristics, like symmetry and tran-
sitivity etc. On the other hand, expressing such characteristics of relationships is natu-
ral to ontology languages like OWL, which are based on some form of logic. 

For example, the self-relation on the Offer entity, that represents co-location of 
an offered course with another offered course, is symmetric and transitive. While 
these characteristics are obvious to a domain expert, the relationship is expressed 
like any other self-relationship in the relational schema, which may not have the 
same characteristics. Consider the example: Employee(ID,Name,MgrID), where ID 
is the primary key, and MgrID is a foreign key to the Employee table itself refer-
encing manager’s ID. This relationship is clearly not symmetric, and may or may 
not be transitive. 

The example clearly shows that it is hard to identify logical characteristics of rela-
tionships in a relational schema without using the domain knowledge. Therefore, our 
rules do not capture these characteristics automatically. 

4.3   The Effect of Open/Closed World Assumptions 

Relational databases usually operate under the closed world (CW) assumption. This 
means that whatever is not in the database is considered false. On the other hand, 
knowledge bases operate in open world (OW) where whatever is not in the knowledge 
base is considered unknown. This assumption is natural for knowledge bases that of-
ten contain incomplete knowledge, and grow incrementally. 

Therefore, the concept of a constraint has very different meanings in the two 
worlds [Mot07]. In a database setting, a constraint is mainly used for validation. In 
contrast, in an ontology, a constraint expresses some characteristics of classes or rela-
tionships but does not prevent assertion of any facts. In addition, some assertions may 
even result in unintuitive inferences. 

When developing an ontology based on a relational schema, it is very important to 
keep these differences in mind. The question whether the open world should be closed 
or not depends upon the domain and application requirements. In our system, we pro-
duce an ontology with open world assumption. If needed, one way to close the world 
will be to assert that all inferred classes are pair-wise disjoint. 
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5   Translating SQL to Semantic Web 

In this section, we explain the transformation of a relational schema to an ontology. 
First we present our assumptions and explain the rationale behind them. Then, we list 
the predicates and functions we have defined to express transformation rules in first 
order logic. In the next section, we explain the transformations for data types, classes, 
properties and inheritance, and provide mapping tables or first order logic rules to 
formally define the transformations. 

5.1   Assumptions 

In order to translate a relational schema into an ontology, we make the following  
assumptions: 
• The relational schema, in its most accurate form, is available in SQL DDL. Data-

bases evolve due to changing application requirements. Such modifications are of-
ten reflected solely in the physical model, usually expressed in SQL DDL, making 
it the most accurate source for the structure of the database. 

• The relational schema is normalized, at least up to third normal form. While all 
databases might not be well normalized, it is possible to automate the process of 
finding functional dependencies within data and to algorithmically transform a re-
lational schema to third normal form [DuW99, Wan00]. 

5.2   Predicates and Functions 

We have defined a number of predicates and functions to aid the process of defining 
transformation rules in first order logic. 

There are two sets of predicates in our system. RDB predicates test whether an ar-
gument (or a set of arguments) matches a construct in the domain of relational data-
bases. Such predicates are listed below: 

Rel(r) r is a relation; e.g. Rel(PERSON) holds, Rel(ID) does not
Attr(x,r) x is an attribute in relation r; e.g. Attr(ID,PERSON) holds
NN(x,r) x is an attribute (or a set of attributes) in relation r with NOT 

NULL constraint(s); e.g. NN(NAME,PERSON) holds
Unq(x,r) x is an attribute (or a set of attributes) in relation r with UNIQUE 

constraint; e.g. Unq({NAME},DEPT) holds
Chk(x,r) x is an attribute in relation r with enumerated list (CHECK IN) 

constraint; e.g. Chk(SESSION,SEMESTER) holds
PK(x,r) x is the (single or composite) primary key of relation r; e.g. 

PK({ONO,RNO},STUDY) holds; Also: PK(x,r) Unq(x,r) NN(x,r)
FK(x,r,y,s) x is a (single or composite) foreign key in relation r and references 

y in relation s; e.g. FK({ID},STUDENT,{ID},PERSON) holds
NonFK(x,r) x is an attribute in relation r that does not participate in any foreign 

key; e.g. NonFK(NAME,DEPT) holds  
On the other hand, ontology predicates test whether an argument (or a set of argu-
ments) matches a construct that can be represented in an OWL ontology. These predi-
cates are: 
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Class(m) m is a class 
ObjP(p,d,r) p is an object property with domain d and range r 
DTP(p,d,r) p is an data type property with domain d and range r 
Inv(p,q) when p and q are object properties, p is an inverse of q 
FP(p) p is a functional property 
IFP(p) p is an inverse functional property 
Crd(p,m,v) the (max and min) cardinality of property p for class m is v 
MinC(p,m,v) the min cardinality of property p for class m is v 
MaxC(p,m,v) the max cardinality of property p for class m is v 
Subclass(m,n) m is a subclass of class n 

The constructs represented by ontology predicates are described as they appear in the 
rules mentioned in the upcoming sections of this paper. 

We have also defined the following functions: 

fkey(x,r,s) takes a set of attributes x, relations r and s, and returns the foreign 
key defined on attributes x in r referencing s 

type(x) maps an attribute x to its suitable OWL recommended data type (we 
discuss data types in more detail in a later section) 

list(x) maps an attribute x to a list of allowed values; applicable only to at-
tributes with a CHECK IN constraint, i.e. Chk(x) is true 

In addition to the predicates and functions listed above, we describe the concept of a 
binary relation, written BinRel, as a relation that only contains two (single or compos-
ite) foreign keys that reference other relations. Such tables are used to resolve many-
to-many relationships between entities. Using RDB predicates, we formally define 
BinRel as follows: 

Rule Set 1:

BinRel(r,s,t) 
Rel(r) FK(q,r,_,t) FK(p,r,_,s) p q Attr(y,r) ¬NonFK(y,r)
FK(z,r,_,u) fkey(z,r,u) {fkey(p,r,s),fkey(q,r,t)}  

This rule states that a binary relation r between two relations s and t exists if r is a re-
lation that has foreign keys to s and t, and r has no other foreign keys or attributes 
(each attribute in the relation belongs to one of the two foreign keys). Note that there 
is no condition that requires s and t to be different, allowing binary relations that have 
their domain equal to their range. 

5.3   Transformation Rules and Examples 

In this section we present rules and examples for transformation of a relational data-
base to OWL ontology. 

Producing Unique Identifiers (URIs) and Labels 
Before we discuss the transformation rules, it is important to understand how we can 
produce identifiers and names for classes and properties that form the ontology. 

The concept of globally unique identifiers is fundamental to OWL ontologies. Each 
class or property in the ontology must have a unique identifier, or URI. While it is 
possible to use the names from the relational schema to label the concepts in the on-
tology, it is necessary to resolve any duplications, either by producing URIs based on 
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fully qualified names of schema elements, or by producing them randomly. In addi-
tion, for human readability, RDFS labels should be produced for each ontology ele-
ment containing names of corresponding relational schema elements. Due to lack of 
space, we have not used fully qualified names in our examples. When needed, we ap-
pend a name with an integer to make it unique, e.g. ID1, ID2 etc. 

Transformation of Data Types 
Transformations from relational schemas to ontologies require preserving data type 
information along with the other semantic information. OWL (and RDF) specifica-
tions recommend the use of a subset of XML Schema types [XMLSch] in Semantic 
Web ontologies [OWLRef, RDFSem]. 

In Table 3 we present a list of commonly used SQL data types along with their cor-
responding XML Schema types. During transformation of data type properties, the 
SQL data types are transformed into the corresponding XML Schema types. 

Table 3. Common SQL types and corresponding XML Schema types recommended for OWL 

SQL Data Type XML Schema Type SQL Data Type XML Schema Type 

INTEGER xsd:integer VARCHAR xsd:string 
FLOAT xsd:float DATE xsd:date 

BOOLEAN xsd:boolean TIMESTAMP xsd:dateTime 

Identifying Classes 
According to OWL Language Guide [OWLGde], “the most basic concepts in a do-
main should correspond to classes …”. Therefore we would expect basic entities in 
the data model to translate into OWL classes. 

Given the definition of a binary relation, it is quite straightforward to identify 
OWL classes from a relational schema. Any relation that is not a binary relation can 
be mapped to a class in an OWL ontology, as stated in the rule below. 

Rule Set 2:
Class(r) Rel(r) ¬BinRel(r,_,_)  

Remember that a binary relation has exactly two foreign keys and no other attributes 
(see Rule Set 1). Keeping that in mind, we can see that this very simple rule covers a 
number of cases for identifying classes: 

• All tables that do not have foreign keys should be transformed to classes. There-
fore, we conclude Class(PERSON), i.e. Person should be mapped to a class since it 
has no foreign key. The same reasoning holds for the Dept and Semester tables. 

• All tables with one foreign key can be mapped to classes since they cannot be bi-
nary relations. Hence Student, Professor and Course should be mapped to classes. 

• Tables with more than two foreign keys should be transformed to classes as well. 
Such tables may represent an entity or an N-ary relationship between entities. For-
tunately, in OWL, both the cases can be modeled the same way, i.e. by translating 
the entity or the N-ary relationship into a class [Noy06]. From our example, Offer 
represents an N-ary relationship, and modeled as a class using the given rule. 
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• For tables containing exactly two foreign keys, presence of independent attributes 
qualifies them to be translated to classes. The table Study, with an independent at-
tribute Grade, is an example, and is translated to an OWL class. 

Thus Rule Set 2 identifies the OWL classes from the database schema. For example: 
Class(PERSON), Class(STUDENT), Class(DEPT), Class(STUDY), Class(OFFER) 

Identifying Object Properties 
An object property is a relation between instances of two classes in a particular direc-
tion. In practice, it is often useful to define object properties in both directions, creat-
ing a pair of object properties that are inverses of each other. OWL provides us the 
means to mark properties as inverses of each other. In our work, when we translate 
something to an object property, say ObjP(r,s,t), it implicitly means we have created 
an inverse of that property, which we write as ObjP(r’,t,s). 

There are two ways of extracting OWL object properties from a relational schema. 
One of the ways is through identification of binary relations, which represent many-
to-many relationships. The following rule identifies an object property using a binary 
relation. 

Rule Set 3:
ObjP(r,s,t) BinRel(r,s,t) Rel(s) Rel(t) ¬BinRel(s,_,_) ¬BinRel(t,_,_)

 
This rule states that a binary relation r between two relations s and t, neither being a 
binary relation, can be translated into an OWL object property with domain s and 
range t. Notice that the rule implies Class(s) and Class(t) hold true, so the domain and 
range of the object property can be expressed in terms of corresponding OWL classes. 

From our university database schema, the Reg table fits the condition. Reg is a bi-
nary relation between Student and Semester entities, which are not binary relations. 
Therefore, ObjP(REG,STUDENT,SEMESTER) holds, and since we can create in-
verses, ObjP(REG’,SEMESTER,STUDENT) and Inv(REG,REG’) also hold true. 

Foreign key references between tables that are not binary relations represent one-
to-one and one-to-many relationships between entities. A pair of object properties that 
are inverses of each other and have a maximum cardinality of 1 can represent one-to-
one relationships. Also, one-to-many relationships can be mapped to an object prop-
erty with maximum cardinality of 1, and an inverse of that object property with no 
maximum cardinality restrictions. 

In OWL, a property with min cardinality of 0 and max cardinality of 1 is called 
functional which we represent by the functor FP. If an object property is functional, 
then its inverse is inverse functional, represented by the functor IFP. In addition to 
specifying cardinality restrictions on properties in general, we can also specify such 
restrictions when a property is applied over a particular domain. In our rules, we use 
ontology predicates Crd, MinC and MaxC to specify these restrictions. The examples 
following the rules explain the use of these predicates. 

The following rule set identifies object properties and their characteristics using 
foreign key references (not involving binary relations, covered in Rule Set 3) with 
various combinations of uniqueness and null restrictions. To simplify the rules, we 
first define a predicate NonBinFK that represents foreign keys not in or referencing 
binary relations and then express the rules in terms of this predicate. 
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Rule Set 4:
NonBinFK(x,s,y,t) FK(x,s,y,t) Rel(s) Rel(t) ¬BinRel(s,_,_) ¬BinRel(t,_,_)

a.
ObjP(x,s,t), FP(x),

MinC(x’,t,0)
NonBinFK(x,s,y,t) ¬NN(x) ¬Unq(x)

b.
ObP(x,s,t), FP(x),

Crd(x,s,1), MinC(x’,t,0)
NonBinFK(x,s,y,t) NN(x) ¬Unq(x)

c. ObjP(x,s,t), FP(x), FP(x’) NonBinFK(x,s,y,t) ¬NN(x) Unq(x)

d.
ObjP(x,s,t), FP(x),
Crd(x,s,1), FP(x’)

NonBinFK(x,s,t) NN(x) Unq(x) ¬PK(x,s)
 

Each rule in Rule Set 4 states that a foreign key represents an object property from the 
entity containing the foreign key (domain) to the referenced entity (range). Since a 
foreign key references at most one record (instance) of the range, the object property 
is functional. This entails that the inverse of that object property is inverse functional. 
An example is the foreign key from Study to Student which gives us: 
ObjP(RNO,STUDY,STUDENT), FP(RNO), Inv(RNO’,RNO), IFP(RNO’). 

Rules 4a and 4b represent variations of one-to-many relationships. 

• We can apply a stronger restriction on cardinality of the object property if the for-
eign key is constrained as NOT NULL. Without this constraint (rule 4a), the mini-
mum cardinality is 0, which is covered by functional property predicate. With this 
constraint (rule 4b), we can set the maximum and minimum cardinality to 1. 

• According to these rules, we can infer only the minimum cardinality restriction of 
0 on the inverse property. Since an instance in the range could be referenced by 
any number of instances in the domain, we cannot apply a maximum cardinality 
restriction on the inverse property. 

The other two rules, 4c and 4d, represent one-to-one relationships, modeled by apply-
ing a uniqueness constraint on the foreign key. It means that an instance in the range 
can relate to at most one object in the domain, making the inverse property functional 
too. This also means that the original object property is inverse functional as well. 

The difference between rules 4c and 4d is that of a NOT NULL constraint that, like 
one-to-many relationships mentioned above, if present, gives us a stronger cardinality 
restriction on the object property represented by the foreign key. 

Notice that none of the rules allow the foreign key to be the same as the primary 
key of the domain relation. Rule 4d restricts this by providing an extra condition, 
whereas the negation of uniqueness or NOT NULL constraints in rules 4a-c, by defi-
nition, implies this condition. 

Examples of object properties and their characteristics obtained from the relational 
schema by applying Rule Sets 3 and 4 are: 

ObjP(REG,STUDENT,SEMESTER), ObjP(REG’,SEMESTER,STUDENT), Inv(REG,REG’) 
ObjP(RNO,STUDY,STUDENT), FP(RNO), IFP(RNO’), MinC(RNO’,STUDENT,0) 
ObjP(ID1,STUDENT,PERSON), FP(ID1), FP(ID1’), Crd(ID1,STUDENT,1) 

Identifying Data Type Properties 
Data type properties are relations between instances of classes with RDF literals and 
XML Schema data types. Like object properties, data type properties can also be 
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functional, and can be specified with cardinality restrictions. However, unlike object 
properties, OWL DL does not allow them or their inverses to be inverse functional. 

Attributes of relations in a database schema can be mapped to data type properties 
in the corresponding OWL ontology. Rule Set 5 identifies data type properties. 

Rule Set 5:
a. DTP(x,r,type(x)), FP(x) NonFK(x,r)

b. DTP(x,r,type(x)), FP(x), Crd(x,r,1) NonFK(x,r) NN(x,r)

c. DTP(x,r,type(x) list(x)), FP(x) NonFK(x,r) Chk(x,r)  
Rule Set 5 says that attributes that do not contribute towards foreign keys can be mapped 
to data type properties with range equal to their mapped OWL type. Since each record 
can have at most one value per attribute, each data type property can be marked as a 
functional property. When an attribute has a NOT NULL constraint, rule 5b allows us to 
put an additional cardinality restriction on the property. Rule 5c allows us to infer 
stronger range restrictions on attributes with enumerated list (CHECK IN) constraints. 

Table 4. Parts of an ontology corresponding to the University Database, produced automatically 
using our transformation rules. The output format is OWL Abstract Syntax. The underlined parts 
highlight the differences compared to the human-developed ontology shown in Table 2. 

Automatically Produced Ontology 
Ontology(<urn:sql2owl> 
 ObjectProperty(<REG> domain(<STUDENT>) range(<SEMESTER>)) 
 ObjectProperty(<REG_I> inverseOf(<REG>)) 
 ObjectProperty(<OFFER.CONO> Functional 
  domain(<OFFER>) range(<OFFER>)) 
 ObjectProperty(<OFFER.CONO_I> InverseFunctional 
  inverseOf(<OFFER.CONO>)) 
 ObjectProperty(<STUDENT.ID> Functional InverseFunctional 
  domain(<STUDENT>) range(<PERSON>)) 
 DatatypeProperty(<COURSE.CNO> Functional 
  domain(<COURSE>) range(xsd:integer)) 
 DatatypeProperty(<SEMESTER.YEAR> Functional 
  domain(<SEMESTER>) range(xsd:date)) 
 DatatypeProperty(<SEMESTER.SESSION> Functional domain(<SEMESTER>) 
  range(oneOf("SPRING" "SUMMER" "FALL")) range(xsd:string)) ... 
 Class(<PERSON> partial ...) 
 Class(<PROFESSOR> partial <PERSON> ...) 
 Class(<STUDENT> partial restriction(<STUDENT.ID> cardinality(1)) 
  restriction(<STUDY.RNO_I> minCardinality(0)) ...) 
 Class(<COURSE> partial restriction(<COURSE.DEPTCODE> cardinality(1)) 
  restriction(<COURSE.CNO> cardinality(1)) ...)   ...) 

In some cases, it may be possible to apply more than one rule to an attribute. In such 
cases, all possible rules should be applied to extract more semantics out of the rela-
tional schema. Some data type properties extracted from our sample university data-
base schema are: 

DTP(ID1,PERSON,xsd:integer), FP(ID1), Crd(ID1,PERSON,1) 
DTP(SESSION,SEMESTER,xsd:string∩{SPRING,SUMMER,FALL}), FP(SESSION) 
DTP(NAME1,PERSON,xsd:string), FP(NAME1), Crd(NAME1,PERSON,1) 
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Identifying Inheritance 
Inheritance allows us to form new classes using already defined classes. It relates a 
more specific class to a more general one using subclass relationships [OWLGde]. 

Inheritance relationships between entities in a relational schema can be modeled in 
a variety of ways. Since most of these models are not limited to expressing inheri-
tance alone, it is hard to identify subclass relationships. 

The following rule describes a special case that can be used only for inheritance 
modeling in a normalized database design. 

Rule Set 6:   
Subclass(r,s) ← Rel(r)∧Rel(s)∧PK(x,r)∧FK(x,r,_,s) 

This rule states that an entity represented by a relation r is a subclass of an entity rep-
resented by relation s, if the primary key of r is a foreign key to s. In our sample uni-
versity schema, we can clearly identify that Subclass(PROFESSOR,PERSON) holds. 

As a result of applying our rules on the given relational schema, we get the ontol-
ogy shown in Table 4 

A comparison of the ontologies produced by the domain expert (Table 2) with the 
one produced automatically using our rules (Table 4) shows a number of differences. 
For example, our rules are unable to capture the subclass relationship of Student with 
Person, or the symmetric and transitive characteristics of the co-location relationship 
among Offer instances. These examples clearly show that automatic translation of a 
relational schema to an ontology has some limitations, and that these limitations are 
inline with the disparities we have identified earlier. 

5.4   Implementation 

The FOL expression of our transformation system is stratified enabling direct integra-
tion of the transformation system with databases supporting Datalog interpreters. 
Theorem: The transformation system defined by the union of rules in rule sets 1 
through 6 is stratified. 

The proof is left to the reader. Hint: The predicates BinRel and NonBinFK are the 
only predicates that appear in both the head and body of a rule. 

6   Completeness of Transformation 

A notion of completeness of a SQL DDL to ontology transformation is that the rules 
of the transformation system cover the entire range of possible relations that can be 
described in a SQL schema. The interaction of the foreign keys with primary keys 
provides clues about the kinds of relationships that exist between the entities, e.g. 
one-to-one, one-to-many etc. 

Theorem: The space of relations describable in SQL DDL using various combina-
tions of primary key and foreign key references between the relations can be parti-
tioned into 10 disjoint cases of key combinations. Our transformation system covers 
the entire space of relations. 

The formal proof is beyond the space limits of this paper. The proof involves a syn-
tactic enumeration of the cases and a closure operation over the space of relations. 
Fig. 1 provides a useful summary of the theorem and its proof. 
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(Rule sets 2, 5)

Space of 
relations

0 FKs

FK=PK

FK PK

i FKi=PK
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i FKi=PK

FKi FKj=PK (i j)

Otherwise

Has non-FK attrs

All attrs in FKs

All attrs in FKs

Has non-FK attrs

1 FK

2 FKs

>2 FKs

(Rule sets 2, 5, 6)

(Rule sets 2, 4, 5)

(Rule sets 2, 4, 5, 6)

(Rule sets 2, 4, 5)

(Rule sets 2, 4, 6)

(Rule set 3)

(Rule sets 2, 4)

(Rule sets 2, 4, 5)

(Rule sets 2, 4)
 

Fig. 1. The tree describes the complete space of relations when all possible combinations of 
primary and foreign keys are considered. For each branch, applicable rules are listed. 

Briefly, we first partition the space by examining the number of foreign keys that a 
relation contains. All relations without any foreign keys can be easily translated into 
classes in an ontology. Similarly, relations with more than two foreign keys usually 
represent N-ary relationships, and the rules for N-ary relationships are applicable to 
them. The cases for one or two foreign keys are more interesting and give rise to more 
possibilities like binary relations, inheritance or new classes. However, for each pos-
sible branch, we have carefully defined sets of rules for producing ontology classes 
and properties. 

7   Discussion 

SQL DDL is a standard for representing the physical schema of applications that use 
relational databases. Although SQL DDL it is not a knowledge representation lan-
guage, it is capable of capturing some semantics of the application domain. We have 
defined a system for automatic transformation of normalized SQL DDL schemas into 
OWL DL ontologies. We have defined our entire set of transformation rules in first 
order logic eliminating syntactic and semantic ambiguities and allowing for easy im-
plementation of the system in languages like Datalog.  

Once an ontology is defined for a domain represented by a relational schema, the 
actual database content can be easily translated into a corresponding RDF representa-
tion. We have also ensured compatibility with description logics based OWL DL, 
which is essential to assuring decidability for reasoning represented by the relational 
model.  

We have demonstrated that an automatic transformation system has its deficiencies 
when it comes to identifying inheritance and other rich semantic elements. Although 
it is easy to generate specific examples of relational encodings of inheritance, there is 
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neither a unique encoding, nor an encoding whose syntax, without further qualifica-
tion, can be strictly interpreted as inheritance.  Thus, transformation systems that cre-
ate inheritance relationships will incorrectly produce too many, or too few. Thus, 
there may always be an opportunity for human judgment to fill in gap between the 
expressive power of SQL DDL and OWL.  

Independent of the issues that arise from the differences in expressive power, a fair 
criticism of the automated transformation approach, in general, is that the scope of 
success may be highly dependent on the amount of domain semantics captured in 
SQL DDL, which in turn correlates to the age of the database application and the so-
phistication of its developers. However, if the success of an application of an  
automated transformation is limited, it is still possible to add missing semantics using 
the techniques being developed in wrapper-based approaches. Such semi-automated 
systems have been explored in the context of strict relational data integration [BaM07, 
Mil00]. Further, functioning relational database applications are prone to schema 
modification. One can envision a system where an automated transformation boot-
straps a more powerful wrapper system. In the advent of database schema evolution a 
combined system may be able to reason about and propagate the changes. 
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