
Effective Skyline Cardinality Estimation on Data
Streams�

Yang Lu, Jiakui Zhao, Lijun Chen, Bin Cui, and Dongqing Yang

Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education, China

School of Electronics Engineering and Computer Science, Peking University, China
{yanglu,jkzhao,ljchen,bin.cui,dqyang}@pku.edu.cn

Abstract. In order to incorporate the skyline operator into the data
stream engine, we need to address the problem of skyline cardinality esti-
mation, which is very important for extending the query optimizer’s cost
model to accommodate skyline queries. In this paper, we propose robust
approaches for estimating the skyline cardinality over sliding windows
in the stream environment. We first design an approach to estimate the
skyline cardinality over uniformly distributed data, and then extend the
approach to support arbitrarily distributed data. Our approaches allow
arbitrary data distribution, hence can be applied to extend the opti-
mizer’s cost model. To estimate the skyline cardinality in online manner,
the live elements in the sliding window are sketched using Spectral Bloom
Filters which can efficiently and effectively capture the information which
is essential for estimating the skyline cardinality over sliding windows.
Extensive experimental study demonstrates that our approaches signifi-
cantly outperform previous approaches.

1 Introduction

Skyline queries are very important for many applications, such as data mining
and multi-criteria decision making, and have attracted much attention [4,9,12].
Given two multi-dimensional elements ξ1 and ξ2, if ξ1 is better than or equal to ξ2
over all dimensions and strictly better than ξ2 over at least one dimension, we say
that ξ1 dominates ξ2, and is marked as ξ1 � ξ2. If an element is not dominated
by any other element, it is a skyline element, and the skyline query returns all
skyline elements. Continuously monitoring skylines over sliding windows [11,14]
in the stream environment also received much attention; the skyline changes
over time as the window slides and the skyline changes are reported to the user
continuously in real-time manner. In order to incorporate the skyline operator
into the data stream engine, we need to solve the problem of skyline cardinality
estimation, which is very important for extending the optimizer’s cost model.

There are some previous works [2,5] which considered the problem of skyline
cardinality estimation over static datasets. However, the approaches are based
� This work is supported by project 2007AA01Z153 under the National High-tech

Research and Development of China and the National Natural Science Foundation
of China under Grant No.60603045.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 241–254, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

242 Y. Lu et al.

on very strong assumptions on the data distribution, e.g., no duplicate values
over each dimension. The approach in [6] allows duplicate values, but only two
possible values, e.g. 0 and 1, are allowed over the dimension which contains du-
plicate values, hence the restriction is still very strong. Since duplicate values
are very common, above approaches do not scale well to real-life applications.
In this paper, we propose robust approaches for estimating the skyline cardi-
nality, and our approaches can support the skyline computation over arbitrarily
distributed data. In addition, since the elements in the sliding window change
over time as the window slides, we use Spectral Bloom Filters [7] to continuously
capture the information which is essential for estimating the skyline cardinality.
Our contributions in this paper can be summarized as follows:

1. We propose an approach which only uses the value cardinality of each di-
mension to estimate the skyline cardinality, under the assumption that the
data over each dimension is uniformly distributed.

2. We design a robust approach which considers the data distribution over
each dimension. This enhanced approach can estimate the skyline cardinality
effectively and efficiently over arbitrarily distributed data.

3. We propose to use Spectral Bloom Filters to capture the information, such as
value cardinality and value frequency over each dimension, which is essential
for estimating the skyline cardinality over sliding windows.

4. We conduct extensive experimental study to demonstrate that our
approaches yield better performance than existing approaches.

The rest of this paper is organized as follows: Section 2 surveys related works;
Section 3 proposes our skyline cardinality estimation approaches; experimental
results are shown in Section 4, followed by our conclusion in Section 5.

2 Related Works

The skyline problem was originally studied as the maximal vector problem; Kung
et al. [10] proposed the first algorithm for finding the maximal vectors from a set
of memory resident vectors. Börzsönyi et al. [4] introduced the skyline operator
into relational database systems. Recently, continuously monitoring skylines over
sliding windows [11,14] also received much attention.

There are some previous works which considered the problem of skyline cardi-
nality estimation over static datasets. Under assumptions of statistical indepen-
dence across dimensions, no duplicate values over each dimension, and dimension
domains are all totally ordered, Bentley et al. [2] and Godfrey [8] proposed meth-
ods for estimating the skyline cardinality using carefully designed recurrence.
Under the same assumptions, Buchta [5] and Chaudhuri et al. [6] proposed to
estimate the skyline cardinality using integrals, and Buchta [5] further derived
that the skyline cardinality equals Θ

(
(ln n)k−1/(k − 1)!

)
, where n is the number

of elements in the space and k is the number of dimensions. Above approaches
cannot be applied to most real-life applications as the “no duplicate values” as-
sumption is impractical. Chaudhuri et al. [6] relaxed the “no duplicate values”

Effective Skyline Cardinality Estimation on Data Streams 243

assumption, but the dimensions which contain duplicate values can only have
two possible values, which is still a suffering constraint. In addition, the ap-
proach uses integrals to estimate the skyline cardinality, and the integrals have
no a close form, hence can only be approximated by some scientific computing
methods. In this paper, under assumptions of statistical independence across di-
mensions which is commonly used by query optimizers, we consider the problem
of sliding-window skyline cardinality estimation over arbitrarily distributed data
in the stream environment.

3 Skyline Cardinality Estimation

In this section, we introduce how to estimate the skyline cardinality over sliding
windows in the stream environment.

3.1 Estimation under Strong Assumptions

The approaches for skyline cardinality estimation proposed in [2,5,6] can be
extended to the stream context without modifications and are summarized by
Theorem 1, Theorem 2 and Theorem 3 respectively. Theorem 1 and Theorem 2
are theoretically equivalent. The three approaches suffer from the strong assump-
tions as described in Section 2, and hence do not apply to real-life applications.

Theorem 1. Suppose that there are n k-dimensional live elements in a sliding
window; under assumptions of statistical independence across dimensions, no
duplicate values over each dimension, and dimension domains are all totally
ordered, the expected number of the skyline elements Ψ(n, k) can be recursively
characterized as

Ψ(n, k) = Ψ(n − 1, k) +
1
n

Ψ(n, k − 1)

with initial conditions

Ψ(1, k) = 1 k ≥ 1
Ψ(n, 1) = 1 n ≥ 1.

Theorem 2. Suppose that there are n k-dimensional live elements in a sliding
window; under the same assumptions as those in Theorem 1, the expected number
of the skyline elements Ψ(n, k) can be characterized as

Ψ(n, k) = n

∫ 1

0
· · ·

∫ 1

0
(1 − x1 · · · xk)n−1dx1 · · · dxk.

Theorem 3. Suppose that there are n k-dimensional live elements in a sliding
window; there are only two possible values over each of the first k◦ dimensions,
and there are no duplicate values over the other dimensions. For simplicity and
without loss of generality, suppose that the two possible values over the first k◦

dimensions are 1 and 0, and 1 dominates 0; pi denotes the probability that the

244 Y. Lu et al.

value of the ith dimension equals 1, where 1 ≤ i ≤ k◦. Under assumptions of
statistical independence across dimensions and dimension domains are all totally
ordered, the expected number of the skyline elements Ψ(n, k) equals

n
∑

v∈{0,1}k◦

∫ 1

0
· · ·

∫ 1

0
Φv(x1, · · · , xk−k◦)dx1 · · ·dxk−k◦

where Φv(x1, · · · , xk−k◦) can be characterized as

Φv(x1, · · · , xk−k◦) = P1(v) (1 − P2(v)x1 · · ·xk−k◦)n−1

P1(v) =
k◦
∏

i=1

pvi

i (1 − pi)1−vi

P2(v) =
k◦
∏

i=1

p1−vi

i .

3.2 Estimation over Uniformly Distributed Data

As we introduced previously, existing approaches assume that there are no du-
plicate values over each dimension or the dimension only has two possible values.
To achieve better applicability, we relax the restriction on the data distribution.
Under assumptions of statistical independence across dimensions and the data
over each dimension is uniformly distributed, we use the value cardinality, i.e.
the number of the distinct elements, over each dimension to characterize the ex-
pected number of the skyline elements. The theoretical analysis is based on the
Inclusion-Exclusion Principle [13]. Lemma 1 gives the probability that an ele-
ment is dominated by all other n elements. Lemma 2 gives the probability that
an element is dominated by at least one of other n elements. Lemma 3 gives the
probability that none of other n elements can dominate an element. Theorem 4
gives the expected number of the skyline elements in a sliding window which
contains n k-dimensional live elements.

Lemma 1. Suppose that ξ0ξ1 · · · ξn are n + 1 k-dimensional elements, where
ξi =< xi1, xi2, · · · , xik >. The data over each dimension is uniformly dis-
tributed, and the value cardinality of the jth dimension, i.e. the number of the
distinct values over the jth dimension, is cj; vj1, vj2, · · · , vjcj denote the dis-
tinct values over the jth dimension, where vj1 < vj2 < · · · < vjcj . Under
assumptions of statistical independence across dimensions, the probability that
∀i(1≤i≤n)(ξi � ξ0), i.e. P◦(n), can be characterized as,

P◦(n) =
k∏

j=1

cj∑

t=1

tn

cn+1
j

n ≥ 1, k ≥ 1.

Proof. P◦(n) can be characterized as,

P◦(n) = P{(∀i(1≤i≤n)(ξi � ξ0)}

Effective Skyline Cardinality Estimation on Data Streams 245

=
k∏

j=1

cj∑

t=1

P{x0j = vjt}P{∀i(1≤i≤n)(x0j ≥ xij) | x0j = vjt}

=
k∏

j=1

cj∑

t=1

(
1
cj

·
(

t∑

θ=1

1
cj

)n)

=
k∏

j=1

cj∑

t=1

tn

cn+1
j

.

Lemma 2. Under the same conditions as those in Lemma 1, the probability that
∃i(1≤i≤n)(ξi � ξ0), i.e. P•(n), can be characterized as,

P•(n) =
n∑

i=1

⎛

⎝(−1)i−1
(

n

i

) k∏

j=1

cj∑

t=1

ti

ci+1
j

⎞

⎠ n ≥ 1, k ≥ 1.

Proof. Using the Inclusion-Exclusion Principle [13] and Lemma 1, we have

P•(n) = P{(ξ1 � ξ0) ∨ · · · ∨ (ξn � ξ0)}

=
n∑

i=1

P{ξi � ξ0} −
∑

1≤i1<i2≤n

P{(ξi1 � ξ0) ∧ (ξi2 � ξ0)}

+
∑

1≤i1<i2<i3≤n

P{(ξi1 � ξ0) ∧ (ξi2 � ξ0) ∧ (ξi3 � ξ0)}

− · · · + (−1)n−1
P{(ξ1 � ξ0) ∧ · · · ∧ (ξn � ξ0)}

=
(

n

1

)
P◦(1) −

(
n

2

)
P◦(2) +

(
n

3

)
P◦(3) − · · · + (−1)n−1

(
n

n

)
P◦(n)

=
n∑

i=1

(−1)i−1
(

n

i

)
P◦(i) =

n∑

i=1

⎛

⎝(−1)i−1
(

n

i

) k∏

j=1

cj∑

t=1

ti

ci+1
j

⎞

⎠ .

Lemma 3. Under the same conditions as those in Lemma 1, the probability that
�i(1≤i≤n)(ξi � ξ0), i.e. P�(n), can be characterized as,

P�(n) =
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

i=1

1
ci

)⎛

⎝1 −
k∏

j=1

tj
cj

⎞

⎠

n

n ≥ 1, k ≥ 1.

Proof. By Lemma 2,P�(n) can be characterized as,
P�(n) = P{�i(1≤i≤n)(ξi � ξ0)} = 1 − P•(n)

=
n∑

i=0

⎛

⎝(−1)i

(
n

i

) k∏

j=1

cj∑

t=1

ti

ci+1
j

⎞

⎠ =
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

l=1

1
cl

)
n∑

i=0

(−1)i

(
n

i

) k∏

j=1

tij
ci
j

=
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

l=1

1
cl

)
n∑

i=0

(
n

i

)
⎛

⎝−
k∏

j=1

tj
cj

⎞

⎠

i

=
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

i=1

1
ci

)⎛

⎝1 −
k∏

j=1

tj
cj

⎞

⎠

n

.

246 Y. Lu et al.

Theorem 4. Suppose that there are n k-dimensional live elements in the slid-
ing window; the data over each dimension is uniformly distributed, and the value
cardinality of the jth dimension is cj; under the assumption of statistical inde-
pendence across dimensions, the expected number of the skyline elements Ψ(n, k)
can be characterized as,

Ψ(n, k) = n ·
c1∑

t1=1

· · ·
ck∑

tk=1

(
k∏

i=1

1
ci

)⎛

⎝1 −
k∏

j=1

tj
cj

⎞

⎠

n−1

where n ≥ 1 and k ≥ 1.

Proof. By Lemma 3 and Ψ(n, k) = nP�(n−1), the theorem can be easily proved.

3.3 Estimation over Arbitrarily Distributed Data

Theorem 4 assumes that the data over each dimension is uniformly distributed;
however, skewed data is very common in real-life datasets, and Theorem 4 may
not work well for such datasets. Corollary 1 gives an approach for estimating
the skyline cardinality over arbitrarily distributed data, in which probability
functions of all dimensions are considered.

Corollary 1. Suppose that ξ1ξ2 · · · ξn are n k-dimensional live elements in a
sliding window, where ξi = < xi1, xi2, · · · , xik >. The probability function of the
data over the jth dimension is fj; P{xij = vjt} = fj(t), vj1 < vj2 < · · · < vjcj ,
where cj is the value cardinality of the jth dimension. Under assumptions of
statistical independence across dimensions, the expected number of the skyline
elements Ψ(n, k) equals

n ·
c1∑

t1=1

· · ·
ck∑

tk=1

f1(t1) · · · fk(tk)

⎛

⎝1 −
k∏

j=1

tj∑

θ=1

fj(θ)

⎞

⎠

n−1

.

Proof. The proof borrows the same ideas from the proof of Theorem 4; for space
limitations, we omit the details.

Estimating the skyline cardinality using Corollary 1 has a computational com-
plexity of O(

∏k
j=1 cj), where cj is the value cardinality of the jth dimension;

if the number of dimensions and the value cardinalities of some dimensions are
large, the computational cost overhead is unacceptable. Definition 1 gives the
definition of high and low value cardinality. If a dimension was defined with high
value cardinality, we may consider that there are no duplicate values over the
dimension, hence the probability function of the dimension needs not to be con-
sidered and we can reduce the computational cost thereafter. With well tuned
threshold value ε, we can get good approximation of the skyline cardinality.

Definition 1 (High and Low Value Cardinality). Suppose that the proba-
bility function over a dimension is f ; the value of a randomly selected element

Effective Skyline Cardinality Estimation on Data Streams 247

F(1) F(2) F(t-1) F(t)

1

x

y

F(0)= 0

f(1)

f(2)

f(t)

F(c)=1

(a) high value cardinality
F(1)

1

x

y

F(0)= 0

f(1)

F(2)=1

(b) low value cardinality

Fig. 1. High and low value cardinality

has a f(t) probability to be vt, v1 < v2 < · · · < vc, where c is the value cardinality
of the dimension; if the following inequation

∣
∣
∣∣
∣
1
2

−
c∑

t=1

f(t) (1 − F (t))

∣
∣
∣∣
∣
< ε, F (t) =

t∑

θ=1

f(θ)

holds, where ε is the threshold value, we say that the dimension has high value
cardinality; otherwise, the dimension has low value cardinality.

Figure 1 illustrates the high and low value cardinality defined in Definition 1,
where the area of the triangle is 0.5; if the area of the greyed regions approxi-
mates 0.5, we are sure that any two values over the dimension have a very small
probability to be equal, hence we may consider that there are no duplicate val-
ues over the dimension. Theorem 5 gives an efficient approach for estimating
the skyline cardinality over arbitrarily distributed data; since the probability
functions of dimensions with high value cardinality are no longer considered, the
computational complexity is significantly reduced. The cardinality threshold ε in
Definition 1 has great influence on the performance of this approach. If ε has a
very small value, fewer dimensions can have high value cardinality; in this case,
the computational complexity will be higher, but the result will be more accu-
rate. Otherwise, more dimensions can have high value cardinality; in this case,
the computational complexity will be lower, but the result may be less accurate.

Theorem 5. Suppose that ξ1ξ2 · · · ξn are n k-dimensional live elements in a
sliding window, where ξi = < xi1, xi2, · · · , xik >. The data over k◦ dimensions
has low value cardinality, and the data over each other dimension has high value
cardinality; without loss of generality, suppose that the data over each of the first
k◦ dimensions has low value cardinality, and the probability function of the data
over the jth dimension is fj; P{xij = vjt} = fj(t), vj1 < vj2 < · · · < vjcj , where
cj is the value cardinality of the jth dimension. If k = k◦, the expected number
of the skyline elements in the sliding window Ψ(n, k) equals

n ·
c1∑

t1=1

· · ·
ck∑

tk=1

f1(t1) · · · fk(tk)

⎛

⎝1 −
k∏

j=1

tj∑

θ=1

fj(θ)

⎞

⎠

n−1

.

248 Y. Lu et al.

If k > k◦, Ψ(n, k) can be approximated by

c1∑

t1=1

· · ·
ck◦∑

tk◦=1

f1(t1) · · · fk◦(tk◦)Ψt1,··· ,tk◦ (n, k)

where Ψt1,··· ,tk◦ (n, k) can be recursively characterized as

Ψt1,··· ,tk◦ (n, k) = Ψt1,··· ,tk◦ (n − 1, k) +
Ψt1,··· ,tk◦ (n, k − 1)

n

with initial conditions

Ψt1,··· ,tk◦ (1, k) = 1 (k ≥ k◦ + 1)

Ψt1,··· ,tk◦ (n, k◦ + 1) =

1 −
(

1 −
k◦∏

j=1

tj∑

θ=1
fj(θ)

)n

k◦∏

j=1

tj∑

θ=1
fj(θ)

(n ≥ 1).

Proof. The proof borrows the same ideas from the proof of Theorem 4; for space
limitations, we omit the details.

3.4 Computing Skyline Cardinality

In order to utilize the theorems presented above to estimate the skyline cardi-
nality, we have to get the information about the distribution of the data, such as
the value cardinality and the value frequency. In this subsection, we discuss how
we can compute the skyline cardinality online in a data stream environment.

The Spectral Bloom Filter (SBF) [7] is an extension of the standard bloom
filter [3] for supporting the estimation of the value frequency and the value cardi-
nality. The bit vector in the standard bloom filter is replaced by a counter vector
in SBF. Initially, all counters are set to 0; κ hash functions h1, h2, · · · , hκ are
used to hash elements into the counters. Three strategies, i.e. Minimum Selec-
tion (MS), Minimal Increase (MI), and Recurring Minimum (RM), are used to
maintain SBF. For sliding windows, in order to estimate the skyline cardinality
using Theorem 5, the RM strategy is the best choice, since it supports deletions
and has relatively lower error rate. In dynamic environments, the naive method
for estimating the skyline cardinality is to recompute the expected skyline cardi-
nality using Theorems 4 or 5 whenever the distribution is changed; however, the
method is both space and time inefficient and is not necessary. In our work, in the
case of estimating the skyline cardinality using Theorem 4, we use a threshold
value γc to demonstrate that when the change of the cardinality of a dimension
exceeds γc, the expected skyline cardinality should be recomputed. In the case
of estimating the skyline cardinality using Theorem 5, an additional threshold
value γf is used to demonstrate that when the change of the frequency of a value
exceeds γf , the expected skyline cardinality should be recomputed.

Effective Skyline Cardinality Estimation on Data Streams 249

Algorithm 1: Estimating Skyline Cardinality(k,�, γc, γf)

Input : k: the number of dimensions
�: the data stream
γc: threshold of cardinality change over a dimension
γf : threshold of frequency change of a value

begin1
n← 0;2
while the data stream � is not terminated do3

wait until an element ξ arrives or expires;4
if ξ is an arriving element then5

n← n + 1;6
for i← 1 to k do7

find← sbf [i].lookfor(ξ.x[i]);8
if find = false then9

v[i].insert(ξ.x[i]); λc[i]← λc[i] + 1;10
end11
sbf [i].insert(ξ.x[i]); λf [i].insert(ξ.x[i]);12

end13
else14

n← n− 1;15
for i← 1 to k do16

num ← sbf [i].getnum(ξ.x[i]);17
if num = 1 then18

v[i].delete(ξ.x[i]); λc[i]← λc[i]− 1;19
end20
sbf [i].delete(ξ.x[i]); λf [i].delete(ξ.x[i]);21

end22
end23
recompute← false;24
for i← 1 to k do25

if |λc[i]| > γc then26
recompute← true; break;27

end28
if λf [i].check(γf) = true then29

recompute← true; break;30
end31

end32
if recompute = true then33

card← computeT5(n,k,sbf ,v); report(card);34
for i← 1 to k do35

λc[i]← 0; λf [i].clear();36
end37

end38
end39

end40

Algorithm 1 shows how to estimate the skyline cardinality over sliding win-
dows using Theorem 5; an array of SBFs maintained by the RM strategy are
used to summarize the data over each dimension. Initially, the number of the
live elements in the sliding window n is set to 0 (line 2); while the stream �

is not terminated, the algorithm waits until a new element arrives or a live ele-
ment expires (line 4). If a new element ξ arrives, the number of the live elements
in the sliding window is increased by 1 (line 6). Then, for each dimension of
the element, determine whether the dimension value is contained by the cor-
responding SBF (line 8); if not contained, the dimension value is inserted into
the vector v[i] which consists of the distinct values over the dimension and the
value cardinality change over the dimension λc[i] is increased by 1 (line 10). Fi-
nally, each dimension value of the new element is inserted into the corresponding

250 Y. Lu et al.

SBF and update the vector λf [i] which records the frequency changes of each
distinct value over the corresponding dimension. The process of processing an
expired element (lines 14-23) is just the reverse process of processing an arriving
element. After processing an element, the threshold values γc and γf are used
to determine whether the skyline cardinality needs to be recomputed (lines 24-
32); if needs to be recomputed, recompute the expected skyline cardinality using
Theorem 5 and reset λc and λf (lines 33-38). computeT5(n,k,sbf ,v) computes
the expected skyline cardinality, where n is the number of the live elements in
the sliding window, k is the number of the dimensions, v stores the distinct
values over each dimension, and sbf is the array of SBFs which can be used to
estimate the number of the times that a value occurs over a dimension. Given
the parameters, computing the expected skyline cardinality using Theorem 5 is
rather straightforward; for space limitations, we omit the details.

The algorithm for estimating the skyline cardinality using Theorem 4 is quite
similar but simpler, as we only need to record the value cardinality for each
dimension and consider the only threshold γc. But the method may suffer from
non-uniform distributions, since Theorem 4 assumes that the data over each
dimension is uniformly distributed, and skewed data distribution may affect the
accuracy of Theorem 4.

4 An Experimental Study

In this section, we experimentally evaluate the performance of our approaches,
i.e. Theorems 4 and 5, for estimating the skyline cardinality over sliding windows
in the stream environment. Since Theorems 1 and 2 are theoretically equivalent
and Theorem 2 can only be approximated by some scientific computing methods,
we consider Theorem 1 as a competitor of our approaches. We also compare our
approaches with Theorem 3 over datasets in which the value cardinality of a
dimension is limited to 2.

We use 3 hash functions and 3,000 counters for the SBF of a dimension. The
algorithms are implemented by the C++ programming language and run on a
2.0GHz Intel CPU with 1GB of memory. To better show the performance under
different data distributions, we conduct the experiments on synthetic datasets.
We test the performance over 3-dimensional and 6-dimensional datasets which
contain 30,000 elements, and the data over each dimension is generated by the
GNU Scientific Library [1]. The details of the datasets used in our experiments
are shown in Table 1, where c is the value cardinality of a dimension. The
skewed data over a dimension is generated by two distributions alternately. One
half of the skewed data submits to the uniform distribution and the other half
submits to the binomial distribution with parameters p and c◦. The random
number generator of binomial distribution returns the number of successes in c◦

independent trials with probability p. For “continuous distribution” in Table 1,
it represents that no duplicate values appear over a certain dimension.

For each dataset, the actual skyline cardinality is evaluated by the average
number of skyline elements of the sliding window; we use the average computed

Effective Skyline Cardinality Estimation on Data Streams 251

Table 1. Figures and corresponding datasets

Figure Dataset
Figure 2(a) 2 dimensions: continuous distribution;

1 dimension: uniform distribution and c = 50.
Figure 2(b) 2 dimensions: continuous distribution;

1 dimension: skewed distribution, c◦ = 50 and p = 0.5.
Figure 2(c) 1 dimension: continuous distribution;

1 dimension: uniform distribution and c = 50;
1 dimension: the first half data satisfies c = 100, the other half satisfies
c = 10, and the data over this dimension is randomly generated.

Figure 3(a) 2 dimensions: continuous distribution;
1 dimension: uniform distribution and c = 50.

Figure 3(b) 1 dimension: continuous distribution;
2 dimensions: uniform distribution and c = 50.

Figure 3(c) 2 dimensions: continuous distribution;
1 dimension: skewed distribution, c◦ = 50 and p = 0.5.

Figure 3(d) 1 dimension: continuous distribution;
1 dimension: skewed distribution, c◦ = 50 and p = 0.3;
1 dimension: skewed distribution, c◦ = 50, and p = 0.7.

Figure 3(e) 5 dimensions: continuous distribution;
1 dimension: uniform distribution and c = 2.

Figure 3(f) 3 dimensions: continuous distribution;
2 dimensions: uniform distribution and c = 50;
1 dimension: uniform distribution and c = 2.

skyline cardinality as the result of Theorems 4 and 5. In the experimental figures,
T1, T3, T4 and T5 represent the result of Theorem 1, Theorem 3, Theorem 4,
and Theorem 5 respectively.

4.1 Effect of the Thresholds

In the first set of experiments, we test the effect of the threshold ε, i.e. the
watershed of high and low value cardinality, to the performance of Theorem 5.
Figure 2(a) and Figure 2(b) illustrate the skyline cardinality with respect to
ε over two different datasets, when the sliding window size is set to 500. In
Figure 2(a), when ε is smaller than 0.01, the result of Theorem 5 is close to
the actual skyline cardinality; but when ε is greater than 0.015, the results of
Theorem 5 are degraded and superpose the results of Theorem 1. This happens
because the dimension with uniformly distributed data is judged as a dimen-
sion with low value cardinality when ε ≤ 0.01, and hence the result is a good
estimation of the actual skyline cardinality. The dimension is misjudged as a di-
mension with high value cardinality when ε ≥ 0.015. Thus the three dimensions
are all with high value cardinality. Theorem 5 is equivalent to Theorem 1 at this
moment and the results prove this point. The watershed of high and low value
cardinality in Figure 2(b) is greater than that in Figure 2(a), because the value

of |1/2 −
c∑

t=1
f(t) (1 − F (t)) | (see Definition 1) of a dimension in Figure 2(b) is

greater than that in Figure 2(a) due to the skewed data distribution. From above
results, we can see that the selection of ε is important for better performance
of Theorem 5, and we fix the cardinality threshold ε at 0.005 in the following
experiments.

252 Y. Lu et al.

(a) (b) (c)

Fig. 2. The effect of thresholds

Next, we evaluate the effect of the recomputation threshold on the accuracy
of skyline cardinality estimation. We fix the window size at 500. γc which is the
threshold of cardinality change over a dimension and γf which is the threshold of
frequency change of a value are given the same value for ease of the presentation.
We only need to examine γc for Theorem 4, while both γc and γf for Theorem 5.
In this experiment, we vary the threshold from 0% to 50% and calculate the
average error and times of recomputation. For example, 10% means that we do
not recompute the skyline until the change of value cardinality (value frequency)
on any dimension is larger than 10%. The average error stands for the difference
between the results of Theorems 4(5) and results of respective Theorems with
the certain percentage of changes. As shown in Figure 2(c), both the errors of
Theorem 4 and Theorem 5 increase when γc(γf) increases. However, the error
is not significant compared with skyline cardinality which is around 20, as we
recompute the skyline once the change on any dimension exceeds the threshold.
We also find that the error of Theorem 5 is smaller than that of Theorem 4.
The reason is that Theorem 4 computes the skyline cardinality only considering
the change of value cardinality, while Theorem 5 may recompute when the data
distribution changes.

4.2 Performance over Different Datasets

Figure 3(a) to Figure 3(f) present the experimental results of different approaches
under various data distributions. The actual skyline cardinality and the esti-
mated skyline cardinality of different methods increase when the window size
increases, as more objects need to be evaluated.

For the given window size and the number of dimensions, the results of Theo-
rem 1 remain the same regardless of the change of data distributions. Therefore,
Theorem 1 shows a poorer performance for the datasets, in which not all the
dimensions are of continuously distributed data. In Figure 3(a) and Figure 3(b),
both Theorem 4 and Theorem 5 provide a good estimation for the actual sky-
line cardinality and this fully supports the effectiveness of our methods. One
dimension with continuously distributed data is replaced by one dimension with
uniformly distributed data in Figure 3(b), and the actual skyline cardinality de-
creases accordingly for the intuitionistic reason that when the value cardinality

Effective Skyline Cardinality Estimation on Data Streams 253

(a) (b) (c)

(d) (e) (f)

Fig. 3. Performance under different datasets

of a dimension is reduced, more elements are probably dominated. The skewed
data distribution is introduced in Figure 3(c) and Figure 3(d), and Theorem 4
performs worse than Theorem 5 as we expect. The actual skyline cardinality
in Figure 3(d) is smaller than that in Figure 3(c) because of the reduced value
cardinality of one dimension. Comparing Figure 3(a) and Figure 3(c), we can
find that the live elements in the window have higher probabilities to be skyline
elements under skewed data distribution.

Next, we consider Theorem 3 as a competitor. The dataset used in Figure 3(e)
satisfies the assumptions of Theorem 3. We can see that the result of Theorem 3
is almost as good as that of Theorem 5. While in Figure 3(f), we cannot compute
the results of Theorem 3 directly as two dimensions are not continuously dis-
tributed. We treat them as continuously distributed to approximate the result
for Theorem 3. Both Theorem 4 and Theorem 5 outperform Theorem 3, because
the preconditions of Theorem 3 does not consider the data distribution whose
value cardinality is greater than 2.

5 Conclusion

In this paper, we relaxed the strong assumptions of previous work and proposed
Theorem 4, which only uses the value cardinality of each dimension to estimate
the skyline cardinality under the assumption that the data over each dimension
is uniformly distributed. We also gave a robust approach, i.e. Theorem 5, to
effectively estimate skyline cardinality over arbitrarily distributed data. To apply

254 Y. Lu et al.

Theorem 4 and Theorem 5 in the data stream environment, we used SBF to
capture the value cardinality and the probability that a value occurs over a
dimension. Finally, we compared our approaches with all previous approaches
by extensive experimental study, and our approaches, especially Theorem 5,
significantly outperform previous approaches.

References

1. http://www.gnu.org/software/gsl/
2. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number

of maxima in a set of vectors and applications. J. ACM 25(4), 536–543 (1978)
3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)
4. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of

ICDE 2001, pp. 421–430 (2001)
5. Buchta, C.: On the average number of maxima in a set of vectors. Inf. Process.

Lett. 33(2), 63–65 (1989)
6. Chaudhuri, S., Dalvi, N.N., Kaushik, R.: Robust cardinality and cost estimation

for skyline operator. In: Proceedings of ICDE 2006, p. 64 (2006)
7. Cohen, S., Matias, Y.: Spectral bloom filters. In: Proceedings of SIGMOD 2003,

pp. 241–252 (2003)
8. Godfrey, P.: Skyline cardinality for relational processing. In: Seipel, D., Turull-

Torres, J.M.a. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 78–97. Springer, Heidelberg
(2004)

9. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm
for skyline queries. In: Proceedings of VLDB 2002, pp. 275–286 (2002)

10. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.
J. ACM 22(4), 469–476 (1975)

11. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: Efficient skyline computa-
tion over sliding windows. In: Proceedings of ICDE 2005, pp. 502–513 (2005)

12. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm
for skyline queries. In: Proceedings of SIGMOD 2003, pp. 467–478 (2003)

13. Rosen, K.H.: Discrete Mathematics and Its Applications, 4th edn. WCB/McGraw-
Hill, Boston (1999)

14. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Trans. Knowl. Data Eng. 18(2), 377–391 (2006)

http://www.gnu.org/software/gsl/

	Effective Skyline Cardinality Estimation on Data Streams
	Introduction
	Related Works
	Skyline Cardinality Estimation
	Estimation under Strong Assumptions
	Estimation over Uniformly Distributed Data
	Estimation over Arbitrarily Distributed Data
	Computing Skyline Cardinality

	An Experimental Study
	Effect of the Thresholds
	Performance over Different Datasets

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

